

3D GAME ENGINE

ARCHITECTURE W

3D GAME ENGINE
ARCHITECTURE

Engineering Real-Time
Applications with Wild Magic

TeamLRN sPeCiAL

TeamLRN sPeCiAL

THE MORGAN KAUFMANN SERIES IN
INTERACTIVE 3D TECHNOLOGY

SERIES EDITOR: DAVID H. EBERLY, MAGIC SOFTWARE, INC.

The game industry is a powerful and driving force in the evolution of computer tech-
nology. As the capabilities of personal computers, peripheral hardware, and game
consoles have grown, so has the demand for quality information about the algo-
rithms, tools, and descriptions needed to take advantage of this new technology. To
satisfy this demand and establish a new level of professional reference for the game
developer, we created the Morgan Kaufmann Series in Interactive 3D Technology.
Books in the series are written for developers by leading industry professionals and
academic researchers, and cover the state of the art in real-time 3D. The series em-
phasizes practical, working solutions and solid software-engineering principles. The
goal is for the developer to be able to implement real systems from the fundamental
ideas, whether it be for games or other applications.

3D Game Engine Architecture: Engineering Real-Time Applications with Wild Magic
David H. Eberly

Real-Time Collision Detection
Christer Ericson

Physically Based Rendering: From Theory to Implementation
Matt Pharr and Gregg Humphreys

Essential Mathematics for Game and Interactive Applications: A Programmer’s Guide
James M. Van Verth and Lars M. Bishop

Game Physics
David H. Eberly

Collision Detection in Interactive 3D Environments
Gino van den Bergen

3D Game Engine Design: A Practical Approach to Real-Time Computer Graphics
David H. Eberly

Forthcoming

Artificial Intelligence for Computer Games
Ian Millington

Visualizing Quaternions
Andrew J. Hanson

3D GAME ENGINE
ARCHITECTURE

Engineering Real-Time
Applications with Wild Magic

DAVID H. EBERLY
Magic Software, Inc.

AMSTERDAM + BOSTON « HEIDELBERG * LONDON ®
NEW YORK + OXFORD * PARIS + SAN DIEGO '
SAN FRANCISCO * SINGAPORE * SYDNEY + TOKYO ‘

ELSEVIER Morgan Kaufmann is an imprint of Elsevier MORGAN KAUFMANN PUBLISHERS

&5

TeamLRN sPeCiAL

TeamLRN sPeCiAL

Senior Editor Tim Cox

Publishing Services Manager Simon Crump

Project Editor Justin Palmeiro

Project Management Elisabeth Beller

Assistant Editor Rick Camp

Cover Design Chen Design Associates, San Francisco
Text Design Rebecca Evans

Composition Windfall Software, using ZzIgX
Technical Hllustration Dartmouth Publishing
Copyeditor Ken DellaPenta

Proofreader Jennifer McClain

Indexer Steve Rath

Interior Printer The Maple-Vail Book Manufacturing Group
Cover Printer Phoenix Color Corporation

Morgan Kaufmann Publishers is an imprint of Elsevier.
500 Sansome Street, Suite 400, San Francisco, CA 94111

This book is printed on acid-free paper.
© 2005 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as
trademarks or registered trademarks. In all instances in which Morgan Kaufmann
Publishers is aware of a claim, the product names appear in initial capital or all
capital letters. Readers, however, should contact the appropriate companies for more
complete information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or trans-
mitted in any form or by any means—electronic, mechanical, photocopying, scan-
ning, or otherwise—without prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333,
e-mail: permissions@elsevier.com.uk. You may also complete your request online via
the Elsevier homepage (http://elsevier.com) by selecting “Customer Support” and
then “Obtaining Permissions.”

Library of Congress Cataloguing-in-Publication: applied for
ISBN: 0-12-229064-X

For information on all Morgan Kaufmann publications,
visit our Web site at www.mkp.com.

Printed in the United States of America

08 07 06 05 04 54321

TeamLRN sPeCiAL

ABOUT THE AUTHOR

Dave Eberly is the president of Magic Software, Inc. (www.magic-software.com), a
company that specializes in software development for computer graphics, image
analysis, and numerical methods. Previously, he was the director of engineering at
Numerical Design Ltd., the company responsible for the real-time 3D game engine,
NetImmerse. His background includes a BA degree in mathematics from Bloomsburg
University, MS and PhD degrees in mathematics from the University of Colorado at
Boulder, and MS and PhD degrees in computer science from the University of North
Carolina at Chapel Hill. He is the author of Garme Physics (2004) and 3D Game Engine
Design (2001) and coauthor with Philip Schneider of Geometric Tools for Computer
Graphics (2003), all published by Morgan Kaufmann.

As a mathematician, Dave did research in the mathematics of combustion, signal
and image processing, and length-biased distributions in statistics. He was an asso-
ciate professor at the University of Texas at San Antonio with an adjunct appointment
in radiology at the U.T. Health Science Center at San Antonio. In 1991 he gave up his
tenured position to re-train in computer science at the University of North Carolina.
After graduating in 1994, he remained for one year as a research associate professor
in computer science with a joint appointment in the Department of Neurosurgery,
working in medical image analysis. His next stop was the SAS Institute, working for
a year on SAS/Insight, a statistical graphics package. Finally, deciding that computer
graphics and geometry were his real calling, Dave went to work for Numerical De-
sign Ltd., then later to Magic Software, Inc. Dave’s participation in the newsgroup
comp.graphics.algorithms and his desire to make 3D graphics technology available to
all are what has led to the creation of his company’s Web site and this book.

This page intentionally left blank

TeamLRN sPeCiAL

CHAPTER

CHAPTER

2

TeamLRN sPeCiAL

1

CONTENTS

ABOUT THE AUTHOR A%
PREFACE xiii
INTRODUCTION 1
1.1 DRAWING A TRIANGLE 2
1.2 DRAWING A TRIANGLE MESH 17
1.3 DRAWING A COMPLICATED SCENE 27
1.4 ABSTRACTION OF SYSTEMS 27
CORE SYSTEMS 31
2.1 THE LOW-LEVEL SYSTEM 31
2.1.1 Basic Data Structures 33

2.1.2 Encapsulating Platform-Specific Concepts 45

2.1.3 Endianness 46

2.1.4 System Time 47

2.1.5 File Handling 48

2.1.6 Memory Allocation and Deallocation 49

2.2 THE MATHEMATICS SYSTEM 53
2.2.1 Basic Mathematics Functions 53

2.2.2 Fast Functions 57

2.2.3 Vectors 61

2.2.4 Matrices 75

2.2.5 Quaternions 90

2.2.6 Lines and Planes 102

2.2.7 Colors 103

2.3 THE OBJECT SYSTEM 105
2.3.1 Run-Time Type Information 105

2.3.2 Names and Unique Identifiers 112

2.3.3 Sharing and Smart Pointers 114

2.3.4 Controllers 121

vii

viil Contents

2.3.5 Streaming 122

2.3.6 Cloning 133

2.3.7 String Trees 138

2.3.8 Initialization and Termination 139

CHAPTER

3 SCENE GRAPHS AND RENDERERS 149
3.1 THE CORE CLASSES 152

3.1.1 Motivation for the Classes 153

3.1.2 Spatial Hierarchy Design 160

3.1.3 Instancing 163

3.2 GEOMETRIC STATE 166

3.2.1 Transformations 167

3.2.2 Bounding Volumes 177

3.2.3 The Core Classes and Geometric Updates 184

3.3 GEOMETRIC TYPES 196

3.3.1 Points 197

3.3.2 Line Segments 198

3.3.3 Triangle Meshes 200

3.3.4 Particles 202

3.4 RENDER STATE 203

3.4.1 Global State 203

3.4.2 Lights 223

3.4.3 TTextures 230

3.4.4 Multitexturing 242

3.4.5 Effects 248

3.4.6 The Core Classes and Render State Updates 251

3.5 RENDERERS AND CAMERAS 259

3.5.1 Camera Models 259

3.5.2 Basic Architecture for Rendering 276

3.5.3 Single-Pass Drawing 281

3.5.4 The DrawPrimitive Function 285

3.5.5 Cached Textures and Vertex Attributes 292

3.5.6 Global Effects and Multipass Support 295

CHAPTER

4 ADVANCED SCENE GRAPH TOPICS 299
4.1 LEVEL OF DETAIL 299

TeamLRN sPeCiAL

Contents iX

4.1.1 Billboards 300

4.1.2 Display of Particles 302

4.1.3 Discrete Level of Detail 306

4.1.4 Continuous Level of Detail 309

4.1.5 Infinite Level of Detail 334

4.2 SORTING 335

4.2.1 Binary Space Partitioning Trees 336

4.2.2 Portals 343

4.2.3 Sorting Children of a Node 354

4.2.4 Deferred Drawing 356

4.3 CURVES AND SURFACES 360

4.3.1 Parametric Curves 362

4.3.2 Parametric Surfaces 364

4.3.3 Curve Tessellation by Subdivision 366

4.3.4 Surface Tessellation by Subdivision 373

4.4 TERRAIN 377

4.4.1 Data Representations 377

4.4.2 Level of Detail 378

4.4.3 Terrain Pages and Memory Management 388

4.5 CONTROLLERS AND ANIMATION 399

4.5.1 Keyframe Animation 402

4.5.2 Morphing 404

4.5.3 Points and Particles 406

4.5.4 Skin and Bones 410

4.5.5 Inverse Kinematics 414
CHAPTER

5 ADVANCED RENDERING TOPICS 431

5.1 SPECIAL EFFECTS USING THE FIXED-FUNCTION PIPELINE 431

5.1.1 Vertex Coloring 433

5.1.2 Single Textures 434

5.1.3 Dark Maps 436

5.1.4 Light Maps 437

5.1.5 Gloss Maps 437

5.1.6 Bump Maps 440

5.1.7 Environment Maps 446

5.1.8 Projected Textures 451

5.1.9 Planar Shadows 454

5.1.10 Planar Reflection 457

TeamLRN sPeCiAL

X Contents

5.2 SPECIAL EFFECTS USING VERTEX AND PIXEL SHADERS 462
5.2.1 Scene Graph Support 463
5.2.2 Renderer Support 479
5.2.3 Automatic Source Code Generation 486
CHAPTER

6 COLLISION DETECTION 487
6.1 DISTANCE-BASED METHODS 492
6.1.1 A Plan of Attack 495
6.1.2 Root Finding Using Newton’s Method 496
6.1.3 Root Finding Using Bisection 496
6.1.4 Hybrid Root Finding 497
6.1.5 An Abstract Interface for Distance Calculations 497
6.2 INTERSECTION-BASED METHODS 500
6.2.1 An Abstract Interface for Intersection Queries 501
6.3 LINE-OBJECT INTERSECTION 503
6.3.1 Intersections between Linear Components and Triangles 503

6.3.2 Intersections between Linear Components and
Bounding Volumes 508
6.3.3 Picking 527
6.3.4 Staying on Top of Things 534
6.3.5 Staying out of Things 535
6.4 OBJECT-OBJECT INTERSECTION 536
6.4.1 Collision Groups 536
6.4.2 Hierarchical Collision Detection 540
6.4.3 Spatial and Temporal Coherence 553

CHAPTER

7 PHYsICS 565
7.1 NUMERICAL METHODS FOR SOLVING DIFFERENTIAL EQUATIONS 565
7.1.1 Euler’s Method 567
7.1.2 Midpoint Method 569
7.1.3 Runge-Kutta Fourth-Order Method 571
7.1.4 TImplicit Equations and Methods 573
7.2 PARTICLE PHYSICS 576
7.3 MASS-SPRING SYSTEMS 580
7.3.1 Curve Masses 580

TeamLRN sPeCiAL

CHAPTER

TeamLRN sPeCiAL

8

Contents Xi

7.3.2 Surface Masses 583

7.3.3 Volume Masses 586

7.3.4 Arbitrary Configurations 589

7.4 DEFORMABLE BODIES 591
7.5 RIGID BODIES 592
7.5.1 The Rigid Body Class 595

7.5.2 Computing the Inertia Tensor 600
APPLICATIONS 601
8.1 ABSTRACTION OF THE APPLICATION 602
8.1.1 Processing Command Line Parameters 603

8.1.2 The Application Class 607

8.1.3 The ConsoleApplication Class 609

8.1.4 The WindowApplication Class 612

8.1.5 The WindowApplication3 Class 620

8.2 SAMPLE APPLICATIONS 637
8.2.1 BillboardNode Sample 642

8.2.2 BspNode Sample 642

8.2.3 CachedArray Sample 645

8.2.4 Castle Sample 646

8.2.5 ClodMesh Sample 648

8.2.6 Collision Sample 648

8.2.7 InverseKinematics Sample 654

8.2.8 Portals Sample 656

8.2.9 ScreenPolygon Sample 662
8.2.10 SkinnedBiped Sample 668
8.2.11 SortFaces Sample 669
8.2.12 Terrain Sample 670

8.3 SAMPLE TooLs 673
8.3.1 3dsToWmof Importer 673

8.3.2 Maya Exporter 673

8.3.3 BmpToWmif Converter 673

8.3.4 WmifToBmp Converter 674

8.3.5 ScenePrinter Tool 674

8.3.6 SceneTree Tool 674

8.3.7 SceneViewer Tool 674

xil Contents

APPENDIX

TeamLRN sPeCiAL

CODING CONVENTIONS 677
A.1 FILE NAMING AND ORGANIZATION 677
A.2 COMMENT PREAMBLE AND SEPARATORS 680
A.3 WHITE SPACE 681
A.3.1 Indentation 681
A.3.2 Blank Lines 682
A.3.3 Function Declarators 682
A.3.4 Constructor Initializers 683
A.3.5 TFunction Calls 684
A.3.6 Conditionals 684
A.4 BRACES 685
A.5 POINTER TYPES 686
A.6 IDENTIFIER NAMES 688
A.6.1 Variables 638
A.6.2 Classes and Functions 690
A.6.3 Enumerations 690
A.7 C-+- EXCEPTIONS 691
A.8 HEADER FILE ORGANIZATION 692
A.8.1 Include Guards and Nested Header Files 692
A.8.2 Minimizing Compilation Time 695
BIBLIOGRAPHY 699
INDEX 703
ABOUT THE CD-ROM 733

TeamLRN sPeCiAL

PREFACE

My book 3D Game Engine Design appeared in print in September 2000. It described
many of the algorithms that are used in the development of the graphics and physics
portions of game engines and shipped with a CD-ROM that contained the source
code for version 0.1 of the Wild Magic engine. Although the algorithms have not
changed over the years, the engine has evolved significantly. The original version
was written for the Microsoft Windows platform using an OpenGL-based renderer,
and not all of the book algorithms were implemented in that version. The last ver-
sion before the one shipping with this book, version 2.3, runs on Linux machines
and on Macintosh machines with OS X. A number of users have been successful in
porting the code (with relatively minor changes) to run on SGI machines with IRIX,
on HP machines with HP-UX, and on Sun machines with Solaris. On the Microsoft
Windows platform, the engine has renderers for OpenGL and Direct3D. Many more
algorithms had been implemented in version 2.3, and the engine was extended to sup-
port shader programs. As a result of my book Garme Physics, more physics support was
added, including particle systems, mass-spring systems, and rigid body dynamics.
Specialized applications were added to illustrate physical simulations that are based
on the equations of motion derived from Lagrangian dynamics.

Some of the systems in Wild Magic were implemented by contractors. Unfortu-
nately, I did not have any documents written up about the design and architecture
of the engine, so the contractors had to do their best to add new features into the
framework without guidance from such documents. The primary goal was to add
new features into the engine’s framework, and the contractors delivered exactly what
I had hoped for. A user’s guide and reference manual would have been helpful to these
folks.

Users of the engine asked me frequently about the availability of a user’s guide
and reference manual and sometimes about the design and architecture of the engine.
Embarassingly enough, I had to tell the users that no such document existed and that
I did not have the time to write one.

The pressures from users and the needs of the contractors finally increased
enough that I decided it was time to write a document describing how I had de-
signed and architected the engine. Any library that evolves so much over a few years
is a prime candidate for a rewrite—Wild Magic is no exception. Instead of writing a
book about Wild Magic version 2, I decided that the engine rewrite should occur first
to incorporate ideas that I believed would make the engine better, and to redesign and
rebuild the components that contractors had provided. This book, 3D Game Engine
Architecture, is the result of those efforts, and Wild Magic version 3 is the brand-new
and much-improved engine that the book describes. I have attempted to convey my

xiii

Xiv Preface

TeamLRN sPeCiAL

thoughts as much as possible on the software engineering and computer science as-
pects of the engine. The focus on mathematics is as minimal as I could make it (and
there was much rejoicing!), but there is still some mathematics—enough to motivate
why I built the interfaces for those classes that provide mathematical support for the
engine.

The engine source code, applications, and some of the tools are of my own
doing. However, the 3DS importer and Maya exporter are the contributions of Nolan
Walker, a contractor who has helped me with various engine components over the
years. His was a more formidable task than mine—figuring out how to convert the
data from modeling packages to the scene graph format of Wild Magic. This is a
nontrivial task, especially when the information on data layout for various packages
is difficult to locate. My thanks go to him for producing these tools. I wish to thank
Jeremiah Washburn, an NDL artist, who created much of the fine artwork that you
will see on the CD-ROM. You can visit his Web site, www.bloodyart.com, for other
samples of his artwork. Finally, I can retire a lot of the cheesy-looking engineer’s
artwork that I have been using in my books. I also wish to thank Chris Moak, an artist
who constructed the castle data set that you will see in one of the sample applications.
He built the data set in 2001; I have only now gotten around to making it available.
You can visit his Web site, home.nc.rr.com/krynshaw/index.html, for other samples of
his artwork.

My long-term relationship with Morgan Kaufmann Publishers (MKP), now
spanning four books and a series editorship, has been a fruitful one. A book project
always begins with an editor prodding a potential author to write a book and then
continues with more prodding to keep the author writing. My friend and senior ed-
itor, Tim Cox, has been quite good at this! When he is busy on other projects, his
editorial assistant, Rick Camp, assumes the role and reminds me to deliver various
book-related materials. Both Tim and Rick have the uncanny ability to prod at just
the right time—when I have a dozen other items to attend to. Once the project be-
gins, my job is simple: Write the book and deliver a draft with supporting figures and
screen-captured images. Once delivered, the hard part of the process commences—
the actual book production. Fortunately, all of my books published through MKP
have had the same project manager, Elisabeth Beller. Her superb abilities to schedule
the workload and keep a team of people on track are amazing. I consider it a modern
miracle that she and her team can take my crude drafts and produce from them such
fine-quality books! My thanks go to the talented people at MKP for producing yet
again another of my works.

On a final note: In case you were wondering about why I chose the name Wild
Magic, here is a quote from the release notes that shipped with version 0.1 of the
engine:

I am not a fan of fancy names, but I guess it is about time to do some branding.
So I have given the engine a name. That name, Wild Magic, while sharing part
of the company name, is also a reference to the Thomas Covenant novels written
by Stephen R. Donaldson. In my opinion he is the best fantasy writer ever. I have

Preface XV

lost count of the number of times I have read the Covenant series. My hope is that
someday he will write another trilogy in that series. Or that there will be a movie
about the current books. Or that there will be a 3D game based on the series

Ironically, the first book of a new series, The Last Chronicles of Thomas Covenant, is
scheduled to appear in print about the time this book does. If my future books are
delayed, let it be known that I was spending my hours reading, not writing! Now, Mr.
Donaldson, about that movie and 3D game

TeamLRN sPeCiAL

This page intentionally left blank

TeamLRN sPeCiAL

TeamLRN sPeCiAL

CHAPTER

.......

INTRODUCTION

y book 3D Game Engine Design (3DGED) was written to explain the high-

level details that arose in the development of the real-time 3D game engine
NetImmerse. The expression “game engine” was used because, at the time of the
development of NetImmerse, that was what such large libraries were called. 3DGED
is partly about the computer graphics issues for a real-time engine. It discusses the
graphics pipeline—taking an object, positioning and orienting it in the world, and
drawing it (if necessary). Some discussion was included of rendering effects, the topic
of interest to most budding game programmers, but the book covered in more detail
the aspects of scene graph management. This is the “front-end” data management
system that provides potentially visible data to the “back-end” rendering system. Part
of scene graph management is about abstract systems. An appendix (which should
have been a chapter) was provided on object-oriented design, including topics such as
run-time type information, sharing via reference counting, and streaming (memory,
disk, networks). Other abstract systems included spatial organization via trees, a
rendering layer to hide graphics APIs, controllers, and so on.

3DGED covered a number of topics of interest—for example, animation, level of
detail, sorting, terrain, and so on. But all these were discussed at a fairly high level, a
“design level” so to speak.

Much to the dismay of some readers, the book contained a lot of mathematics,
required to implement the concepts. Reader feedback indicated that what many folks
want are the architectural details of how you actually build a game engine, with less
focus on the mathematical algorithms. Such a need has led to this book, 3D Game
Engine Architecture (3DGEA).

3DGED included a basic scene graph management system and rendering system,
called Wild Magic. The original code ran on Windows with OpenGL, but over the

1

2 Chapter 1 Introduction

years it has been ported to run on PCs with Direct3D, on PCs with Linux, on Macin-
toshes with OS X, and on Unix workstations that have OpenGL support. The engine
has evolved to include many more features, namely, high-level rendering effects and
shaders. I have received innumerable emails asking how to use the engine, how to ex-
tend the engine, and how to write tools for the engine. Naturally, to understand the
answers to these questions you must understand how the engine is architected. This
book is about the Wild Magic architecture, a case study for understanding the issues
of constructing an engine that you would see in a commercial environment.

The issues are many, each relatively easy to understand in isolation from the
others. However, putting all the pieces together is a formidable task to get right. But
what does “right” mean? An engine is a large library and is subject to the software
engineering principles that govern how such a large package evolves. Certainly you
(or your customers) will want to customize the engine to support new features.
But unfortunately, simplicity of maintenance does not come trivially. The various
abstract subsystems of the library must be architected so that they integrate easily
among themselves, and, as many customers of middleware have found out, they
must integrate easily with packages provided by others. Talk to any game company
that has had to combine a graphics engine, a physics engine, a networking engine,
and an Al engine together into a single game—you will hear the war stories about
the difficulties of making that happen. The promise of this book is not that you will
architect a system that will just simply plug into everyone else’s system, but rather that
you will learn how to minimize the pain of doing so. You need to ask a lot of questions
about your architecture and many times decide on various trade-offs. Sometimes you
will make a decision and go with it, only to find out later that you have to redesign
and rebuild. This is a natural part of the process for any large library construction,
but your goal is to anticipate where the problems will occur and design to facilitate
solving those problems without having to rewrite from scratch.

The next three sections present a couple of complete applications that compile
and run. The idea is to show you what systems come into play to get a working ap-
plication. The last section is a discussion of encapsulation of abstract systems whose
implementations depend on the platform (operating system, windowing system, ren-
derer creation, and use). More complicated applications show that you also need to
identify systems that allow you to factor code for reusability. Although some games
are written as throwaway code, from a company’s perspective it is better to write li-
braries that can be reused in other similar games. The last section also provides brief
descriptions of the remaining chapters in the book.

11 DRAWING A TRIANGLE

In this section I discuss the graphics equivalent of the “Hello, world” introductory
programming assignment—drawing a single triangle on the screen. The triangle ver-
tices are assigned colors, and the graphics system will interpolate these to create colors

TeamLRN sPeCiAL

TeamLRN sPeCiAL

1.1 Drawing a Triangle 3

for pixels that are inside the triangle. When certain keys are pressed, you can rotate
the triangle about a center point and translate the center point itself. Something as
simple as drawing a triangle requires a large amount of code. The sample application
runs on a PC with Microsoft Windows, but please be aware that the quantity of code
is not a consequence of this particular platform. Similar applications may be written
for other platforms and will be as large as the current example. The source code can
be found on the CD-ROM, in the file

MagicSoftware/WildMagic3/BookFigures/DrawTriangle/DrawTriangle.cpp

I will explain it a piece at a time.
Four header files are included:

#include <windows.h>
#include <GL/g1.h>
#include <GL/glu.h>
#include <cmath>

The first accesses the Win32 API for windowed applications. The second exposes
the OpenGL API, and the third exposes various utility functions that were built for
OpenGL. The fourth is used to access sine and cosine functions for constructing
rotation matrices for the triangle.

The window in which you render must be created. The width and height of the
window are specified by the first two variables in this block:

static int gs_iWidth = 640;
static int gs_iHeight = 480;
static HDC gs_hWindowDC = (HDC)O;

The last variable is a device context that is associated with the window. I have made
it global so that it may be accessed by the triangle drawing routine. It is initialized to
the null handle, but the main program will set it to the correct device context.

For perspective projection, you need to specify a view frustum. The left, right,
bottom, top, near, and far values are

static double gs_fLFrustum = -0.5500;
static double gs_fRFrustum = +0.5500;
static double gs_fBFrustum = -0.4125;
static double gs fTFrustum = +0.4125;
static double gs_fNFrustum = +1.0;

static double gs_fFFrustum = +100.0;

You also need to specify a viewport (a rectangular portion of the screen) in which
the drawing will occur. In this application, the viewport is the entire screen:

4 Chapter 1 Introduction

TeamLRN sPeCiAL

static int gs_iXPort = 0;
static int gs_iYPort = 0;
static int gs_iWPort = gs_iWidth;
static int gs_iHPort = gs_iHeight;

The first two values are the location of the upper-right corner of the viewport. The
last two values are the dimensions of the viewport.

The camera must be positioned somewhere in the world, and it must be assigned
a set of coordinate axes:

static double gs_adEye[3] { 0.0, 0.0, 4.0 };
static double gs_adDir[3] = { 0.0, 0.0, -1.0 };
static double gs_adUp[3] = { 0.0, 1.0, 0.0 };
static double gs_adRight[3] = { 1.0, 0.0, 0.0 };

The camera location, sometimes called the eye point of the observer, is specified in
the first array in world coordinates. The second array is a unit-length vector that is the
direction of view. The third array is a unit-length vector that indicates which direction
is up to the observer. The fourth array is a unit-length vector that is the cross product
of the direction vector and the up vector.

The triangle vertices and associated colors are

static float gs_afVertex0[3] = { 1.0f, 0.0f, 0.0f };

static float gs_afVertex1[3] = { -1.0f, 1.0f, 0.0f };

static float gs_afVertex2[3] { -1.0f, -1.0f, 0.0 };

static float gs_afColor0[3] { 1.0f, 0.0f, 0.0f }; // red
static float gs_afColorl[3] { 0.0f, 1.0f, 0.0f }; // green
static float gs_afColor2[3] = { 0.0f, 0.0f, 1.0f }; // blue

Notice that the vertices have been chosen in the plane z = 0 and that the observer is
looking at this plane from 4 units away. The triangle should be visible initially.

I will allow the triangle to be rotated about a center point (0, 0, 0). The center
point may be translated, but the rotation is always about the center point no matter
where it is located. Rather than modifying the vertex locations and risking a gradual
introduction of numerical round-off errors, I instead maintain a rotation matrix
and translation vector that are used to construct a transformation that maps the
initial vertex (model data) to their actual locations (world data). The translation and
rotation are stored as

// translation vector for triangle
static float gs_afTranslate[3] =
{
0.0f, 0.0f, 0.0f
1

TeamLRN sPeCiAL

1.1 Drawinga Triangle 5

// rotation matrix for triangle
static float gs_aafRotate[3][3] =
{

{1.0f, 0.0f, 0.0f},

{0.0f, 1.0f, 0.0f},

{0.0f, 0.0f, 1.0f}
bs

The rotation matrix is initially the identity matrix. I prefer to tell OpenGL all at
once what the model-to-world transformation is. The way to do this is through a
4 x 4 homogeneous matrix:

// transformation matrix for triangle (in OpenGL format)
static float gs_afMatrix[16] =
{

1.0f, 0.0f, 0.0f, 0.0f,

0.0f, 1.0f, 0.0f, 0.0f,

0.0f, 0.0f, 1.0f, 0.0f,

0.0f, 0.0f, 0.0f, 1.0f

The layout of the matrix may be inferred from the assignments in the WinProc
function. The translation is updated by incremental changes in the world coordinate
axis directions, and the rotation is updated by incremental rotations about the world
coordinate axis directions. The minimal information to allow the increments is

// for incremental translations
static float gs_fDPosition = 0.1f;

// for incremental rotations

static float gs_afAngle = 0.1f;

static float gs_fCos = cosf(gs_afAngle);
static float gs_fSin = sinf(gs_afAngle);

The camera is also allowed to move based on keystrokes. You may translate the
camera in the direction of view or rotate it about its own coordinate axes.

The entry point into a Microsoft Windows Win32 application is the function
WinMain. The first block of code in that function is

// register the window class

static char s_acWindowClass[] = "Wild Magic Application";
WNDCLASS wc;

wc.style = CS_HREDRAW | CS_VREDRAW | CS_OWNDC;
wc.1pfnlindProc = WinProc;

6 Chapter 1 Introduction

TeamLRN sPeCiAL

wc.cbCTsExtra = 0;

wc.cbWndExtra = 0;

wc.hInstance = hlnstance;

wc.hIcon = LoadIcon(NULL,IDI_APPLICATION);
wc.hCursor = LoadCursor(NULL,IDC_ARROW);

wc.hbrBackground = (HBRUSH)GetStockObject (WHITE_BRUSH) ;
wc.1pszClassName = s_acWindowClass;

wc.1pszMenuName = NULL;

RegisterClass(&wc);

This block of code defines a class of windows that the application can create. I only
create one window here, but more sophisticated applications may create many win-
dows (and might have more than one class of windows). Standard objects are associ-
ated with the window (icon, cursor, brush), but no menus. The first two parameters
of the style field specify that the window is to be redrawn if a move or size operation
changes the width or height. The last parameter guarantees that each window in the
class gets its own device context, which is important for windows in which OpenGL is
used for rendering. The wc.1pfnindProc assignment tells the window class to use the
function WinProc as the event handler for the window. Messages such as keystrokes
and mouse clicks are dispatched to that function for processing (if necessary).
The client area of window dimensions is set by

// require the window to have the specified client area
RECT kRect = { 0, 0, gs_iWidth-1, gs_iHeight-1 };
AdjustWindowRect (&kRect,WS_OVERLAPPEDWINDOW,false);

The vertices of the rectangle correspond to those of the client area. However, the
window will have various “decorations” such as a title bar and borders that are a few
pixels thick, so the actual window must be larger than the client area. The function
AdjustWindowRect computes how large it must be.

The last step in the window setup is window creation:

// create the application window

static char s_acWindowTitle[] = "Draw Triangle";

int iXPos = 0, iYPos = 0;

int iWidth = kRect.right - kRect.left + 1;

int iHeight = kRect.bottom - kRect.top + 1;

HWND hWnd = CreateWindow(s_acWindowC]ass,s_acWindowTit]e,
WS_OVERLAPPEDWINDOW, iXPos,1YPos,iWidth,iHeight, (HWND)O,
(HMENU)0,hInstance,NULL);

// create a window for rendering
gs_hWindowDC = GetDC(hWnd);

TeamLRN sPeCiAL

1.1 Drawinga Triangle 7

The window title is displayed in the title bar. I have requested that the upper-left
corner of the window be (0, 0) on the desktop. The width and height are for the
window plus its decorations. The call to GetDC obtains a device context associated
with the window handle.

The next few blocks of code will allocate the hardware resources needed to sup-
port drawing to the window. These are all specific to Microsoft Windows, but other
platforms have similar setups. First, you need to choose a format for the buffers to be
allocated:

// select format for drawing surface
PIXELFORMATDESCRIPTOR kPFD;
memset (&kPFD,0,sizeof (PIXELFORMATDESCRIPTOR)) ;
kPFD.nSize = sizeof (PIXELFORMATDESCRIPTOR);
kPFD.nVersion = 1;
kPFD.dwFlags =

PFD_DRAW_TO_WINDOW |

PFD_SUPPORT OPENGL |

PFD_GENERIC ACCELERATED |

PFD_DOUBLEBUFFER;
kPFD.iPixelType = PFD_TYPE_RGBA;
kPFD.cColorBits = 24; // 24-bit colors for front/back buffers
kPFD.cDepthBits = 16; // 16-bit depth buffer
kPFD.cStencilBits = 8; // 8-bit stencil buffer

The request is for hardware-accelerated, double-buffered drawing using OpenGL.
The drawing was the back buffer. Once done, you have to call a function to have the
back buffer copied (or swapped) into the front buffer. The front and back buffers are
24 bits each, and the depth buffer is 16 bits. Consumer graphics cards have enough
memory so that you should be able to use 24 or 32 bits for the depth. The stencil
buffer only has 8 bits, so if you have fancy features that require more bits for the
stencil buffer, you will need to change the number (assuming the graphics drivers
you have support a greater number of bits).

The block of code

int iPixelFormat = ChoosePixelFormat(gs_hWindowDC,&kPFD);
if (iPixelFormat == 0)
{

ReleaseDC(hWnd,gs_hWindowDC) ;

return -1;

is a request to see if the graphics system can support the pixel format you requested.
If it cannot, the return value of ChoosePixelFormat is zero, in which case you have no
choice but to terminate the application. A commercial application would attempt less

8 Chapter 1 Introduction

TeamLRN sPeCiAL

aggressive formats instead of aborting. Assuming the format is acceptable, the block
of code

BOOL bSuccess = SetPixelFormat(gs_hWindowDC,iPixelFormat,&kPFD);
if (!'bSuccess)
{

ReleaseDC (hWnd,gs_hWindowDC);

return -2;

}

will configure the device context as needed.
A resource context corresponding to the device context is created through

// create an OpenGL context
HGLRC hWindowRC = wglCreateContext(gs_hWindowDC);
if ('hWindowRC)
{
ReleaseDC (hWnd,gs_hWindowDC);
return -3;

bSuccess = wglMakeCurrent(gs_hWindowDC,hWindowRC) ;
if (!'bSuccess)
{

wg1DeleteContext (hWindowRC) ;

ReleaseDC (hWnd,gs_hWindowDC);

return -4;

}

The second block of code takes the resource context and makes it the active one for
the application. Assuming all these steps have been successful, we are finally ready to
make calls to the OpenGL graphics system.

The first OpenGL call sets the color that is used to clear the back buffer. The
default value is black, but I prefer something less bold:

// background color is gray
glClearColor(0.75f,0.75f,0.75f,1.0f);

The view frustum for the perspective projection is enabled with

// set up for perspective projection

gIMatrixMode (GL_PROJECTION);

glLoadIdentity();

glFrustum(gs_fLFrustum,gs_fRFrustum,gs_fBFrustum,gs_fTFrustum,
gs_fNFrustum,gs_fFFrustum);

TeamLRN sPeCiAL

1.1 Drawing a Triangle 9

The frustum settings affect how a model is transformed to screen space. That is why
gIMatrixMode and g1LoadIdentity show up in the code. The g1Frustum call creates that
portion of the transformation that is controlled by the perspective projection. The
viewport is the entire screen:

// set the viewport so that the entire screen is drawn to
glViewport(gs_iXPort,gs iYPort,gs iWPort,gs iHPort);

We have to tell OpenGL about the camera eye point and coordinate axis direc-
tions. This happens via

double adLookAt[3] =
{
gs_adEye[0]+gs_adDir[0],
gs_adEye[1]+gs_adDir[1],
gs_adEye[2]+gs_adDir[2]
1
gl Matr‘ixMode(GL_MODELVIEW) B
glLoadIdentity();
gluLookAt(gs_adEye[0],gs_adEye[1],gs_adEye[2],adLookAt[0],adLookAt[1],
adLookAt[2],gs_adUp[0],gs_adUp[1],gs_adUp[2]);

Just as setting the frustum involved matrix manipulation, so does setting the camera
coordinate system. The gluLookAt call creates that portion of the transformation that
maps world coordinates into the coordinate system of the camera. Internally, the
gluLookAt function re-creates the view direction vector from the eye point and the
look-at point; then the view direction and up vector are used to generate the right
vector in the camera coordinate system.

At this point in the WinMain execution, we are ready to draw the triangle. Some
more Windows infrastructure code is necessary. Up till now, the window exists, but
has not been displayed on the screen. To do this, use

// display the window
Showhindow (hWnd,SW_SHOW) ;
UpdateWindow(hWnd) ;

A Microsoft Windows program is event driven. A loop is started, called the mes-
sage pump:

// start the message pump
MSG kMsg;
while (TRUE)

{
if (PeekMessage(&kMsg, (HWND)0,0,0,PM REMOVE))

10 Chapter 1 Introduction

TeamLRN sPeCiAL

if (kMsg.message == WM _QUIT)
break;

HACCEL hAccel = (HACCEL)O;
if (!TranslateAccelerator(hWnd,hAccel,&kMsg))
{

TranslateMessage (&kMsg) ;

DispatchMessage (&kMsg) ;

}

else

{
// idle Toop
DrawlIt();

The function PeekMessage looks for a message generated by some event. If there is one,
a check is made to see if the application has requested termination, for example, if the
combined keystrokes ALT and F4 are pressed. The loop is exited if the message is to
quit. Otherwise, the message is dispatched so that windows created by the application
may receive the events. In the current example, the message is received by an internal
call to the WinProc function. In the event that PeekMessage determines that no message
is pending, the else clause is executed. This is what I call the idle loop; that is, any
code in this clause is executed when the application has idle time because it is not
processing messages. The idle loop is where you need to place your rendering code in
order to obtain real-time frame rates. Trying to render at a fixed rate through a system
timer is typically not sufficient because the timers tend to be of limited resolution. For
example, the WM_TIMER message is generated about 18 times per second, so you cannot
use this message to drive your application at 30 frames or 60 frames per second.

Once the message pump terminates, you should clean up by freeing resources and
deallocating memory. In the current example,

// clean up
wglDeleteContext (hWindowRC) ;

ReleaseDC(hWnd,gs_hWindowDC);

I did not explicitly allocate memory from the heap, so there is nothing to deallocate.
However, resources on the graphics card were committed to the application when a
resource context was created. These need to be released, which is what the wg1Delete-
Context call does. The final call releases the window device context associated with the
window handle.

TeamLRN sPeCiAL

1.1 Drawinga Triangle 11

Now onto what the application does during idle time and what events it chooses
to handle. The application function DrawIt uses OpenGL to draw the triangle:

static void Drawlt ()

{
// set the entire window to the background color
glClear(GL_COLOR BUFFER BIT);

// double-sided triangles
glDisable(GL_CULL_FACE);

// set the model-to-world transformation
gIMatrixMode (GL_MODELVIEW);
gTPushMatrix();
glMultMatrixf(gs_afMatrix);

// draw the triangle

g1Begin(GL_POLYGON);
glColor3f(gs_afColor0[0],gs_afColor0[1],gs_afColor0[2]);
glVertex3f(gs_afVertex0[0],gs_afVertex0[1],gs_afVertex0[2]);
glColor3f(gs_afColorl[0],gs_afColorl[1],gs_afColorl[2]);
glVertex3f(gs_afVertex1[0],gs afVertex1[1],gs afVertex1[2]);
glColor3f(gs_afColor2[0],gs_afColor2[1],gs_afColor2[2]);
glVertex3f(gs_afVertex2[0],gs_afVertex2[1],gs_afVertex2[2]);
glEnd();

// restore the previous transformation
gIMatrixMode (GL_MODELVIEW);
glPopMatrix();

// copy the back buffer into the front buffer
SwapBuffers(gs_hWindowDC);

The call g1C1ear takes a parameter that specifies which buffer to clear. In this case,
I have asked that the pixels in the back buffer be set to the clear color, something we
set to gray at program initialization with a call to g1ClearColor. The call g1Disable
is made with a parameter that tells OpenGL not to cull back-facing triangles; that is,
the triangles are considered to be double sided. I wanted this behavior so that when
you rotate the triangle, it will not disappear once you have rotated it more than 90
degrees about any of the rotation axes.

The triangle vertices, which were specified in model space, need to be trans-
formed into world coordinates. The block of code that does this is

12 Chapter 1 Introduction

TeamLRN sPeCiAL

// set the model-to-world transformation
g1MatrixMode (GL_MODELVIEW);
gTPushMatrix();
glMultMatrixf(gs_afMatrix);

Recall that when the camera coordinate system was specified, the matrix mode
was also GL_MODELVIEW. At that time we set the first matrix to be the identity matrix by
calling g1LoadIdentity. The function g1LookAt multiplies the identity by the matrix
that transforms world coordinates to camera coordinates. The product is considered
to be the top matrix on a stack of matrices. The g1PushMatrix call makes a copy
of the top matrix and makes it the new top matrix. The gIMultMatrixf call then
multiplies the top matrix by its argument and stores it in place. In this case the
argument is the model-to-world transformation. The resulting top matrix on the
stack represents a transformation that maps vertices in model coordinates to vertices
in camera coordinates.

The next block of code tells OpenGL about the vertex colors and locations:

// draw the triangle

g1Begin(GL_POLYGON) ;
glColor3f(gs_afColor0[0],gs_afColor0[1],gs_afColor0[2]);
glVertex3f(gs_afVertex0[0],gs_afVertex0[1],gs_afVertex0[2]);
glColor3f(gs_afColorl[0],gs_afColorl[1],gs_afColorl[2]);
glVertex3f(gs_afVertex1[0],gs afVertex1[1],gs afVertex1[2]);
glColor3f(gs_afColor2[0],gs_afColor2[1],gs_afColor2[2]);
glVertex3f(gs_afVertex2[0],gs_afVertex2[1],gs_afVertex2[2]);
glEnd();

The call g1Begin has an input parameter that tells OpenGL we will be giving it an
ordered list of vertices and attributes, one group at a time. The vertices are assumed
to be those of a convex polygon. In the example, only vertex colors are used. Each
group consists of a color specification, via g1Color3f, and a location specification, via
glVertex3f. In OpenGL, when you call g1Vertex3f, the vertex attributes currently set
are bound to that vertex. For example, if all the vertices are to be the color red, you
could use

g1Color3f(1.0f,0.0f,0.0f);

glVertex3f(gs_afVertex0[0],gs_afVertex0[1],gs_afVertex0[2]);
glVertex3f(gs_afVertex1[0],gs_afVertex1[1],gs_afVertex1[2]);
glVertex3f(gs_afVertex2[0],gs_afVertex2[1],gs afVertex2[2]);

The call g1End tells OpenGL that you are done specifying the vertices. At this time
the object is drawn into the back buffer. The call to SwapBuffers causes the back buffer
to be copied into the frame buffer (or swapped in the sense that internally a pointer is

TeamLRN sPeCiAL

1.1 Drawinga Triangle 13

modified to point from one buffer to the other buffer, with the current buffer pointed
to becoming the front buffer).

Because I tend to call SwapBuffers at the end of the pipeline, before doing so I
restore the state of the transformation system by

// restore the previous transformation
g1MatrixMode (GL_MODELVIEW);
glPopMatrix();

Before these calls, the top of the model-view matrix stack contains the concatena-
tion of the model-to-world transformation (which we set in the DrawIt function) and
the world-to-camera transformation (which we set by the gluLookAt function). The
matrix immediately below the top matrix was the world-to-camera transformation.
The function g1PopMatrix pops the top matrix off the stack, making the one below it
the new top. Thus, we have restored the world-to-camera transformation to the top
of the stack, allowing us to draw other objects by pushing and popping their model-
to-world transformations. Why go to this effort? If you were to maintain a single
matrix for the model-view system, the push operation amounts to directly modify-
ing the current matrix by multiplying by some transformation. The pop operation
must undo this by multiplying the current matrix by the inverse transformation, but a
general matrix inversion takes quite a few computational cycles. With an eye toward
real-time performance, the matrix stack is a space-time trade-off: We reduce compu-
tation time by increasing memory usage. Instead of inverting and multiplying with
a single-matrix storage, we copy and multiply (push) or copy (pop) using a stack of
matrices.

The event handler is the function WinProc, which is indirectly called through
the dispatch functions mentioned previously. A windowing system provides a large
number of messages. In the current example, the only messages that the event handler
processes are keystrokes that occur from pressing text keys (WM_CHAR); keystrokes that
occur from pressing some special keys including arrow keys, home/end keys, and page
up/page down keys (WM_KEYDOWN); and a message generated when a user closes the
window (WM_DESTROY). The WM_CHAR event handler responds to each of six pressed keys
and rotates the triangle accordingly. For example, if the r key is pressed, the triangle
is rotated about the x-axis in the world space:

for (i = 0; i < 3; i++)
{
fTmp0 =
gs_fCos*gs_aafRotate[1][i] +
gs_fSin*gs aafRotate[2][i];
fTmpl =
gs_fCos*gs_aafRotate[2] [i] -
gs_fSin*gs_aafRotate[1][i];

14 Chapter 1 Introduction

TeamLRN sPeCiAL

gs_aafRotate[1][i]
gs_aafRotate[2] [1]

fTmp0;
fTmpl;

The implied update of the rotation matrix is

../ / /
oo To1 To2
’_ ’ ’ /

R=|ry ry
/ / /

L70 T21 T2

T'oo ro1 W)
= | rypcosf +rysinfd r1; €os 0 + ryp sin 6 F1p €08 6 + 1y, sin 6

—rypsin @ +rygcos@ —ry;sinf +ry cos —rp,sin @ + ry, cos b

1 0 0 Too Tor Yoz
=10 cos(0) sin() rog T T2

| 0 —sin(®) cos(0) ry T I
= OR,

where R is the old rotation matrix, Q is the incremental rotation about the x-axis by
0 radians, and R’ is the new rotation matrix. My convention for matrices is that they
multiply vectors on the right. If V is a 3 x 1 vector, then the result of rotating it by
a matrix R is RV. It is important to understand this convention, and others, when
dealing with a graphics API. OpenGL, for example, uses the opposite convention: V
would be considered to be 1 x 3 and would be multiplied on the right by a matrix,
VM. After the new rotation matrix is computed, the 4 x 4 matrix (stored as a linear
array of 16 numbers) must be reassigned in order for the DrawIt function to correctly
set the transformation. The OpenGL convention already exposes itself here. Usually
an n x m array is stored in linear memory using row-major order—the first row of
the matrix occurs in the first n slots of memory, the second row following it, and so
on. In the source code you will notice that the first column of the new rotation R’ is
stored in the first slots in memory.

The translation updates are simple enough. For example, if the x key is pressed,
the x-component of the translation is decremented by a small amount. The trans-
formation to be fed to OpenGL is updated, and the next call to DrawIt will use that
transformation before drawing the triangle.

The WM_KEYDOWN event handler is designed to move the camera. Let the eye point be
E, the view direction be D, the up vector be U, and the right vector be R =D x U.If
the key pressed is the up arrow (code VK_UP), the camera is translated a small amount
in its direction of view. The update is

E <~ E+ AD.

1.1 Drawinga Triangle 15

where A > 0 is a small scalar. The down arrow (code VK_DOWN) causes the camera to
be translated a small amount in the opposite direction of view. The update is

E <~ E - AD.

The observer may look to the left by turning his head to the left. The camera must
be rotated about its own up axis by a small angle 8. The direction and right vectors
must rotate, but the up axis remains the same. The update is

D’ < cos OR + sin 6D
R’ < —sin OR + cos 6D
D <D
R <R
The temporary vectors D’ and R’ are necessary. If you were to assign the right-

hand side of the first statement directly to D, the next statement would use the
updated D rather than the original one. The code for implementing this is

for (i = 0; i < 3; i++)

{
adTmpO[i] = gs_fCos*gs_adRight[i] + gs_fSin*gs_adDir[i];
adTmpl[i] = gs_fCos*gs_adDir[i] - gs_fSin*gs_adRight[i];

}

for (i = 0; i < 3; i++)

{
gs_adRight[i] = adTmpO[i];
gs_adDir[i] = adTmpl[i];

Rotation to the right about the up axis is

D’ < cos OR — sin 0D
R’ < sin OR + cos HD
D <D
R <R.

The only difference is a change of two signs, thought of as replacing # by —0 in the
assignment statements. Rotations about the right axis are

TeamLRN sPeCiAL

16 Chapter 1 Introduction

TeamLRN sPeCiAL

D’ < cos 6D % sin OU
U’ < Fsin 6D + cos U
D« D

U« U.

Rotations about the view direction are

R’ < cos AR % sin HU
U’ < Fsin R + cos U
R <R

U<« U.

Each of the previously mentioned rotations is performed by pressing the correct
key. Once the camera axis directions are updated, OpenGL must be told that the
camera coordinate system has changed. This is accomplished using the same function
described previously, gluLookAt.

Let me remind you why I went to great pains to construct, and describe, an
application that (1) draws a single triangle using vertex colors, (2) allows the triangle
to move, and (3) allows the camera to move. Your first thought might have been “This
should be a straightforward application to write.” As you likely have observed, the
application is quite complicated and long. This example should already convince you
of the necessity to think of a graphics application as a collection of systems that should
not be hard-coded into a single application source file. We created a window, created
a graphics context to associate resources with the window, initialized the graphics
system for drawing, started a loop to receive and dispatch events, implemented a
drawing function that uses the current state of the graphics system, and wrote an
event handler so that we could update the state of the graphics system for triangle
motion and for camera motion.

If you have in mind creating similar applications for other platforms such as the
Macintosh or a PC running Linux, you will have to understand how the application
coding is done on those platforms. You also have to know how to create the graph-
ics context and deal with events. Moreover, if you want Direct3D instead of OpenGL
for the Microsoft Windows application, you have to replace all the OpenGL calls by
(hopefully) equivalent Direct3D calls. To support all of this in a game/graphics engine
is a monumental effort! The only way you can accomplish this is to apply the princi-
ples of software engineering and factor your engine into (1) systems that encapsulate
the platform dependencies and (2) systems that are platform independent.

Figure 1.1 shows a pair of screen shots from the sample application.

Figure 1.1

1.2 Drawing a Triangle Mesh 17

(a) (b)

Two screen shots from the sample application for drawing a vertex-colored triangle.
(a) The triangle in its initial configuration. (b) The triangle after some rotations
about its center. (See also Color Plate 1.1.)

12 DRAWING A TRIANGLE MESH

TeamLRN sPeCiAL

The example from the previous section on drawing a triangle can be modified to
handle a mesh of triangles. In this section I discuss the application that does this. The
mesh consists of a rectangular grid of vertices with a regular triangulation applied to
it. You may think of the resulting mesh as a height field. Rather than using vertex
colors, I apply one or two textures to the mesh. The first texture image gives the
mesh the appearance of a mountainous terrain, and the second texture image gives
the illusion that the mountain is covered with patches of fog. Figure 1.2 shows a pair
of screen shots from the sample application.
The source code is found on the CD-ROM, in the file

MagicSoftware/WildMagic3/BookFigures/DrawMesh/DrawMesh.cpp

Much of the code is duplicated from the previous example of drawing a single trian-
gle. I will explain only the differences here.

The OpenGL API that ships with Microsoft Windows is only version 1.1, but
later versions are available. In order to access features from later versions, you have
to use the OpenGL extension mechanism. A lot of open source packages exist that
handle these details for you. Wild Magic version 3 uses one called GLEW, the OpenGL
Extension Wrangler Libary [IM04]. In the sample application, I have included only
the necessary code to access what is needed to support the multitexture operations in
the application:

18 Chapter 1 Introduction

Figure 1.2

TeamLRN sPeCiAL

i

L

1

(b)

Two screen shots from the sample application for drawing a multitextured triangle
mesh. The mesh has been rotated the same amount in the two images. (a) The
mesh with only the mountain texture (the primary texture). (b) The mesh with the
mountain texture as the primary texture and with the fog texture as the secondary
texture. (See also Color Plate 1.2.)

// support for multitexturing

#define GL_TEXTUREO_ARB 0x84C0

#define GL_TEXTURE1_ARB 0x84C1

#define GL_COMBINE 0x8570

#define GL_COMBINE_RGB 0x8571

#define GL_COMBINE_ALPHA 0x8572

#define GL_RGB_SCALE 0x8573

#define GL_INTERPOLATE 0x8575

#define GL_CONSTANT 0x8576

#define GL_PRIMARY COLOR 0x8577

#define GL_PREVIOUS 0x8578

#define GL_SOURCEO_RGB 0x8580

#define GL_SOURCE1 RGB 0x8581

#define GL_SOURCE2_RGB 0x8582

#define GL_SOURCEO_ALPHA 0x8588

#define GL_SOURCEL_ALPHA 0x8589

#define GL_SOURCE2_ALPHA 0x858A

#define GL_OPERANDO_RGB 0x8590

#define GL_OPERAND1_RGB 0x8591

#define GL_OPERAND2_RGB 0x8592

#define GL_OPERANDO_ALPHA 0x8598

#define GL_OPERAND1_ALPHA 0x8599

#define GL_OPERAND2_ALPHA 0x859A

typedef void (__stdcall *PFNGLCLIENTACTIVETEXTUREARBPROC) (GLenum);
PFNGLCLIENTACTIVETEXTUREARBPROC g1ClientActiveTextureARB = NULL;
typedef void (__stdcall *PFNGLACTIVETEXTUREARBPROC) (GLenum);
PFNGLACTIVETEXTUREARBPROC glActiveTextureARB = NULL;

TeamLRN sPeCiAL

1.2 Drawing a Triangle Mesh 19

The two functions I need access to are glClientActiveTextureARB and glAc-
tiveTextureARB. The types of these are specific to the operating system platform.
GLEW hides these details for you so that you have a portable mechanism for access-
ing the function pointers. In the body of WinMain, you will see

glClientActiveTextureARB = (PFNGLCLIENTACTIVETEXTUREARBPROC)
wglGetProcAddress("glClientActiveTextureARB");
assert(glClientActiveTextureARB);

glActiveTextureARB = (PFNGLACTIVETEXTUREARBPROC)
wglGetProcAddress("glActiveTextureARB");
assert(glActiveTextureARB);

This code calls a Windows-specific function, wg1GetProcAddress, to load the function
pointers from the graphics driver.
The triangle vertex positions and colors are replaced by the following:

// number of vertices and vertex array
static int gs_iVQuantity = 0;
static float* gs_afVertex = NULL;

// shared texture coordinates
static float* gs_afUV = NULL;

// primary image (RGB), width and height
static int gs_iImageW0 = 0;

static int gs_iImageH0 = 0;

static unsigned char* gs aucImage0 = NULL;

// binding id for graphics card
static unsigned int gs_uiID0 = 0;

// secondary image (RGB), width and height
static int gs_iImageWl = 0;
static int gs_iImageHl = 0;
static unsigned char* gs_aucImagel = NULL;

// binding id for graphics card
static unsigned int gs _uiIDl = 03

// number of indices and index array (triple of int)
static int gs_iIQuantity = 0;
static int* gs_ailndex = NULL;

// toggle secondary texture
static bool gs_bUseSecondaryTexture = false;

20 Chapter 1 Introduction

The comments are self-explanatory for most of the data. The binding identifiers
are used to get a handle on texture images that are uploaded to the graphics card.
The images are transferred to the video memory on the first drawing pass, and on
subsequent drawing passes, the images are accessed directly from video memory.
The last data value in the list is a Boolean variable that lets you toggle the secondary
texture. If set to true, the primary and secondary textures are appropriately combined
onto the mesh. If set to false, only the primary texture is drawn. You may toggle this
value with the s or S keys; see the modified WinProc for the simple details.

The texture images are stored as 24-bit Windows BMP files. The loader for
these is

static bool LoadBmp24 (const char* acFilename, int& riWidth,
int& riHeight, unsigned char*& raucData)

HBITMAP hImage = (HBITMAP) LoadImage(NULL,acFilename,
IMAGE_BITMAP,0,0, LR_LOADFROMFILE | LR_CREATEDIBSECTION);
if (!'hImage)
return false;

DIBSECTION dibSection;
GetObject (hImage,sizeof (DIBSECTION),&dibSection);

riWidth = dibSection.dsBm.bmWidth;
riHeight = dibSection.dsBm.bmHeight;
int iQuantity =
dibSection.dsBm.bmWidth*dibSection.dsBm.bmHeight;
if (dibSection.dsBm.bmBitsPixel != 24)
return false;

// Windows BMP stores BGR, need to invert to RGB.
unsigned char* aucSrc =

(unsigned char*) dibSection.dsBm.bmBits;
raucData = new unsigned char[3*iQuantity];
for (int i =0, i0 =0, il = 1, i2 = 2; 1 < iQuantity; i++)
{

raucData[i0] = aucSrc[i2];

raucData[il] = aucSrc[il];

raucData[i2] = aucSrc[i0];

i0 += 33

il += 3;

i2 += 3;

}

return true;

TeamLRN sPeCiAL

1.2 Drawing a Triangle Mesh 21

The images are loaded into arrays of unsigned characters. The order of the color
channels for Windows is the reverse of what OpenGL prefers, so the loader reorders
the data.

The triangle mesh is created by the function

static void CreateModel ()
{
// generate vertices and texture coordinates
int iDim = 32;
gs_iVQuantity = iDim*iDim;
gs_afVertex = new float[3*gs_iVQuantity];
gs_afUV = new float[2*gs_iVQuantity];
float* pfVertex = gs_afVertex;
float* pfUV = gs_afUV;
for (int iY =0, i = 0; iY < iDim; iY++)
{
float fY = iY/(float) (iDim-1);
for (int iX = 0; iX < iDim; iX++)
{
float fX = iX/(float) (iDim-1);

*pfVertex++ = 2.0f*fX-1.0f;

*pfVertex++ = 2.0f*fY-1.0f;

*pfVertex++ = 0.1f*rand()/(float) (RAND_MAX);
*pfUV++ = fX;

*pfUV++ = fY;

// generate connectivity
gs_ilQuantity = 6*(iDim-1)*(iDim-1);
gs_ailndex = new int[gs_iIQuantity];
for (int i1 = 0, i = 0; il < iDim - 1; il++)
{
for (int i0 = 0; i0 < iDim - 1; i0++)
{
int iV0 = i0 + iDim * il;
int iVl = iV0 + 1;
int iV2 = iVl + iDim;
int iV3 = iV0 + iDim;
gs_ailndex[i++] = iV0;
gs_ailndex[i++] = iVl
gs_ailndex[i++] = iV2;
gs_ailndex[i++] = iVO0;

TeamLRN sPeCiAL

22 Chapter 1 Introduction

TeamLRN sPeCiAL

iv2;
iV3;

gs_ailndex[i++]
gs_ailndex[i++]

// primary texture image

bool bLoaded = LoadBmp24("mountain.bmp",gs iImageW0,
gs_iImageHO0,gs_aucImage0);

assert(bLoaded);

// secondary texture image

bLoaded = LoadBmp24("fog.bmp",gs iImageWl,gs iImageHl,
gs_aucImagel);

assert(bLoaded);

The mesh is a 32 x 32 array of vertices uniformly spaced in the xy-plane in
the square [—1, 1]%. The z-values (the heights) are randomly generated. The texture
coordinates are uniformly spaced in the square [0, 1]. The primary and secondary
images share the same array of texture coordinates, although in general you may
specify different arrays for the different images. The triangles are formed two at a
time by connecting four vertices:

(), x+1,y), x+1Ly+D), ((x,y), x+1,y+ 1D, (x,y+ D)

The two texture images are loaded during model creation. The creation function is
called in WinMain.

The model data must be deallocated before the program terminates. The function
for destroying the mesh is

static void DestroyModel ()

{
delete[] gs_afVertex;
delete[] gs_afUV;
delete[] gs_aucImage0;
delete[] gs_aucImagel;
delete[] gs_ailndex;

}

All the arrays allocated in CreateModel are deallocated. This function is called in
WinMain after the message pump is exited and just before the final return statement
that terminates the program.

The drawing function is still named DrawIt, but it is much more complex than the
one used for drawing a single triangle. Because the mesh is not a convex object, it is
possible that some portions of it occlude other portions depending on the orientation

TeamLRN sPeCiAL

1.2 Drawing a Triangle Mesh 23

of the mesh relative to the observer. In order to guarantee correct, sorted drawing, a
depth buffer is used:

// enable depth buffer reads and writes
glEnable(GL_DEPTH_TEST);
g1DepthFunc(GL_LEQUAL);

g1DepthMask (GL_TRUE);

// set the background color, set depth buffer to infinity
glClear(GL_COLOR_BUFFER BIT | GL_DEPTH_BUFFER BIT);

// double-sided triangles
g1Disable(GL_CULL FACE);

In addition to clearing the back buffer using the background color, we also need to
initialize the depth buffer. The g1CTear call handles both. Back-face culling is disabled
since the mesh does not form a closed object.

The drawing uses vertex arrays rather than the mechanism used in the single
triangle drawing that sets the attributes for a vertex at a time. The array manipulation
should lead to much better performance on current graphics hardware. The vertex
locations are set via

// enable vertex arrays
glEnableClientState(GL_VERTEX ARRAY);
glVertexPointer(3,GL_FLOAT,0,gs_afVertex);

The function g1VertexPointer tells OpenGL that the array consists of triples (first
parameter 3) of 32-bit floating-point numbers (second parameter GL_FLOAT) that are
packed together (third parameter 0). The disabling occurs after the drawing via

// disable vertex arrays
glDisableClientState(GL_VERTEX ARRAY);

The matrix handling is the same as in the single triangle drawing. However, vertex
arrays require you to specifically tell OpenGL to draw the mesh. The g1Begin/g1End
mechanism automatically calls the drawing routine. The function for drawing is

// draw the mesh
g1DrawElements (GL_TRIANGLES,gs iIQuantity,GL UNSIGNED INT,
gs_ailndex);

The first parameter indicates that a triangle mesh is to be drawn. If the number
of triangles is 7', the number of indices is 37, the number stored by the second
parameter, gs_iIQuantity. The third parameter tells OpenGL to treat the indices

24 Chapter 1 Introduction

TeamLRN sPeCiAL

as 4-byte unsigned integers, and the fourth parameter is the array of indices. My
index array contains signed integers, but the graphics drivers are limited in how
many triangles may be drawn at one time. The mismatch of types is not a problem.
(OpenGL does not support a third parameter that is a signed integer type.)

The most complicated part of DrawIt is the enabling of texture units. Texture unit
0 is assigned to the primary texture and is enabled by

// enable texture unit 0
g1ClientActiveTextureARB(GL_TEXTUREO ARB);
glEnableClientState(GL_TEXTURE_COORD ARRAY);
g1TexCoordPointer(2,GL_FLOAT,0,gs_afUV);
glActiveTextureARB(GL_TEXTUREO ARB);
g1Enable(GL_TEXTURE_2D);
if (gs_uiIDO != 0)
{
g1BindTexture(GL_TEXTURE_2D,gs_uiID0);
}
else
{
glGenTextures(1,&gs_uilID0);
g1BindTexture(GL_TEXTURE_2D,gs_uiID0);
g1TexImage2D(GL TEXTURE_2D,0,GL RGB8,gs iImageW0,gs iImageHO,
0,GL_RGB,GL_UNSIGNED BYTE,gs aucImage0);
g1TexParameteri (GL_TEXTURE_2D,GL_TEXTURE_WRAP_S,GL_REPEAT);
glTexParameteri (GL_TEXTURE_2D,GL_TEXTURE_WRAP T,GL_REPEAT);
glTexParameteri (GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,
GL_LINEAR);
glTexParameteri (GL_TEXTURE_2D,GL_TEXTURE_MIN FILTER,
GL_NEAREST) ;
}
g]TeXEnV1(GL_TEXTURE_ENV,GL_TEXTURE_ENV_MODE,GL_REPLACE);

The first five lines activate the texture unit, pass the array of texture coordinates
to the graphics driver, and enable texturing. On the first drawing pass, the value of
gs_uiIDO is zero. That gets you into the else clause. The first three lines in that clause
ask OpenGL to upload the texture image to the graphics card and return a positive
value in gs_uiID0 as a handle you can use for drawing on subsequent passes. On other
passes, notice that only g1BindTexture is called. The graphics driver looks at the input
identifier and uses the data for that texture already loaded in video memory.

The last four lines in the else clause specify some information about the texture.
The first two g1TexParameteri calls specify that the texture coordinates are wrapped
to always be in the interval [0, 1]. The third g1TexParameteri call tells OpenGL to
use bilinear interpolation on the image to produce a smooth visual effect when the

TeamLRN sPeCiAL

1.2 Drawing a Triangle Mesh 25

mesh is close to the eye point. The last call tells OpenGL to use nearest-neighbor
interpolation on the image when the mesh is far from the eye point.

The last call is to g1TexEnvi. This function tells OpenGL to replace the pixel
colors by the texture image colors for those pixels covered by the transformed and
perspectively projected mesh. In the current example, this means that the background
colors are replaced by the texture image colors.

When the secondary texture is allowed, texture unit 1 is assigned to it. The en-
abling code is

// enable texture unit 1
glClientActiveTextureARB(GL_TEXTURE1 ARB);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
g1TexCoordPointer(2,GL_FLOAT,0,gs_afUV);
glActiveTextureARB(GL_TEXTUREL ARB);
glEnable(GL_TEXTURE_2D);
if (gs_uiIDl !=10)
{
g1BindTexture (GL_TEXTURE_2D,gs_uiID1);
}
else
{
glGenTextures(1,&gs uiID1);
g1BindTexture (GL_TEXTURE_2D,gs_uiID1);
g1TexImage2D (GL_TEXTURE_2D,0,GL_RGB8,gs_iImageWl,gs_iImageH1,
0,GL_RGB,GL_UNSIGNED BYTE,gs aucImagel);
glTexParameteri (GL_TEXTURE_2D,GL_TEXTURE_WRAP_S,GL_REPEAT);
glTexParameteri (GL_TEXTURE 2D,GL_TEXTURE_WRAP_T,GL REPEAT);
glTexParameteri (GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,
GL_LINEAR);
glTexParameteri (GL_TEXTURE_2D,GL_TEXTURE_MIN FILTER,
GL_NEAREST);
}
static float s_afWhite[4] = { 1.0f, 1.0f, 1.0f, 1.0f };
g1TexEnvfv(GL_TEXTURE_ENV,GL TEXTURE_ENV_COLOR,s afWhite);
g]TexEnvi(GL_TEXTURE_ENV,GL_TEXTURE_ENV_MODE,GL_COMBINE);
g]TexEnvi(GL_TEXTURE_ENV,GL_COMBINE_RGB,GL_INTERPOLATE);
g]TeXEnvi(GL_TEXTURE_ENV,GL_COMBINE_ALPHA,GL_INTERPOLATE);
g1TexEnvi (GL_TEXTURE_ENV,GL_SOURCEO RGB,GL CONSTANT);
g1TexEnvi (GL_TEXTURE_ENV,GL SOURCEO_ALPHA,GL_REPLACE);
g1TexEnvi (GL_TEXTURE_ENV,GL_OPERANDO_RGB,GL_SRC_COLOR);
g1TexEnvi (GL_TEXTURE_ENV,GL_OPERANDO_ALPHA,GL SRC_COLOR);
g1TexEnvi (GL_TEXTURE_ENV,GL_SOURCE1 RGB,GL_PREVIOUS);
g1TexEnvi (GL_TEXTURE_ENV,GL SOURCE1l ALPHA,GL REPLACE);
g1TexEnvi (GL_TEXTURE_ENV,GL OPERAND1 RGB,GL SRC _COLOR);

26 Chapter 1 Introduction

TeamLRN sPeCiAL

g1TexEnvi (GL_TEXTURE_ENV,GL_OPERAND1 ALPHA,GL_SRC_COLOR);
g1TexEnvi (GL_TEXTURE_ENV,GL_SOURCE2 RGB,GL_TEXTURE);
g1TexEnvi (GL_TEXTURE_ENV,GL_SOURCE2_ALPHA,GL_REPLACE);
g1TexEnvi (GL_TEXTURE_ENV,GL_OPERAND2_RGB,GL_SRC_COLOR);
g1TexEnvi (GL_TEXTURE_ENV,GL_OPERAND2 ALPHA,GL_SRC_COLOR);
g1TexEnvi (GL_TEXTURE_ENV,GL RGB_SCALE,1);

g1TexEnvi (GL_TEXTURE_ENV,GL ALPHA SCALE,1);

The first part of the code through the if-then-else statement is essentially the
same as for the primary texture. To somehow blend the secondary texture with the
primary one, we certainly do not want to use the replace mode GL_REPLACE as we did
in texture unit 0. The long list of parameters here tells OpenGL exactly how to do
the blending, using the GL_COMBINE mode. The explanation for this occurs later in the
book (see Section 3.4.4).

The disabling of texture units is

if (gs_bUseSecondaryTexture)

{
// disable texture unit 1
glActiveTextureARB(GL_TEXTUREL ARB);
g1Disable(GL_TEXTURE_2D);
g1ClientActiveTextureARB(GL TEXTURE1 ARB);
glDisableClientState(GL _TEXTURE_COORD ARRAY);

// disable texture unit 0
glActiveTextureARB(GL_TEXTUREO ARB);
glDisable(GL_TEXTURE_2D);
glClientActiveTextureARB(GL_TEXTUREO ARB);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);

Not much work to do here.

One last item to take care of has to do with the binding that we did to upload the
texture images to the graphics card. You need to tell the graphics driver to free up the
video memory before the application terminates. This is done in WinMain by

if (gs_uiID0O > 0)
glDeleteTextures((GLsizei)1, (GLuint*)&gs uiIDO);

if (gs_uiIDl > 0)
glDeleteTextures((GLsizei)1, (GLuint*)&gs uilD1);

As you can see, quite a bit of programming goes into displaying something as
simple as a single mesh with multiple textures.

1.4 Abstraction of Systems 27

1.3 DRAWING A COMPLICATED SCENE

The next example is the drawing of a complicated scene. The scene is an indoor
level with 100 rooms, each intricately designed and textured. The indoor level is
managed on a server machine. The scene has 1000 characters, each an animated
biped. Each character is controlled by a player who is running his application on
a client machine. The characters can shoot at each other and can destroy various
objects in the scene. The scene is large enough that the client machines do not have
the processing power to draw all of it, so only the visible portions of the scene should
be drawn. The sample uses full collision detection and a physics system to obtain
realistic behavior of the objects in the world. Quite a few sound emitters exist in the
scene and need to be rendered with 3D sound. Finally, the client software runs on
PCs, on Linux machines, and on Macintosh machines. The next couple of pages will
describe all the work necessary to produce such a sample.

Well, maybe not. The fact is, such a scene and sample application is what many
games are about. It takes much more than just a few pages to describe how to build an
application of this magnitude. In fact, it takes more than a few books to describe how
to do this. The graphics system itself must be quite large to handle this; so must be the
physics system. Networking, 3D sound, and cross-platform capabilities are yet a few
more systems you need, each requiring a superhuman effort to build them all, but
certainly within reach of a team of people per system. The rest of the book focuses on
the management of data in a scene and the underlying graphics and physics engines
that support it.

14 ABSTRACTION OF SYSTEMS

TeamLRN sPeCiAL

The previous three sections of this chapter should convince you of one thing: Writing
a monolithic program for a sophisticated graphics application is just not the way
to architect an application. We have seen a few systems in action in the illustrative
samples:

® An application layer. This is dependent on the platform and operating system and
includes window creation, graphics system initialization, and event handling. In
commercial applications, you have to deal with graphical user interfaces and their
associated controls.

m Use of a graphics APIL In a sense, this is also dependent on platform. On the PC
platform, you have a choice of OpenGL or Direct3D. On Linux and Unix plat-
forms, most likely you will use OpenGL. Game consoles have their own special
needs.

® Data management.

28 Chapter 1 Introduction

TeamLRN sPeCiAL

The last item is the focus of this book. My engine, Wild Magic, is a large library
that is designed to provide platform-independent data management or scene graph
management. It is designed to be efficient in order to support real-time graphics. And
it is what I call graphics API agnostic. An abstract rendering interface is used by the
scene graph management system to communicate with the rendering system. The
renderer implementation is effectively irrelevant. It makes no difference if the imple-
mentation is based on OpenGL, Direct3D, or even a software renderer (although in
the latter case you do not get the real-time performance).

Chapter 2 discusses the core systems that are used by the engine. Section 2.1
describes a low-level system that includes basic data structures, encapsulates any plat-
form dependencies, handles byte order issues (endianness), handles files, and pro-
vides convenience functions for memory management. Section 2.2 describes another
core system, a mathematics library for supporting standard mathematical functions,
vector and matrix algebra, quaternions (for rotations), and basic geometric objects.
The most important core system is described in Section 2.3—the object system that
provides object-oriented services that are essential to large library design.

The heart of the book is scene graph management. The fundamental ideas and
architecture of Wild Magic are discussed in Chapter 3. Section 3.1 describes the four
important core classes in scene graph management: Spatial, Node, Geometry, and Ren-
derer. Geometric state management, including transformations and bounding vol-
umes, is the topic of Section 3.2. All important is the mechanism for updating the
scene graph whenever some of the geometric quantities in it have changed. Section
3.3 is a description of the standard geometric primitives you find in a graphics sys-
tem, including points, polylines, and triangle meshes. The section also introduces
particles, which can be thought of as points with size; the particles are represented as
small squares that always face the observer.

Section 3.4 is a lengthy discussion about render state, the quantities that are used
to display geometric objects. The four main classes of state are global state, lights,
textures, and effects. Global state is information that is effectively independent of
specific geometric data and includes information such as depth buffer parameters,
culling status, alpha blending parameters, and material properties. Light state has to
do with the lights in the scene and how they dynamically light the geometric objects.
To make the geometric objects have a realistic appearance, texturing is essential.
(Multitexturing is also discussed.) This section also covers yet another important
update mechanism—one that is necessary whenever render state is attached to, or
detached from, a scene.

The final section of the chapter, Section 3.5, talks about the camera model for
perspective projection and the fundamentals of the rendering system. An important
aspect of scene graph management is using an abstract class for rendering in order
to hide the details that are specific to certain platforms. This layer allows you to
manipulate and display scene graphs without caring if the renderer is implemented
using OpenGL or Direct3D, or if the application is running on a PC with Windows,
a PC with Linux, or a Macintosh with OS X. This section also covers a few other

TeamLRN sPeCiAL

1.4 Abstraction of Systems 29

complex topics, such as how to cache data on the graphics card and how to support
both single-pass and multipass drawing operations.

Chapter 4 takes us into advanced scene graph management. Core scene graph
management is simply about choosing good data structures and using object-
oriented principles, but the advanced topics have more of an algorithmic flavor. Many
of these algorithms are explained in detail in [Ebe00]. Section 4.1 discusses level of
detail. The simplest level of detail used is billboards, where textured rectangles are
used to represent three-dimensional objects, and the rectangles are always required
to face the observer. Particles in Wild Magic are implemented as billboards for visual
purposes. The engine also supports the notion of an object always facing the observer,
whether it is a flat rectangle or a solid three-dimensional object. Level of detail for a
solid object is usually categorized in one of three ways: discrete (change one object at
a time), continuous (change a couple of triangles at a time), and infinite (subdivision
of surfaces to an arbitrary level of tessellation).

The topic of Section 4.2 is sorting, which comes in two flavors. You can sort
objects based on geometric attributes, or you can sort them based on render state.
In both instances, the sorting is an attempt to produce a correct drawing of a scene
with minimum render state changes. Such changes can be expensive, so it is good to
avoid them if possible. The topic of binary space partitiong trees is covered, but only
for coarse-level sorting of a scene, not for partitioning of triangles for completely
correct sorted drawing. Sorting by render state is accomplished in the engine by
deferred drawing. A list of objects is accumulated during the drawing pass, but not
drawn, then sorted by selected render states. At that time the objects are sent to the
renderer. A hierarchical scene allows you the possibility of sorting the children of a
node. One of the physics applications makes use of this to display a gelatinous blob
that is semitransparent. This section also covers the topic of portals in which sorting
is used for occlusion culling rather than minimizing render state changes.

Curves and surfaces are discussed in Section 4.3. The focus is on the data structure
support in the engine so that you can easily add new types of curves or surfaces
without having to change the infrastructure of the engine. Some of you will breathe
a sigh of relief when I say that no mathematics was harmed in the making of that
section.

Section 4.4 looks at constructing terrain objects as a collection of square or rec-
tangular pages of data. The pages may be meshes built as height fields stored as rec-
tangular arrays of heights, as irregular triangulations of the plane with height data
specified at the vertices, or as meshes generated from smooth surfaces. Continuous
level of detail for height fields is one of the topics. Probably the most important sub-
section is the one on terrain pages and memory management. Regardless of the page
representation, your outdoor environment will no doubt be so large that you cannot
keep all the data in memory. This requires you to build a virtual memory manage-
ment system for terrain.

The last section of the chapter, Section 4.5, discusses how the controller system
of the engine is used to support animation of various quantities in the engine. The

30 Chapter 1 Introduction

TeamLRN sPeCiAL

illustrative examples are keyframes to control transformations (forward kinemat-
ics in a sense), inverse kinematics to control transformations, morphing to control
vertex locations, particle systems, and skin and bones for smooth animation.

The companion to advanced scene graph management is advanced rendering, the
subject of Chapter 5. Various special effects are supported by the engine and easily
used in applications. The chapter has two halves. The first half, Section 5.1, describes
the implementation of some special effects using the fixed-function pipeline—the
standard support in graphics APIs before the introduction of programmable graphics
hardware. Section 5.2 describes obtaining special effects using shaders—user-written
code that programs the graphics hardware. I do not focus on shader writing, although
a few sample applications are provided. Instead the emphasis is on how a scene graph
management system can support shaders.

Wild Magic has some support for collision detection and physics. Chapter 6 in-
troduces some of the simpler algorithms for collision detection. Line-object inter-
section, sometimes referred to as picking, is discussed in Section 6.1. Object-object
intersection is also covered (in Section 6.2), but keep in mind that a fully featured
collision detection library with a nearly infinite supply of intersection functions for
every object you can imagine is the stuff of commercial physics engines. I promise to
touch only the surface of the topic. Likewise, Chapter 7 is a reasonable discussion of
how you can add some physics support to an engine, but fully featured physics en-
gines, especially ones of the black-box form (you specify objects, the engine handles
everything else for you), are quite difficult to build and take a lot of time. The top-
ics I briefly cover are numerical methods for solving ordinary differential equations
(Section 7.1), particle physics (Section 7.2), mass-spring systems (Section 7.3), de-
formable bodies (Section 7.4), and rigid bodies (Section 7.5). The coverage of these
topics is designed to show you how I built the sample applications in my game phys-
ics book [Ebe03a]. The emphasis in this book is on implementation, not on the
theory.

Chapter 8 is a moderate discussion of how I built an application layer for all the
samples. Once again an abstract API is used in order to hide the implementation
details on the various platforms. The layer is not a general one that supports GUI
construction on any platform. It has simple support for my 3D applications. The
chapter has a brief discussion of some graphics and physics applications that appear
on the CD-ROM. The goal is to let you know what I was thinking when I built the
applications. The application infrastructure is also used for many of my tools, which
I also discuss in this chapter.

The final material is an appendix on my coding conventions and on the class
hierarchy of Wild Magic version 3. Coding conventions always generate philosophical
debates—mine certainly have! However, I have chosen my conventions and I stick
to them (well, almost always). Consistency is an important part of a commercial
product, more than you might think.

CHAPTER

CORE SYSTEMS

21 THE LOW-LEVEL SYSTEM

TeamLRN sPeCiAL

At the lowest level of any library lies a collection of routines that are used frequently
enough that their interfaces may be exposed through a single header file in order to
save the programmer time by not constantly having to #include various files repeat-
edly. In Wild Magic, this header file is im3System. h and exposes the interfaces for most
of the standard C/C++- libraries. The system header has the block

#include <cassert>
#include <cctype>
#include <cfloat>
#include <cmath>

#include <cstddef>
#include <cstdio>
#include <cstdlib>
#include <cstring>

The Standard Template Library (STL) is not exposed here. Although STL is a con-
venient implementation of a lot of commonly used items, many of the container
classes are designed to be efficient in time in the asymptotic sense. For example,
the STL set class stores the elements of the set in ascending order, which allows a
logarithmic-time binary search to determine existence of an element. The ordering
also supports logarithmic-time insertion and deletion. Unfortunately, real-time en-
gines sometimes have performance penalties because of the overhead of STL, both in
time and memory.

31

32 Chapter 2 Core Systems

TeamLRN sPeCiAL

For example, a triangle mesh class from an earlier version of the engine was
implemented to store vertex, edge, and triangle adjacency information using STL
maps. The mesh class had a nested class to represent a mesh vertex. Each vertex needs
to know which edges and triangle shared it. A partial code listing is

class VertexAttribute

{

public:
VertexAttribute ();
void* m pvData; // user-defined per-vertex data
set<Edge> m_kESet; // adjacent edges

set<Triangle> m _kTSet; // adjacent triangles

}s

The mesh class was used to build the adjacency information for a level surface
extracted from a 3D voxel image. The surface was a collection of 825 KB vertices,
2.5 MB edges, and 1.6 MB triangles. The memory used by the program that built the
adjacency information was 980 MB.

However, for a typical mesh the average number of edges sharing a vertex is six,
and the average number of triangles sharing a vertex is six. The average number of
triangles sharing an edge is two. Since the sets of adjacent objects are small, a template
class representing a “small set” is more appropriate. That class stores elements in
an unordered array and reallocates when necessary. The initial array size defaulted
to eight, and each reallocation added eight more items. The expected number of
reallocations is zero. Searching a set of up to eight items is fairly fast, so the overhead
of maintaining a sorted array was avoided. The insertion always occurs at the end
of the array. On deletion of an element, the largest-indexed element of the array is
moved to the position of the deleted element, thus maintaining a contiguous set of
elements. The nested class became

class VertexAttribute
{
public:
VertexAttribute ();
void* m pvData;
SmallSet<Edge> m_kESet;
SmallSet<Triangle> m kTSet;
1

For the same application the memory usage was 503 MB, nearly a 50 percent reduc-
tion from the version using the STL set. The execution time itself was faster for the
SmallSet version.

2.1.1

TeamLRN sPeCiAL

2.1 The Low-Level System 33

Real-time applications are of such a nature that the designer/architect of the
system has a lot of knowledge about memory usage patterns, but a generic set of
template containers do not have the benefit of this knowledge. In this setting, there is
some justification for reinventing the wheel! Section 2.1.1 discusses the basic data
structures that replicate some of the functionality of STL, but just the minimum
necessary to support the engine.

Keep in mind that new hardware (such as game consoles) might not immediately
have libraries that support STL. Since consoles tend to have much less memory than
desktop computers, the presence of STL might actually be a curse because of the
memory overhead.

Also at the lowest level, a library that intends to be portable must encapsulate
platform-specific concepts. These concepts include, but are not limited to, reading
the system or real-time clock, file handling operations, byte order for data types
(endianness), and any basic low-level services common to most operating systems.
Encapsulation also may be used to hide optimized versions of common services, for
example, memory management. These issues are discussed in Sections 2.1.2 through
2.1.6.

BAsIc DATA STRUCTURES

The basic data structures that are implemented are arrays, hash tables, hash sets, lists,
sets, and stacks—all template container classes. A simple wrapper for strings is also
implemented. All of the template classes are not intended to be derived from, so the
destructors are nonvirtual and the class data members are private. The data structures
certainly will evolve as needed when the engine is endowed with new features, and
other classes will also be added on demand.

The template classes all have comments indicating what the template parameter
class must support in its own interface. The requirements are mentioned in the
following sections.

Arrays

The array template class encapsulates dynamically resizable, contiguous storage of
objects. The template parameter class need only implement the default constructor,
the copy constructor, and the assignment operator.

The array constructor allows you to specify the initial quantity of elements in
the array (default 1) and the number of elements to grow by when the array size is
dynamically increased (default 1). The initial quantity is also the maximum quantity
allowed, but dynamic resizing can cause the two numbers to differ. It is guaranteed
that the current quantity is less than or equal to the maximum quantity.

34 Chapter 2 Core Systems

TeamLRN sPeCiAL

Member access is provided by

int GetQuantity () const;

T* GetArray ();

const T* GetArray () const;

T& operator[] (int 1);

const T& operator[] (int i) const;

The members GetQuantity and GetArray perform the obvious operations. The oper-
ator[] accessor allows you to read and write elements in the array. The assert-repair
paradigm is used in these methods. Range checking is performed to make sure the
input i is valid. If it is not, in debug builds an assertion is fired. In release mode, the
input is clamped to the valid range. If the input is negative, the item at index 0 is ac-
cessed. If the input is larger than or equal to the current quantity Q, the item at index
Q — 1is accessed.

The operator[] members never cause automatic growth if the input index is out
of range. However, the array class supports automatic growth through

void Append (const T& rtElement);
void SetElement (int i, const T& rtElement);

The Append method inserts the input element at index Q, where Q is the current
quantity. After the insertion, Q is incremented by 1. The SetElement method allows
you to insert a new element at any index larger than Q. After insertion, the current
quantity is incremented so that the array is just large enough to include the new
object. If the input index is already in the current range of valid indices, no resizing
is necessary and the current element at that index is overwritten.

Array elements can also be removed through

void Remove (int 1);
void RemoveAll ();

The Remove method deletes the ith element by shifting the elements at larger indices
to fill the vacant slots. That is, the element at index i + 1 is copied to the location
i, the element at index i + 2 is copied to the location i + 1, and so forth. If Q is
the current quantity before the removal, the element at index Q — 1 is copied to
the location Q — 2. Because construction and destruction can have side effects, the
default constructor is used to generate a dummy object that is stored at location
Q — 1, even though the current quantity will be decremented so as not to include the
vacated slot. For example, if the template parameter class is a graphics engine Object
that holds onto other objects or has dynamically allocated memory, this last step
allows the object to free up its resources. The method RemoveA11 sets all objects in the
valid index range to default constructed objects, and then sets the current quantity to
zero.
Dynamic growth may be explicitly controlled via

TeamLRN sPeCiAL

2.1 The Low-Level System 35

void SetMaxQuantity (int iNewMaxQuantity, bool bCopy);
int GetMaxQuantity () const;

void SetGrowBy (int iGrowBy);

int GetGrowBy () const;

The suggestive names make it clear what the behaviors are. In the method Set-
MaxQuantity, an assert-and-repair operation checks for nonnegativity of the input.
If the input is zero, the array is deallocated and the quantity set to zero. If the in-
put quantity is equal to the current maximum quantity, nothing needs to be done
and the function just returns. If the input quantity is different than the current max-
imum quantity, the array is reallocated. In the event the array grows, the Boolean
bCopy input specifies whether or not the old array items should be copied to the new
array.

Hash Tables

The hash table template class encapsulates a collection of key-value pairs. The objects
are stored in a fixed-size array, where each array element stores a singly linked list
of key-value pairs. The data structure for hashing is one of the simplest you will see
in a standard computer science textbook. A hash table requires a hash function that
computes an array index from a key. If two keys map to the same index, a collision is
said to have occurred. The colliding key-value pairs are stored in the linked list at the
computed array index. This process is called chaining. In the hash map template, the
hash function uses a multiplicative scheme and is an implementation of equation (4)
in [Knu73, Volume 3, Section 6.4]. Should you use a hash table in your application
code, it is your responsibility to select a table size that is sufficiently large to help
minimize the number of hash collisions.

An important issue for hash tables is the time required for insertion, deletion, and
searching. A good discussion of the asymptotic analyses for these are in [CLR90, Sec-
tion 12.2]. For a chaining with singly linked lists, the worst-case asymptotic behavior
for insertion, deletion, or searching is O (1 4 «), where « is the load factor—the aver-
age number of list items in a chain, given by the ratio of the number of objects in the
table divided by the total number of table slots. As long as you have a large enough
table so that only a few collisions occur, the deletion and searching are quite fast. If
you choose the table size way too small, then the computational time may be an issue
in your applications.

The hash table class is named THashTable and involves two template parameter
classes: TKEY for the keys and TVALUE for the values. The THashMap class has a nested
class, HashItem, that represents the singly linked list node. This class stores the key,
value, and a pointer to the next node in a list. Both TKEY and TVALUE need to imple-
ment their default constructors, since creation of a HashItem object implicitly creates
a default key and a default value. They both must implement the assignment oper-
ator, since after a HashItem object is created, it is assigned a key and a value. The TKEY

36 Chapter 2 Core Systems

TeamLRN sPeCiAL

class must additionally implement the comparisons operator== and operator!= since
these are used by the insertion, deletion, and search operations to decide if two keys
are equal or different.

As mentioned earlier, the default hash function is multiplicative. However, a user
may provide an alternate hash function. Since the template classes are not intended
for derivation, the alternate hash function must be provided as a function pointer, a
public data member int (*UserHashFunction) (const TKEY&). By default, this pointer
is null. If it is set to some function, the internal hashing detects this and uses it instead
of the default hash function.

Insertion of a key-value pair into the hash table is accomplished by the member
function

bool Insert (const TKEY& rtKey, const TVALUE& rtValue);

The hash function is evaluated at the input key to locate the table index correspond-
ing to the key. The linked list at that location is searched for the key. If the key does
not exist in the list, a new list node is added to the front of the list, and this node is as-
signed the input key and input value. The insertion function returns true to indicate
that, in fact, the key-value pair was inserted. If the key does exist in the list, the inser-
tion function returns false. Be aware that if you insert a key-value pair, later change
the value, and then attempt to insert again, the new value does not replace the old
one. If you need support for modifying the value of an existing key-value pair, use
the Find function, described later in this section.

Removal of a key-value pair from the hash table is accomplished by the member
function

bool Remove (const TKEY& rtKey);

The hash function is evaluated at the input key to locate the table index correspond-
ing to the key. The linked list at that location is searched for the key. If the key does
not exist in the list, the removal function returns false. If the key does exist in the
list, the list node is removed from the list and deleted, and then the removal function
returns true. No access is given to the value for the key-value pair that is removed. If
you need this value, you must perform a search using the Find member function to
access it, and then call the Remove function. The member function

void RemoveAll ();

iterates through the table and deletes the linked lists.
Searching for a key-value pair is performed by calling the member function

TVALUE* Find (const TKEY& rtKey) const;

The hash function is evaluated at the input key to locate the table index correspond-
ing to the key. The linked list at that location is searched for the key. If the key does

TeamLRN sPeCiAL

2.1 The Low-Level System 37

not exist in the list, the Find function returns NULL. If the key does exist in the list, the
Find function returns a pointer to the value associated with the key. The pointer is to
the list node’s copy of the value. You may modify the value if you so choose; this does
not affect where in the table a key-value pair is hashed.

In many situations, it is desirable to iterate through the elements of a hash table
for processing. For example, the streaming system in Wild Magic makes use of this.
The member functions supporting the iteration are

TVALUE* GetFirst (TKEY* ptKey) const;
TVALUE* GetNext (TKEY* ptKey) const;

Each of these functions returns a pointer to the hash table’s copy of the key-value
pair. The functions also assign a copy of the key in the key-value pair to the input key
(provided by address). The syntax for the iteration is

THashTable<SomeKey,SomeValue> kTable = <some hash table>;

// start the iteration

SomeKey kKey;

SomeValue* pkValue = kTable.GetFirst(&kKey);
while (pkValue)

{
// ...process kKey and pkValue here...

// continue the iteration
pkValue = kTable.GetNext (&kKey);

To support this mechanism, the hash table must remember where the iteration was
on the previous call to GetNext in order to fetch the next key-value pair in the current
call to GetNext. Two pieces of information are essential to remember: the current table
index and the current list node. The data members m iIndex and m_pkItem store this
information.

The call to GetFirst loops through the table to locate the first nonempty list.
When it finds that list, m_iIndex is the table index for it, and m_pkItem is the pointer
to the first node in the list. The key and value for this list node are returned by the
GetFirst function. On the call to GetNext, the pointer m_pkItemis set to the next node
in the list, if any. In the event there is, GetNext simply returns the key and value for that
node. If there is no next node, m_iIndex is incremented and the next nonempty list is
sought. If one is found, m_pkItem is set to the first node in the list, and the iteration
continues. Once all hash table items have been visited, GetNext returns a null pointer,
indicating that the iteration has terminated.

38 Chapter2 Core Systems

TeamLRN sPeCiAL

Hash Sets

Sets of keys are supported by the THashSet template class. The class is nearly identical
in structure to THashTable and uses the TKEY template parameter for set objects, but it
does not include the values through a TVALUE template parameter. Although removing
the TVALUE dependency in THashTable leads to a perfectly reasonable container class
for sets, I have introduced features that allow you to use hash sets in place of hash
tables. The main modification is that the TKEY class has members that are used for key
comparison and has any additional data that normally would be stored by the TVALUE
class.
To insert an element into the hash set, use member function

TKEY* Insert (const TKEY& rtKey);

The hash function is evaluated at the input key to locate the table index correspond-
ing to the key. The linked list at that location is searched for the key. If the key is
found, the insertion function returns a pointer to the hash set’s version of the key. In
this sense, the insertion acts like a find operation. If the key does not exist in the list, a
new node is added to the front of the list, the input key is assigned to the node, and a
pointer to the hash set’s version of the key is returned. In most cases, the assignment
operator for TKEY performs a deep copy so that the hash set has an identical copy of
the input. In other cases, more complicated semantics may be used. The members of
TKEY that are used for key comparisons must be copied, but the other members can
be handled as needed. For example, you might have a data member that is a pointer
to an array of items. The pointer can be copied to the hash set’s version of the key, a
shallow copy.
The removal functions

bool Remove (const TKEY& rtKey);
void RemoveAll ();

behave exactly as those for hash tables.
Searching for a key is performed by calling the member function

TKEY* Get (const TKEY& rtKey) const;

The hash function is evaluated at the input key to locate the table index correspond-
ing to the key. The linked list at that location is searched for the key. If the key is
found, the insertion function returns a pointer to the hash set’s version of the key.
You may change any values associated with the key. If the key does not exist in the
list, the function returns NULL.

Iteration through the elements of the hash set is similar to that for hash tables.
The functions that support this are

TeamLRN sPeCiAL

TKEY* GetFirst () const;
TKEY* GetNext () const;

The structure of the iteration is
THashSet<SomeKey> kSet = <some hash set>;
// start the iteration
SomeKey* pkKey = kSet.GetFirst();
while (pkKey)
{

// ...process pkKey here...

// continue the iteration
pkKey = kSet.GetNext();

Lists

2.1 The Low-Level System 39

The engine has a need for lists, but typically these do not have a lot of nodes. A simply
linked list class, TList, suffices. The template parameter class need only implement
the default constructor, the copy constructor, and the assignment operator.

The TList class is not very sophisticated. It manages an item from the template
parameter class and has a pointer that links to the next list node, if it exists, or is the
null pointer if the node is at the end of the list. The member accessors are

void SetItem (const T& rtltem);
T& Item ();

const T& GetItem () const;
void SetNext (TList* pkNext);
TList*& Next ();

const TList* GetNext () const;

The first three members allow you to set or get the item managed by the node. The
last three members support construction of the list itself. The constructor

TList (const T& rtItem, TList* pkNext);

also supports list construction in the manner shown by the following example:

// create the first list node
int i0 = <some integer>;

TList<int>* pkList0 = new TList<int>(i0,NULL);

40 Chapter 2 Core Systems

TeamLRN sPeCiAL

// add a node to the front of the 1ist
int il = <some integer>;
TList<int>* pkListl = new TList<int>(il,pkList0);

The TList class does not implement a recursive destructor that deletes the front
node of the list and then asks the rest of the list to delete itself. A recursive destructor is
problematic for very long lists because you can overflow the program stack. The user
is responsible for destroying the list. In the previous example, the list is destroyed by

while (pkListl)

{
TList<int>* pkFront = pkListl;
pkListl = pkListl->Next();
delete pkFront;

My convention is to always dynamically allocate list nodes, but nothing stops
you from having nodes on the program stack. The user must manually manage any
dynamic allocations and deallocations. For example,

// create a circular list, no deallocation necessary
int iQuantity = <number of Tist items>;
TList<int> kList[iQuantity];
for (int i = 0; i < iQuantity; i++)
{
kList[i].SetItem(i);
kList[i].SetNext(&kList[(i+1) % iQuantity]);
}

// create a 1ist, some destruction required
int i0 = <some integer>;

TList<int>* pkList0 = new TList<int>(i0,NULL);
int il = <some integer>;

TList<int> kList1(il,pkList0);

// destroy the 1ist, kListl is on the program stack--do not deallocate
delete pkList0;

The TList class does not maintain a count of the number of nodes in the list. The
member function

int GetQuantity () const;

iterates through the list and counts the nodes, returning the quantity.
Removal of the front node of a list is simple:

TeamLRN sPeCiAL

2.1 The Low-Level System 41

TList<int>* pkList = <some Tist, all dynamically allocated nodes>;
TList<int>* pkFront = pkList;

pkList = pkList->Next();

delete pkFront;

Removing any other node requires more work. This operation is usually in conjunc-
tion with a search: find a node with a specified item and remove it from the list. Two
pointers must be maintained: one pointing to the current node in the search and the
other pointing to the previous node. This is necessary so that you can tell the previous
node to relink itself to the successor of the current node.

TList<T>* pkList = pkYourList;
TList<T>* pkPrev = NULL;
for (/**/; pkList; pkPrev = pkList, pkList = pkList->Next())
{
if (pkList->Item() == specified item)
{

// process specified item before deletion (if necessary)

// remove the item

if (pkPrev)

{
// item not at front of list
pkPrev->Next() = pkList->Next();

1
else
{
// item at front of list
pkYourList = pkList->Next();
1

pkList->Next() = NULL;
delete pkList;

Insertion of a node before or after a node with a specified item has a similar
syntax.

Sets

The template class TSet is intended for sets with a small number of elements. The STL
class set has a large memory overhead for sets with a large number of elements. In
much of the engine code, the set sizes are small, so the sets may be implemented to
use less memory. Unlike the STL sets, TSet is unordered. The idea is that if the sets

42 Chapter 2 Core Systems

TeamLRN sPeCiAL

are small, a linear search is inexpensive. If you have no intent for searching a large set
and you know that the elements you will be adding are unique, then TSet is also an
ideal class. It has a member function for insertion that does not search to see if the
element is already in the set.

The template parameter class must implement the default constructor, the copy
constructor, and the assignment operator. The set storage is an array that is managed
similarly to the array in TArray. The TSet class has a default constructor, a copy
constructor, and an assigment operator. The copy constructor and assignment make
deep copies of the input set. The other constructor is

TSet (int iMaxQuantity, int iGrowBy);

and allows you to specify the initial maximum quantity of elements in the set and
an amount to grow by if an insertion requires it. A data member separate from the
maximum quantity keeps track of the actual quantity of elements.

Member access is straightforward:

int GetMaxQuantity () const;

int GetGrowBy () const;

int GetQuantity () const;

T* GetElements ();

const T* GetElements () const;

T& operator[] (int i);

const T& operator[] (int i) const;

The GetElements functions return a pointer to the array storage. You may iterate over
the elements of the set, as the following example shows:

TSet<T> kSet = <some set>;

const T* akElement = kSet.GetElements();

for (int i = 0; i < kSet.GetQuantity(); i++)
{

// ... process element akElement[i] ...

If you want to change any elements during the iteration, you need to use the
nonconstant GetElements. The operator[] methods allow you to access an element
as shown:

TSet<int> kSet = <some set>;
int iElement = kSet[17];
kSet[3] = -5;

An assert-and-repair paradigm is used, just like TArray does. In debug mode, an
assertion is fired if the input index to the operator is out of range. In release mode,

TeamLRN sPeCiAL

2.1 The Low-Level System 43

the input index is clamped to the valid range of indices, 0 <i < Q — 1, where Q is
the current quantity of elements in the set.
Insertion of elements into the set is supported by

bool Insert (const T& rkElement);
void InsertNoCheck (const T& rkElement);

The first function iterates over the current set and tests to see if the input element is
already in the set. If it is, the insertion function returns false. If it is not, the element
is appended to the end of the array storage. A reallocation of the array is performed
first, if necessary. The second function does not check for the existence of the input
element. It simply appends the input to the end of the array, reallocating the array if
necessary. This function is useful if you know that your set will have unique elements,
thereby avoiding the cost of searching the set.
The set may be searched to see if it contains a specific element:

bool Exists (const T& rkElement);

The return value is true if and only if the input element is in the set.
Three member functions support removal of elements from a set:

bool Remove (const T& rkElement);
void Clear ();
void Clear (int iMaxQuantity, int iGrowBy);

The Remove method searches the set for the input element. If it does not exist, the
function returns false. If it does exist, the element is removed from the array by
shifting all the later elements, just as was done in the Remove method for TArray.
The last vacated slot is then assigned an element created by the default constructor
to induce side effects for cleaning up any complex objects stored by the set. The Clear
methods assign zero to the quantity, indicating the set is empty. The method with no
parameters retains the current maximum quantity and array storage. The array slots
that had actual elements are assigned elements created by the default constructor,
again to induce side effects for cleaning up complex objects. The Clear method with
parameters allows you to re-create the set with new maximum quantity and growth
parameters. The current array is deallocated, and a new one allocated.

Stacks

The class TStack represents a nonresizable stack. In all the engine code, the ability
to dynamically resize is never needed. The constructor for the class requires you to
specify the maximum number of items that can be pushed on the stack, and an
array of that size is allocated for the stack storage. The template parameter class only

44 Chapter 2 Core Systems

TeamLRN sPeCiAL

needs to implement the default constructor, the copy constructor, and the assignment
operator.
The basic stack operations are

bool IsEmpty () const;

bool IsFull () const;

void Push (const T& rkItem);
void Pop (T& rklItem);

void Clear ();

bool GetTop (T& rkItem) const;

An integer index is used to track the top of the stack. Initially the index is —1,
indicating the stack is empty. Method IsEmpty reports this condition. The stack is
considered to be full if the index is one less than the maximum quantity, a condition
reported by method IsFull. A Push operation places the input item on top of the
stack. The top index is incremented first, then the item is copied. A Pop operation
copies the item on top of the stack, returns it through the function parameter, and
then decrements the top index. The Clear method sets the top index to —1, creating
an empty stack. The method GetTop reads the top item on the stack, but does not pop
it. The return value is true as long as the stack is not empty, indicating that indeed
the top item was read.

Support is provided for iterating over the stack as if it were an array. The methods
are shown next along with a typical iteration:

int GetQuantity () const;
const T* GetData () const;

TStack<T> kStack = <some stack>;

T* akArray = kStack.GetData();

for (int i = 0; i < kStack.GetQuantity(); i++)
{

// ... process item akArray[i] ...

Strings

The String class is not extremely powerful as most string implementations go. It was
created for two purposes. First, the class supports streaming of character strings.
Character manipulation functions in the standard library prefer null-terminated
strings. The String class wraps such strings. Unfortunately, when reading a string
that has been written to disk, having to read a character at a time and searching for
the null terminator is inefficient, so the class also stores a string length. When a string

2.1 The Low-Level System 45

is written to disk, the length is written first, followed by the string characters but not
the null terminator. To read the string from disk, the length is read first, then the
block of characters of that length is read—a much more efficient mechanism. The
member functions

int GetMemoryUsed () const;
int GetDiskUsed () const;

are used by the streaming system, as discussed in Section 2.3.5.

Second, loading of objects from disk requires the loader to know what type of
object is being loaded. Knowing this, the loader can create an object and then read
data from disk and fill in the object. The type identification is string based. The loader
reads the type string from disk and must look up the associated factory function for
that object. The type string is used as a key in a hash table; the factory function is
used as a value. Thus, the String class implements the member functions required by
the TKEY template parameter class in THashTable:

String& operator= (const String& rkString);
bool operator== (const String& rkString) const;
bool operator!= (const String& rkString) const;
operator unsigned int () const;

2.1.2 ENCAPSULATING PLATFORM-SPECIFIC CONCEPTS

The encapsulation amounts to providing an abstract set of functions that correspond
to the platform services, where the specific details are hidden from the user. Each
platform must implement the functions exposed through the abstraction. We are
not using the inheritance mechanism of an object-oriented language. Inheritance
is the process of deriving a class from a base class and implementing any of the
virtual functions that are in the base class. Think of this as adding a class on top
of the abstract layer defined by the base class. Implementing an abstract layer for
specific platforms is quite the opposite. The implementation is behind the abstract
layer, and the abstract layer need not have virtual functions. The abstract interface is
common to all platforms, but the source files for a platform are compiled only on
that platform. The abstract system layer in Wild Magic is the class System, found in
the files Wm3System. (h,in1,cpp).

It is nearly impossible not to expose a small amount of platform-specific infor-
mation to the engine and applications. The system header file contains the block

#if defined(WIN32)

#include "Wm3WinSystem.h"
#elif defined(__MACOS_)
#include "Wm3MacSystem.h"

TeamLRN sPeCiAL

46 Chapter 2 Core Systems

#else
#include "Wm3LnxSystem.h"
#endif

to expose such details. On a given platform, the appropriate preprocessor symbol is
defined to give access to a platform-specific header file. Currently those include a PC
with Microsoft Windows 2000/XP (Wm3WinSystem.h), a Macintosh running Mac OS X
(Wm3MacSystem.h), and a PC with some variant of Linux (Wm3LnxSystem.h). A source
file of the same name, but with the cpp extension, is provided for each platform and
contains any implementations that are needed on the platform.

An example that shows a need to expose details is the following. Sometimes com-
pilers that are noncompliant with ANSI standards require conditional compilation
for various syntactic issues. This was particularly true for nearly all compilers regard-
ing explicit instantiation of template classes that have static data members. The static
data members must use specialized instantiation on most platforms, but some plat-
forms want the specialization to occur before the explicit class instantiation, while
others want it after. Yet other compilers have issues regarding the syntax on how
global scope template operators are instantiated. When these problems show up in
the engine source code, you will see conditional compilation involving the symbols
WIN32, __MACOS__, or other symbols that identify a certain compiler being used (for
example, CodeWarrior Metrowerks and its symbol __MWERKS).

Another example is on a Microsoft Windows machine when you want to cre-
ate dynamic link libraries. The classes in the engine require qualification by either
__declspec(dllexport) or __declspec(dilimport). The symbol WM3_ITEM hides these
qualifiers. What the symbol expands to on each platform is governed by the symbol’s
implementation in the platform-specific header files.

2.1.3 ENDIANNESS

TeamLRN sPeCiAL

One major function of the encapsulation is to hide byte order, or endianness, when
reading or writing files. A PC running Microsoft Windows or Linux uses little endian
order, but a Macintosh uses big endian order—the bytes for a multibyte quantity are
stored in memory in the opposite order of those on the PC. The streaming system in
the graphics engine stores all native quantities in little endian order. To read or write
files on a Macintosh requires reversing the order of the bytes. The System functions
supporting this are

class System
{
public:
static void SwapBytes (int iSize, void* pvValue);
static void SwapBytes (int iSize, int iQuantity,
void* pvValue);

2.1 The Low-Level System 47

static void EndianCopy (int iSize, const void* pvSrc,
void* pvDst);

static void EndianCopy (int iSize, int iQuantity,
const void* pvSrc, void* pvDst);

The first function swaps iSize bytes in the memory pointed to by pvValue. The second
function swaps iSize bytes in each of the iQuantity elements of the array pvValue.
The last two functions copy with swapping, but the swap occurs only if necessary.
The third function copies iSize bytes from the source pvSrc to the destination pvDst,
but swaps the bytes along the way. The fourth function has similar behavior applied
to an array of items.

The Wild Magic streaming system makes calls to EndianCopy. Since the graphics
engine stores all native quantities in little endian order, the Microsoft Windows plat-
form EndianCopy functions just reduce to a memcpy call. However, on the Macintosh,
the swapping is implemented during the copying phase.

2.1.4 SYSTEM TIME

TeamLRN sPeCiAL

Many applications need to keep track of time, whether for sequencing purposes or
for simulation. Although the standard programming libraries provide functions to
manage a 32-bit clock, the number of bits is not enough and the resolution too coarse
to satisfy the needs of real-time applications. Operating systems and main processors
likely have support for a 64-bit clock, but direct access to this clock cannot be done
in a platform-independent manner. The details must be encapsulated to hide the
dependencies from the application layer. The System member function to support
this is

class System
{
public:
static double GetTime ();
}s

The returned double-precision number is 64 bits. Although this is a floating-point
value, if the need arises the return value can be bit manipulated as if it were a 64-bit
integer. The application must necessarily understand that the time is bit manipulated
and parse it accordingly.

As an example, on a 32-bit Microsoft Windows system, GetTime is implemented
in the file Wm3WinSystem.cpp and uses the operating system type LARGE_INTEGER that
represents a 64-bit integer. The platform-dependent functions QueryPerformanceFre-
quency and QueryPerformanceCounter are used to create a 64-bit value representing the
current time.

48 Chapter 2 Core Systems

2.1.5 FILE HANDLING

TeamLRN sPeCiAL

The streaming system for scene graph saving to disk or loading to memory requires
basic file handling. Specifically, files must be opened and closed. Data is either read,
written, or appended. Although file operations of these types are supported in C
and C++ in a platform-independent manner, it is convenient to encapsulate the
operations in the System class. The member functions are

class System
{
public:
static bool Load (const char* acFilename, char*& racBuffer,
int& riSize);
static bool Save (const char* acFilename,
const char* acBuffer, int iSize);
static bool Append (const char* acFilename, char* acBuffer,
int iSize);

The specified files are assumed to contain binary data. Some operating systems prefer
to distinguish text files from binary files in order to apply conversions regarding end-
of-line and end-of-file characters. The choice of dealing with only binary files is to
avoid portability problems whereby implicit conversions occur.

The Load operation determines how many bytes are in the file and returns the
amount in riSize. A character buffer racBuffer is allocated to contain that number
of bytes. The returned Boolean value is true if the load is successful, in which case
the outputs racBuffer and riSize are valid. If the returned value is false, one of the
following conditions has occurred: The file does not exist, the file cannot be opened
for reading (the file attributes might not allow this), or the number of bytes read is
different than what the operating system reported for the file. The latter condition is
not expected to occur, so a developmental assertion is triggered in the slim chance
the condition fails.

The Save operation writes the input buffer to disk. The buffer pointer acBuffer
is required to be nonnull and the iSize value is required to be positive. The func-
tion cannot determine if the buffer has the correct number of bytes; the caller has
the responsibility of ensuring it does. The returned Boolean value is true if the save
is successful. If the returned value is false, one of the following conditions has oc-
curred: The input buffer is null or the size is nonpositive, the file cannot be opened
for writing (the file might exist and be set to read-only), or the number of bytes writ-
ten is different than what was requested. The invalidity of the inputs is trapped with
a developmental assertion. The incorrect number of bytes written is not expected to
occur, so a developmental assertion is triggered in the slim chance the condition fails.

2.1 The Low-Level System 49

The Append operation is identical in structure to Save, except that the file is opened
for appending. The input buffer is written at the end of an already existing file. If the
file does not exist, it is created and the buffer is written.

The main client of the System file operations is class Stream. However, the file
operations are simple to use in other situations as they arise.

2.1.6 MEMORY ALLOCATION AND DEALLOCATION

TeamLRN sPeCiAL

This is probably not a topic you would expect to see regarding encapsulation of
platform-dependent code. Both the C and C++ languages provide basic memory
management functions. In C we have malloc and free; in C++ we have new and
delete. All of these functions are portable; however, portability is not the important
issue in this section.

Consider implementing a graphics engine on a device less powerful than a desk-
top computer. The current-day example is an embedded device that contains an ARM
processor—cell phones, handheld devices, and portable data assistants. The costs of
memory allocation and deallocation can become noticeable if the number of alloca-
tions and deallocations is large.

Two-Dimensional Arrays

The prototypical case is allocation and deallocation of a two-dimensional array. The
standard mechanism for doing this is illustrated next for a two-dimensional array of
integers. Moreover, we wish to zero the memory values.

// allocation
int iNumRows = <number of rows>;
int iNumCols = <number of columns>;
int* aaiArray = new Type[iNumRows];
for (iRow = 0; iRow < iNumRows; iRow++)
{
aaiArray[iRow] = new int[iNumCols];
memset (aaiArray[iRow],0,iNumCols*sizeof(int));

// deallocation
for (iRow = 0; iRow < iNumRows; iRow++)
{

delete[] aaiArray[iRow];

}
delete[] aaiArray;

50 Chapter 2 Core Systems

TeamLRN sPeCiAL

The code is straightforward, but a closer look is in order. If R is the number
of rows in the array, an allocation makes R + 1 calls to new, and a deallocation
makes R + 1 calls to delete. On a device with limited computational power, the
excessive number of calls can be a performance problem because of the overhead costs
associated with a memory manager. Additionally, R calls to memset are made.

Consider now an alternative for allocation and deallocation and memory initial-
ization. The array elements are stored in a one-dimensional array in row-major order.
If the two-dimensional array A has R rows and C columns, the element A[y] [x] is
stored in the one-dimensional array B as B[x+C*y]:

// allocation

int iNumRows = <number of rows>;

int iNumCols = <number of columns>;

int iNumElements = iNumRows * iNumCols;

int* aaiArray = new int*[iNumRows];
aaiArray[0] = new int[iNumElements];

memset (aaiArray,0,iNumElements*sizeof(int));
for (iRow = 1; iRow < iNumRows; iRow++)

{

aaiArray[iRow] = &aaiArray[0] [iNumCols*iRow];

// deallocation
delete[] aaiArray[0];
delete[] aaiArray;

The number of calls to new is two, to delete is two, and to memset is one, regardless
of the number of rows R. This is quite a savings in computational time because of the
low overhead costs for the memory manager. Moreover, the array is stored in a single
block of contiguous memory, so chances are that the memset will be cache friendly.

The latter method is superior to the former. To avoid replicating the allocation
and deallocation code throughout an engine and applications, these are encapsulated
in the System class as template member functions:

class System
{
pubTic:
template <class T> static void Allocate (int iCols, int iRows,
T**& raatArray);
template <class T> static void Deallocate (T**& raatArray);

}s

The allocated array is returned through a parameter in the function signature
rather than as the function return value. This is a requirement for the compiler to

TeamLRN sPeCiAL

2.1 The Low-Level System 51

correctly expand the template function; the type T must occur somewhere in the
function signature. The deallocation function sets the array pointer to NULL after
deletion, which helps trap bugs due to dangling pointers.

Three-Dimensional Arrays

A similar analysis applies to allocation and deallocation of a three-dimensional array,
with optional initialization. The standard mechanism is

// allocation
int iNumSlices = <number of slices>;
int iNumRows = <number of rows>;
int iNumCols = <number of columns>;
int* aaaiArray = new int**[iNumSlices];
for (iSlice = 0; iSlice < iNumSlices; iSlice++)
{
aaaiArray[iSlice] = new int*[iNumRows];
for (iRow = 0; iRow < iNumRows; iRow++)
{
aaaiArray[iSTice] [iRow] = new int[iNumCols];
memset (aaaiArray[iS1lice] [iRow],0,iNumCols*sizeof(int));

// deallocation
for (iSTice = 0; iSTlice < iNumSlices; iSTice++)
{

for (iRow = 0; iRow < iNumRows; iRow++)

{

delete[] aaaiArray[iSlice] [iRow];

}

delete[] aaaiArray[iSlice];
}

delete[] aaaiArray;

If S is the number of slices and R is the number of rows, then allocation requires
S(R + 1) calls to new and SR calls to memset. Deallocation requires S(R + 1) calls to
delete.

The alternative stores the three-dimensional array elements in a one-dimensional
array in lexicographical order. If the three-dimensional array A has S slices, R rows,
and C columns, and if B is the one-dimensional array, the element A[z] [y] [x] is
stored as B[x+C* (y+R*z)]:

52 Chapter 2 Core Systems

TeamLRN sPeCiAL

// allocation

int iNumSlices = <number of slices>;

int iNumRows = <number of rows>;

int iNumCols = <number of columns>;

int iNumElements = iNumSlices * iNumRows * iNumCols;
int* aaaiArray = new int**[iNumSlices];

aaaiArray[0] = new int*[iNumS1ices*iNumRows];
aaaiArray[0][0] = new int[iNumElements];

memset (aaaiArray[0] [0],0,iNumElements*sizeof(int));
for (iSlice = 0; iSTlice < iNumSlices; iSTice++)

{

aaaiArray[iSlice] = &aaaiArray[0] [iNumRows*iSlice];
for (iRow = 0; iRow < iNumRows; iRow++)
{
aaaiArray[iSlice] [iRow] = &aaaiArray[0][0][
iNumCo1s* (iRow+iNumRows*iSTice)];

// deallocation

delete[] aaaiArray[0][0];
delete[] aaaiArray[0];
delete[] aaaiArray;

The number of calls to new is three, to delete is three, and to memset is one,
regardless of the array dimensions. Once again this is a savings in computational time
because of the low overhead costs for the memory manager, and the array is stored in
a single block of contiguous memory, a cache-friendly situation.

To avoid replicating the allocation and deallocation code throughout an engine
and applications, these are encapsulated in the System class as template member

functions:

class System

{
public:

template <class T> static void Allocate (int iCols, int iRows,

int iSlices, T***& raaatArray);

template <class T> static void Deallocate (T***& raaatArray);

}s

The allocated array is returned through a parameter in the function signature
rather than as the function return value. This is a requirement for the compiler to

2.2 The Mathematics System 53

correctly expand the template function; the type T must occur somewhere in the
function signature. The deallocation function sets the array pointer to NULL after
deletion, which helps trap bugs due to dangling pointers.

22 THE MATHEMATICS SYSTEM

2.2.1

TeamLRN sPeCiAL

Any engine that deals with computer graphics and geometry must necessarily have
a subsystem for mathematics, vector algebra, and matrix algebra. At the most basic
level, C/C++ has a standard mathematics library to support common functions such
as sin, cos, sqrt, and so on. Usually graphics engines rely on the single-precision
float data type, so mathematics functions for this type suffice. However, physics
engines sometimes need double precision for accurate results. Mathematics functions
for 8-byte double are also necessary. The mathematics subsystem should provide for
both, as discussed in Section 2.2.1.

For real-time engines, there is also a need for implementations of standard math-
ematics functions other than the ones provided in the standard mathematics library
for C/C++. The alternatives are designed for fast execution at the expense of ac-
curacy. The advent of modern processors with extended instructions to speed up
common mathematics alleviates the need for some of these, such as a fast inverse
square root, but Wild Magic includes implementations anyway for platforms whose
processors do not have such power. Section 2.2.2 provides a summary of a few such
fast functions.

Sections 2.2.3, 2.2.4, and 2.2.5 are on the basic mathematics library that all game
programmers are fond of building. Classes are provided for dimensions 2, 3, and
4. Dimension 4 is mainly available to support homogeneous points, vectors, and
matrices. The geometry of vectors and matrices is not complete without a discussion
of lines and planes; see Section 2.2.6.

The last topic, Section 2.2.7, is the implementations for colors, both RGB (red-
green-blue) and RGBA (red-green-blue-alpha). The classes are simple, treat all color
channels as floating-point values between 0 and 1, and have some support for clamp-
ing and scaling (useful for software rendering).

BASIC MATHEMATICS FUNCTIONS

Support is provided for the basic mathematics functions found in the standard
C/C++ library, both for float and double. Rather than duplicate code, templates
are used where the template parameter is the type of floating-point number. Unlike
the usual construction of templates, where the implementations are exposed to the
application, the implementations are hidden from the engine. The main library is
compiled so that the templates for float and double are explicitly instantiated. The
manner in which templates are explicitly instantiated is part of the ANSI standards

54 Chapter 2 Core Systems

TeamLRN sPeCiAL

for compilers, but unfortunately not all compilers agree on the correct syntax for the
code. Neither do they agree on how to specialize the instantiations for static template
data members nor on the syntax for global scope operator functions. More on this
issue later in the section.

The Math template class encapsulates many of the standard functions. A partial
listing of the class definition is the following:

template <class Real>

class Math

{

public:
static Real
static Real
static Real
static Real
static Real
static Real
static Real
static Real
static Real
static Real
static Real
static Real
static Real
static Real
static Real
static Real
static Real

}s

ACos (Real fValue);

ASin (Real fValue);

ATan (Real fValue);

ATan2 (Real fY, Real fX);
Ceil (Real fValue);

Cos (Real fValue);

Exp (Real fValue);

FAbs (Real fValue);

Floor (Real fValue);

FMod (Real fX, Real fY);
InvSqrt (Real fValue);
Log (Real fValue);

Pow (Real fBase, Real fExponent);
Sin (Real fValue);

Sqr (Real fValue);

Sqrt (Real fValue);

Tan (Real fValue);

The InvSqrt function is not standard, but normalization of a vector (division by the
length) is common enough that a wrapper is convenient. In this case the implementa-
tion is just InvSqrt(x) = 1/Sqrt(x). The Sqr function is also a convenience for Sqr(x)

= x*X.

The standard mathematics libraries tend to supply us with two forms of each
function. For example, the sine function has the prototype

double sin (double dAngle);

To use this in an environment based on float, the following is required:

float fAngle =

float fResult =

<some angle in radians>;

(float)sin((float)fAngle);

TeamLRN sPeCiAL

2.2 The Mathematics System 55

To avoid the verbosity of the expression, the libraries provide alternate versions.
In the case of the sine function,

float fResult = sinf(fAngle);

Unfortunately, sometimes the alternate versions are not provided on a platform. For
example, g4+ 3.x on Sun Solaris does not have the alternate versions, requiring us to
avoid using these functions. The use of encapsulation of the mathematics functions in
a template class has the added benefit of allowing us to provide, in effect, the alternate
versions. For example, the implementation of the sine function is

template <class Real>
Real Math<Real>::Sin (Real fValue)

{
return (Real)sin((double)fValue);

A handful of common constants are also wrapped into the template.

template <class Real>

class Math

{

public:
static const float EPSILON;
static const float MAX_REAL;
static const float PI;
static const float TWO_PI;
static const float HALF PI;
static const float INV_PI;
static const float INV_TWO_PI;
static const float DEG_TO_RAD;
static const float RAD_TO_DEG;

1

The value EPSILON is for convenience only and is set to the smallest floating-point
value for which 1+ EPSILON == 1, either FLT_EPSILON or DBL_EPSILON. Similarly, MAX_
REAL is set to the largest floating-point number, either FLT _MAX or DBL_MAX.

Mathematical Constants

The constants involving PI are computed during program initialization. For example,
in Wm3Math.cpp,

template<> const float Math<float>::PI = (float)(4.0*atan(1.0));
template<> const double Math<double>::PI = 4.0*atan(1.0);

56 Chapter 2 Core Systems

The reason for doing this is to try to maintain as much precision as possible for the
numbers and to maintain consistency of the values across files. As an example of
inconsistency, I have seen code distributions with one file containing

#define PI 3.141259
and another file containing
#define PI 3.14126

Rather than trying to remain consistent manually with defined quantities throughout
the code base, a single value generated by a mathematics function call automates the
process. The warning, though, is that the calculation of Math<Real>::PI occurs before
main executes. If you have another function that executes before main does, and that
function tries to use the value Math<Real>::PI before it is initialized, the value is zero
(the case for static data in general). Be careful about accessing any quantity that is
initialized before main executes.

The constant DEG_TO RAD is a multiplier that converts radians to degrees. The
constant RAD_TO_DEG converts from degrees to radians. Be careful in code that uses
trigonometric functions. The inputs are assumed to be in radians, not degrees!

The template wrappers also allow us to protect against some unwanted side ef-
fects. For example, the inverse cosine function acos takes a floating-point input that
should be in the interval [—1, 1]. If an input is outside the interval, the function
silently returns NaN (Not a Number). This can occur more frequently than you would
like. Numerical round-off errors can cause calculations of the input value to be just
slightly larger than 1 or just slightly smaller than —1. The wrapper can clamp the input
to avoid generating a silent NaN. For example,

template <class Real>
Real Math<Real>::ACos (Real fValue)
{
if (-(Real)1.0 < fValue)
{
if (fValue < (Real)1.0)
return (Real)acos((double)fValue);
else
return (Real)0.0;
}
else

{

return PI;

TeamLRN sPeCiAL

2.2 The Mathematics System 57

The implementation clamps the input value to make sure acos is passed a value in the
interval [—1, 1].
A few convenience functions are provided by class Math:

template <class Real>

class Math

{

pubTic:
static int Sign (int iValue);
static Real Sign (Real fValue);
static Real UnitRandom (unsigned int uiSeed = 0);
static Real SymmetricRandom (unsigned int uiSeed = 0);
static Real IntervalRandom (Real fMin, Real fMax,

unsigned int uiSeed = 0);

s

The Sign functions return +1 if the input is positive, 0 if the input is 0, or —1 if
the input is negative. The other three functions involve uniform random number
generation using srand (for seeding) and rand. UnitRandom returns a random number
in the interval [0, 1) (0 is inclusive, 1 is excluded). SymmetricRandom returns a random
number in the interval [—1, 1). IntervalRandom returns a random number in the
interval [min, max). The seeding with srand occurs only when the input seed is
positive.

2.2.2 FAST FUNCTIONS

TeamLRN sPeCiAL

Trigonometric functions are common in graphics and physics applications. If there
is a need for speed, calls to the standard mathematics library functions can be substi-
tuted with calls to faster functions that exchange accuracy for speed:

template <class Real>

class Math

{

public:

static float FastSin0 (float fAngle);

static float FastSinl (float fAngle);

static float FastCosO (float fAngle);
)
)

static float FastCosl (float fAngle
static float FastTan0 (float fAngle
static float FastTanl (float fAngle);

static float FastInvSin0 (float fValue);
static float FastInvSinl (float fValue);
static float FastInvCosO (float fValue);

58 Chapter 2 Core Systems

TeamLRN sPeCiAL

static float FastInvCosl (float fValue);
static float FastInvTan0 (float fValue);
static float FastInvTanl (float fValue);
static float FastInvSqrt (float fValue);

The fast trigonometric and inverse trigonometric functions are all based on ap-
proximations that appear in [AS65]. The item numbers from the reference are pro-
vided for convenient lookup. The approximations are stated here without proof (as is
the case in the reference). Some of the error bounds were verified numerically, with a
slight bit more precision reported here than in the reference.

The experimental results reported herein are using float functions on a PC with
an AMD 2.0 GHz processor running a project in release mode. See the test application
TestFastMath.

Fast approximations to the sine function are implemented by Math::FastSin0
and Math::FastSinl. The function FastSin0(x) is based on the approximation 4.3.96,
which requires the input to satisty x € [0, 7 /2],

sin(x)

1 — 0.16605 x% + 0.00761 x* + €(x). (2.1)
X

The error term is bounded by |e(x)| < 1.7 x 10~*. The speedup over sin is 4.0.
The function FastSinl(x) is based on the approximation 4.3.97, which requires
the input to satisfy x € [0, 7 /2],

SN _) 0.1666666664 x° + 0.0083333315 x* — 0.0001984090 x°

X

+0.0000027526 x® — 0.0000000239 x'* + €(x). (2.2)

The error term is bounded by |e (x)| < 1.9 x 1078, The speedup over sin is about 2.8.

Fast approximations to the cosine function are implemented by Math: :FastCos0
and Math: :FastCos1l. The function FastCos0(x) is based on the approximation 4.3.98,
which requires the input to satisfy x € [0, /2],

cos(x) = 1 — 0.49670 x> + 0.03705 x* + € (x). (2.3)

The error term is bounded by |e(x)| < 1.2 x 1073, The speedup over cos is about 4.5.
The function FastCos1(x) is based on the approximation 4.3.99, which requires
the input to satisfy x € [0, /2],

cos(x) = 1 — 0.4999999963 x% + 0.0416666418 x* — 0.0013888397 x°
+0.0000247609 x® — 0.0000002605 x'* + € (x). (2.4)

The error term is bounded by | (x)| < 6.5 x 1077, The speedup over cos is about 2.8.

TeamLRN sPeCiAL

2.2 The Mathematics System 59

Fast approximations to the tangent function are implemented by Math: : FastTan0
andMath: :FastTanl. The function FastTan0(x) is based on the approximation 4.3.100,
which requires the input to satisty x € [0, /4],

t
) _ 14031755 12 + 020330 x* + € (x). (2.5)

X

The error term is bounded by |e (x)| < 8.1 x 10™%, The speedup over tan is about 5.7.
The function FastTanl(x) is based on the approximation 4.3.101, which requires
the input to satisfy x € [0, /2],

t
an(x) _ 1+ 0.3333314036 x> + 0.1333923995 x* + 0.0533740603 x°

X
+ 0.0245650893 x8 + 0.0029005250 x'°

+0.0095168091 x ' + €(x). (2.6)

The error term is bounded by |e (x)| < 1.9 x 1078, The speedup over tan is about 3.3.

Fast approximations to the inverse sine function are implemented by Math::
FastInvSin0 and Math::FastInvSinl. The function FastInvSin0(x) is based on the
approximation 4.4.45, which requires the input to satisfy x € [0, 1],

arcsin(x) = % —+/1—x(1.5707288 — 0.2121144 x

+ 0.0742610 x% — 0.0187293 x%) + € (x). (2.7)

The error term is bounded by |e(x)| < 6.8 x 107>. The speedup over asin is about
7.5.

The function FastInvSinl(x) is based on the approximation 4.4.46, which re-
quires the input to satisfy x € [0, 1],

arcsin(x) = % — /1 —x (1.5707963050 — 0.2145988016 x + 0.0889789874 x>

— 0.0501743046 x> + 0.0308918810 x* — 0.01708812556 x°

+0.0066700901 x® — 0.0012624911 x7) + €(x). (2.8)

The error term is bounded by |e(x)| < 1.4 x 1077, The speedup over asin is about
5.6.

Fast approximations to the inverse cosine function are implemented by Math::
FastInvCosO and Math::FastInvCosl. The function FastInvCosO(x) uses the iden-
tity arccos(x) = /2 — arcsin(x) and uses the approximation FastInvSinO(x) for
arcsin(x). The error term is bounded by |e(x)| < 6.8 x 10~°. The speedup over acos
is about 8.0.

60 Chapter 2 Core Systems

TeamLRN sPeCiAL

The function FastInvCos1(x) uses the identity arccos(x) = m /2 — arcsin(x) and
uses the approximation FastInvSinl(x) for arcsin(x). The error term is bounded by
le(x)| < 1.3 x 1077 The speedup over acos is about 5.8.

Fast approximations to the inverse tangent function are implemented by Math: :
FastInvTan0 and Math::FastInvTanl. The function FastInvTan0(x) is based on the
approximation 4.4.47, which requires the input to satisfy x € [—1, 1],

arctan(x) = 0.9998660 x — 0.3302995 x> + 0.1801410 x> — 0.0851330 x”
+0.0208351 x° + €(x). (2.9)

The error term is bounded by |e(x)| < 1.2 x 107°. The speedup over atan is about
2.8.

The function FastInvTanl(x) is based on the approximation 4.4.49, which re-
quires the input to satisfy x € [—1, 1],

t
arctan(®) _ 1 (3333314528 x% + 0.1999355085 x* — 0.1420889944 x°
X

+0.1065626393 x® — 0.0752896400 x'° + 0.0429096138 x 2

—0.0161657367 x'* + 0.0028662257 x'° + €(x). (2.10)

The error term is bounded by |e(x)| < 2.3 x 107%. The speedup over atan is about
1.8.

The function Math: :FastInvSqrt implements the fast computation of an inverse
square root by formulating the calculation as a root-finding problem, and then using
one iterate (or more) of Newton’s method. Specifically, given x > 0, compute y =
1/4/x. Rewrite this equation as

1
F(y):—z—x=0.
y

Given an initial guess y,, Newton’s iterates are

F(y,)
F'(y,)

Yn+1=Yn — =y,(1.5— O.Sxynz), n>0.

The technical challenge is to select a good initial guess y,, as is true for any problem
using Newton’s method.

An interesting hack for this was posted to Usenet and has an undetermined his-
tory. No explanation for the hack was provided in the post, so I tried to reverse-
engineer the code and produce the algorithm. This process is described in [Ebe02]
and applies to the float function. Another online document, [Lom03], provides
more detail about the choice of a particular magic constant, but the details are quite
mathematical. This document does provide a magic constant for the double function.
The implementations are

2.2 The Mathematics System 61

float Mathf::FastInvSqrt (float fValue)
{
float fHalf = 0.5f*fValue;
int i = *(int*)&fValue;
i = 0x5f3759df - (i >> 1);
fValue = *(float*)&i;
fValue = fValue*(1.5f - fHalf*fvalue*fValue);
return fValue;

double Mathd::FastInvSqrt (double dValue)
{
double dHalf = 0.5*dValue;
long long i = *(long long*)&dValue;
i = Ox5febec85e7de30da - (i >> 1);
dValue = *(double*)&i;
dValue = dValue*(1.5 - dHalf*dValue*dValue);
return dValue;

The aforementioned documents describe how the magic constants in the third lines
of the functions come about. The fourth lines provide the initial guess y,. The fifth
lines are for one iteration of Newton’s method to produce y;, the value that approxi-
mates the inverse square root.

2.2.3 VECTORS

TeamLRN sPeCiAL

The engine has classes for vectors in 2, 3, and 4 dimensions, named Vector, Vector3,
and Vector4, respectively. Two main goals must be achieved in designing these classes.
One of these goals is clearly having support for the algebraic and geometric opera-
tions that are associated with vectors. These operations may be easily implemented
regardless of the two standard class data member layouts for vector coordinates: a
separate data member per coordinate or an array containing all coordinates. How-
ever, the data member layout itself is an important issue in light of the discussion in
Section 1.2 about how to provide the vertices and attributes to the graphics APIs, so
I will discuss this issue first.

Memory Layout

Consider the class for vectors in two dimensions. A choice must be made between
two data member layouts:

62 Chapter 2 Core Systems

TeamLRN sPeCiAL

class Vector2a
{
public:

float x, y;

operator float* () { return (float*)this; }
1

class Vector2b

{

public:
float& X() { return m afTuple[0]; }
float& Y() { return m afTuple[1]; }

operator float* () { return (float*)this; }

private:
float m_afTuple[2];
bs

Vector2a makes its members public for convenience since there are no side effects
for reading or writing the members. Vector2b makes its members private to avoid
accidental use of out-of-range indices into the tuple array.

Both classes have an implicit conversion to a float* pointer. Such conversions are
generally dangerous, so you need to be careful in providing them. The main issue is
about the memory layout that the compiler generates for the classes. In C++, any
class that has virtual functions must have, as part of an object’s memory layout, a
pointer to a virtual function table. The table supports derivation and the possibility
that a derived class implements a virtual function from the base class. The entries
in the table are the virtual function pointers specific to the class. The table is used
at run time to determine the correct function to call when the object is accessed
polymorphically. For example,

class Base

{
public:
Base (int iFQ)
{
m iFQ = iFQ;
m afFArray = new float[m iFQ];

virtual ~Base ()

2.2 The Mathematics System 63

delete[] m pfFArray;

virtual void SetToZero ()

{
memset (m_afFArray,0,m iFQ*sizeof(float));

virtual void DoSomethingSilly () const

{
m afFValue[0] += 1.0f;

protected:

int m_iFQ;

float* m_afFArray;
1

class Derived : public Base

{
public:

Derived (int iFQ, int 1IQ)
Base(iFQ)
m i1Q = 1IQ;

m pilValue = new int[m_iIQ];

virtual ~Derived ()

{
delete[] m pilValue;

virtual void SetToZero ()

{
Base::SetToZero();
memset (m_pilArray,0,m iIQ*sizeof(int));

virtual

protected:

TeamLRN sPeCiAL

64 Chapter 2 Core Systems

TeamLRN sPeCiAL

int m_iIQ;
int* m pilArray;

1
The base class has a virtual function table with three entries:

Base::VFT[3] =

{
&~Base(),
&Base::SetToZero,
&Base: :DoSomethingSilly

1

The table may be thought of as static class data (a single instance) and is accessible by
all Base objects.
The memory layout for a single object of the Base class is

Base::VFT*
int
int*

The derived class has a virtual function table, also with three entries:

Derived::VFT[3] =

{
&~Derived(),
&Derived::SetToZero,
&Base: :DoSomethingSilly

}s

The last table entry is the same as in the Base class since the Derived class does not
override with its own implementation. The memory layout for a single object of the
Derived class is

Derived::VFT*
int

float*

int

int*

The following code block creates a Derived object, but keeps hold on it by a Base
class pointer:

TeamLRN sPeCiAL

2.2 The Mathematics System 65

Base* pkObject = new Derived(17,10);

pkObject->SetToZero(); // calls Derived::SetToZero
pkObject->DoSomethingSilly(); // calls Base::DoSomethingSilly
delete pkObject; // calls ~Derived

Even though pkObject is a pointer of type Base*, the compiler generates code to look
up in the object’s virtual function table Derived: :VFT the correct SetToZero to call.
In order for this to happen, the object itself must provide a way to access the correct
table—thus the need to store a pointer to the table. On a 32-bit system, the following
numbers are reported:

int iBSize = sizeof(Base); // iBSize is 12
int iDSize = sizeof(Derived); // iDSize is 20

The Base class requires 4 bytes for m_iFQ, 4 bytes for m_afFArray, and 4 bytes for the
pointer to the virtual function table. The Derived class requires an additional 4 bytes
form iIQ and 4 bytes form ailIArray.

How does this relate back to Vector2a and Vector2b? If you chose to have virtual
functions in these classes with the intent of deriving classes from them, the memory
layout contains the virtual function table in addition to the floating-point coordi-
nates. If you had a virtual function table and you tried something like

class Vector2a

{

public:
virtual ~Vector2a (); // virtual destructor for derivation
float x, y;

operator float* () { return (float*)this; }
1

void ProcessThisVector (float* afCoordinates)
{

float fX = afCoordinates[0];

float fY = afCoordinates[1];

// do something with fX, fY, ...

}s

// The memory layout of Vector2a causes this not to work correctly.
Vector2a kV = <some vector>;
ProcessThisVector(kV);

you will not get the results you want. The implicit conversion from kV to a float*
is executed, so the address of kV is what is passed as afCoordinates. The dereference

66 Chapter 2 Core Systems

TeamLRN sPeCiAL

afCoordinates[0] will actually fetch the first 4 bytes of the virtual function table (a
function pointer) and interpret it as a floating-point number. Therefore, X effectively
stores garbage, and the value fY stores kV.x. The example might seem contrived, but
in fact when you provide an array of float to the graphics API as an attempt to
reinterpret a collection of vertices as a contiguous collection of floating-point values,
you need to worry about the memory layout and unintended consequences.

You might consider different implementations of the implicit conversion:

class Vector2a

{

public:
virtual ~Vector2a (); // virtual destructor for derivation
float x, y;

operator float* () { return &x; }

}s

// The conversion bypasses the 'this' pointer and behaves as you
// expect (maybe).

Vector2a kV = <some vector>;

ProcessThisVector(kV);

void ProcessThisVectorArray (int iNumVertices,
float* afCoordinates)

for (int i = 0; i < iNumVertices; i++)
{
float fX = afCoordinates[2*i];
float fY = afCoordinates[2*i+1];
// do something with fX, fY, ...

}s

// This assumes akArray has (x[0],y[0],x[1],y[1],...),
// which it does not.

Vector2a* akArray = <some array of vectors>;
ProcessThisVectorArray((float*)akArray);

In the array processing, because Vector2a has a virtual function (the class destructor),
an object’s memory layout has a pointer to the virtual function table followed by
two floating-point values: vft*, float, float. The dereferencing of afCoordinates in
ProcessThisVectorArray fails, just as it did in the earlier example. The design choice
that classes Vector2a and Vector2b have no virtual functions is solely intended (1) to
allow a single object to be safely typecast via an implicit conversion to a pointer to an
array of two float values and (2) to allow an array of objects to be safely typecast to

TeamLRN sPeCiAL

2.2 The Mathematics System 67

a pointer to an array of float values whose number of entries is twice the number of
objects. Various other classes in Wild Magic also make this choice, namely, matrices,
quaternions, and colors. These all have implicit operator conversions to pointers to
float.

A long story, but it is still not complete. In the previous example for Vector2a,
where the conversion operator returned the address of member x, the comment be-
fore the call to ProcessThisVector indicates that the conversion “behaves as you ex-
pect (maybe).” In fact, this is true on a 32-bit system with a standard compiler setting
to align data on 32-bit boundaries. That is, the x and y values are each 32 bits and
contiguous in memory. However, on a 64-bit system where a compiler is configured
to align data on 64-bit boundaries, x and y will not be contiguous in memory; there
will be a 32-bit gap between the two. Once again the implicit conversion is incorrect!

Even on a 32-bit system, alignment issues should be of concern. Recall that the C
language does not guarantee how members of a struct are aligned. Similarly, C++
does not guarantee how members of a class are aligned. For example, standard
compiler settings for

class MyClassl { public: int i; char c; float f; };

will cause the value of sizeof (MyClass1) on a 32-bit system to be 12. Even though i
and f each require 4 bytes of storage and c requires 1 byte of storage, a compiler will
store c in a 32-bit quantity for alignment. Consider now

class MyClass2 { public: int i; char cl; float f; char c2; };
class MyClass3 { public: int i; float f; char cl; char c2; };

Using standard alignment on a 32-bit system, sizeof(MyClass2) has value 16 and
sizeof (MyClass3) has value 12. If you have a lot of objects of these types, it is better
to use the layout in MyClass3 to minimize memory use.

Regarding the memory layout for vectors with float components, if you wish for
your engine to run on both 32- and 64-bit systems, and you intend to support implicit
operator conversions to pointers to float, the layout of the type Vector2a is not safe.
You must use the layout of the type Vector2b because the C and C++ languages do
guarantee that an array of a native type such as float has contiguous values. Wild
Magic 1.x used the Vector2a layout. When I changed it to the layout of Vector2b, a
few engine users complained about the verbosity of accessing members with X() and
Y(). Yes, the use of the classes is slightly more verbose, but the trade-off is that the
code now safely runs on both 32- and 64-bit systems. The older version would have
problems on a 64-bit system.

Vector Templates and Basic Operations

The vector classes are template based with type Real replaced either by float or dou-
ble. For every dimension, the classes have default constructors that initialize the data

68 Chapter 2 Core Systems

TeamLRN sPeCiAL

members to zero. The classes also have copy constructors and assignment operators.
The only other constructors are those that allow you to pass in the individual com-
ponents to initialize the vectors.

The classes all have static constant vectors, namely, the zero vector and the stan-
dard basis vectors. In Vector2, the member ZERO represents the zero vector (0, 0), the
member UNIT X represents the basis vector (1, 0), and the member UNIT Y represents
the basis vector (0, 1). Static data members in template classes are always problem-
atic. If the template class body is exposed to an application that uses two (or more)
execution modules, a dynamic-link library (DLL) and the executable (EXE) itself, for
example, it is possible that two copies of the static member are generated, one in each
execution module. This ambiguity can be fatal to applications. In fact, this was a clas-
sic problem with the Standard Template Library that shipped with Microsoft’s Visual
C++, version 6. The xtree template class that encapsulated red-black trees had a
static member that represented a nil node in the tree. Any application using STL and
a dynamic-link library was susceptible to crashes because the application code would
traverse an STL structure that was created in the DLL, but with comparisons made
to the nil node generated in the EXE.! The multiple instantiation of template static
data members is not of concern if the data members are intended to be constant, as
is the zero vector and the basis vectors. The multiple instantiations all have the same
value, so which one is accessed is not of concern (unless you try comparing to the
address of the members). Even so, Wild Magic 2.x and 3.x instantiate the static, con-
stant class members in the library source files and do not expose the template body,
thereby avoiding an unintended instantiation elsewhere.

Member Access

All classes provided the facilities for implicit operator conversion, as discussed earlier,
and for member access by array brackets. For example,

template <class Real>

class Vector3

{

public:
operator const Real* () const;
operator Real* ();
Real operator[] (int i) const;
Real& operator[] (int i);

1

. Microsoft was not to blame. The STL was a third-party package from Dinkumware that, due to legal

reasons between Dinkumware and another company, could not be updated in Microsoft-supplied service
packs until the legal issues were resolved. A fix was available at Dinkumware’s Web site. Visual C++
versions 7.x (the .NET versions) no longer have this problem.

TeamLRN sPeCiAL

2.2 The Mathematics System 69

Vector3<float> kU = <some vector>, kV;

kv[0] = 1.0f;
kV[1] = 2.0f * KU[1] - 0.5f* kU[2];
kv[2] = ku[0];

All classes provide named member access. For example,

template <class Real>
class Vector3

{

public:
Real X () const;
Real& X ();
Real Y () const;
Reald& Y ();
Real Z () const;
Reald Z ();

}s

Vector3<float> kU = <some vector>, kV;

kV.X() = 1.0f;
KV.Y() = 2.0f * kU.Y() - 0.5F* kU.Z();
kV.Z() = kU.X();

Comparison Operators

The classes have comparison operators to support sorting:

template <class Real>

class Vector3

{

pubTic:
bool operator== (const Vector3& rkV) const;
bool operator!= (const Vector3& rkV) const;
bool operator< (const Vector3& rkV) const;
bool operator<= (const Vector3& rkV) const;
bool operator> (const Vector3& rkV) const;
bool operator>= (const Vector3& rkV) const;

s

The comparison treats the member data as a contiguous array of unsigned integers
representing a nonnegative binary number. Comparisons between binary numbers
are straightforward. For example, these are useful when building hash tables of ver-
tices in order to identify vertices that are (nearly) the same.

70 Chapter 2 Core Systems

Algebraic Operations

All classes have implemented algebraic operations. These functions are the ones most
programmers tend to focus on since the classes are about vectors, which naturally
have an algebraic flavor. The N in the class name is either 2, 3, or 4.

template <class Real>

class VectorN

{

pubTic:
VectorN operator+ (const VectorN& rkV) const;
VectorN operator- (const VectorN& rkV) const;
VectorN operator* (Real fScalar) const;
VectorN operator/ (Real fScalar) const;
VectorN operator- () const;
VectorN& operator+= (const VectorN& rkV);
VectorN& operator-= (const VectorN& rkV);
VectorN& operator*= (Real fScalar);
VectorN& operator/= (Real fScalar);

1

// The member function operator*(Real) supports

// ''VectorN * Real''. This function supports

// ''Real * VectorN''.

template <class Real>

VectorN<Real> operator* (Real fScalar, const VectorN<Real>& rkV);

The implementations of all the operators are straightforward.

Geometric Operations

All classes have implemented standard geometric operations that are common to all
dimensions:

template <class Real>
class VectorN
{
pubTic:
Real Length () const;
Real SquaredLength () const;
Real Dot (const VectorN& rkV) const;
Real Normalize ();

s

TeamLRN sPeCiAL

TeamLRN sPeCiAL

2.2 The Mathematics System 71

If U= (ugp,...,uy_y) and V= (vy, ..., vy_y) are two N-tuples, then the

length of U is
Ul =i+ -+,

the squared length is
UP=ug+ - +uj_,
and the dot product of the two vectors is
U-V=ugvg+---+uy_1vy_;-
The normalized vector for V # 0 is the unit-length vector

l (Vo> + - > UN_1)
0\

2 2 '
Vg R

The class function Normalize returns the length of V that was computed during nor-
malization, just in case the application needs to know this information. For numerical
robustness, in the event the original vector is nearly zero, the normalized vector is set
to zero and the returned length is zero.

The remaining geometric operations are specific to the dimension of the class. In
two dimensions, we have

template <class Real>
class Vector2
{
pubTic:
Vector2 Perp () const;
Vector2 UnitPerp () const;
Real Kross (const Vector2& rkV) const;
static void Orthonormalize (Vector2& rkU, Vector2& rkV);
static void GenerateOrthonormalBasis (Vector2& rkU,
Vector2& rkV, bool bUnitLengthV);

Given a vector (x, y), it is sometimes convenient to choose a vector perpendicular
to it. The simplest way to do this is to swap components and change the sign of one
of them, (x, y)* = (v, —x). This is called the perp operation and is implemented in
Vector2::Perp. In a sense, this is the natural specialization of the three-dimensional
cross product to two dimensions. In three dimensions, if 1 = (1, 0, 0), y = (0, 1, 0),
and k = (0, 0, 1), then the cross product of (x(, ¥y, zg) and (xy, y;, z;) is written as a

72 Chapter 2 Core Systems

TeamLRN sPeCiAL

formal determinant

1]k
(X0> Y0» 20) X (X1, ¥y, z)) =det | x5 ¥y 2z
X1 N oz

=1(yoz1 — Y120) — J(*oz1 — X12¢) + k(xoy1 — X1¥p)
= (YoZ1 — Y1Z0> X120 — XoZ1> Xo¥1 — X1)0)-

The determinant is evaluated by a cofactor expansion across the first row. The cross
product is a vector perpendicular to its two input vectors. In two dimensions, we may
similarly formulate the perp vector as

(x,) = det [; ﬂ =1(y) —)=, —x),

where 1 = (1, 0) and j = (0, 1). The perp vector is perpendicular to its only in-
put vector. The function Vector2::Perp computes the perp vector. The function
Vector2::UnitPerp computes the perp vector and then normalizes it to unit length
(or zero if the original vector is zero).

A related operation is called the dot perp operation, implemented by Vector2::
DotPerp. Given two vectors (x(, yy) and (x;, ¥;), the dot perp is the scalar

X
(x> Yo) * (X1 YD = (X5 Yo) * (V1> —X1) = X1 — X1V = det |:X? i’?] '

The operation is analogous to the triple scalar product in three dimensions:

Xo Yo Zo
(x0> Y05 20) * (X1, Y1> 21) X (X3, ¥2, 25) =det | x; y; z;
X2 Y2 22

= x0(122 — ¥221) — Yo(x123 — X21) + Zo(x1 2 — X21)-

The operation may also be thought of in terms of 3D cross products

()Co, yO: 0) X (xb Y1 0) = (0) 0) Xoyl - xlyO))

so the dot perp is the z-component of the cross product of the two input vectors when
considered as vectors in the z = 0 plane. The function Vector2: :DotPerp computes the
dot perp operation.

Given two nonparallel vectors Vi, = (x4, ¥y) and V; = (x3, y;), there are times
when we want to compute two unit-length and perpendicular vectors from these,
call them U, and U,. The process is called Gram-Schmidt orthonormalization and is

TeamLRN sPeCiAL

2.2 The Mathematics System 73

implemented by Vector2::0rthonormalize. The first vector is obtained from V by
normalization:

_ Y

0= .
Vol

The second vector is obtained by projecting out of V; the component in the U,
direction, then normalizing the result:

Vi — Uy - V)Y

Vi — Uy - VDUl

U1=

U, and U, were obtained by normalization, so they are unit length. Also,

Uo . (V1 - (Uo . Vl)Uo) = (Uo . Vl) - (Uo . Vl)(Uo . Uo)
= (UO ° Vl) - (UO * Vl) = 0,

so U and U are perpendicular.

Given a nonzero vector V, the function Vector2::GenerateOrthonormalBasis
computes in place a pair of unit-length and perpendicular vectors. One of these is
U, = V/|V|; the other is U; = Ué‘. If it is already known that V is unit length, the
function GenerateOrthonormalBasis has a Boolean parameter to provide that hint, in
which case the function does not have to normalize V.

In three dimensions, the extra geometric operations are

template <class Real>
class Vector3
{
public:
Vector3 Cross (const Vector3& rkV) const;
Vector3 UnitCross (const Vector3& rkV) const;
static void Orthonormalize (Vector3& rkU, Vector3& rkV,
Vector3& rkW);
static void Orthonormalize (Vector3* akV);
static void GenerateOrthonormalBasis (Vector3& rkU,
Vector3& rkV, Vector3& rkW, bool bUnitLengthW);

If V) is the vector for the calling object and V| is the input vector to the function
Vector3::Cross, then the returned vector is

Vo x 'V,

74 Chapter 2 Core Systems

TeamLRN sPeCiAL

The function Vector3::UnitCross computes the cross product, then normalizes
and returns it:

VO X Vl
Vo x Vi

The function Vector3::0rthonormalize uses Gram-Schmidt orthonormalization
applied to the three input vectors and stores in place three unit-length and mutually
perpendicular vectors. If V;, 0 <i <2, are the three input vectors, and if U; are the
output orthonormal vectors, then

Vo

UO == .
Vol

The second vector is obtained by projecting out of V; the component in the U,
direction and normalizing, just like we did in two dimensions:

V= U, - V)U,
[V, — (Uo : Vl)U0|

U1=

The fact that we projected out U, makes U, and U, perpendicular. The third vector
is obtained by projecting out of V, the components in the U, and U, directions and
normalizing:

V, — Uy - V))Uy — (U; - V))U,

U2 - .
V2 = (Up - V)Up = (U - V) Uy

The resulting vector is necessarily perpendicular to U, and U,.

Given a nonzero vector W, the function Vector3::GenerateOrthonormalBasis
computes in place a triple of unit-length and perpendicular vectors. One of these
is Uy = W/|W/|. There are infinitely many pairs of orthonormal vectors perpendicu-
lar to Uj,. To obtain a vector U, two components of U are swapped and one of those
components has its sign changed. The remaining component is set to zero. In order
to be numerically robust, the swap occurs with the component of largest absolute
magnitude.

U0 = W/Length(W);
if (|W.x| >= |W.y|)
{

// W.x or W.z is the largest-magnitude component, swap them

Ul.x = -W.z;
Ul.y = 0;
Ul.z = +W.x;

2.2 The Mathematics System 75

else

// W.y or W.z is the larges-magnitude component, swap them
Ul.x = 0;
Ul.y = +W.z;
Ul.z = -W.y;
}
Ul /= Length(Ul);
U2 = Cross(U0,Ul);

As in the two-dimensional case, if W is unit length, the function GenerateOrthonor-
malBasis has a Boolean parameter to provide that hint, in which case the function
does not have to normalize W.

2.2.4 MATRICES

TeamLRN sPeCiAL

The engine has classes for square matrices in 2, 3, and 4 dimensions, named Matrix2,
Matrix3, and Matrix4, respectively. The goals for memory layout are the same as for
vectors. The matrix classes have no virtual functions, and the matrix elements are
stored in a one-dimensional array of floating-point numbers; these two conditions
guarantee that you can safely (1) typecast a matrix as a pointer float* or double* and
(2) typecast an array of matrices as a pointer float* or double*. The general layout is
the following, where N is either 2, 3, or 4 and Real is f1oat or double:

template <class Real>

class MatrixN

{

public:
operator const Real* () const;
operator Real* ();

private:
Real* m_afTuple[N*N];

1s

For memory organization it might seem natural to choose Real[N] [N] for the
matrix storage, but this can be a problem on a platform that chooses to store the
data in column-major rather than row-major format. To avoid potential portability
problems, the matrix is stored as Real [N*N] and organized in row-major order; that
is, the entry of the matrix in row r, with 0 <r < N, and column ¢, with0 <c¢ < N,
is stored at indexi = ¢ + Nr, with0 <i < N2.

Matrix Conventions

Layout is one thing, but interpretation of matrix-matrix and matrix-vector opera-
tions is another. One of the biggest sources of pain in architecting an engine is having

76 Chapter 2 Core Systems

TeamLRN sPeCiAL

to deal with matrix conventions, say, from a graphics API, that are different than your
own. The chances are that you already had a lot of matrix and vector code in place.
Reimplementing these to conform to someone else’s conventions can be a time sink.
Whether you do or do not, it is important to understand what the conventions are
of any systems you use. And it is important to let users of your engine know what
conventions you have chosen. Here are the conventions used in Wild Magic.

Matrix operations are applied on the left. For example, given a matrix M and a
vector V, matrix times vector is MV; that is, V is treated as a column vector. Some
graphics APIs use VM, where V is treated as a row vector. In this context the matrix
M is really a transpose of the one represented in Wild Magic. Similarly, to apply
two matrix operations M, and M, in that order, you compute M;M, so that the
transform of a column vector is

(M;Mg)V = My(MpV).

Some graphics APIs use MM, but again these matrices are the transpose of those
as represented in Wild Magic. You must therefore be careful about how you in-
terface the transformation code with graphics APIs. For example, OpenGL uses
the convention VM for matrix times a vector. In the renderer function OpenGLRen-
derer::SetWorldMatrix, the Wild Magic world matrix for the to-be-drawn object
is computed from its local components and copied into a one-dimensional array
that corresponds to the representation OpenGL uses, a transpose of the Wild Magic
matrix.

Another convention to be aware of is what rotation matrices mean. In two dimen-
sions, Wild Magic represents a rotation matrix by

| cos® —sin6
| sin6 cos 6

} =1 + (sinf)S + (1 — cos 6)S?, (2.11)

where [is the identity matrix and S is the skew-symmetric matrix, as shown:

1 0 0 -1
S CR
For a positive angle 6, RV rotates the 2 x 1vector V counterclockwise about the origin
(see Figure 2.1).

Some rotation systems might associate a positive angle with a clockwise rotation
about the origin. If you use such a system with Wild Magic, you must be careful how
you present a Wild Magic matrix to it.

In three dimensions, consider a rotation about an axis through the origin with

unit-length direction W = (wy, wy, w,) and angle 6. Wild Magic represents a rota-
tion matrix by

R=1+ (sin®)S + (1 — cosH)S?, (2.12)

Figure 2.1

Figure 2.2

TeamLRN sPeCiAL

2.2 The Mathematics System 77

RV

0>0

A positive angle corresponds to a counterclockwise rotation.

A\

=

A positive angle corresponds to a counterclockwise rotation when looking in the
negative direction, —W, of the axis of rotation. The vectors U and V are unit length,
perpendicular, and in the plane perpendicular to W.

where I is the identity matrix and S is a skew-symmetric matrix, as shown:

1 0 0 0 —Ww, wq
V= 0 1 0 5 S = w, 0 —Wy
0 0 1 —Ww Wy 0

The rotation is in the plane perpendicular to W and containing the origin. If you are
an observer looking along the axis of rotation in the direction —W, a positive angle
0 corresponds to a counterclockwise rotation in the observed plane (see Figure 2.2).
The rotation matrix for rotation about the x-axis is

1 0 0
R.(0)=] 0 cos(®) —sin(6) |. (2.13)
0 sin(f) cos(0)

78 Chapter 2 Core Systems

TeamLRN sPeCiAL

The rotation matrix for rotation about the y-axis is

cos(f) O
0 1
—sin(@) 0

sin(6) |

0

cos(9) |

The rotation matrix for rotation about the z-axis is

[cos(®)

sin(6) cos(@) O

0

0 1

—sin(@) 0]

(2.14)

(2.15)

You may think of the 2D rotation as a special case where the rotation axis has
direction W = (0, 0, 1). When you look in the direction (0, 0, —1), you see the xy-
plane (z = 0), and a positive angle corresponds to a counterclockwise rotation in that

plane.

Common Operations

As was the case for the vector classes, the matrix classes have a lot of common oper-
ations, including default constructors, copy constructors, assignment, comparisons
for use in sorting, implicit conversions to pointers, member access, and matrix al-
gebra. Also included are somewhat higher-level operations. A summary of methods

that are common to all the classes is listed next, where N is either 2, 3, or 4.

template <class Real>

class MatrixN

{

public:
// construction
MatrixN ();
MatrixN

MatrixN

void MakeZero ();
void MakeIdentity ();

// member access

(const Matrix3& rkM);
MatrixN (bool bZero);
(const Real afEntry[N*N], bool bRowMajor);

operator const Real* () const;

operator Real* ();

const Real* operator[] (int iRow) const;
Real* operator[] (int iRow);
Real operator() (int iRow, int iCol) const;
Real& operator() (int iRow, int iCol);

TeamLRN sPeCiAL

2.2 The Mathematics System

void SetRow (int iRow, const VectorN<Real>& rkV);
VectorN<Real> GetRow (int iRow) const;

void SetColumn (int iCol, const VectorN<Real>& rkV);
VectorN<Real> GetColumn (int iCol) const;

void GetColumnMajor (Real* afCMajor) const;

// assignment
MatrixN& operator= (const MatrixN& rkM);

// comparison

bool operator== (const MatrixN& rkM) const;
bool operator!= (const MatrixN& rkM) const;
bool operator< (const MatrixN& rkM) const;
bool operator<= (const MatrixN& rkM) const;
bool operator> (const MatrixN& rkM) const;
bool operator>= (const MatrixN& rkM) const;

// arithmetic operations

MatrixN operator+ (const MatrixN& rkM) const;
MatrixN operator- (const MatrixN& rkM) const;
MatrixN operator* (const MatrixN& rkM) const;
MatrixN operator* (Real fScalar) const;
MatrixN operator/ (Real fScalar) const;
MatrixN operator- () const;

// arithmetic updates

MatrixN& operator+= (const MatrixN& rkM);
MatrixN& operator-= (const MatrixN& rkM);
MatrixN& operator*= (Real fScalar);
MatrixN& operator/= (Real fScalar);

// matrix times vector
VectorN<Real> operator* (const VectorN<Real>& rkV) const;

// other operations
MatrixN Transpose () const;
MatrixN TransposeTimes (const MatrixN& rkM) const;
MatrixN TimesTranspose (const MatrixN& rkM) const;
MatrixN Inverse () const;
MatrixN Adjoint () const;
Real Determinant () const;
Real QForm (const Vector4<Real>& rkU,
const Vectord4<Real>& rkV) const;

79

80 Chapter 2 Core Systems

TeamLRN sPeCiAL

// ¢*M where c is a scalar, M a matrix
template <class Real>
MatrixN<Real> operator* (Real fScalar, const MatrixN<Real>& rkM);

// vector times matrix, v°T * M

template <class Real>

VectorN<Real> operator* (const VectorN<Real>& rkV,
const MatrixN<Real>& rkM);

Constructors and Assignment

The classes have default constructors, copy constructors, and assignment operators.
The default constructor initializes the matrix to zero. The constructor MatrixN(boo1)
creates a zero matrix if the input Boolean parameter is true; otherwise, it creates the
identity matrix. The constructor MatrixN(const Real[], bool) creates a matrix and
copies the input N x N matrix to it. If the Boolean parameter is true, the input
matrix is copied directly to the created matrix (in row-major order). If the Boolean
parameter is false, the transpose of the input matrix is copied to the created matrix.

Member Access

The members MatrixN::operator const Real* and MatrixN::operator Real* are for
implicit conversion of the matrix to a pointer to an array of floating-point numbers.
The matrix is stored in row-major order in a one-dimensional array.

The members const Real* MatrixN::operator[] and Real* MatrixN::operator[]
allow you to access the rows of a MatrixN object using the same syntax that applies to
a stack-based 2D array:

Matrix2f kM = <some matrix of float values>;
float* afRow0 = kM[0];

float* afRowl = kM[1];

float afEntry01 = kM[0][1];

These operators provide one method for accessing matrix entries. Another mech-
anism is provided by the member Real MatrixN::operator() (int,int) const for
read-only access and by the member Real& MatrixN::operator(int,int) for read-
write access:

Matrix3f kM = <some matrix of float values>;
kM(0,1) = 1.0f;
kM(2,1) = kM(1,2);

TeamLRN sPeCiAL

2.2 The Mathematics System 81

In some cases you might want to access an entire row or column of a ma-
trix. The members MatrixN::SetRow, MatrixN::GetRow, MatrixN::SetColumn, and
MatrixN::GetColumn are used to this end.

Finally, for transferring matrix data to systems that store matrices in column-
major order in a one-dimensional array, the member function MatrixN::
GetColumnMajor fills in a user-supplied one-dimensional array with the correct
entries.

Comparisons

The comparisons are similar to those for vectors. The member data is treated as a
contiguous array of unsigned integers representing a nonnegative binary number.
Comparisons between binary numbers are straightforward. For example, these are
useful when building hash tables of vertices in order to identify vertices that are
(nearly) the same.

Arithmetic Operations

The arithmetic operations are for matrix-matrix algebra, including addition and sub-
traction of matrices, multiplication and division of a matrix by a scalar, and matrix-
matrix products. The latter operation is always well defined since both matrices are
square and of the same size. One of the most common operations in the engine is
matrix times vector. Given a matrix M and a column vector V, the member func-
tion MatrixN::operator*(const VectorN<Real>&) computes MV. The global function
MatrixN::operator*(const VectorN<Real>&, const MatrixN<Real>&) computes vim,
which is considered after the fact to be a column vector (the algebraic quantity is a
row vector). This is a convenience to avoid the cost of computing the transpose of M
followed by MTV.

Other Operations

The remaining common operations are found frequently in applications.

Given a square matrix M, its transpose M is obtained by swapping rows and col-
umns. If M = [m,.], where m, is the entry in row and column ¢, then MT = [m],
where m/ = m,,. The entry m/ _ is in row r and column ¢ of the transpose; it is the
entry in row ¢ and column r of the original matrix. The function MatrixN: : Transpose
computes M T and returns it.

Two convenient matrix products are MOT M, computed by the member function
MatrixN::TransposeTimes, and MOMIT, computed by the member function
MatrixN::TimesTranspose. Code samples are

82 Chapter 2 Core Systems

TeamLRN sPeCiAL

MatrixN kMO = <some N-by-N matrix>;

MatrixN kM1 = <another N-by-N matrix>;

MatrixN kMOM1 = kMO * kMl; // = kMO.operator*(kM1)
MatrixN kMOTrnM1l = kMO.TransposeTimes(kM1); // MONT * M1
MatrixN kMOM1Trn = kMO.TimesTranspose(kMl); // MO * MI™T

Given a square matrix M, its inverse (if it exists) is denoted M ~! and has the prop-
erties MM~ = M~'M = I, where I is the identity. Not all matrices have inverses
(the zero matrix, for example), but in most cases matrices are used in the engine for
mapping data between coordinate systems. These matrices are invertible. The mem-
ber function MatrixN::Inverse attempts to compute the inverse matrix. If it exists,
that matrix is returned by the function. If it does not, the zero matrix is returned as a
way of communicating to the caller that the matrix is not invertible. The implemen-
tations construct the inverses by the identity

det(M)

>

where det(M) is the determinant of the matrix, necessarily nonzero for the inverse
to exist, and MY is the adjoint matrix, which is the transpose of the matrix of
cofactors of M. The construction for 4 x 4 matrices is not the standard one that
uses cofactors from 3 x 3 submatrices. In fact, it uses 2 x 2 submatrices and greatly
reduces the operation count compared to the standard method. The expansion of
this form is known as the Laplace expansion theorem; see [Pea85, Section 16.2.3]. The
adjoint matrix may be computed by itself via the member function MatrixN: :Adjoint.
The determinant is computed by the member function MatrixN::Determinant. This
construction also uses the cofactor expansion.

The final common operation is a quadratic form. Given column vectors U and V
and a matrix M, the form is UT MV, a scalar.2 The member function MatrixN: :QForm
computes the quadratic form.

Operations Specific to 2D

Specific operations for 2D are

template <class Real>
class Matrix2

{
public:

. The term quadratic form is usually associated with VT MV, where the left and right vectors are the same.

My use of the term to cover the more general case UT MV might be viewed as an abuse of the mathematical
definition.

TeamLRN sPeCiAL

2.2 The Mathematics System 83

void ToAngle (Real& rfAngle) const;

void Orthonormalize ();

void EigenDecomposition (Matrix2& rkRot,
Matrix2& rkDiag) const;

The method Matrix2::ToAngle requires the matrix to be a rotation and extracts
an angle of rotation. The angle is

0 = atan 2(sin 6, cos 8) = atan 2(r(, 7).

The method Matrix2::0rthonormalize requires the matrix to be a rotation and
applies Gram-Schmidt orthonormalization to its columns. The first column is nor-
malized, and the second column is adjusted by subtracting out its projection onto
the normalized first column. This operation is useful when the rotation is updated
frequently through concatenation with other matrices. Over time, the numerical
round-off errors can accumulate, and the matrix strays from having the properties
of a rotation. An adjustment such as Gram-Schmidt orthonormalization restores the
matrix to a rotation.

A matrix M is said to have an eigenvalue X and a corresponding eigenvector V,
a nonzero vector, whenever MV = AV. If M and V have only real-valued compo-
nents and if X is a real number, geometrically the vector V is transformed only in that
its length is scaled by A. A symmetric, real-valued matrix M is guaranteed to have
only real-valued eigenvalues and a set of eigenvectors that are mutually perpendicu-
lar. The method Matrix2: : EigenDecomposition requires the matrix to be symmetric. It
computes the eigenvalues of the matrix and stores them as the diagonal entries of a di-
agonal matrix D. It also computes corresponding eigenvectors and stores them as the
columns of a rotation matrix R. Column i of the rotation matrix is an eigenvector for
diagonal entry i of the diagonal matrix. The matrices are part of the eigendecomposi-
tion of M, a factorization M = RDR". The methodology for an eigendecomposition
of a symmetric matrix applies in any dimension, in particular, three dimensions.

This topic is much more mathematical than what you normally encounter in
computer graphics, but it is quite useful in a number of circumstances. A real-time
rendering system relies on drawing only what is visible, or potentially visible if the
exact visibility is unknown. Looking at this a different way, if an object is known not
to be visible (i.e., not in the view frustum), then the renderer should not be asked
to draw it. A classical approach to testing for nonvisibility is to associate with the
object an enclosing bounding volume and use culling. If the bounding volume is
outside the view frustum, then the object is outside and the object is culled from
the list of objects to be rendered. The goal is to choose a class of bounding volumes
whose tests for being outside the frustum are inexpensive. The simplest bounding
volume is a sphere, but it is not always a good fit to the complex objects in the scene.
An oriented bounding box (OBB) may be used instead to obtain a better fit, but the

84 Chapter 2 Core Systems

Figure 2.3

TeamLRN sPeCiAL

A polygon enclosed by an OBB whose center C is the average of the polygon vertices
and whose axes are the eigenvectors of the covariance matrix of the polygon vertices.

trade-oft is that the test for being outside the frustum is slightly more expensive than
for a sphere. For a single culling test, the sphere requires less time to process than the
OBB. However, if the sphere partially overlaps the frustum but the contained object
is outside the frustum, the renderer is told to draw the object only to find out that
none of it is visible. Given the object in the same position and orientation, if the OBB
is outside the frustum, then despite the fact that you spent more time determining
this (compared to the sphere), you have not attempted to draw the object. The total
time of culling and rendering is smaller for the box bounding volume than for the
sphere bounding volume. The important information is a comparison of the costs of
culling versus the costs of rendering a nonvisible object for the entire set of objects, not
just for a single object. An amortized analysis is called for to determine which class of
bounding volume is more suited for your applications.

So where does eigendecomposition come into play? You have to construct an OBB
that contains an object. Assuming the object is represented by a triangle mesh with a
collection of vertices V;, 0 < i < n, the problem is to compute a tight-fitting box that
contains the vertices. The minimum volume OBB is certainly an ideal candidate, but
its construction is a nontrivial process that has roots in computational geometry. A
less optimal candidate is normally used. The OBB center is chosen to be the average of
the mesh vertices. The OBB axes are selected based on the distribution of the vertices.
Specifically, the covariance matrix of the vertices is computed, and the eigenvectors
of this matrix are used as the box axes. Figure 2.3 illustrates the concept in 2D.
The mesh in this case is a polygon. An OBB enclosing the polygon is shown, with
center equal to the average of the polygon vertices and axes based on the vertex
distribution.

A similar type of construction is used to construct a bounding volume hierarchy
of OBBs to represent a triangle mesh for the purposes of collision detection. More
information on both topics is in Section 6.4.2.

2.2 The Mathematics System 85

Operations Specific to 3D

Specific operations for 3D are

template <class Real>
class Matrix3
{
public:
void ToAxisAngle (Vector3<Real>& rkAxis,
Real& rfAngle) const;
void Orthonormalize ();
void EigenDecomposition (Matrix3& rkRot,
Matrix3& rkDiag) const;

void FromEulerAnglesXYZ (Real fYAngle, Real fPAngle,
Real fRAngle);

void FromEulerAnglesXZY (Real fYAngle, Real fPAngle,
Real fRAngle);

void FromEulerAnglesYXZ (Real fYAngle, Real fPAngle,
Real fRAngle);

void FromEulerAnglesYZX (Real fYAngle, Real fPAngle,
Real fRAngle);

void FromEulerAnglesZXY (Real fYAngle, Real fPAngle,
Real fRAngle);

void FromEulerAnglesZYX (Real fYAngle, Real fPAngle,
Real fRAngle);

bool ToEulerAnglesXYZ (Real& rfYAngle, Real& rfPAngle,
Real& rfRAngle) const;

bool ToEulerAnglesXZY (Real& rfYAngle, Real& rfPAngle,
Real& rfRAngle) const;

bool ToEulerAnglesYXZ (Real& rfYAngle, Real& rfPAngle,
Real& rfRAngle) const;

bool ToEulerAnglesYZX (Real& rfYAngle, Real& rfPAngle,
Real& rfRAngle) const;

bool ToEulerAnglesZXY (Real& rfYAngle, Real& rfPAngle,
Real& rfRAngle) const;

bool ToEulerAnglesZYX (Real& rfYAngle, Real& rfPAngle,
Real& rfRAngle) const;

static Matrix3 Slerp (Real fT, const Matrix3& rkRO,
const Matrix3& rkR1);

TeamLRN sPeCiAL

86 Chapter 2 Core Systems

TeamLRN sPeCiAL

The method Matrix3::ToAxisAngle requires the matrix to be a rotation and ex-
tracts an axis and angle of rotation. The axis direction is unit length. The extraction
is based on Equation (2.12). Some algebra will show that cos(8) = (Trace(R) — 1)/2,
where Trace(R) is the trace of the matrix R, the sum of the diagonal entries of R. This
allows us to obtain the rotation angle

6 = arccos((Trace(R) — 1)/2).

Also, R — RT = 2sin(#)S, where S is formed from the rotation axis components
(wg, wy, wy). As long as 6 is not a multiple of 7, we may solve for

71— To2 — T o —To1
Wy = . > wy = . > Wy = A >
2 sin(0) 2 sin(0) 2 sin(0)

where R = [r;;]. If & = 0, the rotation matrix is the identity, and any choice of axis will
do. My choice is (1, 0, 0). If @ =, R — RT = 0, which prevents us from extracting
the axis through S. Observe that R = I + 252, so S = (R — I)/2. The diagonal
entries of SZ are w(z) -1, w% — 1,and w% — 1. We can solve these for the axis direction
(wg, w1, w,). Because the angle is 7, it does not matter which sign you choose on the
square roots.

The method Matrix3::0rthonormalize requires the matrix to be a rotation and
applies Gram-Schmidt orthonormalization to its columns. See the discussion earlier
regarding this operation applied to 2D rotation matrices and to vectors in 3D.

The discussion of eigendecomposition for 2 x 2 symmetric matrices also cov-
ers 3 x 3 symmetric matrices and N x N matrices in general. The function
Matrix3::EigenDecomposition does the decomposition for 3 x 3 matrices.

The next discussion is about the methods Matrix3::FromEulerAnglesUVW and
Matrix3::ToEulerAnglesUVW. A popular topic for representations of rotation matri-
ces is Euler angles. The idea is to represent a rotation matrix as a product of rotation
matrices corresponding to the coordinate axes. For example,

R =R, (@R,(B)R.(y)

is a rotation obtained by rotating y radians about the z-axis, then rotating § radians
about the y-axis, then rotating « radians about the x-axis. Other combinations are
possible, including using the same axis twice (R = R, (@) R, (B) R, (y)). The attrac-
tion of Euler angles is that it is easy to think about rotations a “channel at a time,”
and most modeling packages support Euler angles for this reason. The disadvantages
of Euler angles are many. Contrary to the previous statement about understanding
rotations a channel at a time, I find it not so easy to think this way. All three rota-
tions are specified relative to a fixed coordinate system (“world” coordinates). After
rotating about one coordinate axis, you have to imagine the rotated object in its new
orientation, then rotate again. And again. I find it easier to assign a coordinate sys-
tem that remains rigid relative to the object (“body” coordinates). Once a rotation is
applied to one body axis, I find it easier to think of how the next rotation occurs for

TeamLRN sPeCiAL

2.2 The Mathematics System 87

another body axis. Better yet, I prefer thinking in the following terms. Imagine the
to-be-rotated vector as a rigid rod. One end point remains fixed to the origin. The
other end point may be positioned on a sphere whose radius is the length of the rod.
You have two degrees of freedom to position the rod (the angles from spherical coor-
dinates). Once positioned, rotate about the axis of the rod, thus consuming the third
degree of freedom. Of course, you may imagine the operations applied in the other
order—rotate about the axis of the rod first, then position the rod on the sphere.

Another disadvantage of Euler angles is that the factorization of a specified rota-
tion matrix into a product of three coordinate axis rotations (all axes specified) is not
always unique. This is related to a problem called gimbal lock. Regardless of my opin-
ion and the nonunique factorization, Matrix3 class provides the ability to compose a
rotation as a product of coordinate rotations and the ability to factor a rotation into
some product of coordinate rotations. The prototype for composition is

void FromEulerAnglesUVW (Real fYAngle, Real fPAngle,
Real fRAngle);

where UVW is either XYZ, XZY, YXZ, YZX, ZXY, or Z¥X. The parameters in the function
signature have variable names including Angle. The preceding letter is Y for yaw, P for
pitch, or R for roll. The prototype for factorization is

bool ToEulerAnglesUVW (Real& rfYAngle, Real& rfPAngle,
Real& rfRAngle) const;

where UVW is chosen from one of the six possibilities mentioned earlier. The matrix
class does not have support for combinations with a repeated axis such as XYX. The re-
turn value on the factorization is true if the factorization is unique, false otherwise.
In the latter case, one of the infinitely many factorizations is returned.

A problem that arises in keyframed animation is how to interpolate two rotation
matrices for in-betweening. A common misconception is that you have to resort
to quaternions to do this. In fact, you do not need quaternions; matrix operations
will suffice. However, the computational costs for interpolating using only matrices
is much greater than that for quaternions. Class Matrix3 provides a slerp (spherical
linear interpolation) for two matrices,

static Matrix3 Slerp (Real fT, const Matrix3& rkRO,
const Matrix3& rkR1);

but the keyframe system in the engine uses a quaternion and its associated slerp
function to achieve as much speed as it can. The rotational slerp of two rotation
matrices Ry and R, for time ¢ € [0, 1]is

R(t) = Ry(RJR))',

88 Chapter 2 Core Systems

TeamLRN sPeCiAL

where we must make sense of the power operation on a matrix M. Assuming such an
operation exists and has properties you would expect, namely, M® = I (the identity
matrix) and M! = M, we have R(0) = R, and R(1) = R,. Generally, it is impossible
to define M’ (0 < ¢ < 1) for all matrices M. However, for rotation matrices R, where
the axis of rotation has unit-length direction W and angle of rotation 6, we can define
R' to be a rotation about the same axis, but with an angle that is a fraction of the
rotation angle, t6. A value of t = 0 means no rotation is applied. A value of t = 1
means the full rotation is applied. The method Matrix3::Slerp must compute the
product Rg R, extract its axis and angle of rotation, multiply the angle by ¢, compute
the rotation for the same axis but new angle of rotation, and then finally multiply that
by Ry, all to obtain the interpolated R(?).

Operations Specific to 4D

The Matrix4 classes are used by the engine mainly to store homogeneous matrices.
The operations specific to 4D are useful for the rendering system, and in particular
for planar projected shadows and for planar reflections.

First, let’s consider the method Matrix4: :MakeObliqueProjection. The projection
plane is N - (X — P) = 0, where N is a unit-length normal vector and P is a point
on the plane. The projection is oblique to the plane, in the direction of a unit-length
vector D. Necessarily N - D # 0 for the projection to be defined. Given a point U,
the projection onto the plane is obtained by computing the intersection of the line
U + ¢D with the plane. Replacing this equation into the plane equation and solving
for ¢ yields

_ -N-(U-P)
~ N-D

t

The intersection point is

T

N

vers(1-2
N

where [is the 3 x 3 identity matrix. A 4 x 4 homogeneous transformation represent-
ing the projection, written in block-matrix form, is

N] o S o

where the equivalency symbol means V = V'/w. The matrix M = [m,-j], 0<i<3
and 0 < j < 3, is chosen so that m3; > 0 whenever N - D < 0; the projection is on the
“positive side” of the plane, so to speak. The method Matrix4: :MakeOb1iqueProjection
takes as input N, P, and D.

TeamLRN sPeCiAL

2.2 The Mathematics System 89

Now let’s look at the method Matrix4: :MakePerspectiveProjection. The projec-
tion plane is N - (X — P) = 0, where N is a unit-length normal vector and P is a point
on the plane. The eye point for the projection is E and is assumed not to be on the
plane. Given a point U, the perspective projection onto the plane is the intersection
of the ray E + (U — E) for some 7 > 0. Substituting this in the plane equation and
solving for ¢ yields

_ _NE-P)
~ N-(U-E)
The point of intersection is
vep- N E=P G g
N-(U—E)
_(N-(U-E)E—- (N-(E-P)(U—E)
N-(U-E)

_[EN'"-(N-(E-P)/]U-F
N-(U-E) '

A 4 x 4 homogeneous transformation representing the projection, written in block-
matrix form, is

DR

_ (N - (E—P))I —ENT ‘ —[(N- (E—P))I —ENTIE U
= T ‘ ,

N-E 1
where the equivalency symbol means V = V’/w. The method Matrix4::
MakePerspectiveProjection takes as input N, P, and E.

Finally, let’s consider Matrix4::MakeReflection. The reflection plane is N-
(X — P) =0, where N is a unit-length normal vector and P is a point on the plane.
Given a point U, the reflection through the plane is obtained by removing the normal
component of U — P, which produces a vector in the plane, and then subtracting the
normal component again. That is, twice the normal component is subtracted from
the vector. The resulting point V is defined by

V—P=(U-P)—2(N-(U-P)N
or

V= (I —2NNDU + 2(N - P)N.

90 Chapter 2 Core Systems

A 4 x 4 homogeneous transformation representing the reflection, written in block-
matrix form, is

S R e i [

where the equivalency symbol means V = V’/w. The Matrix4::MakeReflection
method takes as input N and P.

2.2.5 QUATERNIONS

TeamLRN sPeCiAL

I am not going to provide in-depth mathematical derivations for quaternions and
their properties. You may find these instead in my other books [Ebe00, Ebe03a] or
in many online documents. This section contains the bare minimum background to
understand what the methods are in the template class Quaternion. The main thing to
understand is that a unit-length quaternion is used to represent a rotation. Compared
to rotation matrices, quaternions require less memory to store, are faster to multiply
for the purposes of composition of rotations, and are faster to interpolate for the
purposes of keyframed animations.

From a data structures perspective, a quaternion is a 4-tuple of numbers
(w, x, y, z). The class representation has the same philosophy as the vector and ma-
trix classes. The data is stored in an array of four elements to allow safe typecasting
to a pointer of type float* or double*. The index 0 corresponds to w, 1 corresponds
to x, 2 corresponds to y, and 3 corresponds to z. The standard constructors and
assignment are

Quaternion ();

Quaternion (Real fW, Real fX, Real fY, Real fZ);
Quaternion (const Quaternion& rkQ);

Quaternion& operator= (const Quaternion& rkQ);

The default constructor does not initialize the data members. Member access
methods follow, where Real is the template parameter class, either float or doubTe:

operator const Real* () const;
operator Real* ();

Real operator[] (int i) const;
Real& operator[] (int i);

Real W () const;

Real& W ();

Real X () const;

Real& X ();

Real Y () const;

TeamLRN sPeCiAL

2.2 The Mathematics System 91

Real& Y ();
Real Z () const;
Real& Z ();

The first two methods are for safe typecasting as mentioned earlier. The operator[]
methods access the components of the quaternion using the array indices. As always,
the methods use the assert-and-repair paradigm. If the input index is out of range,
an assertion is fired in debug mode, but a clamp to the valid index range occurs in
release mode. The remaining accessors allow you to read or write the quaternion
components by name.

For purposes of sorting and hashing, a full set of comparison functions is pro-
vided by the class. As with all other classes using the array storage, the comparison is
based on reinterpreting the array of floating-point numbers as an array of unsigned
integers, with the entire array thought of as a large unsigned integer.

Algebraic Properties

An algebraic system is associated with quaternions. The symbolic representation is
qg=w+xi +yj+ zk,

where i, j, and k may be thought of as placekeepers for now. Two quaternions,
qo = Wy + Xpi + yoj + zok and g, = w; + x;i + y,j + 2k, are added or subtracted
componentwise:

qo + g1 = (wo +wy) + (xg + xDi + (yo + y)Jj + (29 + 2Dk
qo — q1= (wo — wy) + (xg — x)i + (Yo — y)J + (29 — 2)k.

The class methods supporting addition and subtraction are

Quaternion operator+ (const Quaternion& rkQ) const;
Quaternion operator- (const Quaternion& rkQ) const;
Quaternion& operator+= (const Quaternion& rkQ);
Quaternion& operator-= (const Quaternion& rkQ);

Quaternion addition is commutative and associative; that is,
qo+q1 =91+ qo
qo + (g1 + q2) = (g0 + q1) + q5.

Quaternions may also be multiplied by scalars. If ¢ is a scalar and ¢ = w + xi +
yJj + zk is a quaternion, then

cq = (cw) + (cx)i + (cy)j + (c2)k = qc.

92 Chapter 2 Core Systems

The class methods supporting scalar multiplication (and scalar division) are

Quaternion operator* (Real fScalar) const;
Quaternion operator/ (Real fScalar) const;
Quaternion& operator*= (Real fScalar);
Quaternion& operator/= (Real fScalar);
Quaternion operator- () const;

The last function in this list changes signs on the components of the quaternion,
which is a multiplication of the quaternion by the scalar —1. Scalar multiplication
has the following associative and distributive properties:

(coc)g = cp(c19)
(co+c)g=coq +c1g
c(qo + q1) = cqo + cq-

Products of quaternions are defined, but not by componentwise multiplication.
The definition is unintuitive and based on multiplicative properties assigned to the
placekeeper symbols 7, j, and &: i=—1,j2=-1Lk=—1ij=k, ji =k, ik=
—j,ki =j, jk=1i,and kj = —i. The first three definitions give quaternions the fla-
vor of complex numbers. The other definitions imply that quaternion multiplication
is not commutative. If you reverse the order of two numbers in a product, you might
not get the same result. (In some special cases, the results can be the same.) The
product of quaternions gy = wy + xoi + yoj + zok and ¢; = wy + x1i + y1j + zk is
obtained from the products of the placekeepers by requiring the distributive and asso-
ciative laws to apply, and by using the distributive and associative laws for quaternion
addition and scalar multiplication:

qoq1 = (wo + xoi + YoJ + zok)(wy +x10 + y1j + 21k)
= (wow; — XoX1 — Yo¥1 — ZoZ1)
+ (woxy + wixg + Yoz1 — 2oy (2.16)
+ (woy1 + wyyp + 2oX1 — Xoz1) J
+ (wozy + wyzg + Xy — YoX k.

The member function that implements quaternion multiplication is
Quaternion operator* (const Quaternion& rkQ) const;

To emphasize that quaternion multiplication is not commutative, the product in
the reversed order is

TeamLRN sPeCiAL

TeamLRN sPeCiAL

2.2 The Mathematics System 93

q190 = (w1 + x1i + y1J + 21k) (wo + Xoi + Yo + 2ok)
= (wowy — XpX1 — Yo¥1 — ZoZ1)
+ (wox, + wixg + y1zZg — Yoz1)i (2.17)
+ (woyy + wyyp + 21X9 — ZoX1)J
+ (woz1 + wyzg + x1y9 — XgYDk.

The w-components of gyq; and q,q, are the same. On the other hand, the last two
terms of each of the i-, j-, and k-components in the second line of (2.17) are opposite
in sign to their counterparts in the second line of (2.16). Those terms should remind
you of the components of a cross product. Symbolically, Equations (2.16) and (2.17)
are different, but it is possible for some quaternions (but not all) that g,q, = ¢,4,. For
this to happen we need

(X0> ¥0» 20) X (x1, ¥1> 1) = (YoZ1 — Y1Z0> ZoX1 — Z1X0> XoV1 — YoX1)
= (0120 — YoZ1> Z1X0 — ZoX1> X1Yo — Xo¥1)
= (x1, Y1> 21) X (X05 Yo» Zo)-

The only way the two cross products can be the same for a pair of vectors is if they are
parallel. In summary, qyq; = q19o if and only if (x, ¥;, z;) =1(xg, Yo, zo) for some
real-valued scalar ¢.

Notice that the quaternion class does not implement operator*= with a quater-
nion input. This is to avoid confusion about which order in the product is intended—
an important point since quaternion multiplication is not commutative. For the same
reasons, the division operators operator/ and operator/= with quaternion inputs are
not implemented.

Rotations

The utility of quaternions in computer graphics is that the unit-length ones are
related to rotations. If g = w + xi + yj + zk, then ¢ is unit length if w? + x? + y? +
z?2 = 1. Such a quaternion may be written as

q = cos(0/2) + sin(0/2) (ugi + uj + uk) = cos(6/2) + sin(6/2)u,

where u? 4+ u? + u3 = 1. The last equality defines i, which is itself a unit-length
quaternion, but has no w-component. The quaternion corresponds to a rotation
matrix R whose axis of rotation has a unit-length direction u = (1, u;, u#,) and
whose angle of rotation is 6. The rotation matrix may be applied to a vector v =
(vg» v}, V,) to obtain the rotated vector v':

/
v = Rv.

94 Chapter 2 Core Systems

TeamLRN sPeCiAL

In terms of quaternions, let b = vyi + v;j + v,k. The rotation is computed using
quaternions by

N -
v =qvq,

where ¢* = w — xi — yj — zk = cos(0/2) — sin(8/2)u is called the conjugate of q.
The result ' = vyi + v|j + vik has no w-component and represents the rotated
vector v = (vé, v;, vé). That said, the operation count for rotating a vector is smaller
when instead the quaternion is converted to a rotation matrix and the vector is
multiplied directly. The member function to rotate a vector is

Vector3<Real> Rotate (const Vector3<Real>& rkVector) const;

Quaternion<Real> q = <some unit-Tength quaternion>;
Vector3<Real> v = <some vector>;
Vector3<Real> rotated v = q.Rotate(v);

The usage is clear. The conjugate operation is supported by
Quaternion Conjugate () const;

If you wanted to use only quaternion algebra, the rotation operation, which uses a
constructor that takes a vector and converts it to a quaternion with a w-component
that is zero, is the following:

Quaternion<Real> q = <some unit-Tength quaternion>;
Vector3<Real> v = <some vector>;
Vector3<Real> rotated v = q * Quaternion(v) * q.Conjugate();

Related to the conjugate is the multiplicative inverse of a nonzero quaternion
g, namely, g~ L. The inverse has the property g¢g~' =g ~!¢g =1=1+0i + 0j + Ok.
Moreover,

*

-1_ 4

9 =,
lq]

where |g| is the length of g when considered a 4-tuple. The member function for
inversion is

Quaternion Inverse () const;

Invariably an application requires conversion between unit-length quaternions
and rotation matrices. Constructors supporting conversion of rotations are

Quaternion (const Matrix3<Real>& rkRot);

TeamLRN sPeCiAL

2.2 The Mathematics System 95

Quaternion (const Vector3<Real> akRotColumn[3]);
Quaternion (const Vector3<Real>& rkAxis, Real fAngle);

The first two constructors convert the rotation matrix directly. The third constructor
creates a quaternion from an axis-angle representation of the rotation. Other member
functions supporting conversion are

Quaternion& FromRotationMatrix (const Matrix3<Real>& rkRot);
void ToRotationMatrix (Matrix3<Real>& rkRot) const;
Quaternion& FromRotationMatrix (

const Vector3<Real> akRotColumn[3]);
void ToRotationMatrix (Vector3<Real> akRotColumn[3]) const;
Quaternion& FromAxisAngle (const Vector3<Real>& rkAxis,

Real fAngle);
void ToAxisAngle (Vector3<Real>& rkAxis, Real& rfAngle) const;

The names make it clear how the functions are used. The From methods return a
reference to the object to allow side effects such as

Matrix3<Real> rot = <some rotation matrix>;
Quaternion<Real> p = <some quaternion>, q;
Quaternion<Real> product = p * q.FromRotationMatrix(rot);

Interpolation

One of the primary benefits of quaternions is ease of interpolation of rotation and
orientation data. Given two unit-length quaternions g, and gq;, the spherical linear
interpolation of the quaternions is the unit-length quaternion

sin((1 — 1)0)q, + sin(t0
slerp(#; g9, q1) = «) ?QO ()611,
sin 6

where 0 is the angle between ¢, and ¢;. The value ¢ is in the interval [0, 1]. The
formula requires that sin 6 # 0. If ¢, and g, are the same quaternion, then 6 = 0. But
in this case, you may choose g (t) = g, for all ¢. If g; = —¢,, then 6 = . Although
the 4-tuples are different, they represent the same rotation. Despite this, you can
choose a unit-length 4-tuple p that is perpendicular to g (there are infinitely many of
these), then interpolate from g to p for ¢ € [0, 1/2]and from p to g, for ¢ € [1/2, 1].
Specifically,

) _ sin(mw(1/2 — t))qo + sin(zwt)p, t € [0, 1/2]
slerp(t3 4o, 41) = { sin(r(1— 1)) p +sin(r(t — 1/2)qy, 1€ [1/2,1].

96 Chapter 2 Core Systems

TeamLRN sPeCiAL

The angle 6 may be obtained from the dot product of 4-tuples, g, * g; = cos(9),
or 6 = arccos(qy * q1)- The dot product is implemented by the member function

Real Dot (const Quaternion& rkQ) const;

The spherical linear interpolation has the acronym slerp. The method that imple-
ments this is

Quaternion& Slerp (Real fT, const Quaternion& rkQo,
const Quaternion& rkQl);

Because of the observation that ¢ and —q represent the same rotation, it is better
to preprocess a sequence of quaternions so that consecutive pairs form acute angles.
For such a sequence, you need only trap the case when 6 is (nearly) zero. The prepro-
cessing is

Quaternion<Real> q[n] = <sequence of n quaternions>;
for (int i = 0; i < n-1; i++)
{
if (q[i].Dot(q[i+1]) < (Real)0.0)
q[i+1] = -q[i+1];
}

The S1erp function assumes that the two input quaternions form an acute angle (their
dot product is nonnegative).

The slerp function is a parameterization of the shortest arc that connects g, to
g, on the four-dimensional unit hypersphere. If you extend that path to completely
cover the great circle starting at g, passing through g,, eventually passing through ¢,
again, then terminating at g, the resulting interpolations produce rotation matrices
that have interesting properties. If those rotations are applied to an object, the object
obtains extra spins. A brief discussion is in the article “Quaternion interpolation with
extra spins” in [Kir92]. The modified slerp equation is

sin((1 — 1)0 — kmt)qgy + sin(t0 + kmt)q,

SlerpExtraSpins(t; q¢, g1, k) = -
sin 0

where k is the number of extra spins (or the number of times the path on the hy-
persphere returns through ¢). The standard slerp equation occurs when k = 0. The
method implementing slerp with extra spins is

Quaternion& SlerpExtraSpins (Real fT, const Quaternion& rkQo,
const Quaternion& rkQl, int iExtraSpins);

A higher-order interpolation is provided by spherical quadrangle interpolation or,
in short, squad. Whereas slerp is a form of linear interpolation, squad is a form of

TeamLRN sPeCiAL

2.2 The Mathematics System 97

cubic interpolation. Recall from the study of cubic polynomial curves that four pieces
of information are needed to determine the four coefficients of the curve. If Py and P,
are the end points of the curve segment with corresponding tangent vectors T, and
T}, a cubic polynomial curve containing the end points is

X(1) = Ay + Ayt + Ayt + Ay,
where ¢ € [0, 1]. The derivative is
X'(1) = Ay + 24,1 + 3A5t°

and represents the velocity of a particle traveling along the curve. To satisfy the
constraints we need

Py =X(0) = A,

Pi=X()=Ag+ A +A,+A;

Ty = X'(0) = A,

T, =X'(1) = A, + 2A, + 3A;.

This is a linear system of four equations in four unknown vectors. The solution is

Ag=A,
A=T,
Ay =3P, —Py) —2T, - T,
Ay=—-20P;— Py + Ty +T,.

If you are interpolating a sequence of points {P, }2’;01 with no specified tangents,
you may estimate the tangent P, using only this point and its immediate neighbors
P, _; and P, ;. The one-sided tangent generated from the previous point is P, —
P, _;. The other one-sided tangentis P, ; — P,,. A reasonable estimate for the tangent
is the average of these:

(Pn - Pn—l) + (Pn+1 - Pn) — Pn+1 - Pn—l
2 2 ’

T, =

n

The tangent vector is the direction of the line segment connecting the two neighbor-
ing points.

The analogy to this construction produces squad from two unit-length quater-
nions g, and g;, but as in the case of a cubic curve, we need two additional pieces of
information. As discussed in [Sho87], the squad of four quaternions g, ay, by, and

qyis

squad(t; qo, ag, by, q1) = slerp(2t (1 — t); slerp(t; q¢> q1), slerp(t; ag, by)),

98 Chapter 2 Core Systems

TeamLRN sPeCiAL

for ¢ € [0, 1]. A natural selection for a, and b; is motivated by the use of tangent
vectors for cubic polynomial curves. The concept of a tangent in the quaternion realm
is quite mathematical, despite its ties to geometric ideas. As it turns out, you need
the concept of a logarithmic function and its inverse, an exponential function. The
quaternions have such functions. A unit-length quaternion cos(6/2) + sin(6/2)i has
the logarithm

log(cos(0/2) + sin(0/2)it) = (0/2)i.
The exponential function is the inverse of this operation,
exp((0/2)nr) = cos(6/2) + sin(6/2)u,

where # is a unit-length quaternion whose w-component is zero.

To continue the analogy with cubic polynomial curves generated from a sequence
of positions, let {CIn},]:’:—ol be a sequence of unit-length quaternions where N > 3. The
one-sided tangent at g,, corresponding to g,,_; is log(qn__llq,,). The one-sided tangent
at g, corresponding to g,, is log(qn_lqn +1)- A reasonable tangent to select for g, is an
average of the one-sided tangents:

1080, 14) +108(d; 'dn 1)
= :
2

Consider the problem of interpolating a sequence of unit-length quaternions,
where N > 3. Specifically, let

S, (t) = squad(t; q,,, ay> by y1> Gpi1)

for some to-be-determined quaternions a,, and b, ;. To obtain continuity of the
interpolation across shared end points, we need

Sp—1(1) = g, = S,(0).
To obtain derivative continuity, we need
S,_1() = q,T, = S,(0),

where 7,, is a tangent quaternion at ¢g,. These produce two equations in the two
unknowns a,, and b,,. An application of the rules of quaternion algebra leads to

log(g;'q,_)) +log(q; lqn+1))
; .

ay, = bn ={qp Xp <_

Each a,, and b, depends on three quaternions: g,,_;, ¢,,, and g,, , |, just as the estimated
tangent for a sequence of positions depended on three consecutive positions.

TeamLRN sPeCiAL

2.2 The Mathematics System 99

The methods in class Quaternion that support logarithms, exponentials, estima-
tion of the intermediate a,,, and squad are

Quaternion Log () const;
Quaternion Exp () const;

Quaternion& Intermediate (const Quaternion& rkQoO,
const Quaternion& rkQl, const Quaternion& rkQ2);

Quaternion& Squad (Real fT, const Quaternion& rkQo0,
const Quaternion& rkAO, const Quaternion& rkAl,
const Quaternion& rkQl);

The GetIntermediate function is used to compute the a,. Observe that the esti-
mation of tangent vectors for the cubic polynomial curve requires the two immediate
neighbors of the given point. The first point P, and Py _; do not have two neigh-
bors, so artificial ones should be used just for the purposes of the estimation. The
same issue occurs for quaternion sequences. My choice is to use gy itself as one of its
neighbors. The following pseudocode shows how I choose to preprocess a quaternion
sequence for the purposes of interpolation:

Quaternion<Real> q[n] <sequence of n quaternions>;
Quaternion<Real> a[n] = <intermediate quaternions, to be computed>;

// arrange for all acute angles between consecutive quaternions
for (i = 0; i < n-1; i++)
{
if (q[i].Dot(q[i+1]) < (Real)0.0)
qli+1] = -q[i+1];

// compute the intermediate quaternions for squad
a[0].Intermediate(q[0],q[0],q[1]);
for (i = 1; i <= n-2; i++)
{
ali].Intermediate(q[i-1],q[i],q[i+1]);
}
a[n-1].Intermediate(q[n-2],q[n-1],q[n-1]);

// example: interpolate at t = 1/2 for all segments

Quaternion<Real> interp;

Real t = 0.5;

for (i = 0; i < n-1; i++)
interp.Squad(t,q[i],a[i],a[i+1],q[i+1]);

100 Chapter 2 Core Systems

TeamLRN sPeCiAL

Three member functions are provided to support animation of joints in char-
acters:

Quaternion& Align (const Vector3<Real>& rkV1,
const Vector3<Real>& rkV2);

void DecomposeTwistTimesSwing (const Vector3<Real>& rkV1,
Quaternion& rkTwist, Quaternion& rkSwing);

void DecomposeSwingTimesTwist (const Vector3<Real>& rkVl,
Quaternion& rkSwing, Quaternion& rkTwist);

Function Align computes a quaternion that rotates the unit-length vector V; to a
unit-length vector V,. There are infinitely many rotations that can do this. If the two
vectors are not parallel, the axis of rotation is the unit-length vector

Vi xV,
V) x V|

The angle of rotation 0 is the angle between the two vectors. The quaternion for the
rotation is

q = cos(0/2) + sin(0/2) (ugi + u;j + usk),

where U = (uy, u;, u,). Rather than extracting 6 = arccos(V; - V,), multiplying by
1/2, then computing sin(6/2) and cos(9/2), we reduce the computational costs by
computing the bisector B = (V; + V,)/|V,; + V,|, so cos(6/2) =V, - B. The rotation
axis is U = (V| x B)/|V; x B|, but

[Vy x Bl = [V|[B] sin(#/2) = sin(6/2),
in which case
sin(0/2) (ugi + uyj + urk) = (cyi + c1j + k),

where C=V; x B.

If V; and V, are parallel, or nearly parallel as far as the floating-point cal-
culations are concerned, the calculation of B will produce the zero vector since
Vector3::Normalize checks for closeness to zero and returns the zero vector accord-
ingly. Thus, we test for parallelism by checking if cos(8/2) is zero. The test for exactly
zero is usually not recommended for floating-point arithmetic, but the implementa-
tion of Vector3: :Normalize guarantees the comparison is robust. The axis of rotation
for the parallel case can be any axis. If V, = (a, b, ¢), the axis I choose is the permu-
tation (c, b, a).

TeamLRN sPeCiAL

2.2 The Mathematics System 101

The decomposition functions are similar to the Euler angle decompositions for
matrices. Given a unit-length quaternion ¢ and a vector Vy, let V, be the rotation
of V, via the quaternion. We may think of ¢ as having two rotational components.
The first component is rotation about the axis perpendicular to V; and V, and is
represented by the quaternion ggying. The term swing is suggestive of the motion of
V, toward V, about the hinge perpendicular to the plane of those vectors. The second
component is the remaining rotation needed to complete the full rotation implied
by ¢ and is represented by the quaternion ¢y, The term twist is used because
this rotation is effectively about the axis with direction V;. Two decompositions are
possible:

9 = 9swing 9twist>

which is implemented in DecomposeSwingTimesTwist, or

49 = Gtwist 9swing>

which is implemented in DecomposeTwistTimesSwing. The order you choose is, of
course, related to how your joint animations are implemented in the applications.

Physics

You might have asked the question: Why support addition, subtraction, and scalar
multiplication of quaternions when they are used only to represent rotations? The ro-
tational aspects require us only to work with quaternion multiplication. The answer
is that numerical methods for physical simulation require all the algebraic operations
when the simulation uses quaternions to represent rotation matrices. For example,
the equations of motion for an unconstrained rigid body of mass m with applied
force F and applied torque 7 are

X =p/m
g =wq/2
p=F
L=r,

where x is the location of the center of mass for the body, p is the linear momentum
(p = mv, where v is the linear velocity), g is the quaternion that represents the
orientation of the rigid body, w is the quaternion that represents the angular velocity
(this quaternion has w-component equal to zero), and L is the angular momentum.
If you were to numerically solve this with Euler’s method, the algorithm is

102 Chapter 2 Core Systems

x(t + h) =x(t) + hp(t)/m

q(t +h)=q(t) + ho(t)q(1)/2
p(t + h) =p(t) + hE()

L& +h)=L@) +ht(),

where the right-hand side depends on current time ¢, the time step 4 > 0, and the
state of the system at time 7. The left-hand side is the state of the system at time ¢ + /.
The right-hand side of the quaternion equation requires scalar multiplication and
quaternion addition. The left-hand side is generally not unit length because of the
approximation, so a numerical solver will normalize q(¢ + /) to make it unit length.
Of course you will most likely use more sophisticated numerical solvers, such as the
Runge-Kutta methods. These also use quaternion addition and scalar multiplication.

2.2.6 LINES AND PLANES

TeamLRN sPeCiAL

Lines and planes are two basic geometric objects in any 3D system. Minimal support
is provided for these.

Lines

The template class Line3 represents a parametric line P + ¢D for ¢ € R. The point P
is on the line and is considered to be the origin for the line. The unit-length vector
D is a direction for the line. The user is responsible for ensuring that the direction is
unit length. The class interface is self-explanatory. The data members for the origin
and direction are public since reading or writing them has no side effects. The most
complicated member function is

Real DistanceTo (const Vector3<Real>& rkQ) const;

which computes the distance from the input point to the line. The distance d from
point Q to the line is given by the equation

d=|D x (Q—P)|.
This equation represents the length of Q — P with the component in the direction D

projected out.

Planes

The template class P1ane3 represents a plane of the form N - X = c. The unit-length
vector N is normal to the plane, and the value ¢ is called the plane constant. If

2.2 The Mathematics System 103

P is any point on the plane, then ¢ = N - P. An equivalent representation of the
plane is N - (X — P) = 0. The user is responsible for ensuring that the normal is
unit length. The class interface is also self-explanatory. The data members for the
normal and constant are public since reading or writing them has no side effects.
Three constructors of interest are

Plane3 (const Vector3<Real>& rkNormal, Real fConstant);

Plane3 (const Vector3<Real>& rkNormal, const Vector3<Real>& rkP);

Plane3 (const Vector3<Real>& rkP0, const Vector3<Real>& rkP1,
const Vector3<Real>& rkP2);

The first allows you to specify the normal and constant, the second allows you to
specify the normal and a point on the plane, and the third generates the normal from
three points on the plane.

Two utility functions are provided. The first is

int WhichSide (const Vector3<Real>& rkP) const;

The positive side of the plane is defined to be the half space to which the plane normal
points. The negative side is the other half space. The function returns 1 if the input
point is on the positive side of the plane, —1 if the point is on the negative side of the
plane, and 0 if the point is on the plane. The second utility function is

Real DistanceTo (const Vector3<Real>& rkQ) const;
It computes the signed distance from the point Q to the plane. This quantity is
d=N-Q—c.

The sign of d is positive if the point is on the positive side of the plane, negative if
the point is on the negative side, and zero if the point is on the plane. The value |d|
is the true distance and is the length of the projection of Q — P onto a normal line to
the plane, where P is any point on the plane.

2.2.7 COLORS

TeamLRN sPeCiAL

The engine has two color classes, ColorRGB and ColorRGBA. Both classes are intended
to store color channels that are floating-point numbers in the interval [0, 1]. Extreme
precision for colors is not required, so only float is implemented (the classes are not
templates). Class ColorRGB stores a red-green-blue color in an array of three elements.
Class CoTorRGBA stores a red-green-blue-alpha color in an array of four elements. The
classes are nearly identical in structure to Vector3 and Vector4, respectively. The array
storage is used to allow safe typecasting of an object to a float* pointer, regardless of
whether the engine is running on a 32- or 64-bit platform.

104 Chapter 2 Core Systems

TeamLRN sPeCiAL

ColorRGB

The constructors other than the default and copy constructors are

ColorRGB (float fR, float fG, float fB);
ColorRGB (float afTuple[3]);

When using an array for colors, index 0 maps to red, index 1 maps to green, and index
2 maps to blue.
Member accessors are

operator const float* () const;
operator float* ();

float operator[] (int i) const;
float& operator[] (int i);
float R () const;

float& R ();

float G () const;

float& G ();

float B () const;

float& B ();

The first two members are for safe typecasting to float* pointers. The operator[]
members use the assert-and-repair paradigm. If the index is out of range, an assertion
is fired in debug mode, but in release mode the index is clamped to the valid range.
The remaining members are for access by name: R for the red channel, G for the green
channel, and B for the blue channel.

The comparison operators are useful for sorting and hashing. Such operations
might occur when attempting to generate a small subset of colors from a given set
(color quantization).

All the arithmetic operations and updates are performed on a per-channel basis.
This is true even for the multiplication operators, whereby the colors are said to
be modulated. When performing arithmetic on colors, it is possible that the final
results have color channels outside the interval [0, 1]. Two methods are provided to
transform the channels back to the interval [0, 1]. The C1amp method sets a negative
value to zero and a value larger than one to one. The ScaleByMax method assumes that
the color channels are nonnegative. The maximum channel is found and all channels
are divided by it.

ColorRGBA

The class CoTorRGBA stores its color channels in an array of four elements. The only
difference between this class and ColorRGB is the addition of a channel to store alpha

2.3 The Object System 105

values for color blending. The discussion of ColorRGB applies directly to ColorRGBA,
with one exception. The ScaleByMax method finds the maximum of the RGB chan-
nels and divides the RGB channels by that amount. The alpha channel is handled
differently: it is clamped to the interval [0, 1].

23 THE OBJECT SYSTEM

2.3.1

TeamLRN sPeCiAL

A graphics engine is sufficiently large and complex that it is subject to the rules
of large library design using object-oriented programming. The engine has enough
objects to manage that it is essential to have a core set of automatic services that the
application writers can rely on. This section discusses the support in Wild Magic for
object management.

RUN-TIME TYPE INFORMATION

Polymorphism provides abstraction of functionality. A polymorphic function call
can be made regardless of the true type of the calling object. But there are times when
you need to know the type of the polymorphic object or to determine if the object’s
type is derived from a specified type—for example, to safely typecase a base class
pointer to a derived class pointer, a process called dynamic typecasting. Run-time type
information (RTTI) provides a way to determine this information while the program
is executing.

Single-Inheritance Class Trees

A single-inheritance object-oriented system consists of a collection of directed trees
where the tree nodes represent classes and the tree arcs represent inheritance. The
arcs are directed in the sense that if C, is a base class and C is a derived class, the tree
has a directed arc from C; to Cy. The directed edges indicate an is-a relationshiop. A
root node of the tree represents the common base class of all the classes in that tree.
Although a single-inheritance system can have multiple trees, it is standard to imple-
ment a single tree. The root class provides basic services for any derived classes. Wild
Magic is architected with a single tree whose root class is Object. Figure 2.4 shows
a simple single-inheritance hierarchy. The root of the tree is Polygon. Rectangle is
a Polygon, and Square is a Rectangle. Moreover, Square is a Polygon indirectly. Tri-
angle is a Polygon, EquilateralTriangle is a Triangle, and RightTriangle is a Triangle.
However, Square is not a Triangle, and RightTriangle is not an EquilateralTriangle.
An RTTI system is an implementation of the directed trees. The basic RTTI data
type stores any class-specific information an application requires at run time. It also
stores a link to the base class (if any) to allow an application to determine if a class is
inherited from another class. The simplest representation stores no class information

106 Chapter 2 Core Systems

Polygon

RightTriangle

Triangle

Equilateral Triangle

Figure 2.4 Single-inheritance hierarchy.

and only the link to the base class. However, it is useful to store a string encoding the
name of the class. In particular, the string will be used in the streaming system that
is described later. The string may also be useful for debugging purposes in quickly
identifying the class type.

class Rtti

{

public:
Rtti (const String& rkName, const Rtti* pkBaseType);
~Rtti ();

const String& GetName () const;

bool IsExactly (const Rtti& rkType) const;
bool IsDerived (const Rtti& rkType) const;

private:

String m_kName;

const Rtti* m_pkBaseType;
bs

In order to support the namespace of Wild Magic version 3, Wm3, and other
namespaces defined by applications using the engine (including Wm1, used for Wild
Magic version 2), the string used for the class should contain the namespace as well.
In Wild Magic, a class Foo uses the name "Wm3.Foo". The member function GetName is
a simple accessor of the name.

The member function IsExactly checks to see if the caller RTTI object and the
input RTTI object are the same. The string names uniquely identify the RTTI objects
and may be compared to determine if the objects are the same. This is an expensive
test, though, and instead I take advantage of the fact that the RTTI objects persist

TeamLRN sPeCiAL

TeamLRN sPeCiAL

2.3 The Object System 107

throughout the application execution time. As such, the addresses of the objects are
themselves unique identifiers. The function is simply implemented as

bool Rtti::IsExactly (const Rtti& rkType) const

{
return &rkType == this;

The member function IsDerived checks to see if the caller RT'TI object has the
same type of the input RTTI object or if a class derived from that of the caller RTTI
object has the same type of the input RTTT object. This function implements a search
of the linear list starting at the directed tree node corresponding to the class for the
caller RTTI object and terminates either when a visited tree node matches the input
RTTI object (the function returns true) or when the root node of the directed tree is
reached without a match (the function returns false).

bool Rtti::IsDerived (const Rtti& rkType) const
{
const Rtti* pkSearch = this;
while (pkSearch)
{
if (pkSearch == &rkType)
return true;
pkSearch = pkSearch->m_pkBaseType;
}

return false;

The class in a single-inheritance tree must contain basic support for the RTTI
system:

class MyClass
{
public:
static const Rtti TYPE;
virtual const Rtti& GetType () const { return TYPE; }
1s

The RTTI object is static since that information is specific to the entire class. The
member is public since it needs to be used in RTTI queries. Because the name TYPE
of the static member is the same in each class, the derived class member hides the
base class member. The virtual function GetType allows you to access the correct type
when an object is available polymorphically through a base class pointer or reference.
The source file for each class must construct the static member:

108 Chapter 2 Core Systems

TeamLRN sPeCiAL

// in source file of root ''class Object'!
const Rtti Object::TYPE("Wm3.0bject",NULL);

// in source file of ''class DerivedClass : public BaseClass''
const Rtti DerivedClass::TYPE("Wm3.DerivedClass",&BaseClass::TYPE);

The constructor adds each new class to the single-inheritance tree of RTTI objects
and adds the tree arc from the derived class to the base class.

Because of the name hiding of TYPE, you should beware of incorrectly accessing
the type. For example,

DerivedClass* pkDerived = <some DerivedClass object>;
String kName0O = pkDerived->TYPE.GetName();

// kNameQ = "Wm3.DerivedClass"
String kNamel = pkDerived->GetType().GetName();

// kNamel = "Wm3.DerivedClass"

BaseClass* pkBase = pkDerived;

String kName2 = pkBase->TYPE.GetName();
// kName2 = "Wm3.BaseClass"

String kName3 = pkBase->GetType().GetName();
// kName3 = "Wm3.DerivedClass"

Object* pkRoot = pkDerived;

String kName4 = pkRoot->TYPE.GetName();
// kName4 = "Wm3.0bject"

String kName5 = pkRoot->GetType().GetName();
// kName5 = "Wm3.DerivedClass"

To be safe, you should always use the GetType member function when accessing the
RTTI name via the object itself. If you want to access the class RTTI name directly,
you can use MyClass: : TYPE to access the static member of MyClass.

The root class Object has been given four helper functions to make RTTI queries
a bit simpler to use:

class Object
{
public:
bool IsExactly (const Rtti& rkType) const;
bool IsDerived (const Rtti& rkType) const;
bool IsExactlyTypeOf (const Object* pkObj) const;
bool IsDerivedTypeOf (const Object* pkObj) const;

2.3 The Object System 109

// sample usage
DerivedClass* pkDerived = <some DerivedClass object>;
bool bResult0 = pkDerived->IsExactly(DerivedClass::TYPE);
// bResult0 = true
bool bResultl = pkDerived->IsExactly(BaseClass::TYPE);
// bResultl = false
bool bResult2 = pkDerived->IsDerived(BaseClass::TYPE);
// bResult2 = true

BaseClass* pkBase = <some BaseClass object>;

bool bResult3 = pkDerived->IsExactlyTypeOf (pkBase);
// bResult3 = false

bool bResult4 = pkDerived->IsDerivedTypeOf(pkBase);
// bResultd = true

bool bResult5 = pkBase->IsExactlyTypeOf(pkDerived);
// bResult5 = false

bool bResult6 = pkBase->IsDerivedTypeOf (pkDerived);
// bResulté = false

The implementations of the helper functions are quite simple and just transfer
the calls to the RTTT objects for processing:

bool Object::IsExactly (const Rtti& rkType) const

{
return GetType().IsExactly(rkType);

bool Object::IsDerived (const Rtti& rkType) const

{
return GetType().IsDerived(rkType);

bool Object::IsExactlyTypeOf (const Object* pkObj) const

{
return pkObj && GetType().IsExactly(pkObj->GetType());

bool Object::IsDerivedTypeOf (const Object* pkObj) const

{
return pkObj && GetType().IsDerived(pkObj->GetType());

TeamLRN sPeCiAL

110 Chapter 2 Core Systems

TeamLRN sPeCiAL

Static and Dynamic Typecasting

If you have a base class pointer to an object, yet at compile time know that the object
is from a derived class of the base class, you can use a static typecast to manipulate
that object:

DerivedClass* pkDerived0 = <some DerivedClass object>;
pkDerived0->SomeDerivedClassFunction(); // okay

BaseClass* pkBase = pkDerivedO;
pkBase->SomeDerivedClassFunction(); // will not compile

// typecast is safe since *pkBase is a DerivedClass object
DerivedClass* pkDerivedl = (DerivedClass*) pkBase;
pkDerivedl->SomeDerivedClassFunction(); // okay

There are times, though, when you want to manipulate a polymorphic object only
when it is from a specific class or derived from a specific class. Such information
might not be deduced at compile time and can only be determined at run time.
The static typecast is not safe because the object may very well not be in the class
to which you cast. The answer is to use a dynamic cast. The RTTI system allows you
to determine if the object is in the specified class. If it is, you can then safely typecast.
If it is not, you ignore the object and continue.

The root class Object provides services for static and dynamic typecasting. A static
typecast can be performed in a C-style as shown earlier, but to be consistent with
coding style and to support smart pointers, discussed in Section 2.3.3, wrappers are
provided for this. The support in both cases is via templates.

template <class T> T* StaticCast (Object* pkObj)

{
return (T*)pkObj;

template <class T> const T* StaticCast (const Object* pkObj)

{
return (const T*)pkObj;

template <class T> T* DynamicCast (Object* pkObj)
{
return pkObj
&& pkObj->IsDerived(T::TYPE) ? (T*)pkObj : NULL;

TeamLRN sPeCiAL

2.3 The Object System 111

template <class T> const T* DynamicCast (const Object* pkObj)
{
return pkObj
&& pkObj->IsDerived(T::TYPE) ? (const T*)pkObj : NULL;

The static casts just wrap the C-style cast. The support for smart pointers occurs
because of an implicit conversion allowed from a smart pointer object to an Object
pointer of the object managed by the smart pointer. The dynamic cast checks to
make sure the input object can be cast to the desired derived class. If it can, the
object pointer is returned. If it cannot, a null pointer is returned. The caller of the
dynamic cast must check the returned pointer to distinguish between the two cases.
For example,

class MyClassl : public Object {...};
class MyClass2 : public Object {...};

bool PerformClasslAction (Object* pkObj)
{
MyClassl* pkCast = DynamicCast<MyClassl>(pkObj);
if (pkCast)
{
// perform action
return true;

// object not from MyClassl
return false;

MyClassl* pkObjl = <some MyClassl object>;
bool bResultl = PerformClasslAction(pkObjl); // bResultl = true

MyClass2* pkObj2 = <some MyClass2 object>;

bool bResult2 = PerformClasslAction(pkObj2); // bResultl = false

The typecasting mechanisms absolutely depend on the input objects being point-
ers to objects in the Object single-inheritance tree. You must not pass pointers to
objects not in the system. The only alternative that can handle any objects is to have
compiler support where the RTTI is created and maintained implicitly, but compiler
support is typically a nonportable solution. Moreover, the compiler support must
handle multiple inheritance, so the RTTI system can be slower than one designed
specifically for single inheritance. I prefer portability and avoid multiple inheritance;
the RTTI system in Wild Magic reflects these preferences.

112 Chapter 2 Core Systems

2.3.2 NAMES AND UNIQUE IDENTIFIERS

TeamLRN sPeCiAL

Searching for specific objects at run time is useful. The graphics engine supports
searching based on a character string name and on a unique integer-valued identifier.

Name String

An application might require finding objects in the system during run time. To fa-
cilitate this, each object has a character string member. The string can be something
as simple as a human-readable name, but it could also contain additional informa-
tion that is useful to the application. For example, the root node of a model of a table
could be assigned the name string “Table 17” to identify that the model is in fact a
table, with the number indicating that other tables (or types of tables) exist in the
scene. It might be important for the application to know what room contains the
table. The name string can contain such information, for example, “Table 17 : Room
23
To support name strings, the Object class provides the following API:

public:
void SetName (const String& rkName);
const String& GetName () const;
virtual Object* GetObjectByName (const String& rkName);
virtual void GetAl10bjectsByName (const String& rkName,
TArray<Object*>& rkObjects);
private:
String m_kName;

The member functions SetName and GetName are standard accessors to the name
string. The member function GetObjectByName is a search facility that returns a
pointer to an object with the specified name. If the caller object has the specified
name, the object just returns a pointer to itself. If it does not have the input name, a
search is applied to member objects. The method of search depends on the Object-
derived class itself. Class Object compares the input name to the name of the object
itself. If found, the object pointer is returned. If not, a search is made over all the
controllers attached to the object, and if found, the controller pointer is returned.
Otherwise, a null pointer is returned indicating that an object with the specified
name was not found in the current object. A derived class implementation must call
the base class function before checking its own object members.

The name string is not necessarily unique. If two objects have the same name,
GetObjectByName will find one of them and return a pointer to it. The other object is
not found. The other name string member function handles multiple occurrences of
a name string. A call to GetA110bjectsByName will search for all objects with the input
name. The method of search depends on the Object-derived class itself.

TeamLRN sPeCiAL

2.3 The Object System 113

Unique Identification

Although names are readable and of use to a human, another form of identification
may be used to track objects in the system. At first glance you might choose to use
the memory address of the object as a unique identifier since, at a single instant in
time, the address is unique. Over time, however, you can run into problems with
this scheme. If the memory address of an object is stored by the application to be
processed at a later time, it is possible that the object is deleted at some intermediate
time. At deletion time the application then has a dangling pointer since the object
no longer exists. Worse, other memory allocations can occur with the chance that
an entirely new object has the same memory address as the old one that is now
defunct. The application no longer has a dangling pointer, but that pointer does not
point to the object the application thinks it is. The likelihood of such an occurrence
is higher than you think, especially when the memory manager is asked to allocate
and deallocate a collection of homogeneous objects, all objects of constant size in
memory.

To avoid such problems, each object stores a unique identifier. Wild Magic cur-
rently uses a 32-bit unsigned integer. The Object class has a static unsigned integer
member that stores the next available identifier. Each time an object is created, the
current static member value is assigned to the nonstatic object member; the static
member is then incremented. Hopefully, 32 bits is large enough to provide unique
identifiers for all objects over the lifetime of the application. If you have an applica-
tion that requires more than 2°? objects, either you can allow the wraparound that
will occur when incrementing the static member, or you can implement a “counter”
class that allows for more bits and provides the simple services of storing a static “next
available” counter and of incrementing a counter.

To support unique identifiers, the Object class provides the following API:

public:

unsigned int GetID () const;

static unsigned int GetNextID ();

virtual Object* GetObjectByID (unsigned int uilD);
private:

unsigned int m uiID;

static unsigned int ms_uiNextID;

The static member is initialized (pre-main) to zero. Each constructor for the class has
the line of code

m uiID = ms_uiNextID++;
This is a simple system that is not designed to reuse an old identifier when an object

is deleted. A more sophisticated system could allow reuse, but I believe the additional
run-time costs are not warranted.

114 Chapter 2 Core Systems

The member function GetObjectByID is similar in structure to the function Get-
ObjectByName, except that identifiers are compared rather than name strings. Since
the identifiers are unique, there is no need for a function GetA110bjectsByID. As with
the other search functions, the method of search in an Object-derived class is specific
to that class.

2.3.3 SHARING AND SMART POINTERS

TeamLRN sPeCiAL

One of the most important concepts in a large library is the ability to share objects.
Geometric models with a lot of data can have the data shared to minimize memory
use. Because texture images can take a lot of space, if two objects are to be textured
with the same image, you might as well share the texture object in order to minimize
memory use. It is unlikely that the application programmers can manually manage
shared objects without losing some (object leaking) or destroying some while others
are using them (premature destruction). An automated system can assist in the object
management. The method I use is to include a reference counter in the Object class
that counts how many objects have a pointer to the current one. Each time an object is
referenced by another, the reference count is incremented. Each time another object
decides not to reference the current one, the current’s reference count is decremented.
Once the reference counter decreases to zero, the object is no longer referenced in the
system and it is automatically deleted.

The programmer may be given the ability to increment or decrement the ref-
erence counts himself, but this once again assumes the programmer will properly
manage the objects. I prefer to hide the details of the sharing mechanism using a
smart pointer system. The Object class provides the following interface in support
of sharing:

class Object
{
public:
void IncrementReferences ();
void DecrementReferences ();
int GetReferences () const;
static THashTable<unsigned int,0Object*> InUse;
static void PrintInUse (const char* acFilename,
const char* acMessage);
private:
int m_iReferences;

}s

The data member m_iReferences stores the number of references to the object.
The Object constructor sets this value to zero. You may query an object to find out
how many references it has using the member function GetReferences. The function

TeamLRN sPeCiAL

2.3 The Object System 115

IncrementReferences does exactly what its name says: it increments the reference
counter. It is intended for use by the smart pointer system, but if programmers
have a compelling argument to call it explicitly, they may. I hope that they will also
call DecrementReferences at the appropriate time to balance out the increments and
decrements. The decrement function is

void Object::DecrementReferences ()
{
if (--m_iReferences == 0)
delete this;

The reference counter is decremented. As promised, if the counter becomes zero, the
object is deleted. I cannot stress the following point enough: The standard library
delete is called. The only time you should call this is when the object is dynamically
allocated. That means that all Objects in the system must be dynamically allocated.

The static hash table InUse and the static member function PrintInUse in the ref-
erence counting system are for debugging purposes. Each time an object is created,
the Object constructor adds to the hash table the pair consisting of the unique identi-
fier (the key) and a pointer to the object (the value). Each time an object is destroyed,
the Object destructor removes the key-value pair from the hash table. At any time
during the application run time, you can print out the list of objects that currently
exist using PrintInUse. The main reason I have these static values is to support look-
ing for object leaks. The details are provided in Section 2.3.8.

The smart pointer system is a template class that is designed to correctly manip-
ulate the reference counter in the Object class. The interface is

template <class T> class Pointer

{

public:
// construction and destruction
Pointer (T* pkObject = NULL);
Pointer (const Pointer& rkPointer);
~Pointer ();

// implicit conversions
operator T* () const;
T& operator* () const;
T* operator-> () const;

// assignment
Pointer& operator= (T* pkObject);
Pointer& operator= (const Pointer& rkReference);

116 Chapter 2 Core Systems

TeamLRN sPeCiAL

// comparisons

bool operator== (T* pkObject) const;

bool operator!= (T* pkObject) const;

bool operator== (const Pointer& rkReference) const;
bool operator!= (const Pointer& rkReference) const;

protected:
// the shared object
T* m_pkObject;

}s

You will see a typedef per class of the form
typedef Pointer<MyClass> MyClassPtr;

This is a convenient alias for smart pointers. I always create the name to be the
concatenation of the class name and the suffix Ptr (for “pointer”).

The implicit conversions and comparisons in the class have trivial implemen-
tations—no need to discuss them here. The constructors and destructor are

template <class T> Pointer<T>::Pointer (T* pkObject)
{
m_pkObject = pkObject;
if (m_pkObject)
m_pkObject->IncrementReferences();

template <class T> Pointer<T>::Pointer (const Pointer& rkPointer)
{
m_pkObject = rkPointer.m_pkObject;
if (m_pkObject)
m_pkObject->IncrementReferences();

template <class T> Pointer<T>::~Pointer ()
{
if (m_pkObject)
m_pkObject->DecrementReferences();

The constructors store the input pointer in m_pkObject and then increment that
object’s reference counter to indicate that we have just added a reference to the object.
The destructor decrements the reference counter to indicate that we have just lost a
reference to the object. If the object’s reference counter decreases to zero, the object
is automatically deleted.

TeamLRN sPeCiAL

2.3 The Object System 117

The only warning when implementing smart pointers is how to properly handle
assignments. The first assignment operator is

template <class T> Pointer<T>& Pointer<T>::operator= (T* pkObject)
{
if (m_pkObject != pkObject)
{
if (pkObject)
pkObject->IncrementReferences();

if (m_pkObject)
m_pkObject->DecrementReferences();

m_pkObject = pkObject;
}

return *this;

The first conditional guards against an assigment of a smart pointer object to itself,
for example,

MyClass* pkMC = new MyClass; // pkMC references = 0
MyClassPtr spkMC = pkMC; // pkMC references = 1
spkMC = pkMC; // pkMC references = 1

The assignment statement effectively does nothing. I believe it is safe to skip the first
conditional, but there is no point in executing more statements than you have to.

That said, the order of incrementing and decrementing is important. In [Ebe00]
I listed the original code for smart pointers, which included the assignment with
DecrementReferences first and IncrementReferences second. This is actually an error
in logic because the decrement can have the side effect of destroying the object that is
currently being assigned! For example,

class A : public Object { ... };

typedef Pointer<A> APtr;

class B : public Object { public: APtr MemberObject; };
typedef Pointer BPtr;

A* pkAObject = new A; // pkAObject references =
B* pkBObject = new B; // pkBObject references =
pkBObject.MemberObject = pkAObject; // pkAObject references =
ObjectPtr spkObject = pkBObject; // pkBObject references =
spkObject = pkAObject; // oops!

— = O O

118 Chapter 2 Core Systems

TeamLRN sPeCiAL

If you were to first decrement the reference count for the right-hand side spkObject,
the object affected is pkBObject. That is, the reference count on pkBObject is decre-
mented from 1 to 0. This causes pkBObject to be deleted. In the process of destruc-
tion, the MemberObject smart pointer goes out of scope and its destructor is called. In
that destructor, the function DecrementReferences is called on the object m_pkObject
points to, which in this case is what pkAObject points to. Therefore, the reference
count on pkAObject is decremented from 1 to 0, causing the object to be automat-
ically deleted. When this happens, pkAObject is a dangling pointer. The assignment
operator now attempts to call IncrementReferences on pkAObject, which is an error.

The rest of the material in this section on smart pointers is nearly the same as
in [Ebe00], but with modifications for the notation of Wild Magic version 3. My
apologies for repeating this, but the examples are important in understanding what
you can and cannot do with smart pointers.

There might be a need to typecast a smart pointer to a pointer or smart pointer.
For example, class Node, the internal node representation for scene graphs, is derived
from Spatial, the leaf node representation for scene graphs. Polymorphism allows
the assignment

Node* pkNode = <some node in scene graph>;
Spatial* pkObject = pkNode;

Abstractly, a smart pointer of type NodePtr is derived from SpatialPtr, but the
C++ language does not support this. The use of implicit operator conversions in the
smart pointer class guarantees a side effect that makes it appear as if the derivation
really does occur. For example,

// This code is valid.
NodePtr spkNode = <some node in scene graph>;
SpatialPtr spkObject = spkNode;

// This code is not valid when class A is not derived from class B.
APtr spkAObject = new A;
BPtr spkBObject = spkAObject;

The implicit conversions also support comparison of smart pointers to null, just
like regular pointers:

NodePtr spkNode = <some node in scene graph>;
SpatialPtr spkChild = spkNode->GetChildAt(2);
if (spkChild)
{

<do something with spkChild>;

TeamLRN sPeCiAL

2.3 The Object System 119

A simple example illustrating the use and cleanup of smart pointers is the follow-
ing. The class Node stores an array of smart pointers for its children.

NodePtr spNode = <some node in scene graph>;

Node* pkNode = new Node; // pkNode references =

NodePtr spkChild = new Node; // pkNode references =

spkNode->AttachChild(spkChild); // pkNode references =

spkNode->DetachChild(spkChild); // pkNode references =

spkChild = NULL; // pkNode references =
// destroy it

O = N~ O

-

This illustrates how to properly terminate use of a smart pointer. In this code the call
delete spkChild would work just fine. However, if the object that spkChild points to
has a positive reference count, explicitly calling the destructor forces the deletion, and
the other objects that were pointing to the same object now have dangling pointers.
If instead the smart pointer is assigned NULL, the reference count is decremented, and
the object pointed to is not destroyed if there are other objects referencing it. Thus,
code like the following is safe:

NodePtr spkNode = <some node in scene graph>;

Node* pkNode = new Node; // pkNode references = 0

NodePtr spkChild = new Node; // pkNode references = 1

spkNode->AttachChild(spkChild); // pkNode references = 2

spkChild = NULL; // pkNode references = 1,
// no destruction

Also note that if the assignment of NULL to the smart pointer is omitted in this code,
the destructor for the smart pointer is called, and the reference count for pkNode still
is decremented to 1.

Some other guidelines that must be adhered to when using smart pointers are the
following. Smart pointers apply only to dynamically allocated objects, not to objects
on the stack. For example,

void MyFunction ()
{

Node kNode; // kNode references = 0
NodePtr spkNode = &kNode; // kNode references = 1
spkNode = NULL; // kNode references = 0,

// kNode is deleted
}

is doomed to failure. Since kNode is on the stack, the deletion implied in the last
statement will attempt to deallocate stack memory, not heap memory.

Using smart pointers as function parameters or returning them as the result of a
function call also has its pitfalls. The following example illustrates the dangers:

120 Chapter 2 Core Systems

TeamLRN sPeCiAL

void MyFunction (NodePtr spkNode)
{

<do nothing>;

Node* pkNode = new Node;
MyFunction(pkNode) ;
// pkNode now points to invalid memory

On allocation pkNode has zero references. The call to MyFunction creates an instance of
NodePtr on the stack via the copy constructor for that class. That call increments the
reference count of pkNode to one. On return from the function, the instance of NodePtr
is destroyed, and in the process, pkNode has zero references and it too is destroyed.
However, the following code is safe:

Node* pkNode = new Node; // pkNode references = 0

NodePtr spkNode = pkNode; // pkNode references = 1;

MyFunction(spkNode); // pkNode references increase to 2,
// then decrease to 1

// pkNode references = 1 at this point
A related problem is the following:

NodePtr MyFunction ()

{
Node* pkReturnNode = new Node; // references = 0;
return pkReturnNode;

Node* pkNode = MyFunction();
// pkNode now points to invalid memory

A temporary instance of NodePtr is implicitly generated by the compiler for the return
value of the function. The copy constructor is called to generate that instance, so the
reference count on pkNode is one. The temporary instance is no longer needed and
is implicitly destroyed, and in the process, pkNode has zero references and it too is
destroyed. The following code is safe:

NodePtr spkNode = MyFunction();
// spkNode.m pkObject has one reference

The temporary instance increases the reference count of pkReturnNode to one. The
copy constructor is used to create spkNode, so the reference count increases to two.
The temporary instance is destroyed, and the reference count decreases to one.

2.3 The Object System 121

2.3.4 CONTROLLERS

TeamLRN sPeCiAL

Animation in the classic sense refers to the motion of articulated characters and ob-
jects in the scene. If a character is represented hierarchically, each node might rep-
resent a joint (neck, shoulder, elbow, wrist, knee, etc.) whose local transformations
change over time. Moreover, the values of the transformations are usually controlled
by procedural means as compared to the application manually adjusting the trans-
forms. This can be accomplished by allowing each node to store controllers, with each
controller managing some quantity that changes over time. In the case of classic ani-
mation, a controller might represent the local transform as a matrix function of time.
For each specified time in the application, the local transform is computed by the
controller, and the world transform is computed using this matrix.

It is possible to allow any quantity at a node to change over time. For example,
a node might be tagged to indicate that fogging is to be used in its subtree. The
fog depth can be made to vary with time. A controller can be used to procedurally
compute the depth based on current time. In this way animation is a concept that
refers to controlling any time-varying quantity in a scene graph.

The abstract base class that supports time-varying quantities is Controller.
The class will be discussed in detail in Section 4.5, including a presentation of the
Controller-derived classes in the engine. Here I will mention only the support in the
base class Object for controllers.

class Object
{
public:
void SetController (Controller* pkController);
int GetControllerQuantity () const;
Controller* GetController (int i) const;
void RemoveController (Controller* pkController);
void RemoveAllControllers ();
bool UpdateControllers (double dAppTime);
private:
// controllers (Pointer used directly to avoid circular headers)
TList<Pointer<Controller> >* m pkControllerlList;

Each controller can manage a single object. To guarantee this, the controllers
can be attached or detached only through the object intended to be managed. If a
controller is attached to an object, any previous object managed by the controller is
replaced by the new object. The replacement is handled internally by the object using
the controller’s SetObject member function. Support for attach and detach is in the
Object class. However, an object can have many controllers attached to it, with each
controller modifying a portion of the object’s state over time.

122 Chapter 2 Core Systems

2.3.5 STREAMING

TeamLRN sPeCiAL

Persistence of storage is a requirement for a game engine. Game content is typically
generated by a modeling tool and must be exported to a format that the game applica-
tion can import. The game application itself might have a need to save its data so that
it can be reloaded at a later time. Streaming of data refers to the process of mapping
data between two media, typically disk storage and memory. In this section, we will
discuss transfers between disk and memory, but the ideas directly apply to transfers
between memory blocks (which supports transfers across a network).

A scene graph is considered to be an abstract directed graph of objects (of base
type Object). The nodes of the graph are the objects, and the arcs of the graph are
pointers between objects. Each object has nonobject members, in particular, any
members of a native data type (integer, float, string, etc.). The abstract graph must be
saved to disk so that it can be re-created later. This means that both the graph nodes
and graph arcs must be saved in some reasonable form. Moreover, each graph node
should be saved exactly once. The process of saving a scene graph to disk is therefore
equivalent to creating a list of the unique objects in the graph, saving them to disk,
and in the process saving any connections between them. If the graph has multiple
connected components, then each component must be traversed and saved. Support
for saving multiple abstract objects is easy to implement. The class Stream provides
the ability to assemble a list of fop-level objects to save. Typically these are the roots of
scene graphs, but they can be other objects whose state needs to be saved. To support
loading the file and obtaining the same list of top-level objects, an identifying piece
of information must be written to disk before each abstract graph corresponding to
a top-level object. A simple choice is to write a string to disk.

The Stream API

The class that exists to manage the streaming process is Stream. The relevant public
portion of the interface is

class Stream

{

public:
// construction and destruction
Stream ();
~Stream ();

// The objects to process, each object representing an entry
// into a connected component of the abstract graph.

bool Insert (Object* pkObject);

bool Remove (Object* pkObject);

TeamLRN sPeCiAL

2.3 The Object System 123

void RemoveAll ();

int GetObjectCount ();

Object* GetObjectAt (int i) const;
bool IsTopLevel (Object* pkObject);

// Memory Toads and saves. Stream does not assume

// responsibility for the char arrays. The application must
// manage the input acBuffer for the call to Load and delete
// the output racBuffer for the call to Save.

bool Load (char* acBuffer, int iSize);

bool Save (char*& racBuffer, int& riSize);

// file loads and saves
bool Load (const char* acFilename);
bool Save (const char* acFilename);

// support for memory and disk usage
int GetMemoryUsed () const;
int GetDiskUsed () const;

A Stream object manages a list of top-level objects. Objects are inserted into
the list by Insert and removed from the list by Remove or RemoveAll. The function
GetObjectCount returns the number of objects in the top-level list. The function
GetObjectAt (int) returns the ith object in the list. The function IsTopLevel is mainly
used internally by Stream, but may be called by an application as a check for existence
of an object in the top-level list.

Streaming to and from disk is supported by the load/save functions that take a
filename (character string) as input. The other load/save functions are for streaming
to and from a memory block. The return value is true if and only if the function call
is successful.

The function call GetDiskUsed computes how much disk space the top-level ob-
jects will use, not counting the file header that is used in the Wild Magic scene file
format. This function is also used internally by the file Save function to allocate a
memory block of the appropriate size, stream the top-level objects to that block, and
then write the block with a single call to a low-level file writing function. The intent is
to avoid expensive disk operations that might occur if writes are made on a member-
by-member basis for each object. The function call GetMemoryUsed reports how much
memory is required to store the top-level objects. This is useful to obtain a memory
footprint of a scene graph for the purposes of designing an application to fit within a
budgeted amount of memory. Every class derived from Object must implement both
of these functions.

124 Chapter 2 Core Systems

The typical usage for disk streaming is shown in the next code block:

// save a list of objects
Stream kOutStream;
kOutStream.Insert(pkObjectl);

kOutStream. Insert (pkObjectN);
kOutStream.Save("myfile.mgc");

// load a 1ist of objects
Stream kInStream;
bool bLoaded = kInStream.Load("myfile.mgc");
if (bLoaded)
{
for (int i = 0; i < kInStream.GetObjectCount(); i++)
{
ObjectPtr spkObject = kInStream.GetObjectAt(i);
// Use prior knowledge of the file contents and statically
// cast the objects for further use by the application,
// ...or...
// Get the run-time type information and process the
// objects accordingly.

A pseudocode example of how the memory streaming might be used in a net-
working application follows:

// Server code:
Stream kOutStream;
// ...insert objects into kOutStream...
int iSize;
char* acBuffer;
kOutStream.Save(acBuffer,iSize);
create begin stream packet [send iSize];
send packet;
while (not done sending bytes from acBuffer)
{
create a packet of bytes from acBuffer;
send packet;
}
create end_stream packet;
send packet;
delete[] acBuffer;

TeamLRN sPeCiAL

TeamLRN sPeCiAL

2.3 The Object System 125

// Client code (in idle loop):
if (received begin stream packet)
{
int iSize;
get iSize from packet;
char* acBuffer = new char[iSize];
while (not end stream packet)
{
get packet;
extract bytes into acBuffer;
}
Stream kInStream;
kInStream.Load(acBuffer,iSize);
delete[] acBuffer;
// ...get objects from kInStream and process...

The Object API
The class Object has the following API to support streaming:
typedef Object* (*FactoryFunction)(Streamd);

class Object
{
public:
enum { FACTORY MAP_SIZE = 256 };
static THashTable<String,FactoryFunction>* ms pkFactory;
static bool RegisterFactory ();
static void InitializeFactory ();
static void TerminateFactory ();
static Object* Factory (Stream& rkStream);
virtual void Load (Stream& rkStream, Stream::Link* pkLink);
virtual void Link (Stream& rkStream, Stream::Link* pkLink);
virtual bool Register (Stream& rkStream) const;
virtual void Save (Stream& rkStream) const;
virtual int GetMemoryUsed () const;
virtual int GetDiskUsed () const;

The factory hash table stores class-static functions that are used to load an object
from disk. The key of the hash item is the RTTI string. The value is the factory
function for the class. For example, class Object has the factory function Object*

126 Chapter 2 Core Systems

TeamLRN sPeCiAL

Factory (Stream&). The factory hash table must be created and the factory functions
must be added to it during the initialization phase of the application (see Section
2.3.8). The functions RegisterFactory and InitializeFactory are built to do this. On
termination of the application, the factory hash table must be destroyed. The function
TerminateFactory does this. The functions Register, Save, and GetDiskUsed are used
for saving objects. The functions Factory, Load, and Link are used for loading objects.
The function GetMemoryUsed is not used for streaming, but does provide a measure
of memory usage, which can differ from disk usage. Each derived class has the same
API minus the static hash table and the TerminateFactory function. The streaming
functions are described in detail here.

Saving a Scene Graph

To save a scene graph, a unique list of objects must be created first. This list is built by
a depth-first traversal of the scene. Each Object that is visited is told to register itself
if it has not already done so. The virtual function that supports this is Register. The
base class registration function is

bool Object::Register (Stream& rkStream) const
{
Object* pkThis = (Object*)this; // conceptual constness
if (rkStream.InsertInMap(pkThis,NULL))
{
// Used to ensure the objects are saved in the order
// corresponding to a depth-first traversal of the scene.
rkStream. InsertInOrdered(pkThis);

TList<ControllerPtr>* pkList = m_pkControllerList;
for (/**/; pkList; pkList = pkList->Next())
{
Controller* pkController = pkList->Item();
if (pkController)
pkController->Register(rkStream);

return true;

return false;

TeamLRN sPeCiAL

2.3 The Object System 127

The stream maintains a hash table of registered objects. The base class Object
implements this function to ask the stream if the object has been registered. If so,
the function returns false. If not, the stream adds the object to the hash map, and
the object tells the stream to register its only Object* members, a list of Controller
objects. The function then returns true. Each derived class implements this function.
The base class function is called. If the registration is successful, this object is visited
for the first time, and it tells each Object* member to register itself. The generic
structure is

bool DerivedClass::Register (Stream& rkStream) const

{
if (!BaseClass::Register(rkStream))
return false;

if (m_spkObjectMemberl)
m_spkObjectMemberl->Register(rkStream);

// ... other object member registration ...

if (m_spkObjectMemberN)
m_spkObjectMemberN->Register(rkStream);

return true;

After the registration phase, the stream has a list of unique Objects. An iteration
is made through the list, and each object is told to save itself. The base class virtual
function that supports this is

void Object::Save (Stream& rkStream) const

{
WM3_BEGIN_DEBUG_STREAM SAVE;

// RTTI name for factory lookup on Load
rkStream.Write(GetType().GetName());

// address of object for unique ID on Load/Link
rkStream.Write(this);

// name of object
rkStream.Write(m_kName);

128 Chapter 2 Core Systems

TeamLRN sPeCiAL

// link data

int iQuantity = 0;

TList<ControllerPtr>* pkList = m_pkControllerList;

for (/**/; pkList; pkList = pkList->Next())
iQuantity++;

rkStream.Write(iQuantity);

pkList = m_pkControllerList;
for (/**/; pkList; pkList = pkList->Next())
rkStream.Write(pkList->Item());

WM3_END_DEBUG_STREAM_SAVE (Object);

The RTTI (run-time type information) name is a string specific to the class. The
string for class Object is “Wm3.Object”, but Object is an abstract base class, so you
will not see this name in a scene file. The class Spatial is also abstract and has the
name “Wm3.Spatial”, but objects of class Node can be instantiated, so you will see
“Wm3.Node” in the scene files. The RTTI name is used by the stream loader to locate
the correct factory function to create an object of that class. The address of the object
is written to disk to be used as a unique identifier when loading. That address will
not be a valid memory address when loading, so the stream loader has to resolve
these addresses with a linking phase. Each object may have a character string name.
Such strings are written to disk by saving the length of the string first followed by the
characters of the string. The null terminator is not written. The controller pointers
are also memory addresses that are written to disk for unique identification of the
objects. When the controllers themselves are written to disk, those same addresses
are the ones that occur immediately after the RTTI names are written.

Each derived class implements Save. The base class Save is called first. Non-Object
data is written to disk first, followed by any Object* addresses.

void DerivedClass::Save (Stream& rkStream) const

{
WM3_BEGIN_DEBUG_STREAM_ SAVE;

BaseClass::Save(rkStream);
write non-object data; // ''native'' data

write Object* pointers; // ''link'' data

WM3_END_DEBUG_STREAM_SAVE(DerivedClass);

TeamLRN sPeCiAL

2.3 The Object System 129

Not all native data needs to be saved. Some data members are derivable from
other data and are reproduced once the data is fully loaded from disk. Some data
members are set by other run-time processes and need not be saved. For example,
Spatial has an Object* member, the pointer to a parent node. When the scene graph
is reconstructed during stream loading, that parent pointer is initialized when the
spatial object is attached to a parent by a call to an appropriate Node member function.
Therefore, the parent pointer is not saved to disk. Some native data may be aggregate
data in the form of a class—for example, the class Vector3. Various template functions
are provided in the streaming source files to save such classes based on memory size.
The implication is that any such class cannot have virtual functions; otherwise, the
memory size includes the size of the nonstatic class members as well as the size of the
implicit virtual function table pointer.

Although a single scene graph is typically written to disk, the stream object allows
multiple objects to be written. For example, you might save a scene graph, a set of
camera objects, and a set of light objects. The root node of the scene is what you
tell the stream object to save. This node is an example of a top-level object. Other
objects that are contained in the scene graph are automatically saved, but they are not
top-level objects. When you load a scene file that contains multiple top-level objects,
you need a way of loading the scene and recapturing these objects. Before a top-level
object is saved to disk, the string “Top Level” is written first. This allows the loader to
easily identify top-level objects.

A brief explanation is in order for the couple of code samples previously shown.
You saw the macros WM3_BEGIN_DEBUG_STREAM_SAVE and WM3_END_DEBUG_STREAM SAVE
(classname). I introduced these to help debug the streaming code for new classes that
are added to Wild Magic. Each Object-derived class implements a function called
GetDiskUsed. The function returns the number of bytes that the object will require
for storage on disk. The Stream class saves a scene graph to a memory block first,
then writes the memory block to disk. In order to have a large enough memory
block, the Stream queries all the unique objects to be streamed by calling GetDiskUsed
per object. The sum of the numbers is exactly the number of bytes required for the
disk operation. During the streaming to the memory block, Stream maintains an
index to the location in the memory block where the next write should occur. The
“begin” macro saves the index before any writes occur, and the “end” macro saves
the index after all writes occur. The difference should be exactly the amount reported
by GetDiskUsed for that object. If the difference is in error, an assertion is fired. The
problem is either that you are incorrectly saving the object to disk or that GetDiskUsed
itself is incorrectly implemented. The firing of the assertion has been enough for me
to track down which of the two is the problem.

Loading a Scene Graph

Loading is a more complicated process than saving. Since the pointer values on
disk are invalid, each object must be created in memory first and then filled in

130 Chapter 2 Core Systems

TeamLRN sPeCiAL

with data loaded from disk. Links between objects such as parent-child relationships
must be established later. Despite the invalidity of the disk pointer values, they do
store information about the abstract graph that is being loaded. The address of each
object in memory is associated with a disk pointer value, so the same hash table
that was used for storing the unique objects for saving can be reused for tracking
the correspondence between the disk pointer values, called link IDs, and the actual
memory address of the object. Once all objects are in memory and the hash table is
complete with the correspondences, the table is iterated as if it were a list, and the link
IDs in each object are replaced by the actual memory addresses. This is exactly the
concept of resolving addresses that a linker uses when combining object files created
by a compiler.

An object is loaded as follows. The stream object knows that the first thing to
expect is either the string “Top Level” or an RTTI string. If “Top Level” is read, the
loaded object is stored in a set of top-level objects for the application to access. If an
RTTI string is read, the stream knows that it needs to create an object of that type
from the file data that follows the RTTI string. The RTTI string is used as a key in
a hash map that was created pre-main at program initialization. The value of a hash
map entry is a static class function called Factory. This function starts the loading
process by creating an object of the desired type and then filling in its member values
by reading the appropriate data from the file. The factory function for instantiable
classes is structured as

classname* classname::Factory (Stream& rkStream)
{
classname* pkObject = new classname;
Stream::Link* pkLink = new Stream::Link(pkObject);
pkObject->Load (rkStream,pkLink) ;
return pkObject;

The scene file contains a list of unique objects, each storing a link ID. This identi-
fier was the address of the object when it was saved to disk. Any Object* members in
an object are themselves old addresses, but are now link IDs that refer to objects that
are in the scene file. When loading an object, all link IDs must be stored persistently
so that they may be resolved later in a linking phase. The second line of the Factory
function creates an object to store these links. The link object itself is stored as the
value in a hash map entry whose key is the input object to the constructor. The call
to Load allows the object to read its native data and Object* links from disk. The link
object is passed down from derived classes to base classes to allow each base class to
add any links it loads.

The Load function for the base class Object does the work of telling the stream to
add the link-object pair to the stream’s hash map. After that, the object’s native data
and links are loaded. The function is

TeamLRN sPeCiAL

2.3 The Object System

void Object::Load (Stream& rkStream, Stream::Link* pkLink)

WM3_BEGIN_DEBUG_STREAM_LOAD;

// get old address of object, save it for Tinking phase
Object* pkLinkID;

rkStream.Read (pkLinkID);

rkStream. InsertInMap (pkLinkID,pkLink);

// name of object
rkStream.Read(m_kName) ;

// link data

int iQuantity;

rkStream.Read (iQuantity);

m_pkControllerList = NULL;

for (int i = 0; i < iQuantity; i++)

{
Controller* pkController;
rkStream.Read(pkController);
pkLink->Add (pkController);

// build pkController 1ist, to be filled in by Link
TList<ControllerPtr>* pkList = new TList<ControllerPtr>;
pkList->Item() = NULL;

pkList->Next() = m_pkControllerlList;

m_pkControllerList = pkList;

WM3_END_DEBUG_STREAM_LOAD(Object);

131

Notice how the function loads the controller pointers. At the time the object was

saved to disk, this value was the memory address for the controller. Now at load time
it can only be used as a unique identifier. That value is stored in the link object for
the linking phase that occurs after loading.

Derived classes implement the Load function by calling the base class Load first

void DerivedClass::Load (Stream& rkStream, Stream::Link* pkLink)

WM3_BEGIN DEBUG_STREAM_LOAD;

and then reading native data followed by link data. This is done in the same order
that Save processed the data.

132 Chapter 2 Core Systems

TeamLRN sPeCiAL

BaseClass::Load(rkStream,pkLink);

read non-object data; // ''native'' data

read Object* pointers; // ''link'' data

add Object* pointers to pkLink; // for later linking phase

WM3_END_DEBUG_STREAM_LOAD(DerivedClass);

Once all objects are loaded from disk, the linking phase is initiated. An iteration
is made over the list of loaded objects, and the link function is called for each object.
The base class linking function is

void Object::Link (Stream& rkStream, Stream::Link* pkLink)
{
TList<ControllerPtr>* pkList = m_pkControllerList;
for (/**/; pkList; pkList = pkList->Next())
{
Object* pkLinkID = pkLink->GetLinkID();
pkList->Item() = (Controller*)rkStream.GetFromMap(pkLinkID);

The generic structure of the linking function is

void classname::Link (Stream& rkStream, Stream::Link* pkLink)

{
Object* pkLinkID;

// 1ink member 1

pkLinkID = GetLinkID();

m_spkObjectMemberl =
(ObjectMemberlClass*)rkStream.GetFromMap (pkLinkID);

// ... other object member linking ...
// link member N
pkLinkID = GetLinkID();
m_spkObjectMemberN =
(ObjectMemberNClass*) rkStream.GetFromMap (pkLinkID);

// post-1ink semantics, if any, go here...

2.3 The Object System 133

The function GetLinkID accesses a link ID and internally increments a counter so that
the next call accesses the next link ID. The objects must be linked in the order in which
they were saved to disk (which is the same order they were loaded from disk).

A brief explanation is in order for the couple of code samples previously shown.
You saw the macros WM3_BEGIN_DEBUG_STREAM_LOAD and WM3_END_DEBUG_STREAM_LOAD
(classname). These are analogous to the macros used for saving a scene. They allow
you to track down any implementation errors in streaming when adding new classes
to Wild Magic. The Stream class loads a scene graph to a memory block first and
then writes the memory block to a scene in memory. In order to have a large enough
memory block, the Stream queries all the unique objects to be streamed by calling
GetDiskUsed per object. The sum of the numbers is exactly the number of bytes
required for the disk operation. During the streaming to the memory block, Stream
maintains an index to the location in the memory block where the next read should
occur. The “begin” macro saves the index before any reads occur, and the “end” macro
saves the index after all reads occur. The difference should be exactly the amount
reported by GetDiskUsed for that object. If the difference is in error, an assertion is
fired. The problem is either that you are incorrectly loading the object from disk or
that GetDiskUsed itself is incorrectly implemented.

2.3.6 CLONING

TeamLRN sPeCiAL

Wild Magic version 2 did not formally have a system for copying an object. As it turns
out, a side effect of the streaming system is that you can create a copy—a deep copy
in the sense that an entire object is duplicated (no subobject is shared). The interface
for this is

class Object

{

public:
Pointer<Object> Copy () const;
static char NameAppend;

}s

The idea is straightforward. The object to be copied can be streamed to a memory
block, and the memory block is immediately streamed back to a new object that
happens to be a copy of the old one. The code is

ObjectPtr Object::Copy () const

{
// save the object to a memory buffer
Stream kSaveStream;
kSaveStream.Insert((Object*)this);
char* acBuffer = NULL;

134 Chapter 2 Core Systems

TeamLRN sPeCiAL

int iBufferSize = 0;
bool bSuccessful = kSaveStream.Save(acBuffer,iBufferSize);
assert(bSuccessful);
if (!'bSuccessful)
return NULL;

// load the object from the memory buffer
Stream kLoadStream;
bSuccessful = kLoadStream.Load(acBuffer,iBufferSize);
assert(bSuccessful);
if (!'bSuccessful)
return NULL;
delete[] acBuffer;

// generate unique names
for (int i = 0; i < kLoadStream.GetOrderedQuantity(); i++)
{
Object* pkObject = kLoadStream.GetOrderedObject(i);
assert(pkObject);
const String& rkName = pkObject->GetName();
int ilLength = rkName.GetLength();
if (ilLength > 0)
{
// Object has a name, append a character to make
// it unique.
const char* acName = (const char*)rkName;
char* acNewName = new char[ilLength+2];
strcpy (acNewName,acName) ;
acNewName[iLength] = NameAppend;
acNewName[ilLength+1] = 0;
pkObject->SetName (String(acNewName)) ;

return kLoadStream.GetObjectAt(0);

Keep in mind that everything is a copy. This includes any string names that have
been attached to objects. If the duplicated object is to be placed in a scene graph with
the original, you then have two identically named objects. In most cases the duplicate
object is intended to be an object that has its own name. To automatically support
this, T have an extra block of code in the Copy function. New names are generated from
the old names by appending a special character, NameAppend. The special character is a

TeamLRN sPeCiAL

2.3 The Object System 135

static class member that you may set to whatever you want. The default is the pound
character (#).

A consequence of copying is that an object that consumes a lot of memory will
be duplicated to an object that consumes just as much memory. For example, if the
original object is a texture with a very large image, the copy has its own texture with a
duplicate of the very large image. What I had hoped to include in Wild Magic version
3 is what I call a cloning system—a system that copies some of the objects, but shares
others. After much experimentation and mental debate, I decided not to include a
cloning system at this time. The problem has to do with the semantics of what to
copy and what to share. To give all users the flexibility to copy or share what they
want, the system would have to be very complex.

What I thought would work is to have each class in the Object hierarchy maintain
a static bit field and a set of enumerated values. Each enumerated value corresponds
to an Object* data member of the class and to a bit in the field. For example,

class Derived : public Object
{
public:
enum
{
COPY_OBJECT A = 1,
COPY_OBJECT B
COPY_OBJECT_C

n "
=N
M

}s

static int CloneControl;

protected:

Object* m_pkObjectA;

Object* m_pkObjectB;

Object* m_pkObjectC;

// ... other non-Object data ...
1

// decide that A and C are copied, B is shared
Derived::CloneControl =
Derived::COPY_OBJECT A | Derived::COPY_OBJECT C;

// clone an object through an Object::Clone() member function
DerivedPtr spkDerived = <some Derived object>;
ObjectPtr spkClone = spkDerived->Clone();

The default clone controls would be reasonably chosen, but users of the engine could
adjust as needed for their own applications.

136 Chapter 2 Core Systems

TeamLRN sPeCiAL

The problem, though, is that it is not always possible to grant the requests that
each class makes through its clone control. That makes the clone control enumera-
tions hints only, which can lead to unexpected behavior. I choose not to have unpre-
dictable side effects. To illustrate the problem, consider the graph in Figure 2.5. The
classes are

class A : public Object
{
public:
enum
{
COPY_OBJECT B = 1,
COPY_OBJECT C = 2

bs
static int CloneControl; // = COPY_OBJECT B

protected:
BPtr m_spkObjectB;
CPtr m_spkObjectC;
}s

class B : public Object

{
public:
enum

{
COPY OBJECT D = 1

bs

static int CloneControl; // = COPY OBJECT D
protected:

DPtr m_spkObjectD;
bs

class C : public Object

{

public:
enum
{

COPY_OBJECT D = 1
bs
static int CloneControl; // = COPY_OBJECT_D

Figure 2.5

TeamLRN sPeCiAL

2.3 The Object System 137

o

Copy e Clone
®H © @& ©
Copy @ Copy

(a) (b)

A simple Object graph. (a) The nodes are labeled with their class types. The arcs are
labeled with the class’s requests for clone control. (b) The cloned object. The prime
superscripts indicate that those objects were copied.

protected:
DPtr m_spkObjectD;
}s

class D : public Object
{
public:
// no object members, so no clone control

}s

The initial clone controls are set up so that class A wants to copy m_spkObjectB,
but share m_spkObjectC. Class B and Class C both want to copy their m_spkObjectD
members (which point to the same object of class D). Figure 2.5(b) shows the result of
the cloning operation. The expectation was that the copied object A’ would share the
subgraph that was rooted at the class C member. The side effect is that the subgraph
at the class C member has had portions replaced by copies. Effectively, A’ does not
have the subgraph that was intended by the cloning operation. In fact, the problems
can be worse. Consider if class B wants its m_spkObjectD copied, but class C wants its
m_spkObjectD shared. To satisty this, the topology of the original graph must change
(B has a new child D/, but C retains its child D).

For a cloning operation to produce what you expect, it appears that if an object
in the graph is required to be copied, then any predecessors in the graph must also be
copied, even if their class’s clone control specifies they should be shared.

As I mentioned, the semantics are quite complicated. My recommendation is to
make copies and then replace objects in the copy by substituting the smart pointers
from the original as needed.

138 Chapter 2 Core Systems

2.3.7 STRING TREES

The Stream class provides the ability to save scene graphs to disk, but in a binary
format. A human-readable form of the data is sometimes desirable. The StringTree
class encapsulates the process of converting raw data to strings. When applied to a
scene graph, the end result is a tree of strings that corresponds to the scene graph.
The construction is not memory efficient, since the strings corresponding to a shared
object are not shared themselves. Because I only intended the human-readable format
for debugging purposes and for exploring output from exporters and other packages
that generate Wild Magic scenes, my design choice was to keep the construction as
simple as possible. The two tools that use string trees are the ScenePrinter tool and
the SceneTree tool. The first tool prints the strings to an ASCII text file and is portable
across platforms. The second tool is specific to the Microsoft Windows platform. A
Windows tree control is built to represent a scene graph. The tool launches a simple
window with the tree control and lots of readable data. In fact, the source code
for SceneTree was constructed so that, on a Microsoft Windows platform, you can
include the tree control code and launch a window during your application run. This
provides a more readable version of a scene than do the standard watch windows in
a compiler/development environment.
The essential portion of StringTree is

class StringTree

{

public:
// construction and destruction
StringTree (int iStringQuantity, int iChildQuantity);
~StringTree ();

// strings

int GetStringQuantity () const;

void SetString (int i, char* acString);
char* GetString (int i);

// children

int GetChildQuantity () const;

void SetChild (int i, StringTree* pkChild);
StringTree* GetChild (int i);

private:
TArray<char*> m_kStrings;
TArray<StringTree*> m_kChildren;

}s

TeamLRN sPeCiAL

2.3.8

TeamLRN sPeCiAL

2.3 The Object System 139

This is a simple tree structure. Each node of the tree has an array of strings and an
array of pointers to child nodes. The other member functions not listed here are for
formatting the raw data into strings and for recursively saving the tree.

Each Object-derived class is required to implement a member function

virtual StringTree* DerivedClass::SaveStrings (const char* acTitle);

The input is an optional string that is used in the StringTree tool to give a label on
array data or other conglomerate data. The class creates whatever strings it chooses
to make its native data human-readable. Any Object-based data members are asked
to create their own string trees to be attached as children to the current tree node. In
this manner the construction is recursive.

INITIALIZATION AND TERMINATION

A class in the object system might declare one or more static members. These mem-
bers are initialized in the source file for the class. If a static member is itself a class
object, the initialization is in the form of a constructor call. This call occurs before
the application’s main function starts (pre-main). The destructor is called after the
application’s main function terminates (post-main). The C++ compiler automati-
cally generates the code for these function calls.

Potential Problems

The pre-main and post-main mechanism has a few potential pitfalls. One problem is
that the order in which the function calls occurs is unpredictable and is dependent
on the compiler. Obtaining a specific order requires some additional coding to force
it to occur. Without the forced ordering, one pre-main initialization might try to use
a static object that has not yet been initialized. For example,

// contents of Matrix2.h
class Matrix2
{
public:
Matrix2 (float fE00, float fEO1l, float fE10, float fE11l);
Matrix2 operator* (float fScalar);
static Matrix2 IDENTITY;
protected:
float m_aafE[2][2];
1s

140 Chapter 2 Core Systems

TeamLRN sPeCiAL

// contents of Matrix2.cpp

Matrix2 Matrix2::IDENTITY(1.0f,0.0f,0.0f,1.0f);

Matrix2::Matrix2 (float fE00, float fEO1l, float fE10, float fE11l)
{

m_aafE[0] [0]
m_aafE[1] [0]

fEO0; m_aafE[0][1]
fE10; m_aafE[1][1]

fEO1;
fE11,

}

// ... other member functions here ...

// contents of MyClass.h
class MyClass
{
public:
static Matrix2 TWICE_IDENTITY;
}s

// contents of MyClass.cpp
Matrix2 Matrix2::TWICE_IDENTITY = Matrix2::IDENTITY*2.0f;

If the static matrix of MyClass is initialized first, the static matrix of Matrix2 has all
zero entries since the storage is reserved already by the compiler, but is set to zero
values as is all static data.

Problems can occur with file-static data. If a file-static pointer is required to
allocate memory, this occurs before the main application is launched. However, since
such an initialization is C-style and not part of class semantics, code is not generated
to deallocate the memory. For example,

int* g aiData = new int[17];

int main ()

{
memset (g_aiData,0,17*sizeof(int));
return 0;

}

The global variable g_aiData is allocated pre-main, but no deallocation occurs, thus
creating a memory leak. One mechanism to handle this is the atexit function pro-
vided by C or C++ run-time libraries. The input to atexit is a function that takes
no parameters and returns void. The functions are executed before the main applica-
tion exits, but before any global static data is processed post-main. There is an order
in this scheme, which is LIFO (last in, first out). The previous block of code can be
modified to use this:

int* g _aiData = new int[17];
void DeleteData () { delete[] g aiData; }

TeamLRN sPeCiAL

2.3 The Object System 141

int main ()

{
atexit(DeleteData);
memset (g_aiData,0,17*sizeof(int));
return 0;

Of course in this example the global array is allocated in the same file that has
main, so a delete statement may instead be used before the return from the function.
However, if the global array occurs in a different file, then some function in that
file has the responsibility for calling atexit with the appropriate deletion function
as input. That function will be called before main returns.

Another problem with file-static data may occur, but it depends on the compiler
you use. In order to initialize some part of the system, it might be desirable to force
a C-style function to be called pre-main. The following code in a source file has that
effect:

bool g bInitialized = Somelnitialization();
static bool SomelInitialization ()
{

// do the initialization

return true;

The initialization function is static because its only purpose is to force something to
happen specifically to items in that file. The fact that g_bInitialized is global requires
the compiler to make the symbol externally accessible by adding the appropriate label
to the compiled code in the object file. The compiler should then add the call of the
initialization function to its list of such functions to be called pre-main.

A drawback with this mechanism is that, in fact, the variable g_bInitializedisex-
ternally accessible. As such, you might have name clashes with symbols in other files.
One solution is to create a name for the dummy variable that has a large probability
of not clashing with other names. Another solution is to make the dummy variable
file-static.

static bool gs bInitialized = SomelInitialization();
static bool SomeInitialization ()
{

// do the initialization

return true;

The problem, though, is that an optimizing compiler or a smart linker might
try to be too smart. Noticing that gs_bInitialized is never referenced anywhere else

142 Chapter 2 Core Systems

TeamLRN sPeCiAL

in the file, and noticing that it is in fact static, the compiler or linker might very
well discard the symbol and never add the initialization function to its list of pre-
main initializers to call. Yes, this has happened in my experience, and it is a difficult
problem to diagnose. A compiler might provide a macro that lets you prevent the
static variable from being discarded, but then again it might not. A more robust
solution to prevent the discard is

static bool gs bInitialized = Somelnitialization();
static bool SomelInitialization ()
{

// do the initialization

gs_bInitialized = true;

return gs_blInitialized;

}

Hopefully, the compiler or linker will not try to be really smart and simply notice that
the static variable is used somewhere in the file and not discard it. If for some strange
reason the compiler or linker does figure this one out and discards the variable, a
more sophisticated body can be used.

To handle order dependencies in the generic solution for classes, discussed in the
next subsection, it is necessary to guard against multiple initializations. The following
will do this:

static bool gs bInitialized = SomeInitialization();
static bool SomelInitialization ()
{
if (!gs bInitialized)
{
// do the initialization
gs_bInitialized = true;
}
return gs bInitialized;

}

The C++ language guarantees that the static data gs_bInitialized is zero (false)
before any dynamic initialization occurs (the call to SomeInitialization), so this code
will work as planned to initialize once and only once.

A Generic Solution for Classes

Here is a system that allows a form of pre-main initialization and post-main termina-
tion that takes care of order dependencies. The idea is to register a set of initialization
functions and a set of termination functions, all registered pre-main using the file-
static mechanism discussed previously. The initialization and termination functions

TeamLRN sPeCiAL

2.3 The Object System 143

themselves are called in the main application and bound a call to a function that an
application is required to implement.

The class Main provides the ability to add initialization and termination functions.
The class has a member function that executes all the initializers and a member
function that executes all the terminators. The initializers and terminators, if any, are
called only once. The class structure is

class Main
{
public:
typedef void (*Initializer)(void);
typedef TArray<Initializer> InitializerArray;
static void AddInitializer (Initializer olnitialize);
static void Initialize ();

typedef void (*Terminator) (void);

typedef TArray<Terminator> TerminatorArray;
static void AddTerminator (Terminator oTerminate);
static void Terminate ();

private:
enum { IT_MAXQUANTITY = 256, IT_GROWBY = 256 };
static InitializerArray* ms_pkInitializers;
static TerminatorArray* ms_pkTerminators;

static int ms_iStartObjects, ms_iFinalObjects;

}s

The arrays of function pointers are initialized to NULL. The static data members
ms_iStartObjects and ms_iFinalObjects are used to trap object leaks in the program
execution. The function to add an initializer is

void Main::AddInitializer (Initializer olInitialize)
{
if (!ms_pkInitializers)
{
ms_pkInitializers = new InitializerArray(IT MAXQUANTITY,
IT_GROWBY);

ms_pkInitializers->Append(oInitialize);

144 Chapter 2 Core Systems

TeamLRN sPeCiAL

The initializer array is allocated only if there is at least one initializer. Once all ini-

tializers are added to the array, the function Initialize is called. Its implementation
is shown in the following. Notice the code blocks that are used for detecting object
leaks.

void Main::Initialize ()

{

// objects should not be created pre-initialize
ms_iStartObjects = Object::InUse.GetQuantity();
if (ms_iStartObjects != 0)
{
assert(ms_iStartObjects == 0);
Object::PrintInUse("ApplLog.txt",
"Objects were created before pre-main initialization");

if (ms_pkInitializers)
{
for (int i = 0; i < ms_pkInitializers->GetQuantity(); i++)
(*ms_pkInitializers)[i]();

delete ms_pkInitializers;
ms_pkInitializers = NULL;

// number of objects created during initialization
ms_iStartObjects = Object::InUse.GetQuantity();

The first time the function is called, the initializers are executed. Afterwards, the

array of functions is deallocated so that no work must be done in a post-main fashion
to free up the memory used by the array. The termination system is identical in
structure:

void Main::AddTerminator (Terminator oTerminate)

{

if (!ms_pkTerminators)

{
ms_pkTerminators = new TerminatorArray(IT_MAXQUANTITY,

IT_GROWBY);

ms_pkTerminators->Append (oTerminate);

TeamLRN sPeCiAL

2.3 The Object System 145

void Main::Terminate ()

{

// all objects created during the application should be deleted by now
ms_iFinalObjects = Object::InUse.GetQuantity();
if (ms_iStartObjects != ms_iFinalObjects)
{
assert(ms_iStartObjects == ms_iFinalObjects);
Object::PrintInUse("ApplLog.txt",
"Not all objects were deleted before"
"post-main termination");

if (ms_pkTerminators)
{
for (int i = 0; i < ms_pkTerminators->GetQuantity(); i++)
(*ms_pkTerminators) [1]();

delete ms_pkTerminators;
ms_pkTerminators = NULL;

// objects should not be deleted post-terminate
ms_iFinalObjects = Object::InUse.GetQuantity();
if (ms_iFinalObjects != 0)
{
assert(ms_iFinalObjects == 0);
Object::PrintInUse("AppLog.txt",
"Objects were deleted after post-main termination");

Once again I have added code blocks to detect object leaks. If you reach one of the

assert statements, you can ignore it and continue the program execution. This will

result in an ASCII file written to disk that contains a list of the objects that should
have been deleted, but were not. The list includes the unique identifiers stored in the
Object class and the object types. This allows you to set break points in the next run
to determine why the objects are not deleted. You will find in most cases that the
application termination function (see Chapter 8) did not set various smart pointers
to null.

For a 2D or 3D graphics application, you will use the Application interface de-

scribed in Chapter 8. The application library provides the following code block:

int main (int iQuantity, char** apcArgument)

{

Main::Initialize();

146 Chapter 2 Core Systems

TeamLRN sPeCiAL

int iExitCode = Application::Run(iQuantity,apcArgument);
Main::Terminate();
return iExitCode;

The details of how you hook your application into Application: : Run will be discussed
in Chapter 8.

Each class requiring initialization services must contain the following in the class
definition in the header file:

class MyClass

{

public:
static bool RegisterInitialize ();
static void Initialize ();

private:
static bool ms_bInitializeRegistered;

}s
The source file contains

bool MyClass::ms_bInitializeRegistered = false;
bool MyClass::RegisterInitialize ()
{
if (!ms_bInitializeRegistered)
{
Main::AddInitializer(classname::Initialize);
ms_bInitializeRegistered = true;
}

return ms_bInitializeRegistered;

void MyClass::Initialize () { <initializations go here> }

The registration uses the file-static pre-main initialization scheme discussed previ-
ously. Similar constructs are used if the class requires termination services.
I have provided macros for the previously mentioned code blocks:

WM3 DECLARE INITIALIZE
WM3_IMPLEMENT INITIALIZE(classname)

The macros are defined in Wm3Main.mcr. They may be used if no order dependencies
exist for the initialization. If there are dependencies, here is an example of how to
handle them. Suppose that class A initializes some static data and class B needs that

TeamLRN sPeCiAL

2.3 The Object System 147

data in order to initialize its own static data. The initializer for A must be called before
the initializer for B. The registration function for B is

bool B::RegisterInitialize ()
{
if (!ms_bInitializeRegistered)
{
A::RegisterInitialize();
Main::AddInitializer(B::Initialize);
ms_bInitializeRegistered = true;

}

return ms_bInitializeRegistered;

This guarantees that the initializer for A occurs in the array of functions before the
initializer for B. Since the array of functions is executed in the order stored, the correct
order of initialization is obtained.

This page intentionally left blank

TeamLRN sPeCiAL

CHAPTER

SCENE GRAPHS AND REN-I
DERERS

At its lowest level, a graphics engine has the responsibility to draw the objects
that are visible to an observer. An engine programmer typically uses a graphics
API such as OpenGL or Direct3D to implement a renderer whose job it is to correctly
draw the objects. On some platforms if no hardware acceleration exists or a standard
API is unavailable, the programmer might even write the entire graphics system to
run on the CPU; the result is called a software renderer. Although current consumer
graphics hardware has a lot of power and obviates the need for writing software
renderers on systems with this hardware, the ability to write software renderers is still
important—for example, on embedded systems with graphics capabilities such as cell
phones and handheld devices. That said, this book does not cover the topic of writing
a fully featured software renderer. Rather, the focus is on writing a renderer using an
existing graphics API, but hidden by an abstract rendering layer to allow applications
not to worry about whether the API is standard or user-written. Wild Magic has
renderers for OpenGL, for Direct3D, and even one to illustrate how you might write
a software renderer. The examples in the book refer to the OpenGL renderer, but the
ideas apply equally as well to Direct3D.

Building a renderer to draw primitives such as points, polylines, triangle meshes,
and triangle strips using basic visual effects such as textures, materials, and lighting is
a straightforward process that is well understood. The process is sometimes referred
to as the fixed-function pipeline. The graphics API limits you to calling functions
supported only by that API. Recent generations of graphics hardware, though, now
provide the ability to program the hardware. The programs are called shaders and
come in two flavors, vertex shaders and pixel shaders. Vertex shaders allow you to

149

TeamLRN sPeCiAL

150 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

control drawing based on vertex attributes such as positions, normals, and colors.
A simple vertex shader might draw a triangle mesh where the user supplies vertex
positions and colors. Pixel shaders allow you to control drawing through image-based
attributes. A simple pixel shader might draw a triangle mesh where the user supplies
vertex positions, texture coordinates, and a texture image to be interpolated to fill
in the final pixels that correspond to the drawn object. Writing shaders can be more
challenging than using the fixed-function pipeline.

A large portion of Usenet postings to groups related to computer graphics and
rendering are of the form “How do I do X with my graphics API?” The answers tend
to be compact and concise with supporting code samples on the order of a few lines of
API code. An abundant supply of Web sites may be found that provide tutorials and
code samples to help novice programmers with their ventures into writing renderers
for OpenGL or Direct3D. These are useful learning tools for understanding what it
takes to do low-level drawing. But in my opinion they lack insight into how you
architect a graphics system that supports complex applications such as games. In
particular:

1. How do you provide data efficiently to the renderer to support applications that
must run in real time?

2. How does an application interface with the renderer?
3. How do you make it easy for the application programmer to use the engine?

4. How can you help minimize the changes to the system when new features must
be added to support the latest creations from your artists?

Although other questions may be asked, the four mentioned are the most relevant to
a game application—my conclusion based on interacting with game companies that
used NetImmerse as their game engine.

The first question is clear. The demands for a 3D game are that it run at real-time
rates. Asking the renderer to draw every possible object in the game’s world is clearly
not going to support real time. The clipping and depth buffering mechanisms in the
graphics API will eliminate those objects that are not visible, but these mechanisms
use computation time. Moreover, they have no high-level knowledge of the game
logic or data organization. As an engine programmer, you have that knowledge and
can guide the renderer accordingly. The game’s world is referred to as the scene. The
objects in the world are part of the scene. When you toss in the interrelationships
between the objects and their various attributes, visual or physical, you have what is
called a scene graph. If you can limit the objects sent to the renderer to be only those
that are visible or potentially visible, the workload of the renderer is greatly reduced.
This type of data handling is called scene graph management. Visibility determination
is one aspect of the management, but there are others, many of which are discussed
later in the book.

Scene graph management is a higher-level system than the rendering system and
may be viewed as a front end to the renderer, one constructed to efficiently feed it. The

TeamLRN sPeCiAL

Scene Graphs and Renderers 151

design of the interface between the two systems is important to get right, especially
when the graphics engines evolve as rapidly as they do for game applications. This is
the essence of the second question asked earlier. As new requirements are introduced
during game development, the last thing you want to do is change the interface
between data management and drawing. Such changes require maintenance of both
the scene graph and rendering systems and can adversely affect a shipping schedule.
Although some change is inevitable, a carefully thought-out abstract rendering layer
will minimize the impact of those changes to other subsystems of the engine.

The third question is quite important, especially when your plan is to market
your graphics engine as a middleware tool to other companies, or even to internal
clients within your own company. A scene graph management system helps isolate
the application programmer from the low-level details of rendering. However, it
must expose the capabilities of the rendering system in a high-level and easy-to-
use manner. I believe this aspect of Wild Magic to be the one that has attracted the
majority of users. Application programmers can focus on the high-level details and
semantics of how their objects must look and interact in the application. The low-
level rendering details essentially become irrelevant at this stage!

The fourth question is, perhaps, the most important one. Anyone who has
worked on a game project knows that the requirements change frequently—
sometimes even on a daily or weekly basis. This aspect of frequent change is what
makes software engineering for a game somewhat different than that for other areas
of application. Knowing that change will occur as often as it does, you need to care-
fully architect the scene graph management system so that the impact of a change
is minimal and confined to a small portion of the engine. In my experience, the
worst type of requirement change is one of adding new visual effects or new geo-
metric object types to the system. Yet these are exactly what you expect to occur most
often during game development! Your favorite artist is hard at work creating a brand-
new feature: environment-mapped, bump-mapped, iridescent (EMBMI) clouds. The
cloud geometry is a mixture of points, polylines, and triangle meshes. The lead artist
approves the feature, and the programming staff is asked to support it as soon as
possible. After the usual fracas between the artists and programmers, with each side
complaining about how the other side does not understand its side, the game pro-
ducer intervenes and says, “Just do it.”! Now you must create a new set of classes in the
scene graph management system to support EMBMI clouds. The rendering system
might (or might not) have to be modified to support the visual aspects of the clouds.
The streaming system for persistent storage of the game assets must be modified to
handle the new type. Finally, you must modify the exporter for the artist’s modeling

. Okay, I made this one up, but it is illustrative of what you might encounter. About the producer’s decision:

Let’s face it. A good story, good game play, and fantastic artwork are essential. No consumer will notice
that fancy hack you made to reduce an intersection test from 7 cycles to 6 cycles. Relish the fact that your
name will be on the credits, hope that the consumer will actually read the credits, and look forward to the
next Game Developer’s Conference where your friends will congratulate you on that amazing hack!

152 Chapter 3 Scene Graphs and Renderers

package to export EMBMI clouds to the engine’s file format. If any of these tasks re-
quires you to significantly rewrite the scene graph manager or the renderer, there is
a good chance that the original architectures were not designed carefully enough to
anticipate such changes.?

This chapter is about the basic ideas that Wild Magic uses for scene graph man-
agement and for abstracting the renderer layer. I explain my design choices, but keep
in mind that there may be other equally valid choices. My goal is not to compare with
as many competing ideas as possible. Rather, it is to make it clear what motivated me
to make my choices. The necessity to solve various problems that arise in data man-
agement might very well lead someone else to different choices, but the problems to
solve are certainly the same.

Section 3.1 is a discussion of the subsystems I chose for the basic services provided
by the scene graph management. These include the classes Spatial, Node, Geometry,
and Renderer, which correspond to spatial decomposition, transformation, grouping
of related data, representation of geometric data, and drawing of the data.

Sections 3.2 and 3.3 describe the geometric state and geometric types of the
Spatial and Geometry classes. Topics include transformations and coordinate systems,
bounding volumes, updating geometric state, and specialized geometric types.

Section 3.4 is about render state and effects, which is the information that controls
how objects are drawn. I discuss an important distinction between the architecture
of Wild Magic version 3 and older versions of the engine: global state and local state.
Global state affects all objects in a specified portion of the scene (depth buffering,
alpha blending, wire frame, etc.), whereas local state affects a single, specified object
in the scene (texture coordinates, vertex colors, etc.).

Section 3.5 is a discussion about camera models and the renderer architecture.
Also discussed are issues regarding caching of data on the graphics card and multipass
rendering, not from a performance perspective, but from the perspective of how a
scene graph management system can support them in a manner independent of the
underlying graphics API.

3.1 THE CORE CLASSES

TeamLRN sPeCiAL

The most important subsystems of scene graph management are encapsulated in the
classes Spatial, Node, Geometry, and the abstract renderer layer Renderer. The first
three are designed to support feeding data to the last in an efficient manner. Figure
3.1 is the most important figure you will see in this book. The schematic diagram
shows how the four classes are interrelated.

. Be aware that major rewrites in the middle of a game development cycle can severely affect the value of

your stock options!

3.1 The Core Classes 153

Geometry Renderer
Indef(< Index Indices Colors,
modifiers controllers textures,
Model World materials
Vertex, |<| Vertex, || normals normals H
normal normal [} -
. > Semantics,
modifiers [* controllers e Moc.lel Wor'ld global state
vertices vertices
'
Model World
bound bound
RS . . . - - - |Shaders|
: World |
| Model or :
1 gcal transform |[:
Transform | | : Scale, A : Spatial
controllers | | : Local
0 transform :
Render : : Effects,
| I e oo . lights,
controllers global state
Parent Parent
world world Node

transform bound

Figure 3.1 The interrelationships among classes Spatial, Node, Geometry, and Renderer-.

3.1.1

TeamLRN sPeCiAL

The discussions in this section are all about why the various boxed items in the
diagram are encapsulated as shown. The arrows in the diagram imply a loose form of
dependency: An object at the arrowhead depends in some form on the object at the
origin of the arrow.

MOTIVATION FOR THE CLASSES

Before you can draw objects using a renderer, you actually need objects to draw! Of
course, this is the role of artists in the game development process. Using a modeling
package, an artist will create geometric data, usually in the form of points, polylines,

154 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

and triangle meshes, and assign various visual attributes, including textures, materi-
als, and lighting. Additional information is also created by the artists. For example,
keyframe data may be added to a biped structure for the purposes of animation of
the character. Complicated models such as a biped are typically implemented by the
modeling package using a scene graph hierarchy itself! For illustration, though, con-
sider a simple, inanimate object such as a model of a wooden table.

Geometry

The table consists of geometric information in the form of a collection of model ver-
tices. For convenience, suppose they are stored in an array V[i] for 0 <i < n. Most
likely the table is modeled as a triangle mesh. The triangles are defined as triples of
vertices, ordered in a consistent manner that allows you to say which side of the tri-
angle is outward facing from a display perspective, and which side is inward facing.
A classical choice for outward-facing triangles is to use counterclockwise ordering: If
an observer is viewing the plane of the triangle and that plane has a normal vector
pointing to the side of the plane on which the observer is located, the triangle ver-
tices are seen in a counterclockwise order in that plane. The triangle information is
usually stored as a collection of triples of indices into the vertex array. Thus, a triple
(i0,i1,i2) refers to a triangle whose vertices are (V[i0],V[i1],V[i2]). If dynamic
lighting of the table is desired, an artist might additionally create vertex model nor-
mals, although in many cases it is sufficient to generate the normals procedurally.
Finally, the model units are possibly of a different size than the units used in the
game’s world, or the model is intended to be drawn in a different size than what the
modeling package does. A model scale may be applied by the artist to accommodate
these. This does allow for nonuniform scaling, where each spatial dimension may be
scaled independently of the others. The region of space that the model occupies is
represented by a model bound, typically a sphere that encloses all the vertices, but this
information can always be generated procedurally and does not require the artist’s in-
put. The model bound is useful for identifying whether or not the model is currently
visible to an observer. All the model information created by the artist, or procedu-
rally generated from what the artist produces, is encapsulated by the class Geometry,
as shown in Figure 3.1.

Spatial

Suppose that the artist was responsible for creating both a table and a room in
which the table is placed. The table and room will most likely be created in separate
modeling sessions. When working with the room model, it would be convenient to
load the already-created table model and place it in the room. The technical problem
is that the table and room were created in their own, independent coordinate systems.
To place the table, it must be translated, oriented, and possibly scaled. The resulting

Figure 3.2

TeamLRN sPeCiAL

3.1 The Core Classes 155

local transformation is a necessary feature of the final scene for the game. I use the
adjective local to indicate that the transformation is applied to the table relative to
the coordinate system of the room. That is, the table is located in the room, and
the relationship between the room and table may be thought of as a parent-child
relationship. You start with the room (the parent) and place the table (the child) in
the room using the coordinate system of the room. The room itself may be situated
relative to another object—for example, a house—requiring a local transformation of
the room into the coordinate system of the house. Assuming the coordinate system
of the house is used for the game’s world coordinate system, there is an implied world
transformation from each object’s model space to the world space. It is intuitive that
the model bound for an object in model space has a counterpart in world space, a
world bound, which is obtained by applying the world transformation to the model
bound. The local and world transformations and the world bound are encapsulated
by the class Spatial, as shown in Figure 3.1. The (nonuniform) model scale of the
Geometry class and the transformations of the Spatial class are surrounded by a
dotted-line box to indicate that both participate in transformations, even though the
data is contained in their respective classes.

Node

The example of a house, room, and table has another issue that is partially related to
the local and world transformations. The objects are ordered in a natural hierarchy.
To make the example more illustrative, consider a house with two rooms, with a table
and chair in one room, and a plate, fork, and knife placed on the table. The hierarchy
for the objects is shown in Figure 3.2. Each object is represented by a node in the
hierarchy.

The objects are all created separately. The hierarchy represents parent-child rela-
tionships regarding how a child object is placed relative to its parent object. The Plate,

| House |

|R00m 1| |R00m2|

Table Chair

|Plate| |Knife| |F0rk|

A hierarchy to represent a collection of related objects.

156 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

Knife, and Fork are assigned local transformations relative to the Table. The Table and
Chair are assigned local transformations relative to Room 1. Room 1 and Room 2 are
assigned local transformations relative to the House. Each object has world transfor-
mations to place it directly in the world. If L e is the local transformation that
places the object in the coordinate system of its parent and Wy is the world trans-
formation of the object, the hierarchy implies the following matrix compositions.
The order of application to vectors (the vertices) is from right to left according to the
conventions used in Wild Magic

Whouse = LHouse

Wroom1 = Whouse LRoom1 = LHouse LRoom!1

Wroom2 = WHouse LRoom2 = LHouse LRoom?2
Wable = WRoom1 LTable = LHouse LRoom1 LTable

Wehair = Wroom1 Lchair = LHouse LRoom1 L Chair

Whiate = Wrable Lplate = LHouse LRoom1 LTable Lplate
WKnife = WTable LKnife = LHouse LRooml LTable LKnife
WFork = WTable LFork = LHouse LRooml LTable LFork'

The first equation says that the house is placed in the world directly. The local
and world transformations are the same. The second equation says that Room 1 is
transformed first into the coordinate system of the House, then is transformed to the
world by the House’s world transformation. The other equations have similar inter-
pretations. The last one says that the Fork is transformed into the coordinate system
of the Table, then transformed to the coordinate system of Room 1, then transformed
to the coordinate system of the House, then transformed to the world coordinates.
A path through the tree of parent-child relationships has a corresponding sequence
of local transformations that are composited. Although each local transformation
may be applied one at a time, it is more efficient to use the world transformation
of the parent (already calculated by the parent) and the local transformation of the
child to perform a single matrix product that is the world transformation of the
child.

The grouping together of objects in a hierarchy is the role of the Node class. The
compositing of transformations is accomplished through a depth-first traversal of
the parent-child tree. Each parent node provides its world transformation to its child
nodes in order for the children to compute their world transformations, naturally a
recursive process. The transformations are propagated down the hierarchy (from root
node to leaf nodes).

Each geometry object has a model bound associated with it. A node does not
have a model bound per se, given that it only groups together objects, but it can be

TeamLRN sPeCiAL

3.1 The Core Classes 157

assigned a world bound. The world bound indicates that portion of space containing
the collection of objects represented by the node. Keep in mind that the bound is
a coarse measurement of occupation, and that not all of the space contained in the
bound is occupied by the object. A natural choice for the world bound of a node is
any bound that contains the world bounds of its children. However, it is not necessary
that the world bound contain the child bounds. All that matters is that the objects
represented by the child nodes are contained in the world bound. Once a world
bound is assigned to a node, it is possible to define a model bound—the one obtained
by applying the inverse world transformation to the world bound. A model bound
for a node is rarely used, so the Node class does not have a data member to store this
information. If needed, it can be computed on the fly from other data.

Each time local transformations are modified at a node in the scene, the world
transformations must be recalculated by a traversal of the subtree rooted at that node.
But a change in world transformations also implies a change in the world bounds.
After the transformations are propagated down the hierarchy, new world bounds
must be recomputed at the child nodes and propagated up the hierarchy (from leaf
nodes to root node) to parent nodes so that they may also recompute their world
bounds.

Figure 3.1 shows the relationship between transformations and bounds. A con-
nection is shown between the world transformation (in Spatial) and the link between
the model bound (in Geometry) and the world bound (in Spatial). Together these
indicate that the model bound is transformed to the world bound by the world trans-
formation. The world transformation at a child node depends on its parent’s world
transformation. The relationship is shown in the figure by an arrow. The composi-
tion of the transformations occurs during the downward pass through the hierarchy.
The parent’s world bound depends on the child’s world bound. The relationship is
also shown in the figure by an arrow. The recalculation of the world bounds occurs
during the upward passes through the hierarchy. The downward and upward passes
together are referred to as a geometric update, whose implementation details will be
discussed later.

Renderer

Figure 3.1 has a block representing the rendering layer in the engine. Naturally, the
renderer needs to be fed the geometric data such as vertices and normals, and this
data must be in its final position and orientation in the world. The renderer needs to
know how the vertices are related to each other, say, as a triangle mesh, so the indices
must also be provided. Notice that some connections are shown between the world
transformations (in Spatial) and the links between the model vertices and normals
and the world vertices and normals. These indicate that someone must be responsible
for applying the transformations to the model data before the renderer draws them.
Although the Spatial class can be given the responsibility, most likely performing the

158 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

calculations on the central processing unit (CPU), the Renderer class instead takes on
the responsibility. A software renderer most likely implements the transformations
to be performed on the CPU, but renderers using current graphics hardware will
allow the graphics processing unit (GPU) to do the calculations. Because the target
processor is not always the CPU, it is natural to hide the transformation of model
data inside the renderer layer.

The renderer must also be provided with any vertex attributes, texture maps,
shader programs, and anything else needed to properly draw an object. On the ren-
derer side, all this information is shown in the box in that portion of Figure 3.1
corresponding to the Renderer class. The provider of the information is class Spa-
tial. Why Spatial and not Geometry? The choice is not immediately obvious. For
simple objects consisting of triangle meshes and basic attributes such as vertex colors,
materials, or textures, placing the data in Geometry makes sense. However, more com-
plicated special effects (1) may be applied to the entire collection of geometric objects
(at the leaf nodes) contained in a subtree of the hierarchy or (2) may require multiple
drawing passes in a subtree. An example of (1) is projected textures, where a texture
is projected from a postulated light source onto the surfaces of objects visible to the
light. It is natural that a node store such a “global effect” rather than share the effect
multiple times at all the geometric objects in the subtree. Shader programs are also
stored by the Spatial class for the same reason. A shader can affect multiple objects,
all in the same subtree of the hierarchy. An example of (2) is planar, projected shad-
ows, where an object casts shadows onto multiple planes. Each casting of a shadow
onto the plane requires its own drawing pass. The hierarchy support in Wild Magic
is designed to handle both (1) and (2).

Controllers and Modifiers

The word animation tends to be used in the context of motion of characters or
objects. I use the word in a more general sense to refer to any time-varying quantity in
the scene. The engine has support for animation through controllers; the abstract base
class is Controller. Figure 3.1 illustrates some standard quantities that are controlled.

The most common are transform controllers—for example, keyframe controllers
or inverse kinematic controllers. For keyframe controllers, an artist provides a set of
positions and orientations for objects (i.e., for the nodes in the hierarchy that repre-
sent the objects). A keyframe controller interpolates the keyframes to provide smooth
motion over time. For inverse kinematic controllers, the positions and orientations
for objects are determined by constraints that require the object to be in certain con-
figurations. For example, a hand on a character must be translated and rotated to pick
up a glass. The controller selects the translations and rotations for the hand according
to where the glass is.

Vertex and normal controllers are used for morphing and mesh deformation.
Render state controllers are used for animating just about any effect you like. For
example, a controller could be used to vary the color of a light source. A texture may

TeamLRN sPeCiAL

3.1 The Core Classes 159

be animated by varying the texture coordinates associated with the texture and the
object to which the texture applies. This type of effect is useful for giving the effect
that a water surface is in motion.

Index controllers are less common, but are used to dynamically change the topol-
ogy of a triangle mesh or strip. For example, continuous level of detail algorithms
may be implemented using controllers.

Controllers are not limited to those shown in Figure 3.1. Use your creativity to
implement as complex an animated effect as you can dream up.

I use the term modifier to indicate additional semantics applied to a collection of
vertices, normals, and indices. The Geometry class is a container for these items, but
is itself an abstract class. The main modifier is class TriMesh, which is derived from
Geometry, and this class is used to provide indices to the base class. A similar example
is class TriStrip, where the indices are implicitly created by the class and provided
to the Geometry base class. In both cases, the derived classes may be viewed as index
modifiers of the geometry base class.

Other geometric-based classes may also be viewed as modifiers of Geometry, in-
cluding points (class Polypoint) and polylines (class Polyline). Both classes may be
viewed as vertex modifiers. Particle systems (base class Particles) are derived from
class TriMesh. The particles are drawn as rectangular billboards (the triangle mesh
stores the rectangles as pairs of triangles), and so may be thought of as index modi-
fiers. However, the physical aspects of particles are tied into only the point locations.
In this sense, particle systems are vertex modifiers of the Geometry class.

How one adds the concept of modifiers to an engine is up for debate. The con-
troller system allows you to attach a list of controllers to an object. Each controller
manages the animation of some member (or members) of the object. As you add
new Controller-derived classes, the basic controller system need not change. This
is a good thing since you may extend the behavior of the engine without having to
rearchitect the core. Preserving old behavior when adding new features is related to
the object-oriented principle called the open-closed principle. After building a system
that, over time, is demonstrated to function as designed and is robust, you want it
to be closed to further changes in order to protect its integrity. Yet you also want the
system to be open to extension with new features. Having a core system such as the
controllers that allows you to create new features and support them in the (closed)
core is one way in which you can have both open and closed.

The classical manner in which you obtain the open-closed principle, though, is
through class derivation. The base class represents the closed portion of the system,
whereas a derived class represents the open portion. Regarding modifiers, I decided
to use class derivation to define the semantics. Such semantics can be arbitrarily
complex—something not easily fitted by a system that allows a list of modifiers to
be attached to an object. A derived class allows you to implement whatever interface
is necessary to support the modifications. Controllers, on the other hand, have simple
semantics. Each represents management of the animation of one or more object
members, and each implements an update function that is called by the core system.
The controller list-based system is natural for such simple objects.

160 Chapter 3 Scene Graphs and Renderers

3.1.2 SPATIAL HIERARCHY DESIGN

TeamLRN sPeCiAL

The main design goal for class Spatial is to represent a coordinate system in space.
Naturally, the class members should include the local and world transformations and
the world bounding volume, as discussed previously. The Geometry and Node classes
themselves involve transformations and bounding volumes, so it is natural to derive
these from Spatial. What is not immediately clear is the choice for having both classes
Spatial and Node. In Figure 3.2, the objects Table, Plate, Knife, Fork, and Chair are
Geometry objects. They all are built from model data, they all occupy a portion of
space, and they are all transformable. The objects House, Room 1, and Room 2 are
grouping nodes. We could easily make all these Spatial objects, but not Geometry
objects. In this scenario, the Spatial class must contain information to represent the
hierarchy of objects. Specifically, each object must have a link to its parent object (if
any) and links to its child objects. The links shown in Figure 3.2 represent both the
parent and child links.

The concepts of grouping and of representing geometric data are effectively dis-
joint. If Spatial objects were allowed child objects, then by derivation so would Ge-
ometry objects. Thus, Geometry objects would have double duty, as representations of
geometric data and as nodes for grouping related objects. The interface for a Geometry
class that supports grouping as well as geometric queries will be quite complicated,
making it difficult to understand all the behavior that objects from the class can ex-
hibit. I prefer instead a separation of concerns regarding these matters. The interfaces
associated with Geometry and its derived classes should address only the semantics
related to geometric objects, their visual appearances, and physical properties. The
grouping responsibilities are delegated instead to a separate class, in this case the
class Node. The interfaces associated with Node and its derived classes address only the
semantics related to the subtrees associated with the nodes. By separating the respon-
sibilities, it is easier for the engine designer and architect to maintain and extend the
separate types of objects (geometry types or node types).

My choice for separation of concerns leads to class Spatial storing the parent link
in the hierarchy and to class Node storing the child links in the hierarchy. Class Node
derives from Spatial, so in fact the Node objects have both parent and child links.
Class Geometry also derives from Spatial, but geometry objects can only occur as leaf
nodes in the hierarchy. This is the main consequence of the separation of concerns.
The price one pays for having the separation and a clean division of responsibilities is
that the hierarchy as shown in Figure 3.2 is not realizable in this scheme. Instead the
hierarchy may be structured as shown in Figure 3.3.

Two grouping nodes were added. The Table Group node was added because
the Table is a geometric object and cannot be an interior node of the tree. The
utensils (Plate, Knife, Fork) were children of the Table. To preserve this structure,
the Utensil Group node was added to group the utensils together. To maintain the
transformation structure of the original hierarchy, the Table Group is assigned the
transformations the Table had, the Table is assigned the identity transformation, and
the Utensil Group is assigned the identity transformation. This guarantees that the

Figure 3.3

TeamLRN sPeCiAL

3.1 The Core Classes

161

| House |

[Room 1] [Room 2|

Table Group
Utensil Group

The new hierarchy corresponding to the one in Figure 3.2 when geometric objects
can be only leaf nodes. Ellipses are used to denote geometric objects. Rectangles are

used to denote grouping nodes.

Utensil Group is in the same coordinate system that the Table is in. Consequently, the
utensils may be positioned and oriented using the same transformations that were

used in the hierarchy of Figure 3.2.

Alternatively, you can avoid the Utensil Group node and just make the utensils
siblings of the Table. If you do this, the coordinate system of the utensils is now that of
the Table Group. The transformations of the utensils must be changed to ones relative

to the coordinate system of the Table Group.

The portion of the interface for class Spatial relevant to the scene hierarchy

connections is

class Spatial : public Object
{
public:
virtual ~Spatial ();
Spatial* GetParent ();

protected:
Spatial ();
Spatial* m_pkParent;

// internal use
pubTic:

void SetParent (Spatial* pkParent);
1

162 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

The default constructor is protected, making the class an abstract base class. The
default constructor is implemented to support the streaming system. The class is
derived from the root class Object, as are nearly all the classes in the engine. All of the
root services are therefore available to Spatial, including run-time type information,
sharing, streaming, and so on.

The parent pointer is protected, but read access is provided by the public interface
function GetParent. Write access of the parent pointer is provided by the public
interface function SetParent. That block of code is listed at the end of the class. My
intention on the organization is that the public interface intended for the application
writers is listed first in the class declaration. The public interface at the end of the class
is tagged with the comment “internal use.” The issue is that SetParent is called by the
Node class when a Spatial object is attached as the child of a node. No other class (or
application) should call SetParent. If the method were put in the protected section
to prevent unintended use, then Node cannot call the function. To circumvent this
problem, Node can be made a friend of Spatial, thus allowing it access to SetParent,
but disallowing anyone else to access it. In some circumstances, a Node-derived class
might also need access to a protected member of Spatial. In the C++ language,
friendship is not inherited, so making Node a friend of Spatial will not make the
Node-derived class a friend of Spatial. To avoid the somewhat frequent addition
of friend declarations to classes to allow restricted access to protected members, 1
decided to use the system of placing the restricted access members in public scope,
but tagging that block with the “internal use” comment to let programmers know
that they should not use those functions.

The portion of the interface for class Node relevant to the scene hierarchy connec-
tions is

class Node : public Spatial

{

public:
Node (int iQuantity = 1, int iGrowBy = 1);
virtual ~Node ();

int GetQuantity () const;

int GetUsed () const;

int AttachChild (Spatial* pkChild);

int DetachChild (Spatial* pkChild);

SpatialPtr DetachChildAt (int i);

SpatialPtr SetChild (int i, Spatial* pkChild);
SpatialPtr GetChild (int i);

protected:
TArray<SpatialPtr> m_kChild;
int m_iUsed;

s

3.1.3

TeamLRN sPeCiAL

3.1 The Core Classes 163

The links to the child nodes are stored as an array of Spatial smart pointers. Clearly,
the pointers cannot be Node pointers because the leaf nodes of the hierarchy are
Spatial-derived objects (such as Geometry), but not Node-derived objects. The non-
null child pointers do not have to be contiguous in the array, so where the children
are placed is up to the programmer. The data member m_iUsed indicates how many
of the array slots are occupied by nonnull pointers.

The constructor allows you to specify the initial quantity of children the node
will have. The array is dynamic; that is, even if you specify the node to have a certain
number of children initially, you may attach more children than that number. The
second parameter of the constructor indicates how much storage increase occurs
when the array is full and an attempt to attach another child occurs.

The AttachChild function searches the pointer array for the first available empty
slot and stores the child pointer in it. If no such slot exists, the child pointer is
stored at the end of the array, dynamically resizing the array if necessary. This is an
important feature to remember. For whatever reason, if you detach a child from a
slot internal to the array and you do not want the next child to be stored in that slot,
you must use the SetChild function because it lets you specify the exact location for
the new child. The return value of AttachChild is the index into the array where the
attached child is stored. The return value of SetChild is the child that was in the ith
slot of the array before the new child was stored there. If you choose not to hang
onto the return value, it is a smart pointer, in which case the reference count on the
object is decremented. If the reference count goes to zero, the child is automatically
destroyed.

Function DetachChild lets you specify the child, by pointer, to be detached. The
return value is the index of the slot that stored the child. The vacated slot has its
pointer set to NULL. Function DetachChildAt lets you specify the child, by index, to
be detached. The return value is that child. As with SetChild, if you choose not to
hang onto the return value, the reference count on the object is decremented and, if
zero, the object is destroyed.

Function GetChild simply returns a smart pointer to the current child in the speci-
fied slot. This function is what you use when you iterate over an array of children and
process them in some manner—typically something that occurs during a recursive
traversal of a scene graph.

INSTANCING

The spatial hierarchy system is a tree structure; that is, each tree node has a single
parent, except for a root node that has no parent. You may think of the spatial
hierarchy as the skeleton for the scene graph. A scene graph really is an abstract graph
because the object system supports sharing. If an object is shared by two other objects,
effectively there are two instances of the first object. The act of sharing the objects is
called instancing. I do not allow instancing of nodes in a spatial hierarchy, and this

164 Chapter 3 Scene Graphs and Renderers

Figure 3.4

TeamLRN sPeCiAL

[Room 1] [Room 2|

Room Contents

A scene graph corresponding to a house and two rooms. The rooms share the same
geometric model data, called Room Contents.

is enforced by allowing a Spatial object to have only a single parent link. Multiple
parents are not possible.> One of the questions I am occasionally asked is why I made
this choice.

For the sake of argument, suppose that a hierarchy node is allowed to have mul-
tiple parents. A simple example is shown in Figure 3.4. The scene graph represents
a house with two rooms. The rooms share the same geometric model data. The two
rooms may be thought of as instances of the same model data. The implied structure
is a directed acyclic graph (DAG). The house node has two directed arcs to the room
nodes. Each room node has a directed arc to the room contents leaf node. The room
contents are therefore shared. Reasons to share include reducing memory usage for
the game application and reducing your artist’s workload in having to create distinct
models for everything you can imagine in the world. The hope is that the user is not
terribly distracted by the repetition of like objects as he navigates through the game
world.

What are some of the implications of Figure 3.4? The motivation for a spatial hier-
archy was to allow for positioning and orienting of objects via local transformations.
The locality is important so that generation of content can be done independently of
the final coordinate system of the world (the coordinate system of the root node of
the scene). A path through the hierarchy from root to leaf has a corresponding se-
quence of local transformations whose product is the world transformation for the
leaf node. The problem in Figure 3.4 is that the leaf node may be reached via two paths
through the hierarchy. Each path corresponds to an instance of the leaf object. Realize
that the two rooms are placed in different parts of the house. The world transforma-
tions applied to the room contents are necessarily different. If you have any plans to
make the world transformations persistent, they must be stored somewhere. In the
tree-based hierarchy, the world transformations are stored directly at the node. To

Predecessors might be a better term to use here, but I will use the term parents and note that the links are
directed from parent to child.

TeamLRN sPeCiAL

3.1 The Core Classes 165

store the world transformations for the DAG of Figure 3.4, you can store them ei-
ther at each node or in a separate location that the node has pointers to. In either
case, a dynamic system is required since the number of parents can be any number
and change at any time. World bounding volumes must also be maintained, one per
instance.

Another implication is that if you want to change the data directly at the shared
node, the room contents in our example, it is necessary for you to be able to specify
which instance is to be affected. This alone creates a complex situation for an applica-
tion programmer to manage. You may assign a set of names to the shared object, one
name per path to the object. The path names can be arbitrarily long, making the use
of them a bit overwhelming for the application programmer. Alternatively, you can
require that a shared object not be directly accessible. The instances must be managed
only through the parent nodes. In our example, to place Room 1 in the house, you set
its local transformations accordingly. Room 2 is placed in the world with a different
set of local transformations. The Room Contents always have the identity transfor-
mation, never to be changed. This decision has the consequence that if you only have
a single instance (most likely the common case in a scene), a parent node should be
used to indirectly access that instance. If you are not consistent in the manner of ac-
cessing the object, your engine logic must distinguish between a single instance of
an object and multiple instances of an object, then handle the situations differently.
Thus, every geometric object must be manipulated as a node-geometry pair. Worse is
that if you plan on instancing a subgraph of nodes, that subgraph must have parent
nodes through which you access the instances. Clearly this leads to “node bloat” (for
lack of a better term), and the performance of updating such a system is not optimal
for real-time needs.

Is this speculation or experience? The latter, for sure. One of the first tasks I
was assigned when working on NetImmerse in its infancy was to support instanc-
ing in the manner described here. Each node stored a dynamic array of parent
links and a dynamic array of child links. A corresponding dynamic array of geo-
metric data was also maintained that stored transformations, bounding volumes,
and other relevant information. Instances were manipulated through parent nodes,
with some access allowed to the instances themselves. On a downward traversal
of the scene by a recursive function, the parent pointer was passed to that func-
tion and used as a lookup in the child’s parent array to determine which instance
the function was to affect. This mechanism addresses the issue discussed earlier,
unique names for the paths to the instance. Unfortunately, the system was com-
plicated to build and complicated to maintain (adding new recursive functions for
scene traversal was tedious), and the parent pointer lookup was a noticeable time
sink, as shown by profiling any applications built on top of the engine. To elimi-
nate the cost of parent pointer lookups, the node class was modified to include an
array of instance pointers, one per child of the node. Those pointers were passed
through recursive calls, thus avoiding the lookups, and used directly. Of course,
this increased the per-node memory requirements and increased the complexity

166 Chapter 3 Scene Graphs and Renderers

Figure 3.5

| Housel

[Room 1] [Room 2|

Room Contents 1 Room Contents 2

[Shared Geometry Data |

The scene graph of Figure 3.4, but with instancing at a low level (geometric data)
rather than at a node level.

of the system. In the end we decided that supporting instancing by DAGs was not
acceptable.

That said, instancing still needs to be supported in an engine. I mentioned this
earlier and mention it again: What is important regarding instancing is that (1)
you reduce memory usage and (2) you reduce the artist’s workload. The majority
of memory consumption has to do with models with large amounts of data. For
example, a model with 10,000 vertices, multiple 32-bit texture images, each 512 x
512, and corresponding texture coordinates consumes a lot of memory. Instancing
such a model will avoid duplication of the large data. The amount of memory that a
node or geometry object requires to support core scene graph systems is quite small
relative to the actual model data. If a subgraph of nodes is to be instanced, duplication
of the nodes requires only a small amount of additional memory. The model data is
shared, of course. Wild Magic 3 chooses to share in the manner described here. The
sharing is low level; that is, instancing of models involves geometric data. If you want
to instance an object of a Geometry-derived class, you create two unique Geometry-
derived objects, but ask them to share their vertices, texture coordinates, texture
images, and so on. The DAG of Figure 3.4 abstractly becomes the graph shown in
Figure 3.5.

The work for creating an instance is more than what a DAG-style system re-
quires, but the run-time performance is much improved and the system complexity
is minimal.

32 GEOMETRIC STATE

TeamLRN sPeCiAL

Two basic objects involving geometric state are transformations and bounding vol-
umes.

3.2 Geometric State 167

3.2.1 TRANSFORMATIONS

TeamLRN sPeCiAL

4.

Wild Magic version 2 supported transformations involving translations T, rotations
R, and uniform scaling ¢ > 0. A vector X is transformed to a vector Y by

Y = R(6X) + T. (3.1)

The order of application is scale first, rotation second, and translation third. However,
the order of uniform scaling and rotation is irrelevant. The inverse transformation is

X = lRT(Y —T). (3.2)
o

Generally, a graphics API allows for any affine transformation, in particular,
nonuniform scaling. The natural extension of Equation (3.1) to allow nonuniform
scale S = Diag(oy, 03, 03), 0; > 0, for all i, is

Y=RSX+T. (3.3)

The order of application is scale first, rotation second, and translation third. In this
case the order of nonuniform scaling and rotation is relevant. Switching the order
produces different results since, in most cases, RS # SR. The inverse transforma-
tion is

X=S"'"RI(Y-T), (3.4)

where §~! = Diag(1/0y, 1/0y, 1/0,). The memory requirements to support nonuni-
form scaling are modest—only two additional floating-point numbers to store.
Wild Magic version 2 disallowed nonuniform scaling because of some undesir-
able consequences. First, a goal was to minimize the time spent on matrix and vector
arithmetic. This was particularly important when an application has a physical sim-
ulation that makes heavy use of the transformation system. Using operation counts
as a measure of execution time,* let 1 represent the number of cycles for a multi-
plication, let & represent the number of cycles for an addition/subtraction, and let §
represent the number of cycles for a division. On an Intel Pentium class processor, u
and o are equal, both 3 cycles. The value § is 39 cycles. Both Equations (3.1) and (3.3)
use 1214 + 9« cycles to transform a single vector. Equation (3.2) uses 124 + 9 + §
cycles. The only difference between the inverse transform and the forward transform
is the division required to compute the reciprocal of scale. The reciprocal is computed
first and then multiplies the three components of the vector. Equation (3.4) uses
9 + 9a + 38 cycles. Compared to the uniform scale inversion, the reciprocals are

A warning about operation counting: Current-day processors have other issues now that can make oper-
ation counting not an accurate measure of performance. You need to pay attention to memory fetches,
cache misses, branch penalties, and other architectural aspects.

168 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

not computed first. The three vector components are divided directly by the nonuni-
form scales, leading to three less multiplications, but two more divisions. This is still a
significant increase in cost because of the occurrence of the additional divisions. The
divisions may be avoided by instead computing p = 040,05, r = 1/ p, and observing
that S~! = r Diag(o,0,, 040,, 0(0;). Equation (3.3) then uses 191 + 9 + & cycles,
replacing two divisions by 10 multiplications. If the CPU supports a faster but lower-
precision division, the increase is not as much of a factor, but you pay in terms of
accuracy of the final result. With the advent of specialized hardware such as extended
instructions for CPUs, game console hardware, and vector units generally, the per-
formance for nonuniform scaling is not really a concern.

Second, an issue that is mathematical and that hardware cannot eliminate is the
requirement to factor transformations to maintain the ability to store at each node
the scales, the rotation matrix, and the translation vector. To be precise, if you have
a path of nodes in a hierarchy and corresponding local transformations, the world
transformation is a composition of the local ones. Let the local transformations be
represented as homogeneous matrices in block-matrix form. The transformation
Y = RSX + T is represented by

)

The composition of two local transformations Y = R;S;X 4+ Tand Z = R,S,Y +
T, is represented by a homogeneous block matrix that is a product of the two homo-
geneous block matrices representing the individual transformations:

R,S, \ T, | [RS, \ T, | [RSRS \ RSTi+T, | [M \ T
OT‘I OT‘l_ oT‘ 1 _OT‘I’

where M = R,S,R,S;and T = R,S,T, 4+ T,. A standard question that is asked some-
what regularly in the Usenet computer graphics newsgroups is how to factor

M = RS,

where R is a rotation and S is a diagonal nonuniform scaling matrix. The idea is to
have a transformation class that always stores R, S, and T as individual components,
thus allowing direct evaluation of Equations (3.3) and (3.4). Much to the posters’
dismay, the unwanted answer is, You cannot always factor M in this way. In fact, it is
not always possible to factor DR, into R, D,, where D; and D, are diagonal matrices
and R; and R, are rotation matrices.

The best you can do is factor M using polar decomposition or singular value
decomposition ([Hec94, Section IIL.4]). The polar decomposition is

M=UA,

TeamLRN sPeCiAL

3.2 Geometric State 169

where U is an orthogonal matrix and A is a symmetric matrix, but not necessarily
diagonal. The singular value decomposition is closely related:

M=VDWT,

where V and W are orthogonal matrices and D is a diagonal matrix. The two fac-
torizations are related by appealing to the eigendecomposition of a symmetric ma-
trix, A = WDW?T, where W is orthogonal and D is diagonal. The columns of W
are linearly independent eigenvectors of A, and the diagonal elements of D are the
eigenvalues (ordered to correspond to the columns of W). It follows that V = U W.
Implementing either factorization is challenging because the required mathematical
machinery is more than what you might expect.

Had I chosen to support nonuniform scaling in Wild Magic and wanted a con-
sistent representation of local and world transformations, the factorization issue pre-
vents me from storing a transformation as a triple (R, S, T), where R is a rotation, S
is a diagonal matrix of scales, and T is a translation. One way out of the dilemma is
to use a triple for local transformations, but a pair (M, T) for world transformations.
The 3 x 3 matrix M is the composition of rotations and nonuniform scales through
a path in the hierarchy. The memory usage for a world transformation is smaller than
for alocal one, but only one floating-point number less. The cost for a forward trans-
formation Y = MX + T is 9u + 9, cheaper than for a local transformation. Less
memory usage, faster transformation, but the cost is that you have no scaling or rota-
tional information for the world transformation unless you factor into polar form or
use the singular value decomposition. Both factorizations are very expensive to com-
pute. The inverse tranformation X = M ~!(Y — T) operation count is slightly more
complicated to determine. Using a cofactor expansion to compute the inverse matrix,

1 1

— adj
det(M)

>

where det(M) is the determinant of M and M is the adjoint matrix—the transpose
of the matrix of cofactors of M. The adjoint has nine entries, each requiring 2 + o
cycles to compute. The determinant is computed from a row of cofactors, using three
more multiplications and two more additions, for a total of 3t + 2« cycles. The
reciprocal of the determinant uses § cycles. Computing the inverse transformation as

1

= detM) (prtr =)

requires 334 4+ 20c + 8 cycles. This is a very significant increase in cost compared to
the 191 + 9a + 8 cycles used for computing X = ST'RT(Y — T).

To avoid the increase in cost for matrix inversion, you could alternatively choose
a consistent representation where the transformations are stored as 4-tuples of the
form (L, S, R, T), where L and R are rotation matrices, S is a diagonal matrix
of scales, and T is a translation. Once a world transformation is computed as a

170 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

composition of local transformations to obtain M and T, you have to factor M =
L DR using the singular value decomposition—yet another expensive proposition.

Given the discussion of nonuniform scaling and the performance issues arising
from factorization and/or maintaining a consistent representation for transforma-
tions, in Wild Magic version 2 I decided to constrain the transformations to use only
uniform scaling. I have relaxed the constraint slightly in Wild Magic version 3. The
Spatial class stores three scale factors, but only the Geometry class may set these to be
nonuniform. But doesn’t this introduce all the problems that I just mentioned? Along
a path of n nodes, the last node being a geometry leaf node, the world transformation
is a composition of n — 1local transformations that have only uniform scale o;, i > 2,
and a final local transformation that has nonuniform scales S;:

R,0, ‘ T, Ry0, ‘ T, RS, ‘ T,
of \ 1 0T \ 1 or \ 1

[R'o’ \ T [RS, \ T,
0T \ 1 0T \ 1

[(R'R)(c'S)) \ Ro'T,+T
of \ 1

B R"S" T
o' 1

Because of the commutativity of uniform scale and rotation, the product of the first
n — 1 matrices leads to another matrix of the same form, as shown. The product
with the last matrix groups together the rotations and groups together the scales.
The final form of the composition is one that does not require a general matrix
inverse calculation. I consider the decision to support nonuniform scales only in
the Geometry class an acceptable compromise between having only uniform scales or
having nonuniform scales available at all nodes.

The class that encapsulates the transformations containing translations, rota-
tions, and nonuniform scales is Transformation. The default constructor, destructor,
and data members are shown next in a partial listing of the class:

class Transformation

{

public:
Transformation ();
~Transformation ();

static const Transformation IDENTITY;

TeamLRN sPeCiAL

3.2 Geometric State 171

private:
Matrix3f m_kRotate;
Vector3f m_kTranslate;
Vector3f m_kScale;
bool m_bIsIdentity, m bIsUniformScale;

In a moment I will discuss the public interface to the data members. The rotation
matrix is stored as a 3 x 3 matrix. The user is responsible for ensuring that the matrix
really is a rotation. The three scale factors are stored as a 3-tuple, but they could just
as easily have been stored as three separate floating-point numbers. The class has two
additional data members, both Boolean variables. These are considered hints to allow
for more efficient composition of transformations. The default constructor creates
the identity transformation, where the rotation is the 3 x 3 identity matrix, the
translation is the 3 x 1zero vector, and the three scales are all one. Them_bIsIdentity
and m_bIsUniformScale hints are both set to true. For an application’s convenience,
the static class member IDENTITY stores the identity transformation.

Part of the public interface to access the members is

class Transformation

{

public:
void SetRotate (const Matrix3f& rkRotate);
const Matrix3f& GetRotate () const;
void SetTranslate (const Vector3f& rkTranslate);
const Vector3f& GetTranslate () const;
void SetScale (const Vector3f& rkScale);
const Vector3f& GetScale () const;
void SetUniformScale (float fScale);
float GetUniformScale () const;

}s

The Set functions have side effects in that each function sets the m_bIsIdentity hint
to false. The hint is set, even if the final transformation is the identity. For example,
calling SetTranslate with the zero vector as input will set the hint to false. I made
this choice to avoid having to check if the transformation is really the identity after
each component is set. The expected case is that the use of Set functions is to make
the transformation something other than the identity. Even if we were to test for
the identity transformation, the test is problematic when floating-point arithmetic
is used. An exact comparison of floating-point values is not robust when some of the
values were computed in expressions, the end results of which were produced after a
small amount of floating-point round-off error. The SetScale function also has the
side effect of setting the m_bIsuUniformScale hint to false. As before, the hint is set
even if the input scale vector corresponds to uniform scaling. The Get functions have

172 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

no side effects and return the requested components. These functions are const, so
the components are read-only.
Three other public member access functions are provided:

class Transformation

{

public:
Matrix3f& Rotate ();
Vector3f& Translate ();
Vector3f& Scale ();

1

My convention is to omit the Set or Get prefixes on member accessors when I in-
tend the accessor to provide read-write access. The displayed member functions are
read-write, but also have the side effects of setting the m_bIsIdentity and/or the
m_bIsUniformScale hints. Because the accessor cannot determine if it was called for
read versus write, the hints are always set. You should avoid this style of accessor if
your intent is only to read the member value, in which case you should use the Get
version. A typical situation to use the read-write accessor is for updates that require
both, for example,

Transformation kXFrm = <some transformation>;
kXFrm.Translate() += Vector3f(1.0f,2.0f,3.0f);

or for in-place calculations, for example,

Transformation kXFrm = <some transformation>;
kXFrm.Rotate() .FromAxisAngle(Vector3f::UNIT Z,Mathf::HALF PI);

In both cases, the members are written, so setting the hints is an appropriate action
to take.
Two remaining public accessors are for convenience:

class Transformation

{

public:
float GetMinimumScale () const;
float GetMaximumScale () const;

s

The names are clear. The first returns the smallest scale from the three scaling factors,
and the second returns the largest. An example of where I use the maximum scale
is in computing a world bounding sphere from a model bounding sphere and a
transformation with nonuniform scaling. The exact transformation of the model

TeamLRN sPeCiAL

3.2 Geometric State 173

bounding sphere is an ellipsoid, but since I really wanted a bounding sphere, I use the
maximum scale as a uniform scale factor and apply a uniform scale transformation
to the model bounding sphere.

Other convenience functions include the ability to tell a transformation to make
itself the identity transformation or to make its scales all one:

class Transformation
{
public:
void MakelIdentity ();
void MakeUnitScale ();
bool IsIdentity () const;
bool IsUniformScale () const;

}s

The last two functions just return the current values of the hints.

The basic algebraic operations for transformations include application of a trans-
formation to points, application of an inverse transformation to points, and compo-
sition of two transformations. The member functions are

class Transformation
{
public:
Vector3f ApplyForward (const Vector3f& rkInput) const;
void ApplyForward (int iQuantity, const Vector3f* akInput,
Vector3f* akOutput) const;

Vector3f ApplylInverse (const Vector3f& rkInput) const;
void ApplyInverse (int iQuantity, const Vector3f* akInput,
Vector3f* akOutput) const;

void Product (const Transformation& rkA,
const Transformation& rkB,);

void Inverse (Transformation& rkInverse);

}s

The first ApplyForward and ApplyInverse functions apply to single vectors. The sec-
ond pair of these functions apply to arrays of vectors. If the transformation is
Y = RSX + T, where R is a rotation matrix, S is a diagonal scale matrix, and T is a
translation, function ApplyForward computes Y from the input vector(s) X. Function
ApplyInverse computes X = STIRT(Y — T) from the input vector(s) Y.

174 Chapter 3 Scene Graphs and Renderers

The composition of two transformations is performed by the member function
Product. The name refers to a product of matrices when the transformations are
viewed as 4 x 4 homogeneous matrices. For example,

Transformation kA = <some transformation>;
Transformation kB = <some transformation>;
Transformation kC;

// compute C = A*B
kC.Product (kA,kB);

// compute C = B*A, generally not the same as A*B
kC.Product (kB,kA) ;

We will also need to apply inverse transformations to vectors. Notice that I earlier
used both the term points and the term vectors. The two are abstractly different, as
discussed in the study of affine algebra. A point P is transformed as

P = RSP+ T,
whereas a vector V is transformed as
V' = RSV.

You can think of the latter equation as the difference of the equations for two trans-

formed points P and Q:
V=P-Q
PP=RSP+T
Q' =RSQ+T

V =P —Q =(RSP+T) — (RSQ+T) = RS(P — Q) = RSV.

In terms of homogeneous vectors, the point P and vector V are represented by

1) =[]

The corresponding homogeneous transformations are

TeamLRN sPeCiAL

TeamLRN sPeCiAL

3.2 Geometric State 175

R
« IR

The inverse transformation of a vector V' is

V=S"'RV.
The member function that supports this operation is

class Transformation
{
public:
Vector3f InvertVector (const Vector3f& rkInput) const;

}s
Finally, the inverse of the transformation is computed by
void Inverse (Transformation& rkInverse);

The translation, rotation, and scale components are computed. If Y = RSX + T, the
inverse is X = ST'RT(Y — T). The inverse transformation has scale S~ rotation
RT, and translation —S~!RTT. A warning is in order, though. The components are
stored in the class data members, but the transformation you provide to the function
should not be used as a regular Transformation. If you were to use it as such, it would
represent

RTS™IX — s7IRTT.

Only call this function, access the individual components, and then discard the ob-
ject.

The transformation of a plane from model space to world space is also sometimes
necessary. Let the model space plane be

NO.X:CO’

where Nj is a unit-length normal vector, ¢ is a constant, and X is any point on
the plane and is specified in model space coordinates. The inverse transformation
of the point is X = ST'RT(Y — T), where Y is the point in world space coordinates.
Substituting this in the plane equation leads to

RSilNO Co

N,-Y=¢, N=—0 o= — 4
: : " IRSTINg| ' IRSTIN|

NI'T

176 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

The member function that supports this operation is

class Transformation
{
pubTic:
Plane3f ApplyForward (const Plane3f& rkInput) const;
1

The input plane has normal N and constant ¢;,. The output plane has normal N; and
constant c;.

In all the transformation code, I take advantage of the m bIsIdentity and
m_bIsUniformScale hints. Two prototypical cases are the implementation of Apply-
Forward that maps Y = RSX + T and the implementation of ApplyInverse that maps
X = S7'RT(Y — T). The forward transformation implementation is

Vector3f Transformation::ApplyForward (
const Vector3f& rkInput) const

if (m_bIsIdentity)
return rkInput;

Vector3f kOutput = rkInput;
kOutput.X() *= m kScale.X();
kOutput.Y() *= m kScale.Y();
kOutput.Z() *= m_kScale.Z();
kOutput = m_kRotate*kOutput;
kOutput += m kTranslate;
return kOutput;

If the transformation is the identity, then Y = X and the output vector is simply the
input vector. A generic implementation might do all the matrix and vector operations
anyway, not noticing that the transformation is the identity. The hint flag helps avoid
those unnecessary calculations. If the transformation is not the identity, it does not
matter whether the scale is uniform or nonuniform since three multiplications by a
scale parameter occur in either case.

The inverse transformation implementation is

Vector3f Transformation::ApplyInverse (
const Vector3f& rkInput) const

if (m_bIsIdentity)
return rkInput;

3.2 Geometric State 177

if (m_bIsUniformScale)
{
return ((rkInput - m kTranslate)*m _kRotate) /
GetUniformScale();

Vector3f kOutput = ((rkInput - m_kTranslate)*m kRotate);
float fSXY = m kScale.X()*m_kScale.Y();

float fSXZ = m kScale.X()*m_kScale.Z();

float fSYZ = m kScale.Y()*m_kScale.Z();

float fInvDet = 1.0f/(fSXY*m kScale.Z());

kOutput.X() *= fInvDet*fSYZ;

kOutput.Y() *= fInvDet*fSXZ;

kOutput.Z() *= fInvDet*fSXY;

return kOutput;

If the transformation is the identity, then X =Y and there is no reason to waste cycles
by applying the transformation components. Unlike App1yForward, if the transforma-
tion is not the identity, then there is a difference in performance between uniform
and nonuniform scaling.

For uniform scale, RT(Y — T) has all three components divided by scale. The Ma-
trix3 class has an operator function such that a product of a vector (the left operand
V) and a matrix (the right operand M) corresponds to M V. The previous displayed
code block uses this function. The Vector3 class supports division of a vector by a
scalar. Internally, the reciprocal of the divisor is computed and multiplies the three
vector components. This avoids the division occurring three times, replacing the op-
eration instead with a single division and three multiplications.

For nonuniform scale, I use the trick described earlier for avoiding three divi-
sions. The displayed code replaces the three divisions by 10 multiplications and one
division. For an Intel Pentium that uses 3 cycles per multiplication and 39 cycles per
division, the three divisions would cost 78 cycles, but the 10 multiplications and one
division costs 69 cycles.

3.2.2 BOUNDING VOLUMES

TeamLRN sPeCiAL

The term bounding volume is quite generic and refers to any object that contains
some other object. The simplest bounding volumes that game programmers use
tend to be spheres or axis-aligned bounding boxes. Slightly more complicated is an
oriented bounding box. Yet more complicated is the convex hull of the contained
object, a convex polyhedron. In all cases, the bounding volumes are convex. To be yet
more complicated, a bounding volume might be constructed as a union of (convex)
bounding volumes.

178 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

Culling

One major use for bounding volumes in an engine is for the purposes of culling
objects. If an object is completely outside the view frustum, there is no reason to
tell the renderer to try and draw it because if the renderer made the attempt, it
would find that all triangles in the meshes that represent the object are outside the
view frustum. Such a determination does take some time—better to avoid wasting
cycles on this, if possible. The scene graph management system could itself determine
if the mesh triangles are outside the view frustum, testing them one at a time for
intersection with, or containment by, the view frustum, but this gains us nothing. In
fact, this is potentially slower when the renderer has a specialized GPU to make the
determination, but the scene graph system must rely on a general CPU.

A less aggressive approach is to use a convex bounding volume as an approxima-
tion to the region of space that the object occupies. If the bounding volume is outside
the view frustum, then so is the object and we need not ask the renderer to draw
it. The intersection/containment test between bounding volume and view frustum
is hopefully a lot less expensive to compute than the intersection/containment tests
for all the triangles of the object. If the bounding volume is a sphere, the test for the
sphere being outside the view frustum is equivalent to computing the distance from
the sphere center to the view frustum and showing that it is larger than the radius of
the sphere.

Computing the distance from a point to a view frustum is more complicated than
most game programmers care to deal with—hence the replacement of that test with
an inexact query that is simpler to implement. Specifically, the sphere is tested against
each of the six frustum planes. The frustum plane normals are designed to point into
the view frustum; that is, the frustum is on the “positive side” of all the planes. If
the sphere is outside any of these planes, say, on the “negative side” of a plane, then
the sphere is outside the entire frustum and the object is not visible and therefore
not sent to the renderer for drawing (it is culled). I call this plane-at-a-time culling.
The geometry query I refer to as the which-side-of-plane query. There are situations
when the sphere is not outside one of the planes, but is outside the view frustum;
that is why I used earlier the adjective “inexact.” Figure 3.6 shows the situation in two
dimensions.

The sphere in the upper right of the image is not outside any of the frustum
planes, but is outside the view frustum. The plane-at-a-time culling system deter-
mines that the sphere is not outside any plane, and the object associated with the
bounding volume is sent to the renderer for drawing. The same idea works for convex
bounding volumes other than spheres. Pseudocode for the general inexact culling is

bool IsCulled (ViewFrustum frustum, BoundingVolume bound)

{

for each plane of frustum do

{

if bound is on the negative side of plane then

Figure 3.6

TeamLRN sPeCiAL

3.2 Geometric State 179

Not culled Not culled

OCulled

A two-dimensional view of various configurations between a bounding sphere and a
view frustum.

return true;

}

return false;

Hopefully the occurrence of false positives (bound outside frustum, but not outside
all frustum planes) is infrequent.

Even though plane-at-a-time culling is inexact, it may be used to improve effi-
ciency in visibility determination in a scene graph. Consider the scene graph of Figure
3.3, where each node in the tree has a bounding volume associated with it. Suppose
that, when testing the bounding volume of the Table Group against the view frustum,
you find that the bounding volume is on the positive side of one of the view frustum
planes. The collective object represented by Table Group is necessarily on the positive
side of that plane. Moreover, the objects represented by the children of Table Group
must also be on the positive side of the plane. We may take advantage of this knowl-
edge and pass enough information to the children (during a traversal of the tree for
drawing purposes) to let the culling system know not to test the child bounding vol-
umes against that same plane. In our example, the Table and Utensil Group nodes
do not have to compare their bounding volumes to that plane of the frustum. The
information to be stored is as simple as a bit array, each bit corresponding to a plane.
In my implementation, discussed in more detail later in this chapter, the bits are set
to 1if the plane should be compared with the bounding volumes, and 0 otherwise.

An argument I read about somewhat regularly in some Usenet newsgroups is
that complicated bounding volumes should be avoided because the which-side-of-
plane query for the bounding volume is expensive. The recommendation is to use
something as simple as a sphere because the query is very inexpensive to compute
compared to, say, an oriented bounding box. Yes, a true statement, but it is taken out
of the context of the bigger picture. There is a balance between the complexity of the
bounding volume type and the cost of the which-side-of-plane query. As a rule of
thumb, the more complex the bounding volume of the object, the better fitting it is
to the object, but the query is more expensive to compute. Also as a rule of thumb,

180 Chapter 3 Scene Graphs and Renderers

Figure 3.7

TeamLRN sPeCiAL

@) (b)

A situation where a better-fitting bounding volume leads to culling, but a worse-
fitting one does not. (a) The bounding sphere is not tight enough to induce culling.
(b) The bounding box is tight enough to induce culling.

the better fitting the bounding volume, the more likely it is to be culled compared to
a worse-fitting bounding volume. Figure 3.7 shows a typical scenario.

Even though the cost for the which-side-of-plane query is more expensive for the
box than for the sphere, the combined cost of the query for the sphere and the attempt
to draw the object, only to find out it is not visible, is larger than the cost of the query
for the box. The latter object has no rendering cost because it was culled.

On the other hand, if most of the objects are typically inside the frustum, in
which case you get the combined cost of the query and drawing, the sphere bounding
volumes look more attractive. Whether or not the better-fitting and more expensive
bounding volumes are beneficial depends on your specific 3D environment. To be
completely certain of which way to go, allow for different bounding volume types
and profile your applications for each type to see if there is any savings in time for
the better-fitting volumes. The default bounding volume type in Wild Magic is a
bounding sphere; however, the system is designed to allow you to easily swap in
another type without having to change the engine or the application code. This is
accomplished by providing an abstract interface (base class) for bounding volumes. I
discuss this a bit later in the section.

Collision Determination

Another major use for bounding volumes is 3D picking. A picking ray in world
coordinates is selected by some mechanism. A list of objects that are intersected by the
ray can be assembled. As a coarse-level test, if the ray does not intersect the bounding
volume of an object, then it does not intersect the object.

The bounding volumes also support collision determination. More precisely, they
may be used to determine if two objects are not intersecting, much in the same way
they are used to determine if an object is not visible. Collision detection for two
arbitrary triangle meshes is an expensive endeavor. We use a bounding volume as
an approximation to the region of space that the object occupies. If the bounding
volumes of two objects do not intersect, then the objects do not intersect. The hope is
that the test for intersection of two bounding volumes is much less expensive than the

TeamLRN sPeCiAL

3.2 Geometric State 181

test for intersection of two triangle meshes. Well, it is, unless the objects themselves
are single triangles!

The discussion of how to proceed with picking after you find out that the ray
intersects a bounding volume or how you proceed with collision detection after you
find out that the bounding volumes intersect is deferred to Section 6.3.3.

The Abstract Bounding Volume Interface

My main goal in having an abstract interface was not to force the engine users to use
my default, bounding spheres. I also wanted to make sure that it was very easy to
make the change, one that did not require changes to the core engine components
or the applications themselves. The abstraction forces one to think about the various
geometric queries in object-independent ways. Although abstract interfaces tend not
to have data associated with them, experience led me to conclude that a minimal
amount of information is needed. At the lowest level, you need to know where a
bounding volume is located and what its size is. The two data members that represent
these are a center point and a radius. These values already define a sphere, so you
may think of the base class as a representation of a bounding sphere for the bounding
volume. The values for an oriented bounding box are naturally the box center and the
maximum distance from the center to a vertex. The values for a convex polyhedron
may be selected as the average of the vertices and the maximum distance from that
average to any vertex. Other types of bounding volumes can define center and radius
similarly.
The abstract class is BoundingVolume and has the following initial skeleton:

class BoundingVolume : public Object
public:
{

virtual ~BoundingVolume ();

Vector3f Center;
float Radius;

static BoundingVolume* Create ();

protected:

BoundingVolume ();

BoundingVolume (const Vector3f& rkCenter, float fRadius);
}s

The constructors are protected, making the class abstract. However, most other mem-
ber functions in the interface are pure virtual, so the class would have to be abstract
anyway, despite the access level for the constructors. The center point and radius are

182 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

in public scope since setting or getting them has no side effects. The static member
function Create is used as a factory to produce objects without having to know what
specific type (or types) exist in the engine. A derived class has the responsibility for
implementing this function, and only one derived class may do so. In the engine,
the Create call occurs during construction of a Spatial object (the world bounding
volume) and a Geometry object (the model bounding volume). A couple of addi-
tional calls occur in Geometry-derived classes, but only because the construction of
the model bounding volume is deferred until the actual model data is known by those
classes.

Even though only a single derived class implements Create, you may have multi-
ple BoundingVolume-derived classes in the engine. The ones not implementing Create
must be constructed explicitly. Only the core engine components for geometric up-
dates must be ignorant of the type of bounding volume.

Switching to a new BoundingVolume type for the core engine is quite easy. All you
need to do is comment out the implementation of BoundingVolume::Create in the
default bounding volume class, SphereBV, and implement it in your own derived class.
The SphereBV class is

BoundingVolume* BoundingVolume::Create ()

{

return new SphereBV;

If you were to switch to BoxBY, the oriented bound box volumes, then in Wm3BoxBV. cpp
you would place

BoundingVolume* BoundingVolume::Create ()

{

return new BoxBV;

The remaining interface for BoundingVolume is shown next. All member functions are
pure virtual, so the derived classes must implement these.

class BoundingVolume : public Object
public:
{
virtual void ComputeFromData (
const Vector3fArray* pkVertices) = 0;

virtual void TransformBy (const Transformation& rkTransform,
BoundingVolume* pkResult) = 0;

virtual int WhichSide (const Plane3f& rkPlane) const = 0;

TeamLRN sPeCiAL

3.2 Geometric State 183

virtual bool TestIntersection (const Vector3f& rkOrigin,
const Vector3f& rkDirection) const = 0;

virtual bool TestIntersection (
const BoundingVolume* pkInput) const = 0;

virtual void CopyFrom (const BoundingVolume* pkInput) = 0;

virtual void GrowToContain (const BoundingVolume* pkInput) = 0;

The bounding volume depends, of course, on the vertex data that defines the object.
The ComputeFromData method provides the construction of the bounding volume
from the vertices.

The transformation of a model space bounding volume to one in world space is
supported by the method TransformBy. The first input is the model-to-world trans-
formation, and the second input is the world space bounding volume. That volume
is computed by the method and is valid on return from the function. The Geometry
class makes use of this function.

The method WhichSide supports the which-side-of-plane query that was dis-
cussed for culling of nonvisible objects. The P1ane3 class stores unit-length normal
vectors, so the BoundingVolume-derived classes may take advantage of that fact to im-
plement the query. If the bounding volume is fully on the positive side of the plane
(the side to which the normal points), the function returns +1. If it is fully on the
negative side, the function returns —1. If it straddles the plane, the function returns 0.

The first TestIntersection method supports 3D picking. The input is the origin
and direction vector for a ray that is in the same coordinate system as the bounding
volume. The direction vector must be unit length. The return value is true if and
only if the ray intersects the bounding volume. The second TestIntersection method
supports collision determination. The input bounding volume must be the same type
as the calling object, but the engine does not check this constraint, so you must. The
bounding volumes are assumed to be stationary. The return value of the function is
true if and only if the two bounding volumes are intersecting.

The last two member functions, CopyFromand GrowToContain, support the upward
pass through the scene graph that computes the bounding volume of a parent node
from the bounding volumes of the child nodes. In Wild Magic, the parent bounding
volume is constructed to contain all the child bounding volumes. The default bound-
ing volume is a sphere, so the parent bounding volume is a sphere that contains all
the spheres of the children. The function CopyFrom makes the calling object a copy
of the input bounding volume. The function GrowToContain constructs the bounding
volume of the calling bounding volume and the input bounding volume. For a node
with multiple children, CopyFrom makes a copy of the first child, and GrowToContain
creates a bounding volume that contains that copy and the bounding volume of the

184 Chapter 3 Scene Graphs and Renderers

second child. The resulting bounding volume is grown further to contain each of the
remaining children.

A brief warning about having a bounding volume stored in Spatial through an
abstract base class (smart) pointer: Nothing prevents you from setting the bounding
volume of one object to be a sphere and another to be a box. However, the Bound-
ingVolume member functions that take a BoundingVolume object as input are designed
to manipulate the input as if it is the same type as the calling object. Mixing bound-
ing volume types is therefore an error, and the engine has no prevention mechanism
for this. You, the programmer, must enforce the constraint. That said, it is possible
to extend the bounding volume system to handle mixed types. The amount of code
for n object types can be inordinate. For intersection queries between two bounding
volumes, you need a function for each pair of types, a total of n(n — 1)/2 functions.
The semantics of the CopyFrom function must change. How do you copy a bound-
ing sphere to an oriented bounding box? The semantics of GrowToContain must also
change. What is the type of bounding volume to be used for a collection of mixed
bounding volume types? If you have a sphere and a box, should the containing vol-
ume be a sphere or a box? Such a system can be built (Netimmerse had one), but
I chose to limit the complexity of Wild Magic by disallowing mixing of bounding
volume types.

3.2.3 THE CORE CLASSES AND GEOMETRIC UPDATES

TeamLRN sPeCiAL

Recall that the scene graph management core classes are Spatial, Geometry, and
Node. The Spatial class encapsulates the local and world transformations, the world
bounding volume, and the parent pointer in support of the scene hierarchy. The Ge-
ometry class encapsulates the model data and the model bounding sphere and may
exist only as leaf nodes in the scene hierarchy. The Node class encapsulates grouping
and has a list of child pointers. All three classes participate in the geometric update
of a scene hierarchy—the process of propagating transformations from parents to
children (the downward pass) and then merging bounding volumes from children to
parents (the upward pass).

The data members of the Spatial interface relevant to geometric updates are
shown in the following partial interface listing:

class Spatial : public Object

{

public:
Transformation Local;
Transformation World;
bool WorldIsCurrent;

BoundingVoTumePtr WorldBound;
bool WorldBoundIsCurrent;

TeamLRN sPeCiAL

3.2 Geometric State 185

The data members are in public scope. This is a deviation from my choices for
Wild Magic version 2, where the data members were protected or private and ex-
posed only through public accessor functions, most of them implemented as inline
functions. My choice for version 3 is to reduce the verbosity, so to speak, of the class
interface. In earlier versions, you would have a protected or private data member, one
or more accessors, and inline implementations of those accessors. For example,

// in 01dSpatial.h
class OldSpatial : public Object
{
public:
Transformation& Local (); // read-write access
const Transformation& GetLocal () const; // read-only access
void SetLocal (const Transform& rkLocal); // write-only access
protected:
Transformation m_kLocal;

}s

// in 0ldSpatial.inl

Transformation& OldSpatial::Local ()
{ return m_kLocal; }

const Transformation& OldSpatial::GetLocal () const
{ return m_kLocal; }

void OldSpatial::SetLocal (const Transformation& rkLocal)
{ m_kLocal = rkLocal; }

The object-oriented premise of such an interface is to allow the underlying imple-
mentation of the class to change without forcing clients of the class to have to change
their code. This is an example of modular continuity; see [Mey88, Section 2.1.4],
specifically the following paragraph:

A design method satisfies Modular Continuity if a small change in a problem
specification results in a change of just one module, or few modules, in the system
obtained from the specification through the method. Such changes should not
affect the architecture of the system, that is to say the relations between modules.

The interface for 01dSpatial is a conservative way to achieve modular continuity. The
experiences of two versions of Wild Magic have led me to conclude that exposing
some data members in the public interface is acceptable as long as the subsystem
involving those data members is stable; that is, the subsystem will not change as the
engine evolves. This is a less conservative way to achieve modular continuity because
it relies on you not to change the subsystem.

By exposing data members in the public interface, you have another issue of
concern. The function interfaces to data members, as shown in 01dSpatial, can hide
side effects. For example, the function SetLocal has the responsibility of setting the
m_kLocal data member of the class. But it could also perform operations on other data

186 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

members or call other member functions, thus causing changes to state elsewhere in
the system. If set/get function calls require side effects, it is not recommended that
you expose the data member in the public interface. For if you were to do so, the
engine user would have the responsibility for doing whatever is necessary to make
those side effects occur.

In the case of the Spatial class in version 3 of the engine, the Local data member
is in public scope. Setting or getting the value has no side effects. The new interface is

// in Spatial.h
class Spatial : public Object
{
public:
Transformation Local; // read-write access

}s

and is clearly much reduced from that of 01dSpatial. Observe that the prefix conven-
tion for variables is now used only for protected or private members. The convention
for public data members is not to use prefixes and to capitalize the first letter of the
name, just like function names are handled.

In class Spatial the world transformation is also in public scope. Recalling the
previous discussion about transformations, the world transformations are composi-
tions of local transformations. In this sense, a world transformation is computed as a
(deferred) side effect of setting local transformations. I just mentioned that exposing
data members in the public interface is not a good idea when side effects must occur,
so why already violate that design goal? The problem has to do with the complexity
of the controller system. Some controllers might naturally be constructed to directly
set the world transformations. Indeed, the engine has a skin-and-bones controller that
computes the world transformation for a triangle mesh. In a sense, the controller
bypasses the standard mechanism that computes world transformations from local
ones. The data members World and WorldIsCurrent are intended for read access by
application writers, but may be used for write access by controllers. If a controller
sets the World member directly, it should also set the WorldIsCurrent flag to let the
geometric update system know that the world transformation for this node should
not be computed as a composition of its parent’s world transformation and its local
transformation.

Similar arguments apply to the data members WorTdBound and Worl1dBoundIsCur-
rent. In some situations you have a node (and subtree) whose behavior is known to
you (by design), and whose world bounding volume may be assigned directly. For
example, the node might be a room in a building that never moves. The child nodes
correspond to objects in the room; those objects can move within the room, so their
world bounding volumes change. However, the room’s world bounding volume need
not change. You may set the room’s world bounding volume, but the geometric up-

TeamLRN sPeCiAL

3.2 Geometric State 187

date system should be told not to recalculate that bounding volume from the child
bounding volumes. The flag Wor1dBoundIsCurrent should be set to true in this case.

The member functions of Spatial relevant to geometric updates are shown in the
following partial interface listing:

class Spatial : public Object
{
pubTic:
void UpdateGS (double dAppTime = -Mathd::MAX REAL,
bool bInitiator = true);
void UpdateBS ();

protected:
virtual void UpdateWorldData (double dAppTime);
virtual void UpdateWorldBound () = 0;
void PropagateBoundToRoot ();

}s

The public functions UpdateGS (“update geometric state”) and UpdateBS (“update
bound state”) are the entry points to the geometric update system. The function
UpdateGS is for both propagation of transformations from parents to children and
propagation of world bounding volumes from children to parents. The dAppTime
(“application time”) is passed so that any animated quantities needing the current
time to update their state have access to it. The Boolean parameter will be explained
later. The function UpdateBS is for propagation only of world bounding volumes. The
protected function UpdateWorldData supports the propagation of transformations in
the downward pass. It is virtual to allow derived classes to update any additional
world data that is affected by the change in world transformations. The protected
functions UpdateWorldBound and PropagateToRoot support the calculation of world
bounding volumes in the upward pass. The UpdateWor1dBound function is pure virtual
to require Geometry and Node to implement it as needed.
The portion of the Geometry interface relevant to geometric updates is

class Geometry : public Spatial

{

pubTic:
Vector3fArrayPtr Vertices;
Vector3fArrayPtr Normals;
BoundingVolumePtr ModelBound;
IntArrayPtr Indices;

void UpdateMS ();

188 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

protected:
virtual void UpdateModelBound ();
virtual void UpdateModelNormals ();
virtual void UpdateWorldBound ();
1

As with the Spatial class, the data members are in public scope because there are no
immediate side effects from reading or writing them. But there are side effects that
the programmer must ensure, namely, the geometric update itself.

The function UpdateMS (“ update model state”) is the entry point into the update
of the model bound and model normals. The function should be called whenever
you change the model vertices. All that UpdateMS does is call the protected functions
UpdateModelBound and UpdateMode1Normals. The function UpdateModel1Bound computes
a model bounding volume from the collection of vertices. This is accomplished by a
call to the BoundingVolume function ComputeFromData. I made the model bound update
a virtual function just in case a derived class needs to compute the bound differently.
For example, a derived class might have prior knowledge about the model bound and
not even have to process the vertices.

The function UpdateModelNormals has an empty body in Geometry since the ge-
ometry class is just a container for vertices and normals. Derived classes need to
implement UpdateMode1Normals for their specific data representations. Not all derived
classes have normals (for example, Polypoint and Polyline), so I decided to let them
use the empty base class function rather than making the base function pure virtual
and then requiring derived classes to implement it with empty functions.

The function UpdateWor1dBound is an implementation of the pure virtual function
in Spatial. All that it does is compute the world bounding volume from the model
bounding volume by applying the current world transformation.

The member functions of Node relevant to geometric updates are shown in the
following partial interface listing:

class Node : public Spatial

{

protected:
virtual void UpdateWorldData (double dAppTime);
virtual void UpdateWorldBound ();

}s

The function UpdateWorldData is an implementation of the virtual function in the
Spatial base class. It has the responsibility to propagate the geometric update to its
children. The function UpdateWorldBound is an implementation of the pure virtual
function in the Spatial base class. Whereas the Geometry class implements this to
calculate a single world bounding volume for its data, the Node class implements this
to compute a world bounding volume that contains the world bounding volume of
all its children.

Figure 3.8

TeamLRN sPeCiAL

3.2 Geometric State 189

Transforms Bounds

A geometric update of a simple scene graph. The light gray shaded node, Ny, is the
one at which the UpdateGS call initiates.

Figure 3.8 illustrates the behavior of the update. The symbols are N for Node, S for
Spatial, and G for Geometry. The rectangular boxes represent the nodes in the scene
hierarchy. The occurrence of both an N and an S at a node stresses the fact the Node
is derived from Spatial, so both classes’ public and protected interfaces are available
to Node. A similar statement is made for Geometry and Spatial.

If the model bounding volumes or the model normals for a Geometry object are
not current, that object must call Geometry::UpdateMS() to make them current. In
most cases, the model data is current—for example, in rigid triangle meshes; you will
not call UpdateMS often for such objects. The other extreme is something like a morph
controller that changes the vertex data frequently, and the UpdateMS call occurs after
each change.

Assuming the model data is current at all leaf nodes, the shaded gray box in the
figure indicates that node N, is the one initiating a geometric update because its local
transformation was changed (translation, rotation, and/or uniform scale). Its world
transformation must be recomputed from its parent’s (N,) world transformation and
its newly changed local transformation. The new world transformation is passed to
its two children, G; and N, so that they also may recompute their world transfor-
mations. The world bounding volume for G; must be recomputed from its model
bounding volume. The process is repeated at node N,. Its world transformation is
recomputed from the world transformation of N, and its local transformation. The
new world transformation is passed to its two children, G5 and G, so that they may
recompute their world transformations. Those leaf nodes also recompute their world
bounding volumes from their current model bounding volumes and their new world
transformations. On return to the parent N,, that node must recompute its world
bounding volume to contain the new world bounding volumes of its children. On
return to the node N;, that node must recompute its world bounding volume to con-
tain the new world bounding volumes for G; and N,. You might think the geometric
update terminates at this time, but not yet. The change in world bounding volume at
N, can cause the world bounding volume of its parent, N, to be out of date. Ny must

190 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

be told to update itself. Generally, the change in world bounding volume at the initia-
tor of the update must propagate all the way to the root of the scene hierarchy. Now
the geometric update is complete. The sequence of operations is listed as pseudocode
in the following. The indentation denotes the level of the recursive call of UpdateGs.

double dAppTime = <current application time>;
N1.UpdateGS (appTime,true);
N1.World = compose(NO.World,N1.Local);
G3.UpdateGS (appTime,false);
G3.World = Compose(N1.World,G3.Local);
G3.WorldBound = Transform(G3.World,G3.ModelBound);
N4.UpdateGS (appTime,false);
N4.World = Compose(N1.World,N4.Local);
G5.UpdateGS (appTime,false);
G5.World = Compose(N4.World,G5.Local);
G5.WorTdBound = Transform(G5.World,G5.Mode1Bound);
G6.UpdateGS (appTime,false);
G6.World = Compose(N4.World,G6.Local);
G6.WorldBound = Transform(G6.World,G6.ModelBound);
N4.WorldBound = BoundContaining(G5.WorldBound,G6.WorldBound);
N1.WorldBound = BoundContaining(G3.WorldBound,N4.WorldBound);
NO.WorldBound = BoundContaining(N1.WorldBound,N2.WorldBound);

The Boolean parameter bInitiator in the function UpdateGS is quite important.
In the example, the UpdateGS call initiated at N,. A depth-first traversal of the subtree
rooted at N, is performed, and the transformations are propagated downward. Once
you reach a leaf node, the new world bounding volume is propagated upward. When
the last child of N; has been visited, we found we needed to propagate its world
bounding volume to its predecessors all the way to the root of the scene, in the
example to N,. The propagation of a world bounding volume from G5 to N, is
slightly different than the propagation of a world bounding volume from N; to
Ny. The depth-first traversal at N, guarantees that the world bounding volumes
are processed on the upward return. You certainly would not want each node to
propagate its world bounding volume all the way to the root whenever that node is
visited in the traversal because only the initiator has that responsibility. If you were to
have missed that subtlety and not had a Boolean parameter, the previous pseudocode
would become

double dAppTime = <current application time>;
N1.UpdateGS (appTime);
N1.World = compose(NO.World,N1.Local);
G3.UpdateGS (appTime);
G3.World = Compose(N1.World,G3.Local);
G3.WorldBound = Transform(G3.World,G3.ModelBound);

TeamLRN sPeCiAL

3.2 Geometric State 191

N1.WorldBound = BoundContaining(G3.WorldBound,N4.WorldBound);
NO.WorldBound = BoundContaining(N1.WorldBound,N2.WorldBound);
N4.UpdateGS (appTime) ;
N4.World = Compose(N1.World,N4.Local);
G5.UpdateGS (appTime);
G5.World = Compose(N4.World,G5.Local);
G5.WorTdBound = Transform(G5.World,G5.Mode1Bound);
N4.WorldBound = BoundContaining(G5.WorldBound,G6.Wor1dBound);
N1.WorldBound = BoundContaining(G3.WorldBound,N4.Worl1dBound);
NO.WorldBound = BoundContaining(N1.WorldBound,N2.Worl1dBound);
G6.UpdateGS (appTime);
G6.World = Compose(N4.World,G6.Local);
G6.WorldBound = Transform(G6.World,G6.ModelBound);
N4.WorldBound = BoundContaining(G5.WorldBound,G6.Wor1dBound);
N1.WorldBound = BoundContaining(G3.WorldBound,N4.Worl1dBound);
NO.WorldBound = BoundContaining(N1.WorldBound,N2.WorldBound);
N4.WorldBound = BoundContaining(G5.WorldBound,G6.WorldBound);
N1.WorldBound = BoundContaining(G3.WorldBound,N4.WorldBound);
NO.WorldBound = BoundContaining(N1.WorldBound,N2.WorldBound);
N1.WorldBound = BoundContaining(G3.WorldBound,N4.WorldBound);
NO.WorTdBound = BoundContaining(N1.WorldBound,N2.WorldBound);

Clearly, this is an inefficient chunk of code. The Boolean parameter is used to prevent
subtree nodes from propagating the world bounding volumes to the root.

The actual update code is shown next because I want to make a few comments
about it. The entry point for the geometric update is

void Spatial::UpdateGS (double dAppTime, bool bInitiator)
{
UpdateWorldData(dAppTime);
UpdateWor1dBound();
if (bInitiator)
PropagateBoundToRoot () ;

If the object is a Node object, the function UpdateWorldData propagates the transfor-
mations in the downward pass. If the object is a Geometry object, the function is not
implemented in that class, and the Spatial version is used. The two different func-
tions are

void Node::UpdateWorldData (double dAppTime)

{
Spatial::UpdateWorldData(dAppTime);

192 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

for (int i = 0; i < m kChild.GetQuantity(); i++)
{
Spatial* pkChild = m _kChild[i];
if (pkChild)
pkChild->UpdateGS (dAppTime,false);

void Spatial::UpdateWorldData (double dAppTime)

{
UpdateControllers (dAppTime);

// NOTE: Updates on controllers for global state and lights
// 9o here. To be discussed later.

if (!'WorldIsCurrent)
{
if (m_pkParent)
World.Product(m _pkParent->World,Local);
else
World = Local;

The Spatial version of the function has the responsibility for computing the com-
position of the parent’s world transformation and the object’s local transformation,
producing the object’s world transformation. At the root of the scene (m_pkParent is
NULL), the local and world transformations are the same. If a controller is used to com-
pute the world transformation, then the Boolean flag Wor1dIsCurrent is true and the
composition block is skipped. The Node version of the function allows the base class
to compute the world transformation, and then it propagates the call (recursively)
to its children. Observe that the bInitiator flag is set to false for the child calls to
prevent them from propagating the world bounding volumes to the root node.

The controller updates might or might not affect the transformation system. For
example, the point, particles, and morph controllers all modify the model space ver-
tices (and possibly the model space normals). Each of these calls UpdateMS to guar-
antee the model bounding volume is current. Fortunately this step occurs before our
UpdateGS gets to the stage of updating world bounding volumes. Keyframe and in-
verse kinematics controllers modify local transformations, but they do not set the
WorldIsCurrent flag to true because the world transformations must still be updated.
The skin controllers modify the world transformations directly and do set the Wor1d-
IsCurrent flag to true.

In UpdateGS, on return from UpdateWorldData the world bounding volume is up-
dated by UpdateWorldBound. If the object is a Node object, a bound of bounds is com-

TeamLRN sPeCiAL

3.2 Geometric State 193

puted. If the object is a Geometry object, the newly computed world transformation is
used to transform the model bounding volume to the world bounding volume.

void Node::UpdateWorldBound ()
{
if (!'WorldBoundIsCurrent)
{
bool bFoundFirstBound = false;
for (int i = 0; i < m kChild.GetQuantity(); i++)
{
Spatial* pkChild = m_kChi]d[i];
if (pkChild)
{
if (bFoundFirstBound)

{
// Merge current world bound with child
// world bound.
WorldBound->GrowToContain(pkChild->WorldBound);
}
else
{

// Set world bound to first nonnull child
// world bound.

bFoundFirstBound = true;
Wor1dBound->CopyFrom(pkChild->WorldBound);

void Geometry::UpdateWorldBound ()

{
Mode1Bound->TransformBy (World,WorldBound) ;

If the application has explicitly set the world bounding volume for the node, it should
have also set Wor1dBoundIsCurrent to false, in which case Node: : UpdateWor1dBound has
no work to do. However, if the node must update its world bounding volume, it does
so by processing its child bounding volumes one at a time. The bounding volume
of the first (nonnull) child is copied. If a second (nonnull) child exists, the current
world bounding volume is modified to contain itself and the bound of the child. The
growing algorithm continues until all children have been visited.

194 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

For bounding spheres, the iterative growing algorithm amounts to computing the
smallest volume of two spheres, the current one and that of the next child. This is
a greedy algorithm and does not generally produce the smallest volume bounding
sphere that contains all the child bounding spheres. The algorithm to compute the
smallest volume sphere containing a set of spheres is a very complicated beast [FG03].
The computation time is not amenable to real-time graphics, so instead we use a less
exact bound, but one that can be computed quickly.

The last stage of UpdateGS is to propagate the world bounding volume from the
initiator to the root. The function that does this is PropagateBoundToRoot. This, too,
is a recursive function, just through a linear list of nodes:

void Spatial::PropagateBoundToRoot ()
{
if (m_pkParent)
{
m_pkParent->UpdateWorldBound();
m_pkParent->PropagateBoundToRoot () ;

As mentioned previously, if a local transformation has not changed at a node,
but some geometric operations cause the world bounding volume to change, there is
no reason to waste time propagating transformations in a downward traversal of the
tree. Instead just call UpdateBS to propagate the world bounding volume to the root:

void Spatial::UpdateBS ()

{
UpdateWorldBound();
PropagateBoundToRoot () ;

Table 3.1 is a summary of the updates that must occur when various geometric
quantities change in the system. All of the updates may be viewed as side effects to
changes in the geometric state of the system. None of the side effects occur automati-
cally because I want application writers to use as much of their knowledge as possible
about their environment and not force an inefficient update mechanism to occur be-
hind the scenes.

For example, Figure 3.9 shows a scene hierarchy that needs updating. The light
gray shaded nodes in the scene have had their local transformations changed. You
could blindly call

a.UpdateGS(appTime,true);
b.UpdateGS (appTime,true);
c.UpdateGS (appTime,true);
d.UpdateGS (appTime,true);

Table 3.1 Updates that must occur when geometric quantities change.

3.2 Geometric State 195

Changing quantity Required updates Top-level function to call

Model data Model bound, model normals (if any) Geometry: :UpdateMS

Model bound World bound Spatial::UpdateGS or
Spatial::UpdateBS

World bound Parent world bound (if any) Spatial::UpdateGS or
Spatial::UpdateBS

Local transformation World transformation, child Spatial::UpdateGS

transformations
World transformation World bound Spatial::UpdateGS

Figure 3.9 A scene hierarchy that needs updating. The light gray shaded nodes have had their
local transformations changed.

to perform the updates, but this is not efficient. All that is needed is

a.UpdateGS(appTime,true);
b.UpdateGS (appTime,true);

Nodes ¢ and d are updated as a side effect of the update at node a. In general, the min-
imum number of UpdateGS calls needed is the number of nodes requiring an update
that have no predecessors who also require an update. Node a requires an update, but
has no out-of-date predecessors. Node c requires an update, but it has a predecessor,
node a, that does. Although it is possible to construct an automated system to de-
termine the minimum number of UpdateGS calls, that system will consume too many

TeamLRN sPeCiAL

196 Chapter 3 Scene Graphs and Renderers

cycles. I believe it is better to let the application writers take advantage of knowledge
they have about what is out of date and specifically call UpdateGS themselves.

3.3 GEOMETRIC TYPES

TeamLRN sPeCiAL

The basic geometric types supported in the engine are collections of points, col-
lections of line segments, triangle meshes, and particles. Various classes in the core
engine implement these types. During the drawing pass through the scene graph, the
renderer is provided with such objects and must draw them as their types dictate.
Most graphics APIs require the type of object to be specified, usually via a set of enu-
merated values. To facilitate this, the Geometry class has enumerations for the basic
types, as shown in the following code snippet:

class Geometry : public Spatial
{
// internal use
pubTlic:
enum // GeometryType
{
GT_POLYPOINT,
GT_POLYLINE_SEGMENTS,
GT_POLYLINE_OPEN,
GT_POLYLINE_CLOSED,
GT_TRIMESH,
GT_MAX_QUANTITY
1

int GeometryType;
}s

The type itself is stored in the data member GeometryType. It is in public scope because
there are no side effects in reading or writing it. However, the block is marked for
internal use by the engine. There is no need for an application writer to manipulate
the type.

The value GT_POLYPOINT indicates the object is a collection of points. The value
GT_TRIMESH indicates the object is a triangle mesh. The three values with POLYLINE as
part of their names are used for collections of line segments. GT_POLYLINE_SEGMENTS is
for a set of line segments with no connections between them. GT_POLYLINE_OPEN is for
a polyline, a set of line segments where each segment end point is shared by at most
two lines. The initial and final segments each have an end point that is not shared
by any other line segment; thus the polyline is said to be open. Another term for an

3.3 Geometric Types 197

open polyline is a line strip. If the two end points are actually the same point, then the
polyline forms a loop and is said to be closed. Another term for a closed polyline is a
line loop.

If you were to modify the engine to support other types that are native to the
graphics APIs, you can add enumerated types to the list. You should add these after
GT_TRIMESH, but before GT_MAX_QUANTITY, in order to preserve the numeric values of
the current types.

3.3.1 POINTS

A collection of points is represented by the class Polypoint, which is derived from
Geometry. The interface is very simple:

class Polypoint : public Geometry

{

pubTic:
Polypoint (Vector3fArrayPtr spkVertices);
virtual ~Polypoint ();

void SetActiveQuantity (int iActiveQuantity);
int GetActiveQuantity () const;

protected:
Polypoint ();

int m_iActiveQuantity;

bs

The points are provided to the constructor. From the application’s perspective,
the set of points is unordered. However, for the graphics APIs that use vertex arrays,
I have chosen to assign indices to the points. The vertices and indices are both used
for drawing. The public constructor is
Polypoint::Polypoint (Vector3fArrayPtr spkVertices)

Geometry(spkVertices)

GeometryType = GT_POLYPOINT;

int iVQuantity = Vertices->GetQuantity();
m_iActiveQuantity = iVQuantity;

int* ailndex = new int[iVQuantity];

TeamLRN sPeCiAL

198 Chapter 3 Scene Graphs and Renderers

for (int i = 0; i < iVQuantity; i++)
ailndex[i] = 1;
Indices = new IntArray(iVQuantity,ailndex);

The assigned indices are the natural ones.

The use of an index array has a pleasant consequence. Normally, all of the points
would be drawn by the renderer. In some applications you might want to have storage
for a large collection of points, but only have a subset active at one time. The class has
a data member, m_iActiveQuantity, that indicates how many are active. The active
quantity may be zero, but cannot be larger than the total quantity of points. The active
set is contiguous in the array, starting at index zero, but if need be, an application can
move the points from one vertex array location to another.

The active quantity data member is not in the public interface. The function
SetActiveQuantity has the side effect of validating the requested quantity. If the input
quantity is invalid, the active quantity is set to the total quantity of points.

The index array Indices is a data member in the base class Geometry. Its type is
TSharedArray<int>. This array is used by the renderer for drawing purposes. Part of
that process involves querying the array for the number of elements. The shared array
class has a member function, GetQuantity, that returns the fotal number of elements
in the array. However, we want it to report the active quantity when the object to
be drawn is of type Polypoint. To support this, the shared array class has a member
function SetActiveQuantity that changes the internally stored total quantity to the
requested quantity. The requested quantity must be no larger than the original total
quantity. If it is not, no reallocation occurs in the shared array, and any attempt to
write elements outside the original array is an access violation.

Rather than adding a new data member to TSharedArray to store an active quan-
tity, allowing the total quantity to be stored at the same time, I made the decision that
the caller of SetActiveQuantity must remember the original total quantity, in case the
original value must be restored through another call to SetActiveQuantity. My deci-
sion is based on the observation that calls to SetActiveQuantity will be infrequent, so
I wanted to minimize the memory usage for the data members of TSharedArray.

As in all Object-derived classes, a default constructor is provided for the purposes
of streaming. The constructor is protected to prevent the application from creating
default objects whose data members have not been initialized with real data.

3.3.2 LINE SEGMENTS

TeamLRN sPeCiAL

A collection of line segments is represented by the class Polyline, which is derived
from Geometry. The interface is

3.3 Geometric Types 199

class Polyline : public Geometry
{
public:
Polyline (Vector3fArrayPtr spkVertices, bool bClosed,
bool bContiguous);
virtual ~Polyline ();

void SetActiveQuantity (int iActiveQuantity);
int GetActiveQuantity () const;

void SetClosed (bool bClosed);

bool GetClosed () const;

void SetContiguous (bool bContiguous);

bool GetContiguous () const;

protected:
Polyline ();
void SetGeometryType ();

int m_iActiveQuantity;
bool m_bClosed, m_bContiguous;

The end points of the line segments are provided to the constructor. The three
possible interpretations for the vertices are disjoint segments, open polyline, or closed
polyline. The input parameters bClosed and bContiguous determine which interpre-
tation is used. The inputs are stored as class members m _bClosed and m_bContiguous.
The actual interpretation is implemented in SetGeometryType:

void Polyline::SetGeometryType ()

{
if (m_bContiguous)

{
if (m_bClosed)
GeometryType = GT_POLYLINE CLOSED;
else
GeometryType = GT_POLYLINE OPEN;
}
else
{

GeometryType = GT_POLYLINE_SEGMENTS;

TeamLRN sPeCiAL

200 Chapter 3 Scene Graphs and Renderers

To be a polyline where end points are shared, the contiguous flag must be set to true.
The closed flag has the obvious interpretation.

Let the points be P; for 0 <i < n. If the contiguous flag is false, the object is
a collection of disjoint segments. For a properly formed collection, the quantity of
vertices n should be even. The n/2 segments are

(Po, P1), (Py, P3), ooy (Pyp, Pyy).

If the contiguous flag is true and the closed flag is false, the points represent an open
polyline with n — 1 segments:

<P0) Pl)) (PD P2>) ce e (Pn72> Pn71>'

The end point P of the initial segment and the end point P,_; of the final segment
are not shared by any other segments. If instead the closed flag is true, the points
represent a closed polyline with n segments:

(PO) P])) (Pl) PZ)) L <Pn—2) Pn—1>) (Pn—l) PO)

Each point is shared by exactly two segments. Although you might imagine that a
closed polyline in the plane is a single loop that is topologically equivalent to a circle,
you can obtain more complicated topologies by duplicating points. For example, you
can generate a bow tie (two closed loops) in the z = 0 plane with P, = (0, 0, 0),
P,=(1,0,0),P,= (0, 1,0),P;= (0,0, 0), P, = (0, —1, 0), and Ps = (—1, 0, 0). The
contiguous and closed flags are both set to true.

The class has the ability to select an active quantity of end points that is smaller or
equal to the total number, and the mechanism is exactly the one used in Polypoint.
If your Polyline object represents a collection of disjoint segments, you should also
make sure the active quantity is an even number.

3.3.3 TRIANGLE MESHES

TeamLRN sPeCiAL

The simplest representation for a collection of triangles is as a list of m triples of 3m
vertices:

Vo, Vi, Vo), (V3, Vi, Vi), ooy (Va3 Vi, Vo).

The vertices of each triangle are listed in counterclockwise order; that is, the triangle
is in a plane with a specified normal vector. An observer on the side of the plane to
which the normal is directed sees the vertices of the triangle in a counterclockwise
order on that plane. A collection like this is sometimes called a triangle soup (more
generally, a polygon soup). Graphics APIs do support rendering where the triangles
are provided this way, but most geometric models built from triangles are not built
as a triangle soup. Vertices in the model tend to be part of more than one triangle.

TeamLRN sPeCiAL

3.3 Geometric Types 201

Moreover, if the triangle soup is sent to the renderer, each vertex must be transformed
from model space to world space, including running them through the clipping and
lighting portions of the system. If a point occurs multiple times in the list of vertices,
each one processed by the renderer, we are wasting a lot of cycles.

A more efficient representation for a collection of triangles is to have an array of
unique vertices and represent the triangles as a collection of triples of indices into the
vertex array. This is called a triangle mesh. If V; for 0 <i < n is the array of vertices,
an index array /; for 0 < j < 3m represents the triangles

<Vlo’ Vll’ V’z>’ <V’3’ V’4’ V[5>’ P <V[3m—3’ Vl3m—z’ V’am—1>'

The goal, of course, is that n is a lot smaller than 3m because of the avoidance
of duplicate vertices in the vertex array. Fewer vertices must be processed by the
renderer, leading to faster drawing.

The class that represents triangle meshes is TriMesh. A portion of the interface is

class TriMesh : public Geometry
{
pubTic:
TriMesh (Vector3fArrayPtr spkVertices, IntArrayPtr spkIndices,
bool bGenerateNormals);
virtual ~TriMesh ();

int GetTriangleQuantity () const;
void GenerateNormals ();

protected:
TriMesh ();
virtual void UpdateModelNormals ();

}s

I have omitted the interface that supports the picking system and will discuss that in
Section 6.3.3.

The constructor requires you to provide the vertex and index arrays for the trian-
gle mesh. The quantity of elements in the index array should be a multiple of three.
The member function GetTriangleQuantity returns the quantity of indices divided by
three. For the purposes of lighting, the renderer will need to use vertex normals. The
third parameter of the constructor determines whether or not the normals should be
generated.

The actual construction of the vertex normals is done in the method UpdateMode1-
Normals. The method is protected, so you cannot call it directly. It is called indirectly
through the public update function Geometry: :UpdateMS. Multiple algorithms exist
for the construction of vertex normals. The one I implemented is as follows. Let T}

202 Chapter 3 Scene Graphs and Renderers

through 7,, be those triangles that share vertex V. Let N; through N,, be normal
vectors to the triangles, but not necessarily unit-length ones. For a triangle T with
vertices V), Vi, and V,, the normal I use is N = (V| — V) x (V, — V;). The vertex
normal is a unit-length vector,

ZmZI Ni
N=-—"—"=F—.
|Z:'n=1 Ni|
The length |N;| is twice the area of the triangle to which it is normal. Therefore, large
triangles will have a greater effect on the vertex normal than small triangles. I consider
this a more reasonable algorithm than one that computes the vertex normal as an
average of unit-length normals for the sharing triangles, where all triangles have the
same influence on the outcome regardless of their areas.

Should you decide to create a triangle mesh without normals, you can always

force the generation by calling the method GenerateNormals. This function allocates
the normals if they do not already exist and then calls UpdateModelNormals.

3.3.4 PARTICLES

TeamLRN sPeCiAL

A particle is considered to be a geometric primitive with a location in space and a
size. The size attribute distinguishes particles from points. A collection of particles is
referred to as a particle system. Particle systems are quite useful, for interesting visual
displays as well as for physical simulations. Both aspects are discussed later, the visual
ones in Section 4.1.2 and the physical ones in Section 7.2. In this section I will discuss
the geometric aspects and the class Particles that represents them.

The portion of the class interface for Particles that is relevant to data manage-
ment 1s

class Particles : public TriMesh
{
public:
Particles (Vector3fArrayPtr spkLocations,
FloatArrayPtr spkSizes, bool bWantNormals);
virtual ~Particles ();

Vector3fArrayPtr Locations;
FloatArrayPtr Sizes;
float SizeAdjust;

void SetActiveQuantity (int iActiveQuantity);
int GetActiveQuantity () const;

3.4 Render State 203

protected:
Particles ();
void GenerateParticles (const Camera* pkCamera);

int m_iActiveQuantity;

}s

The first observation is that the class is derived from TriMesh. The particles are drawn
as billboard squares (see Section 4.1.2) that always face the observer. Each square is
built of two triangles, and all the triangles are stored in the base class as a triangle
mesh. The triangle mesh has four times the number of vertices as it does particle
locations, which is why the locations are stored as a separate array.

The constructor accepts inputs for the particle locations and sizes. The third
parameter determines whether or not normal vectors are allocated. If they are, the
normal vectors are in the opposite direction of view—they are directed toward the
observer. Even though the particles are drawn as billboards, they may still be affected
by lights in the scene, so the normal vectors are relevant.

The data members Locations, Sizes, and SizeAdjust are in public scope because
no side effects must occur when they are read or written. The locations and sizes are
as described previously. The data member SizeAdjust is used to uniformly scale the
particle sizes, if so desired. The adjustment is a multiplier of the sizes stored in the
member array Sizes, not a replacement for those values. The initial value for the size
adjustment is one.

The class has the ability to select an active quantity of end points that is smaller
or equal to the total number. The mechanism is exactly the one used in Polypoint.

34 RENDER STATE

I use the term render state to refer to all the information that is associated with the
geometric data for the purposes of drawing the objects. Three main categories of
render state are global state, lights, and effects.

3.4.1 GLOBAL STATE

TeamLRN sPeCiAL

Global state refers to information that is essentially independent of any information
the objects might provide. The states I have included in the engine are alpha blending,
triangle culling, dithering, fog, material, shading, wireframe, and depth buffering.
For example, depth buffering does not care how many vertices or triangles an object
has. A material has attributes that are applied to the vertices of an object, regardless
of how many vertices it has. Alpha blending relies on the texture images of the
Geometry object having an alpha channel, but it does not care about what the texture

204 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

coordinates are for that object. A global state, when attached to an interior node in a
scene hierarchy, affects all leaf nodes in the subtree rooted at the node. This property
is why I used the adjective global.

The base class is GlobalState and has the following interface:

class GlobalState : public Object
{
public:

virtual ~GlobalState ();

enum // Type

{
ALPHA,
CULL,
DITHER,
FOG,
MATERIAL,
SHADE,
WIREFRAME,
ZBUFFER,
MAX_STATE

}s

virtual int GetGlobalStateType () const = 0;
static Pointer<GlobalState> Default[MAX STATE];

protected:
GlobalState ();
}s

The base class is abstract since the constructor is protected (or since there is a pure
virtual function declared). To support fast access of global states in arrays of smart
pointers GlobalStatePtr, I chose to avoid using the Object run-time type information
system. The enumerated type of GlobalState provides an alternate RTTI system. Each
derived class returns its enumerated value through an implementation of GetGlobal-
StateType. Each derived class is also responsible for creating a default state, stored in
the static array GlobalState::Default[]. Currently, the enumerated values are a list
of all the global states I support. If you were to add another one, you would derive a
class MyNewGlobalState from GlobalState. But you also have to add another enumer-
ated value MYNEWGLOBALSTATE to the base class. This violates the open-closed principle
of object-oriented programming, but the changes to GlobalState are so simple and
so infrequent that I felt justified in the violation. None of the classes in Wild Magic

TeamLRN sPeCiAL

3.4 Render State 205

version 3 ever write an array of global state pointers to disk, so adding a new state
does not invalidate all of the scenes you had streamed before the change.

The global states are stored in class Spatial. A portion of the interface relative to
global state storing and member accessing is

class Spatial : public Object

{

public:
void SetGlobalState (GlobalState* pkState);
GlobalState* GetGlobalState (int eType) const;
void RemoveGlobalState (int eType);
void RemoveAllGlobalStates ();

protected:
TList<GlobalStatePtr>* m_pkGlobalList;
bs

The states are stored in a singly linked list of smart pointers. The choice was made
to use a list rather than an array, whose indices are the GlobalState enumerated
values, to reduce memory usage. A typical scene will have only a small number of
nodes with global states attached, so the array representation would generate a lot
of wasted memory for all the other nodes. The names of the member functions
make it clear how to use the functions. The eType input is intended to be one of the
GlobalState enumerated values. For example, the code

MaterialState* pkMS = <some material state>;
Spatial* pkSpatial = <some Spatial-derived object>;
pkSpatial->SetGlobalState (pkMS);
pkSpatial->RemoveGlobalState(GlobalState: :MATERIAL);

attaches a material state to an object, then removes it from the object.

The class Geometry also has storage for global states, but the storage is for all global
states encountered along the path in the scene hierarchy from the root node to the
geometry leaf node. The storage is assembled during a render state update, a topic
discussed later in this section. The portion of the interface of Geometry relevant to
storage is

class Geometry : public Spatial
{
// internal use
pubTic:
GlobalStatePtr States[GlobalState::MAX_ STATE];
1

206 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

The array of states is in public scope, but is tagged for internal use only. An applica-
tion should not manipulate the array or its members.

I will now discuss each of the derived global state classes. These classes have a
couple of things in common. First, they must all implement the virtual function
GetGlobalStateType. Second, they must all create default objects, something that is
done at program initialization. At program termination, the classes should all destroy
their default objects. The initialization-termination system discussed in Section 2.3.8
is used to perform these actions. You will see that each derived class uses the macros
defined in Wm3Main.mcr and implements void Initialize() and void Terminate(). All
the derived classes have a default constructor that is used to create the default objects.

Depth Buffering

In a correctly rendered scene, the pixels drawn in the frame buffer correspond to
those visible points closest to the observer. But many points in the (3D) world can
be projected to the same pixel on the (2D) screen. The graphics system needs to keep
track of the actual depths in the world to determine which of those points is the visible
one. This is accomplished through depth buffering. A frame buffer stores the pixel
colors, and a depth buffer stores the corresponding depth in the world. The depth
buffer is sometimes called a z-buffer, but in a perspective camera model, the depth
is not measured along a direction perpendicular to the screen. It is depth along rays
emanating from the camera location (the eye point) into the world.
The standard drawing pass for a system using a depth buffer is

FrameBuffer fbuffer = <current RGB values on the screen>;
DepthBuffer zbuffer = <current depth values for fbuffer pixels>;
ColorRGB sourceColor = <color of pixel to be drawn>;

float sourceDepth = <depth of the point in the world>;

int x, y = <location of projected point in the buffers>;

if (sourceDepth <= zbuffer(x,y))
{
fbuffer(x,y) = sourceColor;
zbuffer(x,y) = sourceDepth;

Three aspects of a depth buffer are apparent in the code. You need the ability
to read from the depth buffer, compare a value against the read value, and write to
the depth buffer. The comparison function in the pseudocode is “less than or equal
to.” You could use “less than” if so desired, but allowing equality provides the ability
to draw on top of something already visible when the new object is coincident with
the already visible object (think “decal”). For generality, the comparison could be
written as

TeamLRN sPeCiAL

3.4 Render State 207

if (ComparesFavorably(sourceDepth,zbuffer(x,y)))
{

fbuffer(x,y) = sourceColor;

zbuffer(x,y) = sourceDepth;

The function ComparesFavorably(a,b) can be any of the usual ones: a < b, a <b,
a>b,a>b,a=Db,ora #b. Two additional functions are allowed: always or never.
In the former, the frame and depth buffers are always updated. In the latter, the frame
and depth buffers are never updated.

The class that encapsulates the depth buffering is ZBufferState. Its interface is

class ZBufferState : public GlobalState
{
public:
virtual int GetGlobalStateType () const { return ZBUFFER; }

ZBufferState ();
virtual ~ZBufferState ();

enum // Compare values

{
CF_NEVER,
CF_LESS,
CF_EQUAL,
CF_LEQUAL,
CF_GREATER,
CF_NOTEQUAL,
CF_GEQUAL,
CF_ALWAYS,
CF_QUANTITY

bs

bool Enabled; // default: true

bool Writable; // default: true

int Compare; // default: CF_LEQUAL
}s

The data members are in public scope because no side effects must occur when they
are read or written. The member Enabled is set to true if you want depth buffering to
be enabled. In this case, the buffer is automatically readable. To make the depth buffer
writable, set the member Writable to true. The comparison function is controlled by
the member Compare. The defaults are the standard ones used when depth buffering is

208 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

desired (readable, writable, less than or equal to for the comparison). A simple code
block for using standard depth buffering in an entire scene is

NodePtr m_spkScene = <the scene graph>;
m_spkScene->SetGlobalState(new ZBufferState);

There are situations where you want the depth buffer to be readable, but not
writable. One of these occurs in conjunction with alpha blending and semitranspar-
ent objects, the topic of the next few paragraphs.

Alpha Blending

Given two RGBA colors, one called the source color and one called the destination
color, the term alpha blending refers to the general process of combining the source
and destination into yet another RGBA color. The source color is (ry, g, by, ay),
and the destination color is (r;, g4, b, a;). The blended result is the final color
(re, g» b £ ag). All color channel values in this discussion are assumed to be in the
interval [0, 1].

The classical method for blending is to use the alpha channel as an opacity factor.
If the alpha value is 1, the color is completely opaque. If the alpha value is 0, the color
is completely transparent. If the alpha value is strictly between 0 and 1, the colors are
semitransparent. The formula for the blend of only the RGB channels is

(rfa 81> bf) =(1- as)(rs’ 85> bv) +as(rd’ 8d> bd)

= ((1 - as)rs + asry, (1 - as)gs + as8d> (1 - as)bs + asbd)'

The algebraic operations are performed component by component. The assumption
is that you have already drawn the destination color into the frame buffer; that is,
the frame buffer becomes the destination. The next color you draw is the source. The
alpha value of the source color is used to blend the source color with the current
contents of the frame buffer.

It is also possible to draw the destination color into an offscreen buffer, blend the
source color with it, and then use the offscreen buffer for blending with the current
contents of the frame buffer. In this sense we also want to keep track of the alpha value
in the offscreen buffer. We need a blending equation for the alpha values themselves.
Using the same operations as for the RGB channels, your choice will be

ar=(1-asas +asay.

Combining the four channels into a single equation, the classic alpha blending
equation is

TeamLRN sPeCiAL

3.4 Render State 209

(rf$ gfy bf) af) = ((1 - as)rs + asrgs (1 - as)gs
+a,84> (1 —ay))bg +agby, (1 —agag +asag). (3.5)

If the final colors become the destination for another blending operation, then

(ra> 84> bd’ ag) = (rf’ 8f> bf’ af)

sets the destination to the previous blending results.
Graphics APIs support more general combinations of colors, whether the colors
come from vertex attributes or texture images. The general equation is

(re, 8p>bysap) = (0,1 + 8,74, 0485 + 84845 0pbs + Spby, 04a5 + 8,a4). (3.6)

The blending coefficients are o; and §;, where the subscripts denote the color chan-
nels they affect. The coefficients are assumed to be in the interval [0, 1]. Wild Magic
provides the ability for you to select the blending coefficients from a finite set of possi-
bilities. The class that encapsulates this is ATphaState. Since the AlphaState class exists
in the scene graph management system, it must provide a graphics-API-independent
mechanism for selecting the coefficients. The names I use for the various possibilities
are reminiscient of those OpenGL uses, but also map to what Direct3D supports.

The portion of the class interface for AlphaState relevant to the blending equation
(3.6)is

class AlphaState : public GlobalState
{
public:
enum // SrcBlend values
{
SBF_ZERO,
SBF_ONE,
SBF_DST_COLOR,
SBF_ONE_MINUS DST COLOR,
SBF_SRC_ALPHA,
SBF_ONE_MINUS_SRC_ALPHA,
SBF_DST_ALPHA,
SBF_ONE_MINUS_DST_ALPHA,
SBF_SRC_ALPHA SATURATE,
SBF_CONSTANT_COLOR,
SBF_ONE_MINUS_CONSTANT_COLOR,
SBF_CONSTANT_ALPHA,
SBF_ONE_MINUS_CONSTANT_ALPHA,
SBF_QUANTITY

210 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

enum // DstBlend values

{
DBF_ZERO,
DBF_ONE,
DBF_SRC_COLOR,
DBF_ONE_MINUS_SRC_COLOR,
DBF_SRC_ALPHA,
DBF_ONE_MINUS_SRC_ALPHA,
DBF_DST_ALPHA,
DBF_ONE_MINUS_DST_ALPHA,
DBF_CONSTANT_COLOR,
DBF_ONE_MINUS_CONSTANT COLOR,
DBF_CONSTANT_ALPHA,
DBF_ONE_MINUS_CONSTANT ALPHA,
DBF_QUANTITY

bs

bool BlendEnabled; // default: false
int SrcBlend; // default: SBF_SRC_ALPHA
int DstBlend; // default: DBF_ONE_MINUS_SRC_ALPHA

The data members are all public since no side effects must occur when reading or
writing them. The data member BlendEnabled is set to false initially, indicating that
the default alpha blending state is “no blending.” This member should be set to true
when you do want blending to occur.

The data member SrcBlend controls what the source blending coefficients
(0,,0,, 03, 0,) are. Similarly, the data member DstBlend controls what the desti-
nation blending coefficients (§,, Sg, 8y, 8,) are. Table 3.2 lists the possibilities for the
source blending coefficients. The constant color, (r,., g., b., a.), is stored in the Tex-
ture class (member BlendColor), as is an RGBA image that is to be blended with a
destination buffer.

Table 3.3 lists the possibilities for the destination blending coefficients. Table 3.2
has DST_COLOR, ONE_MINUS_DST_COLOR, and SRC_ALPHA SATURATE, but Table 3.3 does not.
Table 3.3 has SRC_COLOR and ONE_MINUS_SRC_COLOR, but Table 3.2 does not.

The classic alpha blending equation (3.5) is reproduced by the following code:

AlphaState* pkAS = new AlphaState;
pkAS->BlendEnabled = true;

pkAS->SrcBlend = AlphaState::SBF_SRC_ALPHA;
pkAS->DstBlend = AlphaState::DBF_ONE_MINUS_SRC_ALPHA;
Spatial* pkSpatial = <some Spatial-derived object>;
pkSpatial->SetGlobalState(pkAS);

TeamLRN sPeCiAL

Table 3.2

3.4 Render State 211

The possible source blending coefficients.

Enumerated value (0, 045 Op> 0,)

SBF_ZERO (0,0,0,0)

SBF_ONE (1,1,1,1

SBF_DST_COLOR (rg> 84> ba> ay)
SBF_ONE_MINUS_DST COLOR (1—rgs 1= g4 1= by, 1 —ay)
SBF_SRC_ALPHA (ay, ay, ay, ay)
SBF_ONE_MINUS_SRC_ALPHA (1—ag1—ag,1—ag,1—ay)
SBF_DST_ALPHA (ag, a4, a4, ay)
SBF_ONE_MINUS_DST_ALPHA (1—ag, 1 —ay, 1—ay, 1 —ay)
SBF_SRC_ALPHA SATURATE (0,0,0,1),0 =min{a,, 1 —ay}
SBF_CONSTANT_COLOR (re» 80> by» ay)
SBF_ONE_MINUS_CONSTANT COLOR (1—r,, 1— g, 1—b., 1—a,)
SBF_CONSTANT_ALPHA (a.,a.a.,a.)

SBF_ONE_MINUS_CONSTANT ALPHA (1 —a., 1 —ag, 1 —a,, 1 —a,)

The default constructor for AlphaState sets SrcBlend and DstBlend, so only setting
the BlendEnabled to true is necessary in an actual program. If the alpha state object
is attached to a node in a subtree, it will affect the drawing of all the leaf node
objects.

A more interesting example is one that does a soft addition of two textures. Hard
addition refers to adding the two colors together and then clamping the result to
[0, 1]. This may result in saturation of colors, causing the resulting image to look
washed out. The soft addition combines the two colors to avoid the saturation, yet
still look like an addition of colors. The formula is

(rf> gf: bf; af) - ((1 - rd)rs> (1 - gd)gs> (1 - bd)bs) (1 - ad)as)
=+ (rd, 8a> bd’ ad). (37)

The idea is that you start with the destination color and add a fraction of the
source color to it. If the destination color is bright (values near 1), then the source
blend coefficients are small, so the source color will not cause the result to wash out.
Similarly, if the destination color is dark (values near 0), the destination color has
little contribution to the result, and the source blend coefficients are large, so the
source color dominates and the final result is a brightening of dark regions. The code
block to obtain the blend is

212 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

Table 3.3

The possible destination blending coefficients.

Enumerated value (8> 84> 81> 84)

DBF_ZERO (0,0,0,0)

DBF_ONE (1,1,1,1)

DBF_SRC_COLOR (ry> 8> by ay)
DBF_ONE_MINUS_SRC_COLOR (1—rg1— g 1—by, 1—ay)
DBF_SRC_ALPHA (ay, ay, ay, ay)
DBF_ONE_MINUS_SRC_ALPHA (1—a;,1—a;,1—a;, 1—ay)
DBF_DST_ALPHA (ag> a4, a4, ay)
DBF_ONE_MINUS_DST_ ALPHA (1—ay, 1 —ay, 1 —ay, 1 —ay)
DBF_CONSTANT_COLOR (Fes 8e» be» a)
DBF_ONE_MINUS_CONSTANT COLOR (1 —r., 1—g., 1 —b,, 1 —a,)
DBF_CONSTANT_ALPHA (a.,a.,a., a.)

DBF_ONE_MINUS_CONSTANT ALPHA (1 —a., 1 —a., 1 —a,, 1—a,)

AlphaState* pkAS = new AlphaState;

pkAS->BlendEnabled = true;

pkAS->SrcBlend = AlphaState::SBF_ONE_MINUS_DST_COLOR;
pkAS->DstBlend = AlphaState::DBF_ONE;

Spatial* pkSpatial = <some Spatial-derived object>;
pkSpatial->SetGlobalState(pkAS);

The AlphaState class also encapsulates what is referred to as alpha testing. The
idea is that an RGBA source color will only be combined with the RGBA destination
color as long as the source alpha value compares favorably with a specified reference
value. Pseudocode for alpha testing is

source = (Rs,Gs,Bs,As);
destination = (Rd,Gd,Bd,Ad);
reference = Aref;
if (ComparesFavorably(As,Aref))
result = BlendTogether(source,destination);

The ComparesFavorably(x,y) function is a standard comparison between two num-
bers: x <y, x <y, x>y, x>y, x =y, or x #y. Two additional functions are
allowed: always or never. In the former, the blending always occurs. This is the default
behavior of an alpha blending system. In the latter, blending never occurs.

TeamLRN sPeCiAL

3.4 Render State 213

The portion of the interface of AlphaState relevant to alpha testing is

class AlphaState : public GlobalState
{
pubTic:
enum // Test values
{
TF_NEVER,
TF_LESS,
TF_EQUAL,
TF_LEQUAL,
TF_GREATER,
TF_NOTEQUAL,
TF_GEQUAL,
TF_ALWAYS,
TF_QUANTITY
}s

bool TestEnabled; // default: false;

int Test; // default: TF_ALWAYS

float Reference; // default: 0, always in [0,1]
1

By default, alpha testing is turned off. To turn it on, set TestEnabled to true. The
Reference value is a floating-point number in the interval [0, 1]. The Test function
may be set to any of the first eight enumerated values prefixed with TF_. The value
TF_QUANTITY is just a marker that stores the current number of enumerated values
and is used by the renderers to declare arrays of that size.

In order to correctly draw a scene that has some semitransparent objects (alpha
values smaller than 1), the rule is to draw your opaque objects first, then draw your
semitransparent objects sorted from back to front in the view direction. The leaf
nodes in a scene hierarchy can be organized so that those corresponding to opaque
objects occur before those corresponding to semitransparent objects when doing a
depth-first traversal of the tree. However, the leaf nodes for the semitransparent ob-
jects occur in a specific order that is not related to the view direction of the camera. A
rendering system needs to have the capability for accumulating a list of semitranspar-
ent objects and then sorting the list based on the current view direction. The sorted
list is then drawn an object at a time. Given an automated system for sorting, there
is no need to worry about where the semitransparent objects occur in the scene.
The scene organization can be based on geometric information, the main premise
for using a scene hierarchy in the first place. I will discuss the sorting issue in Sec-
tion 4.2.4.

Game programmers are always willing to take a shortcut to obtain a faster sys-
tem, or to avoid having to implement some complicated system, and hope that the

214 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

consequences are not visually distracting. In the context of correct sorting for scenes
with semitransparency, the shortcut is to skip the sorting step. After all, what are the
chances that someone will notice artifacts due to blending objects that are not sorted
back to front? Alpha testing can help you with this shortcut. The scene is rendered
twice, and on both passes, depth buffering is enabled in order to correctly sort the
objects (on a per-pixel basis in screen space). Also on both passes, alpha testing is en-
abled. On the first pass, the test function is set to allow the blending for any colors
with an alpha value equal to 1; that is, the opaque objects are drawn, but the semi-
transparent objects are not. On the second pass, the test function is set to allow the
blending for any colors with an alpha value not equal to 1. This time the semitrans-
parent objects are drawn, but the opaque objects are not.

As stated, this system is not quite right (ignoring the back-to-front sorting issue).
Depth buffering is enabled, but recall that you have the capability to control whether
reading or writing occurs. For the first pass through the scene, opaque objects are
drawn. The depth buffering uses both reading and writing to guarantee that the final
result is rendered correctly. Before drawing a pixel in the frame buffer, the depth
buffer is read at the corresponding location. If the incoming depth passes the depth
test, then the pixel is drawn in the frame buffer. Consequently, the depth buffer must
be written to update the new depth for this pixel. If the incoming depth does not
pass the test, the pixel is not drawn, and the depth buffer is not updated. For the
second pass through the scene, semitransparent objects are drawn. These objects
were not sorted from back to front. It is possible that two semitransparent objects
are drawn front to back; that is, the first drawn object is closer to the observer than
the second drawn object. You can see through the first drawn object because it is
semitransparent, so you expect to see the second drawn object immediately behind
it. To guarantee this happens, you have to disable depth buffer writes on the second
pass. Consider if you did not do this. The first object is drawn, and the depth buffer
is written with the depths corresponding to that object. When you try to draw the
second object, its depths are larger than those of the first object, so the depth test fails
and the second object is not drawn, even though it should be visible through the first.
Disabling the depth buffer writing will prevent this error. Sample code to implement
the process is

// in the application initialization phase
NodePtr m_spkScene = <the scene graph>;
Renderer* m_pkRenderer = <the renderer>;
AlphaState* pkAS = new AlphaState;
ZBufferState* pkZS = new ZBufferState;
m_spkScene->SetGlobalState (pkAS);
m_spkScene->SetGlobalState (pkzS);

pkAS->BlendEnabled = true;
pkAS->SrcBlend = AlphaState::SBF_SRC_ALPHA;
pkAS->DstBlend = AlphaState::DBF_ONE_MINUS_SRC_ALPHA;

TeamLRN sPeCiAL

3.4 Render State 215

pkAS->TestEnabled = true;
pkAS->Reference = 1.0f;

pkZS->Enabled = true; // always readable
pkZS->Compare = ZBufferState::CF_LEQUAL;

// in the drawing phase (idle loop)

AlphaState* pkAS =
m_spkScene->GetGlobalState(GlobalState::ALPHA);

ZBufferState* pkZS =
m_spkScene->GetGlobalState(GlobalState: :ZBUFFER);

// first pass

pkAS->Test = AlphaState::TF_EQUAL;
pkZS->Writable = true;
m_pkRenderer->DrawScene(m_spkScene) ;

// second pass

pkAS->Test = AlphaState::TF_NOTEQUAL;
pkZS->Writable = false;
m_pkRenderer->DrawScene(m_spkScene) ;

The alpha state and z-buffer state members that do not change in the drawing
phase are all initialized once by the application. You could also store these states
as members of the application object and avoid the GetGlobalState calls, but the
lookups are not an expensive operation.

Another example of alpha testing is for drawing objects that have textures whose
alpha values are either 0 or 1. The idea is that the texture in some sense defines what
the object is. A classic example is for applying a decal to an object. The decal geometry
is a rectangle that has a texture associated with it. The texture image has an artistically
drawn object that does not cover all the image pixels. The pixels not covered are “see
through”; that is, if the decal is drawn on top of another object, you see what the
artist has drawn in the image, but you see the other object elsewhere. To accomplish
this, the alpha values of the image are set to 1 wherever the artist has drawn, but
to 0 everywhere else. Attach an AlphaState object to the decal geometry object (the
rectangle). Set the reference value to be 0.5 (it just needs to be different from 0 and 1),
and set the test function to be “greater than.” When the decal texture is drawn on the
object, only the portion is drawn with alpha values equal to 1 (greater than 0.5). The
portion with alpha values equal to 0 (not greater than 0.5) is not drawn. Because they
are not drawn, the depth buffer is not affected, so you do not have to use the two-pass
technique discussed in the previous example.

216 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

Material

One of the simplest ways to color a geometric object is to provide it with a material.
The material has various colors that affect how all the vertices of the object are
colored. The class MaterialState represents the material and has the interface

class MaterialState : public GlobalState
{
public:
virtual int GetGlobalStateType () const { return MATERIAL; }

MaterialState ();
virtual ~MaterialState ();

ColorRGBA Emissive; // default: ColorRGBA(0,0,0,1)
ColorRGBA Ambient; // default: ColorRGBA(0.2,0.2,0.2,1)
ColorRGBA Diffuse; // default: ColorRGBA(0.8,0.8,0.8,1)
ColorRGBA Specular; // default: ColorRGBA(0,0,0,1)
float Shininess; // default: 1

The data members are all public since no side effects are required when reading
or writing them. If you want the geometric object to have the appearance that it is
emitting light, you set the Emissive data member to the desired color. The member
Ambient represents a portion of the object’s color that is due to any ambient light in
the scene. Other lights can shine on the object. How the object is lit depends on its
material properties and on the normal vectors to the object’s surface. For a matte
appearance, set the Diffuse data member. Specular highlights are controlled by the
Specular and Shininess parameters. Although all colors have an alpha channel, the
only relevant one in the graphics API is the alpha channel in the diffuse color. Objects
cannot really “emit” an alpha value. An alpha value for ambient lighting also does not
make physical sense, and specular lighting says more about reflecting light relative
to an observer. The diffuse color is more about the object itself, including having a
material that is semitransparent.

In the standard graphics APIs, it is not enough to assign a material to an object.
The material properties take effect only when lights are present. Moreover, diffuse and
specular lighting require the object to have vertex normals. If you choose to attach a
MaterialState to an object, you will need at least one light in the scene. Specifically,
the light must occur on the path from the root node to the node containing the
material. If the material is to show off its diffuse and specular lighting, any leaf node
geometry objects in the subtree rooted at the node containing the material must have
vertex normals. Later in this section I will discuss lights, and at that time I will present
the formal equations for how lights, materials, and normal vectors interact.

TeamLRN sPeCiAL

3.4 Render State 217

Fog

The portions of a rendered scene at locations far from the observer can look a lot
sharper than what your vision expects. To remedy this, you can add fog to the sys-
tem, with the amount proportional to the distance an object is from the observer.
The density of the fog (the amount of increase in fog per unit distance in the view
frustum) can be controlled. The fog can be calculated on a per-vertex basis for the
purposes of speed, but you may request that the fog be calculated on a per-pixel ba-
sis. The final color is a blended combination of a fog color and the vertex/pixel color.
Fog is applied after transformations, lighting, and texturing are performed, so such
objects are affected by the inclusion of fog.
The class that encapsulates fog is FogState. The interface is

class FogState : public GlobalState
{
pubTic:
virtual int GetGlobalStateType () const { return FOG; }

FogState ();
virtual ~FogState ();

enum // DensityFunction
{
DF_LINEAR,
DF_EXP,
DF_EXPSQR,
DF_QUANTITY
bs

enum // ApplyFunction

{
AF_PER_VERTEX,
AF_PER_PIXEL,
AF_QUANTITY

}s

bool Enabled; // default: false

float Start; // default: 0

float End; // default: 1

float Density; // default: 1

ColorRGBA Color; // default: ColorRGB(0,0,0)

int DensityFunction; // default: DF_LINEAR
int ApplyFunction; // default: AF_PER_VERTEX

218 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

The data members are all in public scope since no side effects must occur when
reading or writing them. The default values are listed as comments after each mem-
ber. The Color member is the fog color that is used to blend with the vertex/pixel
colors. A fog factor f € [0, 1]is used to blend the fog color and vertex/pixel color. If
(ro»> 80> bg> ap) is the fog color and (ry, g1, by, a;) is the vertex/pixel color, then the
blended color is

(25 82> by, ay) = [(ro, 80> bo> ag) + (1 — f)(r1, &> by, ay),

where the operations on the right-hand side are performed componentwise. If the fog
factor is 1, the vertex/pixel color is unaffected by the fog. If the fog factor is 0, only the
fog color appears. The ApplyFunction member selects whether you want per-vertex
fog calculations (faster) or per-pixel fog calculations (slower).

The DensityFunction controls how the fog is calculated. If the data member is set
to DF_LINEAR, then the Start and End data members must be set and indicate the range
of depths to which the fog is applied. The fog factor is

End — z
f=—T
End - Start

where z is the depth measured from the camera position to the vertex or pixel loca-
tion. In practice, you may choose the start and end values to be linear combinations
of the near and far plane values. Linear fog does not use the Density data member, so
its value is irrelevant.

If the DensityFunction value is set to DF_EXP, then the fog factor has exponential
decay. The amount of decay is controlled by the nonnegative Density member func-
tion. The fog itself appears accumulated at locations far from the camera position.
The fog factor is

f =exp(—Density x z),

where z is once again measured from the camera position to the vertex or pixel
location. You may also obtain a tighter accumulation of fog at large distances by using
DF_EXPSQR. The fog factor is

f =exp(—(Density * z)z).

The exponential and squared exponential fog equations do not use the Start and
End data members, so their values are irrelevant. The terrain sample application uses
squared exponential fog as an attempt to hide the entry of new terrain pages through
the far plane of the view frustum.

TeamLRN sPeCiAL

3.4 Render State 219

Culling

Consider a triangle mesh that is a convex polyhedron. Some of the triangles are visible
to the observer. These are referred to as front-facing triangles. The triangles not visible
to the observer are referred to as back-facing triangles. The two subsets are dependent,
of course, on the observer’s location. If the mesh is closed, the triangles can still be
partitioned into two subsets, one for the front-facing triangles and one for the back-
facing triangles. The back-facing triangles are not visible to the observer, so there is no
reason why they should be drawn. The rendering system should eliminate these—a
process called triangle culling.

In Section 3.3.3, I mentioned that the triangles in a mesh have their vertices or-
dered in a counterclockwise manner when viewed by the observer. This means that
the vertices of a front-facing triangle are seen as counterclockwise ordered. The ver-
tices of a back-facing triangle are clockwise ordered from the observer’s perspective.
The rendering system may use these facts to classify the two types of triangles. Let the
observer’s eye point be E and let the observed triangle have counterclockwise-ordered
vertices V), Vi, and V,. The vector N = (V; — V;) x (V, — V) is perpendicular to
the plane of the triangle. The triangle is front facing if

N-(E—-Vy >0,
and it is back facing if
N-(E-Vy <o0.

If the dot product is zero, the triangle is seen edge on and is considered not to be
visible.

A rendering system will select a convention for the vertex ordering for front-
facing triangles. This is necessary so that the dot product tests can be coded accord-
ingly. A modeling package also selects a convention for the vertex ordering, but the
problem is that the conventions might not be consistent. If not, you can always ex-
port the models to a format your engine supports, then reorder the triangle vertices to
meet the requirements of your rendering system. The burden of enforcing the order-
ing constraint is yours. Alternatively, the rendering system can allow you to specify
the convention, making the system more flexible. The renderer will use the correct
equations for the dot product tests to identify the back-facing triangles. In fact, the
standard graphics APIs allow for this. I have encapsulated this in class Cul1State.

The interface for Cul1State is

class CullState : public GlobalState
{
pubTic:
virtual int GetGlobalStateType () const { return CULL; }

220 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

CullState ();
virtual ~CullState ();

enum // FrontType

{
FT_CCW, // front faces are counterclockwise ordered
FT CW, // front faces are clockwise ordered
FT_QUANTITY

bs

enum // CullType

{
CT_FRONT, // cull front-facing triangles
CT_BACK, // cull back-facing triangles
CT_QUANTITY

bs

bool Enabled; // default: true
int FrontFace; // default: FT_CCW
int CullFace; // default: CT_BACK

The data members are in public scope because no side effects must occur when
reading or writing them. The default value for Enabled is true, indicating that triangle
culling is enabled. The FrontFace member lets you specify the vertex ordering for the
triangles that you wish to use. The default value is counterclockwise. The CullFace
member lets you tell the renderer to cull front-facing or back-facing triangles. The
default is to cull back-facing triangles.

When triangle culling is enabled, the triangles are said to be single sided. If an
observer can see one side of the triangle, and if you were to place the observer on
the other side of the plane of the triangle, the observer would not see the triangle
from that location. If you are inside a model of a room, the triangles that form the
walls, floor, and ceiling may as well be single sided since the intent is to only see them
when you are inside the room. But if a wall separates the room from the outside
environment and you want the observer to see the wall from the outside (maybe it
is a stone wall in a castle), then the triangle culling system gets in your way when it is
enabled. In this scenario you want the triangles to be double sided—both sides visible
to an observer. This is accomplished by simply disabling triangle culling; set Enabled
to false.

Disabling triangle culling is also useful when a triangle mesh is not closed. For
example, you might have a model of a flag that flaps in the wind. The flag mesh is
initially a triangle mesh in a plane. During program execution, the triangle vertices
are dynamically modified to obtain the flapping. Because you want both sides of the

TeamLRN sPeCiAL

3.4 Render State 221

flag to be visible, you would attach a Cul1State object to the mesh and set Enabled to
false.

Wireframe

A wireframe is a rendering of a triangle mesh where only the edges of the triangles
are drawn. Although such an effect might be interesting in a game, wireframes are
typically used for debugging purposes. For example, in wireframe mode you might
be able to spot problems with a geometric model that was not properly constructed.
I used wireframe mode when implementing and testing the portal system. Portions
of a scene are culled by the portal system, but you do not see the culling occur when
in regular drawing mode. However, in wireframe you can see the objects appear or
disappear, giving you an idea whether or not the culling is taking place as planned.
The class to support wireframe mode is WireframeState. The interface is

class WireframeState : public GlobalState
{
public:
virtual int GetGlobalStateType () const { return WIREFRAME; }

WireframeState ();
virtual ~WireframeState ();

bool Enabled; // default: false
}s

Very simple, as you can see. You either enable or disable the mode. In practice, I tend
to attach a WireframeState object to the root of my scene graph. I make the wireframe
object an application member and then allow toggling of the Enabled member:

// initialization code

NodePtr m_spkScene = <the scene graph>;
WireframePtr m_spkWireframe = new WireframeState;
m_spkScene->SetGlobalState(m_spkWireframe);

// key press handler

if (ucKey == 'w')
m_spkWireframe->Enabled = !m_spkWireframe->Enabled;

Dithering

On a graphics system with a limited number of colors, say, one supporting only a 256-
color palette, a method for increasing the apparent number of colors is dithering.

222 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

As an example, suppose your system supports only two colors, black and white. If
you were to draw an image with a checkerboard pattern—alternate drawing pixels in
black and white—your eye will perceive the image as gray, even though your graphics
system cannot draw a gray pixel. Consider that a black-ink printer is such a graphics
system. Color printers may also use dithering to increase the apparent number of
colors. How to do this effectively is the topic of color science. The dithering pattern
can be much more complicated than a checkerboard. Suffice it to say that a graphics
API might support dithering.

For the 32-bit color support that current graphics hardware has, dithering is
probably not useful, but I have support for it anyway. The class is DitherState and
the interface is

class DitherState : public GlobalState
{
public:
virtual int GetGlobalStateType () const { return DITHER; }

DitherState ();
virtual ~DitherState ();

bool Enabled; // default: false
}s

The dithering is either enabled or disabled.

Shading

Some graphics APIs provide the ability to select a shading model. Flat shading refers to
drawing a primitive such as a line segment or a triangle with a single color. Gouraud
shading refers to drawing the primitive by interpolating the colors at the vertices of
the primitive to fill in those pixels corresponding to the interior of the primitive. In
theory, Gouraud shading is more expensive to compute because of the interpolation.
However, with current graphics hardware, the performance is not an issue, so you
tend not to use flat shading. I have provided support anyway, via class ShadeState. Its
interface is

class ShadeState : public GlobalState

{
public:
virtual int GetGlobalStateType () const { return SHADE; }

ShadeState ();
virtual ~ShadeState ();

3.4 Render State 223

enum // ShadeMode
{
SM_FLAT,
SM_SMOOTH,
SM_QUANTITY
bs

int Shade; // default: SM_SMOOTH
bs

The shading mode is either flat or smooth; the latter refers to Gouraud shading (the
default).

3.4.2 LIGHTS

TeamLRN sPeCiAL

Drawing objects using only textures results in renderings that lack the realism we
are used to in the real world. Much of the richness our own visual systems provide
is due to lighting. A graphics system must support the concept of lights, and of
materials that the lights affect. The lighting models supported by standard graphics
APIs are a simple approximation to true lighting, but are designed so that the lighting
calculations can be performed quickly. More realistic lighting is found in systems that
are almost never real time.

Materials were discussed earlier in this section. A material consists of various col-
ors. The emissive color represents light that the material itself generates, which is
usually none. Ambient light comes from light that has been scattered by the envi-
ronment. A material reflects some of this light. The ambient color of the material
indicates how much ambient light is reflected. Although referred to as a color, you
may think of the ambient component as telling you the fraction of ambient light that
is reflected. Diffuse light is light that strikes a surface. At each point on the surface
the light arrives in some direction, but is then scattered equally in all directions at
that point. A material also reflects some of this light. The diffuse color of the material
indicates how much diffuse light is reflected. Specular light is also light that strikes a
surface, but the reflected light has a preferred direction. The resulting appearance on
the surface is referred to as specular highlights. A material reflects some of this light.
The fractional amount is specified by the material’s specular color.

The lights have physical attributes themselves, namely, colors (ambient, diffuse,
specular), intensity, and attenuation (decrease in energy as the light travels over
some distance). Lights also come in various types. I already mentioned ambient
light due to scattering. The light has no single source and no specific direction. A
source that provides light rays that are, for all practical purposes, parallel is referred
to as a directional light. The motivation for this is sunlight. The Sun is far enough
away from the Earth that the Sun’s location is irrelevant. The sunlight is effectively
unidirectional. A source that has a location, but emanates light in all directions is

224 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

called a point light. The motivation is an incandescent light bulb. The filament acts
as the light source, and the bulb emits light in all directions. A light that has a source
location but emits lights in a restricted set of directions (typically a cone of directions)
is called a spot light. The motivation is a flashlight or airport beacon that has a
lightbulb as the source and a reflector surface that concentrates the light to emanate
in a fixed set of directions.

The types of lights and their attributes are sufficiently numerous that many en-
gines provide multiple classes. Usually an engine will provide an abstract base class
for lights and then derived classes such as an ambient light class, a directional light
class, a point light class, and a spot light class. I did so in Wild Magic version 2, but de-
cided that the way the renderer accessed a derived-class light’s information was more
complicated than it needed to be. Also in Wild Magic version 2, the Light class was
derived from Object. A number of users were critical of this choice and insisted that
Light be derived from Spatial. By doing so, a light automatically has a location (the
local translation) and an orientation (the local rotation). One of the orientation vec-
tors can assume the role of the direction for a directional light. I chose not to derive
Light from Spatial because ambient lights have no location or direction and direc-
tional lights have no location. In this sense they are not very spatial! The consequence,
though, was that I had to add a class, LightNode, that was derived from Node and that
had a Light data member. This allows point and spot lights to change location and
directional lights to change orientation and then have the geometric update system
automatically process them. Even these classes presented some problems to users.
One problem had to do with importing LightWave objects into the engine because
LightWave uses left-handed coordinates for everything. The design of LightNode (and
CameraNode) prevented a correct import of lights (and cameras) when they were to be
attached as nodes in a scene.

In the end, I decided to satisfy the users. In Wild Magic version 3, I changed
my design and created a single class called Light that is derived from Spatial. Not
all data members make sense for each light type, but so be it. When you manipu-
late a directional light, realize that setting the location has no effect. Also be aware
that by deriving from Spatial, some subsystems are available to Light that are ir-
relevant. For example, attaching to a light a global state such as a depth buffer has
no meaning, but the engine semantics allow the attachment. In fact, you can even
attach lights to lights. You can attach a light as a leaf node in the scene hierar-
chy. For example, you might have a representation of a headlight in an automo-
bile. A node is built with two children: One child is the Geometry object that rep-
resents the headlight’s model data, and the other child is a Light to represent the
light source for the headlight. The geometric data is intended to be drawn to vi-
sualize the headlight, but the light object itself is not renderable. The virtual func-
tions for global state updates and for drawing are stubbed out in the Light class,
so incorrect use of the lights should not be a problem. So be warned that you can
manipulate a Light as a Spatial object in ways that the engine was not designed to
handle.

TeamLRN sPeCiAL

3.4 Render State 225

The Light Class

The Light class has a quite complicated interface. I will look at portions of it at a time.
The class supports the standard light types: ambient, directional, point, and spot.

class Light : public Spatial
{
public:
enum // Type
{
LT_AMBIENT,
LT _DIRECTIONAL,
LT_POINT,
LT_SpoT,
LT_QUANTITY
-

Light (int iType = LT_AMBIENT);
virtual ~Light ();

int Type; // default: LT_AMBIENT
ColorRGBA Ambient; // default: ColorRGBA(0,0,0,1)
ColorRGBA Diffuse; // default: ColorRGBA(0,0,0,1)
ColorRGBA Specular; // default: ColorRGBA(0,0,0,1)
float Intensity; // default: 1

float Constant; // default: 1
float Linear; // default: 0
float Quadratic; // default: 0
bool Attenuate; // default: false
bool On; // default: true

// spot 1ight parameters (valid only when Type = LT _SPOT)
float Exponent;
float Angle;

When you create a light, you specify the type you want. Each light has ambient,
diffuse, and specular colors and an intensity factor that multiplies the colors. The
member On is used to quickly turn a light on or off. This is preferred over attaching
and detaching a light in the scene.

The data members Constant, Linear, Quadratic, and Attenuate are used for at-
tenuation of point and spot lights over some distance. To allow attenuation, you set

226 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

Attenuate to true. The attenuation factor multiplies the light colors, just as the inten-
sity factor does. The attenuation factor is

1

I S 3.8
YT CtLd+tod (38)

where C is the Constant value, L is the Linear value, and Q is the Quadratic value.
The variable d is the distance from the light’s position to a vertex on the geometric
object to be lit.

The actual lighting model is somewhat complicated, but here is a summary of
it. The assumption is that the object to be lit has a material with various colors. 1
will write these as vector-valued quantities (RGBA) for simplicity of the notation.
Additions and multiplications are performed componentwise. The material emissive
color is M, the ambient color is M,,,;,, the diffuse color is My;;, and the specular
color is Mp.. The shininess is M, a nonnegative scalar quantity. A global ambient
light is assumed (perhaps representing the Sun). This light is referred to by L(® and
has subscripts for the colors just like the material colors use. In the engine, this light
automatically exists, so you need not create one and attach it to the scene. The object
to be lit may also be affected by n lights, indexed by L) for 1 <i < n. Once again
these lights have subscripts for the colors. The ith light has a contribution to the
rendering of

®;0; (A(” +D@ + s“)) :

The term «; is the attenuation. It is calculated for point and spot lights using
Equation (3.8). It is 1 for ambient and directional lights—neither of these is attenu-
ated. The term o; is also an attenuator that is 1 for ambient, diffuse, and point lights,
but potentially less than 1 for spot lights. The light has an ambient contribution,

AD = ML)

amb’

a diffuse contribution,

and a specular contribution,

= M.

The color assigned to a vertex on the object to be lit is

n
Mg + L My + > ai0; <A<"> +DO 4 s<i>) . (3.9)

amb
i=1

TeamLRN sPeCiAL

3.4 Render State 227

The modulators ,u(Di), /Lg), and o; depend on the light type and geometry of the
object. For an ambient light, the diffuse modulator is 1. For a directional light with
unit-length world direction vector U and at a vertex with outer-pointing unit-length

normal N,
M%) =max{—-U - N, 0}.

The diffuse modulator is 1 when the light shines directly downward on the vertex. It
is 0 when the light direction is tangent to the surface. For a point or spot light with
position P and a vertex with position V, define the unit-length vector

V-P

U= . 3.10
VP (3.10)

This does assume the light is not located at the vertex itself. The diffuse modulator
equation for a directional light also applies here, but with the vector U as defined.

The specular modulator is 1 for an ambient light. For the other light types, the
specular modulator is computed based on the following quantities. Let V be the
vertex location and N be a unit-length vertex normal. If the light is directional, let U
be the unit-length direction. If the light is a point light or spot light, let U be the vector
defined by Equation (3.10). The specular modulator is 0 if —U - N < 0. Otherwise,
define the unit-length vector®

U+ (0, 0, —1)|

and the specular modulator is
,u(si) = (max{—H - N, op)M: .

The spot light modulator o; is 1 for a light that is not a spot light. When the light
is a spot light, the modulator is 0 if the vertex is not contained in the cone of the
light. Otherwise, define U by Equation (3.10), where P is the spot light position. The
modulator is

o; = (max{U - D, 0},

where D is the spot light direction vector (unit length) and e; is the exponent asso-
ciated with the spot light. The spot light angle 6; € [0, 7) determines the cone of the
light. The Light data members that correspond to these parameters are Exponent and
Angle.

. In OpenGL terminology, I do not use a local viewer for the light model. If you were to use a local viewer,

then (0, 0, —1) in the equation for H is replaced by (P — E)/|P — E|, where P is the light position and E is
the eye point (camera position).

228 Chapter 3 Scene Graphs and Renderers

The remaining portion of the Light interface is related to the class being derived
from Spatial:

class Light : public Spatial
{
public:
// 1ight frame (local coordinates)
// default Tocation E = (0,0,0)
// default direction D = (0,0,-1)
// default up U= (0,1,0)
// default right R = (1,0,0)
void SetFrame (const Vector3f& rkLocation,
const Vector3f& rkDVector, const Vector3f& rkUVector,
const Vector3f& rkRVector);
void SetFrame (const Vector3f& rkLocation,
const Matrix3f& rkAxes);
void SetlLocation (const Vector3f& rkLocation);
void SetAxes (const Vector3f& rkDVector,
const Vector3f& rkUVector, const Vector3f& rkRVector);
void SetAxes (const Matrix3f& rkAxes);
Vector3f GetLocation () const; // Local.Translate
Vector3f GetDVector () const; // Local.Rotate column 0
Vector3f GetUVector () const; // Local.Rotate column 1
Vector3f GetRVector () const; // Local.Rotate column 2

// For directional lights. The direction vector must be

// unit length. The up vector and left vector are generated
// automatically.

void SetDirection (const Vector3f& rkDirection);

// 1ight frame (world coordinates)

Vector3f GetWorldLocation () const; // World.Translate
Vector3f GetWorldDVector () const; // World.Rotate column 0
Vector3f GetWorldUVector () const; // World.Rotate column 1
Vector3f GetWorldRVector () const; // World.Rotate column 2

private:
// updates
virtual void UpdateWorldBound ();

void OnFrameChange ();

// base class functions not supported

TeamLRN sPeCiAL

TeamLRN sPeCiAL

3.4 Render State 229

virtual void UpdateState (TStack<GlobalState*>*,
TStack<Light*>*) { /**/ }
virtual void Draw (Renderer&, bool) { /**/ }

Normally, the local transformation variables (translation, rotation, scale) are for
exactly that—transformation. In the Light class, the local translation is interpreted
as the origin for a coordinate system of the light. The columns of the local rotation
matrix are interpreted as the coordinate axis directions for the light’s coordinate
system. The choice for the default coordinate system is akin to the standard camera
coordinate system relative to the screen: The center of the screen is the origin. The up
vector is toward the top of the screen (the direction of the positive y-axis), the right
vector is toward the right of the screen (the direction of the positive x-axis), and the
z-axis points out of the screen. The light is positioned at the origin, has direction into
the screen (the direction of the negative z-axis), has up vector to the top of the screen,
and has right vector to the right of the screen. Because the light’s coordinate system
is stored in the local translation vector and local rotation matrix, you should use the
interface provided and avoid setting the data member Local explicitly to something
that is not consistent with the interpretation as a coordinate system.

The first block of code in the interface is for set/get of the coordinate system
parameters. The SetDirection function is offset by itself just to draw attention to the
fact that you are required to pass in a unit-length vector. As the comment indicates,
the up and left vectors are automatically generated. Their values are irrelevant since
the direction vector only pertains to a directional light, and the up and left vectors
have no influence on the lighting model. The last block of code in the public interface
allows you to retrieve the world coordinates for the light’s (local) coordinate system.

The Light class has no model bound; however, the light’s position acts as the cen-
ter of a model bound of radius zero. The virtual function UpdateWor1dBound computes
the center of a world bound of radius zero. The function OnFrameChange is a simple
wrapper around a call to UpdateGS and is executed whenever you set the coordinate
system components. Therefore, you do not need to explicitly call UpdateGS whenever
the coordinate system components are modified.

The two virtual functions in the private section are stubs to implement pure vir-
tual functions in Spatial (as required by C++). None of these make sense for lights
anyway, as [stated earlier, but they exist just so that Light inherits other properties of
Spatial that are useful.

Support for Lights in Spatial and Geometry

The Spatial class stores a list of lights. If a light is added to this list, and the object
really is of type Node, then my design choice is that the light illuminates all leaf

230 Chapter 3 Scene Graphs and Renderers

geometry in the subtree rooted at the node. The portion of the interface for Spatial
relevant to adding and removing lights from the list is

class Spatial : public Object

{

public:
void SetLight (Light* pkLight);
int GetLightQuantity () const;
Light* GetLight (int i) const;
void Removelight (Light* pkLight);
void RemoveAllLights ();

protected:
TList<Pointer<Light> >* m _pkLightList;
}s

The list is considered to be unordered since Equation (3.9) does not require the
lights to be ordered. Notice that the list contains smart pointers to lights. I use typedef
to create aliases for the smart pointers. For Light itis LightPtr. The TList declaration
cannot use LightPtr. The typedef for LightPtr is contained in Wm3Light.h. Class Light
is derived from Spatial, so Wm3Light.h includes Wm3Spatial.h. If we were to include
Wm3Light.h in Wm3Spatial.h to access the definition of LightPtr, we would create a
circular header dependency, in which case the compiler has a complaint. To avoid
this, the class Light is forward-declared and the typedef is not used.

Function SetLight checks to see if the input light is already in the list. If so, no
action is taken. If not, the light is added to the front of the list. The function Get-
LightQuantity just iterates over the list, counts how many items it has, and returns
that number. The function GetLight returns the ith light in the list. Together, Get-
LightQuantity and GetLight allow you to access the list as if it were an array. This is
convenient, especially in the renderer code. The function RemoveLight searches the list
for the input light. If it exists, it is removed. The list is singly linked, so the search uses
two pointers, one in front of the other, in order to facilitate the removal. The function
RemoveAl1Lights destroys the list by removing the front item repeatedly until the list
is empty.

The Geometry class stores an array of lights, which is separate from the list. It
stores smart pointers to all the lights encountered in a traversal from the root node to
the geometry leaf node. These lights are used by the renderer to light the geometric
object. The render state update, discussed later in this section, shows how the lights
are propagated to the leaf nodes.

34.3 TEXTURES

The Texture class is designed to encapsulate most of the information needed to set up
a texture unit on a graphics card. Minimally, the class should store the texture image.

TeamLRN sPeCiAL

TeamLRN sPeCiAL

3.4 Render State 231

The texture coordinates assigned to vertices of geometry objects are not stored in
Texture, which allows sharing of Texture objects across multiple geometry objects.

In Wild Magic version 2, the texture coordinates were stored in the Geometry ob-
ject itself. Having support for multitexturing meant that Geometry needed to store
as many texture coordinate arrays as there are textures attached to the object, which
caused the interface to Geometry to become unruly. On the release of each new gener-
ation of graphics cards that supported more texture units than the previous genera-
tion, I had to modify Geometry to include more array pointers for the texture coordi-
nates. Naturally, the streaming code for Geometry had to be modified to store the new
data and to load old files knowing that they were saved using a smaller number of tex-
ture units. Most Geometry objects used only one or two arrays of texture coordinates,
but the class had to be prepared for the worst case that all arrays were used. The class
even had a separate array to handle textures associated with bump maps. The bulki-
ness of Geometry regarding texture coordinates and the fact that its code evolved on a
somewhat regular basis made me realize I needed a different design.

Wild Magic version 3 introduces a new class, Effect. The class, discussed in
detail later in this section, now encapsulates the textures and corresponding texture
coordinates that are to be attached to a Geometry object. An increase in the number
of texture units for the next-generation hardware requires no changes to either the
Geometry class or the Effect class. The Geometry class is responsible now only for
vertex positions and normals and the indices that pertain to connectivity of the
vertices. During the development of advanced features for Wild Magic version 3, the
redesign of Spatial, Geometry, TriMesh, and the introduction of Effect has paid off.
The core classes are generic enough and isolated sufficiently well that changes to other
parts of the engine have not forced rewrites of those classes. This is an important
aspect of any large library design—make certain the core components are robust and
modular, protecting them from the evolution of the rest of the library that is built on
top of them.

Now back to the Texture class. The texture image is certainly at the heart of the
class. The relevant interface items for images are

class Texture : public Object

{

public:
Texture (Image* pkImage = NULL);
virtual ~Texture ();

void SetImage (ImagePtr spkImage);
ImagePtr GetImage () const;

protected:
ImagePtr m_spkImage;

}s

232 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

The only constructor acts as the default constructor, but also allows you to specify
the texture image immediately. The data member m_spkImage is a smart pointer to
the texture image. You may set/get the image via the accessors SetImage and GetImage.

A graphics system provides a lot of control over how the image is drawn on an
object. I will discuss a portion of the interface at a time.

Projection Type
The first control is over the type of projection used for drawing the image:

class Texture : public Object
{
public:
enum // CorrectionMode
{
CM_AFFINE,
CM_PERSPECTIVE,
CM_QUANTITY
bs

int Correction; // default: CM_PERSPECTIVE
}s

The two possibilities are affine or perspective. The standard is to use perspective-
correct drawing. Affine drawing was a popular choice for software rendering because
itis a lot faster than using perspective-correct drawing. However, affine drawing looks
awful! I tried to generate some images to show the difference using the Wild Magic
OpenGL renderer, but apparently the current-generation hardware and OpenGL
drivers ignore the hint to use affine texturing, so I could only obtain perspective-
correct drawing. The option should remain, though, because on less powerful plat-
forms, affine texturing is quite possibly necessary for speed—especially if you plan
on implementing a software renderer using the Wild Magic APL

Filtering within a Single Image

A texture image is mapped onto a triangle by assigning texture coordinates to the
vertices of the triangle. Once the triangle is mapped to screen space, the pixels inside
the triangle must be assigned colors. This is done by linearly interpolating the texture
coordinates at the vertices to generate texture coordinates at the pixels. It is possible
(and highly likely) that the interpolated texture coordinates do not correspond ex-
actly to an image pixel. For example, suppose you have a 4 x 4 texture image and
a triangle with texture coordinates (0, 0), (1, 0), and (0, 1) at its vertices. The pixel

TeamLRN sPeCiAL

3.4 Render State 233

(i, j) in the image, where 0 <i <4 and 0 < j < 4, has the associated texture coor-
dinates (u, v) = (i/3, j/3). If a pixel’s interpolated texture coordinates are (0.2, 0.8),
the real-valued image indices are i’ = 3(0.2) = 0.6 and j’ = 3(0.8) = 2.4. T used prime
symbols to remind you that these are not integers. You have to decide how to create a
color from this pair of numbers and the image. The portion of the Texture interface
related to the creation is

class Texture : public Object
{
public:
enum // FilterMode
{
FM_NEAREST,
FM_LINEAR,
FM_QUANTITY
}s

int Filter; // default: FM_LINEAR
bs

Two choices are available. By setting Filter to FM_NEAREST, the texturing system
rounds the real-valued indices to the nearest integers. In this case, i = 1since i’ = 0.6
is closer to 1 than it is to 0, and j = 2 since j = 2.4 is closer to 2 than it is to 3. The
image value at location (i, j) = (1, 2) is chosen as the color for the pixel.

The second choice for Filter is FM_LINEAR. The color for the pixel is computed
using bilinear interpolation. The real-valued indices (i’, j’) fall inside a square whose
four corners are integer-valued indices. Let |v]| denote the floor of v, the largest
integer smaller than or equal to v. Define i, = |i’] and j, = | j’]. The four corners
of the square are (iy, jo), (ip + L, Jjo)> (ig> jo + 1), and (i + 1, jy + 1). The bilinear
interpolation formula generates a color C’ from the image colors C; ; at the four
corners:

C'=(1—A)0—A)Ciy i+ A= A)ACi i1+ A (L= A)NCisr iy
+ A A Cigit, jot 1>

where A; =i’ —igand A; = j' — jij. Some attention must be given when iy =n — 1
when the image has n columns. In this case, iy + 1 is outside the image domain.
Special handling must also occur when the image has m rows and jo=m — 1.

Figure 3.10 shows a rectangle with a checkerboard texture. The object is drawn
using nearest-neighbor interpolation. Notice the jagged edges separating gray and
black squares.

Figure 3.11 shows the same rectangle and checkerboard texture. The edges are
smoothed using bilinear interpolation. For reference later, notice that the edges near
the top of the image still have a small amount of jaggedness.

234 Chapter 3 Scene Graphs and Renderers

Figure 3.10

TeamLRN sPeCiAL

Ilustration of nearest-neighbor interpolation using Texture: : FM_NEAREST.

Mipmapping: Filtering within Multiple Images

Bilinear filtering produces better-quality texturing than choosing the nearest neigh-
bor, but it comes at greater expense in computational time. Fortunately with graphics
hardware support, this is not an issue. Even with bilinear filtering, texturing can still
have some artifacts. When a textured object with bilinear interpolation is close to the
eye point, most of the pixels obtain their colors from the interpolation. That is, the
texture coordinates of the pixels are strictly inside the square formed by four texture
image samples, so the pixel colors are always influenced by four samples. The texture
image samples are referred to as texels.® For the close-up object, the texels are in a
sense a lot larger than the pixels. This effect is sometimes referred to as magnification.
The texture image is magnified to fill in the pixels.

When that same object is far from the eye point, aliasing artifacts show up. Two
adjacent pixels in the close-up object tend to be in the same four-texel square. In the

The word pixel is an abbreviation of the words “picture element.” Similarly, the word texel represents the
words “texture element.” The names people choose are always interesting! It certainly is easier to say pixel
and texel than the original phrases.

Figure 3.11

TeamLRN sPeCiAL

3.4 Render State 235

Ilustration of bilinear interpolation using Texture::FM_LINEAR.

faraway object, two adjacent pixels tend to be in different four-texel squares. In this
situation, the texels are in a sense a lot smaller than the pixels.

To eliminate the aliasing artifacts, an alternative is needed that is the reverse
of magnification, minification. The idea is to generate a set of texture images from
the original. A pixel in the new image is an average of a 2 x 2 block of pixels in
the old image. Thus, each new image is half the size per dimension of the previous
image. A full pyramid of images starts with the original, a 2" x 2™ image. The next
image has dimensions 2”1 x 2" ~!, The averaging process is repeated until one of the
dimensions is 1. For a square image n = m = 1, the final image is 1 x 1 (a single texel).
Pixels corresponding to a portion of the object close to the eye point are selected
from the original image. For pixels corresponding to a portion of the object further
away from the eye point, a selection must be made about which of the pyramid
images to use. The alternatives are even more varied because you can choose to use
nearest-neighbor interpolation or bilinear interpolation within a single image and
you can choose to use the nearest image slice or linearly interpolate between slices.
The process of texturing with a pyramid of images is called mipmapping [Wil83]. The
prefix mip is an acronym for the Latin multum in parvo, which means “many things
in a small place.” The pyramid itself is referred to as the mipmap.

As mentioned, there are a few choices for how mipmapping is applied. The inter-
face of Texture supporting these is

236 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

class Texture : public Object

{

public:

}s

enum // MipmapMode

{
MM_NEAREST,
MM_LINEAR,
MM_NEAREST_NEAREST,
MM_NEAREST_LINEAR,
MM_LINEAR_NEAREST,
MM_LINEAR_LINEAR,
MM_QUANTITY

bs

int Mipmap; // default: MM_LINEAR_LINEAR

The enumerated values that are assigned to the data member Mipmap refer to the

following algorithms:

MM_NEAREST: Only the original texture image is used, so the pyramid of images is
not constructed. Nearest-neighbor interpolation is used to select the texel that is
nearest to the target pixel.

MM_LINEAR: Only the original texture image is used, so the pyramid of images is
not constructed. Bilinear interpolation is used to generate the color for the target
pixel.

The next four options do require building the mipmap. The graphics drivers provide
some mechanism for selecting which image in the mipmap to use. That mechanism
can vary with graphics API and/or manufacturer’s graphics cards, so I do not discuss
it here, but see [Ebe00] for details.

MM_NEAREST NEAREST: The mipmap image nearest to the pixel is selected. In that
image, the texel nearest to the pixel is selected and assigned to the pixel.

MM_NEAREST_LINEAR: The two mipmap images that bound the pixel are selected. In
each image, the texel nearest to the pixel is selected. The two texels are linearly
interpolated and assigned to the pixel.

MM_LINEAR_NEAREST: The mipmap image nearest to the pixel is selected. In that
image, bilinear interpolation of the texels is used to produce the pixel value.

MM_LINEAR LINEAR: The two mipmap images that bound the pixel are selected. In
each image, bilinear interpolation of the texels is used to generate two colors.
Those colors are linearly interpolated to produce the pixel value. This is some-
times call trilinear interpolation.

Figure 3.12

TeamLRN sPeCiAL

3.4 Render State 237

Ilustration of trilinear interpolation using Texture::MM_LINEAR LINEAR.

Note that for each enumerated value, the first name refers to the interpolation type
within an image. The second name refers to the interpolation type across two images.

In theory, MM_NEAREST and MM_LINEAR use only the original texture image, so
mipmaps need not (and should not) be built. In fact, the choices are equivalent to
using single-image filtering along. The OpenGL renderer indeed does not generate
the mipmaps; the result is that standard filtering is used (as specified by the Filter
data member).”

Figure 3.12 shows the rectangle and checkerboard texture using trilinear interpo-
lation for mipmapping. The slightly jagged edges that appear in the top half of Figure
3.11 do not appear in the top half of Figure 3.12.

. That said, if you have had much experience with graphics drivers for different brands of graphics cards,

you will find that the drivers do not always adhere to the theory. In a test program for MM_LINEAR, one of my
graphics cards rendered an image that should have been identical to Figure 3.11, but instead rendered an
image that showed a small, triangular shaped, bilinearly interpolated region near the bottom of the image.
The remainder of the image showed that nearest- neighbor interpolation was used. A graphics card from
a different manufacturer correctly rendered the image entirely using bilinear interpolation.

238 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

Out-of-Range Texture Coordinates

In the discussion of bilinear interpolation for texture image filtering, I mentioned
that special attention must be paid to interpolation at texels that are on the boundary
of the image. The natural inclination is to clamp values outside the domain of the
image indices. If a texture coordinate is (0.7, 1.1), the clamped value is (0.7, 1.0). The
texture coordinate (—0.4, 0.2) is clamped to (0.0, 0.2). Other choices are possible.
The coordinates may be repeated by using modular arithmetic. Any value larger than
1 has its integer part removed, and any value smaller than 0 has an integer added to
it until the result is 0 or larger. For example, (0.7, 1.1) is wrapped to (0.7, 0.1), and
(—0.4, 0.2) is wrapped to (0.6, 0.2). In the latter example, we only needed to add 1 to
—0.4 to obtain a number in the interval [0, 1]. The texture coordinate (—7.3, 0.2) is
wrapped to (0.7, 0.2). In this example, we had to add 8 to —7.3 to obtain a number
in the interval [0, 1].

The handling of texture coordinates at the image boundaries is supported by the
interface

class Texture : public Object
{
public:
enum // CoordinateMode
{
WM_CLAMP,
WM_REPEAT,
WM_CLAMP_BORDER,
WM_CLAMP_EDGE,
WM_QUANTITY
bs

ColorRGBA BorderColor; // default: ColorRGBA(0,0,0,0)

int CoordU; // default: WM_CLAMP_EDGE
int CoordV; // default: WM_CLAMP_EDGE

Given a texture coordinate (u, v), each component can be clamped or repeated.
Figure 3.13 illustrates the four possibilities.

Unfortunately, the WM_CLAMP mode has issues when the filter mode is not FM_
NEAREST and/or the mipmap mode is not MM_NEAREST. When bilinear interpolation
is used and the texture coordinates are on the image boundary, the interpolation
uses the border color, which is stored in the data member Texture: :BorderColor. The
OpenGL renderer is set up to tell the graphics API about the border color only if
that color is valid. When it is invalid, a black border color is used by default. Figure
3.14 shows the effect when two textures on two objects have a common boundary. In

Figure 3.13

TeamLRN sPeCiAL

3.4 Render State 239

A square with vertices (—1, —1), (1, —1), (1, 1), and (—1, 1) is drawn with a texture
image. The texture coordinates at the square’s corners are (0, 0), (2, 0), (2, 2), and
(0, 2). (a) Clamp u and clamp v. (b) Clamp u and repeat v. (c) Repeat u and clamp
v. (d) Repeat 1 and repeat v. (See also Color Plate 3.13.)

either case, if you have a tiled environment such as terrain, the clamping to the border
color is not the effect you want.

Instead, use clamping to the edge of the texture. Figure 3.15 illustrates with the
same squares and texture coordinates as in Figure 3.14. In Figure 3.15(a), notice that
the dark line that appeared with border clamping no longer occurs. However, you will

240 Chapter 3 Scene Graphs and Renderers

Figure 3.14

TeamLRN sPeCiAL

(a) " (b)

Two squares, one with vertices (—1, —1), (0, —1), (0, 1), and (—1, 1), and one with
vertices (0, —1), (1, —1), (1, 1), and (0, 1), are drawn with texture images. The images
were obtained by taking a 128 x 128 bitmap and splitting it into 64 x 128 images.
The texture coordinates at the squares’ corners are (0, 0), (1, 0), (1, 1), and (0, 1).
(a) Clamp u and v to border, no border color assigned. (b) Clamp u and v to border,
red border color assigned. (See also Color Plate 3.14).

notice in the middle of the image about one-third of the distance from the bottom
a discontinuity in the image intensities. The bilinear interpolation and handling of
texture coordinates is causing this. Figure 3.15(b) shows how to get around this
problem. The discontinuity is much less noticeable. The left edge of the texture on
the left duplicates the right edge of the texture on the right. When tiling terrain, you
want to generate your textures to have color duplication on shared boundaries.

Automatic Generation of Texture Coordinates

Some rendering effects require the texture coordinates to change dynamically. Two
of these are environment mapping, where an object is made to appear as if it is
reflecting the environment around it, and projected textures, where an object has a
texture applied to it as if the texture were projected from a light source. A graphics API
can provide the services for updating the texture coordinates instead of requiring the
application to explicitly do this. When creating textures of these types, you may use
the following interface for Texture:

Figure 3.15

TeamLRN sPeCiAL

3.4 Render State 241

(a) (b)

(a) Clamp u and v to edge, border color is always ignored. (b) Clamp u and v to edge,
but textures were created differently. (See also Color Plate 3.15.)

class Texture : public Object
{
public:
enum // TexGenMode
{
TG_NONE,
TG_ENVIRONMENT _MAP,
TG_PROJECTED_TEXTURE,
TG_QUANTITY
bs

int Texgen; // default: TG_NONE
1

I only support the two aforementioned effects, but if you add new ones, you will
need to add more enumerated values to the class. You should add these after the
TG_PROJECTED TEXTURE item, but before the TG_QUANTITY item, to guarantee that the
streaming system loads already saved files correctly. In other words, if you insert a
new enumerated value elsewhere, you will cause a change in the implicit numbering
of the values, thereby invalidating the numbers that were saved in previous streaming
operations to disk.

242 Chapter 3 Scene Graphs and Renderers

The Effect system that I describe later already has derived classes to support en-
vironment mapping and projected textures, so there is no need for you to explicitly
manipulate the Texgen data member. You can just provide the texture image to Envi-
ronmentMapEffect and ProjectedTextureEffect and attach the effect to a node.

Application Mode

The Texture class has enumerated values that specify how a texture is to be applied to
an object. This is called the apply mode:

class Texture : public Object
{
public:
enum // ApplyMode
{
AM_REPLACE,
AM_DECAL,
AM_MODULATE,
AM_BLEND,
AM_ADD,
AM_COMBINE,
AM_QUANTITY
}s

int Apply; // default: AM_REPLACE
bs

For a single texture, the mode you want is AM_REPLACE. This tells the graphics
system to just draw the texture image on the object. Any colors that were drawn to
the object pixels previously are replaced by those from the texture image.

The other enumerated values have to do with the blending of multiple textures
onto an object, the topic of the next subsection.

3.44 MULTITEXTURING

TeamLRN sPeCiAL

The term multitexturing refers to drawing an object with two or more texture images.
A classic application is light maps. A primary texture is drawn on the object, and
a secondary texture representing variations in light intensity is then applied to the
object. The colors from the primary and secondary texture images must be combined
somehow, much like the blending that occurs with ATphaBlending.

The Texture class has a variable for storing an apply mode. The relevant inter-
face is

TeamLRN sPeCiAL

3.4 Render State 243

Table 3.4 Blending equations for the apply mode values. The alpha channel is handled

separately from the red, green, and blue channels.

Apply mode/

image type RGB RGBA

AM REPLACE C, A; G A,
AM_DECAL C, Ay (1—-A)Cr+AC Ay
AM_MODULATE ~ C,C/ A; CCy AA;
AM_BLEND 1-C)Cr+CC. Ay (1-C)Cr+CC. AA;
AM_ADD C +Cy Ay G +Cy AAy

class Texture : public Object
{
pubTic:
enum // ApplyMode
{
AM_REPLACE,
AM_DECAL,
AM_MODULATE,
AM_BLEND,
AM_ADD,
AM_COMBINE,
AM_QUANTITY
}s

ColorRGBA BlendColor; // default: ColorRGBA(0,0,0,1)

int Apply; // default: AM_REPLACE
1s

I already discussed that objects to be drawn with a single texture, and no vertex
colors or material colors, should use AM_REPLACE. The remaining enumerated values
have to do with blending the texture image colors with other quantities. Wild Magic
supports 24-bit RGB and 32-bit RGBA images. The apply modes perform blending
according to Table 3.4.

The vector arguments are RGB colors, C, = (r,, g;, b,) for source index s €
{t, ¢, f}. The arguments A are alpha values. The texture color (C,, A;) comes from
the RGBA image associated with the texture unit. The color itself may be filtered
based on the mode assigned to the data member Texture: :Filter. The primary color

244 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

(Cys, Ay) comes from vertex colors or material colors (interpolated across the trian-
gles, of course). The primary colors are computed before any texturing is applied.
The constant color (C,., A,) is the color assigned to Texture: :BlendColor.

The mode that gives you full control over the blending is AM_COMBINE. When the
renderer encounters a texture object, it passes its information along to the graphics
APIL. If the combine mode is in effect, the graphics API must be told what the blending
equation should be. The equations are not in themselves complicated, but the colors
to be blended can come from a variety of sources. The Texture class has additional
information that you must set in order to control the blending equation, the sources,
and the operations among the sources. The relevant portion of the interface when

Apply is set to Texture: :AM_COMBINE is

class Texture : public Object

{

public:

enum // ApplyCombineFunction

{

}s

ACF_REPLACE,
ACF_MODULATE,
ACF_ADD,
ACF_ADD_SIGNED,
ACF_SUBTRACT,
ACF_INTERPOLATE,
ACF_DOT3_RGB,
ACF_DOT3_RGBA,
ACF_QUANTITY

enum // ApplyCombineSrc

{

}s

ACS_TEXTURE,
ACS_PRIMARY_COLOR,
ACS_CONSTANT,
ACS_PREVIOUS,
ACS_QUANTITY

enum // ApplyCombineOperand

{

ACO_SRC_COLOR,
ACO_ONE_MINUS_SRC_COLOR,
ACO_SRC_ALPHA,
ACO_ONE_MINUS_SRC_ALPHA,
ACO_QUANTITY

TeamLRN sPeCiAL

3.4 Render State 245

enum // ApplyCombineScale
{
ACSC_ONE,
ACSC_TWo,
ACSC_FOUR,
ACSC_QUANTITY

int CombineFuncRGB; // default: ACF_REPLACE
int CombineFuncAlpha; // default: ACF_REPLACE
int CombineSrcORGB; // default: ACS_TEXTURE
int CombineSrclRGB; // default: ACS_TEXTURE
int CombineSrc2RGB; // default: ACS_TEXTURE

int CombineSrcOAlpha; // default: ACS_TEXTURE
int CombineSrclAlpha; // default: ACS_TEXTURE
int CombineSrc2Alpha; // default: ACS_TEXTURE

int CombineOpORGB; // default: ACO_SRC COLOR
int CombineOplRGB; // default: ACO_SRC COLOR
int CombineOp2RGB; // default: ACO_SRC _COLOR

int CombineOpOAlpha; // default: ACO_SRC_COLOR
int CombineOplAlpha; // default: ACO_SRC_COLOR
int CombineOp2Alpha; // default: ACO_SRC COLOR
int CombineScaleRGB; // default: ACSC_ONE
int CombineScaleAlpha; // default: ACSC_ONE

The parameters and names are quite daunting, but once you understand how
these are used to generate a blending equation, you should find these useful for
advanced multitexturing effects.

The parameter CombineFuncRGB lets you specify the blending of the red, green, and
blue colors. The alpha channel is handled by a separate function specified by Com-
bineFuncAlpha. Table 3.5 lists the possible blending equations based on the selection
of CombineFuncRGB and CombineFuncAlpha. The table omits the entries ACF_DOT3_RGB
and ACF_DOT3_RGBA; these are used for bump mapping, the topic of Section 5.1.6. The
arguments can be scalars (alpha values) or 3-tuples (RGB values). Any operations
between two 3-tuples are performed componentwise.

The CombineSrc[i] and CombineOp[i] parameters determine what the V; values
are for i € {0, 1, 2}. Table 3.6 lists the possible V; values. The vector arguments are
RGB colors, C = (ry, g5, by) for source index s € {t, ¢, f, p}. The arguments A, are
alpha values. The texture color (C;, A;) comes from the RGBA image associated with
the texture unit. The color itself may be filtered based on the mode assigned to the
data member Texture: :Filter. The primary color (C, A) comes from vertex colors
or material colors (interpolated across the triangles, of course). The primary colors
are computed before any texturing is applied. The constant color (C,., A,) is the color
assigned to Texture: :BlendColor. The previous color (C,,, A) is the output from the

246 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

Table 3.5

Table 3.6

Combine functions and their corresponding blending equations.

Combine function Blending equation

ACF_REPLACE Vo
ACF_MODULATE Vo * V)
ACF_ADD Vo +V,
ACF_ADD_SIGNED Vo+V,— 1
ACF_SUBTRACT Vo —V,

ACF_INTERPOLATE V%V, 4V, % (1 —V,)

The pair CombineSrc[i] and CombineOp[i] determine the argument V.

Src/op ACO_SRC_COLOR ACO_ONE_MINUS_ ACO_SRC_ALPHA ACO_ONE_MINUS_
SRC_COLOR SRC_ALPHA
ACS_TEXTURE C, 1-C, A, 1— A,
ACS_PRIMARY_COLOR C; 1-C; Af 1— A
ACS_CONSTANT C, 1-C. A, 1- A,
ACS_PREVIOUS C, 1-C, A, 1-4,

texture unit previous to the current one. If the current texture unit is unit 0, then the
previous color is the same as the primary color; that is, the inputs to texture unit 0
are the vertex colors or material colors.

After the blending equation is computed, it is possible to magnify the resulting
color by a scaling factor of 1 (keep the resulting color), 2, or 4. If any color channel
of the scaled color is greater than 1, it is clamped to 1. You may select the scaling
parameter by setting CombineScaleRGB and CombineScaleAlpha. The valid parameters
to assign are ACSC_ONE, ACSC_TWO, or ACSC_FOUR.

As an example, consider Equation (3.7), which blends a light map with a base
texture, but avoids the oversaturation that a simple addition tends to produce. That
equation is rewritten as

VO*VZ+V1*(1_V2):l*Cd+CS*(1_Cd)’

where C; is a base texture color and C; is a light map color. The vector 1 represents the
color white. The Texture: :ACF_INTERPOLATE function is the one to use. The following

TeamLRN sPeCiAL

3.4 Render State 247

code block sets up the combine function, sources, and operands to obtain the desired
effect:

Texture* pkBase = <goes in texture unit 0>;
Texture* pkLightMap = <goes in texture unit 1>;

// draw the base texture onto the triangle first
pkBase->Apply = Texture::AM_REPLACE;

// use the interpolate combine function
pkLightMap->Apply = Texture::AM COMBINE;
pkLightMap->CombineFuncRGB = Texture::ACF_INTERPOLATE;

// Vo = (1,1,1)

pkLightMap->BlendColor = ColorRGBA::WHITE;
pkLightMap->CombineSrcORGB = Texture::ACS CONSTANT;
pkLightMap->CombineOpORGB = Texture::ACO_SRC COLOR;

// V1 = base texture (previous texture unit values)
pkLightMap->CombineSrc1RGB = Texture::ACS_PREVIOUS;
pkLightMap->CombineOp1RGB = Texture::ACO_SRC COLOR;

// V2 = 1ight map (current texture unit values)
pkLightMap->CombineSrc2RGB = Texture::ACS_TEXTURE;
pkLightMap->CombineOp2RGB = Texture::ACO_SRC_COLOR;

The simple addition V;, + V, can be controlled by a combine function:

// draw the base texture onto the triangle first
pkBase->Apply = Texture::AM REPLACE;

// use the add function
pkLightMap->Apply = Texture::AM_COMBINE;
pkLightMap->CombineFuncRGB = Texture::ACF_ADD;

// VO = base texture
pkLightMap->CombineSrcORGB = Texture::ACS_PREVIOUS;
pkLightMap->CombineOpORGB = Texture::ACO_SRC_COLOR;

// V1 = 1ight map
pkLightMap->CombineSrclRGB = Texture::ACS_TEXTURE;
pkLightMap->CombineOp1RGB = Texture::ACO_SRC_COLOR;

248 Chapter 3 Scene Graphs and Renderers

However, the apply mode AM_ADD works as well:

// draw the base texture onto the triangle first
pkBase->Apply = Texture::AM_REPLACE;

// add the 1ight map to the base texture
pkLightMap->Apply = Texture::AM_ADD;

As you can see, there are many ways you can obtain the same effect.

3.45 EFFECTS

TeamLRN sPeCiAL

The effects system in Wild Magic version 3 is a new invention to the engine. Wild
Magic version 2 had a base class RenderState that encapsulated what I now call global
states, lights, and texture information. In both versions of the engine, the Texture
class stores information to configure the texture units on the graphics hardware and
also stores a smart pointer to the texture image. In Wild Magic version 2, I had a class
TextureState that stored an array of Texture objects, supporting multitexturing in
a sense. A TextureState could be attached to a Node. All geometry leaf objects in the
subtree rooted at the node used the Texture objects of the TextureState. On the other
hand, the Geometry objects stored their own texture coordinates. To configure the
texture units, the renderer needed to obtain the texture image and setup information
from the TextureState object and texture coordinates from the Geometry object.

In a multitexturing situation, a further complication was that one TextureState
could store the base texture in slot 0 of the array and be attached to one node in
the scene hierarchy. Another TextureState could store the secondary texture and be
attached to another node. The idea is that the accumulation of the texture states along
a path from the root node to a leaf would lead to an array of Texture objects to be used
in the multitexturing. The accumulation maintained an array whose slot 0 stored the
Texture from slot 0 of any TextureState encountered along the path. In the current
example, that means the TextureState storing the secondary texture cannot store it
in slot 0; otherwise one of the texture objects hides the other. That means storing the
secondary texture in, say, slot 1. The consequence of this design is that the application
writer has to be very careful (and has the responsibility) about how to fill the slots
in the TextureState. As some contractors added special effects to Wild Magic, the
problems with my design became apparent.

In particular, projected textures were a problem. A projected texture is intended
to be the last texture applied to a geometric object. Wild Magic version 2 has a
ProjectedTexture class that is derived from Node. The class has a TextureState data
member to store the Texture object corresponding to the projected texture. The intent
was to create a specialized node to be an interior node of the scene hierarchy, and
to have its texture be the projected texture for all geometry objects at the leafs of the

TeamLRN sPeCiAL

3.4 Render State 249

subtree of the node. The dilemma was which slot in the array of TextureState to place
the projected texture. Not knowing the slots used for the textures for the geometry
leaf nodes, the only reasonable slot was the last one so as not to hide the textures
used by the geometry leaf nodes. But this choice led to yet another problem. If there
were four slots, the projected texture was placed in slot 3 (zero-based indexing). Now
if a geometry object has only a single texture, placed in slot 0, then the renderer is
given an object to draw using two textures. The renderer implementation was set up
in a very general manner to iterate through the final array of textures and configure
each texture unit accordingly. The texture unit O (for the base texture in slot 0) is set
up, but texture units 1 and 2 are not used. Texture unit 1 had to be told to pass the
output from texture unit 0 without changing it. Similarly, texture unit 2 had to pass
the output from texture unit 1 without changing it. Texture unit 3 used the output
from texture unit 2 and blended it with the projected texture that was assigned to
texture unit 3. Clearly, this is an inefficiency that resulted from a substandard design
in the scene graph management front end.

To remedy this for Wild Magic version 3, I scrapped the idea of having lights
managed by a LightState object and textures managed by a TextureState object.
Regarding textured objects, the renderer should be provided with the geometric in-
formation (vertices, normals, indices, transformations), texture information (texture
images and texture coordinates), color information (vertex colors), lighting informa-
tion (lights and material), and any semantics on how to combine these. The scene
graph management system has to decide how to package these quantities to send
them to the renderer. The packaging should require as little work as possible from
the application writer, yet allow the renderer to efficiently gather the information and
configure the texture units. The semantics for the configuration should not be ex-
posed to the application writer, as was the projected texture example in Wild Magic
version 2 (i.e., having to decide in which array slots to place the texture objects).

The effort to achieve these goals led to a redesign of the core classes Spatial,
Geometry, and Node, and to the creation of a base class Effect. Information such
as texture objects (images and configuration information), texture coordinates, and
vertex colors are stored in Effect. The initial design change was to allow global states
to be applied at interior nodes of a scene hierarchy, but allow only “local effects” to be
applied at the leaf nodes. The Effect should encapsulate all the relevant information
and semantics for producing a desired visual result. Many of the special effects that
were added to Wild Magic version 2 as Node-derived classes were replaced by Effect
objects that apply only to the geometry objects to which they are attached. However,
projected textures were still problematic with regard to the new system. The projected
textures usually are applied to a collection of geometric objects in the scene, not just
to one. Having a projected texture affect an entire subtree of a scene is still desirable. A
small redesign midstream led to allowing “global effects” (such as projected textures,
projected shadows, and planar reflections) to occur at interior nodes, vet still based
on the premise of Effect encapsulating the drawing attributes, and still leading to a
general but efficient renderer implementation.

250 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

The discussion of global effects is postponed until Section 3.5.6, at which time
I will discuss multipass operations. Such operations involve traversing through por-
tions of the scene multiple times. Be aware that multitexturing refers to the use of
multiple textures on an object. Many of the rendering effects can use single-pass mul-
titexturing. Multipass can involve a single texture, or it can involve multiple textures.
In the remainder of this section, the mechanism for local effects is described.

The interface for class Effect is

class Effect : public Object
{
public:

Effect ();

virtual ~Effect ();

// Create a clone of the effect. Colors and textures are

// shared. Each derived class can override this behavior and
// decide what is copied and what is shared.

virtual Effect* Clone ();

// data common to many effects
ColorRGBArrayPtr ColorRGBs;
ColorRGBAArrayPtr ColorRGBAs;
TArray<TexturePtr> Textures;
TArray<Vector2fArrayPtr> UVs;

// internal use

public:
// function required to draw the effect
Renderer: :DrawFunction Draw;

}s

The class has storage for vertex colors, either RGB or RGBA, but not both. If you
happen to set both, the RGBA colors will be used. Storage for an array of Texture
objects is provided. Storage for an array of corresponding texture coordinates is also
provided. Usually the arrays should have the same quantity of elements, but that is
not necessary if the graphics system is asked to automatically generate the texture
coordinates that are associated with a texture object.

The class has a function pointer data member—a pointer to some drawing func-
tion in the class Renderer interface. Many of the standard drawing operations are han-
dled by Renderer: :DrawPrimitive, but others require special handling. For example,
environment mapping is implemented in the Renderer function DrawEnvironmentMap.
A derived class will implement its constructors to assign the correct function pointer.
The application writer should not manipulate this member.

3.4 Render State 251

The base class is not abstract. This allows you to create an Effect object and set the
colors and textures as desired. In particular, if you have a special effect that involves a
fancy combination of textures, you can do this without having to derive a class from
Effect to manage the new feature. However, if the desired effect requires specialized
handling by the renderer via a new drawing function in the Renderer interface, then
you will need to derive a class from Effect and implement the drawing function in
the derived renderer classes.

The Spatial class provides the storage for the effect, including the ability to set/get
one:

class Spatial : public Object

{

pubTic:
virtual void SetEffect (Effect* pkEffect);
Effect* GetEffect () const;

protected:
EffectPtr m_spkEffect;

}s

Use of the set/get functions is clear. If you set an effect and the object already had one
attached, the old one is removed in the sense that its reference count is decremented.
If the count becomes zero, the object is automatically destroyed.

3.4.6 THE CORE CLASSES AND RENDER STATE UPDATES

TeamLRN sPeCiAL

The core classes Spatial, Geometry, and Node all have some form of support for storing
render state and making sure that the renderer has the complete state for each object
it draws. The class Geometry has the storage capabilities for the render state that affects
it. My decision to do this in Wild Magic version 3 was to provide a single object
type (Geometry) to the renderer. Wild Magic version 2 had an abstract rendering that
required the object to be passed as the specific types they were, but the interface was
cumbersome. The redesign for version 3 has made the rendering interface much more
streamlined. The process of assembling the rendering information in the Geometry
object is referred to as updating the render state.

The portions of the interfaces for classes Spatial, Node, and Geometry that are
relevant to updating the render state are

class Spatial : public Object
{
pubTic:
virtual void UpdateRS (TStack<GlobalState*>* akGStack = NULL,
TStack<Light*>* pkLStack = NULL);

252 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

protected:
void PropagateStateFromRoot (TStack<GlobalState*>* akGStack,
TStack<Light*>* pkLStack);
void PushState (TStack<GlobalState*>* akGStack,
TStack<Light*>* pkLStack);
void PopState (TStack<GlobalState*>* akGStack,
TStack<Light*>* pkLStack);
virtual void UpdateState (TStack<GlobalState*>* akGStack,
TStack<Light*>* pkLStack) = 0;
1

class Node : public Object
{
protected:
virtual void UpdateState (TStack<GlobalState*>* akGStack,
TStack<Light*>* pkLStack);
}s

class Geometry : public Object
{
protected:
virtual void UpdateState (TStack<GlobalState*>* akGStack,
TStack<Light*>* pkLStack);

The entry point into the system is method UpdateRS (“update render state”).
The input parameters are containers to assemble the global state and lights during
a depth-first traversal of the scene hierarchy. The parameters have default values.
The caller of UpdateRS should not set these and make a call: object.UpdateRS(). The
containers are allocated and managed internally by the update system.

The protected member functions are helper functions for the depth-first traversal.
The function PushState pushes any global state and lights that the Spatial object
has attached to it onto stacks. The function PopState pops those stacks. The intent
is that the stacks are used by all the nodes in the scene hierarhcy as they are visited.
Function Node: :UpdateState has the responsibility for propagating the update in a
recursive traversal of the scene hierarchy. Function Geometry: :UpdateState is called
at leaf nodes of the hierarchy. It has the reponsibility for copying the contents of
the stacks into its appropriate data members. The stacks store smart pointers to
global states and lights, so the copy is really a smart pointer copy and the objects
are shared.

The render state at a leaf node represents all the global states and lights that occur
on the path from the root node to the leaf node. However, the UpdateRS call need only
be called at a node whose subtree needs a render state update. Figure 3.16 illustrates
a common situation.

Figure 3.16

TeamLRN sPeCiAL

3.4 Render State 253

Gl
G- [
PR DnRaED

A common situation for updating render state.

The z-buffer state is already attached to node N, and the light is already attached
to node N,. A material state is attached to node N,. The render state update is initi-
ated at N;. The result of the depth-first traversal of the subtree at N, is the following:
G has links to the z-buffer and material states; G5 has links to the z-buffer state,
the material state, and the light; and G4 has links to the z-buffer state, the material
state, and the light. The z-buffer state is, however, not in the subtree of N}, so we in
fact have to start collecting the states from the root node and along paths that lead to
the leaf nodes that are in the subtree of N,. The function PropagateStateFromRoot has
the responsibility of starting the render state update at N, by first traversing to the
root Ny, collecting the render state of the path from N, to N;, and then passing this
state to the leaf nodes of the subtree at N, together with any additional render state
that is in that subtree. Pseudocode for the sequence of operations is listed next. The
indentation denotes the level of the calling stack.

N1.UpdateRS();

N1: create global state stack GS; // GS

N1: create light stack LS; // LS

N1.PropagateStateFromRoot (GS,LS);
NO.PropagateStateFromRoot (GS,LS);

n n
—_—
—

NO.PushState(GS,LS); // GS = {zbuffer}, LS = {}
N1.PushState(GS,LS); // GS = {zbuffer,material},
// LS = {}

N1.UpdateState(GS,LS);
G3.UpdateRS(GS,LS);

G3.PushState(GS,LS); // GS = {zbuffer,material},
// LS = {}
G3.UpdateState(GS,LS); // share: zbuffer,material

G3.PopState(GS,LS);
N4.UpdateRS(GS,LS);
N4.PushState(GS,LS); // GS

// LS

{zbuffer,material},
{1ight}

254 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

N4.UpdateState(GS,LS);
G5.UpdateRS(GS,LS);
G5.PushState(GS,LS); // GS

{zbuffer,material},

// LS = {1light}
G5.UpdateStore(GS,LS); // share: zbuffer,material,
// light
G5.PopState(GS,LS); // GS = {zbuffer,material}l,
// LS = {1ight}

G6.UpdateRS(GS,LS);
G6.PushState(GS,LS); // GS = {zbuffer,material},

// LS = {1ight}
G6.UpdateStore(GS,LS); // share: zbuffer,material,
// Tight
G6.PopState(GS,LS); // GS = {zbuffer,material},
// LS = {1ight}
N4.PopState(GS,LS); // GS = {zbuffer,material},
// LS = {}
N1: destroy global state stack GS; // GS = {}
N1: destroy light stack LS; // LS = {}

The pseudocode is slightly deceptive in that it indicates the global state stack is
initially empty, but in fact it is not. After the stack is allocated, smart pointers to the
default global state objects are pushed onto it. The copy of smart pointers from the
global state stack to the local storage of Geometry results in a full set of global states to
be used when drawing the geometry object, and the global states are the ones that are
at the top of the stack. Nothing prevents you from having multiple states of the same
type in a single path from root node to leaf node. For example, the root node can
have a z-buffer state that enables depth buffering, but a subtree of objects at node N
that can be correctly drawn without depth buffering enabled can also have a z-buffer
state that disables depth buffering.

At first glance you might be tempted not to have PropagateStateFromRoot in the
update system. Consider the current example. Before the material state was attached
to node Ny, and assuming the scene hierarchy was current regarding render state, G
should have in its local storage the z-buffer. G5 and G4 should each have local stor-
age containing the z-buffer and light. When you attach the material to node N; and
call UpdateRS whose implementation does only the depth-first traversal, it appears
the correct states will occur at the geometry leaf nodes. In my implementation this
is not the case. The global state stack is initialized to contain all the default global
states, including the default z-buffer state. The copy of smart pointers in the Geom-
etry::UpdateState will overwrite the z-buffer state pointer of N, with the default
z-buffer state pointer, thus changing the behavior at the leaf nodes.

Now you might consider changing the render state update semantics so that the
global state stack is initially empty, accumulate only the render states visited in the
depth-first traversal, and then have Geometry::UpdateState copy only those pointers

TeamLRN sPeCiAL

3.4 Render State 255

into its local storage. To throw a wrench into the works, suppose that the subtree at
N, is detached from the scene and a new subtree added as the second child of N;.
The leaf nodes of the new subtree are unaware of the render state that N, and its
predecessors have. A call to the depth-first-only UpdateRS at N, will propagate the
render states from N; downward, but now the z-buffer state of N, is missing from
the leaf nodes. To remedy this problem, you should have called UpdateRS at the root
node N,. The leaf nodes will get all the render state they deserve, but unfortunately
other subtrees of the scene hierarchy are updated even though they have current
render state information. My decision to include PropagateStateFromRoot is based on
having as efficient a render state update as possible. In a situation such as the current
example, the application writer does not have to call UpdateRS at N, when all that
has changed is a subtree modification at N,. In my update system, after the subtree is
replaced by a new one, you only need to call UpdateRS at N,.

The previous discussion does point out that there are various circumstances when
you have to call UpdateRS. Clearly, if you attach a new global state or light to a node,
you should call UpdateRS to propagate that information to the leaf nodes. Similarly, if
you detach a global state or light from a node, the leaf nodes still have smart pointers
to those. You must call UpdateRS to eliminate those smart pointers, replacing the
global state pointers with ones to the default global states. The light pointers are just
removed from the storage. A change in the topology of the scene, such as attaching
new children or replacing children at a node N, also requires you to call UpdateRsS.
This is the only way to inform the leaf nodes of the new subtree about their render
state.

If you change the data members in a global state object or in a light object, you do
not have to call UpdateRS. The local storage of smart pointers in Geometry to the global
states and lights guarantees that you are sharing those objects. The changes to the data
members are immediately known to the Geometry object, so when the renderer goes
to draw the object, it has access to the new values of the data members.

To finish up, here is a brief discussion of the implementations of the render state
update functions. The entry point is

void Spatial::UpdateRS (TStack<GlobalState*>* akGStack,
TStack<Light*>* pkLStack)

bool bInitiator = (akGStack == NULL);

if (bInitiator)
{
// stack initialized to contain the default global states
akGStack = new TStack<GlobalState*>[GlobalState::MAX STATE];
for (int i = 0; i < GlobalState::MAX STATE; i++)
akGStack[i] .Push(GlobalState: :Default[i]);

256 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

// stack has no Tights initially
pkLStack = new TStack<Light*>;

// traverse to root and push states from root to this node
PropagateStateFromRoot (akGStack,pkLStack) ;
}
else
{
// push states at this node
PushState(akGStack,pkLStack);

// propagate the new state to the subtree rooted here
UpdateState(akGStack,pkLStack);

if (bInitiator)

{
delete[] akGStack;
delete pkLStack;

}

else

{

// pop states at this node
PopState(akGStack,pkLStack);

The initiator of the update calls UpdateRS() with no parameters. The default
parameters are null pointers. This lets the function determine that the initiator is
the one who is responsible for allocating and deallocating the stacks. Notice that the
global state “stack” is really an array of stacks, one stack per global state type. The
initiator is also responsible for calling PropagateStateFromRoot. The UpdateState call
propagates the update to child nodes for a Node object, but copies the smart pointers
in the stacks to local storage for a Geometry object. For the noninitiators, the sequence
of calls is effectively

PushState(akGStack,pkLStack);
UpdateState(akGStack,pkLStack);
PopState(akGStack,pkLStack);

In words: push my state onto the stacks, propagate it to my children, and then pop
my state from the stacks.

TeamLRN sPeCiAL

3.4 Render State

The propagation of state from the root is

void Spatial::PropagateStateFromRoot (
TStack<GlobalState*>* akGStack, TStack<Light*>* pkLStack)

// traverse to root to allow downward state propagation

if (m_pkParent)

m_pkParent->PropagateStateFromRoot (akGStack,pkLStack);

// push states onto current render state stack
PushState(akGStack,pkLStack);

void Spatial::PushState (TStack<GlobalState*>* akGStack,

TStack<Light*>* pkLStack)

TList<GlobalStatePtr>* pkGList = m_pkGloballList;

for (/**/; pkGList; pkGList = pkGList->Next())

{
int eType = pkGList->Item()->GetGlobalStateType();
akGStack[eType] .Push(pkGList->Item());

TList<LightPtr>* pkLList = m _pkLightList;
for (/**/; pkLList; pkLList = pkLList->Next())
pkLStack->Push(pkLList->Item());

void Spatial::PopState (TStack<GlobalState*>* akGStack,

TStack<Light*>* pkLStack)

TList<GlobalStatePtr>* pkGList = m_pkGloballList;

for (/**/; pkGList; pkGList = pkGList->Next())

{
int eType = pkGList->Item()->GetGlobalStateType();
GlobalState* pkDummy;
akGStack[eType] .Pop (pkDummy) ;

257

This is a recursive call that traverses a linear list of nodes. The traversal takes you up
the tree to the root, and then you push the states of the nodes as you return to the
initiator.

The pushing and popping of state is straightforward:

258 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

TList<LightPtr>* pkLList = m_pkLightList;
for (/**/; pkLList; pkLList = pkLList->Next())
{

Light* pkDummy;

pkLStack->Pop (pkDummy) ;

The code iterates over a list of global states attached to the object and pushes them on
the stack (pops them from the stack) corresponding to the type of the state. The code
also iterates over a list of lights attached to the object and pushes them on the stack
(pops them from the stack).

The propagation of the update down the tree is

void Node::UpdateState (TStack<GlobalState*>* akGStack,
TStack<Light*>* pkLStack)

for (int i = 0; 1 < m kChild.GetQuantity(); i++)
{
Spatial* pkChild = m_kChild[i];
if (pkChild)
pkChild->UpdateRS (akGStack,pkLStack);

This, too, is a straightforward operation. Just as with the geometric update functions
UpdateGS and UpdateWorldData, the pair UpdateRS and UpdateState form a recursive
chain (A calls B, B calls A, etc.).

Finally, the copy of smart pointers from the stacks to local storage is

void Geometry::UpdateState (TStack<GlobalState*>* akGStack,
TStack<Light*>* pkLStack)

// update global state
int i,
for (i = 0; i < GlobalState::MAX_STATE; i++)
{
GlobalState* pkGState = NULL;
akGStack[i].GetTop(pkGState);
assert(pkGState);
States[i] = pkGState;

3.5 Renderers and Cameras 259

// update lights
Light* const* akLight = pkLStack->GetData();
int iQuantity = pkLStack->GetQuantity();
for (i = 0; i < iQuantity; i++)
Lights.Append(akLight[i]);
}

No surprises here, either. The Geometry class has an array of smart pointers to Glob-
alState for global state storage, and it maintains a list of lights. Although the light
list may be arbitrarily long, in practice the graphics APIs limit you to a fixed number,
typically eight. The rendering system is designed to process only those lights up to the
predetermined maximum.

3.5 RENDERERS AND CAMERAS

This section describes the two basic objects that are necessary to draw a scene—
renderers and cameras. A camera model is simpler to describe than a renderer, so
I will discuss cameras first.

3.5.1 CAMERA MODELS

TeamLRN sPeCiAL

Only a portion of the world is displayed at any one time; this region is called the view
volume. Objects outside the view volume are not visible and therefore not drawn.
The process of determining which objects are not visible is called culling. Objects
that intersect the boundaries of the view volume are only partially visible. The visible
portion of an object is determined by intersecting it with the view volume, a process
called clipping.

The display of visible data is accomplished by projecting it onto a view plane.
Wild Magic uses perspective projection. Our assumption is that the view volume is a
bounded region in space, so the projected data lies in a bounded region in the view
plane. A rectangular region in the view plane that contains the projected data is called
a viewport. The viewport is what is drawn on the rectangular computer screen. The
standard view volume used is called the view frustum. It is constructed by selecting an
eye point and forming an infinite pyramid with four planar sides. Each plane contains
the eye point and an edge of the viewport. The infinite pyramid is truncated by two
additional planes called the near plane and the far plane. Figure 3.17 shows a view
frustum. The perspective projection is computed by intersecting a ray with the view
plane. The ray has origin E, the eye point, and passes through the world point X. The
intersection point is X,

The combination of an eye point, a view plane, a viewport, and a view frus-
tum is called a camera model. The model has a coordinate system associated with

260 Chapter 3 Scene Graphs and Renderers

Figure 3.17

TeamLRN sPeCiAL

o

o7

Far

Near

An eye point E and a view frustum. The point X in the view frustum is projected to
the point X, in the viewport.

it. The camera origin is the eye point E. The camera direction vector (the view vec-
tor) is the unit-length vector D that is perpendicular to the view plane. The eye
point is considered to be on the negative side of the plane. The camera up vector is
the unit-length U vector chosen to be parallel to two opposing edges of the view-
port. The camera right vector® is the unit-length vector R chosen to be perpendicular
to the camera direction and camera up vector with R = D x U. The set of vectors
{D, U, R} is a right-handed system and may be stored as columns of a rotation
matrix R = [D U R]. The right vector is parallel to two opposing edges of the view-
port.

Figure 3.18 shows the camera model, including the camera coordinate system and
the view frustum. The six frustum planes are labeled with their names: near, far, left,
right, bottom, top. The camera location E and the camera axis directions D, U, and R
are shown. The view frustum has eight vertices. The near plane vertices are V,,, V;,,
V,,,» and Vp,.. Each subscript consists of two letters, the first letters of the frustum
planes that share that vertex. The far plane vertices have the name W and use the
same subscript convention. The equations for the vertices are

. And there was much rejoicing! Wild Magic version 2 had a left vector L = U x D. My choice was based on

storing the camera axis vectors in the local rotation matrices as R = [L U DJ; that is, the axis vectors are the
columns of the matrix. The default values were chosen so that R = I, the identity matrix. This had been
a source of so much confusion that I changed my default camera model to resemble the OpenGL default
camera model.

3.5 Renderers and Cameras 261

Vvl‘/ ? TOp .V\{I’
Left Far Right
V\{)/ \Nor
Bottom
A \,
. Near v
\6/ \'ﬁr

Ubp
Ek’R

Figure 3.18 A camera model and view frustum.

TeamLRN sPeCiAL

Ve =E+d D+ vy U+ rpinR
V,y=E+d D+ v,,,U+rpinR
Vy, =E+dpinD + vy U + rpaR
V,, =E+d,jnD + 1,,,U + 7R

d
Wy =E+ —= (dminD + UminU + rminR)

min

QX

W, ,=E+ — (dminD + Umax U + rminR)

min

QU

max

W, =E+ (dminD + UminU + rmaXR)

Y

min

NI

W, =B+ % (d D+ up U+ rpoR) . (3.11)
min
The near plane is at a distance d,y;, from the camera location and the far plane is at a
distance d,,,. These distances are the extreme values in the D direction. The extreme
values in the U direction are u,;, and u,,,,. The extreme values in the R direction are
Fmin and Fmax-

Object culling is implemented to use plane-at-a-time culling. The frustum planes
are assigned unit-length normals that point inside the frustum. A bounding volume
is tested against each frustum plane. If the bounding volume is fully outside one of

262 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

the planes, the object is not visible and is culled from the display system. To support
culling we need to know the equations of the six frustum planes.

The near plane has inner-pointing, unit-length normal D. A point on the plane is
E + d,;, D. An equation of the near plane is

D-X=D"(E+dy,D)=D"E+dy,. (3.12)

The far plane has inner-pointing, unit-length normal —D. A point on the plane
is E + d . D. An equation of the far plane is

—D-X=-D-E+dy,D)=—D"E+dy,). (3.13)

The left plane contains the three points E, V,,, and V,,. A normal vector that
points inside the frustum is

(Vpe —E) x (Vg —E) = (dpinD + 43U + 70inR) X (dipinD + #1100 U + 700 R)
= (dninD + rninR) X (UaxU) + (inU) X (dpinD + rpinR)
= (dninD + rninR) X ((Umax — Umin)U)
= (Umax — Umin) @minD X U+ rpiR x U)
= (Umax — Umin) ([@minR — rpinD).
An inner-pointing, unit-length normal and the left plane are
dmmR FminD

/12
dmln + l’ min

An inner-pointing normal to the right plane is (V;, — E) x (V;, — E). A similar
set of calculations as before will lead to an inner-pointing, unit-length normal and
the right plane:

N, - (X —E)=0. (3.14)

N. — _dminR + rmaxD

d2~ +r2

min max

N, - (X —E)=0. (3.15)

r

Similarly, an inner-pointing, unit-length normal and the bottom plane are

dU—u_.D
N, = mm2 umzln , Np-X—E)=0. (3.16)
dinin T Uinin

An inner-pointing, unit-length normal and the top plane are

—d.. U D
N, = —Gmin? T nad L x By =0, (3.17)
da. +u?

min max

TeamLRN sPeCiAL

3.5 Renderers and Cameras 263

The Camera Class

Time for a few comments about the Camera class, similar to those for the Light class.
In Wild Magic version 2, the Camera class was derived from Object. I considered a
Camera a special type of object that had some spatial information, but also a lot of
other information that did not warrant it being derived from Spatial. A number of
users were critical of this choice and insisted that Camera be derived from Spatial. For
example, if you were to build a model of a room with a security camera mounted in
a corner, the camera orientation could be modified using a controller (rotate camera
back and forth for coverage of the area of the room). The camera itself can be used
for rendering what it sees and then displaying that rendering on a television monitor
that is also part of the room model. To support this, I added a class CameraNode that is
derived from Node and that had a Camera data member. I had a similar class to encap-
sulate lights, namely, LightNode. But these classes presented some problems to users;
one problem had to do with importing LightWave objects into the engine. Because
LightWave uses left-handed coordinates for everything, the design of CameraNode and
LightNode prevented a correct import of lights (and cameras) when they were to be
attached as nodes in a scene.

In Wild Magic version 3, I changed my design and derived Camera from Spatial,
thus eliminating the need for CameraNode. The warnings I issued about deriving Light
from Spatial apply here as well. Some subsystems of Spatial are available to Camera
that are irrelevant. For example, attaching to a camera a global state such as a depth
buffer has no meaning, but the engine semantics allow the attachment. You can attach
lights to cameras, but this makes no sense. The camera object itself is not renderable.
The virtual functions for global state updates and for drawing are stubbed out in the
Camera class, so incorrect use of the cameras should not be a problem. So be warned
that you can manipulate a Camera as a Spatial object in ways that the engine was not
designed to handle.

The portion of the interface for Camera that relates to the camera coordinate
system is

class Camera : public Spatial
{
public:

Camera ();

// Camera frame (local coordinates)
// default Tocation E = (0,0,0)

// default direction D = (0,0,-1)
// default up U= (0,1,0)
// default right R = (1,0,0)

// If a rotation matrix is used for the axis directions, the
// columns of the matrix are [D U R]. That is, the view
// direction is in column 0, the up direction is in column 1,

264 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

// and the right direction is in column 2.
void SetFrame (const Vector3f& rkLocation,
const Vector3f& rkDVector, const Vector3f& rkUVector,
const Vector3f& rkRVector);
void SetFrame (const Vector3f& rkLocation,
const Matrix3f& rkAxes);
void SetlLocation (const Vector3f& rkLocation);
void SetAxes (const Vector3f& rkDVector,
const Vector3f& rkUVector, const Vector3f& rkRVector);
void SetAxes (const Matrix3f& rkAxes);
Vector3f GetLocation () const; // Local.Translate
Vector3f GetDVector () const; // Local.Rotate column 0
Vector3f GetUVector () const; // Local.Rotate column 1
Vector3f GetRVector () const; // Local.Rotate column 2

// camera frame (world coordinates)

Vector3f GetWorldLocation () const; // World.Translate
Vector3f GetWorldDVector () const; // World.Rotate column 0
Vector3f GetWorldUVector () const; // World.Rotate column 1
Vector3f GetWorldRVector () const; // World.Rotate column 2

protected:
virtual void UpdateWorldBound ();
void OnFrameChange ();

}s

Normally, the local transformation variables (translation, rotation, scale) are for
exactly that—transformation. In the Camera class, the local translation is interpreted
as the origin for a coordinate system of the camera; that is, the local translation is the
eye point. The columns of the local rotation matrix are interpreted as the coordinate
axis directions for the camera’s coordinate system. Think of the camera’s right and up
vectors as the positive x - and positive y-axes for the display screen. The view direction
is into the screen, the negative z-axis. The eye point is not the center of the screen, but
is positioned in front of the screen. Because the camera’s coordinate system is stored
in the local translation vector and local rotation matrix, you should use the interface
provided and avoid setting the data member Local explicitly to something that is not
consistent with the interpretation as a coordinate system.

The first block of code in the interface is for set/get of the coordinate system
parameters. The second block of code in the public interface allows you to retrieve
the world coordinates for the camera’s (local) coordinate system.

The Camera class has no model bound. However, the camera’s position acts as the
center of a model bound of radius zero. The virtual function UpdateWor1dBound com-
putes the center of a world bound of radius zero. The function OnFrameChange is a
wrapper around a call to UpdateGS and is executed whenever you set the coordinate

3.5 Renderers and Cameras 265

system components. Therefore, you do not need to explicitly call UpdateGS whenever
the coordinate system components are modified. Unlike the Light class, the Camera
version of OnFrameChange has the job of computing the world coordinate representa-
tions for the frustum planes to be used for culling. It also has the job of informing the
renderer associated with it that the camera coordinate system has changed. The ren-
derer takes the appropriate action to update any of its state, such as making specific
camera-related calls to the graphics API that it encapsulates.

The two virtual functions in the private section are stubs to implement pure
virtual functions in Spatial (as required by C++). None of these make sense for
cameras anyway. They exist just so that Camera inherits other properties of Spatial
that are useful.

View Frustum Parameters

The view frustum parameters rp;, (left), 7.y (right), u i, (bottom), 1., (top), dimin
(near), and d,, (far) are set/get by the following interface:

class Camera : public Spatial
{
pubTic:
void SetFrustum (float fRMin, float fRMax, float fUMin,
float fUMax, float fDMin, float fDMax);

void SetFrustum (float fUpFovDegrees, float fAspectRatio,
float fDMin, float fDMax);

void GetFrustum (float& rfRMin, float& rfRMax, float& rfUMin,
float& rfUMax, float& rfDMin, float& rfDMax) const;

float GetDMin () const;
float GetDMax () const;
float GetUMin () const;
float GetUMax () const;
float GetRMin () const;
float GetRMax () const;

protected:
void OnFrustumChange ();

float m_fDMin, m_fDMax, m_fUMin, m_fUMax, m_fRMin, m_fRMax;

// Values computed in OnFrustumChange that are needed in
// OnFrameChange.

TeamLRN sPeCiAL

266 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

float m afCoeffL[2], m_afCoeffR[2];
float m afCoeffB[2], m afCoeffT[2];
}s

For those of you familiar with Wild Magic version 2, notice that the order of
the parameters to the first SetFrustum method has changed. The new ordering is
the same used by OpenGL’s g1Frustum function. The second SetFrustum method is
equivalent to OpenGL’s gluPerspective function. This method creates a symmetric
view frustum (Ui = —Umax a0d Fin = —Fmax) Using a field of view specified in the
up direction and an aspect ratio corresponding to width divided by height. The field
of view is an angle specified in degrees and must be in the interval (0, 180). The angle
is that between the top and bottom view frustum planes. The typical aspect ratio is
4/3, but for wide-screen displays is 16/9.

The function OnFrustumChange is a callback that is executed whenever SetFrus-
tum is called. The callback informs the renderer to which the camera is attached that
the frustum has changed. The renderer makes the appropriate changes to its state
(informing the graphics API of the new frustum parameters). The callback also com-
putes some quantities related to culling—specifically, the coefficients of the coordi-
nate axis vectors in Equations (3.14) through (3.17). The coefficients from Equation
(3.14) are stored in m_afCoeffL. The coefficients from Equation (3.15) are stored in
m_afCoeffR. The coefficients from Equation (3.16) are stored in m_afCoeffB. The co-
efficients from Equation (3.17) are stored inm_afCoeffT. The function OnFrameChange
is called very frequently and uses these coefficients for computing the world repre-
sentations of the frustum planes.

You will see in most of the applications that I set the frustum to a symmetric one
with the first SetFrustum method. The typical call is

// order: Tleft, right, bottom, top, near, far
m_Skaamera->SetFrustum(-O.55f,0.55f,-0.4125f,0.4125f,1.0f,100.0f);

The ratio of right divided by top is 4/3. The near plane distance from the eye point
is 1, and the far plane distance is 100. If you decide to modify the near plane dis-
tance in an application using this call to SetFrustum, you must modify the left, right,
bottom, and top values accordingly. Specifically,

float fNear = <some positive value>;

float fFar = <whatever>;

float fLeft = -0.55f*fNear;

float fRight = 0.55f*fNear;

float fBottom = -0.4125f*fNear;

float fTop = 0.4125f*fNear;
m_spkCamera->SetFrustum(fLeft,fRight,fBottom,fTop,fNear,fFar);

TeamLRN sPeCiAL

3.5 Renderers and Cameras 267

The second SetFrustum method is probably more intuitive for the user.

A question that arises periodically on the Usenet computer graphics newsgroups
is how to do ftiled rendering. The idea is that you want to have a high-resolution
drawing of an object, but the width and/or height of the final result is larger than your
computer monitor can display. You can accomplish this by selecting various view
frustum parameters and rendering the object as many times as it takes to generate
the final image. For example, suppose your computer monitor can display at 1600 x
1200; that is, the monitor has 1200 scan lines, and each scan line has 1600 columns.
To generate an image that is 3200 x 2400, you can render the scene four times, each
rendering to a window that is 1600 x 1200. I have not yet described the renderer
interface, but the use of it is clear in this example. The view frustum is symmetric
in this example.

// initialization code

NodePtr m_spkScene = <the scene graph>;

Renderer* m_pkRenderer = <the renderer>;

CameraPtr m_spkCamera = <the camera assigned to the renderer>;

float m_fDMin = <near plane distance>;

float m_fDMax = <far plane distance>;

float m_fRMax = <some value>;

float m_fUMax = <some value>;

m_spkCamera->SetFrustum(-m_fRMax,m fRMax,-m_fUMax,m_fUMax,
m_fDMin,m fDMax) ;

// keyboard handler code (ucKey is the input keystroke)
switch (ucKey)
{
case 0: // draw all four quadrants
m_spkCamera->SetFrustum(-m_fRMax,m_fRMax,-m_fUMax,m fUMax,
m_fDMin,m_fDMax) ;
break;
case 1: // upper-right quadrant
m_spkCamera->SetFrustum(0.0f,m_fRMax,0.0f,m fUMax,
m_fDMin,m_fDMax) ;
break;
case 2: // upper-left quadrant
m_spkCamera->SetFrustum(-m_fRMax,0.0f,0.0f,m fUMax,
m_fDMin,m_fDMax) ;
break;
case 3: // lower-left quadrant
m_spkCamera->SetFrustum(-m_fRMax,0.0f,-m_fUMax,0.0f,
m_fDMin,m_fDMax) ;
break;

268 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

case 4: // lower-right quadrant
m_spkCamera->SetFrustum(0.0f,m_fRMax,-m_fUMax,0.0f,
m_fDMin,m_fDMax) ;
break;

// idle-loop callback or on-display callback
m_pkRenderer->DrawScene (m_spkScene) ;

I use the keyboard handler approach on a Microsoft Windows machine so that I
can use ALT+PRINTSCREEN to capture the window contents, edit it in Windows Paint to
keep only the contents of the client window, and then copy that into the appropriate
quadrant in a bitmap file of size 3200 x 2400. You can certainly automate this task
by rendering each tile one at a time, and then reading the frame buffer contents after
each rendering and copying it to the appropriate location in a memory block that will
eventually be saved as a bitmap file.

Viewport Parameters

The viewport parameters are used to represent the computer screen in normalized
display coordinates (X, ¥) € [0, 1°. The left edge of the screen is ¥ = 0, and the
right edge is x = 1. The bottom edge is y = 0, and the top edge is y = 1. The Camera
interface is

class Camera : public Spatial
{
pubTic:
void SetViewPort (float flLeft, float fRight, float fTop,
float fBottom);
void GetViewPort (float& rflLeft, float& rfRight, float& rfTop,
float& rfBottom);

protected:
void OnViewPortChange ();

float m_fPortL, m_fPortR, m_fPortT, m_fPortB;
}s

The function OnViewPortChange is a callback that is executed whenever SetViewPort
is called. The callback informs the renderer to which the camera is attached that
the viewport has changed. The renderer makes the appropriate changes to its state
(informing the graphics API of the new viewport parameters).

TeamLRN sPeCiAL

3.5 Renderers and Cameras 269

In most cases the viewport is chosen to be the entire screen. However, some
applications might want to display an offset window with a rendering that is separate
from what occurs in the main window. For example, you might have an application
that draws a scene based on a camera at an arbitrary location and with an arbitrary
orientation. A front view, top view, and side view might also be desired using fixed
cameras. The four desired renderings may be placed in four quadrants of the screen.
The sample code shows how to do this. Once again, I have not discussed the renderer
interface, but the use of it is clear.

// initialization (all camera frames assumed to be set properly)
NodePtr m_spkScene = <the scene graph>;

Renderer* m _pkRenderer = <the renderer>;

CameraPtr m_spkACamera = <the camera for arbitrary drawing>;
CameraPtr m_spkFCamera = <the camera for front view>;

CameraPtr m_spkTCamera = <the camera for top view>;

CameraPtr m_spkSCamera = <the camera for side view>;
m_spkACamera->SetViewport(0.0f,0.5f,1.0f,0.5F); // upper left
m_spkFCamera->SetViewport(0.5f,1.0f,1.0f,0.5f); // upper right
m_spkTCamera->SetViewport(0.0f,0.5f,0.5f,0.0F); // Tower left
m_spkSCamera->SetViewport(0.5f,1.0f,0.5f,0.0f); // Tower right

// on-idle callback
m_pkRenderer->SetCamera(m_spkACamera) ;
m_pkRenderer->DrawScene(m_spkScene) ;
m_pkRenderer->SetCamera(m_spkFCamera) ;
m_pkRenderer->DrawScene(m_spkScene) ;
m_pkRenderer->SetCamera(m_spkTCamera) ;
m_pkRenderer->DrawScene (m_spkScene) ;
m_pkRenderer->SetCamera(m_spkSCamera) ;
m_pkRenderer->DrawScene(m_spkScene) ;

I used four separate cameras in this example. It is also possible to use a single
camera, but change its position, orientation, and viewport before each rendering:

// initialization code

NodePtr m_spkScene = <the scene graph>;

Renderer* m_pkRenderer = <the renderer>;

CameraPtr m_spkCamera = <the camera assigned to the renderer>;
Vector3f kACLoc = <camera location for arbitrary view>;
Matrix3f kACAxes = <camera orientation for arbitrary view>;
Vector3f kFCLoc = <camera location for front view>;

Matrix3f kFCAxes = <camera orientation for front view>;
Vector3f kTCLoc = <camera location for top view>;

Matrix3f kTCAxes = <camera orientation for top view>;

270 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

Vector3f kSCLoc = <camera location for side view>;
Matrix3f kSCAxes = <camera orientation for side view>;

// on-idle callback
m_spkCamera->SetFrame (kACLoc, kACAxes) ;
m_spkCamera->SetViewport(0.0f,0.5f,1.0f,0.5f);
m_pkRenderer->DrawScene (m_spkScene) ;
m_spkCamera->SetFrame (kFCLoc,kFCAxes);
m_spkCamera->SetViewport(0.5f,1.0f,1.0f,0.5f);
m_pkRenderer->DrawScene(m_spkScene) ;
m_spkCamera->SetFrame(kTCLoc,kTCAxes) ;
m_spkCamera->SetViewport(0.0f,0.5f,0.5f,0.0f);
m_pkRenderer->DrawScene (m_spkScene) ;
m_spkCamera->SetFrame(kSCLoc,kSCAxes) ;
m_spkCamera->SetViewport(0.5f,1.0f,0.5f,0.0f);
m_pkRenderer->DrawScene(m_spkScene) ;

Object Culling

The object culling support in the Camera class is the most sophisticated subsystem for
the camera. This system interacts with the Spatial class during the drawing pass of
the scene graph. I will talk about the drawing pass later, but for now it suffices to say
that the Spatial class has the following interface for drawing:

class Spatial : public Object

{

public:
BoundingVolumePtr WorldBound;
bool ForceCull;

// internal use
pubTic:
void OnDraw (Renderer& rkRenderer, bool bNoCull = false);
virtual void Draw (Renderer& rkRenderer,
bool bNoCull = false) = 0;

We have already seen the Wor1dBound data member. It is used for culling purposes.
The Boolean flag ForceCu11 allows a user to force the object not to be drawn, which is
especially convenient for a complicated system that partitions the world into cells.
Each cell maintains two lists: One list is for the visible objects; the other for the
invisible objects, whenever the camera is in the cell. At the moment the camera enters

TeamLRN sPeCiAL

3.5 Renderers and Cameras 271

the cell, the list of visible objects is traversed. Each object has its ForceCul1 flag set to
false. The other list is traversed, and each object has its ForceCull flag set to true.

Notice that the second public block is flagged for internal use. An application
should never call these functions. A call to the function OnDraw is a request that the
object draw itself. The drawing itself is performed by Draw. If the input parameter
bNoCul1 is set to true, if the object is not force-culled, then the culling tests that
compare the world bound to the view frustum planes are skipped.

Before drawing itself, the object must check to see if it is potentially visible. If not,
it culls itself; that is, it does not call the Draw function. The code for OnDraw is

void Spatial::OnDraw (Renderer& rkRenderer, bool bNoCull)
{
if (ForceCull)
return;

CameraPtr spkCamera = rkRenderer.GetCamera();
unsigned int uiState = spkCamera->GetPlaneState();

if (bNoCull || !spkCamera->Culled(WorldBound))
Draw(rkRenderer,bNoCull);

spkCamera->SetPlaneState(uiState);

If ForceCull is set to true, the request to be drawn is denied. Otherwise, the object
gets access to the camera attached to the renderer. Before attempting the culling,
some camera state information is saved (on the calling stack) in the local variable
uiState. Before exiting OnDraw, that state is restored. More about this in a moment.
Assuming the object allows the culling tests (bNoCu11 set to false), a call is made to
Camera::Culled. This function compares the world bound to the view frustum planes
(in world coordinates). If the world bound is outside any of the planes, the function
returns true, indicating that the object is culled. If the object is not culled, finally
the drawing occurs via the function Draw. As we will see, Node: :Draw propagates the
drawing request to its children, so OnDraw and Draw form a recursive chain.

Now about the camera state that is saved and restored. I mentioned earlier that
in a scene hierarchy, if a bounding volume of a node is inside a view frustum plane,
the object contained by the bounding volume is also inside the plane. The objects
represented by child nodes must necessarily be inside the plane, so there is no reason
to compare a child’s bounding volume to this same frustum plane. The Camera class
maintains a bit flag (as an unsigned int) where each bit corresponds to a frustum
plane. A bit value of 1 says that the bounding volume should be compared to the
plane corresponding to that bit, and a bit value of 0 says to skip the comparison. The
bits in the flag are all initialized to 1 in the Camera constructor. A drawing pass will
set and restore these bits, so at the end of a drawing pass, the bits are all 1 again. The

272 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

determination that a bounding volume is inside a frustum plane is made during the
Camera::Culled call. If the bounding volume is inside, the corresponding bit is set to
0. On a recursive call to Draw, the Camera: :Culled function will be called for the child
nodes. When a zero bit is encountered, the camera knows not to compare the child’s
bounding volume to the corresponding frustum plane because the parent’s bounding
volume is already inside that plane. The goal of maintaining the bit flags is to reduce
the computational time spent in comparing bounding volumes to frustum planes—
particularly important when the comparison is an expensive calculation (convex hull
versus plane, for example).

The portion of the Camera interface relevant to the culling discussion to this point
is

class Camera : public Spatial
{
protected:
unsigned int m_uiPlaneState;

// world planes:

// left =0, right = 1, bottom = 2,

// top = 3, near = 4, far =5,

// extra culling planes >= 6

enum

{
CAM_FRUSTUM_PLANES = 6,
CAM_MAX_WORLD PLANES = 32

bs

int m_iPlaneQuantity;

Plane3f m_akWPTane[CAM_MAX WORLD_ PLANES];

// internal use
pubTic:
// culling support in Spatial::OnDraw
void SetPlaneState (unsigned int uiPlaneState);
unsigned int GetPlaneState () const;
bool Culled (const BoundingVolume* pkWBound);

The data member m_uiPlaneState is the set of bits corresponding to the frustum
planes. Bit 0 is for the left plane, bit 1 is for the right plane, bit 2 is for the bottom
plane, bit 3 is for the top plane, bit 4 is for the near plane, and bit 5 is for the far plane.
The data memberm_iPlaneQuantity specifies how many planes are in the system. This
number is at least six, but can be larger! The world representations for the planes are
storedinm_akWP1ane. We already saw in Spatial::OnDraw the use of SetPlaneState and
GetPlaneState for the bit flag management.

3.5 Renderers and Cameras 273

The final function to consider is Culled:

bool Camera::Culled (const BoundingVolume* pkWBound)
{
// Start with last pushed plane (potentially the most
// restrictive plane).
int iP = m_iPlaneQuantity - 1;
unsigned int uiMask = 1 << iP;

for (int i = 0; i < m_iPlaneQuantity; i++, iP-, uiMask >>= 1)
{
if (m uiPlaneState & uiMask)
{
int iSide = pkWBound->WhichSide(m_akWPlane[iP]);

if (iSide <0)

{
// Object is on negative side. Cull it.
return true;

if (iSide > 0)
{
// Object is on positive side of plane. There is
// no need to compare subobjects against this
// plane, so mark it as inactive.
m_uiPlaneState &= ~uiMask;

return false;

The function iterates over the array of world planes. If a plane is active (its bit is 1),
the world bounding volume of the object is compared to the plane. If the bounding
volume is on the positive side, then the bit for the plane is set to 0 so that the bounding
volumes of descendants are never compared to that plane. If the bounding volume is
on the negative side, it is outside the plane and is culled. If the bounding volume
straddles the plane (part of it inside, part of it outside), then the object is not culled
and you cannot disable the plane from comparisons with descendants.

I had mentioned that the number of planes can be larger than six. The public
interface for Camera also contains the following functions:

TeamLRN sPeCiAL

274 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

class Camera : public Spatial
{
public:
int GetPlaneQuantity () const;
const Plane3f* GetPlanes () const;
void PushPlane (const Plane3f& rkPlane);
void PopPlane ();

An application writer may tell the camera to use additional culling planes by
calling PushP1ane for each such plane. The manual addition is useful in environments
where you have knowledge of the placement of objects and you can safely say that
objects behind a particular plane are not visible. For example, an application that has
a fixed camera position and orientation could have a building in view of the observer.
Objects behind the building are not visible. The plane of the back side of the building
can be added to the camera system for culling purposes. But you need to be careful
in using this support. In the current example, if a character is behind the building,
the culling works fine. But if the character moves to the side of the building and is
visible to the observer, but is still behind the plane of the back side of the building,
you would cull the character when in fact he is visible.

The ability to push and pop planes is also useful in an automatic portaling sys-
tem. Indeed, Wild Magic has support for portals for indoor occlusion culling. That
system, described later, pushes and pops planes as necessary depending on the cam-
era location and nearby portals. The Camera class has a public function flagged for
internal use:

bool Culled (int iVertexQuantity, const Vector3f* akVertex,
bool bIgnoreNearPlane);

This function is designed specifically for the portal system and will be described
later.

Whether planes are pushed manually or automatically, the data member m_
uiPlaneState has 6 bits reserved for the frustum planes. The remaining bits are used
for the additional culling planes. On a 32-bit system, this means you can push up to
26 additional culling planes. I suspect that 26 is more than enough for practical ap-
plications. You should also be aware the planes are only used for object culling. The
objects are not clipped against any of these planes. On current graphics hardware,
selecting additional clipping planes can have some interesting and surprising side ef-
fects. For example, if you select an additional clipping plane, you might lose the use
of one of your texture units. My recommendation is not to worry about the clipping,
only the culling.

Figure 3.19

TeamLRN sPeCiAL

3.5 Renderers and Cameras 275

y
H
Pr -
x,y)
Py - Ay{
AX
0 T T X
0 P, p, W

A pixel (x, y) selected in a viewport that is not the entire screen.

Picking

The engine supports picking operations. Generally these determine whether or not a
linear component (line, ray, segment) intersects an object. The classical application
is to select an object that is displayed on the screen. The user clicks on a screen pixel
that is part of the object. A ray is generated in world coordinates: The origin of the ray
is the camera location in world coordinates, and the direction of the ray is the vector
from the camera location to the world point that corresponds to the screen pixel that
was selected.

The construction of the world point is slightly complicated by having an active
viewport that is not the full window. Figure 3.19 shows a window with a viewport
and a selected pixel (x, y).

The current viewport settings are P; (left), Pp (right), Pg (bottom), and Pr
(top). Although these are placed at tick marks on the axes, all the numbers are
normalized (in [0, 1]). The screen coordinates satisfy the conditions 0 < x < W and
0 <y < H, where W is the width of the screen and H is the height of the screen. The
screen coordinates must be converted to normalized coordinates:

;X ’_ H—-1-—y

“w-r T H-1
The screen coordinates are left-handed: y = 0 is the top row, y = H — 1is the bottom
row, x = 0 is the left column, and x = W — 1 is the right column. The normalized
coordinates (x’, y’) are right-handed due to the inversion of the y value. The relative
distances within the viewport are

=x/_PL A:y/_PB
Pr—P, ' Pr—Pp

X

276 Chapter 3 Scene Graphs and Renderers

The picking ray is E 4 tU, where E is the eye point in world coordinates and U is
a unit-length direction vector in world coordinates:

U =dpinD + (1 = A)rmin + Ayrma) R+ ((1— Ay)’/‘min + Ay“max)U’

where D, R, and U are the axis directions for the camera coordinate system in world
coordinates. The equation is derived from the fact that the viewport contains the full
extent of the rendering to the frustum rectangle [nin> "max) X [Mmin> Ymax -

The portion of the Camera interface to support construction of the pick ray is

class Camera : public Spatial
{
public:
bool GetPickRay (int iX, int iY, int iWidth, int iHeight,
Vector3f& rkOrigin, Vector3f& rkDirection) const;

}s

The (x, y) input point is in left-handed screen coordinates. The function returns
true if and only if the input point is located in the current viewport. When true,
the origin and direction values are valid and are in world coordinates. The direction
vector is unit length. If the returned function value is false, the origin and direction
are invalid.

Some graphics APIs support picking in an alternate manner. In addition to the
frame buffer and depth buffer values at a pixel (x, y) on the screen, the renderer
maintains a buffer of names. The visible object that led to the frame buffer value
at pixel (x, y) has its name stored in the name buffer. When the user clicks on the
screen pixel (x, y), the graphics API returns the name of the corresponding object.
The depth buffer value at the pixel may be used to gauge how far away the object
is (at least how far away the world point is that generated the pixel). My concept of
picking is more general. For example, if a character has a laser gun and shoots at
another character, you have to determine if the target was hit. The laser beam itself
is a ray whose origin is the gun and whose direction is determined by the gun barrel.
A picking operation is initiated to determine if that ray intersects the target. In this
case, the camera is not the originator of the picking ray.

3.5.2 BASIC ARCHITECTURE FOR RENDERING

TeamLRN sPeCiAL

The class Renderer is an abstract class that defines an API that the scene graph man-
agement system uses for drawing. The intent is to provide a portable layer that hides
platform-dependent constructs such as operating system calls, windowing systems,
and graphics APIs. Derived classes that do handle the platform-dependent issues are
built on top of Renderer. Wild Magic version 2 had a few derived classes. The class
OpenGLRenderer encapsulated the OpenGL API. This class is itself portable to those

TeamLRN sPeCiAL

3.5 Renderers and Cameras 277

platforms that support OpenGL. However, window creation and memory allocation
on the graphics card are dependent on the platform. I had constructed three classes
derived from OpenGLRenderer. The class GlutRenderer encapsulates GLUT, which is it-
self intended to be a portable wrapper around OpenGL. The GlutRenderer runs on
Microsoft Windows, on Macintosh OS X, and on PCs with Linux. Unfortunately,
GLUT does not expose much in the way of creating subwindows, menus, and other
controls. The class Wg1Renderer is derived from OpenGLRenderer, but makes no at-
tempt to hide the fact that it runs on Microsoft Windows. A programmer may create
a Windows-specific application with all the desired bells and whistles and then add
to the application a WgTRenderer. On the Macintosh, the class Ag1Renderer is derived
from OpenGLRenderer and does not attempt to hide the fact that it runs using Apple’s
OpenGL.

For folks who prefer working only on Microsoft Windows using Direct3D, Wild
Magic version 2 also had a class DxRenderer derived from Renderer. Naturally, appli-
cations using this are not portable to other platforms.

Wild Magic version 3 has the same philosophy about a portable rendering layer.
As of the time of writing, I only have support for OpenGL. Hopefully by the time the
book is in print, a Direct3D renderer will be posted at my Web site.

Regarding construction, destruction, and information relevant to the window in
which the renderer will draw, the interface for Renderer is

class Renderer

{

public:
// abstract base class
virtual ~Renderer ();

// window parameters
int GetWidth () const;
int GetHeight () const;

// background color access
virtual void SetBackgroundColor (const ColorRGB& rkColor);
const ColorRGB& GetBackgroundColor () const;

// text drawing

virtual int LoadFont (const char* acFace, int iSize,
bool bBold, bool bItalic) = 0;

virtual void UnloadFont (int iFontID) = 0;

virtual bool SelectFont (int iFontID) = 0;

virtual void Draw (int iX, int iY, const ColorRGBA& rkColor,
const char* acText) = 0;

278 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

protected:
// abstract base class
Renderer (int iWidth, int iHeight);

// window parameters
int m_iWidth, m_iHeight;
ColorRGB m_kBackgroundColor;

// current font for text drawing
int m_iFontID;

First, notice that Renderer is not derived from Object. You only need one renderer
in an application, so the sharing subsystem of Object is not necessary. Searching for
a renderer by name or ID is also not necessary since there is only one. Derived-class
renderers are dependent on platform, so you do not want to stream them. Renderers
have nothing animated, and making copies is not an issue. Consequently, there is no
reason to derive the class from Object.

A derived class must construct the base class through the protected constructor.
The width and height of the window’s client region to which the renderer must draw
are provided to the base class. Notice that the window location is not given to the
renderer. The application has the responsibility for window positioning and resizing,
but the renderer only needs to know the dimensions of the drawing region. The
background color for the window is stored in the renderer so that it can clear (if
necessary) the window to that color before drawing.

The renderer API has pure virtual functions for drawing text on the screen and
for font selection. The text drawing and font selection are usually done in a platform-
specific manner, so implementations for the API must occur in the derived classes.
The data member m_iFontID acts as a handle for the derived-class renderer. Multiple
fonts can be loaded and managed by the application. The LoadFont member lets
you create a font. The return value is a font ID that the application should store.
The ID is passed to SelectFont to let the renderer know that text should be drawn
using the corresponding font. The ID is also passed to UnloadFont when the font is
to be destroyed. The actual text drawing occurs via the member function Draw. You
specify where the text should occur on the screen and what its color should be. The
color has an alpha channel, so the text may be drawn with some transparency. The
environment mapping sample application illustrates font selection:

// select a font for text drawing
int iFontID = m_kaenderer->L0adFont("Verdana",24,fa1se,fa]se);
m_pkRenderer->SelectFont (iFontID);

As you can see, it is simple enough to load a font and tell the renderer to use it.

TeamLRN sPeCiAL

3.5 Renderers and Cameras 279

A renderer must have a camera assigned to it in order to define the region of space
that is rendered. The relevant interface is

class Renderer

{

public:
void SetCamera (Camera* pkCamera);
Camera* GetCamera () const;

protected:
Camera* m_pkCamera;

}s

The use of the interface is quite clear. To establish a two-way communication between
the camera and the renderer, the Camera class has a data member m_pkRenderer that is
set by Renderer during a call to SetCamera. The two-way communication is necessary:
The renderer queries the camera for relevant information such as the view frustum
parameters and coordinate frame, and, if the camera parameters are modified at run
time, the camera must notify the renderer about the changes so that the renderer
updates the graphics system (via graphics API calls).

Various resources are associated with a renderer, including a frame buffer (the
front buffer) that stores the pixel colors, a back buffer for double-buffered drawing,
a depth buffer for storing depths corresponding to the pixels, and a stencil buffer for
advancing effects. The back buffer, depth buffer, and stencil buffer may need to be
cleared before drawing a scene. The interface supporting these buffers is

class Renderer

{

public:
// full window buffer operations
virtual void ClearBackBuffer () = 0;
virtual void ClearZBuffer () = 0;
virtual void ClearStencilBuffer () = 0;
virtual void ClearBuffers () = 0;
virtual void DisplayBackBuffer () = 0;

// clear the buffer in the specified subwindow

virtual void ClearBackBuffer (int iXPos, int iYPos,
int iWidth, int iHeight) = 0;

virtual void ClearZBuffer (int iXPos, int iYPos,
int iWidth, int iHeight) = 0;

virtual void ClearStencilBuffer (int iXPos, int iYPos,
int iWidth, int iHeight) = 0;

280 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

virtual void ClearBuffers (int iXPos, int iYPos,
int iWidth, int iHeight) = 0;
}s

All the clearing functions are pure virtual, but the derived-class implementations
are simple wrappers around standard graphics API calls. The function DisplayBack-
Buffer is the request to the graphics system to copy the back buffer into the front
buffer.

The graphics hardware also has a fixed number of texture units, and the graphics
system supports at most a certain number of lights. You may query the renderer for
these via

class Renderer

{

public:
int GetMaxLights () const;
int GetMaxTextures () const;

protected:
int m_iMaxLights;
int m_iMaxTextures;

}s

The data members are initialized to zero in the Renderer constructor. The derived
classes are required to set these to whatever limits exist for the user’s environment.
Wild Magic version 2 had a hard-coded number of texture units (4) and lights (8);
both numbers were class-static data members. The number of texture units was cho-
sen at a time when consumer graphics cards had just evolved to contain 4 texture
units. Some engine users decided that it was safe to change that number. Unfortu-
nately, the streaming system had a problem with this. If a scene graph was saved to
disk when the texture units number was 4, all TextureState objects streamed exactly
4 TexturePtr smart pointers. When the texture units number is then changed to 6
or 8 and the disk copy of the scene is loaded, the loader attempts to read more than
4 TexturePtr links, leading to a serious error. The file pointer is out of synchroniza-
tion with the file contents. Wild Magic version 3 fixes that because there is no more
TextureState class. Generally, any resource limits are not saved during streaming. A
scene graph may contain a Geometry object that has more textures attached to it than
a graphics card can support. The rendering system makes sure that the additional
textures just are not processed. But that does mean you must think about the tar-
get platform for your applications. If you use 8 texture units for a single object, you
should put on the software packaging that the minimum requirement is a graphics
card that has 8 texture units!

3.5 Renderers and Cameras 281

3.5.3 SINGLE-PASS DRAWING

TeamLRN sPeCiAL

In a sense, this system is the culmination of all the work you have done regarding
scene management. At some point, you have set up your scene graph, and you want
to draw the objects in it. The geometry leaf nodes of the scene have been properly
updated, Spatial::UpdateGS for the geometric information and Spatial::UpdateRS
for the render state. The leaf nodes contain everything needed to correctly draw the
object. The interface support for the entry point into the drawing system is

class Renderer

{

pubTic:
// pre- and postdraw semantics
virtual bool BeginScene ();
virtual void EndScene ();

// object drawing
void DrawScene (Node* pkScene);

protected:
Geometry* m_pkGeometry;
Effect* m_pkLocalEffect;

// internal use
public:
void Draw (Geometry* pkGeometry);

typedef void (Renderer::*DrawFunction)();
void DrawPrimitive ();

}s

The pair of functions BeginScene and EndScene give the graphics system a chance
to perform any operations before and after drawing. The Renderer class stubs these
to do nothing. The OpenGL renderer has no need for pre- and postdraw semantics,
but the Direct3D renderer does. The function DrawScene is the top-level entry point
into the drawing system. Wild Magic version 2 users take note: The top-level call was
named Draw, but I changed this to make it clear that it is the entry point and used
the name Draw internally for multipass drawing. If you forget to change the top-level
calls in your version 2 applications, I have a comment waiting for you in one of the
Renderer functions!

The typical block of rendering code in the idle-loop callback is

NodePtr m_spkScene = <the scene graph>;
Renderer* m _pkRenderer = <the renderer>;

282 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

// in the on-idle callback

m_pkRenderer->ClearBuffers();

if (m_pkRenderer->BeginScene())

{
m_pkRenderer->DrawScene(m_spkScene) ;
m_pkRenderer->EndScene() ;

}

m_pkRenderer->DisplayBackBuffer();

The ClearBuffers call clears the frame buffer, the depth buffer, and the stencil buffer.
Predraw semantics are performed by the call to BeginScene(). If they were successful,
BeginScene returns true and the drawing commences with DrawScene. The drawing is
to the back buffer. On completion of drawing, postdraw semantics are performed by
the call to EndScene. Finally, the call to DisplayBackBuffer requests a copy of the back

buffer to the front buffer.

The DrawScene starts a depth-first traversal of the scene hierarchy. Subtrees are
culled, if possible. When the traversal reaches a Geometry object that is not culled,
the object tells the renderer to draw it using Renderer: :Draw(Geometry*). The core
classes Spatial, Geometry, and Node all have support for the drawing pass. The relevant

interfaces are

class Spatial : public Object
{

// internal use

public:

void OnDraw (Renderer& rkRenderer, bool bNoCull = false);

virtual void Draw (Renderer& rkRenderer,
bool bNoCull = false) = 0;
}s

class Node : public Spatial
{

// internal use

pubTic:

virtual void Draw (Renderer& rkRenderer, bool bNoCull

}s

class Geometry : public Spatial

{

protected:

virtual void Draw (Renderer& rkRenderer, bool bNoCull

}s

false);

false);

TeamLRN sPeCiAL

3.5 Renderers and Cameras 283

The OnDraw and Draw functions form a recursive chain. The Draw function is pure
virtual in Spatial, requiring derived classes to implement it. Node: :Draw propagates
the call through the scene, calling Spatial::0nDraw for each of its children. When a
Geometry leaf node is encountered, Geometry: : Draw is called; it is a simple wrapper for
a call to Renderer: :Draw(Geometry*).

The traversal for drawing is listed next. The function Renderer: :DrawScene has
some code for deferred drawing for the purposes of sorting, but I defer talking about
this until Section 4.2.4.

void Renderer::DrawScene (Node* pkScene)

{
if (pkScene)

{

pkScene->0nDraw(*this);

if (DrawDeferred)

{
(this->*DrawDeferred) () ;
m_iDeferredQuantity = 0;

void Node::Draw (Renderer& rkRenderer, bool bNoCull)

{
if (m_spkEffect == NULL)

{
for (int i = 0; i < m kChild.GetQuantity(); i++)
{
Spatial* pkChild = m_kChi]d[i];
if (pkChild)
pkChild->0nDraw(rkRenderer,bNoCull);
1
}
else
{

// A "global" effect might require multipass rendering, so
// the Node must be passed to the renderer for special

// handling.

rkRenderer.Draw(this);

284 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

void Geometry::Draw (Renderer& rkRenderer, bool)

{

rkRenderer.Draw(this);

We have already seen earlier that Spatial::OnDraw attempts to cull the object
using its world bounding volume and the camera frustum. If the object is not culled,
the Draw is called. In the Node: :Draw function, the call is propagated to its children
in the “then” clause. This is the typical behavior for single-pass drawing. Multipass
drawing occurs when the node has a global effect attached to it. I discuss this later in
Section 3.5.6.

This brings us to the question at hand: What does Renderer: :Draw do with the
Geometry object? The function is listed below. The code related to deferred drawing is
discussed in Section 4.2.4.

void Renderer::Draw (Geometry* pkGeometry)
{
if (!DrawDeferred)
{
m_pkGeometry = pkGeometry;
m pkLocalEffect = pkGeometry->GetEffect();

if (m_pkLocalEffect)
(this->*m_pkLocalEffect->Draw) ();
else
DrawPrimitive();

m_pkLocalEffect = NULL;
m_pkGeometry = NULL;

}

else

{
m_kDeferredObject.SetE]ement(m_iDeferredQuantity,kaeometry);
m_kDeferredIsGeometry.SetElement (m_iDeferredQuantity,true);
m_iDeferredQuantity++;

The data members m_pkGeometry and m_pkLocalEffect are used to hang onto the
geometric object and its effect object (if any) for use by the renderer when it does
the actual drawing. Standard rendering effects use a Renderer function called Draw-
Primitive. Some advanced effects require a specialized drawing function, a pointer
to which the Effect object provides. I will discuss the advanced effects in Chapter 5.

3.5 Renderers and Cameras 285

3.54 THE DRAWPRIMITIVE FUNCTION

TeamLRN sPeCiAL

Single-pass rendering of objects is performed by Renderer: :DrawPrimitive. This func-
tion is in the base class, so it necessarily hides any dependencies of the back-end
graphics API by requiring a Renderer-derived class to implement a collection of pure
virtual functions. At a high level, the order of operations is

set global state

® enable lighting

® enable vertices

m enable vertex normals

® enable vertex colors

® enable texture units

m set the transformation matrix
m draw the object

m restore the transformation matrix
m disable texture units

m disable vertex colors

m disable vertex normals

m disable vertices

= disable lighting

Notice the symmetry. Each “enable” step has a corresponding “disable” step. The
transformation is set and then restored. The only item without a counterpart is the
setting of global state. Since each object sets all global state, there is no need to restore
the previous global state as the last step. It is possible to create a pipeline in which the
objects do not bother disabling features once the objects are drawn. The problem
appears, however, if one object uses two texture units, but the next object uses only
one texture unit. The first object enabled the second texture unit, so someone needs
to disable that unit for the second object. Either the first object disables the unit (as
shown previously) after it is drawn, or the second object disables the unit before it is
drawn. In either case, the texture unit is disabled before the second object is drawn. I
believe my proposed pipeline is the cleanest solution—let each object clean up after
itself.

Wild Magic version 2 did not use this philosophy. A reported bug showed that
vertex or material colors from one triangle mesh were causing a sibling triangle mesh
to be tinted with those colors. To this day I still do not know where the problem
is. Wild Magic version 3 appears not to have this bug. If a bug were to show up, I
guarantee the current pipeline is easier to debug.

286 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

Portions of the actual DrawPrimitive code are shown next. The block for setting
the global state is

if (m_bAllowGlobalState)
SetGlobalState(m_pkGeometry->States);

The default value for the Boolean data member m_bA1TowGlobalState is true. It exists
just to give advanced rendering features the ability not to set global state if they do
not want it set. The SetGlobalState function is

void Renderer::SetGlobalState (
GlobalStatePtr aspkState[GlobalState::MAX STATE])

GlobalState* pkState;

if (m_bAllowAlphaState)

{
pkState = aspkState[GlobalState::ALPHA];
SetAlphaState((AlphaState*)pkState);

//... similar blocks for the other global states go here ...

Each global state has an associated Boolean data member that allows you to pre-
vent that state from being set. This is useful in advanced rendering features that re-
quire multiple passes through a subtree of a scene hierarchy, because each pass tends
to have different requirements about the global state. For example, the projected, pla-
nar shadow sample application needs control over the individual global states. The
function SetAlphaState is pure virtual in Renderer, so the derived renderer classes
need to implement it. Similar “set” functions exist for the other global state classes.
The implementations of the “set” functions involve direct manipulation of the graph-
ics API calls.

The blocks for enabling and disabling lighting are

if (m_bAllowLighting)
EnableLighting();

// ... other pipeline operations go here ...

if (m_bAllowLighting)
DisableLighting();

A Boolean data member also allows you to control whether or not lighting is
enabled independent of whether there are lights in the scene that illuminate the

TeamLRN sPeCiAL

3.5 Renderers and Cameras 287

object. The default value for the data member is true. The base class implements
EnableLighting and DisablelLighting:

void Renderer::EnableLighting (int eEnable)
{
int iQuantity = m_pkGeometry->Lights.GetQuantity();
if (iQuantity >= m_iMaxLights)
iQuantity = m_iMaxLights;

for (int i = 0; i < iQuantity; i++)
{
const Light* pkLight = m_pkGeometry->Lights[i];
if (pkLight->0n)
EnableLight(eEnable,i,pkLight);

void Renderer::DisableLighting ()
{
int iQuantity = m_pkGeometry->Lights.GetQuantity();
if (iQuantity >= m_iMaxLights)
iQuantity = m_iMaxLights;

for (int i = 0; i < iQuantity; i++)
{
const Light* pkLight = m_pkGeometry->Lights[i];
if (pkLight->On)
DisableLight(i,pkLight);

The first block of code in each function makes sure that the quantity of lights that
illuminate the geometry object does not exceed the total quantity supported by the
graphics API. The data member m_iMaxLights must be set during the construction
of a derived-class renderer. In OpenGL, this number is eight. The second block of
code iterates over the lights. If a light is on, it is enabled/disabled. The functions
EnableLight and DisableLight are pure virtual in Renderer, so the derived renderer
classes need to implement them. The implementations involve direct manipulation
of the graphics API calls.

The blocks of code for handling the vertex positions for the geometry object are

EnableVertices();
// ... other pipeline operations go here ...

DisableVertices();

288 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

I assume that any geometry object has vertices. Otherwise, what would you draw?
No Boolean member is provided to prevent the enabling of vertices. The functions
EnableVertices and DisableVertices are pure virtual in Renderer, so the derived ren-
derer classes need to implement them. The implementations involve direct manipula-
tion of the graphics API calls. The OpenGL versions tell the graphics driver the vertex
array to use. The engine supports caching of vertex data on the graphics card itself to
avoid constantly sending vertices over an AGP bus. The enable/disable functions do
all the graphics-API-specific work to make this happen.
The blocks of code for handling the vertex normals for the geometry object are

if (m_bAllowNormals && m_pkGeometry->Normals)
EnableNormals();

// ... other pipeline operations go here ...

if (m_bAllowNormals && m_pkGeometry->Normals)
DisableNormals();

The vertex normals are passed through the graphics API calls only if the geometry
object has normals and the application has not prevented the enabling by setting
m_bAllowNormals to false. The default value for the data member is true. The func-
tions EnableNormals and DisableNormals are pure virtual in Renderer, so the derived
renderer classes need to implement them. The implementations involve direct ma-
nipulation of the graphics API calls. The OpenGL versions tell the graphics driver the
vertex normal array to use. The engine supports caching of vertex data on the graph-
ics card itself to avoid constantly sending vertices over an AGP bus. The enable/disable
functions do all the graphics-API-specific work to make this happen.
The blocks of code for handling the vertex colors for the geometry object are

if (m_bAllowColors & m pkLocalEffect)
{
if (m_pkLocalEffect->ColorRGBAs)
EnableColorRGBAs () ;
else if (m pkLocalEffect->ColorRGBs)
EnableColorRGBs();
}

// ... other pipeline operations go here ...

if (m_bAllowColors && m pklLocalEffect)
{
if (m_pkLocalEffect->ColorRGBAs)
DisableColorRGBAs();
else if (m _pkLocalEffect->ColorRGBs)
DisableColorRGBs ()

TeamLRN sPeCiAL

3.5 Renderers and Cameras 289

Once again, a Boolean data member controls whether or not the vertex color han-
dling is allowed. The default value for m bATlowColors is true. Vertex colors are not
stored in the geometry object, but are considered to be one of the local effects that you
can attach to an object. As such, the vertex colors are stored in the m_pkLocalEffect
object that belongs to the m_pkGeometry object. Since Effect objects allow you to store
RGB or RGBA colors, the renderer must decide which one to use. Only one set of col-
ors is used, so setting both in the Effect object will lead to use of only the RGBA
colors. The functions EnableColorRGBAs, EnableColorRGBs, DisableColorRGBAs, and
DisableColorRGBs are pure virtual in Renderer, so the derived renderer classes need
to implement them. The implementations involve direct manipulation of the graph-
ics API calls. The OpenGL versions tell the graphics driver the vertex color array to
use. The engine supports caching of vertex data on the graphics card itself to avoid
constantly sending vertices over an AGP bus. The enable/disable functions do all the
graphics-API-specific work to make this happen.
The texture units are enabled and disabled by the following code blocks:

if (m_bAllowTextures)
EnableTextures();

// ... other pipeline operations go here ...

if (m_bAllowTextures)
DisableTextures();

Again we have a Boolean data member, m_bAllowTextures, that gives advanced ren-
dering features the chance to control whether or not the texture units are enabled. The
default value is true. The base class implements EnableTextures and DisableTextures:

void Renderer::EnableTextures ()
{

int iTMax, i;

int iUnit = 0;

// set the Tocal-effect texture units
if (m_pkLocalEffect)
{
iTMax = m_pkLocalEffect->Textures.GetQuantity();
if (iTMax > m_iMaxTextures)
iTMax = m_iMaxTextures;

for (i = 0; i < iTMax; i++)
EnableTexture(iUnit++,i,m pkLocalEffect);

290 Chapter 3 Scene Graphs and Renderers

// set the global-effect texture units
if (m_pkGlobalEffect)
{
iTMax = m_pkGlobalEffect->Textures.GetQuantity();
if (iTMax > m_iMaxTextures)
iTMax = m_iMaxTextures;

for (i = 0; i < iTMax; i++)
EnableTexture(iUnit++,i,m pkGlobalEffect);

void Renderer::DisableTextures ()
{

int iTMax, i;

int iUnit = 0;

// disable the local-effect texture units
if (m_pkLocalEffect)
{
iTMax = m_pkLocalEffect->Textures.GetQuantity();
if (iTMax > m_iMaxTextures)
iTMax = m_iMaxTextures;

for (i = 0; i < iTMax; i++)
DisableTexture(iUnit++,i,m pkLocalEffect);

// disable the global-effect texture units
if (m_pkGlobalEffect)
{
iTMax = m_pkGlobalEffect->Textures.GetQuantity();
if (iTMax > m_iMaxTextures)
iTMax = m_iMaxTextures;

for (i = 0; i < iTMax; i++)
DisableTexture(iUnit++,i,m pkGlobalEffect);

The first block of code in each function makes sure that the quantity of texture
units that the geometry object requires does not exceed the total quantity supported
by the graphics API and, in fact, by the graphics card. As you are aware, the more
texture units the graphics card has, the more expensive it is. Since your clients will
have cards with different numbers of texture units, you have to make sure you only

TeamLRN sPeCiAL

TeamLRN sPeCiAL

3.5 Renderers and Cameras 291

try to use what is there. The data member m_iMaxTextures must be set during the
construction of a derived-class renderer. In OpenGL, the graphics card driver is
queried for this information. The functions EnableTexture and DisableTexture are
pure virtual in Renderer, so the derived renderer classes need to implement them.
The implementations involve direct manipulation of the graphics API calls. The data
member m_pkPostEffect is part of the multipass rendering system that is described
later in this section.

As I noted earlier, Wild Magic version 2 had a design flaw regarding multitextur-
ing. The flaw surfaced when trying to add a Node-derived class for projected texture.
The assignment of textures to texture units was the programmer’s responsibility, un-
intentionally so. To make sure the projected texture appears as the last texture and
not have any texture units just pass the previous unit’s data through it, the program-
mer needed to know for each geometry object in the subtree how many textures it
used and what units they were assigned to, which is needlessly burdensome. In Wild
Magic version 3, a projected texture shows up as a “post-effect.” As you can see in the
EnableTextures, the texture units are enabled as needed and in order.

The transformation handling is

if (m_bAllowWorldTransform)
SetWorldTransformation();

else
SetScreenTransformation();

// ... the drawing call goes here ...

if (m_bAllowWorldTransform)
RestoreWorldTransformation();

else
RestoreScreenTransformation();

The graphics system needs to know the model-to-world transformation for the ge-
ometry object. The transformation is set by the function SetWorldTransformation.
The world translation, world rotation, and world scales are combined into a single
homogeneous matrix and passed to the graphics API. The world transformation is
restored by the function RestoreWorldTransformation.

The engine supports screen space polygons. The polygons are intended to be drawn
either as part of the background of the window or as an overlay on top of all the other
rendered data. As such, the vertices are two-dimensional and are already in screen
space coordinates. The perspective viewing model does not apply. Instead we need an
orthonormal projection. The function SetScreenTransformation must handle both
the selection of projection type and setting of the transformation. The function Re-
storeScreenTransformation restores the projection type and transformation. All the
transformation handlers are pure virtual in the base class. This allows hiding the ma-
trix representation that each graphics API chooses.

292 Chapter 3 Scene Graphs and Renderers

The z-values (depth values) need to be provided for the polygon vertices. The z-
values may depend on the graphics API, so the ScreenPolygon class requires you only
to specify whether it is a foreground or a background polygon. ScreenPolygon derives
from TriMesh, which allows you to attach render state and effects just like any other
geometry object. A classical use for screen space polygons is to overlay the rendered
scene with a fancy border, perhaps with simulated controls such as menu selection,
buttons, sliders, and so on. An overlay can have an RGBA texture assigned to it. By
setting selected image pixels to have an alpha of zero, you can make the overlay as
fancy as you like, with curved components, for example.

The final piece of DrawPrimitive is the drawing call itself:

DrawElements ()
This function tells the graphics system what type of geometric object is to be drawn

(points, polyline, triangle mesh, etc.). In the case of an object that has an array of
indices into the vertex array, the indices are passed to the graphics system.

3.5.5 CACHED TEXTURES AND VERTEX ATTRIBUTES

TeamLRN sPeCiAL

Consumer graphics hardware has become very powerful and allows a lot of compu-
tations to be off-loaded from the CPU to the GPU. For practical applications, the
amount of data the GPU has to process will not cause the computational aspects to
be the bottleneck in the graphics system. What has become the bottleneck now is the
transfer of the data from the host machine to the graphics hardware. On a PC, this is
the process of sending the vertex data and texture images across the AGP bus to the
graphics card.

In Wild Magic version 2, vertex data is transferred to the graphics card each time
a scene is rendered. However, the graphics APIs support caching on the graphics
card for textures and their corresponding images, thus avoiding the transfer. When
a texture is bound to the graphics card (i.e., cached on the card) the first time it
is handed to the graphics APIL, you are given an identifier so that the next time
the texture needs to be used in a drawing operation the graphics API knows it is
already in VRAM and can access it directly. Support for this mechanism requires
some communication between the Renderer and Texture classes.

I still use this mechanism in Wild Magic version 3. The relevant interface for the
Texture class is

class Texture : public Object
{
protected:

class BindInfo

{
public:

TeamLRN sPeCiAL

3.5 Renderers and Cameras 293

BindInfo ();
Renderer* User;
char ID[8];

}s

TArray<BindInfo> m_kBind;

// internal use

public:
void Bind (Renderer* pkUser, int iSize, const void* pvID);
void Unbind (Renderer* pkUser);
void GetID (Renderer* pkUser, int iSize, void* pvID);

}s

The nested class BindInfo is used by the graphics system to store the identifier to a
texture. A pointer to the renderer to which the texture is bound is part of the binding
information. The renderer is responsible for storing a unique identifier in the ID field
of BindInfo. The array has 8 bytes to allow storage of the identifier on a 64-bit graphics
system. Of course, if a graphics system requires more than 8 bytes for the identifier,
this number must change. The number of bytes used is known only to the derived-
class renderer and is irrelevant to the scene graph system. The size information is not
saved in the BindInfo class for this reason. The ID array elements are all initialized to
zero; a value of zero indicates the texture is not bound to any renderer. Public access
to the binding system is labeled for internal use, so an application should not directly
manipulate the functions.

When the renderer is told to use a texture, it calls GetID and checks the identifier.
If it is zero, this is the first time the renderer has seen the texture. It then calls Bind
and passes a pointer to itself, the size of the identifier in bytes, and a pointer to the
identifier. Notice that a texture may be bound to multiple renderers; the class stores an
array of BindInfo objects, one per renderer. The derived-class renderer does whatever
is necessary to cache the data on the graphics card. The second time the renderer is
told to use the texture, it calls the GetID function and discovers that the identifier
is not zero. The derived-class renderer simply tells the graphics API that the texture
is already in VRAM and should use it directly. All of the logic for this occurs through
the function Renderer: :EnableTexture. Recall that this is a pure virtual function that
a derived class must implement.

At some point your application might no longer need a texture and deletes it
from the scene. If that texture was bound to a renderer, you need to tell the renderer
to unbind it in order to free up VRAM for other data. The smart pointer system
makes the notification somewhat challenging. It is possible that the texture object
was deleted automatically because its reference count went to zero. For example, this
happens if a scene graph is deleted by assigning NULL to its smart pointer:

294 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

NodePtr m_spkScene = <a scene graph>;

// ... do some application stuff ...

m_spkScene = NULL;

// scene is deleted, including any Texture objects

If I had required you to search the scene graph for any Texture objects and
somehow unbind them manually, that would have been a large burden to place on
your shoulders. Instead, the destructor of the Texture class notifies the renderer that
the texture is being deleted. To notify the renderer, you need to have access to it.
Conveniently, the BindInfo nested class has a member User that is a pointer to the
renderer to which the texture is bound. No coincidence. The destructor is

Texture::~Texture ()
{
// Inform all renderers using this texture that it is being
// destroyed. This allows the renderer to free up any
// associated resources.
for (int i = 0; i < m _kBind.GetQuantity(); i+t+)
m kBind[i].User->ReleaseTexture(this);

The Texture object iterates over all its binding information and informs each renderer
that it is being deleted. This gives the renderers a chance to unbind the texture,
whereby it frees up the VRAM that the texture occupied. Once freed, the renderer
in turn notifies the texture object that it is no longer bound to the renderer. The
notification is via the member function Texture: :Unbind.

Clearly, the Renderer class must have a function that the destructor calls to unbind
the texture. This function is named ReleaseTexture and is a pure virtual function, so
the derived class must implement it. The base class also has a function ReleaseTex-
tures. This one is implemented to perform a depth-first traversal of a scene. Each
time a Texture object is discovered, the renderer is told to release it. The texture ob-
jects are not deleted. If you were to redraw the scene, all the texture objects would be
rebound to the renderer. Does this make the function useless? Not really. If you had
a few scenes loaded into system memory, and you switch between them based on the
current state of the game without deleting any of them, you certainly want to release
the textures for one scene to make room for the next scene.

The graphics hardware does allow for you to cache vertex data on the card, as
well as texture data. For meshes with a large number of vertices, this will also lead to
a speedup in the frame rate because you do not spend all your time transferring data
across a memory bus. Wild Magic version 2 did not support caching vertex data, but
Wild Magic version 3 does. The vertex arrays (positions, normals, colors, indices,
texture coordinates) are normally stored as shared arrays using the template class
TSharedArray. The sharing is for the benefit of the scene graph management system.
Each time a geometry object is to be drawn, its vertex arrays are given to the graphics

3.5 Renderers and Cameras 295

API for the purposes of drawing. The arrays are transferred across the memory bus
on each drawing call.

To support caching, the graphics APIs need to provide a mechanism that is sim-
ilar to what is used for textures, and they do. I chose to use vertex buffer objects
for the caching. Just as the class Texture has the BindInfo nested class for storing
binding information, the scene graph system needs to provide some place to store
binding information for vertex data. I have done this by deriving a template class
TCachedArray from TSharedArray. This class provides a system that is identical to the
one in Texture. The texture binding occurs through the derived-class implementa-
tion of Renderer: :EnableTexture. The vertex data caching occurs similarly through
the derived-class implementations of EnableVertices, EnableNormals, EnableColor-
RGBAs, EnableColorRGBs, and EnableUVs. The derived-class implementations need only
check the RTTI for the vertex arrays. If they are of type TCachedArray, the renderer
binds the arrays and stores the identifiers in the BindInfo structures. If they are not
of type TCachedArray, the renderer treats them normally and transfers the data across
the memory bus on each draw operation.

The same issue arises as for textures. If the vertex data is to be deleted, and that
data was bound to a renderer, the renderer needs to be notified that it should free
up the VRAM used by that data. The texture objects notify the renderer through
Renderer::ReleaseTexture. The vertex data objects notify the renderer through Ren-
derer::ReleaseArray (there are five such functions—for positions, normals, color
RGBs, color RGBAs, and texture coordinates). The notification occurs in the
TCachedArray destructor. Finally, you may release all cached data by calling the func-
tion Renderer::ReleaseArrays. A depth-first traversal of the scene graph is made.
Each cached vertex array is told to notify the renderer to free the corresponding re-
sources and unbind the array.

3.5.6 GLOBAL EFFECTS AND MULTIPASS SUPPORT

TeamLRN sPeCiAL

The single-pass rendering of a scene graph was discussed in Section 3.5.3. This system
essentially draws a Geometry object at the leaf node of a scene hierarchy using all the
global state, lights, and effects that are stored by the object. Some effects, though, may
be desired for all the geometry leaf nodes in a subtree. For example, a projected tex-
ture can apply to multiple triangle meshes, as can an environment map. A projected
planar shadow may be rendered for an object made up of many triangle meshes.
Planar reflections also apply to objects that have multiple components. It would be
convenient to allow an Effect object to influence an entire subtree. Wild Magic ver-
sion 2 supported this by creating Node-derived classes to represent the effects, but that
design was clunky and complicated when it came to handling reentrancy. An effect
such as a planar projected shadow requires multiple passes to be made over a subtree
of the scene. Each pass has different requirements regarding render state. If the draw-
ing is initiated on a first pass through the subtree, and the renderer must use a second

296 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

pass to complete the drawing, you have to be certain not to end up in an infinite
recursion of the drawing function; that is, the drawing system must be reentrant.

The Effect class introduced in Wild Magic version 3 was initially designed to
represent a local effect; that is, the Effect object stores the vertex colors, textures, and
texture coordinates and implements any semantics necessary to correctly render the
geometry object to which the effect is attached. A natural class to store the effect is the
Geometry class. I still wanted to support global effects such as projected textures and
projected planar shadows, but with a system that was better designed than the one
requiring you to derive a class from Node and have it encapsulate the relevant render
state. My choice was to store the Effect object in the Spatial class. In this way, a Node
has an Effect object that can represent a global effect. A pleasant consequence is that
amultipass drawing operation is cleanly implemented without much fuss in the scene
graph management system.

A recapitulation of my previous discussion: The top-level call to drawing a scene is

void Renderer::DrawScene (Node* pkScene)
{

if (pkScene)

{

pkScene->0nDraw(*this);

if (DrawDeferred)

{
(this->*DrawDeferred) () ;
m_iDeferredQuantity = 0;

The OnDraw function is implemented in Spatial and handles any culling of objects.
If a Node object is not culled, the function Draw is called on all the children in order to
propagate the drawing down the hierarchy. The Node class’s version of Draw is

void Node::Draw (Renderer& rkRenderer, bool bNoCull)
{
if (m_spkEffect == NULL)
{
for (int i = 0; i < m kChild.GetQuantity(); i++)
{
Spatial* pkChild = m_kChild[i];
if (pkChild)
pkChild->0nDraw(rkRenderer,bNoCull);

3.5 Renderers and Cameras 297

else

{
// A "global" effect might require multipass rendering,
// so the Node must be passed to the renderer for special
// handling.
rkRenderer.Draw(this);

In the typical case, the node does not have an effect attached to it, in which case
m_spkEffect is NULL, and the drawing operation is propagated to the node’s children.
If the node has an effect attached to it, then the renderer is immediately told to draw
the subtree rooted at the node. From the scene graph management perspective, all
you care about is that the renderer does the right thing and correctly draws the sub-
tree. From the renderer’s perspective, if multiple drawing passes must be made over
the subtree, the Node: :Draw function must be reentrant. The only natural solution is
to require the renderer to keep a temporary handle to m_spkEffect, set m_spkEffect
to NULL, draw the subtree with multiple passes (if necessary), and then restore
m_spkEffect to its original value.

The function referenced by rkRenderer.Draw(this) in the previous displayed code
block is listed next. The code for deferred drawing is discussed in Section 4.2.4.

void Renderer::Draw (Node* pkNode)
{
if (!DrawDeferred)
{
m_pkNode = pkNode;
m pkGlobalEffect = pkNode->GetEffect();

assert(m_pkGlobalEffect);
(this->*m_pkGlobalEffect->Draw)();

m_pkNode = NULL;
m_pkGlobalEffect = NULL;

}

else

{
m_kDeferredObject.SetETement (m_iDeferredQuantity,pkNode);
m_kDeferredIsGeometry.SetElement (m_iDeferredQuantity,false);
m_iDeferredQuantity++;

TeamLRN sPeCiAL

298 Chapter 3 Scene Graphs and Renderers

TeamLRN sPeCiAL

The global effect has a Renderer function assigned to its Draw data member. The
function encapsulates the semantics necessary to correctly draw the object. Pseu-
docode for the drawing function is

void DerivedRenderer::DrawGlobalFeature ()

{
// Hang onto the effect with a smart pointer (prevent
// destruction).
EffectPtr spkSaveEffect = m_pkGlobalEffect;

// Allow reentrancy to drawing at the node m_pkNode. By
// having a NULL effect, the node will just propagate the
// drawing call to its children.

m_pkNode->SetEffect (NULL);

// do whatever, including calls to m_pkNode->Draw(*this,...)

// Restore the effect.
m_pkNode->SetEffect (spkSaveEffect);

Should you add a function such as the above to support a new effect, you must
add a pure virtual function to the base class, Renderer: : DrawG1obalFeature. Currently,
the base class has

virtual void DrawBumpMap () = 0;

virtual void DrawEnvironmentMap () = 0;
virtual void DrawGlossMap () = 0;

virtual void DrawPlanarReflection () = 0;
virtual void DrawPlanarShadow () = 0;
virtual void DrawProjectedTexture () = 0;

Corresponding Effect-derived classes are in the scene graph management system.
Each one sets its Draw data member to one of these function pointers.

CHAPTER

ADVANCED SCENE
GRAPH TOPICS

41 LEVEL OF DETAIL

TeamLRN sPeCiAL

Level of detail (LOD) was a topic made popular when CPUs and GPUs were not so
powerful. The idea is to use a coarser-level geometric representation of an object that
has a similar appearance to the high-level representation, but requires less data to be
processed by the CPU and GPU. The evolution of GPUs to handle large quantities of
data has made level of detail less important in some situations. However, the concept
will always be important when objects are in the distance. A character made up of
10,000 triangles looks really good when close to the observer. No doubt you will
appreciate all the subtleties that the artist put into the texturing and lighting of the
character. The attractiveness of the character is emphasized by the fact that a large
number of pixels are colored due to the triangles in the object. When the character is
in the distance, though, you will fail to recognize most details. Those 10,000 triangles
are now covering only a small number of pixels, perhaps on the order of 10 to 100,
and those pixels suffer a lot of overdraw. Even if the character was rendered to 100
pixels, that means each pixel on average is drawn to by 100 triangles. You must agree
that this is a large waste of computational resources. Level of detail is designed to
provide a large number of triangles for an object when close to the observer, but fewer
triangles as the object moves away from the observer. The variation is an attempt to
keep the number of triangles affecting a pixel as small as possible.

A few categories of level of detail have been used in graphics. Sprites or billboards
are 2D representations of 3D objects that are used to reduce the complexity of the
object. For example, trees typically are drawn as a pair of rectangles with alpha-
blended textures, the pair intersecting in an X configuration. Another example is

299

300 Chapter 4 Advanced Scene Graph Topics

4.1.1

TeamLRN sPeCiAL

a grandstand in an automobile race. The audience is typically drawn as rows of
rectangular billboards that try to face the camera, but are constrained to rotate about
the vertical axis. Wild Magic supports billboards of this type, but also allows for solid
objects to be oriented to try to face an observer with a constraint to rotate about a
vertical axis.

Discrete LOD is the notion of creating multiple representations of the same object.
Each successive representation has less detail than the previous one, but the number
of representations is a small number. A switch node is used to select which represen-
tation is drawn. Selection can be based on the distance of a LOD center from the eye
point. The difference in the triangle counts between consecutive models is typically
large. Artists have to manually generate each model—a process that takes time.

Continuous LOD is an attempt to automate the generation of different-resolution
representations of an object. For triangle meshes, the generation amounts to remov-
ing a few triangles at a time while trying to preserve the shape of the object. The
process is also known as triangle mesh decimation. In this context, continuous level of
detail is really a discrete level of detail, but the difference in triangle count between
models is small. The representations are usually generated procedurally offline. Gen-
erating a good set of texture coordinates and normals can be difficult.

Infinite LOD refers to the ability to generate an arbitrary number of triangles
in a mesh that represents a smooth object. Given a surface representation of the
object, a subdivision method is applied to tessellate the surface at run time, and as
finely as you have the CPU time. Powerful processors on game consoles make surface
representation a good choice, but creating surface models still appears to be in the
realm of CAD/CAM and not game development.

I discuss each of these topics in this section.

BILLBOARDS

The class that supports billboards is Bi11boardNode. The interface is

class BillboardNode : public Node

{

public:
// The model space of the billboard has an up vector of
// (0,1,0) that is chosen to be the billboard's axis of
// rotation.

// construction
BillboardNode (Camera* pkCamera = NULL, int iQuantity = 1,
int iGrowBy = 1);

// the camera to which the billboard is aligned
void AlignTo (Camera* pkCamera);

TeamLRN sPeCiAL

4.1 Level of Detail 301

protected:
// geometric updates
virtual void UpdateWorldData (double dAppTime);

Pointer<Camera> m_spkCamera;

}s

The billboard is constrained so that it can only rotate about its up vector in
model space. The orientation is relative to a camera, so you either provide the camera
to the constructor or defer the attachment until later through a call to AlignTo.
The billboard alignment occurs during the UpdateGS pass. The BillboardNode class
overrides the virtual function UpdateWorldData that is called in the Spatial version of
UpdateGS. The implementation is

void BillboardNode::UpdateWorldData (double dAppTime)

{
Spatial::UpdateWorldData(dAppTime);

if (m_spkCamera)
{
Vector3f kCLoc = World.ApplyInverse(
m_spkCamera->GetWorldLocation());

float fAngle = Mathf::ATan2(kCLoc.X(),kCLoc.Z());
Matrix3f kOrient(Vector3f::UNIT_Y,fAngle);
World.SetRotate(World.GetRotate()*kOrient);

for (int i = 0; i < m kChild.GetQuantity(); i++)
{
Spatial* pkChild = m_kChild[i];
if (pkChild)
pkChild->UpdateGS (dAppTime,false);

The call to Spatial::UpdateWorldData computes the billboard’s world transforms
based on its parent’s world transform and its local transforms. Notice that you should
not call the function Node: :UpdateWorldData since that function updates its children.
The children of a Bi11boardNode cannot be updated until the billboard is aligned with
the camera.

The eye point is inverse transformed to the model space of the billboard. The
idea is to determine what local rotation must be applied to the billboard to orient
it correctly in world space. To align the billboard, the projection of the camera to

302 Chapter 4 Advanced Scene Graph Topics

the xz-plane of the billboard’s model space determines the angle of rotation about
the billboard’s model y-axis. If the projected camera is on the model axis (x =0
and z = 0), the ATan2 returns zero (rather than NaN), so there is no need to trap this
degenerate case and handle it separately. The orientation matrix must be applied first
to the billboard before applying the world rotation matrix. This is true simply because
local transformations at a node are always applied before world transformations.

After the orientation about the y-axis, the geometric update can be propagated
to the children of the billboard node.

Nothing in the algorithm requires the billboard to be a flat rectangle. The sample
application in the folder

MagicSoftware/WildMagic3/Test/TestBillboardNode

illustrates how to use BillboardNode. Two objects are displayed, one a flat rectangle
and one a three-dimensional torus. As you move the camera through space using the
arrow keys, notice that both objects always rotate about their up axes to attempt to
face the camera.

4.1.2 DISPLAY OF PARTICLES

TeamLRN sPeCiAL

The Particles class was introduced in Section 3.3.4. Recall that a particle is a geo-
metric primitive with a location in space and a size. The Particles class encapsulates
a set of particles, called a particle system. The class interface for Particles is

class Particles : public TriMesh
{
public:
// construction and destruction
Particles (Vector3fArrayPtr spkLocations, FloatArrayPtr spkSizes,
bool bWantNormals);
virtual ~Particles ();

// data members
Vector3fArrayPtr Locations;
FloatArrayPtr Sizes;

float SizeAdjust;

void SetActiveQuantity (int iActiveQuantity);
int GetActiveQuantity () const;

virtual void SetEffect (Effect* pkEffect);

// 1f the Particles effect attributes are modified, the TriMesh

TeamLRN sPeCiAL

4.1 Level of Detail 303

// effect attributes need to be updated.
void RefreshEffect ();

protected:
Particles ();

// Generate attributes for the triangle mesh from the
// Particle effect.

void GenerateColorRGBs ();

void GenerateColorRGBAs ();

void GenerateUVs ();

// Drawing. The particles are billboards that always face the
// camera.

void GenerateParticles (const Camera* pkCamera);

virtual void Draw (Renderer& rkRenderer, bool bNoCull = false);

// Allow application to specify fewer than the maximum number
// of vertices to draw.
int m_iActiveQuantity;

// Store the effect that applies to the particle data. The data
// member Geometry::m spkEffect will store the derived effect that
// applies to the triangle mesh that represents the particles.
EffectPtr m_spkParticleEffect;

The method GenerateParticles implements the construction of the billboard
squares as pairs of triangles. The renderer’s camera is an input because the squares
must always face the camera in the world. The natural inclination is to forward-
transform all the particle locations into the world coordinate system and build the
squares in world space. However, that is inefficient in time, especially when the
number of particles is large. Instead I inverse-transform the camera into the model
space of the particles, compute the squares’ vertices, and store them in the model
space vertex array of the TriMesh base class. Figure 4.1 shows how the triangles are
generated for a single particle.

The camera right, up, and view world direction vectors are R, U, and D, respec-
tively. The particles have world rotation matrix R. The scales and translations are not
used when transforming the camera to the model space of the particles. The cam-
era vectors in the particles’ model space are R’ = RTR, U' = RTU, and D’ = R™D.
The point C is the particle location, which is the center of the square. The size of the
particle is o, and the size adjustment is . The vertices shown in the figure are

304 Chapter 4 Advanced Scene Graph Topics

Figure 4.1 The billboard square for a single particle.

Vy=C—ao(U' —R)
V,=C+ao(U +R)
V,=C+ac(U —R)
V;=C—ao(U +R)).
If normal vectors are required, the four vertices are assigned the same quantity,
Ny=N;=N,=N;=-D'.
The two triangle index triples are
Ty = (0, 1, 2), T,(0, 2, 3).

The indices are initialized once, in the constructor of Particles, since they do not
change as the particles move about. The GenerateParticles call is made inside the
Draw function.

When an Effect object is attached to a Particles object, some complications
must be dealt with regarding rendering. Two inputs to the Particles constructor
are the particle locations and sizes. For display purposes, the particles are rendered
as billboards that have four times the number of vertices as particles. The rendering
system expects vertex attributes to occur for all vertices, so the Particles class must
create vertex attributes to correspond to the particle attributes. This is accomplished
by the functions GenerateColorRGBs, GenerateColorRGBAs, and GenerateUVs, which are
called by the SetEffect member function:

TeamLRN sPeCiAL

TeamLRN sPeCiAL

4.1 Level of Detail

void Particles::SetEffect (Effect* pkEffect)

{

m_spkParticleEffect = pkEffect;

// Clone an effect for the triangle mesh representing the
// particles.
m_spkEffect = pkEffect->Clone();

// quadruple the RGB colors
if (pkEffect->ColorRGBs)
GenerateColorRGBs () ;

// quadruple the RGBA colors
if (pkEffect->ColorRGBAs)
GenerateColorRGBAs () ;

// Generate textures and UVs for all active textures of

// m_spkEffect.

if (pkEffect->Textures.GetQuantity() > 0)
GenerateUVs();

305

The effect that a user sets is intended to apply to the particles themselves. That
effect is stored in the data member m_spkParticleEffect. The member m_spkEffect
is what is passed to the renderer, so it must have attributes that correspond to all the
vertices that are the corners of the billboards—four times the number of particles. A
clone is made of the effect through an abstract cloning system; you have no idea what
type the effect is, but Clone will give you the right thing. The color arrays and the
texture coordinate arrays must be replaced with ones that correspond to the billboard
corners. These arrays are created by the generate calls.
The implementation of the function GenerateColorRGBs is representative of the
other functions, so I only show one here:

void Particles::GenerateColorRGBs ()

{

int iLQuantity = Locations->GetQuantity();
int iVQuantity = 4*ilLQuantity;
ColorRGB* akPColor = m spkParticleEffect->ColorRGBs->GetData();
ColorRGB* akMColor = new ColorRGB[iVQuantity];
for (int i =0, j = 0; i < iLQuantity; i++)
{
// get the particle color
ColorRGB& rkColor = akPColor[i];

306 Chapter 4 Advanced Scene Graph Topics

// assign it as the quad color, applied to all four vertices
akMColor[j++] = rkColor;
akMColor[j++] = rkColor;
akMColor[j++] = rkColor;
akMColor[j++] = rkColor;

m_spkEffect->ColorRGBs = new ColorRGBArray(iVQuantity,akMColor);

The number of allocated colors is iVQuantity, which is four times the number of
particles ilLQuantity. The particle colors are stored in akPColor. The mesh colors
akMColor store four times the number of colors. Each particle color is copied into four
mesh color slots, which correspond to the vertices used as the corners of the billboard
that represents the particle. The last statement attaches the color array to the effect.

In the event that you change the particle attributes, only the member
m_spkParticleEffect is changed. You have to force the regeneration of attributes for
the mesh of billboard vertices. Do this by a call to RefreshEffect.

The sample application in the folder

MagicSoftware/WildMagic3/Test/TestParticles

illustrates how to use Particles. The particles look like fuzzy red spheres of various
sizes that move randomly about the screen. I have used a texture with an alpha
channel so that you cannot tell the billboards are rectangles. Try rotating the scene,
either with the virtual track ball or with the F1 through F6 function keys. Even though
the particles are displayed as billboards, the rotation seems to show that the particles
really are spherical.

4.1.3 DISCRETE LEVEL OF DETAIL

TeamLRN sPeCiAL

Discrete level of detail refers to constructing a small set of models: a high-resolution
one and many similar copies with decreasing numbers of triangles. According to
some logic at display time, one of the models in the set is selected for drawing. A
standard mechanism for selection is to use the distance between a LOD center, a point
associated with the model, and the eye point. The smaller the distance, the higher
the resolution model is selected. Conversely, the larger the distance, the lower the
resolution model is selected.

Since we would like all the models to hang around waiting to be selected, it is
convenient to have a node whose children are the models. But we do not want all
the children to be processed during recursive traversals of the scene graph. A node
that allows only one child at a time to be active is called a switch node. The class that
implements this is SwitchNode and has the interface

TeamLRN sPeCiAL

4.1 Level of Detail 307

class SwitchNode : public Node
{
public:
SwitchNode (int iQuantity = 1, int iGrowBy = 1);

enum { SN_INVALID CHILD = -1 };

void SetActiveChild (int iActiveChild);
int GetActiveChild () const;
void DisableAl11Children ();

virtual void DoPick (const Vector3f& rkOrigin,
const Vector3f& rkDirection, PickArray& rkResults);

protected:
virtual void Draw (Renderer& rkRenderer, bool bNoCull = false);

int m_iActiveChild;
1

The only data member is the index of the active child. If the active child index is set
to SN_INVALID_CHILD, no children of the switch node are picked or drawn. Otherwise,
only the active child is picked or drawn. Notice that I have not provided an override
for geometric state updates or render state updates. This means that calls to UpdateGS
and UpdateRS will propagate to all the children, even though only one is active. In my
opinion, it makes sense to propagate the UpdateRS call to all the children since they are
all representations of the same abstract object. The choice not to prevent propagation
of UpdateGS requires some explanation.

Suppose that an UpdateGS call propagates down a scene hierarchy and reaches a
switch node. If the switch node propagates the call only to the active child, then all
other children have world transformations and world bounding volumes that are
inconsistent with the rest of the scene. As long as those children remain inactive,
this is not a problem. Now suppose that you decide to select a different child to be
active. You most certainly want its geometric state to be current, so you need to call
UpdateGS on that child. Immediately after the update you change the active child back
to the previous one. At this time you do not know that the new active child does
not need an update. Then again, if other operations occurred between the switching,
you do not know if the active child does need an update. The conservative and safe
thing to do is always call UpdateGS when you switch. Unfortunately, if the children
are complicated objects with large subtrees representing them, you could be wasting
a lot of cycles calling UpdateGS when it is not needed. To avoid this, I chose not to
override UpdateGS and just let updates at predecessors take their course through the
scene. If you are daring, modify SwitchNode to maintain an array of Boolean values

308 Chapter 4 Advanced Scene Graph Topics

TeamLRN sPeCiAL

that indicate whether or not the children are up to date, and then override UpdateGS
to use those so that on a switch to a new active child, you only update if needed.

Picking, on the other hand, is limited to the active child. This makes sense since
the active child is presumably the only one you see displayed on the screen. If the
picking had to do with firing a laser gun at the level-of-detail object, even if that
object is not currently visible, it still makes sense to limit the picking to the active
child.

My version of a switch node supports only one active child. You might want a
more general variation that allows you to select a subset of children to be active. It is
simple enough to add a new class to the engine, perhaps called MultiswitchNode, that
allows you to specify which children are active. I leave the implementation details to
you.

For an automated switching system, where the switching is based on some desired
game logic, just derive a class from SwitchNode and add the automation. For example,
Wild Magic has a derived class D1odNode. (The acronym DLOD stands for “discrete
level of detail.”) The class interface is

class DlodNode : public SwitchNode
{
public:
// construction
DlodNode (int iQuantity = 1, int iGrowBy = 1);

// center for Tevel of detail

Vector3f& ModelCenter ();

const Vector3f& GetModelCenter () const;
const Vector3f& GetWorldCenter () const;

// distance intervals for children

void SetModelDistance (int i, float fMinDist, float fMaxDist);
float GetModelMinDistance (int i) const;

float GetModelMaxDistance (int i) const;

float GetWorldMinDistance (int i) const;

float GetWorldMaxDistance (int i) const;

protected:
// Switch the child based on distance from world LOD center to
// camera.
void SelectLevelOfDetail (const Camera* pkCamera);

// drawing
virtual void Draw (Renderer& rkRenderer, bool bNoCull = false);

// point whose distance to camera determines correct child
Vector3f m_kModelLodCenter;

4.1 Level of Detail 309

Vector3f m_kWorldLodCenter;

// squared distances for each LOD interval
TArray<float> m_kModelMinDist;
TArray<float> m_kModeIMaxDist;
TArray<float> m_kWorldMinDist;
TArray<float> m_kWorldMaxDist;

The parameters you may choose are a model center and ranges of distances for
each child. The model center is, of course, specified relative to the coordinate system
implied by a parent node (if any). The model distance ranges are intended to be
disjoint intervals, but the system does work properly if they overlap slightly. The
world center and world distance ranges are automatically computed by DlodNode.
During the drawing pass, the distance is computed between the world center and the
eye point. The world distance interval that contains the computed distance is located,
and the corresponding child is made active. The distance calculations and the child
selection are implemented in SelectLevelOfDetail, a function that is called by Draw.

The sample application in the folder

MagicSoftware/WildMagic3/Test/TestDlodMesh

illustrates how to use D1odNode. The objects are convex polyhedra. Polyhedra with
a larger number of vertices are drawn when the abstract object is close to the eye
point. Polyhedra with a smaller number of vertices are drawn when the object is far
from the eye point. The switching is quite noticeable, but that is the intent of the
sample application. In a game, you want your artists to construct models so that the
switching is not that noticeable.

4,14 CONTINUOUS LEVEL OF DETAIL

TeamLRN sPeCiAL

The algorithm I discussed in [Ebe00] for continuous LOD regarding triangle meshes
is from the articles [GH97, GH98]. The book discussion is shy on the details for im-
plementation, but so are the papers (as is true with many research articles since page
limits are usually imposed). I will take the opportunity to illustrate the basic concepts
for triangle mesh decimation by using line mesh decimation in two dimensions.

The simplest example is reduction of vertices in a nonintersecting open polyline
or a closed polyline that is a simple closed curve (not self-intersecting). The polyline
has vertices {X;}?_,. The algorithm removes one vertex at a time based on weights
assigned to the vertices. A vertex weight is a measure of variation of the polyline at
the specified vertex. A simple measure of weight w; for vertex X; is based on the three
consecutive vertices X; _, X;, and X, j,

Distance?(X;, Segment(X;_;, Xii1)
w; =
Lengthz(Segment(Xi_ b Xit1)

(4.1)

310 Chapter 4 Advanced Scene Graph Topics

TeamLRN sPeCiAL

where Segment(U, V) denotes the line segment from U to V. The vertex that is
removed first is the one corresponding to the minimum weight. Observe that if
the minimum weight is zero, then X; is already a point on Segment(X;_ 1, X;).
Removing zero-weight points first is ideal for polyline reduction.

Special handling is required at the end points X, and Xj,. The easiest thing to do
is assign w, = w, = 0o; that is, the end points are never removed. The polyline is
reduced a vertex at a time until only two vertices remain, the end points. However, it
is possible that X, = X, in which case the polyline is closed. Assigning infinite weight
to X, leads to that point always occurring in a reduction. Instead, the weight formula
can be applied to every vertex in a closed polyline with the understanding that the
indices are selected modulo 7.

Other definitions for vertex weights may be used. For example, a larger neigh-
borhood of X; might be used. Or an interpolating polynomial curve could be used
to assign the curvature of that curve to each vertex. The choices are many, but the
algorithm for determining the order of removal of the vertices can be developed in-
dependently of the weight definition.

The algorithm considered here just removes vertices, one at a time. The vertices
of the reduced polyline form a subset of the vertices of the original polyline. This is
convenient, but not necessary. If X; provides the minimum weight of all vertices, it is
possible to replace the triple (X; _, X;, X; 1) by the pair (Y; _, Y;, 1), whereY;_;and
Y, are quantities derived from the original triple, and possibly from other nearby
vertices.

A Simple Algorithm

The simplest algorithm for reduction is a recursive one. Given a polyline P = {X;}?_,,
compute the weights {w;}!"_. Search the weights for the minimum weight w;. Re-
move X, from P to obtain the polyline P’ that has n — 1 vertices. Repeat the algo-
rithm on P’. This is an O(n?) algorithm since the first pass processes n vertices, the
second pass processes n — 1 vertices, and so on. The total number of processed ver-
ticesisn+(mn—1)+...+3=n(n+1)/2 —3.

A Fast Algorithm

A faster algorithm is called for. All n weights are calculated on the first pass. When a
vertex X; is removed from P, only the weights for X; _; and X; , are affected. The cal-
culation of all weights for the vertices of P’ involves many redundant computations.
Moreover, if only a couple of weights change, it is not necessary to search the entire
sequence of weights for the minimum value. A heap data structure can be used that
supports an O (1) lookup. If the heap is implemented as a complete binary tree, the
minimum occurs at the root of the tree. When the minimum is removed, an O (log n)
update of the binary tree is required to convert it back to a heap. The initial construc-
tion of the heap requires a comparison sort of the weights, an O (n log n) operation.

TeamLRN sPeCiAL

4.1 Level of Detail 311

The fast reduction requires an additional operation that is not part of the classic
heap data structure. The heap is initially reconstructed in O (n log n) time. The mini-
mum value is removed, and the binary tree is reorganized to form a heap in O (log)
time. The vertex removal causes a change in two weights in the heap. Once those
weights are changed, the binary tree will no longer represent a heap. If we can remove
the two old weights from the heap, we could then add the two new weights. Unfor-
tunately, the classic heap data structure does not support removing an element from
any location other than the root. As it turns out, if a weight is changed in the heap,
the corresponding node in the binary tree can be propagated either toward the root
of the tree or toward the leaves of the tree, depending on how the weight compares
to the weights of its parent or child nodes. Since the propagation can be performed
without changing the tree structure, this update operation is also O (log n). If the
changed weight is smaller than its parent weight, the node is swapped with its parent
node, thereby preserving the heap property. If the changed weight is larger than its
children’s weights, the node is swapped with the child node of largest weight, thereby
preserving the heap property.

Now we encounter the next complication. If a weight at an internal heap node
changes, we need to know where that node is located to perform the O (log n) update.
If we had to search the binary tree for the changed node, that operation is O (n),
a linear search. The only property of a minimum heap is that the weights of the
two children of a node are smaller or equal to the weight of the node itself. That is
not enough information for a search query to decide which child should be visited
during the tree traversal, a necessary piece of information to reduce the search to
O (log n). The solution to this problem is to create a data structure for each vertex
in the polyline. Assuming that the binary tree of the heap is stored in a contiguous
array, the vertex data structure must store the index to the heap node that represents
the vertex. That index is changed whenever a heap element is propagated to its parent
or to a child.

An Ilustration

An example is given here for a 16-sided polygon with vertices X;, = A; (cos(2k/16),
sin(2wk/16)) for 0 < k < 16, where the amplitudes were randomly generated as
Ay = 75.0626, A, = 103.1793, A, = 84.6652, A; = 115.4370, A, = 104.2505, A5 =
98.9937, Ag=92.5146, A, =119.7981, Ag=116.1420, Ay = 1123302, A, =
83.7054, A, = 117.9472, A, = 110.5251, A3 = 100.6768, A, = 90.1997, and
A5 = 75.7492. Figure 4.2 shows the polygon with labeled vertices.

The min heap is stored as an array of 16 records. Each record is of the form

HeapRecord
{
int V; // vertex index
int H; // heap index
float W; // weight (depends on neighboring vertices)

312 Chapter 4 Advanced Scene Graph Topics

Figure 4.2

TeamLRN sPeCiAL

The initial 16-sided polygon to be reduced a vertex at a time.

HeapRecord* L; // points to record of left vertex neighbor
HeapRecord* R; // points to record of right vertex neighbor

The vertex index and doubly linked list structure represent the polyline itself. As
vertices are removed, the list is updated to reflect the new topology. The weight is
the numeric value on which the heap is sorted. As mentioned earlier, the heap index
allows for an O(1) lookup of the heap records whose weights change because of a
vertex removal. Without this index, an O (n) search on the vertex indices in the heap
would be necessary to locate the heap records to change.

Initialization of the Heap

The heap records are initialized with the data from the original vertices. The vertex
index and heap index are the same for this initialization. Figure 4.3 shows the heap
array after initialization. The heap indices, the vertex indices, and the weights are
shown. The weight of vertex X; is calculated using Equation (4.1), where the left
neighbor is X(; _1) mod 16 and the right neighbor is X; 1 1) mod 16-

To be a min heap, each node H; in the binary tree must have a weight that is
smaller or equal to the weights of its child nodes H,; ; and H,;,. The heap array
must be sorted so that the min heap property at each record is satisfied. This can be
done in a nonrecursive manner by processing the parent nodes from the bottom of
the tree toward the root of the tree. The first parent in the heap is located. In this
example, H; is the first parent to process. Its only child, H;s, has a smaller value, so
H; and H,5 must be swapped. Figure 4.4 shows the state of the heap array after the
swap.

Figure 4.3

Figure 4.4 The heap array after swapping H; and H,5 in Figure 4.3.

TeamLRN sPeCiAL

4.1 Level of Detail 313

Hy Vo
52.65
H vy H, Vv,
2258.57 352.93
H; V, Hy v, Hy Vs Hg Ve
1435.54 46.36 120.11 75.14
Hy Vo [IHg Vg ||Hg Vg |[HioVig [[Hu Vag | [Hiz Viz [|Hiz Vag||His Vis
824.88 101.95 647.27 ||653.50 1313.77 | | 137.42 119.66 187.79
|
His Vis
0.01
Initial values in the heap array.
Hy Vo
52.65
H vy H, Vp
2258.57 352.93
Hy Vs Hy Vg Hg Vg Hg Ve
1435.54 46.36 120.11 75.14
Hy Vis | [Hs Vg ||Hg Vo |[Hio Vig||H1 Var||Hiz Via | [Hiz Vas | [Hia Vis
0.01 101.95 647.27 ||653.50 1313.77 | | 137.42 119.66 187.79
|
His V7
824.88

314 Chapter 4 Advanced Scene Graph Topics

Figure 4.5

TeamLRN sPeCiAL

Hy Vo
52.65

Hl Vl H2 V2
2258.57 352.93

Hy Vi5 Hy v, Hs Vs Hs Vs
0.01 46.36 120.11 75.14

Hy Vs [IHg Vg ||Ho Vo|[Hi Viof|Hyy Vig|[Hip Vip [|His Vig || Hiy Vi
1435.54 | 101.95 |[647.27 |[653.50 |[1313.77||137.42 [|119.66 |[187.79

His V7
824.88

The heap array after swapping H; and H; in Figure 4.4.

The next parent to process is Hg. The weight at H is smaller than the weights of
its two children, so no swapping is necessary. The same is true for the parent nodes
Hs and H,. Node Hj has a weight that is larger than both its children’s weights. A
swap is performed with the child that has smallest weight; in this case H; and H; are
swapped. Figure 4.5 shows the state of the heap array after the swap.

Before the swap, the subtree at the child is already guaranteed itself to be a min
heap. After the swap, the worst case is that the weight needs to be propagated down
a linear path in the subtree. Any further swaps are always with the child of minimum
weight. In the example, an additional swap must occur, this time between H, and
H,s. After the swap, the processing at Hj is finished (for now), and the subtree at H;
is itself a min heap. Figure 4.6 shows the state of the heap array after the swap of H;
and H,s.

The next parent to process is H,. The weight at H, is larger than the minimum
weight occurring at child Hg, so these two nodes must be swapped. Figure 4.7 shows
the state of the heap array after the swap.

Another swap must occur, now between H and the minimum weight child H,3.
Figure 4.8 shows the state of the heap array after the swap.

The next parent to process is H;. The weight at H, is larger than the minimum
weight occurring at child Hj, so these two nodes must be swapped. Figure 4.9 shows
the state of the heap array after the swap.

Another swap must occur, now between Hj; and the minimum weight child Hj.
Figure 4.10 shows the state of the heap array after the swap.

Hy Vo
52.65
H vy H, Vv,
2258.57 352.93
H; Vis Hy v, Hy Vs Hg Ve
0.01 46.36 120.11 75.14
Hy Vo [|Hg Vg ||Hg Vg |[Hig Vig||Hu Var|[Hi2 Viz [|Hiz Vg | |His Via
824.88 101.95 647.27 ||653.50 1313.77 | | 137.42 119.66 187.79
|
His Vs,
1435.54
Figure 4.6 The heap array after swapping H; and H,; in Figure 4.5.
Hy Vo
52.65
H vy H, Ve
2258.57 75.14
Hy Vis Hy Vg Hg Vg Hg V,
0.01 46.36 120.11 352.93
Hy V7 |[Hs Vg ||Hg Vg |[Hi Vig||H1 Vag||Hiz Via | [Hiz Vas | [Hia Vas
824.88 101.95 647.27 |[653.50 1313.77 | | 137.42 119.66 187.79
|
His Vg
1435.54

4.1 Level of Detail 315

Figure 4.7 The heap array after swapping H, and Hy in Figure 4.6.

TeamLRN sPeCiAL

316 Chapter 4 Advanced Scene Graph Topics

Hy Vy
52.65
Hy 7 Hy Vs
2258.57 75.14
Hy Vs Hy 7, Hs Vs Hg V13
0.01 46.36 120.11 119.66
Hy Vo [Hy Ve || Ho Vo ||Hio Vio || Hu Via| [Hi2 Via | |1z Vo[|14 V14
824.88 101.95 647.27 |653.50 1313.771]137.42 352.93 187.79
|
Hys 7y
1435.54
Figure 4.8 The heap array after swapping Hg and H,3 in Figure 4.7.
Hy Vo
52.65
Hy Vig H, Ve
0.01 75.14
Hy Vy Hy Vg Hg Vg Hg Vi3
2258.57 46.36 120.11 119.66
Hy V7 |[Hs Vg ||Hg Vo|[Hi Vig||Hy Vag||Hia Vi | [Hiz Va|[HiaVas
824.88 101.95 647.27 |[653.50 1313.77 | | 137.42 352.93 187.79

[
H15 V3
1435.54

Figure 4.9 The heap array after swapping H; and H; in Figure 4.8.

TeamLRN sPeCiAL

Figure 4.10

TeamLRN sPeCiAL

4.1 Level of Detail 317

HO VO
52.65

Hl V15 H2 V6
0.01 75.14

H3 V8 H4 V4 H5 V5 H6 V13
101.95 46.36 120.11 119.66

H7 V7 H8 Vl H9 V9 HlO VlO Hll Vll H12 V12 H13 VZ H14V14
824.88 ||2258.57||647.27 | [653.50 ||1313.77[137.42 | [352.93 |[187.79
I
H15 V3
1435.54

The heap array after swapping H; and Hy in Figure 4.9.

The last parent to process is H. The weight at H, is larger than the minimum
weight occurring at child H;, so these two nodes must be swapped. Figure 4.11 shows
the state of the heap array after the swap.

Another swap must occur, now between H; and the minimum weight child H,,
but no other swaps are necessary in that subtree. Figure 4.12 shows the state of the
heap array after the swap. Now the heap array does represent a min heap since the
children weights at each node are smaller or equal to the parent weights.

Remove and Update Operations

The vertex with minimum weight is the first to be removed from the polyline. The
root of the heap corresponds to this vertex, so the root is removed from the heap.
The vertex to be removed is V;5. To maintain a complete binary tree, the last item in
the heap array is placed at the root location. Figure 4.13 shows the state of the heap
array after moving the last record to the root position.

The array does not satisfy the min heap property since the root weight is larger
than the minimum child weight. The root node H, must be swapped with Hj, the
child of minimum weight. The swapping is repeated as long as the minimum weight
child has smaller weight than the node under consideration. In this example, H; and
H, are swapped, and then H, and Hy are swapped. Figure 4.14 shows the state of the
heap after the three swaps.

This is the typical operation for removing the minimum element from the heap.
However, in the polyline application, there is more work to be done. The weights of

318 Chapter 4 Advanced Scene Graph Topics

Hy Vis
0.01

Hl VO HZ V6
52.65 75.14

H3 V8 H4 V4 HS VS H6 Vl3
101.95 46.36 120.11 119.66

H7 V7 HS Vl H9 V9 HlO VlO Hll Vll H12 VlZ H13 V2 H14\/14
824.88 ||2258.57 | |647.27 | [653.50 ||1313.77[137.42 | [352.93 |[187.79
I
H15 VS
1435.54

Figure 4.11 The heap array after swapping H,, and H; in Figure 4.10.

Hy Vis
0.01

H, V, H, Vg
46.36 75.14

H3 V8 H4 VO H5 V5 H6 V13
101.95 52.65 120.11 119.66

Hy Va1[Hs Vi||Hg Vo|[Hi Vig||Hy Vag||Hia Vi | [Hiz Va|[HiaVas
824.88 |]2258.57||647.27 ||653.50 ||1313.77||137.42 |[352.93 []|187.79
I
His V4
1435.54

Figure 4.12 The heap array after swapping H; and H, in Figure 4.11.

vertices V4 and V|, depended on V5. The right neighbor of V;, was Vs, but is now
Vo- The left neighbor of V|, was Vs, but is now V4. The weights of V;, and V;; must be
recalculated because of the change of neighbors. The old weight for V,, is 187.79, and
the new weight is 164.52. The old weight for V| is 52.65, and the new weight is 52.77.

TeamLRN sPeCiAL

4.1 Level of Detail

319

H, V,

46.36

H3 V8
101.95

HO
1435.54

Vs

H,
52.65

Vo

H2 V6
75.14

H5 V5
120.11

H6 V13
119.66

H, V5| [Hg
824.88 ||2258.57 | | 647.27

Vi||[Hy Vo

HlO VlO

653.50

Hll Vll

1313.77

H12 V12

137.42

H13 V2
352.93

H 14 V14

187.79

Figure 4.13 The heap array after removing the contents of Hy and moving the contents of H,5 to

H,

Hl VO
52.65

H3 V8
101.95

H0 V4
46.36

H,
647.27

Vg

H2 V6
75.14

Hy

120.11

Vs

H6 V13
119.66

H, V;|[Hg

Vi||Hg V3

824.88 ||2258.57 | |1435.54

Hip Vi
653.50

Hll Vll

1313.77

Hip Vi,
137.42

H13 V2
352.93

HiqVig
187.79

Figure 4.14 The heap after swapping H, with H;, H, with H,, and H, with H,.

TeamLRN sPeCiAL

Neither change leads to an invalid heap, so no update of the heap array is necessary.
Figure 4.15 shows the state of the heap after the two weight changes. Figure 4.16 shows

the polygon of Figure 4.2 and the polygon with V;5 removed.

The next vertex to be removed is V. The contents of the last heap node H,, are
moved to the root, resulting in an invalid heap. Two swaps must occur, H, with H,
and H, with H;. Figure 4.17 shows the state of the heap after these changes.

The adjacent vertices whose weights must be updated are V3 and V. For V3, the
old weight is 1435.54, and the new weight is 1492.74. This does not invalidate the
heap at node Hy. For Vs, the old weight is 120.11, and the new weight is 157.11.

320 Chapter 4 Advanced Scene Graph Topics

Figure 4.15

Figure 4.16

TeamLRN sPeCiAL

Hy VY,
46.36

Hl VO HZ V6
52.77 75.14

HS V8 H4 V9 H5 V5 H6 Vl3
101.95 647.27 120.11 119.66

H7 V7 H8 Vl H9 V3 HlO VlO Hll Vll H12 V12 H13 V2 H14Vl4
824.88 ||2258.57 | |1435.54| [653.50 ||1313.77[[137.42 | [352.98 ||164.52

The heap after changing the weights on V{, and V},. The new weights are shown in
gray.

(b)

(a) The polygon of Figure 4.2 and (b) the polygon with V;5 removed.

This change invalidates the heap at node Hs. Nodes Hs and H;, must be swapped to
restore the heap. Figure 4.18 shows the state of the heap after the two weight changes
and the swap. Figure 4.19 shows the polygon of Figure 4.16(b) and the polygon with
V, removed.

The next vertex to be removed is V;,. The contents of the last heap node H; are
moved to the root, resulting in an invalid heap. Two swaps must occur, H, with H,
and H, with Hg. Figure 4.20 shows the state of the heap after these changes.

The adjacent vertices whose weights must be updated are V; and V},. The left
neighbor is processed first in the implementation. For V;,, the old weight is 164.52,

Figure 4.17

Figure 4.18

TeamLRN sPeCiAL

4.1 Level of Detail 321

HO VO
52.77

H; Vg Hy Ve
101.95 75.14

H3 V14 H4 V9 H5 V5 H6 V13
164.52 647.27 120.11 119.66

H7 V7 H8 Vl H9 V3 HlO VlO Hll Vll H12 V12 H13 V2
824.88 ||2258.57 | |1435.54| [653.50 ||1313.77|[137.42 | [352.93

The heap after moving H,, to H; and then swapping H, with H; and H, with H;.

HO VO
52.77

Hl V8 H2 V6
101.95 75.14

H3 V14 H4 V9 HS V12 HG V13
164.52 647.27 137.42 119.66

H7 V7 H8 Vl H9 V3 HlO VlO Hll Vll H12 V5 H13 V2
824.88 ||2258.57 | [1492.74[|653.50 |[1313.77 || 157.11 | |352.93

The heap after changing the weights on V3 and V5 and swapping Hs and H,. The
new weights are shown in gray.

and the new weight is 65.80. The heap is invalid since the parent node H, has a weight
that is larger than the weight at H;. Two swaps must occur, H; with H; and H; with
H,. For V|, the old weight is 2258.57, and the new weight is 791.10, but the heap is still
valid. Figure 4.21 shows the state of the heap after the weight change and the swaps.
Figure 4.22 shows the polygon of Figure 4.19(b) and the polygon with V;, removed.

The process is similar for the remaining vertices, removed in the order Viy, V,
Vs, Vs, Vio, Vo, Vi3, Vi, Vo, and V). Vertices V5, V3, and Vj; remain. Figure 4.23
shows the corresponding reduced polygons. Collapses occur from left to right, top to
bottom.

322 Chapter 4 Advanced Scene Graph Topics

Figure 4.19

Figure 4.20

TeamLRN sPeCiAL

(b)

(a) The polygon of Figure 4.16(b) and (b) the polygon with V, removed.

HO V6
75.14

Hl V8 HZ V13
101.95 119.66

H3 V14 H4 V9 H5 V12 H6 V2
164.52 647.27 137.42 352.93

Hy Vo [|Hg Vi||Hg Va|[Hio Vig[|[Hy Vaa|[Hz Vs
824.88 |]2258.57||1492.74(|653.50 ||1313.77||157.11

The heap after moving H,; to Hy, then swapping H,, with H, and H, with H,.

Dynamic Change in Level of Detail

The vertex collapses can be computed according to the algorithm presented previ-
ously. An application might want not only to decrease the level of detail by vertex
collapses, but also increase it on demand. To support this, the edge connectivity must
be stored with the polyline. The connectivity data structure will change based on the
given addition or removal of a vertex.

An array of edge indices is used to represent the connectivity. The initial con-
nectivity for an open polyline of n vertices is an array of 2n — 2 indices grouped in
pairs as (0, 1), (1, 2), ..., (n — 2, n — 1). A closed polyline has one additional pair,

Figure 4.21

Figure 4.22

TeamLRN sPeCiAL

4.1 Level of Detail 323

HO Vl4
65.80

Hl V6 H2 Vl3
75.14 119.66

H3 VS H4 V9 HS V12 H6 VZ
101.95 647.27 137.42 352.93

H7 V7 Hs Vl H9 V3 H10V10 Hll V11 H12 Vs
824.88 791.10 1492.74(1 653.50 1313.77]| 157.11

The heap after changing the weight on Vy,, swapping H; with H, and H, with H,,
and then changing the weight on V;. The new weights are shown in gray.

(a) (b)

(a) The polygon of Figure 4.19(b) and (b) the polygon with V;, removed.

(n — 1, 0). If vertex V; is removed, the pair of edges (i — 1, i) and (i, i + 1) must be
replaced by a single edge (i — 1, i 4+ 1). The change in level of detail amounts to in-
serting, removing, and modifying the elements of an array, but an array is not well
suited for such operations.

Instead, the initial array of edge indices should be sorted so that the last edge
in the array is the first one removed by a collapse operation. If the indices of the
collapsed vertices are sorted as ¢y, . . . , ¢,,_; where the last vertex in the array is the
first one removed by a collapse operation, then the initial edge array should be

(corco+ 1) (e, e+ 1), ev s {eyops €y + 1) = (egs - - - €2521)5

324 Chapter 4 Advanced Scene Graph Topics

11

5

9 9 9 9
10 10 10 10

13 i s 13 1" 7 13 1" s 13 1 13

Collapse V,, Collapse V, Collapse V Collapse Vg Collapse V,,

10

11

3 3 3
7 7 7 7
1 1 1 1
9 9
10
13 1" "

11 11

Collapse V, Collapse V5 Collapse V, Collapse V, Collapse V|

Figure 4.23 The remaining vertex collapses, occurring left to right, then top to bottom.

TeamLRN sPeCiAL

where the index sum i 4 1 is computed modulo n to handle both open and closed
polylines. To remove the vertex with index c,,_;, the last edge (e,,,_», €5,_;) is simply
ignored. In an implementation, an index to the last edge in the array is maintained.
When the level of detail decreases, that index is decremented. When the level in-
creases, the index is incremented. The removal of the edge indicates that the vertex
with index c,_; is no longer in the polyline. That same index occurs earlier in the
edge array and must be replaced by the second index of the edge. In the current ex-
ample, e,,_» =c,_;and e,,_; = c,,_; + 1. A search is made in the edge array for the
indexe,, | thatisalsoequaltoc,_;,thene, < ey,_;. The mappingm,_;should
be stored in order to increase the level of detail by restoring the original value of ¢,,,

toc,_;.

The algorithm is iterative. To remove the vertex with index ¢y, observe that e,;, =
¢y and ey = ¢, + 1. The edge quantity is decreased by one. A search is made in
(e - - > ey—y) for the index e, thatis equal to ¢y, then replacing e, < ey 1.
Adding the vertex with index ¢, back into the polyline is accomplished by replacing
< ¢;. The iteration stops when k =1 for open polylines so that the final line
segment is not collapsed to a single point. The iteration stops when k = 5 for closed
polylines so that the smallest level of detail is a triangle that is never collapsed to a

Emk

line segment.

4.1 Level of Detail 325

Table 4.1 The vertex collapses for the 16-sided polygon in Figure 4.2.

Vertex Map Edges

15 25 (3, 4)(11, 12)(7, 8)(1, 2)(9, 10)(10, 11)(13, 14)(2, 3)(12, 13)(8, 9)(5, 6)(6, 7)(14, 0)(0, 1)(4, 5)
4 1 (3, 5)(11, 12)(7, 8)(1, 2)(9, 10)(10, 11)(13, 14)(2, 3)(12, 13)(8, 9)(5, 6)(6, 7)(14, 0)(0, 1)
0 25 (3, 5)(11, 12)(7, 8)(1, 2)(9, 10)(10, 11)(13, 14)(2, 3)(12, 13)(8, 9)(5, 6)(6, 7) (14, 1)

14 13 (3, 5)(11, 12)(7, 8)(1, 2)(9, 10)(10, 11)(13, 1)(2, 3)(12, 13)(8, 9)(5, 6)(6, 7)

6 21 (3, 5)(11, 12)(7, 8)(1, 2)(9, 10)(10, 11)(13, 1)(2, 3)(12, 13)(8, 9)(5, 7)

5 1 (3, 7)(11, 12)(7, 8)(1, 2)(9, 10)(10, 11)(13, 1)(2, 3)(12, 13)(8, 9)

8 5 (3, 7){(11, 12)(7, 9)(1, 2)(9, 10)(10, 11)(13, 1)(2, 3)(12, 13)

12 3 (3, 7)(11, 13(7, 9)(1, 2)(9, 10)(10, 11)(13, 1){2, 3)

2 7 (3, 7)(11, 13)(7, 9)(1, 3)(9, 10)(10, 11)(13, 1)

13 3 (3, 7)(11, 1)(7, 9)(1, 3)(9, 10)(10, 11)

10 9 (3, 7)(11, 1(7, 9)(1, 3)(9, 11)

9 5 (3, 7)(11, 1(7, 11)(1, 3)

1 3 3, 7)(11, 3)(7, 11)

TeamLRN sPeCiAL

Consider the example shown previously that consisted of a 16-sided polygon. The
vertex indices ordered from last removed to first removed are 3, 11, 7, 1, 9, 10, 13, 2,
12, 8,5, 6, 14, 0, 4, 15. The initial edge array is

(3, 4)(11, 12)(7, 8)(1, 2)(9, 10)(10, 11)(13, 14)(2, 3)(12, 13)
(8, 9)(5, 6)(6, 7)(14, 15)(0, 1)(4, 5)(15, 0),

and the edge quantity is Q, = 16. The vertex quantity is Q, = 16. The removal of
V15 is accomplished by decrementing Q,, = 15 and Q, = 15. The last edge (15, 0) is
ignored (iterations over the edges use Q, as the upper bound for the loop index).
A search is made in the first 15 edges for index 15 and is found at ¢[25] (in the
edge (14, 15)). That index is replaced by e[25] = 0, where 0 is the second index of
the removed edge (15, 0). The mapping index is m5 = 25. Table 4.1 lists the vertex
collapses, the mapping indices, and the edge array (only through the valid number of
edges).

Given the final triangle after all collapses, to restore vertex Vo we need to incre-
ment Q, to 4, increment Q, to 4, and set ¢[5] =9, where 5 is the mapping index
associated with Vi,

326 Chapter 4 Advanced Scene Graph Topics

TeamLRN sPeCiAL

Reordering Vertices

In an application that wants to rigidly transform the polyline, it might be useful to
have the vertices at any level of detail stored as a packed array. This supports any
optimized code for batch-transforming a contiguous block of vertices. The collapse
indices (¢, ¢y, - - -, ¢,_1) represent a permutation of (0, 1, . .., n — 1). The vertices
themselves can be reordered using this permutation. Subsequently, the edge indices
themselves must be converted properly. The reindexing requires the inverse permu-
tation, (dy, dy, - . ., d,_;), where d.. = i. The mapping index does not change since
the edge reindexing does not change the order of items in the edge array. If U; are the
reordered vertices, then U; = Ve, If an edge is E = (¢;, e j), then the reindexed edge
is F = (d,,, d,)-
For example, the inverse permutation for

c=3,11,7,1,9,10,13,2,12,8, 5, 6, 14, 0, 4, 15)
is

d=(13,3,7,0, 14, 10,11,2,9, 4, 5, 1, 8, 6, 12, 15).
The initial edge array is

(0, 14)(1, 8)(2, 9)(3, 7)(4, 5)(5, 1)(6, 12)(7, 0)(8, 6)(9, 4)(10, 11)(11, 2)
(12, 15)(13, 3)(14, 10)(15, 13).

The vertex collapse table from the last example is reindexed, as shown in Table 4.2.

Triangle Mesh Decimation

The ideas for line mesh decimation apply directly to triangle mesh decimation, but
there are many more tedious details to take care of. A vertex collapse for a line mesh
amounted to removing a vertex of minimum weight and then informing its right
neighbor to connect itself to the left neighbor. For a triangle mesh, the equivalent
concept is an edge collapse. An edge (v, v;) of minimum weight is removed. The
vertex vy is the keep vertex and v, is the throw vertex. The edge and v, are removed
from the mesh. All triangles sharing the edge are deleted. All remaining triangles
sharing v, have it replaced by v;. A typical example is shown in Figure 4.24.

The first collapse is from the upper-left image to the upper-right image. The edge
(vy, vy) is removed. The keep vertex is v,, and the throw vertex is v,. The triangles
(v2, Vg, vy) and (vy, vy, v3) are removed. The remaining triangles that shared vertex
v, now have that vertex replaced by v,.

The second collapse is from the upper-right image to the lower-right image. The
edge (v,, vg) is removed. The keep vertex is v,, and the throw vertex is vg. The

4.1 Level of Detail 327

Table 4.2 The vertex collapses for the previous example.

Vertex ~ Map Edges

15 25 (0, 14)(1, 8)(2, 9)(3, 7)(4, 5)(5, 1)(6, 12)(7, 0)(8, 6)(9, 4)(10, 11)(11, 2)(12, 13)(13, 3)(14, 10)
14 1 (0, 10)(1, 8)(2, 9)(3, 7)(4, 5)(5, 1)(6, 12)(7, 0)(8, 6)(9, 4)(10, 11)(11, 2)(12, 13)(13, 3)
13 25 (0, 10)(1, 8)(2, 9)(3, 7)(4, 5)(5, 1)(6, 12)(7, 0)(8, 6)(9, 4)(10, 11)(11, 2)(12, 3)

12 13 (0, 10)(1, 8)(2, 9)(3, 7) (4, 5)(5, 1)(6, 3)(7, 0)(8, 6)(9, 4)(10, 11)(11, 2)

11 21 (0, 10)(1, 8)(2, 9)(3, 7) (4, 5)(5, 1)(6, 3)(7, 0)(8, 6)(9, 4)(10, 2)

10 1 (0, 2)(1, 8)(2, 9)(3, 7){4, 5)(5, 1)(6, 3)(7, 0)(8, 6)(9, 4)

9 5 (0, 2)(1, 8)(2, 4)(3, 7)(4, 5)(5, 1)(6, 3)(7, 0)(8, 6)

8 3 (0, 2)(1, 6)(2, 4)(3, 7)(4, 5)(5, 1)(6, 3)(7, 0)

7 7 (0, 2)(1, 6)(2, 4)(3, 0)(4, 5)(5, 1)(6, 3)

6 3 (0, 2)(1, 3)(2, 4)(3, 0) (4, 5)(5, 1)

5 9 (0, 2)(1, 3)(2, 4)(3, 0)(4, 1)

4 5 (0, 2)(1, 3)(2, 1)(3, 0)

3 3 (0,2)(1,0)(2, 1)

TeamLRN sPeCiAL

triangles (v, vg, v3), (Vy, Vg, U7), and (v, vs, vg) are removed. No other triangles
shared vg, so the remaining triangles need no adjusting.

The third collapse is from the lower-right image to the lower-left image. The
edge (v,, v;) is removed. The keep vertex is v,, and the throw vertex is v;. The
triangles (v,, vy, vg) and (v,, v3, v;) are removed. No other triangles shared v, so
the remaining triangles need no adjusting.

A not-so-typical example that illustrates how a mesh can fold over, independent
of the geometry of the mesh, is shown in Figure 4.25. In Figure 4.25(a), the triangles
are counterclockwise ordered as (0, 4, 3), (4, 1, 2), and (4, 2, 3). The collapse of
vertex 4 to vertex 0 leads to deletion of (0, 4, 3) and modification of (4, 1, 2) to
(0, 1, 2) and modification of (4, 2, 3) to (0, 2, 3). Both modified triangles are visible
in the figure as counterclockwise.

In Figure 4.25(b), the modified triangle (0, 2, 3) is counterclockwise. This is by
design; collapses always preserve this. But the triangle appears to be clockwise in the
figure: upside down, it folded over. We can avoid the problem by doing a look-ahead
on the collapse. If any potentially modified triangle causes a folding, we assign an
infinite weight to the offending edge to prevent that edge from collapsing.

Another issue when collapsing edges in an open mesh is that the mesh can shrink.
To avoid shrinking, we can also assign infinite weights to boundary edges of the
original mesh. And finally, if we want to preserve the mesh topology, we can assign
infinite weights to edges with three or more shared triangles.

328 Chapter 4 Advanced Scene Graph Topics

coll<2, 4>

\coll<2, 6>

5
|

coll<2, 1>

N

Figure 4.24 A sequence of three edge collapses in a triangle mesh.

A well-chosen set of data structures is needed to support edge collapse operations.
It is sufficient to store the following information about the mesh:

Vertex =

{
int V; // index into vertex array
EdgeSet E; // edges sharing V

TriangleSet T; // triangles sharing vertex

Edge =

{
int V0, V1; // store with VO = min(V0,V1)
TriangleSet T; // triangles sharing edge
int H; // index into heap array
float W; // weight of edge

}

Triangle =

{
int V0, V1, V2; // store with VO = min(V0,V1,V2)
int T; // unique triangle index

TeamLRN sPeCiAL

4.1 Level of Detail 329

2 1 2 1
coll<0, 4>
3\\\\i/ 3
0 0
(a)
z 1 2 1
coll<0, 4>
3 4
0 0
(b)

Figure 4.25 An edge collapse resulting in the mesh folding over on itself: (a) no folding and
(b) folding.

An insert operation modifies the appropriate data structures and creates new
components only when necessary. A remove operation also modifies the data struc-
tures and deletes components only when their reference counts decrease to zero.

The heap is implemented as an array of pointers to Edge objects. It is initialized
just as for polylines. An iteration is made over the edges in the mesh, and the heap
array values are filled in. An initial sort is made to force the array to represent a min
heap. Some pseudocode for the edge collapse is

void EdgeCollapse (int VKeep, int VThrow)
{

for each triangle T sharing edge <VKeep,VThrow> do
RemoveTriangle(T);

for each triangle T sharing VThrow do

{
RemoveTriangle(T);
replace VThrow in T by VKeep;

TeamLRN sPeCiAL

330 Chapter 4 Advanced Scene Graph Topics

TeamLRN sPeCiAL

InsertTriangle(T);

// Set of potentially modified edges consists of all edges
// shared by the triangles containing the VKeep. Modify
// the weights and update the heap.
EdgeSet Modified;
for each triangle T sharing VKeep do

insert edges of T into Modified;

for each edge E in Modified do
{
compute weight E.W;
update the heap at index E.H;

During the insertion and removal of triangles, edges are inserted and/or deleted
in a weak sense. Multiple attempts are made to insert an edge shared by two modified
triangles. Each time the attempt occurs, the offending triangle has changed, so the
edge weight changes. To reduce the code complexity, we just allow the edge weight
to be updated each time rather than trying to minimize the number of updates. Of
course, if an edge is inserted the first time, its weight is newly added to the heap.

When an edge is deleted, it must be removed from the heap. However, the edge
might not be at the root of the heap. You may artificially set the weight to be —oo and
call the heap update to bubble the edge to the root of the heap, and then remove it.

Vertices are also deleted and sometimes inserted. Although the edge collapse
makes it appear as if only the throw vertex is deleted, others can be. After each
collapse, you can store the deleted vertex indices in an array that eventually represents
the permutation for reordering vertices.

The function that removes triangles can be set up to store an array of the deleted
triangle indices for use in reordering the triangle connectivity array.

After all edge collapses, you can build the collapse records using the pseudocode

CollapseRecord

{
int VKeep, VThrow; // the edge to collapse
int VQuantity; // vertices remaining after the collapse
int TQuantity; // triangles remaining after the collapse

// connectivity indices in [0..7Q-1] that contain VThrow
int IQuantity;
int Index[];

TeamLRN sPeCiAL

4.1 Level of Detail 331

Dynamic Change in Level of Detail

Each edge collapse in the triangle decimation generated a set of deleted vertices and
a set of deleted triangles. This information is used to generate a sequence of records
representing the collapses. The sequence can be used at run time to change the level
of detail. Just as for polylines, sort the triangle index array so that the last triangles
in the array are the first triangles deleted by an edge collapse. Sort the vertices so that
the last vertices in the array are the first vertices deleted by an edge collapse. This
requires permuting the indices in the triangle connectivity array—something done
as a postprocessing step to the edge collapses.

To decrease the level of detail: Decrement the index array quantity by the amount
stored in the corresponding record. Replace the appropriate indices in the first part
of the array by the index of the deleted vertex.

To increase the level of detail: Increment the index array quantity by the amount
stored in the corresponding record. Restore the appropriate indices in the first part
of the array. This requires remembering where you changed the indices with each
collapse. This mapping can be computed once, at decimation time, and then used
during run time.

The vertex reordering supports batch transforming of contiguous blocks of ver-
tices and avoids having to repack data for the renderer each time the level of detail
changes.

Source Supporting Continuous Level of Detail

The source files that implement the scheme described here are in the Detai1 subfolder
of the Source folder. In particular, look at the files with first names Wm3CreateClodMesh,
Wm3Co1lapseRecord, and Wm3ClodMesh. The class for triangle mesh decimation is Cre-
ateClodMesh. The public portion of the interface is

class CreateClodMesh

{
public:
CreateClodMesh (int iVQuantity, Vector3f* akVertex,
int iTQuantity, int* aiTConnect, int& riCQuantity,
CollapseRecord*& rakCRecord);

~CreateClodMesh ();

template <class T> void Reorder (T*& ratVertexAttribute);

}s

The creation of the collapse records and reordering of the vertex and index arrays
in the Wild Magic version 3 implementation are nearly the same as what appeared in

332 Chapter 4 Advanced Scene Graph Topics

TeamLRN sPeCiAL

Wild Magic version 2. One major difference, though, is in how vertex attributes are
handled. In version 2, you had to pass the color, normal, and/or texture coordinate
arrays to the CreateClodMesh constructor. The attributes were reordered using the
same permutation applied to the array of vertex locations. In version 3, you reorder
the vertex attributes after the construction of the collapse records. The template
class member function Reorder does the work. The version 2 code could not handle
additional attributes such as texture coordinates for multiple textures. The idea in
version 3 is that you can reorder as many arrays of attributes as you like.

Also, the version 2 class was derived from a base class that provided the vertex-
edge-triangle data structure to support dynamic insertion and removal of mesh
items. The base class had a lot of operations not needed by triangle mesh decimation.
In version 3, I have removed that base class and implemented the data structures
directly in CreateClodMesh.

The source code for CreateClodMesh is about 1200 lines of tedious details. Such
is the fate of dynamic manipulation of meshes. If you can follow the high-level
description I provided previously, you should be able to trace your way through the
source code to understand how it relates to the discussion.

The class ClodMesh is derived from TriMesh. The public interface is

class ClodMesh : public TriMesh
{
public:
// Construction and destruction. ClodMesh accepts
// responsibility for deleting the input arrays.
ClodMesh (Vector3fArrayPtr spkVertices, IntArrayPtr spkIndices,
bool bGenerateNormals, int iRecordQuantity,
CollapseRecord* akRecord);

virtual ~ClodMesh ();

// LOD selection is based on manual selection by the

// application. To use distance from camera or screen space
// coverage, derive a class from WmlClodMesh and override

// 'GetAutomatedTargetRecord'.

int GetRecordQuantity () const;

int& TargetRecord ();

virtual int GetAutomatedTargetRecord ();

// Geometric updates. The Draw method will call this update
// and adjust the TriMesh quantities according to the current
// value of the target record. You can call this manually in
// an application that does not need to display the mesh.
void SelectLevelOfDetail ();

TeamLRN sPeCiAL

4.1 Level of Detail 333

You must create the collapse records using CreateClodMesh for the triangle meshes
of interest and then pass these to the constructor of ClodMesh. As the source code
comments indicate, you can manually set the target record in the sequence of collapse
records. The next drawing operation will internally call the function SelectLevel-
0fDetail, which updates the active vertex quantity and the active triangle quantity. To
automate the selection of the target record, you need only derive a class from C1odMesh
and override the GetAutomatedTargetRecord.

The sample application in the folder

MagicSoftware/WildMagic3/Test/TestClodMesh

illustrates how to use CreateClodMesh to decimate a TriMesh object that represents
a face and then create a ClodMesh object. The selection of the target record is based
on the distance from the eye point to the center of the world bounding sphere for
the mesh. The further away from the eye point the bounding sphere gets, the fewer
triangles are used in the face. The following function controls the target record when
the camera moves forward in the view direction:

void TestClodMesh::MoveForward ()

{

Application::MoveForward();

Vector3f kDiff = m_spkScene->WorldBound->Center
- m_spkCamera->GetWorldLocation();
float fDepth = kDiff.Dot(m_spkCamera->GetWorldDVector());
if (fDepth <= m_spkCamera->GetDMin())
{
m_spkClod->TargetRecord() = 0;
}
else if (fDepth >= m_spkCamera->GetDMax())
{
m_spkClod->TargetRecord() =
m_spkClod->GetRecordQuantity() - 1;

else

// Distance along camera direction controls triangle
// quantity.

float fN = m_spkCamera->GetDMin();

float fF = m_spkCamera->GetDMax();

float fRatio = (fDepth - fN)/(fF - fN);

// allow nonlinear drop-off
fRatio = Mathf::Pow(fRatio,0.5f);

334 Chapter 4 Advanced Scene Graph Topics

4.1.5

TeamLRN sPeCiAL

int iMaxIndex = m_spkClod->GetRecordQuantity() - 1;
int iIndex = (int) (iMaxIndex*fRatio);
m_spkClod->TargetRecord() = iIndex;

The base class MoveForward is called first, so the camera is moved a small amount
in the view direction. The vector difference between the eye point and the world
bounding sphere is projected onto the view direction. The length of the projection is
the fDepth variable in the code. If that depth is smaller than the near plane distance,
the target record is set to the first one in the list of collapse records, resulting in
all triangles in the mesh being displayed (at least those still in the view frustum).
If the depth is larger than the far plane distance, the target record is set to the last
collapse record, in which case the coarsest-resolution mesh is used for drawing the
face. The face edges were assigned infinite weight, so the mesh becomes flat only but
does not shrink. For depths between the near and far values, the target record index is
chosen between the minimum and maximum indices using a fractional power of the
same proportion that the depth has relative to the near and far distances of the view
frustum. A linear proportion could be used, but I wanted the quantity of triangles
drawn to drop off more rapidly as the face moves away from the eye point. I will save
the screen shots of this for the discussion of sample applications in Section 8.2.5.

INFINITE LEVEL OF DETAIL

The classical way for obtaining infinite level of detail is to start with a functional
definition of a surface,

P(u, v) = (x(u, v), y(u, v), z(u, v))

for the parameters (1, v) either in a rectangle domain, usually 0 <u <1 and 0 <
v < 1, or in a triangular domain, usually # > 0, v > 0, and u + v < 1. The parameter
domain is subdivided into triangles and the corresponding vertices are on the 3D
triangle mesh. For example, a rectangle domain can be subdivided a few steps as
shown in Figure 4.26. A triangle domain can be subdivided a few steps as shown in
Figure 4.27.

You have a lot of choices for surface functions to control the actual vertex loca-
tions associated with the input parameters. This topic is covered in more detail in
Section 4.3.

Another possibility for infinite level of detail is subdivision surfaces. These surfaces
are generated by starting with a triangle (or polygon) mesh. A refinement phase cre-
ates new vertices and reconnects them to create new (and usually smaller) triangles. A
smoothing phase moves the vertices to new locations. These two phases are repeated
alternately to any level of detail you prefer. Unlike parametric surfaces, subdivision
surfaces do not have a closed-form expression for the vertex locations. However, such

Figure 4.26

Figure 4.27

4.2 Sorting 335

A few subdivisions of a rectangle domain into triangles.

A few subdivisions of a triangle domain into triangles.

expressions are not really necessary if your goal is to generate some shapes for dis-
play. Vertex normals can be computed from the mesh of triangles without relying on
a parametric formula for the surface normals. Wild Magic version 3 does not imple-
ment subdivision surfaces, so I do not describe them in this book. For a well-written
summary of the topic, see [AMHO02].

4.2 SORTING

TeamLRN sPeCiAL

The classic reason for geometric sorting is for correct drawing of objects, both opaque
and semitransparent. The opaque objects should be sorted from front to back, based
on an observer’s location, and the semitransparent objects should be sorted from
back to front. The sorted opaque objects are drawn first, and the sorted semitrans-
parent objects are drawn second.

Geometric sorting is not the only important reason for reorganizing your objects.
In many situations, changes in the render state can cause the renderer to slow down.
The most obvious case is when you have a limited amount of VRAM and more
textures than can fit in it. Suppose you have a sequence of six objects to draw, S;
through Sg, and each object has one of three texture images assigned to it. Let [}, I,,
and /5 be those images; assume they are of the same size and that VRAM is limited in
that it can only store two of these at a time. Suppose the order of objects in the scene

336 Chapter 4 Advanced Scene Graph Topics

4.2.1

TeamLRN sPeCiAL

leads to the images being presented to the renderer in the order Iy, I, I3, Iy, I, I5.
To draw S, I is loaded to VRAM and the object is drawn. Image I, is then loaded to
VRAM and S, is drawn. To draw S, image I3 must be loaded to VRAM. There is no
room for it, so one of the images must be discarded from VRAM. Assuming a “least
frequently used” algorithm, /; is discarded. At that point /5 is loaded, in which case
VRAM stores I, and I3, and S is drawn. S, requires /; to be loaded to VRAM. That
image was just discarded, so it needs to be loaded again. Since I, is the least frequently
used, it is discarded and /| is loaded. Now VRAM stores /5 and /. S, may be drawn. S
requires /, to be in VRAM. Once again we have the undesirable situation of having
to reload an image that was just discarded. When all six objects have been drawn,
VRAM has performed four discard operations. Since sending large textures across
the memory bus to the graphics card is expensive, the discards can really reduce the
frame rate.

If we were instead to sort the objects by the images that they use, we would have
S Sy S5, S5, S3, and Sg. Image 1 is loaded to VRAM, and S is drawn. We can
immediately draw S, since it also uses /; and that image is already in VRAM. Image
I, is loaded to VRAM, and both S, and S5 are drawn. In order to handle the last two
objects, VRAM must discard [}, load I3, and then draw S; and Sg. In this drawing
pass, only one discard has occurred. Clearly the sorting by texture image buys you
something in this example.

In general, if your profiling indicates that a frequent change in a specific render
state is a bottleneck, sorting the objects by that render state should be beneficial. You
set the render state once and draw all the objects.

The first three topics in this section are about geometric sorting. The first is on
sorting of spatial regions using binary space partitioning trees (BSP trees). The BSP
trees are not used for partitioning triangle meshes. The second is about portals, an
automatic method to cull nonvisible geometric objects. The third is on sorting the
children at a node. Since a drawing pass uses a depth-first traversal, the order of the
children is important. The last topic of the section is on deferred drawing to support
sorting by render state.

BINARY SPACE PARTITIONING TREES

As T have mentioned a few times, I use BSP trees to partition the world as a coarse-
level sorting, not to partition the data in the world. The basic premise is illustrated in
Figure 4.28.

A line partitions the plane into two half planes. The half plane to the side that the
line normal points is gray. The other half plane is white. The view frustum overlaps
both half planes. The eye point is in the white half plane. The region that the view
frustum encloses is the only relevant region for drawing purposes. If you draw a
ray from the eye point to any point inside the gray subregion of the frustum (a
line of sight, so to speak), that ray will intersect any objects in the white subregion
before it intersects any objects in the gray subregion. Consequently, no object in the

Figure 4.28

TeamLRN sPeCiAL

4.2 Sorting 337

~

An illustration of BSP tree sorting in two dimensions.

gray subregion can occlude an object in the white subregion. If the objects in the
gray subregion are drawn so that the depth buffer is correctly written with depth
information, you can draw the objects in the white subregion with depth buffering
set to write-only. It is not necessary to read the depth buffer for comparisons because
you already know the objects in the white subregion occlude anything in the gray
subregion.

A frequent use of BSP trees is where the separating planes are actual geometry in a
level, most notably walls, floors, and ceilings. If a wall plane splits space into two half
spaces, and if one half space is behind the wall and never visible to the observer, then
you do not even need to draw the region behind the wall. In Wild Magic, disabling
drawing a half space is accomplished by setting the Spatial::ForceCull flag to true.

The classical BSP node in a scene graph has a separating plane and two children.
One child corresponds to the half space on one side of the plane; the other child
corresponds to the other half space. The child subtrees represent those portions of
the scene in their respective half spaces. My BSP node stores three children: two to
represent the portions of the scene in the half spaces, and the third to represent any
geometry associated with the separating plane. For example, in a level with walls, the
wall geometry will be part of the scene represented by the third child. The class is
BspNode and its interface is

class BspNode : public Node

{

pubTic:
BspNode ();
BspNode (const Plane3f& rkModelPlane);
virtual ~BspNode ();

SpatialPtr AttachPositiveChild (Spatial* pkChild);
SpatialPtr AttachCoplanarChild (Spatial* pkChild);
SpatialPtr AttachNegativeChild (Spatial* pkChild);

338 Chapter 4 Advanced Scene Graph Topics

TeamLRN sPeCiAL

SpatialPtr DetachPositiveChild ();
SpatialPtr DetachCoplanarChild ();
SpatialPtr DetachNegativeChild ();
SpatialPtr GetPositiveChild ();
SpatialPtr GetCoplanarChild ();
SpatialPtr GetNegativeChild ();

Plane3f& ModelPlane ();
const Plane3f& GetModelPlane () const;
const Plane3f& GetWorldPlane () const;

Spatial* GetContainingNode (const Vector3f& rkPoint);

protected:
// geometric updates
virtual void UpdateWorldData (double dAppTime);

// drawing
virtual void Draw (Renderer& rkRenderer, bool bNoCull = false);

Plane3f m_kModelPlane;
Plane3f m_kWorldPlane;

The class is derived from Node. The BspNode constructors must create the base class
objects. They do so by requesting three children, but set the growth factor to zero; that
is, the number of children is fixed at three. The child at index 0 is associated with the
positive side of the separating plane; that is, the half space to which the plane normal
points. The child at index 2 is associated with the negative side of the separating
plane. The child at index 1 is where additional geometry may be attached such as
the triangles that are coplanar with the separating plane. Rather than require you to
remember the indexing scheme, the Attach*, Detach*, and Get* member functions
are used to manipulate the children.

The separating plane is specified in model space coordinates for the node. The
model-to-world transformations are used to transform that plane into one in world
coordinates. This is done automatically by the geometric state update system via a call
to UpdateGS, through the virtual function UpdateWorldData:

void BspNode::UpdateWorldData (double dAppTime)

{
Node: :UpdateWorldData (dAppTime);
m_kWor1dPlane = World.ApplyForward(m_kModelPlane);

TeamLRN sPeCiAL

4.2 Sorting 339

The base class UpdateWorldData is called first in order to guarantee that the model-to-
world transformation for BspNode is up to date.

The Transformation class has a member function for transforming a plane in
model space to one in world space, namely, ApplyForward. Let X be a point in model
space and Y = RSX + T be the corresponding point in world space, where S is
the diagonal matrix of world scales, R is the world rotation, and T is the world
translation. Let the model space plane be Nj, - X = ¢, where N, is a unit-length
normal vector. The inverse transformation is X = ST'RT(Y — T). Replacing this in
the plane equation and applying some algebra leads to a world plane N; - Y = ¢,
where

N1:R571N0 and CIZCO+N1'T.

If the scale matrix S is not the identity matrix, then N is not unit length. In this case
it must be normalized and the constant adjusted,

resulting in the world plane N} - Y = ¢].

The virtual function Draw is implemented in BspNode. It is designed to draw ac-
cording to the description I provided previously, the one associated with Figure 4.28.
The source code is

void BspNode::Draw (Renderer& rkRenderer, bool bNoCull)
{
// draw children in back-to-front order
SpatialPtr spkPChild = GetPositiveChild();
SpatialPtr spkCChild = GetCoplanarChild();
SpatialPtr spkNChild = GetNegativeChild();

CameraPtr spkCamera = rkRenderer.GetCamera();

int ilocSide = m_kWorldPlane.WhichSide(
spkCamera->GetWorldLocation());

int iFruSide = spkCamera->WhichSide(m_kWorldPlane);

if (iLocSide > 0)
{

// camera origin on positive side of plane

if (iFruSide <= 0)

{
// The frustum is on the negative side of the plane or
// straddles the plane. In either case, the negative
// child is potentially visible.

340 Chapter 4 Advanced Scene Graph Topics

if (spkNChild)
spkNChild->Draw(rkRenderer,bNoCull);

}
if (iFruSide == 0)
{
// The frustum straddles the plane. The coplanar child
// is potentially visible.
if (spkCChild)
spkCChild->Draw(rkRenderer,bNoCull);
}

if (iFruSide >= 0)
{
// The frustum is on the positive side of the plane or
// straddles the plane. In either case, the positive
// child is potentially visible.
if (spkPChild)
spkPChild->Draw(rkRenderer,bNoCull);

}
else if (iLocSide <0)
{

// camera origin on negative side of plane

if (iFruSide >= 0)
{
// The frustum is on the positive side of the plane or
// straddles the plane. In either case, the positive
// child is potentially visible.
if (spkPChild)
spkPChild->Draw(rkRenderer,bNoCull);

}
if (iFruSide == 0)
{
// The frustum straddles the plane. The coplanar child
// is potentially visible.
if (spkCChild)
spkCChild->Draw(rkRenderer,bNoCull);
}

TeamLRN sPeCiAL

4.2 Sorting

if (iFruSide <= 0)
{
// The frustum is on the negative side of the plane or
// straddles the plane. In either case, the negative
// child is potentially visible.
if (spkNChild)
spkNChild->Draw(rkRenderer,bNoCull);

else

// Camera origin on plane itself. Both sides of the plane
// are potentially visible as well as the plane itself.
// Select the first-to-be-drawn half space to be the one to
// which the camera direction points.
float fNdD = m_kWor1dPTane.Normal.Dot (
spkCamera->GetWorldDVector());
if (fNdD >= 0.0f)
{
if (spkPChild)
spkPChild->Draw(rkRenderer,bNoCull);

if (spkCChild)
spkCChild->Draw(rkRenderer,bNoCull);

if (spkNChild)
spkNChild->Draw(rkRenderer,bNoCull);
1

else

{
if (spkNChild)
spkNChild->Draw(rkRenderer,bNoCull);

if (spkCChild)
spkCChild->Draw(rkRenderer,bNoCull);

if (spkPChild)
spkPChild->Draw(rkRenderer,bNoCull);

TeamLRN sPeCiAL

341

342 Chapter 4 Advanced Scene Graph Topics

TeamLRN sPeCiAL

The three children must be drawn in back-to-front order. It is possible that any of
the three children have empty subtrees, so the smart pointers for those children must
be tested to see if they are not null before using them.

The first step, of course, is to determine on which side of the separating plane the
eye point is located. This is the role of the code

CameraPtr spkCamera = rkRenderer.GetCamera();

int iLocSide = m_kWorldPlane.WhichSide(
spkCamera->GetWorldLocation());

int iFruSide = spkCamera->WhichSide(m_kWorldPlane);

As Figure 4.28 indicates, we also need to know how the view frustum is positioned
relative to the separating plane. The Plane class has a member function WhichSide
that determines whether the input point is on the positive side of the plane (return
value is positive), on the negative side of the plane (return value is negative), or on the
plane (return value is zero). The Camera class has a member function WhichSide that
tests the eight vertices of the view frustum to see on which side of the plane they lie.
If all eight lie on the positive side of the plane, the return value is positive. If all eight
lie on the negative side of the plane, the return value is negative. Otherwise, some of
the eight lie on the positive side and some lie on the negative side, and the function
returns zero.

Consider the block of code when the eye point is on the negative side of the plane.
This is the configuration in Figure 4.28. If the view frustum is on the positive side
of the plane or straddles the plane, the gray subregion must be drawn first. This is
the positive child of the BSP node. As you can see in the code, that child is drawn
first. If the frustum is fully on the positive side, then the separating plane does not
cut through it, so any geometry associated with that plane need not be drawn. If
the separating plane does intersect the frustum, then you should draw the geometry
for the plane (if any). The code block that compares iFruSide to zero handles this.
Naturally, when the frustum straddles the plane, you also need to draw the negative
child. That is the last code block in the clause that handles the eye point on the
negative side of the plane.

A technical complication appears to be what to do when the eye point is exactly
on the separating plane. For an environment where you have walls as the separating
planes, you would actually prevent this case, either by some metaknowledge about
the structure of the environment and the eye point location or by a collision detection
system. As it turns out, there is nothing to worry about here. Any ray emanating from
the eye point through the frustum is either fully on one side of the plane, fully on the
other side, or in the plane itself. In my code, though, I choose to order the drawing of
the children based on the half space that contains the camera view direction.

In the code block when the eye point is on the negative side of the plane, the view
frustum straddles the plane, and the BSP node has three children, all the children will
be drawn. In the example of an environment where the plane of a wall is used as the
separating plane, the child corresponding to the nonvisible half space does not need

4.2 Sorting 343

to be drawn. You, the application writer, must arrange to set the ForceCull flag to
true for that child so that the drawing pass is not propagated down the corresponding
subtree. That said, it is possible that the camera moves along the wall to a doorway
that does let you see into the space behind the wall. In this case you need to structure
your application logic to set/unset the ForceCul1 flag according to the current location
of the eye point. This is the stuff of occlusion culling in a game, essentially keeping a
map of the world that helps you identify which objects are, or are not, visible from a
given region in the world.

The leaf nodes of a BSP tree implicitly represent a region of space that is convex.
The region is potentially unbounded. Many times it is useful to know which of these
convex regions a point is in. The function

Spatial* GetContainingNode (const Vector3f& rkPoint);

is the query that locates the region. The return value is not necessarily of type BspNode.
The leaf nodes of the BSP tree can be any Spatial-derived type you prefer.

A sample application in the folder demonstrates BSP trees used for spatial parti-
tioning.

MagicSoftware/WildMagic3/Test/TestBspNode

More details are provided in Section 8.2.2, but for now suffice it to say that the
world is partitioned into five convex regions. Four regions contain one object each,
and the fifth region contains two objects. Depth buffering is disabled at the root of
the scene. Some of the one-object regions contain convex polyhedra. When the BSP
tree drawing reaches those regions, the polyhedra are drawn with depth buffer reads
disabled and depth buffer writes enabled. In the regions that have nonconvex objects
(torii), depth buffer reads and writes are enabled to get correct drawing.

4.2.2 PORTALS

TeamLRN sPeCiAL

The portal system is designed for indoor environments where you have lots of regions
separated by opaque geometry. The system is a form of occlusion culling and attempts
to draw only what is visible to the observer. The regions form an abstract graph.
Each region is a node of the graph. Two regions are adjacent in the graph if they are
adjacent geometrically. A portal is a doorway that allows you to look from one region
into another region adjacent to it. The portals are the arcs for the abstract graph.
From a visibility perspective, a portal is bidirectional. If you are in one region and
can see through a doorway into an adjacent room, then an observer in the adjacent
region should be able to look through the same doorway into the original region.
However, you can obtain more interesting effects in your environment by making
portals unidirectional. The idea is one of teleportation. Imagine a region that exists
in one “universe” and allows you to look through a portal into another “universe.”

344 Chapter 4 Advanced Scene Graph Topics

Figure 4.29

TeamLRN sPeCiAL

Once you step through the portal, you turn around and look back. The portal is not
there! I am certain you have seen this effect in at least one science-fiction movie. The
Wild Magic engine implements portals to be unidirectional.

The portal system is also a form of sorting in the following sense. The drawing
pass starts in one region. The standard depth-first traversal of the subscene rooted at
the region node is bypassed. Instead, the drawing call is propagated to regions that
are adjacent to the current one and that are visible through portals. Effectively, the
regions are sorted based on visibility. Suppose you have three regions (A, B, and C)
arranged along a linear path, each having portals into the adjacent regions. If you are
in region A and can see through a portal to B, and you can additionally see through
a portal in B to the region C, then C is the farthest region you can see from your
current position. Region C should be drawn first, followed by region B, and then
your own region A. The drawing pass must be careful to prevent cycles in the graph.
The system does have Boolean flags to tag regions whenever they have been visited.
These flags prevent multiple attempts to draw the regions.

The Wild Magic portal system uses a BSP tree to decompose the indoor envi-
ronment. The leaf nodes of the BSP tree are convex regions in space. The class Con-
vexRegion is derived from Node and is used to represent the leaf nodes. Any geometric
representation for the region, including walls, floors, ceilings, furniture, or whatever,
may be added as children of the convex region node. The root of the BSP tree is a
special node that helps determine in which leaf region the eye point is. Another class
is designed to support this, namely, ConvexRegionManager. It is derived from BspNode.
The middle child of such a node is used to store the representation for the outside
of the encapsulated region, just in case you should choose to let the player exit your
indoor environment. Finally, the class Portal encapsulates the geometry of the portal
and its behavior. The abstract graph of regions is a collection of ConvexRegion objects
and Portal objects. Both types of objects have connections that support the graph
arcs.

Figure 4.29 illustrates the basic graph connections between regions and portals.
The outgoing portals for the convex region in the figure can, of course, be the incom-
ing portals to another convex region, hence the abstract directed graph. Figure 4.30

Incoming ? ?

Convex region

Outgoing

A ConvexRegion node. The portals with arrows to the node are the incoming portals
to the region. The arrows from the node to the other portals are outgoing portals.

Figure 4.30

TeamLRN sPeCiAL

4.2 Sorting 345

(b)

A configuration of three regions, nine portals, and an outside area. (a) The geometric
layout for the regions and portals. (b) The directed graph associated with it.

shows a specific configuration of regions and portals, including the directed graph
associated with it.

The portal P is from the outside to inside the collection of regions. The portal is
displayed as if the door is closed. Once a player-character stands in front of the door,
a mouse click can open it. The character steps through, and the door closes behind
him (never to open again). The other doorways each have two unidirectional portals,
so no teleportation occurs in this configuration.

The occlusion culling comes into play as follows. Figure 4.31 shows two regions
with a portal from one region to the other. Using the standard drawing with a frus-
tum, the renderer will draw everything in the gray region shown in Figure 4.31(a),
including the object shown as a small, black disk. That object is not visible to the
observer, but the renderer did not know this until too late when the depth buffer
comparisons showed that the wall is closer to the eye point and occludes the object.

The portal polygon, necessarily convex, is used to construct additional planes for
the purposes of culling objects in the adjacent region. The polygon vertices must be
counterclockwise ordered when viewed from the region that contains the eye point
E. If Vyand V| are consecutive polygon vertices, the plane containing E, Vj;, and V is
constructed and passed to the camera to be used when drawing the adjacent region.
The smaller frustum used for the adjacent region is shown as light gray in Figure
4.31. Keep in mind that the smaller frustum is only used for culling. The regular view
frustum is still used for drawing, so the renderer may attempt to draw portions of
the walls in the adjacent region, even though they are partially occluded. The idea is
to eliminate occluded objects from the drawing pass. You could design the camera
system to tell the graphics system to use the additional culling planes for clipping,

346 Chapter 4 Advanced Scene Graph Topics

Figure 4.31

TeamLRN sPeCiAL

N/ | |\

(a) (b)

Two regions with a portal from one to the other. (a) The gray region depicts the view
frustum. (b) The trimmed version of the view frustum using planes formed by the
eye point and edges of the portal polygon.

but that has the potential to take away resources from other objects.! The current
consumer graphics hardware is powerful enough that you might as well just let it go
ahead and draw the partially occluded object.

At the top level of the system, we have class ConvexRegionManager. Its interface is

class ConvexRegionManager : public BspNode
{
public:

ConvexRegionManager ();

SpatialPtr AttachOutside (Spatial* pkOutside);
SpatialPtr DetachOutside ();
SpatialPtr GetOutside ();

ConvexRegion* GetContainingRegion (const Vector3f& rkPoint);
protected:
virtual void Draw (Renderer& rkRenderer, bool bNoCull = false);

}s

A convex region manager is a BSP tree whose leaf nodes are the ConvexRegion objects.
A subscene representing the outside of the environment, if any, can be attached or

. For example, each additional clipping plane could cause you to lose the services of a texture unit. For a

portal with a rectangular doorway, you would lose four texture units. On a four-texture-unit card, your
adjacent regions are going to be beautifully colored with vertex colors or material colors. Your artists are
not going to be happy.

TeamLRN sPeCiAL

4.2 Sorting 347

detached via the member functions AttachOutside and DetachOutside. The outside
scene can be as complex as you like, especially so if you plan on an application that
has both an outdoor and an indoor environment.

The main role of ConvexRegionManager is to locate the convex region that contains
the eye point. The function GetContainingRegion supports this query. If the function
returns NULL, the eye point is not in any of the convex regions and, for all practical
purposes, is outside. The Draw function that uses the query is fairly simple:

void ConvexRegionManager::Draw (Renderer& rkRenderer, bool bNoCull)
{
CameraPtr spkCamera = rkRenderer.GetCamera();
ConvexRegion* pkRegion = GetContainingRegion(
spkCamera->GetWorldLocation());

if (pkRegion)

{
// Inside the set of regions, start drawing with region of
// camera.
pkRegion->Draw(rkRenderer,bNoCull);

}

else

{
// Outside the set of regions, draw the outside scene (if
// it exists).
if (GetOutside())

GetOutside()->Draw(rkRenderer,bNoCull);

A situation you must guard against in your application is the one where the eye
point is outside, but the near plane of the view frustum straddles a separating wall
between inside and outside. The convex region manager determines that the eye point
is outside, so the region traversal for drawing is never initiated. The outside is drawn,
not correctly because the view frustum contains part of the inside environment that
never gets drawn. To see the effect, I have added a conditionally compiled block of
code to the TestPortal sample application. If you enable the block, the initial location
for the camera and view frustum is such that the eye point is outside and the frustum
straddles a wall between the outside and inside. When you move forward with the
up-arrow key, you will see the inside pop into view (the eye point has moved into an
inside region).

The only reason I have ConvexRegionManager in the engine is to provide an auto-
matic method for locating the convex region containing the eye point. The contain-
ment query is called in each drawing pass, even if the eye point has not moved. Since
the object is a BSP tree, presumably with a small height, the cost of the query should

348 Chapter 4 Advanced Scene Graph Topics

not be an issue. However, if you were to keep track of the eye point and containing
room through other means, say, by a map you have of the indoor environment, there
is no need for the BSP tree. The graph of ConvexRegion and Portal objects works just
fine without the manager.

The interfaces for the ConvexRegion and Portal classes are

class ConvexRegion : public Node
{
public:
ConvexRegion (int iPQuantity, Portal** apkPortal);
virtual ~ConvexRegion ();
int GetPortalQuantity () const;
Portal* GetPortal (int i) const;

protected:
ConvexRegion ();
virtual void UpdateWorldData (double dAppTime);
int m_iPQuantity;
Portal** m_apkPortal;
bool m_bVisited;

// internal use
public:
virtual void Draw (Renderer& rkRenderer, bool bNoCull = false);

}s

class Portal : public Object
{
public:
Portal (int iVQuantity, Vector3f* akModelVertex,
ConvexRegion* pkAdjacentRegion, bool bOpen);
virtual ~Portal ();
ConvexRegion*& AdjacentRegion ();
bool& Open ();

protected:
Portal ();
friend class ConvexRegion;
void UpdateWorldData (const Transformation& rkWorld);
void Draw (Renderer& rkRenderer);

int m_iVQuantity;

Vector3f* m_akModelVertex;
Vector3f* m_akWorldVertex;

TeamLRN sPeCiAL

TeamLRN sPeCiAL

4.2 Sorting 349

ConvexRegion* m_pkAdjacentRegion;
bool m_bOpen;
}s

The ConvexRegion constructor is passed an array of outgoing portals associated
with the convex region. The class will use the array pointer directly and will delete
the array during destruction. Because the class takes over ownership of the portal
array, it cannot be shared between convex regions.

The Portal constructor is passed an array of vertices that represent the portal
geometry, a pointer to the adjacent region (so this portal is incoming for that re-
gion), and a Boolean flag indicating whether the portal is initially open or closed.
The vertices must form a planar convex polygon, they must be counterclockwise or-
dered when looking through the portal to the adjacent region, and they must be in
the model space coordinates for the region that contains the portal. All of these con-
straints support constructing the portal planes to be given to the camera for culling.

ConvexRegion overrides the UpdateWorldData virtual function in order to update
the geometric state in its subtree in the normal manner that an UpdateGS processes
the subtree. The outgoing portals themselves might need updating. Since Portal is
not derived from Spatial, these objects are not visited by UpdateGS pass. The convex
region must initiate the update of the portals. The source code is

void ConvexRegion::UpdateWorldData (double dAppTime)
{
// update the region walls and contained objects
Node: :UpdateWorldData(dAppTime);

// update the portal geometry
for (int i = 0; 1 < m_iPQuantity; i++)
m_apkPortal[i]->UpdatelorldData(World);

The portal objects must update their own data, and do so with a single batch
update:

void Portal::UpdateWorldData (const Transformation& rkWorld)
{
rkWorld.ApplyForward(m_iVQuantity,m_akModelVertex,
m_akWorldVertex);

The drawing function in both classes is an implementation of the traversal of a
directed graph. Because the graph most likely has cycles, the code needs to maintain
Boolean flags indicating whether or not a region has already been visited to prevent an

350 Chapter 4 Advanced Scene Graph Topics

TeamLRN sPeCiAL

infinite loop. The ConvexRegion class has a data member, m_bVisited, for this purpose.
The drawing routine for a convex region is

void ConvexRegion::Draw (Renderer& rkRenderer, bool bNoCull)
{

if (!m_bVisited)

{

m_bVisited = true;

// draw anything visible through open portals
for (int i = 0; i < m_iPQuantity; i++)
m_apkPortal[i]->Draw(rkRenderer);

// draw the region walls and contained objects
Node: :Draw(rkRenderer,bNoCull);

m bVisited = false;

The convex region manager starts the drawing pass in the region containing the
eye point. On entry to the drawing function for this region, the visitation flag is false.
The flag is then set to true to indicate that the region has been visited. The outgoing
portals associated with the region are asked to propagate the drawing to their adjacent
regions. During the propagation, if the current region is revisited, its visitation flag
will prevent another recursive call (and avoid the infinite loop). In Figure 4.30, if the
eye point is in region R, a cycle is formed by following portal P; into R}, and then
immediately returning to R, through portal P,. A larger cycle occurs, this one by
following P; into R;, Py into R,, and then Pginto R,. Once the graph of regions has
been traversed, the recursive call comes back to the original region and the Node: : Draw
call is made. This call is what draws the interior of the region and all its contents. The
visitation flag is reset to false to allow the next drawing call to the portal system.

You might have noticed that this process has the potential for being very slow. I
mentioned that the graph of regions is entirely traversed. In a large indoor environ-
ment, there could be a substantial number of regions, most of them not visible. If
the portal system visits all the nonvisible regions and attempts to draw them anyway,
what is the point? Not to worry. As described earlier, the portals are used to generate
additional culling planes for the camera to use. The planes are used to cull objects
not visible to the observer, including portals themselves! Return once again to Figure
4.30. Suppose the observer is in region R and standing directly in front of the door-
way marked portal P;. The observer then looks straight ahead into region R; through
that portal. The portal planes generated by the observer’s eye point and the edges of
the portal polygon form a narrow frustum into region R;. The portal marked P is
not visible to the observer. The portal drawing system will make sure that the region

TeamLRN sPeCiAL

4.2 Sorting 351

traversal does not continue through Pg. In this manner, a carefully designed environ-
ment will have only a few potentially visible regions along a line of sight, so only a
few regions will be processed by the renderer.

The portal drawing code is

void Portal::Draw (Renderer& rkRenderer)
{
// only draw adjacent regions if portal is open
if (!m_bOpen)
return;

// only draw visible portals

Camera* pkCamera = rkRenderer.GetCamera();

if (pkCamera->Culled(m_iVQuantity,m akWorldVertex,true))
return;

// push world planes formed by camera eye point and portal edges
int i0 = 0, i1 = m_iVQuantity - 1;
for (/**/; i0 < m_iVQuantity; il = i0++)
{
Plane3f rkPlane(pkCamera->GetLocation(),m akWorldVertex[i0],
m_akWorldVertex[il]);

pkCamera->PushPlane(rkPlane);

// draw the adjacent region and any nonculled objects in it
m_pkAdjacentRegion->Draw(rkRenderer);

// pop world planes
for (i0 = 0; i0 < m_iVQuantity; i0++)
pkCamera->PopPlane();

I mentioned that the Portal constructor takes a Boolean input that indicates
whether or not the portal is “open.” The intent is that if you can see through the
portal, it is open. If not, it is closed. In a typical game, a character arrives at a closed
door, preventing him from entering a region. A magical click of the mouse button
causes the door to pop open, and the character steps into the region. The open flag is
used to support this and controls whether or not a portal propagates the drawing call
to the adjacent region. The first step that the Portal: :Draw function takes is to check
that Boolean flag.

The second step in the drawing is to check if this portal is visible to the observer.
The Camera class has support for culling a portal by analyzing its geometry. I will talk

352 Chapter 4 Advanced Scene Graph Topics

TeamLRN sPeCiAL

about this support a litte bit later. If the portal is (potentially) visible (not culled),
the portal planes are constructed and pushed onto a stack of planes that the camera
maintains. Naturally, the plane construction must occur before you attempt to draw
the adjacent region so that those planes can be used for culling objects in that region.
Once pushed, the adjacent region is told to draw itself. Thus, ConvexRegion: :Draw
and Portal: :Draw form a recursive chain of functions. Once the region is drawn, the
planes that were pushed onto the camera’s stack are now popped because they have
served their purpose.

If the portal is culled, then the drawing pass is not propagated. In my previous
example using Figure 4.30, an observer in region R, standing in front of portal P; will
cause the region traversal to start in R;. When portal P, has its Draw function called,
the portal is open and the portal itself is visible to the camera, so the portal planes are
formed, pushed onto the camera’s stack, and the adjacent region must be drawn. A
traversal over its outgoing portals is made, and the portals are told to propagate the
drawing call. We will find in Portal::Draw for Py that this portal is not visible to the
observer; the planes for P; are on the camera’s stack, but not yet those for Ps. The
drawing call is not propagated to R; (through that path).

Now, about the Camera support for pushing and popping portal planes and for
culling portals. The class has the following support interface:

class Camera

{

public:
// access to stack of world culling planes
int GetPlaneQuantity () const;
const Plane3f* GetPlanes () const;
void PushPlane (const Plane3f& rkPlane);
void PopPlane ();

protected:
// world planes:
// left =0, right = 1, bottom = 2,
// top = 3, near = 4, far =5,
// extra culling planes >= 6
enum
{
CAM_FRUSTUM_PLANES = 6,
CAM_MAX_WORLD_PLANES = 32
bs
int m_iPlaneQuantity;
Plane3f m_akWPTane[CAM_MAX WORLD PLANES];

4.2 Sorting 353

The standard frustum planes always are stored in the first six slots of the array
m_akWP1ane. The PushPlane call will append to that array the additional planes; thus
the array is treated like a stack. The maximum number of planes is arbitrarily cho-
sen to be 32. If you need more than this, you should first question your artists as to
why they need such a complex environment before increasing the maximum. The
PopPlane call removes the planes from the stack (not literally, only the stack top index
is decremented). It does make sure that frustum planes are not popped.
The portal culling call is

bool Camera::Culled (int iVertexQuantity, const Vector3f* akVertex,
bool bIgnoreNearPlane)

// Start with last pushed plane (potentially the most
// restrictive plane).
int iP = m_iPlaneQuantity - 1;
for (int i = 0; i < m_iPlaneQuantity; i++, iP-)
{
Plane3f& rkPlane = m_akWPlane[iP];
if (bIgnoreNearPlane && iP == 4 /* camera near plane */)
continue;

int iV,
for (iV = 0; iV < iVertexQuantity; iV++)
{
int iSide = rkPlane.WhichSide(akVertex[iV]);
if (iSide >= 0)
{
// polygon is not totally outside this plane
break;

if (iV == iVertexQuantity)

{
// polygon is totally outside this plane
return true;

return false;

The input vertices are iterated and tested against each of the culling planes. If all the
vertices are outside the plane (the outside convention is used for the standard frustum

TeamLRN sPeCiAL

354 Chapter 4 Advanced Scene Graph Topics

planes), then the portal is outside. The convexity of the portal polygon guarantees this
is a correct object-culling test when processing only the vertices of the object.

This culling function can be applied to any geometry, but for portals in particular,
the Boolean variable bIgnoreNearPlane should be set to true. This avoids the situation
when the portal is in the view pyramid—all of the volume inside the planes including
the space between the near plane and the eye point—but is between the eye point and
the near plane. In such a situation you do not want the portal system to cull the portal.
This situation typically occurs when the camera moves through the portal from the
current region to the adjacent region.

A sample application in the folder demonstrates the portal system:

MagicSoftware/WildMagic3/Test/TestPortals

More details are provided in Section 8.2.8.

4.2.3 SORTING CHILDREN OF A NODE

TeamLRN sPeCiAL

One of the simplest, coarse-level sorting methods to be applied in a scene hierarchy
is to sort the children of a node. How they are sorted depends on what your environ-
ment is and how the camera is positioned and oriented relative to the children of the
node.

To demonstrate, consider the example of a node that has six TriMesh objects that
are the faces of a cube. The faces are textured and are semitransparent, so you can see
the back faces of the cube through the front faces. The global state is set as indicated:

m Back-face culling is disabled. Because each face is semitransparent, you must be
able to see it when positioned on either side of the face.

® Depth buffering is enabled for writing, but not reading. The faces will be depth
sorted based on the location of the eye point and then drawn in the correct order.
Reading the depth buffer to determine if a pixel should be drawn is not necessary.
For the cube only, it is not necessary to write to the depth buffer. If other objects
are drawn in the same scene using depth buffering with reading enabled, you need
to make certain that the depths are correct. That is why writing is enabled.

® Alpha blending is enabled at the node since the face textures have alpha values to
obtain the semitransparency.

The cube is constructed in its model space to have center at the origin (0, 0, 0).
The faces perpendicular to the x-axis are positioned at x = 1 and x = —1. The faces
perpendicular to the y-axis are positioned at y = 1 and y = —1. The faces perpen-
dicular to the z-axis are positioned at z =1 and z = —1. The camera is inverse-
transformed from the world into the model space of the cube. The back faces and
front faces are determined solely by analyzing the components of the camera view
direction in the cube’s model space. Let that direction be D = (d,, d,, d,). Suppose
that the eye point is at (2, 0, 0) and you are looking directly at the face at x = 1.

TeamLRN sPeCiAL

4.2 Sorting 355

The view direction is (—1, 0, 0). The x =1 face is front facing. Its outer normal is
(1, 0, 0). The angle between the view direction and the outer normal is larger than
90 degrees, so the cosine of the angle is negative. The dot product of the view di-
rection and outer normal is the cosine of the angle. In the current example, the dot
productis (—1, 0, 0) - (1,0, 0) = —1 < 0. The x = —1 face is back facing. It has outer
normal (—1, 0, 0). The cosine of the angle between the view direction and the outer
normal is (—1, 0, 0) - (—1, 0, 0) = 1 > 0. Similar arguments apply to the other faces.
The classification for back faces is summarized by the following:

® d, > 0: Face x = 11is back facing.
®m d, < 0: Face x = —11is back facing.
® ;> 0: Face y = 1is back facing.
®m d, <0: Face y = —1is back facing.
® d, > 0: Face z = 11is back facing.

®m d, <0:Face z = —1is back facing.

A sorting algorithm for the faces will inverse-transform the camera’s world view
direction to the model space of the cube; the resulting direction is (dy, d;, d;). The
signs of the d; are tested to determine the cube faces that are back facing. The six
children of the node are reordered so that the back faces occur first and the front
faces occur second. A sample application in the folder demonstrates this algorithm:

MagicSoftware/WildMagic3/Test/TestSortFaces

More details are provided in Section 8.2.11. Be ready for a couple of unexpected sur-
prises if you implement this without looking at my version first. My original attempt
at implementing this displayed a cube where the faces used the same texture (a water
texture) whose alpha values were all % As I rotated the cube, the rendering looked
perfect even without the sorting. If you make the alpha values all 1, the rendering looks
completely wrong (which it should)! I then added some black letters to the texture,
the face names Xp, Xm, Yp, Ym, Zp, and Zm, and restored the alpha values to be %
My thought was that I could then detect that the rendering was incorrect. The im-
ages still looked correct. My final change was to make the alpha values 1 for texture
pixels that were black. Now the black letters on a back face were solid black, but the
black letters on a front face were somewhat gray due to blending. Now it is clear that
the rendering is incorrect. Once I added the sorting, the demonstration worked as
advertised.

The other surprise was that some of the faces were flickering depending on the
cube orientation. It turns out that my original sorting scheme filled the beginning
of an array with pointers to the back faces, starting from index 0, and filled the end
of an array with pointers to the front faces, starting from the last array index with
index decrementing. The decrementing caused the order of the front faces to change
each frame, even though neither the cube nor the camera was moving. Apparently

356 Chapter 4 Advanced Scene Graph Topics

the numerical round-off errors in the rendering showed up as flickering, probably
due to the color channel values oscillating between two adjacent integer values.

424 DEFERRED DRAWING

In the introduction to this section, I mentioned some motivations for sorting based
on render state. Wild Magic version 3 has support for sorting generally by providing
a deferred drawing system. The idea is to accumulate a list of the objects to be drawn
rather than drawing those objects at the time they are encountered in the drawing
pass. When the list is complete, a deferred drawing function is called. This function
includes any sorting by render state (or any other processing you care to do), followed
by drawing of the objects (or anything else you care to do).
The Renderer class has the following interface to support deferred drawing:

class Renderer

{

public:
typedef void (Renderer::*DrawFunction)();
DrawFunction DrawDeferred;

// no drawing (useful for profiling scene graph overhead)
void DrawDeferredNoDraw ();

// draw all objects without sorting
void DrawDeferredNoSort ();

protected:
int m_iDeferredQuantity;
TArray<Spatial*> m_kDeferredObject;
TArray<bool> m_kDeferredIsGeometry;

}s

The function pointer DrawDeferred is initially NULL, indicating that deferred drawing
is disabled. To enable deferred drawing, just assign to DrawDeferred a pointer to the
function you want to be called when it is time to draw.

The three Renderer functions that manipulate the deferred data members are

void Renderer::DrawScene (Node* pkScene)

{
if (pkScene)

{
pkScene->0nDraw(*this);
if (DrawDeferred)

TeamLRN sPeCiAL

TeamLRN sPeCiAL

4.2 Sorting

(this->*DrawDeferred) () ;
m_iDeferredQuantity = 0;

void Renderer::Draw (Node* pkNode)

{

if (!DrawDeferred)

{
m_pkNode = pkNode;
m pkGlobalEffect = pkNode->GetEffect();
assert(m_pkGlobalEffect);
(this->*m_pkGlobalEffect->Draw) ();
m_pkNode = NULL;
m_pkGlobalEffect = NULL;

}

else

{

m_kDeferredObject.SetElement (m_iDeferredQuantity,pkNode);
m_kDeferredIsGeometry.SetElement (m_iDeferredQuantity,false);
m_iDeferredQuantity++;

void Renderer::Draw (Geometry* pkGeometry)
{
if (!DrawDeferred)
{
m_pkGeometry = pkGeometry;
m_pkLocalEffect = pkGeometry->GetEffect();

if (m_pkLocalEffect)
(this->*m_pkLocalEffect->Draw) ()
else
DrawPrimitive();

m_pkLocalEffect = NULL;
m_pkGeometry = NULL;

}

else

357

358 Chapter 4 Advanced Scene Graph Topics

TeamLRN sPeCiAL

m_kDeferredObject.SetElement (m_iDeferredQuantity,pkGeometry);
m_kDeferredIsGeometry.SetETlement (m_iDeferredQuantity,true);
m_iDeferredQuantity++;

The invariant of DrawScene is that m_iDeferredQuantity is zero on entry. If a de-
ferred drawing function has been assigned to DrawDeferred, the Renderer: : Draw func-
tions skip the immediate drawing and append the object pointer to the deferred ob-
ject array. The array of Boolean values is used at draw time to quickly determine if the
object is Geometry or Node. This avoids a more expensive run-time type identification
via a dynamic cast of the object pointer. The two arrays in the system automatically
grow when needed. When the scene traversal ends, control is returned to DrawScene
and the deferred drawing function is called. Very simple scheme, is it not?

I have provided two choices for DrawDeferred. The first is DrawDeferredNoDraw
that is stubbed out to do absolutely nothing! Nothing is drawn on the screen. This
function is useful for profiling an application to see what overhead the scene graph
management system generates. The other function is DrawDeferredNoSort and simply
iterates over the array of accumulated objects and calls the appropriate drawing
function:

void Renderer::DrawDeferredNoSort ()

{
// disable deferred drawing
DrawFunction oSave = DrawDeferred;
DrawDeferred = NULL;

for (int i = 0; i < m_iDeferredQuantity; i++)
{
if (m_kDeferredIsGeometry[i])
Draw((Geometry*)m kDeferredObject[i]);
else
Draw((Node*)m_kDeferredObject[i]);

// enable deferred drawing
DrawDeferred = oSave;

You must disable deferred drawing before drawing the objects, otherwise you will be
in an infinite loop due to the Draw call placing your object right back into the array.
Of course, you must reenable the deferred drawing before exiting.

TeamLRN sPeCiAL

4.2 Sorting 359

If you want to implement other deferred drawing functions, you should add a
new member function to Renderer. For example, if you plan on sorting by texture
state, you might add a function

class Renderer
{
public:
virtual void DrawDeferredTextureSort ();

}s

void Renderer::DrawDeferredTextureSort ()
{
// disable deferred drawing
DrawFunction oSave = DrawDeferred;
DrawDeferred = NULL;

SortByTexture();
DrawPrimitivesTextureSort();

// enable deferred drawing
DrawDeferred = oSave;

The function Renderer: :SortByTexture is an implementation of your own very spe-
cial sorting function to reorder the objects by texture state. This function will sort
m_kDeferredObject, but must simultaneously reorder in the same way the array
m_kDeferredIsGeometry. The global effects that are applied to Node objects are com-
plicated enough that you probably should draw them separately. The sorting can
place all the Geometry objects first in the array, followed by the Node objects. Let
us assume that we also added a data member to Renderer to store the number of
Geometry objects, call it m_iDeferredGeometryQuantity, and that the SortByTexture
function assigns the correct value to it. The drawing function will be a variation on
Renderer::DrawPrimitive, perhaps something like

void Renderer::DrawPrimitivesTextureSort ()
{
previousTextures = INVALID;
int i;
for (i = 0; 1 < m_iDeferredGeometryQuantity; i++)
{
m_pkGeometry = (Geometry*)m akDeferredGeometry[i];
m_pkLocalEffect = pkGeometry->GetEffect();

set global state;
enable Tighting;

360 Chapter 4 Advanced Scene Graph Topics

enable vertices;
enable normals;
enable colors;

if (currentTextures != previousTextures)
enable textures;
previousTextures = currentTextures;

set world transform;
draw geometry object;
restore world transform;

if (nextTextures != currentTextures)
disable textures;

disable colors;

disable normals;
disable vertices;
disable Tighting;

for (/**/; i < m_iDeferredQuantity; i++)
Draw((Node*)m_kDeferredObject[i]);

A sample application that illustrates how the deferred drawing works is on the
CD-ROM in directory

MagicSoftware/WildMagic3/Test/TestDeferredDraw

The scene consists of an environment mapped model and a multitexture mapped
model. The list of objects contains one Node (the environment map is a global effect)
and four Geometry objects (the number of leaves in the multitexture mapped model).
You can press keys to have normal drawing, deferred drawing with no sorting, or
deferred drawing with no drawing.

43 CURVES AND SURFACES

Two geometric types supported by a graphics engine are polylines and triangle
meshes (see Section 3.3). These objects are usually generated by artists and exported
for use in an application. Modeling packages also support two analogous types,

TeamLRN sPeCiAL

TeamLRN sPeCiAL

4.3 Curves and Surfaces 361

curves and surfaces. Although these are more commonly used in CAD/CAM systems,
they are useful in games. I will restrict attention to parametric curves and paramet-
ric surfaces, where the positional information is determined as a function of some
parameters.

A graphics engine still requires lower-level primitives for rendering. A curve must
be sampled to produce a polyline, and a surface must be sampled to produce a triangle
mesh. In practice, the curves tend to be specified as a collection of segments, with
each segment defined by a common curve type—for example, Bézier curves, B-spline
curves, or NURBS curves. Similarly, surfaces tend to be specified as a collection of
patches, with each patch defined by a common surface type—for example, Bézier
patches, B-spline patches, or NURBS patches. The situation for surfaces is slightly
more complicated than for curves. The patches come in many flavors; the two most
important are triangle patches and rectangle patches. The polygon adjective refers to
the shape of the parametric domain.

A curve may be defined as a collection of segments that are ordered end to end;
that is, the end point of one segment becomes the starting point of the next segment.
Each end point is shared by two segments, except possibly at the two end points of
the curve. If the curve forms a closed loop, then all segment end points are shared by
two segments. But nothing prevents you from having a more complicated topology.
Each end point may be shared by as many segments as you like (think wireframe
mode when drawing a triangle mesh). A collection of segments with a user-defined
topology for connections is referred to as a curve mesh.

The analogy with surfaces is that a collection of patches is arranged so that at most
two patches share a patch boundary curve. Such a mesh is called a manifold mesh.> As
with curves, you can have more than two patches sharing a patch boundary curve.
In general, a collection of patches with a user-defined topology for connections is
referred to as a surface mesh.

In Wild Magic version 2, I had support for Bézier patches, with each patch having
one of three types: triangle patch, rectangle patch, or cylinder patch. A Bézier mesh is
a collection of such patches. To visualize the mesh, I had a system for subdividing the
parametric domains of the patches and generating a triangle mesh that approximates
the true surface. Unfortunately, the subdivision scheme was intertwined with the
Bézier patch classes. If you wanted to support other surface types such as B-splines
or NURBS, you would have to duplicate a lot of code that is already in the Bézier
patch classes. Wild Magic version 3 does a lot better. The architecture is such that
the patch definition and patch evaluation are cleanly separated from the subdivision
scheme. All that the subdivision needs is the ability to query a patch for its surface
position given a pair of parameter values. This allows you to add new surface patch
types without having to rewrite any subdivision code.

. The definition of a manifold mesh is more formal than I have presented. The intuition, though, is as I have

described it here.

362 Chapter 4 Advanced Scene Graph Topics

4.3.1

TeamLRN sPeCiAL

This section describes briefly the interfaces for parametric curves and surfaces.
The emphasis is not on the mathematical aspects. Should you decide to add your
own curve or surface types, you might very well need to understand some of the
mathematics—implementing NURBS surfaces is not trivial, for example. The subdi-
vision schemes are described in a lot of detail. The computer science and engineering
aspects are, at times, complex.

PARAMETRIC CURVES

A parametric curve in three dimensions is a function P(u) that specifies a position
as a function of the parameter u € [u,;,, Umax)- The first derivative is denoted P’ (u).
This is a vector that is tangent to the curve at the corresponding position P(u). The
second derivative is denoted P”(u). If the curve represents the path of a particle with
respect to time u, then the first derivative is the velocity of the particle and the second
derivative is the acceleration of the particle.

I created an abstract class called CurveSegment that has pure virtual functions
for computing the position and the first, second, and third derivatives. The class
interface is

class CurveSegment : public Object
{
public:

virtual ~CurveSegment ();

float GetUMin () const;
float GetUMax () const;

virtual Vector3f P (float fU) const = 0;
virtual Vector3f PU (float fU) const = 0;
virtual Vector3f PUU (float fU) const = 0;
virtual Vector3f PUUU (float fU) const = 0;

Vector3f Tangent (float fU) const;

Vector3f Normal (float fU) const;

Vector3f Binormal (float fU) const;

void GetFrame (float fU, Vector3f& rkPosition,
Vector3f& rkTangent, Vector3f& rkNormal,
Vector3f& rkBinormal) const;

float Curvature (float fU) const;

float Torsion (float fU) const;

protected:

TeamLRN sPeCiAL

4.3 Curves and Surfaces 363

CurveSegment (float fUMin, float fUMax);
CurveSegment ();

float m_fUMin, m_fUMax;
bs

The class stores the minimum and maximum u values for the curve, but derived
classes must generate their values. The values may be retrieved through the mem-
ber accessors GetUMin and GetUMax. The position, first derivative, second derivative,
and third derivative are computed by the member functions P, PU, PUU, and PUUU, re-
spectively. A derived class must implement these.

If a curve is used as the path for a camera, a common requirement is to specify an
orientation for the camera that is related to the curve geometry. The natural vector to
use for the camera view direction at a point on the curve is the tangent vector at that
point. We need to specify an up vector. The right vector is the cross product of the
view direction and the up vector. One choice for the orientation is the Frenet frame,
of which the tangent vector is one of the members. The other two vectors are called
the normal vector and the binormal vector. The rates of change of these vectors with
respect to changes in arc length s are related by the Frenet-Serret equations:

T'(s) = k (s)N(s)
N'(s) = —k(s)T(s) + t(s)B(s)
B'(s) = —7(s)N(s),

where « (s) is the curvature of the curve and 7 (s) is the torsion of the curve. In terms
of the curve parameter u, the tangent vector is

P/

>

[P|
the normal vector is

. (P/ . P/)P// _ (P/ . P//)P/
- |P'||P’ x P >

and the binormal vector is
B=T x N.

If you need to compute curvature or torsion, the formulas are

. |P/ X P//l and . P/ . P// X P///
R P x P2

364 Chapter 4 Advanced Scene Graph Topics

A problem with the Frenet frame that you need to be aware of is that the normal
vectors are sometimes discontinuous as a function of u, and sometimes they are not
uniquely defined. The classic example is a straight-line path. The tangent vectors are
all the same, but any vector perpendicular to the line could serve as a normal vector.
Regardless of the mathematical problems that might arise, class CurveSegment imple-
ments the construction of the Frenet frame via the member functions GetTangent,
GetNormal, and GetBinormal. The implementations compute the formulas mentioned
previously. Along with the position, all may be computed simultaneously with a call
to GetFrame. Functions are provided for curvature and torsion calculations.

43,2 PARAMETRIC SURFACES

TeamLRN sPeCiAL

A parametric surface in three dimensions is a function P(u, v) that specifies a position
as a function of the parameters # and v. The two types of domains that Wild Magic
supports are rectangular, where u € [U pin> Umax) a0d U € [Vin»> Vmax)> and triangular,
where u € [Mmin) Mmax]) vE [Umin’ vmax]) and (Umax - vmin)(u - umin) + (umax -
Umin) (V — Umay) < 0. The first-order partial derivatives are denoted P, and P,,.. Both
vectors are tangent to the surface at the corresponding position. Unit-length tangents
are

P, P,
= , 1= .
P, | Py

T,

As long as the two tangent vectors are linearly independent, a unit-length surface
normal vector is

_ Tyx Ty
ITy x T1|.

I created an abstract class called SurfacePatch that has pure virtual functions for
computing the position and first and second derivatives. The curve class required a
third derivative for computing torsion, but we have no need for third derivatives on
surfaces. The class interface is

class SurfacePatch : public Object
{
pubTic:

virtual ~SurfacePatch ();

float GetUMin () const;
float GetUMax () const;
float GetVMin () const;
float GetVMax () const;
bool IsRectangular () const;

TeamLRN sPeCiAL

4.3 Curves and Surfaces 365

virtual Vector3f P (float fU, float fV) const = 0;

virtual Vector3f PU (float fU, float fV) const = 0;
virtual Vector3f PV (float fU, float fV) const = 0;
virtual Vector3f PUU (float fU, float fV) const = 0;
virtual Vector3f PUV (float fU, float fV) const = 0;
virtual Vector3f PVV (float fU, float fV) const = 0;

Vector3f Tangent0 (float fU, float fV) const;

Vector3f Tangentl (float fU, float fV) const;

Vector3f Normal (float fU, float fV) const;

void GetFrame (float fU, float fV, Vector3f& rkPosition,
Vector3f& rkTangentO, Vector3f& rkTangentl,
Vector3f& rkNormal) const;

void ComputePrincipalCurvatureInfo (float fU, float fV,
float& rfCurv0, float& rfCurvl, Vector3f& rkDir0,
Vector3f& rkDirl);

protected:
SurfacePatch (float fUMin, float fUMax, float fVMin,
float fVMax, bool bRectangular);
SurfacePatch ();

float m_fUMin, m_fUMax, m_fVMin, m_fVMax;
bool m_bRectangular;

The class stores the minimum and maximum # and v values for the surface, but
derived classes must generate their values. Also, the derived class must specify if it
uses a rectangular or triangular domain. The Boolean member m_bRectangular is
used for this purpose. The values may be retrieved through the member accessors
GetUMin, GetUMax, GetVMin, GetVMax, and IsRectangular. The position, first derivative,
and second derivative are computed by the member functions P, PU, PV, PUU, PUV, and
PVV. A derived class must implement these.

Analogous to choosing a coordinate frame for a point on a curve, we sometimes
might want a coordinate frame for a point on a surface. To attempt a frame that
smoothly varies as the point moves over the surface is in the realm of the differen-
tial geometry of surfaces, a mathematics-heavy topic. I discussed the concepts briefly
in [Ebe00]. The quick summary is that at each point on the surface, if you were to
move in a direction tangential to that point, the surface curves by some amount.
There will be a tangential direction along which that curvature is maximum, and
one along which that curvature is minimum. These directions are called principal
directions, and the corresponding curvatures are called the principal curvatures. The
member function ComputePrincipalCurvatureInfo computes the principal directions

366 Chapter 4 Advanced Scene Graph Topics

Figure 4.32

I I I I I I I I I I
MO I/ll MO I/l2 I/ll MO Lt3 MZ M4 Ml

(a) (b) (c)

(a) A curve segment tessellated by a single line segment connecting its end points.
(b) One subdivision step applied to the original tessellation. (c) Two subdivision
steps applied to the original tessellation.

and curvatures. Frames using principal directions have their own mathematical dif-
ficulties. If a point has the property that the minimum and maximum curvatures are
the same, then no matter what tangential direction you move along, the curvature is
the same. Such a point is called an umbilic point. Locally, the surface appears to be a
sphere. At such a point every direction is principal, so a frame varying as you move
along the surface will have a discontinuity at an umbilic.

4.3.3 CURVE TESSELLATION BY SUBDIVISION

TeamLRN sPeCiAL

The subdivision scheme I use for tessellating a curve is simple. Let P(«) be the curve
for u € [Umin> Umax)- Given two points on the curve, say, P(ug) and P(u;) with u, <
uy, the parameter interval [u, u;] is subdivided into two halves [u, u,,,] and [u,,,, u,],
where u,, = (uy + u,)/2. The new point in the tessellation is P(u,,). The process is
repeated for the subintervals as many times as desired. Figure 4.32 illustrates a few
levels of subdivision.

The first subdivision step does not produce a tessellation that resembles the curve,
but the second subdivision step does. Naturally, more subdivision steps will produce
a polyline that is a better approximation to the curve than the previous step produces.

If you have a collection of curve segments that produce a single curve by ordering
the segments end to end, a subdivision scheme may be applied to all the segments
simultaneously. Let the segments be P;(«) with parameter intervals [a;, b;], for 0 <
i < n. It is not necessary that these intervals be the full domains of the segments.
For a continuous curve, it is necessary that P;(b;) = P; (a;,1). My implementation
of the subdivision scheme assumes continuity. If you have a collection of segments
that are not ordered end to end, then apply separate subdivision schemes to the
segments.

TeamLRN sPeCiAL

4.3 Curves and Surfaces 367

Assuming continuity, the initial tessellation is the set of vertices

{Po(ag), Py(ay), . .., Py_y(a,_1), Pyy(by_p)} (4.2)

and represents a polyline that approximates the curve. All the first end points of
the curve segments are in the tessellation. The last end point of the last curve is
also included. The initial tessellation has n + 1 vertices. A subdivision step involves
subdividing each parameter interval by calculating the midpoints, ¢; = (a; + b;)/2,
and inserting the vertices P;(c;) into the tessellation. The new tessellation is

{Po(ao)) P;(co)s Py(ay), Pi(cy), .. . Pyy(a, 1), Pi(cy—1)s Pn—l(bn—l)} .

The process may be repeated on the subintervals [q;, ¢;]and [c;, b;], and then contin-
uing yet again on the resulting subintervals. The class that implements this scheme is
CurveMesh.?

A portion of the CurveMesh interface is

class CurveMesh : public Polyline
{
public:
CurveMesh (int iSegmentQuantity, CurveSegmentPtr* aspkSegment,
FloatArrayPtr spkParams, bool bATllowAttributes,
bool bATlowDynamicChange);

virtual ~CurveMesh ();

void SetLevel (int ilLevel);
int GetLevel () const;

protected:
int m_iSegmentQuantity;
CurveSegmentPtr* m_aspkSegment;
FloatArrayPtr m_spkOrigParams;
int m_ilevel, m iFullVQuantity;

}s

A quantity and array of curve segments are passed to the constructor. They are as-
sumed to be ordered to form a continuous curve. The class assumes responsibility
for deleting the aspkSegment array, so it must be dynamically allocated. The array
spkParams stores the parameter values for the curve segment end points. If there are

. For now I only support a mesh of curve segments that are ordered end to end. It is possible to support

a general mesh, as described earlier. This will require creating a new class PolylineMesh that represents a
mesh of polylines.

368 Chapter 4 Advanced Scene Graph Topics

TeamLRN sPeCiAL

N segments, this array must have 2(N — 1) values. Curve segment P[i] has domain
[spkParams[2*i],spkParams[2*i+1]]. Continuity requires that P[i](spkParams
[2*i+1]) = P[i+1] (spkParams[2*(i+1)]). The polyline produced by the subdivision
is flagged as open. If you want a closed polyline, you should make certain that the
first end point of P[0] matches the last end point of P[N-1].

The default level of subdivision is 0; that is, the polyline that approximates the
curve is the sequence of points in Equation (4.2). To subdivide to a different level, call
the member function SetLevel with an input that is nonnegative. The input is stored
inm_iLevel. The subdivision is always computed from level 0, not incrementally from
the previous level. The total number of vertices in the polyline is stored in m_iFul1-
VQuantity.

For display purposes, the polyline needs vertex attributes. Vertex colors are the
most common for polylines, but nothing prevents you from using vertex normals
for dynamic lighting or texture coordinates for texturing with a selected image. The
CurveMesh object will have an Effect attached to it, since the effect stores the vertex
attributes, but the subdivision code knows nothing about these. The problem is
that the new vertices introduced by a subdivision call need to have vertex attributes
calculated. The approach I used in Wild Magic version 2 was to subdivide the vertices
and their attributes simultaneously. The disadvantage to this approach is that the
programmer must decide which vertex attributes to pass to the constructor of the
class.

In Wild Magic version 3 I decided that greater flexibility is provided to the pro-
grammer if the vertex attributes can be processed independently of the subdivision
call. The same philosophy was used in the class CreateClodMesh regarding mesh deci-
mation. The class stored enough information to allow you to assign vertex attributes
to the CLOD mesh after the decimation was performed. Class CurveMesh also stores
information for vertex attribute construction after subdivision, but you have to let the
class know you plan on doing this. The Boolean parameter bAllowAttributes in the
constructor should be set to true when you plan on using vertex attributes. A binary
tree of vertex indices is maintained. A new vertex V; is inserted into the tessellation
as a result of subdividing a parameter interval [u ;, u;] for some indices j and k. The
binary tree node representing index i had two child nodes representing indices j and
k. The curve points at the interval end points are V; and V. If these end points have
scalar attributes assigned to them, say, &; and oy, the scalar attribute assigned to V;
is the average o; = (o + &) /2. The scalar attributes are the individual components
of any vertex attributes—for example, a color channel (R, G, or B), a component of
a texture coordinate, or a component of a normal vector. In the latter case, the nor-
mal components will be interpolated separately, so you need to normalize the results
yourself.

The interface for the binary tree handling is

class CurveMesh : public Polyline
{
public:
float* GetAttributes (int iSize, const float* afAttr) const;

TeamLRN sPeCiAL

4.3 Curves and Surfaces 369

protected:
class VertexTree
{
public:
VertexTree ();

int V[2];
b
VertexTree* m_akVTree;
bool m_bBuildVertexTree;

}s

The internal structure is the simplest you can think of for a binary tree. The member
function is designed so that you never have to reallocate attribute arrays in the Effect
object attached to the CurveMesh object. An attribute array corresponding to the
initial vertices in the tessellation is passed to GetAttributes. The number of float
components is passed as the size. For example, if you have an array of ColorRGB,
iSize is set to 3, and the pointer to the array is typecast as a float* and passed to
the function. The return value is an array of the same type, ColorRGB in our example,
and has the same number of elements as vertices in the current tessellation. You have
the responsibility of replacing the old attribute array in the Effect object with the new
one. Just a note on the implementation of GetAttributes. The function must traverse
the binary tree of indices. A recursive call is not necessary, though, because the tree is
stored as an array in an order that guarantees a forward iteration over the array will
generate new attributes from array slots with already valid attributes.

The way that you compute attributes is illustrated in the sample application that
is on the CD-ROM in the directory

MagicSoftware/WildMagic3/Test/TestSurfaceMesh

A CurveMesh object is created with the Boolean flag set to true for building and
managing the binary tree. An Effect object is attached that has vertex colors for the
initial vertices of the tessellation. In the key handler of the application, when the plus

key is pressed, the level of tessellation is increased. The vertex attributes are updated
by

m_spkCurve->SetLevel (m_ilLevel);

pkEffect = m_spkCurve->GetEffect();

i0rigQuantity = pkEffect->ColorRGBs->GetQuantity();

afOrigColors = (const float*)pkEffect->ColorRGBs->GetData();
akColor = (ColorRGB*) m_spkCurve->GetAttributes(3,afOrigColors);
iVQuantity = m_spkCurve->Vertices->GetQuantity();
pkEffect->ColorRGBs = new ColorRGBArray(iVQuantity,akColor);

370 Chapter 4 Advanced Scene Graph Topics

TeamLRN sPeCiAL

The first line of code causes the curve to be subdivided to a specified level. The effect
is accessed from the curve. The color array for the initial tessellation is fetched from
the effect and then passed to the GetAttributes function so that a new color array can
be computed with the aid of the binary tree of indices. The effect needs to be updated
by giving it the new color array.

Another feature that is useful is to allow the curve itself to change, in which case
all the vertices in the tessellation must be recomputed. For example, if your curve is
a Bézier curve with control points, any change in the control points will require the
curve mesh to be updated. If you want to allow dynamic changes of this type, you
need to set the constructor input Boolean parameter bA1TowDynamicChange to true.
Support for dynamic updates is provided by the interface

class CurveMesh : public Polyline
{
pubTic:

void OnDynamicChange ();

protected:
class Curvelnfo
{
public:
Curvelnfo ();

CurveSegmentPtr Segment;
float Param;
}s
void InitializeCurvelInfo ();
bool m_bATTowDynamicChange;
CurvelInfo* m_akCInfo;

Whenever your curve segments have been modified, you must call the method On-
DynamicChange. The internal data structure associated with the updates, nested class
CurvelInfo, stores information for each vertex in the current tessellation. During the
subdivision process, the parameters that generate the new vertices are temporarily
stored until the subdivision terminates. At that time the temporary information is
deleted, so the parameters associated with the vertices in the tessellation are dis-
carded. The curve segments to which the parameters were associated are also tempo-
rarily stored during subdivision, and they, too, are discarded at the end of the process.
A dynamic change requires us to remember the parameter values and curve segments,
which is exactly what CurveInfo does.

A final feature is provided by the interface

TeamLRN sPeCiAL

4.3 Curves and Surfaces 371

class CurveMesh : public Polyline
{
public:

void Lock ();

bool IsLocked () const;

}s

The ability to vary the level of subdivision and compute vertex attributes might be
exercised during the development of an application. If you should decide that no
more adjustments must be made to the CurveMesh object, it is recommended that you
discard all the memory that is used internally to support these operations by calling
Lock. This function deletes the array of curve segments and the parameter array that
were passed to the constructor. If a binary tree of vertex indices was requested during
construction, the array to store that is also deleted. However, the array to allow
dynamic changes is retained so that you can morph the curves, if so desired. Once
you call Lock, you cannot “unlock” and have the data restored. That can only be done
by constructing another object from the same input data you originally used. Also,
after a Lock call, any calls to SetLevel are ignored.

A few words are in order about the subdivision process itself. The class CurveMesh
has two private functions that are called by SetLevel. The first one is Allocate. Its job
is to compute the number of vertices required by the specified level for subdivision.
A private, nested class called Edge is used to represent an edge connecting two ver-
tices. This class simply stores the curve segment that is used to subdivide the edge, a
pair of indices into the vertex array where the edge end points are stored, and a pair of
parameters that generated those end points via the curve segment. The function A11o-
cate creates arrays large enough to store both the vertices and edges. It computes the
initial vertices that correspond to the parameters passed to the CurveMesh constructor.
It also initializes the edges using the level 0 information—the parameters passed to
the constructor and the indices to the vertices just computed. If the number of initial
vertices is V;, then the number of initial edges is E, = V;; — 1. A subdivision produces
V, vertices and E| edges, where

V1: V0+E0, E1:2E0.

Each edge has a new vertex associated with it (the midpoint in parameter space), so
E, new vertices are generated. Since the new vertex implies the edge is split into two
edges, the number of edges doubles.

The second private function is Subdivide. Its job is to fill in the vertex and edge
arrays with the new vertices and edges implied by the subdivision step. The algorithm
process is straightforward, but the implementation has a subtle twist. Each old edge
is split into two new edges. The new edges must be stored in the array created by
Allocate, but should not overwrite any old edges not yet processed. In order for this
to happen, you have to iterate backwards over the old edges in the array and write

372 Chapter 4 Advanced Scene Graph Topics

TeamLRN sPeCiAL

the new edges to the correct locations. I also want this to happen in a manner that
preserves the ordering of the vertices so that I can iterate over the final set of edges
and generate the polyline.

For example, suppose that the old edges are E, E}, and E,. E, will be split into
two edges E and E/, E, will be split into two edges E; and E?, and E, will be split
into two edges E; and E.. The array that Allocate creates has six slots, and the first
three slots are filled with the old edges:

[EO‘EI‘EZ‘@‘@‘@]

The symbol @ indicates that the slots are empty. Clearly, if we were to compute E{j and
E' and store them in the slots currently occupied by E, and E}, we would overwrite
E before it was processed, which is an error. Instead, split E, by computing E} and
E{ and storing them at the end of the array. The array becomes

[EO\EI\EZ\VJ\E;\EQ]

Split E; by computing E’, and E} and storing them in the next available slots at the
end of the array. The array becomes

[EO‘EI‘EHE;\EHEQ]

Notice that E, has been overwritten, but since we already processed that edge, this is
not a problem. Finally, split E, by computing E{j and E/ and storing them in the final
available slots. The array becomes

E/

;]

The edge E, will be overwritten by this process. It is essential to compute E| first and
store it before you compute E and overwrite E(. The implementation of Subdivide
does compute the new edges in the order E! 4 followed by E !, so there is no problem
on the overwriting.

The uniform subdivision scheme described here does not take into account the
shape of the curve. Adaptive subdivision schemes will choose to subdivide a subinter-
val depending on the variation between the curve and the line segment connecting to
that subinterval. A few adaptive schemes are described in [Ebe00]. Should you choose
to use one of them, you will need to either modify the CurveMesh source code or im-
plement a new class.

[E | B | B | B | E

Figure 4.33

4.3 Curves and Surfaces 373

(a) (b)

(a) A triangulated region in the parameter domain. (b) One subdivision step applied
to the triangulated region.

4.3.4 SURFACE TESSELLATION BY SUBDIVISION

TeamLRN sPeCiAL

The subdivision scheme for surfaces is more complicated than that for curves. The
surface tessellation is a triangle mesh, even if the surface patches are rectangles. Only
a subset of the rectangle domain may be used to control the positions during the
subdivision of a triangle. Consider a triangle in the parameter domain with vertices
(19 V), (11, v1), and (u,, v,). The surface has corresponding vertices P(u;, v;) for
0 <i < 2. The triangle is subdivided into four smaller triangles by introducing new
parameter points at the midpoints of the three edges. The process is repeated on the
subtriangles as many times as desired. Figure 4.33 illustrates a level of subdivision.
The more subdivision steps you take, the better the triangle mesh approximates the
surface.

If the initial number of vertices is V|, the initial number of edges is E(, and the
initial number of triangles is 7}, a subdivision step will produce new numbers of
vertices, edges, and triangles according to

Vlz V0+E0, E1:2E0+3T0, T1:4T0.

These equations are motivated by Figure 4.33. Each edge in the triangulation receives
a new vertex, which corresponds to the midpoint of the edge in parameter space.
Thus, the new number of vertices is E, increasing the total number to V; + E. An
edge is split into two, adding 2E, edges to the triangulation. Three additional edges
are added per triangle to form the new interior triangle, a total of 37, edges for those
interior triangles. The total number of edges is 2E, + 37,. Clearly, one triangle is
replaced by four, so the new number of triangles is 47,

The class that supports the surface subdivision, SurfaceMesh, closesly resembles
CurveMesh. A portion of the SurfaceMesh interface is

374 Chapter 4 Advanced Scene Graph Topics

TeamLRN sPeCiAL

class SurfaceMesh : public TriMesh
{
public:

SurfaceMesh (Vector3fArrayPtr spkVertices, IntArrayPtr spkIndices,
bool bGenerateNormals, Vector2fArrayPtr spkParams,
SurfacePatchPtr* aspkPatch, bool bAllowAttributes,
bool bATTowDynamicChange);

virtual ~SurfaceMesh ();

void SetLevel (int iLevel);
int GetLevel () const;

protected:
Vector3fArrayPtr m_spkOrigVertices;
IntArrayPtr m_spkOrigIndices;
Vector2fArrayPtr m_spkOrigParams;
SurfacePatchPtr* m_aspkPatch;
int m_ilLevel, m_iFul1VQuantity, m_iPatchQuantity;

In the CurveMesh class, I automatically generated the vertices from the curve seg-
ments. That can also be done in the SurfaceMesh class, but I found it to be more
convenient to provide those vertices to the constructor. If this is not done, and you do
not even pass the number of vertices to the constructor, an iteration must be made
through the index array to count the number of vertices. If the indices do not form a
contiguous range of integers, special case code must be written to deal with this. So,
I pass the vertex and index arrays for the initial tessellation, a TriMesh (the class from
which SurfaceMesh is derived). The Boolean flag bGenerateNormals, if true, tells the
TriMesh to generate vertex normals.

The index array has 3N elements and represents a collection of triangles that
share the vertices. Each triangle has a surface patch associated with it. The array
of surface patches is aspkPatch and must have N elements. Each triangle also has
three parameter pairs assigned to its vertices; the parameters are in the domain
of the surface patch associated with the triangle. The array of parameter pairs is
spkParams and must have 3N elements. The evaluation of the surface patch at the
three parameter pairs must reproduce the three input vertices for the triangle. The
class SurfaceMesh assumes the responsibility for deleting the input array of patches,
so this array should be dynamically allocated.

To subdivide, just call SetLevel with the desired level of subdivision. You should
not make the value too large. Each additional level quadruples the number of trian-
gles. It does not take too large a level to produce more triangles than a graphics driver
is designed to handle.

The handling of vertex attributes is identical to what was used in CurveMesh.
To support computation of vertex attributes after subdivision, the input Boolean

TeamLRN sPeCiAL

4.3 Curves and Surfaces 375

parameter bAllowAttributes to the constructor must be set to true. The relevant
interface is

class SurfaceMesh : public TriMesh
{
pubTic:
float* GetAttributes (int iSize, const float* afAttr) const;

protected:
class VertexTree
{
public:
VertexTree ();

int V[2];
}s
VertexTree* m_akVTree;
bool m_bATlowAttributes;
}s

A binary tree of indices is used to assist in computing the attributes of a new vertex
from those of the two old ones that contributed to it.

The dynamic changes to a surface are also handled in a manner identical to that
used for curves. The relevant interface is

class SurfaceMesh : public TriMesh
{
public:

void OnDynamicChange ();

protected:
class Surfacelnfo
{
public:
SurfaceInfo ();

SurfacePatchPtr Patch;
Vector2f Param;
}s
void InitializeSurfaceInfo ();
bool m_bATTowDynamicChange;
SurfaceInfo* m_akSInfo;

376 Chapter 4 Advanced Scene Graph Topics

TeamLRN sPeCiAL

4.

When dynamic changes are enabled, the surface information array stores the surface
patch and parameter value that correspond to each vertex in the tessellation. This
allows a quick update of the vertices whenever the patch itself changes—for example,
when a Bézier patch has its control points modified.

A locking mechanism for surfaces is in place, just like the one for curves. The
interface is

class SurfaceMesh : public TriMesh
{
public:
void Lock ();
bool IsLocked () const;
}s

When Lock is called, the original vertex array, index array, and patch array are all
deleted. If vertex attributes were allowed, the binary tree of indices is also deleted.
The surface information array is not deleted so that you can continue to morph the
surface, if so desired. Once locked, you cannot unlock the surface, and any calls to
SetLevel are ignored.

The subdivision process is supported by two functions, AlTocate and Subdivide,
that are analogous to the ones found in CurveMesh. They are much more complicated,
though, because of the necessity to manage a vertex-edge-triangle table during the
subdivision process. In the curve mesh code, the old edges were split into new edges
and stored in the same array containing the old edges. Care was taken not to overwrite
old edges before they were processed. The surface mesh code instead uses a hash set of
edges to support the subdivision. The triangle mesh representation does not explicitly
store edges, so to determine the unique edges in the mesh, you need to iterate over
the index array and locate those edges. The hash set data structure stores only the
unique edges and provides, effectively, a constant lookup time for edges.* During
the iteration over the index array, an edge can be encountered multiple times—the
number of times the edge is shared by triangles. To avoid splitting the same edge
multiple times, the nested class Edge that represents an edge has a reference counter
whose value is the number of times an edge is currently shared. After an old edge
is split, the two new subedges are distinct objects. The old edge must be removed
from the hash set. Since the old edge is visited multiple times, the reference count is
decremented on each visit, and when the count becomes zero, the edge is removed
from the hash set.

A hash set data structure is implemented in Wild Magic. If you choose to use the Standard Template Library
(STL) set template, be aware that the lookup time is on the order of O(log n) for n elements. The set
stores its elements according to an ordering imposed by the template parameter class. The lookup is a
binary search. Wild Magic’s structure uses a hash table and has a lookup time on the order of O (1 + «),
where o is related to the number of hash collisions. See Section 2.1.1 for details about hash sets.

4.4 Terrain 377

The sample application on the CD-ROM in the directory
MagicSoftware/WildMagic3/Test/TestSurfaceMesh

illustrates the use of both CurveMesh and SurfaceMesh.

44 TERRAIN

44.1

TeamLRN sPeCiAL

Outdoor games have a need for realistic-looking terrain. How you create the terrain
data will depend on the type of game. For example, if you are writing a flight sim-
ulator, most of the terrain will be observed from a high altitude. The detail on the
terrain is not as much of an issue as for games where the player-characters are close
to the ground. The detail near the character is expected to be at high resolution. Ter-
rain that is far away requires less detail, but if the triangle mesh used for the terrain
close-up is the same one used for the faraway view, the graphics system can spend a
lot of cycles drawing many triangles that affect only a handful of pixels. Recall that
this concept has been visited already (see Section 4.1). A terrain system might very
well be constructed to use level-of-detail algorithms. Whether a flight simulator or
a game played on the ground, the potential is great for having a large amount of
terrain. This is particularly an issue for game worlds that are designed to have new
regions added to them. It is likely that not all the terrain data will fit into available
memory on the PC or console, so it must be paged from disk to memory on demand,
and hopefully in a manner that does not catch the player’s attention. A terrain system
in a game engine needs to manage the data efficiently, essentially requiring a virtual
memory management system. This section discusses these concepts and how Wild
Magic supports them.

DATA REPRESENTATIONS

You have a variety of choices to make regarding the representation of the terrain.
A triangle mesh may be used for terrain. If the world up vector is in the direction
(0, 0, 1), and the reference height plane (perhaps sea level) is z = 0, each vertex
(x, y, z) represents the height z above the reference plane at a location (x, y) in
that plane. In this sense, the z-value is a function of (x, y), say, z = f(x, y), and
the terrain is referred to as a height field, the graph of the function f. Well, you could
make the situation more complicated, and perhaps more interesting, by allowing the
terrain to fold over—it is no longer the graph of a function. Most terrain algorithms
are designed to manage large amounts of terrain and deal with level of detail, but
are restricted to height fields, so I restrict my attention to height fields only in this
discussion.

378 Chapter 4 Advanced Scene Graph Topics

A triangle mesh gives an artist a chance to strut his stuff and design some
really good-looking environments. I recall the artist-generated terrain in the three-
dimensional version of Panzer General, produced by Mindscape some years ago. The
geometry and the applied textures of the triangles were well designed to hide the
sharp-edge artifacts that are inherent in low-polygon-count models. Generating a
large amount of terrain in this manner can be time consuming. For larger worlds,
automatic or semiautomatic height field generation is desirable. Even if some of the
texture generation is automated, the final results still need an artist’s expertise to
touch up the images. Realizing that large chunks of terrain will be stitched together,
height fields tend to be generated over rectangular grids in the xy-plane with uniform
sampling in each dimension. The heights over a rectangular grid can be generated by
creating gray-scale bitmaps whose intensities are proportional to the desired heights.
This approach allows even engineers such as myself to quickly build a terrain sys-
tem.> Height fields created in this manner lend themselves to some level-of-detail
algorithms, all based on decimation schemes for regular triangulations of the spatial
grid.

An alternative, one I suspect is not used regularly in the art pipeline, is to repre-
sent the terrain by surface patches. Patches with rectangular domains that are tiled
in the xy-plane are equally viable for terrain modeling as are height fields generated
by bitmap images. Should you choose to incorporate level of detail, you are not re-
stricted to a triangulation imposed by a regular grid in the xy-plane. The tessellation
of the surface to produce a triangle mesh for the renderer may be controlled by the
shape of the surface itself. Regions of large curvature are given a high density of tri-
angles; regions of low curvature are given many fewer triangles. Finally, surface patch
representations even allow you to fit a height field on a regularly sampled grid, with
the hope that you can replace a large amount of data (all the height samples) by a
much smaller amount (for example, control points for the surface). This is an attrac-
tive proposition for game consoles that tend to have limited memory, a slow bus, but
lots of processing power to tessellate on the fly.

4.4.2 LEVEL OF DETAIL

TeamLRN sPeCiAL

My discussion in [Ebe00] for level of detail regarding terrain is based on a SIGGRAPH
paper [LKRT96]. At the time I wrote that book, CPUs were very slow compared
to current processors, and the graphics cards had not yet evolved to use hardware
texturing and lighting. The triangle throughputs were not phenomenal either. A
continuous-level-of-detail terrain algorithm was quite attractive and was our choice
at NDL to put into NetImmerse. A year after Lindstrom’s paper appeared in SIG-
GRAPH, the ROAM algorithm appeared [DWST97]. ROAM and its variants became

. The lack of art skills shows up even more quickly when we engineers attempt to create our own bitmaps

for texturing!

Figure 4.34

TeamLRN sPeCiAL

4.4 Terrain 379

The mesh topology for a 3 x 3 block of vertices.

much more popular methods for terrain systems, but I never got around to imple-
menting a version for Wild Magic. The second edition of 3D Game Engine Design is
scheduled to appear in print by the end of 2005. The terrain chapter will be replaced
by a description of ROAM and its variations, and the engine that ships with that book
will have an implementation.

That said, I will still talk briefly about the terrain implemention in Wild Magic.
Terrain level of detail, whether Lindstrom’s algorithm or the ROAM algorithm, in-
volves modifying the triangle count in a mesh in a view-dependent manner. If you
can understand the basic concepts, you will be able to roll your own system. Many of
the figures here are from [Ebe00]; my apologies for the duplication.

Vertex Simplification

At the lowest level in the terrain systemisa 3 x 3 block of vertices. The mesh topology
for the block is shown in Figure 4.34. The mesh has eight triangles, all sharing the cen-
ter vertex of the block. Vertices can be removed from the edges to form configurations
with fewer triangles. Figure 4.35 shows the possibilities.

These are distinct modulo rotations and reflections of the blocks. For example,
configuration 0 can be rotated 90 degrees to produce a two-triangle block where
the diagonal edge connects the upper-left vertex to the lower-right vertex. The four
corner vertices always exist in each configuration, and the other five vertices can be
included or removed. The number associated with a configuration is the number of
vertices from those five that the block contributes to the full triangle mesh.

The height field is defined on a grid of (2" + 1) x (2" + 1) locations in the xy-
plane, where n > 1. The grid is considered to be a collection of adjacent 3 x 3 blocks,
each one having the triangle configuration shown in Figure 4.34. A level-of-detail
algorithm will decide when to add or remove vertices from these 3 x 3 blocks. The
addition or removal is not done in the sense of allocating or deallocating memory.
Instead, a data structure is used to represent a vertex and stores a Boolean flag indi-
cating whether or not the vertex participates in the current tessellation of the height
field. The class ClodTerrainVertex is my data structure for the vertex. The interface is

380 Chapter 4 Advanced Scene Graph Topics

Figure 4.35

TeamLRN sPeCiAL

3 4 5

The seven distinct triangle configurations.

class ClodTerrainVertex
{
public:
ClodTerrainVertex ();

void SetDependent (int i, ClodTerrainVertex* pkDependent);
ClodTerrainVertex* GetDependent (int i);

bool GetEnabled () const;

void Enable ();

void Disable ();

protected:
ClodTerrainVertex* m_akDependent[2];
bool m_bEnabled;

}s

The class is not derived from Object. Higher-level classes in the terrain sys-
tem have the responsibility for managing the terrain vertices. The data member
m_bEnabled stores whether or not the vertex participates in the tessellation. Access
to the data member is through the functions GetEnabled, Enable, and Disable.

The ClodTerrainVertex also has an array of two pointers to ClodTerrainVertex
objects. You should recognize this as a simple binary tree data structure. The tree
exists because the enabling or disabling of a vertex can affect the status of other
vertices in the height field. Figure 4.36 shows a simple situation of two adjacent 3 x 3
blocks. The dependency means that if V occurs in the tessellation, so must V; and
V since they are shared by those triangles that also share V.

4.4 Terrain 381

Figure 4.36 Two adjacent 3 x 3 blocks of vertices. The arrows indicate that the vertex V on the

Figure 4.37

TeamLRN sPeCiAL

shared edge has two dependent vertices, V; and V.

A single block with nine vertices labeled and all eight triangles drawn. The candidate
vertex for disabling is V,, and the candidate vertical line segment for screen space
height measurement is (M, V,).

The decision to disable a vertex is based on the screen space height between the
vertex and the edge that would occur if the vertex were disabled. Figure 4.37 shows a
three-dimensional view of the block.

The mathematics is a bit horrendous for computing the screen space height of
the vertical line segment. Section 3.3.5 of [Ebe00] has all the details. Despite the
complexity, the main idea is that if the screen space height of the vertical line segment
is smaller than a user-specified threshold, presumably a threshold that is a fraction of
a pixel, the vertex V, is disabled in the tessellation. The player will never notice the
collapse of two edges to one because the collapse occurs at a subpixel level. That’s the
theory. The Lindstrom paper made an approximation to the screen space distance
that was valid when the eye point is far from the terrain. I called this the distant

382 Chapter 4 Advanced Scene Graph Topics

Figure 4.38

TeamLRN sPeCiAL

() (b)

Four adjacent 3 x 3 blocks. (a) All vertices disabled. (b) All vertices enabled.

terrain assumption. This is a reasonable assumption for a flight simulator, but not
for a character walking on the ground. I provided an alternative approximation that
is valid when you are close to the terrain and called it the close terrain assumption.

If all vertices that are allowed to be disabled in the 3 x 3 blocks are disabled,
the triangle quantity has been reduced. What to do at that point? The decimation
scheme may be applied at a higher level. First, two adjacent 3 x 3 blocks that are
completely decimated have configuration 0 as shown in Figure 4.35, but with an
additional constraint. The diagonal edge must be reflected between the two blocks.
The block having the configuration 0 exactly as shown in the figure is said to be an
even block. The adjacent block must be an odd block. Figure 4.38 shows four adjacent
3 x 3 blocks, one at minimum resolution (all vertices disabled) and one at maximum
resolution (all vertices enabled).

The four blocks that were simplified as shown in the left of the figure combine
to form a 3 x 3 block of the vertices still enabled. This block is a subset of a 5 x 5
block. However, as a 3 x 3 block at a higher level, there are again five vertices—
all but the four corners—that may be considered for disabling. Each of them has
two dependents, just as in the case of original resolution. This observation allows
us to continue the triangle decimation to produce potentially larger blocks of 3 x 3
vertices that contain triangles of large area. These will occur when the blocks are in the
distance. The result is that the renderer has to draw only a small number of triangles
to cover a small number of pixels.

Block Simplification

The previous discussion led us to see that we can process blocks of vertices that
are larger than the lowest-resolution 3 x 3 blocks in the height field. The class that
represents the blocks is ClodTerrainBlock. The interface is

class ClodTerrainBlock

{
public:
unsigned char GetX () const;

TeamLRN sPeCiAL

4.4 Terrain

unsigned char GetY () const;
unsigned char GetStride () const;
float GetDelta (int i) const;
float GetDeltaMax () const;

float GetDeltalL () const;

float GetDeltaH () const;

const Vector3f& GetMin () const;
const Vector3f& GetMax () const;

void SetEven (bool bSet);

bool GetEven () const;

void SetProcessed (bool bSet);

bool GetProcessed () const;

void SetVisible (bool bSet);

bool GetVisible () const;

void SetVisibilityTested (bool bSet);
bool GetVisibilityTested () const;

bool BitsSet () const;
void ClearBits ();

// creation of the quadtree

void Initialize (ClodTerrainPage* pkPage,
ClodTerrainBlock* pkBlock, unsigned short usBlock,
unsigned char ucX, unsigned char ucY,
unsigned char ucStride, bool bEven);

// allows for changing the height data during run time

void UpdateBoundingBox (ClodTerrainPage* pkPage,
ClodTerrainBlock* pkBlock, unsigned short usBlock,
unsigned char ucStride);

// test for intersection of page's bounding box and view frustum
void TestIntersectFrustum (const ClodTerrainPage* pkPage,
const Camera* pkCamera);

// distant terrain assumption
void ComputelInterval (const Vector3f& rkModelEye,
float fTolerance);

// close terrain assumption

void ComputeInterval (const Vector3f& rkModelDir,
const Vector3f& rkModelEye, float fTolerance,
Vector2f& rkLoc, float fSpacing);

383

384 Chapter 4 Advanced Scene Graph Topics

TeamLRN sPeCiAL

void SimplifyVertices (ClodTerrainPage* pkPage,
const Vector3f& rkModelEye, const Vector3f& rkModelDir,
float fTolerance, bool bCloseAssumption);

void Disable (ClodTerrainPage* pkPage);

// quadtree indexing
static unsigned short GetParentIndex (unsigned short usChild);
static unsigned short GetChildIndex (unsigned short usParent,
unsigned short usIndex);
static bool IsFirstChild (unsigned short usIndex);
static bool IsSibling (unsigned short usIndex,
unsigned short usTest);

protected:

// bit flags for m_ucFlags

enum

{
EVEN_PARITY = 0x01,
PROCESSED = 0x02,
VISIBLE = 0x04,
VISIBILITY TESTED = 0x08,
BITS MASK = OxOE // all but even parity bit

}s

void GetVertex9 (unsigned short usSize,
ClodTerrainVertex* pkVOrigin,
ClodTerrainVertex* apkTVertex[9]);

unsigned char m_ucX, m_ucY, m_ucStride, m_ucFlags;
float m_fDelta[5], m_fDeltaMax;

float m_fDeltal, m fDeltaH;

Vector3f m_kMin, m_kMax;

This class is not derived from Object. Another class, called ClodTerrainPage, man-
ages a collection of blocks by organizing them in a quadtree. The ClodTerrainBlock
interface gives ClodTerrainPage all that it needs to manage the blocks. As you can
see, the interface itself is quite complicated. The tedious and long details of what
ClodTerrainBlock does are in Section 11.5 of [Ebe00], which I recommend you read
to understand the actual code in Wild Magic. This code contains the essence of the

algorithm in [LKR196].

The class ClodTerrainPage represents a single tile, or page, in the height field. Its

interface is

4.4 Terrain 385

class ClodTerrainPage : public TriMesh
{
public:
// size = 2"p + 1, p <= 7 (size = 3, 5, 9, 17, 33, 65, 129)
ClodTerrainPage (unsigned short usSize,
unsigned short* ausHeight, const Vector2f& rkOrigin,
float fMinElevation, float fMaxElevation, float fSpacing,
float fUVBias = 0.0f);

virtual ~ClodTerrainPage ();

// height field access

unsigned short GetSize () const;

const unsigned short* GetHeights () const;
const Vector2f& GetOrigin () const;

float GetMinElevation () const;

float GetMaxElevation () const;

float GetSpacing () const;

// pixel tolerance on projected vertex height

void SetPixelTolerance (const Renderer* pkRenderer,
float fTolerance);

float GetPixelTolerance () const;

// Height field measurements. If the location is not in the
// page, the return value is Mathf::MAX_REAL.
float GetHeight (float fX, float fY) const;

// texture coordinates for the page
Vector2fArrayPtr GetUVs () const;
float& UVBias ();

protected:
friend class ClodTerrainBlock;

// streaming support
ClodTerrainPage ();
void InitializeDerivedData ();

// queue handlers

void AddToQueue (unsigned short usBlock);

unsigned short RemoveFromQueue ();

unsigned short ReadFromQueue (unsigned short usIndex);

TeamLRN sPeCiAL

386 Chapter 4 Advanced Scene Graph Topics

// page simplification
bool IntersectFrustum (const Camera* pkCamera);

// block simplification

void SimplifyBlocks (const Camera* pCamera,
const Vector3f& rkModelEye, const Vector3f& rkModelDir,
bool bCloseAssumption);

// vertex simplification
void SimplifyVertices (const Vector3f& rkModelEye,
const Vector3f& rkModelDir, bool bCloseTerrainAssumption);

// simplification

friend class ClodTerrain;

void ResetBlocks ();

void Simplify (const Renderer* pkRenderer,
const Vector3f& rkModelEye, const Vector3f& rkModelDir,
bool bCloseAssumption);

// tessellation

float GetX (unsigned char ucX) const;

float GetY (unsigned char ucY) const;

float GetHeight (unsigned short usIndex) const;

float GetTextureCoordinate (unsigned char ucIndex) const;

void Render (ClodTerrainBlock& rkBlock);

void RenderTriangle (unsigned short usT, unsigned short usL,
unsigned short usR);

void RenderBlocks ();

virtual void Draw (Renderer& rkRenderer, bool bNoCull = false);

// height field

unsigned short m_usSize, m_usSizeMl;

unsigned short* m_ausHeight;

Vector2f m_kOrigin;

float m_fMinElevation, m_fMaxElevation, m_fSpacing;
float m_fInvSpacing, m_fTextureSpacing, m fMultiplier;

// texture parameters
float m_fUVBias;

// simplification

float m_fPixelTolerance, m_fWorldTolerance;
bool m_bNeedsTessellation;

TeamLRN sPeCiAL

TeamLRN sPeCiAL

4.4 Terrain

unsigned short* m_ausLookup;
int m_iConnectlength;

// (27p+1) by (27p+l) array of vertices, row-major order
ClodTerrainVertex* m_akTVertex;

// (2°p+l) by (2°p_1) array of texture coordinates, row-major
// order
Vector2fArrayPtr m_spkUVs;

// maximum quantities
int m_iTotalVQuantity, m iTotalTQuantity, m iTotalIQuantity;

// quadtree of blocks
unsigned short m_usBlockQuantity;
ClodTerrainBlock* m_akBlock;

// circular queue of indices for active blocks
unsigned short* m_ausQueue;

unsigned short m_usQueueQuantity;

unsigned short m_usFront, m_usRear;

unsigned short m_usNumUnprocessed;

unsigned short m_usItemsInQueue;

// for internal use (by ClodTerrain)
pubTic:

// stitch/unstitch (r,c) and (r,c+1)
void StitchNextCol (ClodTerrainPage* pkNextCol);
void UnstitchNextCol (ClodTerrainPage* pkNextCol);

// stitch/unstitch (r,c) and (r+l,c)
void StitchNextRow (ClodTerrainPage* pkNextRow);
void UnstitchNextRow (ClodTerrainPage* pkNextRow);

387

This interface is also highly complex. The constructor takes as input a single,
square height field. The heights are passed in as a one-dimensional array of unsigned
short, but they represent a two-dimensional square array of size usSize. The size
is limited to be of the form 2" + 1 for 1 <n < 7. The form itself allows the block-
based simplification as a quadtree. The upper bound on 7 is the largest integer for
which the number of triangles in the full-resolution mesh representing the page is
smaller than the maximum value of an unsigned short. That is, a 129 x 129 page has
2 - 129 - 129 = 33,282 triangles. The maximum unsigned short (2 bytes) is 65,536. If
you were to use a 257 x 257 page, there are 132,098 triangles, and a 4-byte integer

388 Chapter 4 Advanced Scene Graph Topics

is needed to index the triangles. Terrain pages can use a lot of memory. Limiting the
indices to 2-byte unsigned values reduces the memory usage by quite a significant
amount. Moreover, by using 2-byte indices, the ClodTerrainBlock values m_ucX, m_
ucY, and m_ucStride each can be 1-byte quantities. If a 4-byte index is used, the
ClodTerrainBlock values would have to be 2-byte quantities. Once again, we are
reducing memory usage significantly. The use of 2-byte integers for height is also
designed to reduce memory usage.

The constructor also accepts parameters for the world origin of the terrain page,
the minimum and maximum heights associated with the page, the world distance
between adjacent spatial samples, and a bias number for the texture coordinates
associated with a texture to be applied to the page. The unsigned short height values
are mapped to the range of heights between the minimum and maximum elevation
in order to produce the true world heights. More on the bias number later.

The tolerance on screen space height used to determine whether or not a vertex
is disabled is controlled via the member function SetPixelTolerance. If your applica-
tion is running on a computer with a slow CPU or a low-end graphics card, you can
set the tolerance to a larger number. If large enough, noticeable popping occurs—but
better that than running at only a few frames per second.

The member function GetHeight lets you query the terrain page for the height at
a specified (x, y) on the page. If the (x, y) value does not occur exactly at a sam-
ple point in the height field, the triangle containing the point is located and a linear
interpolation is used to compute the height. I chose this instead of bilinear interpo-
lation in order that the (x, y,) value be exactly on the triangle mesh surface. This is
useful when picking is used to keep the camera a fixed height above the surface. Any
smoothing of camera motion should occur as a postprocess to the picking operation.

The member functions GetUVs and UVBias will be discussed later. The simplifica-
tion functions are buried in the protected section of ClodTerrainPage. The intent is
that you have even a higher-level manager for the simplification, namely, the class
ClodTerrain. This is the topic of the next section.

443 TERRAIN PAGES AND MEMORY MANAGEMENT

TeamLRN sPeCiAL

I had implemented Lindstrom’s algorithm [LKR"96] in the version of Wild Magic
that shipped with [Ebe00], but the source code illustrated the level-of-detail manage-
ment only for a height field over a single rectangular domain. A high-level description
of how to handle tiled terrain was presented in [Ebe00], and I even had some stitch-
ing code in place to support the tiling, but I suspect the book did not present enough
information for someone to implement a system to handle it (judging by some of
the technical support email I received about it). I will now discuss this topic and the
implementation of it in the engine. The management applies to tiled terrain whether
or not you incorporate level of detail. In the event you do, issues must be addressed
regarding the stitching of adjacent tiles to avoid cracking in the combined mesh.

Figure 4.39

TeamLRN sPeCiAL

4.4 Terrain 389

y

col0 coll

10 11 | row 1

00 | 01 | row?2

The page ordering for a 2 x 2 grid of terrain pages.

Page Stitching

The first issue to deal with is stitching of the pages when the pages are using a level-of-
detail algorithm. If you have no level of detail, and the pages are at a fixed resolution,
there is no stitching to do. The level of detail can cause vertices on the edge of its
page to be disabled. The level of detail at an adjacent page can cause vertices on
the equivalent edge to be disabled. But the sets of disabled vertices might not be the
same. If they are not, cracking occurs along the shared edge. Two adjacent blocks on
the same page do not have this problem because the vertices on the shared edge are
exactly the same in memory. When the adjacent blocks are in different pages, each
block has its vertices that it manages. The vertices on the shared edge are abstractly
the same, but there are two copies of them that need to be handled in an identical
manner.

What needs to happen is that the vertices on one page boundary need to be told
who their dependents are on the other page. This dependency is slightly different than
within a single block. Specifically, the dependent of a vertex on the other page is that
vertex that is abstractly equivalent. If one of the copies is in the tessellation, so must
be the other copy.

The pages in the terrain have to be numbered with row and column indices. This
allows you to identify which pages have to be stitched together, including whether
the stitching occurs along a row or along a column. The height fields are functions
z = h(x, y) with the xy-plane using right-handed coordinates. The column index
increases with x, and the row index increases with y. For example, looking down the
positive z-axis, a 2 x 2 grid of pages is labeled as shown in Figure 4.39. The pages are
P,., where r is the row index and c is the column index.

Figure 4.40 shows how to set up the dependencies for two pages sharing a row
edge. The symbol s in the figure is the page size. The last indexed row or column in a
page is s — 1. The stitching code is

390 Chapter 4 Advanced Scene Graph Topics

Figure 4.40 Vertex dependencies between two pages sharing a row edge.

TeamLRN sPeCiAL

y
dep 1
0 A |
s — 1 | v
dep 0
X
0 s—1

void ClodTerrainPage::StitchNextRow (ClodTerrainPage* pkNextRow)

{

The vertex pkVThis refers to the one in the figure that has “dep 0” written below it. The
vertex pkVNext refers to the one in the figure to which the arrow of “dep 0” points. The
connection is also made in the other direction.

Figure 4.41 shows how to set up the dependencies for two pages sharing a column

/1"

int
int
int
int
for

{

this' is page (r,c), 'pkNextRow' is page (r+l,c)

iSize = (int)m_ usSize;

iMax = iSize - 2;

iYThis = iSize - 1;

iYNext = 0;

(int iX = 1; iX <= iMax; iX++)

int iIThis = iX + iSize*iYThis;
int iINext = iX + iSize*iYNext;

ClodTerrainVertex* pkVThis = &m akTVertex[iIThis];
ClodTerrainVertex* pkVNext = &pkNextRow->m_akTVertex[iINext];

pkVNext->SetDependent (1,pkVThis);
pkVThis->SetDependent (0,pkVNext) ;

edge. The stitching code is

Figure 4.41

TeamLRN sPeCiAL

4.4 Terrain 391

<f—|dep O

dep 1|~

s—1 0

Vertex dependencies between two pages sharing a column edge.

void ClodTerrainPage::StitchNextCol (ClodTerrainPage* pkNextCol)

{

/1"

int
int
int
int
for

{

this' is page (r,c), 'pkNextCol' is page (r,c+1)
iSize = (int)m_ usSize;

iMax = iSize - 2;

iXThis = iSize - 1;

iXNext = 0;

(int §Y = 13 iY <= iMax; iY++)

int iIThis = iXThis + iSize*iY;

int iINext = iXNext + iSize*iY;

ClodTerrainVertex* pkVThis = &m_akTVertex[iIThis];
ClodTerrainVertex* pkVNext = &pkNextCol->m_akTVertex[iINext];
pkVNext->SetDependent (0,pkVThis);

pkVThis->SetDependent (1,pkVNext);

The vertex pkVThis refers to the one in the figure that has “dep 0” written to the right
of it. The vertex pkVNext refers to the one in the figure to which the arrow of “dep 0”
points. The connection is also made in the other direction. The stitching functions
have counterparts that do the unstitching.

Terrain Page Management

The second issue to deal with is the management of pages in memory. Not all the
pages for a large world will fit into physical memory. This requires having a rudimen-
tary virtual memory management system in place. The class ClodTerrain provides

392 Chapter 4 Advanced Scene Graph Topics

this system, as well as all of the initialization and simplification that goes with the
continuous-level-of-detail terrain. The class interface is

class ClodTerrain : public Node
{
public:
ClodTerrain (const char* acHeightPrefix,
const char* acImagePrefix, Renderer* pkRenderer,
float fUVBias = 0.0f, ColorRGBA* pkBorderColor = NULL);

virtual ~ClodTerrain ();

int GetRowQuantity () const;

int GetColQuantity () const;
unsigned short GetSize () const;
float GetMinElevation () const;
float GetMaxElevation () const;
float GetSpacing () const;

float GetHeight (float fX, float fY) const;

ClodTerrainPage* GetPage (int iRow, int iCol);
ClodTerrainPage* GetCurrentPage (float fX, float fY) const;
ClodTerrainPagePtr ReplacePage (int iRow, int iCol,
const char* acHeightPrefix, const char* acImagePrefix,
const char* acHeightName, const char* acImageName);
ClodTerrainPagePtr ReplacePage (int iRow, int iCol,
ClodTerrainPage* pkNewPage);

void Simplify ();

void SetPixelTolerance (float fTolerance);
float GetPixelTolerance () const;

float& UVBias ();
ColorRGBA& BorderColor ();

protected:
ClodTerrain ();

void LoadPage (const char* acHeightPrefix,
const char* acImagePrefix, int iRow, int iCol);

int m_iRows, m_iCols;

TeamLRN sPeCiAL

TeamLRN sPeCiAL

4.4 Terrain 393

unsigned short m_usSize;
float m_fMinElevation, m_fMaxETevation, m_fSpacing;
ClodTerrainPagePtr** m_aaspkPage;

float m_fPixelTolerance;
Renderer* m_pkRenderer;
bool m_bCloseAssumption;

int m_iCameraRow, m_iCameraCol;

float m_fUVBias;
ColorRGBA m_kBorderColor;

The first two parameters of the constructor are the paths to the directories that
contain the height field data and the texture images plus the names of the files in
those directories. The sample application

MagicSoftware/WildMagic3/Test/TestTerrain
has three different resolution height files stored in the directories

MagicSoftware/WildMagic3/Test/TestTerrain/Height32
MagicSoftware/WildMagic3/Test/TestTerrain/Height64
MagicSoftware/WildMagic3/Test/TestTerrain/Height128

The number suffix refers to n in the page size (2" + 1) x (2" + 1). The corresponding
texture images are in the directories

MagicSoftware/WildMagic3/Test/TestTerrain/Image32
MagicSoftware/WildMagic3/Test/TestTerrain/Image64
MagicSoftware/WildMagic3/Test/TestTerrain/Imagel28

The height and image prefixes passed to the ClodTerrain constructor are

''Height128/height '’
''Imagel28/image"’

The path is relative to the working directory of the application. Let us assume that we
are working with the files with suffix 32. The loading code assumes that there exists a
file

''Height32/height.wmhf''

The extension stands for Wild Magic Height File. The file is binary and contains
the number of rows (4-byte signed integer), the number of columns (4-byte signed

394 Chapter 4 Advanced Scene Graph Topics

TeamLRN sPeCiAL

integer), the size of the page (2-byte unsigned short, the value 32 in this example),
the minimum elevation (4-byte float), the maximum elevation (4-byte float), and
the spacing between samples (4-byte float). If there are R rows and C columns, the

remaining files in the directory should be

''Height32/height.r.c.wmhf'"

for 0 <r < R and 0 < ¢ < C. In the sample application, R = C = 8, so there are 64
height fields. The texture images have the same numbering scheme: files are of the

form

''Image32/image.r.c.wmif"'"

where the extension stands for Wild Magic Image File.
All the height and image files are loaded. For each pair of a height and image file,
a ClodTerrainPage is created and a pointer to it is stored in a two-dimensional array.

The pages are stitched together using

// terrain has m_iRows by m iCols pages
for (iRow = 0; iRow < m_iRows; iRow++)
{
for (iCol = 0; iCol+l < m_ iCols; iCol++)
{
m_aaspkPage[iRow] [1Col1]->StitchNextCol (
m_aaspkPage[iRow] [1Col+1]);

}

for (iCol = 0; iCol < m_iCols; iCol++)
{
for (iRow = 0; iRow+l < m_iRows; iRow++)
{
m_aaspkPage[iRow] [1Co1]->StitchNextRow(
m_aaspkPage[iRow+1][iCol1]);

I have chosen to use a toroidal topology for the pages. For a large enough world,
players will not notice that they are on a torus rather than a sphere. The wraparound

is accomplished by

int iColsMl = m_iCols-1;
for (iRow = 0; iRow < m_iRows; iRow++)

TeamLRN sPeCiAL

4.4 Terrain 395

m_aaspkPage[iRow] [1ColsM1]->StitchNextCol(
m_aaspkPage[iRow] [0]) ;

int iRowsMl = m_iRows-1;
for (iCol = 0; iCol < m_iCols; iCol++)
{
m_aaspkPage[iRowsM1] [iCo1]->StitchNextRow(
m_aaspkPage[0] [1Co1]);

Even with this topology, you are not obligated to use only a fixed set of terrain
pages. Once the stitching is in place, the pages are added as child nodes to the ClodTer-
rain object. At this point you should consider the collection of terrain pages as the
active set. The active set can change over time. The old pages may be replaced by new
ones as desired, with the decision to replace most likely based on the current camera
location and the direction in which it is headed. The active set and the page replace-
ment scheme are essentially a memory management system. More on replacing pages
a bit later.

Simplification

After the terrain pages are attached to the ClodTerrain object, the terrain needs to be
simplified using the block and vertex dependencies. This is accomplished through the
member function ClodTerrain::Simplify. This function is the workhorse of the ter-
rain system. Each time the camera moves, either positionally or rotationally, Simp1ify
must be called. After all, the continuous-level-of-detail system is designed to be view
dependent. Ignoring the issue with toroidal wraparound, the simplification would be

void ClodTerrain::Simplify ()

{
// get camera Tocation/direction in model space of terrain
const Camera* pkCamera = m_pkRenderer->GetCamera();
Vector3f kWorldEye = pkCamera->GetWorldLocation();
Vector3f kWorldDir = pkCamera->GetWorldDVector();
Vector3f kModelEye = World.ApplyInverse(kWorldEye);
Vector3f kModelDir = kWorldDir*World.GetRotate();

// ... page management goes here ...

// Initialize the pages (setup for quadtree blocks to

396 Chapter 4 Advanced Scene Graph Topics

TeamLRN sPeCiAL

// be simplified).
int iRow, iCol;
for (iRow = 0; iRow < m_iRows; iRow++)
{
for (iCol = 0; iCol < m_iCols; iCol++)
m_aaspkPage[iRow] [1Co1]->ResetBlocks();

// simplify only the potential visible pages
for (iRow = 0; iRow < m_iRows; iRow++)
{
for (iCol = 0; iCol < m_iCols; iCol+t+)
{
ClodTerrainPage* pkPage = m_aaspkPage[iRow] [iCo1];
if (pkPage->IntersectFrustum(pkCamera))
{
pkPage->Simp1ify(m_pkRenderer,kModelEye,kModelDir,
m_bCloseAssumption);

First, the simplification algorithms assumes camera information in the coordi-
nate system of the terrain, so the camera eye point and world direction are inverse
transformed to the terrain model space. Second, the active blocks in the quadtree are
reset via ResetBlocks. This sets the blocks’ states so that the simplification step can de-
cide where in the quadtree new blocks need to become active. Third, only the pages
that are potentially visible are simplified. There is no reason to simplify a nonvisible
page. Now it is possible that a nonvisible page will be modified if it is stitched to one
that is visible.

I placed a comment in the previous code block that indicates the page manage-
ment code must be placed at that location. Each terrain page has associated with it
a model space origin. The origin was assigned to it when it was loaded by ClodTer-
rain, and it is based on the row and column indices for the page and on the sample
spacing for the pages. In a toroidal topology, if you were to move the camera along a
straight-line path, you would eventually return to the page you started at. The cam-
era has a different eye point vector than it did the first time it was on the page, but
the page model space origin is the same. This is a mismatch in coordinates. The page
management code must update the model space origins for the pages in the active set
to make them consistent with the camera eye point vector. The code block to handle
this is

float fLength = m_fSpacing*(m usSize-1);

TeamLRN sPeCiAL

4.4 Terrain

float fInvLength = 1.0f/fLength;

int iNewCameraCol = (int)Mathf::Floor(kWorldEye.X()*fInvLength);
int iNewCameraRow = (int)Mathf::Floor(kWorldEye.Y()*fInvLength);

if (iNewCameraCol != m_iCameraCol || iNewCameraRow != m_iCameraRow)

{

m_1iCameraCol = iNewCameraCol;
m_iCameraRow = iNewCameraRow;

// translate page origins for toroidal wraparound

int
int

int
int

iCMin0 = m_iCameraCol - m_iCols/2;
iCMinP = iCMin0 % m_iCols;

if (iCMinP < 0)

iCMinP += m_iCols;

iRMin0 = m_iCameraRow - m_iRows/2;
iRMinP = iRMin0 % m_iRows;

if (iRMinP <0)

iRMinP += m_iRows;

int iR0O = iRMin0, iRP = iRMinP;
for (int iRow = 0; iRow < m_iRows; iRow++)
{
int iCO = iCMin0, iCP = iCMinP;
for (int iCol = 0; iCol < m_iCols; iCol++)
{
ClodTerrainPage* pkPage = m_aaspkPage[iRP][iCP];
Vector2f k01dOrigin = pkPage->GetOrigin();
Vector2f kNewOrigin(iCO*fLength,iR0*fLength);
Vector2f kTrn = kNewOrigin - k01dOrigin;
pkPage->Local.Translate().X() = kTrn.X();
pkPage->Local.Translate().Y() = kTrn.Y();
iCO++;
if ((++iCP == m_iCols)
iCP = 0;
1
iRO++;
if (++iRP == m_iRows)
iRP = 0;
}
UpdateGS();

397

398 Chapter 4 Advanced Scene Graph Topics

TeamLRN sPeCiAL

The camera world coordinates are not confined by the toroidal topology. The
camera can be anywhere in the xy-plane, and the terrain appears to be infinite to
the observer. The array of pages P,. is effectively infinite, where r and ¢ are any
integer values. The first four lines of code determine which page P,. contains the
camera world coordinates (x, y). The variable iNewCameraRow is r, and the variable
iNewCameraCol is ¢. The previous page is stored in the member variables m_iCameraRow
and m_iCameraCol. The new row and column indices are compared to the old ones. If
they have not changed, the page origins are consistent with the camera coordinates. If
the origins are changed, the final UpdateGS call makes sure all the world data is correct
and consistent with the new origins.

Replacing Pages

The topology of the mesh of pages is toroidal, but this does not mean that you should
think of the game world as the surface of a torus. Enough pages are stored in the
system so that only a few intersect the view frustum at one time. The simplification
algorithm is only applied to this subset of pages. The fact that other, invisible pages
are toroidally stitched together does not affect the simplification of the visible pages.
For all practical purposes, the pages in the view frustum can be part of a world built
on an infinite plane or of a world built on a large sphere (that locally looks like an
infinite plane).

As the camera moves about the terrain, the ClodTerrain::Simp1ify function up-
dates the page origins to be consistent with world coordinates. An application can also
monitor the current row and column associated with the camera. When the camera
gets close enough to pages of interest, the current pages can be replaced by new ones
loaded from disk. In this sense the world really can be built as if it were infinite. Two
functions exist in ClodTerrain that allow you to replace a page in a specified row and
column:

ClodTerrainPagePtr ReplacePage (int iRow, int iCol,
const char* acHeightPrefix, const char* acImagePrefix,
const char* acHeightName, const char* acImageName);

ClodTerrainPagePtr ReplacePage (int iRow, int iCol,
ClodTerrainPage* pkNewPage);

The first function requires you to provide the same prefixes that were passed to
the ClodTerrain constructor; the assumption is that the replacement pages are in the
same location and use the same naming convention. You need to provide the actual
page names for the files located in the prefix directories. The second function allows
you to replace a page with one already stored in memory. The idea is that you might
have just replaced a page with a new one, only to find out that the player quickly
returned to a location that requires putting back the old page. You can keep a cache of

4.5 Controllers and Animation 399

recently visited pages in memory for quick replacement. How big the cache is depends
on the target platform and how much memory you are willing to expend in order to
replace pages quickly.

Texturing Issues

When stitching pages together, a visual anomaly can occur. If the textures on two
pages somehow are mismatched at a shared edge of a page, the game players will def-
initely notice. Even if artists have done their best to hide the mismatch, the graphics
system itself can cause problems. The issue was already discussed in Section 3.4.3 and
has to do with how texture coordinates are handled near the edges of the texture. For a
terrain system, the only reasonable choice you have is to use the clamp-to-edge mech-
anism to make sure that bilinear filtering and mipmapping do not cause problems
along shared edges.

An artist’s assistance with the texture images will also help hide any artifacts at
page boundaries, and the terrain design itself may be carefully chosen to help. For
example, if you have terrain pages with flat spots, say, a river, and the page boundaries
run down the middle of the river, that might be noticeable to a player. You might
consider designing the pages so that boundaries occur in places of low probability that
a character might see. For example, you could place them along ridges of a mountain,
knowing that the character will not get close enough to notice any seams.

45 CONTROLLERS AND ANIMATION

Animation is supported in Wild Magic by the concept of a controller. A controller
manages various quantities that are time varying. Character animation, for example,
might be implemented by controlling the local transformations at each joint in the
hierarchy representing the character. Motion is not the only quantity that can be
controlled. For example, you might have a material attached to an object whose alpha
value varies over time, and a controller can be built to vary the alpha value. You name
it. If it varies with time, you can control it.

The base class for a controller is appropriately named Controller. The interface is

class Controller : public Object
{
public:

virtual ~Controller ();

Object* GetObject () const;

virtual bool Update (double dAppTime);

TeamLRN sPeCiAL

400 Chapter 4 Advanced Scene Graph Topics

TeamLRN sPeCiAL

enum // RepeatType

{
RT_CLAMP,
RT_WRAP,
RT_CYCLE,
RT_QUANTITY

bs

int RepeatType; // default = RT_CLAMP
double MinTime; // default = 0.0
doubTe MaxTime; // default = 0.0

double Phase; // default = 0.0

double Frequency; // default = 1.0

bool Active; // default = true
protected:

Controller ();

// the controlled object
friend class Object;
virtual void SetObject (Object* pkObject);

// Conversion from application time units to controller time
// units. Derived classes may use this in their update

// routines.

double GetControlTime (double dAppTime);

// Regular pointer used for controlled object to avoid
// circular smart pointers between controller and object.
Object* m_pkObject;

double m_dLastAppTime;

This is an abstract base class that provides the basic services for managing the time
values that affect the controlled object. The SetObject function is used by the Object
class when a controller is attached to it. The virtual function Update in the Controller
class is the main entry point for modifying the managed object’s state. The input value
is the application time, a value of type doubTe to guarantee a 64-bit value for time. The
Active data member in the controller interface is just a switch to indicate whether or
not the object is to be updated in the Update call. The update function is implemented
in any class derived from Controller; the behavior, of course, is dependent on what
that derived class is intended to modify over time. The application can be creative in

TeamLRN sPeCiAL

4.5 Controllers and Animation 401

the ways that it calls the controller update functions. However, the main mechanism
is an update function that applies to a scene graph hierarchy. The controller updates
are called when various objects in the scene graph are visited during a depth-first
recursion.

Sometimes the time scale of the controller is different than that of the application.
For example, some modeling packages use units different than seconds for time-
varying quantities. The exporter can preserve such units, but provide information
on how that maps to seconds. This information is stored using the MinTime, MaxT1ime,
Phase, and Frequency data members. The only allowable mappings to seconds are
linear functions. That is, if 7, is the application time, f is the frequency, and p is
the phase, then the controller time is

tczf*ta+p'

The default frequency is f = 1, and the default phase is p = 0. Further modi-
fications of the controller time 7. are allowed based on the value of the repeat type
parameter. This parameter ties the controller time to the minimum and maximum
times, both extreme times in the same units as the controller time. If the repeat type
is clamp, the controller time is clamped to the interval bounded by the minimum 7,
and maximum #,,, times. That is,

// repeat type = CLAMP
tc = f*ta + p;
if (tc < tmin)

tc = tmin;
else if (tc > tmax)
tc = tmax;

This mode guarantees that the time-varying quantities change only on the specified
interval.

If the repeat type is wrap, the time varies from f,;, to #,.,, then is wrapped
around back to 7;, and the animation starts anew. The code for computing the time
is

// repeat type = WRAP

tc = f*ta + p;

mult = (tc - tmin)/(tmax - tmin);

integer part = floor(mult);
fractional_part = mult - integer_part;

tc = tmin + fractional part*(tmax - tmin);

If the repeat type is clamp, the time varies from 7,;, t0 f,,y, then reverses direction
to decrease back to 7., and once again reverses direction, thus causing a cyclical
behavior in time. The code for computing the time is

402 Chapter 4 Advanced Scene Graph Topics

// repeat type = CYCLE
tc = f*ta + p;
mult = (tc - tmin)/(tmax - tmin);
integer_part = floor(mult);
fractional_part = mult - integer_part;
if (integer_ part is even)
{
// forward in time
tc = tmin + fractional part*(tmax - tmin);
}
else
{
// backward in time
tc = tmax - fractional part*(tmax - tmin);

The conversion from application time to controller time is implemented in the
function GetControlTime. The derived class has the option of whether or not to call
this in the Update function.

The remainder of this section is a discussion of the classes in the engine that are
derived from Controller.

45,1 KEYFRAME ANIMATION

TeamLRN sPeCiAL

One of the most commonly used methods for animation is keyframe animation. Each
node of a scene hierarchy has its local transformations computed by interpolating a
small set of translations, rotations, and scales. An artist will generate the sets of trans-
formations, and each transformation is assigned a time for the animation. The engine
interpolates those transformations at all other times to generate smooth motion. The
artist-generated transformations are called keyframes, a term from classical 2D ani-
mated cartoon production. Such cartoons are generated by having the main artists
draw a sequence of important frames, and other artists, called in-betweeners, fill in
the gaps between consecutive frames by drawing a lot more frames. The keyframe
controller in the graphics engine is the equivalent of the in-betweeners.

The controller class supporting keyframe animation is KeyframeController and
has the interface

class KeyframeController : public Controller
{
pubTic:

KeyframeController ();

virtual ~KeyframeController ();

TeamLRN sPeCiAL

4.5 Controllers and Animation 403

FloatArrayPtr TranslationTimes;
Vector3fArrayPtr TranslationData;

FloatArrayPtr RotationTimes;
QuaternionfArrayPtr RotationData;

FloatArrayPtr ScaleTimes;
FloatArrayPtr ScaleData;

virtual bool Update (double dAppTime);

protected:
static void GetKeyInfo (float fCtr1Time, int iQuantity,
float* afTime, int& rilastIndex, float& rfNormTime,
int& ri0, int& ril);

Vector3f GetTranslate (float fNormTime, int 10, int il);
Matrix3f GetRotate (float fNormTime, int i0, int i1);
float GetScale (float fNormTime, int i0, int il);

int m_iTLastIndex;
int m_iRLastIndex;
int m_iSLastIndex;

The class manages three arrays of data, one for the translations, one for the
rotations (stored as quaternions), and one for the uniform scales. Wild Magic version
3 just introduced the ability to have nonuniform scales at the Geometry leaf nodes,
but I have not modified the keyframe controller class to handle nonuniformity. Each
array of transformation data has an associated array of keyframe times. The times at
which translation, rotation, and scale are specified do not have to be the same. The
keyframe controller does allow them to be the same since the data members are smart
pointers.

Most of the interface just exposes the data members so that you can set them.
The Update function is the override of the one in the base class Controller. Its job
is to determine the pair of keys (for each channel) whose times bound dAppTime. If
you have a long animation sequence with n keys, ordered by time, of course, a linear
search will be O (n). Since the keys are ordered, you can instead use a binary search
that is O (log n). For a real-time application, even this can use a lot of CPU cycles.
The lookup occurs for each channel in each controller at rates such as 60 frames per
second. A faster approach uses time coherency. The chances that the current pair of
keys will be the same pair on the next call to Update is nearly 100 percent. If it is not,
the chances are high that the next pair of keys bound the input time. Simply save the
index of the first key of the bounding pair and start a linear search from that pair

404 Chapter 4 Advanced Scene Graph Topics

on the next call. The asymptotic behavior is O (1) with a very small constant. If you
want to experiment, implement the linear search and profile it on a large animation
sequence with a slowly varying time, and then profile the method as I implemented
it. You will see significant differences.

The fast lookup is implemented in the method GetKeyInfo. The input fCtr1Time is
the mapping of dAppTime by the base class GetControlTime. The array of times is passed
by iQuantity and afTime. The index from the last search is riLastIndex. The values
returned from the function call through passed parameters are rfNormTime, a value
that normalizes time to the interval [0, 1], and the indices ri0 and ri1 for the pair of
keys that bound the input time. If 7, and ¢, are the bounding times and 7 is the input
time, the normalized time is u = (t — ty)/(t; — #p). The normalized time is passed
to GetTranslate for linear interpolation of two vectors, to GetRotate for spherical
linear interpolation of two quaternions, and to GetScale for linear interpolation of
two scalars. The transformations computed by the interpolations are for the local
transformations of the Spatial object to which the controller is attached.

The sample application on the CD-ROM,

MagicSoftware/WildMagic3/Test/TestSkinnedBiped

is designed to illustrate keyframe animation as well as skinning. The character is
animated at most of its joints using keyframe controllers.

452 MORPHING

TeamLRN sPeCiAL

The definitions of morphing are many. Most of them have the flavor of modifying
one object in some well-defined manner to look like another object. The version of
morphing that I have implemented as a controller involves a sequence of Geometry
objects, called targets, all of the same class type and all having the same number of
vertices. Given a vertex on one object, there are corresponding vertices on all the other
objects. A weighted average of each collection of corresponding vertices is computed;
the result is an object that is a weighted combination of the targets. Think of the
weights as an array of numbers summing to 1. The array of weights is applied to all
sets of corresponding vertices. A set of weight arrays is provided for the morphing,
and each set is assigned a time. These act as keyframes: An artist has provided the
weights to be used on the objects at a small number of snapshots in time, and a
morphing controller does the in-betweening by interpolating the weight arrays and
applying the resulting weight array to the set of targets to produce the in-between
object.
The class MorphController implements this concept. Its interface is

class MorphController : public Controller
{
public:
MorphController (int iVertexQuantity, int iTargetQuantity,

TeamLRN sPeCiAL

4.5 Controllers and Animation 405

int iKeyQuantity);
virtual ~MorphController ();

int GetVertexQuantity () const;
int GetTargetQuantity () const;
int GetKeyQuantity () const;

void SetVertices (int i, Vector3fArray* pkVertices);
Vector3fArray* GetVertices (int i) const;

void SetTimes (FloatArray* pkTimes);
FloatArray* GetTimes () const;

void SetWeights (int i, FloatArray* pkWeights);
FloatArray* GetWeights (int i) const;

virtual bool Update (double dAppTime);

protected:
MorphController ();

void GetKeyInfo (float fCtr1Time, float& rfTime,
float& rfOmTime, int& ri0, int& ril);

int m_iVertexQuantity;
int m_iTargetQuantity;
Vector3fArrayPtr* m_aspkVertices;

int m_iKeyQuantity;
FloatArrayPtr m_spkTimes;
FloatArrayPtr* m_aspkWeights;

int m_ilastIndex;

The constructor is passed the number of vertices in a target, the number of
targets, and the number of keys for the weight arrays. The majority of the public
interface is for setting and getting the vertex, target, and key data.

Suppose there are V vertices, T targets, and K keys. A weight array has elements
w; for0 <i <T — 1withw; > 0and Z,‘T:_ol w; = 1. If X; is the set of corresponding
vertices to be weighted, with X; from target i, then the output vertex is

406 Chapter 4 Advanced Scene Graph Topics

Observing that wy_;=1— ZiT:_OZ w;, the expression is rewritten as
T-1
X=X+ Z w; (X; — Xo).

i=1

If the differences X; — X, are precomputed, then the new expression requires three
less multiplications than the old one. The storage requirements are also slightly less:
one floating-point value per array of weights since we do not need to store w,. For a
large amount of morphing data and a lot of keys, this small difference can add up to
a large one, both in memory and speed.

An artist can generate all 7 targets, but an exporter from the modeling pack-
age or an importer can be written to precompute the vector differences. The
MorphController class does assume the precomputing has happened. The data mem-
ber m_aspkVertices is an array of T vertex arrays; each vertex array is the geometric
data of the target and has V vertices. The vertex array m_aspkVertices[0] stores the
original target. The vertices are the X in the weighted average equation. The remain-
ing vertex arrays m aspkVertices[i] fori > 1 store the vector differences X; — X,.

The data member m_aspkWeights is an array of K weight arrays. Each array repre-
sents weights w through wy_, so each array stores T — 1 floating-point values. The
weights wy are not stored. The keyframe times are stored in m_spkTimes, an array of
K floating-point values.

The Update function takes the input application time dAppTime and must look up
the pair of consecutive keys that bound that time. The process is identical to the one
used in KeyframeController. Time coherency allows an O(1) lookup by saving the
index of the first key of the bounding pair found in the last update call and then
using it as the starting point for a linear search in the current update call. That index
is stored inm_iLastIndex. The fast lookup is implemented in the method GetKeyInfo.
The input fCtr1Time is the mapping of dAppTime by the base class GetControlTime.
The outputs are the normalized time, rfTime, and one minus that time, rfOmTime.
The indices for the bounding pair of keyframe times are returned in ri0 and ril.
If t; and 1, are the keyframe times and ¢ is the control time, the normalized time is
u=(—1y/(t —1p).

The sample application on the CD-ROM,

MagicSoftware/WildMagic3/Test/TestMorphController

is designed to show morphing. There are five targets and six keys. The object is a face
with 1330 vertices and 2576 triangles.

4.5.3 POINTS AND PARTICLES

TeamLRN sPeCiAL

A simple interface is provided for controlling a collection of points stored as a Poly-
point geometric object. The class is PointController and has the interface

TeamLRN sPeCiAL

4.5 Controllers and Animation

class PointController : public Controller

{

public:

virtual ~PointController ();

// The system motion, in local coordinates.
float SystemlLinearSpeed;

float SystemAngularSpeed;

Vector3f SystemLinearAxis;

Vector3f SystemAngularAxis;

// Point motion, in the model space of the system.
float* PointLinearSpeed ();

float* PointAngularSpeed ();

Vector3f* PointLinearAxis ();

Vector3f* PointAngularAxis ();

virtual bool Update (double dAppTime);

protected:

// streaming support
PointController ();

// for deferred allocation of the point motion arrays
void Reallocate (int iVertexQuantity);
virtual void SetObject (Object* pkObject);

virtual void UpdateSystemMotion (float fCtrl1Time);
virtual void UpdatePointMotion (float fCtri1Time);

// point motion (in model space of system)
int m_iPQuantity;

float* m_afPointLinearSpeed;

float* m_afPointAngularSpeed;

Vector3f* m_akPointLinearAxis;

Vector3f* m_akPointAngularAxis;

407

The class is abstract since the default constructor is protected and no constructors
exist. The intention is that you implement whatever physics you desire by deriving a
class from this one.
The set of points is referred to as a systern. That system, when viewed as a single
entity, moves according to its linear velocity and rotates according to its angular ve-
locity. In physics simulations where the points represent a rigid body, the origin of the

408 Chapter 4 Advanced Scene Graph Topics

TeamLRN sPeCiAL

system is chosen to be the center of mass of the points, and the coordinate axes are
chosen to be the principal directions of the inertia tensor. The class interface lets you
set the linear velocity as a linear speed, SystemLinearSpeed, and the unit-length di-
rection, SystemLinearAxis. The angular velocity is set by choosing the angular speed,
SystemAngularSpeed, and the unit-length rotation axis, SystemAngularAxis.

In a nonrigid system, each point can have its own linear and angular velocity.
These are set by the member functions that expose the arrays of quantities, Point-
LinearSpeed, PointLinearAxis, PointAngularSpeed, and PointAngularAxis. The arrays
have the same number of elements as the Polypoint object the controller manages. To
avoid accidentally reallocating any of the arrays with the wrong number of elements,
the array pointers are not exposed in the public interface.

The important functions to override in a derived class are UpdateSystemMotion
and UpdatePointMotion. The Update function of PointController computes the con-
trol time from the application time dAppTime and then calls the two motion updates
with the control time. PointController does provide implementations. The system
motion update changes the local translation by computing how far the system has
moved in the direction of linear velocity and adding it to the current local translation.
Similarly, the local rotation is updated by multiplying it by the incremental rotation
implied by the angular speed and angular axis. The local translation of each point is
updated using the distance traveled by the point in the direction of its linear velocity.
The point does not have a size, so how does one interpret angular velocity? The point
could be a summary statistic of an object that does have size. Each point may have
a normal vector assigned to it (PoTypoint objects can have vertex normal arrays). If
normal vectors are attached to the points, those vectors are rotated by the new local
rotation matrix.

The sample application on the CD-ROM,

MagicSoftware/WildMagic3/Test/TestPolypoint

is designed to illustrate point controllers. The application creates a class called Ran-
domController that is derived from PointController. The system linear and angular
velocities are always zero, so the system motion update has no effect on the points.
However, the point motion update is implemented to randomly move the points
around in a cubic region of space.

Another controller, ParticleController, is used to manage the quantities in the
Particles class. The interface is

class ParticleController : public Controller

{
public:
virtual ~ParticleController ();

// The system motion, in local coordinates.

TeamLRN sPeCiAL

4.5 Controllers and Animation

float SystemlLinearSpeed;
float SystemAngularSpeed;
Vector3f SystemLinearAxis;
Vector3f SystemAngularAxis;

// Point motion, in the model space of the system.
float* PointLinearSpeed ();

Vector3f* PointLinearAxis ();

float SystemSizeChange;
float* PointSizeChange ();

virtual bool Update (double dAppTime);

protected:

// streaming support
ParticleController ();

// for deferred allocation of the point motion arrays
void Reallocate (int iVertexQuantity);
virtual void SetObject (Object* pkObject);

virtual void UpdateSystemMotion (float fCtrl1Time);
virtual void UpdatePointMotion (float fCtri1Time);

// point motion (in model space of system)
int m_ilQuantity;

float* m_afPointLinearSpeed;

Vector3f* m_akPointLinearAxis;

// size change parameters
float* m_afPointSizeChange;

409

The structure of this controller is nearly identical to PointController with a cou-
ple of exceptions. First, the points are not allowed any angular velocity. This choice
was made because the particles are displayed as billboards that always face the camera,
and an attempt to reorient them physically would be inconsistent with their visual
display. Second, the particles have sizes, and a size adjustment applies to all the parti-
cles. The size quantities themselves may vary over time. The function UpdateSystem-
Motion has the responsibility for varying SystemSizeChange, and the function Update-
PointMotion has the responsibility for varying the elements of m_afPointSizeChange.

410 Chapter 4 Advanced Scene Graph Topics

Figure 4.42

V,(1.0 of B, , 0.0 of B,)

,(0.75 of B, , 0.25 of B,)

V405 of B, , 0.5 of B,)

V,(0.25 of B, , 0.75 of B,)
V(0.0 of B, , 1.0 of B,)

A skin-and-bones system consisting of two bones that influence five vertices. The
vertex closest to the joint formed by the two bones is equally influenced by the bones.
For each vertex farther from the joint, one bone influences it more than the other
bone.

The sample application on the CD-ROM,
MagicSoftware/WildMagic3/Test/TestParticles

is designed to illustrate particle controllers. The application creates a class called
BloodCellController that is derived from ParticleController. The system linear and
angular velocities are always zero, so the system motion update has no effect on the
points. However, the point motion update is implemented to randomly move the
particles around in a cubic region of space. The particles use a texture image with an
alpha channel. They appear as if they are spherically shaped, red blobs. Well, to my
imagination, they look like animated blood cells.

45.4 SKIN AND BONES

TeamLRN sPeCiAL

Skin-and-bones animation, or simply skinning, is the process of attaching a de-
formable mesh to a skeletal structure in order to smoothly deform the mesh as the
bones move. The skeleton is represented by a hierarchy of bones, each bone positioned
in the world by a translation and orientation. The skin is represented by a triangle
mesh for which each vertex is assigned to one or more bones and is a weighted av-
erage of the world positions of the bones that influence it. As the bones move, the
vertex positions are updated to provide a smooth animation. Figure 4.42 shows a
simple configuration of two bones and five vertices.

TeamLRN sPeCiAL

4.5 Controllers and Animation 411

The intuition of Figure 4.42 should be clear: Each vertex is constructed based on
information relative to the bones that affect it. To be more precise, associate with bone
B; the uniform scale s;, the translation vector T;, and the rotation matrix R;. Let the
vertex V; be influenced by n ; bones whose indices are k; through k,, .. The vertex has
two quantities associated with bone By : an offset from the bone, denoted @ j;. and
measured in the model space of the bone, and a weight of influence, denoted w j; .
The world space contribution by By, to the vertex offset is

S Rie,© jk, + -

This quantity is the transformation of the offset from the bone’s model space to
world space. The world space location of the vertex is the weighted sum of all such
contributions,

nj
V=2 wi (Sk,- R ® i, + Tk,«) : (4.3)

i=1

Skinning is supported in current graphics hardware. The skinning in Wild Magic
was implemented originally to use the CPU to do all the algebraic calculations be-
cause, at the time, the hardware support was not always there. The CD-ROM that
ships with [Ebe03a] has a shader program for handling skinning. Wild Magic version
3 has a software-based skin-and-bones controller, called SkinController. It should be
easy enough to write one that uses the graphics APIs rather than using shaders, but
the class will be Effect-derived since the renderer has to be given the responsibility
to pass the bone matrices to the hardware through the graphics API interface.

The class interface for the software-based skinning is

class SkinController : public Controller
{
public:
SkinController (int iVertexQuantity, int iBoneQuantity,
Node** apkBones, float** aafWeight, Vector3f** aakOffset);
virtual ~SkinController ();

int GetVertexQuantity () const;

int GetBoneQuantity () const;

Node* GetBone (int iBone) const;

float& Weight (int iVertex, int iBone);
Vector3f& Offset (int iVertex, int iBone);

virtual bool Update (double dAppTime);

protected:
SkinController ();

412 Chapter 4 Advanced Scene Graph Topics

TeamLRN sPeCiAL

int m_iVertexQuantity; // vq

int m_iBoneQuantity; // bq
Node** m_apkBones; // bones[bq]
float** m_aafWeight; // weight[vq] [bq]

Vector3f** m_aakOffset; // offset[vq][bq]
}s

The constructor is told how many vertices are in the skin (iVertexQuantity), how
many bones affect the skin (iBoneQuantity), the array of (pointers to) bones them-
selves (apkBones), and the matrix of weights (aafWeight) and offsets (aakOffset) that
determine how the skin vertices are constructed from the bones. The input arrays are
the responsibility of the controller to delete, so they should be dynamically allocated.
The weights and offsets must be allocated with the system template function Allocate
that was discussed in Section 2.1.6. The controller is attached to a TriMesh object.

The relationship between the bones and the vertices can be thought of as a matrix
of weights and offsets whose rows correspond to the vertices and whose columns
correspond to the bones. For example, if there are three vertices and four bones, then
the following array illustrates a possible relationship:

By B, B, B;
Vo | woo» O 0 Wo, Ogy | Wo3» O3
Vi 0 wyp Oy 0 w3, O3
V| wag, Oy 9 0 W3, Oy3

An entry of { indicates that the bone does not influence the vertex. In this case the
implied weight is 0. The indexing in the matrix is the same one referenced in Equation
(4.3). The skin vertices are

Vo = wog (S0RoO®o + To) + woy (3R,O0 + T5) + w3 (5383003 + T3)
Vi=wy (5;R0), + T) + w3 (53R:0 5 + T3)
V, = wyg (5:R,050 + Ty) + was (s3R30,5 + Ts) .

The Update function is

bool SkinController::Update (double dAppTime)
{
if (!Controller::Update(dAppTime))
return false;

// The skin vertices are calculated in the bone world
// coordinate system, so the TriMesh world transform must be
// the identity.

TeamLRN sPeCiAL

4.5 Controllers and Animation 413

Geometry* pkGeom = StaticCast<Geometry>(m pkObject);
pkGeom->World = Transformation::IDENTITY;
pkGeom->Wor1dIsCurrent = true;

// compute the skin vertex locations
assert(m_iVertexQuantity == pkGeom->Vertices->GetQuantity());
Vector3f* akVertex = pkGeom->Vertices->GetData();
for (int i = 0; 1 < m_iVertexQuantity; i++)
{
Vector3f kTmp = m_apkBones[0]->World.ApplyForward(
m_aakOffset[i][0]);
akVertex[i] = m aafWeight[i] [0]*kTmp;
for (int j = 1; j < m_iBoneQuantity; j++)
{
kTmp = m_apkBones[j]->World.ApplyForward(
m_aakOffset[i][j]);
akVertex[i] += m_aafWeight[i][j]*kTmp;

pkGeom->UpdateMS () ;
return true;

The assumption is that the world transformations of the bones are current. The
bones affecting a skin are normally stored in a subtree of the scene hierarchy. This is
particularly true when the skin is for a biped model, and the hierarchy represents the
biped anatomy. In the depth-first traversal from an UpdateGS call, the bones must be
visited first before its associated skin is visited. In [Ebe00] I said that the bone tree and
skin should be siblings of the same parent. This is not necessary. In fact, frequently
asked questions about the SkinnedBiped.mgc model (in Wild Magic version 2) were
about how the biped was structured as a scene hierarchy and why was it that the skins
were not stored as siblings of their bone trees. As it turns out, the biped model had
its skins stored the way they were to minimize the render state changes associated
with material state. The model is small enough that the material state changes are
negligible. In Wild Magic version 3, I refactored the model so that the skins are
siblings of their bone trees. But, of course, this is not necessary! All that matters is
that the skin is visited after its bone tree in a depth-first traversal.

The skin vertices are constructed in the world coordinates of the bone tree. Any
nonidentity local or world transformations stored at the TriMesh skin will cause it to
be transformed out of that coordinate system, an error. The SkinController::Update
function sets the skin’s world transformation to be the identity. The automatic update
that occurs in the Spatial class must be informed not to compute the world transfor-
mations. I talked about this in Section 3.2.3. The controller sets the Wor1dIsCurrent

414 Chapter 4 Advanced Scene Graph Topics

4.5.5

TeamLRN sPeCiAL

Boolean flag as a message to the automatic system not to compute world transforma-
tions. Other Controller-derived classes might also have to pass this message.

The main task of the update routine is to compute the skin vertices for the cur-
rent state of the bone tree. Equation (4.3) must be computed. You have a choice about
which order to execute the double loop. Is the outside loop over the bones or over the
vertices? I chose wrongly in Wild Magic version 2, not thinking about the perfor-
mance issues. I had the bone loop on the outside. Some folks in the MIT Multimedia
Lab, who were using Wild Magic version 2 for their Alpha Wolf AI demonstration,
corrected my thinking and pointed out that my choice was thrashing the memory
cache because of all the jumping around in memory the program had to do regard-
ing vertex access. Wild Magic version 3 has the loops in the other order. If you look at
the previously displayed source code, the intuition is clear. The vertex array akVertex
has its elements accessed in order, so no jumping around in memory here. Each ver-
tex is initialized using the bone at bone array index 0. In the inner loop, the weights
and offsets are accessed repeatedly. Since the arrays are of the form array[i][j] and j
is the index changing most rapidly, no jumping around in memory is occurring here
either.

An optimization that I do not have in place, but that I am not in a rush to
implement since a hardware-based skinning implementation should be next on the
list, is to compute the forward transformation and vertex update inside the inner loop
only when a weight is positive. When the weight is zero, the vertex update is the zero
vector and does not affect the current vertex value.

The sample application on the CD-ROM,

MagicSoftware/WildMagic3/Test/TestSkinnedBiped

illustrates the skin-and-bones controller. All the skin-and-bones data associated with
the biped is stored as raw data, loaded by the application, and assembled to form the
biped scene graph. The biped is also animated using keyframe controllers. This appli-
cation gives you an idea of the intricacies and complexities of building an animated
biped that looks good.

INVERSE KINEMATICS

Inverse kinematics (IK) is an intriguing topic, but a very difficult thing to implement
when you have to reproduce what a modeling package produces. The algorithms that
are used to determine transformations in a chain of nodes are varied, and folks really
like to throw in their own hacks and variations to make the motion smooth and
robust. If you have no idea what algorithm the modeling package uses, it is nearly
impossible to reverse-engineer and match it. One of the main curses is the handling
of joint angles by thinking of them as Euler angles. As long as there is only one degree
of rotational freedom at a joint, not a problem. But when you have two or three
degrees of rotational freedom at a joint, my intuition fails me on how to control the
associated angles. The angles are typically specified in terms of rotations about the

TeamLRN sPeCiAL

4.5 Controllers and Animation 415

coordinate axes. But once you apply that first rotation, the new coordinate axes are
not the original ones. Naturally, you can choose the second angle to be relative to
an axis in the new coordinate system, but if two modeling packages choose different
conventions, you either have to map both somehow into your single IK controller
class or you have to have multiple IK controller classes. I do not like either alternative.
At any rate, I chose Wild Magic to have a single IK controller class. You make your
choices, you live by the consequences.

The IK system represents a linear chain of Node objects. The system has three sepa-
rate types of objects. Joints are represented by the class IkJoint. The class encapsulates
how the transformations at a node are allowed to be updated, and it controls the up-
dates themselves. There is a one-to-one correspondence between nodes in the chain
and joints. That is, each node is viewed as a joint in the IK system. Certain nodes
in the chain are required to reach one or more goals. These nodes are said to be end
effectors, and the goals are targets. The class IKGoal encapsulates a pair consisting of
an end effector and a target. The classical situation is that the root node of a chain
is fixed (the shoulder of a character) and the node at the opposite end of the chain
is the only end effector (the hand of a character). A goal might be for the character
to grab a mug on a table. The IKGoal object pairs up the hand node (the end effec-
tor) and the mug node (the target). A node can have multiple goals: one is normally
called the primary goal, and others are called secondary goals. For example, consider
a chain of nodes: shoulder, elbow, hand. In attempting to have the hand grab a mug,
you might notice the elbow moves in ways that appear unanatomical. A primary goal
would be to attract the elbow away from the torso by requiring that node to remain
close to a target positioned on the side of the elbow opposite the torso. A secondary
goal might be to attract the elbow toward the floor using another target between the
elbow and the floor. The final type of object is the IK controller itself, conveniently
named IKController.

Figure 4.43 illustrates an IK system. Using the analogy of a biped’s arm, the joint
Jo is the shoulder, the joint J; is the elbow, the joint J, is the wrist, and the joint
J3 is the hand. The goal for the hand is G, a target it must reach for. However, we
do not want the elbow to bend backwards (a painful proposition for the character),
so the goal for the elbow is G . The target associated with the goal is not necessarily
stationary. It might be positioned based on the locations of joints J, and J, in an
attempt to keep the V-shaped chain from J, through J; to J,.

Goals

The simplest class to describe is IKGoal. Its interface is

class IKGoal : public Object
{
pubTic:
IKGoal (Spatial* pkTarget, Spatial* pkEffector, float fWeight);

416 Chapter 4 Advanced Scene Graph Topics

G()
(%3)
(%) »—®

Figure 4.43 An IK system for a linear chain of four nodes.

TeamLRN sPeCiAL

SpatialPtr GetTarget ();
SpatialPtr GetEffector ();
float Weight;

Vector3f GetTargetPosition () const;
Vector3f GetEffectorPosition () const;

protected:
IKGoal ();

SpatialPtr m_spkTarget;
SpatialPtr m_spkEffector;
1

As mentioned previously, the class encapsulates a joint that is an end effector and
a target that the end effector attempts to reach. In addition to the target and end
effector, the constructor also takes a weight value that is positive. This value represents
how much influence the goal should have when attempting to position the joints to
reach all the targets. The function GetTargetPosition returns the world translation
of the target, whereas GetEffectorPosition returns the world translation of the end
effector.

Joints

The joint class is IKJoint and has the interface
class IKJoint : public Object

{

public:
IKJoint (Spatial* pkObject, int iGoalQuantity, IKGoalPtr* aspkGoal);

TeamLRN sPeCiAL

4.5 Controllers and Animation

virtual ~IKJoint ();

// index i is for the joint's parent's world axis[i]
bool AllowTranslation[3];

float MinTranslation[3];

float MaxTranslation[3];

bool AllowRotation[3];

float MinRotation[3];

float MaxRotation[3];

protected:

// streaming
IKJoint ();

// support for the IK update
friend class IKController;

// the managed object
Spatial* m_pkObject;

// joint update

Vector3f GetAxis (int i);
void UpdateWor1dSRT ();
void UpdateWorldRT ();
bool UpdateLocalT (int 1);
bool UpdateLocalR (int 1);

// the goals affected by this joint
int m_iGoalQuantity;
IKGoalPtr* m_aspkGoal;

417

The constructor takes as input the object whose transformations it will control.
All but the last object in a chain must be Node-derived in order to have the chain
links (parent-child links). The last object is not necessarily Node-derived. The clear
choice for the input type is therefore Spatial. The other two input parameters form
an array of goals that are affected by any translation or rotation of the joint. The
update functions in IKJoint make calculations based on these goals.
Each object has up to six degrees of freedom, three for translation and three
for rotation. The translational degrees of freedom are naturally the components of
a translation vector,

T=(T,, T, T,).

418 Chapter 4 Advanced Scene Graph Topics

TeamLRN sPeCiAL

The rotational degrees of freedom are in Euler angles for rotations about the coordi-
nate axes,

R =R.(0)R,(0,) R, (6,).

The engine’s convention is to multiply a matrix on the left of a vector, RV, so the
x-axis rotation is applied first, followed by the y-rotation, and then the z-rotation.
The joints can be constrained. The translations are constrained by setting MinTrans-
Tation and MaxTranslation for each of the three components of translation, indexed
by i with 0 <i < 2. The index i = 0 is for T, the index i = 11is for Ty, and the index
i =2is for T,. The default ranges are (—o0, +00), so any translation is allowed. The
rotations are constrained by setting MinRotation and MaxRotation for each of the three
angles of rotation. The index i = 0 is for 6, the index i = 1 s for 6, and the index
i = 2isfor 6,. The default ranges are [—7, 7], so any rotation is allowed. A joint need
not use all its degrees of freedom. You may select which degrees of freedom you want
by setting AlTowTranslation or AlTowRotation with the appropriate input indices.

The IKController that manages the joints is allowed access to the protected mem-
bers by being a friend of the IKJoint class. This allows us not to expose the update
functions in the public interface. All the control you have over a joint is through its
parameters exposed via the public interface. The member function UpdateWor1dSRT
updates the world transformations for the object managed by IKJoint. This is the
same update used in UpdateGS and multiplies the parent’s world transformation with
the object’s local transformation. This particular member function is called for each
joint in the IK chain (in order from parent to child, and so on) to make sure that any
node used as an end effector has up-to-date world data. The member function Up-
dateWor1dRT has a similar behavior, except that it does not take into account the scale.
This function is called during iterations of the cyclic coordinate descent (CCD) algo-
rithm that is applied to move the joints around to allow the end effectors to reach
their goals. Before the update to the world translation and world rotation can be
called, the local translation and rotation must be computed. This occurs through Up-
datelocalT (local translation) and UpdateLocalR (local rotation), functions that are
also called during the CCD algorithm. The two local transformations are at the heart
of the updates. These are computed based on trying to minimize the distances be-
tween the end effectors and their targets.

In [Ebe00, Section 9.2.3, pages 352—-354] I discuss list manipulators with one end
effector. A joint may be rotated to meet one of three types of goals:

m Rotate to point. Rotate a joint to minimize the distance between the end effector
and a point target.

®m Rotate to line. Rotate a joint to minimize the distance between the end effector
and a line target.

® Rotate to plane. Rotate a joint to minimize the distance between the end effector
and a plane target.

Figure 4.44

TeamLRN sPeCiAL

4.5 Controllers and Animation 419

A four-node chain whose last node is the end effector E. The joint position P is to
be translated in the unit-length direction U to minimize the distance from E to the
goal’s target G. The point E’ attains the minimum distance to the goal.

The only operation of these I support in the engine is rotate to point. A joint may be
translated to meet one of three types of goals:

m Slide to point. Translate a joint to minimize the distance between the end effector
and a point target.

m Slide to line. Translate a joint to minimize the distance between the end effector
and a line target.

m Slide to plane. Translate a joint to minimize the distance between the end effector
and a plane target.

All three of these imply that the connector between the joint and its parent joint must
have varying length. Rather than thinking of physically stretching the material of the
connector, think of a rod that has multiple segments that can be expanded—a radio
antenna on an automobile, for example. The only operation of these I support in the
engine is slide to point.

The function UpdatelLocalT implements slide to point. A small amount of mathe-
matics is in order to understand the source code of the function. Figure 4.44 illustrates
the configuration that goes with the mathematics.

The translated joint is P’ = P + ¢U for some ¢. The chain of nodes rooted at P is
also translated by the same amount, so E' = E + rU for some ¢. Using the fact that
G — E' must be perpendicular to the line, we have

0=U:-G—-—E)=U-(G-E—-tU)=U-(G—E) —1,
in which case

E=E+ (U-(G-E)U.

420 Chapter 4 Advanced Scene Graph Topics

TeamLRN sPeCiAL

For a single goal, an associated weight is irrelevant and may as well be chosen as
w=1

If there are n goals, each goal having an end effector E;, a target G;, and a weight
w;, for 0 <i < n, the minimization of distances must occur jointly for all the goals.
That is, the new positions for the end effectors, call them E;, must minimize the sum
of the weighted squared distances

n—1

> wlG; — E
i=0

The translation of P to P + tU is a rigid motion that can only cause the end
effectors to be translated by the same amount, so El/ =E; + tU. The sum of the
weighted squared distances is a function of 7,

n—1
F(t)=)_ w]G, — E — U~ (4.4)
i=0

This is a quadratic function of ¢ and must attain its minimum when the derivative
F’(t) = 0. The derivative is

n—1 n—1 n—1
F'(t)=>2w;(G; — E; —1U) - (-U) =2 (Z wU- (G —E)—1) w,-) .
i=0

i=0 i=0

Setting the derivative equal to zero and solving for ¢ yields

Z:l;()l u)l'U . (Gl — El)

YT w;

The function IKJoint::UpdateLocalT is an implementation of the minimizer:

bool IKJoint::UpdateLocalT (int i)
{
Vector3f kU = GetAxis(i);
float fNumer = 0.0f;
float fDenom = 0.0f;

float fOldNorm = 0.0f;
IKGoal* pkGoal;
int iG;
for (iG = 0; iG < m_iGoalQuantity; iG++)
{
pkGoal = m_aspkGoal[iG];
Vector3f kGmE = pkGoal->GetTargetPosition() -
pkGoal->GetEffectorPosition();
fOldNorm += kGmE.SquaredLength();

TeamLRN sPeCiAL

4.5 Controllers and Animation

fNumer += pkGoal->Weight*kU.Dot (kGmE) ;
fDenom += pkGoal->Weight;

if (Mathf::FAbs(fDenom) <= Mathf::EPSILON)
{
// weights were too small, no translation
return false;

// desired distance to translate along axis(i)
float fT = fNumer/fDenom;

// clamp to range

Vector3f kTrn = m_pkObject->Local.GetTranslate();
float fDesired = kTrn[i] + fT;

if (fDesired > MinTranslation[i])

{
if (fDesired < MaxTranslation[i])
{
kTrn[i] = fDesired;
1
else
{
fT = MaxTranslation[i] - kTrn[i];
kTrn[i] = MaxTranslation[i];
1
}
else
{

fT = MinTranslation[i] - kTrn[i];
kTrn[i] = MinTranslation[i];

// test if step should be taken

float fNewNorm = 0.0f;

Vector3f kStep = fT*kU;

for (iG = 0; iG < m_iGoalQuantity; iG++)

{
pkGoal = m_aspkGoal[iG];
Vector3f kNewE = pkGoal->GetEffectorPosition() + kStep;
Vector3f kDiff = pkGoal->GetTargetPosition() - kNewE;
fNewNorm += kDiff.SquaredLength();

421

422 Chapter 4 Advanced Scene Graph Topics

TeamLRN sPeCiAL

if (fNewNorm >= fOldNorm)

{
// translation does not get effector closer to goal
return false;

// update the Tocal translation
m_pkObject->Local.SetTranslate(kTrn);
return true;

The function GetAxis (i) gets the joint’s parent’s world axis direction for the spec-
ified index. The translations are always computed in the parent’s world coordinate
system, not the joint’s world coordinate system, because we want to update the joint’s
local transformations. If the joint has no parent, it is the root of a scene graph. The
coordinate system is the standard Euclidean one, so the axis retrieved by GetAxis is
one of (1, 0, 0), (0, 1, 0), or (0, 0, 1).

The first loop is over those goals that are affected by the joint’s motion. This is an
implementation of the formula in Equation (4.5). The sum of squared distances in
Equation (4.4) is computed and stored in fO1dNorm. After an unconstrained transla-
tion, the theory says that the sum of squared distances can only get smaller. However,
a constrained translation might cause the sum to become larger. The new sum of
squares is computed after the constrained translation. If larger than the old one, the
translation is not allowed. If smaller, it is allowed and the local translation for the
joint is modified. The IKController will do the work equivalent to an UpdateGS call to
the remaining joints in the chain, thus guaranteeing that all world data is current for
any future iterations of the CCD.

The function UpdatelLocalR implements rotate to point. A small amount of math-
ematics is also in order to understand the source code of the function. Figure 4.45
illustrates the configuration that goes with the mathematics.

Using P as the center of a rotation, the vector E — P must be rotated by an angle
0 to reach E' — P. Using a standard formula for rotation of a vector,

EF—P=(E—-P)+ inf)U x (E—P) + (1 —cos0)(U x (U x (E — P)).
DefineV=Ux (E—P), W=U x V,0 =sin 6, and y = cos 6. Then
E—-P=E—-P)+0V+yW.

We need to choose 6 to minimize the squared distance between G and E’. The
squared distance is

F@®)=|G—E.

4.5 Controllers and Animation 423

Figure 4.45 A four-node chain whose last node is the end effector E. The joint position P is to be

TeamLRN sPeCiAL

rotated about an axis with unit-length direction U to minimize the distance from E
to the goal’s target G. For the sake of illustration, suppose that axis is out of the plane
of the page. The point E’ attains the minimum distance to the goal.

The candidate angles to obtain the global minimum for the function occur when the
first derivative is zero. The derivative is

dE
F'(0)=—2(G—E)- —.
) () 70
Setting this to zero,
dE/ d(E' —P) d(E —P)
0=(G-E)-—=((G-P)—(E -P)) - — 2 =(G—P) - —— 2.
() 70 (¢) —() 20 () 20

The last equality is true since the squared distance |[E’ — P|? is a constant for all angles
0; the vector difference represents the fixed-length connector that is rotated about P.
The derivative of a constant is zero, so

/_
0=i|E/_p|2=2(E’_p).M‘
de de
Continuing the analysis of F'(6) =0,

E —P
0=(G—P)‘%=(G—P)'(VV—i-aW):yV-(G—P)—i—ch-(G—P).
This implies

V-(G-P), - W-(G—-P
(0, 7) =+ (V- (()

VIV-G-P)P+[W-(G—-P)P

424 Chapter 4 Advanced Scene Graph Topics

TeamLRN sPeCiAL

The angles whose sines and cosines satisfy this equation could produce maxima
as well as minima. We have to choose whether the leading sign is positive or negative
in order to obtain the minima. The second-derivative test is used for this purpose.
The second derivative is

F'(0)=0c[2V-(G-P)]-y[2W - (G-P)],

and we need this to be positive for a local minimum. The correct choice of sign,
therefore, is positive, in which case

V- (G-P), W-(G-P))
JIV-G-P)E+[W-(G-P)}

(0: V) =

and

F'0)=2/[V-(G=P)P+ [W-(G—P)P2>0.
An angle that minimizes F (0) is
0 =atan2((G—P)-Ux(E—P), - (G—P)-Ux (Ux (E—P))),

where atan 2 is the standard mathematics library function for the inverse tangent, but
returns an angle in the interval [, 7].

If there are n goals, each goal having an end effector E;, a target G;, and a weight
w;, for 0 <i < n, the minimization of distances must occur jointly for all the goals.
That is, the new positions for the end effectors, call them El’ , satisfy the rotation
conditions

E —P=(E —P)+ (sin6)U x (E; —P) + (1 — cos §)(U x (U x (E; — P))

and must minimize the sum of the weighted squared distances

n—1
F(0) = Z w;|G; — E/|.
i=0
Only a single angle 6 is involved since the rotation about P is a rigid motion.

Define V; =U x (E; — P) and W; = U x V;. The definitions for o and y are as
before. The derivative of F is computed similarly as in the case of one goal,

n—1
F'0)=-2) wi(G—P)- (yV; + W),

i=0
and the second derivative is
n—1
F'(0) =2 wi(G; —P)- (aV; — yW)).
i=0

TeamLRN sPeCiAL

4.5 Controllers and Animation 425

Setting F’(0) = 0 leads to

n—1
0=y V;-: (G—P)—}-UZW (G; — P)
i=0 i=0

and has the minimizing solution

(Z” V- —yrlw, (G»—P))
\/Z Vi (G —P)P+ Y, W - (G—P)]

(O—)V)Z

The choice of positive sign in front of the fraction guarantees that F”(8) > 0 so that
indeed we have a minimum. An angle that minimizes F is

n—1 n—1
9=atan2<Z(G,~—P)-Ux(Ei—P),—Z(Gi—P)-Ux(Ux(Ei—P))>.

i=0 i=0

(4.6)

The function IKJoint: :UpdatelLocalR is an implementation of the minimizer:

bool IKJoint::UpdatelLocalR (int i)
{
Vector3f kU = GetAxis(i);
float fNumer = 0.0f;
float fDenom = 0.0f;

float fOTdNorm = 0.0f;
IKGoal* pkGoal;
int iG;
for (iG = 0; iG < m_iGoalQuantity; iG++)
{
pkGoal = m_aspkGoal[iG];
Vector3f kEmP = pkGoal->GetEffectorPosition() -
m_pkObject->World.GetTranslate();
Vector3f kGmP = pkGoal->GetTargetPosition() -
m_pkObject->World.GetTranslate();
Vector3f kGmE = pkGoal->GetTargetPosition() -
pkGoal->GetEffectorPosition();
fOldNorm += kGmE.SquaredLength();
Vector3f kUxEmP = kU.Cross(kEmP);
Vector3f kUxUXEmP = kU.Cross (kUXEmP);
fNumer += pkGoal->Weight*kGmP.Dot (kUXEmP);
fDenom -= pkGoal->Weight*kGmP.Dot (kUXUXEmP) ;

426 Chapter 4 Advanced Scene Graph Topics

if (fNumer*fNumer + fDenom*fDenom <= Mathf::EPSILON)
{

// undefined atan2, no rotation

return false;

// desired angle to rotate about axis(i)
float fTheta = Mathf::ATan2(fNumer, fDenom);

// factor local rotation into Euler angles

float afEuler[3];

m_pkObject->Local.Rotate().ToEulerAnglesZYX(afEuler[2],
afEuler[1],afEuler[0]);

// clamp to range
float fDesired = afEuler[i] + fTheta;
if (fDesired > MinRotation[i])

{
if (fDesired < MaxRotation[i])
{
afEuler[i] = fDesired;
1
else
{
fTheta = MaxRotation[i] - afEuler[i];
afEuler[i] = MaxRotation[i];
1
}
else
{

fTheta = MinRotation[i] - afEuler[i];
afEuler[i] = MinRotation[i];

// test if step should be taken
float fNewNorm = 0.0f;
Matrix3f kRot(kU,fTheta);
for (iG = 0; iG < m_iGoalQuantity; iG++)
{
pkGoal = m_aspkGoal[iG];
Vector3f kEmP = pkGoal->GetEffectorPosition() -
m pkObject->World.GetTranslate();
Vector3f kNewE = m pkObject->World.GetTranslate() +
kRot*kEmP;

TeamLRN sPeCiAL

TeamLRN sPeCiAL

4.5 Controllers and Animation 427

Vector3f kGmE = pkGoal->GetTargetPosition() - kNewE;
fNewNorm += kGmE.SquaredLength();

if (fNewNorm >= fOldNorm)

{
// rotation does not get effector closer to goal
return false;

// update the local rotation

m_pkObject->Local.Rotate().FromEulerAnglesZYX(afEuler[2],
afEuler[1],afEuler[0]);

return true;

The structure is nearly identical to that of UpdateLocalT. The joint’s parent’s world
coordinate system is used to select axes to rotate about. The first loop in the source
code computes the arguments to the atan2 function in Equation (4.6). It is amazing,
is it not, that a few lines of code are backed up by so much mathematics! The compu-
tation of f01dNorm is used to support constrained rotations. If the constraints cause an
increase in the sum of squared distances (the new norm), then the rotation is rejected.
Notice that the order of Euler angles in the composition of rotations is fixed. Should
a modeling package do otherwise, most likely the IKJoint class should allow yet an-
other parameter to its constructor that selects which order of composition should be
used.

Controllers

The class IKController is a container for the IKJoints and IKGoals in the IK system.
Its interface is

class IKController : public Controller
{
public:
IKController (int iJointQuantity, IKJointPtr* aspkJoint,
int iGoalQuantity, IKGoalPtr* aspkGoal);
virtual ~IKController ();

int Iterations; // default
bool OrderEndToRoot; // default

128
true

virtual bool Update (double dAppTime);

428 Chapter 4 Advanced Scene Graph Topics

TeamLRN sPeCiAL

protected:
IKController ();

int m_iJointQuantity;
IKJointPtr* m_aspkJoint;

int m_iGoalQuantity;
IKGoalPtr* m_aspkGoal;

The class assumes responsibility for the input arrays and will delete them. They
should be dynamically allocated. The IKJoint objects will also have arrays of pointers
to the IKGoals passed to IKController. Only those goals affected by the motion of a
joint are assigned to that joint (by you in the application code).

The Update function is an implementation of the CCD algorithm. You have two
ways to control the algorithm. You may choose the maximum number of iterations
for a single call of Update by setting Iterations to whatever you like. The joints are
processed one at a time in each iteration. You may also choose whether the joints are
processed from the root joint to the end joint or in the opposite direction. The default
is to work your way from the last joint toward the root, the idea being that if the last
joint is an end effector and it is already near its goal (time coherency plays a role here),
then most of the motion should occur near the end effector.

Before starting the CCD iterations, the Update call makes certain that all the joints’
world data is up to date. This is done by

for (idoint = 0; iJoint < m_iJointQuantity; iJoint++)
m_aspkJoint[iJoint]->UpdateWor1dSRT();

This is not your standard UpdateGS pass. One joint has a child node that is another
joint, and the update applies only to that connection. The first joint might have
other children, but they are not updated by UpdateWor1dSRT. Is this an error? No. The
IKController update is called in the Spatial::UpdateWorldData function, and all of
the IKJoint objects are updated by this call. On return to the Node: :UpdateWorTdData
that spawned the Spatial::UpdateWorldData call, any joints with other child subtrees
will have those children updated.
The CCD loop for processing from end to root is

for (ilter = 0; ilter < Iterations; ilter++)
{
for (iJoint = 0; iJoint < m_iJointQuantity; iJoint++)
{
int iRJoint = m_iJointQuantity - 1 - iJoint;
pkdoint = m aspkJoint[iRJoint];

TeamLRN sPeCiAL

4.5 Controllers and Animation 429

for (i = 0; 1 < 3; i++)
{
if (pkJoint->AllowTranslation[i])
{
if (pkJoint->UpdatelLocalT(i))
{
for (j = iRJoint; j < m_iJointQuantity; j++)
m_aspkJoint[j]->UpdateWor1dRT();

for (i = 0; 1 < 3; i++)
{
if (pkJoint->ATlowRotation[i])
{
if (pkJoint->UpdateLocalR(i))
{
for (j = iRJoint; j < m_iJointQuantity; j++)
m_aspkJoint[j]->UpdateWor1dRT();

The logic is simple. For each joint, determine which translations are allowed.
When one is allowed, call the minimizer function UpdateLocalT to translate the joint.
If the translation does reduce the sum of squared distances between goals and end ef-
fectors, the return value of the update is true, indicating the translation was accepted.
In this case, the local transformations of the joint have changed. Its successor joints in
the IK chain must be notified that their world transformations need updating. This
is performed by UpdateWor1dRT. The same logic applies to the rotations. If a rotation
is allowed and the minimizer is able to reduce the sum of squared distances, then
the joint’s local rotation is modified and the successors update their world transfor-
mations.

The sample application on the CD-ROM,

MagicSoftware/WildMagic3/Test/TestInverseKinematics
has a simple IK system consisting of two joints, one with a single translational degree

of freedom and one with a single rotational degree of freedom. Only one goal exists
in the IK system.

This page intentionally left blank

TeamLRN sPeCiAL

CHAPTER

ADVANCED RENDERING

TOPICS

his chapter discusses obtaining visual effects that are considered more advanced
than vertex coloring, lighting and materials, texturing, and multitexturing. The
chapter consists of two sections. Section 5.1 elaborates on the Effect class that was
introduced in Section 3.4.5. Wild Magic has a collection of derived classes that imple-
ment various effects obtainable through the fixed-function pipeline—through graph-
ics API features that were available before the introduction of shader programming.
The first section describes all these derived classes.
The topic of Section 5.2 is shader programming support in the scene graph man-
agement system. The emphasis is on the integration into the engine, not on actually
writing shaders. For the latter, see [Eng02, Eng03, Fer04].

51 SPECIAL EFFECTS USING THE FIXED-FUNCTION

TeamLRN sPeCiAL

PIPELINE

The effects system was introduced in Section 3.4.5 and is new to Wild Magic. The
base class is Effect and has the interface

class Effect : public Object
{
public:

Effect ();

virtual ~Effect ();

431

432 Chapter 5 Advanced Rendering Topics

TeamLRN sPeCiAL

virtual Effect* Clone ();

ColorRGBArrayPtr ColorRGBs;

ColorRGBAArrayPtr ColorRGBAs;
TArray<TexturePtr> Textures;
TArray<Vector2fArrayPtr> UVs;

// internal use

public:
// function required to draw the effect
Renderer: :DrawFunction Draw;

s

At its lowest level, this class is a container for vertex colors, whether RGB or
RGBA, for texture images, and for texture coordinates. The class is not abstract, so
you can create effects immediately. The renderer only allows you to have one set of
colors. If you set ColorRGBs and ColorRGBAs, the renderer will use the latter set. You
can have multiple textures and texture coordinates. The engine places no limit on the
number, but the renderer will use only as many as the hardware supports. If your
effect really does require 16 texture units, expect to be disappointed when you run
your application on a card that has only 8 texture units. If you do supply multiple
textures, the semantics of how the units combine together to produce a desired
multitexture effect are up to you. Your control over this is through the combine mode
of the Texture class (see Section 3.4.4).

The Clone function exists to create a new effect of the same class type, but shares
vertex colors and textures. Each class derived from Effect can override this behav-
ior and decide what is copied and what is shared. The reason for such a function
originated with the Particles class. An Effect-derived object attached to a Parti-
cles object can only influence the particle’s point locations. The rendering system
displays particles by automatically generating four times the number of vertices as
points and then quadruplicating the vertex attributes associated with the particles’
points. A second Effect object had to be created and attached to the TriMesh that gets
sent to the renderer for drawing. Since the effects are stored polymorphically through
the Effect base class, I needed a virtual function in the Effect class to give me a copy
of one effect, but of the same class type as the original effect. I can imagine other
circumstances where you need similar cloning behavior.

Although you can manage your own Effect object, you will find it more con-
venient to derive a class that encapsulates the semantics you desire. Some advanced
features require more than just combining vertex colors and texture images. For ex-
ample, environment mapping, bump mapping, and projected texturing all have spe-
cial needs that require explicit low-level rendering code to be written that is different
than the DrawPrimitive call provides. If you derive from Effect and have to imple-
ment a Renderer-derived class drawing function to go with it, you can conveniently
store a pointer to that function in the data member Draw. Some of the effects already

5.1 Special Effects Using the Fixed-Function Pipeline 433

in the engine have no need for specialized drawing, so their Draw members are set to
DrawPrimitive. In fact, the base class Effect sets its Draw member to DrawPrimitive by
default.

This section contains a description of each of the Effect-derived classes that I
have added to Wild Magic. This is by no means a comprehensive coverage of all the
special effects you would ever need in an application, but it should suffice to show
you how to write your own.

5.1.1 VERTEX COLORING

TeamLRN sPeCiAL

The simplest effect is one that just stores vertex colors. The class is VertexColorEffect
and has the interface

class VertexColorEffect : public Effect

{

pubTic:
VertexColorEffect (ColorRGBArray* pkColorRGBs);
VertexColorEffect (ColorRGBAArray* pkColorRGBAs);
virtual ~VertexColorEffect ();

virtual Effect* Clone ();

protected:
VertexColorEffect ();
}s

You can construct an effect using either an array of RGB colors or an array of RGBA
colors. The Clone function creates an effect that shares the current object’s vertex
color array.

A sample use is

// create a tetrahedron

int iVQuantity = 4;

Vector3f* akVertex = new Vector3f[iVQuantity];

akVertex[0] = Vector3f(0.0f,0.0f,0.0f);

akVertex[1] = Vector3f(1.0f,0.0f,0.0f);

akVertex[2] = Vector3f(0.0f,1.0f,0.0f);

akVertex[3] = Vector3f(0.0f,0.0f,1.0f);

Vector3fArray* pkVertices = new Vector3fArray(iVQuantity,akVertex);

int iIQuantity = 125 // 4 triangles
int* ailndex = new int[iIQuantity];
ailndex[0] = 0; ailndex[1] = 1; ailndex[2] = 3;

434 Chapter 5 Advanced Rendering Topics

ailndex[3] = 0; ailndex[4] = 3; ailndex[5] = 2;
ailndex[6] = 0; ailndex[7] = 2; ailndex[8] =
ailndex[9] = 1; ailndex[10] = 2; ailndex[11]
IntArray* pkIndices = new IntArray(ilQuantity,ailndex);

oo
w =
we we

TriMesh* pkTetra = new TriMesh(pkVertices,pkIndices,false);

// create a vertex color effect

ColorRGB* akColor = new ColorRGB[iVQuantity];

akColor[0] = ColorRGB(0.0f,0.0f,1.0f);

akColor[1] = ColorRGB(0.0f,1.0f,0.0f);

akColor[2] = ColorRGB(1.0f,0.0f,0.0f);

akColor[3] = ColorRGB(0.0f,0.0f,0.0f);

ColorRGBArray* pkColors = new ColorRGBArray(iVQuantity,akColor);

VertexColorEffect* pkEffect = new VertexColorEffect(pkColors);
pkTetra->SetEffect (pkEffect);

The tetrahedron is built from scratch. The class StandardMesh hides the construc-
tion details for some types of objects. For example,

TriMesh* pkTetra = StandardMesh().Tetrahedron();

int iVQuantity = pkTetra->Vertices.GetQuantity();

ColorRGB* akColor = new ColorRGB[iVQuantity];

akColor[0] = ColorRGB(0.0f,0.0f,1.0f);

akColor[1] = ColorRGB(0.0f,1.0f,0.0f);

akColor[2] = ColorRGB(1.0f,0.0f,0.0f);

akColor[3] = ColorRGB(0.0f,0.0f,0.0f);

ColorRGBArray* pkColors = new ColorRGBArray(iVQuantity,akColor);
VertexColorEffect* pkEffect = new VertexColorEffect(pkColors);
pkTetra->SetEffect (pkEffect);

5.1.2 SINGLE TEXTURES

To attach a single texture to an object, use the class TextureEffect. Its interface is

class TextureEffect : public Effect

{

public:
TextureEffect (Texture* pkTexture, Vector2fArray* pkUVs);
virtual ~TextureEffect ();

virtual Effect* Clone ();

TeamLRN sPeCiAL

TeamLRN sPeCiAL

5.1 Special Effects Using the Fixed-Function Pipeline 435

protected:
TextureEffect ();
}s

The choice of parameters for the Texture object is up to you. The defaults give you
replacement mode. You must also provide the texture coordinates. The number of
elements of the array should match the number of vertices for the object to which the
effect will be attached. The Clone member creates another TextureEffect that shares
the texture object and texture coordinates of the original object.

A sample use is

// create a rectangle in the xy-plane

int iVQuantity = 4;

Vector3f* akVertex = new Vector3f[iVQuantity];
akVertex[0] = Vector3f(0.0f,0.0f,0.0f);

akVertex[1] = Vector3f(1.0f,0.0f,0.0f);
akVertex[2] = Vector3f(1.0f,1.0f,0.0f);
akVertex[3] = Vector3f(0.0f,1.0f,0.0f);

Vector3fArray* pkVertices = new Vector3fArray(iVQuantity,akVertex);

int iIQuantity = 6; // 2 triangles

int* ailndex = new int[iIQuantity];

ailndex[0] = 0; ailndex[1] = 1; ailndex[2] = 2;
ailndex[3] = 0; ailndex[4] = 2; ailndex[5] = 3;
IntArray* pkIndices = new IntArray(iIQuantity,ailndex);

TriMesh* pkRect = new TriMesh(pkVertices,pkIndices,false);

// create texture coordinates
Vector2f* akUV = new Vector2f[iVQuantity];
akUV[0] = Vector2f(0.0f,0.0f);

akUV[1] = Vector2f(0.2f,0.0f);
akUV[2] = Vector2f(0.2f,0.2f);
akUV[3] = Vector2f(0.0f,0.2f);

Vector2fArray* pkUVs = new Vector2fArray(iVQuantity,akUV);

// create a texture, repeated pattern, trilinear mipmapping
Texture* pkTexture = new Texture;

pkTexture->CoordU = Texture::WM_REPEAT;

pkTexture->CoordV = Texture::WM_REPEAT;

pkTexture->Mipmap = Texture::MM_LINEAR LINEAR;

// create a texture effect
TextureEffect* pkEffect = new TextureEffect(pkTexture,pkUVs);
pkRect->SetEffect (pkEffect);

436 Chapter 5 Advanced Rendering Topics

5.1.3 DARK MAPS

TeamLRN sPeCiAL

A dark map is a multitexturing scheme whereby you draw a base texture and then
modulate it by a texture that represents some lighting in the scene, giving the ap-
pearance that the object is affected by some lights. Why not call this a light map? The
modulation is a multiplication of the two texture images. Since the normalized color
channels are in the interval [0, 1], the product of two color channel values is a num-
ber smaller than both of the inputs (when neither input is 1). The result is that the
final colors appear to be darker than the inputs.
The class representing the process is DarkMapEffect and has the interface

class DarkMapEffect : public Effect
{
public:
DarkMapEffect (Texture* pkPrimaryTexture,
Vector2fArray* pkPrimaryUVs, Texture* pkSecondaryTexture,
Vector2fArray* pkSecondaryUVs);
virtual ~DarkMapEffect ();

virtual Effect* Clone ();

protected:
DarkMapEffect ();

}s

The constructor takes as input two texture objects and two sets of texture coor-
dinates. The primary texture refers to the base texture. The secondary texture refers
to the image that represents the (fake) lighting. The application mode for the pri-
mary texture is Texture::AM_REPLACE. This is automatic; you do not need to do this
explicitly with the input pkPrimaryTexture. The application mode for the secondary
texture is Texture: :AM_MODULATE and is also set automatically for you. The two modes
together tell the renderer to multiply the secondary colors with the primary colors to
produce the final colors on the object to which the effect is attached. The Clone func-
tion creates a new dark map object that shares the textures and texture coordinates of
the original object.

The use of this class is similar to TextureEffect, except that you have to create two
texture objects and two sets of texture coordinates. A sample application showing off
dark maps is on the CD-ROM in the directory

MagicSoftware/WildMagic3/Test/TestMultitexture
The application shows the primary texture (a wooden door image), the secondary

texture (a Gaussian blob), the dark map, and a light map (see the next section and
Figure 5.1).

5.1 Special Effects Using the Fixed-Function Pipeline 437

5.1.4 LIGHT MAPS

In the previous section on dark maps, I asked why they are not called “light maps.”
The answer had to do with the modulation of colors. A light map may be thought
of instead as the combination of a primary texture and a secondary texture using
addition of colors rather than multiplication. The sum of two color channels can only
make the result brighter than the inputs.

The class encapsulating this concept is LightMapEffect and has the interface

class LightMapEffect : public Effect
{
pubTic:
LightMapEffect (Texture* pkPrimaryTexture,
Vector2fArray* pkPrimaryUVs, Texture* pkSecondaryTexture,
Vector2fArray* pkSecondaryUVs, bool bHardAdd = true);
virtual ~LightMapEffect ();

virtual Effect* Clone ();

protected:
LightMapEffect ();
1

The structure of the class is nearly identical to that of DarkMap, but with two
exceptions, one minor and one major. The minor exception is that the secondary
texture has an application mode of Texture: :AM_ADD. This tells the renderer to add the
secondary texture to the primary one. In many cases, the addition causes a washed-
out look, as if the lights are too bright. The constructor to LightMap has a Boolean
parameter that allows you to use a different mode for light maps. The addition is
referred to as hard addition. If you set the Boolean parameter to false, you get
what is called soft addition. I already talked about obtaining this effect through alpha
blending in Section 3.4.1 using the interpolation equation (3.7).

Figure 5.1 is a comparison of the two effects. You can see that the light map using
hard addition has a washed-out effect at the center of the image. The light map using
soft addition has a more subtle appearance.

5.1.5 GLoss MAPS

TeamLRN sPeCiAL

A gloss map is a texture that is used to modulate the specular lighting on a surface.
This gives the surface a shininess in some places, as if those places reflect more spec-
ular light than other places. The class that encapsulates this effect is GTossMapEffect
and has the interface

438 Chapter 5 Advanced Rendering Topics

Figure 5.1

TeamLRN sPeCiAL

Multitexturing to obtain dark maps and light maps. Upper left: Primary texture is a
wooden image. Upper right: Secondary texture to combine with the primary texture.
Lower left: A dark map. Lower middle: A light map using hard addition. Lower right:
A light map using soft addition. (See also Color Plate 5.1.)

class GlossMapEffect : public Effect

{

pubTic:
GlossMapEffect (Texture* pkTexture, Vector2fArray* pkUVs);
virtual ~GlossMapEffect ();

virtual Effect* Clone ();

protected:
GlossMapEffect ();
1

The interface is not very interesting. The texture to be used for modulating the spec-
ular lighting is passed to the constructor. The texture coordinates are also passed. The
Clone function creates a new object that shares the texture and texture coordinates of
the old one.

TeamLRN sPeCiAL

5.1 Special Effects Using the Fixed-Function Pipeline 439

So how do we actually get the effect of glossiness? This Effect-derived class is our
first example for which a specific rendering function has been added to the system.
The base class interface is

class Renderer
{
// internal use
public:
virtual void DrawGlossMap () = 0;

s

The function is pure virtual, so any Renderer-derived class must implement it.
The declaration is in a public section tagged for internal use only. This allows the
GlossMapEffect class to assign the virtual function pointer to the Draw member of the
base class Effect. The constructor of GlossMapEffect is

GlossMapEffect::GlossMapEffect (Texture* pkTexture,
Vector2fArray* pkUVs)

Draw = &Renderer::DrawGlossMap;
pkTexture->Apply = Texture::AM_MODULATE;
Textures.Append(pkTexture);
UVs.Append (pkUVs) ;

}

The first line is the function pointer assignment. The second line shows that the
application mode for the texture is modulation. This is the case because we will be
modulating the specular lighting.

The effect is a local one, so you can only attach a GlossMapEffect object to a
Geometry-derived object. Gloss mapping is implemented using a multipass process.
The first pass involves drawing only material colors, but no textures. That means you
need a MaterialState global state attached either to the Geometry object itself or to a
predecessor in the scene. You also need a Light attached that will cause the material
properties to be rendered. The renderer will only use specular lighting.

The second pass lights the object with ambient and diffuse colors, and the results
are blended with the texture. Although you do not need to attach an AlphaState object
to the scene, if you were required to do so, you would set the SrcBlend member to
AlphaState::SBF_ONE and the DstBlend member to AlphaState::SBF_SRC_ALPHA. The
blending equation is

(ra> 84> ba> aq) < (1, & by, ay) + ag(ry, 8a> by> ag)-

That is, the current color in the frame buffer (the destination, the colors subscripted
with d) is modulated by the alpha channel of the texture (the source, the colors
subscripted with s) and then added to the texture colors. The idea is that any texture

440 Chapter 5 Advanced Rendering Topics

image value with an alpha of one will appear to be specular, but texture image values
of zero will not. The recommendation is that your alpha channel in the texture have
only values of zero or one.

A sample application illustrating gloss maps is on the CD-ROM in the directory

MagicSoftware/WildMagic3/Test/TestGlossMap

The application has two squares that can be rotated simultaneously. A directional
light and a material are attached to the scene, thus affecting both squares. One square
has no effects attached to it and is only lit using the material colors. The other square
has a gloss map attached to it. The texture image has all white RGB values, but the
alpha values are zero in the background and one on the pixels that lie in a text string
“Magic”. As you rotate the squares, you see that the first square has a certain specular
color to it. The second square has the same color but only in the region covered
by the text string, giving it a glossy look. Figure 5.2 shows a couple of snapshots
of the squares. The up axis has the direction (0, 1, 0). The light is directional with
direction (0, —1, 0). When the squares are rotated to fully face the camera, both
squares become completely black since the light no longer influences the visible
surfaces.

5.1.6 BuMP MAPS

TeamLRN sPeCiAL

The classical lighting model for triangle meshes involves normal vectors specified
only at the mesh vertices. The lights, materials, and vertex normals are combined
to form colors at the vertices that are then interpolated across the triangle during ras-
terization. Unfortunately, this process does not allow for subtle variations in lighting
within the triangle. To remedy this, you can use bump mapping. The idea is to sim-
ulate a surface patch by assigning to a mesh triangle a collection of surface normal
vectors at points inside the triangle. Any lighting that can use these normals should
give the planar triangle the appearance that it has variation like a surface. The prob-
lem, though, is you can only specify vertex normals.

Graphics APIs and hardware support this concept by allowing you to spec-
ify surface normals using a texture image, called the normal map. Normal vectors
(ny, ny, n.) have components in the interval [—1, 1], which can be mapped to in-
tervals [0, 255] and rounded so that the components are integer valued. Once in this
format, the three components can be stored as the RGB channels in the texture image.

Given a surface position, a surface normal, and a light, we can compute the color
due to lighting at the surface position using the same model of lighting that is applied
to vertices in a triangle mesh. Just as the renderer has to interpolate vertex colors to
fill in the pixel colors in the rasterized triangle, so must the renderer interpolate to fill
in the pixel colors at points not exactly corresponding to a texel in the normal map.
If all we have is a single light, we need to generate light vectors at those same surface
positions in order to compute the final color. The components of these light vectors

Figure 5.2

TeamLRN sPeCiAL

5.1 Special Effects Using the Fixed-Function Pipeline 441

Three different rotations of the squares. The left square has lighting only via a
material. The right square has a gloss map attached to it.

may be mapped to the interval [0, 255], just as the normal components were. The
graphics system will compute the dot product of surface normals and light directions
as a multiplication of the RGB values corresponding to those vectors, producing what
looks like diffuse lighting. The result of this can then be blended with the texture map
that is assigned to the surface, thus giving you a finely detailed and lit surface. This
process is referred to as dot3 bump mapping.

To generate a light vector at each point on the surface, we will generate a light vec-
tor at each triangle mesh vertex, map it to an RGB value and store in a vertex color

442 Chapter 5 Advanced Rendering Topics

TeamLRN sPeCiAL

array, and let the rasterizer interpolate the vertex colors in the usual manner. To have
the light vector vary smoothly from vertex to vertex, we need to have a parameteriza-
tion of the surface and transform the light vector into the coordinates relative to the
parameterization. However, the triangle mesh was most certainly generated without
such a coordinate system in mind. Well, maybe it was. The texture coordinates them-
selves may be thought of as inducing a parameterization of the surface. Each point
(x, ¥, z) has a texture coordinate (1, v), so you may think of the surface parametri-
callyas (x(u, v), y(u, v), z(u, v)). Now we do not actually know the functions for the
components. All we know are sample values at the vertices. The application should
provide vertex normals, either manually or through the automatic generation mech-
anism the engine provides. If we can estimate one tangent vector at the vertex, the
other tangent vector is a cross product of the first tangent and the normal. Thus, the
problem of generating a coordinate system reduces to estimating a tangent vector at
a vertex, assuming that the surface is parameterized by the texture coordinates.

This brings us to a little more mathematics. Consider a triangle with vertices Py,
P,, and P, and with corresponding texture coordinates (u, vy), (4}, v1), and (5, v,).
Any point on the triangle may be represented as

P(s, 1) =Py + s(P; — Py) +1(P, — Py),

where s > 0,7 > 0,and s + ¢ < 1. The texture coordinate corresponding to this point
is similarly represented as

(u, v) = (ug, vo) + 5((uy, v1) — (g, Vo)) + (U35 v3) — (g5 Vp))

= (Ugy, vg) + s(uy — ug, v1 — V) + 1 (Uy — ugy, v, — V).

Abstractly we have a surface defined by P(s, t), where s and 7 depend implicitly
on two other parameters u and v. The problem is to estimate a tangent vector relative
to u or v. We will estimate with respect to u, a process that involves computing the
rate of change of P as u varies, namely, the partial derivative dP/du. Using the chain
rule from calculus,

9P 9P Ods OP ot 3s at
ol L p—P)Z £ (P, — Py
ou asam T aron - Cim P+ B = Po) o

Now we need to compute the partial derivatives of s and ¢ with respect to u. The
equation that relates s and 7 to u and v is written as a system of two linear equations

in two unknowns:
Ml_uo MZ_MO S _ M_UO
vi—v =y ||t [v=vy |

TeamLRN sPeCiAL

5.1 Special Effects Using the Fixed-Function Pipeline

Inverting this leads to

[Uy — Vg _(uz_uo)il[u_uo}
[s]z —(v; — vp) Up—Ug | v—1p

t (1 — ug) (v, — vg) — (g — ug) (v; — vg)

Computing the partial derivative with respect to u produces

[vy =V —(Mz—”o)][l}
[8s/8ui| _ — (v — vp) Uy — Uy 0
at/ou () — ug)(vy — vp) — (uy — up)(v; — V)
|: U2 — Uo]
—(v; — vp)

(uy — o) (vy — vo) — (uy — up) (v — vo).

Combining this into the partial derivative for P, we have
E _ (v — V) (P} — Py) — (v — vy) (P, — Py)
ou (U — ug)(vy — vy) — (uy — ug)(v; — vg)

_ (v1 — vg) Py — Py) — (v — vp)(Py — Py)
() — vo) (g — ug) — (v — vo) (g — ug)

443

(5.1)

which is an estimate of a vertex tangent vector. If the vertex normal is named N and
the normalized tangent in Equation (5.1) is named T, then the other tangent vector
isnamed B =N x T. Unfortunately, the second tangent has been called the binormal
vector. This term usually applies to curves (the Frenet frame), but the name is not

generally used for surfaces (the Darboux frame).

Given a primary texture for the mesh, the surface normals in a normal map, and
a light, we can compute the light vectors and store them in a vertex color array. All of
this data is sent to the renderer and, assuming the graphics API has support for dot3
bump mapping, combined in the right way to obtain the special effect. The class that

encapsulates this, BumpMapEffect, has the interface

class BumpMapEffect : public Effect

{
pubTic:

BumpMapEffect (Image* pkPrimary, Vector2fArray* pkPrimaryUVs,

Image* pkNormalMap, Vector2fArray* pkNormalUVs,
Light* pkLight);
virtual ~BumpMapEffect ();

virtual Effect* Clone ();

444 Chapter 5 Advanced Rendering Topics

TeamLRN sPeCiAL

Light* GetLight () const;

protected:
BumpMapEffect ();

LightPtr m_spkLight;

// internal use
public:

void ComputelLightVectors (Geometry* pkMesh);
1

This effect represents another multipass process that has a specific renderer func-
tion associated with it, namely,

class Renderer
{
// internal use
public:
virtual void DrawBumpMap () = 0;

}s

The function is pure virtual, so any Renderer-derived class must implement it.
The declaration is in a public section tagged for internal use only. This allows the
BumpMapEffect class to assign the virtual function pointer to the Draw member of the
base class Effect when constructing an object. As with GlossMapEffect, the BumpMap-
Effect may be attached only to a Geometry-derived object. The Clone function creates
a new object that shares the light.

The image for the primary texture is passed to the constructor, along with the
corresponding texture coordinates. The constructor creates the Texture object itself
and sets the application mode to Texture: :AM_REPLACE. The normal map and its cor-
responding texture coordinates are also passed to the constructor. The construction
of the Texture object is

pkTexture = new Texture;

pkTexture->SetImage (pkNormalMap) ;

pkTexture->Apply = Texture::AM_COMBINE;
pkTexture->Filter = Texture::FM_LINEAR;
pkTexture->Mipmap = Texture::MM_LINEAR;
pkTexture->CombineFuncRGB = Texture::ACF_DOT3_RGB;
pkTexture->CombineSrcORGB = Texture::ACS_TEXTURE;
pkTexture->CombineOpORGB = Texture::ACO_SRC_COLOR;
pkTexture->CombineSrclRGB = Texture::ACS_PRIMARY_COLOR;
pkTexture->CombineOp1RGB = Texture::ACO_SRC_COLOR;

TeamLRN sPeCiAL

5.1 Special Effects Using the Fixed-Function Pipeline 445

The Texture::AM_COMBINE mode is used with a special combination function
for dot3 bump mapping. The graphics API on the back end must support this
function.

Finally, a light is passed to the constructor. Based on the light’s position and ori-
entation in the model space of the triangle mesh, the light vectors are computed at the
mesh vertices using the vertex normals and the estimate of the vertex tangents. This
work is done on the CPU, not the GPU, and is implemented in ComputeLightVectors.
Notice that the input to this function is the actual Geometry object—something the
effect knows nothing about. Not to worry. The renderer is given both the object and
the effect, so the DrawBumpMap implementation will call ComputeLightVectors and pass
it the mesh.

The implementation of ComputeLightVectors is long, but at a high level is not
too complicated. I will not reproduce the code here in the text—you can find it
on the CD-ROM. The first part of the code computes a light vector for the light
object. The light vector is the direction for a directional light. For a point or spot
light, the light vector is the difference between the light position and the world
translation vector for the triangle mesh, then used for all vertices. You could com-
pute the light vector for each vertex by computing the world location for the vertex
(the geometry object stores vertices in model space) and then subtracting it from
the light’s position. This can consume enough CPU cycles that the hack of using
a single vector is probably justified for most settings. If it is not, feel free to mod-
ify the code. The light vector is then transformed to the model space of the triangle
mesh.

The second part of the code iterates through the triangles of the mesh and at-
tempts to compute the tangent T obtained from Equation (5.1). All three vertices of
a triangle are processed, but the RGB representation of the light vector at the vertex
is computed only once for a vertex. The color black is used as a flag to indicate that
the vertex has not yet been visited, in which case its RGB value is computed. The code
for tangent calculation is quite lengthy, but is designed to avoid numerical problems
when triangles in the mesh are nearly degenerate (triangle slivers). The last chunk of
code in the loop maps the light vector components to [0, 255] and stores them in the
vertex color array.

A sample application illustrating bump maps is on the CD-ROM in the directory

MagicSoftware/WildMagic3/Test/TestBumpMap

The application has a single square with a sunfire texture and the text string “alpha”
The normal map was computed using finite differences of a monochrome image of
the text string. Figure 5.3 shows a snapshot of the square.

You can rotate the square in the application. If you rotate it so that the square is
almost edge on to the view direction, you will see that the appearance of embossed
text goes away.

446 Chapter 5 Advanced Rendering Topics

Figure 5.3

Figure 5.4

[lustration of dot3 bump mapping. (See also Color Plate 5.3.)

The mapping of a texture coordinate to a point on an object.

5.1.7 ENVIRONMENT MAPS

TeamLRN sPeCiAL

An environment map is a texture drawn on a surface that gives the appearance of the
surface reflecting the environment around it. We need to assign texture coordinates
to the geometric object to which the environment map is attached. These depend on
the eye point’s location and the object’s location and orientation. Figure 5.4 illustrates
how a texture coordinate is assigned to a point on the surface.

The point on the surface is P, the unit-length surface normal is N, the eye point is
located at E, the direction of view to the point is V, the reflection of the view direction
through the surface normal is R, and the texture coordinate assigned to the surface
points is (#, v). The view direction is calculated as

_P—E
~|P—E|

TeamLRN sPeCiAL

5.1 Special Effects Using the Fixed-Function Pipeline 447

and the reflection vector is
R=V —2(N-V)N(R,, Ry, R,) = (cos 6 sin ¢, sin O sin ¢, cos @),

where the last equation is the representation of the vector in spherical coordinates
with 0 € [0, 2r) and ¢ € [0,). The texture coordinates are u = 60/(27) and v =

¢/m, so

7 atan2(Ry, R,), R, >0

“T) 4L atan 2Ry, Ry, Ry <0

1
and v = — acos(R,).
T

In practice, the texture coordinates are computed only for the vertices of a triangle
mesh.

The mapping of a texture map, a planar entity, onto a curved surface can lead to
distortion. Also, if the texture is required to wrap around a cylindrically or spherically
shaped surface, the texture seams can be visible. Variations on environment mapping
have been developed to circumvent these problems. The most popular one currently
appears to be cubic environment mapping, where the target surface is a cube instead
of a sphere. In Wild Magic, I currently only have support for sphere mapping, where
the texture image itself is defined on a sphere and then mapped (with distortion) to
a planar image.

The class that encapsulates spherical environment mapping is EnvironmentMapEf-
fect and has the interface

class EnvironmentMapEffect : public Effect

{

public:
EnvironmentMapEffect (Image* pkImage, int iApplyMode);
virtual ~EnvironmentMapEffect ();

virtual Effect* Clone ();

protected:
EnvironmentMapEffect ();

1

The first input to the constructor is the texture image to be used as the environment
map. Because the texture coordinates vary with the location of the eye point and the
location and orientation of the surface, you are not required to pass to the constructor
an array of texture coordinates. Most graphics APIs provide support for automatically
calculating texture coordinates associated with sphere mapping, so I take advantage
of this. The application mode is usually Texture::AM_REPLACE, but it can be other
modes that allow you to include multitexturing with the environment map and other
texture images. The Clone function creates a new object that shares the texture image
and copies the application mode of the current object.

448 Chapter 5 Advanced Rendering Topics

TeamLRN sPeCiAL

The constructor is

EnvironmentMapEffect: :EnvironmentMapEffect (Image* pkImage,

int iApplyMode)
Draw = &Renderer::DrawEnvironmentMap;

Texture* pkTexture = new Texture;
pkTexture->SetImage(pkImage) ;

pkTexture->Apply = iApplyMode;

pkTexture->Filter = Texture::FM_LINEAR;
pkTexture->Mipmap = Texture::MM_NEAREST;
pkTexture->Texgen = Texture::TG_ENVIRONMENT_MAP;
Textures.Append(pkTexture) ;

UVs.Append (NULL) ;

The filtering mode is bilinear, and no mipmapping is enabled. You can change
these, of course, after you construct an EnvironmentMapEffect object. This is the first
example we have encountered where the Texgen data member of the Texture object
is assigned a value. The value will tell the renderer that the texture is an environment
map and needs to have its texture coordinates automatically generated. Consequently,

we do not need to give the renderer an array of texture coordinates.

The effect is yet another that has a specially written renderer drawing function.
In fact, this effect is the first one that is a global effect. Because you are not restricted
to attaching the effect to a Geometry object, you can attach an EnvironmentMapEf-
fect object to a Node object in the scene. The OpenGL version of the drawing func-

tion is

void OpenGLRenderer::DrawEnvironmentMap ()

{

// Access the special effect. Detach it from the node to

// allow the effectless node drawing.

assert(DynamicCast<EnvironmentMapEffect>(m_pkGlobalEffect));

EnvironmentMapEffectPtr spkEMEffect =
(EnvironmentMapEffect*)m_pkGlobalEffect;

m_pkNode->SetEffect (NULL);

// Draw the Node tree. Any Geometry objects with textures
// will have the environment map as an additional one, drawn
// after the others according to the apply mode stored by the
// environment map.

m_pkNode->Draw(*this);

TeamLRN sPeCiAL

5.1 Special Effects Using the Fixed-Function Pipeline 449

// reattach the effect
m_pkNode->SetEffect (spkEMEffect);

The node at which the EnvironmentMapEffect object is attached generates the
function call to DrawEnvironmentMap. The node’s effect is temporarily stored, and then
the node’s effect pointer is set to NULL. This allows the node drawing code to be
reentrant, not causing yet another call to DrawEnvironmentMap. See Section 3.5.6 for
all the details of multipass operations at nodes. The node is told to draw itself. Once
done, the EnvironmentMapEffect object is reattached to the node.

The setup of the graphics API to generate the texture coordinates is implemented
in the virtual function EnableTexture. The specific details depend on the graphics
APL For example, in the OpenGL renderer version, the enabling and disabling code
is

// in EnableTexture(...)

glEnable(GL _TEXTURE GEN_S);
glEnable(GL_TEXTURE GEN T);

g1TexGeni (GL_S,GL_TEXTURE_GEN_MODE,GL_SPHERE_MAP);
g1TexGeni (GL_T,GL_TEXTURE_GEN_MODE,GL_SPHERE_MAP);

// in DisableTexture(...)
g]D1'Sab1e(GL_TEXTURE_GEN_S);
g1Disable(GL_TEXTURE_GEN T);

Because the global effect occurs at an interior node, the UpdateRS call will place
its texture object at the end of the array of the textures stored in the leaf geom-
etry objects. Once the local effect textures are drawn on the geometry object, the
global effect texture is blended with them. This is where the application mode passed
to the constructor of EnvironmentMapEffect comes into play. If you set the mode to
Texture::AM REPLACE, any previous textures drawn to the geometry object are over-
written. More interesting effects occur when you use a different application mode.
The sample application on the CD-ROM in the directory

MagicSoftware/WildMagic3/Test/TestEnvironmentMap

illustrates these effects. A mesh representing a face is loaded and has a sunfire texture
attached to it as a TextureEffect object. The mesh is the child of a node in the scene.
That node has an environment map attached to it as an EnvironmentMapEffect object.
The face is initially displayed with replacement mode for the environment map, so
you do not see the sunfire texture. You