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Preface

For computers to be able to fully automate tasks or augment humans’ deci-
sion-making capabilities, they must obtain, understand, and compute all 
relevant data. In our “digital” world, data come from different sources in 
both structured and unstructured forms, are available in different formats, 
and can be multi-dimensional, among other possible variations. At present, 
many systems and applications are of benefit to humans only when they 
can efficiently and effectively understand the data made available to them, 
differentiate between the good (useful) data and the bad (useless) data, and 
analyze the good data to achieve the objective in a timely manner. This lat-
ter item is very important in that “time” is a major factor in making many 
decisions. Thus, not only must the results of the analytics be reliable, but also 
their outcomes must be achieved in a timely manner to be meaningful to the 
decision-making effort. Producing “reliable results” and making “in-time” 
decisions are challenges related to Big Data as well, hence the connection 
between Data Science and Big Data. Self-driving cars are an excellent exam-
ple: new data of various characteristics are continually provided to the deci-
sion-making component of self-driving cars and data must be understood 
and analyzed rapidly to make appropriate, potentially life-saving decisions. 
In the case of unreliable results or delayed outcomes, the data are no longer 
relevant or useful, leading to dangerous situations.

A simple definition of Data Science is the automatic process of using raw 
data from a field/discipline, and then analyzing and processing those data 
to produce new, meaningful, and useful information. In other words, Data 
Science is the automation of turning data into useful information and turn-
ing that information into knowledge. Important keywords commonly used 
in the context of Data Science are automation, data analytics, knowledge dis-
covery, and prediction, among others. While many theories and techniques 
of Data Science have been actively researched and developed for some time 
now, the field of study has become quite popular recently. This is primarily 
due to advances in computer and information science theories and technolo-
gies as well as due to the increase in challenges of dealing with data sets that 
are continually growing in complexity. Data sets can be very large, of vari-
ous data types, and with rapidly changing content (common characteristics 
of Big Data). It is worth mentioning that while Data Science has been widely 
discussed in the context of Big Data recently, there are several other data 
challenges for which Data Science techniques are needed and useful.

In short, Data Science is about computational efforts to understand and 
analyze data in order to make decisions, predict outcomes, or identify phe-
nomena. While most current systems and applications are “data rich,” with-
out appropriate techniques to understand and analyze the data, there is a 
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gap in how they can effectively assist humans in detecting and recognizing 
patterns and making predictions, among other important things. There are 
a variety of techniques that scientists may apply to the data of interest and 
there are often challenges in applying these techniques to those data that 
have complex and unique characteristics such as geospatial data.

As is clear from this broad definition, Data Science theories and tech-
niques are needed to address complex real-world problems in a wide vari-
ety of fields/disciplines. Fields/ disciplines that involve geospatial data are 
of particular interest due to their unique need to deal with geospatial data 
and analysis. To that end, this book, titled Geospatial Data Science: Techniques 
and Applications, is focused on the theories and techniques of Data Science 
that will benefit professionals, researchers, developers, scientists, engineers, 
and students interested in learning data techniques and skills to specifically 
address problems involving geospatial data. The scope of geospatial prob-
lems to which Data Science theories and techniques can be applied covers 
such diverse disciplines as environmental science and engineering, trans-
portation planning and engineering, urban planning, social network analy-
sis, geology, and geography, to name just a few.

This book contains 10 chapters focused on describing those Data Science 
theories and techniques that are particularly applicable to solving geospa-
tial problems. The goal is to have a collection of Geospatial Data Science 
techniques to help the reader master new skills and understand the types of 
modern Geospatial Data Science theories and techniques needed to address 
geospatial problems. Each chapter incorporates case studies or real-world 
examples of applications involving geospatial data, providing a more com-
prehensive examination of this complex topic.

Chapter 1 defines, from a transdisciplinary perspective, the field of 
Geospatial Data Science. This perspective spans the three closely related dis-
ciplines of statistics, mathematics, and computer science. The chapter argues 
that the theories and techniques needed for data analysis and processing 
connect these disciplines and the result is the reduced redundant work for 
data scientists.

Chapter 2 explains in detail geocoding, which is a fundamental and ini-
tial operation in many geospatial projects. The chapter discusses the basics 
of geocoding along with the various challenges associated with the logic of 
geocoding. Uncertainties related to geocoding and Web-based geocoding 
services and geomasking are explored.

Chapter 3 discusses a deep learning technique applied to satellite images 
for pattern recognition, emphasizing the need for appropriate and large data 
sets to include labeled training samples. The chapter proposes the use of 
large data sets of volunteered geographic information (VGI), which are cur-
rently available through various services such as OpenStreetMap, in order to 
master deep learning with satellite images.

Chapter 4 discusses visual analytical approaches to analyze the movement 
of massive floating car data. The chapter first outlines the state of the art in 
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floating car visual analysis at two abstract levels: point-based and trajectory-
based. It then discusses several visualization methods to explore multivari-
ate points and trajectories in interactive visual environments.

Chapter 5 discusses homology as a technique to predict patterns in geo-
spatial data. The main feature of the technique is that it takes into account 
the topological properties of data in order to recognize patterns. The tech-
nique is applied to a geological data set to recognize patterns of similarity 
among geologic structures at tectonic boundaries.

Chapter 6 is focused on LiDAR technology and the type of data it produces. 
The chapter then presents a specific marine application to which LiDAR data 
have been applied. The LiDAR data are used in the application as the source 
data to develop DTM and DEM data, which are then used to quantify the 
effects of rises in sea levels.

Chapter 7 explains spatial-temporal techniques that are suitable for analy-
sis of point patterns. Of the existing techniques, the chapter discusses the 
implementation of the spatial-temporal Ripley’s K function at various scales 
to estimate the spatial-temporal signature of dengue fever in Columbia.

Chapter 8 focuses on geospatial data analysis of transportation demand, 
which depends on collecting and analyzing geospatial data, georeferenced 
socio-demographic data, economic data, and environmental data. The chap-
ter reviews state-of-the art traffic data collection and analysis, as well as 
transportation modeling and simulation techniques.

Chapter 9 discusses utilizing data analytics to study human dynamics 
in the space-time context. The data analytics are applied to a water bond 
effort in California as the case study, measuring people’s votes on the issue 
through tweets to explore the space-time dynamics of social media and topi-
cal distribution.

Chapter 10 presents the concept of geospatial stream processing from the 
user’s perspective. It then discusses a framework for efficient real-time anal-
ysis of big geospatial streams, based on distributed processing of large clus-
ters of data and a declarative, SQL-based approach.

We hope that this book will help readers, whether familiar with or new to 
Data Science, interested to learn about Geospatial Data Science theories and 
techniques with example applications involving geospatial data.

Hassan A. Karimi
Bobak Karimi
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1
Geospatial Data Science: 
A Transdisciplinary Approach

Emre Eftelioglu, Reem Y. Ali, Xun Tang, 
Yiqun Xie, Yan Li, and Shashi Shekhar

1.1 Introduction

This chapter provides a transdisciplinary scientific perspective for the geo-
spatial data science which promises to create new frontiers for the geospatial 
problems which were previously studied with a trial and error approach. 
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2 Geospatial Data Science Techniques and Applications

A well-known example from the past illustrates how rigorous scientific 
methods may change a field. Alchemy, the medieval forerunner of chemis-
try, once aimed to transform matter into gold (Newman and Principe 1998). 
Alchemists worked tirelessly for years trying to combine different matter 
and observe their effects. This trial and error process was successful for find-
ing new alloys (e.g., brass, bronze, etc.) but not for creating another metal, 
that is, gold. Later, the science of chemistry showed the chemical reactions 
and their effects on elements, and successfully proved that an element can-
not be created by simply melting and combining other elements.

We see similar unrewarded efforts (Legendre et al. 2004; Mazzocchi 2015) 
in the current trial and error approach to geospatial data science. We believe 
that research in the field needs to be conducted more systematically using 
methods scientifically appropriate for the data at hand.

This chapter investigates geospatial data science from a transdisciplinary 
perspective to provide such a systematic approach with the collaboration of 
scientific disciplines, namely, mathematics, statistics, and computer science.

1.1.1 Motivation

Over the past decade, there has been a significant growth of cheap raw geo-
spatial data in the form of GPS trajectories, activity/event locations, tem-
porally detailed road networks, satellite imagery, etc. (H. J. Miller and Han 
2009; Shekhar et al. 2011). These data, which are often collected around the 
clock from location-aware applications, sensor technologies, etc., represent 
an unprecedented opportunity to study our economic, social, and natural 
systems and their interactions.

Consequently, there has also been rapid growth in geospatial data science 
applications. Often, geospatial information retrieval tools have been used as 
a type of “black box,” where different approaches are tried to find the best 
solution with little or no consideration of the actual phenomena being inves-
tigated. Such approaches can have unintended economic and social con-
sequences. An example from computer science was Google’s “Flu Trends” 
service, begun in 2008, which claimed to forecast the flu based on people’s 
searches. The idea was that when people have flu, they search for flu-related 
information (e.g., remedies, symptoms). Google claimed to be able to track 
flu trends earlier than the Centers for Disease Control. However, in 2013, the 
approach failed to identify the flu season, missing the peak time by a large 
margin (e.g., 140%) (Butler 2013; Lazer et al. 2014; Drineas and Huo 2016).

This failure is but one example of how the availability of a computational tool 
does not mean that the tool is suitable for every problem. A recent New York 
Times article discussed similar issues in big data analysis from the statistics 
perspective, concluding, “[Statistics is] an important resource for anyone ana-
lyzing data, not a silver bullet.” (Marcus and Davis 2014).

Similarly, geospatial data science applications need a strong founda-
tion to understand scientific issues (e.g., generalizability, reproducibility, 
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computability, and prediction limits—error bounds), which often makes 
it difficult for users to develop reliable and trustworthy models and tools. 
Moreover, we need a transdisciplinary scientific approach that considers not 
only one scientific domain but multiple scientific domains for discovering 
and extracting interesting patterns in them to understand past and present 
phenomena and provide dynamic and actionable insights for all sectors of 
society (Karimi 2014).

1.1.2 Problem Definition

The term geospatial data science implies the process of gaining information 
from geospatial data using a systematic scientific approach that is organized 
in the form of testable scientific explanations (e.g., proofs and theories, simu-
lations, experiments, etc.). A good example is USGS and NOAA’s analysis of 
geospatial and spatiotemporal datasets, for example, satellite imagery, atmo-
spheric data sensors, weather models, and so on, to provide actionable hur-
ricane forecasts using statistics, machine learning (computer science), and 
mathematical models (Graumann et al. 2005; “National Hurricane Center” 
2017).

The most important aspect of a scientific process is objectivity (Daston and 
Galison 2007), meaning the results should not be affected by people’s per-
spectives, interests, or biases. To achieve objectivity, scientific results should 
be reproducible (Drummond 2009; Peng 2011). In other words, using the 
claims in a scientific study, the results should be consistent and thus give the 
same results every time.

Although they vary by domain (Gauch 2003), for geospatial data science 
we provide the following steps (Figure 1.1), which can provide objectivity 
and reproducibility.

The first step is the selection of a phenomenon to explain scientifically. 
In other words, we decide which problem we want to explain. Next, suf-
ficient data about the phenomenon are collected to generate a hypothesis. 
The important aspect of this step is that hypothesis generation should be 
objective and not biased by scientists’ perspective or interests. Experiments 
and simulations are then done to test the hypothesis. If the hypothesis sur-
vives these tests, then a theory can be generated. Note that in some domains, 
theories can be validated by mathematical proofs, and then confirmed by 

Problem
selection/definition

Data
collection

Hypothesis
generation

Mathematical
proofs

Experiments

Simulations

�eory generation

FIGURE 1.1
Steps of geospatial data science.
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experiments and simulations. Thus, scientific methods differ slightly from 
one scientific domain to another.

This scientific process will also draw boundaries of predictability just as 
chemistry drew boundaries for creating matter (i.e., gold). Depending on the 
data in hand, non-stationarity in time may impact the success of predictabil-
ity. Thus, past events may not always help predict the future. Similarly, black 
swan events, where the occurrence of a current event deviates from what 
is expected, may escape the notice of individual disciplines (Taleb 2007). 
The proposed transdisciplinary approach encourages us to investigate such 
events for better understanding the cause and predictability of black swan 
events with a scientific approach.

1.1.3 Challenges

Geospatial data science poses several significant challenges to both current 
data scientific approaches as well as individual scientific disciplines.

First, the increasing size, variety, and the update rate of geospatial data 
exceed the capacity of commonly used data science approaches to learn, 
manage, and process them with reasonable effort (Evans et al. 2014; Shekhar, 
Feiner, and Aref 2015). For example, vehicle trajectory datasets that are 
openly published on the Planet GPX web site include trillions of GPS points, 
each of which carries longitude, latitude, and time information (“Planet.gpx—
OpenStreetMap Wiki” 2017).

Second, geospatial data often violate fundamental assumptions of individ-
ual traditional scientific disciplines. For example, in statistics, the indepen-
dent and identically distributed (i.i.d.) assumption of random variables, and 
the stationarity assumption (whereby the mean, variance, and autocorrelation 
are assumed to be stationary) do not hold for geospatial data (Shekhar et al. 
2015). Similarly, in mathematics, regions with indeterminate boundaries may 
not be represented with traditional topology and geometry, although in a geo-
graphical space indeterminate boundaries are needed since neighborhoods 
or urban areas often do not have determinate (strict) boundaries (Clementini 
and Di Felice 1996; Cohn and Gotts 1996). Also, graphs in mathematics cannot 
be used to represent spatial networks (e.g., road networks, rivers, etc.) since 
these networks have location information as well as node specific constraints 
(e.g., turns, traffic lights, etc.) (Barthelemy 2011). In addition, computer science 
often deals with one-dimensional data while geospatial data often have two, 
three, or more dimensions. A simple example is “sorting.” In computer sci-
ence, sorting may be done in one-dimensional vectors. However, there is no 
simple notion of sorting multidimensional geospatial data (Samet 2015).

A third challenge is that, owing to imperfect data collection devices, geo-
spatial datasets often include missing or erroneous data (Ehlschlaeger and 
Goodchild 1994). To make things more complicated, there are concerns from 
users about geo-privacy (Kwan, Casas, and Schmitz 2004). Thus, it is hard to 
provide robust approaches that are generalizable.
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Finally, the siloed nature of statistics, mathematics, and computer science 
research leads to redundant and often incomplete work on data science 
problems.

1.1.4 Trade-Offs

Taking a transdisciplinary view of geospatial data science means we must 
deal with the well-known trade-offs within individual disciplines, as well as 
with the many trade-offs across disciplines.

Intra-disciplinary trade-offs: An example in statistics is the tradeoff between 
bias and variance, as shown in Figure 1.2. A bias error occurs when wrong 
assumptions are used with the training dataset. In other words, during model 
learning we may be overly cautious, causing our model to under-fit the data, 
which in turn leads to a high prediction error rate. Variance error comes 
from the fact that even small variances in the training data are considered for 
model building. Such an approach may cause overfitting as well as unneces-
sarily complex model building and thus poor prediction performance.

An example within the discipline of computer science is the trade-off 
between memory storage and response time. For example, a shortest path 
computation using Dijkstra’s algorithm (Dijkstra 1959) iteratively traverses 
the nodes and edges of the graph to compute the shortest path. An alterna-
tive approach may be based on precomputing and storing the shortest paths 
in a database with an index on the pairs of start-node and destination. This 
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FIGURE 1.2
The trade-off between bias and variance for the statistics domain.
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approach will simply use the index to retrieve the precomputed shortest 
path to quickly answer queries. The computation cost for shortest paths will 
be much lower; however, it will require much larger storage for the data-
base of precomputed paths. The computer science literature includes many 
algorithms, for example, hierarchical Routing and contraction hierarchies 
(Geisberger et al. 2008), which explore the trade-off between storing a subset 
of precomputed paths and on-the-fly computation. Another computer sci-
ence example from distributed systems in computer science is the CAP theo-
rem (Brewer 2000), which states that one must choose between consistency 
and availability where the third concern is the partition tolerance.

Beyond the trade-offs within individual disciplines, there are new trans-
disciplinary trade-offs to consider across mathematics, statistics, computer 
science, and data-driven sciences (referred to as domain sciences).

Data-driven domain science interpretation and statistics (uncertainty quantifica-
tion): Data-driven domain science interpretation and statistical uncertainty 
quantification have different objectives. For example, in the land cover clas-
sification problem, a decision tree (Kazar et al. 2004; Z. Jiang et al. 2012; Z. 
Jiang et al. 2015) or random forest (Gislason, Benediktsson, and Sveinsson 
2006) approach may be used to classify remote sensing imagery to land cover 
type (e.g., wetland, dryland, forest, urban, rural, etc.) since the resulting 
models (i.e., decision trees or random forests) are relatively easy for domain 
scientists to interpret. However, neither the decision tree nor random for-
est approaches quantify uncertainty or provide a statistical confidence level 
for predicted land-cover classes. The alternative method is using statistical 
approaches such as Bayesian classifiers (Giacinto, Roli, and Bruzzone 2000). 
These may provide uncertainty quantification and statistical confidence but 
the results are not as easy to interpret due to their numerical nature. Thus, 
there is a need for approaches that will provide uncertainty quantification as 
well as ease of domain interpretation.

Computer science and statistics: Computational approaches such as data 
mining and machine learning tools often provide computational scalability 
but they may not quantify uncertainty as depicted in Figure 1.2. For example, 
the K-means algorithm (Hartigan and Wong 1979) for clustering is computa-
tionally efficient as it converges quickly to a local minimum on the error sur-
face. However, it does not quantify statistical confidence in the discovered 
clusters. For example, it cannot determine whether the clusters discovered 
by K-means are better than those achieved by a random partitioning of the 
data set. In addition, it does not provide guarantees on the solution quality. 
For example, it does not tell us how the quality of a local minimum recom-
mended by the K-means procedure compares with the quality of a global 
minimum on the error surface. On the other hand, the expectation maximi-
zation (EM) approaches (Dempster, Laird, and Rubin 1977) may iteratively 
converge to a global optimum solution; however, they seldom provide guar-
antees on computational cost. They cannot answer questions such as, “Is it 
guaranteed to terminate in a reasonable time (or will it run for an infinite 
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time)? What is the computational complexity of the EM algorithm?” In addi-
tion, statistical approaches which aim to provide probability distributions as 
well as evaluate the results with statistical significance levels often require 
hypothesis testing (Johansen 1991), which increases the computational cost. 
Therefore, new research is required to provide computational scalability and 
statistical uncertainty quantification at the same time (Figure 1.3).

Mathematics and statistics: A pure mathematical optimization approach to 
estimate parameters of a statistical (or machine learning) model may lead 
to overfitting (Babyak 2004), which may cause the model to perform poorly 
on generalization for prediction on unseen datasets. Moreover, it may cause 
many statistical models (e.g., regression and decision trees) to become exces-
sively complex and hard to interpret. For example, in a regression, given any 
set of data points, it is possible to find a polynomial function that exactly 
passes through each point. This may cause overfitting and reduce the pre-
diction power of the model, since the dataset may have noisy points that 
bias the results. In summary, there is a need for tools that preserve statistical 
interpretation and mathematical completeness as well as prevent statistical 
models from becoming overly complex.

Mathematics, computer science, and statistics: Mathematics and statistics often 
have conflicting objectives. Basically, statistical inferences often involve 
quantifying the uncertainties with confidence intervals and statistical sig-
nificance values. On the other hand, mathematics often deals with results’ 
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FIGURE 1.3
The trade-off between computational scalability and statistical rigor.
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completeness, optimality, and so on. Many statistical methods do not guar-
antee mathematical properties, for example, completeness and optimality. 
For example, consider SaTScan (Kulldorff 1997, 1999), an algorithm to find 
hotspots, that is, circular areas within which the density of a phenomenon 
(e.g., disease, crime) is much higher than the density outside. This method 
uses a statistical measure, for example, a likelihood ratio and p-value, to 
reduce chance patterns and quantify uncertainty. This software, widely 
used in epidemiology for hotspot detection, enumerates circles using pairs 
of points, where one point defines the center and the distance between the 
points defines the radius. However, this approach does not enumerate many 
other circles, such as those defined by subsets of three points. It is likely 
to miss circular hotspots with empty centers as it gives up mathematical 
completeness to reduce computational cost. There is a need for approaches 
that preserve mathematical completeness while providing computationally 
feasible and scalable solutions.

1.1.5 Background

Previous attempts to define geospatial data science (Table 1.1) often focused 
on pairs of disciplines, for example, statistics–computer science, mathemat-
ics–computer science, and so on. We argue that all three disciplines should 
be considered to provide an understanding of naturally occurring phenom-
ena. Moreover, these disciplines should operate together so that all may ben-
efit from conceptual advances of common interest. For example, analytics 
on hyperspectral remote sensing imagery, which is used by earth science 
applications (e.g., agronomy, geology, hydrology, etc.), applies computation-
ally efficient and statistically robust algorithms for those high dimensional 
(e.g., hyperspectral) geospatial datasets (Melgani and Bruzzone 2004).

Recently, the NSF workshop on “Theoretical Foundations of Data Science” 
(Drineas and Huo 2016) attempted to provide a definition of “data science” 
that brings these three disciplines together. The workshop identified fun-
damental areas where collaboration among computer scientists, mathemati-
cians, and statisticians is necessary to achieve significant progress. However, 
the focus of the workshop was not geospatial data generally but high-dimen-
sional data, and most of the discussion centered on very specific topic areas, 
that is, computation-statistics tradeoff, randomized numerical linear algebra, 

TABLE 1.1

Overview of Related Work

High-Dimensional Data Spatial Data

Siloed/
multidisciplinary

Statistics, mathematics, 
and computer science

Spatial statistics, Spatial data 
mining, and machine learning

Transdisciplinary Theoretical foundations of 
data science workshop

Proposed approach
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signal processing/harmonic analysis on graphs, nonconvex statistical opti-
mization, combining physical and statistical models, mixed type and multi-
modality data, applied representation theory and noncommutative harmonic 
analysis, topological data analysis (TDA) and homological algebra, security, 
privacy, and algorithmic fairness (Drineas and Huo 2016).

Another recent development was the NSF Workshop on Geospatial Data 
Science in the Era of Big Data and CyberGIS (“NSF Workshop on Geospatial 
Data Science” 2017). Its focus was high-performance computing and the 
computational aspects of geospatial data science. Topics included geospatial 
big data capabilities (e.g., LiDAR, remote sensing, and location-based social 
media) for novel applications (e.g., urban sustainability), cloud computing, and 
tools for scalable geospatial data analytics. One of the goals was to formulate 
a core set of questions and problems of geospatial data science around these 
themes. The workshop addressed the geospatial data science problem from a 
high-performance computing perspective but did not address the broader set 
of questions that led us to our attempt here to define geospatial data science.

1.1.6 Contributions and the Scope and Outline of This Chapter

This chapter takes a wide-lens perspective on geospatial data science. We 
believe that geospatial data science is a transdisciplinary field comprising 
statistics, mathematics, and computer science, and that it should be formally 
considered the foundation of geospatial science. The aim is both to reduce 
redundant work across disciplines as well as to define the scientific boundar-
ies of geospatial data science so it is no longer seen as “a black box” solution 
to every possible geospatial problem. In addition, we aim to lay out some of 
the challenges that arise from the geospatial nature of the data. Hence, in the 
following sections, we investigate individual disciplines, their objectives as 
well as the challenges they face to investigate the transdisciplinary defini-
tion of geospatial data science.

Scope and outline: In this chapter, we present geospatial data science as a 
transdisciplinary scientific process. The proposed approach provides a dis-
cipline-of-disciplines perspective toward reducing redundant work and pro-
viding a more robust way to create information from raw geospatial data. In 
addition, our approach aims to identify the limits of geospatial data science 
predictability.

To emphasize the transdisciplinary perspective of geospatial data sci-
ence, in the following sections we provide examples from each discipline, 
namely, statistics, mathematics, and computer science, that are cross-cutting 
with geospatial data science. As summarized in Figure 1.4, for example, the 
study of indeterminate regions is both a mathematics and a spatial statistics 
problem. Similarly, randomized algorithms can be considered not only as a 
problem in computer science but also one that uses fundamental ideas from 
spatial statistics. Finally, representative problem examples that all three dis-
ciplines tackle are explained in more detail.
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1.2 Statistics

1.2.1 Traditional Statistics

Statistics studies data in the context of uncertainty, and it serves as an impor-
tant foundation of many data science tasks such as pattern recognition, pre-
diction, and classification. Given the observations collected from a part of a 
population, statistics reduces uncertainty by making inferences on the entire 
population. It differs from probability theory in that probability theory 
works with known probabilistic distributions to estimate the probability of 
future observations while statistics starts with a collection of past observa-
tions and estimates the unknown parameters of a probabilistic distribution 
to make inferences.

Mathematics

Mechanistic models
(e.g., differential equations)

Graph theory

Information theory

Probability theory

Sampling theory

Central limit theorem

Statistical inference of
parameters in euclidean space
(e.g., SAR)

Randomized
linear algebra

Randomized
algorithms

Scalable algorithms

Computational\space
complexity

Randomized
numerical linear

algebra parameters
for SAR computation

Trade-off between stat.
interpretation and
comp. scalability

Indeterminate regions
(e.g., egg yolk model)

Spatial statistics

non i.i.d.

Computer science

SAR–golden
section search

GPS positioning

Remote sensing

SDBMS GIS (e.g., geographic
projections)

High spectral
remote sensing

imagery algorithms

Optimized algorithm

Geometry

Dimension reduction
Topology, vector and metric spaces

Linear algebra

Matrix space
Vector space

Spatial networks

Note: Spatial concepts are shown with underlined text.

FIGURE 1.4
Comparison of disciplines via examples (one theory/approach doesn’t fit all).
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In statistics, data collection is performed based on sampling theory 
(Härdle, Klinke, and Röonz 2015), which provides a scientific framework 
to decide the population of concern, sampling approach (e.g., random sam-
pling), sampling size, and so on. The collected observations are then used 
to estimate parameter values of a target distribution model (e.g., Gaussian 
distribution). The estimation can be performed using either a “frequentist” 
or a Bayesian approach (Hong et al. 2013). A frequentist approach analyzes 
data as an integrated whole. It assumes each parameter has a fixed value that 
does not change over time and that can be accurately estimated as the num-
ber of observations increases to infinity. However, in real-world scenarios, 
the number of observations is limited and there is always an uncertainty 
associated with the analysis, given the incomplete data. In order to express 
this uncertainty, a frequentist approach uses a confidence interval (Curran-
Everett 2009) to claim a minimum expected probability (e.g., 95%) that the 
estimated parameters are true.

By contrast, a Bayesian approach assumes that each parameter comes from 
a prior distribution. It considers data as a sequence of observations and con-
tinues to update the estimation of parameters as new observations are avail-
able. Unlike a frequentist approach, a Bayesian approach captures the change 
or evolution of parameters over a sequence (e.g., time) of observations, and 
thus can further reduce the uncertainty in an inference. However, a Bayesian 
approach requires an appropriate prior distribution as input; otherwise, it 
cannot give correct inferences.

1.2.2 Traditional Statistics versus Spatial Statistics

One of the most common assumptions in traditional statistics is that observa-
tions are identically and independently distributed (i.i.d.) (L. Cam and Yang 
2000). The i.i.d. assumption is an important foundation of many data science 
methods. For example, in machine learning, maximum likelihood estima-
tion (Pan and Fang 2002) is used to estimate the parameter values of a given 
model, and the expressions of likelihood functions are often obtained based 
on this i.i.d. assumption (e.g., Naïve Bayes classifier, expectation–maximiza-
tion). In fact, many classic statistics theorems come from the i.i.d. assump-
tion, such as the well-known central limit theorem (Rice 1995), which states 
that the mean of a set of samples is approximately equal to the mean of an 
entire population, given a sufficiently large sample size.

Although it offers great convenience in traditional statistics, the i.i.d. assump-
tion is often violated in the geospatial domain. As the first law of geography 
states: “Everything is related to everything else, but nearby things are more 
related than distant things” (Tobler 1970). This fundamental observation on 
geospatial data breaks the i.i.d. assumption of nonspatial data in traditional 
statistics. Spatial statistics deals with the phenomenon of spatial autocorrela-
tion through careful modeling of spatial relationships among data samples. 
The following discusses two motivating examples of spatial statistics.
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Example 1.1: Pearson Correlation on Geospatial Data

Figure 1.5a shows a distribution of three types of diseases, abbreviated 
as TF, VSD, and ALL. Each instance of each disease has a unique ID 
as marked in Figure 1.5a. From the distribution, we can see each ALL 
instance has a nearby TF instance and VSD instance. For example, ALL1 
is adjacent to TF1 and VSD1. To measure the spatial correlation among 
the three types of diseases, we need some parameters to express the spa-
tial distribution. Figure 1.5b shows a boundary fragmenting the study 
area. For each type of disease, we can consider each fragment as a prop-
erty of its spatial distribution, and each property value as the count of 
instances of this disease within the fragment. Suppose the fragments are 
concatenated into a vector following column-wise order (top-left → bot-
tom-left → top-right → bottom-right). Thus, the vector of properties for 
ALL is [0, 0, 1, 1], TF is [1, 2, 0, 0], and VSD is [0, 0, 1, 1]. With this spatial 
modeling based on boundary fragmentation, the Pearson correlation 
ratio is –0.91 between TF and ALL, and 1 between VSD and ALL. This 
negative correlation between TF and ALL contradicts our observation 
since their spatial adjacency is broken by the boundary between frag-
ments (Figure 1.5b). By contrast, the correlation between VSD and ALL is 
positive because the spatial adjacency between VSD and ALL instances 
is preserved by the arbitrary partitioning. These mutually contradictory 
correlations reveal the uncertainty of results when traditional statistics 
is trivially applied to the geospatial domain.

Example 1.2: Agronomic Field Experiment Design

Field experiments are used by agricultural scientists to evaluate the 
performance and properties of crops under different conditions (e.g., 
water and fertilizer) (Legendre et al. 2004; Van Es et al. 2007). Traditional 
experiment designs assume that observations are independent and that 
the expected value stays the same at different spatial locations. However, 
in field experiments, these assumptions are often violated since closer 
plants exhibit more similar properties, and soil properties vary at dif-
ferent locations, which lead to nonstationary expectations (Legendre 
et al. 2004). To address this problem, blocks are used in field experiment 
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TF2

ALL1ALL1 ALL1ALL1

ALL2ALL2

VSD1VSD1 VSD1VSD1

Tetralogy of Fallot (TF)Tetralogy of Fallot (TF)

Ventricular septal defects (VSD)Ventricular septal defects (VSD)

Acute lymphoid leukemia (ALL)Acute lymphoid leukemia (ALL)
VSD2VSD2

VSD2VSD2
ALL2ALL2

(a)(a) (b)(b)

TF3TF3
TF3TF3

FIGURE 1.5
Distribution of disease. (a) A map of 3 types of diseases and (b) Boundary fragmenting the 
study area.
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design to reduce the effect of spatial autocorrelation and heterogeneity. 
A block is a large spatial unit containing a set of plots. With a properly 
chosen block size, the spatial-related properties (e.g., soil type) can be 
assumed to be uniform within a block. Distances are added between 
blocks so that the spatial autocorrelation between blocks is reduced. The 
choice of block size and distance between blocks are critical parameters 
to reduce the errors caused by spatial effects. In practice, they can be 
determined by spatial statistical analysis.

1.2.3 Spatial Statistics

Geostatistics: Geostatistics (Chiles and Delfiner 2012) is concerned with point-
reference data, which contains a set of points with fixed locations and a set 
of attribute values. The goal of geostatistics is to model the distribution of 
the attribute values and make predictions on uncovered locations. Point-
reference data have several inherent properties: (1) isotropy/anisotropy; (2) 
second-order stationarity; and (3) continuity. In the context of isotropy, uni-
formity is assumed in all directions, while under anisotropy, some statistical 
properties may vary by direction. Second-order stationarity is a weaker form 
of strong stationarity, so it is also referred to as weak stationarity. Instead of 
assuming a strong stationarity with invariant density of distribution, second-
order stationarity assumes only invariant moments (e.g., mean and variance) 
across a spatial domain but covariance between locations depends on the 
distance. The continuity property indicates the existence of spatial depen-
dence on the data. The degree of dependence can be quantitatively measured 
with input distance and direction using a variogram or semivariogram. If 
we further assume isotropy, then the variogram simplifies to a function of 
distance only. With the base assumptions on point-reference data, the distri-
bution of attribute values can be effectively modeled. A set of statistical tools 
is provided by geostatistics and one of the most popularly used methods is 
Kriging (Williams 1998). Kriging is a statistical model of interpolation that 
predicts attribute values at unsampled locations (e.g., water quality estima-
tion based on observations from a set of monitoring sites). Co-Kriging (Stein 
and Corsten 1991) provides a multivariate extension of ordinary Kriging. For 
a set of highly correlated attributes, Co-Kriging can improve the prediction 
quality on a poorly sampled attribute using well-sampled ones. Besides spa-
tial autocorrelation, spatial heterogeneity also needs careful consideration 
in many applications (e.g., different types of underlying landscape). Special 
models, such as GWR (geographically weighted regression) and spline, are 
available in geostatistics to reflect the changes in statistical properties, given 
the presence of spatial heterogeneity. These models deploy a local view on 
the data and assign higher weights to neighboring points to reduce the effect 
of heterogeneity.

Spatial point process: Unlike geostatistics, a spatial point process is not 
concerned with attribute values but with the locations of points (Møller 
and Waagepetersen 2007), specifically their distribution. Locations of a set 
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of points can be generated based on different statistical assumptions (e.g., 
random and clustered). The most common model assumed for a spatial 
point process is a homogeneous Poisson distribution, also known as com-
plete spatial randomness (CSR). In CSR, the total number of points follows 
a Poisson distribution and each point is identically and independently dis-
tributed in a predefined spatial domain. A variant of CSR is a binomial point 
process, in which the only difference is a fixed total number of points. In 
many application domains, CSR or binomial point process is not an appro-
priate assumption since points may have spatial autocorrelation or inhi-
bition characteristics. In such cases, other specialized models should be 
applied to better approximate the exact distribution as shown in Figure 1.6. 
For spatial inhibition, a Poisson hardcore process is widely used to gener-
ate a distribution that enforces mutual repulsion among points. For spatial 
autocorrelation, a Matern cluster process can be chosen to reflect the clus-
tering characteristics. Similar cluster processes include the Poisson cluster 
process, Cox cluster process, Neyman-Scott process, and so on. One of the 
most well-known applications of a spatial point process is spatial scan statis-
tics (Kulldorff 1997; Agarwal et al., 2006; Neill and Heinz 2009; E. Eftelioglu, 
Tang, and Shekhar 2015; Tang, Eftelioglu, and Shekhar 2015; E. Eftelioglu, 
et al. 2016b,c) in hotspot detection. In spatial scan statistics, chance hotspots 
are removed through a statistical significance test under a null hypothesis 
based on CSR. CSR is also used as a null hypothesis for significance testing 
in Ripley’s K function (Dixon 2002), which estimates the overall clustering 
degree of a point distribution.

Lattice statistics: A lattice is a representation of a discrete space, which is 
a finite collection of grid cells in a spatial domain. In this case, lattice sta-
tistics concerns statistical processes in the field model. For continuous data 
(e.g., polygon), a W-matrix (continuity matrix) can be computed to transform 
the original data into a discretized representation based on their spatial 
adjacency or proximity. Lattice statistics provides a set of models (Cliff and 
Ord 1981; Getis and Ord 2010), such as Moran’s I, Getis-Ord Gi*, Geary’s 

Spatial randomness Spatial inhibition Spatial cluster

FIGURE 1.6
Forms of spatial point process.
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C, Gamma index, and LISA, to evaluate spatial autocorrelation on the field 
model. For example, Moran’s I outputs an I-value within [–1, +1] to reflect a 
positive, none, or negative spatial autocorrelation in the input dataset. For 
value estimation and prediction, spatial autoregressive models (M. M. Wall 
2004) are applied on discrete data, such as Markov random fields (MRF), 
the simultaneous autoregressive model (SAR), and the conditional autore-
gressive model (CAR). MRF models the evolution process of a phenomenon 
based on the assumption that the property of a spatial location is spatio-
temporally determined by its neighbors with additional randomness. In 
the CAR model, a Markov property is implied and the state of a location 
is affected by its direct neighbors, but not neighbors of its neighbors. This 
property of CAR is called spatial memoryless. By contrast, SAR does not 
assume any non-transitive spatial influences and considers autocorrelation 
in a larger spatial domain. Therefore, CAR is a more appropriate choice for 
a local spatial process and SAR is a better assumption for a global spatial 
process. Another critical issue in lattice statistics is the impact of scale on 
spatial analysis. With different aggregation levels of scale, the statistical 
analyses may have distinct results. For example, variance of income aggre-
gated on a neighborhood level could be much smaller than that on a county 
level within the same state.

Spatial network statistics: A spatial network is a graph-based model with 
enriched spatial information (e.g., turn and capacity). In a spatial network, 
events or objects are mutually accessed through a set of connected edges 
instead of straight lines in the Euclidean space. Statistics on spatial net-
works is a newly emerging area which has not been as extensively stud-
ied as statistics on Euclidean space. In recent work, some statistical models 
for object data, such as spatial autocorrelation, interpolation, and clustering 
approaches, have been extended to spatial networks. Spatial network statis-
tics, as an extension of spatial statistics on Euclidean space, can better model 
processes in urbanized places where objects and events spread along net-
work edges (e.g., roads and rivers). For example, in transportation planning, 
statistically significant hotspots of accidents need to be identified based on 
network space (Tang et al. 2017).

1.3 Mathematics

Mathematics plays a critical role in all science and technology. It is funda-
mental to a variety of traditional subjects such as physics, chemistry, and 
agriculture. In data science, mathematics provides its core value in data rep-
resentation and modeling as well as the logic and proofs used to validate 
data science approaches. In this section, we first introduce how mathematics 
is applied in traditional data science with a collection of examples. Then we 
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discuss the limitations of applying traditional mathematical models to spa-
tial data and novel spatial models with examples.

1.3.1 Mathematics in Traditional Data Science

Data science utilizes a variety of subjects for accomplishing different data 
modeling and processing tasks. Many types of data can be represented using 
linear algebra models. Aligned two-dimensional data are typically modeled 
as a matrix. For example, an image channel is represented as a matrix where 
each element indicates the value of a pixel in the corresponding location. 
This representation is widely applied in precision agriculture (Campbell and 
Wynne 2011; Lillesand, Kiefer, and Chipman 2014; E. Eftelioglu et al. 2016a), 
which discovers the remote sensing data consisting of multiple image chan-
nels. In addition, a graph can be represented as a neighborhood matrix as 
well where each row corresponds with a node in the graph and the elements 
in that row indicate the connection from this node to all the other nodes. A 
vector is always used to model an object that has a set of feathers where each 
feather is quantized as an element in the vector. The operations on matrices 
and vectors also apply on the represented data. For example, the similarity 
between two feather vectors can be measured by the distance computed by 
the norms and the angle between them. Eigenvalue and eigenvector are used 
for studying the behavior of Markov chains (Gabriel and Neumann 1962; 
Brooks et al. 2011) which has been the core idea of many approaches such 
as PageRank (Page et al. 1999). Principal component analysis (PCA) (Jolliffe 
2002) uses eigenvalues and eigenvectors for reducing the dimensionality of 
the data. Another important application of linear algebra in data science is 
regression (Neter et al. 1996). A linear regression can be modeled as a linear 
system which can possibly be solved by multiple linear algebra approaches 
such as Gaussian elimination and multiplying by inverse (Wilkinson and 
Wilkinson 1965). Many data science approaches are derived based on lin-
ear algebra. As an example, low-rank matrix approximation based on 
Singular Value Decomposition (SVD) (Golub and Reinsch 1970; M. E. Wall, 
Rechtsteiner, and Rocha 2003) is applied in data compression, classification, 
regression, clustering, and signal processing, and so on.

Another subject in mathematics that is widely used in data science is 
information theory. Entropy is a concept that originally comes from ther-
modynamics (Guggenheim 1985) which measures the number of micro-
scopic configurations that a thermodynamic system has. On the basis of the 
essence of entropy, entropy in information theory (Ayres 1997) measures the 
expected value of the information contained in a message or the uncertainty 
of the data. Data classification approaches such as decision trees use entropy 
to measure the information gain (Quinlan 1986; Safavian and Landgrebe 
1991; Hall and Holmes 2003) between two levels of the tree which offers a 
quantitative guide of how the tree should grow. For example, a good growth 
of the tree is expected to decrease the overall entropy.
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Optimization is a highly interdisciplinary subject related to both math-
ematics and computer science. It is applied to many critical societal applica-
tions. For example, precision agriculture researchers need to allocate each 
field with a type of product to achieve the optimal environmental and eco-
nomic outcome, which requires solving a multi-variable optimization prob-
lem (N. Zhang, Wang, and Wang 2002; McBratney et al. 2005). Many machine 
learning approaches use optimization techniques to achieve their goals such 
as finding the minimal value of the cost function (Govan 2006; Boyd et al. 
2011). For example, gradient descent, a popular approach, finds the mini-
mum value of a cost function by iteratively moving along the direction of 
the slope (L.-K. Liu and Feig 1996; Mason et al. 1999; Bottou 2010). Finding 
the slope requires solving differential equations (K. S. Miller and Ross 1993), 
which is an important subject in mathematics. Differential equations have 
many other applications in data science especially on spatial data, since 
they can be naturally differentiated into variations over space and time. For 
example, the Soil and Water Assessment Tool (SWAT) (Gassman et al. 2007; 
Douglas-Mankin, Srinivasan, and Arnold 2010) is a software that embraces a 
variety of environmental and agricultural models about the variations over 
space and time which apply differential equations.

A mathematics subject tightly related to computer science and data science 
is graph theory. This is because many real phenomena can be naturally mod-
eled by a graph where the vertices represent the objects, and the edges repre-
sent the relationship between objects. For example, as a web network model 
(Kleinberg et al. 1999; Broder et al. 2000), each webpage can be modeled as 
a vertex and the links are modeled as edges outgoing from this vertex. In a 
social network model (Freeman 1978; Mislove et al. 2007), vertexes represent 
individuals, and edges represent the relationship between two individuals. 
There are also spatial data models based on graph theory. Traditionally, road 
networks are modeled such that the intersections are vertices and the roads 
are edges. A similar framework also applies to flight networks (Li-Ping et al. 
2003) and oil pipeline networks (Brimberg et al. 2003), but the edges become 
the air routes and the pipelines.

Topology studies the properties that are preserved under deformations, 
including stretching, twisting, and bending. TDA (Zomorodian 2012) is an 
example of applying topology in data science whose main goal is to study 
the geometric characteristic of data via topology. For spatial data, they are 
largely used in modeling a collection of relationships between real-world 
spatial objects. For example, Minneapolis is inside of Minnesota state is an 
“inside” topological relationship.

1.3.2  Limitations of Applying Traditional Mathematical Models 
to Spatial Data and Novel Spatial Models via Examples

We reviewed the mathematical subjects that have been applied in data sci-
ence. However, they have many non-negligible limitations when dealing 
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with spatial data. An example comes from the metric of objects. Suppose 
there are two spatial objects on a two-dimensional plane, each presented by 
a two-dimensional coordinate; how do we order them? One straightforward 
way is using their distance to the origin. Another popular way is sorting by 
the angle between the line connecting the points and the origin and an axis 
(i.e., x-axis or y-axis). The point is, there is no natural metric that can order 
spatial points. Developing meaningful and efficient ordering metrics for spa-
tial objects is an important and challenging research topic.

In traditional topology, spatial regions are always modeled with deter-
minate boundaries (Randell and Cohn 1992; Cohn and Gotts 1996). It turns 
out that the traditional topological relationship models always rely on the 
boundary. For example, the relationship “inside” is determined by whether 
a spatial region falls completely within another region, and the relationship 
“touches” is determined by whether the boundaries of two spatial regions 
are overlapped but not their inside such as two neighbor states. However, 
in real-world scenarios, many spatial regions are surrounded by indetermi-
nate boundaries. For example, it is impossible to clearly define the boundary 
between urban and rural areas. Research has been done to narrow the gap 
between real-world relationships between spatial regions and traditional 
topological models. One of the most popular models is the “Egg-Yolk” (Cohn 
and Gotts 1996) model which provides a representation of regions with inde-
terminate boundaries based on the framework of “RCC-theory” (Randell 
and Cohn 1992; Cohn, Randell, and Cui 1995). It is a logically consistent and 
computationally tractable model that represents a spatial region with an 
indeterminate boundary by pairs of regions with determinate boundaries 
(i.e., crisp regions).

Traditionally, spatial data have always been modeled on Euclidean space. 
This works well for many problems such as those related to air and ocean. 
However, there are many activities associated with transportation networks 
such as traffic and crimes. Using traditional models based on Euclidean 
space significantly affects the precision of the model and thereby the quality 
of the solution. As an illustration, Figure 1.7 shows a map of the campus of 
University of Minnesota. The east and west banks are connected by a bridge 
over the Mississippi river. The Euclidean distance between the two red dots 
is short, yet the network distance computed from the shortest path is much 
longer (Dijkstra 1959). If we want to approximate the travel time between 
these two dots, the error using Euclidean distance will be huge.

Models based on networks space can give a better distance approximation 
to some extent. In the simplest way, a transportation network can be rep-
resented as a graph, where each intersection is a vertex and each road seg-
ment is an edge associated with a value representing the travel cost of that 
edge. The travel cost could be assigned on the basis of various values such as 
road distance, travel time, or fuel consumption. However, traditional graph 
models have several major limitations dealing with the massive information 
contained in spatial networks. For example, the traditional models simply 
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treat intersections as vertices but do not model the turns. However, accord-
ing to the laws of traffic, left turns usually cost much less than right turns if 
driving on the left side (Lovell 2007). This difference cost could lead to seri-
ous results in real-world applications. UPS saved 10 million gallons of fuel, 
emits 22 thousand tons less carbon dioxide, and delivers 350 thousand more 
packages every year by avoiding a left turn since the year 2004 (Lovell 2007). 
Figure 1.8 shows an example of modeling the turns. The left figure shows a 
patch of map in Dinkytown, Minneapolis. The middle figure shows a tradi-
tional model describing the streets where the vertices are the intersections 
and the directed edges are the roads. The right figure shows an example 
of modeling the intersection at N5 while keeping the turn information by a 
set of connects. The other approaches include using hyper-edges along with 
hyper graphs and annotating the graph with turn information.

In addition, in traditional graph models, each edge is associated with a 
static value, which is not enough for modeling dynamically changing travel 
costs. For example, the travel time for a highway around downtown var-
ies a lot during rush hour and non-rush hours. A time-expanded-graph 
(TEG) (Köhler, Langkau, and Skutella 2002; Silver and De Weck 2007) is one 
approach that is capable of modeling dynamically changing weights on 
edges. Figure 1.9 shows an example of TEG of a graph consisting of four 
nodes. The left side shows the varying travel times associated with each edge 
in four timestamps. The right side shows the TEG modeling this graph where 
each column represents the set of vertices in one timestamp. Each edge con-
nects the nodes that are reachable within a certain time. For example, edge 
〈A1, B3〉 indicates that if departing from Node A at timestamp 1, you will be 

FIGURE 1.7
An illustrative example shows the difference between distances in Euclidean space and net-
work space.
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arriving at Node B at timestamp 3. As can be seen, TEG is much more com-
plex compared to the traditional static graph model, and thus leads to harder 
computational challenges.

Moreover, in a traditional graph, the edges are considered atomic, which 
cannot be further fragmented. This feather works when using graphs to 
model nonspatial networks such as webpage networks and social networks 
since the edges virtually represent the connection between objects. However, 
for spatial data models, the edges represent roads on which activities hap-
pen. If we treat edges as atomic, the location information of the activities 
will be lost. A novel model called dynamic segmentation (Dueker and Vrana 
1992; Chang 2006) has been proposed to handle this limitation.

The original graph is segmented based on the locations of activities on 
the edges. Figure 1.10 shows an illustrative example, using traditional graph 
model, edge 〈N1, N2〉 is atomic and the location information of activities A1, 
A2, A3, A4 can not be preserved due to this atomicity. In dynamic segmenta-
tion, edge 〈N1, N2〉 is segmented to 〈N1, A1〉, 〈A1, A2〉, 〈A2, A3〉, 〈A3, A4〉, 〈A4, N2〉, 
and thus the locations of the activities are kept. Using dynamic segmenta-
tion outperforms traditional models, especially when dealing with activities 
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FIGURE 1.10
An illustrative example of dynamic segmentation.
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located on a portion of long road segments such as a highway. For example, 
in linear hotspot detection, dynamic segmentation helps increase the preci-
sion of the hotspots and reveals hotspots that are missed using traditional 
models.

1.4 Computer Science

In this section, we start by discussing core questions and goals of computer 
science. We then present some of the concepts, theories, models, and tech-
nologies that computer science has contributed to the field of data science. 
Finally, we discuss the limitations of traditional data science with respect to 
spatial data and the computer science accomplishments that have attempted 
to address these limitations toward the realization of geospatial data science.

1.4.1 Core Questions and Goals

Computer science is both a scientific and an engineering discipline 
(Abrahams 1987). Hence, computer science contributions encompass both 
theory (e.g., studying properties of computational problems) and practice 
(e.g., systems design and data mining). However, the scientific aspect of com-
puter science is different from physical disciplines and closer to mathematics 
where the goal is to create representation models and study their properties. 
Many traditional data science questions are studied within the field of com-
puter science. Examples include: Is a given problem decidable (i.e., comput-
able)? Is there a polynomial time algorithm to solve a given problem? What is 
the most efficient algorithm to perform the computations? Can the algorithm 
scale to large datasets? What is the tradeoff between the computational scal-
ability of the algorithm and the statistical rigor?

1.4.2 Concepts, Theories, Models, and Technologies

Many computer science concepts are leveraged in data science. Two major 
concepts are the design of appropriate data structures and algorithms. Data 
structures are ways of storing data so that they can be efficiently used. 
Examples of common data structures include arrays, queues, linked lists, 
trees, and graphs. Algorithms (Cormen 2009) are well-defined computa-
tional procedures that take a value (or a set of values) as input, and produce 
a value (or a set of values) as output to solve a given problem (e.g., searching, 
sorting, and finding the shortest path between a source and a destination 
node in a transportation graph).

In addition, computer science theories are also leveraged in traditional 
data science. For instance, computational complexity theory (Papadimitriou 
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2003; “Computational Complexity Theory” 2017) focuses on classifying 
computational problems according to their inherent difficulty. The theory 
introduces mathematical models and techniques for studying computational 
problems and is usually used to establish proofs that, for a given problem, no 
algorithm can run faster than the current one.

Another major accomplishment relevant to data science is the develop-
ment of database management systems (DBMS), general-purpose software sys-
tems that facilitate the processes of defining, constructing, manipulating, 
querying, and sharing databases among users and applications (Elmasri 
and Navathe 2015). The most common type of DBMS is relational database 
management systems (RDMS), which adopt the relational data model first 
introduced in (Codd 1970). In this model, the database is represented as a 
collection of relations (i.e., tables), based on the concept of mathematical 
relations. Each row (i.e., tuple) typically represents information about a real-
world entity or relationship, while each column represents a given attribute 
describing that entity. SQL is the standard query language for commercial 
RDBMSs and is based on relational calculus. Relational algebra is also used 
as the basis of query processing and optimization in RDBMS (Elmasri and 
Navathe 2015). Examples of popular commercial RDBMSs include IBM’s DB2, 
Oracle, Sybase DBMS, SQL Server, Access, MySQL, and PostgreSQL.

Cloud computing platforms make possible the processing of large data 
volumes in an efficient manner. Existing approaches to cloud computing 
provide a general framework for distributed file systems (e.g., Google file 
[Ghemawat, Gobioff, and Leung 2003] system and HDFS [Borthakur 2007]) 
and processing these data sets based on replicas of data blocks (e.g., map-
reduce [Dean and Ghemawat 2008], Hadoop [Borthakur 2007], and Spark 
[“Apache Spark—Lightning-Fast Cluster Computing” 2017]). Figure 1.11 
(left side) shows the Intel distribution for Apache Hadoop software compo-
nents (Intel 2013). It also shows many components running on top of the 
HDFS for distributed processing (MapReduce), workflow (Oozie), scripting 
(Pig), machine learning (Mahout), SQL queries (Hive), and column store stor-
age (HBase). In addition to cloud computing platforms, there are also many 
existing high-performance scientific computing cluster technologies as depicted 
on the right side of Figure 1.11. These computing technologies include parallel 
file systems (e.g., Lustre), batch schedulers (e.g., SLURM), MPI, and OpenMP 
for internode and intra-node parallelism, and numerical and domain spe-
cific libraries, on top of which applications are usually developed using lan-
guages such as FORTRAN and C/C++ (Reed and Dongarra 2015).

Another major area of interest in computer science is data mining. Data 
mining refers to the discovery and extraction of new and useful information 
(e.g., patterns or rules) from large amounts of data. Typically, data mining 
has been mainly concerned with the computational complexity of proposed 
discovery algorithms and less concerned with the statistical robustness of 
these algorithms (e.g., bias, inference confidence, etc.). Common data min-
ing tasks include the discovery of association rules (e.g., which grocery store 
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items are frequently bought together?). Algorithms such as Apriori (Agrawal, 
Srikant, and others et al. 1994) and FP-growth (Han, Pei, and Yin 2000) have 
been proposed for efficiently mining association patterns. Data mining tasks 
also include the classification problem (e.g., classifying a pixel in a picture as 
dryland versus wetland based on other pixel properties). Popular classifica-
tion models include decision trees for which computational algorithms such 
as ID3 (Quinlan 1986) have been proposed.

1.4.3  Limitations of Traditional Data Science for Spatial 
Data and Related Computer Science Accomplishments

Now we review the limitations of traditional data science with respect to spa-
tial data by focusing on three main areas of accomplishments, namely, spa-
tial databases, spatial cloud-computing platforms, and spatial data mining.

Spatial databases: Applications such as precision agriculture require special 
database support to store, process, and query spatial data (e.g., storing and 
querying the polygons representing farm plots). Before the development of 
spatial databases, spatial queries (e.g., Which galaxy pairs are within 30 arc 
seconds of each other? Which houses are most likely to be flooded by global 
warming-induced sea-level rise?) required extensive programming and suf-
fered from long computation times due to the mismatch between 2D spatial 
data and 1D data types (e.g., number) and indexes used by traditional data-
base systems (such as B+ Tree) (Shekhar, Feiner, and Aref 2015). In addition, 
a naive collection of spatial data types is inadequate for multistage queries 
since the result of some queries (such as the union of disjoint polygons) 
cannot naturally be represented as a point, line, or polygon. Spatial data-
bases (such as Oracle Spatial and PostGIS) introduced spatial data types 
(such as OGIS simple features (“Welcome to the OGC|OGC” 2017), opera-
tions (such as inside and distance), spatial data structures (such as Voronoi 
diagrams), and algorithms (such as shortest-path, nearest-neighbor, and 
range query) to represent and efficiently answer multistage concurrent spa-
tial queries (Shekhar, Feiner, and Aref 2015). The reduced programming 
effort resulted in more compact code and quicker response times. In addi-
tion, spatial indexes have also been added. Representative indexes for point 
objects include Grid files, multidimensional grid files (Lee et al. 1997), Point-
Quad-Trees, and Kd-trees (Samet 1990). Representative indexes for extended 
objects include the R-tree structures (Guttman 1984). The R-tree is a height 
balanced natural extension of the B+ tree for higher dimensions (Shekhar 
et al. 1999). Objects are represented in the R-tree by their minimum bound-
ing rectangles (MBRs). Non-leaf nodes are composed of entries of the form 
(R, child-pointer), where R is the MBR of all entries contained in the child-
pointer. Leaf nodes contain the MBRs of the data objects. To guarantee good 
space utilization and height-balance, the parent MBRs are allowed to over-
lap. Many variations of the R-tree structure exist whose main emphasis is 
on discovering new strategies to maintain the balance of the tree in case 
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of a split and to minimize the overlap of the MBRs in order to improve the 
search time.

Spatial computing platforms: Support for spatial data (e.g., spatial indexes) 
was also needed in cloud computing platforms to improve the I/O cost of 
spatial queries (e.g., retrieving a set of farm polygons within a given spa-
tial range). Representative efforts for supporting spatial data in existing 
cloud computing platforms include (Evans et  al. 2013): (1) Spatial Hadoop 
(Ali and Mokbel 2017), which is a MapReduce extension to Apache Hadoop 
designed especially to work with spatial data by providing specialized spa-
tial data types, spatial indexes, and spatial operations; (2) Hadoop GIS, a 
high-performance spatial data warehousing system over MapReduce (Aji 
et al. 2013); and (3) GeoSpark (Yu, Wu, and Sarwat 2015), the spatial extension 
for Apache Spark. Research on parallel R-tree construction on a GPU is also 
ongoing (Prasad et al. 2013). At the Hadoop Distributed File System (HDFS) 
level, Spatial Hadoop (Ali and Mokbel 2017) and Hadoop GIS (Aji et al. 2013) 
have added spatial indexes. At the scripting layer (e.g., Pig), Spatial Hadoop 
has added Open Geodata Interoperability Specification (OGIS) data types 
and operators. GIS on Hadoop (Pang et al. 2013) has also added OGIS data 
types and operators at the SQL query level (e.g., Hive). In addition to the spa-
tial extensions of Hadoop, the GeoSpark (Yu, Wu, and Sarwat 2015) system 
has also extended Apache Spark with a set of Spatial Resilient Distributed 
Datasets (SRDDs) that can efficiently load, process, and analyze SBD. 
GeoSpark also introduced spatial indexes, spatial geometric operations that 
follow the Open Geospatial Consortium (OGC) standard, and spatial query 
operations for SBD.

Spatial data mining: Spatial data mining (Stolorz et al. 1995; Shekhar and 
Chawla 2003) is the process of discovering interesting and potentially useful 
patterns from spatial databases. For example, in precision agriculture, given 
a UAV-captured image of a farm, one may want to classify the set of pixels in 
the image based on the crop type (e.g., corn, soybean, etc.).

However, the complexity of spatial data and implicit spatial relationships 
limits the usefulness of conventional data mining techniques for extracting 
spatial patterns (Shekhar et al. 2011). Specific features of geographical data 
that preclude the use of general purpose data mining algorithms are (1) the 
spatial relationships among the variables, (2) the spatial structure of errors, 
(3) the presence of mixed distributions as opposed to commonly assumed 
normal distributions, (4) observations that are not independent and identi-
cally distributed (i.i.d.), (5) spatial autocorrelation among the features, and 
(6) nonlinear interactions in feature space. Figure 1.12 (Z. Jiang et al. 2013) 
illustrates an example of these limitations, namely the existence of spatial 
autocorrelation, by comparing the output of traditional decision trees with 
spatial decision trees for classifying wetland and dryland pixels in a satellite 
image taken in the city of Chanhassen, MN. The classification model used 12 
continuous explanatory features as input, including multi-temporal spectral 
information (R, G, B, NIR bands) and normalized difference vegetation index 
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(NDVI) for the years 2003, 2005, and 2008. Figure 1.12a shows the output of 
the traditional decision tree algorithm. The legend of the prediction maps is 
shown in Figure 1.12c. The green and red colors represent correctly classified 
wetland and correctly classified dryland. The black and blue colors represent 
false wetland and false dryland.

As shown in Figure 1.12a, the prediction of the traditional decision tree 
model has lots of salt-and-pepper noise due to high local variation of fea-
tures within patches of the same class. For example, the area in the yellow 
circle is a dryland area consisting of trees. The black salt-and-pepper noise 
pixels inside the yellow circle correspond to locations without tree coverage. 
These pixels are misclassified as wetland here due to the i.i.d. assumption. In 
contrast, the spatial decision tree employs a model where the tree traversal 
for a location is based on not only local but also focal (i.e., neighborhood) 
properties of the location, thus accounting for spatial autocorrelation. Hence, 
as shown in Figure 1.12b, the spatial decision tree model captures the local 
variations results in much less salt-and-pepper noise in the same area.

The spatial data mining literature includes spatial hotspot analysis 
(Kulldorff 1997, 1999; E. Eftelioglu et al. 2014), discovering spatial co-location 
and co-occurrence patterns (Huang, Shekhar, and Xiong 2004; M. Celik et al. 
2006a,b; Yoo et al. 2006; P. Mohan et al. 2010, 2011, 2012), network summari-
zation (Oliver et al. 2010, 2014; Evans et al. 2012), GPS track mining (Fu, Hu, 
and Tan 2005; Sacharidis et al. 2008; Won et al. 2009; Li et al. 2010; Chen et al. 
2011; W. Liu et al. 2011; Min and Wynter 2011; Yuan et al. 2011; D. Zhang et al. 

True wetland

(a) (b) (c)

True dryland

False wetland

False dryland

FIGURE 1.12
Traditional decision tree versus spatial decision tree output for classifying data from satellite 
imagery. (a) Prediction of decision tree, (b) Prediction of spatial decision tree, and (c) Legend 
of prediction map. (From Jiang, Z et al. 2013. In 2013 IEEE 13th International Conference on Data 
Mining, 320–329. doi:10.1109/ICDM.2013.96.)
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2011; Y. Zheng and Zhou 2011; K. Zheng et  al. 2012), spatial outlier detec-
tion (Shekhar, Lu, and Zhang 2001, 2003), spatial classification and regression 
(Kazar et al. 2004; Z. Jiang et al. 2012, 2015), and change footprint detection 
(Zhou, Shekhar, and Ali 2014).

1.5 Conclusion

The specific properties of geospatial data; its volume, variety, and velocity; 
and the implicit but complex nature of spatial relationships are nontrivial 
considerations in all geo-related research. We believe the current practice 
of independent research in siloed fields is counterproductive and likely 
untenable in the long term. We are proposing therefore that statistics, math-
ematics, and computer science all be considered integral to geospatial data 
science. This chapter explored the emerging field of geospatial data science 
from such a transdisciplinary perspective where these three closely related 
scientific disciplines are considered as integral parts of geospatial data sci-
ence rather than individual siloed disciplines. Our proposed definition aims 
to reduce the redundant work being done across silos and to understand the 
limits of geospatial data science.

In the future, we envision that geospatial data science will accomplish its 
tasks while addressing users’ privacy and confidentiality concerns. In addi-
tion, there are other issues that will need to be considered such as “the trade-
offs across disciplines”; “when to use high-dimensional tools and approaches 
for geospatial datasets”; “how to apply spatial statistics, which assumes iso-
tropic Euclidean space, on geospatial network datasets (e.g., road networks 
affect isotropy in space)”; and “how to determine the statistical distribution 
of geospatial datasets (e.g., GPS trajectories) in a study area.” Finally, predict-
ability and prediction error bounds should be considered since these will 
provide confidence limits to future approaches of geospatial data science.
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2
Geocoding Fundamentals and 
Associated Challenges

Claudio Owusu, Yu Lan, Minrui Zheng, Wenwu Tang, and Eric Delmelle

2.1 Introduction: Geocoding and Geocoding Systems

In the twenty-first century, the ubiquitous usage of smartphones equipped 
with location-based services has helped millions of individuals in navigat-
ing busy traffic or finding available amenities around a particular location. 
Central to this technological revolution is the process of geocoding, which 
essentially translates text-based information about locations (address, zip 
code, names of localities, or even countries) into numerical geographic coor-
dinates (e.g., longitude and latitude). Geocoding uses a spatially explicit ref-
erence dataset (e.g., digital road network) to identify the location that best 
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matches the input address, essentially by comparing and interpolating the 
address to the range of addresses for each segment of the reference dataset. 
Each segment contains the locations of the street center and the range of 
addresses between the street intersections.

Geocoding is generally incorporated in commercial geographic informa-
tion systems (Bichler and Balchak 2007), where geocoded data can collec-
tively be used for mapping, visualization, and spatial analysis of events. In 
the past few years, however, the democratization of internet-based mapping 
services such as Google Maps or MapQuest has facilitated the use of online 
geocoding services for non-GIS users (Wu et al. 2005; Roongpiboonsopit and 
Karimi 2010a).

2.1.1 Applications of Geocoding

There is a myriad of domains that have benefitted from geocoding. Geocoding 
has been a critical element for the delivery of parcels (Jung, Lee, and Chun 
2006) and for emergency dispatching management (Derekenaris et al. 2001) 
where locating the destination in a timely manner is critical. In health stud-
ies, geocoding has been used extensively in research with geographic themes 
such as health disparities (Krieger, Chen et  al. 2002; Rehkopf et  al. 2006), 
accessibility to health care (Luo and Qi 2009; Delmelle et al. 2013), disease 
mapping (Law et al. 2004; Delmelle et al. 2013; Delmelle, Dony et al. 2014), 
and environmental exposure assessment (Chakraborty and Zandbergen 
2007; Zandbergen 2007). In crime analysis, geocoding technology serves as 
one of the important procedures to obtain data for planning, monitoring, and 
evaluation of targeted responses to reduce crime in communities (Chainey 
and Ratcliffe 2013). The process is therefore seen as a means of achieving 
intelligence-led policing (Ratcliffe 2002; Chainey and Ratcliffe 2013). In addi-
tion, geocoding has been used in transportation studies (Park et al. 2011; Qin 
et al. 2013) for the purpose of planning efficient transportation systems and 
preventing traffic crashes.

2.1.2 Motivation

In this chapter, we explore geocoding fundamentals, and a myriad of chal-
lenging issues that are intimately associated with the procedure, such as 
spelling sensitivity, accuracy, efficiency, and automation. We also focus on 
the assessment of the impact of uncertainties related to these geocoding 
issues on the discovery of spatially explicit patterns. Further, we highlight 
the significance of geomasking, which is particularly important to preserve 
confidentiality and minimize the risk of success in reverse geocoding. We 
then conduct a discussion on web-based geocoding and its benefits, limits, 
and computational hurdles. We integrate alternative web-based geocoding 
services together with a cross-validation approach to facilitate the impact 
assessment of uncertainties associated with geocoding.
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In the next section, we briefly describe geocoding fundamentals and illus-
trate the challenges experienced when attempting to geocode our sample 
data (see, illustrative dataset in Section 2.1.4). In Section 2.3, we discuss geoc-
oding quality, including sources of errors and the impact of low geocoding 
quality on spatial analysis. Section 2.4 is devoted to the topic of web-based 
geocoding, which has recently received a lot of attention. In Section 2.5, we 
evaluate the merits of two web-based geocoding services as an alternative to 
commercial geocoding software. Efforts to model and visualize the errors 
are also presented. In Section 2.6, we address the issue of reverse geocoding, 
and discuss geomasking and aggregation, two techniques particularly use-
ful to address privacy concerns. We conclude our chapter in Section 2.7 and 
present avenues for future research.

2.1.3 Contributions

Besides describing and illustrating the process of geocoding, this chap-
ter makes a series of important contributions: (1) strategies to increase the 
match rate for datasets that include incomplete input addresses (reengineer-
ing incomplete addresses in an effort to increase the match rate), (2) use of 
online geocoding services to cross-validate geocoding results obtained from 
commercial GIS (and estimating uncertainties in geocoding results), and 
(3) modeling geocoding errors.

2.1.4 Illustrative Dataset

We use a subset of historical paper records of private water well permits 
from Gaston County, North Carolina (from 1989 to the present, n = 7920) to 
illustrate the geocoding concepts (subset n = 285). Historical records were 
made available as part of an effort funded by the Centers for Disease Control 
and Prevention, aiming to establish a public digital database of the county’s 
wells and promote the protection of private well water supplies and quality, 
ultimately protecting and monitoring a key portion of the county’s water 
supply.

The dataset is particularly salient since historical records pose serious chal-
lenges such as (1) incomplete addresses or (2) paper damage. First, a complete 
address should have all the key components such as house number, street 
name, street type as well as other directional attributes when possible (e.g., 
826 Union Rd, Gastonia, NC 28054). We define an address to be incomplete 
when any of the key components is not available in the dataset. Second, some 
permits have faded, making it difficult to transcribe all the address informa-
tion needed for geocoding. These two problems introduce uncertainties in 
the datasets.

Private well permit records were scanned and information encoded in 
a database; each record contains information about the owner of the well, 
residential location, details of the parcel, ground sketch of the water well 
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position, well specification, and the tax location code of the parcel. Figure 
2.1 shows an example of a scanned permit. For illustration purposes, we 
selected a random sample of n = 285 (3%) well samples.

2.2 Geocoding Fundamentals: Input and Reference Data

Accurate reference datasets and valid addresses are the two required inputs 
for geocoding. Reference datasets typically include street network, parcel, and 
address points data (Zandbergen 2008). In this chapter, we use all three refer-
ence datasets and set up hierarchic rules to geocode the illustrative dataset. 

FIGURE 2.1
A typical private well permit with information of the owner (masked), location, and a sketch of 
where the well is built.



45Geocoding Fundamentals and Associated Challenges

Figure 2.2 shows an instance of two different reference datasets (address 
points and parcel centroid). It can be seen that address points reference data 
depicts the centroid of the buildings, making it more accurate than the other 
reference datasets.

For a myriad of reasons such as protecting confidentiality, addresses are 
sometimes made available at different scales, including the street level 
(Rushton et al. 2006; Goldberg, Wilson, and Knoblock 2007), names of build-
ings (Davis and Fonseca 2007), closest intersection (Levine and Kim 1998; Park 
et al. 2011; Delmelle, Zhu et al. 2014), neighborhood level (Casas, Delmelle, 
and Varela 2010), ZIP code (Krieger, Chen et al. 2002; Krieger, Waterman et al. 
2002), textual descriptions of localities (Goldberg and Cockburn 2010), and 
cities or counties. The scale at which addresses are made available will affect 
the location of the output feature. For example, addresses at the ZIP code 
level will be geocoded at the centroid of a postal zip code instead of the resi-
dential location.

2.2.1 Geocoding Process

The geocoding process relies on a matching algorithm, which essentially 
attempts to determine the location of the input address over the range of 
addresses in the reference dataset. The reference dataset used for the 
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Address point
Street centerline
Parcel boundary

FIGURE 2.2
Example of two reference datasets: address point in red (most accurate) and parcel centroid 
(less accurate).
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geocoding process determines the technique used in matching the spatial 
information to geographic coordinates. In most commercial GIS software 
packages, the matching algorithm is embedded in an address locator. An 
address locator is a model used to create geometry for textual descriptions 
representing addresses in the reference data (ESRI Redlands CA, USA). In 
the United States, a dual range address locator is used when street network 
is chosen as reference data.

Street geocoding is the most widely used technique due to the readily avail-
able TIGER files from the U.S. Census Bureau; here, the algorithm performs 
a linear interpolation of the input address within the range of address num-
bers and polarity of the street segment. The process can be decomposed 
in multiple stages. First, the algorithm attempts to match the  street name 
of the input address with street names from the reference dataset. Next, it 
will determine the side of the street the address is at, based on whether the 
address number is even or odd. Third, the correct position of the address is 
determined after computation of the proportion of the address range asso-
ciated with the correct side of the street segment. This proportion is then 
added to the start of the segment to obtain the correct coordinate. Finally, for 
most commercial GIS software, an optional offset from the street centerline 
is added. Figure 2.3 shows the interpolated distance (v) and the offset dis-
tance (d) used to determine an address along Union Road. The address range 
along Union Road starts from 101 to 199 on the odd parity side, and from 102 
to 200 on the even parity side.

In parcel geocoding, the input address is matched to the centroid of the par-
cel. The returned geographic feature is therefore a point feature with a geo-
graphic coordinate (Zandbergen 2008). Although the technique is generally 
assumed to return more accurate results, it also has been found to introduce 
positional errors, particularly for a large parcel, since the true address loca-
tion may not necessarily be at the center of that parcel.

Address point geocoding has been introduced to alleviate this problem. The 
input address is matched directly to a point feature, which represents the 

100

99

102

101 d

v

200

199Union Rd

Geocoded address

202

201

FIGURE 2.3
Interpolation algorithm using address range between the start and end of the street centerline 
segment for an input address as 117, Union Road.
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center of the rooftop of buildings making it more accurate. Emergency calls 
(e.g., 911 in the United States) use such a geocoding approach.

2.2.2 Match Rate

The success of the geocoding procedure can be determined by its match rate, 
which is the percentage of records in the input dataset that was correctly 
geocoded (Zandbergen 2008). A high match rate is often desirable because 
geocoded results are further used as the sample during spatial investigations 
(Goldberg, Wilson, and Knoblock 2007; Zimmerman 2008; Ha et  al. 2016). 
Zimmerman (2008) showed that in some instances up to 30% of addresses 
may need to be excluded if only geocoded records were considered during 
the analysis. This exclusion of unmatched records reduces the sample size, 
thereby weakening the generalization of the analytical results due to selec-
tion bias and reducing statistical confidence (Zimmerman 2008; Ha et  al. 
2016).

Geocoding is now a key research methodology and efforts to increase the 
match rate will help to reduce unmatched addresses that are excluded from 
the spatial analysis. It is important to note that an increased match rate does 
not automatically translate into improved geocoding quality. Different strat-
egies exist to increase the geocoding match rate. First, varying the spelling 
sensitivity essentially increases the degree to which a street name is allowed 
to change. One drawback of this approach is that it will augment the set of 
potential matches at the cost of potentially selecting a wrong match. The 
second strategy consists of using different reference datasets (McElroy et  al. 
2003; Yang et al. 2004). A couple of recent studies combined parcel and street 
network geocoding techniques as a strategy to increase the match rate of the 
output geographic features (Roongpiboonsopit and Karimi 2010b; Murray 
et al. 2011; Delmelle et al. 2013). For instance, Delmelle et al. (2013) used dif-
ferent U.S. Census reference datasets to increase the number of geocoded 
children with birth defects in a study estimating travel impedance to health 
care centers.

2.2.3 Illustration

In the context of our illustrative dataset, we used multiple datasets from the 
Gaston County Planning & GIS Department and developed a two-phase 
geocoding approach as shown below in Figure 2.4. First, during an automated 
phase, different reference datasets (address point, parcel, and street network 
datasets) are combined in a hierarchical manner into a single composite loca-
tor in ArcGIS, a commercial GIS. The rationale to impose a hierarchy among 
different datasets is to increase the match rate while reducing the odds of 
positional error. Second, the improvement phase consists of using additional 
datasets such as bacteria test results of the wells and deed records to reen-
gineer the unmatched addresses. Three main strategies are adopted in this 
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phase. First, the unique permit number is linked to and cross-checked with 
the bacteria test results. Second, non-successful records are then subject to 
a probabilistic record linkage, using information such as tax location codes, 
name of the well owner, subdivision name, lot size, and block number infor-
mation. Third, manual geocoding is implemented as the final step, which 
involves manually interpreting the descriptive address, using additional 
information such as lot area, lot number, and block number. Once an address 
has been determined, the commercial GIS attempts to  re-geocode using the 
composite address locator. Figure 2.5 shows the locations of the n = 285 wells 
that were geocoded with address points reference data.

2.3 Geocoding Quality: Sources of Errors

The success of the geocoding procedure is merely a function of the complete-
ness of the addresses and the quality (i.e., spatial and temporal accuracy, 
completeness) of the local and regional road network that is used as the refer-
ence dataset (O’Reagan 1987; Krieger, Waterman et al. 2002; Zandbergen 2008; 
Goldberg 2011), and uncertainty with the matching algorithms (Rushton 

N

km
0 2.5 5

Sample permit

Gaston County
River

FIGURE 2.5
N = 285 geocoded private well permits in Gaston County, North Carolina.
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et al. 2006; Goldberg, Wilson, and Knoblock 2007; Zandbergen 2008, 2011). 
Over the past decades, however, the accuracy and availability of reference 
datasets have been improved (Dueker 1974; Werner 1974; Griffin et al. 1990; 
Boscoe, Ward, and Reynolds 2004).

Although street networks continue to be the most widely used referenced 
data, the availability of parcel datasets and the introduction of address points 
from emergency 911 calls in the United States have increased the accuracy 
and match rate (Zandbergen 2008). The input datasets have expanded from 
postal addresses (O’Reagan 1987) to include descriptive addresses of loca-
tions (Levine and Kim 1998; Davis and Fonseca 2007).

2.3.1 Positional Accuracy

Although the match rate indicates the percentage of addresses that are suc-
cessfully geocoded, it does not inform us whether the coordinates obtained 
from the geocoding procedure are the true coordinates. Positional accuracy 
is a measure of the nearness of the geocoded output from the true location on 
the ground. Delmelle, Dony et al. (2014) compared geocoded cases of dengue 
fever in an urban environment of Colombia to locations measured from GPS 
devices (ground truth). In the context of our illustrative dataset, positional 
accuracy is estimated by comparing address points that represent the center 
of the rooftop of buildings with water wells obtained by geocoding from a 
commercial GIS.

Positional accuracy can be improved by more accurate addresses and ref-
erence datasets that are spatially and temporally accurate. Practically tak-
ing measurements with GPS devices for the events being investigated can 
also improve the positional accuracy, but this may be costly and timely inef-
fective, especially when gathering large datasets. Lastly, using alternative 
reference datasets for geocoding different environments may minimize the 
errors. For example, in rural areas where large parcels is the norm, it may be 
helpful to use aerial photos to generate an address point that better repre-
sents the center of the rooftop of the buildings (if an address point dataset is not 
already available) than using parcel or street network datasets.

2.3.2 Impact of Geocoding Quality

Geocoding challenges mentioned in the previous section affect the 
geocoding quality in terms of match rate and the positional accuracy 
(O’Reagan 1987; Boscoe, Ward, and Reynolds 2004). Such issues are partic-
ularly important in health studies (Bonner et al. 2003; Whitsel et al. 2004; 
Rushton et al. 2006; Zandbergen 2007; Mazumdar et al. 2008; Chainey and 
Ratcliffe 2013). Positional accuracy has been found to be critical in studies 
of environmental exposure as errors can lead to mischaracterization in the 
risk analysis (Bonner et al. 2003). Positional errors in residential addresses 
pose a serious challenge for spatial analysis (O’Reagan 1987; Jacquez and 
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Jacquez 1999; Bonner et  al. 2003; Harada and Shimada 2006; Goldberg, 
Wilson, and Knoblock 2007; Bichler and Balchak 2007; Mazumdar et  al. 
2008; Zandbergen 2008; Goldberg and Cockburn 2010; Zimmerman and 
Li 2010; Zimmerman, Li, and Fang 2010), since it may result in (1) under-
estimation of local risk, (2) misplacement of high-risk areas of a disease, 
(3) mischaracterization in the analysis of exposure risk, (4) misevaluation 
of spatial association, and (5) biased evidence for decision makers. When 
estimating access to health care, positional errors may introduce bias in 
the estimation of travel impedance, especially for individuals geocoded at 
the ZIP code for instance.

2.4 Web-Based Geocoding

The costs to prepare reference data and standardize addresses can be pro-
hibitive when using commercial GIS software. With the rapid development 
of cyber-enabled technology, a myriad of web-based providers (such as 
Google Maps, Bing Maps, and MapQuest, to name a few) have made the pro-
cess of geocoding more accessible and faster through their online geocoding 
services (Roongpiboonsopit and Karimi 2010a). The preparation and mainte-
nance of reference data, address standardization, and algorithm implementa-
tion and update for geocoding are hidden in these online services (accessible 
as APIs). Online geocoders typically use street network data that are more 
up to date, which is likely to result in lower positional errors. Online geocod-
ers, however, have limits on the number of records that can be processed 
(e.g., 2500 for Google Maps and Bing Maps on a daily basis, 15,000 per month 
for MapQuest), suffer from a lack of transparency about the geocoding algo-
rithm (including address interpretation) and lack of metadata on the update 
of reference data (an issue that may vary spatially). Another important issue 
is that the use of online geocoders may raise important ethical issues such as 
confidentiality since addresses are uploaded to remote servers. In the United 
States, this may violate the Health Insurance Portability and Accountability 
Act, which protects individuals’ medical records and other personal health 
information (DeLuca and Kanaroglou 2015; Kirby, Delmelle, and Eberth 2017; 
Mak et al. 2012). Different strategies exist to circumvent this issue, such as 
geocoding at a coarser scale, or bundle the batch of addresses to be geocoded 
with random addresses (Gittler 2007; Goldberg 2008).

When using geocoding APIs, users or developers need to call functions 
and obtain authentication from corresponding online geocoding providers. 
Then these online geocoding services will use their own algorithms to cal-
culate the coordinates that will be returned to the user (e.g., in pure text or 
XML-based formats). In most occasion, users can type the address that they 
want to geocode and click a button, to display the results on the map (i.e., in 
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an interactive manner). Besides being available to non-GIS users, web-based 
geocoding systems are particularly helpful to evaluate the accuracy of the 
geocoding results obtained from commercial GIS software, such as ArcGIS. 
The accuracy evaluation is typically conducted by comparing the geocoded 
coordinates (Duncan et al. 2011).

2.5 Using Web-Based Geocoding Services for Cross Validation

In this study, we follow an approach similar to Duncan et al. (2011) that is 
based on online geocoding services (Google and MapQuest here) to validate 
the geocoding results from those obtained by a commercial GIS (ArcGIS). 
Each address record may exhibit differences in the coordinates among these 
geocoding options; the distance between coordinates from online geocoding 
services and ArcGIS-based results (referred to as error distance) is calculated. 
We estimate the error for the n = 285 geocoded samples. The distances are 
grouped into different “deviation categories” (<50, <100, <150, <200, <250, 
<300, and >300  m). For each category, we report the match rate, defined as 
“the percentage of the successfully geocoded records in relation to the total 
number of records originally subjected to the geocoding process, regardless 
of the positional accuracy” (Kounadi et al. 2013). Table 2.1 shows the percent-
age of geocoding results located in certain deviation categories according to 
different web-based geocoding services.

Generally, Google has a higher match rate and its geocoding results are 
likely to be closer to the ones obtained from ArcGIS. Depending on the 
purpose of the study, strict error thresholds may be necessary. In the case 
of studying exposure to highway pollution, a difference of 300 m may be 
very significant and bias the analysis (Zandbergen 2007). Further, greater 
distance errors are not uncommon in rural areas (Zimmerman and Li 
2010). In the following section, we will analyze and model our web-based 
geocoding results comparing with true coordinates (in this case, we con-
sider results of ArcGIS obtained using address point geocoding as the true 
coordinates).

TABLE 2.1

Variation in Match Rate for Two Online Geocoding Systems with Deviation 
Categories

Buffer (m) 50 100 150 200 250 300 >300

Google (%) 70.18 85.96 89.12 90.88 92.28 93.33 6.67
MapQuest (%) 62.46 82.11 89.47 90.88 92.63 92.98 7.02
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2.5.1 Modeling Geocoding Error

In this study, we compare results of online geocoding services from Google 
and MapQuest to the ones obtained using ArcGIS. For this comparison pur-
pose, we constructed error modeling, which consists of the following steps: 
(1) acquiring results from web-based geocoding services, (2) convert latitude 
and longitude (WGS84) into XY coordinates, (3) calculate  the Euclidean error 
distance (in meter) between results of ArcGIS and web-based geocoding 
results, and (4) compare geocoding results in terms of the empirical distribu-
tion of error distance and fitted error model based on, for example, distance-
decayed functions.

The error distance can be visualized in different ways. The error is repre-
sented in its simplest form as a line connecting the spatial locations of the 
geocoded well with the commercial solver and the online geocoders (yellow 
for MapQuest, red for Google) as shown in Figure 2.6a–d.

Figure 2.6e illustrates the error distance between the commercial geocoder 
and the Google geocoder, where a larger symbol denotes a greater error 
distance. Figure 2.6f compares the error distance among online providers. 
In pink and purple colored regions, the error distance is much lower when 
using Google than MapQuest, while the reverse is true for green colored 
regions. Figure 2.6e–f clearly suggests the presence of a spatial pattern in 
terms of error distance.

Table 2.2 and Figures 2.7 and 2.8 illustrate the empirical histogram and 
probabilistic distributions of error distance for the two web-based geocod-
ing services (bin size: 10 m). About 95% of the Google-based results (with a 
median of 26.59 m) fall within a distance that is less than 250 m. MapQuest-
based geocoding results (median: 39.28 m) have a longer error distance 
(about 360 m) than those of Google (250 m) with respect to a 95% threshold. 
In addition, the mode of Google-based error distance is within 10 m (cover-
ing 23.83% of the data), compared to MapQuest-based results with a mode 
around 30–40 m (25.62%). For the error modeling, we fitted the histograms 
of error distance using Pareto functions (see Morrill and Pitts 1967). Table 2.3 
summarizes model fitting results. The goodness-of-fit of the error model for 
Google-based geocoding results (up to 88.97% of the variance explained) is 
much higher than that for MapQuest-based results (only 74.01% of the vari-
ance explained).

Results from both empirical distribution and the fitted error models sug-
gest that Google’s online geocoding service generally outperforms MapQuest 
for the geocoding task in our study area. This finding is consistent with 
what has been reported in the literature. For example, Roongpiboonsopit 
and Karimi (2010a) compared the quality of five online geocoding ser-
vices (including Google and MapQuest), and found that Google provided 
a shorter error distance than MapQuest. Results from other relevant stud-
ies by Cui (2013), Chow et  al. (2016), and Karimi et  al. (2011) also indicate 
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TABLE 2.2

Frequency and Probability of the Error Distance of Online Geocoding Services

Google MapQuest

Bin Frequency Percent (%) Cumulative (%) Frequency Percent (%) Cumulative (%)

10 66 23.83 23.83 0 0.00 0.00
20 52 18.77 42.60 9 3.20 3.20

30 36 13.00 55.60 64 22.78 25.98

40 26 9.39 64.98 72 25.62 51.60

50 21 7.58 72.56 33 11.74 63.35

60 16 5.78 78.34 14 4.98 68.33

70 13 4.69 83.03 12 4.27 72.60

80 5 1.81 84.84 16 5.69 78.29

90 4 1.44 86.28 11 3.91 82.21

100 6 2.17 88.45 2 0.71 82.92

110 1 0.36 88.81 7 2.49 85.41

120 3 1.08 89.89 9 3.20 88.61

130 3 1.08 90.97 3 1.07 89.68

140 1 0.36 91.34 2 0.71 90.39

150 1 0.36 91.70 0 0.00 90.39

160 0 0.00 91.70 0 0.00 90.39

170 0 0.00 91.70 2 0.71 91.10

180 2 0.72 92.42 2 0.71 91.81

190 2 0.72 93.14 0 0.00 91.81

200 1 0.36 93.50 0 0.00 91.81

210 0 0.00 93.50 2 0.71 92.53

220 1 0.36 93.86 1 0.36 92.88

230 1 0.36 94.22 1 0.36 93.24

240 1 0.36 94.58 0 0.00 93.24

250 1 0.36 94.95 2 0.71 93.95

260 1 0.36 95.31 0 0.00 93.95

270 1 0.36 95.67 0 0.00 93.95

280 0 0.00 95.67 0 0.00 93.95

290 1 0.36 96.03 0 0.00 93.95

300 0 0.00 96.03 0 0.00 93.95

310 0 0.00 96.03 1 0.36 94.31

320 0 0.00 96.03 0 0.00 94.31

330 0 0.00 96.03 0 0.00 94.31

340 1 0.36 96.39 1 0.36 94.66

350 1 0.36 96.75 0 0.00 94.66

360 0 0.00 96.75 0 0.00 94.66
More 9 3.25 100.00 15 5.34 100.00
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that Google’s geocoding service can achieve rates that are 91.5%, 100%, and 
93.64%, respectively, which are higher than other online geocoding services 
(e.g., MapQuest, Bing, and Geocoder.us). While multiple factors may contrib-
ute to geocoding errors, frequent update of reference data by Google may 
explain its high geocoding accuracy.
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FIGURE 2.7
Histogram of error distance of online geocoding services (bin size: 10 m).
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2.6 Reverse Geocoding, Geomasking, and Aggregation

Although geocoded data result in a great opportunity to develop better ana-
lytical solutions, there exist some important concerns, especially in the con-
text of epidemiology to protect privacy needs. At the core of the issue is the 
thread of reverse geocoding, which essentially determines the address based 
on geographic coordinates. Using a published map of geocoded records and 
overlaying with other layers of spatial information (such as parcel and street 
layers), the approximate address of the geocoded record can be traced back 
(Curtis, Mills, and Leitner 2006).

Several geomasking techniques and aggregation strategies have been 
developed to conceal the true identity of geocoded records and mini-
mize the risk of success in reverse geocoding. Geomasking (Armstrong, 
Rushton, and Zimmerman 1999) is a spatial statistical technique used to 
introduce uncertainty (i.e., noise) into the spatial locations of geocoded 
records, which has implications for the quality of further spatial analysis 
(e.g., cluster detection). The main mechanism behind geomasking consists 
of perturbing the spatial location of a geocoded record, typically in a ran-
dom distance and along a random direction. Other strategies have been 
developed, such as the donut geomasking method (Hampton et al. 2010) 
where geocoded records are moved within a random direction and within 
certain distance bounds. These distance bounds can be tighter in urban 
areas and looser in rural regions where the spacing between residences is 
much greater.

Finally, geocoded records can be spatially aggregated into census units, 
where all the data are moved to the geographic centroid of the unit (Tellman 
et al. 2010). The choice of the unit is a function of the number of cases and the 
population within that unit.

Despite their ability to preserve some confidentiality, geomasking and aggre-
gation methods have some substantial limitations, such as (1) reducing the 
level of precision, (2) introducing statistical bias into the results, (3) blur-
ring meaningful variations in data, and (4) weakening clustering detection. 
Current research attempts to find optimal geomasking strategies to preserve 
the spatial pattern of geocoded records while maintaining privacy.

TABLE 2.3

Fitted Modeling Results Based on Error Distance

Geocoding Services Fitted Models R2

Google Y = 4245 D−1.508 0.8897

MapQuest Y = 6431.1 D−1.523 0.7401

Note: Y: frequency; D: distance
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2.7 Conclusions

In this chapter, we have discussed fundamentals of geocoding, which we 
illustrated on a dataset of private well addresses in Gaston County, North 
Carolina. We compared spatial locations estimated by a commercial geo-
coder to the ones obtained by two popular online providers, Google and 
MapQuest. We found that in most cases, coordinates from online geocoders 
were relatively close (26.59 m for Google and 39.28 m for MapQuest) to the 
ones obtained by the commercial geocoder. Generally, MapQuest geocoder 
yielded greater error than Google geocoder.

There remains a suite of challenges in geocoding. First, online web ser-
vices provide an alternative for geocoding, but further work is needed to 
tackle the issue of transparency on reference datasets and geocoding algo-
rithms. An open geocoding standard and platform may be of help. Second, 
massive data are increasingly available, and how to efficiently and effectively 
geocode these datasets (say, millions or billions of addresses) poses a big 
data challenge. Cyberinfrastructure-enabled high-performance computing 
holds promises in resolving the big data challenge. Third, the evaluation of 
geocoding accuracy, particularly for handling massive data, remains as a 
challenge. Spatial or spatiotemporal statistics may provide support for evalu-
ating the robustness of the geocoding process.
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3
Deep Learning with Satellite Images and 
Volunteered Geographic Information

Jiaoyan Chen and Alexander Zipf

3.1 Introduction

Satellite images are images of the whole or part of the earth taken by physical 
sensors on satellites. Machine learning, especially deep learning (DL), has 
been widely applied in pattern recognition with satellite images. Many real-
word applications like ground object detection, land use monitoring, and 
sense understanding are modeled as satellite image classification problems 
and successfully solved with DL algorithms. One famous application is the 
population distribution prediction using high-resolution satellite images and 
deep Convolutional Neural Networks (CNNs) by Facebook’s Connectivity 
Lab (Gros and Tiecke 2016).

Satellite image classification refers to the task of extracting information 
classes (e.g., what object does an image contain?) from the satellite image. 
For this problem, machine learning based solutions extract input–output 
data pairs and then train a prediction model. Traditional machine learning 
models like Support Vector Machine (SVM) require the data scientists to first 
extract different kinds of features (e.g., texture and color) as input. This is 
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called feature engineering, which is labor intensive, while DL models like 
AutoEncoder (AE) can automatically learn useful features from big training 
data and then stack different classification layers (e.g., Logistic Regression 
classifier) to represent the complex  relations between data variables (Hinton 
2007; Bengio, Courville, and Vincent 2013). In  short, traditional machine 
learning models require extraction of rich features with strong background 
knowledge, while DL methods depend on big data for automatic feature rep-
resentation and deep network learning.

Volunteered Geographic Information (VGI) includes a suite of tools to 
create, assemble, and disseminate geographic data provided voluntarily 
by individuals (Goodchild 2007). VGI systems like OpenStreetMap (OSM) 
(Haklay and Weber 2008) and WikiMapia (Koriakine and Saveliev 2008) con-
tain massive volunteered labeled ground objects with rich information like 
contour, key/value tag, changeset (i.e., time-series changing records of an 
object), relation (i.e., an organized list of objects for representing logic or geo-
graphic objects like bus route), etc., all of which are human knowledge about 
geography. By July 2016, OSM had over 2.8 million accumulated registered 
users, 3.25 billion accumulated nodes, and 250 million accumulated ways 
(Allison and Jon 2016). Meanwhile, the current location-based services like 
Foursquare and Strava make it possible to collect another kind of VGI data, 
namely citizens’ or even devices’ location records, which make it possible 
to discover some spatial patterns (e.g., land use type) and enrich the digi-
tal earth data (Craglia, Ostermann, and Spinsanti 2012). All these VGI data 
provide an easier way to extract large labeled sample sets for training deep 
models. For example, Mnih and Hinton extracted vector data from OSM 
and aligned them with satellite images to train deep neural networks which 
are further applied to automatically detect roads and buildings on satellite 
images (Mnih and Hinton 2010; 2012).

On the other hand, using VGI together with satellite images for DL brings 
new technical challenges. One challenge comes from the noise of VGI data. 
Since VGI data are mostly contributed by volunteers instead of domain 
experts, there are sometimes data quality problems like position inaccuracy 
and classification ambiguity (Ali et al. 2014; Fan et al. 2014). Therefore, the 
training samples extracted from VGI data may contain more noise than typi-
cal satellite image benchmarks like the University of California (UC) Merced 
Land Use Dataset (Yang and Newsam 2010). (Mnih and Hinton 2012) clas-
sified the noise of the training samples extracted from OSM for building 
detection into registration error and missing error. The former indicates the 
cases that the building polygon contours on the map do not totally match the 
buildings on the satellite images, while the latter represents the cases that the 
buildings appearing on the satellite images are missing on the map.

Another challenge lies in domain adaptation (Ben-David et al. 2010), which 
is known as a machine learning problem that the data for training model 
differ from the data for prediction. According to the crowdsourcing study 
by Quattrone et al. (Quattrone, Capra, and De Meo 2015), there is significant 
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geographic bias in the OSM contents. For example, most buildings in urban 
areas in developed countries are labeled, while the cottages in rural areas in 
Africa are mostly not labeled. This means that the training data from such 
VGI platforms will differ from the testing data that will be predicted. Except 
for geographic bias, the problem of domain adaptation also exists in trans-
ferring features learned from VGI data and satellite images to some other 
cross-domain or cross-region applications like poverty mapping and traffic 
prediction (Xie et al. 2016; Zhao and Kusumaputri 2016).

This chapter introduces the current DL studies with satellite images and 
VGI data. It first presents the classic work in satellite image classification 
using DL algorithms as well as some typical satellite image classification 
benchmarks (cf. Section 3.2), and then introduces the state of the art in utiliz-
ing VGI data as supervision knowledge for training deep neural networks, 
where the solutions to the technical challenges are highlighted (cf. Section 
3.3). This chapter then presents some real-world applications in domains like 
urban computing and humanitarian mapping (cf. Section 3.4). Finally, this 
chapter gives the conclusion and discusses the future research directions (cf. 
Section 3.6).

3.2 Satellite Image Classification with Deep Learning

3.2.1 Algorithms

The general framework of DL-based methods for satellite image classification 
can usually be described as three components: prepared input data, deep net-
works, and expected output, as shown in Figure 3.1. The input data include 

Input (Images)

Satellite images

SGD
Pixel classification

Object recognition

Sense understanding

Feature representation

AE SC RBM

CNN MLP DBN GANBenchmarks

Learning (Networks) Output (Labels)

FIGURE 3.1
General framework of satellite image classification using deep learning.
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different kinds of satellite images (e.g., RGB image, hyperspectral image, syn-
thetic aperture radar image) as well as standard image datasets (i.e., bench-
marks used for training), while the output is the manually defined label of the 
pixels or the image tiles (e.g., the land cover type of a pixel and the object type 
in the image tile). The deep networks are stacked by multiple nonlinear neural 
layers, where each intermediate layer encodes input data to feature or encode 
low-level features to high-level features, while the output layer predicts the 
probability of each label with classic classification algorithms like Logistic 
Regression. The parameters of each intermediate layer are usually first learned 
by DL models like an AE or a sparse coding algorithm with a large set of unla-
beled training images, while the overall parameters are fine-tuned by algo-
rithms like Stochastic Gradient Descent (SGD) with the supervision of labeled 
training images (Hinton 2007; Bengio, Courville, and Vincent 2013).

A recent literature survey about satellite image classification with DL can 
be found in L. Zhang, Zhang, and Kumar 2016, where classic deep networks 
like CNNs, Multiplayer Perceptions (MLPs), and Deep Belief Networks 
(DBNs) as well as feature learning algorithms like AEs, Restricted Boltzmann 
Machines (RBMs), and Sparse Coding (SC) are introduced and the studies are 
classified into four kinds according to the purpose, namely image prepro-
cessing, pixel-based classification, target recognition, and scene understand-
ing. Except for the above deep networks mentioned in (L. Zhang, Zhang, 
and Kumar 2016), we supplement another unsupervised deep model named 
Generative Adversarial Networks (GANs) which have been widely explored 
in the past two years (Goodfellow et al. 2014). A recent study by Lin (Lin 2016) 
showed that GANs can obtain better results than the state of the art in UC 
Merced Land Use Dataset and Brazilian Coffee Scenes dataset.

3.2.2 Benchmarks

The classic satellite image classification studies introduced above rely on 
standard datasets to train the prediction models. These studies either manu-
ally label training images with specific tools by themselves (e.g., the SAT-4 
and SAT-6 datasets used in the experiments of DeepSat (Basu et al. 2015)) or 
adopt existing benchmarks which are often carefully made with the help of 
domain experts. Table 3.1 gives an overview of four widely used benchmarks 
for satellite image classification, where Brazilian Coffee Scenes Dataset and 
UCI Statlog Landsat Satellite Dataset are about land use types in rural areas, 
UC Merced Land Use Dataset contains different ground objects in both urban 
and rural areas, and SpaceNet Dataset is for buildings in urban areas. On the 
one hand, many kinds of ground objects such as crossroad and cottage are 
not included in these benchmarks, and the spatial coverage is limited to some 
specific areas instead of the whole world. On the other hand, the number of 
images is not large, which will restrict the application of the deep learning 
algorithms. Actually, creating a complete benchmark that can be applied in 
different applications will require much expert labor and is almost impossible.
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3.3 VGI for Deep Learning

3.3.1 VGI Data Quality and Noise

Since the data on VGI sites are mostly contributed by common volunteers, 
the data quality problem has attracted a lot of concerns. Haklay (Haklay 
2010) analyzed the data quality of OSM in London, where, for example, he 
found that the motorway objects of OSM approximately had an 80% overlap 
in comparison with Ordnance Survey datasets. Girres and Touya (Girres and 
Touya 2010) extended the above OSM data quality analysis to France with 
more quality elements, where BD TOPO® data were used as the reference. 
On the basis of the measurements over OSM data (Girres and Touya 2010; 
Haklay 2010), we list the main aspects of the data quality problem:

• Geometric inaccuracy: the position of the mapped objects is not com-
pletely right.

• Attribute inaccuracy: objects are not fully informed by some impor-
tant tag or are wrongly informed.

• Semantic inaccuracy: the nature or function of the mapped objects is 
not correctly labeled.

• Incompleteness: not all the ground objects are mapped by the 
volunteers.

• Logical inconsistency: the spatial relation of two mapped objects 
sometimes does not satisfy the common sense in reality.

• Temporal inaccuracy: the changes of the real objects are not timely 
mapped.

• Lineage missing: the source information of the mapped object is not 
attached.

When VGI data are utilized as the input of machine learning algorithms, 
these data quality issues lead to three kinds of noise among the extracted 
training samples, as shown in Table 3.2. The omission noise and registration 

TABLE 3.2

Noise of Training Samples Extracted from VGI Data

Noise Type Definition Data Quality Sources

Omission noise The training sample set is insufficient 
to estimate the real data distribution

Incompleteness, Temporal 
inaccuracy, Attribute inaccuracy

Registration noise The input of the training sample is 
biased

Geometric inaccuracy, Temporal 
inaccuracy, Logic inconsistency

Semantic noise The training sample is wrongly labeled Semantic inaccuracy, Attribute 
inaccuracy
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noise are proposed by Mnih and Hinton (Mnih and Hinton 2012) in their 
study of extracting labels from OSM for deep learning, while the semantic 
noise is proposed by the authors for the cases of extracting wrong samples 
for a class.

VGI researchers have proposed quite a few solutions that can help improve 
the quality of VGI data, some of which can be utilized to pre-process the VGI 
data before they are applied in deep learning applications. First, many crowd 
sourcing sites record the volunteers’ behavior in specific data structure such 
as the Changeset of OSM. Such additional information makes it possible to 
extract the mapped objects at the specific time (Allison and Jon 2016) when 
the satellite images are taken, which can mainly help reduce the registration 
noise caused by temporal inaccuracy.

Second, quite a few VGI data quality evaluation and data quality improve-
ment  methods have been proposed. In the study by Ali et al. (Ali et al. 2014), 
a machine  learning-based method is proposed to track OSM classification 
plausibility such as the wrong semantic labels to ambiguous areas, which 
can reduce the semantic noise of the training sample when applied in pre-
processing the VGI data. More such intrinsic  methods for VGI data quality 
can be found in the study by Barron et al. (Barron, Neis, and Zipf 2014).

Third, linking multiple VGI data provides another way to improve the data 
quality, especially for incompleteness. For example, GPS traces from citizen 
sensors, for example, taxi cars, provide an alternative way of road map gen-
eration (L. Zhang, Thiemann, and Sester 2010). It can supplement the road 
information of OSM, thus reducing the registration noise of the training 
sample set for road detection.

3.3.2 Learning Algorithms for the Noise

Machine learning researchers have proposed some more robust learning 
algorithms with the noise considered for more robust prediction models. We 
first formally describe and model the satellite image classification problem 
following the road detection study by Mnih and Hinton (Mnih and Hinton 
2010). The problem is simplified as a binary classification of each pixel, that 
is, positive for the object of interest and negative for the NOT interested. A 
satellite image is denoted by S, while a map of equal size is denoted by �M , 
where �Mi j, = 1 if the pixel at location (i, j) is positive and �Mi j, = 0 otherwise. 
Two vectors s and �m are used to denote the image patch n wi j s( , ),S  with the 
center location of (i, j) and the size of w ws s×  and the map patch n wi j m( , ),M . 
The conditional probability distribution of the map pixels can be described as:

 
p p mi

i

wm

( | ) ( | )� �m s s=
=∏ 1

2

 
(3.1)

where each p mi( | )� s  is assumed to follow the Bernoulli distribution and its 
mean value is determined by the ith output node when the distribution is 
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modeled by a neural network which can be stacked with different layers like 
the fully connected layer and the subsampling layer. Learning can be imple-
mented by optimizing an object function, for example, negative log likehood 
optimization function with the following cross entropy format over the train-
ing samples with optimization algorithms like the batched stochastic gradi-
ent descent:

 
( ln ( )� �m m m mi i i i

i

wm

� �+ − −
=

∑ 1 1
1

2

ln( ))
 

(3.2)

where m̂i represents the pixel of the predicted map batch.
The omission noise is dealt with in (Mnih and Hinton 2012) with a 

model named the asymmetric Bernoulli noise (ABN) model which rewrites 
Equation 3.1 as:

 
p p p p m m p mi i
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(3.3)

where m and �m  are respectively known as the truth map batch and the 
observed map batch. ABN assumes that conditioned on m, all the components 
of �m  are independent and �mi is assumed to be independent of mj for any j i≠ , 
and the noise distribution p m mi i( | )�  is assumed to be the same for all pixels i. 
By setting θ θ0 1� , where θ0 1 0= = =p m mi i( | )�  and θ1 0 1= = =p m mi i( | )� , the 
omission noise can be managed in learning as this can reduce the false nega-
tive rate caused by the omission noise.

The above ABN model is extended in (Mnih and Hinton 2012) as a trans-
lational ABN (TABN) model to deal with the registration noise. p( | )�m m  
in Equation 3.3 is extended with the translational noise considered as 
p t p t( | , ) ( | ( , ))� �m m m m= Crop , where Crop(m,t) function selects ′ × ′w wm m sub-
patch from w wm m×  patch m according to the translation variable  t, as shown 
in Figure 3.2. Finally, the conditional distribution, that is, Equation 3.3 is 
extended as:

 
p p t p t p

t

T

( | ) ( ) ( | , ) ( | )� �m s m m m s
m

=
=

∑ ∑
0  

(3.4)

where parameters in p(t) and p t( | , )�m m  are set using a validation sample set, 
while the parameters in p( | )m s  are learned by mining the negative log like-
hood object function with the EM-algorithm over the training sample set. In 
the perspective of geometry, the translation function Crop randomly selects 
different subparts of the true map generalized from the satellite image for 
further generalizing the observed map.
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Yuan (Yuan 2016) introduced a signed distance function to the loss func-
tion for building detection with convolutional networks, which we think is 
helpful for dealing with the registration noise. In detail, the loss item of each 
pixel mi of the training data in Equation 3.2 is assigned a signed distance 
di  to the boundary: di = 0 if the ith pixel is on the boundary of the building 
footprint, di > 0 if it is inside the building footprint, and di < 0 if it is outside 
the building footprint, as shown in Figure 3.3. According to (Yuan 2016), the 
signed distance allows the deep network to learn more spatial layout infor-
mation, for example, the point inside the footprint is more important than 
the one close to the boundary.  This means the registration noise which usu-
ally lies on the boundary will have less impact on the model than the samples 
that are more likely to be true, that is, the pixels inside.

3.3.3 Spatial and Semantic Domain Adaptation

On VGI sites, crowdsourcing is often spatially or semantically biased 
(Quattrone, Capra, and De Meo 2015). For example, OSM volunteers con-
tribute more to the urban areas than to the rural areas, and more to the 
public points of interest (POIs), for example, shopping malls, than to the 
residential areas. When VGI data are applied in deep learning applica-
tions, such bias phenomena will lead to the problem of domain adaptation 

t = 1 t = 1 t = 1

t = 1 t = 1 t = 1

t = 1 t = 1 t = 1

FIGURE 3.2
Demonstration of the function of Crop used in the TABN model. The outside patches repre-
sent m while the inner patches represent the cropped patch Crop (m,t). (From Mnih, V. and 
G. Hinton. 2012. Learning to label aerial images from noisy data. In Proceedings of the 29th 
International Conference on Machine Learning—ICML’12, Edinburgh, UK, 567–574.)
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(Ben-David et al. 2010) which aims at learning a model from a source data 
distribution that can perform well on a related but different target data dis-
tribution. In a dynamic or streaming context, the data difference between 
the training source and the target is also known as the problem of concept 
drift (Tsymbal 2004).

There are quite a few typical algorithms for domain adaptation, such as 
reweighting the source samples, iteratively labeling the target examples with 
new models, and searching for a common data distribution space between 
the source and the target. These methods improve the learning algorithm 
itself without taking the properties of VGI data into consideration and actu-
ally are applicable for any data. In this chapter, we introduce two other tech-
niques, namely active sampling and feature transferring for deep learning 
over the biased VGI data.

Active sampling is a strategy for active learning which aims at build-
ing efficient training sample sets by querying the user or some other data 
sources. It has been studied for years in satellite image classification with 
deep neural networks as a cost considered strategy for manual labeling 
of the training samples, as shown in the survey by Tuia, et al. (Tuia et al. 
2011). We introduce a VGI-based active deep learning framework used in 
our study named DeepVGI (Chen and Zipf 2017) which aims at learning 
from Bing satellite images (RGB, level 18, 256*256), MapSwipe data (vol-
unteer label of the Bing satellite image), and OSM data for humanitarian 
mapping, which is house and building detection in rural areas in Africa. 
Instead of classifying each pixel modeled in Section 3.3.2, DeepVGI has 
the same task as the MapSwipe volunters, namely directly classifying the 
image into positive (i.e., containing the target object) and negative (i.e, NOT 

(a) (b)

FIGURE 3.3
(a) Training image and (b) corresponding signed distance label. (Allison, G. and B. Jon. 2016. 
Exploring the SpaceNet  Dataset Using DIGITS. https://devblogs.nvidia.com/parallelforall/
exploring-spacenet-dataset-using-digits/.)

https://devblogs.nvidia.com/parallelforall/exploring-spacenet-dataset-using-digits/
https://devblogs.nvidia.com/parallelforall/exploring-spacenet-dataset-using-digits/
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containing any target objects). As shown in Figure 3.4, DeepVGI first trains 
a deep network with positive samples from OSM and negative samples 
from MapSwipe, and then uses the network to predict the training images. 
The images whose predicted label is the sample as the MapSwipe volun-
teers are called the MapSwipe-Consistent SC, while the others are called 
the MapSwipe-Inconsistent SI. DeepVGI then asks the experts to label a 
number of images in SI , and further adds these new labeled images to the 
original samples for retraining a new deep network. The number of images 
for relabeling by the experts is limited to reduce the cost. Such an active 
learning strategy reduces the omission noise of OSM by experts’ labeling 
and MapSwipe labels. In the experiment of building detection in Africa, 
the retrained network (ANN-S4) is well generalized from the buildings 
downtown to the cottages in rural areas, thus achieving a higher overall 
prediction accuracy than the first network (ANN-S1) trained without any 
actively sampled images.

Transfer learning, which transfers features learned in one domain to 
another domain, provides another solution for domain adaptation (Pan and 
Yang 2010). In satellite image classification, there have been several trans-
fer learning studies for domain adaptation. Jun and Ghosh proposed to 
transfer the knowledge learned from one region to another (Jun and Ghosh 
2008), while Demir et al. (Demir, Bovolo, and Bruzzone 2013) proposed to 
transfer the features learned from one time to another. Yuan et  al. (Yuan 

VIG-based active
sampling strategy

Step 1: Train

ANN-S1 ANN-S4

Step 4: Retrain

Step 2: Predict Step 4: Retrain

Step 3:
Labeling

Positive labels from OSM

MapSwipe labels

MapSwipe-consistent
images SC

MapSwipe-Inconsistent
images SI

(SI, yI+)Type II error images

Right Wrong

Satellite images Satellite
images

Manual
labels

Satellite images

Nagative labels from MapSwipe

(s, y+ | y–)

FIGURE 3.4
Workflow of DeepVGI with a VGI-based active sampling strategy.
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and Cheriyadat 2014) transferred the low-level features, for example, line 
segment learned from satellite images to predict the number of buildings. 
Researchers from Facebook’s Connectivity Lab found that, with minor modi-
fications, the Convolutional Neural Networks trained on normal photos can 
efficiently detect whether a satellite image contains a footprint, which means 
the deep features learned from normal photos can be transferred to deep 
learning tasks over satellite images. However, the three studies introduced 
above did not utilize VGI data as the supervison knowledge. As far as we 
know, there are currently no studies that transfer learned VGI knowledge 
from task to task, from area to area, or from time to time in satellite image 
classification with deep neural networks.

3.4 Applications

By integrating VGI data and satellite images, deep learning technologies 
enable the machine to learn the crowdsourcing knowledge contributed by 
the volunteers and citizens, thus automatically and intelligently exploring 
our earth and society. Many novel applications can be proposed with the 
data and the technologies. Here, we only present some typical examples.

• Humanitarian mapping: Many ground objects like road, house, rivers, 
etc. in rural and undeveloped areas are still missing in the current 
maps, but they are quite important to help the people in need. We 
can learn ground object prediction models from the existing map 
data (Mnih and Hinton 2010; Mnih and Hinton 2012; Roemheld 2016; 
Chen and Zipf 2017), and then predict the missing object on the sat-
ellite images, to either save the volunteers’ labor by recommendation 
or improve the quality of the data contributed by the volunteers (Ali 
et al. 2014).

• Population mapping: The spatial distribution of a population is quite 
important in making some decisions. For example, Facebook needs 
to know how many devices shoud be deployed in each area so as to 
connect the whole world. Buildings and roads on satellite images 
or POIs from OSM provide one way for global population mapping 
(Bakillah et al. 2014), while VGI records from citizen sensors like the 
mobile phones provide another solution for dynamic population 
estimation for a specific area (Deville et al. 2014).

• Poverty prediction: Similar to population mapping, with the data of 
buildings and roads on satellite images or OSM, the global poverty 
map, which constitute critical data for studying the society and 
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economy, can be estimated (Zhao and Kusumaputri 2016). Instead of 
utilizing building and road data, Xie et al. (Xie et al. 2016) adopted 
nighttime light intensities which were predicted by the daytime sat-
ellite images with Convolutional Neural Networks as a proxy for 
population prediction.

• Urban change detection: With footprints of ground urban objects 
on OSM and satellite images, we are able to detect any land cover 
changes such as the damage caused by an earthquake or a storm in 
an urban area by pixel-wise classification with deep learning tech-
niques (Yuan 2016).

• Public health monitoring: Public health can be measured and moni-
tored by citizen sensors like tweets (Paul and Dredze 2011), while 
many causes of public health events like smog disasters and flood 
disasters can be observed by satellite sensors. Connecting the physi-
cal sensor data to the citizen sensor data makes it possible to analyze 
and monitor the public health (Chen et al. 2014). Deep neural net-
works enable researchers to find complex patterns between public 
health and big VGI data.

3.5 Conclusion and Future Work

In this chapter, we introduced some recent work in deep learning with satel-
lite images and VGI data. We first analyzed the typical deep learning studies 
in satellite image classification as well as some classic benchmarks, and then 
focused on the problem of automatically extracting big sample sets from VGI 
data for the supervision of training deep networks. Two main technical chal-
lenges about sample noise and domain adaptation as well as their solutions 
in VGI data quality research and machine learning research were further 
introduced. Finally, we presented several applications where the above tech-
niques and data can be applied.

Learning deep prediction models from VGI data and satellite images with 
the  supervision of volunteers’ knowledge is a promising field with many 
potential  real-world applications. On the one hand, we think the field of VGI 
itself will be further studied, especially the aspects of data quality and data 
linkage. Linking VGI data can not only make up the problem of data quality, 
but also enrich the supervision knowledge for different prediction tasks and 
fine-grained prediction models. On the other hand,  feature-level data inte-
gration for more accurate prediction models is an important research direc-
tion. Machine learning algorithms like transfer learning and active learning 
will be applied together with deep feature representation for these technical 
problems.
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4
Visual Analysis of Floating Car Data

Linfang Ding, Jukka M. Krisp, and Liqiu Meng

4.1 Introduction

With the advances in location positioning and wireless communication tech-
nologies, collecting spatial trajectories that represent the mobility of a variety 
of moving objects becomes prevalent in the digital society. Floating car data 
(FCD) gathered from GPS-equipped moving vehicles have become increas-
ingly available. For instance, a large number of taxis in major cities, for exam-
ple, San Francisco, Shanghai, Rome, are equipped with GPS devices and send 

CONTENTS

4.1 Introduction .................................................................................................. 79
4.2 FCD and Preprocessing .............................................................................. 81

4.2.1 Classification of FCD Points ........................................................... 82
4.2.2 Extraction of Trajectories ................................................................83

4.3 Point-Based Visual Analysis ......................................................................85
4.3.1 Pie Radar Glyph ...............................................................................85
4.3.2 Salient Feature Image ...................................................................... 87

4.4 Trajectory-Based Visual Analysis .............................................................. 89
4.4.1 A Visual Analytics Framework for Trajectory Analysis ............90
4.4.2 Visual Analysis of Origin–Destination Lines .............................. 91

4.4.2.1 Interactive Hierarchical Agglomerative Clustering ........91
4.4.2.2 A Parallel Coordinates View ........................................... 91
4.4.2.3 A Map View of Origin-Destination Lines by 

Gradient Line Rendering ................................................. 93
4.4.3 Visual Analysis of Non-Occupancy Trajectories ......................... 95

4.4.3.1 A Map View of Non-Occupancy Trajectories 
by Direct Line Rendering ................................................. 95

4.4.3.2 Space-Time-Cube Visualization of Selected Non-
Occupancy Trajectories .................................................... 97

4.5 Conclusion .................................................................................................... 98
Acknowledgment ..................................................................................................99
References ...............................................................................................................99



80 Geospatial Data Science Techniques and Applications

time-stamped locations of a high frequency to data centers and result in huge 
amounts of FCD. With the open data movement, some FCD data sets, for exam-
ple, mobility traces of taxicabs in San Francisco (Michal, Natasa, and Matthias 
2009), are freely available and have been widely used for a variety of research 
purposes and applications. The complex and large FCD contain rich informa-
tion and bring new opportunities to understand urban dynamics, which are 
crucial for decision-making in environmental and transportation planning.

FCD have been intensively studied for a wide range of research and appli-
cation purposes. A large group of research works have been focused on 
utilizing FCD for modeling traffic congestion and human mobility patterns 
(Ding, Yang, and Meng 2015; Keler, Ding, and Krisp 2016), and for uncovering 
driving behaviors (Liu, Andris, and Ratti 2010; Ding, Fan, and Meng 2015). 
Some research works have examined FCD to infer urban land uses and city 
structures (Liu, Gong et al. 2015) and to mine interesting locations or places 
(Zheng et al. 2009; Andrienko et al. 2011). Other investigations have been con-
ducted to understand place semantics together with other data sources, like 
point-of-interest (POI) data (Yuan, Zheng, and Xie 2012) and social media 
data (Liu, Liu et al. 2015; Mazimpaka and Timpf 2015).

Basically, FCD consist of position records generated by moving vehicles. 
Each record can be represented by a point of the form p = (x, y, t) and associ-
ated with additional fields like velocity and orientation. A series of chrono-
logically ordered points form a spatial trajectory (p1, p2, … , pn). FCD analysis, 
and in general spatial trajectory analysis, involves a variety of research top-
ics and techniques from spatial trajectory data preprocessing to trajectory 
pattern mining and to big trajectory data visualization. Most of the existing 
research on FCD uses computational only approaches which normally lack 
the involvement of human interaction and effective communication of the 
results with the human.

This chapter addresses visual analytics approaches for FCD. Visual analyt-
ics is a fast evolving discipline of analytical reasoning facilitated by interac-
tive visual interfaces (Thomas and Cook 2005; Keim et  al. 2010). In recent 
years, visual analytics techniques and tools have been increasingly pro-
posed, developed, and applied to explore big geospatial movement data for 
understanding human mobility patterns and urban structures.

A comprehensive exploration and understanding of massive FCD requires 
a variety of visual analytics techniques ranging from direct depictions of 
original FCD to representations of their computationally derived data. 
Research works on FCD visual analysis can be distinguished at two abstract 
levels, namely, (1) point-based and (2) trajectory-based levels. The point-
based view considers each discrete point, either a raw GPS entry or a derived 
point spatial object, as a point-based spatial object, while the trajectory-based 
view considers a sequence of temporally ordered points (e.g., GPS records) as 
a trajectory-based spatial object.

Taking the point-based view, an FCD data point can be represented and 
visualized, for example, by a dot. Interactive techniques, such as filtering, 
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brushing, and linking, can be applied to explore interesting parts of the data 
set. For instance, the interactive visualization system HubCab plots millions 
of individual pick-up and drop-off points, and allows users to get insight 
into the taxi mobility patterns at a very fine granularity to support taxi shar-
ing services (Santi et al. 2014). In order to explore multiple attributes of FCD 
data points, multivariate visualizations (Wong and Bergeron 1997) can be 
utilized. At the collective level, visual analysis of massive FCD incorporates 
data transformation and data aggregation to represent groups of objects and 
reduces visual cluttering. A typical procedure for visual analysis of point 
objects involves point clustering, space partition, spatiotemporal aggregation, 
and the analysis of aggregated data. Andrienko and Andrienko (2010) sys-
tematized aggregation approaches of movement data into a framework that 
clearly defines what kinds of exploratory tasks each approach is suitable for.

Taking the trajectory-based view, a straightforward visualization is simply 
connecting the adjacent trajectory segments into lines. However, drawing 
many such lines may lead to overplotting so that users could hardly discern 
any meaningful patterns. To reduce the visual clutter, techniques such as 
edge bundling (Holten 2006; Holten and Van Wijk 2009; Zhou et al. 2013), 
animations (e.g., the NYC Taxi holiday visualization system (https://taxi.
imagework.com), and Space-Time-Cube (Kraak 2003) can be applied. Visual 
analytics approaches (e.g., visual clustering [Andrienko et al. 2009]) and sys-
tems (e.g., TripVista [Guo et al. 2011]) driven by human analytics have been 
developed for the interactive exploration of large collections of trajectories. 
At an aggregated level, trajectories can be grouped into movement flows and 
visualized. Andrienko and Andrienko (2011) presented a generic spatial gen-
eralization and aggregation approach for visual analysis of movement trajec-
tories. Composite density maps (Scheepens et al. 2011), stacked 3D trajectory 
bands (Tominski et al. 2012), and network visualization (van den Elzen and 
van Wijk 2014) were proposed to explore the multivariate trajectory data. 
In particular, several research works (Guo 2009; Wood, Dykes, and Slingsby 
2010; Boyandin et al. 2011; Guo and Zhu 2014) were specialized in mapping 
origin–destination flows.

In this chapter, we introduce geospatial visual analytics techniques to 
explore FCD points and trajectories, especially at individual levels. The tech-
niques are demonstrated using a large amount of real-world FCD collected 
in Shanghai (Ding 2016).

4.2 FCD and Preprocessing

The test FCD data set is temporally ordered position records collected from 
about 2000 taxis within 52 days from May 10 to June 30, 2010 in Shanghai with 
a temporal resolution of 10 seconds, resulting in more than half a billion GPS 

https://taxi.imagework.com
https://taxi.imagework.com
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entries. Each GPS entry is associated with fields of date, time, car identifier, 
location, instantaneous velocity, and car status. Table 4.1 lists the fields for 
each GPS record along with sample values and descriptions. Figure 4.1 illus-
trates the raw GPS points of a taxi with the identifier 10003 on May 12, 2010.

For each day, the size of data as a CSV file is about 4.5 G. We preprocess the 
raw data by filtering out the errors, for instance, GPS data outside the bound-
ary of Shanghai, time stamps not in the valid test time slot, and the attributes 
that are not meaningful.

4.2.1 Classification of FCD Points

A variety of different point types can be identified based on GPS attributes. 
In this study, we use “car status” as an illustration. On the basis of the attri-
bute value of “car status” 1 and 0, we can easily differentiate occupancy 
(O) and non-occupancy (N) points. Furthermore, we derive two additional 
special types of points, namely pick-up (P) and drop-off (D) points, from a 
time series of GPS points. A pick-up point is a location where the car status 

TABLE 4.1

Test Data Properties

Field Example Value Field Description

Date 20,100,517 8-digit number, yyyymmdd
Time 235,903 6-digit number, HHMMSS
Car identifier 10,003 5-digit number
Longitude 121.472038 Accurate to 6 decimal places, in degrees
Latitude 31.236135 Accurate to 6 decimal places, in degrees
Velocity 16.1 In km/h
Car status 1/0 1-occupied; 0-unoccupied

Shanghai

FIGURE 4.1
GPS points of the taxi with ID 10003 on May 12, 2010.
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changes from non-occupancy to occupancy, while a drop-off point is a loca-
tion where the status changes in the opposite way.

Owing to the huge amount of (O, N, P, D) points in the time span in the 
whole study area, we partition them into certain spatial (e.g., 100 × 100 m) 
and temporal (e.g., 1 h) chunks. For each hour in the 52 days, we compute 
the total numbers of (O, N, P, D) points respectively in the study area. Since 
the O and N points are at the same orders of magnitude, and P and D are 
at the same orders of magnitude, we plot in the pair of (O, N) and (P, D) 
separately. Figure 4.2 illustrates the temporal variation of (O, N, P, D) points. 
In Figure 4.2, the frequency distributions of the four types of points exhibit 
strong daily rhythm patterns. Besides, there is clearly a negative correlation 
between the distributions of (O, N) points and a positive correlation between 
(P, D) points. Furthermore, we can easily identify the peaks and valleys of the 
(O, N, P, D) distributions. For instance, the (P, D) point distribution has three 
peaks (at about 8–9, 12, and 18 h) and one deep valley (at about 4 h).

For each spatial chunk of 100 × 100 m, we compute the total number of (O, 
N, P, D) points in the 52 days. A constant interval is used to group the values 
into seven classes and a grayscale scheme from black to white is applied to 
show the distribution of the data. Figure 4.3 shows the distinct spatial distri-
butions of the (O, N, P, D) points.

4.2.2 Extraction of Trajectories

A trajectory is a complex spatiotemporal object consisting of consecutive 
GPS records of an entity with several associated attributes. Similar to the 
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FIGURE 4.2
The hourly temporal variation of the total numbers of (O, N, P, D) in 1 week. (a) Occupancy and 
non-occupancy points. (b) Pick-up and drop-off points.
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treatment in the point view, a variety of trajectory types can be derived from 
the GPS record series based on their attributes. In addition, simplified tra-
jectories can also be derived at different abstract levels. For instance, we can 
easily reconstruct occupancy and non-occupancy trajectories or trips based 
on the “car status” values 1 and 0. By connecting the first and last points 
of the occupancy trajectories, we can derive their origin–destination lines. 
Figure 4.4 illustrates the reconstructed occupied trajectories of 100 cars on 
May 10, 2010, and their corresponding origin–destination lines. The trace 
footprints reflect the relative density of trajectories and the road network 
structure well. We can also perceive some very popular origins and desti-
nations, for instance, a hotspot on the right of the screenshot, which corre-
sponds to the Shanghai Pudong International Airport.

Besides, a number of associated trip statistics, for example, trip distance 
and duration, can be derived. On the basis of the occupied trip distance 
and the taxi fare system of Shanghai in 2010, we calculate the average daily 
income of each taxi, which exhibits a normal distribution (Ding, Fan, and 

(a) (b)

(c) (d)

FIGURE 4.3
The frequency distribution of the total numbers of (O, N, P, D) points. (a) Occupancy. (b) Non-
occupancy. (c) Pick-up. (d) Drop-off.
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Meng 2015). This chapter categorizes the 100 highest-income taxis as the top 
group and the 100 lowest-income taxis as the bottom group.

4.3 Point-Based Visual Analysis

As introduced in Section 4.1, there have been a variety of techniques for 
visual exploration and communication of FCD points at different aggrega-
tion levels. In this section, we propose a pie radar glyph for multivariate 
point-based visualization and a salience-based method for the dominant 
variate visualization.

4.3.1 Pie Radar Glyph

Glyph-based visualization methods like star/radar plot are widely used to 
represent multivariate data. In this work, we propose a pie radar glyph to 
represent the multivariate FCD points. The glyph comprises four filled sec-
tors assigned with orange, green, red, and blue anticlockwise to represent 
the variates of (O, N, P, D), respectively. The radius of each sector is propor-
tional to the value of the mapping variate, which is calculated for the total 
number of points within a spatial partition of 100 × 100 m and the temporal 
slot of 1 hour. Figure 4.5 depicts the mapping of a pie radar glyph from the 
co-located four variate data.

To avoid cluttering effects and enhance the visual appearance, we first 
properly order glyphs by assigning a larger z-index value to small glyphs 
so that they are placed on top of larger ones rather than being occluded. 
Then we render the glyphs using semi- transparency to make sure that the 
large glyphs underneath are visible. The radius of the glyph sectors is also 
carefully chosen. Figure 4.6 shows the spatiotemporal variances of the point 
distributions in four time slots.

(a) (b)

FIGURE 4.4
The reconstructed occupancy trajectories and their origin–destination lines. (a) Occupied tra-
jectories. (b) Origin–destination lines.
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From the compact visualization results in Figure 4.6, we can easily observe 
distinct temporal patterns. The dominant red sectors in Figure 4.6a reflect 
relatively active pick-ups at 3–4 h, while Figure 4.6b shows several signif-
icantly dense drop-off hotspots at 6–7 h. The largest three blue sectors on 
the west, south, and middle (from left to right) are located in the Hongqiao 

(a) (b)

(c) (d)

FIGURE 4.6
Temporal distributions of (O, N, P, D) points using the pie radar glyph. (a) 3–4 h. (b) 6–7 h. (c) 
8–9 h. (d) 18–19 h.

Non-occupancy Occupancy 

Drop-offPick-up

FIGURE 4.5
A pie radar glyph.
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International Airport (Terminals 2 and 1), Shanghai South Railway Station, 
and Shanghai Railway Station. Figure 4.6c, d illustrates daily rush hours at 
8–9 and 18–19 h, which have a relatively larger number of points. The main 
roads in the city center are dominantly related to occupancy points. During 
the rush hour at 8–9 h, there are obvious places of blue sectors of drop-offs 
and the red sectors of pick-ups scattering around. By contrast, during the 
rush hour at 18–19 h, there are obvious places of red sectors of pick-ups. 
Besides, there is a big green sector of non-occupancy points in the airport.

4.3.2 Salient Feature Image

Pie-radar glyph visualization provides easily perceivable overall compact 
visualization results; however, it still requires high cognitive efforts and 
interactive operations of the users to explore and understand cluttered sym-
bols. To reduce the visual complexity, we propose a salience-based visualiza-
tion approach, which displays in each cell (i.e., a spatial partition) only the 
most salient feature, as opposed to showing all co-located ones.

Taking two time intervals 7–8 and 18–19 h of pick-up and drop-off as 
exemplary features, the spatial distribution of these two features in the two 
intervals is demonstrated in Figure 4.7. From the two images in Figure 4.7, 
we can easily observe dense pick-up (red) and drop-off (blue) areas at the 
two intervals. The salient features in both maps form roughly complemen-
tary spatial distribution patterns. For instance, many dense drop-off areas at 
7–8 h become dense pick-up areas at 18–19 h.

Furthermore, in order to display temporal change patterns, we combine 
the two images into one temporal change map by composing the corre-
sponding pixels of two images. With regard to the salience-based images 
of pick-ups and drop-offs at 7–8 and 18–19 h, we define three categories of 

Pick-up

(a) (b)

Drop-off
Pick-up
Drop-off

FIGURE 4.7
The salience-based spatial distribution of pick-up and drop-off points. (a) 7–8 h. (b) 18–19 h.
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temporal changes. The first category (drop-off ≥ pickup) is the change of the 
salient feature from drop-off at 7–8 h to pick-up at 18–19 h. Similarly, the sec-
ond category is (pickup ≥ drop-off). In the last category, the salient feature 
remains unchanged.

Figure 4.8 shows the temporal change image of the pick-ups and drop-
offs at 7–8 and 18–19 h, in which opacity values correspond to the changes 
in the values of two salient features. It allows a straightforward detection 
of change patterns during the corresponding time intervals. Regarding the 
spatial extent, the dominant temporal change (in steel blue) is the change of 
the salient variable from pick-ups to drop-offs, occupying almost the whole 
Shanghai area. The second spatially large temporal change is the change 
from drop-offs to pick-ups, which can be identified by several orange areas. 
Finally, we can detect quite a few relatively small but shiny yellow areas 
scattered in Shanghai, which indicates that these areas are of either signifi-
cant pick-up or drop-off changes. Being stimulated from the spatiotemporal 
pattern in Figure 4.8 and based on the knowledge of human daily activity 
patterns, we naturally conjecture that the temporal change patterns are asso-
ciated with distinct land use types. For instance, areas with intense drop-
off activities at 7–8 h and intense pick-ups at 18–19 h probably correspond to 
the working places. This may be an important supporting indicator for the 
research work on land use/cover change detection.

To confirm our assumptions, we enclose orange and yellow areas with 
irregular polygons and manually check these areas on the Shanghai base 
map. Figure 4.9 shows the distinct areas of interest labeled with their func-
tions or name. The irregular polygons with orange frames and labels are 

FIGURE 4.8
The salience change map.
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regions especially active with drop-offs at 7–8 h and pick-ups at 18–19 h. We 
find that most of them are free-trade zones, high-tech zones, industrial and 
development zones, and financial centers. This observation coincides with 
our conjecture. Another interesting observation is that the area of Shanghai 
Expo 2010, located along both banks of the Huangpu River, also belongs to 
this kind of temporal change pattern. Since Expo 2010 was held from May 1 
to October 31, 2010 and covered the total time span of our data set, it is rea-
sonable to expect that the data during this time period can reveal the human 
mobility patterns related to this international event.

4.4 Trajectory-Based Visual Analysis

In this section, we propose a visual analytics framework for trajectory analy-
sis and apply this framework for the visual analysis of origin–destination 
lines and non-occupancy trajectories.

FIGURE 4.9
Regions of interests (CZ stands for commercial zone).
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4.4.1 A Visual Analytics Framework for Trajectory Analysis

The proposed framework basically consists of three components: (1) visual 
querying of the movement database, (2) interactive clustering, and (3) visual 
representations. The framework is implemented in a web-based interactive 
environment.

 1. Movement Database Visual Querying: This component allows a visual 
query of the movement database for interesting trajectory subsets. 
A computationally efficient way of inspecting massive data is to 
retrieve only the relevant interesting data partitions from the data-
base. For instance, we can retrieve relevant data sets according to the 
taxi drivers’ income in specific time intervals by interactively brush-
ing an income histogram (Figure 4.10a) and a time line graph 
(Figure 4.10b).

 2. Interactive Visual Clustering: This component introduces the interac-
tive visual clustering designed for trajectory exploration. In general, 
meaningful clustering results require a proper setting of clustering 
features and parameters, especially for multivariate clustering. For 
instance, analysts might be interested in inspecting groups of trajec-
tories according to some attribute values, for example, starting from 
the same locations, or duration less than 1 hour. Furthermore, they 
may need to examine distinct spatial interaction patterns by set-
ting different  distance values. In our study, we design an interactive 
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FIGURE 4.10
Visual querying of the movement database. (a) Visual query of taxi drivers’ income. (b) Visual 
query of the time line view.
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clustering interface (shown in Figure 4.11) to serve the purpose for 
feature selection using a checklist and  parameter setting with a 
slide bar.

 3. Visual Representations: The resulting clusters are visualized in a 
variety of representations. First, we propose a well-designed paral-
lel coordinates plot to visualize the precomputed clusters resulting 
from the interactive clustering process. The users can visually detect 
and interactively select interesting clusters in the parallel coordi-
nates for further analysis. Second, the individual trajectories in the 
selected clusters are visualized on linked map views. For visualiz-
ing origin–destination lines on the map view, we propose a gradient 
rendering technique, while for non-occupancy trajectories we pro-
pose a direct rendering technique and apply the space-time-cube 
method.

4.4.2 Visual Analysis of Origin–Destination Lines

In this section, we apply the proposed visual analytics framework for ori-
gin–destination line analysis.

4.4.2.1 Interactive Hierarchical Agglomerative Clustering

We firstly apply a hierarchical agglomerative clustering method to group 
the origin– destination lines. An origin–destination line can be modelled as 
a point in a high- dimension space. The location of the origin and destina-
tion, the duration, and distance are used as exemplary attributes. Besides, 
the algorithm has two parameters, namely, a  distance  function and a link-
age criterion. Figure 4.11 illustrates an example of clustering  setting with the 
selected features of the longitude and latitude of the destination, the cluster-
ing  distance of 100 m, and an average linkage criterion.

4.4.2.2 A Parallel Coordinates View

We adopt the interactive parallel coordinates technique and design the 
visual representation of the clustering results as follows. First, besides the 

FIGURE 4.11
Interactive clustering interface for feature selection and distance setting.
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multiple attributes (e.g., origin, destination, distance, duration), we add to the 
parallel coordinates two more features, that is, the individual cluster iden-
tity number and the number of elements in each cluster. Second, we design 
the parallel coordinates in an easily understandable way by ordering the 
objects using the Z-index and rendering the clusters with semi-transparency. 
Finally, for an immediate perception of individual clusters, we assign dis-
tinctive colors to clusters with a distinct number of cluster elements to reveal 
the natural clusters.

Taking the trajectories from 7 to 10 h on May 31, 2015 as an example, we 
obtain about 250 clusters after the interactive clustering with parameter set-
tings in Figure 4.11. These 250 clusters are then represented by the parallel 
coordinates shown in Figure 4.12a. The first axis represents the number of 
elements in each cluster. The second axis shows the identity number of each 
specific cluster. The third and fourth axes represent the distance and dura-
tion of the origin–destination lines. The last four axes are for the locations of 
origin and destination.

As shown in Figure 4.12a, the parallel coordinates reveal the natural data 
distribution and the clusters in an intuitive manner. Large clusters with 
more than 15 elements of individual origin–destination lines are colored 
according to the chosen categorical color scheme. Since we cluster the lines 
using their destinations, it is natural that the large clusters converge at the 
last two axes. One more interesting pattern is that larger clusters converge 
at the middle range of the last two axes, which indicates that large clusters 
of origin–destination lines happen in the center of the study area. Looking 
at the first axis (count_elements), we can get an overview about the distribu-
tion of the number of elements in each large cluster. For instance, the largest 

(a)

(b)

FIGURE 4.12
The parallel coordinates view. (a) Clusters of trajectories based on “destination” from 7 to 10 h 
on May 31, 2010. (b) Selection of interesting individual clusters.
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cluster has approximately 40 elements, and the second 30 elements. For fur-
ther exploration and analysis, the users can inspect interesting individual 
clusters by brushing any axis or multiple axes at the same time. As shown in 
Figure 4.12b, two elements in the first axis are brushed, which correspond to 
two clusters of about 30 elements.

4.4.2.3 A Map View of Origin-Destination Lines by Gradient Line Rendering

To allow the inspection of the spatial patterns of the selected clusters, we 
visualize the individual origin–destination lines in a map view, which is 
linked to the parallel coordinates.

A gradient line rendering technique is proposed to allow an intuitive 
interpretation of the origin–destination lines. We firstly round the coordi-
nate values of origins/destinations to reduce the line intersections. Then we 
order the origin–destination lines according to their distances by pushing 
long lines into the background (using a small z-index) so that short lines 
would not be hidden. Finally, we divide the lines into segments and assign 
the series of line segments from origin to destination with gradient colors 
from dark to light color values.

Taking the selected clusters in Figure 4.12b as an example, Figure 4.13 shows 
the  individual origin–destination lines on the map view after applying the 

FIGURE 4.13
The map view of the selected origin–destination lines.
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gradient rendering technique. The detailed spatial interaction can be clearly 
identified. The two clusters  correspond to two transport hubs with the right-
sided cluster of the Shanghai South Railway Station and the left-sided one of 
the Hongqiao International Airport.

Furthermore, we can interactively select other interesting clusters in the 
parallel coordinates view and inspect their spatial patterns on the map view. 
For instance, we brush large clusters in Figure 4.12a and show the individual 
origin–destination lines in these clusters in Figure 4.14. The largest two clus-
ters of about 42 individual elements (Figure 4.14a) are with their destinations 
concentrated in the city center. This phenomenon is reasonable since there 
should be more taxis going to the city center during rush hours. The third 
and fourth largest clusters of about 30 individual items (Figure 4.14b) corre-
spond to Hongqiao Airport and Shanghai South Railway Station. Owing to 
the locations of the two transport hubs, especially Hongqiao Airport, there 
are some long distance origin–destination lines. The fifth to ninth largest 
clusters (Figure 4.14c, d) are of around 25–30 elements and primarily with 
destinations near the city center. The gradient line rendering results show 
not only the spatiotemporal distribution of the lines but also their spatial 
interaction between different areas. Mostly, there are more local interactions. 
The radiation shape of the origin–destination lines is different and difficult 
to foresee, since it relies on the spatial location of the cluster. Users can most 

(a) (b)

(c) (d)

FIGURE 4.14
Significant clusters of destinations at 7–10 h on May 31, 2010. (a) Clusters 1 and 2. (b) Clusters 3 
and 4. (c) Clusters 5 and 6. (d) Clusters 7, 8, and 9.
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likely explore the spatial patterns of other clusters by brushing their corre-
spondences in the parallel coordinates view.

4.4.3 Visual Analysis of Non-Occupancy Trajectories

In this section, we apply the proposed framework for non-occupancy trajec-
tory analysis of two groups of taxi drivers, that is, high-income and low-
income groups.

Similar to the procedure in Section 4.4.2, we firstly retrieve non-occupancy 
trajectories from the movement database by visually querying the low- and 
high-income taxis. Then we interactively cluster the trajectories by using the 
clustering interface. The clusters are visualized in the parallel coordinates 
view. The users can then select significant clusters in the parallel coordinates 
and render the individual cluster elements on a 2D map view. Since the char-
acteristics of non-occupancy trajectories are different from origin–destination  
lines, we apply the direct line rendering technique for the trajectory visual-
ization. Furthermore, to inspect the space-time dynamic profiles of the trajec-
tories at certain hotspots, we apply the space-time-cube technique.

4.4.3.1  A Map View of Non-Occupancy Trajectories 
by Direct Line Rendering

To demonstrate, we retrieve the non-occupancy trajectories of the bottom- 
and top- performing taxi groups from 6 to 12 h on May 31, 2010. On the basis 
of their origins, we cluster these trajectories and show the clustering results 
in the parallel coordinates in the upper subfigures in Figure 4.15. Then we 
select the significant clusters in the respective parallel coordinates, which are 
rendered on the 2-D map with an opacity of 0.2 and with the same colors of 
the clusters in the parallel coordinates (the lower subfigures in Figure 4.15). 
In the parallel coordinates, we can see that there are larger clusters of non-
occupancy trajectories in the high-income taxi group (Figure 4.15b) than in 
the low-income group (Figure 4.15a). In the map views, the overall spatial 
distribution of the selected clusters and the driving routes starting from the 
cluster centers can be easily detected. The denser line areas are with more 
frequent non-occupancy trajectories. We also observe that in each cluster 
there is a distance decay effect of the frequency from its center to its border. 
Moreover, in terms of the spatial distribution, the cluster centers of both taxi 
groups largely overlap. There are also some notable differences. For instance, 
in the high-income taxi group, there is a significant cluster related to the 
Pudong Airport (on the easternmost), which does not appear in the low-
income group.

By comparing cluster centers with the base map, we can identify the most 
important transport hubs in the test area, including Shanghai Railway 
Station, Shanghai South Railway Station, Hongqiao Airport, and Pudong 
Airport. Figure 4.16 annotates these transport hubs by their names.
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(a)

(b)

FIGURE 4.15
Non-occupancy trajectory clusters based on “starting location.” (a) Bottom-income group. (b) 
High-income group.
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4.4.3.2  Space-Time-Cube Visualization of Selected 
Non-Occupancy Trajectories

To observe the dynamic behavior of individual trajectories at certain hotspots, 
we visualize them in a space-time cube. We use Pudong International Airport 
as a test case. For each taxi group, we extract the non-occupancy trajectories 
starting from or ending at the airport from the movement database. Figure 
4.17 shows the dynamics of the non-occupancy  trajectories related to the air-
port on May 31, 2010 in the space-time cubes.

From Figure 4.17, we can get an overview of the spatiotemporal profiles 
of the trajectories related to the airport. Regarding the number of trajecto-
ries, obviously for the top-performing taxi group, there are far more non-
occupancy trajectories from the airport (Figure 4.17c) than the ones to the 
airport (Figure 4.17d). The large number of non-occupancy trajectories from 
the airport indicates that most of the high-income taxi drivers directly cruise 
back to the city center after dropping off passengers in the airport rather 
than waiting there for the next passengers; while the small amount of non-
occupancy trajectories to the airport indicates that only a few high-income 
taxi drivers cruise to the airport without passengers. By contrast, for the bot-
tom income taxi group, we cannot find such a difference.

Looking at the temporal dimension, we can also observe the frequency 
distribution  patterns. For instance, in the bottom performing taxi group, 
there are more non- occupancy trajectories to Pudong Airport (Figure 4.17b) 
happening in the afternoon around 15 h, while in the top income taxi group 
there are more non-occupancy trajectories from the airport (Figure 4.17c) in 
the early morning (0–5 h).

FIGURE 4.16
Identified transport hubs.
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Furthermore, we can identify from the non-occupancy trajectories to the 
airport in both taxi groups (Figure 4.17b, d) that there are many vertical lines. 
These vertical lines reflect that the taxis are stationary at particular locations 
for rather long periods. Indeed, we checked these places on the base map and 
found that they correspond to airport taxi waiting pools where taxi drivers 
can rest or wait for picking up their next passengers.

4.5 Conclusion

In this chapter, we introduced the state of the art of visual analysis of FCD 
and our extensive experiments with massive and complex real-world taxi 
FCD. We analyzed FCD at two abstract levels, namely, point-based and 
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FIGURE 4.17
The space-time cube of non-occupancy trajectories related to Pudong Airport. (a) Bottom-
income group from Pudong. (b) Bottom-income group to Pudong. (c) Top-income group from 
Pudong. (d) Top-income group to Pudong.
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trajectory-based levels. For the visual analysis of multivariate points, that 
is, occupancy, non-occupancy, pick-up, and drop-off, we proposed a pie-
radar glyph method and a salience-based visualization method to reveal 
their spatiotemporal patterns. The compact visualizations revealed the 
underlying  interesting data distributions, which can be used for further 
mining, like inferring urban land use types. For the visual analysis of 
trajectories, we proposed a framework integrating  database visual query-
ing, interactive clustering, parallel coordinates, gradient and direct line 
 rendering techniques, and space-time cube, which allows users to freely 
explore potentially interesting clusters. The framework was applied to 
visually analyze the spatiotemporal patterns of origin–destination lines 
and non-occupancy trajectories, which facilitate the understanding of 
movement interactions.
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5
Recognizing Patterns in Geospatial 
Data Using Persistent Homology: 
A Study of Geologic Fractures

Kathryn A. Bryant and Bobak Karimi

5.1 Introduction

The goal of this chapter is to describe a mathematical tool that can be used 
to recognize patterns of similarity in data. We will be interested in how this 
tool applies to geospatial data, but it is important to note that it can be applied 
to any data that can be described numerically, and is most directly applicable 
to vector data types. Raster data types can also be processed by such a tool, 
but only after processing pixel areas to point or other vector data types. To 
explore the efficacy of such a tool, and since the tool is in its early stages, we 
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will use the tool to explore synthetic point data sets that we relate to geologic 
structures at a tectonic boundary.

The tool that this chapter aims to describe comes from the mathematical 
field of  topology.  In imprecise terms, topology is the study of mathemati-
cal spaces and their characteristics that are independent of size/distance. To 
illustrate what this means, we first contrast the notion of a topological prop-
erty with the more familiar notion of a geometric property, such as area, 
volume, arc length, or curvature. Each of these is a property we can compute 
for a space (like a polygon or a solid) that depends on the size of the object in 
question. We know, for example, that two spheres with different length radii 
will have different  volumes. As such, volume (and area, arc length, curva-
ture, etc.) is a geometric property rather than a topological one. With these 
geometric properties in mind for  contrast,  examples of  topological proper-
ties for a space are the following:

• Number of components: Does the space have one or three pieces?
• Compactness*: Does the space extend infinitely and/or have a 

boundary?
• Number/shape of holes: Does the space resemble a basketball, baseball, 

an inner tube, or a donut?

In what follows, we will focus on this last topological property of number 
of holes and types of holes in a space, which are detected by a tool called 
homology.

Homology is able to rigorously distinguish an inner tube from a donut by 
capturing the fact that while an inner tube and a donut both have a common 
central hole, an inner tube has an additional hole (sweeping around the other 
hole) into which a donut could fit (again, ignoring size!). Using an advanced 
mathematical tool like homology to rigorously distinguish an inner tube and 
a donut may seem silly, but only because we can actually see donuts and inner 
tubes. The utility of homology becomes much greater and more apparent 
when we start trying to understand and distinguish mathematical objects 
in higher dimensions where our ability to visualize the spaces in question is 
lost. Since our goal is to apply persistent homology (a variation of traditional 
homology) to data, it is crucial to note that the concept of “higher dimensions” 
is not merely theoretical; if we look at a data set each of which have, say, six 
attributes, then our data set is a 6-dimensional object. Hence, having a tool 
that detects topological features of a space in any dimension and that does not 
at all rely on human visualization abilities is extremely useful.

The kinds of spaces on which homology is computed tend to be manifolds, 
which are spaces that “look like” Euclidean space of some dimension—at 

* In mathematics, the definition of a compact space is a technical one. For a rigorous definition, 
see Munkres (1975).
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least in small  neighborhoods in the space around each point. For example, 
we would consider a balloon (ignoring the tie) a 2-dimensional manifold 
because if we zoom in very, very close to any single point on the balloon, 
we can be tricked into thinking that it is a plane, that is, a 2- dimensional 
Euclidean space. Alternatively, if we were to describe a balloon (a sphere) 
with  equations, we would have two degrees of freedom in the equations 
and therefore define a 2- dimensional manifold. The fact that a balloon needs 
three dimensions to exist in as a whole has no  bearing on how we classify its 
dimension as a manifold. Thus, since very tiny neighborhoods around any 
point in a balloon look like a 2-dimensional Euclidean space, we regard a bal-
loon as a 2-dimensional manifold (also called a surface). For a more rigorous 
definition of a manifold, see Guillemin and Pollack (2010).

In looking forward to computing the homology of a data set, we encoun-
ter a  problem: while it is perfectly reasonable to compute the homology of 
a discrete space (a space with finitely many points) like a data set or point 
cloud, the fact that single points and  collections of single points are regarded 
as 0-dimensional manifolds means that there are not any interesting “holes” 
to measure because the dimension is too small. At best, homology would 
merely tell us how many points are in the space, which is not a bit of infor-
mation worth the trouble of employing this mathematical tool. To get homol-
ogy to capture more interesting features of our data, we will turn our data 
sets—our 0- dimensional  manifolds—into objects of higher dimension. We 
will do this by first defining a metric on our data that numerically captures 
similarity between any pair of points in our data set; next, we will continu-
ously build a simplicial complex from our data set using the  aforementioned 
metric, thereby transforming our set of single points into a space with higher 
dimension; then lastly, we will compute the homology of the correspond-
ing simplicial complex. Since homology detects information about holes in 
spaces, this computation will tell us about holes in our data, where “holes” in 
this case correspond to interesting types of clustering. For example, if points 
in our data set are clustered around a circle, then  computing the homology 
of an appropriately scaled simplicial complex built from our data will reveal 
this clustering.

It should be noted that clustering of data points around circles, tori, spheres, 
and other interesting mathematical objects is a phenomenon that cannot be 
detected using statistics, the go-to analytic discipline for applications. In 
mathematics, spheres are “hollow” objects, defined to be the set of points 
exactly some distance r from a center point. It is actually redundant to men-
tion circles and spheres in the same list because a circle is a 1- dimensional 
sphere, denoted by S1; in general, a k-dimensional sphere is denoted by Sk. 
On the other hand, balls are “solid” objects, defined to be the set of points less 
than or equal to some distance from a center point. A k-dimensional ball is 
denoted by Bk of Dk. Here, we define the dimension of a sphere or a ball to 
agree with these objects’ dimensions as manifolds. As a result, the boundary 
of a k-dimensional ball is always a (k − 1)- dimensional sphere. For example, 
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the 2-ball is a solid disk whose boundary is the circle, that is, the 1-sphere. 
Statistics can only detect clustering inside a ball, and therefore fails to dis-
tinguish clustering around a circle versus clustering inside a 2-dimensional 
disk. The ability of homology to detect these more unusual kinds of cluster-
ing is one of the main arguments for using topology as an additional tool to 
study data.

5.2 Metric Spaces and Simplices

Geospatial data often come equipped with two or three coordinates that 
describe the physical locations of the data points. With these physical coordi-
nates, we can get visuals of the locations of our data points and judge them, 
with our Euclidean sense of distance, to be distributed or clustered in certain 
ways. However, rarely are spatial attributes the only attributes we care about 
in geospatial data. As an example, in linear data sets, the data set might con-
tain attributes describing the line length and/or azimuth in addition to coor-
dinates describing the data points’ 2- or 3-dimensional locations. When we 
attempt to detect patterns in linear sets, these extra attributes can play a role 
in determining which points are similar.

The way to accomplish this sort of similarity-detection mathematically is 
to turn a data set into a metric space, which will allow us to account for the 
spatial distance between data points and other attributes of importance. A 
metric space is a set of objects together with a well-defined notion of distance 
between each pair of objects in the set. Abstractly, if A is a set, then a “notion 
of distance” on A is a function d, in the mathematical sense, that takes two 
members of A as inputs and yields a non-negative real number as an output 
representing the distance between the two (inputted) objects in the set.

The most familiar metric spaces are Euclidean metric spaces, in which the 
set of objects A is the set of all points in some Euclidean space, such as the 
real line �, the plane �2, or usual 3-space �3, and the distance between any 
pair of objects in these spaces is given by the distance formula. For the plane 
�2, for example, the distance between two points a = (x1,y1) and b = (x2,y2) is 
given by the function d a b x x y y( , ) ( ) ( )= − + −2 1

2
2 1

2 . This particular dis-
tance function and its higher dimensional analogs are collectively called 
Euclidean Metrics.

It is possible, however, to consider the same set A of data points in a 
Euclidean space but under a different notion of distance between points. 
Using �2 again as an example, we could instead use the “taxicab metric” 
to determine distance between two points. Under the taxicab metric, the 
distance between two points a = (x1,y1) and b = (x2,y2) is given by dT(a,b) = |x1 
− x2| + |y1 − y2|. This metric is so named because, rather than compute the 
 distance between two points as the length of a straight line segment between 
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them, we imagine that only strict horizontal and vertical line segments exist 
between points, as for a taxi driving between two points and having to fol-
low city streets; this determines the distance between two points to be the 
smallest of all possible sums of the lengths of horizontal line segments and 
vertical line segments connecting the two points, that is, the shortest route 
for a taxi between two points.

The purpose of looking at the Euclidean metric and the taxicab metric on 
the same set is to illustrate that different notions of distance can exist on the 
same set (and naturally, we might add) and to motivate the more general 
notion of a metric space. Given a space of objects A, we are permitted to 
define a distance function d on A in any way we choose, provided that the 
distance function satisfies the following: For objects a, b, and c in A,

 1. (Nonnegativity) d(a,b) ≥ 0
 2. (Definiteness) d(a,b) = 0 if and only if a =  b
 3. (Symmetry) d(a,b) = d(b,a)
 4. (Triangle Inequality) d(a,c) ≤ d(a,b) + d(b,c).

These four requirements are precisely the ones we need to create distance 
functions that obey our usual intuition of how a distance function should 
behave. We require non-negativity so that we avoid negative distances; we 
require definiteness so that the only  circumstance under which we get a dis-
tance of zero between two objects is when those two objects are actually the 
same object; we require symmetry so that the distance between two objects 
does not depend on which one we “start” at; and lastly, we require the tri-
angle inequality to ensure that adding an extra point along a route never 
reduces the total  distance traveled. For more information on metric spaces, 
see Kumaresan (2005).

Given a data set A, we can turn the data set into a metric space by defining 
a distance function d on A that captures similarity and dissimilarity of data 
points (observations) based on their attributes of importance. We will define 
a metric so that two data points are “close” if they are similar across all attri-
butes. If the observations in a data set contain spatial coordinates as attri-
butes (as will often be the case with geospatial data), we can plot these data 
points using their spatial coordinates and visually communicate any addi-
tional similarity by connecting points that are metrically close with simplices.

An n-simplex is the convex hull of n + 1 distinct points, meaning that it is 
the smallest convex set that contains the chosen n + 1 points. Examples of 
n-simplices for the first few values of n are given in Figure 5.1. A 0-simplex is 
merely a point or vertex; a 1-simplex is a line segment or edge; a 2-simplex is 
a solid triangle; and a 3-simplex is a solid tetrahedron. Although we cease to 
give them special names like vertex, edge, triangle, or tetrahedron, n-simpli-
ces with n ≥ 4 are covered by the given definition and are simply the higher 
dimensional analogs of these more familiar objects.
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We will use simplices to capture similarity between points and store this 
information in a simplicial complex, so named because it can be decomposed 
into a finite number of simplices.* A simplicial complex is a generalization 
of a more basic mathematical object called a graph. In the mathematical field 
of graph theory, a graph is an object consisting solely of vertices (points/
nodes) and edges (line segments between vertices). A simplicial complex is 
regarded as a generalization of a graph in that, rather than consist exclu-
sively of vertices and edges as in a graph, a simplicial complex may contain 
vertices (0-simplices), edges (1-simplices), solid disks (2-simplices), solid balls 
(3-simplices), and higher-dimensional simplices.

For a data set A with an associated metric d, there are two classical types 
of simplicial complexes we can create to visually communicate similarity 
information about the points in A. For a fixed value r ≥ 0, let Br

n p( )  denote the 
solid n-dimensional ball of radius r  centered at point p. Then, given a finite 
collection of points in n-dimensional Euclidean space:

 1. The Čech complex Cr is the simplicial complex in which a k-simplex, 
defined by unordered (k + 1)-tuples of points {p0,p1,…,pk}, is included 
in the complex if the intersection of all the B pr

n
i( )’s (for 0 ≤ i ≤ k) con-

tains a point .
 2. The Rips complex Rr is the simplicial complex in which a k-simplex, 

defined by unordered (k + 1)-tuples of points {p0,p1,…,pk}, is included 
in the complex if, for 0 ≤ i,j, ≤ k, the intersection of each pair of balls 
( ( ), ( ))B p B pr

n
i r

n
j  contains a point.

Both Čech and Rips complexes are visuals of data point similarity up to the 
threshold or filtration value r. If the type of complex we are creating at a cer-
tain r-value has not been specified, we will call the complex Δr. An appropri-
ate or helpful filtration level will depend entirely on the scale(s) at which the 
observation attributes are measured. Note that if r = 0, then Δ0 will merely be 
our set of data placed in 2- or 3-space with nothing between them, that is, it 
will just be a point cloud. On the other hand, if r is enormous (again, relative 

* Technically, the simplices in a simplicial complex K must also satisfy the following: (i) if σ is a 
simplex in K and τ is a face of σ, then τ is also a simplex in K, and (ii) the intersection of σ and 
τ is either empty or a face of both (Edelsbrunner and Harer, 2010).

FIGURE 5.1
From left to right: a 0-simplex (vertex), a 1-simplex (edge), a 2-simplex (solid triangle), and a 
3-simplex (solid tetrahedron).
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to the scale at which the attributes of our observations were measured), then 
every point will be connected to every other point and Δr reveals no infor-
mation about similarity.

5.3 Classical and Persistent Homology

5.3.1 Preliminaries: Groups, Boundary Operators, and Chain Complexes

The process of computing homology for a space is a way of translating 
geometric information about a space into algebraic information. Broadly 
speaking, algebraic objects are sets with operations defined on them; famil-
iar examples of algebraic objects include the set of real numbers with the 
operations of addition and multiplication, or the set of n- dimensional vectors 
with real number entries and the operations of vector addition, dot product, 
cross product, and scalar multiplication (i.e., a real vector space). The geomet-
ric object we will start with is a simplicial complex (built as above from a 
data set with a metric defined on it) and we will encode its relevant geomet-
ric information in an  algebraic object called a chain complex; once we have a 
chain complex, we will analyze it and form homology groups, which are the 
algebraic objects that will describe the shape of our  simplicial complex and 
thus clustering phenomena in our data.

Homology theories can be defined on mathematical objects other than 
simplicial  complexes; therefore, the version given here is a particular kind 
of homology called  simplicial homology. The definition of simplicial homology 
requires the following definitions:

 1. A chain of n-simplices is any collection of n-simplices within a sim-
plicial complex. See Figure 5.2.

 2. A chain of n-simplices that begins and ends in the “same place” is 
called a cycle. For example, a chain of 1-simplices that forms a polyg-
onal loop is a 1-cycle; a chain of 2-simplices that fit together to create 
a polygonal “balloon” or 2-sphere is a 2-cycle. See Figure 5.3.

 3. In general, for n ≥ 1, the boundary of an n-simplex is a closed cycle 
of (n − 1)- simplices. For example, a 2-simplex (a solid triangle) has a 
1-cycle (a polygonal circle) as its boundary. See Figure 5.4.

 4. A closed cycle of n-simplices that does not enclose an (n + 1)-simplex 
yields a hole of dimension n. An example to keep in mind is that 
of a closed cycle of 2- simplices (a polygonal 2-sphere) that does not 
bound a 3-simplex (a solid tetrahedron). See Figure 5.5.

As mentioned, a necessary step in defining simplicial homology is to 
encode geometric information about a simplicial complex in a chain complex. 
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A chain complex is an ordered sequence of algebraic objects called abelian 
groups in which these groups are connected by special functions called 
boundary homomorphisms, boundary operators, or differentials. A group is a set of 
objects on which an operation for combining elements is defined so that the 
combined object is also an object in the set.* For example, the set of integers 

* There are actually four group axioms: closure, associativity, identity, and invertibility, and we 
have only addressed closure. To learn about the others, see Gallian (2010).
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FIGURE 5.2
A chain, highlighted in green.
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Solid

FIGURE 5.3
1-cycle (highlighted in pink) and 2-cycles (highlighted in green). Theorange edge belongs to 
both the 1-cycle bounding the 2-simplex and the 2-cyclebounding the 3-simplex.
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under the operation of addition is a group. An abelian group is a group that 
is commutative with respect to the chosen operation; for integers a and b, 
a + b = b + a, and therefore the integers under addition are an abelian group. 
An abelian group is actually an example of a more general algebraic object 
called a module over the integers, which means that in addition to the group 
operation, scalar multiplication of a group element by an integer is defined.

The group we choose to use in a chain complex will give us an algebraic 
structure that we can use to make sense of our simplices, and it will be 
referred to as the coefficient group. The two most commonly used coefficient 

Hollow

Solid

FIGURE 5.4
A 2-simplex (in green) and its boundary (a 1-cycle, in darker green).

Hollow

Solid

FIGURE 5.5
A 1-dimensional hole (highlighted in pink) and a 2-dimensional hole (highlighted in green).
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groups for simplicial homology are the integers under addition, denoted by 
�, and the integers modulo 2 under addition, denoted by � �/2  or � 2. For a 
complete explanation of modular arithmetic, see Stewart (1995). The integers 
as an abelian group/module is the set of integers {…,−2,−1,0,1,2,3,…} with 
the usual notions of addition and scalar multiplication; the integers modulo 
2 as an abelian group/module over the integers is the set {0,1} under the 
addition rules of 0 + 0 = 0, 0 + 1 = 1 + 0 = 1, and 1 + 1 = 0 and the scalar mul-
tiple rules of 0​⋅​0 = 0, 0​⋅​1 = 0, and 1 ⋅ 1 = 1. For these two groups, adding sim-
plices and chains of simplices proceeds as follows:

 1. For �, the simplices in a chain can have any integer coefficient. For 
example, if σ and τ are two simplices, then  −12σ + 3τ is an exam-
ple of a chain. If σ and τ were both 1-simplices, we could think of 
the chain  −12σ + 3τ as the chain that includes both σ and τ and for 
which we traverse σ 12 times “backwards” and τ three times “for-
wards,” under some predetermined notion of forwards and back-
wards. This concept of direction along a 1-simplex is a special case of 
the much more general concept of orientation that can be defined on a 
simplex (or manifold) of any dimension. Although we will not elabo-
rate on this, the reader should know that if we were looking at the 
chain  −12σ + 3τ where instead σ and τ were 5-simplices, then there 
would be an analogous notion of “traversing” σ and τ along with or 
against some orientation just as in the 1-simplex case. For now, this 
is a formality that can be ignored.

 2. For � 2, the simplices in a chain can only have coefficients of 0 or 1; if 
the coefficient of a simplex is 0, that term will not be written. Given the 
rules of addition in � 2, it also follows that σ + σ =  (1 + 1)σ = 0​⋅​σ =  0. 
Thus, every chain over � 2 is merely a sum of simplices, each of 
which has coefficient 1. The module � 2 is used as a coefficient group 
in simplicial homology when we want to ignore orientation. Since 
every chain over � 2 is a sum of simplices with coefficient 1, we 
ignore the number of times or direction of traversal of each simplex 
and simply acknowledge its inclusion in the chain. Homology with 
� 2 coefficients is a simplified version of homology with integer coef-
ficients because it allows us to view the presence of simplices in a 
chain as binary: in or out.

Along with the choice of a coefficient group, a chain complex requires a 
boundary operator. The boundary operator, denoted by ∂, takes n-chains 
as inputs and outputs (n − 1)-chains corresponding to the boundary of the 
inputted n-chain. (This is an aptly named function!). For example, if a and 
b are 0-simplices (vertices) and σ is the 1-simplex (edge) whose endpoints 
are a and b, then with � coefficients the boundary operator would give us 
∂(σ) = a − b; the first endpoint a is added and the second endpoint b is sub-
tracted to indicate the ordering on the endpoints that indicates our preferred 
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orientation of σ. With � 2 coefficients, the boundary operator would give us 
∂(σ) = a + b, since both a and b are merely present as boundary elements of σ.

Another name for a boundary operator that we mentioned above is 
boundary  homomorphism. The word homomorphism indicates that the map 
∂ has the following property: for any objects σ and τ on which ∂ is defined, 
∂(σ + τ) = ∂(σ) + ∂(τ). With our homomorphism being one that takes simpli-
ces as inputs and outputs the corresponding boundary simplices, the homo-
morphism property simply says that taking the boundary of a compound 
chain of simplices (such as σ + τ) will produce the same answer as taking 
the boundary of each simplex in a chain individually and adding the results.

With a chosen coefficient group and the boundary operator in hand, build-
ing a chain complex consists of writing down chain groups Cn, one for each 
dimension n, that correspond to the simplices in each dimension. The chain 
group Cn is formed by taking one copy of the group (� 2, in our example) for 
each n-simplex in the simplicial complex and adding (in the sense of groups) 
all these copies together; k copies of � 2 added together will be denoted by 
( )� 2

k. We then connect the chain groups in neighboring dimensions by the 
boundary operator, meaning that for the boundary operator ∂ going between 
Cn and Cn − 1, the domain of ∂ is Cn and the image of ∂ lies in Cn − 1. In doing 
this, we create an  algebraic object—the chain complex—that encodes the 
basic geometric relationships between the  simplices in our simplicial com-
plex. For ease of reference, it is common to denote the boundary operator 
whose inputs are n-simplices and outputs are (n − 1)- simplices by ∂n.

5.3.2 Definition: Simplicial Homology

Once the chain complex has been written down for a simplicial complex, we 
can define simplicial homology. Defining simplicial homology from an asso-
ciated chain complex relies on the following observations:

 1. The domain of each ∂n + 1 is all (n + 1)-simplices, but the image of ∂n + 1 
is only those n-chains that are boundaries of (n + 1)-simplices. For 
example, the domain of ∂3 consists of all 3-chains, but the output or 
image of ∂3 consists of 2 chains that appear in the simplicial com-
plex as the boundary of some 3-simplex. We will denote the set of 
n-chains that are boundaries of (n + 1)-simplices by Bn. As a techni-
cal note, Bn is actually a submodule of Cn, and this is needed later to 
define the nth homology group.

 2. All cycles have “empty” boundaries; therefore, ∂n sends any n-cycle 
to the empty (n − 1)-cycle, that is, to 0. We will denote the set of 
n-cycles by Zn. Again, as a technical note, Zn is a submodule of Cn.

 3. Recall that while the boundary of an (n + 1)-simplex is always 
an n-cycle, it is not true that every n-cycle is the boundary of an 
(n + 1)-simplex; for example, a 1-cycle that is not the boundary of 
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a 2-simplex corresponds to a “hole” of dimension one. Therefore, 
Bn is actual a submodule of Zn

* as well, and to capture the holes of 
dimension n in our simplicial complex, we look at the difference 
between the set of n-cycles Zn and the set of n-cycles that are bound-
aries of (n + 1)- simplices Bn.

With the above observations, we define simplicial homology:

Definition:

The nth homology group Hn(X) of a simplicial complex X is the quotient 
group Hn(X) = Zn(X)/Bn(X). Hn(X) is the algebraic object that represents the 
n-dimensional holes and their topological behavior in X. The X is often sup-
pressed in homological notation when the simplicial complex in question is 
clear from the context.

For a precise definition of a quotient group, see Gallian (2010). Also, it was 
noted earlier that Zn and Bn are subgroups of Cn, which are necessary for Hn 
to be a group itself.

With the definition of the nth homology group Hn finally in our hands, the 
remaining task is to execute the computation Hn for each n ≥ 0. The most 
streamlined and easily generalizable way to compute homology groups is 
to write down the boundary operators as linear maps, that is, as matrices, 
and use the power of linear algebra and computers to actually do the com-
putations. The boundary operator ∂n + 1, whose domain is Cn + 1 and whose 
image lies in Cn, can be written down as a matrix by first choosing the bases 
for Cn + 1 and Cn to be the (n + 1)-simplices and the n-simplices in the simpli-
cial complex, respectively. Then, ∂n + 1 is the matrix whose rows represent the 
n-simplices and whose columns represent the (n + 1)-simplices. If there are 
k (n + 1)-simplices and m n-simplices (said differently, Cn + 1 has rank k and Cn 
has rank m), then the matrix for ∂n + 1 has dimension m × k.

Once all of the nonzero boundary operators are written down as linear 
maps in matrix form, the matrices are then put into Smith normal form. For 
more information on Smith Normal form, see Jäger (2003). With � 2 coef-
ficients, the Smith normal form of a matrix will have some number of 1’s 
down the main diagonal of the matrix and 0’s everywhere else; with � coef-
ficients, the Smith normal form will have some number of nonzero integer 
entries down the main diagonal and 0’s everywhere else. For the matrix of 
the boundary operator ∂n + 1, the number of all-zero columns in the Smith 
normal form of the corresponding matrix gives the rank of Zn + 1; the number 
of nonzero rows in the Smith normal form of the matrix gives the rank of Bn. 

* This fact, that Bn is a submodule of Zn, harkens from a fundamental property of the boundary 
operators, namely, that ∂ ° ∂ = 0.
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It is from this information that we can write down our homology groups. If 
we denote the rank of Zn by zn and the rank of Bn by bn, then the rank of Hn, 
called the nth Betti number and denoted by βn, is given by βn = |zn − bn|.

For � 2 coefficients, knowing the nth Betti number βn tells us exactly what 
the nth homology group is: Hn

n= ( )� 2
β . The situation is slightly more com-

plicated with � coefficients because any integer along the main diagonal of 
the matrix in Smith normal form will produce something called a torsion 
submodule/subgroup in the corresponding  homology group, but Betti num-
bers are still a decent rough measure of interesting hole-like  phenomena in 
the simplicial complex.

Despite what may seem like a very technical discussion, the above defini-
tion and computational algorithm given for simplicial homology omits a sig-
nificant amount of underlying mathematical theory. A few of the main topics 
foundational to homology that were not even mentioned above are homotopy 
invariance, induced maps, and homology classes. Other aspects that were men-
tioned, but not in full detail, are the precise definitions of:  modules, groups, 
quotient modules/groups, submodules/subgroups, exact and short exact 
sequences, bases for modules, ranks of linear maps/dimensions of mod-
ules, and matrix reduction and Smith normal form. A recommonded, and 
in-depth, text on homology that addresses all of the aforementioned topics, 
and also goes on to talk about persistent  homology and other applications of 
topology, is Computational Topology by Edelsbrunner and Harer.

5.3.3 Example: Computing Simplicial Homology

We will demonstrate the algorithm for defining and computing homology 
using the  simplicial complex Y in Figure 5.6 with � 2 coefficients. The reader 
should keep in mind, however, that everything described can also be done 
on any simplicial complex and is often done with the coefficient group �.

FIGURE 5.6
Simplicial complex Y; note that the tetrahedron formed here is hollow, unlike in the earlier 
example simplex.
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In the example simplicial complex Y, there are: zero n-simplices for n ≥ 3 
(Cn ≥ 3 = 0); four 2-simplices (C2 2

4= ( )� ); eight 1-simplices (C1 2
8= ( )� ); and 

five 0-simplices (C0 2
5= ( )� ). As such, the chain complex for Y is

 � ∂ ∂ ∂ ∂ ∂ →  →  →  →  →5 4 3 2 10 0 2
5

2
10

2
6( ) ( ) ( )� � �  

With the bases for our boundary operators as described above and ordered 
according to Figure 5.6, we get the following matrices for ∂2 and ∂1. The sec-
ond matrix listed for each map is the Smith Normal Form of the matrix, from 
which we will compute zn, bn, and βn.

 

∂ =



















2

1 1 0 0
0 1 1 0
0 1 0 1
0 0 1 1
1 0 0 1
1 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
































∼

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 00 0 0
0 0 0 0
0 0 0 0
















































 

 z b2 11 7= =,  

∂ =1

1 0 1 0 1 0 0 0 0 0
1 1 0 0 0 1 1 0 0 1
0 1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 1 0 0
0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 00 0 0 1 1

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0

































∼
00 0 0 0 0

0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

































 z b1 05 1= =,  

We omit all other boundary operator matrices since their domains and/
or codomains equal 0 and hence result in 0-dimensional matrices. It also 
follows that zn = 0 for all n ≥ 3 and n ≤ 0 and bm = 0 for all m ≥ 3. Recall that 
Betti numbers yield the ranks of our homology groups and are computed via 
βn = |zn − bn|. Hence, we get:
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• βn = |zn − bn + 1| =  |0 − 0| = 0 for all n ≥ 3 ⇒ Hn(Y ) = 0 for all n ≥ 3.
• β2 = |z2 − b3| =  |1 − 0| = 1 ⇒ H Y2 2( ) =� .

• β1 = |z1 − b2| =  |5 − 7| = 2 ⇒ H Y1 2 2 2
2( ) ( )= ⊕ =� � � .

• β0 = |z0 − b1| =  |0 − 1| = 1 ⇒ H Y0 2( ) =� .

These homology groups now tell us the following information:

• Hn(Y) = 0 for all n ≥ 3: There are no holes of dimension n in Y for 
n ≥ 3.

• H2 2( )Y =� : There is one hole of dimension 2, that is, a polygonal 
2-sphere, in Y.

• H1 2 2 2
2( ) ( )Y = ⊕ =� � � : There are two holes of dimension 1, that is, 

polygonal circles, in Y.
• H0 2( )Y =� : There is one hole of dimension 0 in Y, which means Y 

consists of one connected component.

It should be noted that with homology groups alone, it is impossible to 
tell where the holes occur. This results from the fact that homology compu-
tations are coordinate-free, meaning that the exact way a simplex has been 
placed in space and positioned is irrelevant. This is both a huge advantage 
and disadvantage in studying data. The advantage is that if two people were 
to look at the same simplex from very different spatial perspectives, their 
homology computations would agree. For analyzing macro features of a sim-
plex (or data set!) like number of components, this is excellent news. On the 
other hand, existence information is almost useless if location information is 
necessary for making actionable observations. As such, homology should be 
used as a tool in conjunction with others when precise location information 
is important.

5.3.4 A Continuum: Persistent Homology

Until now, we have defined simplicial homology as a tool for detecting holes 
in an abstract mathematical space, which we care about since holes in a sim-
plicial complex built from data correspond to clustering phenomena within 
those data. However, the tool we really want to employ to study data is per-
sistent homology, which can be regarded as a continuous version of simplicial 
homology. Before giving the definition of persistent homology, we will moti-
vate the need for something “more continuous” than what we have seen so 
far. Recall that for a point cloud with a defined metric, a filtration value r will 
determine a simplicial complex Δr (typically a Čech complex Cr or a Rips 
complex Rr), as described in Section 5.1.

Simplicial homology is defined and computed for a single simplicial 
complex. This means that if we are trying to apply this tool to simplicial 
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complexes created from a data set with a metric, then we can only get homo-
logical information (i.e., information about similarity and clustering) about 
the data set by fixing a single filtration level r and computing the simplicial 
homology of Δr. This is problematic because it is entirely possible that for a 
specific data set, large-scale clustering does not show up at small filtration 
values, that more detailed, local phenomena are overlooked by large filtra-
tion values, and that both kinds of patterns are obscured by filtration values 
in between. As such, computing simplicial homology for a single Δr could 
fail to give us helpful information about patterns within our data. Situations 
like these demonstrate a need to compute the homology of Δr for many dif-
ferent values of r for a given data set/metric space.

However, even looking at the homology of data at many different filtra-
tion values is not necessarily good enough. In addition to the aforemen-
tioned scaling issues, it is also possible that, by only computing homology 
for a finite number of Δr’s, two data sets could appear to be the the same 
when, in fact, they are not. Consider two data sets A and B that are equipped 
with metrics dA and db, and let Δr

A and Δr
B be the simplicial complexes for 

 filtration value r for A and B, respectively. Suppose that we compute the 
homology of Δr

A and Δr
B for three different filtration levels r1,r2,r3 and we 

find that the two data sets have identical homology groups for each ri, 
i ∈​{1,2,3}. It is possible for A to have a hole that appears shortly after r1 and 
lasts until just before r3 while B has a hole that appears shortly before r2 and 
disappears shortly after. In this case, the homology groups for A and B at 
 filtration level r2 are identical and thus fail to capture the fact that the hole 
in A “persists” for a long time while the hole in B appeared and then disap-
peared rather quickly. We could remedy this issue by simply computing 
homology for A and B at many more filtration values (this is what we will 
do in practice), but ultimately we could experience the same problem with 
any finite number of filtration values.

As such, persistent homology theoretically computes simplicial homology 
of a data set for every filtration value r ≥ 0. Since filtration values lie on a 
continuum (the real line), this means that we compute the homology for a 
continuum of simplicial complexes Δr. Of course, it is physically impossible 
to record the homology groups for every filtration level r ≥ 0 along a con-
tinuum; therefore, we do the following in practice:

 1. Choose some (possibly large) finite number of filtration levels ri for 
1 ≤ i ≤ k,  compute the corresponding homology groups, and simply 
acknowledge that some persistence behavior may not be fully cap-
tured for the aforementioned reasons.

 2. Create barcodes, which indicate the number of holes in each dimen-
sion n ≥ 0 and the interval of persistence of each hole over some 
larger interval of filtration values (usually starting at r = 0). Barcodes 
are created by looking at the Betti numbers βn at every filtration 
value. There will be βn bars in the dimension n barcode, and each bar 
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will be placed along a number line so that the bar begins at the filtra-
tion value at which the corresponding hole appears (the “birth”) and 
ends at the  filtration value at which the hole disappears (the “death”).

Barcodes are particularly useful for showing the existence of (relatively) 
significant features in a data set. Short bars correspond to short-lived holes, 
often formed from noise within the data set; long bars represent holes that 
persist for long tolerance intervals and therefore represent features that are 
noise-resistant and, therefore, more significant. In all cases, bars are deemed 
“short” and “long” relative to one another so that the scale at which we are 
working is irrelevant.

5.4 Applications for Structural Geology and Tectonics

Patterns of deformation of rocks at the Earth’s surface are studied in the 
geologic fields of structural geology and tectonics (Davis, Reynolds, Kluth, 
2012). Observations of structures in rocks are not limited to purely macro-, 
or outcrop-scale features, such as lithologic contacts (i.e., bedding), faults, 
fractures/joints, or folds, but also scale down to microscopic features seen in 
thin-sections of rocks, such as mineral grain orientations (Davis, Reynolds, 
Kluth, 2012). To understand the structural or tectonic past of a region, geol-
ogists must first be able to describe the geometry of structures, which are 
essentially the architecture of the Earth’s crust, and interpret the patterns of 
deformation present (Karimi and Karimi, 2017). This becomes challenging 
when faced with multiple events causing overlapping features or with large 
data sets meant to be  interpreted with inevitable human bias. A method/
tool for processing structural/ tectonic data would be valuable to our 
 understanding of Earth’s history in regions, and how it affects the develop-
ment of crustal material, the emplacement of resources, etc.

The architectural features exhibited by different structures may be planar 
or linear depending on the type of feature described. Regardless of the feature 
type, two attributes are necessary—in addition to latitude and longitude—to 
describe these features in three-dimensional space. The first is orientation 
with respect to compass directions, which for planar structures is referred 
to as strike and for linear features is referred to as trend (Davis, Reynolds, 
Kluth, 2012). The strike is the trace found at the intersection between the 
 feature plane and a plane horizontal to the surface of the Earth. The trend 
is the orientation of a line projected onto a plane horizontal to the surface 
of the Earth. The second attribute describes how the feature is oriented in 
the vertical direction with respect to the surface, or a horizontal plane. For 
planar features, we refer to this as dip, and for linear  features it is called the 
plunge (Davis, Reynolds, Kluth, 2012). Depending on the local geology, there 
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may be many different structures that populate parts or entire areas within 
a region. The orientation of structures in space with respect to one another 
allows geologists to gain a deeper understanding of the complexities associ-
ated with single or  multiple deformation events (Karimi and Karimi, 2017). 
Analyzing these structures and their  patterns  ultimately enables geologists 
to better understand the conditions that allowed for the existing  deformation 
patterns, and it enables them to make stronger predictions as to the genesis 
of the region.

We present a case study involving two synthetic geologic data sets for 
analysis to exhibit the strength of our proposed methods and its ability to 
identify patterns. These data sets are processed to produce barcodes for H0 
and H1 to identify persistent patterns and the simplicial Rips complex � 2

1 . 
Visualizations of data at various intervals in the barcode are shown to better 
explain pattern persistence and connectivity.

5.4.1 Description of Data Sets

The data type we analyze are synthetic vector points representing field 
measured orientations of structures in rock bodies within a region. To keep 
the data set simple, we assume all the structures are planar and vertical 
relative to the surface of the Earth, whose dimensions are: latitude and 
longitude of the field measurement, and azimuthal orientation of strike. 
Non-vertical dipping structures can also be considered by the tool with the 
addition of another dimension that would account for the vertical angle of 
the feature relative to the surface of the Earth. We created two data sets, 
the first more simple, and the second more complex, to explore the efficacy 
and power of persistent homology in detecting large-scale topographic 
features.

The first data set shown in Figure 5.7 is a 4 × 4 grid of data points with 
azimuthally oriented strikes of structural features. The corresponding data 
table is shown in Table 5.1. Latitude (Y) and Longitude (X) are simple carte-
sian points not based on any geospatial coordinate system; however, latitude 
and longitude values associated with coordinate  systems may be used. There 
are two azimuthal strike orientations in this data set: 135° located along the 
northern and eastern perimeters, as well as at location 6, and 45°  surrounding 
location 6 (see Figure 5.7).

Data set 2 (Table 5.2) is visualized in Figure 5.8 and shows a more natural 
distribution of data, both geospatially and in strike orientation. This type of 
distribution is similar to what we see from authentic structural field data in 
valley and ridge provinces at orogenic (mountain) belts, and can be thought 
to represent data such as bedding, joint, fault, or fracture orientations.

Upon visual inspection, there are distinct patterns in both data set 1 (Figure 
5.7) and data set 2 (Figure 5.8) that we hope our methods can detect; these 
patterns are those based on azimuthal similarity. In particular, we hope to 
pick out the northeast-southwest trending strikes such as the “loop” around 
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observation 6 in Figure 5.7 and the southern swatch of Figure 5.8, as well as 
the northwest-southeast trending strikes in the respective complements.

For data set 1, the range of X and Y data is from 0 to 3, while the azimuthal 
data range from 45° to 135°. In data set 2, the cartesian coordinates range 
from 0 to 9, with azimuths ranging from 30° to 170°. Without normalizing 

13 14 15 16

9 10 11 12

5 6 7 8

1 2 3 4

z

FIGURE 5.7
Data set 1: A 4 × 4 grid of strike-oriented structural data.

TABLE 5.1

Data Set 1

ID X Y Azimuth

1 0 0 45

2 1 0 45

3 2 0 45

4 3 0 135

5 0 1 45

6 1 1 135

7 2 1 45

8 3 1 135

9 0 2 45

10 1 2 45

11 2 2 45

12 3 2 135

13 0 3 135

14 1 3 135

15 2 3 135

16 3 3 135
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FIGURE 5.8
Data set 2: A more realistic geospatial representation of structural features oriented according 
to their strike.

TABLE 5.2

Data Set 2

ID X Y Azimuth

1 0 0 45

2 1 0.5 168

3 2 5 162

4 3 1 158

5 0 1.2 40

6 1 2.5 170

7 2 7 165

8 3 9 160

9 0.5 4 35

10 1.8 2 50

11 2.2 2 65

12 2.9 2 80

13 0.2 3 30

14 1 3 44

15 2 3 59

16 4 3 74
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each dimension, pattern connections are expected to be determined mostly 
by azimuthal similarities more so than geographic  coordinates. When these 
methods are used for arbitrary data sets, considerations should be made as 
to what the most impactful dimensions should be, or if all dimensions are 
(or should be) weighted equally.

5.4.2 Data set Processing

To use our method of persistent homology, the first step is to identify the 
dimensions/variables of our observations upon which we wish to define the 
requisite distance function d. In our examples, we use the latitude (X), longi-
tude (Y), and azimuthal strike orientation (θ). We then define the distance d 
between two points a = (X1,Y1,θ1) and b = (X2,Y2,θ2) by

 d a b X X Y Y( , ) ( ) ( ) min(| |, | |) .= − + − + − − −2 1
2

2 1
2

2 1 2 1
2180θ θ θ θ  

Since our azimuths are all within the first 180°, we do not need to make 
adjustments to the data to have them fall within the same eastern hemi-
sphere; however, we do need to stay consistent and to that end only consider 
the smallest angular difference between the azimuthal strike of two lines.

For each data set (Tables 5.2 and 5.3), we started with an excel spread-
sheet with columns for latitude, longitude, and azimuthal strike for each of 
our datapoints. We then wrote the python script to calculate the distance 
between all pairs of points to generate a matrix, such as the one for data set 
1 in Table 5.3. From the data in Table 5.3, we can see that our distance func-
tion satisfies the four requirements: nonnegativity, definiteness, symmetry, 
and the triangle inequality. We then process the matrix with an algorithm 
to create barcodes showing the Betti numbers of Rips complexes, built from 
our data set and distance function, at a continuum of filtration values. The 
barcode distinguishes homology groups based on holes of dimension n, and 
the number of holes in each dimension n ≥ 0 and their persistence over the 
continuum of filtration values, or intervals. From here, we developed a tool 
in ArcMAP, a geospatial software created by ESRI®, to visualize the connect-
edness among patterns associated with user chosen points (specific filtration 
values) along the barcode. The tool adheres to the following steps:

 1. Accept a user-defined interval (t) along the barcode at which to make 
a visual. These intervals can essentially be thought of as similar to 
time. If we think about our 3-dimensional data set in 3-dimensional 
cartesian space, the interval relates to the size of a growing sphere of 
influence around each point. When two spheres touch, their respec-
tive points of origin are considered to be connected.

 2. Create an empty polyline shapefile and add a field, “pattern.” This 
field gives a unique identifier to connected patterns.
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 3. Divide the distance values in the matrix by 2. In our symmetrical 
matrix, since d(a,b) = d(a,b)/2 + d(b,a)/2, when two points’ d/2 < t, they 
are not considered to be part of the pattern at that interval value. If 
d/2 ≥ t, then the two spheres of influence touch and are considered 
part of a pattern.

 4. Since d(a,b) = d(b,a) and d(a,a) = 0, remove data from the matrix below, 
and including, the diagonal. This reduces the number of data to be 
processed as well as the processing time.

 5. Identify all data point pairs where d/2 ≥ t.
 6. Select any one of the identified pairs and connect their points with a 

line, entering a value of 1 in the pattern field.
 7. Identify any other point that is connected to either of the two points 

in step 6, and draw a line between them, again entering a value of 1 
in the pattern field.

 8. Identify any other point that are connected to those identified in step 
6 and continue drawing lines with pattern values of 1. Continue this 
until no points can be connected back to any of the points in pattern 1.

 9. Remove the points associated with pattern 1 from the selected items 
in step 4.

 10. Repeat steps 6 through 9, each time increasing the pattern value by 
1, until there are no more lines point pairs available.

These steps provide a linear shapefile that can be classified by pattern 
value to show the connectedness of data among patterns. The creation of so 
many lines can be computationally expensive, even though the final product 
is visually appealing and useful in its details for understanding how the pat-
terns evolve over time. An alternative, computationally less expensive pro-
tocol would create a unique pattern identifier among the original data set, 
rather than drawing lines. To better describe the mathematical approach and 
results, and since our data set is small, we chose to create the linear shapefile.

5.4.3 Results and Discussion

5.4.3.1 Data Set 1

The barcode and examples of patterns at different intervals for data set 1 
can be found in Figure 5.9. From the barcode for this data set for H0, each 
individual data point persists as a pattern until an interval of 0.5 (Figure 
5.9a). At an interval of 0.5, three new patterns emerge from connections made 
between data points (Figure 5.9b): the pattern in blue, the pattern in red, and 
data point 6. In Figure 5.9c, at an interval of 1.0, data point 6 merges with the 
red pattern group. The red and blue patterns persist until an interval value of 
45.056. At this value, all both patterns merge into a single pattern.
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At a rank of H0 many barcode items are identified, and two patterns are 
distinguished at an early stage, remaining persistent for a large interval 
range. The barcode associated with H1, however, identifies something rather 
unique about how the data are clustered. At  different interval ranges, there 
are two hollows identified using simplicial Rips complexes. At an interval 
of 0.5, the first � 2

1  hollow is created (blue pattern in Figure 5.9) and persists 
until an interval value of 1.0. From 1.0 until 1.118, another � 2

1  hollow persists. 
This hollow is in the red pattern group, and is a polygon identified by points 
6, 8, 12, 15, and 14. These hollows are rather short-lived given their interval 
ranges, but had they been persistent for long interval ranges, they may have 
had a significant impact on the  interpretation of the geologic history in our 
synthetic region.

The prolonged persistence of the two patterns in H0 is by far the most 
important aspect for a geologist who is seeking distinct patterns that may 
be related to natural forces in data set 1. Our methodology and tool are very 
effective in this instance; however, this data set is an idealized 4 × 4 model. 
We must explore more complex, seemingly “natural” data sets.
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FIGURE 5.9
Barcode for structural features in data set 1. Visualizations for intervals: (a) 0.28, (b) 0.5, (c) 1.0, 
(d) 1.118, and (e) 2.5.
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5.4.3.2 Data Set 2

Data set 2 is a more natural distribution of geospatial, oriented structural 
data, modeled after structural data from orogenic belts. The resulting bar-
code for this data set can be found in Figure 5.10. Unlike the barcode for data 
set 1, there were no ranks higher than H0. Until an interval value of 1.414, 
the 16 data points are recognized as 16 different  pattern sets (Figure 5.10a). 
As the interval value increases from this point, connections are made, and 
at an interval of 2.872 only 6 pattern sets exist (Figure 5.10b): the blue pat-
tern set, the red pattern set (3, 4, 7, and 8), points 2 and 6, point 11, point 12, 
point 15, and point 16. It is not until an interval value of 4.637 that only two 
pattern sets remain, and these sets  persist until 20.006. Figure 5.10c repre-
sents this pattern set at an interval of 5, although this pattern persists much 
longer. At 20.006, connections between the red and blue pattern sets start to 
form, identifying a single pattern set persistent at all higher interval values 
(see Figure 5.10d).

The distinct patterns that we can visually assess for data set 2 (discussed 
in Section 4.1), are persistent for a fairly long range (4.637–20.006). These long, 
persistent interval ranges represent interval values that most likely best 
highlight pattern sets. However, a strength of our methods is the opportu-
nity to explore how soon/late pattern sets are considered merged into larger 
pattern sets, allowing for a stronger analysis of similarities between pat-
terns. Geologically, this becomes rather important, particularly with knowl-
edge regarding how differently oriented structures are related to a single 
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stress field orientation. Seeing how these patterns interact with one another 
as interval values increase may allow for more detailed interpretations and 
conclusions regarding the geologic history of a region.

5.5 Concluding Remarks

The goal of this chapter was to describe a mathematical tool that can be 
used to recognize patterns of similarity in geospatial data. Our described 
method and short case study of synthetic geologic structural data types 
have accomplished this goal. The visualization of patterns at different inter-
vals provides an extremely powerful tool for researchers to effectively ana-
lyze patterns, how they connect, and when they connect. While this chapter 
uses a structural geology and tectonic context for its example, it is important 
to note that this tool could be effective for any geospatial data within any 
discipline.

There is much left to explore still, such as data types: within the realm 
of geology, there are qualitative data sets—such as rock type—that with 
unique approaches could be  quantified and considered in similarity pat-
terns. Additionally, further research must include the effects of normalizing 
each dimension, increasing the number of dimensions considered by the dis-
tance function, and more efficient computational adaptations of persistent 
homology. This method will require much adaptation and exploration to 
fully understand its limits, but the benefit of such methods/tools in recog-
nizing patterns is clear.
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6
LiDAR for Marine Applications

Ajoy Kumar and Nathan Murry

6.1 Introduction

Light Detection and Ranging, or LiDAR (also known as laser altimetry), is an 
optical remote sensing technology for generating precise and directly geo-
referenced spatial information about the shape and surface characteristics of 
the Earth (NOAA 2012). It has become a primary means for collecting very 
dense and accurate elevation data across landscapes, shallow-water areas, 
and project sites. LiDAR was initially developed during the 1960s by the 
National Aeronautics and Space Administration (NASA) to better measure 
properties of the earth such as ice sheets, the ozone layer, and atmospheric 
pollutant levels. At first, LiDAR was not designed or used for topographical 
mapping, primarily due to a lack of a strong network for geo-referencing. 
However, by the 1990s, an expanded GPS network was established, making 
extended topographic expeditions worthwhile. This resulted in large vol-
umes of LiDAR data becoming available to the public and the scientific com-
munity. While NASA continues to be at the forefront of LiDAR usage and 
development, numerous private enterprises and foreign governments have 
become increasingly involved in further development of LiDAR technology 
for advanced GIS-based analysis. Despite the fact that there are a number of 
established commercial and governmental websites that provide access to 
the extensive and ever-growing compendium of LiDAR data, the process-
ing methods and applications are largely developed by the end users of the 
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data itself. Advancements in LiDAR technologies over the past 10–15 years 
have enabled scientists and geospatial professionals to examine natural and 
man-made environments across a wide range of scales with great accuracy, 
precision, and flexibility.

From a technical perspective, LiDAR is an active remote sensing technique 
similar to radar but uses laser light pulses instead of microwaves (NOAA 
2012). These light pulses are intense, focused beams of light which are emit-
ted and then reflected off any of the various surfaces on the ground. A sen-
sor onboard the collection platform detects when these light emissions are 
returned. Geospatial three-dimensional (3D) coordinates (such as x, y, z or 
latitude, longitude, and elevation) of the target objects are computed from 
the time delta between the laser pulse being emitted and returned, the angle 
at which the pulse was sent, and the GPS location of the sensor on or above 
the surface of the Earth. LiDAR systems are considered “active” remote 
sensing systems, as they emit pulses of light and then detect the reflected 
pulses. This fundamental characteristic allows data to be collected at night 
when the air is typically clearer and the sky less congested with air traf-
fic. Consequently, most LiDAR data collection missions are flown at night. 
The drawback to light pulses is that they cannot penetrate clouds, rain, or 
haze, which is a notable difference between LiDAR and RADAR, the latter of 
which can penetrate these natural obstacles with microwave pulses. While 
data collection missions are usually done from the air, where a system can 
rapidly collect points over large areas, many are also run from ground-based 
stationary and mobile platforms. All of these techniques are popular within 
commercial and scientific communities due to their advanced capabilities in 
producing extremely high accuracies and point densities, thus permitting 
the development of precise, realistic 3D models of most man-made or natural 
structures on the earth’s surface (Table 6.1).

LiDAR systems can rapidly measure the Earth’s surface, at sampling rates 
greater than 150 kHz, or 150,000 pulses per second (NOAA 2012). The result-
ing product is a densely spaced network of highly accurate georeferenced 
elevation points, known as a point cloud. Point clouds are used by GIS or 
other analysis software packages to create 3D representations of the Earth’s 
surface and its features. Many LiDAR systems operate in the near-infrared 
region of the electromagnetic spectrum, although some sensors also oper-
ate in the green band to penetrate water and detect bottom features. These 
bathymetric LiDAR systems can be used in areas with relatively clear water 
to measure seafloor elevations. Typically, LiDAR-derived elevations have 
absolute accuracies of roughly 4–8 inches or 10–20 centimeters (NOAA 2012). 
To arrive at this level of accuracy, it is important to know within a centime-
ter or so where the data collection platform is located spatially as it travels. 
This is particularly important in an airborne platform as it flies, poten-
tially through turbulence, while keeping track of hundreds of thousands of 
LiDAR pulses every second. Fortunately, advancements in global position-
ing systems (GPS) technologies and precision gyroscopes make it possible. 
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Additionally, significant improvements in inertial measuring units (IMU) or 
inertial navigation systems (INS) have been vital to making the exact posi-
tioning of the platform possible. These systems are capable of measuring 
movement in all directions and parsing these measurements into a position. 
They are not perfect or foolproof, and lose precision after only a second or 
so. A sophisticated GPS unit, which records several types of signals from 
GPS satellites, is used to update the INS and IMU every second or so. The 
GPS positions are recorded by the plane and also at a ground station with a 
known position. The ground station supplies a correction value GPS position 
recorded by the plane.

6.2 LiDAR Data Acquisition and Initial Processing

The data used in this study were obtained using NASA’s Airborne 
Topographic Mapper (ATM), an advanced LiDAR system capable of multi-
ple-return data acquisition. LiDAR data collection missions were flown over 

TABLE 6.1

LiDAR Data Classifications (NOAA)

Classification Value Meaning

0 Never classified/default
1 Unassigned
2 Ground
3 Low vegetation
4 Medium vegetation
5 High vegetation
6 Building
7 Low point
8 Reserved
9 Water
10 Rail
11 Road surface
12 Reserved
13 Wire—guard (shield)
14 Wire—conductor (phase)
15 Transmission tower
16 Wire-structure connector (insulator)
17 Bridge deck
18 High noise
19–63 Reserved
64–255 User definable
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the Barrier Islands along the Eastern Shore of Delmarva Peninsula (Krabill 
et al. 2000). The flight tracks, shown in Figure 6.1, cover most of Assateague 
Island and Wallops Islands, VA. The Nature Conservancy (TNC) provided 
a Digital Terrain Models (DTMs) of the same area created using data from a 
previous mission, which proved valuable for filling in the gaps in the LiDAR 
coverage acquired on this ATM flight.

Prior to analysis in GIS software, LiDAR data must undergo a series of pre-
processing steps as shown in Figure 6.2. This process chain converts the data 
into an accessible file format and transforms it to the local coordinate system 
desired for the end products. For this study, ATM provided two types of 
proprietary binary data, QFIT and VALID. The VALID file format provides 
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FIGURE 6.1
Flight tracks and gaps in the April 2010 ATM LiDAR data acquisition flight.
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full waveform data that encompass all the returns detected by the sensor. 
This affords more control to the end user in the interpretation process of the 
physical measurement. QFIT data contains one return only. In the case of a 
more focused study, this data format is more desirable, particularly in the 
case of the system’s concise first return data. More time can be dedicated to 
the processing and validation of a smaller dataset, allowing a higher level 
of refinement and a better final product. Both data types were originally 
formatted using the QFIT 12-word method, which is an organization of (12) 
32-bit binary words, equivalent to an Interactive Data Language (IDL) long 
integer. These words are scaled appropriately in order to maintain the preci-
sion of the original measurements (scaling factors are standard for the qi-
12-word format). The binary words contain a series of 12 element records 
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Virginia South ft./NAVD88
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LiDAR ASCII
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FIGURE 6.2
LiDAR data preprocessing chain.
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corresponding to the individual LiDAR returns, which contain geospatial 
position of the return, time stamp, returned energy, and other attributes.

QFIT binary data must first be converted to ASCII text format in order 
for it to be properly analyzed, rendered, and displayed. This first conver-
sion was accomplished using IDL software via custom written scripts. 
Included in these scripts are the scaling factors mentioned above, which con-
vert the raw data to numeric values (latitude, elevation, GPS time, etc.). The 
script allows the user to choose which data words to convert and extract, 
as opposed to being made to convert all 12 (for larger datasets, this feature 
noticeably cuts down the time needed for conversion). For the purposes of 
this study, only longitude, latitude, elevation, and received energy strength 
was processed and converted to ASCII (in that order, which is critical for 
scripts and rendering down the processing chain). Additionally, the script is 
capable of cropping the data to specific areas (rather than an entire dataset), 
and processing the data to different geographic coordinate systems based 
on the user’s requirements. Script conversions included UTM/WGS84, XYZ/
geographic LAT/LON, and varying forms of decimal degrees. This allows 
multiple avenues of analysis and later comparison of results. For this study, 
data were processed in UTM and geographic LAT/LON. Since these scripts 
were critical to downstream processing, considerable time was spent test-
ing and validating the output against known results, as it is essentially the 
base of the processing chain for non-GIS analysis (Note: Validation methods 
are covered more in depth in the following section). In this case, the WGS84 
Ellipsoid in the International Terrestrial Reference Frame (ITRF) was used at 
the time of the survey, which caused all data to be recorded in that coordi-
nate system from the sensor. Unlike traditional geographic coordinate sys-
tems, the ITRF is a dynamic reference frame that is updated to improve its 
accuracy and reflect the changing geographic status of the planet, as in the 
case of moving tectonic plates, by means of a large network of ground control 
stations. The WGS84 coordinate system is improved through the use of ITRF 
by periodically realigning it to the most current iteration of the ITRF at the 
time of processing. For this study, the G1150 realization of WGS84 was used, 
which aligns to the ITRF00 frame introduced in 2002. When executed, the 
IDL script extracted the aforementioned QFIT data elements in the WGS84 
G1150 system as well as the Universal Transverse Mercator (UTM) coordi-
nate system and XYZ/geographic LAT/LON for comparison analysis.

Evaluation of the impact of sea level rise (SLR) and flood inundation 
requires that the data be presented in context to the region around Wallops 
Island, VA. This necessitates conversion from the data’s native WGS84 G1150 
coordinate system, which is globally relative, to the North American Datum 
1983 (NAD83) which adjusts the representative ellipsoid to maximize con-
gruence with the North American continent. This can be accomplished by 
using the defined 14-parameter horizontally time-dependent positioning 
(HTDP) ITRF00 to NAD83 transformation (with a time parameter of April 
30, 2010), which consists of time factored scaling, translation, and rotation 
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parameters. After the conversion to NAD83, a horizontal conversion is made 
to the NAD83 State Plane Virginia South coordinate system, and finally to 
the NAD83 HARN State Plane Virginia South coordinate system. This repre-
sents a further refinement of the NAD83 datum to ensure that the southern 
area of Virginia is most consistent with the ellipsoid. In regard to vertical 
heights, the original measurements are made relative to the ellipsoidal height 
of the WGS84 ellipsoid; these measurements are converted to the North 
American Vertical Datum 1988 (NAVD88) by using the Geoid99 model which 
consists of a grid of calculated displacements. The above geographic conver-
sions are performed using a Geographic Calculator, a geospatial transforma-
tion toolbox from Blue Marble Geographics, Inc. This software tool provides 
batch data file processing, flexible ASCII input and output formatting, and 
support for HTDP, among other linear unit transforms using an extensive 
database of geographic coordinate systems and transformations. It must be 
noted that when initially rendered in any of the available tools, the terrain 
elevations all exhibited an offset of approximately –37.5 m. This is due to a 
disparity between the data gathered in UTM (ellipsoidal heights), the geoid 
of the earth, and the reference datum. Initially, LiDAR data were collected 
in UTM projection, with a point density of one per square meter. UTM is 
referred to as “pseudocylindrical” by cartographers and geographers since 
it is designed to preserve the perceived shape of the Earth’s surface. Thus 
emerges a disparity between the ellipsoid, geoid, and reference datum of 
the Earth, which clearly presents an issue for researches of the Mid Atlantic 
coastal environment. Furthermore this explains the unusual negative eleva-
tion values on the LiDAR data, as the UTM projection (ellipsoidal) was below 
the geoid of the earth. To meet the end goal of the project elevation values, 
they had to be changed to sea level values to model effects of sea level rise and 
flood inundation from storms (Webster et al. 2003). Thus, a transformation 
of datum height values was required to attain the proper elevation readings, 
which necessitated a conversion of the data in both vertical and horizontal 
planes. This conversion was accomplished using a Geographic Calculator in 
three distinct steps. The first step was to take the data, which were format-
ted in WGS84 coordinates, and convert them to NAD83/VA SPCC via the 
Blue Marble ITRF00 to NAD83 HTDP transform (dated 4/30/10). The second 
step was to convert the data, now formatted in NAD83/VA SPCC, to NAD83 
HARN SPC VA South via the Blue Marble NAD83 to NAD83 HARN trans-
form. The all-important third step was to convert the vertical plane from 
WGS84 Ellipsoidal Heights to the North America Vertical Datum 1988 using 
the Blue Marble GEIOD99 grid. Once all of these conversions are complete, 
the final ASCII files are ready for the next stage of processing.

While providing human readability and a degree of flexibility, ASCII files 
are inefficient as a means for storing and manipulating LiDAR data. Instead, 
the LiDAR points are converted (through differing means) to LiDAR Archive 
Standard (*.LAS) files, which is the industry standard file format designed 
specifically for the containment of LiDAR specific information for exchange 
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or dissemination. It is a binary compact format (as compared to ASCII), and 
easy to read and use within a wide range of GIS, CAD, and other LiDAR data 
processing tools. LAS files can be analyzed individually (given their poten-
tially enormous file sizes) or collectively. For more of a macro data analysis 
(as this study was), it proved more beneficial to merge the LAS files together 
for a more comprehensive analysis. In this study, conversion and merging 
of ASCII files to LAS was done using ENVI’s LiDAR toolkit. These opera-
tions were also test-run in LASTOOLS, an open-source software package 
for processing LiDAR data. Processing in LASTOOLS allowed a comparison 
between the two LiDAR outputs. The LAS data now move to final product 
generation and validation.

6.3 Generation and Validation of Final Products

In order to generate DTMs that accurately represent bare earth surfaces or ter-
rain, a process of classification must be undertaken in which valid data points 
are “classified” as various potential ground features such as vegetation, water, 
and so on. This process also identifies the “outlier” or invalid data points and 
marks them for removal in subsequent processing stages. Such invalid points 
can result from pulse returns off birds, aircraft, clouds, ocean waves or mist, 
and so on. The overall flow of classification is detailed in Figure 6.3. Two com-
mercial software packages were used extensively for this series of steps: Blue 
Marble Geographics Global Mapper and TerraSolid. Global Mapper software 
has features that proved extremely useful as a rendering and profiling tool 
for data formatted elsewhere. TerraSolid is a state-of-the-art modular CAD 
system for LiDAR data processing and imaging, run on a powerful worksta-
tion to take maximum advantage of its features. In particular, the TerraScan 
module was used for loading the LAS cloud-point files, filtering out artifacts, 
and creating the DTM cloud-point by eliminating buildings, trees, and other 
non-terrain elements (the DTM cloud-point data could then be used in Global 
Mapper for detailed color renderings and beach profiles). The TerraModeler 
module was used to create various surface models from the cloud-point data, 
colored by absolute elevation. While these models are excellent for scientific 
analysis, similar renderings created in Global Mapper are easier to manip-
ulate and add pertinent data for presentation purposes. It should be noted 
that extensive testing and experimentation went into determining the best 
way to display the data (in TerraScan or Global Mapper), how to remove ter-
rain features (be they man-made or otherwise), render the DTM, and pre-
pare the results for presentation. Once the LAS cloud-point data were read 
into TerraScan, it could be filtered and modeled as needed using tools from 
TerraSolid and Microstation. Since this started as QFIT rather than VALID 
format, there is only one return to work within the converted LAS files. If the 
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data are colored by return, obviously only one color will display, which is less 
than helpful. This can be initially dealt with by changing the display mode 
to color the data by elevation, which can give the user a better context of the 
data. From the onset of loading data in TerraScan, all data points are clas-
sified as “1-Default.” Using the Classify > Routine > By Class algorithm, all 
points were reclassified as “2-Ground.” This provided a base class where all 
remaining terrain points would stay, while filtered points would be classified 
elsewhere. Note from here that the entire methodology of creating DTMs in 
TerraScan and Global Mapper is based on proper classification of points, and 
then modeling or exporting those classes that are desired, while eliminating 
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those that are not. Now that all points are classified as “2-Ground,” filter-
ing can begin. There were two areas that were processed heavily: the first is 
the southern peninsula of Assawoman Island, VA; the second was the entire 
NASA Flight Facility at Wallops Island, VA. The base has numerous build-
ings, towers, and other man-made structures that needed to be removed 
for the creation of a DTM, which made data classification a more extensive 
undertaking. Conversely, the Assawoman peninsula has no such features 
and its Digital Surface Models (DSM) is essentially a DTM as it requires only 
some minimal filtering. It is worth noting that the dataset as a whole was lit-
tered with various artifacts and anomalies, which rendered as tall spikes in 
the models and caused the elevation coloring to be skewed considerably due 
to the software tool’s attempt to triangulate the anomalies with the rest of the 
dataset. These artifacts can generally be explained as blips during/after data 
acquisition, flocks of birds, wave spray, and so on. The first step in filtering 
was to use the Classify > Routine > Isolated Points algorithm in TerraScan to 
a resolution of 3.5 feet. In other words, the algorithm examines all the points 
in the loaded set. If it comes across a point in the data space that has no other 
points within 3.5 feet of itself, it is classified as an isolated point and placed 
in the “1-Default” class. The Default class would be the “trash-can” of sorts 
for anomalies and other such useless points. In the case of the Wallops base, 
the next step was to classify points by the Classify > Routine > By Absolute 
Elevation algorithm in TerraScan. This made it possible to break the overall 
elevation range (approximately –10 to 158 feet) into pieces and classify data 
points by low, medium, or high vegetation, and buildings. Once the build-
ing points and high vegetation were filtered out, the rest of the points were 
regrouped into one classification (“2-Ground”) for modeling in TerraModeler 
and Global Mapper. Extensive trial and error for elevation parameters was 
tested here, as the balance had to be achieved between filtering out what was 
needed (buildings, anomalies, etc.), while not scraping into the “bare earth,” 
and eliminating good data. While the algorithms detailed above provided 
about 90% of the needed filtering, it was still necessary to perform some of 
classification manually. This was accomplished by using the Microstation 
“View Rotation” and “Pan” tools to view the data from the right sides (per-
pendicular to the ground), zoom in to the southernmost point of the data, and 
steadily scan northward. When anomalous or non-terrain points are encoun-
tered, they can be corralled by the Microstation “Fence” tool, and then clas-
sified by the Classify > By Class tool, selecting the appropriate class (being 
sure to check “Inside Fence,” which applies the classification only to the 
fenced in points). This manual technique for classification was very effective 
for micro-filtering, but also very tedious and time consuming (this is a good 
example of why the cropping/filtering of data at the ENVI Script stage was 
so important). Once all of the classification was completed to an acceptable 
level, the cloud-point data were re-saved to their own LAS file. This allowed 
a proper comparison to the unclassified and unfiltered data in subsequent 
processing steps. At this point, the filtered and classified cloud-point data 
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were ready to be modeled in TerraModeler and rendered in Global Mapper. 
TerraModeler takes the cloud-point data and creates a 3D surface model from 
them, exquisitely detailed and colored by absolute elevation. Rendering, pro-
filing, and additional 3D images of the data were then performed in Global 
Mapper. These operations did not modify the data, but only changed parame-
ters that dealt with the map legends, scales, and coloring. Beach/land profiles 
were obtained with Global Mapper’s Profiling Tool, with comparisons made 
between the unfiltered DSM, the filtered/classified DTM, and VA State data 
from the exact same latitude/longitude positions. These images are found 
and explained in more detail in the Results section.

To evaluate the performance of the classification exercises above, the bare 
earth model (DTM) needed to be validated against known ground truth 
points, which was done in two stages. First, the TNC LiDAR data were vali-
dated against 359 control points provided by NASA. Before calculation of the 
root mean square (RMS) error, the outliers and residuals greater than +/–1 
foot were removed. There were 21 such outlying points found and eliminated 
when comparing the TNC DTM to the NASA control points. The RMS error 
value for these remaining 338 points was 0.430 feet, or 13.113 centimeters. 
This was then considered the approximate “goal” of accuracy. In the next 
step, the DTMs processed in this study were validated with the TNC dataset 
and a reduced set of NASA control points (105). This reduced set was neces-
sitated due to gaps in the processed DTM shown in Figure 6.1. Hence, once 
the final DTMs were created, all 359 control points were loaded in TerraScan. 
An Output Control Report was run, and any control points outside the pro-
cessed data range were eliminated. This new set of control points was then 
compared to the same DTM, only rendered in Global Mapper. A similar 
report was run and points outside the processed data range were eliminated. 
(NOTE: there are slight differences in how TerraSolid and Global Mapper 
render datasets, which is why there were some control points that were valid 
in one program and not the other, and vice versa). There were three primary 
RMS error analyses performed against these 105 control points: the Method 2 
DTM in Global Mapper, the Method 2 DTM in TerraScan, and the TNC DTM 
in Global Mapper. The DTMs outlined in this study are roughly 2 cm better 
than the TNC DTM against the same 105 control points, and extremely close 
to the TNC DTM baseline. The residual comparisons between the custom 
data processing chains in Global Mapper and Terrasolid against the TNC 
processing chains are shown in Tables 6.2 and 6.3.

6.4 Results and Discussion

Figure 6.4 shows the DEM created with LiDAR data obtained from the sur-
vey conducted with the NASA ATM sensor. The figure provides a good 
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visual indication of the coverage density resulting from the ATM scan. The 
region covers parts of the NASA Wallops Flight Facility (WFF) and the sur-
rounding salt marshes. The higher elevations, represented in red, are build-
ings located at the NASA WFF. The elevations in dark green depict roads 
and bridges. Note also the causeway at the entrance to the island in the NW 
corner of the image. Elevations in light blue and light green portray channels 
and salt marshes, respectively. The ocean waters are depicted in dark blue 
and are not processed well in this study due to low laser backscatter from 
water surfaces. Overall, the LiDAR-derived DEM portray ground features 
illustrated by elevation.

Figure 6.5 shows the bare earth model or DTM of the same area after 
removal of buildings, trees, and other structures by the classification method 
described above. The highest elevation in DTM is ∼5 feet compared to the 
DEM of nearly ∼30 feet. The LiDAR-derived terrain surfaces can be rendered 
in models to illustrate low-lying areas that would flood especially during 
winter storms and SLR. The success of the DTM creation can be seen in 
Figure 6.6, which shows what was eliminated from the DEM to arrive at the 
DTM. It also illustrates that the classification works best on the NASA base 

TABLE 6.2

RMS Comparisons between Custom Processing in Global Mapper and TNC 
Processing

Method 2 DTM Residuals 
(105 ctrl pts.), Global Mapper

TNC DTM Residuals (105 ctrl pts.) 
Global Mapper

FT CM FT CM

AVG DZ –0.057428571 –1.750422857 –0.234457143 –7.146253714
MIN DZ –0.866 –26.39568 –1.329 –40.50792
MAX DZ 0.945 28.8036 0.871 26.54808
RMS 0.437931393 13.34814885 0.49454125 15.07361729
STD DEV 0.436231851 13.29634683 0.437520264 13.33561764

TABLE 6.3

RMS Comparisons between Custom Processing in TerraScan and TNC 
Processing

Method 2 DTM Residuals 
(105 ctrl pts.), Terrascan

TNC DTM Residuals (105 ctrl pts.) 
Global Mapper

FT CM FT CM

AVG DZ –0.053714286 –1.637211429 –0.234457143 –7.146253714
MIN DZ –0.871 –26.54808 –1.329 –40.50792
MAX DZ 0.945 28.8036 0.871 26.54808
RMS 0.442950583 13.50113377 0.49454125 15.07361729
STD DEV 0.441790494 13.46577426 0.437520264 13.33561764
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FIGURE 6.4
Initial DEM final product from Global Mapper (minus outlier points).
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FIGURE 6.5
DTM final product from Global Mapper, depicting the apparent bare earth terrain.
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where there are high-rise structures. The salt marsh regions are essentially 
bare earth and do not show up in the difference image.

LiDAR-derived data can be used for many coastal applications including 
studies involving shoreline changes and mapping, episodic erosion, coastal 
geomorphology, land use planning, coastal inundation mapping, habitat 
analysis, and vegetation classification (https://coast.noaa.gov). Some appli-
cations derived from this study are described below.

LiDAR-derived elevation data are used to produce high-resolution topo-
graphic and bathymetric maps over shallow regions. These maps can be 
used for extracting shoreline positions and quantifying shoreline changes. 
Figures 6.7 and 6.8 are profiles taken from the DEM and DTM. These pro-
files track the elevation of the bare earth and beaches in this location. If 
validated against spot elevations determined with the “total station” survey 
instrument, they can be of immense value to study erosion and accretion 
processes.

LiDAR technology can play an important part in environmental conserva-
tion and restoration.

Many coastal species of plants and animals use small elevation changes to 
build their habitat.

An illustration of LiDAR habitat application is shown in Figure 6.9. The 
brown areas in the image depict beach elevations on the South side of the 
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FIGURE 6.6
A model of the feature points that were removed during DTM creation.

https://coast.noaa.gov


145LiDAR for Marine Applications

island. The red diamonds overlaid on the DTM are nesting locations of the 
endangered piping plover. The inset shows a profile across one of the nest-
ing sites. The beach profile reveals that the piping plover always nests on the 
leeward side of sand dunes, perhaps to protect their nest from the waves and 
wind.

Another example of how LiDAR data can be used to study beach habitats is 
shown in Figure 6.10. The figure shows the habitat locations of three species 

FIGURE 6.8
Terrain profile of the final DTM.

FIGURE 6.7
Terrain profile of the initial DEM.
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of anurans overlaid on a LiDAR-derived topographic surface. Anurans are 
endangered species that also rely on small elevation changes to build their 
habitat.

LiDAR maps are frequently used to illustrate small-scale tidal or weather 
related inundation and coastal flooding events. Figure 6.11a–d demonstrates 
a simple bathtub model where the different stages of inundation of marsh-
lands and surrounding wetlands around Chincoteague Bay, VA are depicted 
as hurricane Sandy came ashore. Accurate LiDAR data are important as sub-
tle changes in elevation can affect the horizontal extent of the water surface.

LiDAR elevation accuracy and resolution are important factors when used 
as input in the Sea Level Affecting Marshes Model (SLAMM) to simulate the 
dominant processes involved in wetland conversions and shoreline change 
during long-term SLR. The LiDAR data that are used as input to the model 
decrease the uncertainty in model prediction.
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(a) A DTM of Chincoteague Bay, VA, employing bathymetric LiDAR data.  (Continued )
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6.5 Conclusion

Results are discussed from a baseline topographic survey of the NASA WFF 
and surrounding region. NASA ATM was used to acquire LiDAR data to 
sample terrain of the aforementioned area. After converting the datasets to 
sea level elevation, the files were processed using two different approaches 
and used a variety of software including TerraSolid, geographic informa-
tion system (GIS), Global Mapper, LP360, and ENVI’s LiDAR Toolkits. This 
research provides a number of DSMs of Wallops and Assawoman Islands 
in Virginia. The DEMs were furthered classified and processed to produce 
a number of DTMs. These DEMs and DTMs provide a baseline assessment 
of Wallops and Assawoman Islands in Virginia and serve to standardize 
a work flow routine for future DEM and DTM production. Gaps in the 
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(b) An inundation model of Mean Sea Level against the NOAA Mean High Water vertical 
datum, superimposed on the DTM from (a).  (Continued)
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NASA data collection were filled in using data provided by The Nature 
Conservancy (TNC) DEMs and processed further to provide a complete 
DTM of the region. The DEM and DTM products were extensively validated 
using NASA Control points, TNC DEM/DTMs, and field surveys of the area 
using GPS and Total Station derived ground elevation points. The validation 
demonstrated that the elevation residuals (DTM minus control point) were 
less than +/–14 cm. This demonstrates that the generated DTMs are better or 
closely comparable to similar DTMs of the area. Further improvement in the 
DTMs can be achieved by processing the waveform data supplied by NASA. 
Further analysis of the data was done using piping plover nesting locations 
provided by the US Fish and Wildlife Service (USFWS). The results demon-
strate that the piping plover uses the leeward side of sand dunes to nest and 
thus protects its young from offshore physical processes like waves, wind, 
etc. Although many possible reasons can be gleaned from this result, a com-
plete analysis is needed for confirming the nesting behavior of these birds. 
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(c) An inundation model of the Spring Tide from October 2012, superimposed on the DTM from (a). 
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The DTMs also illustrated a number of beach processes that can be observed 
only from synoptic data collected from remote sensors like the LiDAR. This 
project not only examined island morphology over time, but also was used 
in models to study the potential impacts of sea level rise on the coastal eco-
system from climate change and east coast cyclogenesis.

It is the authors’ hope that this chapter encourages further applications of 
LiDAR bare earth models, especially in the marine environment.
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7
Spatiotemporal Point Pattern Analysis 
Using Ripley’s K Function

Alexander Hohl, Minrui Zheng, Wenwu Tang, 
Eric Delmelle, and Irene Casas

7.1 Introduction

Many geospatial phenomena are involved with movement across space, for 
instance, movement of humans and animals, the dispersal of plants, and the 
diffusion of infectious disease (Gould 1969; Demšar et  al. 2015). Our abil-
ity to collect fine-resolution spatiotemporal data with high accuracy has 
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substantially improved, given the rapid development of geospatial tech-
nologies: location-aware smartphones track their owner’s daily movements, 
sensor networks record biophysical variables in real time, and volunteered 
geographic information is easily accessible online (Kwan and Neutens 2014). 
While the study of geospatial movement or diffusion phenomena has received 
increased attention, the analysis of the spatiotemporal data associated with 
these phenomena remains challenging (Diggle 2013; Goodchild 2013; An et al. 
2015). In this study, we aim to investigate the use of Ripley’s K function for the 
analysis of spatiotemporal point patterns to gain insight into this challenge.

The Ripley’s K function (Ripley 1976) is a quantitative approach that falls 
within the domain of spatial and spatiotemporal point pattern analysis. 
Spatial point pattern analysis is concerned with quantifying the distribution 
of point events in 2D geographic space (Illian et al. 2008). It has widespread 
applications, such as in plant ecology (Wiegand and Moloney 2004; Perry, 
Miller, and Enright, 2006), epidemiology (Gatrell et al. 1996), and criminol-
ogy (Anselin et  al. 2000). Ripley’s K function characterizes a given set of 
points and distinguishes between random, clustered, and regular patterns. 
However, the use of point pattern analysis for evaluating spatiotemporally 
explicit phenomena lags behind in the availability of spatiotemporal datas-
ets. It is important to note that spatiotemporal does not equal 3D, due to the 
orthogonal relationship between space and time (Nakaya and Yano 2010) and 
due to the peculiarity of the temporal dimension that clearly distinguishes it 
from the 2D spatial dimensions (Aigner et al. 2007). This further complicates 
the analysis of spatiotemporal point patterns.

The objective of this work is to investigate the capability of Ripley’s K 
function-based point pattern analysis for the study of dynamic geospatial 
phenomena. Specifically, we focus on the combined use of global and local 
forms of Ripley’s K function and present a case study of dengue fever in the 
city of Cali, Colombia to illustrate the benefits of this methodology.

The remainder of the chapter is organized as follows: Section 7.2 provides 
the background about global Ripley’s K function, followed by Section 7.3, 
which discusses the temporal extension of the K function and its local vari-
ant, as well as specific details about our own implementation of the local 
Ripley’s K function for spatiotemporal point pattern analysis. In Section 7.4, 
we present a case study where we apply Ripley’s K function, followed by 
results (Section 7.5) and conclusions (Section 7.6).

7.2  Background: Global Ripley’s K Function 
for Spatial Point Pattern Analysis

Different approaches exist to evaluate the level of spatial clustering among 
point events (Bailey and Gatrell 1995; Delmelle 2009). For instance, the 



157Spatiotemporal Point Pattern Analysis Using Ripley’s K Function

quadrant analysis essentially counts the number of events within each cell 
(quadrant) of a grid imposed on a study area. The results are compared with 
the expected frequency of occurrence if the mechanism generating those 
events was a homogeneous Poisson process (corresponding to point patterns 
that exhibit complete spatial randomness—i.e., CSR). Despite its ease of imple-
mentation, quadrant analysis is an area-based approach that aggregates orig-
inal point events into quadrant counts, which makes this approach sensitive 
to the design of quadrants (e.g., shape and size). The nearest neighbor statistic 
(Diggle, Besag, and Gleaves 1976) alleviates this problem by testing whether 
point events are closer together (or farther apart) than expected under CSR 
based on nearest-neighbor distance. This distance-based approach suffers 
from some limitations, most notably that clustering is typically detected at a 
relatively small scale, and that distance among events is the only parameter 
governing the statistic. While the nearest-neighbor approach uses distances 
only to the closest events and hence only considers the smallest scales of 
patterns, Ripley’s K Function provides a superior alternative in that it evalu-
ates point patterns at different scales (Ripley 1976). By comparing the spatial 
pattern of the observed data points to simulated data, the K function can 
indicate for each of the scales evaluated whether the observed point pattern 
follows a random, clustered, or regular configuration.

Ripley’s K function is a statistical approach computed on a set of point 
events distributed in n-dimensional space, and estimates the second-order 
property (variance) exhibited by the data. It takes into account (1) the number 
and (2) distance between the point events, and allows for quantifying how 
much the observed pattern deviates from randomness at multiple spatial 
scales (Bailey and Gatrell 1995; Dixon 2013). The theoretical K function, given 
a set of point-events S, is calculated by dividing E, the number of events 
that are expected to fall within distance d, by the intensity λ of S (first-order 
property) as in:

 K(d) E(d)/= λ  (7.1)

Equation 7.1 is computed by centering a circle of radius d on each sampling 
point and counting the number of neighboring events that fall inside it. In 
this case, the number and locations of the sampling points coincide with the 
event locations. Dividing the total number of events n by the area of the circle 
πd2 results in estimated intensity λ. Ripley’s K function is the cumulative dis-
tribution of observed point events S with increasing distance. It is expected 
that K(d) = πd2 if the point distribution conforms to CSR, K(d) > πd2 if the 
points cluster within distance d, and K(d) < πd2 if the data exhibit a regular 
pattern. The K function is a second-order analysis of point patterns usually in 
a two-dimensional space (Haase 1995; Dixon 2013). Second-order effects are 
caused by the spatial dependence in the process. In essence, Ripley’s K func-
tion approach uses a circular search window (h) around each event (i) and 
counts how many other events are observed in that window. The window 
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then moves to the next event until all events (n events) in the study area are 
visited. The process is repeated at different spatial scales. Specifically,

 

K(h) A/n I d /w2
h ij ij

j

n

i

n

= ∑∑( ) * ( ( ) )

 

(7.2)

Equation 7.2 evaluates the structural characteristics of a given set of events, 
where dij is the distance between events i and j, and A is the size of the study 
region. The term wij is a factor to correct for edge effects. The K function is 
potentially biased as edge effects arise when circles intersect the boundary 
of the study region. There are different methods to deal with edge effects of 
the K function, which have been thoroughly studied (Yamada and Rogerson 
2003). Ih(dij) is an indicator function defined by Equation 7.3:

 I d 1 if d h otherwiseh ij ij( ) ,= ≤ 0  (7.3)

The K function increases as distance h becomes larger. To statistically test 
whether the observed point pattern follows a regular, clustered, or random 
pattern, the K function is evaluated for a large number (M) of Monte Carlo 
simulations. For each simulation, a number (n) of events are generated (e.g., 
randomly) within the study area. If the observed K value is larger than the 
upper simulation envelope, spatial clustering for that distance is statistically 
significant. Observed K values smaller than the lower simulation envelope 
show that point patterns exhibit regularity that is statistically significant for 
the corresponding distance. K(h) is then evaluated against distance (h) to 
identify the scales at which the point pattern follows a regular, clustered, or 
random pattern. For a given value of h, if the K function is above, between, or 
below the upper and lower envelopes, the point pattern is clustered, random, 
or regular, respectively.

The K function can be transformed to the L function using Equation 7.4 to 
obtain constant variance with respect to a benchmark of zero, which facili-
tates the comparison of L values across all h:

 L(h) K(h)/ h1 2= −( ) /π  (7.4)

where L(h) = 0 if the pattern conforms to CSR, L(h) > 0 if clustered, and 
L(h) < 0 for regular patterns.

Recent methodological advancements of Ripley’s K function improve the 
ability to find the appropriate scale of clustering by computing K for dis-
tance increments (Tao, Thill, and Yamada 2015). In addition, the K function 
was adapted for network-constrained data (Yamada and Thill 2007) which 
violate the planar space assumption that underlies many spatial point 
pattern analysis methods. Although the K function is popular because it 



159Spatiotemporal Point Pattern Analysis Using Ripley’s K Function

evaluates levels of clustering at different scales, its computation is time-
consuming, especially for large datasets. Recent work has underscored 
the capability of high performance computing, for instance through the 
use of Graphics Processing Units (GPU) for its acceleration (Tang, Feng, 
and Jia 2015).

7.3  Ripley’s K Function for Spatiotemporal 
Point Pattern Analysis

In this study, we investigate the use of Ripley’s K function in the analysis of 
spatiotemporal point patterns. We focus on the combination of global and 
local forms of Ripley’s K function. While the former evaluates the spatiotem-
poral characteristics of a point pattern at the aggregated level (i.e., the entire 
dataset), the local form of Ripley’s K function quantifies the characteristics 
of the point pattern, as well as its deviation from what would be expected, 
locally. In this section, we discuss in detail global and local forms of Ripley’s 
K function for spatiotemporal point pattern analysis.

7.3.1  Global Ripley’s K Function for the Analysis 
of Spatiotemporal Point Pattern

Tests for spatial patterns fail at evaluating the dynamics of the point process. 
When point events have a temporal attribute, we can investigate whether two 
events are space and time dependent, suggesting the presence of a space-time 
link. There are several techniques to evaluate patterns among spatiotempo-
ral point events. The Knox test for space-time interaction evaluates the pres-
ence of a space-time cluster at given spatial and temporal distances (Knox 
1964). Knox’s test method is limited due to its arbitrary definition of close-
ness and the critical distance does not account for population heterogeneity 
(Jacquez 1996). The Mantel test (Mantel 1967) incorporates the notion of dis-
tance decay in which nearby pairs of events are more important than distant 
pairs. Jacquez’s k-Nearest Neighbor k-NN statistic (Jacquez 1996) addresses 
the weaknesses of the Knox and Mantel statistics by counting the number of 
pairs of events that are nearest neighbors in both space and time.

Equivalent to the purely spatial K function (discussed above), the space-
time Ripley’s K function is a global statistic computed on the entire set of 
space-time point events. The theoretical space-time K function, given a set 
of point events S, is calculated by dividing E, the number of events that are 
expected to fall within spatial distance d and temporal distance t, by the 
intensity λ of S (first-order property):

 K(d t) E(d t), , /= λ  (7.5)
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Equation 7.5 characterizes the pattern of S within the space-time cube 
framework (Nakaya and Yano 2010), where a cylinder of base πd2 and height 
t is centered on each sampling point to compute the number of events falling 
within. Again, the sampling points are equal to the event locations. Then 
the total number of events n is divided by the volume of the irregular prism 
formed by the study area/period, which results in intensity λ. Space-time 
Ripley’s K function is the cumulative distribution of observed point events S 
with increasing space and time distance. It is expected that K(d,t) = πd2t if the 
point distribution conforms to complete spatiotemporal randomness (CSTR), 
K(d,t) > πd2t if the points cluster within spatial and temporal distance d and 
t, and K(d,t) < πd2t for regular space-time patterns. Using Equation 7.6, the 
space-time K function is formulated as (Bailey and Gatrell 1995):

 

K(h t) L R /n I d t /w2
h t ij ij ij

j

n

i

n

, (( * ) ) * ( ( , ) ),= ∑∑
 

(7.6)

where tij is the time that separates two events i and j. dij is the distance 
between events i and j. L denotes the area of the study region and R is the 
duration of the study period. The product of L and R results in the volume 
of the irregular prism that is formed by the study area (base) and the study 
period (height). Ih,t(dij,tij) is an indicator function defined in Equation 7.7:

 I d t 1 if d h and t t otherwiseh t ij ij ij ij, ( , ) ,= ≤ ≤ 0  (7.7)

Larger time t and distance h intervals will contribute to an increase in 
the space-time K function. For the case that no space-time interaction exists, 
Equation 7.6 becomes the product of the spatial and temporal K functions 
K(h)*K(t). Testing for space-time dependence is achieved by subtracting 
K(h)*K(t) from the combined space-time I function K(h,t). Methods for han-
dling edge effects of the space-time K function have been studied by Gabriel 
(2014).

The space-time Ripley’s K function is transformed to the space-time L 
function by Equation 7.8:

 L(h t) K(h t)/ t h1/2, ( , )= −π  (7.8)

where L(h,t) = 0 under CSTR, L(h,t) > 0 for clustered patterns, and L(h,t) < 0 
for regular patterns.

7.3.2  Local Ripley’s K Function for the Analysis 
of Spatiotemporal Point Patterns

While Ripley’s K evaluates the spatial pattern at the global level (i.e., indicat-
ing whether clustering is present in the entire study area or not), the same 
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measure can be considered in its local form to pinpoint where the clustering 
actually occurs (Getis and Franklin 1987):

 

K h A/n I d /wi h ij ij( ) ( ) * ( ( ) )= ∑
j

n

 
(7.9)

Here, the local K function is evaluated at each sampling point i, which 
either is part of (1) a regularly spaced grid drawn over the study area, (2) the 
events themselves, or (3) a number of random points. The indicator function 
I is equivalent to Equation 3. Several meaningful extensions to local Ripley’s 
K function have been suggested, such as the local K function for network-
constrained space to study transportation-related cases (Okabe and Yamada 
2001; Yamada and Thill 2007), as well for characterizing patterns in flow 
data, thereby upgrading the classic hot spot detection paradigm to the stage 
of “hot flow” detection (Tao and Thill 2016).

Equivalent to the purely spatial case, the local K function for spatiotempo-
ral point patterns identifies the location and time of clusters within the study 
area/period. The local space-time K function is evaluated at any sampling 
point i:

 

K h t L R /n I d t /wi
2

h t ij ij ij

j

n

( , ) (( * ) ) * ( ( , ) ),= ∑
 

(7.10)

Using Equation 7.10 for each sampling point i, we can estimate the local 
level of space-time clustering and its statistical significance using Monte 
Carlo simulations. Further, we can identify the scale at which space-time 
clustering is the greatest. This information can be very valuable when con-
ducting spatial analysis over a non-homogeneous population of events. 
Despite these attractive outcomes, the local version of the space-time K 
function is computationally very demanding, and the execution time 
depends on (1) the number of data points, (2) the number of sampling 
points, and (3) the number of spatial and temporal bandwidths, for which 
K is computed.

7.4 Case Study

To gain insights into the mechanisms of spatiotemporal point pattern analy-
sis, we now illustrate our implementation of the global and local Ripley’s K 
function spatiotemporal explicit set of dengue fever cases in Colombia for 
the years 2010–2011.
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7.4.1 Study Area and Data

The city of Cali is located in the southwest of Colombia. It is the third largest 
metropolitan area in the country with a total population of around 2.3 mil-
lion and a population density of 4140/km2 in 2013 (Cali 2014). Cali experiences 
two rainy seasons: the first from April to July and the second from September 
to December. Located at approximately 1000 m above sea level, it has an aver-
age temperature of 26°C and an average precipitation of 1000 mm over most 
of the metropolitan area (Cali 2014). The city is administratively divided into 
22 communes covering 120.9 km2, and composed of 340 neighborhoods (see 
Figure 7.1). A commune is a grouping of neighborhoods based on homoge-
neous demographic and socioeconomic characteristics. Neighborhoods are 
classified using a stratification system composed of six classes, one being the 
lowest and six the highest. The strata are developed by evaluating the type 
of housing, urban environment, and context. The city, as in most colonial cit-
ies in Latin America, grew from its central core, following the city spine, and 
toward the periphery. Peripheral neighborhoods are typically characterized 
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by high density and low income since they have been the result of squatter 
settlements and poor urban planning (Restrepo 2011).

We use a dataset of dengue fever cases within the city of Cali in this study. 
The data are extracted from the “Sistema de Vigilancia en Salud Pública 
(SIVIGILA)” (English: Public Health Surveillance System) for the city of Cali 
for the years 2010 and 2011. The SIVIGILA system has as a main responsibility 
to observe and analyze health events with the objective of planning, follow-
up, and evaluation of public health practices (Colombia 2017). Reported cases 
of dengue fever are entered into the system daily. Each case includes personal 
information about the patient such as their home address and when they were 
diagnosed. A total of 11,056 cases were geocoded to the closest intersection to 
guarantee a level of privacy for both years. There were 9606 cases in 2010 and 
1562 in 2011. The difference in the number of cases is explained by the fact 
that 2010 was identified as an epidemic year (Varela et al., 2010).

7.4.2 Analysis

7.4.2.1 Global Space-Time K Function

Since the epidemiological interest is to find clusters of disease occurrence, 
we evaluated the magnitude of space-time clustering within the dengue 
fever dataset (n = 11,056) by computing the global space-time Ripley’s K and 
corresponding L functions (see Section 3.1). We used spatial bandwidths 
from 50 m to 1000 m in 50 m increments and temporal bandwidths from 0 
to 14 days in 1-day increments. Using Equation 7.11, we assessed statistical 
significance of the observed K function by comparison with 100 population-
adjusted random simulations and finding the spatial and temporal scales at 
which the difference between the observed function and the upper simula-
tion envelope (noted as Ldiff_upper(h,t)) was maximal (also see Hohl et al. 2016):

 L h t L h t L h tdiff upper obs upper envelope_ _( , ) ( , ) ( , )= −  
(7.11)

where Lobs(h,t) is the observed L value and Lupper_envelope(h,t) represents the L 
value of the upper simulation envelope at spatial bandwidth h and temporal 
bandwidth t.

7.4.2.2 Local Space-Time K Function

Once we determined the presence of clusters in the dengue fever dataset, 
we illustrated the locations and times at which the clusters may occur by 
computing the local space-time Ripley’s K function. We imposed a regularly 
spaced grid of sampling points on our study area/period using a space-time 
resolution of 250 m and 7 days. This results in a total of 202,755 sampling 
points at which the local space-time K functions were evaluated (although 
more accurate results can be obtained at a finer scale, e.g., 100 m and 1 day, 
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estimating local space-time clusters every 250 m and 7 days is computation-
ally more accessible). Equivalent to our estimation of the global space-time 
K function (see Section 4.2.2), we used spatial bandwidths of 50 m to 1000 m 
in increments of 50 m and temporal bandwidths of 0–14 days in 1-day incre-
ments at each sampling point. Again, using Equation 11, we assessed statis-
tical significance of the observed local K function by comparison with the 
upper simulation envelope of 100 population-adjusted Monte Carlo simula-
tions. To illustrate the effects of scale on space-time point pattern, we show 
significantly clustered sampling locations at two different scales by drawing 
a point cloud within the space-time cube (Delmelle et al. 2014): (1) 500 m and 
7 days, (2) 750 m and 10 days.

7.4.2.3 Global Space-Time K Function of Local Settings

For illustration purposes, we assess the magnitude and statistical significance 
of space-time clustering at various scales by selecting three distinct locations 
from the space-time grid of sampling points (see section 4.2.2). Each of the 
three locations is representative of a particular space-time pattern. We chose 
Location 1 in the center of the dengue fever cluster in the south-western part 
of the city during the first half of 2010. Location 2 is the same as Location 1, 
but has a much later time stamp, during which the infectious outbreak is 
in its declining stage. It can be seen that Locations 1–2 are sites where the 
virus is present throughout the endemic period. It is a constant focal point 
of infection for more than 150 days. This information is valuable to health 
authorities in order to target the location to stop the spread of the disease. 
This area corresponds to a military base where the municipality spraying 
cycles are not as regular as in other areas in the city. Location 3 lies in the 
eastern part of the city, which never exhibits a clustered pattern during the 
entire study period. Their space-time coordinates (x, y, t), using the Bogota 
Transverse Mercator coordinate system and Julian date [0–730], are: Location 
1: (1,058,498.1, 864,811.9, 35); Location 2: (1,058,498.1, 864,811.9, 210); Location 3: 
(1,064,998.1, 870,311.9, 35). For each of the three locations, we identified sur-
rounding dengue fever cases within distance 1000 m and 14 days, and com-
puted the global space-time K and L functions for this local setting (the same 
way as we compute the global K and L functions for the entire study area/
period as in Section 4.2.1). To distinguish between clustered, random, and 
regular space-time patterns, we compared the observed L functions with an 
upper simulation envelope from the population adjusted simulations using 
Equation 11, as well as a lower simulation envelope using Equation 7.12:

 L h t L h t L h tdiff lower obs lower envelope_ _( , ) ( , ) ( , )= −  (7.12)

where Lobs(h,t) is the observed L value and Llower_envelope(h,t) represents the L 
value of the lower simulation envelope at spatial bandwidth h and temporal 
bandwidth t.
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7.4.2.4 Implementation

All programs were written using Python and R (package: stpp) and we used 
a high performance computing cluster with 32 nodes connected through an 
infiniband network switch (Pfister, 2001) to accelerate the spatiotemporal 
point pattern analysis using Ripley’s K function. Each computing node of 
the high performance computing cluster has 12 CPUs and 12 GBs of memory, 
in total 384 CPUs (Intel Xeon processor with a 2.67 GHz clock speed). Similar 
to Delmelle et al. (2014), we used Voxler, an interactive 3D modeling environ-
ment (Golden Software, Colorado), for the visualizations of the local space-
time K functions.

7.5 Results

7.5.1 Global Space-Time K Function

Figure 7.2 shows the difference between L values of the observed data and 
the upper simulation envelope of 100 population-adjusted Monte Carlo 
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simulations. Note that we did not account for edge effects in our case study, 
therefore setting parameter wij to 1 in all calculations (same for the K func-
tion analysis of local settings). Observed L values greater than simulated 
ones (positive difference) indicate clustering at the corresponding scale: the 
greater the difference, the stronger the clustering is. Figure 7.2 shows posi-
tive values across all bandwidths, with the overall trend of stronger cluster-
ing for larger spatial bandwidths. However, the magnitude of the difference 
in clustering decreases with increasing temporal bandwidth, suggesting that 
dengue fever cases tend to occur shortly after one another, but do not exhibit 
strong temporal clustering beyond a week. Thus, the change in clustering 
intensity is mainly driven by the spatial scale, meaning that, as opposed 
to changing the temporal bandwidth, the difference becomes larger when 
increasing the spatial bandwidth.

7.5.2 Local Space-Time K Function

We estimate the local space-time K function at 202,764 regularly spaced grid 
points (250 m, 7 days intervals). For each grid point, we report the absolute 
difference in L values of the observed data and the upper simulation enve-
lope of 100 population-adjusted Monte Carlo simulations at different spatial 
and temporal bandwidths.

Figure 7.3 illustrates a map that visualizes the difference in L-values for 
each grid point (or voxel, volumetric pixel), using a spatial and temporal 
bandwidth of 500 m and 7 days (from two different perspectives: south-
east and northwest). Negative values (where observed counts are less than 
expected) are not shown on the map. Colored dots denote regions where the 
number of observed cases is greater than what is expected; the magnitude of 
this difference is illustrated with tones of red (darker red dots are on the end 
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of that spectrum). We note the presence of strong clusters at the beginning 
of the year 2010, coinciding with an increase in cases during the first few 
months of the year (see Hohl et al. 2016). Figure 7.4 is similar to Figure 7.3, 
but uses larger spatial and temporal bandwidths (750 m and 10 days). Using 
the same legend as in Figure 7.3, we observe a much greater number of grid 
points where the difference between the observed and expected L-values is 
large (n = 25,124 voxels or 12.39%, compared to 13,329 or 6.57% in the former 
scenario with spatial and temporal bandwidths of 500 m and 7 days).

Figure 7.5 shows the interpolated variation in the space-time K function, 
with bandwidths of 500 m and 7 days. Essentially, this map uses data from 
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Figure 7.3 as an input, but shows a smooth continuous volume. We use a 
combination of visualization techniques (volume rendering, transparency; 
see Delmelle et al. (2014)) to render the strength of the clustering, while iso-
surfaces reinforce the extent of such clusters. For this map, of more interest 
are regions of strong positive clustering (represented in red). Although we 
observe strong, positive clusters at the beginning of 2010, we note that at the 
end of 2011, some regions are showing negative values, suggesting a ten-
dency toward regularity.

7.5.3 Global Space-Time K Functions of Local Settings

Figure 7.6 depicts the absolute difference between observed Ripley’s K and 
the upper simulation envelope for Location 1 within 1000 m and 14 days of 
the space-time bandwidth. Location 1 lies within a space-time cluster of den-
gue fever cases. Local Ripley’s K values suggest clustered patterns of dengue 
fever cases within 1000 m and 14 days with respect to Location 1 since all the 
values of the absolute difference with respect to the upper simulation enve-
lope are positive. As the spatial bandwidth increases, the clustering response 
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becomes stronger, but weakens with decreasing temporal bandwidth values. 
Strongest clustering response concentrates within a space-time range of 500–
1000 m and 1 day.

The difference between observed data and the upper simulation envelope 
for Location 2 is shown in Figure 7.7. For this location, there is no cluster-
ing pattern that we can observe. However, when the temporal bandwidth 
is from 0 to 1 day or 6 to 14 days within 150 m of the spatial bandwidth, 
the dengue fever data around that location exhibit a weaker clustering pat-
tern—only a small-scale cluster is observed. To have a better understanding 
of the dengue fever pattern at Location 2, we compare the difference between 
observed data and the lower simulation envelope (see Figure 7.8). When the 
difference between the observed and simulated data is higher than the lower 
envelope, a completely spatiotemporally random (CSTR) pattern is sug-
gested. Otherwise, space-time regularity is observed when the difference 
with respect to the lower envelope is negative. As we see in Figure 7.8, posi-
tive values of the difference with the lower envelope are observed across all 
space-time bandwidths. Therefore, we cannot reject the null hypothesis that 
the spatiotemporal pattern of dengue fever incidents is completely random.
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For Location 3, all the differences in L-values between observed and upper 
simulation envelope are negative (see Figure 7.9). When we plot the differ-
ence between observed values and the lower simulation envelope (see Figure 
7.10), we observe a random pattern throughout all scales, especially for spa-
tial bandwidths from 150 to 750 m and temporal bandwidths between 0 and 
1 day. For spatial bandwidths from 250 to 650 m and temporal bandwidths 
longer than 1 day, the dengue fever data exhibit spatiotemporal regularity 
with respect to Location 3.

7.6 Conclusions

In this study, we investigated the use of Ripley’s K function for the analysis 
of spatiotemporal point patterns. Using a combination of global and local 
Ripley’s K functions allowed us to discover the space-time characteristics of 
dengue fever in Cali, Colombia for the years 2010 and 2011.
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In the case of dengue fever and other vector-borne diseases, being able to 
identify the space-time location of potential clusters of infection can make 
a difference in controlling and stopping the spread of the virus. It will help 
health authorities to better design and plan control strategies in a timely way 
to stop an epidemic from happening. It will also provide insight into under-
standing the timeline of the infectious process.

The 3D visualization approach is able to map the shape of each cluster, 
while giving a clear understanding of the presence of clusters of dengue 
fever over space and time. Our future work will focus on a number of 
threads. First, we will perform edge correction to improve global and local 
forms of space-time Ripley’s K function. Second, once a fine spatial-temporal 
resolution is used, the 3D visualization approach will map more accurate 
shapes and forms of each cluster. Third, more years of dengue fever data 
will be added in our study to better understand and explain the space-time 
complexity of the infectious process.
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Geospatial Data Science Approaches for 
Transport Demand Modeling

Zahra Navidi, Rahul Deb Das, and Stephan Winter

8.1 Introduction

Modeling transport—the phenomenon of people or goods moving in vehi-
cles in space and time and being constrained in that movement by transport 
networks—is inherently related to geospatial data (Miller and Shaw 2001, 
2015). People, goods, and vehicles are located somewhere at any time, in 
relation to each other as well as in relation to various mode-specific transport 
networks; they are coming from some location and heading to another loca-
tion within some time constraints. The movements of people and goods— 
collectively defining the transport demand—can be solitary or shared, but 
are neither independent of each other, nor independent of the vehicles, which 
are defining the transport supply. In addition to the factors of space and time, 
economic, social, and individual  factors also determine choice and behavior. 
That is why transport has long been  recognized as a  complex system and, as 
such, hard to model.
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Nevertheless, transport models are needed for a variety of reasons, from 
traffic management to environmental or economic hypothesis testing. 
Furthermore, the availability of data about and from transport provides 
ample information for travelers to make individual decisions, and thus, 
become smarter about mobility. Given the dynamic nature and the complex-
ity arising from the behavior of many actors, the established method for 
transport modeling is agent-based simulation (Torrens 2004). Agent-based 
simulation relies on transport demand modeling, which relies again in a 
complex way on geospatial data, including georeferenced sociodemographic 
data, economic data, and environmental data. This chapter will disentangle 
this relationship, and review state-of-the-art methods of transport demand 
modeling for agent-based transport simulations.

The focus of this chapter is on the key role of geospatial data in improving 
smart mobility. Firstly, the categories of transport-related geospatial data and 
surveys are introduced and explained. Secondly, demand modeling—from 
the traditional four-step model to activity-based modeling—and the required 
datasets are reviewed. Thirdly, the challenges and issues of synthesizing a 
population and creating a population-wide demand model based on surveys 
and geospatial data are reviewed. Finally, by explaining and illustrating the 
key role of demand models in agent-based transport simulation and mobil-
ity planning, the importance of geospatial data and their application in the 
transport domain will be elaborated.

8.2 Technological Evolution of Travel Data Collection

Data related to travel behavior is the most crucial yet limiting aspect of trans-
portation modeling (McNally and Rindt 2008). Transportation modeling is 
a complex problem that requires a wide range of data types such as spatial, 
temporal, user sociodemographic characteristics, and qualitative data about 
users’ experience. Stopher (2008) classified the required quantitative data 
into two categories of supply data (e.g., capacity, design speed, and type of 
services provided) and demand data (e.g., volume of demand, users’ char-
acteristics, and demand density), and emphasized that, depending on the 
objectives of each study, various qualitative data also may be required for 
collection.

8.2.1 Manual Travel Surveys

Travel surveys are the main method of data collection in the transporta-
tion field. In the current state of the art, there is a considerable human effort 
involved in travel surveys. In terms of participation, a travel survey can be 
categorized into two main types: participatory and non-participatory. A 



179Geospatial Data Science Approaches for Transport Demand Modeling

participatory survey requires the active participation of the users, either direct 
(filling the forms themselves) or indirect (answering to someone who is filling 
the form), whereas a non-participatory survey involves observing the travel 
behavior through roadside volunteers who count the number of travelers in a 
given transport mode or monitor the transport resources in a given network.

In this regard, non-participatory surveys are mainly deployed to col-
lect supply data, such as: traffic counting, network inventory, and land-use 
inventory (Stopher 2008).

On the other hand, the bulk of demand data is collected through partic-
ipatory surveys, which, owing to the scale of application, requires a huge 
amount of time and money. There are other complications that hinder the 
procedure of demand data collection in the transportation field as well. For 
example, people are concerned about protecting their privacy; they do not 
like to be followed by cameras or answer surveys that reveal their personal 
daily plans and destinations.

Household travel surveys (HTS) are the most common survey to collect 
travel and activity data from a representative sample of the population in 
a given region, typically over a period of 24 hours of a workday to an even 
longer duration. The surveys can also take place either as a one-off survey or 
a regular survey. These surveys provide spatial and temporal aspects of the 
travels and activities of the population sample at different granularities, which 
in turn help in understanding people’s travel demand and their preferences. 
In contrast to a one-off survey, a regular survey reflects a general movement 
pattern and travel demand at different situations and various spatiotemporal 
granularities, whereas a one-off survey sometimes reflects biased travel behav-
ior affected by circumstantial influence at a given time period. For instance, 
in 1973–1974, the French National Travel Survey, a one-off large scale survey, 
took place during the first oil crisis. In 1993–1994, the survey was again con-
ducted during an extreme financial crunch. In both cases, owing to adverse 
socioeconomic situations, the numbers of trips were reduced compared to 
non-surveyed times and thus the overall travel data were biased, which pro-
vided misleading travel demand information (Ampt, Ortúzar, and Richardson 
2009; Ortúzar et al. 2010). On the other hand, a regular survey, for example, the 
National Mobility Survey in the Netherlands, which is repeated every year, 
can capture travel behavior in different conditions (impact of seasonal varia-
tions and various events on people’s travel demand) across the country.

There are various methods to design and conduct HTS (Zmud 2003). Table 
8.1 presents the minimum required information collected in HTS suggested 
in the literature (Stopher et al. 2006). Besides, the information collected in 
HTS is extensive and detailed, resulting in various difficulties in the survey 
execution and inaccuracy in its outcome. Currently, a paper-based, face-to-
face, or telephonic approach is used to conduct an HTS. Nevertheless, as the 
participants report about their travel at a later time, there is a chance that 
they may not remember all the details of their travels and activities, or may 
answer the questions with a bias. Moreover, they may grow disinterested 
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as the questionnaire is long and not answer all the questions; thus, it raises 
a gap in the data collection process (Wolf, Oliveira, and Thompson 2003; 
Stopher, FitzGerald, and Xu 2007).

8.2.2 GPS-Assisted Travel Surveys

With the introduction of advanced positioning technologies, such as GPS, 
the limitations of manual travel surveys have been mitigated through an 
automated approach. A GPS-assisted travel survey involves recording a per-
son’s travel behavior as a sequence of time-ordered spatiotemporal points, 
also known as a trajectory. The granularity of a trajectory can be affected by 
the predefined sampling interval and the GPS signal quality.

A proof-of-concept GPS-assisted survey was initially conducted in 
Lexington, Kentucky, as a part of a larger HTS (Battelle 1997; Murakami and 
Wagner 1999; Auld et al. 2009). GPS-assisted travel surveys can be catego-
rized as in-vehicle based or handheld based. An in-vehicle approach uses 
a GPS receiver mounted on the vehicle, and thus reduces the burden on 
the participant’s part. However, an in-vehicle GPS-assisted survey records 
only the vehicle travel history, and thus cannot record the portion of the 
trips travelled by walking, biking, or by public transport modes. Since the 
majority of urban activities take place while walking or being stationary in a 
constrained space, an in-vehicle GPS-assisted survey provides limited infor-
mation on activity patterns of the participants.

In contrast to an in-vehicle GPS-assisted travel survey, a handheld GPS-
assisted survey can generate activity-trip data across all modes (Chung and 
Shalaby 2005; Auld et al. 2009; Bohte and Maat 2009; Elango and Guensler 
2010; Roorda, Shalaby, and Saneinejad 2011).

The participant has to carry the GPS logger along her travel and the device 
can record automatically.

The duration of such a survey can span from 1 day to several weeks depend-
ing on the survey requirements. However, the accuracy of the recorded data 

TABLE 8.1

Suggested Minimum Required Information Collected in HTS.

Category Household Personal Vehicle Activity

Items Location
Type of building
Household size
Relationships
Number of vehicles
Housing tenure
Re-contact

Gender
Year of birth
Paid jobs
Job classification
Driving license
Non-mobility
Education level
Disability
Race
Hispanic origin

Body type
Year of production
Ownership of vehicle
Use of vehicle

Start time
Activity or purpose
Location
Means of travel
Mode sequence
Group size
Group membership
Costs
Parking
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depends on where the GPS logger is kept and the number of satellites the 
receiver can view. Handheld GPS loggers are also subject to quick battery 
depletion. The participants have to always remember to carry the logger 
with them, which creates an extra mental burden on the survey participants. 
Owing to this stringent survey practice, participants may not follow their 
real travel behavior (Safi, Mesbah, and Ferreira 2013). This problem is further 
mitigated by using smartphones for travel data collection.

8.2.3 Smartphone-Based Travel Surveys

The recent advancement in the field of information communication technol-
ogy (ICT), along with the positioning technology on one hand and the ubiq-
uitous use of smartphones on the other, has facilitated the automation of 
HTS. This has been particularly possible due to the various sensors onboard 
the smartphones, for example, location sensors (GPS, GSM, and Wi-Fi), iner-
tial measurement units (accelerometer, gyroscope, and compass), proximity 
sensors, and light and pressure sensors. Gonzalez et al. (2010) developed a 
smartphone-based travel survey application TRAC-IT in order to estimate 
people’s travel demand in terms of their preferences and usage of differ-
ent transport modes. The research involved 14 respondents. The application 
recorded positional information at four second intervals and transmitted the 
data to a data server immediately (Gonzalez, Hidalgo, and Barabasi 2008; 
Gonzalez et al. 2010). Charlton et al. (2010) developed CycleTracks—a smart-
phone-based application to understand cyclist’s travel behavior. CycleTracks 
allowed participants to track their trips and upload them to a central server 
once the travel was complete. Similar applications have also been developed 
by other researchers with a focus on collecting either a person’s activity pat-
terns or travel behavior (Jariyasunant et al. 2011). However, most of them are 
limited in collecting fine-grained activity-trip data to support HTS.

Recently, the Singapore-MIT Alliance for Research and Technology 
(SMART) has developed a more sophisticated smartphone-based applica-
tion, Future Mobility Sensing (FMS), as a part of Singapore HTS (Cottrill 
et al. 2013). FMS consists of a smartphone app, a server, a user interface, and a 
website (Raveau et al. 2016). Users of FMS install the app on their phone, open 
an account, and keep their smartphone charged. The sensors onboard the 
smartphone (GPS, GSM, accelerometer, and Wi-Fi) collect the users’ move-
ment data and transfer them to the FMS server, where the data are processed 
and various inferences about the mobility of the users are drawn (such as 
travel time, travel distance, and mode). These automatic inferences are pre-
sented to the users on their private FMS website in the form of a daily time-
line for their review and validation (Raveau et al. 2016). Similar surveys have 
also been developed and tested elsewhere (Safi, Mesbah, and Ferreira 2013).

HTS (automated and non-automated) belongs to the category of revealed 
preference (RP) surveys that reveal the current state of people’s travel behav-
ior and preferences, hence the name. The main advantage of RP surveys is 
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that they represent the actual users’ choices reflecting all their real-world 
constraints and perceptions. As opposed to RP surveys, there are stated 
preference (SP) surveys that investigate the users’ behavior in mostly hypo-
thetical scenarios. Both surveys have their own specific use cases and appli-
cations. It is also common to conduct studies using a mixture of both surveys 
to enrich the datasets (for more information, see Hensher, Rose, and Greene 
(2005)).

8.2.4 Data Collected from Car Navigation Systems and Other Means

Instead of surveys, and pushing the boundaries of smartphone-based infor-
mation collection, it also has become common practice to collect mobility 
data through navigation or mobility applications with significant sampling 
rates if not the full population. Car navigation systems, both stand-alone or 
on smartphones, track the movements of cars in high temporal resolution, 
mostly relying on satellite positioning systems, but also integrating inertial 
sensors. These kinds of data are immediately used by Web mapping plat-
forms to predict current traffic conditions in an aggregate form. Thus, these 
new sources of data are unprecedented in terms of volume, geometric accu-
racy, temporal resolution, and thematic variation (Li et al. 2016).

The collected data from these new sources are also used for travel demand 
prediction, both at the aggregate level (anticipation of traffic conditions 
[Sevtsuk and Ratti 2010]) and individual level (e.g., detecting joint demand 
[Santi et al. 2014]). Although limited to a particular mode of traveling, the 
driver only, by crossmatching these data to land use data, it is possible to 
infer the demand based on a significant share of the population, not just a 
small sample.

Navigation systems for other modes of transport collect similar data, for 
example, mobile visitor guides. If they operate indoor, that is, satellites sig-
nal-deprived environments, such as museums, they use different position-
ing technologies. However, their tracking data are analyzed for the same 
interest of travel demand analysis, although at this fine scale and high spatial 
granularity (Yalowitz and Bronnenkant 2009).

Next to tracking by smartphones, web applications such as public trans-
port planners or the taxi, train, or air travel booking systems also collect data 
(from queries or from bookings) that can be analyzed for travel demand. 
Furthermore, in the cities where smartcards are used as public transport 
tickets, the public transport usage and travel demand of the full population 
are tracked (Zhong et al. 2016).

The accuracy and scale of the data acquired from these types of data 
sources may revolutionize the field of demand modeling, as they have revo-
lutionized the transport supply model. In the supply field, it has facilitated 
the deployment of demand responsive transport modes, such as the recent 
ridesharing platforms, the provision of real-time information to public trans-
port users, or the provision of network traffic to private vehicle users (Miller 
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and Shaw 2015). Nonetheless, the restrictions of each of these datasets are 
significant. All of them are sectoral, being limited to a particular travel mode 
or even a particular transport provider. For reasons of commercial sensitiv-
ity as much as privacy of the users, these data are not accessible outside these 
companies. Therefore, no integrated transport demand can be produced 
from these data yet. It is only used within the companies for adapting their 
own services to the derived demand.

8.3 Inferring Activity-Trip Information from Trajectory Data

The raw trajectories collected by a smartcard, or GPS sensors installed on a 
vehicle or on a smartphone, provide only the traveler’s location information at 
a given time period (Figure 8.1). However, a transport planner wants to know 
more about the user’s travel behavior, such as the transport mode choice, ori-
gin, destination, route taken, transfers, accompaniments, and activity types 
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FIGURE 8.1
A raw trajectory (locations visited) on a map (a) and as a space-time graph reflecting how time 
elapsed during travel (b).
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at an individual as well as aggregate level. This latter information (i.e., the 
semantics) cannot be conceived directly from the raw trajectories. Hence, the 
raw trajectories need to be analyzed to extract the semantics pertinent to 
travel demand modeling. Before any analysis takes place, a raw trajectory 
is generally preprocessed to remove any noise (generally occurring due to 
multipath effect in urban canyons) based on positional accuracy information 
or the number of visible satellites (Xiao, Juan, and Gao 2015). An in-house 
study has shown that when a trajectory is recorded by different smartphone 
sensors, such as GPS and GSM, the accuracy level varies significantly from a 
few meters to thousands of meters (Figure 8.2), depending on the GPS signal 
reception and cell tower distribution in the study area.

A preprocessing procedure can also resample a raw trajectory in order to 
remove noisy GPS points through various interpolation techniques (Long 
2016) or kinematic measures (Stenneth et al. 2012, Lari and Golroo 2015). A 
preprocessing operation also involves time conversion if required, and data 
projection from one coordinate system to another for further spatial compu-
tation (Wu, Yang, and Jing 2016).

Depending on the information needs, the preprocessed trajectories can be 
semantically enriched by incorporating different contextual information as 
follows:

 1. Spatial information: This type of information includes route network, 
point of interest (POI), or region of interest (ROI) data.

(a) (b)

FIGURE 8.2
The accuracy (a bigger ellipse means less spatial accuracy) of a raw trajectory recorded by 
several positioning sensors (a), and accuracy levels (Y) with respect to spatiotemporal points 
(X) (b).
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 2. Spatiotemporal information: This includes general transit feed specifi-
cation (GTFS), or opening and closing hours of various facilities.

 3. Thematic information: This type of information can be expressed, for 
example, by land use data, or event type data.

 4. Socioeconomic information: This contextual information includes the 
social status of people and their interactions with their environment, 
the number of people travelling along a route or on a mode, or the 
income profile of people.

In terms of response time required for a particular application domain, a 
preprocessed trajectory can be analyzed both offline, once the travel is com-
plete, or online, during the travel itself.

An offline-based inference generates historical movement patterns for 
long-term travel demand modeling and policy enforcements, whereas a real-
time trajectory inference helps in ad hoc demand estimation and real-time 
travel information. In order to analyze raw trajectories offline, the majority of 
researchers use a top-down trajectory segmentation approach, which breaks 
a trajectory into a number of homogeneous segments. Then the analysis takes 
place over each segment, and an activity state is detected over the given seg-
ment. Spaccapietra and Parent (2011) developed such an episodic algorithm 
for trajectory segmentation known as stop-and-move-on-trajectories (SMoT) 
(Bogorny et  al. 2011; Spaccapietra and Parent 2011). The basic assumption 
behind this algorithm is that a person will stop at a given location for a cer-
tain time period in order to conduct an activity and then start travelling to 
her next destination. That said, in a SMoT algorithm, a move episode reflects 
a person’s travel behavior, whereas a stop episode reveals a person’s activity 
behavior within a constrained space. There are three different variants of 
SMoT algorithms as follows:

 1. Intersection-based stop-and-move (IB-SMoT): This approach initially 
finds the spatiotemporal points in a raw trajectory that are within 
a given candidate region over a certain time duration in order to 
detect the stop episodes, and the remaining points will be inferred 
as move episodes (Alvares et al. 2007).

 2. Clustering-based stop-and-move (CB-SMoT): In the second variant of 
SMoT, a clustering is performed to detect the stop points based on 
their spatial proximity and low speed profiles. The points that do not 
fall in the clusters are classified as move points (Palma et al. 2008).

 3. Direction-based stop-and-move (DB-SMoT): In the third variant, the 
spatiotemporal points in a trajectory are classified as stop points or 
move points based on the change in directions (Rocha et al. 2010).

Similar to a CB-SMoT approach, a number of researchers have developed 
clustering-based segmentation approaches independently (Ashbrook and 
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Starner 2003; Zimmermann, Kirste, and Spiliopoulou 2009; Gong et al. 2015). 
Since walking is required between any two motorized (or bike) modes of 
transport, Zheng et al. (2008) proposed a speed- and distance-based segmen-
tation approach where a raw trajectory is first segmented into a number of 
walking and non-walking segments. An interpretation process is then per-
formed to infer the specific activity over the given segment. In addition to a 
distance- or speed-based measure, the temporal aspect can also be consid-
ered in order to segment a trajectory (Andrienko et al. 2013).

In order to detect an activity from a GPS trajectory, the existing approaches 
are mainly rule based. An activity is identified if there is a longer period of 
non-movement, or longer dwell time at a certain location. An activity can be 
a trip end, going home or office, meeting friends at a restaurant, having cof-
fee at a cafeteria, or transferring from one transport mode to another. Prior 
studies suggested that if the dwell time is greater than 120 seconds, then 
that could be a probable trip end (Stopher 2004; Clifford, Zhang, and Stopher 
2008; Bohte and Maat 2009). However, there might be cases of shorter stops 
than 120 seconds, for example, when a car stops for passengers to get on or 
drop off the vehicle while the engine is still running. To address such diverse 
activities, several deterministic dwell time algorithms have been devised. 
For example, Wolf et al. (2004) developed a hierarchical approach to detect 
trip ends with varied confidence proportional to the amount of dwell time 
at a given location.

In order to characterize a trip purpose, Wolf et al. (2004) developed a point-
in-polygon approach, which was based on 25 predefined land use types 
and 11 trip purpose classes. A point-in-polygon approach first detects the 
trip start and end points. Then the trip end points are spatially correlated 
to the nearest polygon that bears a specific land use type and trip purpose 
type. However, a point-in-polygon approach requires a comprehensive and 
accurate GIS database containing network and land use information. The 
approach fails when there is a GPS signal gap or multipath effect. To address 
this issue, Stopher et al. (2008) have proposed a rule-based method that used 
trip characteristics before and after the GPS signal loss. Stopher, Bullock, 
and Jiang (2002) also investigated how the accuracy varies on incorporating 
GIS information. On the other hand, in order to address the multipath effect, 
Wolf et al. (2004) proposed a clustering algorithm to detect the trip end points 
from a number of trajectories. Within the clusters, all the POIs are spatially 
queried within a given search radius (e.g., 300 m) of the cluster center. Once 
the relevant POIs are retrieved, each of them is assigned a weight based on 
their proximity to the cluster center. The higher the weight, the more likely 
the given POI is the trip destination. Along the same lines, some researchers 
have developed similar types of rule-based algorithms to detect the trip des-
tination and trip purpose. For example, based on the frequency of visits, the 
spatial proximity to a given POI, and the affordance offered by that POI, the 
trip purpose has been inferred from trajectories (Wolf et al. 2004; Clifford, 
Zhang, and Stopher 2008; Schuessler and Axhausen 2009).
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Since rule-based and deterministic-activity recognition models are not 
able to address dynamic activities with various dwell time and spatial con-
straints, machine learning and probabilistic approaches have been explored 
to improve the recognition process. Liao, Fox, and Kautz (2005) used con-
ditional random fields and relational Markov networks to detect and 
rank various activities. In order to calculate the trip lengths, two common 
approaches exist currently: a point-to-point (PP) approach and a link-to-link 
(LL) approach (Murakami and Wagner 1999). In the PP approach, distance is 
calculated between two consecutive points over a preprocessed trajectory, 
and then the distance is cumulatively added up over an entire segment or a 
trip. However, this approach is subject to GPS positional uncertainties, espe-
cially in the urban canyons or indoor environments. To address this issue, 
a route network is considered where a portion of the trajectory is compared 
with a given segment of the route network using a map-matching algorithm. 
This way, even if there is a signal gap, if trip origin and destination and the 
route are detected properly, the length of the trip can be computed using the 
route network.

As discussed earlier in this section, trip characterization is an important 
aspect of transport demand modeling to generate the origin–destination (OD) 
matrix. However, understanding the mediation of transport is also critical for 
estimating the patronage information and people’s mode choice behaviors. 
Transport modes can be detected either offline (on historical trajectories) or 
online (in real time). Although there is no clear guideline between an offline 
and online trajectory interpretation process, an offline-based mode detection 
approach involves two stages of operations. In the first stage, a segmenta-
tion is performed, followed by detecting a particular transport mode over 
given segments by a machine learning approach, a rule-based technique, or 
a hybrid approach. In order to execute a prediction algorithm, a number of 
features are computed over each segment. For example, Zheng et al. (2008) 
considered four modalities: walk, car, bus, and bike. They computed a num-
ber of kinematic features, such as mean velocity, heading rate change, and 
top three acceleration values to test four different machine learning models, 
a decision tree, a Bayesian network, a conditional random field, and support 
vector machines. Zheng and colleagues obtained the maximum prediction 
accuracy (76%) using a decision tree-based model. Similarly, Stenneth et al. 
(2011) classified six modalities (car, bus, train, bike, stationary, and walk) 
using six different machine learning models such as Bayesian network, deci-
sion tree, random forest, and a naïve Bayes, with accuracies of 92.5%, 92.2%, 
93.7%, and 91.6%, respectively, by incorporating infrastructure information. 
Gonzalez et al. (2010) computed a number of features such as average accel-
eration, average speed, and maximum speed, ratio of critical points over a 
trip distance, and duration of travel for their neural network-based critical 
point model in order to get rid of voluminous GPS data while performing 
spatial computation. They detected three modalities: car, bus, and walk. 
They have demonstrated that the prediction accuracy increases when spatial 
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information is added. On the other hand, Dodge, Weibel, and Forootan 
(2009) have introduced the concept of local and global features while com-
puting various kinematic and non-kinematic features over segments. They 
considered variation in sinuosity and deviation of different kinematic fea-
tures. Xiao et al. (2017) used the concept of global and local features while 
evaluating three different machine learning models: random forest, gradient 
boosting decision tree, and XGBoost.

In order to detect transport modes in real time, a temporal kernel is run 
over a trajectory, and a number of features are computed within that kernel. 
These computed  features are then used to train or test a predictive model that 
can retrieve a transport mode information at a given time period. In this con-
text, the model developed by Reddy et al. (2010) is relevant where they used a 
GPS and accelerometer to compute speed measures- and  acceleration-based 
features. Their model shows 74% accuracy. Hemminki, Nurmi, and Tarkoma 
(2013) used a discrete hidden Markov model along with AdaBoost while 
 detecting different modes with 84.2% accuracy.

Since existing trajectory interpretation models either work online or offline, 
a given model cannot adapt to different response times required to generate 
travel information. To address this need, Das and Winter (2016a) proposed 
a more sophisticated and adaptive trajectory interpretation model that can 
adapt to different contexts and provide travel information at different tem-
poral granularities. The model introduces a bottom-up trajectory segmenta-
tion approach that assumes a trip is an aggregation of short atomic segments 
of homogeneous modal states. Thus, by merging the homogeneous states 
iteratively, a trip can be detected over a given time period. In order to raise 
the trust in an inference process, a number of lemmata have been proposed. 
Unlike earlier trajectory interpretation models that use either spatial infor-
mation or temporal information, the bottom-up model uses spatiotemporal 
information (GTFS) while detecting a transport mode along a given route.

Although machine learning models work effectively, the models require 
a significant amount of data to get trained. Thus, a machine learning model 
falls short in an environment where the training data are limited. A machine 
learning model also provides limited explanatory ability while interpreting a 
trajectory. To address these limitations, rule-based frameworks, in particular 
fuzzy logic-based models, have been proposed. A fuzzy logic model is based 
on expert knowledge and does not require any training data. Thus, a fuzzy 
logic-based model allows several domain experts to interact with the model 
and develop the rule base in a customized way, which is not the case for a 
machine learning-based model. In transport mode detection, Schuessler and 
Axhausen (2009) proposed a fuzzy logic-based approach that can distinguish 
five transport modes using speed-only features. Xu et al. (2010) presented 
a similar type of fuzzy logic-based model that can detect four modalities 
with 94% accuracy. Biljecki, Ledoux, and Oosterom (2013) developed a more 
comprehensive hierarchical fuzzy logic-based knowledge driven model that 
can distinguish ten different transport modes with 92% accuracy. Although 
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fuzzy logic-based models can express their reasoning scheme, the models 
lack the adaptivity of machine learning. In order to bridge the trade-off 
between adaptivity and explanatory ability, a hybrid model has been pro-
posed by integrating a neural network and fuzzy logic to detect different 
transport modes based on their speed profile and proximity to different route 
networks (Das and Winter 2016b).

By changing the focus from a disaggregated perspective to an aggregate 
perspective, a collective inference can be performed on a number of trajec-
tories generated by different users. Unlike an individual trajectory interpre-
tation, a collective trajectory interpretation can generate aggregate demand 
information in terms of hot spots (Gudmundsson, Kreveld, and Staals 2013), 
top-k routes during peak hours, or urban form and functions and their evo-
lutions over time (Crooks et al. 2015). With the emergence of user-generated 
contents (UGC), there is a rapid proliferation of social media data across 
the globe. Social media data are deemed to provide additional potential for 
studying travel demand at an aggregate level. Lee et al. investigated the fea-
sibility of Twitter data for travel demand estimation in comparison to a man-
ual HTS in California. The results demonstrate that Twitter data can generate 
similar travel information as that of a manual HTS, especially in terms of trip 
length and spatial distribution of trips (Lee et al. 2017). However, the amount 
and quality of tweets largely depends on the sociodemographic profiles of 
the users of social media, the type of transport modes used during travel, 
and the users’ perception about an event and the way they express their reac-
tions. Similar approaches have also been explored by analyzing geo-tagged 
photos extracted from platforms such as Flickr or Foursquare (Zheng, Zha, 
and Chua 2012). Although such platforms may not provide detailed travel 
information all the time, the coarse-grained information can be useful for 
understanding travel demands in the interest of the tourism industry or loca-
tion-based e-marketing services.

In this section, a wide range of geospatial data sources and their applica-
tions in travel demand modeling have been explored. Unlike a manual travel 
survey, where people report about their activity-travel patterns from their past 
memories, smartphone-based dedicated tracking and UGC datasets provide 
not only people’s activity-travel information but also people’s interaction with 
a place or an urban event and how that interaction can impact travel demands 
over a shorter or longer term. There is also a possibility to combine different 
datasets (spatial, temporal, thematic, and socioeconomic), leading to big data 
analytics for transport planning. However, with the real-time tracking along 
with the growing variety and volume of movement data, there is an open 
challenge as how to store, manage, and extract travel information from big 
data. Besides, geospatial mobility datasets raise privacy concerns, which limit 
the acceptance of these techniques as long as no privacy aware handling of 
the data is established. Current research has started looking into these issues 
from the perspective of human geography, transportation engineering, and 
data science for effective transport demand modeling.
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8.4 Demand Modeling

Transportation demand comes from the spatial differences of origins and 
destinations of people’s activities, that is, working, leisure, and shopping, 
and grows constantly due to the urbanization phenomena and the expansion 
of cities. Understanding and forecasting this ever-growing demand plays 
a crucial role in making efficient decisions for transportation infrastruc-
ture and policy, which is only possible through what is known as demand 
modeling.

Demand modeling was started in the 1950s in the United States with the 
four-step model (FSM), which consists of the following steps:

 1. Trip generation: The main purpose of this first step is to identify the 
number of trips starting and ending in a specific zone based on 
socioeconomic characteristics of the users residing in that zone as 
well as the zone’s land use data.

 2. Trip distribution: In the second step, the origin and destination 
of each trip are identified based on the number of produced and 
attracted trips (i.e., the previous step’s outcome) from a zone and the 
impedance value between two zones, which depends on the time 
and effort required to travel from one zone to another.

 3. Modal split: The third step is to determine the mode of each trip 
based on the modal split data acquired from surveys (e.g., HTS), 
which could become very complex as the variety of modes increases.

 4. Trip assignment: The last step is dedicated to assigning a route on the 
transportation network to each trip.

Although FSM represents the travel behavior, it has failed to reflect the 
main underlying reason for traveling, that is, performing activities (McNally 
and Rindt 2008). Another main criticism of FSM is the lack of feedback in the 
sequential procedure of FSM. For instance, the number of trips is determined 
in the first step regardless of the transportation services. In the real world, 
if a person has difficulties accessing a location to perform an activity, he/
she might avoid traveling in the first place, affecting the number of trips. In 
spite of the aforementioned issues, FSM has been widely used as the main 
demand forecasting method for many projects even to this date, particularly 
for developing large-scale infrastructures.

Nonetheless, the beginning of disputes about environmental issues, space 
and budget limitation, and traffic congestion in the 1970s challenged the 
unconditional development of infrastructure and called for a more astute 
method for demand modeling that is able to effectively reflect the impact of 
different policies and management strategies to increase the efficient utiliza-
tion of the existing infrastructure. Contemporaneously, three independent 
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studies established the foundation of a notion that was later called activ-
ity-based approach (ABA) for demand modeling (Miller and Shaw 2015). 
Hägerstrand (1970) introduced the spatiotemporal constraints of activity 
participation; Chapin (1974) investigated and described people’s behavioral 
pattern across space-time; and Fried et al. (1977) examined people’s activity 
participation motives from a societal point of view. However, the connection 
of travel, activity, and space-time was explicitly addressed for the first time 
by Jones (1979) and began to receive considerable attention after a confer-
ence held in 1981 on “Travel demand analysis: activity-based and other new 
approaches” (see Carpenter and Jones 1983 for proceeding).

Unlike FSM that has a clear and slightly strict structure, ABA is more of 
a concept or theory rather than methodology mostly due to the complexity 
of the considered factors, such as individuals’ characteristics, their relation 
to their household members’ travel patterns, spatial and temporal aspects 
of activities, and other social circumstances (McNally and Rindt 2008). 
Notwithstanding the diversity of applied methodologies and empirical 
approaches, they all fall within four categories: simulation-based models, 
computational-process models, econometric-based application, and mathe-
matical programming approaches (see McNally and Rindt (2008) and Pinjari 
and Bhat (2011) for detailed descriptions), and share one or more of the fol-
lowing characteristics (McNally and Rindt 2008):

• Travel is a result of demand for activity participation;
• The analysis units are sequences or patterns of behavior (not indi-

vidual trips);
• Social structures, on any level, influence travel and activity pattern;
• Spatial, temporal, transportation, and interpersonal interdependen-

cies constrain both activity and travel behavior; and
• ABAs reflect the temporal and spatial aspects of activities planning.

Considering the above features, it can be concluded that a highly detailed 
level of information about individuals, their socioeconomic characteristics, 
and their activities is required. Although similar data are collected in HTSs 
(see Section 8.2), it is not possible to directly develop a population-wide 
demand model on an individual level due to two main reasons. First, the 
data are just acquired for a limited number of individuals in each study area, 
that is, a sample of the population. Second, owing to privacy issues, the ori-
gins and destinations of the trips are reported in an aggregated level: not 
as coordinates but area codes. Additionally, depending on the HTS that the 
data are derived from, the start time or duration of the activities may also be 
unknown.

To tackle the first problem, it is possible to generate a synthetic population 
based on the sample data. The precision of the synthetic population greatly 
depends on the employed approach and algorithm (Lim and Gargett 2013). 
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There are several approaches that can be utilized to generate synthetic popu-
lation, including: stratified sampling, geodemographic profiling, data fusion, 
data merging, iterative proportional fitting, reweighting, synthetic recon-
struction, and their combinations (Huang and Williamson 2001). Synthetic 
reconstruction (SR) and combinatorial optimization (CO), which is an altera-
tion of the reweighting approach, are two major approaches (Wilson and 
Pownall 1976; Williamson, Birkin, and Rees 1998; Williamson 2002). Using 
different methods, both approaches create individuals and households with 
consistent characteristics to the known aggregate distributions of the census 
(see Ryan, Moah, and Kanaroglou 2009; Huynh et al. 2013; Lim and Gargett 
2013; Jain, Ronald, and Winter 2015 for more information). Several software 
applications have been developed over the years based on the mentioned 
approaches, namely PopSynWin (Auld, Mohammadian, and Wies 2008) and 
PopGen (Ye et al. 2009), which have been effectively utilized to generate the 
micro data in different cities. Since the synthetic population is an extrapola-
tion of the HTS, it just solves one of its shortcomings to generate a popula-
tion-wide daylong tour-based demand.

To address the second mentioned obstacle, that is, the lack of specific spa-
tial and temporal features of the activities, researchers employ different heu-
ristic approaches, all of which share the same challenges: integration of land 
use data, and activities’ time and location generation and allocation. While 
the latter directly addresses the specifications of trips, the former is neces-
sary to ascertain that the trips’ origins and destinations are valid not only in 
terms of the reported area but also in terms of land use data. For example, 
measures need to be taken that a trip from home in zone 1 to a store in zone 2 
starts from a point in a residential area in zone 1 to a commercial area in zone 
2. To that end, transport modelers and researchers exploit various geospa-
tial databases and software packages and combine them with transportation 
concepts and techniques.

Bowman et  al. (1998) and Bhat, Srinivasan, and Guo (2001) first utilized 
households, zonal data, and network data to create a tour-based travel plan 
for individuals and generated alternative origin and destination locations. 
Then they applied econometric methods to allocate time and location to 
each activity in tours. Figure 8.3 demonstrates the overall work structure of 
Bowman et al. (1998) in Portland.

Initial demand mobsim Scoring Analysis

Replanning

FIGURE 8.3
Portland activity schedule model system. (Modified from Bowman, J.L. et  al. 1998. 
Demonstration of an activity based model system for Portland. Paper presented at 8th World 
Conference on Transport Research. Antwerp, The Netherlands.)
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Rieser et al. (2007) took a simulation-based approach to generate the pop-
ulation-wide demand for Berlin. They first created initial plans, that is, a 
sequential list of activities’ location and time, and then used a transport 
mode between them, for all individuals based on the Kutter Model (Kutter 
1984; Kutter and Mikota 1990; Kutter et al. 2002); then they used it in a mul-
tiagent simulation software to replicate the real-time and location choice of 
people. Their model was validated against traffic counts from 100 stations.

8.5 Simulation

Transport models or, more specifically, transport demand models are neces-
sarily simplified representations of a complex and dynamic transportation 
system. Transport models describe and display a static state of the system 
(with limited complexity). To investigate the changes to the state of a sys-
tem, and to understand the effect of these changes, simulations are neces-
sary. Furthermore, simulations can be utilized to synthesize data or create 
the demand model in many cases. For instance, Hensher, Rose and Greene 
(2005) proposed data synthesis through simulation as a solution to the miss-
ing non-chosen alternatives RP data problem. Also, agent-based simulation 
is recommended as one of the techniques to create the demand model in 
ABA (see Section 8.3).

The simulation of transport systems started in the 1950s with car-follow-
ing behavior analysis in a platoon, which facilitated the study of traffic flow 
(Gerlough and Huber 1975). Since then, simulations have been in use to inves-
tigate various aspects of traffic systems, such as flow, traffic signal control, 
and intersections (Persula 1999). The most common classification system for 
the classic traffic/transport simulations is based on the degree of the details 
they can consider. The literature suggests three levels of classic traffic/trans-
port simulation (Fellendorf and Vortisch 2010):

• Simulation at a macroscopic level sees the traffic as a fluid and charac-
terizes it (macroscopically) by volume, density, and speed;

• Simulation at a microscopic level describes the movement and charac-
teristics of every individual vehicle (such as its position, speed, accel-
eration, and lane changes), considering all the surrounding vehicles 
and the environment;

• Simulation at a mesoscopic level is a mixture of the former ones. In 
a mesoscopic simulation, each vehicle moves with the macroscopic 
quantities and the results are referring to the individual vehicles.

The advancements in a number of technological and scientific fields, 
including computer hardware, computer science, data science, complexity 
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studies, and the global positioning system (GPS), lead to the introduction 
of a new category of transport microsimulation that is focused on individu-
als rather than vehicles, that is, geosimulation (Torrens 2004; Benenson and 
Torrens 2004). This innovative class of transport microsimulation specifically 
facilitates the study of travel demand on an individual person’s level, which 
allows the exploration of policies to better utilize the existing infrastructure 
and improve the social inclusion and justice in the mobility sector.

Benenson and Torrens (2004) refer to geosimulation’s capability to repre-
sent the components of a transport system as different objects with specific 
characteristics and relations as its main feature that differentiate it from tra-
ditional approaches in transport or urban system simulation and describe its 
four core characteristics as follows:

• Representation of spatial entities: Unlike the traditional approaches, 
geosimulation can represent geographic entities on a spatially non-
modifiable level, such as households, home, and vehicles.

• Representation of relationships: While in traditional approaches the 
interactions happen on an aggregated level, for instance among traf-
fic analysis zones or cities, in geosimulation the synergy of urban 
entities forms the interaction at higher levels.

• Treatment of time: In geosimulation, different objects can behave in a 
different temporal manner: synchronous, concurrent changes in all 
objects, or asynchronous, when changes happen in turn.

• Direct modeling: Geosimulation’s potential to model the real behav-
ior of the objects on a fine level and realistic manner enables the 
researchers to develop the proper scientific tool for scrutinizing 
hypothesis and theories (Benenson and Torrens 2004) in a way that 
was not possible previously.

An automaton, “… a machine that processes information, proceeding logi-
cally, inexorably performing its next action after applying data received from 
outside itself in light of instructions programmed within itself” (Levy 1992, 
15), is the means to implement the object-oriented concept of geosimulation. 
Mathematically, an automaton is defined as:

 S f S It t t+ =1 ( , )  

where S is the state of an automaton at a given time, f is the transition rule for 
the automaton from time t to time t + 1, and I represents the input data from 
outside of the automaton, that is, from neighboring automata.

Benenson and Torrens (2004) describe the representations of the traffic sys-
tem elements in an automaton-based scheme: automata can represent any 
component of a traffic system, such as vehicles, pedestrians, and sections of 
road. These elements’ state can be described with different attributes, such 
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as capacity, speed limit, and demographic characteristics. Input data can 
be inferred from transition rules that are defined to represent the behavior 
and processes, such as lane-changing rules, rules describing people’s prefer-
ences or motions. All these automata can be integrated into different types 
of lattices representing the spatial context of a transportation system, such as 
regular grid-based tessellations, irregular grids, and graph-based networks 
of nodes and edges, with various time scales.

The concept of automata is applied using Cellular Automata (CA) or mul-
tiagent systems (MAS). In CA, the automata are bound to move within a 
cellular, for example, grid square, environment with a limited number of 
neighbors and interactions, which results in a limited number of CA applica-
tions in transport systems. In contrast, multiagent systems are more flexible 
in terms of the definition of the environment, the agents’ neighbors can be 
positioned randomly around them, and the agents can have “arbitrary neigh-
borhood connections” (Benenson and Torrens 2004).

MAS have become the basis for developing numerous simulation soft-
ware packages for transport studies, namely Transportation Analysis and 
Simulation System (TRANSIMS) (Smith, Beckman, and Baggerly 1995), 
Multiagent Transport Simulation (MATSim) (Horni, Nagel, and Axhausen 
2016), and Comprehensive Econometric Microsimulator for Activity-Travel 
Patterns (CEMDAP) (Bhat et al. 2004; Pinjari et al. 2006).

Understanding the notion and features of MAS confirms its effective appli-
cation in ABA. An agent in an MAS can be defined as “… a system situated 
within and a part of environment that senses that environment and acts on 
it, over time, in pursuit of its own agenda, and so as to effect what it senses in 
the future” (Franklin and Graesser 1996, 25). In other words, it is an autono-
mous entity that has purpose, preferences, and a perception of its environ-
ment, and acts based on those inputs to impact its future.

For instance, MATSim is an established multiagent simulation software for 
modeling and simulating transport phenomena that integrates ABA into an 
agent-based simulation system. MATSim is employed for large-scale simula-
tions of real-world scenarios. The overall workflow of MATSim is illustrated 
in Figure 8.4.

The initial demand includes a list of all people, represented by agents, and 
their daily plans including the locations and times of their daily activities, 
which are generated based on a relevant HTS (see Section 8.3). During the 
mobsim phase, all the agents execute their plans in a predefined environ-
ment, which includes transport network and various facilities’ properties 
(optional), and save the attributes of their executed plan, for example, travel 
time, waiting time at a stop, waiting time for a workplace or shopping center 
to open, or arrival time. In other words, agents travel through the network 
to reach their activities’ location and, depending on the other agents’ plan, 
they may get stuck in a traffic jam or arrive earlier than they expect. In the 
next step, scoring, the executed plans’ score is calculated based on the saved 
attributes using scoring functions that are defined generally for all agents or 
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individually for each agent. In the replanning step, a number of agents make 
changes in their plan and the system is ready for another cycle. Each agent 
has a limited number of memories for saving plans and after each scoring 
phase, it updates its memories to contain the most suitable plans. This loop 
is repeated in several iterations until it reaches an equilibrium state, where 
no one can significantly improve their plans anymore (Horni, Nagel, and 
Axhausen 2016). Integration of Belief-Decision-Intention platform as a recent 
extension to MATSim even allows for a smarter interaction with the envi-
ronment by provoking a decision-making process at any potential decision 
point during the mobsim phase (Padgham et  al. 2014). Table 8.2 presents a 
comparison of the features of a general agent to those of an agent in a trans-
port simulation system.

Input: household, zonal data, and network data

Activity pattern

Home-based tours: times of day

Home-based tours: mode and destination

Work-based subtours

Intermediate stop locations for car driver tours

Output: OD trips matrices by mode, purpose, time of day,
and income class

FIGURE 8.4
The overall workflow of a MATSim loop (or cycle). (Modified from Horni, A et al. 2016. The 
Multi-Agent Transport Simulation MATSim. Ubiquity, London.)

TABLE 8.2

Comparison of a General Agent to a MATSim Agent.

General Agent Definition MATSim Agent

System situated within and a part of 
the environment

Transport network and various facilities’ properties

Senses that environment and acts on 
it, over time

In the mobsim phase, they interact with their 
environment and other agents

In pursuit of its own agenda All agents represent people, who have daily plans
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Many of the agent-based simulation software with a similar structure have 
compromised modeling the details of transportation systems (such as exact 
location or speed of vehicles at each time step, and driving behavior) for 
modeling urban phenomena, such as crime, segregation, and disease within 
cities (Wise, Crooks, and Batty 2016).

8.6 Conclusion

Transportation demand is the result of people’s needs and desires to perform 
activities in spatially dispersed locations. Understanding and modeling this 
phenomenon is the key to understanding the transport demand and solv-
ing many urban problems related to transportation and land use. ABA has 
been tested and proven to be the prevalent approach capable of reflecting 
this complex intertwined relation of people, activity, and travel, and requires 
data on the finest level possible, which is socioeconomic characteristics of 
people, potential locations for different activities, as well as possible and 
desired time to perform activities. This chapter provides an overview of dif-
ferent geospatial data sources and some commonly used inference strategies 
to extract activity-travel information from those geospatial data sources. In 
this regard, it can be stated that geospatial data, collected through surveys 
or various automated sources (e.g., smartphones and smart cards) and UGC, 
have been revealed as the ultimate solution to the data hungry nature of 
ABA. Furthermore, geosimulation, particularly the agent-based simulation 
method and its object-oriented characteristics, paved the path for imple-
mentation of this complex and comprehensive theory. In the era of big data, 
where geospatial data come from different sources with different qualities 
and in huge volume, there is a future research direction that should look into 
combining and processing such complex datasets to extract relevant infor-
mation and ensure a sustainable urban mobility.
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9
Geography of Social Media in Public 
Response to Policy-Based Topics

Xinyue Ye, Shengwen Li, Adiyana Sharag-Eldin, Ming-Hsiang Tsou, 
and Brian Spitzberg

9.1 Introduction

In today’s increasingly connected world of virtual, perceived, and real spaces, 
social media data have been used to enhance decision making, understand 
customer behavior, improve operational efficiency and identify new markets 
(Leavey, 2013; Ye and He, 2016). With the development of Web 2.0, interac-
tions through the Internet can provide an insight for decision makers to for-
mulate better policy targeting the right groups of people, which has been a 
research goal pursued in many disciplines (Wu et al., 2016). The complexities 
of such interaction systems at various spatial, temporal, and semantic scales 
have posed both challenges and opportunities to researchers (Ye Huang, 
and Li, 2016). Policy makers aim to utilize social media data to comprehend 
the complex social problems at a variety of scales and to compete for atten-
tion and influence within it (Margetts, 2009; Leavey, 2013). In addition, social 
media data can also help improve the quality and timeliness of the evidence 
base that informs new public policy. More importantly, it is critical for policy 
makers to know which groups of people they are listening to, where they 
are from, and what those people’s socioeconomic status is (Wang et al., 2016). 
In this case, geography, location information and associated socioeconomic 
status are critical data sources in addition to the text of social media data (Ye 
et al., 2016).
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In the networked society, promoting sustainability and environmental jus-
tice requires the use of advanced technologies to understand complex chal-
lenges including urbanization and climate change (Alexander, 2014; Wang 
et al., 2015; Chong et al., 2016; Wang et al., 2016). Russell-Verma et al. (2016) 
conducted qualitative content analysis of online news articles and their 
associated readers’ comments to examine public preferences for drought 
mitigation options in the south-east of England and their reasons. Kohl and 
Knox (2016) investigated multiple ways to understand how scientific opera-
tionalizations of drought interact with the politics of water management in 
Georgia in the southeastern United States, based on archival research, direct 
observation, and semistructured interviews with various interest groups. 
The Internet access and widely adopted social media platforms support the 
general public to express their opinions. Kohl and Knox (2016) argued that 
scientists and policymakers need to understand how knowledge of drought 
is developed through interactions between science, nature, and society. The 
policy issue will serve as an exemplary canvas upon which public attitudes 
will be written in online and social media messaging and other traditional 
news media. Social media influence personal opinion, which in turn influ-
ences broader public perceptions of social issues Ceron and Negri, 2016. In 
developing an opinion, many people do not use rational knowledge to make 
up their own opinions. People express the opinions of friends or those of 
opinion leaders that consist of prominent people, or politicians. According 
to Noelle-Neumann (1974), people learn about public opinion from media 
coverage especially when the news contain a contradiction. Hence, rigorous 
analysis of such data is likely to open up a rich context for advancing public 
policy interventions.

This research uses tweets to illustrate how social media memes reflect 
public response to social and policy-based topics, using a water bond prop-
osition in California as the case exemplar. The increasing complexity of 
environmental issues demands place-based interdisciplinary thinking and 
approaches that make recommendations among diverse stakeholders at the 
policy, community, and organizational scales. Most social media related 
studies on policy issues in Europe and North America are on floods and 
forest fires (Wang et  al., 2016), and there is a lack of research on drought 
(Klonner et  al., 2016). We also aim to explore how the social media users 
are integrated into various local and topical contexts. The serious statewide 
drought in California has impacted both agriculture and the environment 
(Macon et  al. 2016). California Proposition 1, the Water Bond (Assembly 
Bill 1471) as a legislatively-referred bond act, was voted and approved on 
the November 4, 2014 ballot in California. The previous measure known 
as Proposition 43 (Myers, 2014) was replaced by the new measure, which 
aims to improve the Water Quality, Supply, and Infrastructure. Proposition 
1 tries to release $7.12 billion obligation bonds to sponsor state water sup-
ply infrastructure projects, appropriate money from the General Fund to 
pay off bonds, and require certain projects to provide matching funds from 
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non-state sources in order to receive bond funds. California Proposition 1 
was approved with a total of 4,771,350 people voting yes. This was 67.13% of 
the total population. We select this phenomon as the background of social 
measure because it is a social topic that generated certain controversy and 
debates examining the interplay between science and politics in the spatial 
context. The remainder of this chapter is structured as follows. The data sec-
tion describes the social media data used in this study. The data Analysis 
section presents the analytical results. We then conclude our discussion with 
a summary of the findings and directions for further works.

9.2 Data

Using the Twitter Search Application Programming Interface (API) and 
based on the keywords of “water bond” and “vote,” two groups of tweets 
were gathered respectively in California in 2014. These two words appeared 
frequently as hashtags and retweets. Another advantage of using Twitter is 
the ability of the program to track phrases, words in hashtags that are most 
mentioned and posted under the title of “trending topics.” The hashtag con-
vention allows users to search for the word contained in tweets that feature a 
specific character such as “#” for hashtags. The hashtags water bond and vote 
(#water bond and #vote) used in this project tracked Twitter messages using 
the same hashtag. The first group was from October 10 to November 20, 
and the second group was from November 7 to November 30. In the “water 
bond” dataset, 2.28% of tweets had geographical coordinates. At the same 
time, 2.33% of “vote” related tweets were geocoded. A meme is defined here 
as a unit of information that is spread (i.e., reproduced with some degree of 
fidelity, or diffused) from person-to-person through a social network. Once 
a meme is identified, it can be used to classify different types of social phe-
nomena. Most memes go only one or two steps or nodes in a social network, 
but memes that are spread widely can be said to be viral in their diffusion 
pattern. Virality is a communication phenomenon in which thousands to 
millions share a meme over a relatively brief interval of time.

After removing duplicated tweets, there are 1530 unique “water bond” 
tweets, while there are 150,000 “vote” tweets. Seven columns are identified in 
each tweet: UID (unique identifier of the tweet), UserID (ID of the user who 
posted the tweet), City (the city name in the user’s profile), Text (the content 
of the tweet with a maximum of 140 characters), Geo (the coordinates of the 
location where the tweet was posted), Location (place name such as city and 
state where the tweet was posted), Time (the day and time when the tweet 
was posted), and Localtime (the users’ local time when the tweet was posted). 
Tweets contain a wealth of spatial information, which can help better under-
stand the phenomena associated with the geographic location (Wang, Ye, and 
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Tsou, 2016). A meme is an analog of genes in biology; that is, a meme is any 
replicable message that spreads information or culture from person to per-
son. When a word becomes viral and is retweeted to other users, a meme is 
developed. The definition of a meme is a unit of information that spread from 
person to person through the social network. Once a meme is identified, we 
can use it to classify different types of social phenomena (Ferrara et al., 2013). 
It could help us understand what people are concerned about over time.

With the proliferation of social media, messages generated and diffused 
from these outlets have become an important component of our daily lives 
with great potential for effectively distributing political messages, hazard 
alerts, or messages of other social functions (Wang et al., 2015). The users’ 
participation ranges from political groups and individuals with strong 
political agendas, to common citizens with marginally-involved viewpoints. 
Individuals may be influenced by direct exposure of drought risk or spread 
the news to each other through the social media communication (Watts and 
Dodds, 2007). An advantage of using Twitter data is the ability of tweets 
to provide georeferenced and time-stamped information that support the 
application of geographic information systems (GIS) analytics as planning 
and decision-making tools (Andrienko et al., 2013; Wang et al., 2015).

9.3 Data Analysis

Tweets have clear spatial distribution patterns. As shown in Table 9.1, the 
relative attention on “water bond” was greater than that on “vote” tweets in 
some cities. Among those cities, Sacramento and Stockton are at the center of 
the drought area in California as shown in Figure 9.1. The spatial analysis of 
social media streams can help us understand the spatial distribution of pub-
lic response. Such comparison reveals that the place-based situational aware-
ness matters in the social media platform. Local residents are concerned 
about the immediate challenges in the vicinity. The drought highlights the 
city’s vulnerability to this natural hazard and social media messages called 
for the attention of water shortages and the need for drought mitigation mea-
sures. Hence, virtual space expressed in Table 9.1 is highly related to the situ-
ation in the physical space shown in Figure 9.1. This can be very helpful for 
the policy makers with a full awareness of public concern.

From another perspective, we can map the spatial distribution of “water 
bond” tweets at a finer scale using coordinates to compare the distribution of 
tweets across space. In order to reduce the impact of population, the number 
of tweets per one thousand persons were calculated with a one-mile resolu-
tion and a five-mile search radius (Figure 9.1).

Each tweet with location information can be regarded as a geographical 
entity. Figure 9.1 reveals a large difference across cities, with the highest value 
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of 12.41 tweets per one thousand persons in Los Angeles-Long Beach. This 
result demonstrates that the topic of “water bond” drew more attention in 
coastal cities. As Klonner et al. (2016) argued, “integrating local knowledge, 
personal experience and up-to-date geoinformation indicates a promising 
approach for the theoretical framework and the methods of natural hazard 
analysis.” California’s coastal cities host large amounts of residents, where 
water shortage and environmental injustice are larger concerns for sustain-
able urban growth. November 4th 2014, the Water Bond Referendum day, 
was a key date of tweeting behavior. The number of “water bond” tweets 
reached their peak on this day. Distribution of tweets over time can be fur-
ther analyzed using the granularity of hours. Table 9.1 and Figure 9.1 reflect 
Adams’s (2011) statement that the social space of communication as places in 
media is an abstract, theoretical, and production-oriented spaces involving 
the formal plans and abstract blueprints of powerful actors whose formaliza-
tions of space control actions. “Place” captures the idea of deeply layered 
subjective experience grounded in the particularity of local conditions and 
discourses, whereas “space” implies potential as well as actual movement 
of bodies, goods, capital, information, and communication (Edwards and 
Usher, 2007).

Analyzing the trends of tweets can detect the changes in people’s concerns 
during different phases of events and attitudes towards different types of 

TABLE 9.1

Difference in Distribution of Tweets in Cities

City “Water Bond” (%) “Vote” (%)

Sacramento 15.49 1.23
Stockton 3.27 0.31
Indio 2.16 0.32
Tulare 0.65 0.10
Riverside–San Bernardino 2.88 0.80
Fresno 3.66 1.14
Fairfield 0.92 0.31
San Francisco–Oakland 22.94 8.60
Salinas 0.65 0.27
Bakersfield 0.65 0.35
Santa_Rosa 0.26 0.14
San Diego–Chula Vista 10.52 6.67
San Jose–Freemont 4.84 3.09
Carlsbad–Oceanside–Escondido 0.20 0.42
Los Angeles–Long Beach 29.48 68.52
Oxnard 0.13 0.32
Santa Ana–Anaheim–Irvine 1.31 6.89
El_Centro 0.00 0.37
Lancaster 0.00 0.15
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events (Wang et al., 2015). Because tweets relevant to certain topics tend to 
fluctuate over time, the overall trend of concerns towards certain topics can 
be assessed. Figure 9.2 reveals a huge difference between the specific topic 
of “water bond” and the general topic of “vote” at the temporal resolution 
of hours. Water bond attracted lots of discussion at late night, while voting 
issues consumed most of dinner time. Most retweeting activities occurred at 
late night for “water bond,” while lunch and dinner times witnessed many 
more retweets for “vote.”

Tweets have been posted across various platforms across many user affor-
dances. The digital technology introduces a new momentum for the social 
media users to make a connection with other users. The users will select from 
varieties of the networking program applications that are appropriate for their 
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FIGURE 9.1
Spatial distribution of tweets per one thousand persons.
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activities (Kaplan and Haenlein, 2010). Tables 9.2 and 9.3 reveal that people 
tend to use computers to post more specific topics such as “water bond,” com-
pared to the preferences for mobile phone in tweeting general posts related 
to “vote.” It is interesting that “water bond” is posted more through web cli-
ents, partially due to this specific topic needing more web search in the com-
puter. However, mobile devices overwhelm other selections in sending “vote” 
related tweets, because this topic is more general and less specific.
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(b) “Vote” dataset
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9.4 Conclusions

As a computer-mediated tool, social media platform enables people to create 
and exchange information, ideas, pictures, and videos in virtual communi-
ties and networks (Li et al., 2017). As one of the world’s major social media 
platforms, Twitter allows individuals to timely access to diffuse messages 
from a particular location at a given moment for a specific policy issue, along 
with a growing pronounced concern for the relative social justice of choices. 
Users can broadcast brief text updates to public or to a selected group of 
contacts facilitating the actions and interactions among individuals and/or 
agencies (Lai, She, and Ye, 2015; Yang, Ye, and Sui, 2016). For a social debate, 
traditional intellectual inquiry and survey take a long time to complete with 
only a limited number of participants. Social media are replacing face-to-face 

TABLE 9.2

Top 10 Platforms in “Water Bond” Dataset

Source Number of Tweets Percent

Twitter Web Client 374 24.44
Twitter for iPhone 287 18.76
Hootsuite 118 7.71
TweetDeck 118 7.71
Twitter for Android 90 5.88
Twitter for Websites 78 5.10
dlvr.it 75 4.90
Twitter for iPad 74 4.84
Twitterfeed 53 3.46
RoundTeam 33 2.16

TABLE 9.3

Top 10 Platforms in “Vote” Dataset

Source Number of Tweets Percent

Twitter for iPhone 58,822 39.21
Twitter for Android 31,412 20.94
Twitter Web Client 24,856 16.57
Twitter for iPad 6878 4.59
TweetDeck 6693 4.46
Twitter for Websites 3492 2.33
Twitter for Android Tablets 2389 1.59
Hootsuite 1355 0.90
Twitter for Windows Phone 1342 0.89
Facebook 1186 0.79
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social interaction and redefining the diffusion of information (Ratkiewicz 
et al., 2011; Chen et al., 2016). Tweets related to water bond in California have 
been explored from spatial, temporal, and topical perspectives in this chap-
ter, in order to demonstrate how people connect, network, and promote opin-
ions. An analytical framework is developed to derive effective, validated, 
and usable information.

Public policy decision making is undergoing rapid transition towards 
analyzing ever-increasing amounts of large-scale geosocial response data 
collected from citizens and stakeholders. Investigating such response 
dynamics needs an analytical framework within which effective solutions 
might be developed in an interdisciplinary, collaborative, and timely man-
ner (Ye, Huang, and Li, 2016). Compared to the general vote related tweets, 
geo-tagged “water bond” tweets were more attached to where the drought 
area was located. Residents in coastal area are more willing to express their 
thought in a brief message related to “water bond” in public. November 
4th 2014, the Water Bond Referendum day, served as the turning point of 
the tweeting behavior dynamics. There were far fewer tweets before and 
after this peak day. People were also more likely to assign different time 
slots during the day to discuss specific or general policy issues. This study 
reveals that users tent to spend more time at late night to post tweets on 
more specific topics that need more work in web searching (Tsou, 2013). The 
temporal and textual phrase propagated on the tweets among the individu-
als with similar propensities occurs through the continuous interaction of 
messages on a daily basis (Ye and Lee, 2016). In addition, the preference 
of various platforms matter in different topics, presumably because users 
might need references and support materials for certain topics. It will be a 
promising path to integrate the measurement of space, time and topic, in 
order to better understand how perceived space and real space affect each 
other (Crampton, 2013; Tsou, 2015; Shaw et al., 2016). Even in instances where 
the knowledge on drought is different, stakeholders can still change the soci-
etal context, as the green industry did in Georgia in 2009.

This chapter contributes to the literatures as an empirical public pol-
icy related study to utilize social media and volunteered geographic data 
to explore human behavior and social phenomena. This study generates 
important lessons about the structured use of social media sources for under-
standing geography of social media in public response to social topics. The 
next step will be identifying opinion leaders in this water bond tweets and 
examine how message diffusion occurs across space and over time, based on 
ever-increasing amounts of large-scale geosocial data and computing power. 
As Lefebvre (1991) argued, the representation of space or the social space 
of communication is occupied by artists, writers, and philosophers. In the 
networked world today, the space of communication is also shared by the 
Internet bloggers, celebrities, and political figures. These opinion leaders will 
attract more intense commentary and divide opinion to a greater extent than 
common users.
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The second stage of analysis can involve an online survey and face-to-face 
interview with the residents of the impacted communities. At the same time, 
it is important to differentiate the supply side interventions from demand 
side strategies in understanding the dialogue around mitigation options. 
This can be used to explore how stakeholders might leverage the complexity 
of drought to achieve their political goals and adjust water management pol-
icy during times of drought. Mixed approaches involving rich and complex 
spatial, temporal, network, and semantics data are needed to facilitate trans-
formative geospatial discovery for enabling effective and timely solutions 
to the challenging environmental problems. Advanced natural language 
processing (NLP) tools are needed to accompany the pre-selection of key-
words in tweets. NLP will help the data screening by identifying which con-
cepts a word or phrase stands for and knowing how to link those concepts 
together in a meaningful way. There are nevertheless important limitations 
to reliance on social media as a proxy for public opinion. In this study, there 
were not enough data to investigate the roles of geotechnical external factors 
such as technological penetration of the population to localizable clusters of 
tweets. Geotechnical factors in this case study might have included popula-
tion demographics affecting the adoption of Twitter (which is a “younger 
generation” medium), the concentration of major media outlets, urban versus 
rural divisions that index political ideologies, and perhaps even neighboring 
state politics or shared urban metropolitan areas (Spitzberg, 2014).
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10
Geospatial Data Streams

Zdravko Galić

10.1 Introduction

The recent rapid development of wireless communication, mobile com-
puting, global  navigation satellite systems (GNSS), and spatially enabled 
sensors enables the exponential growth of available spatiotemporal data 
produced continuously at high speed. Owing to these advancements, a new 
class of monitoring applications has come into focus, including real-time 
intelligent transportation systems, traffic monitoring, and mobile objects 
tracking. These new information flow processing (IFP) application domains 
need to process huge volumes of geospatial data arriving in the form of 
continuous data streams. IFP applications are pushing traditional database 
technologies beyond their limits due to massively increasing data volumes 
and demands for real-time processing. Data stream management systems 
(DSMSs) have been developed by the database community to query and 
summarize continuous data streams for further processing. Owing to its 
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pure relational  paradigms, DSMSs have rudimentary geospatial process-
ing capabilities. Geospatial stream processing refers to a class of software 
systems for processing high-volume geospatial data streams with very low 
latency, that is, in near real time. DSMSs are oriented toward processing 
large data streams in near real time. Despite the differences between these 
two classes of management systems, DSMSs resemble DBMSs; they process 
data streams using SQL, SQL-like expressions, and operators defined by 
relational algebra.

Geospatial data streams, that is, real-time, transient, time-varying 
sequences of geospatial data items, generated by embedded positioning 
sensors demonstrate at least two Big Data core features, volume and velocity. 
Increasingly, a dominant approach is to leverage in-memory computing over 
a cluster of commodity hardware. Similar to centralized DSMSs, existing 
distributed in-memory query engines and their processing models are pre-
dominantly based on relational paradigms and continuous operator models 
without explicit support for geospatial queries. There is a clear need for a 
highly scalable data stream computing framework that can operate at high 
data rates and process massive amounts of large geospatial data streams.

The goal of this chapter is twofold. First, to give an insight into geospatial 
stream  processing at the conceptual level, that is, exclusively from the user’s 
perspective, using a declarative, SQL-based approach. Second, to present a 
novel, in-memory parallel, and distributed prototype that supports real-time 
processing and analysis of large geospatial data streams.

10.2 From Databases to Data Streams

Database management systems (DBMSs) have been researched and used for 
a wide range of applications for over three decades. They have been used as 
a simple but effective warehouse of business data in applications that require 
persistent data storage and complex querying. A database consists of a finite, 
persistent set of objects that are relatively static, with insertions, deletions, 
and updates occurring less frequently than queries. Queries expressed in a 
query language such as SQL are executed when posed and the answers reflect 
the current state of the database. Over the years, it has become obvious that 
many applications involving geospatial data need extended and specialized 
DBMS functionalities. Geospatial databases evolved from traditional DBMS 
and have been successfully  implemented as an extension of DBMS based 
on object-oriented or object-relational  paradigms. More recently, spatiotem-
poral databases and their specific subclass called moving object databases 
have been an active area of research with a few available research proto-
types. DBMSs have proven to be well suited to the organization, storage, and 
retrieval of finite, persistent geospatial datasets.
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The new IFP application domains have forced an evolution of data process-
ing  paradigms, moving from DBMSs to DSMSs.

Data streams and new stream-oriented monitoring applications have the 
following  characteristics and processing requirements:

• A data stream is an ordered, potentially unbounded sequence of 
data items called stream elements.

• Stream elements are generated by an active external source.
• The ordering is implicit if defined by the arrival time at the system.
• The ordering is explicit if stream elements provide generation time, 

that is,  timestamps indicating their generation by an active external 
source.

• Stream elements are pushed by an active external source and arrive 
continuously at the system.

• The DSMS has neither control over the arrival order or arrival rate 
of stream elements.

• Stream elements are accessed sequentially; therefore, a stream ele-
ment that has already arrived and has already been processed can-
not be retrieved without being explicitly stored.

• It is possible to combine real-time processing with historical, persis-
tent data in DBMS.

• Stream-oriented SQL enables real-time and historical analysis in a 
single  (SQL-like) paradigm.

• A query over data streams runs continuously and returns new 
results as a new stream element arrives.

Traditional DBMSs employ a store-and-then-query data processing para-
digm, that is, data are stored in the database and ad hoc queries are answered 
in full, based on the current snapshot of the database (Figure 10.1).

They could be used for data stream processing by loading data streams 
into persistent relations and repeatedly executing the same ad hoc queries 
over them. This approach requires that data streams need to be persisted on 
secondary storage devices, that is, disks with high latency, before they can 
be accessed and processed by a DBMS in the main memory. The mismatch 
between high latency of secondary storage and low latency of main mem-
ory adds considerable delay in response time that is not acceptable to many 
monitoring applications. IFP applications do not readily fit the traditional 
DBMS model and its query-driven,* pull-based processing paradigm, in 
which dynamic, transient ad hoc queries are typically specified, optimized, 
and processed once over relatively static, persistent data.

* Information flow processing.
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A data-driven, push-based processing paradigm in DSMSs is complemen-
tary to DBMSs: the same static, persistent queries are processed continuously 
over transient, dynamic, frequently changing data (Figure 10.2).

A data stream processing model views IFP as an evolution of data pro-
cessing as supported by traditional DBMSs. Although DSMSs have their 
roots in DBMSs, they present significant differences: DBMSs are designed 
to work on persistent data where updates are relatively infrequent, while 
DSMSs are specialized in processing transient data that are continuously 
updated. While DBMSs run queries just once to return a complete answer, 
DSMSs execute the same standing queries, which run continuously and pro-
vide updated answers as new data arrive. Most DSMSs follow an integrated 
query processing approach that runs SQL continuously and incrementally 
over data before the data are stored in the database. Despite their differences, 
DSMSs resemble DBMSs, especially in the way they process incoming data 
through a sequence of transformations based on standard SQL operators; all 
the operators are defined by relational algebra. Table 10.1 gives an overview 
of differences between DSMSs and DBMSs.

It is worth noting that three DBMS variants are related to DSMSs:

• Real-time DBMSs provide all features of traditional DBMSs, while 
at the same time enforcing applications’ real-time transaction con-
straints. Transaction  processing in real-time DBMSs focuses on 

Ad hoc queries

Insert, update, or delete data

Access persistent
data

Database

Results

DBMS

FIGURE 10.1
Query processing in DBMSs.



221Geospatial Data Streams

enforcing time constraints of transactions and ensuring temporal 
consistency of data.

• In-memory DBMSs eliminate disk access by storing all data in mem-
ory and remove logical processes that are no longer necessary (i.e., 
caching), resulting in a relatively small code footprint.

• Embedded DBMS is an integral part of the application or application 
infrastructure, and runs with or as part of the application in embed-
ded systems. Instead of providing full features of traditional DBMS, 
embedded DBMS provides minimal functionality such as indexing, 
concurrency control, logging, and transactional guarantees.

TABLE 10.1

Differences Between DSMSs and DBMSs

DSMS DBMS

Data Transient streams Persistent relations
Update rates High Low
Data access Sequential, one-pass Random
Queries Continuous Ad hoc, one-time
Query results Exact or approximate Exact
Latency Low High
Processing model Data-driven (push-based) Query driven (pull-based)

Database

Store query
results

Base streams

Continuous queries

Applications

Derived streams

On-the-fly-processing

Access persistent
data

DSMS

Stream 1

Stream 2

FIGURE 10.2
Query processing in DSMS.
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Although some of the goals for their development were similar to those of 
DSMSs, they are not able to meet the requirements of IFP applications. It is 
also important to note that DSMSs alone cannot entirely cover the needs of 
IFP: being an extension of DBMSs, they focus on producing query answers 
which are continuously updated to adapt to the constantly changing contents 
of their input data. This limitation originates from the nature of DSMSs: they 
are generic systems that leave the responsibility of associating semantics of 
the data being processed to their clients. Complex event processing (CEP) 
systems are capable of processing nongeneric data, which comprise event 
notifications coming from different external sources. CEP systems associ-
ate precise semantics with the notifications of events in the external world; 
the CEP engine is responsible for filtering and combining event notifications 
to understand what is occurring in terms of higher-level events. The detec-
tion and notification of complex patterns of events involving sequences and 
ordering relations are usually out of the scope of DSMSs. Therefore, CEP sys-
tems rely on the ability to specify composite events through event patterns 
that match incoming event notifications based on their content and ordering 
relationships.

10.3 Geospatial Continuous Queries

When processing geospatial data streams, there are two inherent temporal 
domains to consider:

• Event time*—the time when the event itself occurred in the real world.
• Processing time—the current time according to the system clock when 

an event is observed during processing.

Most DSMSs are based on extensions of the relational model and corre-
sponding query languages. Consequently, data stream items can be viewed 
as relational tuples with one important distinction: they are time ordered. The 
ordering is defined either explicitly by event time or implicitly by processing 
time. We define time domain, time instant, and time interval as follows.

Definition 10.1

(Time Domain) A time domain T is a pair (T; ≤) where T is a non-empty set of 
discrete time instants and ≤ is the total order on T.

* The terms event time and valid time are often used interchangeably.
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Definition 10.2

(Time Instant) A time instant τ is any value from T, i.e., τ ∈​T.

Definition 10.3

(Time Period) A time period represents extended time defined by the tempo-
ral positions of the time instants at which it begins (τbegin) and ends (τend).

Discrete time domain implies that every time instant has an immediate 
successor (except the last, if any) and immediate predecessor (except the first, 
if any).

Definition 10.4

(Time Interval) A time interval consists of all distinct time instants τ ∈​T and 
could be open, closed, left-closed, or right-closed:

 ( , ) { | },τ τ τ τ τ τbegin end begin endT= ∈ < <  

 [ , ] { | },τ τ τ τ τ τbegin end begin endT= ∈ ≤ ≤  

 [ , ) { | },τ τ τ τ τ τbegin end begin endT= ∈ ≤ <  

 
τ τ τ τ τ τbegin end begin endT, { | }.(  = ∈ < ≤

 

Geospatial data streams have two distinct features that differentiate them 
from conventional data streams based on relational models:

• The event time of a data stream tuple is defined by the temporal 
attribute Aθ.

• The shape and location of an object of interest described by a data 
stream tuple is defined by the spatial attribute Aσ.

The first feature implies that each data stream tuple has an event time-
stamp generated by the source, which classifies geospatial streams into a 
class of explicitly timestamped data streams.

The geospatial domain is a set of homogeneous object structures (values) 
that provides a fundamental abstraction for modeling the geometric struc-
ture of real-world phenomena in space. Points, lines, polygons, and surfaces 
are the most popular and fundamental abstractions for mapping a geomet-
ric structure from 3D space into 2D space. To locate an object in space, the 
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embedding space must be defined. The formal treatment of spatial domain 
requires a definition of mathematical space. Although Euclidean R2  embed-
ding space seems to be dominant, in some cases other spaces (metric, vector, 
and topological) are more important.

Simple object structures (point, continuous line, and simple polygon) are 
not closed under the geometric set operations (difference, intersection, and 
union). This means that geometric set operations can produce complex spatial 
objects (multi-points, multi-lines, multi-polygons, polygons with holes, etc.). 
For this reason, spatial domain should include spatial objects with complex 
structures.

Definition 10.5

(Spatial Domain) A spatial domain Dσ is a set of spatial objects with simple or 
complex structures.

Complex spatial objects may appear to be overwhelming in the DSMS context. 
However, we want to rely on and explore extensive research on abstract spatial 
data types in spatial DBMS and GIS. We are going to follow abstract spatial 
data type frameworks, where the internal structure of a spatial object is hid-
den from the user and can only be accessed through a set of predefined opera-
tions (Figure 10.3). A spatial domain, even though only consisting of simple 
object structures, is not atomic but rather structured, and consequently, geo-
spatial data streams rely on object-relational (or object-oriented) paradigms.

Having defined the time and spatial domains, we define a geospatial data 
stream schema.

Definition 10.6

(Geospatial Data Stream Schema) A geospatial data stream schema Σγ  is repre-
sented as a set of attributes A A An1 2, , ,…  of finite arity n. One of the attri-
butes (denoted by Aσ) has an associated spatial domain Dσ, and one of the 
attributes (denoted by Aθ) has an associated temporal domain Dθ , that is, 
T. The values of other n − 2 attributes are drawn either from atomic type 
domain Dαi  or complex type domain Dχi.

A geospatial data stream is defined in the following way.

Definition 10.7

(Geospatial Data Stream) A geospatial data stream Sγ  is a possibly infinite 
sequence of tuples belonging to the schema of Σγ  and ordered by the increas-
ing values of Aθ.
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A geospatial stream tuple tγ represents an event, that is, instantaneous fact 
capturing information that occurred in the real world at time instant τ, 
defined by an event timestamp. Event timestamps offer a unique time indi-
cation for each tuple and therefore cannot be either undefined (i.e., an event 
timestamp cannot have a null value) or mutable. In the following, we con-
sider explicitly timestamped data streams, ordered by the increasing values 
of their event timestamps.

Definition 10.8

(Temporal Order) A temporal order is surjective (many-to-one) mapping 
f SΩ →:D Tγ  from data type domain DSγ of the tuples belonging to a data 
stream Sγ  to time domain T, such that the following holds:

 1. Timestamp existence: ∀ ∈ ∃ ∈ ( ) =s S f s, |γ τ τT   Ω .
 2. Timestamp monotonicity: ∀ ∈ ≤ ( ) ≤s s S if s A s A f s1 2 1 2 1, , . .γ Θ Θ Ωthen  

f sΩ 2( ) .

FIGURE 10.3
ISO 19107—Abstract spatial data types.
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A DSMS can tag each stream tuple with its arrival timestamp using the 
system’s local clock. A stream with system timestamps can be processed 
like a regular stream with  application event timestamps, but we should 
be aware that application event time and system time are not necessarily 
synchronized.

We distinguish between raw streams produced by the sources and derived 
streams  produced by continuous queries and their operators. In either case, 
we model individual stream elements as object-relational tuples with a fixed 
geospatial schema.

The raw streams are an essential input for a broad range of applications 
such as traffic management and control, routing, and navigation. To become 
useful, the raw streams must be related to the underlying transportation net-
work by means of map- matching algorithms. For example, map-matching 
is one of the key operations in Intelligent Transportation Systems; a map-
matching user-defined function (UDF) could be applied on a raw stream to 
produce a derived stream.

10.3.1 Running Example

As a running example, let us consider the raw stream generated by GPS and 
speed sensors embedded into a mobile object:

CREATE STREAM gpsStream (
      id VARCHAR(8),
      lat REAL,         // Latitude
      lon REAL,         // Longitude
      elevation SMALLINT, // Ellipsoidal height
      speed REAL,              // Speed [km/h]
      timestamp TIMESTAMP VALIDTIME
)
ORDERED BY timestamp;
ALTER STREAM gpsStream ADD WRAPPER gpsWrapper;

Streams might have multiple attributes of TIMESTAMP type, but only one 
should have a VALIDTIME constraint. This constraint implicitly determines 
the read-only attribute by which the stream is ordered. Wrappers are user-
defined data acquisition functions that transform the sequence of bytes into 
a raw stream, and ALTER STREAM associates the raw stream with a wrapper.

An example of a sequence of gpsStream tuples (Figure 10.4):

…
“W-45084A” 48.20781333 16.43832500 221 73.2 2016-10-19 11:50:30
“W-45084A” 48.20795500 16.43853167 221 79.2 2016-10-19 11:50:31
“W-45084A” 48.20809167 16.43873667 220 77.4 2016-10-19 11:50:32
“W-45084A” 48.20823500 16.43894667 220 80.3 2016-10-19 11:50:33
“W-45084A” 48.20838167 16.43916333 220 82.5 2016-10-19 11:50:34
“W-45084A” 48.20851667 16.43936000 220 75.4 2016-10-19 11:50:35
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“W-45084A” 48.20865833 16.43957167 220 80.1 2016-10-19 11:50:36
“W-45084A” 48.20881000 16.43978667 219 83.6 2016-10-19 11:50:37
“W-45084A” 48.20894667 16.43997667 219 74.7 2016-10-19 11:50:38
“W-45084A” 48.20908667 16.44017833 219 77.8 2016-10-19 11:50:39
“W-45084A” 48.20923167 16.44038333 218 79.8 2016-10-19 11:50:40
“W-45084A” 48.20937667 16.44059167 218 80.5 2016-10-19 11:50:41
…

A derived stream with a position modeled as a point on the WGS84 ellip-
soid can be quite natural for applications involving geospatial objects whose 
movement is related to the Earth’s surface (airplanes, tankers, combat air-
craft, cruise missiles, and drones, among others):

CREATE STREAM mobileObjectWGS84 AS
SELECT id,
        SetSRID(Point(lon,lat,elevation),4326)::GEOGRAPHY
        AS wgsPosition,
        speed,
        timestamp
FROM gpsStream;

Parameter 4326 is the EPSG* identifier of the WGS 84 spatial reference sys-
tem, and :: is shorthand for typecasting.

* http://spatialreference.org/ref/epsg/4326/.

FIGURE 10.4
Visualization of a geospatial data stream.

http://spatialreference.org/ref/epsg/4326/
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The following is a derived sequence of mobileObjectWGS84 tuples:

…
“W-45084A” POINT(48.20781333 16.43832500 221) 73.2 2016-10-19 11:50:30
“W-45084A” POINT(48.20795500 16.43853167 221) 79.2 2016-10-19 11:50:31
“W-45084A” POINT(48.20809167 16.43873667 220) 77.4 2016-10-19 11:50:32
“W-45084A” POINT(48.20823500 16.43894667 220) 80.3 2016-10-19 11:50:33
“W-45084A” POINT(48.20838167 16.43916333 220) 82.5 2016-10-19 11:50:34
“W-45084A” POINT(48.20851667 16.43936000 220) 75.4 2016-10-19 11:50:35
“W-45084A” POINT(48.20865833 16.43957167 220) 80.1 2016-10-19 11:50:36
“W-45084A” POINT(48.20881000 16.43978667 219) 83.6 2016-10-19 11:50:37
“W-45084A” POINT(48.20894667 16.43997667 219) 74.7 2016-10-19 11:50:38
“W-45084A” POINT(48.20908667 16.44017833 219) 77.8 2016-10-19 11:50:39
“W-45084A” POINT(48.20923167 16.44038333 218) 79.8 2016-10-19 11:50:40
“W-45084A” POINT(48.20937667 16.44059167 218) 80.5 2016-10-19 11:50:41
…

We may define another derived data stream with a position modeled as a 
point in two-dimensional Euclidean space as follows:

CREATE STREAM mobileObject AS
SELECT id,
       Force_2D(Transform(wgsPosition::GEOMETRY,3416)) AS position,
       speed,
       timestamp
FROM mobileObjectWGS84;

The function Transform transforms a point on the WGS84 ellipsoid 
(wgsPoint) into the specified spatial reference system. Parameter 3416 is 
a unique identifier (SRID) used to unambiguously identify the EPSG:3416* 
spatial reference system, which incorporates European Terrestrial Reference 
System 1989 (ETRS89) and Lambert projection.

Finally, the following is a tuple sequence of a derived mobileObject stream:

…
“W-45084A” POINT(630656.02 483284.08) 73.2 2016-10-19 11:50:30
“W-45084A” POINT(630670.74 483300.43) 79.2 2016-10-19 11:50:31
“W-45084A” POINT(630685.35 483316.22) 77.4 2016-10-19 11:50:32
“W-45084A” POINT(630700.30 483332.76) 80.3 2016-10-19 11:50:33
“W-45084A” POINT(630715.74 483349.70) 82.5 2016-10-19 11:50:34
“W-45084A” POINT(630729.74 483365.28) 75.4 2016-10-19 11:50:35
“W-45084A” POINT(630744.82 483381.64) 80.1 2016-10-19 11:50:36
“W-45084A” POINT(630760.17 483399.13) 83.6 2016-10-19 11:50:37
“W-45084A” POINT(630773.62 483414.87) 74.7 2016-10-19 11:50:38
“W-45084A” POINT(630787.97 483431.02) 77.8 2016-10-19 11:50:39
“W-45084A” POINT(630802.54 483447.74) 79.8 2016-10-19 11:50:40
“W-45084A” POINT(630817.36 483464.46) 80.5 2016-10-19 11:50:41
…

* http://spatialreference.org/ref/epsg/3416/.

http://spatialreference.org/ref/epsg/3416/
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The previous two examples illustrate the concept of derived streams. Of 
course, it would be possible to define corresponding geospatial raw streams 
straightly as follows:

CREATE STREAM mobileObjectWGS84 (
      id VARCHAR(8),
      wgsPosition GEOGRAPHY(POINT,4326)
      speed REAL,
      timestamp TIMESTAMP VALIDTIME
)
ORDERED BY timestamp;
ALTER STREAM mobileObjectWGS84 ADD WRAPPER moWrapperWGS84;

and

CREATE STREAM mobileObject (
      id VARCHAR(8),
      position GEOMETRY(POINT, 3416)
      speed REAL,
      timestamp TIMESTAMP VALIDTIME
)
ORDERED BY timestamp;
ALTER STREAM mobileObject ADD WRAPPER moWrapper;

In both cases, the complete logic of data acquisition and transforma-
tion of bytes into row streams are encapsulated into the corresponding 
wrappers.

10.4 Stream Windows

Most DSMSs extend and modify a database query language (such as SQL) 
to support efficient continuous queries on data streams. As stated before, 
queries in DSMS run continuously and incrementally produce new results 
over time. The operators in continuous queries (selection, projection, join, 
and aggregation, among others) compute on tuples as they arrive and do not 
presume the data stream is finite, which has significant negative implica-
tions. Some operators (Cartesian product, join, union, set difference, and spa-
tial aggregation, among others) require the entire input sets to be completed. 
These blocking operators will produce no results until the data streams end 
(if ever), which is obviously a serious obstacle and limitation. To get results 
continuously and not wait until the data streams end, blocking operators 
must be transformed into non-blocking operators. Queries expressible by non-
blocking operators are monotonic queries.
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Definition 10.9

(Monotonic query) A continuous operator or continuous query Q is monotonic if

 Q Q( ) ( )τ τ τ τ⊆ ≤′ ′for all  

Simple selection over a single stream is an example of a monotonic query: 
at any point in time ′τ , when a new tuple arrives, it either satisfies selec-
tion predicate or it does not, and all the previously returned results (tuples) 
remain in Q( )′τ .

Definition 10.10

(Non-blocking query) A non-blocking continuous operator or continuous 
query Q¬�  is one that produces results (all the tuples of output) before it has 
detected the end of the input.

Both standard and geospatial aggregate operators always return a stream 
of length one; they are non-monotonic and thus blocking. Data stream 
researchers have long recognized the problem of transforming blocking 
queries into their non-blocking counterpart. A dominant technique that 
overcomes this problem is to restrict the operator range to a finite window 
over input streams. Windows were introduced into standard SQL as part 
of SQL:1999 OLAP functions. In SQL:1999, window is a user-specified selec-
tion of rows within a query that determines the set of rows with respect to 
the current row under examination. The motivation for having the window 
concept in DSMSs is quite different. Windows limit and focus the scope 
of an operator or a query to a manageable portion of the data stream. A 
window is a stream-to-relation operator; it specifies a snapshot of a finite 
portion of a stream at any time point as a temporary relation. In other words, 
windows transform blocking operators and queries to compute in a non-
blocking manner. The most recent data are emphasized, which are more 
relevant than the older data in the majority of data stream applications. 
There are several window types, though the following two basic types are 
being extensively used in conventional DSMS: logical, time-based windows 
and physical, tuple-based windows. By default, a time-based window is 
refreshed at every time tick and a tuple-based window is refreshed when a 
new tuple arrives. The tuples enter and expire from the window in a first-
in-first-expire pattern; whenever a tuple becomes old enough, it is expired 
(i.e., deleted) from memory, leaving its space to a more recent tuple. As 
a result, traditional window queries can support only (recent) historical 
queries, making them not suitable for geospatial queries concerned with 
the current state of data rather than recent history. However, these two 
window types are not useful in answering an interesting and important 
class of queries over geospatial data streams; therefore, the predicate-based 
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window has been proposed in which an arbitrary logical predicate specifies 
the window content.

10.4.1 Time-Based Windows

The time-based window WT
ω  is defined in terms of the window size ω rep-

resented as a time interval Tω. Formally, it takes the stream S and the time 
interval Tω as parameters and returns a finite, bounded stream, i.e., a tempo-
rary finite relation:

 W S TT
ω ω: × →R  

The scope of a time-based window WT
ω  denotes the most recent time inter-

val, that is, it consists of the tuples whose timestamp is between the current 
time τ and τ ω− .

Let τ0 denote the time instant that a continuous query specifying a sliding 
window has effectively started, and τ denote the time instant of the current 
time. The scope of time interval Tω may be formally specified as follows:
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τ τ τ τ τ ω
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The qualifying tuples are included in the window based on their time-
stamps by appending new tuples and discarding older ones. It is worth not-
ing that a time-based window is refreshed at every time instant, that is, with 
constant refresh time granularity. We will use the following basic syntax to 
specify a time-based window WT

ω  on stream S:

S [RANGE ω]

EXAMPLE 10.1

A time-based window gpsStream [RANGE 20 seconds] defines a 
window over input stream gpsStream with the size of 20 seconds. At 
any time instant, the window output (relation) contains the bag of tuples 
from the previous 20 seconds.
 There are two important subclasses of time-based windows, now win-
dow Wnow

T  and unbounded window WT
∞. Now window Wnow

T , defined by 
setting τ = NOW and ω = 1, returns tuples of stream (relation) with a 
timestamp equal to NOW. Unbounded window WT

∞, defined by setting 
ω = ∞, consists of tuples obtained from all tuples from stream S up to 
time instant τ. These two special windows are specified using the fol-
lowing syntax:

S [NOW]

S [RANGE UNBOUNDED]
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EXAMPLE 10.2

Suppose that Austrian rivers are stored in a spatial database in a river 
table created as follows:

CREATE TABLE river (
      name : VARCHAR(16),
      geometry: GEOMETRY(POLYGON,3416)

)

The next query returns a position (type of Point) of mobile objects 
that cross the Danube River at each time instant of the current time:

WITH danube AS (
     SELECT geometry FROM river WHERE name = ’Danube’
)
SELECT STREAM position
FROM mobileObject [NOW]

WHERE Crosses(mobileObject.position, danube.geometry)

EXAMPLE 10.3

Consider the following query:

WITH danube AS (
     SELECT geometry FROM river WHERE name = ’Danube’
)
SELECT STREAM position
FROM mobileObject [RANGE UNBOUNDED]

WHERE Crosses(mobileObject.position, danube.geometry)

This query is monotonic and produces a relation that at time τ con-
tains the position of all mobile objects that have crossed the Danube 
River up to τ.

Time-based windows can optionally contain a slide parameter λ, indi-
cating the granularity at which a window slides, that is, how frequently 
the window should be refreshed. Accordingly, we define the scope of 
time interval Tω as follows:

 

T
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and use the following syntax construction for sliding a time-based win-
dow WT

ω λ, :

S [RANGE ω SLIDE λ]
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EXAMPLE 10.4

The following query returns the position of mobile objects that have 
crossed the Danube River every minute in the past 5 minutes:

WITH danube AS (
     SELECT geometry FROM river WHERE name = ’Danube’
)
SELECT STREAM position
FROM mobileObject [RANGE ’5 minutes’ SLIDE ’1 minute’]

WHERE Crosses(mobileObject.position, danube.geometry)

10.4.2 Tuple-Based Windows

The tuple-based window Wtuple  defines its output stream over time by a win-
dow of the last N elements over its input stream. Formally, it takes a stream 
S and the natural number N ∈N* as parameters and returns the following 
temporary finite relation:

 W SN
tuple : *× →N    R  

At any time instant τ, the output relation R  consists of the N tuples of S 
with the largest timestamps ≤τ  (or all tuples if the length of up to τ  is ≤N). 
We will use the following basic syntax to specify a tuple-based window Wtuple:

S [ROWS S]

The special case of N = ∞​is specified by

S [ROWS UNBOUNDED]

and is equivalent to a time-based window

S [RANGE UNBOUNDED]

EXAMPLE 10.5

A tuple-based window gpsStream [ROWS 1] denotes the “latest” 
tuple in our gpsStream, which is very simple compared to reality. In 
reality, we will have a number of mobile objects with the same time-
stamp, and the result of gpsStream [ROWS 1] will be ambiguous. As 
a result, the usability of a tuple-based window in geospatial applications 
is limited.

10.4.3 Predicate-Based Windows

An important issue in data stream query languages is the frequency with 
which the answer gets refreshed as well as the conditions that trigger the 
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refresh. Coarser periodic refresh requirements are typically expressed as 
windows, but users in geospatial applications may not be interested only in 
refreshing the query answer (i.e., window) in response to every tuple arrival. 
Consequently, a data stream query language should allow a user to express 
more general refresh conditions based on arbitrary conditions, including 
temporal, spatial, and event conditions, among others. For example, consider 
the following query:

Qπ :  Continuously report the position of mobile objects that cross the 
Danube River.

At any time τ, the window of interest for query Qπ  includes only the mobile 
objects that qualify the predicate “cross the Danube River.” If a mobile object 
O reports a position that crosses (i.e., is within) the Danube River, then it 
should be in Qπ ’s window. Whenever O reports a position that disquali-
fies the predicate “cross the Danube River”, O expires from Qπ ’s window. It 
is important to note that objects enter and expire from Qπ ’s window in an 
out-of-order pattern. An object is expired (and hence is deleted) from Qπ ’s 
window only when the object reports another position that disqualifies the 
window predicate.

The semantics of a time-based window query model reads as follows:

QT:  Continuously report the position of mobile objects that cross the 
Danube River in the last ω  time units.

The query QT  is semantically different from query Qπ : the window of 
interest in Qπ  includes objects that are “crossing the Danube River” while the 
window of interest in QT  includes objects that “have crossed the Danube River 
in the last ω  time units”.

Definition 10.11

(Predicate-based window query) A predicate-based window query Qπ  is defined 
over the data stream S and window predicate Π over the tuples in S. At any 
point in time τ, the answer to Qπ  equals the answer to snapshot query Qτσ , 
where Qτσ  is issued at time τ and the inputs to Qτσ  are the tuples in stream S 
that qualify the predicate Π at time τ.

We will use the following basic syntax to specify the predicate-based win-
dow WΠ  on stream S:

 S Π[ ]  

where Π is the predicate that qualifies and disqualifies tuples into (and out 
of) the window.

It is important to note that time-based and tuple-based window queries fail 
to answer some of the predicate-based window queries. Let QT

∞ denote the 
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query in Example 10.3, which is the de facto implementation of query QT  with 
ω = ∞. The main difference between a predicate-based window query Qπ

WITH danube AS (
     SELECT geometry FROM river WHERE name = ’Danube’
)
SELECT STREAM position
FROM mobileObject AS mo [Crosses(mo.position, danube.

geometry)]

and the query QT
∞ in Example 10.3 is that a disqualified tuple in the predi-

cate-based window may result in a negative tuple* as an output while a dis-
qualified tuple in the WHERE clause predicate of QT

∞ does not result in any 
output tuples. When a tuple t qualifies the WHERE predicate of QT

∞ and is 
reported in the answer, t will remain in the QT

∞ query answer forever. In 
contrast, in the predicate-based window query model, when a tuple t quali-
fies the predicate Π and is reported in the Qπ  answer later, t may be deleted 
from the query answer if t receives an update so that t does not qualify the 
window predicate any longer.

Similarly, the now window is semantically different from the predicate-
based window. Thus, the semantics for the query with the now window in 
Example 10.2 read as follows:

Qnow:  Report the positions of mobile objects that cross the Danube River 
now.

At any time, the answer of continuously running query Qnow  will include 
only the position of mobile objects that cross the Danube River at time instant 
τ = NOW . On the other hand, at any time instant τ, the predicate-based win-
dow query Qπ  may include positions of mobile objects that have crossed the 
Danube River before τ.

10.5 Distributed Processing of Big Geospatial Data Streams

The growth of data volumes and availability poses tremendous computa-
tional challenges. Since data sizes have outpaced the capabilities of central-
ized architectures and single machines, new applications need new systems 
to scale computations to distributed architectures and multiple nodes.

Big Data is a term used to identify the datasets that, due to their large size, 
cannot be managed without using new technologies and programming 

* In the pipelined query execution model with the negative tuples approach, a negative tuple 
is interpreted as a deletion of a previously produced positive tuple.
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frameworks. It does not refer to any specific quantity but rather to high-vol-
ume, high-velocity, high-variety, and high-veracity data that demand cost-
effective, innovative forms of data processing.

The distributed computing field has achieved success in scaling up big 
data processing on large numbers of unreliable commodity machines. More 
recently, the Big Data paradigm has resulted in cluster computing frame-
works for large-scale processing, including MapReduce, Hadoop, Hive, and 
Apache Drill, among others. However, IFP applications do not readily fit 
their processing models due to an outbound (pull-based) processing paradigm; 
dynamic, transient ad hoc queries are typically specified, optimized, and 
processed once over static, persistent data.

Real-time processing of big geospatial data streams has an essentially differ-
ent set of requirements than batch processing, and requires a complementary 
inbound (push-based) paradigm; the same static, persistent queries are processed 
continuously over transient, dynamic, frequently changing streaming data.

Early streaming systems are focused on relational style operators for com-
putations, whereas current systems support more general user-defined com-
putations. Stream processing systems commonly define computation over 
streams as workflow; in a directed acyclic graph (DAG), nodes represent 
streaming operators in the form of user-defined functions (UDFs) and edges 
represent execution ordering. Apache Apex, Apache Storm, Apache Spark, 
and Apache Flink are distributed stream computing platforms capable of 
processing big data streams but without native support for processing big 
geospatial data streams.

Geospatial data streams, that is, real-time, transient, time-varying 
sequences of spatiotemporal data items, demonstrate at least two Big Data 
core features, volume and velocity. To handle the volumes of data and com-
putation they involve, these applications need to be distributed over clus-
ters. There is a clear need for highly scalable geospatial stream computing 
frameworks that can operate at high data rates and process massive amounts 
of big geospatial data streams. Our goal is to achieve an integrated query 
processing approach that runs SQL-like expressions continuously and incre-
mentally. The key concept here is that mobility streaming data and persistent 
data are not intrinsically different; the persistent data are simply streaming 
data that have been entered into the persistent structures. In other words, 
query processing could be exclusively performed on persistent data, exclu-
sively on streams, or on a combination of streams and persistent data. In this 
chapter, we present a framework for distributed big geospatial data stream 
processing. The framework is a cornerstone toward the efficient real-time 
management and monitoring of mobile objects through distributed geospa-
tial streams processing on large clusters. A prototype* is built on top of a 
distributed streaming dataflow engine and extends it with a set of spatiotem-
poral data types and corresponding operations (Figure 10.5). The prototype 

* Available on https://github.com/nkatanic/stFlink.

https://github.com/nkatanic/stFlink
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FIGURE 10.5
Data types model—UML class diagram.
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implementation is rooted in a new stream-processing model that overcomes 
the challenges of current distributed stream processing models and enables 
seamless integration with batch and interactive processing.

10.5.1 Data Model

A data model provides a formalism consisting of a notation for describing 
data of interest, a set of operations for manipulating these data, and a set 
of predicates. A spatiotemporal data model is a data model representing 
the temporal evolution of geospatial objects over time. If these evolutions 
are continuous, they are mobile objects and represented by spatiotemporal 
data types such as mobile point (e.g., recording the route of a car), mobile 
points (e.g., representing movements of a fleet of trucks), and mobile line 
(e.g., representing movement of a train), among others. A mobile object is a 
spatiotemporal object that continuously changes its location and/or shape. 
Depending on the particular mobile objects and applications, the movements 
of mobile objects may be subject to constraints. In what follows, we focus on 
unconstrained, free movement in Euclidean space.

Our data model (Figure 10.5) is leveraged on ISO (2008) (Güting, Böhlen 
et al. 2000) and abstract geospatial and temporal data type frameworks.*

All spatiotemporal objects share a set of common operations. For this rea-
son, all  spatiotemporal data types should implement common operations and 
operations that are  specific for a particular spatiotemporal data type. Similar 
behavior is expressed through the interface† TemporalObject that specifies 
common operations for all spatiotemporal data types. A number of opera-
tions, specified by TemporalObject, are already defined in the literature; 
they have the same signature and semantics in our type system as well. For 
this interface and temporal types TemporalPoint and TemporalPolygon, 
we will briefly describe just those operations with different signatures or 
meaning and the new operations that we propose.

The operation

nearestApproach(o:GM_Object, tinterval:TimeInterval): 
TM_Instant[1..*]

shall return an array of time instants that lists, in ascending order, the time or 
times of the nearest approach of the mobile object to a given static geospatial 

* ISO 19108:2002 Geographic information—Temporal schema and ISO 19107:2003: Geographic 
information—Spatial schema.

† Scala programming language does not support interfaces but enables multiple inheritances 
by implementing interfaces as traits. For this reason, TemporalObject is implemented as a 
trait that enables TemporalPoint to inherit from two types.
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object. The parameter tinterval shall restrict the search to a particular 
time interval.

The two operations

startTime(): TM_Instant
endTime(): TM_Instant

return the result of type TM _ Instant, which represents the start and end 
time value of the period in which the type TemporalPoint is defined.

The operations atInitial and atFinal return the type IntimeObject 
with the following two attributes: the position and shape of mobile object in 
time and space, which are defined with startTime operation for atIni-
tial and endTime operation for atFinal.

The TemporalPoint is composed of the PointUnit set, whereas opera-
tions timeAtPoint, subTrajectory, and velocity have the same mean-
ing and signature as the corresponding operations in ISO 19141:2008. The 
operation locations returns isolated points at the beginning and end of 
each unit’s time interval. We introduce operation distance exclusively 
as a measure of linear space between two geospatial objects and operation 
length as a measure of a trajectory’s total length. For this reason, we intro-
duce the following operations on TemporalPoint:

lengthAtTime(tinstant:TM_Instant):Real
timeAtLength(length:Real):TM_Instant
maxDistance(o:GM_Object):Real
minDistance(o:GM_Object):Real
distance(o:GM_Object, tinstant:TM_Instant):Real

The operation lengthAtTime returns the total trajectory’s length from 
the beginning of the trajectory until the given time instant tinstant, and 
timeAtLength returns the time at which the trajectory’s total length from 
the beginning reaches the given value. Operations minDistance and max-
Distance return the distance of the nearest and furthest approach of the 
temporal point to a given geospatial object. The operation distance returns 
the distance of the temporal point from a given geospatial object at a given 
time instant tinstant.

10.5.2 Apache Flink

As we have already noted, none of the BigData streaming frameworks and 
platforms have either built-in geospatial or spatiotemporal capabilities. 
However, we choose Apache Flink as an underlying platform due to its effi-
cient, parallel fault recovery mechanism, and a unique ability to combine 
nearly real-time and batch in-memory processing in a unified programming 
framework, which is common in IFP applications involving both real-time 
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and historical mobility data. Another important reason is the fact that we 
have already noted: geospatial streams are explicitly timestamped. As an 
important consequence, analyzing spatiotemporal events with respect to 
their event time is by far the most interesting compared to analyzing them 
with respect to the time when they arrive in the system. Therefore, the under-
lying distributed streaming engine should be configurable for processing 
geospatial data streams based on event time. The reason for this is that event 
time for a given tuple is immutable, but processing time changes constantly 
for each tuple as it flows through the pipeline and time advances.

The core of Apache Flink is a distributed streaming dataflow engine that 
provides data distribution, communication, and fault tolerance for distrib-
uted computations over data streams and executes programs in a data-
parallel and pipelined manner. Programs are automatically compiled and 
optimized into dataflow programs that are executed in a  computing cluster 
or cloud environment. It has advanced the state of the art in data  management 
in several aspects, which are as follows:

 1. A data programming model based on second-order functions to 
abstract parallelization

 2. A method that uses static code analysis of user-defined functions 
to achieve goals similar to database query optimization in a UDF-
heavy environment
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The Apache Flink stack with Flink library.
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 3. Abstractions to integrate iterative processing in a dataflow system 
with good performance, and

 4. An extensible query language and an underlying operator model

Apache Flink is a layered system (Figure 10.6); the different layers of the 
stack build on top of each other and raise the abstraction level of the program 
representations they accept. DataStream is the basic data abstraction and 
represents a continuous, parallel, immutable stream of data of a certain type. 
It is a statically typed object parametrized by an element type, which is itself 
of the native Java/Scala data type.

Event time decouples the program semantics from the actual serving 
speed of the source and the processing performance of the system. Event 
time windows compute correct results even if events arrive out of the order 
of their timestamp, which is common if a data stream gathers events from 
distributed sources.

10.5.3 Declarative Spatiotemporal Queries

Developing, optimizing, and maintaining complex applications coded in a 
general- purpose programming language is a hard and resource-consuming 
task. Major reasons for the widespread success of database systems include 
data independence, separating physical representation and storage from the 
actual information, and declarative languages, separating the program spec-
ification from its intended execution environment. In the era of Big Data, 
many-core processors, distributed computing, and NoSQL ensure that 
well-established declarative language concepts inherent in relational and 
object-relational DBMS) that make their way into advanced analytics of big 
geospatial data streams are of great importance (Markl 2014).

Specification of a declarative spatiotemporal query in our framework is 
described in Algorithm 10.1.

Algorithm 10.1

Declarative spatiotemporal query involving a time window

Input: Sγ , ▷geospatial stream
W ▷time-based window

k KkeyS Sγ γ← ▷logically partitioned keyed stream

α γ γtemporal w kS SW← ▷windowed stream

R R wtemporal←( ) α γS ▷convert stream to relation

R R← →π f X Y: ▷projection—select clause

R R
f Bk B

←
→:

σ ▷selection—where clause

return R  
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For validation purposes, we used GeoLife*: a trajectory of this dataset is rep-
resented by a sequence of timestamped points, each of which contains the 
information of latitude, longitude, and altitude.

We have to specify a data source of a stream with geospatial data stream 
schema Σγ and temporal ordering fΩ  according to event time, as we defined 
before. Therefore, we define a Scala case class according to the geospatial 
data stream schema Σγ  and use it in a stream execution environment for 
adding a data source or simply for mapping data read from a socket to a 
derived data stream:

case class sttuple(id:Int, location:Point, eventTime: Timestamp)

In this section, we perform an evaluation and validation of our approach 
by formulating a number of queries that had been specified in natural lan-
guage before.

Geospatial DataStream can be created either from data sources (file-
based, collection-based, Apache Kafka, RabbitMQ, Twitter Streaming, etc.) 
or by applying high-level  operations on other DataStream.

To work with event time semantics, it is necessary to set execution stream 
environment time characteristic to an event time:

val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)

To convert the data stream to the relational Table abstraction, it is neces-
sary to create an instance of StreamTableEnvironment:

val tEnv : StreamTableEnvironment = TableEnvironment.getTable 
Environment(env)

DataStream is directly converted into a Table without registering in the 
TableEnvironment, as shown in our query examples.

We also define how timestamps relate to events (e.g., which tuple field 
is the event timestamp). According to temporal ordering fΩ  of geospatial 
data streams on event time, we apply the assignAscendingTimestamps 
function:

val ststream : DataStream[sttuple] =
    rawstream
    .map{tuple => sttuple(tuple)}
    .assignAscendingTimestamps(tuple => tuple.timeStamp.getTime)

* This GPS dataset was collected by Microsoft Research Asia, that is, by 182 users in a period 
of over 5 years, from April 2007 to August 2012. It contains approximately 20 million points 
with a total distance of about 1.2 million kilometers and a total duration of 48,000+h. The 
data were logged in over 30 cities in China, USA, and Europe.
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object stFlink {
   def tPoint(stream: DataStream[sttuple],
              window: SlidingWindow
             ): DataStream[temporaltuple] =
       {
        stream
        .keyBy(0)
        .timeWindow(window.size, window.slide)
        .apply {temporal.temporalPoint _}
       }
}

Q1:  Continuously report spatiotemporal objects (id and location) within 
the area of interest:

val coords = : Array[Coordinate] = Array (…)
val geomFactory = new GeometryFactory ()
val ring = geomFactory.createLinearRing(coords)
val holes : Array[LinearRing] = null
val areaOfInterest = geomFactory.createPolygon(ring, holes)

Q2:  Continuously, each minute, report location of spatiotemporal objects 
that have traveled more than 3 km in the past 10 minutes:

Q3:  For each spatiotemporal object, find its minimal distance from the 
point of interest during the past half hour:

val q1 = ststream
         .toTable(tEnv, ’id, ’point, ’timestamp)
         .select(’id, ’point,’timestamp)
         .where(within(’point, areaOfInterest()))

val q2 = stFlink
         .tPoint(ststream, SlidingWindow(Time.minutes(10),     
                                         Time.minutes(1)
                                        )
                )
         .toTable(tEnv, ’id, ’tempPoint)
         .select(’driverId, ’tempPoint)
         .where(lengthAtTime(’tempPoint,

endTime(’tempPoint)) > 3000)
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val easting =…
val northing =…
val point = new Coordinate(easting, northing)
val factory = new GeometryFactory ()
val pointOfInterest = factory.createPoint(point)

Q4:  Find all spatiotemporal objects (id and distance traveled) that have 
traveled more than 10 km during the past hour.

Q5:  Find trajectories of the spatiotemporal objects that have been less 
than 500 m from a point of interest within the past 5 minutes.

val q4 = stFlink
         .tPoint(ststream, TumblingWindow(Time.minutes(60)))
         .toTable(tEnv, ’id, ’tempPoint)
         .select(’id,
                ’tempPoint,
                 lengthAtTime(’tempPoint, endTime(’tempPoint)
                            ) as ’distanceTraveled
                )
         .where(’distanceTraveled > 10000 )

val q5 = stFlink
         .tPoint(ststream, TumblingWindow(Time.minutes(5)))
         .toTable(tEnv, ’id, ’tempPoint)
         .select(’id,
                 ’tempPoint,
                 subTrajectory(’tempPoint, 
                               startTime(’tempPoint),
                               endTime(’tempPoint)
                              ) as ’subtrajectory
                )
          .where(distance(’tempPoint, pointOfInterest(), endTime 

(’tempPoint)
                        ) < 500
               )

val q3 = stFlink
         .tPoint(ststream, TumblingWindow(Time.minutes(30)))
         .toTable(tEnv, ’id, ’tempPoint)
         .select(’id, 
                 minDistance(’tempPoint, pointOfInterest())
                as ’minimalDistance
                )
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10.6 Summary

Geospatial stream processing refers to a class of software systems for pro-
cessing high-volume geospatial data streams with very low latency, that is, 
in near real time. Motivated by the limitation of DBMS, the database com-
munity developed DSMSs as a new class of management systems oriented 
toward processing large data streams. Despite differences between these 
two classes of management systems, DSMSs resemble DBMSs; they process 
data streams using SQL and operators defined by relational algebra.

Geospatial data streams, that is, real-time, transient, time-varying sequences 
of spatiotemporal data items, demonstrate at least two Big Data core features, 
volume and velocity. To handle the huge volumes of data streams and compu-
tations they involve, these applications need to be distributed over clusters. 
However, despite substantial work on cluster programming models for batch 
computation, there are few similar high-level tools for geospatial stream pro-
cessing. There is a clear need for a highly scalable stream computing framework 
that can operate at high data rates and process massive amounts of geospatial 
data streams. In this chapter, we presented an insight into geospatial stream 
processing at a conceptual level as well as an approach and framework for geo-
spatial data streams processing using a distributed stream processing engine.

Bibliographic Notes

The literature on data streams is rather extensive. The introductory Section 
2 borrows material from Babcock et al. (2002), Golab and Özsu (2010), and 
Stonebraker, Çetintemel, and Zdonik (2005). IFP and related terms (IFP 
application domain, IFP engine, and IFP systems) were introduced in Cugola 
and Margara (2012).

The definition of temporal order and time-based sliding windows can be 
found in the paper by Patroumpas and Sellis (2011), whereas the definition of 
monotonic query and non-blocking query can be found in Golab and Özsu 
(2010) and Law, Wang, and Zaniolo (2011). Readers interested in a precise defi-
nition of window semantics in continuous queries are referred to Patroumpas 
and Sellis (2006). Predicate windows were introduced in Ghanem, Aref, and 
Elmagarmid (2006) and extended in Ghanem, Elmagarmid et al. (2010).

Several references exist for continuous query languages, including Arasu, 
Babu, and Widom (2006), Jain et al. (2008), and Law, Wang, and Zaniolo (2011).

Background knowledge on geostreaming and spatiotemporal data 
streams can be found in Mokbel and Aref (2008), Huang and Zhang (2008), 
Kazemitabar, Banaei-Kashani, and McLeod (2011), and Galić, Baranović et al. 
(2014). Most of the geospatial data stream processing issues from the user 
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perspective were addressed in (Galić 2016), which nicely complements the 
content of this chapter.

A data model and query languages for mobile objects are covered in depth 
in the textbook by Gütting and Schneider (2005). The data model of Section 
10.4 extends the work presented in (Güting, Böhlen et al. 2000) and (ISO 2008).

Although this chapter does not focus on optimization issues, interested 
readers are referred to Elmongui, Ouzzani, and Aref (2006), who present 
several major challenges related to the lack of spatiotemporal pipelined 
operators and the impact of time, space, and their combination on query opti-
mization. The works presented in Mahmood et al. (2015) and Abdelhamid 
et al. (2016) focus on extending distributed stream engines with the adaptive 
indexing layer and adaptive main-memory data partitioning query process-
ing technique.
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Index

A

ABA, see Activity-based approach
Abelian groups, 110; see also Homology
ABN model, see Asymmetric Bernoulli 

noise model
Active sampling, 72, 73; see also 

Volunteered Geographic 
Information

Activity-based approach (ABA), 191
Address point geocoding, 46, 48, 52
AE, see AutoEncoder
Agent-based simulation, 178, 193; see also 

Transport demand modeling
Aggregation, 57; see also Geocoding
Airborne Topographic Mapper 

(ATM), 133
Alchemy, 2
Apache Flink, 236, 239, 240; see also 

Geospatial data streams
Apache Hadoop software components, 

24
API, see Application Programming 

Interface
Application Programming Interface 

(API), 207; see also Social media
Asymmetric Bernoulli noise model 

(ABN model), 70
ATM, see Airborne Topographic 

Mapper
AutoEncoder (AE), 64
Automaton-based scheme, 194

B

Big Data, 197, 235, 241; see also Geospatial 
data streams

analytics for transport planning, 189
for automatic feature representation, 

64
challenge, 58
in geospatial data streams, 245
scaling up, 236
from statistics perspective, 2

C

California Proposition 1, 206, 207; see 
also Social media

CAP theorem, 6
CAR, see Conditional autoregressive 

model
CA, see Cellular Automata
CB-SMoT, see Clustering-based 

stop-and-move
Cellular Automata (CA), 195
CEMDAP, see Comprehensive 

Econometric Microsimulator 
for Activity-Travel Patterns

CEP, see Complex event processing
Chain complex, 109–113
Chain groups, 113; see also Homology
Challenges in geospatial data science, 

4–5
Cloud computing platforms, 24, 26, 27
Clustering-based stop-and-move 

(CB-SMoT), 185
CNNs, see Convolutional Neural 

Networks
CO, see Combinatorial optimization
Coefficient groups, 111, 112, 113, 115; see 

also Homology
Combinatorial optimization (CO), 192
Commercial GIS software, 46, 51; see also 

Web-based geocoding
Compact space, 104; see also Homology
Complete spatial randomness (CSR), 157
Complete spatiotemporal randomness 

(CSTR), 160
Complex event processing (CEP), 222
Comprehensive Econometric 

Microsimulator for Activity-
Travel Patterns (CEMDAP), 195

Computational scalability and statistical 
rigor, 7

Computer science, 3, 4, 8, 23, 29; see also 
Geospatial data science

cloud computing platforms, 24, 26, 27
comparison of disciplines, 10
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Computer science (Continued)
computational complexity theory, 24
concepts and technologies, 23–26
core questions and goals, 23
data mining, 24, 26, 27, 28
DBMS, 24
Intel Distribution for Apache Hadoop 

software components, 25
limitations of traditional data 

science, 26–29
literature, 6
and mathematics, 17
spatial computing platforms, 27
spatial databases, 26
spatial data mining, 26
SQL, 27
and statistics, 6
traditional database systems, 26
traditional decision tree vs. spatial 

decision tree output, 28
Concept drift, 72; see also Volunteered 

Geographic Information
Conditional autoregressive model 

(CAR), 15
Convolutional Neural Networks 

(CNNs), 63, 74, 75
CSR, see Complete spatial randomness
CSTR, see Complete spatiotemporal 

randomness
CycleTracks, 181; see also Transport 

demand modeling

D

DAG, see Directed acyclic graph
Data;  see also Geospatial data streams

acquisition, 133
analysis in social media, 189, 205, 208
classification and modelling process 

chain, 139
classification approaches, 16
collection, 132
driven domain science, 6
geospatial data science, 1, 2, 3, 4, 5, 8, 9
management, 240
mining, 6, 8, 23
model, 16, 17, 22, 24
from navigation systems, 182
preprocessing chain, 135

quality and noise, 68
science, 8, 10, 11, 15, 16, 17
set description, 120
set processing, 123
standard image, 66
travel, 178

Database, 218; see also Geospatial data 
streams

to data streams, 218
Geographic Calculator, 137
GIS, 186
integrating, 99
movement, 90, 95, 97
public digital, 43
spatial, 26

Database management systems 
(DBMSs), 24, 218; see also 
Geospatial data streams

DSMSs and, 220, 221
query processing in, 220
traditional, 220
variants, 220

Data stream management systems 
(DSMSs), 217; see also 
Geospatial data streams

CEP systems, 222
data streams, 222
and DBMSs, 221
query processing in, 221
stream-oriented monitoring 

applications, 219
DBMSs, see Database management 

systems
DBNs, see Deep Belief Networks
DB-SMoT, see Direction-based 

stop-and-move
Declarative spatiotemporal queries, 

241–244; see also Geospatial 
data streams

Deep Belief Networks (DBNs), 66
Deep learning (DL), 63

applications, 74–75
challenges, 64–65
DeepVGI workflow, 73
feature engineering, 64
future work, 75
satellite image classification with, 65
standard image datasets, 66
VGI, 68
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Demand modeling, 190; see also 
Transport demand modeling

activity-based approach, 191
four-step model, 190
Portland activity schedule model 

system, 192
Digital Surface Models (DSM), 140
Digital Terrain Models (DTMs), 134
Directed acyclic graph (DAG), 236
Direction-based stop-and-move 

(DB-SMoT), 185
Discrete data, 15
DL, see Deep learning
Domain adaptation challenge, 50
Domain sciences, 6
DSM, see Digital Surface Models
DSMSs, see Data stream management 

systems
DTMs, see Digital Terrain Models

E

Egg-Yolk model, 18
EM, see Expectation maximization
Entropy, 16
Euclidean Metrics, 106; see also Homology
Expectation maximization (EM), 6

F

FCD, see Floating car data
Feature engineering, 64; see also Deep 

learning
Floating car data (FCD), 79; see also 

Trajectory-based visual analysis
data sets, 80
extraction of trajectories, 83–85
frequency distribution, 83, 84
glyph-based visualization methods, 85
GPS points of taxi, 82
hourly temporal variation, 83
interactive techniques, 80–81
pie radar glyph, 85–87
point-based visual analysis, 85
point classification, 82–83
and preprocessing, 81
reconstructed occupancy 

trajectories, 85
salience-based spatial distribution, 87

salience change map, 88
salient feature image, 87–89
temporal distributions of points, 86
test data properties, 82
trajectory, 83
visual analytics approaches, 90

FMS, see Future Mobility Sensing
Four-step model (FSM), 190
FSM, see Four-step model
Future Mobility Sensing (FMS), 181

G

GANs, see Generative Adversarial 
Networks

General transit feed specification 
(GTFS), 185

Generative Adversarial Networks 
(GANs), 66

Geocoding, 41
address point, 44, 45, 46, 48, 49, 50, 52
aggregation, 57
applications of, 42
contributions, 43
for cross validation, 52
error modeling, 53–57
flowchart, 48
geomasking, 57
illustration, 47
illustrative dataset, 43–44
input and reference data, 44–45
interpolation algorithm, 46
match rate, 47, 52
motivation, 42–43
parcel geocoding, 46
positional accuracy, 50
private well permit, 49
process, 45–47
quality, 49
impact of quality, 50–51
reverse geocoding, 57
street geocoding, 46, 48
web-based geocoding, 51

Geocoding quality, 49
Geographically weighted regression 

(GWR), 13
Geographic coordinates, 41, 123
Geographic information system (GIS), 148

software, 46
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Geoid99 model, 137
Geomasking, 42, 57; see also Geocoding
Geospatial coordinates, 106, 132; see also 

Light Detection and Ranging
Geospatial data science, 1, 2; see 

also Computer science; 
Mathematics; Statistics

background, 8–9
CAP theorem, 6
challenges, 4–5
computational scalability and 

statistical rigor, 7
data-driven domain science 

interpretation and statistics, 6
data stream, 183–184
intra-disciplinary trade-offs, 5
K-means algorithm, 6
motivation, 2
problem definition, 3–4
related work, 8
sorting, 18, 23
steps of, 3
trade-offs, 5–8
transdisciplinary scientific 

perspective for, 1, 3, 4, 5, 9, 29
Geospatial data streams, 217, 218

Apache Flink, 239–241
Big Data, 235
from databases to data streams, 

218–222
data model, 238–239
declarative spatiotemporal queries, 

241–244
example, 226–229
features, 223
geospatial continuous queries, 222
mobile object, 232, 236, 238
monitoring applications, 217, 219
predicate-based windows, 233–235
processing, 235–238
queries, 218, 219, 220, 221, 222, 229, 236
spatial domain, 223, 224
streaming systems, 236
stream windows, 229–231
temporal order, 225
time-based windows, 231–233
time domain, 222, 223
time instant, 223
time interval, 223

time period, 223
tuple-based windows, 233
UML class diagram, 237

Geospatial phenomena, 155
Geostatistics, 13
GIS, see Geographic information system
Global Mapper software, 138; see also 

Light Detection and Ranging
Global navigation satellite systems 

(GNSS), 217
Global positioning system (GPS), 132, 

194; see also Transport demand 
modeling

assisted survey, 180–181
points of taxi, 82

Glyph-based visualization methods, 85; 
see also Floating car data

GNSS, see Global navigation satellite 
systems

GPS, see Global positioning system
GPU, see Graphics Processing Units
Gradient line rendering technique, 93; 

see also Trajectory-based visual 
analysis

Graphics Processing Units (GPU), 159
GTFS, see General transit feed 

specification
GWR, see Geographically weighted 

regression

H

Hadoop Distributed File System 
(HDFS), 25, 27

Hashtag convention, 207; see also Social 
media

HDFS, see Hadoop Distributed File 
System

Health Insurance Portability and 
Accountability Act, 51

Homology, 104
abelian groups, 110
applications for structural geology 

and tectonics, 119
chain complex, 109
chain groups, 113
classical and persistent, 109
coefficient group, 111
data set description, 120–123
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data set processing, 123–125
Euclidean Metrics, 106
homomorphism, 113
metric spaces and simplices, 106–109
n-simplex, 107
persistent, 109
preliminaries, 109
results, 125
simplicial complex, 108
simplicial homology, 113, 115
strike, 119
taxicab metric, 106
theories, 109
topological properties, 104
trend, 119

Homomorphism, 113; see also Homology
boundary, 110, 113

Horizontally time-dependent 
positioning (HTDP), 136

Hourly temporal variation, 83
Household travel surveys (HTS), 179; 

see also Transport demand 
modeling

HTDP, see Horizontally time-dependent 
positioning

HTS, see Household travel surveys

I

IB-SMoT, see Intersection-based 
stop-and-move

ICT, see Information communication 
technology

Identified transport hubs, 97
IDL, see Interactive Data Language
IFP, see Information flow processing
i.i.d, see Independent and identically 

distributed
Illustrative dataset, 43
IMU, see Inertial measuring units
Independent and identically distributed 

(i.i.d.), 4
Inertial measuring units (IMU), 133
Inertial navigation systems (INS), 133
Information communication technology 

(ICT), 181
Information flow processing (IFP), 217
INS, see Inertial navigation systems
Interactive clustering interface, 91

Interactive Data Language (IDL), 135
Interactive hierarchical agglomerative 

clustering, 91
Interactive techniques, 80–81
International Terrestrial Reference 

Frame (ITRF), 108
Internet-based mapping services, 42; see 

also Web-based geocoding
Interpolation algorithm, 46
Intersection-based stop-and-move 

(IB-SMoT), 185
Intra-disciplinary trade-offs, 5
ITRF, see International Terrestrial 

Reference Frame

K

K function, 14, 163; see also Ripley’s K 
function

K-means algorithm, 6
Knox’s test method, 159; see also Ripley’s 

K function

L

Laser altimetry, see Light Detection and 
Ranging

Lattice, 14
statistics, 14–15

LiDAR, see Light Detection and Ranging
Light Detection and Ranging (LiDAR), 131

Archive Standard files, 137
bathymetric, 147
data acquisition and initial 

processing, 133–138
data classification and modelling 

process chain, 139
data collection missions, 132
data preprocessing chain, 135
Geoid99 model, 137
geospatial 3D coordinates, 132
Global Mapper software, 138
point cloud, 132
product validation, 138–141
QFIT data, 134, 135
results, 141–148
RMS comparisons, 142
script conversions, 136
WGS84 Ellipsoid, 136, 137
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Linear algebra approaches, 16
Link-to-link approach (LL approach), 

187
LL approach, see Link-to-link approach
Location sensors, 181

M

Machine learning approaches, 17
Machine learning models, 63, 64, 187, 188
Map

non-occupancy trajectories, 95
origin-destination lines, 93
pixel distribution, 69

MapSwipe data, 72; see also Volunteered 
Geographic Information

Markov random fields (MRF), 15
MAS, see Multiagent systems
Match rate, 47, 50

geocoding quality, 50
to increase, 43, 47, 50
variation categories, 52

Matern cluster process, 14
Mathematics, 15; see also Geospatial data 

science
distances in Euclidean space and 

network space, 19
dynamic segmentation, 22
Egg-Yolk model, 18
limitations, 26–29
RCC-theory, 18
and statistics, 7
TEG, 19
in traditional data science, 16–17
turns of transportation network, 20

MATSim, see Multiagent Transport 
Simulation

MBRs, see Minimum bounding rectangles
Meme, 207–208; see also Social media
Metric space, 106, 107; see also Homology
Minimum bounding rectangles 

(MBRs), 26
MLPs, see Multiplayer Perceptions
Mobile object, 238
Modeling transport, 177; see also 

Transport demand modeling
Monitoring applications, 217; see also 

Geospatial data streams
stream-oriented, 219

Monotonic query, 230
MRF, see Markov random fields
Multiagent systems (MAS), 195
Multiagent Transport Simulation 

(MATSim), 195
MATSim loop workflow, 196

Multiplayer Perceptions (MLPs), 66

N

NAD83, see North American Datum 
1983

NASA, see National Aeronautics and 
Space Administration

National Aeronautics and Space 
Administration (NASA), 131

Natural language processing (NLP), 214
NAVD88, see North American Vertical 

Datum 1988
Navigation systems, 182

inertial, 133
NDVI, see Normalized difference 

vegetation index
NLP, see Natural language processing
Noise, 28, 57

learning algorithms for, 69–71
from training samples, 64, 70, 72
VGI Data Quality and, 68–69

Non-blocking query, 230
Non-occupancy trajectory clusters based 

on starting location, 95, 96
Normalized difference vegetation index 

(NDVI), 27–28
North American Datum 1983 

(NAD83), 136
North American Vertical Datum 1988 

(NAVD88), 137
n-simplex, 86; see also Homology

O

OD, see Origin–destination
OGC, see Open Geospatial Consortium
OGIS, see Open Geodata 

Interoperability Specification
Online geocoders, 51, 53, 58; see also 

Web-based geocoding
Open Geodata Interoperability 

Specification (OGIS), 27
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Open Geospatial Consortium (OGC), 27
OpenStreetMap (OSM), 4, 162
Optimization, 7, 9, 17
Origin–destination (OD), 187

lines, 85, 89, 91, 92, 93
OSM, see OpenStreetMap

P

Parallel coordinates view, 91–93
Parcel geocoding, 46
PCA, see Principal component analysis
Pie radar glyph, 85–87; see also Floating 

car data
visualization, 87

Point-based visual analysis, 85
Point classification, 139
Point cloud, 105, 132, 164; see also Light 

Detection and Ranging
Point-of-interest (POI), 80, 184, 243, 244
Point-reference data, 13

public points of interest, 71
Point-to-point (PP), 151, 187
POI, see Point-of-interest
Positional accuracy, 50
PP approach, see Point-to-point 

approach
Predicate-based windows, 233; see also 

Stream windows
Principal component analysis (PCA), 16
Problem definition, 3–4

Q

QFIT data, 135; see also Light Detection 
and Ranging

Query
declarative spatiotemporal, 241–244
language, 245, 246
processing in DBMS, 220
processing in DSMS, 221

R

Raster data types, 103
RBMs, see Restricted Boltzmann 

Machines
RDMS, see Relational database 

management systems

Reference datasets, 44, 45, 47, 
48, 58

Region of interest (ROI), 184
Relational database management 

systems (RDMS), 24
Restricted Boltzmann Machines 

(RBMs), 66
Revealed preference (RP), 181
Reverse geocoding, 42, 43, 57; see also 

Geocoding
Ripley’s K function, 14, 156

applications, 156
case study, 161–165
distance-based approach, 157
global, 156–159
indicator function, 158, 160, 161
Knox’s test method, 159
local, 159, 160, 161
results, 165
space-time, 163, 164
space-time clustering, 161
for spatial point pattern analysis, 

156–159
for spatiotemporal point pattern 

analysis, 159–161
theoretical K function, 157

RMS, see Root mean square
ROI, see Region of interest
Root mean square (RMS), 141
RP, see Revealed preference

S

Salience change map, 88; see also 
Floating car data

SAR, see Simultaneous autoregressive 
model

Satellite image classification, 63, 66; 
see also Deep learning

algorithms, 65–66
benchmarks, 66–67
images, 49
transfer learning studies, 73

Script conversions, 136
SC, see Sparse Coding
Sea Level Affecting Marshes Model 

(SLAMM), 147
Sea level rise (SLR), 136

models to study impacts of, 150
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Selected origin–destination lines, 93; 
see also Trajectory-based visual 
analysis

SGD, see Stochastic Gradient Descent
Simplicial complex, 105, 108, 109, 113, 

114, 115, 116, 118; see also 
Homology

Simplicial homology, 109, 113–115; 
see also Homology

computing, 115
Simulation, 193; see also Transport 

demand modeling
automaton, 194
automaton-based scheme, 194
cellular automata, 195
classic traffic/transport simulation 

levels, 193
General Agent vs. MATSim 

Agent, 196
MATSim loop workflow, 196
multiagent systems, 195
simulation software packages, 195

Simultaneous autoregressive model 
(SAR), 15

Singapore-MIT Alliance for Research 
and Technology (SMART), 181

Singular Value Decomposition (SVD), 16
Sistema de Vigilancia en Salud Pública 

(SIVIGILA), 163
SIVIGILA, see Sistema de Vigilancia en 

Salud Pública
SLAMM, see Sea Level Affecting 

Marshes Model
SLR, see Sea level rise
Smartphone-based travel surveys, 

181–182; see also Transport 
demand modeling

SMART, see Singapore-MIT Alliance for 
Research and Technology

SMoT, see Stop-and-move-on-trajectories
Social media, 189, 205

California Proposition 1, 206, 212, 213
data, 208–209
data analysis, 209–212
distribution of tweets in cities, 209, 

211, 212
hashtag convention, 207
interaction systems, 205
meme, 206, 207, 208

opinions and, 206
sustainability and environmental 

justice in, 206
tweets, 207, 208, 209, 210
Twitter, 212, 214
virality, 207
vote dataset, 211, 212

Soil and Water Assessment Tool 
(SWAT), 17

Space-time, 129
clustering, 157
graph in demand modeling, 190
Space-Time-Cube, 81, 91, 97–98

Sparse Coding (SC), 66
Spatial and semantic domain 

adaptation, 71–74
Spatial computing platforms, 27
Spatial databases, 26–27
Spatial data mining, 26, 27

literature, 27
Spatial distribution, 70

cluster centers in, 95
frequency distribution, 84
of population, 74
salience-based, 87

Spatial domain, 15, 183, 223
Spatial network statistics, 15
Spatial point process, 13–14
Spatial Resilient Distributed Datasets 

(SRDDs), 27
Spatial statistics, 8, 9, 10, 29

traditional vs., 11
SP, see Stated preference
SQL (Structured Query Language), 24, 

25, 27, 218
SRDDs, see Spatial Resilient Distributed 

Datasets
SR, see Synthetic reconstruction
Stated preference (SP), 182
Statistics, 2, 3, 8; see also Geospatial data 

science
computer science and, 6
data collection, 11
data-driven domain science 

interpretation and, 6
example, 12–13
lattice, 14–15
Matern cluster process, 14
mathematics and, 15–23
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point-reference data, 13
spatial, 13–15
spatial network, 15
spatial point process, 14
traditional, 10–11
traditional vs. spatial, 11–12

Stochastic Gradient Descent (SGD), 66
Stop-and-move-on-trajectories 

(SMoT), 185
Streaming systems, 236
Stream-oriented monitoring 

applications, 219
Stream processing systems, 236; see also 

Geospatial data streams
Stream windows, 229; see also Geospatial 

data streams
monotonic query, 230
non-blocking query, 230–231
predicate-based windows, 191–193
time-based windows, 231
tuple-based windows, 233

Street geocoding, 46
Support Vector Machine (SVM), 63
SVD, see Singular Value Decomposition
SVM, see Support Vector Machine
SWAT, see Soil and Water Assessment 

Tool
Synthetic reconstruction (SR), 192

T

TABN model, see Translational ABN 
model

Taxicab metric, 106; see also Homology
TDA, see Topological data analysis
TEG, see Time-expanded-graph
Temporal distributions of points, 86
Temporal order, 225–226
Temporal variation, 83
Test data properties, 82
The Nature Conservancy (TNC), 134
Time-based windows, 230, 231–233; see 

also Stream windows
Time domain, 222
Time-expanded-graph (TEG), 19
Time instant, 222, 223, 225
Time interval, 222, 223
Time period, 223
TNC, see The Nature Conservancy

Topological data analysis (TDA), 9
Topology, 17, 18, 104

applications of, 115
Traditional database systems, 26
Traditional decision tree vs. spatial 

decision tree, 28
Traditional statistics, 10

vs. spatial statistics, 11–13
Trajectory, 83

extraction of, 83–85
Trajectory-based visual analysis, 89, 

98–99; see also Floating car data
gradient line rendering technique, 93
identified transport hubs, 97
interactive clustering interface, 91
interactive hierarchical 

agglomerative clustering, 91
map view of non-occupancy 

trajectories, 95
map view of origin-destination lines, 

93–95
non-occupancy trajectories, 95
of origin–destination lines, 91
parallel coordinates view, 91–93
space-time-cube visualization, 97–98
visual analytics framework, 90–91
visual querying of movement 

database, 90, 95
Transfer learning, 73; see also Volunteered 

Geographic Information
TRANSIMS, see Transportation Analysis 

and Simulation System
Translational ABN model (TABN 

model), 70
Transportation Analysis and Simulation 

System (TRANSIMS), 195
Transport demand modeling, 178, 

189, 197
accuracy levels, 184
agent-based simulation, 178, 193, 

195, 197
data collected from navigation 

systems, 182–183
demand modeling, 190–193
GPS-assisted travel surveys, 180
inferring activity-trip information, 

183–189
machine learning models, 187, 188
manual travel surveys, 180
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Transport demand modeling (Continued)
raw trajectory, 183, 184, 185
simulation, 193–197
smartphone-based travel surveys, 

181–182
SMoT algorithms, 185
space-time graph, 183
stop-and-move-on-trajectories, 185
trajectory, 180
transportation demand, 190, 197
transport models, 178, 193
travel data collection evolution, 178
trip characterization

Travel surveys, 178; see also Transport 
demand modeling

GPS-assisted, 180
household travel surveys, 179

Trip characterization, 187
Tuple-based windows, 230, 233; see also 

Stream windows

U

UC, see University of California
UDF, see User-defined function
UGC, see User-generated contents
UID (unique identifier), 207; see also 

Social media
Universal Transverse Mercator 

(UTM), 136
University of California (UC), 64
User-defined function (UDF), 185, 193, 226
User-generated contents (UGC), 189
US Fish and Wildlife Service 

(USFWS), 189
USFWS, see US Fish and Wildlife Service
UTM, see Universal Transverse Mercator

V

VGI, see Volunteered Geographic 
Information

Virality, 207; see also Social media

Visible satellites, 187
Visual querying of movement database, 

90, 99
Volunteered Geographic Information 

(VGI), 50, 63; see also Deep 
learning

ABN model, 70
active sampling, 72
concept drift, 72
conditional probability distribution 

of map pixels, 69
data quality and noise, 68–69
for deep learning, 68
learning algorithms for noise, 66, 68
MapSwipe data, 72
noise from VGI data, 68
spatial and semantic domain 

adaptation, 71–74
TABN model, 70
training image, 72
transfer learning, 73
workflow of DeepVGI, 73

W

Wallops Flight Facility (WFF), 142
Water bond tweets, 207, 208, 209; see also 

Social media
Web;  see also Social media

based providers, 51
interaction systems, 205
network model, 17

Web-based geocoding, 51; see also 
Geocoding

commercial GIS software, 46, 51, 52
for cross validation, 52
geocoding service error, 53
match rate variations, 52
modeling geocoding error, 40, 56, 57
online geocoders, 51

WFF, see Wallops Flight Facility
WGS84 Ellipsoid, 136, 137, 227, 228
Window, see Stream windows
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