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Preface

For computers to be able to fully automate tasks or augment humans’ deci-
sion-making capabilities, they must obtain, understand, and compute all
relevant data. In our “digital” world, data come from different sources in
both structured and unstructured forms, are available in different formats,
and can be multi-dimensional, among other possible variations. At present,
many systems and applications are of benefit to humans only when they
can efficiently and effectively understand the data made available to them,
differentiate between the good (useful) data and the bad (useless) data, and
analyze the good data to achieve the objective in a timely manner. This lat-
ter item is very important in that “time” is a major factor in making many
decisions. Thus, not only must the results of the analytics be reliable, but also
their outcomes must be achieved in a timely manner to be meaningful to the
decision-making effort. Producing “reliable results” and making “in-time”
decisions are challenges related to Big Data as well, hence the connection
between Data Science and Big Data. Self-driving cars are an excellent exam-
ple: new data of various characteristics are continually provided to the deci-
sion-making component of self-driving cars and data must be understood
and analyzed rapidly to make appropriate, potentially life-saving decisions.
In the case of unreliable results or delayed outcomes, the data are no longer
relevant or useful, leading to dangerous situations.

A simple definition of Data Science is the automatic process of using raw
data from a field/discipline, and then analyzing and processing those data
to produce new, meaningful, and useful information. In other words, Data
Science is the automation of turning data into useful information and turn-
ing that information into knowledge. Important keywords commonly used
in the context of Data Science are automation, data analytics, knowledge dis-
covery, and prediction, among others. While many theories and techniques
of Data Science have been actively researched and developed for some time
now, the field of study has become quite popular recently. This is primarily
due to advances in computer and information science theories and technolo-
gies as well as due to the increase in challenges of dealing with data sets that
are continually growing in complexity. Data sets can be very large, of vari-
ous data types, and with rapidly changing content (common characteristics
of Big Data). It is worth mentioning that while Data Science has been widely
discussed in the context of Big Data recently, there are several other data
challenges for which Data Science techniques are needed and useful.

In short, Data Science is about computational efforts to understand and
analyze data in order to make decisions, predict outcomes, or identify phe-
nomena. While most current systems and applications are “data rich,” with-
out appropriate techniques to understand and analyze the data, there is a

vii
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gap in how they can effectively assist humans in detecting and recognizing
patterns and making predictions, among other important things. There are
a variety of techniques that scientists may apply to the data of interest and
there are often challenges in applying these techniques to those data that
have complex and unique characteristics such as geospatial data.

As is clear from this broad definition, Data Science theories and tech-
niques are needed to address complex real-world problems in a wide vari-
ety of fields/disciplines. Fields/disciplines that involve geospatial data are
of particular interest due to their unique need to deal with geospatial data
and analysis. To that end, this book, titled Geospatial Data Science: Techniques
and Applications, is focused on the theories and techniques of Data Science
that will benefit professionals, researchers, developers, scientists, engineers,
and students interested in learning data techniques and skills to specifically
address problems involving geospatial data. The scope of geospatial prob-
lems to which Data Science theories and techniques can be applied covers
such diverse disciplines as environmental science and engineering, trans-
portation planning and engineering, urban planning, social network analy-
sis, geology, and geography, to name just a few.

This book contains 10 chapters focused on describing those Data Science
theories and techniques that are particularly applicable to solving geospa-
tial problems. The goal is to have a collection of Geospatial Data Science
techniques to help the reader master new skills and understand the types of
modern Geospatial Data Science theories and techniques needed to address
geospatial problems. Each chapter incorporates case studies or real-world
examples of applications involving geospatial data, providing a more com-
prehensive examination of this complex topic.

Chapter 1 defines, from a transdisciplinary perspective, the field of
Geospatial Data Science. This perspective spans the three closely related dis-
ciplines of statistics, mathematics, and computer science. The chapter argues
that the theories and techniques needed for data analysis and processing
connect these disciplines and the result is the reduced redundant work for
data scientists.

Chapter 2 explains in detail geocoding, which is a fundamental and ini-
tial operation in many geospatial projects. The chapter discusses the basics
of geocoding along with the various challenges associated with the logic of
geocoding. Uncertainties related to geocoding and Web-based geocoding
services and geomasking are explored.

Chapter 3 discusses a deep learning technique applied to satellite images
for pattern recognition, emphasizing the need for appropriate and large data
sets to include labeled training samples. The chapter proposes the use of
large data sets of volunteered geographic information (VGI), which are cur-
rently available through various services such as OpenStreetMap, in order to
master deep learning with satellite images.

Chapter 4 discusses visual analytical approaches to analyze the movement
of massive floating car data. The chapter first outlines the state of the art in
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floating car visual analysis at two abstract levels: point-based and trajectory-
based. It then discusses several visualization methods to explore multivari-
ate points and trajectories in interactive visual environments.

Chapter 5 discusses homology as a technique to predict patterns in geo-
spatial data. The main feature of the technique is that it takes into account
the topological properties of data in order to recognize patterns. The tech-
nique is applied to a geological data set to recognize patterns of similarity
among geologic structures at tectonic boundaries.

Chapter 6 is focused on LiDAR technology and the type of data it produces.
The chapter then presents a specific marine application to which LiDAR data
have been applied. The LiDAR data are used in the application as the source
data to develop DTM and DEM data, which are then used to quantify the
effects of rises in sea levels.

Chapter 7 explains spatial-temporal techniques that are suitable for analy-
sis of point patterns. Of the existing techniques, the chapter discusses the
implementation of the spatial-temporal Ripley’s K function at various scales
to estimate the spatial-temporal signature of dengue fever in Columbia.

Chapter 8 focuses on geospatial data analysis of transportation demand,
which depends on collecting and analyzing geospatial data, georeferenced
socio-demographic data, economic data, and environmental data. The chap-
ter reviews state-of-the art traffic data collection and analysis, as well as
transportation modeling and simulation techniques.

Chapter 9 discusses utilizing data analytics to study human dynamics
in the space-time context. The data analytics are applied to a water bond
effort in California as the case study, measuring people’s votes on the issue
through tweets to explore the space-time dynamics of social media and topi-
cal distribution.

Chapter 10 presents the concept of geospatial stream processing from the
user’s perspective. It then discusses a framework for efficient real-time anal-
ysis of big geospatial streams, based on distributed processing of large clus-
ters of data and a declarative, SQL-based approach.

We hope that this book will help readers, whether familiar with or new to
Data Science, interested to learn about Geospatial Data Science theories and
techniques with example applications involving geospatial data.

Hassan A. Karimi
Bobak Karimi
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1.1 Introduction

This chapter provides a transdisciplinary scientific perspective for the geo-
spatial data science which promises to create new frontiers for the geospatial
problems which were previously studied with a trial and error approach.
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A well-known example from the past illustrates how rigorous scientific
methods may change a field. Alchemy, the medieval forerunner of chemis-
try, once aimed to transform matter into gold (Newman and Principe 1998).
Alchemists worked tirelessly for years trying to combine different matter
and observe their effects. This trial and error process was successful for find-
ing new alloys (e.g., brass, bronze, etc.) but not for creating another metal,
that is, gold. Later, the science of chemistry showed the chemical reactions
and their effects on elements, and successfully proved that an element can-
not be created by simply melting and combining other elements.

We see similar unrewarded efforts (Legendre et al. 2004; Mazzocchi 2015)
in the current trial and error approach to geospatial data science. We believe
that research in the field needs to be conducted more systematically using
methods scientifically appropriate for the data at hand.

This chapter investigates geospatial data science from a transdisciplinary
perspective to provide such a systematic approach with the collaboration of
scientific disciplines, namely, mathematics, statistics, and computer science.

1.1.1 Motivation

Over the past decade, there has been a significant growth of cheap raw geo-
spatial data in the form of GPS trajectories, activity/event locations, tem-
porally detailed road networks, satellite imagery, etc. (H. J. Miller and Han
2009; Shekhar et al. 2011). These data, which are often collected around the
clock from location-aware applications, sensor technologies, etc., represent
an unprecedented opportunity to study our economic, social, and natural
systems and their interactions.

Consequently, there has also been rapid growth in geospatial data science
applications. Often, geospatial information retrieval tools have been used as
a type of “black box,” where different approaches are tried to find the best
solution with little or no consideration of the actual phenomena being inves-
tigated. Such approaches can have unintended economic and social con-
sequences. An example from computer science was Google’s “Flu Trends”
service, begun in 2008, which claimed to forecast the flu based on people’s
searches. The idea was that when people have flu, they search for flu-related
information (e.g., remedies, symptoms). Google claimed to be able to track
flu trends earlier than the Centers for Disease Control. However, in 2013, the
approach failed to identify the flu season, missing the peak time by a large
margin (e.g., 140%) (Butler 2013; Lazer et al. 2014; Drineas and Huo 2016).

This failure is but one example of how the availability of a computational tool
does not mean that the tool is suitable for every problem. A recent New York
Times article discussed similar issues in big data analysis from the statistics
perspective, concluding, “[Statistics is] an important resource for anyone ana-
lyzing data, not a silver bullet.” (Marcus and Davis 2014).

Similarly, geospatial data science applications need a strong founda-
tion to understand scientific issues (e.g., generalizability, reproducibility,
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computability, and prediction limits—error bounds), which often makes
it difficult for users to develop reliable and trustworthy models and tools.
Moreover, we need a transdisciplinary scientific approach that considers not
only one scientific domain but multiple scientific domains for discovering
and extracting interesting patterns in them to understand past and present
phenomena and provide dynamic and actionable insights for all sectors of
society (Karimi 2014).

1.1.2 Problem Definition

The term geospatial data science implies the process of gaining information
from geospatial data using a systematic scientific approach that is organized
in the form of testable scientific explanations (e.g., proofs and theories, simu-
lations, experiments, etc.). A good example is USGS and NOAA'’s analysis of
geospatial and spatiotemporal datasets, for example, satellite imagery, atmo-
spheric data sensors, weather models, and so on, to provide actionable hur-
ricane forecasts using statistics, machine learning (computer science), and
mathematical models (Graumann et al. 2005; “National Hurricane Center”
2017).

The most important aspect of a scientific process is objectivity (Daston and
Galison 2007), meaning the results should not be affected by people’s per-
spectives, interests, or biases. To achieve objectivity, scientific results should
be reproducible (Drummond 2009; Peng 2011). In other words, using the
claims in a scientific study, the results should be consistent and thus give the
same results every time.

Although they vary by domain (Gauch 2003), for geospatial data science
we provide the following steps (Figure 1.1), which can provide objectivity
and reproducibility.

The first step is the selection of a phenomenon to explain scientifically.
In other words, we decide which problem we want to explain. Next, suf-
ficient data about the phenomenon are collected to generate a hypothesis.
The important aspect of this step is that hypothesis generation should be
objective and not biased by scientists’ perspective or interests. Experiments
and simulations are then done to test the hypothesis. If the hypothesis sur-
vives these tests, then a theory can be generated. Note that in some domains,
theories can be validated by mathematical proofs, and then confirmed by

Mathematical

proofs

Problem Data Hypothesis

selection/definition collection generation Experiments Theory generation

Simulations

FIGURE 1.1
Steps of geospatial data science.
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experiments and simulations. Thus, scientific methods differ slightly from
one scientific domain to another.

This scientific process will also draw boundaries of predictability just as
chemistry drew boundaries for creating matter (i.e., gold). Depending on the
data in hand, non-stationarity in time may impact the success of predictabil-
ity. Thus, past events may not always help predict the future. Similarly, black
swan events, where the occurrence of a current event deviates from what
is expected, may escape the notice of individual disciplines (Taleb 2007).
The proposed transdisciplinary approach encourages us to investigate such
events for better understanding the cause and predictability of black swan
events with a scientific approach.

1.1.3 Challenges

Geospatial data science poses several significant challenges to both current
data scientific approaches as well as individual scientific disciplines.

First, the increasing size, variety, and the update rate of geospatial data
exceed the capacity of commonly used data science approaches to learn,
manage, and process them with reasonable effort (Evans et al. 2014; Shekhar,
Feiner, and Aref 2015). For example, vehicle trajectory datasets that are
openly published on the Planet GPX web site include trillions of GPS points,
each of which carries longitude, latitude, and time information (“Planet.gpx—
OpenStreetMap Wiki” 2017).

Second, geospatial data often violate fundamental assumptions of individ-
ual traditional scientific disciplines. For example, in statistics, the indepen-
dent and identically distributed (i.i.d.) assumption of random variables, and
the stationarity assumption (whereby the mean, variance, and autocorrelation
are assumed to be stationary) do not hold for geospatial data (Shekhar et al.
2015). Similarly, in mathematics, regions with indeterminate boundaries may
not be represented with traditional topology and geometry, although in a geo-
graphical space indeterminate boundaries are needed since neighborhoods
or urban areas often do not have determinate (strict) boundaries (Clementini
and Di Felice 1996; Cohn and Gotts 1996). Also, graphs in mathematics cannot
be used to represent spatial networks (e.g., road networks, rivers, etc.) since
these networks have location information as well as node specific constraints
(e.g., turns, traffic lights, etc.) (Barthelemy 2011). In addition, computer science
often deals with one-dimensional data while geospatial data often have two,
three, or more dimensions. A simple example is “sorting.” In computer sci-
ence, sorting may be done in one-dimensional vectors. However, there is no
simple notion of sorting multidimensional geospatial data (Samet 2015).

A third challenge is that, owing to imperfect data collection devices, geo-
spatial datasets often include missing or erroneous data (Ehlschlaeger and
Goodchild 1994). To make things more complicated, there are concerns from
users about geo-privacy (Kwan, Casas, and Schmitz 2004). Thus, it is hard to
provide robust approaches that are generalizable.
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Finally, the siloed nature of statistics, mathematics, and computer science
research leads to redundant and often incomplete work on data science
problems.

1.1.4 Trade-Offs

Taking a transdisciplinary view of geospatial data science means we must
deal with the well-known trade-offs within individual disciplines, as well as
with the many trade-offs across disciplines.

Intra-disciplinary trade-offs: An example in statistics is the tradeoff between
bias and variance, as shown in Figure 1.2. A bias error occurs when wrong
assumptions are used with the training dataset. In other words, during model
learning we may be overly cautious, causing our model to under-fit the data,
which in turn leads to a high prediction error rate. Variance error comes
from the fact that even small variances in the training data are considered for
model building. Such an approach may cause overfitting as well as unneces-
sarily complex model building and thus poor prediction performance.

An example within the discipline of computer science is the trade-off
between memory storage and response time. For example, a shortest path
computation using Dijkstra’s algorithm (Dijkstra 1959) iteratively traverses
the nodes and edges of the graph to compute the shortest path. An alterna-
tive approach may be based on precomputing and storing the shortest paths
in a database with an index on the pairs of start-node and destination. This

A

Linear
regression

Iso-total

squared error

b |
7

Spatial

(prediction error)

Variance

Bias

FIGURE 1.2
The trade-off between bias and variance for the statistics domain.
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approach will simply use the index to retrieve the precomputed shortest
path to quickly answer queries. The computation cost for shortest paths will
be much lower; however, it will require much larger storage for the data-
base of precomputed paths. The computer science literature includes many
algorithms, for example, hierarchical Routing and contraction hierarchies
(Geisberger et al. 2008), which explore the trade-off between storing a subset
of precomputed paths and on-the-fly computation. Another computer sci-
ence example from distributed systems in computer science is the CAP theo-
rem (Brewer 2000), which states that one must choose between consistency
and availability where the third concern is the partition tolerance.

Beyond the trade-offs within individual disciplines, there are new trans-
disciplinary trade-offs to consider across mathematics, statistics, computer
science, and data-driven sciences (referred to as domain sciences).

Data-driven domain science interpretation and statistics (uncertainty quantifica-
tion): Data-driven domain science interpretation and statistical uncertainty
quantification have different objectives. For example, in the land cover clas-
sification problem, a decision tree (Kazar et al. 2004; Z. Jiang et al. 2012; Z.
Jiang et al. 2015) or random forest (Gislason, Benediktsson, and Sveinsson
2006) approach may be used to classify remote sensing imagery to land cover
type (e.g., wetland, dryland, forest, urban, rural, etc.) since the resulting
models (i.e., decision trees or random forests) are relatively easy for domain
scientists to interpret. However, neither the decision tree nor random for-
est approaches quantify uncertainty or provide a statistical confidence level
for predicted land-cover classes. The alternative method is using statistical
approaches such as Bayesian classifiers (Giacinto, Roli, and Bruzzone 2000).
These may provide uncertainty quantification and statistical confidence but
the results are not as easy to interpret due to their numerical nature. Thus,
there is a need for approaches that will provide uncertainty quantification as
well as ease of domain interpretation.

Computer science and statistics: Computational approaches such as data
mining and machine learning tools often provide computational scalability
but they may not quantify uncertainty as depicted in Figure 1.2. For example,
the K-means algorithm (Hartigan and Wong 1979) for clustering is computa-
tionally efficient as it converges quickly to a local minimum on the error sur-
face. However, it does not quantify statistical confidence in the discovered
clusters. For example, it cannot determine whether the clusters discovered
by K-means are better than those achieved by a random partitioning of the
data set. In addition, it does not provide guarantees on the solution quality.
For example, it does not tell us how the quality of a local minimum recom-
mended by the K-means procedure compares with the quality of a global
minimum on the error surface. On the other hand, the expectation maximi-
zation (EM) approaches (Dempster, Laird, and Rubin 1977) may iteratively
converge to a global optimum solution; however, they seldom provide guar-
antees on computational cost. They cannot answer questions such as, “Is it
guaranteed to terminate in a reasonable time (or will it run for an infinite
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time)? What is the computational complexity of the EM algorithm?” In addi-
tion, statistical approaches which aim to provide probability distributions as
well as evaluate the results with statistical significance levels often require
hypothesis testing (Johansen 1991), which increases the computational cost.
Therefore, new research is required to provide computational scalability and
statistical uncertainty quantification at the same time (Figure 1.3).

Mathematics and statistics: A pure mathematical optimization approach to
estimate parameters of a statistical (or machine learning) model may lead
to overfitting (Babyak 2004), which may cause the model to perform poorly
on generalization for prediction on unseen datasets. Moreover, it may cause
many statistical models (e.g., regression and decision trees) to become exces-
sively complex and hard to interpret. For example, in a regression, given any
set of data points, it is possible to find a polynomial function that exactly
passes through each point. This may cause overfitting and reduce the pre-
diction power of the model, since the dataset may have noisy points that
bias the results. In summary, there is a need for tools that preserve statistical
interpretation and mathematical completeness as well as prevent statistical
models from becoming overly complex.

Mathematics, computer science, and statistics: Mathematics and statistics often
have conflicting objectives. Basically, statistical inferences often involve
quantifying the uncertainties with confidence intervals and statistical sig-
nificance values. On the other hand, mathematics often deals with results’

A Statistical tools
. Hypothesis testing

. Expectation maximization

Statistical rigor

. Data mining tools
(e.g., K-means)

Computational scalability

FIGURE 1.3
The trade-off between computational scalability and statistical rigor.
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completeness, optimality, and so on. Many statistical methods do not guar-
antee mathematical properties, for example, completeness and optimality.
For example, consider SaTScan (Kulldorff 1997, 1999), an algorithm to find
hotspots, that is, circular areas within which the density of a phenomenon
(e.g., disease, crime) is much higher than the density outside. This method
uses a statistical measure, for example, a likelihood ratio and p-value, to
reduce chance patterns and quantify uncertainty. This software, widely
used in epidemiology for hotspot detection, enumerates circles using pairs
of points, where one point defines the center and the distance between the
points defines the radius. However, this approach does not enumerate many
other circles, such as those defined by subsets of three points. It is likely
to miss circular hotspots with empty centers as it gives up mathematical
completeness to reduce computational cost. There is a need for approaches
that preserve mathematical completeness while providing computationally
feasible and scalable solutions.

1.1.5 Background

Previous attempts to define geospatial data science (Table 1.1) often focused
on pairs of disciplines, for example, statistics—computer science, mathemat-
ics—computer science, and so on. We argue that all three disciplines should
be considered to provide an understanding of naturally occurring phenom-
ena. Moreover, these disciplines should operate together so that all may ben-
efit from conceptual advances of common interest. For example, analytics
on hyperspectral remote sensing imagery, which is used by earth science
applications (e.g.,, agronomy, geology, hydrology, etc.), applies computation-
ally efficient and statistically robust algorithms for those high dimensional
(e.g., hyperspectral) geospatial datasets (Melgani and Bruzzone 2004).
Recently, the NSF workshop on “Theoretical Foundations of Data Science”
(Drineas and Huo 2016) attempted to provide a definition of “data science”
that brings these three disciplines together. The workshop identified fun-
damental areas where collaboration among computer scientists, mathemati-
cians, and statisticians is necessary to achieve significant progress. However,
the focus of the workshop was not geospatial data generally but high-dimen-
sional data, and most of the discussion centered on very specific topic areas,
that is, computation-statistics tradeoff, randomized numerical linear algebra,

TABLE 1.1
Overview of Related Work
High-Dimensional Data Spatial Data
Siloed/ Statistics, mathematics, Spatial statistics, Spatial data
multidisciplinary and computer science mining, and machine learning
Transdisciplinary Theoretical foundations of Proposed approach

data science workshop
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signal processing/harmonic analysis on graphs, nonconvex statistical opti-
mization, combining physical and statistical models, mixed type and multi-
modality data, applied representation theory and noncommutative harmonic
analysis, topological data analysis (TDA) and homological algebra, security,
privacy, and algorithmic fairness (Drineas and Huo 2016).

Another recent development was the NSF Workshop on Geospatial Data
Science in the Era of Big Data and CyberGIS (“NSF Workshop on Geospatial
Data Science” 2017). Its focus was high-performance computing and the
computational aspects of geospatial data science. Topics included geospatial
big data capabilities (e.g., LiDAR, remote sensing, and location-based social
media) for novel applications (e.g., urban sustainability), cloud computing, and
tools for scalable geospatial data analytics. One of the goals was to formulate
a core set of questions and problems of geospatial data science around these
themes. The workshop addressed the geospatial data science problem from a
high-performance computing perspective but did not address the broader set
of questions that led us to our attempt here to define geospatial data science.

1.1.6 Contributions and the Scope and Outline of This Chapter

This chapter takes a wide-lens perspective on geospatial data science. We
believe that geospatial data science is a transdisciplinary field comprising
statistics, mathematics, and computer science, and that it should be formally
considered the foundation of geospatial science. The aim is both to reduce
redundant work across disciplines as well as to define the scientific boundar-
ies of geospatial data science so it is no longer seen as “a black box” solution
to every possible geospatial problem. In addition, we aim to lay out some of
the challenges that arise from the geospatial nature of the data. Hence, in the
following sections, we investigate individual disciplines, their objectives as
well as the challenges they face to investigate the transdisciplinary defini-
tion of geospatial data science.

Scope and outline: In this chapter, we present geospatial data science as a
transdisciplinary scientific process. The proposed approach provides a dis-
cipline-of-disciplines perspective toward reducing redundant work and pro-
viding a more robust way to create information from raw geospatial data. In
addition, our approach aims to identify the limits of geospatial data science
predictability.

To emphasize the transdisciplinary perspective of geospatial data sci-
ence, in the following sections we provide examples from each discipline,
namely, statistics, mathematics, and computer science, that are cross-cutting
with geospatial data science. As summarized in Figure 14, for example, the
study of indeterminate regions is both a mathematics and a spatial statistics
problem. Similarly, randomized algorithms can be considered not only as a
problem in computer science but also one that uses fundamental ideas from
spatial statistics. Finally, representative problem examples that all three dis-
ciplines tackle are explained in more detail.
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FIGURE 1.4
Comparison of disciplines via examples (one theory/approach doesn't fit all).

1.2 Statistics
1.2.1 Traditional Statistics

Statistics studies data in the context of uncertainty, and it serves as an impor-
tant foundation of many data science tasks such as pattern recognition, pre-
diction, and classification. Given the observations collected from a part of a
population, statistics reduces uncertainty by making inferences on the entire
population. It differs from probability theory in that probability theory
works with known probabilistic distributions to estimate the probability of
future observations while statistics starts with a collection of past observa-
tions and estimates the unknown parameters of a probabilistic distribution
to make inferences.
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In statistics, data collection is performed based on sampling theory
(Hardle, Klinke, and Réonz 2015), which provides a scientific framework
to decide the population of concern, sampling approach (e.g., random sam-
pling), sampling size, and so on. The collected observations are then used
to estimate parameter values of a target distribution model (e.g., Gaussian
distribution). The estimation can be performed using either a “frequentist”
or a Bayesian approach (Hong et al. 2013). A frequentist approach analyzes
data as an integrated whole. It assumes each parameter has a fixed value that
does not change over time and that can be accurately estimated as the num-
ber of observations increases to infinity. However, in real-world scenarios,
the number of observations is limited and there is always an uncertainty
associated with the analysis, given the incomplete data. In order to express
this uncertainty, a frequentist approach uses a confidence interval (Curran-
Everett 2009) to claim a minimum expected probability (e.g., 95%) that the
estimated parameters are true.

By contrast, a Bayesian approach assumes that each parameter comes from
a prior distribution. It considers data as a sequence of observations and con-
tinues to update the estimation of parameters as new observations are avail-
able. Unlike a frequentist approach, a Bayesian approach captures the change
or evolution of parameters over a sequence (e.g., time) of observations, and
thus can further reduce the uncertainty in an inference. However, a Bayesian
approach requires an appropriate prior distribution as input; otherwise, it
cannot give correct inferences.

1.2.2 Traditional Statistics versus Spatial Statistics

One of the most common assumptions in traditional statistics is that observa-
tions are identically and independently distributed (i.i.d.) (L. Cam and Yang
2000). The i.i.d. assumption is an important foundation of many data science
methods. For example, in machine learning, maximum likelihood estima-
tion (Pan and Fang 2002) is used to estimate the parameter values of a given
model, and the expressions of likelihood functions are often obtained based
on this ii.d. assumption (e.g., Naive Bayes classifier, expectation-maximiza-
tion). In fact, many classic statistics theorems come from the i.i.d. assump-
tion, such as the well-known central limit theorem (Rice 1995), which states
that the mean of a set of samples is approximately equal to the mean of an
entire population, given a sufficiently large sample size.

Although it offers great convenience in traditional statistics, the i.i.d. assump-
tion is often violated in the geospatial domain. As the first law of geography
states: “Everything is related to everything else, but nearby things are more
related than distant things” (Tobler 1970). This fundamental observation on
geospatial data breaks the ii.d. assumption of nonspatial data in traditional
statistics. Spatial statistics deals with the phenomenon of spatial autocorrela-
tion through careful modeling of spatial relationships among data samples.
The following discusses two motivating examples of spatial statistics.
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Example 1.1: Pearson Correlation on Geospatial Data

Figure 1.5a shows a distribution of three types of diseases, abbreviated
as TF, VSD, and ALL. Each instance of each disease has a unique ID
as marked in Figure 1.5a. From the distribution, we can see each ALL
instance has a nearby TF instance and VSD instance. For example, ALL1
is adjacent to TF1 and VSD1. To measure the spatial correlation among
the three types of diseases, we need some parameters to express the spa-
tial distribution. Figure 1.5b shows a boundary fragmenting the study
area. For each type of disease, we can consider each fragment as a prop-
erty of its spatial distribution, and each property value as the count of
instances of this disease within the fragment. Suppose the fragments are
concatenated into a vector following column-wise order (top-left — bot-
tom-left — top-right — bottom-right). Thus, the vector of properties for
ALLis[0,0,1,1], TFis [1, 2,0, 0], and VSD is [0, 0, 1, 1]. With this spatial
modeling based on boundary fragmentation, the Pearson correlation
ratio is —0.91 between TF and ALL, and 1 between VSD and ALL. This
negative correlation between TF and ALL contradicts our observation
since their spatial adjacency is broken by the boundary between frag-
ments (Figure 1.5b). By contrast, the correlation between VSD and ALL is
positive because the spatial adjacency between VSD and ALL instances
is preserved by the arbitrary partitioning. These mutually contradictory
correlations reveal the uncertainty of results when traditional statistics
is trivially applied to the geospatial domain.

Example 1.2: Agronomic Field Experiment Design

Field experiments are used by agricultural scientists to evaluate the
performance and properties of crops under different conditions (e.g.,
water and fertilizer) (Legendre et al. 2004; Van Es et al. 2007). Traditional
experiment designs assume that observations are independent and that
the expected value stays the same at different spatial locations. However,
in field experiments, these assumptions are often violated since closer
plants exhibit more similar properties, and soil properties vary at dif-
ferent locations, which lead to nonstationary expectations (Legendre
et al. 2004). To address this problem, blocks are used in field experiment

(a) (b)
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FIGURE 1.5

Distribution of disease. (a) A map of 3 types of diseases and (b) Boundary fragmenting the

study area.
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design to reduce the effect of spatial autocorrelation and heterogeneity.
A block is a large spatial unit containing a set of plots. With a properly
chosen block size, the spatial-related properties (e.g., soil type) can be
assumed to be uniform within a block. Distances are added between
blocks so that the spatial autocorrelation between blocks is reduced. The
choice of block size and distance between blocks are critical parameters
to reduce the errors caused by spatial effects. In practice, they can be
determined by spatial statistical analysis.

1.2.3 Spatial Statistics

Geostatistics: Geostatistics (Chiles and Delfiner 2012) is concerned with point-
reference data, which contains a set of points with fixed locations and a set
of attribute values. The goal of geostatistics is to model the distribution of
the attribute values and make predictions on uncovered locations. Point-
reference data have several inherent properties: (1) isotropy/anisotropy; (2)
second-order stationarity; and (3) continuity. In the context of isotropy, uni-
formity is assumed in all directions, while under anisotropy, some statistical
properties may vary by direction. Second-order stationarity is a weaker form
of strong stationarity, so it is also referred to as weak stationarity. Instead of
assuming a strong stationarity with invariant density of distribution, second-
order stationarity assumes only invariant moments (e.g.,, mean and variance)
across a spatial domain but covariance between locations depends on the
distance. The continuity property indicates the existence of spatial depen-
dence on the data. The degree of dependence can be quantitatively measured
with input distance and direction using a variogram or semivariogram. If
we further assume isotropy, then the variogram simplifies to a function of
distance only. With the base assumptions on point-reference data, the distri-
bution of attribute values can be effectively modeled. A set of statistical tools
is provided by geostatistics and one of the most popularly used methods is
Kriging (Williams 1998). Kriging is a statistical model of interpolation that
predicts attribute values at unsampled locations (e.g., water quality estima-
tion based on observations from a set of monitoring sites). Co-Kriging (Stein
and Corsten 1991) provides a multivariate extension of ordinary Kriging. For
a set of highly correlated attributes, Co-Kriging can improve the prediction
quality on a poorly sampled attribute using well-sampled ones. Besides spa-
tial autocorrelation, spatial heterogeneity also needs careful consideration
in many applications (e.g., different types of underlying landscape). Special
models, such as GWR (geographically weighted regression) and spline, are
available in geostatistics to reflect the changes in statistical properties, given
the presence of spatial heterogeneity. These models deploy a local view on
the data and assign higher weights to neighboring points to reduce the effect
of heterogeneity.

Spatial point process: Unlike geostatistics, a spatial point process is not
concerned with attribute values but with the locations of points (Meller
and Waagepetersen 2007), specifically their distribution. Locations of a set
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Forms of spatial point process.

of points can be generated based on different statistical assumptions (e.g.,
random and clustered). The most common model assumed for a spatial
point process is a homogeneous Poisson distribution, also known as com-
plete spatial randomness (CSR). In CSR, the total number of points follows
a Poisson distribution and each point is identically and independently dis-
tributed in a predefined spatial domain. A variant of CSR is a binomial point
process, in which the only difference is a fixed total number of points. In
many application domains, CSR or binomial point process is not an appro-
priate assumption since points may have spatial autocorrelation or inhi-
bition characteristics. In such cases, other specialized models should be
applied to better approximate the exact distribution as shown in Figure 1.6.
For spatial inhibition, a Poisson hardcore process is widely used to gener-
ate a distribution that enforces mutual repulsion among points. For spatial
autocorrelation, a Matern cluster process can be chosen to reflect the clus-
tering characteristics. Similar cluster processes include the Poisson cluster
process, Cox cluster process, Neyman-Scott process, and so on. One of the
most well-known applications of a spatial point process is spatial scan statis-
tics (Kulldorff 1997; Agarwal et al., 2006; Neill and Heinz 2009; E. Eftelioglu,
Tang, and Shekhar 2015; Tang, Eftelioglu, and Shekhar 2015; E. Eftelioglu,
et al. 2016b,¢c) in hotspot detection. In spatial scan statistics, chance hotspots
are removed through a statistical significance test under a null hypothesis
based on CSR. CSR is also used as a null hypothesis for significance testing
in Ripley’s K function (Dixon 2002), which estimates the overall clustering
degree of a point distribution.

Lattice statistics: A lattice is a representation of a discrete space, which is
a finite collection of grid cells in a spatial domain. In this case, lattice sta-
tistics concerns statistical processes in the field model. For continuous data
(e.g., polygon), a W-matrix (continuity matrix) can be computed to transform
the original data into a discretized representation based on their spatial
adjacency or proximity. Lattice statistics provides a set of models (Cliff and
Ord 1981; Getis and Ord 2010), such as Moran’s I, Getis-Ord Gi* Geary’s
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C, Gamma index, and LISA, to evaluate spatial autocorrelation on the field
model. For example, Moran’s I outputs an I-value within [-1, +1] to reflect a
positive, none, or negative spatial autocorrelation in the input dataset. For
value estimation and prediction, spatial autoregressive models (M. M. Wall
2004) are applied on discrete data, such as Markov random fields (MRF),
the simultaneous autoregressive model (SAR), and the conditional autore-
gressive model (CAR). MRF models the evolution process of a phenomenon
based on the assumption that the property of a spatial location is spatio-
temporally determined by its neighbors with additional randomness. In
the CAR model, a Markov property is implied and the state of a location
is affected by its direct neighbors, but not neighbors of its neighbors. This
property of CAR is called spatial memoryless. By contrast, SAR does not
assume any non-transitive spatial influences and considers autocorrelation
in a larger spatial domain. Therefore, CAR is a more appropriate choice for
a local spatial process and SAR is a better assumption for a global spatial
process. Another critical issue in lattice statistics is the impact of scale on
spatial analysis. With different aggregation levels of scale, the statistical
analyses may have distinct results. For example, variance of income aggre-
gated on a neighborhood level could be much smaller than that on a county
level within the same state.

Spatial network statistics: A spatial network is a graph-based model with
enriched spatial information (e.g., turn and capacity). In a spatial network,
events or objects are mutually accessed through a set of connected edges
instead of straight lines in the Euclidean space. Statistics on spatial net-
works is a newly emerging area which has not been as extensively stud-
ied as statistics on Euclidean space. In recent work, some statistical models
for object data, such as spatial autocorrelation, interpolation, and clustering
approaches, have been extended to spatial networks. Spatial network statis-
tics, as an extension of spatial statistics on Euclidean space, can better model
processes in urbanized places where objects and events spread along net-
work edges (e.g., roads and rivers). For example, in transportation planning,
statistically significant hotspots of accidents need to be identified based on
network space (Tang et al. 2017).

1.3 Mathematics

Mathematics plays a critical role in all science and technology. It is funda-
mental to a variety of traditional subjects such as physics, chemistry, and
agriculture. In data science, mathematics provides its core value in data rep-
resentation and modeling as well as the logic and proofs used to validate
data science approaches. In this section, we first introduce how mathematics
is applied in traditional data science with a collection of examples. Then we
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discuss the limitations of applying traditional mathematical models to spa-
tial data and novel spatial models with examples.

1.3.1 Mathematics in Traditional Data Science

Data science utilizes a variety of subjects for accomplishing different data
modeling and processing tasks. Many types of data can be represented using
linear algebra models. Aligned two-dimensional data are typically modeled
as a matrix. For example, an image channel is represented as a matrix where
each element indicates the value of a pixel in the corresponding location.
This representation is widely applied in precision agriculture (Campbell and
Wynne 2011; Lillesand, Kiefer, and Chipman 2014; E. Eftelioglu et al. 2016a),
which discovers the remote sensing data consisting of multiple image chan-
nels. In addition, a graph can be represented as a neighborhood matrix as
well where each row corresponds with a node in the graph and the elements
in that row indicate the connection from this node to all the other nodes. A
vector is always used to model an object that has a set of feathers where each
feather is quantized as an element in the vector. The operations on matrices
and vectors also apply on the represented data. For example, the similarity
between two feather vectors can be measured by the distance computed by
the norms and the angle between them. Eigenvalue and eigenvector are used
for studying the behavior of Markov chains (Gabriel and Neumann 1962;
Brooks et al. 2011) which has been the core idea of many approaches such
as PageRank (Page et al. 1999). Principal component analysis (PCA) (Jolliffe
2002) uses eigenvalues and eigenvectors for reducing the dimensionality of
the data. Another important application of linear algebra in data science is
regression (Neter et al. 1996). A linear regression can be modeled as a linear
system which can possibly be solved by multiple linear algebra approaches
such as Gaussian elimination and multiplying by inverse (Wilkinson and
Wilkinson 1965). Many data science approaches are derived based on lin-
ear algebra. As an example, low-rank matrix approximation based on
Singular Value Decomposition (SVD) (Golub and Reinsch 1970; M. E. Wall,
Rechtsteiner, and Rocha 2003) is applied in data compression, classification,
regression, clustering, and signal processing, and so on.

Another subject in mathematics that is widely used in data science is
information theory. Entropy is a concept that originally comes from ther-
modynamics (Guggenheim 1985) which measures the number of micro-
scopic configurations that a thermodynamic system has. On the basis of the
essence of entropy, entropy in information theory (Ayres 1997) measures the
expected value of the information contained in a message or the uncertainty
of the data. Data classification approaches such as decision trees use entropy
to measure the information gain (Quinlan 1986; Safavian and Landgrebe
1991; Hall and Holmes 2003) between two levels of the tree which offers a
quantitative guide of how the tree should grow. For example, a good growth
of the tree is expected to decrease the overall entropy.
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Optimization is a highly interdisciplinary subject related to both math-
ematics and computer science. It is applied to many critical societal applica-
tions. For example, precision agriculture researchers need to allocate each
field with a type of product to achieve the optimal environmental and eco-
nomic outcome, which requires solving a multi-variable optimization prob-
lem (N. Zhang, Wang, and Wang 2002; McBratney et al. 2005). Many machine
learning approaches use optimization techniques to achieve their goals such
as finding the minimal value of the cost function (Govan 2006; Boyd et al.
2011). For example, gradient descent, a popular approach, finds the mini-
mum value of a cost function by iteratively moving along the direction of
the slope (L.-K. Liu and Feig 1996; Mason et al. 1999; Bottou 2010). Finding
the slope requires solving differential equations (K. S. Miller and Ross 1993),
which is an important subject in mathematics. Differential equations have
many other applications in data science especially on spatial data, since
they can be naturally differentiated into variations over space and time. For
example, the Soil and Water Assessment Tool (SWAT) (Gassman et al. 2007;
Douglas-Mankin, Srinivasan, and Arnold 2010) is a software that embraces a
variety of environmental and agricultural models about the variations over
space and time which apply differential equations.

A mathematics subject tightly related to computer science and data science
is graph theory. This is because many real phenomena can be naturally mod-
eled by a graph where the vertices represent the objects, and the edges repre-
sent the relationship between objects. For example, as a web network model
(Kleinberg et al. 1999; Broder et al. 2000), each webpage can be modeled as
a vertex and the links are modeled as edges outgoing from this vertex. In a
social network model (Freeman 1978; Mislove et al. 2007), vertexes represent
individuals, and edges represent the relationship between two individuals.
There are also spatial data models based on graph theory. Traditionally, road
networks are modeled such that the intersections are vertices and the roads
are edges. A similar framework also applies to flight networks (Li-Ping et al.
2003) and oil pipeline networks (Brimberg et al. 2003), but the edges become
the air routes and the pipelines.

Topology studies the properties that are preserved under deformations,
including stretching, twisting, and bending. TDA (Zomorodian 2012) is an
example of applying topology in data science whose main goal is to study
the geometric characteristic of data via topology. For spatial data, they are
largely used in modeling a collection of relationships between real-world
spatial objects. For example, Minneapolis is inside of Minnesota state is an
“inside” topological relationship.

1.3.2 Limitations of Applying Traditional Mathematical Models
to Spatial Data and Novel Spatial Models via Examples

We reviewed the mathematical subjects that have been applied in data sci-
ence. However, they have many non-negligible limitations when dealing



18 Geospatial Data Science Techniques and Applications

with spatial data. An example comes from the metric of objects. Suppose
there are two spatial objects on a two-dimensional plane, each presented by
a two-dimensional coordinate; how do we order them? One straightforward
way is using their distance to the origin. Another popular way is sorting by
the angle between the line connecting the points and the origin and an axis
(i.e, x-axis or y-axis). The point is, there is no natural metric that can order
spatial points. Developing meaningful and efficient ordering metrics for spa-
tial objects is an important and challenging research topic.

In traditional topology, spatial regions are always modeled with deter-
minate boundaries (Randell and Cohn 1992; Cohn and Gotts 1996). It turns
out that the traditional topological relationship models always rely on the
boundary. For example, the relationship “inside” is determined by whether
a spatial region falls completely within another region, and the relationship
“touches” is determined by whether the boundaries of two spatial regions
are overlapped but not their inside such as two neighbor states. However,
in real-world scenarios, many spatial regions are surrounded by indetermi-
nate boundaries. For example, it is impossible to clearly define the boundary
between urban and rural areas. Research has been done to narrow the gap
between real-world relationships between spatial regions and traditional
topological models. One of the most popular models is the “Egg-Yolk” (Cohn
and Gotts 1996) model which provides a representation of regions with inde-
terminate boundaries based on the framework of “RCC-theory” (Randell
and Cohn 1992; Cohn, Randell, and Cui 1995). It is a logically consistent and
computationally tractable model that represents a spatial region with an
indeterminate boundary by pairs of regions with determinate boundaries
(i.e., crisp regions).

Traditionally, spatial data have always been modeled on Euclidean space.
This works well for many problems such as those related to air and ocean.
However, there are many activities associated with transportation networks
such as traffic and crimes. Using traditional models based on Euclidean
space significantly affects the precision of the model and thereby the quality
of the solution. As an illustration, Figure 1.7 shows a map of the campus of
University of Minnesota. The east and west banks are connected by a bridge
over the Mississippi river. The Euclidean distance between the two red dots
is short, yet the network distance computed from the shortest path is much
longer (Dijkstra 1959). If we want to approximate the travel time between
these two dots, the error using Euclidean distance will be huge.

Models based on networks space can give a better distance approximation
to some extent. In the simplest way, a transportation network can be rep-
resented as a graph, where each intersection is a vertex and each road seg-
ment is an edge associated with a value representing the travel cost of that
edge. The travel cost could be assigned on the basis of various values such as
road distance, travel time, or fuel consumption. However, traditional graph
models have several major limitations dealing with the massive information
contained in spatial networks. For example, the traditional models simply
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An illustrative example shows the difference between distances in Euclidean space and net-
work space.

treat intersections as vertices but do not model the turns. However, accord-
ing to the laws of traffic, left turns usually cost much less than right turns if
driving on the left side (Lovell 2007). This difference cost could lead to seri-
ous results in real-world applications. UPS saved 10 million gallons of fuel,
emits 22 thousand tons less carbon dioxide, and delivers 350 thousand more
packages every year by avoiding a left turn since the year 2004 (Lovell 2007).
Figure 1.8 shows an example of modeling the turns. The left figure shows a
patch of map in Dinkytown, Minneapolis. The middle figure shows a tradi-
tional model describing the streets where the vertices are the intersections
and the directed edges are the roads. The right figure shows an example
of modeling the intersection at N; while keeping the turn information by a
set of connects. The other approaches include using hyper-edges along with
hyper graphs and annotating the graph with turn information.

In addition, in traditional graph models, each edge is associated with a
static value, which is not enough for modeling dynamically changing travel
costs. For example, the travel time for a highway around downtown var-
ies a lot during rush hour and non-rush hours. A time-expanded-graph
(TEG) (Kohler, Langkau, and Skutella 2002; Silver and De Weck 2007) is one
approach that is capable of modeling dynamically changing weights on
edges. Figure 1.9 shows an example of TEG of a graph consisting of four
nodes. The left side shows the varying travel times associated with each edge
in four timestamps. The right side shows the TEG modeling this graph where
each column represents the set of vertices in one timestamp. Each edge con-
nects the nodes that are reachable within a certain time. For example, edge
(A,, By) indicates that if departing from Node A at timestamp 1, you will be
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arriving at Node B at timestamp 3. As can be seen, TEG is much more com-
plex compared to the traditional static graph model, and thus leads to harder
computational challenges.

Moreover, in a traditional graph, the edges are considered atomic, which
cannot be further fragmented. This feather works when using graphs to
model nonspatial networks such as webpage networks and social networks
since the edges virtually represent the connection between objects. However,
for spatial data models, the edges represent roads on which activities hap-
pen. If we treat edges as atomic, the location information of the activities
will be lost. A novel model called dynamic segmentation (Dueker and Vrana
1992; Chang 2006) has been proposed to handle this limitation.

The original graph is segmented based on the locations of activities on
the edges. Figure 1.10 shows an illustrative example, using traditional graph
model, edge (N;, N,) is atomic and the location information of activities A,
A, A; A, can not be preserved due to this atomicity. In dynamic segmenta-
tion, edge (N, N,) is segmented to (N, A), (A, A,), (Ay, Ay), (As A, (A, Ny,
and thus the locations of the activities are kept. Using dynamic segmenta-
tion outperforms traditional models, especially when dealing with activities
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FIGURE 1.10
An illustrative example of dynamic segmentation.
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located on a portion of long road segments such as a highway. For example,
in linear hotspot detection, dynamic segmentation helps increase the preci-
sion of the hotspots and reveals hotspots that are missed using traditional
models.

1.4 Computer Science

In this section, we start by discussing core questions and goals of computer
science. We then present some of the concepts, theories, models, and tech-
nologies that computer science has contributed to the field of data science.
Finally, we discuss the limitations of traditional data science with respect to
spatial data and the computer science accomplishments that have attempted
to address these limitations toward the realization of geospatial data science.

1.4.1 Core Questions and Goals

Computer science is both a scientific and an engineering discipline
(Abrahams 1987). Hence, computer science contributions encompass both
theory (e.g., studying properties of computational problems) and practice
(e.g., systems design and data mining). However, the scientific aspect of com-
puter science is different from physical disciplines and closer to mathematics
where the goal is to create representation models and study their properties.
Many traditional data science questions are studied within the field of com-
puter science. Examples include: Is a given problem decidable (i.e., comput-
able)? Is there a polynomial time algorithm to solve a given problem? What is
the most efficient algorithm to perform the computations? Can the algorithm
scale to large datasets? What is the tradeoff between the computational scal-
ability of the algorithm and the statistical rigor?

1.4.2 Concepts, Theories, Models, and Technologies

Many computer science concepts are leveraged in data science. Two major
concepts are the design of appropriate data structures and algorithms. Data
structures are ways of storing data so that they can be efficiently used.
Examples of common data structures include arrays, queues, linked lists,
trees, and graphs. Algorithms (Cormen 2009) are well-defined computa-
tional procedures that take a value (or a set of values) as input, and produce
a value (or a set of values) as output to solve a given problem (e.g., searching,
sorting, and finding the shortest path between a source and a destination
node in a transportation graph).

In addition, computer science theories are also leveraged in traditional
data science. For instance, computational complexity theory (Papadimitriou
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2003; “Computational Complexity Theory” 2017) focuses on classifying
computational problems according to their inherent difficulty. The theory
introduces mathematical models and techniques for studying computational
problems and is usually used to establish proofs that, for a given problem, no
algorithm can run faster than the current one.

Another major accomplishment relevant to data science is the develop-
ment of database management systems (DBMS), general-purpose software sys-
tems that facilitate the processes of defining, constructing, manipulating,
querying, and sharing databases among users and applications (Elmasri
and Navathe 2015). The most common type of DBMS is relational database
management systems (RDMS), which adopt the relational data model first
introduced in (Codd 1970). In this model, the database is represented as a
collection of relations (i.e., tables), based on the concept of mathematical
relations. Each row (i.e., tuple) typically represents information about a real-
world entity or relationship, while each column represents a given attribute
describing that entity. SQL is the standard query language for commercial
RDBMSs and is based on relational calculus. Relational algebra is also used
as the basis of query processing and optimization in RDBMS (Elmasri and
Navathe 2015). Examples of popular commercial RDBMSs include IBM’s DB2,
Oracle, Sybase DBMS, SQL Server, Access, MySQL, and PostgreSQL.

Cloud computing platforms make possible the processing of large data
volumes in an efficient manner. Existing approaches to cloud computing
provide a general framework for distributed file systems (e.g., Google file
[Ghemawat, Gobioff, and Leung 2003] system and HDFS [Borthakur 2007])
and processing these data sets based on replicas of data blocks (e.g., map-
reduce [Dean and Ghemawat 2008], Hadoop [Borthakur 2007], and Spark
[“Apache Spark™—Lightning-Fast Cluster Computing” 2017]). Figure 1.11
(left side) shows the Intel distribution for Apache Hadoop software compo-
nents (Intel 2013). It also shows many components running on top of the
HDEFS for distributed processing (MapReduce), workflow (Oozie), scripting
(Pig), machine learning (Mahout), SQL queries (Hive), and column store stor-
age (HBase). In addition to cloud computing platforms, there are also many
existing high-performance scientific computing cluster technologies as depicted
on the right side of Figure 1.11. These computing technologies include parallel
file systems (e.g., Lustre), batch schedulers (e.g.,, SLURM), MPI, and OpenMP
for internode and intra-node parallelism, and numerical and domain spe-
cific libraries, on top of which applications are usually developed using lan-
guages such as FORTRAN and C/C++ (Reed and Dongarra 2015).

Another major area of interest in computer science is data mining. Data
mining refers to the discovery and extraction of new and useful information
(e.g., patterns or rules) from large amounts of data. Typically, data mining
has been mainly concerned with the computational complexity of proposed
discovery algorithms and less concerned with the statistical robustness of
these algorithms (e.g., bias, inference confidence, etc.). Common data min-
ing tasks include the discovery of association rules (e.g., which grocery store
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items are frequently bought together?). Algorithms such as Apriori (Agrawal,
Srikant, and others et al. 1994) and FP-growth (Han, Pei, and Yin 2000) have
been proposed for efficiently mining association patterns. Data mining tasks
also include the classification problem (e.g,, classifying a pixel in a picture as
dryland versus wetland based on other pixel properties). Popular classifica-
tion models include decision trees for which computational algorithms such
as ID3 (Quinlan 1986) have been proposed.

1.4.3 Limitations of Traditional Data Science for Spatial
Data and Related Computer Science Accomplishments

Now we review the limitations of traditional data science with respect to spa-
tial data by focusing on three main areas of accomplishments, namely, spa-
tial databases, spatial cloud-computing platforms, and spatial data mining.
Spatial databases: Applications such as precision agriculture require special
database support to store, process, and query spatial data (e.g., storing and
querying the polygons representing farm plots). Before the development of
spatial databases, spatial queries (e.g., Which galaxy pairs are within 30 arc
seconds of each other? Which houses are most likely to be flooded by global
warming-induced sea-level rise?) required extensive programming and suf-
fered from long computation times due to the mismatch between 2D spatial
data and 1D data types (e.g., number) and indexes used by traditional data-
base systems (such as B+ Tree) (Shekhar, Feiner, and Aref 2015). In addition,
a naive collection of spatial data types is inadequate for multistage queries
since the result of some queries (such as the union of disjoint polygons)
cannot naturally be represented as a point, line, or polygon. Spatial data-
bases (such as Oracle Spatial and PostGIS) introduced spatial data types
(such as OGIS simple features (“Welcome to the OGC|OGC” 2017), opera-
tions (such as inside and distance), spatial data structures (such as Voronoi
diagrams), and algorithms (such as shortest-path, nearest-neighbor, and
range query) to represent and efficiently answer multistage concurrent spa-
tial queries (Shekhar, Feiner, and Aref 2015). The reduced programming
effort resulted in more compact code and quicker response times. In addi-
tion, spatial indexes have also been added. Representative indexes for point
objects include Grid files, multidimensional grid files (Lee et al. 1997), Point-
Quad-Trees, and Kd-trees (Samet 1990). Representative indexes for extended
objects include the R-tree structures (Guttman 1984). The R-tree is a height
balanced natural extension of the B+ tree for higher dimensions (Shekhar
et al. 1999). Objects are represented in the R-tree by their minimum bound-
ing rectangles (MBRs). Non-leaf nodes are composed of entries of the form
(R, child-pointer), where R is the MBR of all entries contained in the child-
pointer. Leaf nodes contain the MBRs of the data objects. To guarantee good
space utilization and height-balance, the parent MBRs are allowed to over-
lap. Many variations of the R-tree structure exist whose main emphasis is
on discovering new strategies to maintain the balance of the tree in case
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of a split and to minimize the overlap of the MBRs in order to improve the
search time.

Spatial computing platforms: Support for spatial data (e.g., spatial indexes)
was also needed in cloud computing platforms to improve the I/O cost of
spatial queries (e.g., retrieving a set of farm polygons within a given spa-
tial range). Representative efforts for supporting spatial data in existing
cloud computing platforms include (Evans et al. 2013): (1) Spatial Hadoop
(Ali and Mokbel 2017), which is a MapReduce extension to Apache Hadoop
designed especially to work with spatial data by providing specialized spa-
tial data types, spatial indexes, and spatial operations; (2) Hadoop GIS, a
high-performance spatial data warehousing system over MapReduce (Aji
et al. 2013); and (3) GeoSpark (Yu, Wu, and Sarwat 2015), the spatial extension
for Apache Spark. Research on parallel R-tree construction on a GPU is also
ongoing (Prasad et al. 2013). At the Hadoop Distributed File System (HDFS)
level, Spatial Hadoop (Ali and Mokbel 2017) and Hadoop GIS (Aji et al. 2013)
have added spatial indexes. At the scripting layer (e.g., Pig), Spatial Hadoop
has added Open Geodata Interoperability Specification (OGIS) data types
and operators. GIS on Hadoop (Pang et al. 2013) has also added OGIS data
types and operators at the SQL query level (e.g., Hive). In addition to the spa-
tial extensions of Hadoop, the GeoSpark (Yu, Wu, and Sarwat 2015) system
has also extended Apache Spark with a set of Spatial Resilient Distributed
Datasets (SRDDs) that can efficiently load, process, and analyze SBD.
GeoSpark also introduced spatial indexes, spatial geometric operations that
follow the Open Geospatial Consortium (OGC) standard, and spatial query
operations for SBD.

Spatial data mining: Spatial data mining (Stolorz et al. 1995; Shekhar and
Chawla 2003) is the process of discovering interesting and potentially useful
patterns from spatial databases. For example, in precision agriculture, given
a UAV-captured image of a farm, one may want to classify the set of pixels in
the image based on the crop type (e.g., corn, soybean, etc.).

However, the complexity of spatial data and implicit spatial relationships
limits the usefulness of conventional data mining techniques for extracting
spatial patterns (Shekhar et al. 2011). Specific features of geographical data
that preclude the use of general purpose data mining algorithms are (1) the
spatial relationships among the variables, (2) the spatial structure of errors,
(3) the presence of mixed distributions as opposed to commonly assumed
normal distributions, (4) observations that are not independent and identi-
cally distributed (ii.d.), (5) spatial autocorrelation among the features, and
(6) nonlinear interactions in feature space. Figure 112 (Z. Jiang et al. 2013)
illustrates an example of these limitations, namely the existence of spatial
autocorrelation, by comparing the output of traditional decision trees with
spatial decision trees for classifying wetland and dryland pixels in a satellite
image taken in the city of Chanhassen, MN. The classification model used 12
continuous explanatory features as input, including multi-temporal spectral
information (R, G, B, NIR bands) and normalized difference vegetation index
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FIGURE 1.12

Traditional decision tree versus spatial decision tree output for classifying data from satellite
imagery. (a) Prediction of decision tree, (b) Prediction of spatial decision tree, and (c) Legend
of prediction map. (From Jiang, Z et al. 2013. In 2013 IEEE 13th International Conference on Data
Mining, 320-329. doi:10.1109/ICDM.2013.96.)

(NDVI) for the years 2003, 2005, and 2008. Figure 1.12a shows the output of
the traditional decision tree algorithm. The legend of the prediction maps is
shown in Figure 1.12c. The green and red colors represent correctly classified
wetland and correctly classified dryland. The black and blue colors represent
false wetland and false dryland.

As shown in Figure 1.12a, the prediction of the traditional decision tree
model has lots of salt-and-pepper noise due to high local variation of fea-
tures within patches of the same class. For example, the area in the yellow
circle is a dryland area consisting of trees. The black salt-and-pepper noise
pixels inside the yellow circle correspond to locations without tree coverage.
These pixels are misclassified as wetland here due to the i.i.d. assumption. In
contrast, the spatial decision tree employs a model where the tree traversal
for a location is based on not only local but also focal (i.e., neighborhood)
properties of the location, thus accounting for spatial autocorrelation. Hence,
as shown in Figure 1.12b, the spatial decision tree model captures the local
variations results in much less salt-and-pepper noise in the same area.

The spatial data mining literature includes spatial hotspot analysis
(Kulldorff 1997, 1999; E. Eftelioglu et al. 2014), discovering spatial co-location
and co-occurrence patterns (Huang, Shekhar, and Xiong 2004; M. Celik et al.
2006a,b; Yoo et al. 2006; P. Mohan et al. 2010, 2011, 2012), network summari-
zation (Oliver et al. 2010, 2014; Evans et al. 2012), GPS track mining (Fu, Hu,
and Tan 2005; Sacharidis et al. 2008; Won et al. 2009; Li et al. 2010; Chen et al.
2011; W. Liu et al. 2011; Min and Wynter 2011; Yuan et al. 2011; D. Zhang et al.
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2011; Y. Zheng and Zhou 2011; K. Zheng et al. 2012), spatial outlier detec-
tion (Shekhar, Lu, and Zhang 2001, 2003), spatial classification and regression
(Kazar et al. 2004; Z. Jiang et al. 2012, 2015), and change footprint detection
(Zhou, Shekhar, and Ali 2014).

1.5 Conclusion

The specific properties of geospatial data; its volume, variety, and velocity;
and the implicit but complex nature of spatial relationships are nontrivial
considerations in all geo-related research. We believe the current practice
of independent research in siloed fields is counterproductive and likely
untenable in the long term. We are proposing therefore that statistics, math-
ematics, and computer science all be considered integral to geospatial data
science. This chapter explored the emerging field of geospatial data science
from such a transdisciplinary perspective where these three closely related
scientific disciplines are considered as integral parts of geospatial data sci-
ence rather than individual siloed disciplines. Our proposed definition aims
to reduce the redundant work being done across silos and to understand the
limits of geospatial data science.

In the future, we envision that geospatial data science will accomplish its
tasks while addressing users’ privacy and confidentiality concerns. In addi-
tion, there are other issues that will need to be considered such as “the trade-
offs across disciplines”; “when to use high-dimensional tools and approaches
for geospatial datasets”; “how to apply spatial statistics, which assumes iso-
tropic Euclidean space, on geospatial network datasets (e.g., road networks
affect isotropy in space)”; and “how to determine the statistical distribution
of geospatial datasets (e.g., GPS trajectories) in a study area.” Finally, predict-
ability and prediction error bounds should be considered since these will
provide confidence limits to future approaches of geospatial data science.

References

Abrahams, P. 1987. What is computer science? Communications of the ACM 30 (6): 472—
473. doi:10.1145/214762.315731.

Agarwal, D., A. McGregor, J. M. Phillips, S. Venkatasubramanian, and Z. Zhu. 2006.
Spatial scan statistics: Approximations and performance study. In Proceedings
of the 12th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 24-33. ACM.



30 Geospatial Data Science Techniques and Applications

Agrawal, R., R. Srikant et al. 1994. Fast algorithms for mining association rules. In
Proceedings of the 20th International Conference on Very Large Data Bases, VLDB,
1215:487-499. https:/ /www.it.uu.se/edu/course/homepage/infoutv/ht08/
vldb94_rj.pdf.

Aji, A, F.Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. Saltz. 2013. Hadoop GIS: A high
performance spatial data warehousing system over mapreduce. Proceedings of
the VLDB Endowment 6 (11): 1009-1020. doi:10.14778/2536222.2536227.

Ali, E., and M. Mokbel. 2017. SpatialHadoop. Accessed on March 12. http://spatial-
hadoop.cs.umn.edu/.

Apache Spark™. 2017. Apache Spark™—Lightning-Fast Cluster Computing.
Accessed on March 12. http://spark.apache.org/.

Ayres, R. U. 1997. Information, Entropy, and Progress: A New Evolutionary Paradigm.
Springer Science & Business Media. https://books.google.com/books?hl=en&
Ir=&id=AgijQrntlzZYC&oi=fnd&pg=PR9&dq=Information,+entropy,+and+pr
ogress:+a-+new+evolutionary+paradigmé&ots=KPM72 Atnwu&sig=t8qiaJqJok
8rw8lkP9CfusIv3EY.

Babyak, M. A. 2004. What you see may not be what you get: A brief, nontechnical
introduction to overfitting in regression-type models. Psychosomatic Medicine
66 (3): 411-421.

Barthelemy, M. 2011. Spatial networks. Physics Reports 499 (1-3): 1-101. doi:10.1016/j.
physrep.2010.11.002.

Borthakur, D. 2007. The Hadoop distributed file system: Architecture and design.
Hadoop Project Website 11 (2007): 21.

Bottou, L. 2010. Large-scale machine learning with stochastic gradient descent. In
Proceedings of COMPSTAT 2010, 177-186. Springer. http://link.springer.com/
chapter/10.1007/978-3-7908-2604-3_16.

Boyd, S., N. Parikh, E. Chu, B. Peleato, and J. Eckstein. 2011. Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers.
Foundations and Trends® in Machine Learning 3 (1): 1-122.

Brewer, E. A. 2000. Towards robust distributed systems. In PODC. Vol. 7. http://awoc.
wolski.fi/dlib/big-data/Brewer_podc_keynote_2000.pdf.

Brimberg, J., P. Hansen, K.-W. Lin, N. Mladenovi¢, and M. Breton. 2003. An oil pipe-
line design problem. Operations Research 51 (2): 228-239.

Broder, A, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins,
and J. Wiener. 2000. Graph structure in the Web. Computer Networks 33 (1): 309-320.

Brooks, S, A. Gelman, G. L. Jones, and X.-L. Meng. 2011. Handbook of Markov Chain Monte
Carlo. Chapman and Hall/CRC. http://www.crcnetbase.com/doi/pdf/10.1201/
b10905-1.

Butler, D. 2013. When Google got flu wrong. Nature 494 (7436): 155-156.
doi:10.1038/494155a.

Cam, L. L, and G. L. Yang. 2000. Independent, Identically Distributed Observations. New
York: Springer, 175-239. d0i:10.1007/978-1-4612-1166-2_7.

Campbell, J. B,, and R. H. Wynne. 2011. Introduction to Remote Sensing, Fifth Edition.
New York, NY: Guilford Press.

Celik, M., S. Shekhar, J. P. Rogers, and J. A. Shine. 2006a. Sustained emerging spatio-
temporal co-occurrence pattern mining: A summary of results. In Tools with
Artificial Intelligence, 2006. ICTAI'06. 18th IEEE International Conference on, 106—
115. IEEE. http://ieeexplore.ieee.org/abstract/document/4031887/.


https://www.it.uu.se/edu/course/homepage/infoutv/ht08/vldb94_rj.pdf
https://www.it.uu.se/edu/course/homepage/infoutv/ht08/vldb94_rj.pdf
http://spatialhadoop.cs.umn.edu/
http://spatialhadoop.cs.umn.edu/
http://spark.apache.org/
https://books.google.com/books?hl=en&lr=&id=AgijQrntlzYC&oi=fnd&pg=PR9&dq=Information,+entropy,+and+progress:+a+new+evolutionary+paradigm&ots=KPM72Atnwu&sig=t8qiaJqJok8rw8lkP9CfusTv3EY
https://books.google.com/books?hl=en&lr=&id=AgijQrntlzYC&oi=fnd&pg=PR9&dq=Information,+entropy,+and+progress:+a+new+evolutionary+paradigm&ots=KPM72Atnwu&sig=t8qiaJqJok8rw8lkP9CfusTv3EY
https://books.google.com/books?hl=en&lr=&id=AgijQrntlzYC&oi=fnd&pg=PR9&dq=Information,+entropy,+and+progress:+a+new+evolutionary+paradigm&ots=KPM72Atnwu&sig=t8qiaJqJok8rw8lkP9CfusTv3EY
https://books.google.com/books?hl=en&lr=&id=AgijQrntlzYC&oi=fnd&pg=PR9&dq=Information,+entropy,+and+progress:+a+new+evolutionary+paradigm&ots=KPM72Atnwu&sig=t8qiaJqJok8rw8lkP9CfusTv3EY
http://link.springer.com/chapter/10.1007/978-3-7908-2604-3_16
http://link.springer.com/chapter/10.1007/978-3-7908-2604-3_16
http://awoc.wolski.fi/dlib/big-data/Brewer_podc_keynote_2000.pdf
http://awoc.wolski.fi/dlib/big-data/Brewer_podc_keynote_2000.pdf
http://www.crcnetbase.com/doi/pdf/10.1201/b10905-1
http://www.crcnetbase.com/doi/pdf/10.1201/b10905-1
http://ieeexplore.ieee.org/abstract/document/4031887/

Geospatial Data Science 31

Celik, M., S. Shekhar, J. P. Rogers, J. A. Shine, and J. S. Yoo. 2006b. Mixed-drove
spatio-temporal co-occurence pattern mining: A summary of results. In
Sixth International Conference on Data Mining (ICDM'06), 119-128. doi:10.1109/
ICDM.2006.112.

Chang, K.-T. 2006. Introduction to Geographic Information Systems. McGraw-Hill Higher
Education Boston. http://sutlib2.sut.ac.th/sut_contents/H131376.pdf.

Chen, C,, D. Zhang, P. S. Castro, N. Li, L. Sun, and S. Li. 2011. Real-time detec-
tion of anomalous taxi trajectories from GPS traces. In Mobile and Ubiquitous
Systems: Computing, Networking, and Services, edited by A. Puiatti and T. Gu,
63-74. Lecture notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering 104. Springer Berlin Heidelberg.
doi:10.1007/978-3-642-30973-1_6.

Chiles, J-P,, and P. Delfiner. 2012. Geostatistics: Modeling Spatial Uncertainty.
Hoboken, NJ: John Wiley & Sons.

Clementini, E., and P. D. Felice. 1996. An algebraic model for spatial objects with inde-
terminate boundaries. Geographic Objects with Indeterminate Boundaries 2: 155-169.

Cliff, A. D.,and J. K. Ord. 1981. Spatial Processes: Models and Applications. London, UK:
Pion.

Codd, E. F. 1970. A relational model of data for large shared data banks. Communications
of the ACM 13 (6): 377-387.

Cohn, A. G, and N. M. Gotts. 1996. The “egg-Yolk” representation of regions with
indeterminate boundaries. Geographic Objects with Indeterminate Boundaries 2:
171-187.

Cohn, A. G, D. A. Randell, and Z. Cui. 1995. Taxonomies of logically defined qualita-
tive spatial relations. International Journal of Human-Computer Studies 43 (5-6):
831-846.

Computational Complexity Theory. 2017. Wikipedia. https:/ /en.wikipedia.org/w/
index.php?title=Computational_complexity_theory&oldid=765537903.

Cormen, T. H. 2009. Introduction to Algorithms. MIT Press. https://books.google.
com/books?hl=en&lr=&id=aefUBQA AQBAJ&oi=fnd&pg=PR5&dq=Introd
uction+to+algorithmsé&ots=dMawRuULa2&sig=HbXrvcPRnN3PObymDD
mo6S_ipzNc.

Curran-Everett, D. 2009. Explorations in statistics: Confidence intervals. AJP: Advances
in Physiology Education 33 (2): 87-90. doi:10.1152/advan.00006.2009.

Daston, L., and P. Galison. 2007. Objectivity. Boston, MA: Zone Books.

Dean, ], and S. Ghemawat. 2008. Mapreduce: Simplified data processing on large
clusters. Communications of the ACM 51 (1): 107-113.

Dempster, A. P, N. M. Laird, and D. B. Rubin. 1977. Maximum likelihood from incom-
plete data via the EM algorithm. Journal of the Royal Statistical Society. Series B
(Methodological), 1-38.

Dijkstra, E. W. 1959. A note on two problems in connexion with graphs. Numerische
Mathematik 1 (1): 269-271.

Dixon, P. 2002. Ripley’s K-function. In The Encyclopedia of Environmetrics, edited by
A. H. El-Shaarawi and W. W. Piergorsch, pp. 1976-1803. New York, NY: John
Wiley & Sons.

Douglas-Mankin, K. R., R. Srinivasan, and J. G. Arnold. 2010. Soil and water assess-
ment tool (SWAT) model: Current developments and applications. Transactions
of the Asabe 53 (5): 1423-1431.


http://sutlib2.sut.ac.th/sut_contents/H131376.pdf
https://en.wikipedia.org/w/index.php?title=Computational_complexity_theory&oldid=765537903
https://en.wikipedia.org/w/index.php?title=Computational_complexity_theory&oldid=765537903
https://books.google.com/books?hl=en&lr=&id=aefUBQAAQBAJ&oi=fnd&pg=PR5&dq=Introduction+to+algorithms&ots=dMawRuULa2&sig=HbXrvcPRnN3PObymDDm6S_ipzNc
https://books.google.com/books?hl=en&lr=&id=aefUBQAAQBAJ&oi=fnd&pg=PR5&dq=Introduction+to+algorithms&ots=dMawRuULa2&sig=HbXrvcPRnN3PObymDDm6S_ipzNc
https://books.google.com/books?hl=en&lr=&id=aefUBQAAQBAJ&oi=fnd&pg=PR5&dq=Introduction+to+algorithms&ots=dMawRuULa2&sig=HbXrvcPRnN3PObymDDm6S_ipzNc
https://books.google.com/books?hl=en&lr=&id=aefUBQAAQBAJ&oi=fnd&pg=PR5&dq=Introduction+to+algorithms&ots=dMawRuULa2&sig=HbXrvcPRnN3PObymDDm6S_ipzNc

32 Geospatial Data Science Techniques and Applications

Drineas, P,,and X. Huo. 2016. Executive Summary of Workshop on “Theoretical Foundations
of Data Science (TFoDS)".

Drummond, C. 2009. Replicability is not reproducibility: Nor is it good science.
http://cogprints.org/7691/.

Dueker, K. J,, and R. Vrana. 1992. Dynamic segmentation revisited: A milepoint lin-
ear data model. Journal of the Urban and Regional Information Systems Association
4 (2): 94-105.

Eftelioglu, E., Z. Jiang, R. Ali, and S. Shekhar. 2016a. Spatial computing perspective
on food energy and water nexus. Journal of Environmental Studies and Sciences 6
(1): 62-76.

Eftelioglu, E., Y. Li, X. Tang, S. Shekhar, J. M. Kang, and C. Farah. 2016b. Mining
network hotspots with holes: A summary of results. In Geographic Information
Science, edited by ]. A. Miller, D. O’Sullivan, and N. Wiegand, 51-67.
Lecture notes in Computer Science 9927. Springer International Publishing.
doi:10.1007/978-3-319-45738-3_4.

Eftelioglu, E., S. Shekhar, ]. M. Kang, and C. C. Farah. 2016c. Ring-shaped hotspot
detection. IEEE Transactions on Knowledge and Data Engineering 28 (12): 3367-
3381. doi:10.1109/TKDE.2016.2607202.

Eftelioglu, E., S. Shekhar, D. Oliver, X. Zhou, M. R. Evans, Y. Xie, J. M. Kang, R.
Laubscher, and C. Farah. 2014. Ring-shaped hotspot detection: A summary
of results. In 2014 IEEE International Conference on Data Mining, 815-820.
doi:10.1109/ICDM.2014.13.

Eftelioglu, E., X. Tang, and S. Shekhar. 2015. Geographically robust hotspot detec-
tion: A summary of results. In Data Mining Workshop (ICDMW), 2015 IEEE
International Conference on, 1447-1456. IEEE. http://ieeexplore.jeee.org/abstract/
document/7395840/.

Ehlschlaeger, C. R., and M. F. Goodchild. 1994. Uncertainty in spatial data: Defining,
visualizing, and managing data errors. In Proceedings of GIS/LIS, 246-253.
Elmasri, R., and S. B. Navathe. 2015. Fundamentals of Database Systems. 7 edition.

Hoboken, NJ: Pearson.

Es, H. M. Van, C. P. Gomes, M. Sellmann, and C. L. Van Es. 2007. Spatially-balanced
complete block designs for field experiments. doi:10.1016/j.geoderma.2007.
04.017.

Evans, M. R, D. Oliver, S. Shekhar, and F. Harvey. 2012. Summarizing trajectories
into K-primary corridors: A summary of results. In Proceedings of the 20th
International Conference on Advances in Geographic Information Systems, 454—457.
SIGSPATIAL "12. New York: ACM. doi:10.1145/2424321.2424388.

Evans, M. R,, D. Oliver, K. S. Yang, X. Zhou, and S. Shekhar. 2013. Enabling spatial
big data via CyberGIS: Challenges and opportunities. CyberGIS: Fostering a New
Wave of Geospatial Innovation and Discovery. Springer Book. https://pdfs.seman-
ticscholar.org/a831/2a5alffca6a05e4788d35e81fa8d1b%eed3d.pdf.

Evans, M. R, D. Oliver, X. Zhou, and S. Shekhar. 2014. Spatial big data. Big Data:
Techniques and Technologies in Geoinformatics, 149-176.

Freeman, L. C. 1978. Centrality in social networks conceptual clarification. Social
Networks 1 (3): 215-239.

Fu, Z., W. Hu, and T. Tan. 2005. Similarity based vehicle trajectory clustering and
anomaly detection. In Image Processing, 2005. ICIP 2005. IEEE International
Conference on, 2:11-602. IEEE. http://ieeexplore.ieee.org/abstract/document/
1530127/.


http://cogprints.org/7691/
http://ieeexplore.ieee.org/abstract/document/7395840/
http://ieeexplore.ieee.org/abstract/document/7395840/
https://pdfs.semanticscholar.org/a831/2a5a1ffca6a05e4788d35e81fa8d1b9ee43d.pdf
https://pdfs.semanticscholar.org/a831/2a5a1ffca6a05e4788d35e81fa8d1b9ee43d.pdf
http://ieeexplore.ieee.org/abstract/document/1530127/
http://ieeexplore.ieee.org/abstract/document/1530127/

Geospatial Data Science 33

Gabriel, K. R., and J. Neumann. 1962. A Markov chain model for daily rainfall occur-
rence at Tel Aviv. Quarterly Journal of the Royal Meteorological Society 88 (375):
90-95. doi:10.1002/q;j.49708837511.

Gassman, P. W,, M. R. Reyes, C. H. Green, and J. G. Arnold. 2007. The soil and
water assessment tool: Historical development, applications, and future
research directions invited review series. Transactions of the American Society of
Agricultural and Biological Engineers 50 (4): 1211-1250.

Gauch, H. G. 2003. Scientific Method in Practice. New York, NY: Cambridge University Press.

Geisberger, R., P. Sanders, D. Schultes, and D. Delling. 2008. Contraction hierar-
chies: Faster and simpler hierarchical routing in road networks. In International
Workshop on Experimental and Efficient Algorithms, 319-333. Springer. http://link.
springer.com/chapter/10.1007/978-3-540-68552-4_24.

Getis, A., and J. K. Ord. 2010. The analysis of spatial association by use of distance
statistics. Geographical Analysis 24 (3). Blackwell Publishing Ltd: 189-206. doi:
10.1111/§.1538-4632.1992.tb00261.x.

Ghemawat, S., H. Gobioff, and S.-T. Leung. 2003. The google file system. In ACM
SIGOPS Operating Systems Review, 37:29-43. ACM. http://dl.acm.org/citation.
cfm?id=945450.

Giacinto, G., F. Roli, and L. Bruzzone. 2000. Combination of neural and statistical
algorithms for supervised classification of remote-sensing images. Pattern
Recognition Letters 21 (5): 385-397.

Gislason, P. O,, J. A. Benediktsson, and J. R. Sveinsson. 2006. Random forests for land
cover classification. Pattern Recognition Letters 27 (4): 294-300.

Golub, G. H,, and C. Reinsch. 1970. Singular value decomposition and least squares
solutions. Numerische Mathematik 14 (5): 403—420.

Govan, A. 2006. Introduction to optimization. In North Carolina State University,
SAMSI NDHS, Undergraduate Workshop. https://www.ncsu.edu/crsc/events/
ugw06/presentations/aygovan/OptimizationUWO06.pdf.

Graumann, A., T. Houston, J. Lawrimore, D. Levinson, N. Lott, S. McCown, S.
Stephens, and D. Wuertz. 2005. Hurricane Katrina: A climatological perspec-
tive. NOAA National Climate Data Center Technical Report 1.

Guggenheim, E. A. 1985. Thermodynamics—An advanced treatment for chemists
and physicists. Amsterdam, North-Holland, 1985, 414 P. http://adsabs.harvard.
edu/abs/1985anh..book.....G.

Guttman, A. 1984. R-Trees: A Dynamic Index Structure for Spatial Searching. Vol. 14. 2.
ACM. http:/ /dl.acm.org/citation.cfm?id=602266.

Hall, M. A, and G. Holmes. 2003. Benchmarking attribute selection techniques for
discrete class data mining. IEEE Transactions on Knowledge and Data Engineering
15 (6): 1437-1447.

Han, ], J. Pei, and Y. Yin. 2000. Mining frequent patterns without candidate genera-
tion. In ACM Sigmod Record, 29:1-12. ACM. http://dl.acm.org/citation.cfm?id=
335372.

Hardle, W. K., S. Klinke, and B. Réonz. 2015. Sampling theory. In Introduction
to Statistics, Cham: Springer International Publishing. pp. 209-249. doi:
10.1007/978-3-319-17704-5_7.

Hartigan, J. A, and M. A. Wong. 1979. Algorithm AS 136: A K-means clustering algo-
rithm. Journal of the Royal Statistical Society. Series C (Applied Statistics) 28 (1): 100-108.

Hong, H., B. P. Carlin, T. A. Shamliyan, J. F. Wyman, R. Ramakrishnan, F. Sainfort, and
R. L. Kane. 2013. Comparing Bayesian and frequentist approaches for multiple


http://link.springer.com/chapter/10.1007/978-3-540-68552-4_24
http://link.springer.com/chapter/10.1007/978-3-540-68552-4_24
http://dl.acm.org/citation.cfm?id=945450
http://dl.acm.org/citation.cfm?id=945450
https://www.ncsu.edu/crsc/events/ugw06/presentations/aygovan/OptimizationUW06.pdf
https://www.ncsu.edu/crsc/events/ugw06/presentations/aygovan/OptimizationUW06.pdf
http://adsabs.harvard.edu/abs/1985anh..book.....G
http://adsabs.harvard.edu/abs/1985anh..book.....G
http://dl.acm.org/citation.cfm?id=602266
http://dl.acm.org/citation.cfm?id=335372
http://dl.acm.org/citation.cfm?id=335372

34 Geospatial Data Science Techniques and Applications

outcome mixed treatment comparisons. Medical Decision Making 33 (5). SAGE
PublicationsSage CA: Los Angeles, CA: 702-714. doi:10.1177/0272989X13481110.

Huang, Y., S. Shekhar, and H. Xiong. 2004. Discovering colocation patterns from
spatial data sets: A general approach. IEEE Transactions on Knowledge and Data
Engineering 16 (12): 1472-1485.

Intel. 2013. Intel distribution for Apache Hadoop software. http://www.intel.com/
content/dam/www/public/us/en/documents/articles/intel-distribution-for-
apache-hadoop-product-brief.pdf.

Jiang, Z., S. Shekhar, P. Mohan, J. Knight, and J. Corcoran. 2012. Learning spatial deci-
sion tree for geographical classification: A summary of results. In Proceedings
of the 20th International Conference on Advances in Geographic Information Systems,
390-393. ACM. http://dl.acm.org/citation.cfm?id=2424372.

Jiang, Z., S. Shekhar, X. Zhou, J. Knight, and J. Corcoran. 2013. Focal-test-based spatial
decision tree learning: A summary of results. In 2013 IEEE 13th International
Conference on Data Mining, 320-329. doi:10.1109/ICDM.2013.96.

Jiang, Z., S. Shekhar, X. Zhou, J. Knight, and J. Corcoran. 2015. Focal-test-based spatial
decision tree learning. IEEE Transactions on Knowledge and Data Engineering 27
(6): 1547-1559. doi:10.1109/ TKDE.2014.2373383.

Johansen, S. 1991. Estimation and hypothesis testing of cointegration vectors in
Gaussian vector autoregressive models. Econometrica: Journal of the Econometric
Society 59: 1551-1580.

Jolliffe, I. 2002. Principal Component Analysis. Wiley Online Library. http://onlineli-
brarywiley.com/doi/10.1002/9781118445112.stat06472/full.

Karimi, H. A. 2014. Big Data: Techniques and Technologies in Geoinformatics. CRC Press.
http://www.crcnetbase.com/doi/pdf/10.1201/b16524-1.

Kazar, B. M,, S. Shekhar, D. J. Lilja, and D. Boley. 2004. A parallel formulation of
the spatial auto-regression model for mining large geo-spatial datasets. In
SIAM International Conference on Data Mining Workshop on High Performance and
Distributed Mining (HPDM2004). Vol. 72. Citeseer. http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.75.1861&rep=replé&type=pdf.

Kleinberg, J. M., R. Kumar, P. Raghavan, S. Rajagopalan, and A. S. Tomkins. 1999.
The Web as a graph: Measurements, models, and methods. In International
Computing and Combinatorics Conference, 1-17. Springer. http://link.springer.
com/chapter/10.1007/3-540-48686-0_1.

Kohler, E., K. Langkau, and M. Skutella. 2002. Time-expanded graphs for flow-
dependent transit times. In Algorithms—ESA 2002, edited by R. Mohring and
R. Raman, 599-611. Lecture notes in Computer Science 2461. Berlin Heidelberg;:
Springer. doi:10.1007/3-540-45749-6_53.

Kulldorff, M. 1997. A spatial scan statistic. Communications in Statistics—Theory and
Methods 26 (6). Marcel Dekker, Inc.: 1481-1496. d0i:10.1080/03610929708831995.

Kulldorff, M. 1999. Spatial scan statistics: Models, calculations, and applications. In
Scan Statistics and Applications, 303-322. Springer. http://link.springer.com/
chapter/10.1007/978-1-4612-1578-3_14.

Kwan, M.-P, I. Casas, and B. Schmitz. 2004. Protection of geoprivacy and accuracy of
spatial information: How effective are geographical masks? Cartographica: The
International Journal for Geographic Information and Geovisualization 39 (2): 15-28.

Lazer, D, R. Kennedy, G. King, and A. Vespignani. 2014. The parable of Google flu: Traps
in big data analysis. Science 343 (6176): 1203-1205. doi:10.1126/science.1248506.


http://www.intel.com/content/dam/www/public/us/en/documents/articles/intel-distribution-for-apache-hadoop-product-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/articles/intel-distribution-for-apache-hadoop-product-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/articles/intel-distribution-for-apache-hadoop-product-brief.pdf
http://dl.acm.org/citation.cfm?id=2424372
http://onlinelibrary.wiley.com/doi/10.1002/9781118445112.stat06472/full
http://onlinelibrary.wiley.com/doi/10.1002/9781118445112.stat06472/full
http://www.crcnetbase.com/doi/pdf/10.1201/b16524-1
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.75.1861&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.75.1861&rep=rep1&type=pdf
http://link.springer.com/chapter/10.1007/3-540-48686-0_1
http://link.springer.com/chapter/10.1007/3-540-48686-0_1
http://link.springer.com/chapter/10.1007/978-1-4612-1578-3_14
http://link.springer.com/chapter/10.1007/978-1-4612-1578-3_14

Geospatial Data Science 35

Lee, J.-H., Y.-K. Lee, K.-Y. Whang, and L-Y. Song. 1997. A physical database design
method for multidimensional file organizations. Information Sciences 102 (1-4):
31-65.

Legendre, P, M. R. T. Dale, M.-J. Fortin, P. Casgrain, ]J. Gurevitch, M.-J. Fortin, P. Ca,
and J. Gurevitch4. 2004. Effects of spatial structures on the results of field experi-
ments. Source: Ecology Ecology 85 (12): 3202-3214.

Li, Z.,, M. Ji, ].-G. Lee, L.-A. Tang, Y. Yu, ]. Han, and R. Kays. 2010. MoveMine: Mining
moving object databases. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, 1203-1206. ACM. http:/ /dl.acm.org/ citation.
cfm?id=1807319.

Lillesand, T, R. W. Kiefer, and J. Chipman. 2014. Remote Sensing and Image Interpretation.
Hoboken, NJ: John Wiley & Sons.

Li-Ping, C., W.Ru, S. Hang, X. Xin-Ping, Z. Jin-Song, L. Wei, and C. Xu. 2003. Structural
properties of US flight network. Chinese Physics Letters 20 (8): 1393.

Liu, L.-K,, and E. Feig. 1996. A block-based gradient descent search algorithm for
block motion estimation in video coding. IEEE Transactions on Circuits and
Systems for Video Technology 6 (4): 419-422.

Liu, W, Y. Zheng, S. Chawla, J. Yuan, and X. Xing. 2011. Discovering spatio-tempo-
ral causal interactions in traffic data streams. In Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 1010—
1018. ACM. http://dl.acm.org/citation.cfm?id=2020571.

Lovell, J. 2007. Left-hand-turn elimination. The New York Times, December 9. http://
www.nytimes.com/2007/12/09/magazine/09left-handturn.html.

Marcus, G., and E. Davis. 2014. Eight (No, Nine!) problems with big data. The New
York Times, April 6. http://www.nytimes.com/2014/04/07/opinion/eight-no-
nine-problems-with-big-data.html.

Mason, L., ]. Baxter, P. L. Bartlett, and M. R. Frean. 1999. Boosting algorithms as gra-
dient descent. In NIPS, 512-518. https:/ /papers.nips.cc/paper/1766-boosting-
algorithms-as-gradient-descent.pdf.

Mazzocchi, F. 2015. Could big data be the end of theory in science? EMBO Reports,
€201541001.

McBratney, A., B. Whelan, T. Ancev, and ]J. Bouma. 2005. Future directions of preci-
sion agriculture. Precision Agriculture 6 (1): 7-23.

Melgani, F,, and L. Bruzzone. 2004. Classification of hyperspectral remote sens-
ing images with support vector machines. IEEE Transactions on Geoscience and
Remote Sensing 42 (8): 1778-1790.

Miller, H. J.,, and J. Han. 2009. Geographic Data Mining and Knowledge Discovery. New
York: CRC Press.

Miller, K. S., and B. Ross. 1993. An introduction to the fractional calculus and frac-
tional differential equations. http://www.citeulike.org/group/14583/article/
4204050.

Min, W,, and L. Wynter. 2011. Real-time road traffic prediction with spatio-tem-
poral correlations. Transportation Research Part C: Emerging Technologies 19 (4):
606—-616.

Mislove, A, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattacharjee. 2007.
Measurement and analysis of online social networks. In Proceedings of the
7th ACM SIGCOMM Conference on Internet Measurement, 29—-42. ACM. http://
dl.acm.org/citation.cfm?id=1298311.


http://dl.acm.org/citation.cfm?id=1807319
http://dl.acm.org/citation.cfm?id=1807319
http://dl.acm.org/citation.cfm?id=2020571
http://www.nytimes.com/2007/12/09/magazine/09left-handturn.html
http://www.nytimes.com/2007/12/09/magazine/09left-handturn.html
http://www.nytimes.com/2014/04/07/opinion/eight-no-nine-problems-with-big-data.html
http://www.nytimes.com/2014/04/07/opinion/eight-no-nine-problems-with-big-data.html
https://papers.nips.cc/paper/1766-boosting-algorithms-as-gradient-descent.pdf
https://papers.nips.cc/paper/1766-boosting-algorithms-as-gradient-descent.pdf
http://www.citeulike.org/group/14583/article/4204050
http://www.citeulike.org/group/14583/article/4204050
http://dl.acm.org/citation.cfm?id=1298311
http://dl.acm.org/citation.cfm?id=1298311

36 Geospatial Data Science Techniques and Applications

Mohan, P, S. Shekhar, ]. A. Shine, and ]. P. Rogers. 2010. Cascading spatio-tempo-
ral pattern discovery: A summary of results. In Proceedings of the 2010 SIAM
International Conference on Data Mining, 327-338. SIAM. http://epubs.siam.org/
doi/abs/10.1137/1.9781611972801.29.

Mohan, P, S. Shekhar, J. A. Shine, and J. P. Rogers. 2012. Cascading spatio-temporal
pattern discovery. IEEE Transactions on Knowledge and Data Engineering 24 (11):
1977-1992. d0i:10.1109/ TKDE.2011.146.

Mohan, P, S. Shekhar, J. A. Shine, J. P. Rogers, Z. Jiang, and N. Wayant. 2011. A neigh-
borhood graph based approach to regional co-location pattern discovery: A
summary of results. In Proceedings of the 19th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, 122-132. GIS “11. New
York, NY: ACM. doi:10.1145/2093973.2093991.

Maoller, J., and R. P. Waagepetersen. 2007. Modern statistics for spatial point pro-
cesses. Scandinavian Journal of Statistics 34 (4): 643—-684.

National Hurricane Center. 2017. National Hurricane Center. Accessed March 11.
http://www.nhc.noaa.gov/.

Neill, D. B, and H. J. Heinz. 2009. Expectation-based scan statistics for monitor-
ing spatial time series data. Infernational Journal of Forecasting 25: 498-517.
doi:10.1016/j.ijforecast.2008.12.002.

Neter, J., M. H. Kutner, C. ]J. Nachtsheim, and W. Wasserman. 1996. Applied Linear
Statistical Models. Vol. 4. Irwin Chicago. https:/ /mubert.marshall.edu/bert/syl-
labi/328620150114089905097122.pd]f.

Newman, W. R,, and L. M. Principe. 1998. Alchemy Vs. Chemistry: The etymological
origins of a Historiographic mistakel. Early Science and Medicine 3 (1): 32—65. doi
:10.1163/157338298X00022.

NSF Workshop on Geospatial Data Science. 2017. Accessed March 12. http://cybergis.
illinois.edu/events/geodatascience_workshop/home.

Oliver, D., A. Bannur, ]J. M. Kang, S. Shekhar, and R. Bousselaire. 2010. A K-main
routes approach to spatial network activity summarization: A summary of
results. In 2010 IEEE International Conference on Data Mining Workshops, 265-272.
doi:10.1109/ICDMW.2010.156.

Oliver, D, S. Shekhar, J. M. Kang, R. Laubscher, V. Carlan, and A. Bannur. 2014. A
K-main routes approach to spatial network activity summarization. IEEE
Transactions on Knowledge and Data Engineering 26 (6): 1464-1478. doi:10.1109/
TKDE.2013.135.

Page, L., S. Brin, R. Motwani, and T. Winograd. 1999. The pagerank citation rank-
ing: Bringing order to the Web. Stanford InfoLab. http://ilpubs.stanford.
edu:8090/422.

Pan, J.-X,, and K.-T. Fang. 2002. Maximum Likelihood Estimation. New York: Springer.
77-158. doi:10.1007/978-0-387-21812-0_3.

Pang, L. X,, S. Chawla, B. Scholz, and G. Wilcox. 2013. A scalable approach for LRT
computation in GPGPU environments. In Asia-Pacific Web Conference, 595—-608.
Springer. http://link.springer.com/chapter/10.1007/978-3-642-37401-2_58.

Papadimitriou, C. H. 2003. Computational Complexity. John Wiley and Sons Ltd. http://
dl.acm.org/citation.cfm?id=1074233.

Peng, R. D. 2011. Reproducible research in computational science. Science 334 (6060):
1226-1227. doi:10.1126/science.1213847.

Planet.gpx—OpenStreetMap Wiki. 2017. Accessed on March 12. http://wiki.open-
streetmap.org/wiki/Planet.gpx.


http://epubs.siam.org/doi/abs/10.1137/1.9781611972801.29
http://epubs.siam.org/doi/abs/10.1137/1.9781611972801.29
http://www.nhc.noaa.gov/
https://mubert.marshall.edu/bert/syllabi/328620150114089905097122.pdf
https://mubert.marshall.edu/bert/syllabi/328620150114089905097122.pdf
http://cybergis.illinois.edu/events/geodatascience_workshop/home
http://cybergis.illinois.edu/events/geodatascience_workshop/home
http://ilpubs.stanford.edu:8090/422
http://ilpubs.stanford.edu:8090/422
http://link.springer.com/chapter/10.1007/978-3-642-37401-2_58
http://dl.acm.org/citation.cfm?id=1074233
http://dl.acm.org/citation.cfm?id=1074233
http://wiki.openstreetmap.org/wiki/Planet.gpx
http://wiki.openstreetmap.org/wiki/Planet.gpx

Geospatial Data Science 37

Prasad, S. K., S. Shekhar, M. McDermott, X. Zhou, M. Evans, and S. Puri. 2013.
GPGPU—Accelerated interesting interval discovery and other computations
on geospatial datasets: A summary of results. In Proceedings of the 2Nd ACM
SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, 65-72.
BigSpatial “13. New York, NY: ACM. doi:10.1145/2534921.2535837.

Quinlan, J. R. 1986. Induction of decision trees. Machine Learning 1 (1): 81-106.

Randell, D. A., and A. G. Cohn. 1992. Exploiting lattices in a theory of space and time.
Computers and Mathematics with Applications 23 (6-9): 459-476.

Reed, D. A, and J. Dongarra. 2015. Exascale computing and big data. Communications
of the ACM 58 (7): 56—68.

Rice, J. A. 1995. Mathematical Statistics and Data Analysis. Belmont, CA: Duxbury Press.

Sacharidis, D., K. Patroumpas, M. Terrovitis, V. Kantere, M. Potamias, K. Mouratidis,
and T. Sellis. 2008. On-line discovery of hot motion paths. In Proceedings of
the 11th International Conference on Extending Database Technology: Advances in
Database Technology, 392—403. ACM. http://dl.acm.org/citation.cfm?id=1353392.

Safavian, S.R., and D. Landgrebe. 1991. A survey of decision tree classifier methodol-
ogy. IEEE Transactions on Systems, Man, and Cybernetics 21 (3): 660—674.

Samet, H. 1990. The Design and Analysis of Spatial Data Structures. Vol. 199. Reading,
MA: Addison-Wesley. http://books.google.com/books/about/The_Design_
and_Analysis_of_Spatial_Data.html?id=LttQAAAAMAA].

Samet, H. 2015. Sorting Spatial Data. http://www.cs.umd.edu/~hjs/pubs/geoencycl.
pdf.

Shekhar, S., and S. Chawla. 2003. Spatial Databases: A Tour. 1 edition. Upper Saddle
River, NJ: Prentice Hall.

Shekhar, S., S. Chawla, S. Ravada, A. Fetterer, X. Liu, and C.-T. Lu. 1999. Spatial data-
bases—Accomplishments and research needs. IEEE Transactions on Knowledge
and Data Engineering 11 (1): 45-55.

Shekhar, S, M. R. Evans, J. M. Kang, and P. Mohan. 2011. Identifying patterns in
spatial information: A survey of methods. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery 1 (3): 193-214. d0i:10.1002/widm.25.

Shekhar, S., S. K. Feiner, and W. G. Aref. 2015. Spatial computing. Communication of the
ACM 59 (1): 72-81. doi:10.1145/2756547.

Shekhar, S., Z. Jiang, R. Y. Ali, E. Eftelioglu, X. Tang, V. M. V. Gunturi, and X.
Zhou. 2015. Spatiotemporal data mining: A computational perspective. ISPRS
International Journal of Geo-Information 4 (4): 2306-2338. doi:10.3390/ijgi4042306.

Shekhar, S, C-T. Lu, and P. Zhang. 2001. Detecting graph-based spatial outliers:
Algorithms and applications (a summary of results). In Proceedings of the Seventh
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
371-376. ACM. http://dl.acm.org/citation.cfm?id=502567.

Shekhar, S., C.-T. Lu, and P. Zhang. 2003. A unified approach to detecting spatial
outliers. Geolnformatica 7 (2): 139-166.

Silver, M. R, and O. L. De Weck. 2007. Time-expanded decision networks: A frame-
work for designing evolvable complex systems. Systems Engineering 10 (2):
167-188.

Stein, A, and L. C. A. Corsten. 1991. Universal kriging and cokriging as a regression
procedure. Biometrics 47 (2): 575. d0i:10.2307/2532147.

Stolorz, P. E., H. Nakamura et al. 1995. Fast spatio-temporal data mining of large geo-
physical Datasets. In Proceedings of the First International Conference on Knowledge
Discovery and Data Mining (KDD-95), Montreal, Canada, August 20-21, 1995,


http://dl.acm.org/citation.cfm?id=1353392
http://books.google.com/books/about/The_Design_and_Analysis_of_Spatial_Data.html?id=LttQAAAAMAAJ
http://books.google.com/books/about/The_Design_and_Analysis_of_Spatial_Data.html?id=LttQAAAAMAAJ
http://www.cs.umd.edu/~hjs/pubs/geoencycl.pdf
http://www.cs.umd.edu/~hjs/pubs/geoencycl.pdf
http://dl.acm.org/citation.cfm?id=502567

38 Geospatial Data Science Techniques and Applications

edited by U. M. Fayyad and R. Uthurusamy, pp. 300-305. AAAI Press. http://
www.aaai.org/Library/KDD/1995/kdd95-035.php.

Taleb, N. N. 2007. The Black Swan: The Impact of the Highly Improbable. Vol. 2. Random
House. https://books.google.com/books?hl=en&lr=&id=gWW4Sk]JiM08C&oi
=fnd&pg=PR33&dq=The-+black+swan:+The+impact+of+the+highly+impro
bable&ots=v-zQIWTLgw&sig=LIVA4IL.x8d1KuH6V48qk_vF7rDY.

Tang, X., E. Eftelioglu, D. Oliver, and S. Shekhar. 2017. Significant linear hotspot dis-
covery. IEEE Transactions on Big Data, 1-1. doi:10.1109/ TBDATA.2016.2631518.

Tang, X,, E. Eftelioglu, and S. Shekhar. 2015. Elliptical hotspot detection: A summary
of results. In Proceedings of the 4th International ACM SIGSPATIAL Workshop
on Analytics for Big Geospatial Data, 15-24. BigSpatial'15. New York, NY: ACM.
doi:10.1145/2835185.2835192.

Tobler, W. R. 1970. A computer movie simulating urban growth in the Detroit region.
Economic Geography 46 (6): 234. doi:10.2307/143141.

Wall, M. M. 2004. A close look at the spatial structure implied by the CAR and SAR
models. Journal of Statistical Planning and Inference 121: 311-324. doi:10.1016/
50378-3758(03)00111-3.

Wall, M. E,, A. Rechtsteiner, and L. M. Rocha. 2003. Singular value decomposition
and principal component analysis. In A Practical Approach to Microarray Data
Analysis, 91-109. Springer. http://link.springer.com/content/pdf/10.1007/0-
306-47815-3_5.pdf.

Welcome to the OGC|OGC. 2017. Accessed on March 12. http://www.opengeospa-
tial.org/.

Wilkinson, J. H,, and J. H. Wilkinson. 1965. The Algebraic Eigenvalue Problem. Vol. 87.
Clarendon Press Oxford. http://tocs.ulb.tu-darmstadt.de/35148594.pdf.

Williams, C. K. 1. 1998. Prediction with Gaussian processes: From linear regres-
sion to linear prediction and beyond. In Learning in Graphical Models, 599-621.
Dordrecht: Springer Netherlands. doi:10.1007/978-94-011-5014-9_23.

Won, J -1, S.-W. Kim, J.-H. Baek, and J. Lee. 2009. Trajectory clustering in road network
environment. In Computational Intelligence and Data Mining, 2009. CIDM'09.
IEEE Symposium on, 299-305. IEEE. http://ieeexplore.ieee.org/abstract/
document/4938663/.

Yoo,].S.,S. Shekhar, S. Kim, and M. Celik. 2006. Discovery of co-evolving spatial event
sets. In Proceedings of the 2006 SIAM International Conference on Data Mining,
306-315. SIAM. http://epubs.siam.org/doi/abs/10.1137/1.9781611972764.27.

Yu, ], J. Wu, and M. Sarwat. 2015. Geospark: A cluster computing framework for
processing large-scale spatial data. In Proceedings of the 23rd SIGSPATIAL
International Conference on Advances in Geographic Information Systems, 70. ACM.
http://dl.acm.org/citation.cfm?id=2820860.

Yuan, J., Y. Zheng, X. Xie, and G. Sun. 2011. Driving with knowledge from the physi-
cal world. In Proceedings of the 17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 316-324. ACM. http://dl.acm.org/citation.
cfm?id=2020462.

Zhang, D, N. Li, Z.-H. Zhou, C. Chen, L. Sun, and S. Li. 2011. iBAT: Detecting anom-
alous taxi trajectories from GPS traces. In Proceedings of the 13th International
Conference on Ubiquitous Computing, 99-108. UbiComp “11. New York, NY: ACM.
doi:10.1145/2030112.2030127.

Zhang, N., M. Wang, and N. Wang. 2002. Precision agriculture—A worldwide over-
view. Computers and Electronics in Agriculture 36 (2): 113-132.


http://www.aaai.org/Library/KDD/1995/kdd95-035.php
http://www.aaai.org/Library/KDD/1995/kdd95-035.php
https://books.google.com/books?hl=en&lr=&id=gWW4SkJjM08C&oi=fnd&pg=PR33&dq=The+black+swan:+The+impact+of+the+highly+improbable&ots=v-zQIWTLgw&sig=LlVA4ILx8dlKuH6V48qk_vF7rDY
https://books.google.com/books?hl=en&lr=&id=gWW4SkJjM08C&oi=fnd&pg=PR33&dq=The+black+swan:+The+impact+of+the+highly+improbable&ots=v-zQIWTLgw&sig=LlVA4ILx8dlKuH6V48qk_vF7rDY
https://books.google.com/books?hl=en&lr=&id=gWW4SkJjM08C&oi=fnd&pg=PR33&dq=The+black+swan:+The+impact+of+the+highly+improbable&ots=v-zQIWTLgw&sig=LlVA4ILx8dlKuH6V48qk_vF7rDY
http://link.springer.com/content/pdf/10.1007/0-306-47815-3_5.pdf
http://link.springer.com/content/pdf/10.1007/0-306-47815-3_5.pdf
http://www.opengeospatial.org/
http://www.opengeospatial.org/
http://tocs.ulb.tu-darmstadt.de/35148594.pdf
http://ieeexplore.ieee.org/abstract/document/4938663/
http://ieeexplore.ieee.org/abstract/document/4938663/
http://epubs.siam.org/doi/abs/10.1137/1.9781611972764.27
http://dl.acm.org/citation.cfm?id=2820860
http://dl.acm.org/citation.cfm?id=2020462
http://dl.acm.org/citation.cfm?id=2020462

Geospatial Data Science 39

Zheng, K, Y. Zheng, X. Xie, and X. Zhou. 2012. Reducing uncertainty of low-
sampling-rate trajectories. In Data Engineering (ICDE), 2012 IEEE 28th
International Conference on, 1144-1155. IEEE. http://ieeexplore.ieee.org/abstract/
document/6228163/.

Zheng, Y., and X. Zhou. 2011. Computing with Spatial Trajectories. Springer Science &
Business Media. https://books.google.com/books?hl=en&lr=~&id=JShQJF23x
BgC&oi=fnd&pg=PR3&dq=Computing+with+spatial+trajectories&ots=6M
Xjftdn7_&sig=wEyPQfzxE52WQYU3WMO0IghuAU1l.

Zhou, X,, S. Shekhar, and R. Y. Ali. 2014. Spatiotemporal change footprint pattern
discovery: An inter-disciplinary survey. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery 4 (1): 1-23.

Zomorodian, A.2012. Topological data analysis. Advances in Applied and Computational
Topology 70: 1-39.


http://ieeexplore.ieee.org/abstract/document/6228163/
http://ieeexplore.ieee.org/abstract/document/6228163/
https://books.google.com/books?hl=en&lr=&id=JShQJF23xBgC&oi=fnd&pg=PR3&dq=Computing+with+spatial+trajectories&ots=6MXjft4n7_&sig=wEyPQfzxE52WQYU3WM0lqhuAU1I
https://books.google.com/books?hl=en&lr=&id=JShQJF23xBgC&oi=fnd&pg=PR3&dq=Computing+with+spatial+trajectories&ots=6MXjft4n7_&sig=wEyPQfzxE52WQYU3WM0lqhuAU1I
https://books.google.com/books?hl=en&lr=&id=JShQJF23xBgC&oi=fnd&pg=PR3&dq=Computing+with+spatial+trajectories&ots=6MXjft4n7_&sig=wEyPQfzxE52WQYU3WM0lqhuAU1I

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com


http://taylorandfrancis.com

2

Geocoding Fundamentals and
Associated Challenges

Claudio Owusu, Yu Lan, Minrui Zheng, Wenwu Tang, and Eric Delmelle

CONTENTS
2.1 Introduction: Geocoding and Geocoding Systems...........cccccocueueueueucnenee 41
2.1.1 Applications of GEOCOAING.......cceeueuiuemcueuiueieciceiceecceeeeenenenes 42
2.1.2 MOtIVAtION ..ottt 42
2.1.3  Contributions........cccvviiiiiiiiiiiiiicc s 43
214 Illustrative Dataset.........c.cccoovvviiiieiniiiiicce 43
2.2 Geocoding Fundamentals: Input and Reference Data............cccccc.cec... 44
2.2.1 Geocoding Process ... 45
222 Match Rate ..o 47
2.2.3  THUSLTAtION. ...t 47
2.3  Geocoding Quality: Sources of Errors........cccccccoecuecuceiciiceccecccenenes 49
2.3.1 Positional ACCUTACY ......cccovvimimriiiiiiniiiiiiii s 50
2.3.2 Impact of Geocoding Quality .......cccccevuviiviiiviinniiniiiiinen, 50
24 Web-Based Geocoding......cccccovuiiuiiiiiiiininiiiiiccsnne 51
2.5 Using Web-Based Geocoding Services for Cross Validation................. 52
2.5.1 Modeling Geocoding EITOr ........cccoovvvviviiiiiviniiiiiicne, 53
2.6 Reverse Geocoding, Geomasking, and Aggregation .............cccccevuuune. 57
2.7 CONCIUSIONS.....cuiviviiiriiiiiiiic e 58
ReEfETONCES. ..ottt 58
I

2.1 Introduction: Geocoding and Geocoding Systems

In the twenty-first century, the ubiquitous usage of smartphones equipped
with location-based services has helped millions of individuals in navigat-
ing busy traffic or finding available amenities around a particular location.
Central to this technological revolution is the process of geocoding, which
essentially translates text-based information about locations (address, zip
code, names of localities, or even countries) into numerical geographic coor-
dinates (e.g., longitude and latitude). Geocoding uses a spatially explicit ref-
erence dataset (e.g., digital road network) to identify the location that best
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matches the input address, essentially by comparing and interpolating the
address to the range of addresses for each segment of the reference dataset.
Each segment contains the locations of the street center and the range of
addresses between the street intersections.

Geocoding is generally incorporated in commercial geographic informa-
tion systems (Bichler and Balchak 2007), where geocoded data can collec-
tively be used for mapping, visualization, and spatial analysis of events. In
the past few years, however, the democratization of internet-based mapping
services such as Google Maps or MapQuest has facilitated the use of online
geocoding services for non-GIS users (Wu et al. 2005; Roongpiboonsopit and
Karimi 2010a).

2.1.1 Applications of Geocoding

Thereis amyriad of domains that have benefitted from geocoding. Geocoding
has been a critical element for the delivery of parcels (Jung, Lee, and Chun
2006) and for emergency dispatching management (Derekenaris et al. 2001)
where locating the destination in a timely manner is critical. In health stud-
ies, geocoding has been used extensively in research with geographic themes
such as health disparities (Krieger, Chen et al. 2002; Rehkopf et al. 2006),
accessibility to health care (Luo and Qi 2009; Delmelle et al. 2013), disease
mapping (Law et al. 2004; Delmelle et al. 2013; Delmelle, Dony et al. 2014),
and environmental exposure assessment (Chakraborty and Zandbergen
2007; Zandbergen 2007). In crime analysis, geocoding technology serves as
one of the important procedures to obtain data for planning, monitoring, and
evaluation of targeted responses to reduce crime in communities (Chainey
and Ratcliffe 2013). The process is therefore seen as a means of achieving
intelligence-led policing (Ratcliffe 2002; Chainey and Ratcliffe 2013). In addi-
tion, geocoding has been used in transportation studies (Park et al. 2011; Qin
et al. 2013) for the purpose of planning efficient transportation systems and
preventing traffic crashes.

2.1.2 Motivation

In this chapter, we explore geocoding fundamentals, and a myriad of chal-
lenging issues that are intimately associated with the procedure, such as
spelling sensitivity, accuracy, efficiency, and automation. We also focus on
the assessment of the impact of uncertainties related to these geocoding
issues on the discovery of spatially explicit patterns. Further, we highlight
the significance of geomasking, which is particularly important to preserve
confidentiality and minimize the risk of success in reverse geocoding. We
then conduct a discussion on web-based geocoding and its benefits, limits,
and computational hurdles. We integrate alternative web-based geocoding
services together with a cross-validation approach to facilitate the impact
assessment of uncertainties associated with geocoding.
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In the next section, we briefly describe geocoding fundamentals and illus-
trate the challenges experienced when attempting to geocode our sample
data (see, illustrative dataset in Section 2.1.4). In Section 2.3, we discuss geoc-
oding quality, including sources of errors and the impact of low geocoding
quality on spatial analysis. Section 2.4 is devoted to the topic of web-based
geocoding, which has recently received a lot of attention. In Section 2.5, we
evaluate the merits of two web-based geocoding services as an alternative to
commercial geocoding software. Efforts to model and visualize the errors
are also presented. In Section 2.6, we address the issue of reverse geocoding,
and discuss geomasking and aggregation, two techniques particularly use-
ful to address privacy concerns. We conclude our chapter in Section 2.7 and
present avenues for future research.

2.1.3 Contributions

Besides describing and illustrating the process of geocoding, this chap-
ter makes a series of important contributions: (1) strategies to increase the
match rate for datasets that include incomplete input addresses (reengineer-
ing incomplete addresses in an effort to increase the match rate), (2) use of
online geocoding services to cross-validate geocoding results obtained from
commercial GIS (and estimating uncertainties in geocoding results), and
(3) modeling geocoding errors.

2.1.4 llustrative Dataset

We use a subset of historical paper records of private water well permits
from Gaston County, North Carolina (from 1989 to the present, n = 7920) to
illustrate the geocoding concepts (subset n = 285). Historical records were
made available as part of an effort funded by the Centers for Disease Control
and Prevention, aiming to establish a public digital database of the county’s
wells and promote the protection of private well water supplies and quality,
ultimately protecting and monitoring a key portion of the county’s water
supply.

The dataset is particularly salient since historical records pose serious chal-
lenges such as (1) incomplete addresses or (2) paper damage. First, a complete
address should have all the key components such as house number, street
name, street type as well as other directional attributes when possible (e.g.,
826 Union Rd, Gastonia, NC 28054). We define an address to be incomplete
when any of the key components is not available in the dataset. Second, some
permits have faded, making it difficult to transcribe all the address informa-
tion needed for geocoding. These two problems introduce uncertainties in
the datasets.

Private well permit records were scanned and information encoded in
a database; each record contains information about the owner of the well,
residential location, details of the parcel, ground sketch of the water well
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FIGURE 2.1

A typical private well permit with information of the owner (masked), location, and a sketch of

where the well is built.

position, well specification, and the tax location code of the parcel. Figure
2.1 shows an example of a scanned permit. For illustration purposes, we

selected a random sample of n = 285 (3%) well samples.

2.2 Geocoding Fundamentals: Input and Reference Data

Accurate reference datasets and valid addresses are the two required inputs
for geocoding. Reference datasets typically include street network, parcel, and
address points data (Zandbergen 2008). In this chapter, we use all three refer-
ence datasets and set up hierarchic rules to geocode the illustrative dataset.
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Figure 2.2 shows an instance of two different reference datasets (address
points and parcel centroid). It can be seen that address points reference data
depicts the centroid of the buildings, making it more accurate than the other
reference datasets.

For a myriad of reasons such as protecting confidentiality, addresses are
sometimes made available at different scales, including the street level
(Rushton et al. 2006; Goldberg, Wilson, and Knoblock 2007), names of build-
ings (Davis and Fonseca 2007), closest intersection (Levine and Kim 1998; Park
et al. 2011; Delmelle, Zhu et al. 2014), neighborhood level (Casas, Delmelle,
and Varela 2010), ZIP code (Krieger, Chen et al. 2002; Krieger, Waterman et al.
2002), textual descriptions of localities (Goldberg and Cockburn 2010), and
cities or counties. The scale at which addresses are made available will affect
the location of the output feature. For example, addresses at the ZIP code
level will be geocoded at the centroid of a postal zip code instead of the resi-
dential location.

2.2.1 Geocoding Process

The geocoding process relies on a matching algorithm, which essentially
attempts to determine the location of the input address over the range of
addresses in the reference dataset. The reference dataset used for the

Legend

®  Parcel centroid

®  Address point

Street centerline

FIGURE 2.2
Example of two reference datasets: address point in red (most accurate) and parcel centroid
(less accurate).
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geocoding process determines the technique used in matching the spatial
information to geographic coordinates. In most commercial GIS software
packages, the matching algorithm is embedded in an address locator. An
address locator is a model used to create geometry for textual descriptions
representing addresses in the reference data (ESRI Redlands CA, USA). In
the United States, a dual range address locator is used when street network
is chosen as reference data.

Street geocoding is the most widely used technique due to the readily avail-
able TIGER files from the U.S. Census Bureau; here, the algorithm performs
a linear interpolation of the input address within the range of address num-
bers and polarity of the street segment. The process can be decomposed
in multiple stages. First, the algorithm attempts to match the street name
of the input address with street names from the reference dataset. Next, it
will determine the side of the street the address is at, based on whether the
address number is even or odd. Third, the correct position of the address is
determined after computation of the proportion of the address range asso-
ciated with the correct side of the street segment. This proportion is then
added to the start of the segment to obtain the correct coordinate. Finally, for
most commercial GIS software, an optional offset from the street centerline
is added. Figure 2.3 shows the interpolated distance (v) and the offset dis-
tance (d) used to determine an address along Union Road. The address range
along Union Road starts from 101 to 199 on the odd parity side, and from 102
to 200 on the even parity side.

In parcel geocoding, the input address is matched to the centroid of the par-
cel. The returned geographic feature is therefore a point feature with a geo-
graphic coordinate (Zandbergen 2008). Although the technique is generally
assumed to return more accurate results, it also has been found to introduce
positional errors, particularly for a large parcel, since the true address loca-
tion may not necessarily be at the center of that parcel.

Address point geocoding has been introduced to alleviate this problem. The
input address is matched directly to a point feature, which represents the

- Geocoded address

99 |101 Union Rd 199|201

100 {102 200 {202

FIGURE 2.3
Interpolation algorithm using address range between the start and end of the street centerline
segment for an input address as 117, Union Road.
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center of the rooftop of buildings making it more accurate. Emergency calls
(e.g., 911 in the United States) use such a geocoding approach.

2.2.2 Match Rate

The success of the geocoding procedure can be determined by its match rate,
which is the percentage of records in the input dataset that was correctly
geocoded (Zandbergen 2008). A high match rate is often desirable because
geocoded results are further used as the sample during spatial investigations
(Goldberg, Wilson, and Knoblock 2007; Zimmerman 2008; Ha et al. 2016).
Zimmerman (2008) showed that in some instances up to 30% of addresses
may need to be excluded if only geocoded records were considered during
the analysis. This exclusion of unmatched records reduces the sample size,
thereby weakening the generalization of the analytical results due to selec-
tion bias and reducing statistical confidence (Zimmerman 2008; Ha et al.
2016).

Geocoding is now a key research methodology and efforts to increase the
match rate will help to reduce unmatched addresses that are excluded from
the spatial analysis. It is important to note that an increased match rate does
not automatically translate into improved geocoding quality. Different strat-
egies exist to increase the geocoding match rate. First, varying the spelling
sensitivity essentially increases the degree to which a street name is allowed
to change. One drawback of this approach is that it will augment the set of
potential matches at the cost of potentially selecting a wrong match. The
second strategy consists of using different reference datasets (McElroy et al.
2003; Yang et al. 2004). A couple of recent studies combined parcel and street
network geocoding techniques as a strategy to increase the match rate of the
output geographic features (Roongpiboonsopit and Karimi 2010b; Murray
et al. 2011; Delmelle et al. 2013). For instance, Delmelle et al. (2013) used dif-
ferent U.S. Census reference datasets to increase the number of geocoded
children with birth defects in a study estimating travel impedance to health
care centers.

2.2.3 Ilustration

In the context of our illustrative dataset, we used multiple datasets from the
Gaston County Planning & GIS Department and developed a two-phase
geocoding approach as shown below in Figure 2.4. First, during an automated
phase, different reference datasets (address point, parcel, and street network
datasets) are combined in a hierarchical manner into a single composite loca-
tor in ArcGIS, a commercial GIS. The rationale to impose a hierarchy among
different datasets is to increase the match rate while reducing the odds of
positional error. Second, the improvement phase consists of using additional
datasets such as bacteria test results of the wells and deed records to reen-
gineer the unmatched addresses. Three main strategies are adopted in this
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FIGURE 2.5
N = 285 geocoded private well permits in Gaston County, North Carolina.

phase. First, the unique permit number is linked to and cross-checked with
the bacteria test results. Second, non-successful records are then subject to
a probabilistic record linkage, using information such as tax location codes,
name of the well owner, subdivision name, lot size, and block number infor-
mation. Third, manual geocoding is implemented as the final step, which
involves manually interpreting the descriptive address, using additional
information such as lot area, lot number, and block number. Once an address
has been determined, the commercial GIS attempts to re-geocode using the
composite address locator. Figure 2.5 shows the locations of the n = 285 wells
that were geocoded with address points reference data.

2.3 Geocoding Quality: Sources of Errors

The success of the geocoding procedure is merely a function of the complete-
ness of the addresses and the quality (i.e., spatial and temporal accuracy,
completeness) of the local and regional road network that is used as the refer-
ence dataset (O’Reagan 1987; Krieger, Waterman et al. 2002; Zandbergen 2008;
Goldberg 2011), and uncertainty with the matching algorithms (Rushton
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et al. 2006; Goldberg, Wilson, and Knoblock 2007; Zandbergen 2008, 2011).
Over the past decades, however, the accuracy and availability of reference
datasets have been improved (Dueker 1974; Werner 1974; Griffin et al. 1990;
Boscoe, Ward, and Reynolds 2004).

Although street networks continue to be the most widely used referenced
data, the availability of parcel datasets and the introduction of address points
from emergency 911 calls in the United States have increased the accuracy
and match rate (Zandbergen 2008). The input datasets have expanded from
postal addresses (O’'Reagan 1987) to include descriptive addresses of loca-
tions (Levine and Kim 1998; Davis and Fonseca 2007).

2.3.1 Positional Accuracy

Although the match rate indicates the percentage of addresses that are suc-
cessfully geocoded, it does not inform us whether the coordinates obtained
from the geocoding procedure are the true coordinates. Positional accuracy
is a measure of the nearness of the geocoded output from the true location on
the ground. Delmelle, Dony et al. (2014) compared geocoded cases of dengue
fever in an urban environment of Colombia to locations measured from GPS
devices (ground truth). In the context of our illustrative dataset, positional
accuracy is estimated by comparing address points that represent the center
of the rooftop of buildings with water wells obtained by geocoding from a
commercial GIS.

Positional accuracy can be improved by more accurate addresses and ref-
erence datasets that are spatially and temporally accurate. Practically tak-
ing measurements with GPS devices for the events being investigated can
also improve the positional accuracy, but this may be costly and timely inef-
fective, especially when gathering large datasets. Lastly, using alternative
reference datasets for geocoding different environments may minimize the
errors. For example, in rural areas where large parcels is the norm, it may be
helpful to use aerial photos to generate an address point that better repre-
sents the center of the rooftop of the buildings (if an address point dataset is not
already available) than using parcel or street network datasets.

2.3.2 Impact of Geocoding Quality

Geocoding challenges mentioned in the previous section affect the
geocoding quality in terms of match rate and the positional accuracy
(O’'Reagan 1987; Boscoe, Ward, and Reynolds 2004). Such issues are partic-
ularly important in health studies (Bonner et al. 2003; Whitsel et al. 2004;
Rushton et al. 2006; Zandbergen 2007, Mazumdar et al. 2008; Chainey and
Ratcliffe 2013). Positional accuracy has been found to be critical in studies
of environmental exposure as errors can lead to mischaracterization in the
risk analysis (Bonner et al. 2003). Positional errors in residential addresses
pose a serious challenge for spatial analysis (O'Reagan 1987; Jacquez and
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Jacquez 1999; Bonner et al. 2003; Harada and Shimada 2006; Goldberg,
Wilson, and Knoblock 2007; Bichler and Balchak 2007; Mazumdar et al.
2008; Zandbergen 2008; Goldberg and Cockburn 2010; Zimmerman and
Li 2010; Zimmerman, Li, and Fang 2010), since it may result in (1) under-
estimation of local risk, (2) misplacement of high-risk areas of a disease,
(3) mischaracterization in the analysis of exposure risk, (4) misevaluation
of spatial association, and (5) biased evidence for decision makers. When
estimating access to health care, positional errors may introduce bias in
the estimation of travel impedance, especially for individuals geocoded at
the ZIP code for instance.

2.4 Web-Based Geocoding

The costs to prepare reference data and standardize addresses can be pro-
hibitive when using commercial GIS software. With the rapid development
of cyber-enabled technology, a myriad of web-based providers (such as
Google Maps, Bing Maps, and MapQuest, to name a few) have made the pro-
cess of geocoding more accessible and faster through their online geocoding
services (Roongpiboonsopit and Karimi 2010a). The preparation and mainte-
nance of reference data, address standardization, and algorithm implementa-
tion and update for geocoding are hidden in these online services (accessible
as APIs). Online geocoders typically use street network data that are more
up to date, which is likely to result in lower positional errors. Online geocod-
ers, however, have limits on the number of records that can be processed
(e.g., 2500 for Google Maps and Bing Maps on a daily basis, 15,000 per month
for MapQuest), suffer from a lack of transparency about the geocoding algo-
rithm (including address interpretation) and lack of metadata on the update
of reference data (an issue that may vary spatially). Another important issue
is that the use of online geocoders may raise important ethical issues such as
confidentiality since addresses are uploaded to remote servers. In the United
States, this may violate the Health Insurance Portability and Accountability
Act, which protects individuals” medical records and other personal health
information (DeLuca and Kanaroglou 2015; Kirby, Delmelle, and Eberth 2017;
Mak et al. 2012). Different strategies exist to circumvent this issue, such as
geocoding at a coarser scale, or bundle the batch of addresses to be geocoded
with random addresses (Gittler 2007; Goldberg 2008).

When using geocoding APIs, users or developers need to call functions
and obtain authentication from corresponding online geocoding providers.
Then these online geocoding services will use their own algorithms to cal-
culate the coordinates that will be returned to the user (e.g., in pure text or
XML-based formats). In most occasion, users can type the address that they
want to geocode and click a button, to display the results on the map (i.e., in
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an interactive manner). Besides being available to non-GIS users, web-based
geocoding systems are particularly helpful to evaluate the accuracy of the
geocoding results obtained from commercial GIS software, such as ArcGIS.
The accuracy evaluation is typically conducted by comparing the geocoded
coordinates (Duncan et al. 2011).

2.5 Using Web-Based Geocoding Services for Cross Validation

In this study, we follow an approach similar to Duncan et al. (2011) that is
based on online geocoding services (Google and MapQuest here) to validate
the geocoding results from those obtained by a commercial GIS (ArcGIS).
Each address record may exhibit differences in the coordinates among these
geocoding options; the distance between coordinates from online geocoding
services and ArcGIS-based results (referred to as error distance) is calculated.
We estimate the error for the n = 285 geocoded samples. The distances are
grouped into different “deviation categories” (<50, <100, <150, <200, <250,
<300, and >300 m). For each category, we report the match rate, defined as
“the percentage of the successfully geocoded records in relation to the total
number of records originally subjected to the geocoding process, regardless
of the positional accuracy” (Kounadi et al. 2013). Table 2.1 shows the percent-
age of geocoding results located in certain deviation categories according to
different web-based geocoding services.

Generally, Google has a higher match rate and its geocoding results are
likely to be closer to the ones obtained from ArcGIS. Depending on the
purpose of the study, strict error thresholds may be necessary. In the case
of studying exposure to highway pollution, a difference of 300 m may be
very significant and bias the analysis (Zandbergen 2007). Further, greater
distance errors are not uncommon in rural areas (Zimmerman and Li
2010). In the following section, we will analyze and model our web-based
geocoding results comparing with true coordinates (in this case, we con-
sider results of ArcGIS obtained using address point geocoding as the true
coordinates).

TABLE 2.1

Variation in Match Rate for Two Online Geocoding Systems with Deviation
Categories

Buffer (m) 50 100 150 200 250 300 >300

Google (%) 70.18 85.96 89.12 90.88 92.28 93.33 6.67
MapQuest (%) 62.46 82.11 89.47 90.88 92.63 92.98 7.02
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2.5.1 Modeling Geocoding Error

In this study, we compare results of online geocoding services from Google
and MapQuest to the ones obtained using ArcGIS. For this comparison pur-
pose, we constructed error modeling, which consists of the following steps:
(1) acquiring results from web-based geocoding services, (2) convert latitude
and longitude (WGS84) into XY coordinates, (3) calculate the Euclidean error
distance (in meter) between results of ArcGIS and web-based geocoding
results, and (4) compare geocoding results in terms of the empirical distribu-
tion of error distance and fitted error model based on, for example, distance-
decayed functions.

The error distance can be visualized in different ways. The error is repre-
sented in its simplest form as a line connecting the spatial locations of the
geocoded well with the commercial solver and the online geocoders (yellow
for MapQuest, red for Google) as shown in Figure 2.6a—d.

Figure 2.6e illustrates the error distance between the commercial geocoder
and the Google geocoder, where a larger symbol denotes a greater error
distance. Figure 2.6f compares the error distance among online providers.
In pink and purple colored regions, the error distance is much lower when
using Google than MapQuest, while the reverse is true for green colored
regions. Figure 2.6e—f clearly suggests the presence of a spatial pattern in
terms of error distance.

Table 2.2 and Figures 2.7 and 2.8 illustrate the empirical histogram and
probabilistic distributions of error distance for the two web-based geocod-
ing services (bin size: 10 m). About 95% of the Google-based results (with a
median of 26.59 m) fall within a distance that is less than 250 m. MapQuest-
based geocoding results (median: 39.28 m) have a longer error distance
(about 360 m) than those of Google (250 m) with respect to a 95% threshold.
In addition, the mode of Google-based error distance is within 10 m (cover-
ing 23.83% of the data), compared to MapQuest-based results with a mode
around 30-40 m (25.62%). For the error modeling, we fitted the histograms
of error distance using Pareto functions (see Morrill and Pitts 1967). Table 2.3
summarizes model fitting results. The goodness-of-fit of the error model for
Google-based geocoding results (up to 88.97% of the variance explained) is
much higher than that for MapQuest-based results (only 74.01% of the vari-
ance explained).

Results from both empirical distribution and the fitted error models sug-
gest that Google’s online geocoding service generally outperforms MapQuest
for the geocoding task in our study area. This finding is consistent with
what has been reported in the literature. For example, Roongpiboonsopit
and Karimi (2010a) compared the quality of five online geocoding ser-
vices (including Google and MapQuest), and found that Google provided
a shorter error distance than MapQuest. Results from other relevant stud-
ies by Cui (2013), Chow et al. (2016), and Karimi et al. (2011) also indicate
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TABLE 2.2

Frequency and Probability of the Error Distance of Online Geocoding Services

Google MapQuest

Bin  Frequency Percent (%) Cumulative (%) Frequency Percent (%) Cumulative (%)

10 66 23.83 23.83 0 0.00 0.00
20 52 18.77 42.60 9 3.20 3.20
30 36 13.00 55.60 64 22.78 25.98
40 26 9.39 64.98 72 25.62 51.60
50 21 7.58 72.56 33 11.74 63.35
60 16 5.78 78.34 14 4.98 68.33
70 13 4.69 83.03 12 427 72.60
80 5 1.81 84.84 16 5.69 78.29
90 4 1.44 86.28 11 391 82.21
100 6 217 88.45 2 0.71 82.92
110 1 0.36 88.81 7 2.49 85.41
120 3 1.08 89.89 9 3.20 88.61
130 3 1.08 90.97 3 1.07 89.68
140 1 0.36 91.34 2 0.71 90.39
150 1 0.36 91.70 0 0.00 90.39
160 0 0.00 91.70 0 0.00 90.39
170 0 0.00 91.70 2 0.71 91.10
180 2 0.72 92.42 2 0.71 91.81
190 2 0.72 93.14 0 0.00 91.81
200 1 0.36 93.50 0 0.00 91.81
210 0 0.00 93.50 2 0.71 92.53
220 1 0.36 93.86 1 0.36 92.88
230 1 0.36 94.22 1 0.36 93.24
240 1 0.36 94.58 0 0.00 93.24
250 1 0.36 94.95 2 0.71 93.95
260 1 0.36 95.31 0 0.00 93.95
270 1 0.36 95.67 0 0.00 93.95
280 0 0.00 95.67 0 0.00 93.95
290 1 0.36 96.03 0 0.00 93.95
300 0 0.00 96.03 0 0.00 93.95
310 0 0.00 96.03 1 0.36 94.31
320 0 0.00 96.03 0 0.00 94.31
330 0 0.00 96.03 0 0.00 94.31
340 1 0.36 96.39 1 0.36 94.66
350 1 0.36 96.75 0 0.00 94.66
360 0 0.00 96.75 0 0.00 94.66
More 9 3.25 100.00 15 5.34 100.00
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FIGURE 2.7
Histogram of error distance of online geocoding services (bin size: 10 m).

that Google’s geocoding service can achieve rates that are 91.5%, 100%, and
93.64%, respectively, which are higher than other online geocoding services
(e.g., MapQuest, Bing, and Geocoder.us). While multiple factors may contrib-
ute to geocoding errors, frequent update of reference data by Google may
explain its high geocoding accuracy.
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Empirical probabilistic distribution of error distance of online geocoding services.
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TABLE 2.3

Fitted Modeling Results Based on Error Distance
Geocoding Services Fitted Models R?
Google Y = 4245 D158 0.8897
MapQuest Y = 6431.1 D152 0.7401

Note: Y: frequency; D: distance

2.6 Reverse Geocoding, Geomasking, and Aggregation

Although geocoded data result in a great opportunity to develop better ana-
lytical solutions, there exist some important concerns, especially in the con-
text of epidemiology to protect privacy needs. At the core of the issue is the
thread of reverse geocoding, which essentially determines the address based
on geographic coordinates. Using a published map of geocoded records and
overlaying with other layers of spatial information (such as parcel and street
layers), the approximate address of the geocoded record can be traced back
(Curtis, Mills, and Leitner 2006).

Several geomasking techniques and aggregation strategies have been
developed to conceal the true identity of geocoded records and mini-
mize the risk of success in reverse geocoding. Geomasking (Armstrong,
Rushton, and Zimmerman 1999) is a spatial statistical technique used to
introduce uncertainty (i.e., noise) into the spatial locations of geocoded
records, which has implications for the quality of further spatial analysis
(e.g., cluster detection). The main mechanism behind geomasking consists
of perturbing the spatial location of a geocoded record, typically in a ran-
dom distance and along a random direction. Other strategies have been
developed, such as the donut geomasking method (Hampton et al. 2010)
where geocoded records are moved within a random direction and within
certain distance bounds. These distance bounds can be tighter in urban
areas and looser in rural regions where the spacing between residences is
much greater.

Finally, geocoded records can be spatially aggregated into census units,
where all the data are moved to the geographic centroid of the unit (Tellman
et al. 2010). The choice of the unit is a function of the number of cases and the
population within that unit.

Despite their ability to preserve some confidentiality, geomasking and aggre-
gation methods have some substantial limitations, such as (1) reducing the
level of precision, (2) introducing statistical bias into the results, (3) blur-
ring meaningful variations in data, and (4) weakening clustering detection.
Current research attempts to find optimal geomasking strategies to preserve
the spatial pattern of geocoded records while maintaining privacy.
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2.7 Conclusions

In this chapter, we have discussed fundamentals of geocoding, which we
illustrated on a dataset of private well addresses in Gaston County, North
Carolina. We compared spatial locations estimated by a commercial geo-
coder to the ones obtained by two popular online providers, Google and
MapQuest. We found that in most cases, coordinates from online geocoders
were relatively close (26.59 m for Google and 39.28 m for MapQuest) to the
ones obtained by the commercial geocoder. Generally, MapQuest geocoder
yielded greater error than Google geocoder.

There remains a suite of challenges in geocoding. First, online web ser-
vices provide an alternative for geocoding, but further work is needed to
tackle the issue of transparency on reference datasets and geocoding algo-
rithms. An open geocoding standard and platform may be of help. Second,
massive data are increasingly available, and how to efficiently and effectively
geocode these datasets (say, millions or billions of addresses) poses a big
data challenge. Cyberinfrastructure-enabled high-performance computing
holds promises in resolving the big data challenge. Third, the evaluation of
geocoding accuracy, particularly for handling massive data, remains as a
challenge. Spatial or spatiotemporal statistics may provide support for evalu-
ating the robustness of the geocoding process.
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3.1 Introduction

Satellite images are images of the whole or part of the earth taken by physical
sensors on satellites. Machine learning, especially deep learning (DL), has
been widely applied in pattern recognition with satellite images. Many real-
word applications like ground object detection, land use monitoring, and
sense understanding are modeled as satellite image classification problems
and successfully solved with DL algorithms. One famous application is the
population distribution prediction using high-resolution satellite images and
deep Convolutional Neural Networks (CNNs) by Facebook’s Connectivity
Lab (Gros and Tiecke 2016).

Satellite image classification refers to the task of extracting information
classes (e.g., what object does an image contain?) from the satellite image.
For this problem, machine learning based solutions extract input—output
data pairs and then train a prediction model. Traditional machine learning
models like Support Vector Machine (SVM) require the data scientists to first
extract different kinds of features (e.g., texture and color) as input. This is

63
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called feature engineering, which is labor intensive, while DL models like
AutoEncoder (AE) can automatically learn useful features from big training
data and then stack different classification layers (e.g.,, Logistic Regression
classifier) to represent the complex relations between data variables (Hinton
2007; Bengio, Courville, and Vincent 2013). In short, traditional machine
learning models require extraction of rich features with strong background
knowledge, while DL methods depend on big data for automatic feature rep-
resentation and deep network learning.

Volunteered Geographic Information (VGI) includes a suite of tools to
create, assemble, and disseminate geographic data provided voluntarily
by individuals (Goodchild 2007). VGI systems like OpenStreetMap (OSM)
(Haklay and Weber 2008) and WikiMapia (Koriakine and Saveliev 2008) con-
tain massive volunteered labeled ground objects with rich information like
contour, key/value tag, changeset (i.e., time-series changing records of an
object), relation (i.e., an organized list of objects for representing logic or geo-
graphic objects like bus route), etc., all of which are human knowledge about
geography. By July 2016, OSM had over 2.8 million accumulated registered
users, 3.25 billion accumulated nodes, and 250 million accumulated ways
(Allison and Jon 2016). Meanwhile, the current location-based services like
Foursquare and Strava make it possible to collect another kind of VGI data,
namely citizens” or even devices’ location records, which make it possible
to discover some spatial patterns (e.g.,, land use type) and enrich the digi-
tal earth data (Craglia, Ostermann, and Spinsanti 2012). All these VGI data
provide an easier way to extract large labeled sample sets for training deep
models. For example, Mnih and Hinton extracted vector data from OSM
and aligned them with satellite images to train deep neural networks which
are further applied to automatically detect roads and buildings on satellite
images (Mnih and Hinton 2010; 2012).

On the other hand, using VGI together with satellite images for DL brings
new technical challenges. One challenge comes from the noise of VGI data.
Since VGI data are mostly contributed by volunteers instead of domain
experts, there are sometimes data quality problems like position inaccuracy
and classification ambiguity (Ali et al. 2014; Fan et al. 2014). Therefore, the
training samples extracted from VGI data may contain more noise than typi-
cal satellite image benchmarks like the University of California (UC) Merced
Land Use Dataset (Yang and Newsam 2010). (Mnih and Hinton 2012) clas-
sified the noise of the training samples extracted from OSM for building
detection into registration error and missing error. The former indicates the
cases that the building polygon contours on the map do not totally match the
buildings on the satellite images, while the latter represents the cases that the
buildings appearing on the satellite images are missing on the map.

Another challenge lies in domain adaptation (Ben-David et al. 2010), which
is known as a machine learning problem that the data for training model
differ from the data for prediction. According to the crowdsourcing study
by Quattrone et al. (Quattrone, Capra, and De Meo 2015), there is significant
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geographic bias in the OSM contents. For example, most buildings in urban
areas in developed countries are labeled, while the cottages in rural areas in
Africa are mostly not labeled. This means that the training data from such
VGI platforms will differ from the testing data that will be predicted. Except
for geographic bias, the problem of domain adaptation also exists in trans-
ferring features learned from VGI data and satellite images to some other
cross-domain or cross-region applications like poverty mapping and traffic
prediction (Xie et al. 2016; Zhao and Kusumaputri 2016).

This chapter introduces the current DL studies with satellite images and
VCGI data. It first presents the classic work in satellite image classification
using DL algorithms as well as some typical satellite image classification
benchmarks (cf. Section 3.2), and then introduces the state of the art in utiliz-
ing VGI data as supervision knowledge for training deep neural networks,
where the solutions to the technical challenges are highlighted (cf. Section
3.3). This chapter then presents some real-world applications in domains like
urban computing and humanitarian mapping (cf. Section 3.4). Finally, this
chapter gives the conclusion and discusses the future research directions (cf.
Section 3.6).

3.2 Satellite Image Classification with Deep Learning
3.2.1 Algorithms

The general framework of DL-based methods for satellite image classification
can usually be described as three components: prepared input data, deep net-
works, and expected output, as shown in Figure 3.1. The input data include

Input (Images) Learning (Networks) Output (Labels)

Pixel classification
Object recognition
CNN‘ ‘ MLP ‘ ‘ DBN‘ ‘ GAN‘ Sense understanding

FIGURE 3.1
General framework of satellite image classification using deep learning.



66 Geospatial Data Science Techniques and Applications

different kinds of satellite images (e.g.,, RGB image, hyperspectral image, syn-
thetic aperture radar image) as well as standard image datasets (i.e,, bench-
marks used for training), while the output is the manually defined label of the
pixels or the image tiles (e.g., the land cover type of a pixel and the object type
in the image tile). The deep networks are stacked by multiple nonlinear neural
layers, where each intermediate layer encodes input data to feature or encode
low-level features to high-level features, while the output layer predicts the
probability of each label with classic classification algorithms like Logistic
Regression. The parameters of each intermediate layer are usually first learned
by DL models like an AE or a sparse coding algorithm with a large set of unla-
beled training images, while the overall parameters are fine-tuned by algo-
rithms like Stochastic Gradient Descent (SGD) with the supervision of labeled
training images (Hinton 2007; Bengio, Courville, and Vincent 2013).

A recent literature survey about satellite image classification with DL can
be found in L. Zhang, Zhang, and Kumar 2016, where classic deep networks
like CNNs, Multiplayer Perceptions (MLPs), and Deep Belief Networks
(DBNs) as well as feature learning algorithms like AEs, Restricted Boltzmann
Machines (RBMs), and Sparse Coding (SC) are introduced and the studies are
classified into four kinds according to the purpose, namely image prepro-
cessing, pixel-based classification, target recognition, and scene understand-
ing. Except for the above deep networks mentioned in (L. Zhang, Zhang,
and Kumar 2016), we supplement another unsupervised deep model named
Generative Adversarial Networks (GANSs) which have been widely explored
in the past two years (Goodfellow et al. 2014). A recent study by Lin (Lin 2016)
showed that GANs can obtain better results than the state of the art in UC
Merced Land Use Dataset and Brazilian Coffee Scenes dataset.

3.2.2 Benchmarks

The classic satellite image classification studies introduced above rely on
standard datasets to train the prediction models. These studies either manu-
ally label training images with specific tools by themselves (e.g., the SAT-4
and SAT-6 datasets used in the experiments of DeepSat (Basu et al. 2015)) or
adopt existing benchmarks which are often carefully made with the help of
domain experts. Table 3.1 gives an overview of four widely used benchmarks
for satellite image classification, where Brazilian Coffee Scenes Dataset and
UCI Statlog Landsat Satellite Dataset are about land use types in rural areas,
UC Merced Land Use Dataset contains different ground objects in both urban
and rural areas, and SpaceNet Dataset is for buildings in urban areas. On the
one hand, many kinds of ground objects such as crossroad and cottage are
not included in these benchmarks, and the spatial coverage is limited to some
specific areas instead of the whole world. On the other hand, the number of
images is not large, which will restrict the application of the deep learning
algorithms. Actually, creating a complete benchmark that can be applied in
different applications will require much expertlabor and is almost impossible.
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3.3 VGI for Deep Learning
3.3.1 VGI Data Quality and Noise

Since the data on VGI sites are mostly contributed by common volunteers,
the data quality problem has attracted a lot of concerns. Haklay (Haklay
2010) analyzed the data quality of OSM in London, where, for example, he
found that the motorway objects of OSM approximately had an 80% overlap
in comparison with Ordnance Survey datasets. Girres and Touya (Girres and
Touya 2010) extended the above OSM data quality analysis to France with
more quality elements, where BD TOPO® data were used as the reference.
On the basis of the measurements over OSM data (Girres and Touya 2010;
Haklay 2010), we list the main aspects of the data quality problem:

* Geometric inaccuracy: the position of the mapped objects is not com-
pletely right.

o Attribute inaccuracy: objects are not fully informed by some impor-
tant tag or are wrongly informed.

® Semantic inaccuracy: the nature or function of the mapped objects is
not correctly labeled.

e Incompleteness: not all the ground objects are mapped by the
volunteers.

® Logical inconsistency: the spatial relation of two mapped objects
sometimes does not satisfy the common sense in reality.

o Temporal inaccuracy: the changes of the real objects are not timely
mapped.

* Lineage missing: the source information of the mapped object is not
attached.

When VGI data are utilized as the input of machine learning algorithms,
these data quality issues lead to three kinds of noise among the extracted
training samples, as shown in Table 3.2. The omission noise and registration

TABLE 3.2
Noise of Training Samples Extracted from VGI Data
Noise Type Definition Data Quality Sources
Omission noise The training sample set is insufficient ~ Incompleteness, Temporal
to estimate the real data distribution inaccuracy, Attribute inaccuracy
Registration noise The input of the training sample is Geometric inaccuracy, Temporal
biased inaccuracy, Logic inconsistency
Semantic noise The training sample is wrongly labeled Semantic inaccuracy, Attribute

inaccuracy
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noise are proposed by Mnih and Hinton (Mnih and Hinton 2012) in their
study of extracting labels from OSM for deep learning, while the semantic
noise is proposed by the authors for the cases of extracting wrong samples
for a class.

VGl researchers have proposed quite a few solutions that can help improve
the quality of VGI data, some of which can be utilized to pre-process the VGI
data before they are applied in deep learning applications. First, many crowd
sourcing sites record the volunteers’ behavior in specific data structure such
as the Changeset of OSM. Such additional information makes it possible to
extract the mapped objects at the specific time (Allison and Jon 2016) when
the satellite images are taken, which can mainly help reduce the registration
noise caused by temporal inaccuracy.

Second, quite a few VGI data quality evaluation and data quality improve-
ment methods have been proposed. In the study by Ali et al. (Ali et al. 2014),
a machine learning-based method is proposed to track OSM classification
plausibility such as the wrong semantic labels to ambiguous areas, which
can reduce the semantic noise of the training sample when applied in pre-
processing the VGI data. More such intrinsic methods for VGI data quality
can be found in the study by Barron et al. (Barron, Neis, and Zipf 2014).

Third, linking multiple VGI data provides another way to improve the data
quality, especially for incompleteness. For example, GPS traces from citizen
sensors, for example, taxi cars, provide an alternative way of road map gen-
eration (L. Zhang, Thiemann, and Sester 2010). It can supplement the road
information of OSM, thus reducing the registration noise of the training
sample set for road detection.

3.3.2 Learning Algorithms for the Noise

Machine learning researchers have proposed some more robust learning
algorithms with the noise considered for more robust prediction models. We
first formally describe and model the satellite image classification problem
following the road detection study by Mnih and Hinton (Mnih and Hinton
2010). The problem is simplified as a binary classification of each pixel, that
is, positive for the object of interest and negative for the NOT interested. A
satellite image is denoted by S, while a map of equal size is denoted by M,
where M; ; =1 if the pixel at location (i, j) is positive and I\N/I,-, j = 0 otherwise.
Two vectors s and m are used to denote the image patch n(S,-,j,ws) with the
center location of (i, j) and the size of w, xw; and the map patch n(M; ;, w,,)-
The conditional probability distribution of the map pixels can be described as:

pn|s)=] ]~ ptis) (31)

where each p(; | s) is assumed to follow the Bernoulli distribution and its
mean value is determined by the ith output node when the distribution is
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modeled by a neural network which can be stacked with different layers like
the fully connected layer and the subsampling layer. Learning can be imple-
mented by optimizing an object function, for example, negative log likehood
optimization function with the following cross entropy format over the train-
ing samples with optimization algorithms like the batched stochastic gradi-
ent descent:

wh;

Z(mi In 7+ (1—it)n(1 — 7)) (3.2)

i=1

where 711; represents the pixel of the predicted map batch.

The omission noise is dealt with in (Mnih and Hinton 2012) with a
model named the asymmetric Bernoulli noise (ABN) model which rewrites
Equation 3.1 as:

piain| ) = plan [m)p(m )= [ [ * poin |mo)pom; |s) (33)

where m and m are respectively known as the truth map batch and the
observed map batch. ABN assumes that conditioned on m, all the components
of m are independent and 17; is assumed to be independent of m; for any j = i,
and the noise distribution p(; | m;) is assumed to be the same for all pixels i.
By setting 6y < 0;, where 6, = p(ii;; = 1| m; = 0) and 6, = p(i; = 0| m; = 1), the
omission noise can be managed in learning as this can reduce the false nega-
tive rate caused by the omission noise.

The above ABN model is extended in (Mnih and Hinton 2012) as a trans-
lational ABN (TABN) model to deal with the registration noise. p(m|m)
in Equation 3.3 is extended with the translational noise considered as
p(m | m,t) = p(m | Crop(m,t)), where Crop(m,t) function selects w}, x w}, sub-
patch from w,, xw,, patch m according to the translation variable ¢, as shown
in Figure 3.2. Finally, the conditional distribution, that is, Equation 3.3 is
extended as:

pils) = pH)> pli|m, Hp(m|s) (34)

where parameters in p(f) and p(m | m, t) are set using a validation sample set,
while the parameters in p(m | s) are learned by mining the negative log like-
hood object function with the EM-algorithm over the training sample set. In
the perspective of geometry, the translation function Crop randomly selects
different subparts of the true map generalized from the satellite image for
further generalizing the observed map.
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FIGURE 3.2

Demonstration of the function of Crop used in the TABN model. The outside patches repre-
sent m while the inner patches represent the cropped patch Crop (m,t). (From Mnih, V. and
G. Hinton. 2012. Learning to label aerial images from noisy data. In Proceedings of the 29th
International Conference on Machine Learning—ICML'12, Edinburgh, UK, 567-574.)

Yuan (Yuan 2016) introduced a signed distance function to the loss func-
tion for building detection with convolutional networks, which we think is
helpful for dealing with the registration noise. In detail, the loss item of each
pixel m; of the training data in Equation 3.2 is assigned a signed distance
d; to the boundary: d; = 0 if the ith pixel is on the boundary of the building
footprint, d; > 0 if it is inside the building footprint, and 4; < 0 if it is outside
the building footprint, as shown in Figure 3.3. According to (Yuan 2016), the
signed distance allows the deep network to learn more spatial layout infor-
mation, for example, the point inside the footprint is more important than
the one close to the boundary. This means the registration noise which usu-
ally lies on the boundary will have less impact on the model than the samples
that are more likely to be true, that is, the pixels inside.

3.3.3 Spatial and Semantic Domain Adaptation

On VGI sites, crowdsourcing is often spatially or semantically biased
(Quattrone, Capra, and De Meo 2015). For example, OSM volunteers con-
tribute more to the urban areas than to the rural areas, and more to the
public points of interest (POls), for example, shopping malls, than to the
residential areas. When VGI data are applied in deep learning applica-
tions, such bias phenomena will lead to the problem of domain adaptation
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FIGURE 3.3

(a) Training image and (b) corresponding signed distance label. (Allison, G. and B. Jon. 2016.
Exploring the SpaceNet Dataset Using DIGITS. https://devblogs.nvidia.com/parallelforall/
exploring-spacenet-dataset-using-digits/.)

(Ben-David et al. 2010) which aims at learning a model from a source data
distribution that can perform well on a related but different target data dis-
tribution. In a dynamic or streaming context, the data difference between
the training source and the target is also known as the problem of concept
drift (Tsymbal 2004).

There are quite a few typical algorithms for domain adaptation, such as
reweighting the source samples, iteratively labeling the target examples with
new models, and searching for a common data distribution space between
the source and the target. These methods improve the learning algorithm
itself without taking the properties of VGI data into consideration and actu-
ally are applicable for any data. In this chapter, we introduce two other tech-
niques, namely active sampling and feature transferring for deep learning
over the biased VGI data.

Active sampling is a strategy for active learning which aims at build-
ing efficient training sample sets by querying the user or some other data
sources. It has been studied for years in satellite image classification with
deep neural networks as a cost considered strategy for manual labeling
of the training samples, as shown in the survey by Tuia, et al. (Tuia et al.
2011). We introduce a VGI-based active deep learning framework used in
our study named DeepVGI (Chen and Zipf 2017) which aims at learning
from Bing satellite images (RGB, level 18, 256*256), MapSwipe data (vol-
unteer label of the Bing satellite image), and OSM data for humanitarian
mapping, which is house and building detection in rural areas in Africa.
Instead of classifying each pixel modeled in Section 3.3.2, DeepVGI has
the same task as the MapSwipe volunters, namely directly classifying the
image into positive (i.e., containing the target object) and negative (i.e, NOT
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FIGURE 3.4
Workflow of DeepVGI with a VGI-based active sampling strategy.

containing any target objects). As shown in Figure 3.4, DeepVGlI first trains
a deep network with positive samples from OSM and negative samples
from MapSwipe, and then uses the network to predict the training images.
The images whose predicted label is the sample as the MapSwipe volun-
teers are called the MapSwipe-Consistent S©, while the others are called
the MapSwipe-Inconsistent S'. DeepVGI then asks the experts to label a
number of images in S', and further adds these new labeled images to the
original samples for retraining a new deep network. The number of images
for relabeling by the experts is limited to reduce the cost. Such an active
learning strategy reduces the omission noise of OSM by experts’ labeling
and MapSwipe labels. In the experiment of building detection in Africa,
the retrained network (ANN-54) is well generalized from the buildings
downtown to the cottages in rural areas, thus achieving a higher overall
prediction accuracy than the first network (ANN-S1) trained without any
actively sampled images.

Transfer learning, which transfers features learned in one domain to
another domain, provides another solution for domain adaptation (Pan and
Yang 2010). In satellite image classification, there have been several trans-
fer learning studies for domain adaptation. Jun and Ghosh proposed to
transfer the knowledge learned from one region to another (Jun and Ghosh
2008), while Demir et al. (Demir, Bovolo, and Bruzzone 2013) proposed to
transfer the features learned from one time to another. Yuan et al. (Yuan
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and Cheriyadat 2014) transferred the low-level features, for example, line
segment learned from satellite images to predict the number of buildings.
Researchers from Facebook’s Connectivity Lab found that, with minor modi-
fications, the Convolutional Neural Networks trained on normal photos can
efficiently detect whether a satellite image contains a footprint, which means
the deep features learned from normal photos can be transferred to deep
learning tasks over satellite images. However, the three studies introduced
above did not utilize VGI data as the supervison knowledge. As far as we
know, there are currently no studies that transfer learned VGI knowledge
from task to task, from area to area, or from time to time in satellite image
classification with deep neural networks.

3.4 Applications

By integrating VGI data and satellite images, deep learning technologies
enable the machine to learn the crowdsourcing knowledge contributed by
the volunteers and citizens, thus automatically and intelligently exploring
our earth and society. Many novel applications can be proposed with the
data and the technologies. Here, we only present some typical examples.

* Humanitarian mapping: Many ground objects like road, house, rivers,
etc. in rural and undeveloped areas are still missing in the current
maps, but they are quite important to help the people in need. We
can learn ground object prediction models from the existing map
data (Mnih and Hinton 2010; Mnih and Hinton 2012; Roemheld 2016;
Chen and Zipf 2017), and then predict the missing object on the sat-
ellite images, to either save the volunteers’ labor by recommendation
or improve the quality of the data contributed by the volunteers (Ali
et al. 2014).

® Population mapping: The spatial distribution of a population is quite
important in making some decisions. For example, Facebook needs
to know how many devices shoud be deployed in each area so as to
connect the whole world. Buildings and roads on satellite images
or POIs from OSM provide one way for global population mapping
(Bakillah et al. 2014), while VGI records from citizen sensors like the
mobile phones provide another solution for dynamic population
estimation for a specific area (Deville et al. 2014).

® Poverty prediction: Similar to population mapping, with the data of

buildings and roads on satellite images or OSM, the global poverty
map, which constitute critical data for studying the society and
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economy, can be estimated (Zhao and Kusumaputri 2016). Instead of
utilizing building and road data, Xie et al. (Xie et al. 2016) adopted
nighttime light intensities which were predicted by the daytime sat-
ellite images with Convolutional Neural Networks as a proxy for
population prediction.

e Urban change detection: With footprints of ground urban objects
on OSM and satellite images, we are able to detect any land cover
changes such as the damage caused by an earthquake or a storm in
an urban area by pixel-wise classification with deep learning tech-
niques (Yuan 2016).

® Public health monitoring: Public health can be measured and moni-
tored by citizen sensors like tweets (Paul and Dredze 2011), while
many causes of public health events like smog disasters and flood
disasters can be observed by satellite sensors. Connecting the physi-
cal sensor data to the citizen sensor data makes it possible to analyze
and monitor the public health (Chen et al. 2014). Deep neural net-
works enable researchers to find complex patterns between public
health and big VGI data.

3.5 Conclusion and Future Work

In this chapter, we introduced some recent work in deep learning with satel-
lite images and VGI data. We first analyzed the typical deep learning studies
in satellite image classification as well as some classic benchmarks, and then
focused on the problem of automatically extracting big sample sets from VGI
data for the supervision of training deep networks. Two main technical chal-
lenges about sample noise and domain adaptation as well as their solutions
in VGI data quality research and machine learning research were further
introduced. Finally, we presented several applications where the above tech-
niques and data can be applied.

Learning deep prediction models from VGI data and satellite images with
the supervision of volunteers” knowledge is a promising field with many
potential real-world applications. On the one hand, we think the field of VGI
itself will be further studied, especially the aspects of data quality and data
linkage. Linking VGI data can not only make up the problem of data quality,
but also enrich the supervision knowledge for different prediction tasks and
fine-grained prediction models. On the other hand, feature-level data inte-
gration for more accurate prediction models is an important research direc-
tion. Machine learning algorithms like transfer learning and active learning
will be applied together with deep feature representation for these technical
problems.
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4.1 Introduction

With the advances in location positioning and wireless communication tech-
nologies, collecting spatial trajectories that represent the mobility of a variety
of moving objects becomes prevalent in the digital society. Floating car data
(FCD) gathered from GPS-equipped moving vehicles have become increas-
ingly available. For instance, a large number of taxis in major cities, for exam-
ple, San Francisco, Shanghai, Rome, are equipped with GPS devices and send

79



80 Geospatial Data Science Techniques and Applications

time-stamped locations of a high frequency to data centers and result in huge
amounts of FCD. With the open data movement, some FCD data sets, for exam-
ple, mobility traces of taxicabs in San Francisco (Michal, Natasa, and Matthias
2009), are freely available and have been widely used for a variety of research
purposes and applications. The complex and large FCD contain rich informa-
tion and bring new opportunities to understand urban dynamics, which are
crucial for decision-making in environmental and transportation planning.

FCD have been intensively studied for a wide range of research and appli-
cation purposes. A large group of research works have been focused on
utilizing FCD for modeling traffic congestion and human mobility patterns
(Ding, Yang, and Meng 2015; Keler, Ding, and Krisp 2016), and for uncovering
driving behaviors (Liu, Andris, and Ratti 2010; Ding, Fan, and Meng 2015).
Some research works have examined FCD to infer urban land uses and city
structures (Liu, Gong et al. 2015) and to mine interesting locations or places
(Zheng et al. 2009; Andrienko et al. 2011). Other investigations have been con-
ducted to understand place semantics together with other data sources, like
point-of-interest (POI) data (Yuan, Zheng, and Xie 2012) and social media
data (Liu, Liu et al. 2015; Mazimpaka and Timpf 2015).

Basically, FCD consist of position records generated by moving vehicles.
Each record can be represented by a point of the form p = (x, y, f) and associ-
ated with additional fields like velocity and orientation. A series of chrono-
logically ordered points form a spatial trajectory (p,, p,, ... , pn)- FCD analysis,
and in general spatial trajectory analysis, involves a variety of research top-
ics and techniques from spatial trajectory data preprocessing to trajectory
pattern mining and to big trajectory data visualization. Most of the existing
research on FCD uses computational only approaches which normally lack
the involvement of human interaction and effective communication of the
results with the human.

This chapter addresses visual analytics approaches for FCD. Visual analyt-
ics is a fast evolving discipline of analytical reasoning facilitated by interac-
tive visual interfaces (Thomas and Cook 2005; Keim et al. 2010). In recent
years, visual analytics techniques and tools have been increasingly pro-
posed, developed, and applied to explore big geospatial movement data for
understanding human mobility patterns and urban structures.

A comprehensive exploration and understanding of massive FCD requires
a variety of visual analytics techniques ranging from direct depictions of
original FCD to representations of their computationally derived data.
Research works on FCD visual analysis can be distinguished at two abstract
levels, namely, (1) point-based and (2) trajectory-based levels. The point-
based view considers each discrete point, either a raw GPS entry or a derived
point spatial object, as a point-based spatial object, while the trajectory-based
view considers a sequence of temporally ordered points (e.g., GPS records) as
a trajectory-based spatial object.

Taking the point-based view, an FCD data point can be represented and
visualized, for example, by a dot. Interactive techniques, such as filtering,
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brushing, and linking, can be applied to explore interesting parts of the data
set. For instance, the interactive visualization system HubCab plots millions
of individual pick-up and drop-off points, and allows users to get insight
into the taxi mobility patterns at a very fine granularity to support taxi shar-
ing services (Santi et al. 2014). In order to explore multiple attributes of FCD
data points, multivariate visualizations (Wong and Bergeron 1997) can be
utilized. At the collective level, visual analysis of massive FCD incorporates
data transformation and data aggregation to represent groups of objects and
reduces visual cluttering. A typical procedure for visual analysis of point
objects involves point clustering, space partition, spatiotemporal aggregation,
and the analysis of aggregated data. Andrienko and Andrienko (2010) sys-
tematized aggregation approaches of movement data into a framework that
clearly defines what kinds of exploratory tasks each approach is suitable for.

Taking the trajectory-based view, a straightforward visualization is simply
connecting the adjacent trajectory segments into lines. However, drawing
many such lines may lead to overplotting so that users could hardly discern
any meaningful patterns. To reduce the visual clutter, techniques such as
edge bundling (Holten 2006; Holten and Van Wijk 2009; Zhou et al. 2013),
animations (e.g., the NYC Taxi holiday visualization system (https://taxi.
imagework.com), and Space-Time-Cube (Kraak 2003) can be applied. Visual
analytics approaches (e.g., visual clustering [Andrienko et al. 2009]) and sys-
tems (e.g., TripVista [Guo et al. 2011]) driven by human analytics have been
developed for the interactive exploration of large collections of trajectories.
At an aggregated level, trajectories can be grouped into movement flows and
visualized. Andrienko and Andrienko (2011) presented a generic spatial gen-
eralization and aggregation approach for visual analysis of movement trajec-
tories. Composite density maps (Scheepens et al. 2011), stacked 3D trajectory
bands (Tominski et al. 2012), and network visualization (van den Elzen and
van Wijk 2014) were proposed to explore the multivariate trajectory data.
In particular, several research works (Guo 2009; Wood, Dykes, and Slingsby
2010; Boyandin et al. 2011; Guo and Zhu 2014) were specialized in mapping
origin—destination flows.

In this chapter, we introduce geospatial visual analytics techniques to
explore FCD points and trajectories, especially at individual levels. The tech-
niques are demonstrated using a large amount of real-world FCD collected
in Shanghai (Ding 2016).

4.2 FCD and Preprocessing

The test FCD data set is temporally ordered position records collected from
about 2000 taxis within 52 days from May 10 to June 30, 2010 in Shanghai with
a temporal resolution of 10 seconds, resulting in more than half a billion GPS
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TABLE 4.1

Test Data Properties

Field Example Value Field Description

Date 20,100,517 8-digit number, yyyymmdd

Time 235,903 6-digit number, HHMMSS

Car identifier 10,003 5-digit number

Longitude 121.472038 Accurate to 6 decimal places, in degrees
Latitude 31.236135 Accurate to 6 decimal places, in degrees
Velocity 16.1 Inkm/h

Car status 1/0 1-occupied; 0-unoccupied

entries. Each GPS entry is associated with fields of date, time, car identifier,
location, instantaneous velocity, and car status. Table 4.1 lists the fields for
each GPS record along with sample values and descriptions. Figure 4.1 illus-
trates the raw GPS points of a taxi with the identifier 10003 on May 12, 2010.

For each day, the size of data as a CSV file is about 4.5 G. We preprocess the
raw data by filtering out the errors, for instance, GPS data outside the bound-
ary of Shanghai, time stamps not in the valid test time slot, and the attributes
that are not meaningful.

4.2.1 Classification of FCD Points

A variety of different point types can be identified based on GPS attributes.
In this study, we use “car status” as an illustration. On the basis of the attri-
bute value of “car status” 1 and 0, we can easily differentiate occupancy
(O) and non-occupancy (N) points. Furthermore, we derive two additional
special types of points, namely pick-up (P) and drop-off (D) points, from a
time series of GPS points. A pick-up point is a location where the car status

FIGURE 4.1
GPS points of the taxi with ID 10003 on May 12, 2010.
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changes from non-occupancy to occupancy, while a drop-off point is a loca-
tion where the status changes in the opposite way.

Owing to the huge amount of (O, N, P, D) points in the time span in the
whole study area, we partition them into certain spatial (e.g., 100 x 100 m)
and temporal (e.g., 1 h) chunks. For each hour in the 52 days, we compute
the total numbers of (O, N, P, D) points respectively in the study area. Since
the O and N points are at the same orders of magnitude, and P and D are
at the same orders of magnitude, we plot in the pair of (O, N) and (P, D)
separately. Figure 4.2 illustrates the temporal variation of (O, N, P, D) points.
In Figure 4.2, the frequency distributions of the four types of points exhibit
strong daily rhythm patterns. Besides, there is clearly a negative correlation
between the distributions of (O, N) points and a positive correlation between
(P, D) points. Furthermore, we can easily identify the peaks and valleys of the
(O, N, P, D) distributions. For instance, the (P, D) point distribution has three
peaks (at about 8-9, 12, and 18 h) and one deep valley (at about 4 h).

For each spatial chunk of 100 x 100 m, we compute the total number of (O,
N, P, D) points in the 52 days. A constant interval is used to group the values
into seven classes and a grayscale scheme from black to white is applied to
show the distribution of the data. Figure 4.3 shows the distinct spatial distri-
butions of the (O, N, P, D) points.

4.2.2 Extraction of Trajectories

A trajectory is a complex spatiotemporal object consisting of consecutive
GPS records of an entity with several associated attributes. Similar to the
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FIGURE 4.2

The hourly temporal variation of the total numbers of (O, N, P, D) in 1 week. (a) Occupancy and
non-occupancy points. (b) Pick-up and drop-off points.
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FIGURE 4.3
The frequency distribution of the total numbers of (O, N, P, D) points. (a) Occupancy. (b) Non-
occupancy. (¢) Pick-up. (d) Drop-off.

treatment in the point view, a variety of trajectory types can be derived from
the GPS record series based on their attributes. In addition, simplified tra-
jectories can also be derived at different abstract levels. For instance, we can
easily reconstruct occupancy and non-occupancy trajectories or trips based
on the “car status” values 1 and 0. By connecting the first and last points
of the occupancy trajectories, we can derive their origin—destination lines.
Figure 4.4 illustrates the reconstructed occupied trajectories of 100 cars on
May 10, 2010, and their corresponding origin—destination lines. The trace
footprints reflect the relative density of trajectories and the road network
structure well. We can also perceive some very popular origins and desti-
nations, for instance, a hotspot on the right of the screenshot, which corre-
sponds to the Shanghai Pudong International Airport.

Besides, a number of associated trip statistics, for example, trip distance
and duration, can be derived. On the basis of the occupied trip distance
and the taxi fare system of Shanghai in 2010, we calculate the average daily
income of each taxi, which exhibits a normal distribution (Ding, Fan, and
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FIGURE 4.4

The reconstructed occupancy trajectories and their origin—destination lines. (a) Occupied tra-
jectories. (b) Origin—destination lines.

Meng 2015). This chapter categorizes the 100 highest-income taxis as the top
group and the 100 lowest-income taxis as the bottom group.

4.3 Point-Based Visual Analysis

As introduced in Section 4.1, there have been a variety of techniques for
visual exploration and communication of FCD points at different aggrega-
tion levels. In this section, we propose a pie radar glyph for multivariate
point-based visualization and a salience-based method for the dominant
variate visualization.

4.3.1 Pie Radar Glyph

Glyph-based visualization methods like star/radar plot are widely used to
represent multivariate data. In this work, we propose a pie radar glyph to
represent the multivariate FCD points. The glyph comprises four filled sec-
tors assigned with orange, green, red, and blue anticlockwise to represent
the variates of (O, N, P, D), respectively. The radius of each sector is propor-
tional to the value of the mapping variate, which is calculated for the total
number of points within a spatial partition of 100 x 100 m and the temporal
slot of 1 hour. Figure 4.5 depicts the mapping of a pie radar glyph from the
co-located four variate data.

To avoid cluttering effects and enhance the visual appearance, we first
properly order glyphs by assigning a larger z-index value to small glyphs
so that they are placed on top of larger ones rather than being occluded.
Then we render the glyphs using semi-transparency to make sure that the
large glyphs underneath are visible. The radius of the glyph sectors is also
carefully chosen. Figure 4.6 shows the spatiotemporal variances of the point
distributions in four time slots.



86 Geospatial Data Science Techniques and Applications

FIGURE 4.5
A pie radar glyph.

From the compact visualization results in Figure 4.6, we can easily observe
distinct temporal patterns. The dominant red sectors in Figure 4.6a reflect
relatively active pick-ups at 3-4 h, while Figure 4.6b shows several signif-
icantly dense drop-off hotspots at 6-7 h. The largest three blue sectors on
the west, south, and middle (from left to right) are located in the Honggiao

FIGURE 4.6
Temporal distributions of (O, N, P, D) points using the pie radar glyph. (a) 3—4 h. (b) 6-7 h. (c)
8-9h. (d) 18-19 h.



Visual Analysis of Floating Car Data 87

International Airport (Terminals 2 and 1), Shanghai South Railway Station,
and Shanghai Railway Station. Figure 4.6c, d illustrates daily rush hours at
8-9 and 18-19 h, which have a relatively larger number of points. The main
roads in the city center are dominantly related to occupancy points. During
the rush hour at 8-9 h, there are obvious places of blue sectors of drop-offs
and the red sectors of pick-ups scattering around. By contrast, during the
rush hour at 18-19 h, there are obvious places of red sectors of pick-ups.
Besides, there is a big green sector of non-occupancy points in the airport.

4.3.2 Salient Feature Image

Pie-radar glyph visualization provides easily perceivable overall compact
visualization results; however, it still requires high cognitive efforts and
interactive operations of the users to explore and understand cluttered sym-
bols. To reduce the visual complexity, we propose a salience-based visualiza-
tion approach, which displays in each cell (i.e,, a spatial partition) only the
most salient feature, as opposed to showing all co-located ones.

Taking two time intervals 7-8 and 18-19 h of pick-up and drop-off as
exemplary features, the spatial distribution of these two features in the two
intervals is demonstrated in Figure 4.7. From the two images in Figure 4.7,
we can easily observe dense pick-up (red) and drop-off (blue) areas at the
two intervals. The salient features in both maps form roughly complemen-
tary spatial distribution patterns. For instance, many dense drop-off areas at
7-8 h become dense pick-up areas at 18-19 h.

Furthermore, in order to display temporal change patterns, we combine
the two images into one temporal change map by composing the corre-
sponding pixels of two images. With regard to the salience-based images
of pick-ups and drop-offs at 7-8 and 18-19 h, we define three categories of

FIGURE 4.7
The salience-based spatial distribution of pick-up and drop-off points. (a) 7-8 h. (b) 18-19 h.
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temporal changes. The first category (drop-off > pickup) is the change of the
salient feature from drop-off at 7-8 h to pick-up at 18-19 h. Similarly, the sec-
ond category is (pickup > drop-off). In the last category, the salient feature
remains unchanged.

Figure 4.8 shows the temporal change image of the pick-ups and drop-
offs at 7-8 and 18-19 h, in which opacity values correspond to the changes
in the values of two salient features. It allows a straightforward detection
of change patterns during the corresponding time intervals. Regarding the
spatial extent, the dominant temporal change (in steel blue) is the change of
the salient variable from pick-ups to drop-offs, occupying almost the whole
Shanghai area. The second spatially large temporal change is the change
from drop-offs to pick-ups, which can be identified by several orange areas.
Finally, we can detect quite a few relatively small but shiny yellow areas
scattered in Shanghai, which indicates that these areas are of either signifi-
cant pick-up or drop-off changes. Being stimulated from the spatiotemporal
pattern in Figure 4.8 and based on the knowledge of human daily activity
patterns, we naturally conjecture that the temporal change patterns are asso-
ciated with distinct land use types. For instance, areas with intense drop-
off activities at 7-8 h and intense pick-ups at 18-19 h probably correspond to
the working places. This may be an important supporting indicator for the
research work on land use/cover change detection.

To confirm our assumptions, we enclose orange and yellow areas with
irregular polygons and manually check these areas on the Shanghai base
map. Figure 4.9 shows the distinct areas of interest labeled with their func-
tions or name. The irregular polygons with orange frames and labels are

Th 18h
Drop-off —  Pick-up
Pick-up — Drop-off
Pick-up =  Pick-up
Drop-off —  Drop-off

FIGURE 4.8
The salience change map.
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FIGURE 4.9
Regions of interests (CZ stands for commercial zone).

regions especially active with drop-offs at 7-8 h and pick-ups at 18-19 h. We
find that most of them are free-trade zones, high-tech zones, industrial and
development zones, and financial centers. This observation coincides with
our conjecture. Another interesting observation is that the area of Shanghai
Expo 2010, located along both banks of the Huangpu River, also belongs to
this kind of temporal change pattern. Since Expo 2010 was held from May 1
to October 31, 2010 and covered the total time span of our data set, it is rea-
sonable to expect that the data during this time period can reveal the human
mobility patterns related to this international event.

4.4 Trajectory-Based Visual Analysis

In this section, we propose a visual analytics framework for trajectory analy-
sis and apply this framework for the visual analysis of origin—destination
lines and non-occupancy trajectories.
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4.4.1 A Visual Analytics Framework for Trajectory Analysis

The proposed framework basically consists of three components: (1) visual
querying of the movement database, (2) interactive clustering, and (3) visual
representations. The framework is implemented in a web-based interactive
environment.

1. Movement Database Visual Querying: This component allows a visual
query of the movement database for interesting trajectory subsets.
A computationally efficient way of inspecting massive data is to
retrieve only the relevant interesting data partitions from the data-
base. For instance, we can retrieve relevant data sets according to the
taxi drivers’ income in specific time intervals by interactively brush-
ing an income histogram (Figure 4.10a) and a time line graph
(Figure 4.10b).

2. Interactive Visual Clustering: This component introduces the interac-
tive visual clustering designed for trajectory exploration. In general,
meaningful clustering results require a proper setting of clustering
features and parameters, especially for multivariate clustering. For
instance, analysts might be interested in inspecting groups of trajec-
tories according to some attribute values, for example, starting from
the same locations, or duration less than 1 hour. Furthermore, they
may need to examine distinct spatial interaction patterns by set-
ting different distance values. In our study, we design an interactive
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FIGURE 4.10
Visual querying of the movement database. (a) Visual query of taxi drivers’ income. (b) Visual
query of the time line view.
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FIGURE 4.11
Interactive clustering interface for feature selection and distance setting.

clustering interface (shown in Figure 4.11) to serve the purpose for
feature selection using a checklist and parameter setting with a
slide bar.

3. Visual Representations: The resulting clusters are visualized in a
variety of representations. First, we propose a well-designed paral-
lel coordinates plot to visualize the precomputed clusters resulting
from the interactive clustering process. The users can visually detect
and interactively select interesting clusters in the parallel coordi-
nates for further analysis. Second, the individual trajectories in the
selected clusters are visualized on linked map views. For visualiz-
ing origin—destination lines on the map view, we propose a gradient
rendering technique, while for non-occupancy trajectories we pro-
pose a direct rendering technique and apply the space-time-cube
method.

4.4.2 Visual Analysis of Origin-Destination Lines

In this section, we apply the proposed visual analytics framework for ori-
gin—destination line analysis.

4.4.2.1 Interactive Hierarchical Agglomerative Clustering

We firstly apply a hierarchical agglomerative clustering method to group
the origin—destination lines. An origin—destination line can be modelled as
a point in a high-dimension space. The location of the origin and destina-
tion, the duration, and distance are used as exemplary attributes. Besides,
the algorithm has two parameters, namely, a distance function and a link-
age criterion. Figure 4.11 illustrates an example of clustering setting with the
selected features of the longitude and latitude of the destination, the cluster-
ing distance of 100 m, and an average linkage criterion.

4.4.2.2 A Parallel Coordinates View

We adopt the interactive parallel coordinates technique and design the
visual representation of the clustering results as follows. First, besides the
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multiple attributes (e.g., origin, destination, distance, duration), we add to the
parallel coordinates two more features, that is, the individual cluster iden-
tity number and the number of elements in each cluster. Second, we design
the parallel coordinates in an easily understandable way by ordering the
objects using the Z-index and rendering the clusters with semi-transparency.
Finally, for an immediate perception of individual clusters, we assign dis-
tinctive colors to clusters with a distinct number of cluster elements to reveal
the natural clusters.

Taking the trajectories from 7 to 10 h on May 31, 2015 as an example, we
obtain about 250 clusters after the interactive clustering with parameter set-
tings in Figure 4.11. These 250 clusters are then represented by the parallel
coordinates shown in Figure 4.12a. The first axis represents the number of
elements in each cluster. The second axis shows the identity number of each
specific cluster. The third and fourth axes represent the distance and dura-
tion of the origin—destination lines. The last four axes are for the locations of
origin and destination.

As shown in Figure 4.12a, the parallel coordinates reveal the natural data
distribution and the clusters in an intuitive manner. Large clusters with
more than 15 elements of individual origin—-destination lines are colored
according to the chosen categorical color scheme. Since we cluster the lines
using their destinations, it is natural that the large clusters converge at the
last two axes. One more interesting pattern is that larger clusters converge
at the middle range of the last two axes, which indicates that large clusters
of origin—destination lines happen in the center of the study area. Looking
at the first axis (count_elements), we can get an overview about the distribu-
tion of the number of elements in each large cluster. For instance, the largest
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FIGURE 4.12
The parallel coordinates view. (a) Clusters of trajectories based on “destination” from 7 to 10 h
on May 31, 2010. (b) Selection of interesting individual clusters.



Visual Analysis of Floating Car Data 93

cluster has approximately 40 elements, and the second 30 elements. For fur-
ther exploration and analysis, the users can inspect interesting individual
clusters by brushing any axis or multiple axes at the same time. As shown in
Figure 4.12b, two elements in the first axis are brushed, which correspond to
two clusters of about 30 elements.

4.4.2.3 A Map View of Origin-Destination Lines by Gradient Line Rendering

To allow the inspection of the spatial patterns of the selected clusters, we
visualize the individual origin—destination lines in a map view, which is
linked to the parallel coordinates.

A gradient line rendering technique is proposed to allow an intuitive
interpretation of the origin—destination lines. We firstly round the coordi-
nate values of origins/destinations to reduce the line intersections. Then we
order the origin—destination lines according to their distances by pushing
long lines into the background (using a small z-index) so that short lines
would not be hidden. Finally, we divide the lines into segments and assign
the series of line segments from origin to destination with gradient colors
from dark to light color values.

Taking the selected clusters in Figure 4.12b as an example, Figure 4.13 shows
the individual origin—destination lines on the map view after applying the

FIGURE 4.13
The map view of the selected origin—destination lines.
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gradient rendering technique. The detailed spatial interaction can be clearly
identified. The two clusters correspond to two transport hubs with the right-
sided cluster of the Shanghai South Railway Station and the left-sided one of
the Honggiao International Airport.

Furthermore, we can interactively select other interesting clusters in the
parallel coordinates view and inspect their spatial patterns on the map view.
For instance, we brush large clusters in Figure 4.12a and show the individual
origin—destination lines in these clusters in Figure 4.14. The largest two clus-
ters of about 42 individual elements (Figure 4.14a) are with their destinations
concentrated in the city center. This phenomenon is reasonable since there
should be more taxis going to the city center during rush hours. The third
and fourth largest clusters of about 30 individual items (Figure 4.14b) corre-
spond to Honggiao Airport and Shanghai South Railway Station. Owing to
the locations of the two transport hubs, especially Honggiao Airport, there
are some long distance origin—destination lines. The fifth to ninth largest
clusters (Figure 4.14c, d) are of around 25-30 elements and primarily with
destinations near the city center. The gradient line rendering results show
not only the spatiotemporal distribution of the lines but also their spatial
interaction between different areas. Mostly, there are more local interactions.
The radiation shape of the origin—destination lines is different and difficult
to foresee, since it relies on the spatial location of the cluster. Users can most

FIGURE 4.14
Significant clusters of destinations at 7-10 h on May 31, 2010. (a) Clusters 1 and 2. (b) Clusters 3
and 4. (c) Clusters 5 and 6. (d) Clusters 7, 8, and 9.
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likely explore the spatial patterns of other clusters by brushing their corre-
spondences in the parallel coordinates view.

4.4.3 Visual Analysis of Non-Occupancy Trajectories

In this section, we apply the proposed framework for non-occupancy trajec-
tory analysis of two groups of taxi drivers, that is, high-income and low-
income groups.

Similar to the procedure in Section 4.4.2, we firstly retrieve non-occupancy
trajectories from the movement database by visually querying the low- and
high-income taxis. Then we interactively cluster the trajectories by using the
clustering interface. The clusters are visualized in the parallel coordinates
view. The users can then select significant clusters in the parallel coordinates
and render the individual cluster elements on a 2D map view. Since the char-
acteristics of non-occupancy trajectories are different from origin—-destination
lines, we apply the direct line rendering technique for the trajectory visual-
ization. Furthermore, to inspect the space-time dynamic profiles of the trajec-
tories at certain hotspots, we apply the space-time-cube technique.

4.4.3.1 A Map View of Non-Occupancy Trajectories
by Direct Line Rendering

To demonstrate, we retrieve the non-occupancy trajectories of the bottom-
and top-performing taxi groups from 6 to 12 h on May 31, 2010. On the basis
of their origins, we cluster these trajectories and show the clustering results
in the parallel coordinates in the upper subfigures in Figure 4.15. Then we
select the significant clusters in the respective parallel coordinates, which are
rendered on the 2-D map with an opacity of 0.2 and with the same colors of
the clusters in the parallel coordinates (the lower subfigures in Figure 4.15).
In the parallel coordinates, we can see that there are larger clusters of non-
occupancy trajectories in the high-income taxi group (Figure 4.15b) than in
the low-income group (Figure 4.15a). In the map views, the overall spatial
distribution of the selected clusters and the driving routes starting from the
cluster centers can be easily detected. The denser line areas are with more
frequent non-occupancy trajectories. We also observe that in each cluster
there is a distance decay effect of the frequency from its center to its border.
Moreover, in terms of the spatial distribution, the cluster centers of both taxi
groups largely overlap. There are also some notable differences. For instance,
in the high-income taxi group, there is a significant cluster related to the
Pudong Airport (on the easternmost), which does not appear in the low-
income group.

By comparing cluster centers with the base map, we can identify the most
important transport hubs in the test area, including Shanghai Railway
Station, Shanghai South Railway Station, Honggiao Airport, and Pudong
Airport. Figure 4.16 annotates these transport hubs by their names.
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FIGURE 4.15
Non-occupancy trajectory clusters based on “starting location.” (a) Bottom-income group. (b)
High-income group.
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FIGURE 4.16
Identified transport hubs.

4.4.3.2 Space-Time-Cube Visualization of Selected
Non-Occupancy Trajectories

To observe the dynamic behavior of individual trajectories at certain hotspots,
we visualize them in a space-time cube. We use Pudong International Airport
as a test case. For each taxi group, we extract the non-occupancy trajectories
starting from or ending at the airport from the movement database. Figure
4.17 shows the dynamics of the non-occupancy trajectories related to the air-
port on May 31, 2010 in the space-time cubes.

From Figure 4.17, we can get an overview of the spatiotemporal profiles
of the trajectories related to the airport. Regarding the number of trajecto-
ries, obviously for the top-performing taxi group, there are far more non-
occupancy trajectories from the airport (Figure 4.17c) than the ones to the
airport (Figure 4.17d). The large number of non-occupancy trajectories from
the airport indicates that most of the high-income taxi drivers directly cruise
back to the city center after dropping off passengers in the airport rather
than waiting there for the next passengers; while the small amount of non-
occupancy trajectories to the airport indicates that only a few high-income
taxi drivers cruise to the airport without passengers. By contrast, for the bot-
tom income taxi group, we cannot find such a difference.

Looking at the temporal dimension, we can also observe the frequency
distribution patterns. For instance, in the bottom performing taxi group,
there are more non-occupancy trajectories to Pudong Airport (Figure 4.17b)
happening in the afternoon around 15 h, while in the top income taxi group
there are more non-occupancy trajectories from the airport (Figure 4.17c) in
the early morning (0-5 h).



98 Geospatial Data Science Techniques and Applications

(a) 25+ (b) 25
20 Sl 20
P ‘
S
. 15 - =~ . 15
10 Ly 10
5, AN 5
g N
0 I 0
315 il Y 315
314 o 314°
S 31.3 ™ :
et — 31.2 - gt -
et 122 e 122
: e 1218 31.1 & e 1218
31 : T 1216 31 ; ~ 1216
Latitude 309 e 1214 Latitude 309 1214
- 121.2 - 1212
30.8 121 30.8 121
Longitude Longitude
(©) 15 (d) o
- 8,
== - N
T
10 <k 6
g ] § 5.
e} = T 4 P
5 L™ 3 //'-/I/ =
— T
“\./.?}'ﬁ;ﬂ\ 2 )
e 1

312 . o R
311 e
31 : — 1216
Latitude 309 ””"12,;2 1214

et
e 121.8
— 1216
121.4
30.8 " 121
Longitude Longitude

FIGURE 4.17

The space-time cube of non-occupancy trajectories related to Pudong Airport. (a) Bottom-
income group from Pudong. (b) Bottom-income group to Pudong. (c) Top-income group from
Pudong. (d) Top-income group to Pudong.

Furthermore, we can identify from the non-occupancy trajectories to the
airport in both taxi groups (Figure 4.17b, d) that there are many vertical lines.
These vertical lines reflect that the taxis are stationary at particular locations
for rather long periods. Indeed, we checked these places on the base map and
found that they correspond to airport taxi waiting pools where taxi drivers
can rest or wait for picking up their next passengers.

4.5 Conclusion

In this chapter, we introduced the state of the art of visual analysis of FCD
and our extensive experiments with massive and complex real-world taxi
FCD. We analyzed FCD at two abstract levels, namely, point-based and
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trajectory-based levels. For the visual analysis of multivariate points, that
is, occupancy, non-occupancy, pick-up, and drop-off, we proposed a pie-
radar glyph method and a salience-based visualization method to reveal
their spatiotemporal patterns. The compact visualizations revealed the
underlying interesting data distributions, which can be used for further
mining, like inferring urban land use types. For the visual analysis of
trajectories, we proposed a framework integrating database visual query-
ing, interactive clustering, parallel coordinates, gradient and direct line
rendering techniques, and space-time cube, which allows users to freely
explore potentially interesting clusters. The framework was applied to
visually analyze the spatiotemporal patterns of origin—destination lines
and non-occupancy trajectories, which facilitate the understanding of
movement interactions.
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5.1 Introduction

The goal of this chapter is to describe a mathematical tool that can be used
to recognize patterns of similarity in data. We will be interested in how this
tool applies to geospatial data, but it is important to note that it can be applied
to any data that can be described numerically, and is most directly applicable
to vector data types. Raster data types can also be processed by such a tool,
but only after processing pixel areas to point or other vector data types. To
explore the efficacy of such a tool, and since the tool is in its early stages, we
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will use the tool to explore synthetic point data sets that we relate to geologic
structures at a tectonic boundary.

The tool that this chapter aims to describe comes from the mathematical
field of topology. In imprecise terms, topology is the study of mathemati-
cal spaces and their characteristics that are independent of size/distance. To
illustrate what this means, we first contrast the notion of a topological prop-
erty with the more familiar notion of a geometric property, such as area,
volume, arc length, or curvature. Each of these is a property we can compute
for a space (like a polygon or a solid) that depends on the size of the object in
question. We know, for example, that two spheres with different length radii
will have different volumes. As such, volume (and area, arc length, curva-
ture, etc.) is a geometric property rather than a topological one. With these
geometric properties in mind for contrast, examples of topological proper-
ties for a space are the following:

* Number of components: Does the space have one or three pieces?

e Compactness® Does the space extend infinitely and/or have a
boundary?

* Number/shape of holes: Does the space resemble a basketball, baseball,
an inner tube, or a donut?

In what follows, we will focus on this last topological property of number
of holes and types of holes in a space, which are detected by a tool called
homology.

Homology is able to rigorously distinguish an inner tube from a donut by
capturing the fact that while an inner tube and a donut both have a common
central hole, an inner tube has an additional hole (sweeping around the other
hole) into which a donut could fit (again, ignoring size!). Using an advanced
mathematical tool like homology to rigorously distinguish an inner tube and
a donut may seem silly, but only because we can actually see donuts and inner
tubes. The utility of homology becomes much greater and more apparent
when we start trying to understand and distinguish mathematical objects
in higher dimensions where our ability to visualize the spaces in question is
lost. Since our goal is to apply persistent homology (a variation of traditional
homology) to data, it is crucial to note that the concept of “higher dimensions”
is not merely theoretical; if we look at a data set each of which have, say, six
attributes, then our data set is a 6-dimensional object. Hence, having a tool
that detects topological features of a space in any dimension and that does not
at all rely on human visualization abilities is extremely useful.

The kinds of spaces on which homology is computed tend to be manifolds,
which are spaces that “look like” Euclidean space of some dimension—at

* In mathematics, the definition of a compact space is a technical one. For a rigorous definition,
see Munkres (1975).



Recognizing Patterns in Geospatial Data Using Persistent Homology 105

least in small neighborhoods in the space around each point. For example,
we would consider a balloon (ignoring the tie) a 2-dimensional manifold
because if we zoom in very, very close to any single point on the balloon,
we can be tricked into thinking that it is a plane, that is, a 2-dimensional
Euclidean space. Alternatively, if we were to describe a balloon (a sphere)
with equations, we would have two degrees of freedom in the equations
and therefore define a 2-dimensional manifold. The fact that a balloon needs
three dimensions to exist in as a whole has no bearing on how we classify its
dimension as a manifold. Thus, since very tiny neighborhoods around any
point in a balloon look like a 2-dimensional Euclidean space, we regard a bal-
loon as a 2-dimensional manifold (also called a surface). For a more rigorous
definition of a manifold, see Guillemin and Pollack (2010).

In looking forward to computing the homology of a data set, we encoun-
ter a problem: while it is perfectly reasonable to compute the homology of
a discrete space (a space with finitely many points) like a data set or point
cloud, the fact that single points and collections of single points are regarded
as 0-dimensional manifolds means that there are not any interesting “holes”
to measure because the dimension is too small. At best, homology would
merely tell us how many points are in the space, which is not a bit of infor-
mation worth the trouble of employing this mathematical tool. To get homol-
ogy to capture more interesting features of our data, we will turn our data
sets—our 0-dimensional manifolds—into objects of higher dimension. We
will do this by first defining a metric on our data that numerically captures
similarity between any pair of points in our data set; next, we will continu-
ously build a simplicial complex from our data set using the aforementioned
metric, thereby transforming our set of single points into a space with higher
dimension; then lastly, we will compute the homology of the correspond-
ing simplicial complex. Since homology detects information about holes in
spaces, this computation will tell us about holes in our data, where “holes” in
this case correspond to interesting types of clustering. For example, if points
in our data set are clustered around a circle, then computing the homology
of an appropriately scaled simplicial complex built from our data will reveal
this clustering.

It should be noted that clustering of data points around circles, tori, spheres,
and other interesting mathematical objects is a phenomenon that cannot be
detected using statistics, the go-to analytic discipline for applications. In
mathematics, spheres are “hollow” objects, defined to be the set of points
exactly some distance r from a center point. It is actually redundant to men-
tion circles and spheres in the same list because a circle is a 1-dimensional
sphere, denoted by S; in general, a k-dimensional sphere is denoted by S*.
On the other hand, balls are “solid” objects, defined to be the set of points less
than or equal to some distance from a center point. A k-dimensional ball is
denoted by B¥ of D¥. Here, we define the dimension of a sphere or a ball to
agree with these objects” dimensions as manifolds. As a result, the boundary
of a k-dimensional ball is always a (k — 1)-dimensional sphere. For example,
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the 2-ball is a solid disk whose boundary is the circle, that is, the 1-sphere.
Statistics can only detect clustering inside a ball, and therefore fails to dis-
tinguish clustering around a circle versus clustering inside a 2-dimensional
disk. The ability of homology to detect these more unusual kinds of cluster-
ing is one of the main arguments for using topology as an additional tool to
study data.

5.2 Metric Spaces and Simplices

Geospatial data often come equipped with two or three coordinates that
describe the physical locations of the data points. With these physical coordi-
nates, we can get visuals of the locations of our data points and judge them,
with our Euclidean sense of distance, to be distributed or clustered in certain
ways. However, rarely are spatial attributes the only attributes we care about
in geospatial data. As an example, in linear data sets, the data set might con-
tain attributes describing the line length and/or azimuth in addition to coor-
dinates describing the data points’ 2- or 3-dimensional locations. When we
attempt to detect patterns in linear sets, these extra attributes can play a role
in determining which points are similar.

The way to accomplish this sort of similarity-detection mathematically is
to turn a data set into a metric space, which will allow us to account for the
spatial distance between data points and other attributes of importance. A
metric space is a set of objects together with a well-defined notion of distance
between each pair of objects in the set. Abstractly, if A is a set, then a “notion
of distance” on A is a function d, in the mathematical sense, that takes two
members of A as inputs and yields a non-negative real number as an output
representing the distance between the two (inputted) objects in the set.

The most familiar metric spaces are Euclidean metric spaces, in which the
set of objects A is the set of all points in some Euclidean space, such as the
real line R, the plane R?, or usual 3-space R3, and the distance between any
pair of objects in these spaces is given by the distance formula. For the plane
R?, for example, the distance between two points a=(x;,y;) and b= (x,,) is
given by the function d(a,b)= \/(xz —x1)* +(y2 —y1)*. This particular dis-
tance function and its higher dimensional analogs are collectively called
Euclidean Metrics.

It is possible, however, to consider the same set A of data points in a
Euclidean space but under a different notion of distance between points.
Using R* again as an example, we could instead use the “taxicab metric”
to determine distance between two points. Under the taxicab metric, the
distance between two points a=(x,,1;) and b= (x,y,) is given by d(a,b) = |x,
—X,| + |¥1 — |- This metric is so named because, rather than compute the
distance between two points as the length of a straight line segment between
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them, we imagine that only strict horizontal and vertical line segments exist
between points, as for a taxi driving between two points and having to fol-
low city streets; this determines the distance between two points to be the
smallest of all possible sums of the lengths of horizontal line segments and
vertical line segments connecting the two points, that is, the shortest route
for a taxi between two points.

The purpose of looking at the Euclidean metric and the taxicab metric on
the same set is to illustrate that different notions of distance can exist on the
same set (and naturally, we might add) and to motivate the more general
notion of a metric space. Given a space of objects A, we are permitted to
define a distance function d on A in any way we choose, provided that the
distance function satisfies the following: For objects 4, b, and cin A,

1. (Nonnegativity) d(a,b) >0

2. (Definiteness) d(a,b) =0 if and only if a= b
3. (Symmetry) d(a,b) =d(b,a)

4. (Triangle Inequality) d(a,c) <d(a,b) +d(b,c).

These four requirements are precisely the ones we need to create distance
functions that obey our usual intuition of how a distance function should
behave. We require non-negativity so that we avoid negative distances; we
require definiteness so that the only circumstance under which we get a dis-
tance of zero between two objects is when those two objects are actually the
same object; we require symmetry so that the distance between two objects
does not depend on which one we “start” at; and lastly, we require the tri-
angle inequality to ensure that adding an extra point along a route never
reduces the total distance traveled. For more information on metric spaces,
see Kumaresan (2005).

Given a data set A, we can turn the data set into a metric space by defining
a distance function d on A that captures similarity and dissimilarity of data
points (observations) based on their attributes of importance. We will define
a metric so that two data points are “close” if they are similar across all attri-
butes. If the observations in a data set contain spatial coordinates as attri-
butes (as will often be the case with geospatial data), we can plot these data
points using their spatial coordinates and visually communicate any addi-
tional similarity by connecting points that are metrically close with simplices.

An n-simplex is the convex hull of n+1 distinct points, meaning that it is
the smallest convex set that contains the chosen n+1 points. Examples of
n-simplices for the first few values of n are given in Figure 5.1. A 0-simplex is
merely a point or vertex; a 1-simplex is a line segment or edge; a 2-simplex is
a solid triangle; and a 3-simplex is a solid tetrahedron. Although we cease to
give them special names like vertex, edge, triangle, or tetrahedron, n-simpli-
ces with n >4 are covered by the given definition and are simply the higher
dimensional analogs of these more familiar objects.
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. A A

FIGURE 5.1
From left to right: a 0-simplex (vertex), a 1-simplex (edge), a 2-simplex (solid triangle), and a
3-simplex (solid tetrahedron).

We will use simplices to capture similarity between points and store this
information in a simplicial complex, so named because it can be decomposed
into a finite number of simplices.” A simplicial complex is a generalization
of a more basic mathematical object called a graph. In the mathematical field
of graph theory, a graph is an object consisting solely of vertices (points/
nodes) and edges (line segments between vertices). A simplicial complex is
regarded as a generalization of a graph in that, rather than consist exclu-
sively of vertices and edges as in a graph, a simplicial complex may contain
vertices (0-simplices), edges (1-simplices), solid disks (2-simplices), solid balls
(3-simplices), and higher-dimensional simplices.

For a data set A with an associated metric d, there are two classical types
of simplicial complexes we can create to visually communicate similarity
information about the points in A. For a fixed value r >0, let B;(p) denote the
solid n-dimensional ball of radius r centered at point p. Then, given a finite
collection of points in n-dimensional Euclidean space:

1. The Cech complex C, is the simplicial complex in which a k-simplex,
defined by unordered (k + 1)-tuples of points {p,,p,,...pi, is included
in the complex if the intersection of all the B;'(p;)’s (for 0 <i<k) con-
tains a point .

2. The Rips complex R, is the simplicial complex in which a k-simplex,
defined by unordered (k+ 1)-tuples of points {pyp,,....p, is included
in the complex if, for 0 <i j, <k, the intersection of each pair of balls
(BF(pi), B/ (p))) contains a point.

Both Cech and Rips complexes are visuals of data point similarity up to the
threshold or filtration value r. If the type of complex we are creating at a cer-
tain r-value has not been specified, we will call the complex A,. An appropri-
ate or helpful filtration level will depend entirely on the scale(s) at which the
observation attributes are measured. Note that if r =0, then A, will merely be
our set of data placed in 2- or 3-space with nothing between them, that is, it
will just be a point cloud. On the other hand, if r is enormous (again, relative

* Technically, the simplices in a simplicial complex K must also satisfy the following: (i) if o is a
simplex in K and 7 is a face of ¢, then 7 is also a simplex in K, and (ii) the intersection of ¢ and
7 is either empty or a face of both (Edelsbrunner and Harer, 2010).
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to the scale at which the attributes of our observations were measured), then
every point will be connected to every other point and A, reveals no infor-
mation about similarity.

5.3 Classical and Persistent Homology
5.3.1 Preliminaries: Groups, Boundary Operators, and Chain Complexes

The process of computing homology for a space is a way of translating
geometric information about a space into algebraic information. Broadly
speaking, algebraic objects are sets with operations defined on them; famil-
iar examples of algebraic objects include the set of real numbers with the
operations of addition and multiplication, or the set of n-dimensional vectors
with real number entries and the operations of vector addition, dot product,
cross product, and scalar multiplication (i.e., a real vector space). The geomet-
ric object we will start with is a simplicial complex (built as above from a
data set with a metric defined on it) and we will encode its relevant geomet-
ric information in an algebraic object called a chain complex; once we have a
chain complex, we will analyze it and form homology groups, which are the
algebraic objects that will describe the shape of our simplicial complex and
thus clustering phenomena in our data.

Homology theories can be defined on mathematical objects other than
simplicial complexes; therefore, the version given here is a particular kind
of homology called simplicial homology. The definition of simplicial homology
requires the following definitions:

1. A chain of n-simplices is any collection of n-simplices within a sim-
plicial complex. See Figure 5.2.

2. A chain of n-simplices that begins and ends in the “same place” is
called a cycle. For example, a chain of 1-simplices that forms a polyg-
onal loop is a 1-cycle; a chain of 2-simplices that fit together to create
a polygonal “balloon” or 2-sphere is a 2-cycle. See Figure 5.3.

3. In general, for n>1, the boundary of an n-simplex is a closed cycle
of (n—1)-simplices. For example, a 2-simplex (a solid triangle) has a
1-cycle (a polygonal circle) as its boundary. See Figure 54.

4. A closed cycle of n-simplices that does not enclose an (1 + 1)-simplex
yields a hole of dimension 7. An example to keep in mind is that
of a closed cycle of 2-simplices (a polygonal 2-sphere) that does not
bound a 3-simplex (a solid tetrahedron). See Figure 5.5.

As mentioned, a necessary step in defining simplicial homology is to
encode geometric information about a simplicial complex in a chain complex.
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Solid

FIGURE 5.2
A chain, highlighted in green.

A chain complex is an ordered sequence of algebraic objects called abelian
groups in which these groups are connected by special functions called
boundary homomorphisms, boundary operators, or differentials. A group is a set of
objects on which an operation for combining elements is defined so that the
combined object is also an object in the set.” For example, the set of integers

\/‘ Hollow

Solid

FIGURE 5.3
1-cycle (highlighted in pink) and 2-cycles (highlighted in green). Theorange edge belongs to
both the 1-cycle bounding the 2-simplex and the 2-cyclebounding the 3-simplex.

* There are actually four group axioms: closure, associativity, identity, and invertibility, and we
have only addressed closure. To learn about the others, see Gallian (2010).
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FIGURE 5.4
A 2-simplex (in green) and its boundary (a 1-cycle, in darker green).

under the operation of addition is a group. An abelian group is a group that
is commutative with respect to the chosen operation; for integers a and b,
a+b=>b+a, and therefore the integers under addition are an abelian group.
An abelian group is actually an example of a more general algebraic object
called a module over the integers, which means that in addition to the group
operation, scalar multiplication of a group element by an integer is defined.
The group we choose to use in a chain complex will give us an algebraic
structure that we can use to make sense of our simplices, and it will be
referred to as the coefficient group. The two most commonly used coefficient

\/— Hollow

Solid

FIGURE 5.5
A 1-dimensional hole (highlighted in pink) and a 2-dimensional hole (highlighted in green).
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groups for simplicial homology are the integers under addition, denoted by
Z, and the integers modulo 2 under addition, denoted by Z/2Z or Z,. For a
complete explanation of modular arithmetic, see Stewart (1995). The integers
as an abelian group/module is the set of integers {...,—2,—1,0,1,2,3,...} with
the usual notions of addition and scalar multiplication; the integers modulo
2 as an abelian group/module over the integers is the set {0,1} under the
addition rules of 0+0=0,0+1=1+0=1, and 1+1=0 and the scalar mul-
tiple rules of 0-0=0,0-1=0, and 1-1=1. For these two groups, adding sim-
plices and chains of simplices proceeds as follows:

1. For Z, the simplices in a chain can have any integer coefficient. For
example, if ¢ and 7 are two simplices, then —120+ 37 is an exam-
ple of a chain. If ¢ and 7 were both 1-simplices, we could think of
the chain —120+ 37 as the chain that includes both ¢ and 7 and for
which we traverse o 12 times “backwards” and 7 three times “for-
wards,” under some predetermined notion of forwards and back-
wards. This concept of direction along a 1-simplex is a special case of
the much more general concept of orientation that can be defined on a
simplex (or manifold) of any dimension. Although we will not elabo-
rate on this, the reader should know that if we were looking at the
chain —120+ 37 where instead o and 7 were 5-simplices, then there
would be an analogous notion of “traversing” ¢ and 7 along with or
against some orientation just as in the 1-simplex case. For now, this
is a formality that can be ignored.

2. For Z,, the simplices in a chain can only have coefficients of 0 or 1; if
the coefficient of a simplex is 0, that term will not be written. Given the
rules of addition in Z,, it also follows that c+o0= (1+1)c=0-0= 0.
Thus, every chain over Z, is merely a sum of simplices, each of
which has coefficient 1. The module Z, is used as a coefficient group
in simplicial homology when we want to ignore orientation. Since
every chain over Z, is a sum of simplices with coefficient 1, we
ignore the number of times or direction of traversal of each simplex
and simply acknowledge its inclusion in the chain. Homology with
Z, coefficients is a simplified version of homology with integer coef-
ficients because it allows us to view the presence of simplices in a
chain as binary: in or out.

Along with the choice of a coefficient group, a chain complex requires a
boundary operator. The boundary operator, denoted by 0, takes n-chains
as inputs and outputs (n — 1)-chains corresponding to the boundary of the
inputted n-chain. (This is an aptly named function!). For example, if 2 and
b are 0-simplices (vertices) and o is the 1-simplex (edge) whose endpoints
are a and b, then with Z coefficients the boundary operator would give us
0(0) =a — b; the first endpoint a is added and the second endpoint b is sub-
tracted to indicate the ordering on the endpoints that indicates our preferred
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orientation of 0. With Z, coefficients, the boundary operator would give us
0(0) =a+b, since both a and b are merely present as boundary elements of o.

Another name for a boundary operator that we mentioned above is
boundary homomorphism. The word homomorphism indicates that the map
0 has the following property: for any objects o and 7 on which 0 is defined,
O(o+ 1) =0(0) + 0(1). With our homomorphism being one that takes simpli-
ces as inputs and outputs the corresponding boundary simplices, the homo-
morphism property simply says that taking the boundary of a compound
chain of simplices (such as o+ 7) will produce the same answer as taking
the boundary of each simplex in a chain individually and adding the results.

With a chosen coefficient group and the boundary operator in hand, build-
ing a chain complex consists of writing down chain groups C,, one for each
dimension #, that correspond to the simplices in each dimension. The chain
group C, is formed by taking one copy of the group (Z,, in our example) for
each n-simplex in the simplicial complex and adding (in the sense of groups)
all these copies together; k copies of Z, added together will be denoted by
(Z,)*. We then connect the chain groups in neighboring dimensions by the
boundary operator, meaning that for the boundary operator 0 going between
C, and C,_,, the domain of 0 is C, and the image of 0 lies in C,_;. In doing
this, we create an algebraic object—the chain complex—that encodes the
basic geometric relationships between the simplices in our simplicial com-
plex. For ease of reference, it is common to denote the boundary operator
whose inputs are n-simplices and outputs are (1 — 1)-simplices by 0,.

5.3.2 Definition: Simplicial Homology

Once the chain complex has been written down for a simplicial complex, we
can define simplicial homology. Defining simplicial homology from an asso-
ciated chain complex relies on the following observations:

1. The domain of each 9, , is all (n+ 1)-simplices, but the image of 9, ,
is only those n-chains that are boundaries of (1 + 1)-simplices. For
example, the domain of 0, consists of all 3-chains, but the output or
image of J; consists of 2 chains that appear in the simplicial com-
plex as the boundary of some 3-simplex. We will denote the set of
n-chains that are boundaries of (1 +1)-simplices by B,. As a techni-
cal note, B, is actually a submodule of C,, and this is needed later to
define the n"* homology group.

2. All cycles have “empty” boundaries; therefore, 0, sends any n-cycle
to the empty (n—1)-cycle, that is, to 0. We will denote the set of
n-cycles by Z,. Again, as a technical note, Z, is a submodule of C,.

3. Recall that while the boundary of an (14 1)-simplex is always
an n-cycle, it is not true that every n-cycle is the boundary of an
(n+1)-simplex; for example, a 1-cycle that is not the boundary of
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a 2-simplex corresponds to a “hole” of dimension one. Therefore,
B, is actual a submodule of Z," as well, and to capture the holes of
dimension 7 in our simplicial complex, we look at the difference
between the set of n-cycles Z, and the set of n-cycles that are bound-
aries of (n+1)-simplices B,

With the above observations, we define simplicial homology:

Definition:

The n' homology group H,(X) of a simplicial complex X is the quotient
group H,(X)=Z,X)/B,(X). H,(X) is the algebraic object that represents the
n-dimensional holes and their topological behavior in X. The X is often sup-
pressed in homological notation when the simplicial complex in question is
clear from the context.

For a precise definition of a quotient group, see Gallian (2010). Also, it was
noted earlier that Z, and B,, are subgroups of C,, which are necessary for H,
to be a group itself.

With the definition of the n"* homology group H, finally in our hands, the
remaining task is to execute the computation H, for each n>0. The most
streamlined and easily generalizable way to compute homology groups is
to write down the boundary operators as linear maps, that is, as matrices,
and use the power of linear algebra and computers to actually do the com-
putations. The boundary operator 9, ;, whose domain is C,; and whose
image lies in C,, can be written down as a matrix by first choosing the bases
for C,; and C, to be the (14 1)-simplices and the n-simplices in the simpli-
cial complex, respectively. Then, 9, ,, is the matrix whose rows represent the
n-simplices and whose columns represent the (1 +1)-simplices. If there are
k (n+1)-simplices and m n-simplices (said differently, C,_, has rank k and C,
has rank m), then the matrix for 0, , ; has dimension m x k.

Once all of the nonzero boundary operators are written down as linear
maps in matrix form, the matrices are then put into Smith normal form. For
more information on Smith Normal form, see Jager (2003). With Z, coef-
ficients, the Smith normal form of a matrix will have some number of 1’s
down the main diagonal of the matrix and 0’s everywhere else; with Z coef-
ficients, the Smith normal form will have some number of nonzero integer
entries down the main diagonal and 0’s everywhere else. For the matrix of
the boundary operator 9, ;, the number of all-zero columns in the Smith
normal form of the corresponding matrix gives the rank of Z, , ;; the number
of nonzero rows in the Smith normal form of the matrix gives the rank of B,.

* This fact, that B, is a submodule of Z,, harkens from a fundamental property of the boundary
operators, namely, that 0°9=0.
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It is from this information that we can write down our homology groups. If
we denote the rank of Z, by z, and the rank of B, by b,, then the rank of H,,
called the n"* Betti number and denoted by 3,, is given by §8,= |z, —b,|.

For Z, coefficients, knowing the n* Betti number §, tells us exactly what
the n homology group is: H, = (Z,)". The situation is slightly more com-
plicated with Z coefficients because any integer along the main diagonal of
the matrix in Smith normal form will produce something called a torsion
submodule/subgroup in the corresponding homology group, but Betti num-
bers are still a decent rough measure of interesting hole-like phenomena in
the simplicial complex.

Despite what may seem like a very technical discussion, the above defini-
tion and computational algorithm given for simplicial homology omits a sig-
nificant amount of underlying mathematical theory. A few of the main topics
foundational to homology that were not even mentioned above are homotopy
invariance, induced maps, and homology classes. Other aspects that were men-
tioned, but not in full detail, are the precise definitions of: modules, groups,
quotient modules/groups, submodules/subgroups, exact and short exact
sequences, bases for modules, ranks of linear maps/dimensions of mod-
ules, and matrix reduction and Smith normal form. A recommonded, and
in-depth, text on homology that addresses all of the aforementioned topics,
and also goes on to talk about persistent homology and other applications of
topology, is Computational Topology by Edelsbrunner and Harer.

5.3.3 Example: Computing Simplicial Homology

We will demonstrate the algorithm for defining and computing homology
using the simplicial complex Y in Figure 5.6 with Z, coefficients. The reader
should keep in mind, however, that everything described can also be done
on any simplicial complex and is often done with the coefficient group Z.

FIGURE 5.6
Simplicial complex Y; note that the tetrahedron formed here is hollow, unlike in the earlier
example simplex.
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In the example simplicial complex Y, there are: zero n-simplices for n>3
(C,=3=0); four 2-simplices (C, =(Z,)"); eight 1-simplices (C; =(Z,)*); and
five 0-simplices (Cy = (Z5)’). As such, the chain complex for Y is

5 0 O4 0 d3 (ZZ)5 02 (Zz)m 01 (ZZ)6

With the bases for our boundary operators as described above and ordered
according to Figure 5.6, we get the following matrices for d, and 0;. The sec-
ond matrix listed for each map is the Smith Normal Form of the matrix, from
which we will compute z,, b,, and §,.

1 1 0 0 1 0 0 0
01 1 0o [0 1 0 0
o1 0 1 [0 0 1 0
0o 0 1 1 [0 0 0 o0
1 0 0 1 0 0 0 0
2=l 9 1 0 o 0 0 o0
0 0 0 0 [0 0 0 0O
0 0 0 0o [0 0 0 o0
0 0 0 0 [0 0 0 0O
0 0 0 0o [0 0 0 o0
z,=1 b =7
1010100000 [100O0O0O0O0GO0O0 0
11000110001 10100000000
0111000000 0010000000
%=l0 001110100 0001000000
0000O0O0OT1T1T10 (0000100000
0000O0O0O0OOT1TI1 [0000O0O0O0O0O0O
z1=5, by=1

We omit all other boundary operator matrices since their domains and/
or codomains equal 0 and hence result in 0-dimensional matrices. It also
follows that z,=0 for all >3 and n<0 and b,,=0 for all m > 3. Recall that
Betti numbers yield the ranks of our homology groups and are computed via
B,=|z,—b,|. Hence, we get:
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B,=|z,—b,.1| = |0-0| =0foralln>3 = H,(Y )=0 for all n >3.
G=lz,—bs| = |[1-0| =1= Hy(Y)=12Z,.

Bi=lz—b| = [5-7| =2= Hi(Y)=Z, & Z, = (Z,)".
Bo=lzo—b| = [0-1| =1 = Ho(Y)=Z>.

These homology groups now tell us the following information:

e H,Y)=0 for all n>3: There are no holes of dimension 7 in Y for
n>3.

* H,(Y)=1Z,: There is one hole of dimension 2, that is, a polygonal
2-sphere, in Y.

o H(Y)=7Z,&7Z,=(Z,)* There are two holes of dimension 1, that is,
polygonal circles, in Y.

o Ho(Y)=7Z,: There is one hole of dimension 0 in Y, which means Y
consists of one connected component.

It should be noted that with homology groups alone, it is impossible to
tell where the holes occur. This results from the fact that homology compu-
tations are coordinate-free, meaning that the exact way a simplex has been
placed in space and positioned is irrelevant. This is both a huge advantage
and disadvantage in studying data. The advantage is that if two people were
to look at the same simplex from very different spatial perspectives, their
homology computations would agree. For analyzing macro features of a sim-
plex (or data set!) like number of components, this is excellent news. On the
other hand, existence information is almost useless if location information is
necessary for making actionable observations. As such, homology should be
used as a tool in conjunction with others when precise location information
is important.

5.3.4 A Continuum: Persistent Homology

Until now, we have defined simplicial homology as a tool for detecting holes
in an abstract mathematical space, which we care about since holes in a sim-
plicial complex built from data correspond to clustering phenomena within
those data. However, the tool we really want to employ to study data is per-
sistent homology, which can be regarded as a continuous version of simplicial
homology. Before giving the definition of persistent homology, we will moti-
vate the need for something “more continuous” than what we have seen so
far. Recall that for a point cloud with a defined metric, a filtration value r will
determine a simplicial complex A, (typically a Cech complex C, or a Rips
complex R,), as described in Section 5.1.

Simplicial homology is defined and computed for a single simplicial
complex. This means that if we are trying to apply this tool to simplicial
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complexes created from a data set with a metric, then we can only get homo-
logical information (i.e., information about similarity and clustering) about
the data set by fixing a single filtration level r and computing the simplicial
homology of A,. This is problematic because it is entirely possible that for a
specific data set, large-scale clustering does not show up at small filtration
values, that more detailed, local phenomena are overlooked by large filtra-
tion values, and that both kinds of patterns are obscured by filtration values
in between. As such, computing simplicial homology for a single A, could
fail to give us helpful information about patterns within our data. Situations
like these demonstrate a need to compute the homology of A, for many dif-
ferent values of r for a given data set/metric space.

However, even looking at the homology of data at many different filtra-
tion values is not necessarily good enough. In addition to the aforemen-
tioned scaling issues, it is also possible that, by only computing homology
for a finite number of A,’s, two data sets could appear to be the the same
when, in fact, they are not. Consider two data sets A and B that are equipped
with metrics d, and d,, and let A/ and A} be the simplicial complexes for
filtration value r for A and B, respectively. Suppose that we compute the
homology of A and A? for three different filtration levels 7,7, and we
find that the two data sets have identical homology groups for each 7,
i€{1,2,3}. It is possible for A to have a hole that appears shortly after r, and
lasts until just before r; while B has a hole that appears shortly before r, and
disappears shortly after. In this case, the homology groups for A and B at
filtration level r, are identical and thus fail to capture the fact that the hole
in A “persists” for a long time while the hole in B appeared and then disap-
peared rather quickly. We could remedy this issue by simply computing
homology for A and B at many more filtration values (this is what we will
do in practice), but ultimately we could experience the same problem with
any finite number of filtration values.

As such, persistent homology theoretically computes simplicial homology
of a data set for every filtration value r>0. Since filtration values lie on a
continuum (the real line), this means that we compute the homology for a
continuum of simplicial complexes A,. Of course, it is physically impossible
to record the homology groups for every filtration level r>0 along a con-
tinuum; therefore, we do the following in practice:

1. Choose some (possibly large) finite number of filtration levels r; for
1<i<k, compute the corresponding homology groups, and simply
acknowledge that some persistence behavior may not be fully cap-
tured for the aforementioned reasons.

2. Create barcodes, which indicate the number of holes in each dimen-
sion n>0 and the interval of persistence of each hole over some
larger interval of filtration values (usually starting at »=0). Barcodes
are created by looking at the Betti numbers §, at every filtration
value. There will be 3, bars in the dimension n barcode, and each bar
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will be placed along a number line so that the bar begins at the filtra-
tion value at which the corresponding hole appears (the “birth”) and
ends at the filtration value at which the hole disappears (the “death”).

Barcodes are particularly useful for showing the existence of (relatively)
significant features in a data set. Short bars correspond to short-lived holes,
often formed from noise within the data set; long bars represent holes that
persist for long tolerance intervals and therefore represent features that are
noise-resistant and, therefore, more significant. In all cases, bars are deemed
“short” and “long” relative to one another so that the scale at which we are
working is irrelevant.

5.4 Applications for Structural Geology and Tectonics

Patterns of deformation of rocks at the Earth’s surface are studied in the
geologic fields of structural geology and tectonics (Davis, Reynolds, Kluth,
2012). Observations of structures in rocks are not limited to purely macro-,
or outcrop-scale features, such as lithologic contacts (i.e., bedding), faults,
fractures/joints, or folds, but also scale down to microscopic features seen in
thin-sections of rocks, such as mineral grain orientations (Davis, Reynolds,
Kluth, 2012). To understand the structural or tectonic past of a region, geol-
ogists must first be able to describe the geometry of structures, which are
essentially the architecture of the Earth’s crust, and interpret the patterns of
deformation present (Karimi and Karimi, 2017). This becomes challenging
when faced with multiple events causing overlapping features or with large
data sets meant to be interpreted with inevitable human bias. A method/
tool for processing structural/tectonic data would be valuable to our
understanding of Earth’s history in regions, and how it affects the develop-
ment of crustal material, the emplacement of resources, etc.

The architectural features exhibited by different structures may be planar
or linear depending on the type of feature described. Regardless of the feature
type, two attributes are necessary—in addition to latitude and longitude—to
describe these features in three-dimensional space. The first is orientation
with respect to compass directions, which for planar structures is referred
to as strike and for linear features is referred to as trend (Davis, Reynolds,
Kluth, 2012). The strike is the trace found at the intersection between the
feature plane and a plane horizontal to the surface of the Earth. The trend
is the orientation of a line projected onto a plane horizontal to the surface
of the Earth. The second attribute describes how the feature is oriented in
the vertical direction with respect to the surface, or a horizontal plane. For
planar features, we refer to this as dip, and for linear features it is called the
plunge (Davis, Reynolds, Kluth, 2012). Depending on the local geology, there
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may be many different structures that populate parts or entire areas within
a region. The orientation of structures in space with respect to one another
allows geologists to gain a deeper understanding of the complexities associ-
ated with single or multiple deformation events (Karimi and Karimi, 2017).
Analyzing these structures and their patterns ultimately enables geologists
to better understand the conditions that allowed for the existing deformation
patterns, and it enables them to make stronger predictions as to the genesis
of the region.

We present a case study involving two synthetic geologic data sets for
analysis to exhibit the strength of our proposed methods and its ability to
identify patterns. These data sets are processed to produce barcodes for H,
and H, to identify persistent patterns and the simplicial Rips complex Zb.
Visualizations of data at various intervals in the barcode are shown to better
explain pattern persistence and connectivity.

5.4.1 Description of Data Sets

The data type we analyze are synthetic vector points representing field
measured orientations of structures in rock bodies within a region. To keep
the data set simple, we assume all the structures are planar and vertical
relative to the surface of the Earth, whose dimensions are: latitude and
longitude of the field measurement, and azimuthal orientation of strike.
Non-vertical dipping structures can also be considered by the tool with the
addition of another dimension that would account for the vertical angle of
the feature relative to the surface of the Earth. We created two data sets,
the first more simple, and the second more complex, to explore the efficacy
and power of persistent homology in detecting large-scale topographic
features.

The first data set shown in Figure 5.7 is a 4 x4 grid of data points with
azimuthally oriented strikes of structural features. The corresponding data
table is shown in Table 5.1. Latitude (Y) and Longitude (X) are simple carte-
sian points not based on any geospatial coordinate system; however, latitude
and longitude values associated with coordinate systems may be used. There
are two azimuthal strike orientations in this data set: 135° located along the
northern and eastern perimeters, as well as at location 6, and 45° surrounding
location 6 (see Figure 5.7).

Data set 2 (Table 5.2) is visualized in Figure 5.8 and shows a more natural
distribution of data, both geospatially and in strike orientation. This type of
distribution is similar to what we see from authentic structural field data in
valley and ridge provinces at orogenic (mountain) belts, and can be thought
to represent data such as bedding, joint, fault, or fracture orientations.

Upon visual inspection, there are distinct patterns in both data set 1 (Figure
5.7) and data set 2 (Figure 5.8) that we hope our methods can detect; these
patterns are those based on azimuthal similarity. In particular, we hope to
pick out the northeast-southwest trending strikes such as the “loop” around
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FIGURE 5.7
Data set 1: A 4 x 4 grid of strike-oriented structural data.

observation 6 in Figure 5.7 and the southern swatch of Figure 5.8, as well as
the northwest-southeast trending strikes in the respective complements.

For data set 1, the range of X and Y data is from 0 to 3, while the azimuthal
data range from 45° to 135° In data set 2, the cartesian coordinates range
from 0 to 9, with azimuths ranging from 30° to 170°. Without normalizing

TABLE 5.1

Data Set 1

ID X Y Azimuth
1 0 0 45
2 1 0 45
3 2 0 45
4 3 0 135
5 0 1 45
6 1 1 135
7 2 1 45
8 3 1 135
9 0 2 45
10 1 2 45
11 2 2 45
12 3 2 135
13 0 3 135
14 1 3 135
15 2 3 135
16 3 3 135
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TABLE 5.2
Data Set 2
ID X Y Azimuth
1 0 45
2 1 0.5 168
3 2 5 162
4 3 1 158
5 0 1.2 40
6 1 25 170
7 2 7 165
8 3 9 160
9 0.5 4 35
10 1.8 2 50
11 2.2 2 65
12 29 2 80
13 0.2 3 30
14 1 3 44
15 2 3 59
16 4 3 74
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FIGURE 5.8
Data set 2: A more realistic geospatial representation of structural features oriented according
to their strike.
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each dimension, pattern connections are expected to be determined mostly
by azimuthal similarities more so than geographic coordinates. When these
methods are used for arbitrary data sets, considerations should be made as
to what the most impactful dimensions should be, or if all dimensions are
(or should be) weighted equally.

5.4.2 Data set Processing

To use our method of persistent homology, the first step is to identify the
dimensions/variables of our observations upon which we wish to define the
requisite distance function d. In our examples, we use the latitude (X), longi-
tude (Y), and azimuthal strike orientation (f). We then define the distance d
between two points a=(X,,Y,,6)) and b=(X,,Y,,6,) by

d(a,b) = \/(xz — X2+ (Y, = Y,)? +min(| 6, — 6, |, 180 — |6, — 6, | 2.

Since our azimuths are all within the first 180°, we do not need to make
adjustments to the data to have them fall within the same eastern hemi-
sphere; however, we do need to stay consistent and to that end only consider
the smallest angular difference between the azimuthal strike of two lines.

For each data set (Tables 5.2 and 5.3), we started with an excel spread-
sheet with columns for latitude, longitude, and azimuthal strike for each of
our datapoints. We then wrote the python script to calculate the distance
between all pairs of points to generate a matrix, such as the one for data set
1 in Table 5.3. From the data in Table 5.3, we can see that our distance func-
tion satisfies the four requirements: nonnegativity, definiteness, symmetry,
and the triangle inequality. We then process the matrix with an algorithm
to create barcodes showing the Betti numbers of Rips complexes, built from
our data set and distance function, at a continuum of filtration values. The
barcode distinguishes homology groups based on holes of dimension 7, and
the number of holes in each dimension # >0 and their persistence over the
continuum of filtration values, or intervals. From here, we developed a tool
in ArcMAP, a geospatial software created by ESRI®, to visualize the connect-
edness among patterns associated with user chosen points (specific filtration
values) along the barcode. The tool adheres to the following steps:

1. Accept a user-defined interval () along the barcode at which to make
a visual. These intervals can essentially be thought of as similar to
time. If we think about our 3-dimensional data set in 3-dimensional
cartesian space, the interval relates to the size of a growing sphere of
influence around each point. When two spheres touch, their respec-
tive points of origin are considered to be connected.

2. Create an empty polyline shapefile and add a field, “pattern.” This
field gives a unique identifier to connected patterns.
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3. Divide the distance values in the matrix by 2. In our symmetrical
matrix, since d(a,b) =d(a,b)/2 + d(b,a)/2, when two points’ d/2 < t, they
are not considered to be part of the pattern at that interval value. If
d/2>t, then the two spheres of influence touch and are considered
part of a pattern.

4. Since d(a,b) = d(b,a) and d(a,a) =0, remove data from the matrix below,
and including, the diagonal. This reduces the number of data to be
processed as well as the processing time.

5. Identify all data point pairs where d/2>t.

6. Select any one of the identified pairs and connect their points with a
line, entering a value of 1 in the pattern field.

7. Identify any other point that is connected to either of the two points
in step 6, and draw a line between them, again entering a value of 1
in the pattern field.

8. Identify any other point that are connected to those identified in step
6 and continue drawing lines with pattern values of 1. Continue this
until no points can be connected back to any of the points in pattern 1.

9. Remove the points associated with pattern 1 from the selected items
in step 4.
10. Repeat steps 6 through 9, each time increasing the pattern value by
1, until there are no more lines point pairs available.

These steps provide a linear shapefile that can be classified by pattern
value to show the connectedness of data among patterns. The creation of so
many lines can be computationally expensive, even though the final product
is visually appealing and useful in its details for understanding how the pat-
terns evolve over time. An alternative, computationally less expensive pro-
tocol would create a unique pattern identifier among the original data set,
rather than drawing lines. To better describe the mathematical approach and
results, and since our data set is small, we chose to create the linear shapefile.

5.4.3 Results and Discussion
5.4.3.1 Data Set 1

The barcode and examples of patterns at different intervals for data set 1
can be found in Figure 5.9. From the barcode for this data set for H;, each
individual data point persists as a pattern until an interval of 0.5 (Figure
59a). At an interval of 0.5, three new patterns emerge from connections made
between data points (Figure 5.9b): the pattern in blue, the pattern in red, and
data point 6. In Figure 5.9¢, at an interval of 1.0, data point 6 merges with the
red pattern group. The red and blue patterns persist until an interval value of
45.056. At this value, all both patterns merge into a single pattern.
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FIGURE 5.9
Barcode for structural features in data set 1. Visualizations for intervals: (a) 0.28, (b) 0.5, (c) 1.0,
(d) 1.118, and (e) 2.5.

At a rank of H; many barcode items are identified, and two patterns are
distinguished at an early stage, remaining persistent for a large interval
range. The barcode associated with H,, however, identifies something rather
unique about how the data are clustered. At different interval ranges, there
are two hollows identified using simplicial Rips complexes. At an interval
of 0.5, the first Z5 hollow is created (blue pattern in Figure 5.9) and persists
until an interval value of 1.0. From 1.0 until 1.118, another Z5 hollow persists.
This hollow is in the red pattern group, and is a polygon identified by points
6, 8, 12, 15, and 14. These hollows are rather short-lived given their interval
ranges, but had they been persistent for long interval ranges, they may have
had a significant impact on the interpretation of the geologic history in our
synthetic region.

The prolonged persistence of the two patterns in H, is by far the most
important aspect for a geologist who is seeking distinct patterns that may
be related to natural forces in data set 1. Our methodology and tool are very
effective in this instance; however, this data set is an idealized 4 x 4 model.
We must explore more complex, seemingly “natural” data sets.



Recognizing Patterns in Geospatial Data Using Persistent Homology 127

5.4.3.2 Data Set 2

Data set 2 is a more natural distribution of geospatial, oriented structural
data, modeled after structural data from orogenic belts. The resulting bar-
code for this data set can be found in Figure 5.10. Unlike the barcode for data
set 1, there were no ranks higher than H,. Until an interval value of 1414,
the 16 data points are recognized as 16 different pattern sets (Figure 5.10a).
As the interval value increases from this point, connections are made, and
at an interval of 2.872 only 6 pattern sets exist (Figure 5.10b): the blue pat-
tern set, the red pattern set (3, 4, 7, and 8), points 2 and 6, point 11, point 12,
point 15, and point 16. It is not until an interval value of 4.637 that only two
pattern sets remain, and these sets persist until 20.006. Figure 5.10c repre-
sents this pattern set at an interval of 5, although this pattern persists much
longer. At 20.006, connections between the red and blue pattern sets start to
form, identifying a single pattern set persistent at all higher interval values
(see Figure 5.10d).

The distinct patterns that we can visually assess for data set 2 (discussed
in Section 4.1), are persistent for a fairly long range (4.637-20.006). These long,
persistent interval ranges represent interval values that most likely best
highlight pattern sets. However, a strength of our methods is the opportu-
nity to explore how soon/late pattern sets are considered merged into larger
pattern sets, allowing for a stronger analysis of similarities between pat-
terns. Geologically, this becomes rather important, particularly with knowl-
edge regarding how differently oriented structures are related to a single
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FIGURE 5.10
Barcode for structural features in data set 2.
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stress field orientation. Seeing how these patterns interact with one another
as interval values increase may allow for more detailed interpretations and
conclusions regarding the geologic history of a region.

5.5 Concluding Remarks

The goal of this chapter was to describe a mathematical tool that can be
used to recognize patterns of similarity in geospatial data. Our described
method and short case study of synthetic geologic structural data types
have accomplished this goal. The visualization of patterns at different inter-
vals provides an extremely powerful tool for researchers to effectively ana-
lyze patterns, how they connect, and when they connect. While this chapter
uses a structural geology and tectonic context for its example, it is important
to note that this tool could be effective for any geospatial data within any
discipline.

There is much left to explore still, such as data types: within the realm
of geology, there are qualitative data sets—such as rock type—that with
unique approaches could be quantified and considered in similarity pat-
terns. Additionally, further research must include the effects of normalizing
each dimension, increasing the number of dimensions considered by the dis-
tance function, and more efficient computational adaptations of persistent
homology. This method will require much adaptation and exploration to
fully understand its limits, but the benefit of such methods/tools in recog-
nizing patterns is clear.
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6.1 Introduction

Light Detection and Ranging, or LIDAR (also known as laser altimetry), is an
optical remote sensing technology for generating precise and directly geo-
referenced spatial information about the shape and surface characteristics of
the Earth (NOAA 2012). It has become a primary means for collecting very
dense and accurate elevation data across landscapes, shallow-water areas,
and project sites. LIDAR was initially developed during the 1960s by the
National Aeronautics and Space Administration (NASA) to better measure
properties of the earth such as ice sheets, the ozone layer, and atmospheric
pollutant levels. At first, LIDAR was not designed or used for topographical
mapping, primarily due to a lack of a strong network for geo-referencing.
However, by the 1990s, an expanded GPS network was established, making
extended topographic expeditions worthwhile. This resulted in large vol-
umes of LiDAR data becoming available to the public and the scientific com-
munity. While NASA continues to be at the forefront of LiDAR usage and
development, numerous private enterprises and foreign governments have
become increasingly involved in further development of LiDAR technology
for advanced GIS-based analysis. Despite the fact that there are a number of
established commercial and governmental websites that provide access to
the extensive and ever-growing compendium of LiDAR data, the process-
ing methods and applications are largely developed by the end users of the
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data itself. Advancements in LiDAR technologies over the past 10-15 years
have enabled scientists and geospatial professionals to examine natural and
man-made environments across a wide range of scales with great accuracy,
precision, and flexibility.

From a technical perspective, LIDAR is an active remote sensing technique
similar to radar but uses laser light pulses instead of microwaves (NOAA
2012). These light pulses are intense, focused beams of light which are emit-
ted and then reflected off any of the various surfaces on the ground. A sen-
sor onboard the collection platform detects when these light emissions are
returned. Geospatial three-dimensional (3D) coordinates (such as x, y, z or
latitude, longitude, and elevation) of the target objects are computed from
the time delta between the laser pulse being emitted and returned, the angle
at which the pulse was sent, and the GPS location of the sensor on or above
the surface of the Earth. LiDAR systems are considered “active” remote
sensing systems, as they emit pulses of light and then detect the reflected
pulses. This fundamental characteristic allows data to be collected at night
when the air is typically clearer and the sky less congested with air traf-
fic. Consequently, most LiDAR data collection missions are flown at night.
The drawback to light pulses is that they cannot penetrate clouds, rain, or
haze, which is a notable difference between LiDAR and RADAR, the latter of
which can penetrate these natural obstacles with microwave pulses. While
data collection missions are usually done from the air, where a system can
rapidly collect points over large areas, many are also run from ground-based
stationary and mobile platforms. All of these techniques are popular within
commercial and scientific communities due to their advanced capabilities in
producing extremely high accuracies and point densities, thus permitting
the development of precise, realistic 3D models of most man-made or natural
structures on the earth’s surface (Table 6.1).

LiDAR systems can rapidly measure the Earth’s surface, at sampling rates
greater than 150 kHz, or 150,000 pulses per second (NOAA 2012). The result-
ing product is a densely spaced network of highly accurate georeferenced
elevation points, known as a point cloud. Point clouds are used by GIS or
other analysis software packages to create 3D representations of the Earth’s
surface and its features. Many LiDAR systems operate in the near-infrared
region of the electromagnetic spectrum, although some sensors also oper-
ate in the green band to penetrate water and detect bottom features. These
bathymetric LIDAR systems can be used in areas with relatively clear water
to measure seafloor elevations. Typically, LiDAR-derived elevations have
absolute accuracies of roughly 4-8 inches or 1020 centimeters (NOAA 2012).
To arrive at this level of accuracy, it is important to know within a centime-
ter or so where the data collection platform is located spatially as it travels.
This is particularly important in an airborne platform as it flies, poten-
tially through turbulence, while keeping track of hundreds of thousands of
LiDAR pulses every second. Fortunately, advancements in global position-
ing systems (GPS) technologies and precision gyroscopes make it possible.
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TABLE 6.1

LiDAR Data Classifications (NOAA)
Classification Value Meaning

0 Never classified /default
1 Unassigned

2 Ground

3 Low vegetation

4 Medium vegetation

5 High vegetation

6 Building

7 Low point

8 Reserved

9 Water

10 Rail

11 Road surface

12 Reserved

13 Wire—guard (shield)

14 Wire—conductor (phase)
15 Transmission tower

16 Wire-structure connector (insulator)
17 Bridge deck

18 High noise

19-63 Reserved

64-255 User definable

Additionally, significant improvements in inertial measuring units (IMU) or
inertial navigation systems (INS) have been vital to making the exact posi-
tioning of the platform possible. These systems are capable of measuring
movement in all directions and parsing these measurements into a position.
They are not perfect or foolproof, and lose precision after only a second or
so. A sophisticated GPS unit, which records several types of signals from
GPS satellites, is used to update the INS and IMU every second or so. The
GPS positions are recorded by the plane and also at a ground station with a
known position. The ground station supplies a correction value GPS position
recorded by the plane.

6.2 LiDAR Data Acquisition and Initial Processing

The data used in this study were obtained using NASAs Airborne
Topographic Mapper (ATM), an advanced LiDAR system capable of multi-
ple-return data acquisition. LiDAR data collection missions were flown over
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the Barrier Islands along the Eastern Shore of Delmarva Peninsula (Krabill
et al. 2000). The flight tracks, shown in Figure 6.1, cover most of Assateague
Island and Wallops Islands, VA. The Nature Conservancy (TNC) provided
a Digital Terrain Models (DTMs) of the same area created using data from a
previous mission, which proved valuable for filling in the gaps in the LIDAR
coverage acquired on this ATM flight.

Prior to analysis in GIS software, LIDAR data must undergo a series of pre-
processing steps as shown in Figure 6.2. This process chain converts the data
into an accessible file format and transforms it to the local coordinate system
desired for the end products. For this study, ATM provided two types of
proprietary binary data, QFIT and VALID. The VALID file format provides
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FIGURE 6.1
Flight tracks and gaps in the April 2010 ATM LiDAR data acquisition flight.
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FIGURE 6.2
LiDAR data preprocessing chain.

full waveform data that encompass all the returns detected by the sensor.
This affords more control to the end user in the interpretation process of the
physical measurement. QFIT data contains one return only. In the case of a
more focused study, this data format is more desirable, particularly in the
case of the system’s concise first return data. More time can be dedicated to
the processing and validation of a smaller dataset, allowing a higher level
of refinement and a better final product. Both data types were originally
formatted using the QFIT 12-word method, which is an organization of (12)
32-bit binary words, equivalent to an Interactive Data Language (IDL) long
integer. These words are scaled appropriately in order to maintain the preci-
sion of the original measurements (scaling factors are standard for the qi-
12-word format). The binary words contain a series of 12 element records
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corresponding to the individual LiDAR returns, which contain geospatial
position of the return, time stamp, returned energy, and other attributes.
QFIT binary data must first be converted to ASCII text format in order
for it to be properly analyzed, rendered, and displayed. This first conver-
sion was accomplished using IDL software via custom written scripts.
Included in these scripts are the scaling factors mentioned above, which con-
vert the raw data to numeric values (latitude, elevation, GPS time, etc.). The
script allows the user to choose which data words to convert and extract,
as opposed to being made to convert all 12 (for larger datasets, this feature
noticeably cuts down the time needed for conversion). For the purposes of
this study, only longitude, latitude, elevation, and received energy strength
was processed and converted to ASCII (in that order, which is critical for
scripts and rendering down the processing chain). Additionally, the script is
capable of cropping the data to specific areas (rather than an entire dataset),
and processing the data to different geographic coordinate systems based
on the user’s requirements. Script conversions included UTM/WGS84, XYZ/
geographic LAT/LON, and varying forms of decimal degrees. This allows
multiple avenues of analysis and later comparison of results. For this study,
data were processed in UTM and geographic LAT/LON. Since these scripts
were critical to downstream processing, considerable time was spent test-
ing and validating the output against known results, as it is essentially the
base of the processing chain for non-GIS analysis (Note: Validation methods
are covered more in depth in the following section). In this case, the WGS84
Ellipsoid in the International Terrestrial Reference Frame (ITRF) was used at
the time of the survey, which caused all data to be recorded in that coordi-
nate system from the sensor. Unlike traditional geographic coordinate sys-
tems, the ITRF is a dynamic reference frame that is updated to improve its
accuracy and reflect the changing geographic status of the planet, as in the
case of moving tectonic plates, by means of a large network of ground control
stations. The WGS84 coordinate system is improved through the use of ITRF
by periodically realigning it to the most current iteration of the ITRF at the
time of processing. For this study, the G1150 realization of WGS84 was used,
which aligns to the ITRF00 frame introduced in 2002. When executed, the
IDL script extracted the aforementioned QFIT data elements in the WGS84
G1150 system as well as the Universal Transverse Mercator (UTM) coordi-
nate system and XYZ/geographic LAT/LON for comparison analysis.
Evaluation of the impact of sea level rise (SLR) and flood inundation
requires that the data be presented in context to the region around Wallops
Island, VA. This necessitates conversion from the data’s native WGS84 G1150
coordinate system, which is globally relative, to the North American Datum
1983 (NAD83) which adjusts the representative ellipsoid to maximize con-
gruence with the North American continent. This can be accomplished by
using the defined 14-parameter horizontally time-dependent positioning
(HTDP) ITRF00 to NADS3 transformation (with a time parameter of April
30, 2010), which consists of time factored scaling, translation, and rotation
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parameters. After the conversion to NAD83, a horizontal conversion is made
to the NADS3 State Plane Virginia South coordinate system, and finally to
the NAD83 HARN State Plane Virginia South coordinate system. This repre-
sents a further refinement of the NAD83 datum to ensure that the southern
area of Virginia is most consistent with the ellipsoid. In regard to vertical
heights, the original measurements are made relative to the ellipsoidal height
of the WGS84 ellipsoid; these measurements are converted to the North
American Vertical Datum 1988 (NAVDS88) by using the Geoid99 model which
consists of a grid of calculated displacements. The above geographic conver-
sions are performed using a Geographic Calculator, a geospatial transforma-
tion toolbox from Blue Marble Geographics, Inc. This software tool provides
batch data file processing, flexible ASCII input and output formatting, and
support for HTDP, among other linear unit transforms using an extensive
database of geographic coordinate systems and transformations. It must be
noted that when initially rendered in any of the available tools, the terrain
elevations all exhibited an offset of approximately —37.5 m. This is due to a
disparity between the data gathered in UTM (ellipsoidal heights), the geoid
of the earth, and the reference datum. Initially, LIDAR data were collected
in UTM projection, with a point density of one per square meter. UTM is
referred to as “pseudocylindrical” by cartographers and geographers since
it is designed to preserve the perceived shape of the Earth’s surface. Thus
emerges a disparity between the ellipsoid, geoid, and reference datum of
the Earth, which clearly presents an issue for researches of the Mid Atlantic
coastal environment. Furthermore this explains the unusual negative eleva-
tion values on the LiDAR data, as the UTM projection (ellipsoidal) was below
the geoid of the earth. To meet the end goal of the project elevation values,
they had to be changed to sea level values to model effects of sea level rise and
flood inundation from storms (Webster et al. 2003). Thus, a transformation
of datum height values was required to attain the proper elevation readings,
which necessitated a conversion of the data in both vertical and horizontal
planes. This conversion was accomplished using a Geographic Calculator in
three distinct steps. The first step was to take the data, which were format-
ted in WGS84 coordinates, and convert them to NADS83/VA SPCC via the
Blue Marble ITRF00 to NAD83 HTDP transform (dated 4/30/10). The second
step was to convert the data, now formatted in NAD83/VA SPCC, to NADS83
HARN SPC VA South via the Blue Marble NAD83 to NAD83 HARN trans-
form. The all-important third step was to convert the vertical plane from
WGS84 Ellipsoidal Heights to the North America Vertical Datum 1988 using
the Blue Marble GEIOD99 grid. Once all of these conversions are complete,
the final ASCII files are ready for the next stage of processing.

While providing human readability and a degree of flexibility, ASCII files
are inefficient as a means for storing and manipulating LiDAR data. Instead,
the LiDAR points are converted (through differing means) to LIDAR Archive
Standard (*LAS) files, which is the industry standard file format designed
specifically for the containment of LiDAR specific information for exchange
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or dissemination. It is a binary compact format (as compared to ASCII), and
easy to read and use within a wide range of GIS, CAD, and other LiDAR data
processing tools. LAS files can be analyzed individually (given their poten-
tially enormous file sizes) or collectively. For more of a macro data analysis
(as this study was), it proved more beneficial to merge the LAS files together
for a more comprehensive analysis. In this study, conversion and merging
of ASCII files to LAS was done using ENVI's LiDAR toolkit. These opera-
tions were also test-run in LASTOOLS, an open-source software package
for processing LiDAR data. Processing in LASTOOLS allowed a comparison
between the two LiDAR outputs. The LAS data now move to final product
generation and validation.

6.3 Generation and Validation of Final Products

In order to generate DTMs that accurately represent bare earth surfaces or ter-
rain, a process of classification must be undertaken in which valid data points
are “classified” as various potential ground features such as vegetation, water,
and so on. This process also identifies the “outlier” or invalid data points and
marks them for removal in subsequent processing stages. Such invalid points
can result from pulse returns off birds, aircraft, clouds, ocean waves or mist,
and so on. The overall flow of classification is detailed in Figure 6.3. Two com-
mercial software packages were used extensively for this series of steps: Blue
Marble Geographics Global Mapper and TerraSolid. Global Mapper software
has features that proved extremely useful as a rendering and profiling tool
for data formatted elsewhere. TerraSolid is a state-of-the-art modular CAD
system for LiDAR data processing and imaging, run on a powerful worksta-
tion to take maximum advantage of its features. In particular, the TerraScan
module was used for loading the LAS cloud-point files, filtering out artifacts,
and creating the DTM cloud-point by eliminating buildings, trees, and other
non-terrain elements (the DTM cloud-point data could then be used in Global
Mapper for detailed color renderings and beach profiles). The TerraModeler
module was used to create various surface models from the cloud-point data,
colored by absolute elevation. While these models are excellent for scientific
analysis, similar renderings created in Global Mapper are easier to manip-
ulate and add pertinent data for presentation purposes. It should be noted
that extensive testing and experimentation went into determining the best
way to display the data (in TerraScan or Global Mapper), how to remove ter-
rain features (be they man-made or otherwise), render the DTM, and pre-
pare the results for presentation. Once the LAS cloud-point data were read
into TerraScan, it could be filtered and modeled as needed using tools from
TerraSolid and Microstation. Since this started as QFIT rather than VALID
format, there is only one return to work within the converted LAS files. If the
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data are colored by return, obviously only one color will display, which is less
than helpful. This can be initially dealt with by changing the display mode
to color the data by elevation, which can give the user a better context of the
data. From the onset of loading data in TerraScan, all data points are clas-
sified as “1-Default.” Using the Classify > Routine > By Class algorithm, all
points were reclassified as “2-Ground.” This provided a base class where all
remaining terrain points would stay, while filtered points would be classified
elsewhere. Note from here that the entire methodology of creating DTMs in
TerraScan and Global Mapper is based on proper classification of points, and
then modeling or exporting those classes that are desired, while eliminating
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those that are not. Now that all points are classified as “2-Ground,” filter-
ing can begin. There were two areas that were processed heavily: the first is
the southern peninsula of Assawoman Island, VA; the second was the entire
NASA Flight Facility at Wallops Island, VA. The base has numerous build-
ings, towers, and other man-made structures that needed to be removed
for the creation of a DTM, which made data classification a more extensive
undertaking. Conversely, the Assawoman peninsula has no such features
and its Digital Surface Models (DSM) is essentially a DTM as it requires only
some minimal filtering. It is worth noting that the dataset as a whole was lit-
tered with various artifacts and anomalies, which rendered as tall spikes in
the models and caused the elevation coloring to be skewed considerably due
to the software tool’s attempt to triangulate the anomalies with the rest of the
dataset. These artifacts can generally be explained as blips during/after data
acquisition, flocks of birds, wave spray, and so on. The first step in filtering
was to use the Classify > Routine > Isolated Points algorithm in TerraScan to
a resolution of 3.5 feet. In other words, the algorithm examines all the points
in the loaded set. If it comes across a point in the data space that has no other
points within 3.5 feet of itself, it is classified as an isolated point and placed
in the “1-Default” class. The Default class would be the “trash-can” of sorts
for anomalies and other such useless points. In the case of the Wallops base,
the next step was to classify points by the Classify > Routine > By Absolute
Elevation algorithm in TerraScan. This made it possible to break the overall
elevation range (approximately —10 to 158 feet) into pieces and classify data
points by low, medium, or high vegetation, and buildings. Once the build-
ing points and high vegetation were filtered out, the rest of the points were
regrouped into one classification (“2-Ground”) for modeling in TerraModeler
and Global Mapper. Extensive trial and error for elevation parameters was
tested here, as the balance had to be achieved between filtering out what was
needed (buildings, anomalies, etc.), while not scraping into the “bare earth,”
and eliminating good data. While the algorithms detailed above provided
about 90% of the needed filtering, it was still necessary to perform some of
classification manually. This was accomplished by using the Microstation
“View Rotation” and “Pan” tools to view the data from the right sides (per-
pendicular to the ground), zoom in to the southernmost point of the data, and
steadily scan northward. When anomalous or non-terrain points are encoun-
tered, they can be corralled by the Microstation “Fence” tool, and then clas-
sified by the Classify > By Class tool, selecting the appropriate class (being
sure to check “Inside Fence,” which applies the classification only to the
fenced in points). This manual technique for classification was very effective
for micro-filtering, but also very tedious and time consuming (this is a good
example of why the cropping/filtering of data at the ENVI Script stage was
so important). Once all of the classification was completed to an acceptable
level, the cloud-point data were re-saved to their own LAS file. This allowed
a proper comparison to the unclassified and unfiltered data in subsequent
processing steps. At this point, the filtered and classified cloud-point data
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were ready to be modeled in TerraModeler and rendered in Global Mapper.
TerraModeler takes the cloud-point data and creates a 3D surface model from
them, exquisitely detailed and colored by absolute elevation. Rendering, pro-
filing, and additional 3D images of the data were then performed in Global
Mapper. These operations did not modify the data, but only changed parame-
ters that dealt with the map legends, scales, and coloring. Beach/land profiles
were obtained with Global Mapper’s Profiling Tool, with comparisons made
between the unfiltered DSM, the filtered/classified DTM, and VA State data
from the exact same latitude/longitude positions. These images are found
and explained in more detail in the Results section.

To evaluate the performance of the classification exercises above, the bare
earth model (DTM) needed to be validated against known ground truth
points, which was done in two stages. First, the TNC LiDAR data were vali-
dated against 359 control points provided by NASA. Before calculation of the
root mean square (RMS) error, the outliers and residuals greater than +/-1
foot were removed. There were 21 such outlying points found and eliminated
when comparing the TNC DTM to the NASA control points. The RMS error
value for these remaining 338 points was 0.430 feet, or 13.113 centimeters.
This was then considered the approximate “goal” of accuracy. In the next
step, the DTMs processed in this study were validated with the TNC dataset
and a reduced set of NASA control points (105). This reduced set was neces-
sitated due to gaps in the processed DTM shown in Figure 6.1. Hence, once
the final DTMs were created, all 359 control points were loaded in TerraScan.
An Output Control Report was run, and any control points outside the pro-
cessed data range were eliminated. This new set of control points was then
compared to the same DTM, only rendered in Global Mapper. A similar
report was run and points outside the processed data range were eliminated.
(NOTE: there are slight differences in how TerraSolid and Global Mapper
render datasets, which is why there were some control points that were valid
in one program and not the other, and vice versa). There were three primary
RMS error analyses performed against these 105 control points: the Method 2
DTM in Global Mapper, the Method 2 DTM in TerraScan, and the TNC DTM
in Global Mapper. The DTMs outlined in this study are roughly 2 cm better
than the TNC DTM against the same 105 control points, and extremely close
to the TNC DTM baseline. The residual comparisons between the custom
data processing chains in Global Mapper and Terrasolid against the TNC
processing chains are shown in Tables 6.2 and 6.3.

6.4 Results and Discussion

Figure 6.4 shows the DEM created with LiDAR data obtained from the sur-
vey conducted with the NASA ATM sensor. The figure provides a good
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TABLE 6.2

RMS Comparisons between Custom Processing in Global Mapper and TNC
Processing

Method 2 DTM Residuals TNC DTM Residuals (105 ctrl pts.)
(105 ctrl pts.), Global Mapper Global Mapper

FT CcM FT CcM
AVG DZ -0.057428571 -1.750422857  -0.234457143 -7.146253714
MIN DZ -0.866 —-26.39568 -1.329 —40.50792
MAX DZ 0.945 28.8036 0.871 26.54808
RMS 0.437931393 13.34814885 0.49454125 15.07361729
STD DEV 0.436231851 13.29634683 0.437520264 13.33561764

visual indication of the coverage density resulting from the ATM scan. The
region covers parts of the NASA Wallops Flight Facility (WFF) and the sur-
rounding salt marshes. The higher elevations, represented in red, are build-
ings located at the NASA WEFF. The elevations in dark green depict roads
and bridges. Note also the causeway at the entrance to the island in the NW
corner of the image. Elevations in light blue and light green portray channels
and salt marshes, respectively. The ocean waters are depicted in dark blue
and are not processed well in this study due to low laser backscatter from
water surfaces. Overall, the LiDAR-derived DEM portray ground features
illustrated by elevation.

Figure 6.5 shows the bare earth model or DTM of the same area after
removal of buildings, trees, and other structures by the classification method
described above. The highest elevation in DTM is ~5 feet compared to the
DEM of nearly ~30 feet. The LiDAR-derived terrain surfaces can be rendered
in models to illustrate low-lying areas that would flood especially during
winter storms and SLR. The success of the DTM creation can be seen in
Figure 6.6, which shows what was eliminated from the DEM to arrive at the
DTM. 1t also illustrates that the classification works best on the NASA base

TABLE 6.3

RMS Comparisons between Custom Processing in TerraScan and TNC
Processing

Method 2 DTM Residuals TNC DTM Residuals (105 ctrl pts.)
(105 ctrl pts.), Terrascan Global Mapper
FT CM FT CM
AVG DZ -0.053714286 -1.637211429  -0.234457143 —7.146253714
MIN DZ -0.871 —26.54808 -1.329 —-40.50792
MAXDZ 0.945 28.8036 0.871 26.54808
RMS 0.442950583 13.50113377 0.49454125 15.07361729

STD DEV 0.441790494 13.46577426 0.437520264 13.33561764
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FIGURE 6.4
Initial DEM final product from Global Mapper (minus outlier points).
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FIGURE 6.5
DTM final product from Global Mapper, depicting the apparent bare earth terrain.
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FIGURE 6.6
A model of the feature points that were removed during DTM creation.

where there are high-rise structures. The salt marsh regions are essentially
bare earth and do not show up in the difference image.

LiDAR-derived data can be used for many coastal applications including
studies involving shoreline changes and mapping, episodic erosion, coastal
geomorphology, land use planning, coastal inundation mapping, habitat
analysis, and vegetation classification (https://coast.noaa.gov). Some appli-
cations derived from this study are described below.

LiDAR-derived elevation data are used to produce high-resolution topo-
graphic and bathymetric maps over shallow regions. These maps can be
used for extracting shoreline positions and quantifying shoreline changes.
Figures 6.7 and 6.8 are profiles taken from the DEM and DTM. These pro-
files track the elevation of the bare earth and beaches in this location. If
validated against spot elevations determined with the “total station” survey
instrument, they can be of immense value to study erosion and accretion
processes.

LiDAR technology can play an important part in environmental conserva-
tion and restoration.

Many coastal species of plants and animals use small elevation changes to
build their habitat.

An illustration of LiDAR habitat application is shown in Figure 6.9. The
brown areas in the image depict beach elevations on the South side of the


https://coast.noaa.gov
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FIGURE 6.7
Terrain profile of the initial DEM.

island. The red diamonds overlaid on the DTM are nesting locations of the
endangered piping plover. The inset shows a profile across one of the nest-
ing sites. The beach profile reveals that the piping plover always nests on the
leeward side of sand dunes, perhaps to protect their nest from the waves and
wind.

Another example of how LiDAR data can be used to study beach habitats is
shown in Figure 6.10. The figure shows the habitat locations of three species
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FIGURE 6.8
Terrain profile of the final DTM.
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FIGURE 6.9
An example of LiDAR data showing shoreline changes.

Distribution of anurans on Assateague island, VA
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FIGURE 6.10

An example of LiDAR data showing habitat locations of various Anuran species.
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of anurans overlaid on a LiDAR-derived topographic surface. Anurans are
endangered species that also rely on small elevation changes to build their
habitat.

LiDAR maps are frequently used to illustrate small-scale tidal or weather
related inundation and coastal flooding events. Figure 6.11a—d demonstrates
a simple bathtub model where the different stages of inundation of marsh-
lands and surrounding wetlands around Chincoteague Bay, VA are depicted
as hurricane Sandy came ashore. Accurate LiDAR data are important as sub-
tle changes in elevation can affect the horizontal extent of the water surface.

LiDAR elevation accuracy and resolution are important factors when used
as input in the Sea Level Affecting Marshes Model (SLAMM) to simulate the
dominant processes involved in wetland conversions and shoreline change
during long-term SLR. The LiDAR data that are used as input to the model
decrease the uncertainty in model prediction.

(a) Vertical datum: Mean high water (NOAA/NCEI DEM)
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FIGURE 6.11
(@) A DTM of Chincoteague Bay, VA, employing bathymetric LiDAR data. (Continued)
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(b)  Vertical datum: Mean high water (NOAA/NCEI DEM)
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FIGURE 6.11 (Continued)
(b) An inundation model of Mean Sea Level against the NOAA Mean High Water vertical
datum, superimposed on the DTM from (a). (Continued)

6.5 Conclusion

Results are discussed from a baseline topographic survey of the NASA WFF
and surrounding region. NASA ATM was used to acquire LiDAR data to
sample terrain of the aforementioned area. After converting the datasets to
sea level elevation, the files were processed using two different approaches
and used a variety of software including TerraSolid, geographic informa-
tion system (GIS), Global Mapper, LP360, and ENVI’s LiDAR Toolkits. This
research provides a number of DSMs of Wallops and Assawoman Islands
in Virginia. The DEMs were furthered classified and processed to produce
a number of DTMs. These DEMs and DTMs provide a baseline assessment
of Wallops and Assawoman Islands in Virginia and serve to standardize
a work flow routine for future DEM and DTM production. Gaps in the
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(C) Vertical datum: Mean high water (NOAA/NCEI DEM)
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FIGURE 6.11 (Continued)
(c) An inundation model of the Spring Tide from October 2012, superimposed on the DTM from (a).
(Continued)

NASA data collection were filled in using data provided by The Nature
Conservancy (TNC) DEMs and processed further to provide a complete
DTM of the region. The DEM and DTM products were extensively validated
using NASA Control points, TNC DEM/DTMs, and field surveys of the area
using GPS and Total Station derived ground elevation points. The validation
demonstrated that the elevation residuals (DTM minus control point) were
less than +/-14 cm. This demonstrates that the generated DTMs are better or
closely comparable to similar DTMs of the area. Further improvement in the
DTMs can be achieved by processing the waveform data supplied by NASA.
Further analysis of the data was done using piping plover nesting locations
provided by the US Fish and Wildlife Service (USFWS). The results demon-
strate that the piping plover uses the leeward side of sand dunes to nest and
thus protects its young from offshore physical processes like waves, wind,
etc. Although many possible reasons can be gleaned from this result, a com-
plete analysis is needed for confirming the nesting behavior of these birds.
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(d) Vertical datum: Mean high water (NOAA/NCEI DEM)
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FIGURE 6.11 (Continued)
(d) An inundation model of the maximum storm surge from Hurricane Sandy in October 2012,
superimposed on the DTM from (a).

The DTMs also illustrated a number of beach processes that can be observed
only from synoptic data collected from remote sensors like the LiDAR. This
project not only examined island morphology over time, but also was used
in models to study the potential impacts of sea level rise on the coastal eco-
system from climate change and east coast cyclogenesis.

It is the authors” hope that this chapter encourages further applications of
LiDAR bare earth models, especially in the marine environment.
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