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PREFACE

The theory of time-dependent engineering materials, considering material
deterioration and changes of thermo-mechanical properties in time, is a quickly
developing branch of solid mechanics. Several monographs and textbooks have
been published during last years and a great number of scientific papers have
dealt both with a constitutive modelling of materials and its experimental
calibration, as well as a computerized FEM and FDM application to the analysis
and design of structural elements for creep-damage, elastic-plastic-damage, creep-
fatigue and other conditions. State and evolution equations capable of analysing
of simple structures and lifetime predicting for complex thermo-mechanical
loading conditions are usually either a mechanisms-based when an intuitive
phenomenological approach is used, or the thermo-dynamic-based when the
rigorous thermodynamics of irreversible processes is employed. Creating a bridge
between the theoretical material modelling on one hand, and the experimental
validation and computer simulation on the other, is the main objective of this
course.

The idea to organize the CISM Advanced School on “Modelling of Creep
and Damage Processes in Materials and Structures”, held in Udine (Italy) from 7
to 11 September, 1998, was born in 1996 when the coordinators were invited to
read lectures on CEEPUS Summer School on “Analysis of Elastomers and Creep
and Flow of Glass and Metals”, organized in Zilina (Slovakia) from 19 to 30
August, 1996, by prof. Viado Kompis. The CISM Advanced School eventually
collected six lecturers, professors: Holm Altenbach (Germany), Jean-Louis
Chaboche (France), Peter Gummert (Germany), David Hayhurst (United
Kingdom), Erhard Krempl (USA) and Jacek Skrzypek (Poland), who presented
lectures to circa 50 participants from 16 countries. The course has provided a
comprehensive survey of one- and three-dimensional constitutive material models
based on the continuum mechanics, creep-damage mechanics and
thermodynamics. On the other hand, a possibility of numerical applications of
various time-dependent material behaviour problems, including creep, creep-
damage, elastic-brittle-damage, elastic-plastic-damage, creep-fatigue, thermo-
creep-damage, etc., has been reviewed and discussed. Experimental observations
of the primary creep, the steady-state creep, the tertiary creep, the cyclic creep,
and other behaviours, have been the starting point of the one-dimensional
modelling and its calibration and discussion. In addition, for practical use of the
time-dependent material constitutive equations we need their three-dimensional
generalization, which requires a tensorial representation for the anisotropic, in
general, constitutive and evolution equations of damaged metallic or non-metallic
materials.

In these Lecture Notes six contributions of the authors are included in such
a way that various approaches to constitutive and structural modelling for creep,
damage and other conditions are developed and demonstrated, starting from the
most general material behaviour, principles and state variables (P. Gummert, H.
Altenbach, J. Skrzypek) through experimentally-based as well as advanced
thermodynamically-based constitutive modelling of the crystalline metallic and
ceramic or composite materials for high-temperature creep, damage, fatigue and
other conditions (J.-L. Chaboche, D. Hayhurst, E. Krempl). Each of the six



capable of describing metallic, non-metallic or composite materials. When applied
to the metallic materials, ductile plastic damage and creep-fatigue damage are
presented in a detailed form. Concise discussion of brittle-damage models applied
to metallic matrix composites or ceramic/ceramic composites is presented.
Application of CDM methods to the inelastic damage structural analysis, the
lifetime prediction, and the local approach to fracture, are also included.

In Chapter 5: “Material Data Bases and Mechanisms-Based Constitutive
FEquations for Use in Design” by David R. Hayhurst (UMIST, Manchester), single-
or multi-state variables mechanism-based CDM creep-damage constitutive
equations for the super-computer simulation of high-temperature design of
engineering components, are reviewed. Particular emphasis is placed upon the
aluminium alloys and nickel superalloys applications. Experimental techniques
and procedures are discussed for selection of the dominant mechanism, and
calibration of these equations for the accurate predictions and extrapolations.
Capability of CDM approach to the high temperature creep crack growth analysis
and lifetime prediction is also discussed and recommended. The example of a
ridged test piece is used to demonstrate the power of the method and to highlight
the importance of carrying out a reliable laboratory testing and creating good
material data.

Chapter 6: “Cyclic Creep and Creep-Fatigue Interaction” by Erhard
Krempl (Rensselaer Polytechnic Institute, Troy, N.Y.) provides a survey of the
experimental results from low-cycle fatigue testing of various metallic materials
(copper, 304 stainless steel, different engineering alloys, etc.) in low or high
homologous temperature conditions. The unified approaches of the viscoplasticity
theory with state variables and the viscoplasticity theory based on overstress (VBO)
are systematically developed and applied to modelling of primary, secondary and
tertiary creep at very high temperature. The results give confidence that VBO
model is capable of predicting the long-term cyclic behaviour and lifetime of
structural components at high temperature. Three appendices are attached to give
details for the standard linear solids, modelling of rate independence and negative
rate sensitivity and excerpts from the WRC bulletin.

The book is addressed to yvoung researches and scientists working in the
field of mechanics of inelastic materials and structures as well as to Ph.D. students
in computational mechanics, mechanical, environmental and civil engineering,
and material science. The book interlinks the material science foundations, the
constitutive modelling and computer simulation applied to analvsis and design of
simple structural components for high temperature creep, damage, fatigue and
other conditions. This publication may be recommended as an interesting textbook
which shows the creep and continuum damage mechanics as a rapidly developing
discipline, although the wish list in this field is long and open - to mention only
material anisotropy, creep damage of composites. unilateral damage response,
damage-fracture interaction, application of CDM approach to crack growth
prediction, local and non-local approaches, probabilistic approaches, etc.

Holm Altenbach
Jacek Skrzypek
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GENERAL CONSTITUTIVE EQUATIONS FOR SIMPLE
AND NON-SIMPLE MATERIALS

P.R. Gummert
Technical University Berlin, Berlin, Germany

ABSTRACT

Stress and deformation are related by constitutive equations. Using the symmetric stress tensor
field S(X, t) at the place of X and at the present time ¢ and a (symmetric) deformation field, e.g.
B(X, 7) at the same place of X and the past time 7, it is necessary and possible to postulate six
equations S(B). Together with three equations of NEWTON's law (resp. with three equilibrium
conditions) and six equations of displacement—deformation conditions between B(X, 1) and the
displacement field u(X, 7) an array of fifteen equations is generated to solve the fifteen unknowns
as scalar components of the two tensor fields S(X,¢), B(X,7) and the vector field u(X,7).
Embedded in a consistent mathematical and physical frame theory, this paper is an attempt to
derive constitutive laws in a general way and to classify the materials in a systematical way. The
knowledge about a material is complete, if in addition to the constitutive equations a procedure
of determination of the appropriate material functions and/or parameters is provided (material
identification).
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1. KINEMATICS

A body B is a three~dimensional differentiable manifold. The elements of B are called
elements Z and one of them representing all Z is called X. The body B is mapped to the
EUKLIDean space R;3. There we find B (see Fig. 1.1)

(i) in a timeless and arbitrary reference placement x(X, %) = &
(i) in a past placement x(X,7) at the time 7

(iii) in an instantaneous placement x (X, t)

with —oco < 7 < t. Let s =t — 7 the past time, starting at the present time 7 =¢, s =0
and running to the infinite past 7 — —o0, s = oo, thus oo > s > 0.

In every placement we find all elements Z of the body at an unique position x(Z,t). One
element never can be at two different places at the same time s, and two different elements
never can be at the same spot within the same time s. The manifold of the placements,
mapped to R, are called configurations x(Z,t) and are described by EUKLIDean vectors
x(X,7) = x(X,t—s). The special placement of X in the reference configuration is denoted
by X (X, to).

F(X,1)

Figure 1.1: Configuration

If a field ®(X, ) is referred to the placement of X at the PCFG (ICFG is included,
as 7 = t is included), then the field is described by ® = ®(x, 7) with x = z,e,, and the
co—~ordinates x; are called spatial.
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If a field (X, 7) is referred to the placement of X at the RCFG, then the field, is
described by ® = ®(X,7) with X = Xje;, and the co-ordinates X, are calledniaterial.
This way the field ®(X, 7) at the time 7 is described by the position X the element. X has
been placed in the RCFG.

In particular a motion of a body is a sequence of configurations x (X, 7) for all X
denoted either by x(X, 7) = x(x,7) in spatial representation or by x(X,7) = x(X, ) in
material representation, whereas x(X,7) = x(7) is the place of X at 7 described by the
co—ordinates X, referring to the RCFG.

Additionally it is presumed that the derivatives of z; and X exist and are continuous
in a sufficient number. For the derivatives with respect to z,, that means for the spatial
gradients follows

0X i g\ 0X; 5
Grad X = XV = a—x = (‘Xje]«) (ez-%;) = a—xzejei =F (11)
Gradx =1
and analogue with respect to X, resp. for the material gradients follows
ox 0 Ox; L @1
Gradx = xV = 7% = (x,€) (e](‘)T’]) = a—XJeiej =F=F (12)

GradX =1

where F is called the “deformation gradient'®. It maps all geometrical and physical states
from RCFG to PCFG (ICFG) and allows to convert material co-ordinates to spatial co—
ordinates and vice versa.

The second-order tensor F is regular with the consequence of detF # 0. So we get
(Fig. 1.2)

dx = g—;dx — GradxdX = FdX (1.3)
dan = (det F) FTdAng (1.4)
dv = (det F) V" (1.5)

Moreover for the scalar—product of two vectors dx and dy results

dx-dy = (FdX)-:(FdY) = (FdX)" - (FdY) = (dXF") - (FdY)

1.6
=dX - F'F.dY =dX -C- dY (16)

It is shown by comparison of two motions of the same body differing by a (pure
time depending vector c(t) that F is invariant to (pure, rigid) translation. Let x5(X,t) =
x1 (X, t) + c(t), then

F2 = Grad Xy = Grad [Xl + C(t)] = Grad X = F1 =F (17)

1Since F contains more than the deformation of the body it should be better called “configuration
gradient”
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Figure 1.2: Element mappings

Then F must still contain the (rigid) rotation and the (proper) deformation. These two
properties can be separated now by a unique multiplicative decomposition:

FX,7)=R(r)U(X,7), (1.8)

in which is R (proper) orthogonal with RR" = I; det R = +1, describing the rigid body
rotation, and
U=UT"=FTR=R"F

U? = UTU = (F'R) (RTF) = FTF =: C (19)

(U — right stretching tensor; C — right CAUCHY tensor), describing the deformation. It
is caused by (1.6) that C = FTF is a basic quality to determine all deformation processes
(stretching and shearing angles) of an element with

dx-dy = (dz;e;) - (dz,e;) = dzidz;cosoy; = dX, CdX, = C,,dX,dY;

d2.17,‘ . i = j

o ) axX? (1.10)
Y dz;dz;cosay; oy
dxdx; 7Y

Using the material formulation with the “detour”

x=X+u (1.11)
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whereas u is the displacement-vector (see Figs. 1.1, 1.2) and
XxV=F=(X+uV=XV+uV=I+H (1.12)
defining the displacement gradient:
H:=uV #H'" =Vu (1.13)
we get for arbitrary deformations expressed by the right CAUCHY tensor (1.9)

C =F'F=(I+H)"(I+H)=1+H+HT+HTH=C"

=I1+uV+Vu+ (Vu) (uV) (1.14)

The advantage of this form is that the influence of the geometrical non-linearity is evidently
shown by the last (non-linear) term HTH and that the non-linearity is considered by this
squared term completely and only.

The physical meaning of (1.8) F = RU is an sequential mapping, separating the
configuration—gradient in a (right) stretching history U (X, 7) first and in an arbitrary rigid
body rotation R later. The uniqueness of the mapping demands that the same result would
be obtained by a rotation first and a stretching second:

F(X,7)=V(X,7)R(r) (1.15)

Here V (X, 7) is the left stretching tensor with the relations
V = VI'=FR" = RFT = RUR" (1.16)

v? = (RURT) (RUR") = RUUR' = RU*R"
= RCRT (1.17)

RUR'RURT =FIFT =F' =B
where B is consistently the left CAUCHY deformation tensor

B =FF'=(I+H)(I+H)"
=I+H+H" +HH' =B" (1.18)
=I+uV + Vu+ (uV) (Vu)

U and V have the same eigen—values k£ and the eigen—directions k are rotated with k;- =
Rky.

As (1.14) includes the identity-mapping between RCFG and ICFG, what could be in-
terpreted as the rigid body motion up to ¢, only the terms H, HT and HTH contain the
proper deformation. So it is obvious to define a measurement of deformation without the
identity, called the right and left GREEN-tensors:

[FTF -1} =i[C-I]=j[H+H' + H'H] (1.19)

=i [uV + Vu+ (Vu) (uV)]

—2
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G!' =1[FFT-I]=1B-1I=1[H+H"+HH (1.20)
=3 [uV + Vu+ (uV) (Vu)]
For reasons of linearization a magnitude of H is introduced by
e = sup ||H|| = sup [tr (HHT)}I/2 (1.21)

Then H is of order O(c); HT is of order O(¢); but HTH and HH" are of order O(c?).
From (1.20) e.g. we get

G'=1uV+Vu+ (uV)(Vu)]=0() +0(e) + O (%) (1.22)

If a problem is allowed to be geometrically linearized, then the terms of O(£?) are neglected
in comparison with O(¢). It results in

linG' = [uV+Vu=1(H+H")=E (1.23)
linG" = LuV+Vu=Li{H+H")=linG =E (1.24)
E = j[uV+Vul=;H+H") (1.25)

as the infinitesimal strain tensor (engineering strains).

Because RRT = I and detR = +1, we get furthermore det U = detV = detF;
det C = det B = (det F)?

For the relative configuration (see Fig. 1.1) at the past time 7 resp. s we get by chain

rule and with (1.2)
Vx(r)=F(r) = %;%%((% =F;(s)F (t) ’ (1.26)

Here F,(s) is the relative configuration gradient, which maps the instantaneous configura-
tion to the past configuration. The polar decomposition theorem takes the form

Fi(s) =R (s) Uy (s) = Vi (s) Ry (9) (1.27)
The deformation tensors C resp. B are now related to this relative gradient by
C(r)=F' (1) Ci(s)F(t) and B(r) = F(s) B(t) F}(s) (1.28)

As we need the deformation rate additionally, it comes together with (1.26) for the derivative
with respect to 7

F)=aFO)=REF0:  FO=|2F@| =ROF@ (129)
or by eliminating F,(0)
F,(0)=F,(t)F~' (1) =: L = Grad x (t) = Grad v = Grad v F (¢) (1.30)

Using decomposition L = RU, L can be written as
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L=FF! = (RU) (RU)" = (RU + UR> (U-'R™') =RR™! + RUU"'R”
The symmetric part of L is the deformation-rate tensor

D=4(L+L") =smL=}[R(UU"+UU)R] (1.31)
and the skew part of L is called the spin tensor W

W =1(L-L") =skewL = RR"+} [R (UU' + U"'U) R (1.32)

Higher time—derivatives could be denoted in a similar way by L,, = Grad (;lc).

2. GENERAL CONSTITUTIVE EQUATION

2.1. Fundamentals

A mechanical process® is described completely, if the stress field S(X, ¢) and the kine-
matical field represented by the configuration x (X, 7) or by the displacement vector u(X, 7)
is known. This process might be called admissible, if it is possible to determine one of these
fields if the other is given. In general the order of priority is arbitary, but here we will sub-
mit the order to be determined by the kinematical history first and the kinetic body state
(stress) is to be subsequent.

With the balance of the stress field (CAUCHY 1), we have three equations, and with the
displacement—deformation conditions (e.g. (1.14), (1.19)) we have additional six equations
to solve the mechanical process with the symmetric stress tensor S = ST (six unknowns),
the displacement vector (three unknowns) and the appropriate symmetric deformation resp.
deformation—rate tensors C, B, L, or others (six unknowns).

Hence we have nine equations for fifteen unknowns — therefore six equations are miss-
ing. Those are expected from the condition of admissibility of a mechanical process resp.
by the relation of stress and configuration in a continuous media. They are called the mate-
rial laws or the constitutive equations. To generate these equations we postulate principles
which have to be satisfied necessarily if the mechanical process is an admissible one.

2.2. Principle of determinism (PDET)
The stress S of an element X as a part of a body B3 at the time ¢ is determined by the
entire kinematical motion—history of all elements Z of B, thus x(Z, 7)
t

S(X,t) = F [x(Z,7),X,1 (2.1)

T=—00
If a material is homogenous and non—aging there is no influence of an explicite X and of
the present time ¢ to the material properties:

t o0

S8 = F [x(Zn).XA0=F x(Zt-5) (2:2)

T=—=0Q s=0

2y thermodynamics the number of fields and the number of variables is higher, since at least the
internal energy, the entropy, the temperature, and the heat flux vector must be taken into account.
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One consequence of (2.2) is: if any two motions of two elements X1 and X2 are the same
for all times s > 0, then the value of the functional JF, and therefore, the stress S is the
same.

The functional is a tensor-valued functional of rank two, but it is not necessarily a
second-order tensor function, as the entire history s > 0 has its influence to the present
value (s = 0, t) of S. It is the response functional to arbitrary, but purely mechanical
processes, that means to arbitrary motions of a continuous, deformable body in respect to
the element X at the time t.

Since (2.2) is the general constitutive law, it describes the material behaviour. This
behaviour and within the material properties may not depend on the observer resp. on the
base these properties are related to. Therefore the next step will be the postulation of this
invariance.

2.3. Principle of frame-indifference (PFIN)

Let OB1 and OB2 are two observers of the same kinematical history )y with the assump-
tion that they describe their observations related to the bases [1] resp. [2]. Let us assume
that OBL1 is fixed resp. that he describes the process in respect to a fixed base. OB2 may
be moved arbitrarily, that means, he or his base differs from OB1 by an arbitrary translation
c(t) and a (rigid) rotation Q(t) (Fig. 2.1). If the process is objective (same physical process
related to different bases), the process-variable must satisfy the following conditions:

scalar s, objective if s*=s— 3y  (shifted base)
vector-field v, objective if v* = Qv (rotated base) (2.3)
tensor-field T, objective if T* = QTQT (rotated base)

0OB2

Figure 2.1: Observer transformation
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For the configurations yield with x* = Qx
x[1] = c(t) + x[2] = ¢(t) + QX" (24)
X" = Qx[2] = Qx[1] — c(?) (2.5)

If now observer OB2 takes PDET (2.2) introducing his observation x*, he gets “his" stress
“S". This stress must be objective in the sense of (2.3), hence “S" = S*

o0

“§" (X,t) =F [x(Z,t—s)] = S* = QSQT (2.6)

=0
t may be replaced by t* (see (2.3)), if t is shifted objectively.
Since the observation of OB1 is x, he gets the stress S = QTS*Q = F|[x]. Together
with (2.2) the two observations can be merged either by

X" (Z,t-5)]=S"=QSQ" = QF [x (2,1 - 5)] Q" (27)

38

$=0

or by
Fx@t-9]=0" F [x' Z1-)]Q=Q"  {Q[x(Z,1~5) - c]} Q(28)

Not any functional is a constitutive equation, but those and only those which satisfy the
functional-restrictions (2.7) or (2.8) are matterfunctionals, as the stress caused by the
motion must be objective (PFIN). This must be valid for all elements Q of the rotation
group and for all only time—depending vectors c (¢t — s). Then it must be right for Q =1
and c(t) = x(X,t) either. By this we deduce from (2.8) the constitutive equation

o o]

SX,t)=F [x(Z,t—3)]=F [x(Z,t-s)—x(X,t—3s)] (2.9)

s=0 s=0
and the stress becomes a functional of the motion—difference-history of all Z in respect to
X of the body.
If the body is rigid, then must be x(Z,t — s) = x(X,t ~ s) (identical motion of all
elements) with the consequence

S0 =F [x(Zt-9)]=F [x(Xt~s) - x(Xt-3)]=F[0]:=0 (210)

That includes the statement that an arbitrary motion history does not produce any stress
in a body of rigid material, resp. the stress in a rigid body is not determined by an arbitrary
motion of this body.

2.4. Principle of neighbourhood (PNBH)
From (2.9) we see that all particles Z of B have an influence to the matter—functional

and herewith to the stress.

Let N(X) a neighbourhood of X (see Fig. 1.1). The timeless reference configuration
may be denoted by &, then N(x) is representable by the difference position vector of Z as
the localization in N(X) of the configuration k

Y(Z)=2Z - X =k(Z) - k(X) (2.11)
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If the body is moved with time, the neighbourhood is changed to
y(Z’ T) =Z2-X= X(Za T) - X(Xa T) (212)

Now y(Z,7) describes the motion of a neighbourhood of X as it appears to an observer
moving with the element X, since y (X, 7) = 0. Hence (2.12) can be converted into material
representation, considering that y differs from x only by translation

Y(Za T) = X(Z - X, T) = X(Ya T) (213)
and that the gradient of x coincides with the gradient of y:

F(Y,7)=Grad x(Y,7) =F(Z,7) - F(X,7)
F(X,7) = Grad x(X,7) = Grad y(0,7)

An equivalent representation with the relative configuration and the relative configuration—
gradient F;(X s) is always possible (cp. (1.27)).

The localization is helpful in order to get informations about the influence of the more
or less larger neighbourhood y of X to X itself. If the influence of the motion x of the
neighbourhood N(X) is small, or if the neighbourhood y(Z, 7) considered as decisive for
this influence is small, then the material is called a /ocal material, otherwise it is called
non-local.

Analogue to a TAYLOR-expansion for scalar functions

f(z) = f(x+ Ax) = f(x) + f'(x)Ax + 3 f"(x) AxAx + ... + Res(Ax)  (2.15)

(2.14)

we expand the motion x(Z,.) at any time in the neighbourhood y of X:

— _ Ox~  19°x
The terms gx)fl are the derivatives of x(X,7) with respect to X of the order n =
1,2,3,...,N.
For n =1 we get again (see (1.2))
xX,) _ o _
For higher n > 1 the derivatives are
?x 0 [0x 2
Px ? [(0x 3
n=3 3X: ~ ax2 (ﬁ) = xVVV = Grad Grad Grad x =F (X,.) (2.19)
0"x n
n: =xV...(n)...V=Grad...(n)...Grad x =F (X, .) (2.20)

oxXnr

the material gradients F (X, .) of the configuration.
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If the order of differentiation is n, the appertaining gradients are tensors of rank (n+1).
They are not functions of Z anymore, but of X now?.

The more terms n are taken, the more we know about the kinematical environment
Y and its influence to the local element X at X, the more precise the influence of the
neighbourhood is described, and the error of the expansion represented by the neglected
remainder “Res” becomes smaller.

If it is assumed or ascertained that the elements Z with far distance |Y| have less or
no influence to the state at X, or if this influence is restricted to a small(er) region at all,
the higher gradients N > n loose their importance and they can be neglected. This case is
postulated by a special principle of local action (PLOA).

It may be mentioned that the expansion is only analogue to a TAYLOR-expansion,
as we want to know only which and of what kind the independent variables expected in
the matter functional are. The investigation of convergency of the TAYLOR-expansion or
the representation by other convergent series, e.g. by multiplicating the higher gradients F
with fitting parameters or factors, is not necessarily considered, if we demand informations
about the motion—difference-history in (2.9) as the argument of the functional. For the
motion—difference-history as the argument in (2.9), we obtain with (2.15)

X(Z,t=s) = x (Xt —s) =x (X +Y,t=s) - x (X, t = 5)

= (XV) Y+ (xVV)YY +...+a,(xV...(n)...V)Y...(n)... Y (2.21)
+Res(n,Y)

For the matter—functional in the updated form (2.9) we obtain with (2.15)...(2.21)

S(X,t) = Flx(Z,t-s)—x(X,t-5s)]
= FIxV,xVV,xVVV,....,xV...(n)...V,Y] (2.22)

with x = x(X, t—s). The gradients can be eliminated by the configuration-tensors F(X, t)
according to (2.21):

S(X,t) = F[xV,xVV,....,xV...(n)...V,Y]
- FIFO.FO.FO,....F(,Y (2.23)

A material of this type (2.23) which is described by the first n gradients up to I?‘ (X,t—9)
is defined as a material of grade n.

Of course, (2.23) is a material equation, if and only if the principle of frame-indifference
(2.7) is satisfied additionally.

2.5. Materials of grade n(> 1)
It is to expect that, if the funcional contains higher gradients n as tensors of rank
(n + 1), the stress—tensors as the consequence of Eq. (2.23) are of higher rank than two

3For some authors this is the argument to aver that the theory looses its character of non-locality
hereby. If non—locality, however, is a more or less influence of a mare or less kinematical neighbourhood,
then this influence is considered completely by the higher gradients in an appropriate theory.
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also. But, for higher stress tensors are no equations of balance of momentum available,
unless for the “classical” EULER-CAUCHY stress tensor of rank two.
For this yields

V-S+k=px=pi (2.24)
Together with (2.23) it would come
2 3 n .
V- -FFX,t-s),F().F(Q,....F(),Y]+k=pu (2.25)

Relation (2.25) leads to a differential equation of order (n 4 1) in respect to the spot.
As the number of boundary conditions does not increase in the same way as necessary to
determine all integration—constants and to solve the appropriated boundary problem, the
formulation of a non-local constitutive theory by (2.25) would cause additional problems,
unless an analogue equation of momentum-balance as in (2.24) would exist and found for
each rank n > 1, for instance in the form:

n=1: V-S+k=px=pi
2 2
n=2 : V-§S+K=p,(uV) = p,H" (2.26)

n n (n-1)
n : V-S+K=p,(uV...(n)...V) =p, H"
Those balance equations are neither defined nor known as fundamental theorems. That is
the reason why we will not follow this way.
Another possibility of balancing, proposed by [8], is to stay at the classical field equation
(2.24) (CAUCHY 1)

V- T+k=p% (2.27)

but to summarize all stress tensors S in a suitable way (see later) with the result of a tota/
stress tensor T of rank two. Each of the added stress tensors is declared as a member of a

2 3 n
kinetic set S: {S, S,S, ..., S} , and is generated by a

m

2 3
kinematical set U : {u, u,q,..., U} , where Inj’ are m—independent

kinematical tensors of rank m, which are co—ordinated to X at every time. If the elements of
the kinematical set are separated into a displacement part u(X,¢) and an element-rotated

part w(X, t), which is the axial vector of the skew part of {nj even COSSERAT—media resp.
polar media of grade m are describable. The special case m = 1 for a non—polar media
is included. In the ongoing treatment only non—polar materials will be investigated further.
Therefore is m = 1 and the kinematical set reduces to U = u and the gradients:

2
wW=H=F-I uVV=@V)=HV=H, uV..(n).V=H (2.28)
The members of the kinetic set S are now computed by an energy-balance instead of
the missing momentum-balance for higher stress tensors. Herewith the theory bases on a

energy-equivalence and guarantees this way the satisfaction of the energy-resp. energy—flux
criteria (first theorem of thermodynamics reduced to mechanical processes) [8, 9, 14, 15].
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With the definition of the kinetic energy E = [ e dm, the deformation energy W = [ wdm,
and the work P = Py + P4, where the work is divided into the work of the volume forces
Py and the work of the external surface forces P4, the energy balance is

P=E+W=/[e+w]dm (2.29)
resp. written as energy—flux relation
P:E+W:/[é+w]dm (230)
If the kinematical set U has one member only, that means m = 1, hence
Py = /k-udV (2.31)
v

For polar materials (m > 1) the equivalent expression would be

2 3
PV=/[k-u+K--(uV)-i—K-'-(uVV)-I-...} dv (2.32)
If the kinetic set S has one member only, that means n = 1, hence
PAz/an-udA———/(n-S)-udAz/n-(S-u)dA (2.33)
A(V) A(V) A(V)

we would have to expand (2.33) for non—local materials n > 1 by an analogue expression,
3 4
PAz/n~[T-u+T--(uV)+T~-(uVV)+..} dv (2.34)
A(V)

n . . . .
wheras T are the total stress tensors of rank n according to (2.27). For the time derivative
P the vector u in (2.31) is to substitute by u = v, hence for m =1 and for all n

Py = [ k-udV (2.35)

/

Py= n[i‘ Tok+1)-@v...(k)...v))]| d4 (2.36)
[~ |

The integral over the surface in (2.36) is replaced by an integral over the volume for every
multiplication “®" by theorem of GAUSS

/n®<I>dV=/V®<I>dV (2.37)
A(V) 1%

PAZ/V‘

\4

n—1

av (2.38)

(k%Q-(k+1).(uv...(k)...V))

k=0
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Between the higher gradients and their multiple scalar products with an arbitrary tensor A
the following identity is proved by product—rule:

A-@v) = v. (f\ -u) - (v- X) i (2:39)

v[&-(a-v)} —V-[(V-K)-ﬁ}
e

Introducing (2.39) and (2.40) to (2.38) and comparing the result with the equivalent form
of the classical field theory (n = 1), thus

PA=/V-(S‘1’1)dV

A (@VV)

n
the “total stress tensors” T must be related with the set~-members S under energy-
equivalence conditions by

k’JIrg:ng _v. k§3 Ly (V' k§4) L =k§2 _v. k’fa (2.41)
in particular, for k =0

T=§-V.§+V. (v. é) . (2.42)
For T equation (2.27) holds, hence

V-[§~V-§+V'(V-é)—+...J+k=pﬁ (2.43)

2 3
The set—-members '§=s, S, ... follow from the constitutive equation (2.23).
Equation (2.43) may be interpreted as an extended local balance (2.24) for the volume,
where the local stress S is replaced by the total stress T (comp. (2.27)):

V.- T+k=pi
and by an equivalent surface work expression (cp. (2.36)):
. 3 4
P, = / n- [T-u+T--(x‘1V)+T-~-(uVV)+...J dA

Av (2.44)

dA

n ST k) @V (). V)

k=0

A(V)
In case of geometrical linear problems and of hyper—elastic materials, the stress tensors are
delivered by a potential function as a strain energy function

w(X,t) = w(E, VE, VVE, V...(n - 1)... VE) (2.45)
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whereas with (1.22)

E=1(uV+Vu)=1(H+HT) 246
V...(n=1)...VE=[V...(n=1)...V (uV + Vu)] (2.46)
In particular we get for
k42 ow
S*a(v...(k)...VE) (247)
and again with (2.41), thus
E+2 k42 k43 k+4 k+2 k+3
T=S—V-S+V-<V-S>—+...:S~V~T (2.48)
for W = J pwdV follows together with (2.39) and (2.41)
. ow ow
W = (X )
/ [8E -(uV) + 7 (VE) (uvv) + ] dV (2.49)
v

W= z{v (g;’) u)—v-[v.pg%”ﬁ-u]Jrv-[pa—(an—m--uv-Jr”dv

[{v-(;)g—%) u-Vv- [V pa(aVE)] 1'1+V-[pb—z(?vﬂE—)]--ﬁV—+}dV

The first integral is, after transferring with GAUSS—theorem (2.36), the surface work Py,
and the second integral becomes the momentum-balance (see (2.43)). After introducing
(2.47) and by comparing with (2.48) we prove the result (2.42):

T:S—V-§+V-<V-’i‘)—+... (rep. (2.42))

2.6. Applications
In an elastic shear beam structure the shear force is proportional to the stress and the
stress is proportional to the third derivative of the displacement

ou
a 3
hence the structure can be comprehended as a material-structure of grade n = 3.

Investigations of this non-local theory considering higher gradients up to the order n = 2
and n = 3 have been made about COUETTE-flow of REINER-RIVLIN fluids [14, 15], of
blood-stream and special visco—elastic materials (animal and human bones). The results
show that special properties and phenomena, e.g. the velocity—profile of a shear flow can
be described correctly with higher gradients better, resp. at all. While a solution by a local
theory (REINER-RIVLIN) with (D, see (1.31))

S = (pI) + y1 (D1, Dy, , D) D + y2( Dy, Dy, D) D? (2.51)

S~Q= (EI )eZNuVVV---eZ “F- e, (2.50)
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Figure 2.2: Velocity profile in COUET TE~flow

leads to a linear profile (see Fig. 2.2):
v(z) = vgzey (2.52)

The real profile observed in experiments is non-linear and is related to a non—local material
at least of grade n = 3, better n = 5, with the constitutive equation:

S = (pI) + ;D 4+ a2 VVD + a3 VVVVD (2.53)
resulting in a profile (see Fig. 2.2)
v(2) = [voz + Csinh(az)] e, (2.54)

2.7. Materials of grade n = 1, simple materials

Starting with (2.23), a local material is influenced by an infinitesimal neighbourhood
only. The higher gradients n > 1 are not considered anymore. The only argument in the
functional becomes with (2.21)

x(Z,t—s)=-x(X,t—s) =x (X +dX,t — s)—-x (X,t — 5) = (xV) dX = F dX(2.55)

(principle of local action). The constitutive equation (2.23) is simplified to

x o0

S (X,t) =F [xV,dX]=F [F(X,t - s)] (2.56)

s=0 s=0
The material is of grade n = 1 and is called a simple material. Compared to PFIN (2.7),
the variable has changed from x* to x*V. This is the configuration gradient of an arbitrary
moved observer (OB2). Because it is not yet proved, whether this gradient is the objective
gradient F*, let's call at first

X'V =“F" (2.57)
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Since PFIN (2.6) is a necessary condition for the matter functional, it follows with (2.3)
Fo= X'V={Qx X t-s)]-c(t)}V

QV)[x (X,t =) —c ()] + Q{[x (X,t - 5) —c(1)] V} (2.58)
“F* = Q[x(X,t—5) V]=QF (X,t—s)

We obtain “F” = QF # F* = QFQ" with the result that “F” is not objective. Therefore

the constitutive equation for simple materials has to fulfil (2.7) in the form

FlQt-s)F(X,t-s)]=Q(t) F[F(X,t-5)]Q" (¢) (2.59)

or
FEXt-9)]=Q ) FQ(t-9)F(X,t-5)]Q(t) (2.60)
Inserting the polar decompostion (1.8) resp. (1.15) the consequence is
S=FFXt-9)]=Q ") FIQ(t-s)R(t—s)U(X,t—5)]Q(t) (2.61)
and because Q as well as R are orthogonal tensors with QQT = RTR = I, adapted to
the rigid body rotation at every time, it is allowed to substitute Q by RT resp. QT by R

at every time.
As the objective material equation we obtain

S=F[F(X,t-s)]=R(t) F[U(X,t-s)]RT(t) (2.62)
This is postulated as a principle of material objectivity (PMOB) for simple materials. The
independent variable of the functional is now the right stretching tensor U resp. (U? = C)
the right CAUCHY deformation tensor C:

S=F[F(X,t-s)]=R(t) FI[C(X,t—s)] RT (1) (2.63)

Sometimes the convected stress tensor S and the rotated stress tensor S® are introduced
by

S° = FTSF = (RU")S(RU) = UTRTSRU = U(RTSR)U (2.64)
and

S® = RTSR (2.65)
With those stress tensors equation (2.62) gets the form

S¢ =U®)F[U(X,t—s)]U(t) (2.66)
and respectively using (2.65)

S*=RT[RF[U(X,t-s)RT|R=F[U(X,t-s)] (2.67)

Evidently a material is determined objectively by the right deformation tensors U or C,
although neither U or C are objective, how we see from this relations:

MF” — “R” “UH — QF — QRU — QVR — QVQT — V* (268)
“«or = uFTn R = (QRU)T(QRU)
= UTRTRRTRU=UTU=U?’=C (2.69)

“U"” = U and “R’=QR (2.70)
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The left deformation tensors are not arguments in the material functional, although they
are objective

‘B” = “F’“F"” = (QRU)(QRU)"

= R'RUU'R'R=U’=C (2.71)
‘B” = (QF)(QF)" =QFF'Q"=QBQ" =B’

= RTV'R=QV’Q" = (V*)* = (“V)? (2.72)
“V' = V'=U=“U"=RUR"#V=U" (2.73)

Considering the right deformation history C(t — s) we will express the functional relation
by the relative configuration PCFG, using (1.26), (1.27), et. al.

F(t) = RU)
F(r) = F(t—s) = F(s)F(t) = Ri(s)Us(s)F (1) = Ri(s)Uy(s)R(OU(E) (2.74)

With Uz(s) = QU,(s)QT follows

F(t — s) = Ry(s)R()U; (s)RT()R(t)U(t) = R(t — s)U(s)U(2) (2.75)
The material objectivity demands (see (2.59))

FlQ(t-s)F(X,t—s)] = Q) FIF(X,t-s)] Q" (t) (2.76)
hence for the left side with (2.75) and QT(¢) = R

FlQ(t-9)F(X,t—s)] = F[Q(t—s)R(t - ) Us(s)U()] (2.77)
and the material law can be writen as

S =RF[U;(s)U()RT or S%=F[Ui(s)U(2) (2.78)
or in an equivalent representation, expressed by C = U*?

S =RF[C;(s)C()]RT or St =F|[CI(s)C(t)] (2.79)
If the relative right GREEN tensor is used analogue to (1.19)

G*(s) =Cj(s) -1 (2.80)

we can finally generate the constitutive equation for simple (local) materials under satisfying
all foregoing principles

SR=F[I+G*(s)C(t)]= F[C(t) + G* (s) C(t)] (2.81)
As the objective material equation we obtain
S(X,t) = FIC@t)]+FI[G*(s)C(t)]
= fIC(X,t)]+ F[G*(s)C(1)] (2.82)
Here f{C(X,t)] is a tensor-valued function of the (history-less) instantaneous right

CAUCHY tensor and F [G* (s) C (t)] is the functional containing the relative right GREEN
deformation history and the right CAUCHY deformation at the presence.
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If the material has no memory to events of the past, the tensor function f is the only
relation between the stress and the deformation — the material reacts spontaneously to
the instantaneous deformation state (super—elasticity).

If the material has a memory, then the actual state of stress depends on all events ever
happened in the past with a more or less influence to the presence. This way the memory
can be a permanent one, as nothing is forgotten, or it can be a fading memory with the
consequence that: the “older” (larger s) the event G*(X, s) is, the less is its influence to
the stress state at the present time ¢ as a response to all events (and vice versa).

It may be mentioned that the matter—functionals contain special deformation tensors
which are the results of satisfying the different principles. This answers the question: what
are the “right” or “best” deformation tensors to describe the material and which of the
numerous proposals of deformation qualities are consistently related to the stress in a
constitutive equation.

Finally and last but not least, this relations succeed in a possibility of classification of
materials in a general and systematical way, embedded in a consistent mathematical and
physical frame theory.

2.8. Material symmetry

The properties of a material can be influenced or determined by orientation of the ma-
terial. In order to describe this influence of the grade of anisotropy, we change the reference
configuration from the origin one to another by an initial transformation (mapping). If the
functional, containing the material properties is changed too, the material has no symmetry.
If the functional under a modified reference by a special transformation is not changed, the
material is symmetric related to this transformation.

Let RCFGI and 2 two reference configurations and let B one body which is related to
those RCFG by two different vectors X and X (cp. Fig. 2.3).

Assuming the same motion history of the same material referred to both reference
configurations R1 and R2, we get:

RCFGL: x(X,t) = x(X, 1)V = E(X,t)
RCFG2: x(X,t) = x(X, 1)V = F(X, 1)
By chain-rule it is shown, that
= Ox 0x0X
F=—2=_"2"=FK 2.83
X 0XpX ( )

. 0X , . : o .
with I = —, as the tensor of the ‘reference-configuration~transition’. For arbitrary K

we get always

FF]=F [F] = F[FK] (2.84)

This can be considered as a proof, that a simple material remains a simple material even
under the modification of the reference, because the response of the material depends on
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the history of motion only through the history of the deformation gradient F resp. F. Only
the form of the functional is changed from JF to J by a history—independent configuration—
change tensor K.

RCFG 1 F(t)
\ ICFG

Figure 2.3: Changing of reference configuration

If now the transition of the RCFG even leads to the same functional F = F, so
that the material has the same properties when we choose to refer its motion to different
RCFGs, then we call this material symmetric, and we denote the specific tensors K = M
(members of the material-symmetry group). The same property of the material demands the
identical constitutive equation as a stress—deformation relation. Hence for simple materials
we postulate a principle of material symmetry (PMAS):

S=F[F)=F[FM]=F[F]=F[FM]=F[M] =S (2.85)

Herewith the tensors M are those for which the material equation is invariant under change
of reference configuration expressed by M. The preceded ‘motion’ M is without any influ-
ence to the stress—strain relation.

If one member M is found, another member under transition of the reference can be
generated by

F[F]=F[FK]=F[(FM)K] = F [(FK™) (MK)] = F [FM] (2.86)
thus
M = K'MK (2.87)

We can arrange the members of M into groups of different material symmetry with
different properties of the members. It is possible that one particular property belongs to
different groups simultaneously or that one group is completely included into another group.
Every group should contain at least one member (Fig. 2.4)
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special rotation group
no material symmetry

mateital symmetry

unimodular group (fluids)

complete rotation group (isotropic solids)

Figure 2.4: Material symmetry groups

1. If there is one element only, and this element is the identity
M=1, FFM] = F[F] (2.88)

then the M-group defines a complete anisotropic material or the triclinic crystal class.
In any other ‘direction’ by changing the RCFG we obtain other material properties.

2. If there is a special group of proper (at least one) rotation
M=0=Q; (k=123 a=Ar)#I1 (2.89)
FIF] = F[FQg]

the reference configurations RCFG1 and 2 are called undistored, the material is a
simple solid, and its symmetry is called aelotropic.

It denotes a neither completely anisotropic, nor a completely isotropic solid.
(@) le.fora=mand k =1,2: QrQ7
an orthotropic solid and the rhombic crystal class
(b) le. fora=morm/2and k=1,3: r2Qr
an orthotropic solid and the tetragonal crystal class
(c) le. fora=m/2and k=1,2,3: Q;*Q;*Q}?
an orthotropic solid and the hextetrahedral crystal class

3. If the group has the property
detF =detF;  FI[F] = F[FP] (2.90)

this group is called the unimodular group and it defines a simple fluid.



22 P.R. Gummert

With (2.84) it follows from (2.90)

det F = det(FP) = (det F)(detP) = detF; detP =1 (2.91)
This might be not mixed up with the constraint condition

det F =1 (2.92)

as the condition for isochoric processes (see (1.5)); v = V resp. for incompressible
materials. As far as (2.91) is concerned, merely the transition of the reference con-
figurations RCFG1 and 2 has to take place without any change of the body-volume,
that means: Only the preceded motion RCFG1 — 2 is an isochoric process.

Such members can be generated from the statement:

P = (det F)™F", m,n arbitrary (2.93)
Eq. (2.93) together with (2.90) yield

FP = F{(det F)"F"] = (det F)"FF" (2.94)
and, for instance, with n = —1

FP = (detF)"; P = (det F)"F~! (2.95)

and finally together with (2.91) we get

detP =1 =det [(det F)" F~'] = (det F)*"(det F)~' = (det F)*™~' (2.96)
thus

3m—-1=0 or m=1/3. (2.97)
Introducing the results (2.97) in (2.93) the symmetry group is

P = (det F)*F~! = (F)/*F~! (2.98)

It follows from (1.5) that Fy; = det F = v(t)/V = p/p(t), thus Eq. (2.98) can be
written as

P = [p/p(t)]F (2.99)
Roughly, the response functional (2.90) changes to
S = F[F] = F[FP] = F[F[p/p(t)]F~" = Flp(t), o] (2.100)

In a simple fluid the stress depends on the density only, if the RCFG is identified
with the instantaneous configuration (ICFG) at (every) present time t (EULER-
representation)*.

4if not, see later (2.125) at al.
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4. If the group M
M=Q oo M=R=QT FIF] = F[FQ"] (2.101)

contains the entire proper rotation group QQT = I; detQ = det QT = +1, we
receive the special aelotropic property of isotropy. The material has for all directions
(every rotation is allowed) the same behaviour — it is isotropic.

Because all elements of Q satisfy the condition det Q = +1, the isotropic group is a
sub—group of the P—group (2.90) with the consequence that every simple fluid is isotropic,
but only those materials satisfying (2.101) are simple isotropic solids.

2.9. Conclusions

Whenever the transition M is executed and whatever the symmetry group M in (2.85)
is, if there is any symmetry at all, the constitutive relation for simple materials (2.59) does
not depend on this RCFG—change. This leads from (2.63) to

S(X,t) = F[F] = F[FM] = RF[QFM]R" (2.102)
resp.
S*(X,t) = FIQF] = F[QFM] (2.103)
In application to isotropic solids, we get from (2.103) with M = R = QT
F QE =F |QFQ"| = QF[FIQ" (2.104)
o ~ P
F [QFQT] = F[F*] = F'[F] = QF[FIQ" (2.105)

(2.105) stands for the decisive statement: For simple isotropic solids the functional of
the objective argument F* must be the objective functional F of the (non—transformed)
argument. Functionals of this quality are called isotropic functionals.
Under satisfaction of all principles PDET, PFIN, PLOA, PMOB, and PMAS the following
constitutive equation for simple materials is accomplished:
StX,t) = F [QF(X,t - 5)Q"| = F[F*(X,t—5)] = F [F(X,t —s)] (2.106)
if we would now use (2.67), where U(X,t — s) has been the appropriate deformation
tensor, we would obtain from (2.103):
FIQF] = FQRU]= QFRUIQ"
FIR'RU] = F[U] = QFRU|Q" = F'|RU] (2.107)
I this relation would fulfil (2.105), then U must be U = (RU)*. But, due to (RU)* =
Q(RU)QT = RTRUR = UR # U, the calculation shows that U] is not an isotropic
matter functional.
Using, however, F = VR = VQT, and starting again from (2.103) we would obtain

F|QF] = FIQVR] = F[QVQ'] = QF[VRIQ" (2.108)
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Since QVQT = V* and F[VR] = F[VM] = F[V] with M = R in case of isotropic
material symmetry, it is deduced that
FlQvQ'] = FIV'] = QFVIQT = F'[V] (2.109)
is an isotropic functional indeed. The stress—strain relation becomes
SR=F[V(X,t—s)] resp. S=QF[V(X,t-3s)Q" (2.110)

and we ascertain: the rotated stress tensor for those materials is a functional of the left
stretching history V(X,t — s).
Equivalent again are the forms with B = V?

=F[B(X,t—s)] resp. S=QFB(X,t-3s)]Q" (2.111)
and with G' = }[B - I
St =F[G'+1] = FIG'(X,t — s)] + F[I] = fy + F[G'(X,t — s)] (2.112)

Apparently an isotropic functional must be a functional of an objective deformation—history.
By equation (2.68) and (2.71) it has been proved that the right deformation tensors
“C” = C and “U” = U, that means: they are not objective. On reverse, the left deforma-
tion tensors have been “B” = B* and “V” = V*, they are objective and therefore, they
are the arguments of the matter—functional.
According to the intermediate (relative) configuration at the past time 7 = ¢t — s we
receive with the relations (1.26), (1.27)

F(t—s5) =F(s)F(t); F(t)=RU=VR; Fi(s) = Re(s)Us(s)
FIQF(X,t - s)M] = F[Q(t — )Ru(s)U.(s) VOR(1)Q] (2.113)

If this holds for every rotation, it must be valid for Q(t — s) = Ry(s) too, and (2.78)
becomes

FR{ (5)Re(s)Ue(s)V(OR(RT] = FU(s) V()] (2.114)
Due to (2.106), it is
FIF'] = Q) FFIQ'(t) = Q(1)SQ™ (1) = F'[F] (2.115)

Since Q(t — s) = R](s), consistently follows Q(t) = R/(0) = I, and the constitutive
equation is formulated as

S(X,t) = RF(0)F[U(s) V()R] (0) = F[U(s)V(t)] (2.116)
respectively

S(X,t) = F[Ci(s)B(t)] (2.117)
or with the relative GREEN- hlstory (2.80)

S(X,t) = F[G(s) +)B(t)] = FB(t)] + F[G(s)B(¢)]

f[B( ]+-7:[ (s)B(t)] (2.118)
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The stress becomes a tensor-valued tensor functions of the actual left CAUCHY deformation
plus a functional (memory part) of left relative GREEN deformation-history and the actual
left CAUCHY deformation.

The necessity to introduce the relative right deformation history and the absolute left
actual deformation in i.e. (2.117) is substantiated by the properties of C;(s) and of B(t)
in connection with the material symmetry elements of M. Thus, for

Cy(s) = F (s)F.(s) = [F(NF ()] " [F(r)F~'(1)]

we get
Ci(s) = FT(t)FT(r)F(r)F(¢) (2.119)
On the other hand results for
Cls) = F(Fs) = [FOF )] FrF @)
= [F(M) FOM)7] [(F(M) (F(6)M)™]
= [F(r)MM™'F\(¢ )]T[F(T)MM FL(1)] (2.120)

= F1(t) (MM"I) FY(r)F(r)(MM™H)F(t)
Cis) = FI()F (n)F(n)F'(1)
Comparison of (2.120) with (2.119) shows that C;(s) = C(s) is invariant to the RCFG,

and this holds for every material symmetry M, and for simple solids as well as for simple
fluids. For the actual left deformation, however, we get B(t) = F(t)FT(¢), but

Bt)=F()F () = (F@)M)(F()M)" =F (t) MMTFT (¢) (2.121)
In general, B (t) is not B(t), unless MM could be indentfied as the unit tensor I. This is
valid for M = Q, thus for isotropic solids. For those we get especially

B(t) =F(t)MMTFT(t) = F(t)QQ'F*(¢t) = F(#)F'(t) = B(?) (2.122)

This can be considered as a proof that C(s) and B(t) are the appertaining deformation
qualities for simple isotropic solids as in (2.117):

S(X,t) = F[C:(s)B(t)] (2.123)

For simple fluids, which are described by the intermediate configuration (PCFG), Cy(s)
remains the needed deformation tensor. But introducing the fluid group M = P into
(2.121) the deformation tensor B(t) has to be replaced by

B(t) F(t)PPTFT(t) = F(t) [(det F)" F~! (det FT)" F~T| F'(t)
(det F)*™ [FF'F~"FT] = (det F)*" I (2.124)
= e (detF)**T=(p/p(t))* 1
and the material relation (2.117) or (2.123) for isotropic fluids turns into
S(X,t) = F[Cu(s); p(t)] (2.125)

It
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C.(s) does not change by the transition of reference, but e.g. the density p(t) does.

If the fluid does not even change the density (simple, incompressible fluid, thus det F =
1), it permits the choice of any arbitrary and changing RCFG and the actual B is to
substitute by a multiple of the identity I, following (2.124): B = pI, and for the constitutive
law results

S(X,t) = f[pl] = e.g. = —pI (2.126)

The example S = —pl is the constitutive law for a PASCAL-fluid without shear stresses
and with an isotropic pressure distribution p in all directions.

3. SPECIAL CLASSES OF ISOTROPIC SIMPLE MATERIALS

With (2.123) for simple, isotropic solids and with (2.125) for simple fluids, we have
deduced the general constitutive equations under satisfaction of all postulated principles.

The representation and the special form of the response functional to the motion-history
remains open, as long as we make no restrictions and assumptions about the special kind
of the memory the material has. Now we demand systematically memory properties of the
material, and we will obtain different classes of materials and their valid matter equations.

3.1. Geometrically and physically non-linear, compressible materials without
memory (super—elasticity)

If the material has no memory at all, the functional of 's' becomes a tensor-valued
tensor—function of the appropriate actual deformation tensor. The material is not influenced
by the past but only by the presence — it forgets all and remembers nothing — it reacts
spontaneously.

The material law (2.117) resp. (2.118) is reduced that way to

S(X,t) = F[B(t)] + F[C:(s) B(t)] = f[B(X, t)] (3.1)

This tensor function could be e.g. a complete polynomial series of arbitrary order m:

fB(X,t)] = foB° + fiB' + /B’ + f3B* + .. + [uB™ = ) /i B (3.2)
k=0
where f; is a scalar-valued tensor function of B, but only, if it is provable that (3.2) is an
isotropic tensor function. Then it must hold (2.107):

£(B") = f(QBQ") = Qf (B) Q7 = f* (B) 63

¥ [Q(AB*QT] = Q[Y /iB*] QT '
The objectivity of the scalar function demands fi = f}, or in other words: the function f;
depends on the only qualities of B, which are invariant to objective tensor transformations,
that means to orthognal transformations resp. rigid rotations Q. These are the invariants
of B. Hence, the material functions must be

fe=1u (B, Bu, Bun) or  fi(lg,Ip,Illp) (3.4)
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introducing the principle invariants

Ip = tr(B); IIptr(B?);  IlIp = tr(B®) (3.5)
From (3.3) we receive

7t Y- [QBYQT] = fi(By, Bu, Bu,)Q | Y B*| QT

Since

QBFQT QBB...(k)...BQT
= QB(Q"Q)B(QTQ)...(k)...(Q"Q)BQ" (36)
= QBQTQBQ"...(r)...QBQ" = (QBQ")",

it is proved by (3.6) that (3.3) is fulfilled, and that a tensor polynom in B is an isotropic
tensor function. The stress—strain relation becomes:

S(X,t) =f[B(X,1)] = Z fx (B, B, Bur) BF (3.7)
k=0
With the reiteration condition (no expansion, no approximation) of CAYLEY-HAMILTON
B* = BB*"! — B;B*~? 4 B;;B*3 (3.8)

we can express every order k of B by the next three lower powers of B and the invariants
B, By, Bup. We start inserting (3.8) with £ = m and end up with £ = 3. The functions
fi are modified to other functions ®;, but they remain functions of the three invariants.
We conclude finally, instead of (3.7) with

S(X,t) = & (Bi, Bu, But) B + &, (B, By, Bint) B! + &, (By, By, Biy) B
= & (B, By, Bn) I+ &, (By, By, Bui) B! + &, (B, Bu, Bu) B? (3.9)

If the inversion of B~! is prefered instead of the squared form B2, the reiteration can be
continued to the next lower power with the result

S(X,t) = \I’—1'(Bh By, Bi) B™! + ¥ (By, By, Bui) I+ ¥ (B, Bu, Bui) B (3.10)

If finally the left GREEN-tensor (1.22) is introduced again, we get from (3.9) the alternative
form .

S(X,1) = ®I+d; (2G' +1)+ &, (2G +1)*

= (Bp+ ) + By) I +2(D; + By) G + 48, (G’ (3.11)
Jo (GI, G, GHI) I+g (GI, G, GIII) G! + 92 (GI, G, GIII) (G])2

The functions ®, Uy, or gi are the materials functions (e.g. no parameters), which have
to be determined by fitting multi-axial experiments and by consequences and conclusions
from energy balances and criterias.

Often (3.9) is called the MOONEY-RIVLIN-material equation. It contains the complete
geometrically and physically non-linear behaviour of a non-memorizing (elastic, sponta-
neous) simple solid material.
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3.2. Geometrically and physically non-linear, incompressible materials without
memory
The special case (2.92) according to (1.5) of isochoric processes det F' = 1 with

By = det B = det FFT = (det F)? = 1 = const
describes an incompressible material. The hydrostatic pressure pI remains undeterminable
from the motion and the constitutive equation (3.9) reduces to

S(X,t) = (p+ ¢o)I + ¢,(Bi, Bu)B + ¢, (B, Br)B?
S(X,t) = AL+ ¢,(Bi, Bu)B + ¢,(B, BH)B2

or (3.11) is specialized as

S(X,t) = AL + 7,(G1,Gn)G + 75(G1, G1) G? (3.13)
The numbers of the material functions is diminished from 3 to 2. They are functions of the
two first invariants only. (3.12) is sometimes used to describe rubber~like materials, but

often not very sucessful, because compressibility and memory effects in reality contradict
to the presumptions of this class.

(3.12)

3.3. Geometrically-linear, compressible material without memory

The case of geometrical linearization is realized with (1.22): the GREEN-tensors are
substituted by the infinitesimal deformation tensor (engineering strains). Under these con-
ditions, it would result from (3.11):

90 (G1, Gu, Gui) I + ¢1(G1, Gu, Gmn)E + ¢2(Gy, G, Gm)E2 (3.14)

But this would be an inconsistent linearization, as some terms (i.e. HH") of order O(2) are
already neglected, however, the squared term E? is of order O(¢?), too. It also must vanish
in order to achieve a consistent geometrical linearized constitutive condition. Additionally,
the invariants of the GREEN tensor are transferred to the invariants of the classical strain
tensor Ey, Ey; and Eyp;. So we finaIIy get:

S(X,t) = ho (E1, En, Em) I + hi(Ex, Eut, Em)E (3.15)

3.4. Geometrically-linear, incompressible material without memory

Again the hydrostatic pressure is not determined from the motion, since an arbitrary
pressure could be superposed changing the stress but not the strain. On the other hand,
now the first invariant Ej = ¢, +¢5+¢3 = divu = V-u = 0 describes the volume dilatation
v = V = const, with the consequence that E; = 0, and that the material relation becomes
here:

S(X,t) = Al + hy(En, Eun)E (3.16)

3.5. Physically-linear, compressible material without memory

If there is a linear connection between the stress and the deformation, we call those
behaviour physical-linear. As the invariants I, II, III are of power one, two, and three in
the deformations, the first invariant ®(B) i.e. in (3.9) connected with the identity is the
only one which can occur in the material relations. In case of physically-linear problems
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the material function ®; connected with the deformation tensor itself must be a material
constant @13 and the material function ®, must vanish, since it is linked with the squared
deformation tensor. The constitutive equation (3.9) becomes

S(X,t) = ®o(B)I + ¢,,B (3.17)
A pure stress—strain linearity, however, is achieved only if ®¢(B;) is linear in By, thus

@y (B;) = DBy = Pgp tr B (3.18)
The last two equations together lead to

S(X,t) = g (tr B) I + &1B (3.19)

(3.19) is not geometrically linearized, although the term B? is not contained anymore, but

B still represents the geometrical nonlinearity with respect to large displacement derivatives
(H, HT, and HH").

3.6. Physically—linear, incompressible material without memory

As before, the factor of the unit tensor remains undetermined and the hydrostatic
pressure and @ are merged to a common, motion—independent, and initial state-depending
quality A. This case is related by

S(X,t) = Al + &,,B (3.20)

3.7. Geometrically and physically—linear, compressible material without memory
If we start with (3.14) and add the constraints according to physical linearity (3.17),
we immediately formulate the completely linearized stress—strain-relation as

S (X, t) = hoo (tr E) I+ hwE (321)
With hgy = A and hyg = 2u, we have derived HOOKE's law in the well-known LAME form:
S(X,t) = A(trE)I + 2uE (3.22)

or with hgg = 2Gr/ (1 — v) and hjp = 2G (shear modulus), we obtain the elastic material
equation in the form:

S (X,1) = 2G E+1”

-V

(trE)I (3.23)

3.8. Geometrically and physically-linear, incompressible material without mem-
ory
With the constraint condition (detF = 1) and/or (trE = 0) again, it is deduced at
once that the material law gets the form: '

S (X,t) = AI + 2GE (3.24)

To avoid the terms A I in every incompressible material equation, it is senseful to modify
these equations with the stress deviator

S=8-1i(trS)I (3.25)

with the consequence that the deformation terms remain in the stress—strain relations only.
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3.9. Non-linear, compressible materials with short memory (differential-type
materials)
With the assumption of a (very) short memory, the relative deformation history in
(2.116) for a simple material

S (X,t) = F[U, (s) V (1)) (3.26)

has its influence to the stress, but the value of F depends on the values of U, (s) for s
very near to zero only. We use a TAYLOR expansion for U, (s) around s = 0 up to the
order r

U, o*U, , ou, .,

U, (s) = U, (O)+a1-b—s—s+a2 552 S +...+a, 5er S (3.27)

With (1.27), (1.30), and (1.31) it was shown that the following relations hold:

Fi(s))] =F,0)=F@®OF'(t)=L=D@t)+W () (3.28)
On the other hand, we get from (2.76)

Fi(s) =Ri(s)Us(s);  Fi(s) =Re(s) Us(s) + Re(s) U (s) (3.29)
with the first derivative with respect to s and with R, (0) = U, (0) =1

F; (0) = R, (0) U, (0) + R (0) U, (0) = U, (0) + R; (0) (3.30)

Equations (3.28) and (3.30) are two expressions for the same tensor L = F,(0). The
comparison of both leads to

D()=U,(0) and W(t)=R,(0) (3.31)
We define the higher derivative of U, (relative stretching velocity) as

D (1) = -ai%,—(ﬂ . U, (0) (3.32)

then the TAYLOR-series (3.27) has the formulation

T

Ui(s)=I+aD($)s+aD @)+ ta D ()5 (3.33)

. . . T
The functional F becomes a functional of the deformation-rate tensors D (t) up to the
time—derivative 7. The number r is called the complexity of the material.
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Since the time-variable of D is the present time ¢ now, the functional of U;(s) is a
tensor-valued tensor function f of D (t) again:

S(X,t) = FUi(s) V(®)] = F LD (#),D (), ... D (&) ,V(t)]
\ ) (3.34)
S(X,t)=f [D (X,8),D (X,8),...D (X,t) ,V(X,t)]

For simple isotropic solids of the differential-type class the actual ieft deformation tensor
V (X, t) resp. B (X, t) are together with the actual deformation rate tensors the arguments
of the tensor function determining the stress.

For simple fluids of the differential-type class with short-time memory the actual left
deformation, i.e. B (X, ) is to substitute by the density p (t) (see (2.124)) again:

S(X,t)=f [D (X,t),D (X t),. D (X, t) ,p(t)} (3.35)

For example, we take an isotropic solid with the complexity 7 = 1. Using isotropic tensor
polynoms, like in (3.2), for the two objective tensors D and V, we would obtain in analogy
to (3.7) - (3.9) and after reiteration with CAYLEY-HAMILTON a reduced form up to the
order 2, i.e.

S (X, 1)

fD(X,t),V(X,t)] =i [D(X, )] £[V(X,1)]
[ao (Dk) 1+ ay (Dg) D + as (Dk) D’]
[bo (V)T 4+ by (V) V + by (Vi) V2]
foo (Di, V) I+ fio O)D + fao OD? + for O V + foa () V? (3.36)
+f11 () (DV + VD) + fo, () (D*V + VD?)
+f12() (DV2+ VD) + f () (D*V? + V’D?)
The constitutive relation contains 9 material functions of the 3 invariants Dy and the 3
invariants V.

A special case would follow, if for 7 = 1 a simple fluid is considered. The deformation
V is replaced by the density p. Thus, the stress (3.35) would be expressed by

S(X,t) = g[D (X,t),p ()] = goo (Dk) I+ 10 (Dk) D + g2 (D) D? (3.37)
The result is well-known as a REINER-RIVLIN fluid. The material law is analogue to the
MOONEY-RIVLIN material for an isotropic solid without memory (compare (3.9)). If the
second order term D? is neglected resp. if the material function gy is determined by zero,
the special case of a generalized compressible NEWTON fluid is obtained, where the stress
is proportional to the deformation rate D

S (X,t) = hoo (Dg) I+ hio (Dk) D (3.38)

3.10. Physically-linear materials with memory (rate-type materials)
The general constitutive relation for a simple isotropic material according to (2.110)
resp. (2.116) had the form

SR (X,t) = F[V(X,t—s)]=F[Uj(s) V()] (3.39)
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whereas

Ui (5)=Q®) U, (5) QT () =R" (1) Ue () R (1) (3.40)
The definition (3.32)

b="5 b0 (3.41)

leads together with (3.40) to

(r)
U (0) = RT()Ut()R() - (342

The solution of the functional equation (3.39), S (¢) as dependend on U, (s), may be
restricted by a differential equation, where p = 0,1,2, ..., ¢ is the order of differentiation
of the stress tensor with respect to time ¢, and ¥ = 0,1,2,...,7 (as above) is the r-th
time—derivative of the relative stretching (3.41). This restriction for (3.39) as an admissible
mechanical process should be

. () . . (r)
d {s,s,s,..., S U, (0) =L U, (0), 0, (0), ... Uy (0)} ~0 (3.43)
or
() . (g=1) . .. (r)
- d{S,S,..., 'S0, (0),0,(0), ..., Us (0)} (3.44)

The class of materials with this restriction are called materials of the rate type. The
derivatives should exist in a sufficient number, and the differential equation should have a
solution that is determined except for the initial conditions

. {g=1)
S(0),8(0),..., s (0).
Because the general constitutive equation has to satisfy the PMOB, we have to demand

that the derivative of the stresses are objective and that the restriction (3.44) is an isotropic
function, too. This way we postulate the co-rotational stress rate, analogue to (2.6), by

‘§= o (R (5)S (R (9)]], (3.45)

and in an appropriate way for the higher derivatives

8= aa ; RTG)SOR()]] g (3.46)
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If (3.45) is performed, by product rule we get together with (3.31) and by the property of
a skew tensor

W(t) =R;(0) and W=-WT
o o . . .
'S =, [RT()S (R (9)]|,_, = [RTSR, + RISR, + RTSR,|

=S +SW - WS

(3.47)

s=0

As SR (X,t) = RT (t) SR (t) and U; (s) = RT (t) U, (s) R (t) the constitutive law must
be satisfied if S® is replaced by S and Uj (s) by U, (s). In other words: if the material
satisfies PMOB and PMAS, then the argument can be replaced by its passive transformation
for any arbitrary orthogonal R (t) (cp. (2.105)). The same is valid for the higher derivatives.

Hence d in (3.44) is an isotropic function describing an isotropic material of the rate type,
if

o o o . .. (r)
qs=d{sas=,...,q-ls;utm),ut(m,...U, <o>;v<t>}
. . ) . (3.48)
= d{S,ls:,...,q”l s;I,D,D,...,D;V}

at every time ¢. Fluids follow an equation that is formulated analogously as (3.48), but with

p(t) instead of V (1).
Investigating some special cases, it is obvious that for solids with ¢ = 0 (cp. (3.34))

szd{D,f),...,f);v} (3.49)

the rate-type material is identical with the differential-type material. For solids with ¢ =1
we obtain for a rate-type meterial of the complexity »

o . 2 T
1s=S+SW—WS=d{D,D,...,]:);V} (3.50)
and in particular for the complexity r =1

1§ =$+SW-WS =d{S,D,V} (351)
S =d{S,D,W,V} =d{S,L,V} )
As herewith stress S and stress rate § are related to deformation V and deformation rate

D by a differential equation of first order, (3.51) describes basically linear visco-elastic
materials of MAXWELL-like and KELVIN- like bodies.
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The combinations of these material models result in higher parametric bodies like
THOMPSON, LETHERSICH, and for ¢ = 2 and 7 = 2

2 o__ 12 2
S—d{S, S,D,D} (3.52)

in a BURGER material, which is a suitable model to describe linear visco—elastic materials
with a sufficient number (eight) of material parameters. These are adapted in a process
of material-identification to the behaviour of the matter in reality. Initial (spontaneous)
effects are reproducable as well as creep—, retardation— and relaxations— phenomenas.

The memory of this material class is a long—time memory with the special character of
exponential functions. Those are monotonous functions that fulfil the restriction: the less
time has passed since the motion event (deformation) has happened, the more infiuence
the event to the presence has, and vice versa. The memory kernels in the solution of the
differential equation (i.e. (3.48)) are LAPLACE-kernels with negative exponents in the
exp—functions

h(s) =exp[—a(t—7)] =exp(—as) (3.53)

If (3.51) is linear in D and the isotropic function d is independent on V (i.e. simple fluid),
the constitutive equation (3.51) is reducable to

1§=d{S,D} resp. $=d{S,L} (3.54)

Those materials are called hypo—elastic materials.
The linearity in D and the application of CAYLEY-HAMILTON relation allows a form
of (3.54) by a general representation-theorem (RIVLIN-ERICKSEN):
d(S,D) = [dootrD +ditr(SD) + dytr (S°D)] I

+ [dor tr D + di; tr (SD) + do tr (S?D)] S
+ [do2 tr D + dya tr (SD) + dpp tr (S*D)] S? (3.55)
+ [dosD] + [di3 (SD + DS)] + [das (DS? + S?D)]

(3.54) and (3.55) are an access to plasticity (material with permanent memory) or by

shifting the time scale s — f(s) to endochronical inelasticity [12].

3.11. Non-linear materials with memory (integral-type materials)
Let us resume the general constitutive equation for simple materials in the form (2.81)

SR (X, 1) = f[C (X,1)] + F[G" (X,s) C (X, 1)] (3.56)

If the functional in (3.56) is at least one integral over the time 0 < s < oo, separating the
argument of the functional in a polynom of the tensor function g (s; C) and a polynom of
the deformation history G* (X, s), thus

20[6 (X,9)C (X, 0] = [ [g(s:C) 6" (X.5))ds (357)

0
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the simple material described by (3.57) is of the integral-type.
In application to simple isotropic media we restrict (3.57) together with the constitutive
law (2.116) or (2.117) to

S(X,t) =F[Ci(s)B(t)] =f[B ()] + F[(G(s)B(1))] (3.58)
FG(X,s) / NG (X, s)]ds (3.59)
0

This time it is necessary that the integrand of (3.59) is an isotropic tensor function, hence

Qg (s;B)G]Q" =g (5QBQ") (QG (X,5) Q") (3.60)
For a simple fluid (tensor B replaced by scalar p ) it comes from (3.60)
Qlg(s)G]Q" =g (s) (QGQT) (3.61)

With the assumption of a first order polynom in G, (3.57) is rewritten as

s) = {fBO]+F[G(s)B®)]} = —pl+ F[G (s)]

=—pl+ /g(s) G (X, s)ds (3.62)
0
For a simple, isotropic solid (3.58) is reduced by (3.59)
S(X,s)=f[B (1) + F[G(s)B(t)]
=B 0]+ [ 808G (X,5))ds (363)
0
If the solid is of first order (linear in G), we get instead of (3.63)
S (X, s) |+ / G (X, 5)] ds (3.64)
0

(3.64) is interpretable as the response of an event G (X, s) at the past time 7 =t — s,
during the time ds, weighted (remembered, memorized) with the memory function h (s),
taken at the time s that has passed between the event and the presence.

The function h (s) is the memory function as the kernel of the integral equation. It can
be every monotonous function, i.e. like exp—function (LAPLACE-kernels, compare chapter
above), LIOUVILLE-kernels, or ABEL—kernels as an expression of the appertaining fading
memory. The extreme would be a permanent memory, that means h(s) = const for all
s. In Fig. 3.1 the memory function or the influence function h(s) = ||h(s)|| under the
conditions
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1. h(s) > 0, positive and real
2. h(0) = 1, normalized

3. lim (s — 00) [sPh (s)] = 0, monotonous

is sketched for different material classes and different kind of memories.

permanent mem h(s)
1
Laé)Iace kernel
rate-type
fading mem
without
AN mem
_Abel kernel
integral-type differential
type
r
T=t
T ol S ?S — O

Figure 3.1: Memory (kernel) functions

As mentioned above, special cases would be

LAPLACE kernels : h(s) = exp(—as)

ABEL kernels  h(s)=1/(as+1)°
The linearity in G (3.64) could be regarded as a result of a weak (GATEAU-) derivative of
the functional. That is a variation of the functional with respect to a scalar parameter in
the argument. The result is always linear in the increment G. In opposite, if the functional
is differentiated to the argument G itself, it is a strong (FRECHET-) derivative. Using left
GREEN tensors G' = G instead of left CAUCHY tensors B = 2G + I (see (1.20)), the
functional in (3.63) becomes

FIG(5)B(1)]=F[G(s) 2G (1) + )] = F[G (1); G (5)] (3.65)
Defining the relative—difference GREEN deformation by
Gi(s)=G(r)—-G({t)=G(t—35) -G (t) (3.66)
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with the particular value

Gi(0)=G(t-0-G() =0 (3.67)
we rewrite (3.59) resp. (3.65)

FIG(s)B(1)] = F[G(t);Ga(s)] (3.68)
and we force the linearity in G4 (s) of the argument in the functional by a weak derivative

FG(t);Gq(s)] :f[Gd(S);O}-f—% [FIG(t); G+ AGq (s

Mo (3.69)
=g[G ()] + 8 [G (t);Ga (s)]

with the essential difference that in (3.69) the functional is linear in G4 (s). This is an
equivalent form to (3.64) and the constitutive equation for simple, isotropic solids with
memory of the integral-type becomes:

S (X, 1) / Gd (X, )] ds (3.70)

0

As a consequence of its linearity in Gy (3) the integrand J of (3.70) can be described by
the RIVLIN-ERICKSEN representation theorem ( cp. (3.55)).

J = (ol +aiG+a:G?) (Bl + 5,Ga(s))
= oI+ ¢,G + ¢G>+ ¢;Gy (s) + 0, [Ga (s) G + GGy ()] (3.71)
+¢5 [Gd (8) G2 + GQGd (S)]

$o = Gotr[Ga(s)]+ Gpytr[Ga(s) G (¢ + B3 tr [Gd (s)G t)]
¢ = ¢y tr[Gq(s)] + o tr[Gq (s ) G ()] + ¢1str [Ga (s) G ()] (3.72)
by = g tr[Ga (s)] + dop tr[Ga (s) ] + Pp3 tr [Gd ()G t)]

With a tensor polynom reduced to second order for g [G (t)] (see(3.11)), we get finally [19]

S = lZ)oI +¢,G + ¢,G?
/ { P01 tT (G (5)) + Ggp tr (G (8) G (1)) + By tr (Gd (s) G? (t))] I

+[ tr (Ga () + 1o tr (Ga (s) G (1) + ¢ tr (Ga () G* (1)] G (373)
+ (61 tr (Ga (5)) + D2 tr (Ga (5) G (1) + ¢as tr (G (5) G* (1)) ] G
+ [031Ga (5) + b33 (Ga (5 §) G + GGy (1)) + ¢33 (Ga (s) G* + G*Gq (5))] } ds
whereas @p,,..., ¢33 are 12 material functions for the memory part with ¢;;

¢,,(G1.G11,Gur,8) and ¥y, ¥,, 3 are 3 material functions for the spontaneous part with
¢, = ¥,(G1,Gu,G).
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Using the order of magnitude ¢ (cp. (1.21)) again, we can classify all terms of (3.73) this
way, and we obtain

Ga(s) =0 (e) G*Ga (s) = O (€%)
Gy(s)G=0(?) trG,trGg=0(e)

G?=0(?) trG (GGy) = tr (G4G) = 0 (£?)
tr (G4G?) = O (¢3)

recognizing that the highest order Gq (s) G2 is of order O (¢3). Herewith reductions of
lower order become possible. For instance, neglecting this highest order, we accomplish a
consistent theory of 2™ order:

S (X,t) = ¢l +4,G + ¢,G?

+ / (60,11 (Ga) + dpytr (GaG)]I (3.74)

0

+ [011t1 (Ga)] G + [93:Ga + 63, (GaG + GGy)]} ds + O (€%)

with 8 material functions ’l/}i = wi (GI, G, Gm); (,25,-]- = ¢ij (GI, G, GIII)-
If even the terms of order O (c2) are neglected, a reduced consistent theory of 1°* order
would be achieved. This could be i.e. physically linearized (see above) with the result

S (X,t) = ¥ (G1) I +,,G + / (G01trGa () I + ¢3,Gq (5)]ds + O (¢2)  (3.75)

with 4 materials values ¥, ¢¢;, #3; = const, ¥y = Ygotr (G).

All “classical’ viscous and visco—elastic materials (MAXWELL, KELVIN) and even higher
parametric visco-elastic materials, with a generalized memory behaviour and not only with
LAPLACE-kernels as material functions ¢ are included.

If the memory part (the integral) is not considered at all, we come back to elastic
materials and the result of (3.75) would be HOOKE's law again.

In order to reduce the number of material functions in (3.74) and/but to avoid the
assumption of incompressible materials (detF = 1), which is difficult to prove or to measure
in real bodies especially for large deformations, we formulate a constraint condition for
weak—compressible matters:

detF =Fpup=1+A (376)

Since the relation holds
detF = EII =1+ IH + IIH + IIIH

the increment A in (3.76) can be identified as the first principal invariant Iy, if the higher
invariants are neglected in a theory of 2" order. But as Iy is of order O (¢) itself, it becomes
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clear that only the terms G, G4 (s) , trG, trGq (s) , G, and GGy () accordingly a theory
of magnitude O (¢?) are taken into account. From (3.74) follows

S (X, 1) = Yol + .G (1) + 56 (1

+/{¢01 tr (G (s)) I + ¢3,Ga () + 632 [Ga (5) G (t) + G () G4 (s)]} ds (3.77)

with only 6 material functions
bor = Qo5 P31 =015 P =y
¥; = ¥; (G1,Gi, Gui) ;. ¢; = ¢, (G1, G, Gy, §)
If the integral-type material is incompressible, the ¢, and ¢, are no material functions and
within a consistent theory of order two (3.74) is simplified to [13]
S (X, 1) = Yol +¥,G (1) + ¥, G* (t)
o

—+ / {dotr (Gq (8)) I+ ¢3,Gq (8) + D32 [Ga (8) G (t) + G (t) Gq (5)]} ds (3.78)

where we find 4 material functions ¢; = ¥, (G1, Gn); ¢; = ¢; (G1, G, 8).
To separate the influence of time s and motion (deformation) G, the material functions
can be expanded like the functional in the neighbourhood of the non—-motion (rest), thus

993 99

¢:; (G1, Gu, G, 8) = ¢,,(0,0,0,5) + 3G | (G —0) + %Gl (G - 0)
09, 1} &y ), 0y 2 0%
+ aGH[ o (GHI - 0) + 5 { aGIZ 0 GI + BG?I o GH + aGIaGH 0 GIGII + ...

(3.79)

As all ¢ are linked with at least trG (s), in the sense of a 2" order theory the expansion
is considered up to the first derivative only

¢ij (Gy, G, G, S) = ¢zj (0,0,0, s)+ ¢:1G1+ 0 (62)
= ¢ij (0,0,0,5) + ¢, (s) (trG)
Consequently, the material functions become functions of s only. The number of them
can be reduced to the number three, since the spontaneous part is always the initial value of
the entire historical part (partial integration). These three functions are to determine from

experiments on multi-axial testing machines (tension and/or torsion and internal pressure).
So finally we obtain for weak—compressible, integral-type materials of order 2:

S(X,t) =60 (0) I+, (0)G +¢,(0) G

+ / {00 (5) trGq () L+ ¢, (5) Ga (3) + 2 (5) [Ga (5) G + GG (5)]} ds
s=0
with 3 material functions that depend on s only.

(3.80)
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The constitutive equations can be applied in case of slow motion (slow deformation
processes) with the replacement of D instead of G either. For geometrical linearized defor-
mation Gy (s) = G (t - s) — G (t) is to substitute by Eq (s) = E (t — s) — E () and the
squared term E3 is consistently scratchable.

Retardation, relexation and creep as well as all time-depending stress—strain effects
are successfully described with these material equations e.g. in application to rubber and
plastomers.

Often the problem is to find a sufficient number of experimental tests and data to
determine the material functions in a process of multiaxial material identification. Test-
ing machines which are invariant—controlled are not (yet) available. But by tension and/or
torsion experiments at least the first and/or the second invariant can be controlled sepa-
rately. The interaction of tension and torsion is an additional experiment, as the problem is
non-linear and this is why the interaction is more than the sum of both tests separated.

4. NON-LINEAR DAMAGED MATERIALS

Analogue to continuum mechanics methods in order to postulate, generate and deter-
mine material equations for homogeneous and undamaged materials, it is possible to deduce
those even for materials with voids and cracks in the sense of damaged matters.

We can find an access to this damage mechanics by introducing an additional, virtual
or fictitious configuration (FCFG). This should have the property that it is the mapping
of the real damaged body (ICFG) to a fictitious undamaged body in FCFG (Fig. 4.1), [16]

under equivalence of geometry and deformation. The stresses are co—ordinated the same

damaged

)

undamaged

Figure 4.1: Configuration and their mappings
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way, strictly speaking: the real stress in the damaged material Z (X, t) is adapted to the
stress tensor S (X, t) in the virtual configuration, which is the stress tensor used above,
satisfying the theorems CAUCHY | and CAUCHY II, thus for the equilibrium stress

V.-S+k=pi and S=8T

and where p is the mass density and k the volume force of the damaged body. The stress
tensors S in FCFG and Z in ICFG are linked by a mean tensor M = MT in a unique
and bijective way. This tensor represents the homogenisation effect of the stress with the
transition to FCFG.

Z=M"'S resp. S =MZ (4.1)
Z should exist at every X, unless X is damaged. Herewith follows as damage condition
detM =0 (4.2)

In order to formulate the material equation we define a symmetric stress tensor for the
fictitious configuration (effective stress)

Sp=2ZMT (4.3)
Together with (4.1) it comes
Sp=M"1SM™T (4.4)

Since Z, S, and Sp are related by (4.3) and (4.4), one of them can be eliminated, e.g.
the damage stress tensor Z. The constitutive equation is writable as a relation of Sg and
M now. Depending on the behaviour of the material, it could be elastic, plastic, or visco—
elastic, we use one of the equation of the material classes above. |.e. for a rate-type material
of g=1and r =1, we get from (3.50) for the undamaged material [16]

M= d (S;, M) (4.5)

The motion-history from RCFG X = x (X, t) to FCFG x (X, t) is now considered as
a two—step history

1. from RCFG to the PCFG: x (X, t5) = xp = xr (X, )
2. from PCFG to the FCFG: xp (X,t) = x = x (Xp, t),
and we get as configuration gradients:
Fr =xpV and as before F =xV (4.6)
The total configuration gradient is the one-by—one mapping (chain-rule)

F = xV = 0x/0X = (0x/0xr) (0xp/0X) = ®FF (4.7)
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The damage process should occur during the second step, thus from PCFG to FCFG(ICFG),
with the consequence that constitutive law for the damaged material depends on the config-
uration gradient between PCFG and FCFG, that is ®. Hence, the objective left CAUCHY-
deformation is here

Bp = @87 = (9x/0xp) (0x/0xp)" (4.8)

and the constitutive equation for the damaged part of the material follows analogue to
(3.50) as

Bp=d (S, Bp) (4.9)

As (4.9) is linear in Bp, the matter law can be written with the representation theorem
(3.55) for isotropic tensor functions

d (Sp, BD) = [d()otrBD + dyp tr (SFBD) + dyg tr (S%BD)] I
+ [dgltrBD + dyptr (SFBD) + doitr (S%BD)] Sr
+ [dQQtI‘BD + dyatr (SFBD) + dgatr (S%BD)] S%
+ [dogtI‘BD + dystr (SFBD + BDSF) + dostr (BDS% + BD)]

(4.10)

With the assumption that (4.10) is linear in S either, the equation is simplified again like
in Chap. 3.11:

d (SF, BD) = [dootl’BD + dyptr (SFBD)] I+ [doltrBD + dj;tr (SFBD)] Sp

411
+ [dogtI‘BD] + [d13tr (SFBD + BDSF)] ( )

With the stress tensors S and Sp, with the mean tensor M, and the unknowns x and xF
as the placements of X in the different configurations and the deformation tensor B we
obtain an array of 42 unknowns. On the other hand we have 3 equations by CAUCHY |, 3
non-trivial equations from CAUCHY Il, 9 material (4.5) for the undamaged, 9 material (4.9)
for the damaged material, 9 displacement-deformation equations with (4.8), and 9 relations
(4.4) between the two stress tensors, thus we have 42 equations. If the symmetry of all four
tensors is considered at once, the array would have 30 unknowns with 30 relations only.

o
By a simultaneous solution, i.e. in the order S, x, xr, Sr, Bp, Bp, and M the damage
process in materials with elastic or inelastic properties can be described in a similar way
and by the same methods as in continuous media.
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CLASSICAL AND NON-CLASSICAL CREEP MODELS

H. Altenbach
Martin Luther University, Halle-Wittenberg, Germany

ABSTRACT

The following paper gives a short introduction into classical and non—classical creep models and
their application to structural mechanics calculations. The analysis of creep processes is becoming
more and more important in engineering practice. This development is connected with extended
exploitation conditions and increasing safety standards. The quality of the predictions is influenced
by the reliability of the material and structural models. In other words, it depends strongly on the
possibilities to describe the creep problem, which should be analysed with the help of an adequate
mathematical model.

In solid mechanics two types of equations are generally used - material independent and ma-
terial dependent equations. The latter one should contain relations, which are able to reflect the
individual response of the materials to external loadings. One goal in mechanics is to formu-
late suitable constitutive and, if necessary, evolution equations describing the material behaviour
phenomenologically. Such an approach should be adopted for the material behaviour by an iden-
tification procedure which allows to find relations between the parameters in the equations and
the experimentally determined characteristics of the material. The following considerations are
related to these questions.

Classical creep equations are insensitive to the kind of loading. They describe, for example,
identical behaviour under tension and compression (only the sign of the creep deformations is
opposite). In addition, constitutive equations, which are able to reflect differences in the material
behaviour with respect to the kind of loading, are discussed.
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1. MOTIVATION

In engineering practice, an increasing number of different materials is used. Their real
behaviour, especially their deformation and strength characteristics, can be described only
approximately by classical material models. The extended application of light alloys, poly-
mers, composites, ceramics, etc., requires an extension of the classical phenomenological
constitutive equations and strength criteria. Certain materials show some effects in tests,
which cannot be described by classical models. For example, different behaviour in tension
and compression or the Poynting-Swift effect [1] (shear stresses result in axial strains) are
obtained. In most cases, classical constitutive equations are based on potential formula-
tions and equivalent stresses, which may be quadratic forms of the von Mises equivalent
stress type and therefore insensitive to the sign of loading. So we can conclude that the
von Mises-type theories cannot describe different behaviour in tension and compression.
In addition, some effects cannot be modelled by tensorial linear equations, hence tensorial
nonlinear constitutive equations must be formulated even in the case of small strains.

Until now no unique terminology is in use and such effects are called second order
effects [2] or non—classical effects [3] in the literature. In all cases, a dependence of the
material behaviour on the kind of loading can be established. It seems that it is necessary
to connect the classification of the additional effects with experimental observations. Other
definitions, partly given only by the type of the mathematical expressions (e.g., tensorial
linear or nonlinear equations) describing the material behaviour, are not satisfying. For this
purpose a proposal for a definition of the kind of material behaviour is presented in section
3. From the methodological point of view similar definitions are formulated for isotropic
and anisotropic material behaviour. Additionally, the creep-damage coupling with respect
to non—classical models is discussed.

The non—classical effects are connected with different types of material behaviour (elas-
tic, plastic, creep) or limit states (strength, damage, fatigue). Here, we direct our attention
to the creep behaviour and the main effects obtained in tests, which are the different be-
haviour in tension and compression, different equivalent stress-equivalent strain curves in
tension and torsion, the dependency on the hydrostatic stress state, the compressibility and
the Poynting-Swift effect. These effects are not only considered in the case of primary and
secondary creep, but also in the case of creep-damage coupling, assuming isotropic damage
with one scalar-valued damage variable. In the literature the creep-damage coupling be-
haviour is also named tertiary creep. By analogy we can discuss other models (anisotropic
damage, more than one damage parameter or inner variables).

Starting with classical creep models a systematic extension of the classical models is
presented. Here we introduce only models which correspond to the phenomenological ap-
proach. In the case of isotropic behaviour the classical creep law, the Norton's law, is based
on the creep exponent and one additional parameter. Both are identified for the given ma-
terial, loading and temperature conditions. The proposed generalised creep law is based on
the creep exponent and six additional parameters. Special cases with a reduced number of
parameters are deduced. All models are related to the assumptions of isothermal processes,
quasi-static loadings and monotonic loading path. It is necessary that in the next years new
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theories for non-isothermal processes and cyclic loadings should be worked out, because
there are many applications, e.g., in mechanical engineering.

After a short introduction into material modelling and the discussion of some experi-
mental observations the main part is directed to classical and non—classical creep models
without or with damage. All models are proposed for isotropic and anisotropic behaviour.
Examples of applications are reported briefly. For a better understanding, the following
section contains a short introduction into tensor calculus with Cartesian tensors.

2. SOME IMPORTANT FORMULAE IN TENSOR ALGEBRA AND ANALYSIS

The contents of this section is related to some rules of calculations with tensors in the
three-dimensional Euclidean space. Restricting the derivations to the case of orthogonal
Cartesian coordinates the direct (symbolic) and the component notation of tensor quantities
are used. The direct notation is independent from the choice of the coordinate system. More
details about the tensor calculus can be taken from [4, 5].

2.1. Scalars, vectors and tensors
In mechanics several tensorial variables of different rank are used. Examples are:

e the density p, the temperature T, the energy W, ...- scalars (zeroth rank tensors),
e the radius vector r, the displacement vector wu, .. .- vectors (first rank tensors),
e the stress tensor o, the deformation tensor &, ...- dyads (second rank tensors),
e the Hookean tensor () E, the material tensor @b, .. .- fourth rank tensors and

e the material tensor )¢ - sixth rank tensor.

Scalars are variables, which are fully independent on the choice of coordinate system (in-
variant variables) because they have no orientation. Vectors can be written as

a = a1e; + azey + azes, a = (al,ag,as), a = (CL,‘), 1= 1,2,3. (21)
The a; are the coordinates of the vector, which are related to the vector basis e; with
respect to the given coordinate system. This vector basis is assumed to be an orthonormal
basis
le;] =1, ei~e]-={1 v=J (2.2)
0 t#y
For shorter writing we introduce the Einstein's summation convention
3
a = a1€e; + axez + azes = Zaiei = a;€;, (23)
i=1

7 is a dummy index.
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The scalar product (inner product, dot product) of two vectors a and b is defined as

a-b=ae; bjej =abje;-e; = a;b;0i; = a;ib; = a; 05 = { (1) z ;; . (24)
The second product is the dyadic product of two vectors
ab = a;ebje; = a;bjeie; = Tjee; =T. (2.5)
In some textbooks for this product the following designation is used
a®b=ab. (2.6)
With the help of the dyadic product the second rank tensor 1" can be introduced
T = ab = a;bje;e; = Tjjee;. (2.7)

In a similar way we represent tensors of higher ranks:
o the 4th rank tensor
WA = abed = aibjcxdieejere, = TS = T;;Speejepe; = Ajjneiejere; (2.8)
e and the 6th rank tensor
©) B=abcdgf = TSP =T,;SuPnnei€jereiene, = Bijumnei€jereeme,. (2.9)
For the second rank tensors T' and S we define the following products:
e the contraction or tensor product (scalar product)
T- S =Tee; Suere = Ty;Suede; = TijSye.e; = Myee, (2.10)
which leads to a second rank tensor,
e the double contraction (double scalar product)
T .- S ="Tjee; - Syere, = T;;Spd rdi = T;; S = a, (2.11)
resulting in a scalar, and
o the dyadic product
TS = T,jeie;Snere; = Ti;Sueiejere; = Ajjreiejee, (2.12)
which leads to a fourth rank tensor.

2.2. Special second rank tensors
The following special tensors can be introduced:

e the unit tensor (identity tensor) I
I= Jije,-ej = eje; + eye; + ezes, €; - I. €; = 61’]’, (213)

e the transposed tensor T'T
T=ab— T = ba, T = ﬂjeie]‘ = T = Tijejei = Tjieiej, (214)
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e the symmetric and the antisymmetric (skew) tensors

— the symmetric tensor T

T=T", T;=T;=T=T° (2.15)
— and the antisymmetric tensor T
T=-T", Tjj=-T;=T=T" (2.16)
o the trace of a tensor
trT' =1--T =/dpere - Tijee; =T, = Ty + Tao + Ts. (2.17)

e the spherical part T of a tensor T' and the deviator T'°
A second rank tensor can be represented by a spherical part

1 1
TK = E(I < T)I = ngk(Sijeiej (218)
and a deviator
1 1
T =T -TX=T - 3(1 I = (Ty; - ngkaij)eiej (2.19)
in the following unique way
T=T"+TP, (2.20)
or
1 1
Tijeiej = ngk(Sijeiej + (Tz — ngk(Sij)e,-ej, (221)

2.3. Invariants of a second rank tensor
Invariant terms are independent on the choice of the coordinate system. Such a system
of invariants can be related to the coefficients of the characteristic equation

det(T — M) = )° — J1(T)N? + Jo(T)A — J3(T) = 0. (2.22)
The J; are called principal invariants. So we introduce
e the linear principal invariant

H(T)=tT =T --1=T;, (2.23)

e the quadratic principal invariant

1 1

BT) = 5 [FT) = W(T)] = 5(TuTy; - TyT), (2.24)

e and the cubic principal invariant

Jy(T) = %[JI(T3)+3J1(T)J2(T)—Jf(T)]

=LA@ - L@ + SR (T) (2.2
= det(T,])
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Other systems of invariants can be developed, e.g.:

e the basic invariants

linear basic invariant L(T) = Ty, L(T)=T--1,
quadratic basic invariant I,(T) = T;;T};, L(T)=T--T, (2.26)
cubic basic invariant L(T) = T,;TjyTw, L(T)=(T-T)--T,
e or the modified basic invariants
L(T) = te(T), &y(T) = %u(T?), B(T) = %tr(T3). (2.27)
The following relations between the principal and the basic invariants are existing
hio= L L = J,
S = %(112 —b), L = J} -2, (2.28)
J3 = %—13 - %1'1[2 + —é]f’, I, = 3J3-3J1J+ J3.

For the deviator we can derive the principal and the basic invariants by analogy:

e principal invariants of the deviator

1
J(TP)=L(T®) =0, JQ(TD)z—%Ig(TD), J3(TD):513(TD)= detT®,
(2.29)
e and basic invariants
L(T®) = T? = T°..I=0,
L(T®) = TDTD = T°.. TP, (2.30)
L(T°) = TZ?TJ?CTD = (T°.-T°).. TP,
The following relations between the invariants can be deduced
[1(TK) = JI(TK) = Jl(T),
2
L(T®) = —2,(T°) = —2J2(T)+§J12(T), (2.31)
2
L(T°) = 35(T°) = 3J3(T)—Jl(T)Jz(T)+§J13(T)-

2.4. Eigenvalue problem for a second rank tensor
The eigenvalues A and the eigendirections n for a second rank tensor T can be obtained
from the solution of the following equations
(T — /\I) ‘n = 0, n-n= 1, (T;] - /\(5,])71] = O, n;n; = 1. (232)
The eigenvalues follow from the condition that nontrivial solutions are existing, which leads
to the characteristic equation

det(T — AI) = 0, det(T}; — Ad;;) = 0. (2.33)
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The roots of this equation Ay, o0 = I, 11,111 are called principal values. It can be shown
that in the case of symmetric second rank tensors all principle values are real [5]. For each
root we get the eigendirections (principal directions) n§a), a=1,11,1II from the system

(Tn — )\)nl + T12n2 + T13n3 = 0,
T217L1 + (T22 - )\)nz + T23n3 = 0, (2 34)
Tying + Tng + (T3 —Ang = 0, '
n? + ni + nf = 1

The second rank tensor satisfies his characteristic equation (Cayley-Hamilton theorem)

T3 — J(T)T? + Jo(T)T — J5(T)I = 0, (2.35)
which enables the representation of T™ (n > 3) as a linear function of T2, T',T° = I, e.g.,
T3 = Jy(T)T? — Jo(T)T + Js(T)1. (2.36)

2.5. Transformation rules for tensors
The rules of transformation from one coordinate system to a rotated system for tensors
of the rank 2, 4 or 6 are (all indices range from 1 to 3)

!
Oi; = QmiQinjGmn,
/
ijkl = amianjaskatlbmnst, (237)
/
Cijklop = OmiQnjQskQiOyuoQypCrmnstuy-

The o;; are the elements of the transformation matrix:
aij = cos(e;’, €;). (2.38)

2.6. Functions of a tensor argument
We can introduce the following linear functions

P = B - D linear scalar function,
c = ®B .. D linear vector function, (2.39)
P =®B .. D linear tensorial function.

A linear scalar function can also be represented by a quadratic form of a second rank tensor

YPD)=¢(“B--D)=(YB--D)-- D = BypunDpmDi. (240
If Brimn = Bk and the symmetry conditions
D =D" = Py, = ByymnDnm, Biimn = Brinm (2.41)
and
P = P" = P, = Py = ByymnDnm,  Bstmn = Biomn (2.42)

hold true, the number of linear independent coordinates of a fourth rank tensor can be
reduced from 81 to 21 coordinates.
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2.7. Derivatives of the invariants of a second rank tensor
A scalar-valued function of a second rank tensor can be represented by

1//'='¢(D) :d)(Dll’D22"”aD31)- (243)
Then we can calculate the derivative by the following equation
oY oY
=A== Aan . 2.44
d}’D oD 0Dy rel ( )

On the other hand the derivatives of the invariants are
h(D)p = I, J(D¥p=2D", J(D%p=3D",
J(D)p = Ji(D)I-D", (2.45)
Jy(D)p = D* — J(D)D" + Jy(D)I = J5(D)(D")™".

So, we finally get

oY LX) oY oY oy T, 0P T
Ji,Jo, 3l p = | == e — | I-|—+Ji— | D +—=D*. (246
vl I, Sl (8,]1 than e, o5t lan )P TRl (249)
These calculations can be helpful for the use of the representation theorem of an isotropic
function [6]

P = F(A) =voI + v A+ v, A% (2.47)
The coefficients v; itself are functions of the invariants
v; = vi[J1(A), J2(A), J3(A)]. (2.48)

3. INTRODUCTION INTO MATERIAL BEHAVIOUR MODELLING

Experimental observations are important for understanding the behaviour of different
materials. Restricting our discussion to the case of phenomenological models, we only need
information from macroscopic tests (standard tests in material testing). During these tests,
loads and changes of the geometry are measured. On the other hand, the constitutive
equations are formulated in terms of stresses and strains. Therefore, these stresses and
strains have to be calculated from the acting forces or momentums and the elongations
etc. of the specimen. This calculation is correct, presuming the existence of a homogeneous
stress-strain state in the specimen. It is difficult to realise such states, but in many standard
tests this assumption is approximately fulfilled.

Approximations in material testing are connected with the classification of the observed
effects depending on their significance. At first, only the main effects, neglecting secondary
influences, should be investigated. Thus we can introduce a first approximation of the
material behaviour, which leads to simple constitutive equations with only a few parameters.
For the identification of these parameters different standard tests in mechanical material
testing can be used. Such tests are the uniaxial tension test, from which the axial strain and
the transverse strain (transverse contraction) can be derived, or the torsion test, from which
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we get the shear strains. Both tests can be performed without difficulties and we can find
a lot of test data in the literature. More difficulties are connected with other standard tests
(e.g., uniaxial compression). Their realization demands high accuracy of the measurements
and/or special equipment.

In addition, for many materials we obtain the same stress-strain curves in tension and
compression tests (only the signs are opposite), but for some materials the behaviour is
different. This leads to the conclusion that test data should be analysed and treated carefully.

3.1. Experimental motivation

Every engineering analysis and calculation is based on models, which can, in general, be
described by some mathematical expressions (equations). With respect to the mechanics
we can distinguish between two main groups:

o the material independent equations and
o the material dependent equations.

The first group reflects the geometrical relations (the strain-displacement equations) and
the equilibrium conditions (static or dynamic). If we count the number of equations and the
number of independent mechanical variables, we can see that the system of the material
independent equations is undetermined (we have more variables than equations). It is thus
necessary to introduce additional information to complete the system of governing equa-
tions. From our experience we know, for example, that a beam made of steel or made of
rubber shows different deflections under the same transverse load, if the geometrical prop-
erties are identical: we obtain individual responses depending on the material used. To find
an adequate mathematical description for the individual response (material behaviour) is
the main topic in material modelling. These models must satisfy mathematical restrictions
and reflect physics and materials science knowledge, but they have to be simple enough for
engineering applications.

The development of material behaviour models is connected with different experimen-
tal observations. The first models start from macroscopic observations and are formulated
basing on pure empiricism. After some developments in mathematics and mechanics, math-
ematically and mechanically based models on the phenomenological level were derived. In
the last years we also got new proposals for models of the material behaviour from the
atomic modelling (or physical modelling) using microscopic observations [7]. The different
approaches give several answers to the question, in which way the model of the material
behaviour should be formulated and what kind of experimental observations should be taken
into account. On the other hand the different approaches lead to different possibilities to
describe several effects of the material behaviour. The physical approach is connected with
the investigation of deformation, damage and fracture mechanisms on the microscopic (or
submicroscopic) level. The materials science approach, which is related to the mesoscopic
level, describes the correlation between the structure of the material and their properties.
The continuum mechanics approach uses the macroscopic level for the formulation of phe-
nomenological models based on observations in standard material tests [8]. Until now the
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last approach is most convenient for the use in engineering applications (analysis of the
stress-strain-state in constructions or structural elements). The different approaches are
summarised in Table 3.1.

Table 3.1: Classification of material behaviour models

LEVEL Microscopic Mesoscopic Macroscopic
CHARACTERISTIC |[ 1071 — 107" m 1077 —10"* m 107%4—...m
LENGTH, Atoms, Assemblage of Structure,
SCALES Molecules Grains Specimens
TYPICAL Vacancies, Microcracks, Macrocracks
DEFECTS Dislocations Cavities, Voids
SCIENCE Solid physics Materials science Solid mechanics
AIM OF Mechanisms Relations between Phenomenological
RESEARCH of deformation | structure of the materials constitutive
and fracture and their properties equations

Every discussion in material modelling starts with material testing. The first question is
- what kind of tests do we have to take into account. There is no unique answer, because
it depends, for example, on the given experimental equipment and the facilities in the
laboratories, etc. In general, the recommendation can be given to start with the so-called
basic tests in mechanical testing (uniaxial tension, uniaxial compression, torsion).

In this section the explanations are focused on the standard tensile test. In Fig. 3.1
stress-strain curves for different materials are schematically shown. All curves are related to

a b
A
g (o3
8y
(N
2
(2)
> - >
£ &

Figure 3.1. Stress-strain curves for various materials. a — brittle (1) and ductile (2) material, b -
rubber-like (1) and viscoelastic (2) material
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the nominal stress and the Cauchy'’s strain (both are computed for the initial geometrical
values). These curves lead to the conclusion that the mathematical description of material
behaviour must result in different mathematical expressions useable for engineering appli-
cations. The problem is to find equations suitable and convenient for application, which
are detailed enough to reflect the main effects and in the same time simple enough for an
easy handling. The solution of this problem in the engineering sense is the introduction
of some simplification. The real experimental curves can be divided into sections, each of
them can be presented approximately by a simple model. Examples of such models are the
linear or the nonlinear elastic model, the perfectly plastic model, the linear elastic-perfectly
plastic model, the plastic model with linear or non-linear hardening, etc. All these simple
phenomenological material models can be formulated by engineering or continuum mechan-
ics based methods. In fundamentai research models of solid physics or materials science are
used, too.

3.2. Classification of material models
Several kinds of classification for the material behaviour can be given. For example, in
engineering applications material behaviour can be classified as

o elastic behaviour,
e plastic behaviour, and
® creep.

Real materials rarely show a behaviour which can be related to only one of these items.
In many situations it is unavoidable to combine these simplified models, what leads to
viscoelastic, viscoplastic, elastic-plastic, etc., models. Fig. 3.1a shows the stress-strain curve
for a brittle material (1), which can be approximated by a linear elastic law, and for a ductile
material (2), which can be approximately characterised as an elastic-plastic material with
nonlinear hardening. Fig. 3.1b shows a rubber-like (1) material and the constitutive equation
should be nonlinear elastic. Fig. 3.1b (2) shows the typical behaviour of a viscoelastic
material, which partly creeps.

Another possibility of classification is the dependence on the kind of loading (Fig. 3.2).
If we perform tension and compression tests, we observe that some materials show an
identical behaviour (Fig. 3.2a). In other cases (Fig. 3.2b and c) the behaviour is different
with respect to the microstructure of the material. The elastic range of the stress-strain
curves is marked by thick lines.

In this paper the following classification of the material behaviour is used:

e classical material behaviour, and
e non-classical material behaviour.

For better understanding of the further discussions a definition of classical and non—classical
material behaviour with respect to creep problems will be presented according to [3]:
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Figure 3.2. Stress-strain curves from tension and compression tests for different types of materials.
a - crystalline material (identical behaviour), b — rubber-like material (different behaviour), c —
material with a cellular structure (different behaviour)

e Let us assume that the creep equation can be derived from a potential function
O = B(0e) (3.1)

Oeq IS the equivalent stress, which is a function of the stress tensor o and which
can be defined in a suitable manner. With the help of this equivalent stress we can
compare multiaxial and uniaxial stress states. The expression of the equivalent stress
can be additionally dependent on some specific material parameters, which must be
found by basic tests with standard specimens.

o Definition 1: All material models for isotropic materials of which the specific material
parameters of the equivalent stress can be identified with help of one basic test
(mostly uniaxial tension test) are called classical models. If more than one basic test
is necessary for the parameter identification we have a non—classical or generalised
model.

o Definition 2: All material models for anisotropic materials for which the identification
of the specific material parameters is possible with help of one basic test, but in
different directions, are defined as classical models, otherwise the models are called
non—classical or generalised models. - -

Remark: Both definitions are not restricted to creep models. Elasticity, plasticity or certain
types of failure behaviour can be analysed in the same way [3].

3.3. Approaches in material modelling

Mathematical-mechanical equations which are able to describe the material behaviour
should reflect the individual response of a certain material on external influences (for ex-
ample, mechanical and thermal loadings) caused by its specific internal constitution. It is
necessary to introduce a precise number of constitutive equations! and, if necessary, evolu-

Yn this paper term " constitutive equation” is used in a weak sense, which leads to similarities with " state
equation”, etc. A strong definition of the term " constitutive equation” is presented in the contribution of
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tion equations to supplement the material independent equations of structural mechanics.
In such a way the mechanical problem becomes determined. The material models can be
classified with respect to the observation scale: the physics scale is connected with the
deformation mechanisms, the materials science scale - with structure-properties relations
and the continuum mechanics scale - with the phenomenological behaviour (Table 3.1). For
each case we have different types of material behaviour equations. Limiting our discussions
to phenomenological equations three different possibilities for modelling material behaviour
can be distinguished:

e the deductive derivation of constitutive equations based on complex mathematical
expressions and on fundamental principles of material theory [4, 6, 9, 10],

e the inductive derivation based on experimental performances, simple mathematical
relations and a step-by-step generalisation [3, 11], and

e the rheological modelling based on simple rheological basic models and their combi-
nations [10, 12, 13].

The first approach is preferable from the point of view of mathematics and has to take into
consideration so-called constitutive axioms (causality, determinism, objectivity, etc.) This
approach is briefly discussed by P. Gummert in these Lecture Notes. In addition, the use
of the deductive derivation is close to some mathematical techniques, especially the tensor
function representation for isotropic and anisotropic materials, discussed, for example, by
Betten in [14]. From the point of view of practical applications this first approach can be
recommended only in some cases, if other possibilities do not work (solids with complex
behaviour, mixtures, etc.). The method of rheological modelling, which is widely used in
visco—elasticity for modelling plastics, is connected with an increasing development during
the last years. The reasons for this is the simplicity and the easy formulation of complex
models by some combination rules. The inductive approach is mostly used in practical
applications because this approach is connected with general rules of engineering modelling.
For the classical and non-classical creep models, which are presented here this approach
will be used.

A lot of constitutive equations for creep processes are proposed in the literature. The
mechanism-oriented description (microstructural level) leads to equations of the following
form for the creep strain rate (see, e.g., [15])

& = AD (é)m (;—2—) <§)n | (3.2)

TQ/KT is the relation between the mechanical and thermal energy (7 - applied stress, k
- Boltzmann's constant, (2 - atomic volume, T' - absolute temperature), b/d describes the
grain size dependence (b - Burger's vector, d -grain size), D; is the diffusion coefficient and
A; - the "diffusion area measure”. G denotes the shear modulus, m and n are exponents
specific for each material and loading condition. The materials science-based models start

P. Gummert in these Lecture Notes.



58 H. Altenbach

from experimental observations (micrographs). By this way the type of the creep process,
the nucleation and growth of damage and the factors, which have a significant influence on
the creep process, can be classified. Equations related to this approach are presented, e.g.,
in [16, 17]. With respect to the different creep mechanisms (climb-controlled dislocation
motion, diffusion-controlled creep, etc.) the mathematical expressions and the influence fac-
tors differ from one model to another. All these equations are inconvenient for engineering
structural analysis, but lead to suitable results when they are applied to the description of
deformation and damage processes in the microstructure of the material. It should be re-
marked that all these micromechanics-based equations are supporting the phenomenological
creep curve describing equations. Successful use in engineering applications of mechanism-
based equations is reported by D. Hayhurst in these Lecture Notes.

The phenomenological approach to creep processes is based on constitutive equations
of the following type [18, 19, 20]

e = f(o,t,T), (3.3)

where t denotes the time. The classical creep equations for metals were summarised, e.g.,
in [21]. The form of the constitutive equation differs from author to author. The reason for
this is that these equations can be written for the strains ¢, for the creep strains &, for
the strain rates & and for the creep strain rates £. The problem is how to find suitable
expressions for the creep equation. Additional difficulties are connected with the extension
to the multiaxial case.

A possibility of extending the classical creep equations is the introduction of a dam-
age parameter. The damage parameter allows a simple description of the tertiary creep.
Creep-damage equations are discussed, e.g., in [18, 22, 23, 24, 25], but the number of
necessary damage parameters, the mathematical nature of these variables (scalar-valued,
vector-valued, tensor-valued) remains an open questions. The discussion of these problems
is included in the contributions of J. Skrzypek and J.L. Chaboche to these Lecture Notes.

4. CLASSICAL CREEP MODELS

Creep is a time- and temperature-dependent phenomenon that occurs in engineering
materials at elevated temperatures usually exceeding 0.4 times the melting temperature
T in the case of metals [26]. Creep tests are performed at constant stress and fixed
temperature. The creep strain vs. time curve can be separated into three stages (Fig. 4.1):

e primary or transient creep with hardening of the material,
e secondary or steady-state creep with hardening and softening equilibrium, and

e tertiary or accelerated creep with softening (degradation of the material)?.

2This definition of tertiary creep is a simplification. A different approach is discussed in J.L. Chaboche's
contribution to these Lecture Notes.
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Figure 4.1. Characteristic of the creep behaviour. a - Typical creep curve (total strain vs. time)
and b - Creep strain rate vs. time curve (s - failure time)

Each stage can be characterised by a typical strain rate curve shape (Fig. 4.1b). During
the first stage the creep rate is decreasing, during the second stage we obtain an approxi-
mately constant creep rate and the third stage corresponds to increasing creep strain rate.

All three stages can be obtained in tests, but they are more or less developed. For
example, if the temperature is moderate the tertiary creep does not occur. The significance
of the creep stages also depends on the kind of material.

As shown in Fig. 4.1a in the case of moderate loads the deformation starts with an
instantaneous elastic part €¢. If the load is removed from the specimen at the time ¢; the
elastic part of the strains is recovered instantaneously, too. It is established by tests that
the creep strain will be recovered incompletely over the time, hence a non-zero permanent
strain should be taken into account. In the case of loads which result in plastic deformations
the instantaneous deformations are composed of two parts: an elastic and a plastic part.

It must be underlined that the different stages of creep are connected with different
creep mechanisms. This leads to different mathematical descriptions of creep processes.
For engineering applications simplification must be introduced for a better handling of the
model equations and for a reduction of the experimental efforts in the identification of

material parameters.

4.1. Uniaxial creep models
Creep constitutive equations are more complicated than the elastic equations. In

general, we presume in the uniaxial case
fe,0,1,T) =0, (4.1)
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where ¢, 0, t and T denote the strain, the stress, the time and the temperature, respectively.
¢ and o have the same direction. In many situations (4.1) can be simplified or approximated
by simpler equations.

Separating stress, time and temperature influences a convenient approximation of the
creep law (4.1) can be given by [19, 27]

e = fi(0) f2(t) f5(T) (4.2)
or [28]
&= fil0)gi(t)u(T). (43)

€ is the creep strain. Different proposals for the functions fi, f» and f3 are presented in
the literature [18, 19, 20]. Assuming the creep strain as a function of time with fixed stress
and temperature the following equations are proposed [20] -

€ = BtY/3 + kt Andrade, 1910,

e = Ft* Bailey, 1929,

e = G[1 — exp(—qt)] + Ht McVetty, 1934,

" =¢ + Algt+ Bt Leaderman, 1943 (4.4)
e =g +et" (n<1) Findley, 1944,

e =g + Algt Philips, 1956,

DN e Graham and Walles, 1955.

For the creep strain rate-stress relation the following proposals exist
£ =Ko™ (3<m<7T) Norton, 1929, Bailey, 1929,

£ =B [exp % - 1} Soderberg, 1936,
£ = Asinh Ui Nadai, 1938, McVetty, 1943,
&7 = Dio™ + Dyo™  Johnson et al., 1963, (4.5)
m
E=A [sinh (%] Garofalo, 1965,
d n n
g =2 (i) "4 (i) Odaqvist, 1966.
dt \o* o*

The approximation of creep data by the power function leads in some cases to mathematical
difficulties, which can be solved, for example, if the approximation is realised by the sinh-
function [29]. Other problems with the approximation of creep data are reported in [30].
The description of the temperature dependencies is more complicated. The reason for
this can be seen in the temperature influence on the material parameters (temperature
dependent parameters) and on the structural changes (the increase of the temperature
yields different creep mechanisms). In dependence on the stress and the temperature level,
the grain size, etc. different creep mechanisms are existing. So-called deformation maps
(normalised shear stress vs. homologous temperature) show, which kind of creep mechanism
can be assumed. Such deformation maps are derived from experimental observations for
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Figure 4.2: Typical deformation map: normalised shear stress vs. homologous temperature

many materials. A typical deformation map is shown in Fig. 4.2. Various creep deformation
mechanisms are described, e.g., in [15]. Several examples of deformation maps are presented
in [31]. Temperature-dependent creep equations can be expressed by

£ = exp[—(Q — yo)/RT]

e = fltexp(=Q/RT)] fi(0)

£ —% exp(—Q/RT)

e = fltexp(—=Q/RT)]" fi(o)

Kauzman, 1941,
Dorn and Tietz, 1949,

4.6
Lifshiz, 1963, (46)

Penny and Marriott, 1971.

@, R,v,n denote the activation energy, the gas constant and material parameters, respec-

tively.

At varying stress the creep theories which include primary and secondary creep can be
formulated by different approaches. The main directions are [18, 19, 20]

e the total strain theory,
e the time hardening theory,
e the strain hardening theory and

e the hereditary theory.
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The total strain theory assumes the existence of a relationship between the total strain,
the stress and time (a surface in the stress-strain-time space) at fixed temperatures. The
time hardening theory, which is also called the flow theory, assumes the existence of a
relationship between the creep strain rate, the stress and time at fixed temperatures. The
strain hardening theory is based on the assumption of the existence of a relation between
the creep strain rate, the creep strain and the stress at fixed temperatures. In some cases
instead of the creep strain rate and the creep strain the inelastic strain rate and the inelastic
strain are used. In the hereditary theory the relation between stress and strain is given by
integral equations of the Volterra type. This theory is mostly applied in the description of
the viscoelastic behaviour of plastics. Further information on this special approach can be
taken from [18].

Here we discuss only the flow theory, which is similar to the theory of plasticity. The
main problem is to find a suitable expression of the basic expression of the flow theory

B, 0,1, T) = 0. (4.7)

The recommendations for the choice of a certain creep theory are reported in detail in, for
example, [20, 32].

4.2, Extension |: Multiaxial behaviour
All constitutive equations formulated here are restricted by the following assump-
tions:

o geometrically linear theory, that means infinitesimal strains,
® non-polar, homogeneous materials, that means symmetrical stress tensor, and
e isothermal processes, that means elevated, but constant temperatures.

From the first assumption, it follows that the coordinates of the stress tensor in the Eulerian
and Lagrangian coordinates and the engineering stresses are identical [4]. The deformation
state can be described by Cauchy’s strain tensor. From the second assumption follows that
only the symmetric part of the strain tensor is involved in the material behaviour equations
[4]. In addition, the material characteristics are constant in all parts of the volume. The
third assumption simplifies the formulations of the material model, because the material
characteristics do not change with temperature. This assumption can be used in the case
of fixed temperatures.

The classical multiaxial creep equations can be derived from the following creep potential
[18]

¢ =d(0,q,), (4.8)

o denotes the second rank symmetric stress tensor and the g,(n = 1,..., m) are a set of
inner (rheological) parameters characterising hardening, damage, etc. Assuming the equiva-
lence between the uniaxial creep state (known from tests) and the three—dimensional creep
state the potential should be a function of the equivalent stress Oeq- This scalar-valued
function of a tensor-valued argument can be restricted by some assumptions. In the case of
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isotropic materials the equivalent stress is a function of the stress tensor invariants. Neglect-
ing the influence of the kind of loading a suitable approximation of the equivalent stress
can be given by the quadratic invariant. Restricting the discussion to cases not influenced
by the hydrostatic pressure we get with respect to the flow theory

3

@(Ueq) __ §2(qn) e 0, O'eq = GVM = 53 . 8’ (49)

oym denotes the von Mises equivalent stress and s - the stress deviator. The function £
is a characteristic property of the creep surface which can be influenced by hardening and

other phenomena. The creep strain rate tensor can be calculated by
0P
Y =fH—. 4.10
Uy (4.10)

The unknown factor 7 follows from the assumption that the dissipated power P in the
three—dimensional case is the same as in the equivalent uniaxial case

PI® =g & = gegigy, (4.11)
Taking into account some specifications of the creep potential ® we can calculate 7. In

the case of the so-called von Mises-type theory £ = £ is constant and & depends on the
second invariant of the stress deviator s

P(0eq) — 52 = Ueqz - fg =0. (4.12)
Following [21], we get for the creep strain rate
£ = 3is. (4.13)

The equivalence relation (4.11) leads to

éCI’

_ fe
= 20 (4.14)
and we finally find [27].
~cr
gor = 2y (4.15)
20eq

The function é¢; must be determined by tests. Usual approximation is the Norton's creep
law. With respect to (4.5) we assume

€oq = Koeg™ (4.16)
which results in the well-known equation
g = gKaeqm'ls (4.17)

presented in the classical textbooks. Additional discussions on classical creep equation can
be found in [18, 19, 20, 21, 27, 28, 33, 34].
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4.3. Extension IlI: Anisotropic behaviour

In tests many engineering materials are (more or less) anisotropic, which means that
their constitutive behaviour is dependent on the given test direction. A typical example of
this group of materials are single crystals, but anisotropic behaviour can also result from
certain technological processes. For all these materials we need a suitable description by

mathematical equations.
Limiting our discussions to the case of creep behaviour the introduction of a simple

model which corresponds to the isotropic creep model (flow theory) is possible. The starting
point is again a creep potential

® = d(0,q,). (4.18)

In the case of anisotropic behaviour we must introduce material tensors similar to the theory
of plasticity

® = 3(0,"b,q,), (4.19)

b denotes the fourth rank material tensor. The dependence on the inner (rheological)

parameters g, can be dropped in some cases. A convenient proposal for the potential ® is
a quadratic function

d=c--Wb..o, (4.20)
and the creep strain rate tensor can be calculated by the standard flow rule
o
g = 7‘78— =27i¥b.. . (4.21)
oo

The unknown factor 7 follows from the dissipated power P95, (4.20) is the generalisation
of the isotropic creep potential, based on the second invariant of the stress deviator. This
potential was suggested in [35]. The fourth rank tensor ()b satisfies the symmetry conditions
of the Hookean tensor which means that 21 components of this tensor are independent.

Different additional proposals restricting the form of the presented anisotropic creep
equation are discussed in literature. For example, as in the classical theory of isotropic
creep, incompressibility can be presumed. Such restrictions result in a reduced number of
material properties of the material tensor (Vb. Taking into account the incompressibility
condition (no influence of the hydrostatic stress state) in the anisotropic case the number
of independent components reduces to 15. Another possibility of reducing the experimental
and computational efforts is given by the assumption of special kinds of anisotropy. For
example, orthotropic behaviour, which can be established in thin sheets, leads to a reduc-
tion of the number of independent components to 9. The additional introduction of the
incompressibility condition reduces it to 6. This case was discussed in the theory of plasticity
by Hill [36].

4.4. Extension Ill: Creep-damage coupling

Engineering materials operate under different mechanical and environmental condi-
tions leading to microstructural changes which decrease their strength. These processes in
the materials are irreversible and in the literature they are called damage. There are different
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kinds of damage (creep damage, ductile plastic damage, fatigue damage, embrittlement, en-
vironmental degradation, etc.), which are discussed in several textbooks, e.g., [23, 24, 37].
Here we restrict to creep-damage interaction. Additional information are presented in J.L.
Chaboche’s and J. Skrzypek’s contributions to these Lecture Notes.

The classical creep-damage model introduced by Kachanov and Rabotnov is based on
a constitutive law for the creep strain rate and on an evolution law for the scalar damage
variable w (isotropic damage). With respect to the classical creep equations connecting the
creep strain rates with the stresses for the description of the creep-damage coupling, we
substitute the stresses by the effective stresses (stresses divided by the continuity 1) = 1 —w,
which is the complementary variable to the damage variable) using the equivalent strain
principle. In addition, we have to formulate an evolution equation for the damage variable.
Thus, the starting point is the following system of equations

£ =€"(o,w,...), w=w(o,w,...). (4.22)

The concept of two coupled equations (one for the creep behaviour and one for damage)
is working successfully, because we can give understandable interpretations for this model.
The continuity (or damage) variable is connected with the changes of the cross-section area
in a test specimen. If A denotes the actual area, which is calculated with respect to the
"lost damaged” parts of the initial area Ay, the damage is

wzl—i, 0<w<l (4.23)
Ao
This description is correct, if isotropic damage is presumed. It must be underlined that the
damage is a monotonically increasing variable (w > 0) and for real materials we obtain
in many cases that an initial damage is existing (w is different from zero at the starting
moment) and that the maximum value is less than 1 (the rupture occurs on a lower level
of damage).
In accordance to the classical flow theory a similar creep-damage model can be formu-
lated. Neglecting instantaneous deformations a dependence between the creep strain rate
and the stress deviator follows from the flow theory

&7 = 3ijs. (4.24)

With respect to Odqvist's flow rule for steady state creep [21] and Rabotnov's scalar damage
variable [18] the creep-damage equations can be established:

o the constitutive equation

3
& = SF(ow)K () s (4.25)
TyM

e and a damage evolution equation
w = R(w)H[(x(e))] (4.26)
The functions F, K, R and H can be specified as
F(o) =ao", Kw)=(1-w)™, H(o)=bo* Rw)=(1-w)" (4.27)
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a,n,m, b, k and | are material parameters which must be determined by creep tests. In
order to incorporate different damage mechanisms the following expression for x (o)
can be used [38]

x(o) = ag; +3fou + (1 — a — flowm, (4.28)
o1,0H denote the maximum principal stress and the hydrostatic stress, respectively,
and

_J x(@), x(e)>0
(x(o)) = { 0, x@)<0 - (4.29)

It should be underlined that the creep constitutive equation uses a different expression
for the equivalent stress (von Mises-equivalent stress o,m) than the damage evolution
equation (more general equivalent stress x(o)) since these equations describe two different
mechanisms.

5. NON-CLASSICAL CREEP MODELS

Creep behaviour, which is influenced by the kind of loading, can be obtained in tests for
some geomaterials, some kind of ice, some light metals and their alloys, graphite, several
ceramics, polymers etc. Such effects like different behaviour in tension and compression
or the influence of the hydrostatic stresses on creep are ignored in the classical theories.
Below the experimental results are discussed and a mathematical model for the description
of non—classical behaviour is proposed.

5.1. Experimental observations

Some materials show a strong dependence of their behaviour on the kind of loading in
tests. One of these effects, which is often reported (see [18, 39, 40, 41, 42, 43]), is the
different behaviour under tensile or compressive load. In the case of the same absolute value
of tensile and compressive stress and the same temperature, the first approximation of the
creep behaviour (creep strain vs. time) gives identical curves (Fig. 5.1a). Such behaviour is
assumed in classical theories. For some materials, different behaviour is obtained, which is
schematically shown in Fig. 5.1b. This behaviour cannot be described by classical theories,
which are not sensitive to the sign of the load.

A very simple, but often used creep law in engineering calculations is the Norton's law.
Let us assume the following relationship in the case of tension

£ =L,0" L,>0. (5.1)
L, and n are similar to the material parameters in the previous section (Norton's law). In

the case of identical behaviour in tension and compression we have an analogous equation
for compression with the same material parameters (only the sign is opposite)
cr

& = —L.|o". (5.2)
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Figure 5.1: Identical and different behaviour in tension (1) and compression (2)

In the case of non-identical behaviour it is necessary to introduce a second equation for
compression

e =—L_|o|*, L_>0, (5.3)

with L_ # L, as a new material parameter. The creep exponent n can be assumed
independent on the kind of loading. This follows from experimental observations [34].

The ratio L /L_ can reach different values: for light alloys 2 ... 3 [44] and for polymers
1,5 ...5[39, 44]. Higher values can be obtained for ceramics: 39 for aluminium oxide based
ceramics and 289 for a silicone nitride based ceramics [41].

We can also observe different behaviour in tension and compression in the case of
nonlinear creep vs. time curves, which is schematically shown in Fig. 5.2. Examples of such
hehaviour are given in [3].

Another type of dependence of the material behaviour on the kind of loading can be

e

a b

e A

1,2

identical behaviour different behaviour

e 4

o~

Figure 5.2. Identical (a) and different (b) primary creep behaviour in tension (1) and compression

(2)



68 H. Altenbach

cr
3 cr
vMy EyMA

1,2

identical behaviour different behaviour

HY
o~

Figure 5.3. Equivalent strain vs. time curves for tension (1) and torsion (2). a - identical behaviour,
b - different behaviour

obtained, if results of creep tests under tensile force and torsional momentum are compared.
In the first case we get an axial creep strain vs. time curve, the second case leads to a shear
creep strain vs. time curve. The comparison of both curves is possible, if we introduce
equivalent stress and equivalent strain values. Suitable expressions were proposed by von
Mises for the equivalent stress and strain

3 1
oM = —S"S, 3:0’——(0’"[)[,

;g 3 , (5.4)
85;\,': gecr“ecr’ ecrzecr__g(scf,._[)[.

o, s denote the stress tensor and deviator, €<, e - the creep strain tensor and deviator.
The classical material behaviour is characterised by identical equivalent creep strain vs.
time curves in tension and torsion (Fig. 5.3a). Some tests show a behaviour, which yields

cr
€ cr
vM/r Evma
a

123

identical behaviour different behaviour

Y
4

Figure 5.4. Identical (a) and different (b) equivalent strain vs. time curves for tension (1), com-
pression (2) and torsion (3)
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different curves (Fig. 5.3b). In both tests the equivalent stress has got the same value.
Experimental results, connected with this effect, are published for some kind of austenitic
steels, polymers and pure copper [45, 46, 47, 48, 49, 50].

By taking experimental test data from tension, compression and torsion tests, identical
equivalent creep strain vs. time curves can be obtained for most engineering materials
(Fig. 5.4a). Some polymers [42, 51] show different equivalent creep strain curves for tension,
compression and torsion (the equivalent stress takes the same value in tension, compression
and torsion). Such dependence on the kind of loading is shown in Fig. 5.4b.

In the literature other non—classical effects [1, 39, 52, 53, 54, 55, 56], obtained in creep
tests are described. The classical models neglect the influence of the hydrostatic pressure on
the creep and of pure torsion on the volumetric creep, etc. These experimental observations
of non—classical behaviour are reported in [3]. Non—classical effects are obtained for primary,
secondary, and also for tertiary creep.

5.2. Non-—classical creep law

We presume that the deformation behaviour of a material can be derived from a potential
®, which is a function of the stress tensor components, the temperature and, may be, some
additional parameters. In analogy to the classical creep law assumptions, the potential is
assumed to be temperature-independent, which means that all processes are performed
at fixed temperatures. The dependence on the stress tensor components is substituted by
a dependence on an equivalent stress oeq. If neither the temperature nor the additional
parameters enter into the potential function, its most simple form is

® = B(0ey). (5.5)

For the equivalent stress we can find several definitions in the literature. In the case of
strength or plasticity criteria some possibilities are discussed in [57].

Considering non—classical creep behaviour in the case of isotropic materials the equiva-
lent _cress itself is a function of the invariants of the stress tensor. The set of invariants can
be defined in different ways (see, e.g., [58, 59]). For our derivations the following definition
of the equivalent stress is useful

Oeq = @01 + B0y + Y03, (5.6)
with the linear, quadratic and cubic invariants
or=wh, 05 =i +psly, of= paly + tslils + pels, (5.7)
and
Iiic)=0c--1I, L(o)=0--0, Lioc)=(0c-0) 0. (5.8)
The I; (¢ = 1,2,3) are the linear, the quadratic and the cubic basic invariants, the y; (j =
1,...,6) are parameters, which depend on the material properties. «, 3, are numerical

coefficients for weighting the different parts in the expression of the equivalent stress. Such
weighting is also used for other material behaviour models. In [60] similar coefficients are
introduced for characterising different failure modes.
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The basic invariants are connected with the principal invariants (coefficients in the
characteristic equation). Using the relations between the principal and the basic invariants
(see subsection 2.3.) the principal invariants can be calculated from the basic invariants
and vice versa.

The equivalent stress oeq introduced above contains the von Mises equivalent stress
owm as a special case. We compare the von Mises equivalent stress

3

oy = 3578 (5.9)

and the equivalent stress equation (5.6) witha=vy=10, 8 =1
Ueq2 = Ug = 1121'12 + pigly = py(o - I)z +tUzo O
1
(1o + §H3)(‘7 I+ s s

The comparison of the coefficients in both expressions for the von Mises stress o,u and for
the equivalent stress o, leads to

3 1
== -, 5.10
M3 2’ Ha 2 ( )

Therefore one can conclude: If @ =y =0, § =1 and p3 = 1.5, u, = —0.5 the von Mises
equivalent stress expression results from (5.6). For a better comparison of the classical
approaches and the generalised creep equation, we will set 3 = 1 in the following derivations,
which leads to the equivalent stress

Oeq = QO + Ty + 703 (5.11)

Introducing the creep strain rate tensor & with respect to the flow theory [18] we can
propose the following creep law (see subsection 4.2.)

0P (0eq)
g =p—0—2 5.12
77 ao_ I ( )
where 71 is an unknown scalar factor. Let us calculate the derivative of the potential in the
generalised creep equation with respect to the introduced equivalent stress and the chain

rule

00(0eq) 0P O0eq o ( O0¢q 8_0{ D0eq _82 N 00eq 803)

do 00eq O0 00eq \ 0oy 0o 0oy do  Oos do
(5.13)

oo aga—l 004 O0os
9o 00 9s )

Taking into account the relations between the invariants o; (i = 1,2,3) and the basic
invariants [; (i = 1,2, 3) we get

Jdoy 0oy oL I + pyor

a_. = /LIIa a. = ’

oo Jo 0 09
I T + %IQI + §M5110' + peo - o

00q

5.14
o, (5.14)
do o3

fl
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Finally we obtain the following generalised creep equation

2, Ms 2
e“=1 02 au I+M2]11+“30'+,y (,u4]1 + _;3,—[2) I+ §M5[10' + O - O
80eq ! 09 a%

(5.15)
The creep law (5.15) is tensorial nonlinear.

Remark: The derivation is only correct for the case o # 0, otherwise the third term
in the equivalent stress (5.11) vanishes and our derivation should be repeated with the
consideration that

Oeq = 01 + 03. (5.16)
In this case, we get a reduced tensorial linear creep equation
. . 09 LI
£ = ) (Oé/hI 4 M) . (5]_7)
00¢q 02

The unknown scalar factor 7 can be determined by the assumption of the equivalence of
the uniaxial and the three-dimensional states of stress and strain in the material. Introducing
an invariant value P4 (the dissipation power during the creep process), it can be presumed

PUS = g ¢ = gyt (5.18)

The substitution of the creep strain rate tensor £ according to (5.15) leads to

2, Hs 2
i oo LI (l¢411 + —12) I+ -plio+ oo
P =g .. OZMI‘FMQI +/t3o-+7 3 23 '

00¢q Oy o3

(5.19)

With respect to the definitions of the basic invariants and the equivalent stress the previous
equations lead after reordering to

i 90 oD ) pdiss
piiss — naaeq (o + 09+ Yo3) = ﬂaaeq =n= T (5.20)
Ceqm—
00¢q

which results in

2, Ms 2
) pdiss T+ (/l4[1 + _12) I+ -pulo+ UgO - O
g9 = ap I + Port” 71T v 3 23 . (5.21)
As in (4.11), we assume that P = g..ée, and it follows
2, Ms 2
LI+u (N4[1 + —12) I+ -pslho+pgo-o
e =S o 1 4 H2H2 T T 3 3 (5.22)
The generalised creep equation can be used, if the parameters y; (i = 1,. .., 6) are defined

by basic tests and the function &g = ¢ (0eq) is known. As in the previous section, suitable
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Figure 5.5: Different loading conditions leading to a shear stress state

approximations for the experimental creep data in the case of secondary creep processes
are the power function, the hyperbolic sine function and the exponential function:

P(0eq) = Teq"y  P(0eq) = sinh (?) ,  ¢(0eq) =exp (U_gi) ) (5.23)

n, a, b depend on the material, temperature, etc. Other proposals for approximations of the
function €eq = ¢(0eq) can be taken from the literature (see, e.g., [19]).

Remark: The proposed generalised creep equation has the form of the general tensorial
nonlinear relation between two co—axial tensors [18, 61]

EY = HoI + HIU' + HQO' . (524)
For isotropic materials the coefficients H; (i = 1, 2, 3) depend only on the invariants of the

stress tensor o. The comparison of the general tensorial nonlinear relation (5.24) and the
deduced constitutive equation (5.22) used here leads to

3[14]12 + /1:5[2)

. I
Hy = & (au1+uz L4y
02

e 302
or (1 2ps1y
o= e (Bl (5.29)
ccr Mg
H2 = 8cr,y___‘
€q 0,%

(5.22) is a tensorial nonlinear equation because quadratic terms of the stress tensor are
included. Tensorial nonlinear constitutive equations lead to so-called second order effects
[2, 14, 62]. For example, pure shear loadings lead to shear creep strain rates, and additional
axial creep strain rates (Poynting-Swift effect) and volumetric creep strain rates (similar to
the Kelvin effect in elasticity). Assuming tensorial linear constitutive equations (v = 0) we
get tensorial linear relations between the creep strain rate tensor and the stress tensor.

Let us discuss two short examples. In the first example a shear state is presumed. This
state can be performed by different loading conditions. In the first case (Fig. 5.5a) this
shear stress state is defined by pure shear loading

o =71(eje; + exer), (5.26)
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in the second case by bi-axial normal loading (Fig. 5.5b)
o =1(eje; — exey). (5.27)

Let us calculate all coordinates of the creep strain rate tensor and its invariants for both
cases:

® case a:
basic invariants and equivalent stress

L=0--I=0, h=0--0=27", Ii=(c-0) -0=0, (5.28)
o1 =l =0, 05 = It + Iy = 237°, 03 = pgly + pshi I + pgls = 0, (5.29)

Oeq = 02 = /2047, (5.30)

creep strain rate tensor

. . g . \/? €€ €s€

e = &g (aull—l- —'u;z ) = éqq [aulI-{— Hs 122 + e2e1) , (5.31)
. . . . . o V2 . .

8 = e = e =ehom, =R ep=eg=0,  (532)

invariants of the creep strain rate tensor

I1(€7) = &7 I =£f =3eqam,
cer . ver cer\ 2
L(e") = &7 7= (eg)” (302Ul + ps), (5.33)
() = (&) e = (66) am (oPuf - 2
e case b:
basic invariants and equivalent stress - see case a,
creep strain rate tensor
2 —
= [amI Ll 6262)] , (5.34)
=g (o + 52, ep—et (om— ), = hom, (63
£y = él3 = £33 =0, (5.36)

invariants of the creep strain rate tensor - see case a.

The calculations show that different stress states result in different creep strain rate tensors.
On the other hand, the invariant values are the same. The explanation can be given by
calculation of the principal values and the principal directions for both cases. The principal
values are the same, but in case 'a’ the principal directions are rotated by an angle of 45°
to the axis 1 and 2.
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The second example is related to the hydrostatic pressure state
o= —-pl. (5.37)

The calculations of the basic invariants, the equivalent stress and the creep strain rate

tensor lead to:
basic invariants and equivalent stress

Il = —3p, I2 = 3p2, .[3 = —'3])3, (538)

o1 = =3ppy, 05 =9y +3pns, 03 = —27p° g — 9p* s — 30’ i, (5.39)

creep strain rate tensor
1 1
€ =¢d | apy — —=/3g + 3 + V5=V Iy + 3us + )I, 5.40
eq < H \/5 Uo7 ftg T 7Y \3/5 My s + Hg ( )

el =en =2y, ;=0 (i#)) (5.41)
The calculation of the invariants of the creep strain rate tensor is elementary.

5.3. Identification of the material dependent parameters

The generalised isotropic creep equation contains unknown parameters, which must
be identified by tests. Several possibilities of identification procedures, based on static or
dynamic tests, are known. In the case of creep problems creep tests with constant loads
can be recommended3. The identification procedure is shown schematically in Fig. 5.6. The
choice of the kind of tests depends at first on the experimental facilities. On the other hand
this choice must correspond to the possibilities of receiving analytical solutions.

It is necessary to determine the parameters u,, ..., ug from basic tests. In accordance
to the identification procedure (Fig. 5.6) we can propose the following tests:

A. Physical tests

(a) uniaxial tension

€ = Lyoty, €= —Qoy, (5-42)
(b) uniaxial compression
&y = —L-|oul", (5.43)
(c) torsion
Yz = 261y = Noty, €11 = Mol (5.44)

3This approach is widely used in engineering applications, but should be carefully handled, because the
material dependent parameters are determinated for a given constant load level. The use of state equations
with these parameters is allowed only in a small range of stresses in the neighbourhood of the given load
level [29]. Other possibilities (the use of functionals) are discussed in the contribution of P. Gummert in
these Lecture Notes.
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PHYSICAL TESTS MATHEMATICAL TESTS
(Experimental determination (Analytical solution of
of material characteristics) simple creep problems)
Y Y
known characteristics unknown parameters
of the given material in the constitutive equations
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IDENTIFICATION PROCEDURE
(Comparison of strain rates)
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Results:
Parameters as functions
of the characteristics of the material

|

VERIFICATION
by additional independent tests

Figure 5.6: Identification procedure for the parameters in the creep equations

(d) hydrostatic pressure
€1 = &5 = €53 = —Plou", (5.45)

Li,L_,Q,N, M, P,n are parameters from test data.

B. Mathematical tests
Let us assume the relation between £ and geq in analogy to the Norton’s creep law

$(0eq) = Teq". From (5.22) we get the following results for the different loadings:

(a) uniaxial tension (04, > 0)
£ = (apy + g T i + Y F e T B5) 0T,
£ = (ap+ \/u2+,u3+’y{‘/u4+u6+,u5)"
g+ Hs (5.46)
Ko 3 n
——tau; +7 011»
Vi Tt (et e )| H

(b) uniaxial compression (011 < 0)
5] = —(~apy + /g + pg — Y/ s + g T+ Hs)nHlUll'n, (5.47)
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(c) torsion (012 # 0)
2655 = (V2u3)" 0Ty, D) = (V/20) 0Ty, (5.48)

(d) hydrostatic pressure (011 = 092 = 033 # 0)
cor 1
€0 = =3 (/O + 33 — oy — Y/ 27 + 3yt + 9p1s)" ou[". (5.49)

The comparison of (5.42-5.45) and (5.46-5.49) leads to
ps = N*/2, ap, = M/( \/2u =X g,
6’1y = [V + 3ps — 3ap, — BP)P = 3(T — apy)®
+ 18 (___Hz_ +apy + QLY ’") (T — ap,)?,

Vitg + i3
3(T — apy)® ~ [v/9uy + 35 — 3o — (3P)'P

- 24 (—“L— +ap + QLY "’) (T — oy)?,
\/Hz;*‘ﬂs
Vug = (T —ow)’ =¥ u—7us,

with T = (L}, — L7)/2, X = (L', + L") /2,7 = 1/(n +1).

2793 g

5.4. Special cases

The generalised creep equation contains several special cases. At first we discuss the
classical creep equation, which is connected with the von Mises equivalent stress. After this
some creep laws with a smaller number of parameters are deduced. It can be shown that
different models with three parameters can be introduced and we get tensorial linear or
nonlinear equations.

The classical creep equation, based on the von Mises equivalent stress, can be derived
from the generalised equation (5.22) in connection with the equivalent stress and the
following parameters

a=7=0, p,=-1/2, p3=3/2, (5.51)
1 3 3
05q202=\/*'2—112+512= \/—2'3"S=U'VM. (552)
From this the creep rate strain tensor follows

) 3 3o —NLI  3¢(owm)

L — . . = -

E=¢ ( 58 3) 5 2 o s, (5.53)

2 53 -8

which is identical to [21, 18] and the similar equation in subsection 4.2. The classical model
can be recommended, if material constants, determined from basic tests, approximately
fulfill the relations

Li=L., 3L¥=N", M=P=0. (5.54)
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These conditions follow from (5.50) with respect to the values (5.51).
Let us assume identical behaviour in tension and compression and neglect the Poynting-
Swift-effect and the influence of the hydrostatic pressure. Setting oy, = 0,7 = 0 we get

the equivalent stress as
Oeq =02 = \V ,U";)Ilz + ”3‘[% (555)

£ = (o) (ﬂéﬂfﬁ) _ (5.56)

which leads to

This is a tensorial linear equation with two parameters (i, ;). They can be determined
from uniaxial tension and torsion tests (L., N) or only from uniaxial tension test (L, Q).
The constitutive equation (5.56) can be recommended, if the relations

Ly=L., M=0, 9L¥ —3N¥ = (3P)* (5.57)

are experimentally obtained.
Assuming no influence of the third invariant (7 = 0), the strain rate can be expressed
as

LI

EY = ¢(0eq) <a,u1I + &.l%ﬁﬂ) ) (5.58)
2

For this equation the relations

T=MN™, +9X?2-3N? =3T+ (3P) (5.59)
between the characteristics of the material should be obtained from tests.
Including only the quadratic and cubic invariants (au, = p, = ps = 0), we get a
tensorial nonlinear equation
. LI+ o .
e = ¢(Ueq) <,u2 1 K3 +7/L60' U) ) (560)

J9 O'§

For this special case we should obtain from tests
3
37° - [VOX? = 3N - (BP)] =Y =M=0 (5.61)

with Y = X = N?/(2X) + QLT™. Another tensorial linear equation can be deduced,
setting apy = pg = g =0

EY = ¢(Ueq) [
This equation can be recommended for use, if :
3
[\/9)(2 “3NT - (3P)’] 9P =T+3Y =M =0 (5.63)

is obtained from tests.

po i I + pyo +ry,uf,(IQI+ 2[10)] ' (5.62)

g9 30'§
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6. EXTENSIONS OF THE NON-CLASSICAL CREEP LAW

Below we discuss possible extensions of the non—classical creep law. Two interesting
cases are creep-damage coupling and anisotropic behaviour.

6.1. Extension I: Creep-damage coupling
For describing the tertiary creep behaviour with the primary creep neglected (cp. Fig.
6.1) we can use the generalised isotropic creep equation for secondary creep. A possible

a b
cr cr
Eeq Eeq
Oeq = CONst
Oeq = CONSt
t t

Figure 6.1: Creep curves: a - secondary creep, b - secondary and tertiary creep

extension of the generalised equation follows by introducing a damage variable and an
evolution law for this variable. According to the papers of Kachanov, Rabotnov and others
the specific dissipation power P9 can be proposed as a measure of the intensity of creep
2
¢
P =g.. &% ¢= /P“"SS dt (6.1)
0
At t = 0, we assume that no damage has occurred: p(t = 0) = ¢, = 0. If t = ¢, the
dissipated energy is independent on the kind of loading

p(t =t.) = p, = const. (6.2)

In real materials an ideal undamaged state is never obtained on the occasion of manufac-
turing, etc. The independence of the final state on the kind of loading can be observed in
tests [63].

Let us assume that

PP = f(0eq, ) (6.3)
with

R
f(oeq, ) = K( eq)(w* — o)™’ (6.4)

m, k(0eq) and ¢, should be determined by tests. For the introduced damage variable the
relation to Rabotnov’'s damage parameter w [18] can be shown

w=-"- 0<w<l (6.5)
@,
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Thus we get
' 1
PdISS = K(Oeq)m. (66)
On the other hand
pdiss — Teqeq) (6.7)
which leads to
pdiss g(oeq)
S = = 6.8
eq Oeq (1 _ w)m ( )
with
k(o
g(UeQ) = (Ueq). (69)
eq
Substituting w by ¢/p, we get
cer o
beq = g(oeq)~——((p o (6.10)

and the constitutive equation
~Cr

o5
€Y = g(0eq) =
((,0* - (p)m
2 Us
poh I + o N 7.“411[ + pgo - o + ?(Iﬂ + 21, 0) (6.11)
g9 Ug )

x lap I +

which should be completed by an evolution equation

me
D= K(Oeq) ————. 6.12
o=l e“)(w*—w)m (612
The unknown parameters p; must be determined from basic tests.
In accordance to the identification procedure (Fig. 5.6) we can propose now the following

tests:
A. Physical Tests

(a) uniaxial tension

. o

Eirl = L+o-71l1 ((p* _ (p)m, (6 13)
. o

£p = _QU&(W——@)—""

The evolution equation for both strain rates is assumed to have the same form

o= Lmﬁ“((p—‘p_*—@—m. (6.14)



80 H. Altenbach

The evolution equation follows from the assumption that the damage can be
characterised by a scalar-valued damage variable. The ¢, should be identified
experimentally.

(b) uniaxial compression

m
€ = —L—|011|H—L,;>
((P* - (P)
o (6.15)
. — L__ o n+1 P .
Y loul (or — )™
(c) torsion
m
¥ = 2% = Noly——,
N (6.16)
o 2
R e
The evolution equation for both strain rates is assumed to be the same
. 24
¢ =Not —* (6.17)
(o =)
(d) hydrostatic pressure
cr or - o
£ = & =é5 = ——Plduan,
- (6.18)
p = 3Ploy/"t—2
v ol (s — )™

Ly,L_,Q,N,M,P,n,m and @, characterise the material behaviour.

B. Mathematical Tests
Let us presume g(oeq) = 0eq”. From (6.11) we get the following results for the

different loading cases:

(a) uniaxial tension (o1 > 0)

cr 24
€ = (vﬂz+ﬂ3+aﬂ1+’73H4+M5+N6)n+10?1m,

€ = (Vo + pia +apy + v/ 1y + 15 + )"

&
u et g n "

———2—— + ay + ,
Vit s T G B | T e =)

(6.19)

o

(pr — )™

i

¢ = (Vg + g+ apy + v g + s + pg) ot
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(b) uniaxial compression (o1, < 0)

y n 24
e = (Vg + iy — apy = Y g+ s + fg) “IUHF"W’
' " n @5
¢ = (Vg + iy — apy =y g+ pis + )" o™ (o — o)™’
(6.20)
(c) torsion (o2 # 0)
\/— +1 e
o - 203)" T oYy,
12 ( 3) 12 (90* _ (,O)m
(pm
6‘(1"1 = (\/2/’63)”&/]'107112(?0—_%—(;)_;7—1’ (621)

) n o
¢ = (Vo) ——,

((p* - (p)m
(d) hydrostatic pressure (o1; = g9y = 033 # 0)
or 1 ”
6({1 = —g( 9#2 + 3/1«3—(1/1,1 —7\:;/27/_14 + 9/*65 + 3u6)n+1!011|n(<p (i (p)m,

m
¢ = (V% + 3 — apy — 7Y/ 27 + s + 3#6)”“!”11’"“(@@_—*@)"5
(6.22)

Comparing the results of the physical and mathematical tests, we receive the unknown
material parameters ; as functions of the material characteristics. Due to the fact that the
p; are identified for secondary creep behaviour only the non—classical material behaviour
effects are included mainly into the secondary creep. The introduction of the damage variable
leads to a material behaviour model for the tertiary creep similar to the Kachanov-Rabotnov
approach.

In analogy to the previous section the classical creep theory follows from the general
creep rate equation, if the following conditions for the characteristics are obtained in tests

Ly=L, M=P=0, N¥"=3L%. (6.23)

Considering

1
(,Y:’)/:O, l1’3:_3/1’27 /1’2:_—2'7

we finally get the strain rate equation and the damage evolution equation [3]

(6.24)

o 3 glom)el . o
€' = —————"—g, = k(owm) ———. (6.25)
2 (0, — Qo 7 () (0 — o)™
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Taking into account w = ¢/, the classical creep-damage equations follow:

. 3 1 s . klow) 1
o _ 2 v , = . 6.26
€ 29(0 M) (1 _ w)m oM 0, (1 _ w)m ( )

These equations are similar to [27] or subsection 4.4.

6.2. Extension IlI: Anisotropic behaviour
Assuming again the existence of a creep potential

® = O(0¢), (6.27)
the constitutive equation follows from
a9
O =p— 6.28

with 7 as a scalar and g¢q as the equivalent stress, which is a function depending on
e the stress tensor and

e some material tensors (tensors of the material constants)

The physical state of an anisotropic continuum can be described with the help of different
tensors of the material constants, e.g., a, Wb, ©¢. Using the mixed invariants

oo=a--0, o-%:o-..(‘gb..a-’ Ug:U..(a'..(G)c..a-), (629)
the equivalent stress results in
Oeq = QO + 09 + Y03. (6.30)

This is a suitable generalisation of the non—classical creep law reported in section 5.. The
equivalent stress expression, proposed in [64], can be deduced from (6.30) settinga =y =0

Oeq = 02 (6.31)
Assuming a # v # 0 after some calculations we get the creep strain rate tensor
0®(0eq)

. . 801 60'2 80'3
el L e e e e 6.32
7 6Ueq (Ol do + oo +7(90' ( )
and with respect to
doy 0oa Wp.. o 003 o--0¢c.. o
%0 "® B0 o de-  d (6:33)
the generalised anisotropic creep law can be obtained
. . 0P @p. . G P
T =iz—|cat Ty ). (6.34)
00¢q 02 o3

The determination of 7 can be related to the invariant P45 (the product of the creep strain
rate tensor and the stress tensor in uniaxial or multiaxial cases). After some calculations
(similar to section 5.) follows

) pdiss @p.. B () PR
ecr = (aa + g + f}’o- Zc a> ’ (635)
Oeq 02 03
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or considering

P = gt (6.36)
we finally get
“p.. .. 6o .
= & <aa + AN A ") . (6.37)

The unified generalised anisotropic constitutive equation (6.37) corresponds to the gener-
alised anisotropic creep equation proposed in [18, 65]

From the comparison of (6.37) and (6.38) the material tensors H, Y M and )L can be
obtained.
Equations with a reduced number of parameters can also be derived:

e a=1,7=0leads to

@p. .
Oeq = 01 + 09, EY = &'g; (a -+ 0_0') y (639)
2
e whereas for a = 0,7 = 1 follows
@p.. . @p..
Oeq = 03+ 03, € =S ( - 742 — ”) . (6.40)
2 3

In the first case we get a tensorial linear constitutive equation, in the second case a tensorial
nonlinear one. The tensors a, b and )¢ contain 819 material parameters (a - 9, b
- 81, ®)¢ - 729), which should be determined from tests. The solution of this problem is
impossible. Thus we need some simplification for practical use of the generalised anisotropic
equation. The first simplification follows from the symmetry of the stress tensor and the
kinematical tensor and from the assumption of the existence of a potential. From this we
get a reduction to 83 characteristics (a - 6, Wb - 21, ®)¢c - 56).

With the help of the transformation rules of tensors we can deduce simplified relations
for special forms of anisotropy:

e Orthotropic material

e cer bi111011 + briz2022 + 11330733
02

2 2 2
oy [0111111011 + 112222059 + C113333033
2
g3
+2(C111122011022 + €112233022033 + 0111133011033)
o3
2 2 2
4(c1112120%5 + C112323053 + €1113130%3)
5 , (6.41)
O3

+
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o sor | 2b1212012 4¢121211012011 + 4€1212200120 22
€12 = eq + Y 2

4 4¢191933012033 + 8C192313023013 ) }

2
O3

The other elements of the creep strain rate tensor can be calculated by cyclic exchange
of the indices 1, 2 and 3. The invariants can be computed to be:

01 = @11011 + 022022 + G33033,
2 _ 2 2 2
03 = b111107; + b2g22035, + b3ss303,
+ 201122011022 + 2b3233022033 + 21133011033
+  4by91902, + 4bog0302, + 4b131302
1212V 19 2323V 93 1313V 13,
O3 = C111111071 T €222222059 + 333333033 €111122071,022 C111133011933
2 2 2 2
+  3C2022110%9011 + 3€2222330 59033 + 3333311033011 + 3€333322033022
+  6€112233011022033
2 2 2
+  12¢121211079011 + 12€12122007,022 + 12€12123307,033
2 2 2
+  12¢2323110530 11 + 1202323220530 22 + 12C230333053033
2 2 2
4+ 12¢1313110730 11 + 12€1313220 73022 + 121313330 73033
+  48c122313012023013.

(6.42)
In the case of orthotropic material behaviour the number of independent elements
reduces to 32 (a - 3, Wb -9, ©¢ - 20).

e |sotropic material behaviour

Qsj = wdij,

bijt = pedi0p + ";‘,Ufa((sik(sjl + 01idk),

Cijkimn =  14040k10mn
+ %(5ij6km51n + 0ij0knOim + Ok10im0in (6.43)
+  0xibindjm + Omndirdji + Omnbitl k)
+ Hsﬁ(dikdjméln + 0ikd jnbim + 0it0km0jn + 0i10knljm

+  0imOk;0in + SimOkn0i; + 0in0kjOim + OinOkmbi;)-

The number of linear-independent elements is reduced to 6 (a - 1, Wb - 2, ©)¢c- 3).
An additional reduction can be obtained if the incompressibility condition is used.
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An anisotropic creep-damage model can be deduced analogously. The starting point is
the following particular form of the potential

¢ = Oeq (644)

and the generalised anisotropic creep rate equation (6.34)

@p.. O P I
£ = 204, (aa + T2 ”) (6.45)
09 O3
Introducing again the specific dissipation power:
diss
2MNCeq = 6.46
N0eq Oeq ) ( )
we can presume a relation between the creep and the damage processes
m
PdisstO',(p=l<,0' _&___ 6.47)
(0eas ) (eq)((p*_(’p)m (
The constitutive equation then feads to
cor o™ Wp.. o a'-~(6)c--a'>
e =g(o ————(aa—i— + , 6.48
( eq)(w* —p)m P T (649)
which should be completed by an evolution equation
: 24
¢ = K(0eq) T (6.49)
(o —p)m
with
K(Oeq) = §(0eq)Teq- (6.50)

The identification of the generalised anisotropic creep-damage law is very complicated,
too. The material parameter tensors include a great number of parameters, which should
be determined from tests. In this case reduced models can be introduced.

Let us assume a simplified expression for the equivalent stress, which results from the
general case a = 1 and v = 0. It results in

“p.. @p.. o

€' = (01409)" (a + —0> =(a-oc+Vo--Wb-. o) (a + ————) . (6.51)
g9 03

Presuming that the coordinate axes are identical to the principle directions of orthotropy

and a plane stress state can be obtained in the material, the following basic tests for the
identification of the material parameters can be proposed:

e uniaxial tension in direction 1
.c n+1
£ = (an + vblm) o1

n b 6.52
E;’Z = (0,11 + v bllll) ((122 + —-\/%2‘_1—_1—> U?l' ( )
1111

From experimental data we get

cro_ + n cro_ . Cr,
€7y = Dy oYy, €3 = —Hai€ins (6-53)
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o uniaxial compression in direction 1

n+1
€ = — (“011 + v bnu) lo1]™ (6.54)
From tests follows
&y = —Drloul™; (6.55)

e uniaxial tension in direction 2
cor n+1 n
€99 = ((122 + b2222) O99. (656)
The experimental data lead to
&5 = D o3 (6.57)
e uniaxial compression in direction 2

n+1
€ =— (—022 + b2222) loga|™ (6.58)

The experimental data result in
€5 = —Dylonl™ (6.59)

e pure torsion
1% = 2% =2 (Vi) Vool (6.60)
From experimental data we get
Yiz = Di207,. (6.61)

Thus we have 6 equations for the unknown parameters a1, a2, bi111, bi122, ba222, 1212,
which are dependent on the material characteristics Di, D7, Df, D3, D13, ;. The creep
exponent n is assumed independent from the orientation.

7. APPLICATIONS

The models discussed in the previous sections are applied in different situations. Some
solutions of practical problems have been reported in [3] and several articles. The main
attention has been directed to

e the identification of some models with a reduced number of parameters and
e the use of reduced models in structural analysis of plates and shells

The first item is connected with the selection of suitable test results and the verification of
the identified models by independent tests. The second item leads to additional discussions
on the foundations of plate and shell theory.
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The proposed creep equations are verified on the basis of different test data, published,
for example, in [66, 67, 68]. These verifications are related to the identification of the
parameters in the creep equations by basic tests and by the verification on the basis of
independent multiaxial tests. Here only the main results are discussed. More details are
given in the cited literature.

7.1. ldentification and verification of reduced models

The first example is the identification and verification of a 2-parameter-model for
isotropic creep. Experimental data for pure copper M1E (Cu 99,9 %, T = 573 K) are
taken from [46, 47, 48]. The tests have been performed with tubular specimens. The iden-
tification of the creep law is based on the following basic tests

e uniaxial tension (oq; # 0) and
e pure torsion (o5 # 0).

The verification is performed by multiaxial tests (combined uniaxial tension and pure tor-
sion). An adequate description is proposed using an assumed potential ®(0eq) = 0e, and
constitutive equations with a reduced number of parameters

€1 = Ugn_l)(ﬂz + p3)o11, 2605 =1 = 2‘7&”-1)#3‘712- (7-1)

Here o, takes the expression

gy = \/(Nz + u3)0%y + 21303, (7.2)

The details of the model are published in [67]. From the basic tests L, N and the creep
exponent n are obtained. At first, the creep exponent n was identified by minimizing

cr theor - Cr exp - cr theor . crexp) 2
F= (5 at ) + (’Yu — Y12 ) ) (7.3)
with
cr theor n cr theor __ n
E1 L+011 max: 712 - NJI2 max) (7'4)
and

3
1 . i ) r (i
L+ = 5 ZE;E © (051)) ) Z'YC © (012) ’ (7'5)

i=1
¢ is the number of averaged creep curves. The minimum of F' was obtained for the given
material for n = 5,09. The characteristics of the material are as follows

L,=1,39-10""2 MPa™"h™!, N =1,61-10"! MPa—"h7}, (7.6)

and the parameters i, 113 can be computed from

Ly= (/i Tu)"", N

I

(\/2—@) (n+1) | (7.7)
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which lead to the solution

1
py = L¥ - §N2’ =—-1,50-10"% MPa™™ h™},
) (7.8)
By = §N2" =1,43-107* MPa™" h™*

with 7 = 1/(n + 1). The results of the verification are shown in Table 7.1. The variation

Table 7.1. Comparison of theoretical values and experimental values of the creep strain rates in
the case of multiaxial loading (copper M1E, T' = 573 K)

Nr. Stresses, MPa Creep strain rates -105 h~!

H =.C 2 Cr =.cr
Experiment | 011 | 012 | ouwm €71 Y12 EvM

Exp. | Theor. | Exp. | Theor. | Exp. | Theor.
268 89| 31 | 32 4,14 24 308 | 35 4,51
155|155 | 31 | 18 1,77 44 39 | 31 2,89
355118 | 41 | 145 17,20 | 124 | 12,82} 16,0 | 18,73
2051205 41 | 75 7,36 | 19,6 | 16,44 | 13,5 | 12,01
390 | i30| 45 | 192 27,60 | 146 | 2058 | 21,0 | 30,09
2251225 45 | 105 | 11,82 | 26,4 | 26,42 185 | 19,30

DB W N =

of the stresses o1, and o5 has been done in such a way that o, = const. The von Mises
equivalent stress and strain can be calculated in the particular case of combined tension

and pure shear to
Owm =/ o} +30%, ém= ) + (7? (7.9)

From the verification we can conclude that the behaviour of copper differs in tension and
torsion. The maximum difference between theoretical and experimental data was 18 %.

Now the comparison of different isotropic 3-parameter-models is discussed. The follow-
ing 3-parameter-models for isotropic creep, which are particular cases of the generalised
isotropic creep model with 6 parameters, can be introduced

Oeq = QO + 09 = a,ulIl -+ V /12.[12 + M3IQ, (710)

phd + (57 "3") ; (7.11)
g2

[ J ")/:0

€% = ¢(0eq) (aﬂlI +



Classical and Non-Classical Creep Models 89

'a=ﬂ4:H5:0

Oeq = 09 + Y03 = [ i I2 + ps Iy + v/ 1613, (7.12)

e LI+ pyo oo
eY = ¢(0’eq) </1'2 1 lu3 +’Y’LL6 > ) (713)

g2 0'§

Oeq = 02 + 703 = A/ pioI? + pslo + v/ s 1 I, (7.14)

po I + p3o +7/1'6(IQI+ 2110')] _

7.15
09 30'§ ( )

= blow) |

fn Tables 7.2 and 7.3 the comparison of experimental data for plastics (PVC) at room
temperature [39] and for an aluminum alloy (AK4-1T) at 473 K [69] and our calculations is
presented. |t shows that the more sophisticated models do not deliver significantly better

Table 7.2. Comparison of theoretical values and experimental values of the creep strains (P/C
tubular specimens, inner pressure, tensile force, ¢ = 100 h)

Stresses, MPa Creep strains 5} - 10
011 | 02 | Experiment [ (7.11) | (7.13) | (7.15)
-14,88 | 14,88 3,12 4,22 | 3,85 | 3,97
-17,10 | 17,10 4,99 6,76 | 6,17 | 6,37
9,93 | 9,93 0,18 015 | 0,16 | 0,16
22,05 | 22,05 2,10 229 | 2,43 | 243

results, so that the most simple model (the tensorial linear model) could be recommended.
It also allows the description of the Poynting-Swift effect.

The next example is the verification of a reduced orthotropic model. Orthotropic creep
can be described by a tensorial linear constitutive equation, deduced from the generalised
anisotropic law with v = 0 (for more details see [66])

@Wp.. o
£ =(aa--a+Vo @b o) <aa+ ___> : (7.16)
vVo-- (4)b o

For the aluminum alloy D16T at 523 K some experimental data are published in [70], which
lead to
biin 1,58 - 10° MPaZ* h™ | by = 2,03 - 10° MPa?* h*",
bigy = 7,63-105tF" MPa% h*"| (7.17)
aay = 1,74-10°7F MPa* h', aagy = 9,57 - 105+% MPa* h',
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Table 7.3. Comparison of theoretical values and experimental values of the creep strain rates
(aluminum alloy AK4-1T, combined tension and torsion, T' = 473 K)

Stresses, MPa creep strain rates-10°, h~!
J11 012 €M1 ] 2%, 1 l 261 €N | 2% €1 l 2%
Experiment (7.11) (7.13) (7.15)

107,5| 62,0 1,20 [ 2,40 | 1,29 | 256 | 135|275 | 1,34 | 2,72

-60,6 | 84,4|-0,72 3,64 -0,75|4,25|-0,69 3,79 |-0,75 | 3,89

-1529 | 36,6 |-1,74 1,42 |-1,451132|-1,43|1,27 | -1,47 | 1,30
00| 980} 016 (902| 020|991 000|991 000|991

Table 7.4. Comparison of theoretical values (£§7the",5,t) and experimental values
(-crexp . Cr exp

11 P £555®) of the creep strain rate (aluminum alloy D16T, T'=523 K)

stresses, MPa creep strain rates -103, h™!
:.Cr exp - cr theor - Cr exp -.cr theor
on | on [0 R T522 | é5

-109,8 | 549 -1,60| -093| 1,60 0,91
-806 | 806 -092( -082| 1,38 1,05
70,0 | 140,0 | 0,00 0,08] 1,65 1,44
-37,6 | 1128 | -0,79 | -0,76 | 1,59 1,49
124,0 | 124,0 | 0,59 0,71 1,18 1,04

with 7 = —1/(n+ 1),k = nr,s = 5k + 3r and n = 6,5. The comparison of predictions,
based on the theoretical model, and experimental data is presented in Table 7.4. The results
of calculations are in a satisfying agreement with the experimental data.

The last example in this section is an isotropic creep-damage mode!, based on 3-
parameter-equations and Norton's creep law and which was verified in [71]. The tests were
performed for a titanium alloy OT-4 at 748 K [63]. The basic tests are uniaxial tension, uni-
axial compression and pure torsion. A second series of tests were performed for an aluminum
alloy AK4-1T at T' = 473 K [63]. From the basic tests uniaxial tension, uniaxial compression
and pure torsion the parameters in the creep equations were obtained. The prediction of
the creep damage behaviour in both cases is in a good agreement with independent test
data for secondary creep. For the tertiary creep some differences are obtained. The reason
for these differences is that the material degradation is not only caused by creep, but also
by other dissipative mechanisms. For more details see [71].

7.2. Applications to plates and shells
The special cases with a reduced number of material parameters discussed in the previous
section are applied to plate and shell problems. Here the main results are summarised.
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Further information can be found in the references.

In [68] the creep behaviour of thin shells of revolution made of anisotropic material
with different behaviour in tension and compression was investigated. The simulations were
based on different creep models reflecting the dependence on the kind of loading. For the
isotropic and orthotropic cases models with a reduced number of parameters were intro-
duced. All models were tensorial linear. Using different material models and the set of
governing equations of the shell theory, the initial-boundary-value problem was formulated.
The special numerical solution technique was based on a modified Kutta method for the
initial value problem. The linearised boundary problem was solved by Godunov's orthogo-
nalisation method.

For a cylinder with a clamped boundary and a free boundary, loaded by outside pressure
and made of the isotropic aluminium alloy AK4-1T at 473 K, the calculation of the axial
and transverse displacements and the meridian stresses has been performed. The creep
calculations are based on three models: one classical and two non—classical. For the first
non—classical model identical behaviour in tension and compression, but different equivalent
behaviour in torsion was presumed, the second non—classical model - differences in tension
and compression, but identical torsion behaviour. It has been shown that in these three
cases the results are not the same. The calculations lead to the conclusion that the ten-
dency in the distribution of the stresses is not identical for axial and transverse deflections.
Therefore, it can be concluded that a model with three independent tests may lead to more
satisfying results. The same example, but with an assumed anisotropic material behaviour
was discussed, too. Similar conclusions as in the case of isotropic material behaviour can
be drawn from these calculations.

In [72] the non—classical material model for isotropic creep considering different be-
haviour in tension and compression has been applied to the analysis of shells. The re-
sults show that the introduction of large transverse deflections leads to qualitatively similar
curves, but a redistribution of stresses can be obtained. These conclusions are correct in
the case of identical material behaviour with respect to tension and compression, as well as
in the case of different material behaviour.

The creep-damage problems of thin rectangular plates, axisymmetrically loaded shells
of revolution and circular plates are discussed in [73]. The creep-damage equations were
formulated using the power law creep function and a scalar damage parameter. The cor-
responding initial-boundary value problems was defined using the nonlinear kinematics of
shells considering finite (comparable with the shell thickness) deflections. The results show
that in the case of the finite deflection approach, the deflection growth and damage evo-
lution is substantially different from the geometrically linear one. The effects similar to
"structure hardening” as the result of membrane forces in the initial state (due to the shell
curvature) or their generation during the creep process (as a consequence of geometrical
non-linearities) have been discussed. The geometrically linear approach overestimates the
deflections and leads to a significant underestimation of the failure time.
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MATERIAL DAMAGE MODELS FOR CREEP FAILURE ANALYSIS
AND DESIGN OF STRUCTURES

J.J. Skrzypek
Cracow University of Technology, Cracow, Poland

ABSTRACT

A concise review of one and three—dimensional theories of isotropic or anisotropic damage cou-
pled constitutive equations of time—dependent elastic or inelastic materials is systematically pre-
sented. When damage is considered as isotropic phenomenon both phenomenologically-based
damage—creep—plasticity models (Kachanov, Rabotnov, Hayhurst, Leckie, Kowalewski, Dunne,
etc.) and unified irreversible thermodynamics formulation of coupled isotropic damage—thermo-
elastic—creep—plastic materials {Lemaitre and Chaboche, Mou and Han, Saanouni, Foster and
Ben Hatira) are reported. In case when anisotropic nature of damage is described in frame of
the continuum damage mechanics (CDM) approach, a concept of the fourth-rank damage ef-
fect tensor M is introduced in order to define the constitutive tensors of damaged materials,
stiffness or compliance A or A1 in terms of those of virgin isotropic materials. Matrix repre-
sentation of constitutive tensors is reviewed in case of energy based damage coupled constitutive
model of elastic-brittle (Litewka, Murakami and Kamiya) or elastic-plastic engineering materials
(Hayakawa and Murakami). Particular attention is paid to the orthotropic creep-damage model
and its computer applications to the case of non—proportional loading conditions, when the ob-
jective damage rate is applied. A non—classical problem of thermo—damage coupling is developed,
when the second-rank tensors of thermal conductivity L and radiation T in the extended heat
transfer equation are defined for damaged material in terms of the damage tensor D.

The CDM based finite difference method (FDM) and finite element method (FEM) computer
applications to the analysis and design of simple engineering structures under damage conditions
are developed. Structures of uniform creep damage strength are examined from the point of view
of maximum lifetime prediction when the equality and inequality constraints are imposed, and the
thickness and initial prestressing are chosen as design variables.



98 J.J. Skrzypek

1. DAMAGE VARIABLES AND CDM EQUIVALENCE PRINCIPLES

1.1. State of damage and damage variables

State of material damage is identified as the existence of distributed microvoids, mi-
crocavities or microcracks in a volume of a material. Irreversible time-dependent micro-
processes, when the microdefects nucleation, growth and coalescence cause a progressive
degradation of the physical and thermomechanical properties through reduction of strength,
elasticity modulae, microhardness, ultrasonic wave speed, heat conductivity, etc., is called
the damage evolution. When the continuum damage mechanics CDM method is used the
true distribution of microdeffects, their size, density and orientation, is homogenized by a
selection of the set of internal variables of different nature, scalar D, vector D, second-rank
tensor D, fourth—rank tensor D, etc., that measure the state of damage. These variables

are called the damage variables which serve as internal variables D = {D, D,, D,ﬁ, ..

in the state and dissipation potential.

Damage variables have systematically been reviewed by Skrzypek and Ganczarski [1].
Scalar damage variables D or w are applicable for description of isotropic damage, however
they are also frequently used for description of anisotropic damage under creep—damage
conditions (Kachanov [2, 3], Rabotnov [4], Martin and Leckie [5], Hayhurst and Leckie [6],
Leckie and Hayhurst [7], Hayhurst [8, 9], Trapczynski, Hayhurst and Leckie [10], Lemaitre
and Chaboche [11, 12, 13], Chaboche [14], Dunne and Hayhurst [15, 16, 17, 18}, Othman,
Hayhurst and Dyson [19], Germain, Nguyen and Suquet [20], Dufailly and Lemaitre [21],
Mou and Han [22], Saanouni, Forster and Ben Hatira [23], etc.).

Vector damage variables D, or w, are applicable for description of the damage or-
thotropy or weak anisotropy (Davison and Stevens [24], Kachanov [3, 25]. Krajcinovic and
Fonseka [26], Krajcinovic [27, 28], Lubarda and Krajcinovic (29], etc.).

However, in order to describe fully anisotropic damage evolution, when effect of rota-
tion of principal damage axes is allowed, the second-rank tensors D or © must be used
as the damage representation (Rabotnov [30], Vakulenko and Kachanov [31], Murakami
and Ohno [32], Cordebois and Sidoroff [33, 34], Betten [35, 36], Litewka [37, 38, 39],
Murakami [40, 41, 42, 43], Chow and Lu [44], Chaboche [14, 45, 46], Murakami and
Kamiya [47], Hayakawa and Murakami [48, 49], Skrzypek and Ganczarski [1, 50, 51], etc.).

On the other hand, fourth-rank damage tensors are capable of describing strong damage
anisotropy (Leckie and Onat [52], Chaboche [53], Simo and Ju [54], Krajcinovic [55, 28],
Lubarda and Krajcinovic [29], Chen and Chow [56], Voyiadjis and Park [57, 58], Qi and
Bertram [59], etc.). However, although the fourth-rank damage effect tensors can be used as
a linear transformation tensors to define the effective stress and strain tensors @, € in terms
of the conventional stress and strain tensors o, €, & = M(D) : o, & = M (D) : €°,
d&® = M1 (D) : deP (Chow and Lu [44]), it is not easy to identify physically the fourth—
rank damage tensor compared to the second-rank damage tensor (Voyiadjis and Park [58]).

Scalar damage variable D, also called the damage parameter, is defined at the material
point X of the surface element §A4 as the ratio of the damaged area §Ap to the total
(undamaged or virgin) area 64, D = §Ap/6A, such that D = 0 corresponds to the
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undamaged virgin state and it gradually grows up, to eventually reach the value D =1 for
the completely damaged element 6 Ap = 6 A. Considering planes of various normals n; we
can define surface damage in an arbitrary direction ny as D (n) = 6 Apx/6 A.

Second-rank damage tensor D defined by Murakami and Ohno [32] is represented as
follows:

3 3
D= Z Ding®n, or D;;= ZDknfn;? (no sum in k), (1.1)
k=1 k=1
where Dy are eigenvalues of the tensor D and nj are the eigenvectors corresponding to
eigenvalues Dy,. Eigenvalues Dy, may be interpreted here as the ratio of the area reduction
in the plane perpendicular to ng, caused by development of damage components Dy, =
6 Apr /6 Ay. ‘

On a ductile deformation process in crystalline materials the flow of mass through
the lattice takes place, at which the lattice undergoes elastic reversible deformation only,
whereas a total number of active atomic bonds remains approximately constant. Hence,
none (or negligibly small) change of the effective material properties is assumed to occur. On
the other hand, on a brittle deformation process the lattice itself is subjected to irreversible
changes resulting from breaking of the atomic bonds and, hence, the progressive material
degradation through the strength and stiffness reduction takes place. This fully coupled
CDM approach to the elastic-brittle—damage or the creep-damage leads to the concept of
fourth-rank elasticity tensors modified by damage D, stiffness A(D), or compliance A~1(D)

o=AD):e* o €= A'D): o (1.2)

(cf. [37, 39, 56, 47, 48, 49] etc.). In general, the fourth-rank damage effect tensor M(D),
that transforms the Cauchy stress tensor in a damaged configuration o to the effective (con-

jugate) Cauchy stress tensor in an equivalent fictitious pseudo-undamaged solid &, based
on the appropriate damage equivalence hypothesis, takes into account the fully anisotropic

nature of damage (cf. [44, 60])
oc=M(D):o. (1.3)

M(D) is an isotropic fourth-rank tensor-valued function of the damage state variable D,
and the effective stress tensor (o, D) is an isotropic second-rank tensor-valued func-
tion of o and D (damage isotropy principle), the representation of which depends on the
equivalence principle adopted.

1.2. Strain, stress, and energy based CDM models

When the CDM approach is used the true discontinues and heterogeneous damaged ma-
terial is approximated by the pseudo—undamaged continuum. The couples of state variables
(e,0), (r,R) and (a, X), representing strain and stress tensors, isotropic hardening vari-
ables and kinematic hardening tensors in the true (damaged) material, are replaced here by

the effective state variables (¢, 0), (?, }~2) and (&, )~(> referred to the pseudo—undamaged

(fictitious) quasi—continuum. Definitions of effective variables depend on the equivalence
principles used to define a quasi—continuum.
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A. Principle of strain equivalence
For the isotropic damage described by the scalar D the following definitions of the
effective variables hold (cf. Lemaitre and Chaboche [12]; Simo and Ju [54])
i - o
e(0,0)=€(o,D), c=1"p (1.4)
In case of the damage anisotropy D, the fourth-rank damage effect tensor My, (D) is used
in order to transform the Cauchy stress tensor o into the effective stress tensor o, e.g.:

&) =Mgh: (), (15)
whereas for the damage isotropy Mcy, (D) = (1 — D)1,
~ o(t)
= _ 1.

where I denotes the fourth—rank identity tensor.

B. Principle of stress equivalence
For the isotropic damage characterized by the scalar D the following (dual) definitions
of the effective variables are furnished (cf. Simo and Ju [54]):

7,0 =0(D), &=(1-D)e. (1.7)

In a more general case of the damage anisotropy characterized by the fourth-rank dam-
age effect tensor My, (D), the transformation from the damaged space to the pseudo-
undamaged space is obtained:

€(t) =Magy: e(t), (1.8)
whereas for the damage isotropy Mcy, (D) = (1 — D)1,
e(t)=[1-D(t)]e(t). (1.9)

C. Generalized principle of strain equivalence
Three scalar generalized, total, elastic and plastic damage variables D', D® and DP are
defined (cf. Taher et al. [61]) by the fourth—rank secant modulae degradation tensors A(t),

E (t) and P (t) in terms of damage evolution

o=A(D"):e A(t)=[1-D"(t)] A,
oc=E(D°):e" E(t) = [1 — D° ()] E, (1.10)
o =P (DP):eP, P(t)=[1—- Dr(t)]P,

where A, E and P denote the initial values of A (t), E () and P (t), respectively (Fig. 1.1).

Inspection of the evolution of the generalized damage variables D, D° and DP, for
two materials, a brittle (concrete) and a ductile (copper), leads to the conclusions that, in
case of a brittle material under compression damage can be measured by the single damage
variable D*, whereas in case of a ductile material under tension a single damage variable is
not capable of describing an uncoupled the total, elastic and plastic stiffness degradation
as shown in Fig. 1.2
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Figure 1.1. Total uniaxial strain split into the elastic and plastic components and the secant moduli
degradation A, E, and P from damage D, D° and DP (after Taher et al. [61])
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Figure 1.2. Evolution of generalized damage variables D', D°® and DP in a) Concrete under
compression and b) Copper under tension (¢/e, is the strain over the peak strain ratio), after

Taher et al. [61]

D. Principle of the complementary elastic energy equivalence

The complementary elastic energy equivalence is postulated in order to define the ficti-
tious pseudo—undamaged equivalent configuration and the corresponding effective variables
o and € (cf. Cordebois and Sidoroff [33])

5 (0,D) = 5 (5,0), & = %‘I:, (1.11)
o= (I-—f))_1 ro, &= (I—ﬁ) : €°, (1.12)

where ®° = (1/2) o : €° and P° = (1/2)& : &°, I and D are fourth-rank identity and
damage tensors, whereas D is related to fourth-rank elasticity tensors E and E of the
damage equivalent (fictitious) and the current (physical) state of the material through

D =I1-EY2:E2 (1.13)
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When a fourth-rank damage effect tensor M(D) is used, the effective variables &, €° are
c=MD):0, e€=M"(D):¢°, (1.14)

where D denotes properly selected damage variable D, D or D, scalar, second—rank tensor
or fourth-rank tensor, respectively. Nevertheless, this hypothesis is limited as it does not
allow for the physically adequate description of phenomena other than damage coupled
elasticity (cf. [44]).

E. Principle of the total energy equivalence

The total energy equivalence states that (cf. Chow and Lu [44]):

" There exists a pseudo—undamaged (homogeneous) material made of the virgin material
in the sense that the total work done by the external tractions on infinitesimal deformations
during the same loading history as that for the real, damaged (heterogeneous) material is
not changed "

d®° + dd? = dd°® and doP = dPP, (1.15)
where

do =5 : d, d&)e:%(&:d’Eeer&:Ee), doP = & : deP, (1.16)

because in a fictitious configuration d®9 = 0. The effective state variables are furnished as
cd=M(D):0, €=M"1(D):e°, de°*=M"1(D):de", (1.17)

where the explicit representation of the fourth-rank damage effect tensor M(D) depends

on the second— D or the fourth-rank D damage tensors components.

1.3. Discussion: Comparison of strain vs. energy equivalence under uniaxial ten-

sion
A. 1D energy equivalence concept
In case of 1D elastic energy equivalence the following mapping holds:

&1 (1-Dy)" 0 0 o1
0 3= (1-Dy)™" 0 0 ¢,
0 (1-Dy)™* 0
(1.18)
G 1-D;, 0 0 €S
b= 1-D, 0 €5
E:g 1- D2 €§

Hooke's law for the pseudo—undamaged continuum and for the damaged material is:

o1 E l-v v v B
L e
0 p=r——— l-v v —VE p,

(1+v)(1-2v)

0 1-v —VES
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o1 B ‘ 1-v v v €%
0 = - 1-— ’17 D —;Ee . 119
0 (1+79)(1-29) 1= | | —pes (119)

Hence, two components describe damage evolution under uniaxial tension in the direc-

tion 1
~\ 1/2 ~\ 1/2
E v FE
Di=1—-1{= Dy=1—=-1[= =1-

B. 1D elastic strain equivalence concept
In case of 1D strain equivalence the mapping from (o, £°) to (*,€%") has a form:

(1-Dy). (1.20)

U R

&} (1-DH" 00 o1
0 »= 10 0 ¢,
0 1 0
(1.21)
G 1007 (e
ey p = 10 €5
& 1 €3

Hence, when Hooke's law analogous to (1.19) is used, after a simple rearrangement a single
damage component D7 related to the Young's modulae ratio E/E is recovered, whereas
Poisson's ratio 7* does not change,

E
—Ev
This result contradicts a general observation that under uniaxial stress conditions micro-

cracks of normals other than the main stress direction may appear (e.g. cylindrical transverse
damages isotropy observed in rock—like materials under uniaxial compression, as mentioned

by Chaboche [45]).

Dl =1- 7 =v () (1.22)

1.4. Exercise: Fourth-rank damage effect tensors

Legislation of the equivalence principles influences a particular form of the damage
effects tensor representation in terms of the fourth-rank elasticity tensor change due to
damage. Basic concepts of CDM based strain—, stress—, elastic energy or total energy
equivalence, that result in constitutive tensor degradation with damage A (D) and A~! (D),
are sketched in Fig. 1.3. They will be discussed in details in what follows.
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Physical space) Effective (equivalent) space
(Damaged) (Pseudo-undamaged)
EQUIVALENCE PRINCIPLE
State variables: e > Effective state variables:
{o,°,e*X,R,D,.. .} S o {&,ge,zf’,i,ﬁ,o,...}
D{D,DQ,D,D,...} e e
Damage bty d®® = d®° + dd* byt Constitutive
affected: d®? = 4P tensors for
stiffness virgin mat.
~ A A—l
A(D) ’
compliance MAPPING
A~Y(D) F=MD): o
N i i
Consti- o=A(D):e° e=M1D):e cg=A:¢
tutive B or or
law e=A"YD):g| d®=M"(D):de? E=A1:F

damage effect tensor
| 51‘;‘ = Mi;kl (Dijkl) Tkl J

initial constitutive tensor

A(D) =M"Y(D): A: MT(D)

A1 (D) =MY(D): A~' : M(D)

damaged constitutive tensor

Chaboche’s notation

Matrix notation:

{c} = M]{s}

{o}= {011,022,033,023>031,012}T
{o}= {511,522,533,523,531,512}T

{Symmetry)

Figure 1.3: Basic concepts of CDM
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A. Principle of strain equivalence

When Hooke's law is written for the pseudo—undamaged (fictitious) and damaged (true)
state we have:

(1D) (3D) (3D)
g = E&e, 31-1 = ijklszl, oc=E: Ee,
_ [ree _r e N I
o= Fe , O35 = Lijkl€yy c=E:¢ y
e =FElo e, =E Loy e=E1l:0
’ kl — ~kligYu - e

B B (1.23)
Epyi5, E denote the fourth—rank elasticity tensors modified by damage, and ;;, & are the

strain equivalent effective stress tensors, when both indices and absolute notation is used,
hence:

(1D) (3D) (3D)
o= EE_I a, 51-]- = EijrsE:s}gl Okl c=E: E—l g,
o= (1- D)'IU, Tij = (Iijkl - Eijkl)_lgkla o= (I- ﬁ)_l ‘o,
D=1~ EE_I, ﬁijlcl = lyjkl — Ez‘jrsEr_s}cl, D=1-E: E,
E(D) = (1 — D)E, Eijkl = (Iijmn — Bijmn)Emnkl; E(ﬁ) = (I — f)) . E
(1.24)
The 1D case was enclosed for a simple comparison.
B. Principle of elastic energy equivalence
A similar rearrangement based on the energy formulation yields:
(1D) (3D) (3D)
E = Erée, 5,’j = ijklEZl) 6’ =E: Ee,
g = Eé‘e, O'ij = Nijkl{;'il, o= E : ee,
9 (5, D) = 9° (5,0), ¢° (01, D) = 9°(5;,0), o (o, D) = 3¢ (&,0),
Y ~~e Te 1~ ~ 1~
q)e(O','D)ZéaE , 0] Z%O'ij‘é?j, (I)e:%o.:’é’e’
1 e e € . (-}
o = 50’587 b = 50'1']'61']-, P = 50’ L €Y,
0" = oe°, OkiER = OrsEls) 0:=0:¢°
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(1D) (3D) (3D)
o = E¢° Gij = Eijuey oc=E:¢°
= E 'oE o, = Eijui0x 0rs =E:¢7':0
XEZL G, El:0,
&= EE‘laz, OikOkj = Eiij;}dakpapl, G =E:E!: o?,
§=EVE Vg, Oij = E:J/fsﬁ;}f Okt F=E/.E.0.

(1.26)
When a fourth-rank damage effect tensor M(ﬁ) is used, the mapping of the state variables
(0,€°) or (04j,€3;) or (o, €°) from the physical (damaged) space to the fictitious (pseudo—
undamaged) space (7, %) or (y5,¢;;) or (&,€°) is established

(1D) (3D) (3D)
o = M(D)o, &5 = Miju(Diju)om, &=M(®D):o,
& = M-Y(D)e, & = Mia(Diw)esy, E=M71(D):e,
M(D)=(1-D)"  Myu(Dyu) = (Iyjw — Dyw)™', ~ M(D) = (1-D).
(1.27)

2. MODELS OF ISOTROPIC DAMAGED (VISCO)PLASTIC MATERIALS

Damage evolution in virgin isotropic materials tested under creep conditions can often
be considered as an isotropic phenomenon, for which scalar damage variables can be suc-
cessfully used. In the following section isotropic damage models are considered, based both
on the phenomenological observations as well as on the irreversible thermodynamics.

2.1. Phenomenological isotropic creep—damage models

Phenomenological isotropic damage models that account for a single damage mecha-
nism, usually based either on the principal stress controlled grain boundary cavitation and
growth mechanism (brittle damage) or the transgranular equivalent stress controlled slip-
bands of plasticity mechanism (ductile damage), are known as the single state variable
models (Robinson [62], Kachanov [2], Rabotnov [4], Hayhurst [8], Leckie and Hayhurst [7],
Chrzanowski and Madej [63], Chaboche [64, 14], Othman and Hayhurst [65], Kowalewski,
Hayhurst and Dyson [66], etc.). On the other hand, if two physical mechanisms of softening
due to grain boundary cavitation on tertiary creep and multiplication of mobile dislocations
are both considered, two damage state variables are necessary to describe this complex phe-
nomenon (Othman, Hayhurst and Dyson [19], Dunne and Hayhurst [15, 16, 17], Kowalewski,
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Hayhurst and Dyson [66], Kowalewski, Lin and Hayhurst [67], Hayhurst [68], etc.).

A. Single state variable creep—damage models
i. Uniaxial single state variable creep—damage models

In the simplest case, when the isotropic damage growth affects the uniaxial tertiary
creep and the primary creep is ignored, the single damage variable D or w introduces the
creep—damage coupling (Kachanov [2], Rabotnov [4, 30]):

E_(doy, 2 lofe) (21)
€o l1-w wo (1-w)?
where &g, n and wy, v, ¢ stand for the temperature dependent material constants in the

creep law and the damage growth rule, respectively, whereas o is the reference stress. At
o = const and initial conditions for t = 0 : w = &° = 0 the following holds:

¢ 1/(1+y) c A
w=1—<1———> . == —(1—£> : (22)
tr Ef te

where A = (1+ ¢ —n) /(1 + ¢), whereas symbols ¢; and ¢¢ denote the time to failure
(w = 1) and the creep strain at failure, respectively:

Aoofol_ g o olofo ek 23)
(14 @) wo wo(14+¢ —n) A
and &, = & (0/d¢)" stands for a steady—state or a minimum creep rate (no damage effect).
For the two batches of pure copper A and B tested to failure at temperature 300 C
under the stress o = 32.4 MPa, Rides et al. [69] obtained: n = 6.56, v = 6.31, ¢ = 7.1,
oo = 300 MPa; ¢ = 11 x 1075 h~1, A = 6.68 x 104 h™! and &8 = 2.54 x 107 h™1,
WS =2.74 x 107° h™!, however the model is often simplified by setting ¢ = v.
When the Kachanov's [2], and the Chaboche's [14] notation is used, the uniaxial damage

growth rule is:
dy o \" dD o\T —k
—=-C|—= —={—] 1-D 24
dt C(w) ’ dt (A) ( ) (24)
where ¢ and D = w denote the continuity and the damage, respectively, if 1 + D = 1.
Earlier on, Robinson [62] established the life fraction rule:

te =

1321

dt 1
[mm=" =O=grrmmar (29)

0
where oy (t) is arbitrarily prescribed uniaxial stress function.

Generalization of the Kachanov's concept (2.1) to the case when both instantaneous
damage (time independent) and creep-damage (time dependent) are accounted is due to
Chrzanowski and Madej [63]:

NGO N AN 26)

w0 X(I+w)® \a)  Q-w)®
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At o = const, integration of (2.6) twice, yields:

B te (o) ¢ 1/(p+1)
csi-{Eg wml 27)
where
1 5\ 1o (1+9)/(1+wo)
te (0’) = (1 n QO) (,Z)O (0/00)1,, te (O’) =t (0’) l:]. - (—0—_1:) :l (28)

14y ] 1/(14vo) 29)

e [(1 +¢0) X0
wo, 0o, Vo, P, v, ¢ and x are material constants for the combined instantaneous and
subsequent damage mechanism.

In contrast to copper and aluminium alloy, where primary creep is negligible and the
tertiary creep predominates, in case of stainless steel the primary creep manifests strongly.
Hence, for 316 stainless steel tested at 210 C, 250 C and 550 C, Othman and Hayhurst [65],
proposed to include the decaying time—function ¢™ (m < 1) that accounts for primary creep:

£ _ (gl @ _ (9/00) m
g0 <l—w> t wWo (l—w)g"t ’ (2.10)

Integration of (2.10) at o = const yields:

1/(1+) 114
t m+1 c t m+
“’:1_[1_(5) ] , %:1—[1—(5) } . (211)

= [ oo/ ) e (of0)™ (2.12)
(1+ ) wo ’ wo(1+¢—mn)’
where A is defined in a similar way as in (2.2).

ii. Single state variable creep—damage models under multiaxial stress conditions

Multiaxial generalization of the single state variable creep—damage model is based on the
concept of so called isochronous rupture curves when metallic materials are tested to failure
(Johnson et al. [70, 71], Hayhurst [8], Trapczyfiski, Hayhurst and Leckie [10], Kowalewski,
Lin and Hayhurst [67], etc.). Roughly speaking, three classes of metallic materials with
respect to rupture curves can be specified: principal stress controlled (copper-like), equiva-
lent stress controlled (aluminium-like) and combined principal/equivalent stress controlled
(steel-like). The above enables the following 3D generalization of (2.4), cf. Hayhurst [8],
Chaboche [14]:

€0 - [X—I(;’—)}Tu -D)™*, (213)

where the damage equivalent stress x (o) is a linear combination of stress invariants

x (o) =aky(o)+36J(0)+ (1 —a~-pB)J, (o) (2.14)
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or

x (0) = aoy + 3boy + cOeq, (2.15)

where Jy (o) =0y, J1(0) =0y =1/3Tro, J,(0) =0eq = [3/2Tr(o"2)]1/2.
Multiaxial scalar creep—~damage coupling with primary creep ignored (generalization of
(2.1)) is due to Leckie and Hayhurst [7]:
_é_&_ 1 0" (op/oo) 1 w X" (7i/00) (2.16)
60—n+1 8(0'1‘]'/0'0) (1-&))"’ U:I() N (I—CU)(P ' ’
Q(or/00) = 0eq (0ki/00) is a convex homogeneous potential function of degree 1 in stress,
and x (0;/00) is a properly defined damage equivalent stress determined by the isochronous
rupture surface (2.15). When both the tertiary and the primary creep is accounted, Othman
and Hayhurst [65] proposed:

&, 1 (oufoo) £ (1) 9 _ X (o3/90) F () (2.17)

& n+l 0(oy/o0) (1-w)™ & (1—w)?

When the damage evolution is the equivalent stress controlled, and the Mises-type
potential function is used, the following equations are furnished (Kowalewski, Hayhurst and
Dyson [66]):

3 o.n-—l i
¢ = A g™ )= B—3 ™ 2.18
E’L] 2 (1_w)n8] ’ w (l_w)cp ( )
Calibration of the above model for aluminium alloy tested at 150 C yields: A = 3.511x1072°
(MPa)™™ /hm+1, B = 1.960 x 10~2 (MPa)™ /h™*!, n = 11.034, v = 8.220, ¢ = 12.107,

m = —0.3099, E = 71.1 x 10® MPa.

B. Two state variables mechanisms—based damage models
i. Two-parameter multiaxial hyperbolic sinus models for nickel- and aluminium-
based alloys
Othman, Hayhurst and Dyson [19] developed the model capable of describing nickel-
based superalloy where the sinh function of the stress is used instead of the stress depen-
dence in n powered in the single damage state variable model, whereas the primary creep
is included through the additional variable H (t) ranging from 0 to H* (saturation)

e, 3 sinh{Bow[l— H (1)} {&}

dt 2 (1 - wl) (1 — wg)" Oeq

dH _ h_ sinh {Bog[L-H®)]} [, H{(t)

T T oo (eI - } 25)
dw1 _ (1 —wl) sin o -

= - CA___(l—WZ)n h{Boe, [l — H (t)]},

dwy _ (o1 ysinh{Bow (L= HO}

dt Teq (1 —wy) (1 —ws)

where two physical mechanisms are included: the softening due to the multiplication of
mobile dislocations w; (0 < w; < 1) and to the creep constrained cavities nucleation and
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growth on the grain boundaries wy (0 < wq < 0.3). For aluminium alloy at temperature
150C the material constants are: A = 2.96 x 10~1*h~!, B = 7.17 x 10"2(MPa)~1, C = 35,
D =6.63, H* = 0.2032, h = 1.37 x 10° MPa, v = 0 (for more details see [66, 68]).

Another model based on a new mechanism of creep—damage in the particle hardened
materials, namely tertiary creep softening due to both, ageing of microstructure ¢ and
grain boundary nucleation and growth wy and primary creep effect using the variable H
was developed by Othman, Hayhurst and Dyson [19]. More details about the model can be
find in the Chapter 5 of this book (Hayhurst [68]).

ii. Creep—cyclic plasticity damage interaction model for copper

Dunne and Hayhurst [15, 16, 17] developed a model validated for creep—damage—cyclic
plasticity interaction in copper specimens subjected to thermo—mechanical cyclic loadings
at both room (20 C) and elevated (500 C) temperatures. Creep—yclic plasticity-damage
interaction is given by (2.20) where two variables w; and ws refer to the creep damage and
the cyclic plasticity damage per cycle, each controlled by an independent damage evolution
(2.21)

D¢ =wi + oqz(wr)wy, DP =ws+ agz (wy)ws,

L1 (2.20)
D = D*+ DP, z(w1)=-2—+;arctanu(w1—w0),
dw; A[501 + (1= 68)0eq)”
3 c\¥ !
dt (1= D) (221)

w2 +1]¢ 11 g
an = [0 )

The damage evolution model is combined, then, with the creep cyclic plasticity nonlinear
kinematic hardening theory (extension of the Chaboche and Rousselier theory [72]), cf. also
Skrzypek and Ganczarski [51], as follows:

g=§<hw~xwu—m—w>’w—x
2 K Jy (o —X)’

. 2 . . ;
XI,Z = 501,255) (1 - D) - ’)’172X1,2p + (Ciyz/cl’g) X112T, (222)

1/2
X=X;+X;, o=E(l-D)(e—e®—£), p=[-§ép:é"] .

2.2. Thermodynamics based formulation of the coupled isotropic damage-thermo-
elastic—(visco)plasticity

A consistent way to obtain state and evolution equations of damaged materials is based
on the thermodynamics of irreversible processes with internal variables (Germain, Nguyen
and Suquet [20]). This approach is systematically introduced and discussed in Chapter 4
by Chaboche [46], when formulating basic thermodynamic concepts. In what follows some
particular proposals of state and damage evolution equations, based on the simplified as-
sumption that damage can be considered as isotropic phenomenon, are reviewed briefly.
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A. Kinetic law of damage evolution

A simplified concept of elastic energy release due to isotropic damage cumulation in
metallic materials, based on the strain equivalence and the effective stress concept, was
developed by Lemaitre and Chaboche [13]. Assuming small strain theory, the total strain
is written as the sum of the elastic and the inelastic part € = €° -+ €™ and anisotropic
elasticity law coupled with the isotropic damage is used for elastic strains

0ij = Bijueyy (1= D), (2.23)
to obtain the elastic strain energy density of damaged material
- 1
d = P° + (I)m, P° = EEijk15$j57cl (1 s D) . (224)
Here the thermodynamic force Y° associated with the internal scalar variable D contains
the contribution of the elastic energy ®° only, whereas the inelastic part ®™ is assumed not
to be released by the damage growth
def 1d9P°
Ye= -
2dD

— ¢e
" 1-D

0,5=const

. (2.25)

The above model based on the anisotropic elasticity coupled with isotropic damage is
inconsistent at all. So, confining ourselves to the isotropic elasticity law of isotropic damaged
material

1+v oy V Okk

=5 1-D_E1I-D"
@ez__iﬁi__[Zu+ﬂ0+3(y—mo(aﬂ>1 (229
2E(1-D) |3 Oeq '
the thermodynamic force Y is reduced to
Yez?—z—q-R R ='2'(1+1/)+3(1—2V) (d_ﬂ>2 == (2.27)
2E° 7Y 3 0q) ' 1 1-D
i. Effective—stress based time—-independent plasticity coupled with isotropic dam-

age _

Lemaitre [73, 74], and Lemaitre and Chaboche [13] introduced a single coupled dissipa-
tive potential in order to generalize the Chaboche-Rousselier nonlinear isotropic/kinematic
hardening theory to obtain:

F=Ch (& X,R,D)= f(,X,R)+ F(Y*)= /(6 - X)-R—o0y+ Fi(Ye),

3 0_/ 0_/ 1/2
ne-%=[3(25-0) (725-%)|
(2.28)

The generalized normality rule (associative theory) is governed by the single plastic multiplier

A
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L—Ch L—Ch L—Ch L—Ch
P Vs S - i S (s  JHS (L i
0o oX OR oye
where f (0, X, R) = J; (6 — X) —R—0, = 0 is a Mises—type partly coupled yield function
and o, is the initial yield stress under uniaxial tension test. External state variables (g, o)
and internal state variables (o, X), (r, R), (D,Y*) are introduced to represent kinematic
hardening, isotropic hardening and isotropic damage. It is assumed in this simplified ap-
proach that hardening variables X and R are not amplified by damage and the effective
hardening variables X and R are not used. When (2.28) through (2.29) are applied, the
state equations are obtained:
3 A o — Xi; 3+ oy — X

. %
&P = J —

(2.29)

YT 21— DSy (64— Xey) 2 Jo (s — Xij)
Gy = A2 =P (1-D), %)

2 J2 ('&ij — X,‘j) '
O . cOFd (Y*) OFd (Y®)
r=A=p(l-D), D=-)\ ve oy

p(l—D)a

where p denotes the cumulative plastic strain p = [(2/3) ;€})] Y2 and X = A/ (1- D).
Assuming, after Lemaitre and Chaboche [13], that the damage term of the poten-
tial (2.28) is a quadratic function of Y®, the kinetic law of damage evolution for rate—
independent plasticity is furnished:
(Ye)2 Ye o2 R, .
——— D=—p=—3"__p 231
25 (1 — D) gP= 2ES (1 - D)2 (2:31)
If, in a more general case a damage potential is assumed as a power function of Y*
(s > 2) (Germain, Nguyen and Suquet [20], Dufailly and Lemaitre [21]), the generalized
kinetic law of damage evolution holds

Yo\ ye o (Yo ol 1
Fd = — (—) ) D = <——'> ) = [—eq d :, .. 232
5) G+r1)(1-D) s) P  l2esa—py| ? (2.32)
ii. Kinetic law of damage of plastic materials

Assuming the Ramberg-Osgood isotropic power hardening function for damaged mate-
rial (Lemaitre and Chaboche [13])

Fi(Y®) = -

~ Te n
Oeqg = 7 —qD = 0gp (2.33)
in the damage evolution equations (2.31) or (2.32), we obtain simplified rules
o?
ht:3 2n
dD = 2ES’ ( q) dp (2.34)

or

o\’ ou\]?
dD = s ety 2sn
(aes) [ (Z2)] 7o @)
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which describe the ductile damage growth by the scalar variable D that depends on the
cumulative plastic strain p. In a particular case, when strain hardening is saturated X = 0,
R =0, f =0 — 05 =0, the generalized kinetic law of damage evolution reduces to the

simplified form
. Ye\? o?R,\°*
_ [ 1= . sity . 9

the integration of which in the case of proportional loadings, when the stress triaxiality ratio
in R, is constant oy /0, = const, yields the linear damage growth with cumulative plastic
strain p.

iii. Kinetic law of creep damage of metals and polymers
Lemaitre—Chaboche’s kinetic law of damage evolution (2.31) combined with Norton's
creep law yields:
o2 R o N
D=—35"__psH(p—py), p= ___...e_q____] ,
255 (1_ Dt P R)y P [K,, 1-D)
. (7N+2R
D= d "
2ESKN (1 — D)N*?
where the Heaviside function H (p — pp) is used for the initial damage at p = py.
In 1D case the classical Kachanov's equation (2.4) is recovered

(2.37)

H(p_pU)’

a

5 . _ N\ /(N +2)
D*[A(I—D)] H(e—e), A= (2BESKY) ,

r=N+2. (2.38)

B. Unified Helmholtz free energy—based CDM model of ductile isotropic dam-
aged materials

A unified CDM model similar to the previously discussed Lemaitre and Chaboche’s

kinetic law of damage evolution is due to Mou and Han [22], who decomposed the total

strain tensor into the elastic and inelastic tensors, € = &° + &P and introduced, after

Broberg [75], the new damage variable DB = In (A/A) as one of internal state variables
which influences the Helmholtz free energy of the damaged material 3™ (se, a,r, DB, T)
" (e°, o, 7, DB, T) = ¢° (¢°, DB, T) + ™ (ex, 7, T) . (2.39)

The generalized thermodynamic forces (o, X, R, Y®) are associated with the elastic strain,
kinematic hardening, isotropic hardening and damage (ee,a,r, DB), respectively, through

8’(/)e a¢in awin awe
femacd = € = — 24
pase Y X p aa ) R p 87’ ) Y paDB’ ( 0)

g =
whereas the specific entropy production rate can be expressed as
. 1
0P + Ri + X+ Y°DP — q?gradT >0, (2.41)

where T denotes the absolute temperature, q is the heat flux vector and A and A denote the
initial and the fictitious undamaged cross—sectional area, respectively. From the hypothesis
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of complementary energy equivalence the elastic energy affected by damage and the damage
conjugate force Y° (DB) are obtained:

e 1 o € e 1 e _e - o

’l,b = 5 ijkl (DB) Eijekl = iEijkleijekle ZDB, E=E (1 — D)2 = Eexp (——ZDB) y

(2.42)
e 2 B

€ BY def 8¢ __Uelep (ZD ) _0-_H 2.43
Y(D)_ QaDB_ E R, O'eq‘ ()

The dissipative potential for damage evolution is assumed as a quadratic function of Y°

e\ 2 -1
¢d (Ye’papa DBaT) =CS <—%> %e—ZDBp, (244)
s O 20 on\ (P — )"

DB = =——02R,|— | —=——"—p. 2.45
oye ES e <oeq p P (245)

For the Ramberg-Osgood hardening law 0., = Kp™ a particular form of the logarithmic
damage evolution holds

. CK? o
B H n—1 .
- _ bzl - 2.46
D? = -2—=R, (Ueq)(cr p)" P, (2.46)
the integration of which under the assumption of constant R, (proportional loadings) results
in the evolution of logarithmic damage variable D® with cumulative plastic strain p (also
Skrzypek and Ganczarski [51]).

C. Irreversible thermodynamics model of the coupled isotropic damage-thermo-
elastic—(visco) plastic material
i. Helmholtz free energy representation and state equations
A consistent unified model, based on the assumptions that variable Y associated with

the isotropic damage internal variable D contains both the classical elastic (reversible)
energy Y*° and the inelastic (irreversible) energy Y'", was developed by Saanouni, Forster
and Ben Hatira [23]. Mechanical flux vector J and its thermodynamic conjugate force vector
F are defined as:

. . T 1

j= {ép,d,f,D,q} . F= {O’,X,R, Y,—:FgradT}. (2.47)
Total energy equivalence is applied to the elastic ®° and the inelastic ®*" and " energy
portions responsible for kinematic and isotropic hardening in the damaged and the fictitious
pseudo—undamaged configurations:

1 | O
o (e, D) = Ea:sez 50’:5",
12 ) 1 1~

) (2.48)
ok (o, D) = :’Z_X fa= EX :a, it (r D) = -2-7'R = E?R.

Couples of effective state variables are:
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o= il y e = e(D) %
) < i g (D) ~ ¢ RE ) (2.49)
=m, =ha(D)a, R=m, r=h,(D)r,

where functions g, (D), ha (D) and h, (D) are, generally, independently defined, however
in what follows it is assumed for simplicity g. (D) = ho (D) = h, (D) = (1 — D)1/2.
Helmholtz free energy is taken as a state potential

Y (e, a,r,D,T) =¢°(E,T) + 4™ (a,7), (2.50)

~ 1_ ~ - T
pYt (e°,T) = §ae A= (T—-To)k: e~ pe,T [Iog (T) — 1] ,
0

. 1 ) (2.51)

" (o, 7, T) = 506‘ ro+ EQFQ.
In this model damage affects both the elastic (reversible) and the inelastic (irreversible)
energy portions and the effective state variables €°, &, 7 are consistently used for the
state potential (free energy) of damaged material and k is second-rank tensor of thermal

conductivity. Hence, the state equations are furnished from the state potential as follows:

0 H _ - H - -
azpalﬁezA:ee—(T——To)k, X= %?—:gc R= pad) = Qr,
awH 1~ e T 01/) e in
8——-—ﬁ—-;k.€ +cvlog<ﬁ)>, Y = —a—D Y+Y,
(2.52)
where elastic and inelastic energy release rates are
oY 1 1 k
Ye=—p =—e°:AN:e*— (T -T)) —— : €°,
6D 2 2 (1— D)2 (2.53)
in _ 8¢m — 1 . 1 2
Yyin = paD—3C’a.a+2Qr,

and the effective thermo—mechanical modulae are used
A=1-DA, C=(1-D)C, Q=(1-D)Q, k=(1-D)"*k.  (254)

ii. Time—independent nonlinear plasticity model of isotropic/kinematic harden-
ing coupled with isotropic damage
A consistent coupled Mises—type yield function is obtained when the classical state
variables (o, X, R) in the uncoupled yield function are replaced by the effective state

variables (&, X, R) in the coupled one:

f(&,f(,ﬁ):Jg(&—i)—R—ay:o,

(e-%)= [} e-%): (%)

(2.55)
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The fully coupled plastic potential, that generalizes the Lemaitre and Chaboche's (2.28),
may be written as

S o~ 10~
FSFB (&,X, R,D,T) —f+ %%Jg (a — X) + m—R2 +F(Y), (2.56)

where, following Germain, Nguyen and Suquet [20], damage evolution potential F4 (Y) is
supposed to be a power function of the total (elastic and inelastic) energy release due to
damage evolution Y = Y + Y™ (extension of (2.32))

S Y s+1 1
FYU(Y)=- =) —. 2.57

W= <S> (1- D)’ (257
State equations for the nonlinear hardening theory are obtained by the generalized normality
rule

e §X__._U§J' — X _ §p o = Xij
K Jz (Uij — Xl) 2 J2 (0’,‘]‘ - Xi‘),

. 3aX!. - b ~
Gij = &% —aday; = &% — p—U = X(1 b7 =p(1——R>,
T 7 Tac(1- D) ") Q
: (YN (Y'Y’ (1-28)/2
D=-3(2}) ——=—5(=) a-D :

(s} (1= DY p(5> (-5

(2.58)
where A = A(1-D)V? = p = [(2/3) é0er] Y2 In case a = b = 0 the fully coupled
linear hardening theory holds:

&P = §p._..__._aéj — X ,
7 2 Jz (0'.,']' —Xi')
. Y\° 1
i=p,  D=—p 1—D1/2<—> 1

iii. Time—dependent viscoplastic flow coupled with isotropic damage
In case of the time-dependent coupled damage—creep—isotropic/kinematic hardening
material the single surface coupled visco-damage dissipation potential may be expressed as

a sum of the viscoplastic and the creep—damage parts (cf. [23])

o* (&, X, R, D,T) = " (&,f{, ﬁ,T) +* (0,D,T), (2.60)

where the viscoplastic term is represented by a following power function of f extended by
the additional terms representing nonlinear hardening

. .p
Qij = &

(2.59)

n+1

1bp %bQFQ]> . (2.61)

2Q

w K /1], 3ae = 1 . _
o = — -—X:X-7 :
n+1<K[f+4C gada:at

whereas the creep—damage term is given by

' =Y <%> (1-D)*. (2.62)
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Symbol f (5’,5(, ﬁ) denotes the fully coupled Mises—type isotropic/kinematic hardening
yield function

f(&,f(,fz) = J (&—5{) ~R-0,>0. (2.63)
From the generalized normality rule the state equations are eventually obtained as:
0% _ 3 (f/K)" o~ X}

vp

E’l:j - 80.” - 2 (1 _ D)1/2 J2 (O-'LJ _ Xij),

o 3 (UK [ d-Xy o Xy

Q5 = 9X,; = 2( )1/2 Jo (057 — Xij) C(l B D)1/2 ) (2.64)
o — B(P* . <f/ ) b S N a(p* N X(Ul]) " _k
"= BR_( )1/2 1_@‘37 D———BY— 1 (1-D)™".

3. ANISOTROPIC DAMAGE REPRESENTATION AND ACCUMULATION

3.1. Damage effect tensor
A. Fourth-rank damage effect tensor

When the simple principle of strain equivalence between the physical (damaged) and
the fictitious (pseudo-undamaged) spaces is assumed, a tensorially linear transformation
of the Cauchy stress o to the effective Cauchy stress &, through the fourth-rank damage
effect tensor M, is assumed (see Fig. 1.3)

oco=M (D) .o or 51’]‘ = Mijkl(fkj . (31)

A symmetric effective stress tensor &;; is used in (3.1) although the effective stress

tensor & = o : (1 — D) needs not to be symmetric in a more general case under this

transformation. Some proposal of various effective stress concepts are reviewed by Zheng
and Betten [60]:

1 [o:(1- D)'+(1-D)':o] Murakami [43]
6=(1-D)":.0:(1- D) /? Chow and Wang [76, 77] (3.2)
6=(1-D)':0:(1-D)"! Zheng and Betten [60].

1 and D denote here second-rank unit and damage tensors, respectively.

In a general case, when the fully anisotropic nature of damage is considered and the
principle of total energy equivalence is used (Chow and Lu [44]) a concept of the fourth-
rank damage effect tensor M (D) is introduced, that transforms the state variables in the
physical space o, €°, € to the effective state variables in the fictitious space o, e, v (cf.
Sec. 1, Fig. 1.3)

=M(D):0o, &=M7'1(D):e’, d&*=M"(D):de". (3.3)

Qi
I
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D denotes a properly selected damage variable, scalar, second-rank tensor, fourth—-rank
tensors, D, D, ﬁ etc., as argument of M (D).

The fourth-rank damage effect tensor M can also be explained in such a way that the
following modification of the constitutive tensors of damaged material, the stiffness A (D)
or the compliance A1 (D), in terms of the constitutive tensors of virgin material A or
A1, holds:

6=A:8, o=AD):e, AD)=M1(D):A:MT(D), (3.4)

£=A"1:6, e&=A'D):o, AD)=MTD):AT:M(D). (35)
Note that, when Chaboche's notation is used (cf. [46]), where M= M, A= A, §= AL

~
~

the equivalent formulae are furnished:

A=M:A:MT,

-1, (3.6)

Qun

-T .
=M ":

ey
S

B. Matrix representation of the damage effect tensors in terms of the second-
rank damage tensors [M(D)]

A tensorially linear transformation is assumed in Eq. (3.1) between the Cauchy stress
tensor o and the effective Cauchy stress tensor &. Due to the symmetry assumed of both
stress and effective stress tensors the fourth—rank tensor M;;y; can be represented by a 6x6
matrix when the vector representation of {o'} and {o} is applied:

{511 092033 093 031 a12}T = [Mijkl] {011 022033023031 Ulz}T (3-7)

Three forms of M (D), expressed in terms of second—rank symmetric damage tensor D,

are discussed by Chen and Chow [56]:

M, (D) = P-(D), Piju = é [(Zie = Dix)(Ljt — Djt) + (Ia — Da)(Ljx — D)) s

~

. -1 1
Me(D) = \I-D(D)| , Diju=~UxDj+ LiDjx + LjxDiy + I Dix),
4

~ 1
ikl = Z(Iikq)jl + L@k + Lin®iy + L Pik).

=
8
5
I
3
o
&

(3.8)
Symbols P(D), D(D) or ®(®) denote fourth-rank damage tensors as expressed in terms
of second—rank damage tensors D or & = (1 — D).

C. Matrix representation of damage effect tensors in the principal coordinates
of the second-rank damage tensor [M(D;, Dy, D3)]
Employing principal damage components Dy, Dy, D3, Doz = D3; = Dy = 0, we
obtain the diagonal forms for M1, Mc2, Mcs (Voyiadjis and Kattan [78], and Voyiadjis
and Park [57]), and Mcy, (Chaboche, Lesne and Moire [79]) as shown in Table 3.1.
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3.2. Creep—damage models under non—proportional loadings
A. Orthotropic damage growth in case of constant principal directions of the
stress tensor

Consider the simpler case when principal directions of the second-rank stress and dam-
age tensors &, D coincide and do not change with time, such that the orthotropic theory
of brittle damage coupled with the similarity of deviators of principal creep strain rates &°
and either the principal stress s (partly coupled) or the principal effective stress s (fully
coupled) is applicable (cf. Kachanov [25] and [80]).

The orthotropic creep—damage growth rule (direct extension of the Kachanov's concept
(2.4) to principal continuity 1, or damage Dy components) holds

. _81/)k__ ﬂ Tk . _6Dk__ (7 Tk
¢k— ot = Ck<¢k> or Dk— ot ——Ak<—————-1_Dk> . (39)

B. Orthotropic damage cumulation in case of variable principal directions of the
stress tensor

Consider after Skrzypek and Ganczarski [1] a more general case when principal directions

ax (15,24, 3,) of the stress tensor o rotate a small angle day, from time ¢ through ¢ +dt to

o), (12,24, 3.). After damage has occurred the virgin isotropic material becomes orthotropic

and the principal directions 5 (1p,2p, 3p) follow the principal stress axes rotation, however

the stress and damage tensors & and D are no longer co—axial in their principal axes,

ax # By, Fig. 3.1.

Figure 3.1. Schematic cumulation of several orthotropic damage increments of variable principal
directions (after [1])

The Murakami-Ohno second-rank damage tensor (1.1) as represented through the
principal values is used, whereas the non-objective damage rate tensor D (rotation of
principal axes ignored) is defined as

3
D= Z Din* ® n*, (3.10)
k=1
The objective Zaremba—Jaumann derivative of the damage tensor D with respect to
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tensorial components Dy, and the base vectors n* (rotation of principal axes included) yields
0D oy koo ok ko ik koo ok YT T T
5 =Z(Dkn ®n* + Dyi* @ n* + Dpn* @ 1 )orDzD—D S - sTD, (3.11)
k=1
where S is the skew—symmetric spin tensor due to rotation of principal stress directions

day, and Iv) is the objective damage rate tensor. When the non—objective damage rate D
in current principal directions of the stress tensor oy, (effect of rotation of the base vector
ignored) is assumed to be governed by the orthotropic damage growth rule (3.9), and the
skew—symmetric spin tensor representation in terms of day is used, we obtain:

v . 0 da1 —daz 0 —da1 da2
D]J: D[J - DFII‘J —qu 0 da3 — da1 0 —da3 D[J, (312)
dOlQ —-dOlg 0 —da2 da3 0
where in the current base ¢y, it holds
by =y { 2\ (3.13)
=0\ 1z Dy, ) .

v
Dy (t + At) = D[J(t)-l- Diy (t)At, D]lJl(t + At) tramms Dij(t + At) (314)
C. Creep—damage coupling formulations
Partly (e5;, si;) or fully coupled (&5;, ;) approaches of creep-damage analysis are sum-
marized in what follows for two different loading conditions: the stress and damage tensors
are co—axial in their principal axes, ay = (3, (Table 3.1) or the stress and damage ten-

Table 3.1. Partly or fully coupled creep-orthotropic damage approach in case of constant principal
directions

Partly coupled approach Fully coupled approach

isotropic flow rule modified orthotropic flow rule
.c s
< ——§£€9.S.. &< _?_f_(ﬂ'g
ij = ij i = 5% Si
J 2 Jeq 2 Oeq

multiaxial time-hardening
égq = (’Uveq)m f(t)

orthotropic damage growth rate

. oy v
D”=C"<1—D,,>
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Table 3.2. Partly or fully coupled creep—damage approaches applied to current principal stress
axes

Partly coupled approach Fully coupled approach

isotropic flow rule current orthotropic flow rule
o 3 3 &S
€= 5 S 6IJ = '""'SIJ
20eq 20¢q

multiaxial time—hardening

Eeq (Ueq)m f(t)

current non—objective damage growth rate

Dry = Cpy (22"
1J = VY1 <1 — D[J

current objective damage growth rate

D=D - DTS - S™D.

sors are no longer co—axial in the principal axis, oy # O (Table 3.2) — cf. Skrzypek and

Ganczarski [1].
In the first case constitutive equations are to be written in the fixed space (i,7) of

principal stress and damage directions, whereas in the second case, when principal stress
and damage directions change (independently) due to the shear effect, they have to be
written in the current (rotating) principal stress space (I, J), and, on each time-step, a
transformation from current to the global reference space (2, 7) has to be done.

3.3. Orthotropic elastic-brittle damage in crystalline metallic solids
According to Litewka [37, 38] the anisotropic stress—strain law of elasticity affected by
damage is assumed in the form

ey=Ajhow o  e=A'(D"):o, (3.15)
A 1 + v D* * * * *
Aijllcl E(S,](Skl-i- 2E ((Sik6jl+6i16jk)+m(éikl)ﬂ+6leik+5ilek+6jkDu)
(3.16)
or
v 1+v D3
——Tro 1 1 - D* *. .
FHol+— a+2(1+D{)E(U D*+D*: o), (3.17)

where E and v denote Young's modulus and Poisson's ratio of the undamaged material,
whereas D7} is the dominant principal component of the modified second-rank damage



Material Damage Models for Creep Failure Analysis and Design of Structures 123

tensor D*, such that D} = D/ (1 — Dy), Dy € (0,1), D} € (0,00) (cf. Vakulenko and
Kachanov [31)).

As the corresponding Mises—type initial failure criterion the three—parameter damage
affected isotropic scalar function of o and D* tensors is assumed:

F(o,D*) = C\Ti%c + CyTr (0'2) +CsTr (02 : D*) — 0% = 0. (3.18)

o, denotes the ultimate strength of the undamaged material, whereas constants C;, C; and
Cs are to be obtained from the uniaxial tension (direction 1), uniaxial tension (direction 2),
and biaxial tension (1+2) tests (cf. Litewka and Hult [81]).

The damage evolution rule is formulated applying tensor function representation that
accounts for both the isotropic and the anisotropic damage, Litewka [39],

D =B ()" 1+ C ()" o*, (3.19)
1—-2v 1+v / Dz
9° (0,D*) = ——Tv* Tr(o ?) + ————Tr(o% : D* .
(o,D%) o5 Y (o )+2(1+D1‘)E (o )s (3.20)
where
2
Tro = 3(TH = 301',', TI‘(U'Iz) = gdzq = 8ijSij, Ti‘(0'2 . D*) = Uiko'kl—D;;'- (321)

o* is a modified stress tensor whose compressive principal components are replaced by

zeros, whereas tensile ones are left unchanged. When the isotropic term is omitted B = 0,

and the exponent n = 2 is set, (3.19) takes the simplified form (Litewka and Hult [81])
2v 1+v

. 1- : D; :
D= 2 g* = Z 2Ty 2 1 2: * *
C(®) o*=C o5 Tr’o + 2ET‘r(a)+2E(1+DI)Tr(a' D)] o
(3.22)

3.4. Unified constitutive and damage theory of anisotropic elastic—brittle mate-
rials by use of the Helmholtz free energy
Murakami and Kamiya [47] developed the model based on the Helmholtz free energy as
a function of the elastic strain tensor €%, the second-rank damage tensor D, and another
scalar damage variable 3 responsible for isotropic damage:

0¥(e°, D, B) = o¥°(e°, D) + 0¥ (8) = ATY’€° + uTx(e°)” + 7 TrDTr’e*
+m, TYDTr(e%)? + g Tre*Tr(e® : D)+, Tr[(e”')? : D] + 3 K67, (3.23)

where A = Ev/(1+v)(1—-2v) and p = E/2(1+v) are the Lame constants for undamaged
materials, 77, 1. 73, 74 and K¢ are material constants, whereas €% is a modified elastic

strain tensor used to represent the unilateral damage response e = (e°) — ((—€°):
ey 0 O (—e5) 0 0
(eN=] 0 () O |, [=eN=| 0 (=) 0 |. (324)

0 0 (e) 0 0 (—€)
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Constitutive equations of anisotropic elasticity coupled with damage are:

0(e¥%) ~
o= = A (D): &® = [ATre® + 21, TxDTre®+n,Tr (e° : D)] 1
aee ( ) [ ™ . 773 ( )] (325)

Oe * o*
+2(,u+172TrD)ee+n3(Trc-:e)D+n4—é);e— (e :D+D:e),

whereas the thermodynamic damage conjugate forces of D and 3 are

*

00T [y (Tre)? + g T (€9)7] 1 — 75 (Tre®) e — 74 - e,
5 (o0 9) (3.26)

B = K.

K(D) is a fourth-rank symmetric secant stiffness tensor, as a function of the second-rank
damage tensor D. Thermodynamic conjugate force Y, associated with D, is known as the
damage strain energy release rate, that is the derivative of strain energy with respect to
D (the mechanical flux vector component). In case of the second rank-damage tensor D,
force Y is the second-rank tensor as well.

The damage criterion in the space {Y, —B} is assumed as:

Y =

B =

F4(Y,B)= Yeq— (Bo+B)=0,

1 1/2 1 (3.27)
qu = (-Z-Y :L: Y) R ngkl = (61]55 i1+ 5,15Jk)
The evolution equations for damage are furnished as follows:
- . d d .
D— _)\d?_fj_, 5= jd_0F° oF )\d,
JY 0(-B) (3.28)
54 (0F4/0Y): Y  L:Y - '
T T (@B/3B) 2K,

where o =1if F4=0and F4/0Y : Y >0o0ra=0if F4 <0and F4/9Y : Y <0.

3.5. Constitutive and evolution equations for anisotropic damage of initially
isotropic elastic—plastic materials by use of the Gibbs thermodynamic po-
tential

It is sometimes more convenient to define the damage conjugate forces as functions
of stress tensor by use of the Gibbs thermodynamic potential I' that consists of the com-
plementary energy I'® due to the elastic deformation, the potential related to the plastic
deformation I' and the damage potential related to the free surface energy due to the

microcavities nucleation I'? (cf. Hayakawa and Murakami [49])

I'(o,n,D,8) =T°(a,D)+I?(r) + T (B)

1
-2-%('13.7)2 E”'ﬁa + 0, TtD (Tro)? + 9, TrDTro*2 (3.29)
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+93Tro (TroD) + 94Tr (6**D) + Ry [r + % exp (—br)} + %Kdﬂ2,

where 9y, ¥, J3, ¥4 and Ry, b and K¢ are material constants and o* is the modified
stress tensor responsible for the opening/closure effect o* = (o) — ( (—0).
The constitutive equation for elastic strain €° is furnished as:

. O v 1+v . Oo*
€ =5s=""F (Tro)1 + —5 ot 29, (TrD Tro) 1{9—}—*2192 (TtD) o* : b (3.30)
+83 [Tr (6D) 1 + (Tvo’) D] + 94 (*D + Do) : a‘;
and the forces conjugate to internal variables D, r and 3 are
I“e
Y= gD = [ (Tro)? + U, Tro*?] 1495 (Tro) o+940*2,
are ard \ (3.31)
R———E:Rw[l—exp(—br)], B=W:Kﬁ.

Assuming also the Mises-type isotropic strain hardening yield condition of a damaged ductile
material in the form

F?(0,R,D) =Gy — (0, +R) =0 (3.32)

the constitutive equations for plastic strain rate éfj and the rate of isotropic hardening 7
are obtained

. QFP 3. fIMkla;d ., OFP A
P = AP = AR = AP————— = AP, 3.33
& Oo;; 2 Teq " 0(—R) (3.33)

where ﬁglkz — HM (D) is a fourth—rank effective plastic characteristic tensor with D as an
argument

-~ 1 1
HM (D) = 5 (6ik5jl + 6i16jk:) + ECP (5,’ij1 + Dik(sjl + 6ilelc + Diléjk) ) (3'34)
and the effective Mises-type equivalent stress 523 is

3 B Y2 13 /2
o = 50' : HM (D) : o‘] = [55’ tHM: &'J HY=MT:HM: M. (3.35)
The initial failure criterion (damage surface) is assumed in the form

L
2

N 1/2
Y:L(D): Y]
(3.36)

that extends Eq. (3.27) by the additional damage-plasticity term corresponding to the
isotropic hardening r. Eventually, the evolution equations are furnished as follows:

. . OFd L:Y OFd
— AdYS
D=A%y 2eq 8 (—B)

FA(Y,B,D,r) = Yoq+ crTIDTYY — (By+ B) =0, Yo = [

— Ad = Ad. (3.37)

+ c'r (TrD) 1] , B=Ad
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The plasticity and damage multipliers AP and A4 must be derived from the consistency
conditions for plastic yield surface, and the fourth-rank tensor L (D) is represented by the
formula analogous to (3.34) with the constant cP replaced by the new constant ¢¢. This
fourth—rank tensor function of the second-rank damage tensor D describes the damage
induced change of the damage surface, such that for the initial damage D = 0 and ¢" = 0
(3.36) is reduced to (3.27).

A more general approach for thermodynamically admissible plasticity damage coupling,
when initial material is assumed to be anisotropic and described by the Hill-type criterion,
is discussed by Chow and Lu [44] and Chaboche [46].

3.6. Examples of matrix representation of fourth-rank elasticity tensors for dam-
aged materials in the principal axes of damage tensor

Applying transformation formulae (3.3-3.5) we obtain matrix representations for consti-
tutive elasticity tensors of damaged material Aor A~ and damaged effect tensors M~! or
M. Assume for simplicity, that material is initially isotropic. When the definitions of Mc;,
Mco or Mcs (3.8) are used in terms of the principal damage components, D; = Dy,
Dy = Dyy, D3 = D33, Doz = D3y = Dyp = 0, the following symmetric compliance and
stiffness matrices modified by damage are obtained (Table 3.4).

4. LIFETIME PREDICTION AND OPTIMAL DESIGN OF STRUCTURES BY
USE OF CDM METHOD FOR CREEP-DAMAGE AND OTHER CONDI-
TIONS

4.1. Structural optimization under damage conditions

When elastic structures are designed for minimum weight or maximum load, structures
of uniform strength are optimal in most cases. In general, the condition of uniform strength
is neither a necessary nor a sufficient optimality condition if the static indeterminacy of a
structure or the geometric changes are taken into account (Gallagher [82]).

Q.. the other hand, when inelastic structures made of time—dependent damaged material
are subject to optimal design, the minimum weight or the maximum load remains the design
objective, similar as in the elastic case. Essential changes occur in the state and evolution
equations as well as in the constraints, where a new independent time variable plays an
important rule. The new optimization constrains may be imposed not only on the strength,
stiffness, and stability, like in the elastic case, but additionally on a limited stress relaxation
or residual characteristic displacement, and lifetime prediction of the initial failure, {; = tg
or the complete structural failure, t;; = ty.

General classification of the optimization problems, originally proposed by Zyczkowski [83,
84, 85, 86] for creep conditions, is shown in Table 4.1. First two approaches are inconve-
nient in most cases since the lifetime, ; or ¢y, is usually not explicitly given, but it results

from the constrains imposed on the internal damage variables D = {D,DQ,D,f)7 . }

when a critical state of damage is reached. Time of failure initiation ¢ is defined here in
such a way that either the scalar damage variable D (isotropic damage), the dominant
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Table 4.1. Classification of the global optimization problems of structures for creep-damage con-
ditions (after Skrzypek and Ganczarski [51])

Type of the formulation | Optimality criteria Global constraints
i V = min P = const and {; or t;; = const
i P = max V = const and t; or t;; = const
iii t; or t;p = max P = const and V = const

damage component max {D,} (orthotropic damage) and sup {D;;} (anisotropic dam-
age) reaches a critical value D, or a corresponding initial failure criterion F¢ (o, D) =0,
(3.18) for Litewka's model, F¢(Y,B) = 0 (3.27) for Murakami and Kamiya's model,
F4(Y,B,R,D,B,7) = 0 (3.36) for Hayakawa and Murakami's model etc., is satisfied
when a more general space of damage and plasticity internal variables D, 3, 7, and their
thermodynamically conjugate forces Y, B, R is used for critical damage (initial failure) cri-
terion. Time of complete failure under continuum damage conditions t17 is obtained when a
global failure mechanism of the structure occurs, such that the fractured structure becomes
unserviceable. Local CDM approach to design analysis, when the influence of all other mi-
crodefects within the RVE, in the neighbourhood of x, D (§) is measured only through
the change of effective mechanical properties, stiffness A (x,t) and compliance A~ (x,t),
effective thermal properties, conductivity L (x,t) and emissivity I' (x, t), etc., all defined at
point x, was shown to be capable of predicting not only lifetime of crack initiation ¢ with
the stress redistribution due to damage, but also crack length growth and time of complete
failure ¢;; ([87, 88, 89, 90, 91, 92, 93, 51, 94}).

Recently, a number of optimal solutions for surface structures with respect to creep—
brittle—damage have been obtained: axisymmetric prestressed disk [[95, 96, 97, 98, 99, 100,
101]; axisymmetric thin plates optimally prestressed [102, 103, 80, 51]; Reissner's plates
optimally prestressed [104]. It is worth to mention that both thickness and initial prestressing
optimization of the membrane— or the bending—type occur to be an efficient tool for lifetime
improvement of structures under creep—damage conditions.

A. Optimality criteria for time—-dependent materials

Structures optimal with respect to lifetime t; = tg — max, may often be found among
the class of structures of Uniform Creep Strength (UCS), cf. Zyczkowski [83, 84, 85, 86].
Structures of uniform creep strength with respect to brittle rupture are defined in such a way
that macrocracks initiate simultaneously either in every material point x €V or along certain
characteristic lines or surfaces. Hence, e.g. when the simple, scalar Kachanov-Hayhurst's
isotropic damage growth rule (2.13) is used with k = r and the integration is performed from
the damage initiation D (o) = 0 up to initiation of the first macrocrack D (t;) = Der, the
condition of Uniform Isotropic Damage Strength (UIDS) takes the following representation:
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1- (1= Do) =C(r+1) / Ko d,  vxeV,

. I\
D=C<%§bﬂ> , X = a0y + 3boy + cOeq, (4.1)
For orthotropic damage (3.9) the condition of Uniform Orthotropic Damage Strength
(UODS) can be written as:

. ak(x,t) >rk {Dk(x, t[):|
De=Cp (XN |2 wxev 4.2
k £ < 1 - Dy (1,2,1;) Dier (*+2)

where three independent critical damage values Dy, (k=1,2,3) are used for damage
orthotropy. In a more general case of damage anisotropy the isotropic scalar function of
stress and damage tensors o and D may be postulated as the failure criterion (damage
surface) at the point x (3.18), the scalar function of damage conjugate forces Y and B
(3.27), the scalar function of both the damage and plasticity internal variables and their
thermodynamic conjugates (3.36), etc.:

Filo (x,t;),D*(x,t;)] = 0,
FHY [e* (x,t:)],B[B(x,t1)]} = O, (4.3)
FUY [e° (x,t)], B[B(x,t)],D (x,t),7 (x,t1)} = 0,

all satisfied at each point x of the volume V at t = ¢.
If, for instance, the Litewka's model is applied the condition of Uniform Anisotropic
Damage Strength (UADS) may be furnished as follows:

D = C{%°[o(x,t),D* (x,t)]}2 o,

, 2
Fi(a,D%) = CTro (x,t;) + CyTr [a (x,t,)] (4.4)
+CsTr [0 (x,t;) : D* (x,¢)] —02 =0, Vx€V,

where ¢ [0, D*] denotes the elastic energy affected by damage (3.20), D and D* denote
the second—rank damage tensors, classical Murakami—Ohno's (1.1) and the modified D} =
D;/ (1 — D;), whereas o* is a modified stress tensor (Sec. 3.3).

B. Constraints
In general, both inequality constraints and equality constraints are to be imposed when
an optimal solution (in a various sense) is sought for.

i. Inequality constraints:
Strength constraints may be imposed on the effective Mises—type equivalent stress,
when strain hardening is saturated and damage isotropy is assumed (Sec. 2.2):
~ O-G UCI‘
Ueq(aaD) = 1___95 S Ta (45)

where o, denotes the critical effective stress for the material and j is the safety factor.
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In a more general case of strain—hardening initially isotropic material (damage induced
anisotropy) the following inequality constraint can be used (3.35):

_ _ 1/2
M [a,HM (D)] ~R= Ba HM (D) : a’] —R< fj— (4.6)
Eventually, when the initial material anisotropy is described by Hill's type fourth-rank char-
acteristic tensor H and kinematic hardening is included (cf. Chaboche [46]) the Hill's type

inequality constraint holds:

UCT

a [a - X,H" (D)] ~-R= B (' = X'): HI(D) : (0’ — x')] " R< = (4.7)

Note that strength inequality constraints (4.5-4.7) are physically based limitation of
elasticity domains when damage coupled elastic—(visco)plastic material is considered ([76,
77]). On the other hand, when the CDM based local approach to fracture is used, the so
called stress limitation method is sometimes incorporated to FEM code in order to suppress
a mesh—dependence of the crack growth prediction, (e.g. [91, 92, 94]):

L Oij, Oeq S Ocr 3 1
o= kil =00 = 0. 4.8
“ { kaij) Oeq >0 2 WY “ ( )

This numerically induced equivalent stress constraint, which is not physically induced, has
to be applied as an additional inequality constraint to obtain convergence.

Initial stability constraints (elastic stability condition) should also be imposed, especially
when initial prestressing of a structure is used to improve the lifetime ¢; or #y, (cf. [101,
95, 80, 104, 51J):

ng < Ng, (49)

where ng denotes the basic Eulerian force (if a possibility of creep buckling is not included

into the analysis).
Often geometric constraints for thickness of the structure & (x) and the in—plane pre-

stressing eccentricity e., have also to be imposed
hoin < A(X) < hmax,  €max < h/2, (4.10)
such that uniform damage strength as defined by conditions (4.1-4.3) is met in the part of

a structure (VU9 < V) only, where the thickness geometric constraint is not active.

ii. Equality constraints

Depending on the optimization problem, as classified in Table 4.1, global equality con-
straints may be furnished. Condition of constant volume (weight) for a uniform cross-section
of axisymmetric structures is written as

R
V= Zﬂ/h(r)rdr = coust, (4.11)
0
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and for a two—point sandwich cross—section
R
V= 27r/ [ (hs — gs) + 20gs] rdr = const, (4.12)
0

where h(r), hs (r) and g, (r) denote thickness of the uniform cross—section, the sandwich
cross—section and the sandwich working layers, respectively, whereas o and B are arbitrary
weight factors for the core and layers materials.

Condition of constant lifetime prediction of macrocracks initiation #; or the complete
failure (fragmentation) t;; are sometimes used as global equality constraints, although, in
general, these quantities are not explicitly given, but they result from a combined time-
dependent process of damage evolution in a material, as governed by the constitutive and
evolution equations on each step of the optimization procedure through the geometry and
prestressing changes:

t1=1tg =const, or t; =ty = const. (4.13)

Condition of constant intensity of surface loadings (prestressing force excluded) may
also be applied as a global equality constraint

q(x,t) = q(x). (4.14)

C. Decision variables

When problems of optimization are formulated for prestressed structures under damage
or damage/fracture conditions, vectors of control variables involve not only the thickness of
a structure h(x) or hs(x) and gs(x) for an uniform or sandwich cross-section, respectively,
but also parameters of prestressing ng or A in case of in—plane membrane-type prestressing
(a force or a membrane distortion), and my or o In case of bending-type prestressing (a
bending moment or an initial bending distortion ). Hence, the corresponding membrane—
type or bending—type vectors of decision variables c,, or ¢, are:

{en} ={no or Ag, h(x)} or {c}= {ng or Ay, hs(x),gs (%)} (4.15)

or

{ep} = {mo or @y, h(x)} or {c}} ={mo or @y, ha(x),g: (%)}, (4.16)
in case of a uniform cross-section or a sandwich cross—section, respectively, Fig. 4.1.
Apart from the order of the theory, which may include or not the coupling between the
membrane and bending effects (cf. Ganczarski and Skrzypek [80]), both states, membrane
and bending, may additionally be coupled by the boundary conditions. Generally, such a
coupling can be described by a function F which depends on the excitation parameters:

]:(nOa my, A07 QOO) = 07 (417)

where ny is the initial prestressing force, A the initial (membrane) distortion, my the initial
prestressing moment and ¢, the initial angular distortion (curvature).
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boundary excitations

force-type displacement-type

coupling F(n, m, A,q)=0

state

Figure 4.1: Boundary excitations in axisymmetric plates

bending |(membrane

4.2. Example: Optimal design of rotating disks in creep—damage conditions
A. State and evolution equations of rotationally-symmetric annular disks of
variable thickness in coupled creep—orthotropic damage conditions

Consider an annular disk of variable thickness k (r) and radii a and b, clamped at the
inner edge, subjected to steady rotation with angular velocity w and in—plane loading due
to peripheral tension or prestressing (cf. Skrzypek and Egner [100]). Assuming plane stress
o, = 0, creep incompiessibility €5, = 0, the Mises-type flow rule associated with the
multiaxial, Kachanov—Hayhurst time — hardening law and the orthotropic damage growth
rule (Table 3.1, partly coupled approach) the following displacement-type state and damage
evolution equations are obtained:

d2
d*u <1dh 1)@+<udh 1)1_L:i+gg+1dhg r

dr? hdr dr hdr r)r ¢ dr hdr
desy = 72 (g0 — 22V H(e)dt,  des = — (e + deg (4.18)
Er/‘ﬁ - (1 _ D) Tr/9 9 ) ) ) €, = —( Er + 519)’ .
o
dD = C< x( l)?> dt, x(o) =801 + (1 — 6)0eq,

2

where f = (1 —v)(eS ~€5), g=¢e+wvey, k= pw?.

E
The dimensionless form of governing equations for disk of a variable thickness at ¢ = 0
(initial condition), and t > 0 (creep—damage conditions) is furnished as:

d*U 2dH d d
RP— + (-R——+R> o, (V—R—H —1) U=-KR® (t=0),

1—-v

dr? "\ 'H 4R dr " \H 4R
d2U [R*dH dU vRdH dG 1dH .
2 o = -~ b ShonialN 2 =
Fim* <HdR+R)dR+<HdR 1>U FR+ B0+ FrqpC (6> 0)
. Sm 1 S19 . Sm—l S
Ef= 2 Sp — — ) 5 = = - 1
=D ( 2) B (1—D>m<51’ 2)’ (419)

dD = Co "t1<1 (1))> dz,
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where
_ 1 . . . . .
f=p =BT, F=(-v)(B-E), G=E+vE
tr t(t)
2

0_007 U:l, =C, F:i) G=£) :ki7

E agy a o €0 €0
Sr-_—ﬁ, Sﬂzf‘_”, Seq:%, ETC:.S_T, E§=E_ﬁ, (4.20)

(o} 0o o IS0 €0

. h
T =tEoy Y(t), H=-, P= .?_, Ry = b = 5.
a ado a

B. Boundary value problems

Two boundary value problems of disk optimization by use of CDM based FDM ap-
proach are solved when either the local optimality criterion of the UODS (4.2) or the global
optimality criterion of maximum lifetime ¢; — max, are solved (Fig. 4.2).

a) ® b) ®
rigid shaft initial >  rigid shaft
prestressing

creep
elastic
Py

Figure 4.2. Schematics of clamped annular disks of a variable thickness subjected to: a) steady
rotation and radial tension , b) steady rotation under initial prestressing constraint

Example A: Boundary conditions for clamped annular disk subjected to steady rotation
and tension are:
U(1) =0, H(Rp)S.(Ry)=HoP, (t=0),
U(l)=0, S.(R2)=0 (t>0).
Example B: Initial boundary and continuity conditions for clamped annular disk subjected
to rotation under prestressing conditions are:
U(l) =0, H(RQ)ST(Rg) = —-HyQ
St (Ro) = 0 SI"6(Ry) = —Q,

(4.21)

(t=0),
U(1) =0, H(Ro)S(Ry)dt = HodS;™(Ry) } (> 0)
SHne(Rg) = 0, U(Ry)dt = dU™™8(Ry) '
The calculations are done for the following data:
E =177x10°MPa, v = 0.3, a = 0.02 m, b = 5a, hg = 0.004 m, og = 118 MPa,
P,=0.1, p=79x10% kg/m3, w =100 s71(A) or 240 s~1(B), C = 2.13x 107*2 Pa—"s!,
m="5.6,7=39,6=05 (B) or 1.0 (A).

(4.22)
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C. Two step optimization approach by use of FDM

For the prescribed loading conditions the optimal distribution of disk thickness H (R)
and the initial prestressing @ that maximize the time of failure initiation ¢; (first macro-
cracks) under the condition of constant loads and volume and the additional geometric
constraints are sought:

t[H(R),Q] = max; w,P,, = const, V = const, Hint < H(R) < Hyyp.

(4.23)

As the first step of optimal design the shape of a disk of Uniform Creep Strength (UCS)
is determined, H,(R). Next, the corrections of the disk thickness are imposed with the
constant volume condition applied, as long as the lifetime is maximized. The nodal correction
of disk thickness is assumed to be proportional to the power function of the residual value
of the nodal continuity function ; = 1 — D; at rupture time tr. Hence, the thickness
correction rule, the constant volume condition (for the corrections) and the continuity of
thickness at nodes yield:

H¥R;) - H Y (R) =P (W —-v;), j=1,...,N,
Rjt1
Sist [ [HER) - HEY(R)] RAR =0, (4.24)

HE ,(R;) = Hf(R;), j=2,...,N—-1.

In case of active geometric constraints a possible improvement of the disk lifetime may
be achieved by corrections of both the thickness and the length of zones of uniform creep
strength in order to maximize the disk lifetime. A following parabolic form of the correction
terms of H,cs(R), for which the condition of constant volume holds, is proposed:

AH(R) = a;R* + aaR + a3, Hopi(R) = Hys(R) + AH(R); (4.25)
Ra
/ (a'le +ayR+ a3) RdAR =0, (4.26)
Ry
hence, two parameters are free to be optimized.

D. Results

Comparison of the rotating non—prestressed disks of the UES versus the UCS, when a
continuous or a jump-like variable thickness is allowed, is shown in Fig. 4.3a.

The proposed design method allows to significantly elongate the disk lifetime when
compared to the disk of a constant thickness, as summarized in Table 4.2

Lifetime of a rotating disk can essentially be improved when the initial prestressing is
imposed on the disk by the elastic ring (Fig. 4.2b). Both, the initial prestressing @ and
the distribution of thickness H (R) are subjected to optimization. The initial prestressing
considered as an additional decision variable causes non—uniqueness of the uniform creep
strength solution. Hence, the optimization procedure consists in two steps: first, effect of
prestressing force on the lifetime of disk of constant thickness is examined, second, addi-
tional lifetime elongation is met when thickness optimization H; (R) under the constant
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Table 4.2. Comparison of lifetimes of disks of the uniform initial strength Hyes and the uniform
creep strength Hyc (Fig. 4.3)

Lifetime
Constant | Uniform Uniform Creep Strength
thickness | Elastic jump-like variable
Temp [K] gref Strength | variable thickness | thickness
773 74.2 2.9t 3.5t 3.9t
873 79.0 2,07 2.7t 2.98%f
a) b)
0.17 05
0.16 045
04 |+ H=H \\s\
015 LN ™~
I\ w=100, P =0.1 e 0% gt cocpeeet
£ o\ § o i
7 013 5 € o5 | Q =0034 zat M1
] \ Sr/ o ] 0.25 opt .
§ 012 £ o2 >
£ HO |
5 011 & Y I N
P / el D B e N R icd
01 ¥ 0.1 b -
009 H M 0.05 [ /tlopt
008 - 0 -
: 1 15 2 25 3 35 4 45 5 0 100 200 300 400 500 600 700 800 900

radial coordinate R dimensionless lifetimef

Figure 4.3. a) Disk of UCS versus disk of UES and disk of a jump-like variable thickness, b) Effect
of initial prestressing () on time to macrocrack initiation ; of a disk of uniform creep strength
Hcs versus disk of a constant thickness Hy (after Skrzypek and Egner [100])

volume (4.24) and given prestressing force Q; is performed, to eventually yield the op-
timal shape and the corresponding prestressing force for which the lifetime is maximized
t1 [Hues (R) , Qopt] = max, (Fig. 4.3b).

Optimal profiles of optimally prestressed disks without or with lower geometric constraint
imposed are shown in Fig. 4.4.

The pre-loading evolution of damage due to prestressing may essentially influence the
net-lifetime after the loading is imposed. It was examined by Egner and Skrzypek [101] in
a simpler case of disk of constant thickness. Depending on the duration of the pre-loading
period and the magnitude of the prestressing force, it may occur that the first macrocracks
appear during the pre—loading stage. Therefore, a constraint must be imposed on both the
magnitude of the prestressing force (mainly with respect to stability) and the duration of
the pre—loading prestressing period. When the pre-loading damage caused by prestressing
is disregarded or, in other words, the rotation is instantaneously applied at the instant of
prestressing o = %o, the optimal prestressing, for which damage simultaneously occurs
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Figure 4.4. Variation of profiles of optimally prestressed disks of uniform creep strength H, s with
a magnitude of lower geometric constraint Hiy¢

at both disk edges, equals Qgpt = 0.0340. If, on the other hand, a pre-loading period

Atgre = 50 is applied, the stress and damage redistribution during this period causes the
solution no longer optimal (Fig. 4.5a). In order to meet the two—point failure initiation mech-

a) b)
1.1 1.1
1 t=t 1 t=t
[ iy iy iy Mgy B e e 00
i < [ - R X) 7 S et
- /[’ 1 1 0 - 4 1 AN 0
c 08 08 PN yraR) t=t 5 087 T oo\ AR
8 ~L° roog SLR=R) \
g 07 08 € 07 ff—f O°° g ¢ \
= Qo7 = Q07 P \
'5 06 308 \ g 06 {4 os|—+-#R=R) \ \
b= 05 ¥(R=R) g 05 ‘
8 05 04 8 05 04
03 03 ‘
04 0 50 100 150 200 250 04 F—- 0 50 100 150 200 250 300 350
t t
03 I H I T 1 03 I T i I T t=t
1 15 2 25 3 35 4 45 5 1 15 2 25 3 35 4 45 5 f
dimensioniess radius R dimensionless radius R

Figure 4.5. Evolution of the continuity 1, during the pre-loading At,re = to — too = 50 and the
working loading Atwor = t; — to periods: a) non—optimal prestressing Qgpt = 0.0340 b) optimal

initial prestressing Q30; = 0.0359
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Figure 4.6. A family of net-lifetimes versus initial prestressing period (after Egner and
Skrzypek [101])

anism that corresponds to the pre—loading period considered, the higher initial prestressing

50, = 0.0359 has to be imposed (Fig. 4.5b). In the range of two—point optimization (si-
multaneous initiation of macrocracks at both disk edges) the optimum prestressing force
increases when the duration of the preloading period increases. Additionally, the sharp
net-lifetime corners in Fig. 4.6 are here highly sensitive to a possible imperfection of the
optimal initial prestressing force. On the other hand, when the prestressing period is longer
than approximately 15% of the net-lifetime, the maximum net-lifetime corresponds to the
initiation of first macrocracks at a single disk edge (inner) with the analytical maximum in
Fig. 4.6. In this range the optimum prestressing force decreases when the duration of the

pre-loading period increases.

E. Conclusions: Non/optimality of disks of uniform creep strength with respect
to lifetime

When elastic structures are designed for either the minimum weight or the maximum load
under the constraint of strength, the structures of uniform elastic strength UES, also called
the fully stressed design, is in most cases optimal. In general, when static indeterminacy
of structure or when geometry changes are taken into account, the condition of uniform
strength is neither a necessary nor a sufficient condition of optimality. Hence, the fully
stressed design method is, in most cases, a first step towards the exact optimal solution
when more rigorous optimization approaches are used (Gallagher [82]).

When optimization of structures under creep—damage conditions is formulated, the min-
imum weight (volume) or the maximum load remains the typical design objective, whereas
constraints may be imposed not only on the strength (failure), stiffness and stability as in
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the elastic case, but also on a limited stress relaxation, a limited residual displacement or a
given lifetime t; or ty.

When geometry changes are neglected and creep buckling constraints are not involved,
the optimal structures (t; = tr — max) may be found from among structures of uniform
creep strength UCS. With geometry changes taken into account the structure of uniform
creep strength UCS is, in most cases, non—optimal. Further optimization may be performed
by superimposing corrections on the decision variables to maximize the lifetime.

Disk of uniform creep strength UCS subjected to stationary loadings (not prestrained)
was found to be optimal with respect to lifetime. Disk of partly uniform creep strength
PUCS (zone of active geometric constraint admitted) subjected to non-stationary loadings
(due to the initial prestressing) was found to be non—optimal with respect to lifetime.

When effect of pre-loading damage is taken into account for each prescribed pre—loading
period Atf)re the independent optimum prestressing force Qf)pt may be found. It corresponds
usually to simultaneous initiation of first macrocracks at the inner and the outer fibres of the
disk (switch points in Fig. 4.6 where two curves representing different failure mechanisms
intersect). However, when the duration of the pre-loading period is sufficiently long, it
may happen that the initial damage during pre—loading at the inner fibre is rapid enough
to reach the maximum net—fifetime without the switching effect. In this case the optimal
prestressing is determined by the smooth extremum point on the curve ¢7°°(Q) as shown
in Fig. 4.6.

4.3. Example: Creep—damage and failure analysis of axisymmetric disks with
shear effect included
A. Basic mechanical state and evolution equations of plane stress—rotationally
symmetric creep—damage process

Geometrically linear theory is applied when small total strains are decomposed into the
elastic and creep portions: €,/9 = €r/9 T €rpgr Yro = Yrg T+ Vrg. Elastic part is governed
by the Hooke law (isotropic) and none additional effect of the material deterioration on
elastic properties is taken into account. Creep part is governed by either the isotropic or the
modified orthotropic flow theory and by the time—hardening hypothesis applied to current
principal stress axes (Table 3.2). The Murakami-Ohno damage tensor D and its objective

time—derivative Iv) are used, (3.11-3.12). Non-objective damage rate D is governed by
the orthotropic void growth rule (3.13) applied to current principal directions of stresses
when rotation of principal axes of damage and stress tensors on creep—damage cumulation
process in disks is accounted for, as shown in Fig. 4.7. Plane stress—rotationally symmetric
problems are considered.

Reduced displacement—type mechanical state equations for coupled plane—stress creep—
damage problem are (Skrzypek and Ganczarski [1]):

d?u, 1du, wu, 1—v?

Z — T _ 2
a? TTar B
du19 1d’U,,9 u19_p60

dr? +;?_r2_ G’
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Figure 4.7. Schematic creep damage accumulation of several orthotropic increments coincided
with current principal stress axes (1, 2) and resulting rotation of current principal damage axes
(1, 1) in case of a disk (after Skrzypek and Ganczarski [1])

d2i,  1du, w, d(2g—f)  f 1—v?
oS B 429 =) + I 2———( v )pw(t)e(t)r
dr2 " rdr 2 g or O E (t > 0)
Py iy %l e, ’
dr2 = r dr r2 dr r G
€2 = (Fea)” (01/2 - %> f(t) (partly coupled),

Oeq 2

o1 o\ ; (4.27)
¢ ) = (Feq)™” - f(t full |

where, due to creep incompressibility £§ = —¢&§ — €35, the auxiliary symbols f . g denote
f=(1-v)(E —£5), g =& +vey, and e(t) = w(t) is the angular acceleration, whereas

2 2
— 2 2 _ = 01 (op) _ a1 g9
Teq = 4/ o1+ 05 — 0103, Oeq \/( “D1> + (1 _D2) 1-Dn( ~D2)-

(4.28)
The plane stress 2D objective derivative of the damage tensor takes the form
v v .
Dvv Dve | _ [Dun 0 | _|Du Dxn 0 da
v v - 0 Doy Dys Doy —da 0
Dyv Dy

0 —da Du D12
429
+ |: da 0 :l |: D21 D22 ] ! ( )
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Figure 4.8. Layout of a circular disk subject to creep damage under: a) steady peripheral tension
p and torsion s; b) steady peripheral tension p and multiple reverse torsion +s

where the non—objective damage rates associated with the current principal stress axes are

. 011 m : 022 2
D11=01<1—D11> y D22=02<1—D22> . (430)

v
When the objective damage rate tensor Dy; (4.29) is transformed from current principal

directions of the stress tensor (1J) to the sampling coordinates (i) lv)ij, the new damage
tensor D;;(t + At) is achieved
V' transf. Y v
and the creep strain rates (4.27) referring to the global coordinate system (ij) are:
) €]+ €5 | €] — €&
£y = 1 ! 2 4 &1 . 2

cos 2a, Fro = (€ — £5) sin 2a. (4.32)

B. Boundary value problems

Consider annular disk of constant thickness h and radii a and b clamped at the inner
edge, subjected to: (a) steady tension and torsion or (b) steady tension and multiple reverse
torsion (Fig. 4.8).

The corresponding boundary conditions hold:

R U WA T S R
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and

ug(a) =0, u§(a) =0, _ Ur(a) =0, dy(a) =0
o) =p, =B =s | =0 g y=0 sop) =0 ¢ (¢34

Computer simulation is done for the ASTM 321 stainless steel of the following data at
500 C: E = 180 GPa, 0g3 = 120 MPa, » = 0.3, p = 0.2 X 02, s = p/20 (a) or s = £p/20

(b).

C. Results

In the case of steady loading conditions first macrocrack appears at the inner edge
(r = a), and the damage zone is limited to the closest neighbourhood of the fixed disk edge
(Fig. 4.9a). Evolution of the principal directions of stress (a) and damage (3) depends on
the partly or the fully coupled creep-damage approach (4.27). When the partly coupled
approach is used, the isotropic flow rule requires similarity of stress and creep strain rate
deviators s;; and ef;. The angles « and 3 slightly differ from one another during the primary
creep (Fig. 4.9c). When the fully coupled approach is used, the orthotropic flow rule requires
similarity of the effective stress and creep strain rate deviators, 5;; and é;. Changes of both
angles are slower than in the previously discussed case. However, lifetime prediction is
hardly 0.3% longer when compared to the lifetime obtained for isotropic (partly coupled)

b) .-
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Figure 4.9. Disk under steady tension and torsion: a) damage evolution with time to failure, b)
formation of the hoop displacement discontinuity, ¢) and d) rotation of principal stress axes a
and principal damage axes 3 in case of scalar and tensorial creep-damage coupling, respectively
(at inner disk edge /R = 0.2) (after Skrzypek and Ganczarski [1])
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Figure 4.10. Disk subject to steady tension and multiple reverse torsion: a) principal damage axes
rotation [ resulting from principal stress axes oscilation a with time to failure, b) formation of
bilateral hoop displacement discontinuity with time to failure in case of multiple reverse torsion,
versus steady torsion

formulation (Fig. 4.9d). A shear-type failure mechanism results from the hoop displacement
discontinuity which is formed at the inner (clamped) edge (Fig. 4.9b).

In the case of a multiple reverse torsion, alternating jumps of the principal stress axes
« around the direction o = 0 cause corresponding rotations of the principal damage axes
B. However, the changes of § are not as rapid as those of «, and non—symmetrically
oscillate around 3 = 0, with the inclination that follows the direction of first loading cycle
(Fig. 4.10a). On the tertiary creep, a slop of 3 versus time rapidly increases to eventually
yield a shear-type failure mechanism in a disk. During alternating torsional cycles, the
damage growth process develops in an unilateral fashion, such that an increase of lifetime
by amount of 53% is observed, when compared to the steady torsion case. After a number
of cycles oscillating around the zero value, the hoop displacement uy rapidly increases in the
direction coinciding with the first loading cycle, to again yield shear-type failure mechanism
(Fig. 4.10b).

5. DAMAGE EFFECT ON HEAT TRANSFER IN SOLIDS UNDER THERMO-
MECHANICAL LOADING CONDITIONS

Bilateral coupling between processes of creep and microcracks growth, on the one hand,
and redistribution of temperature field, on the other hand, is considered. To this order the
thermal conductivity function of a virgin material A\o(z,y, z) in the heat transfer equation
is replaced by a new time-dependent, in general anisotropic, tensor function L (z,y,2,1)
that characterizes the thermal properties of a partly damaged material. Hence, when the
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isotropic damage is assumed as governed by a single scalar variable D (x,t), for non—steady
states with internal heat sources ¢,, the extended heat conduction equation takes a form:

a% {X[x,p(x,t)]?-%(;"—t)} + a% {X[X,D(x,t)]%"—”}

5.1)
3 fx O (x,t)\ . dgw  OT(x,1) (
T {A[X’D(x’t)] 9z }+ at @
or

div {X [x, D (x,t)] gradT} + ¢y = cy0T. (5.2)

Damage effect on heat conduction is described here by the single scalar variable X [x, D (x,
t)]. The mass density and the specific heat ¢ and ¢, are assumed to be time-independent
constants.

5.1. Thermo—damage coupling models
A. Direct extension of the equation of thermal conductivity for damaged mate-
rial
A linear heat conductivity drop with damage was assumed by Ganczarski and Skrzypek [105,
106]:

Xx, D (x,1)] = Ao (x) [1 — D (x,t)], (5.3)

where )\g (x) denotes a non—-homogeneous, in general, distribution of the thermal conduc-
tivity in a virgin (undamaged) material. In this model, when material is locally completely
damaged D (x,t) = 1, the thermal conductivity coefficient drops at this point to zero
X(D = 1) = 0 and, hence, local heat conductivity through the completely damaged surface
element must also drop to zero. In other words, the fully damaged RVE is assumed to be
free from any kind of stress and unable to support heat conduction. When the energy based
equivalence principle is used the other formula, instead of the linear conductivity drop, is
derived from the state potential (cf. [23])

X[x, D (x,t)] = Ao (x) [L — D (x,t)]"/%. (5.4)

B. Concept of a combined change of thermal conduction and radiation through
partly damaged material
An extension of the model A accounts for an additional term of heat flow through the
damaged surface element portion by application of the Stefan-Boltzmann radiation law:

56:; {/\o () [1 = D (x,8)] 2% (,g;‘ D _ ey (x,4) D (x, ) T (, t)}
-l—% Mo (x)[1 = D (x,1)] :Z—(%yx’—i — oo (x,t) D (x,t) T* (x,1) 55)
5120 () [1 - D (x,1)] ——-a’z"— — oo (x,8) D (x,£) T* (x, £)
0qy aT(x,t)
+ = Cy0 .

ot
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In the model B under consideration a combined conduction/radiation mechanism allows for
a heat flux even though the damage at a point reaches level 1 (due to radiation across the
microcracks).

C. Concept of the equivalent coefficient of thermal conductivity for a combined
conduction/radiation heat flux through partly damaged material
A combined heat flux is characterized by the substitutive coefficient of thermal conduc-
tivity, modified in order to take into account a simultaneous influence of the conductivity
A through the RVE at the point x, and the radiation from x to x + dx. The equivalent
coefficient of therma! conductivity A°? is expressed, therefore, by the equation:

X[k, D (x,8), T (x,1)] = X[x, D (x,)] + AN [dx, D (x,8), T (x,8)].  (5.6)
Consequently, the equation of heat transfer (5.1) may be extended to the following form:

52 {een 0 70 R 4 2 finpe D), ) L0

+§; {Aeq [x,D (x,t),T (x,t)] —8T(§:’ t)} + %0, _ O 1%.1)

at 0 5t

(5.7)

The equivalent (substitutive) coefficient of thermal conductivity A°? is obtained by

equating the heat flux due to conduction and radiation through partly damaged cross sec-

tion and the heat flux due to the corresponding conduction through the fictitious pseudo—

undamaged cross section (Fig. 5.1). The specific formulae for AX““ will be discussed in
the following section.

D. Axisymmetric heat flow in cylinders or disks under thermo—creep—damage

coupling conditions
The heat transfer equations in partly damaged materials in the case of axisymmetric
heat flow in cylinders or disks of constant thickness are:

O™ (x)-Q™ (x+dx)=d O

Fycond _ “°‘+d~"" cond
0~  DraD)id O =Qemi+dD /Qu.
Didy gl Al o=y
;@b ot & | WO
1-D)dA
o dx @~etay) dA ]
e dx | o
O™(x) (1-D-dD)d A,
damaged solid pseudoundamaged solid

Figure 5.1: One—dimensional concept of the equivalent coefficient of thermal conductivity
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Model A
1d

rdr

dT (r,t)

{ [,\0( — D(r,1)) ]} + ¢y = oo (5.8)

Model B
1d

o { [/\0(1 D (r,t))

Model C
1d dT (r,t) ) .
eq _
{ [/\ (r,t,T) I ]}+qv—cugT,

rdr
dD/dr
dT/dr
A(rt) =X (1=D(rt)) or A(rt)=X(1—D(rt)"2
Extension of (5.9) and (5.10) to the rotationally symmetric disks of a variable thickness
h () yields (A stands for the average defect size):

de(:, t) — oegD (r,t) T* (r, t)} } + Gy = cpoT. (5.9)

X9 (r,t, T) = X (r,t) + o6 [4D + T] T3A, (5.10)

Model B
1 d dT (r t
r oy () LD p (r,t) T (r, t)
ldh)\d)( )T('rt)_ D(rt)T* (rt)] + Gy = cool '
hd 0 T, dr a€y r, T, ) Qv = Cy01 .
Model C
li r,\eqw l%)\eqm + g, = c,,gT,
rdr dr h dr dr
. dD/dr, 1. . (5.12)
A r t,T) =X (1 — D (r,t)) + oeg [4D+dT/d7‘T:l T3A.

5.2. Mechanical state equations of axisymmetric deformation under unsteady
temperature field
Applying the geometrically linear theory of small displacements and decomposing the
total strains into elastic, creep, and thermal parts € = &° + &° + !, the problem may be
expressed by the system of displacement and rate equations as follows:

2
dr? ' rdr 12 dr . (5.13)
du  1di @ _ 1+d_+h(1+u) T ¢ 5 0)
dr?2  rdr 2 dr dr '

The solution of (5.13) yields the following formulae for displacements and stresses
1 1
u = §ClT+§Cz+h(l+I/)Io,

E 1 1 E
_ Lo Lo h2 5.14
o HV(chl c) Wn, (5.14)
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E 1 1 E
Oy = m ('2-]601 + '7302> + h7 (I() - OéT‘T) ,

and their rates (¢ > 0):

1 1 . . .
U = 503T‘+§C4+I1+12+h(1+1/)10,

) E [1 1 kI, — I E.

_ L _p= 15
(23 1+I/ (2]{503 7‘204+ r > hrI(), (5 )
. E (1 1 kihyv+I, . .. .. E. .
Oy = m (5]6‘03 + ;'2'04 + - - g + ET - 6,0) + h?IO — hEaT.

In the case of plane strain and creep incompressibility additionally holds:

1 .
é‘z = E[(}Z—T/(UT‘*‘U:&)]+aT—é:—éfg=0,
o, = E vkCi — hEaT, (5.16)
1+v
5, = L <l/kC’3 + ok 4 hes 4 éf,) — hEoT,
1+v T
where auxiliary functions are defined in Table 5.1, and I, fo, fl, I, denote
=2 | Tede, —-a—]ng.f =T | fdg i —i/(z'—f')&dﬁ
0= > °0=7 » 1=3 ¢ , 2= 50 g .
0 0 0 0
(5.17)

Table 5.1. Auxiliary functions for basic rotationally symmetric deformation under unsteady tem-
perature field (after Ganczarski and Skrzypek [105])

Axisymmetric constitutive coupled creep—damage equations are formulated as:

Quantity Plane stress Plane strain
: 1-2
fola-nE-a|— E-&)
. e .c 1-2v,,
g €.+ VEy - Ey
1
h 1
1—v
P 1+v 1
l—v 1-—2v
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i) Plane stress, creep incompressibility conditions (orthotropic damage)

Dy, = Ci(T) (7)™, (5.18)
e partly coupled case
c (’5eq)m(T) T9/r\ ; c .c .c
Erpy = Oeq (0-7'/19 2 ) f(t)’ €, = — (81' + 619) s (519)
e fully coupled case
e (m ym(T)-1 Ir/9 0Y)r e ¢ _(z¢ 4 e 5.20
0= "7 [T - T, = (). (620)

i) Plane strain conditions (isotropic damage)

‘ (T)
e partly coupled case D = C(T') < a > ,

1-D
-c (‘Teq)m(T)—1 To/r + 02\ 2,
where &, = I UkD and Gy = lo'qu.
— Dy, _

5.3. Example: Cylinder subject to a non—stationary radial temperature field in—
plane strain conditions
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Figure 5.2. Long cylindrical thick-walled tube subject to a non—stationary radial temperature
gradient under plane strain conditions (after Skrzypek and Ganczarski[50])
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Consider a cylinder of inner and outer radii a and b, under the plane strain conditions,
subject to a non-stationary radial temperature field (Fig. 5.2). Stresses and their rates
satisfy (5.14-5.16) and boundary conditions for stress and temperature field hold:

or(a) =0 0.(b)=0 (t=0),
or(a) =0 &,(b) =0 (t>0), (5.22)

T@ =T, T®) =T (5.23)

Numerical simulation is done for two structural materials, carbon steel and stainless
steel, the thermo-mechanical properties of which are (Holman [107]):

1. Carbon steel (rolled, 0.40 Mn, 0.25 Si, 0.12 C, normalized, annealed at 850C): E =
150 GPa, ggp = 120 MPa, v = 0.3, @ = 1.4 x 107 K71, Ag = 43 Wm™'K™,
Ep = 0.60.

2. ASTM 321 stainless steel (rolled, 18 Cr, 0.45 Si, 0.4 Mn, 0.1 C, Ti, Nb, stabilized,
austenitic, annealed at 1070 C): E = 150 GPa, 092 = 120 MPa, v = 0.3, a =
1.85 x 1075 K1, A\g = 23 Wm™IK™1, g5 = 0.50.

In both cases radii ratio a/b = 0.5, and the Stefan-Boltzmann constant o = 5.609 x
1078 Wm~1K~* are assumed. Temperature affected creep/damage material constants are
listed in Table 5.2.

Table 5.2: Creep/damage material data versus temperature, after Odqvist [108]

Tlm|r| o2 C

(@) (MPa) | (Pa—"s™1)
carbon steel
500 33|35 80 1.34x107%7
55012523 40 2.75%x107%7
600 — | 1.0 27 5.14x10-17
stainless steel
500156(39| 210 |1.98x10~*
600 | 45]3.1] 100 |1.07x1073

650 40|28 60 1.21x10731
700 (35|25 38 8.91x10~%°
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Figure 5.3. A tube subjected to creep under stationary temperature field (effect of thermo—damage
coupling disregarded): a) scalar continuity parameter evolution, b) hoop stress redistribution (after
Skrzypek and Ganczarski [50])
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thermo—damage coupling incorporated, pure conductivity € = 0): a) scalar continuity parameter
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redistribution (after Skrzypek and Ganczarski [50])
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Figure 5.5. Evolution of continuity parameter, temperature, and hoop stress in case of equivalent
conductivity concept (Model C, Stainless Steel), (after Skrzypek and Ganczarski [50})

As a sampling solution the cylinder under stationary temperature field is considered, for
which the classical Fourier's equation yields:
1d dT
——(TA— | = T —1 Ty 5.24
S () =0 Tl =+ (5.24)

Damage localization near the inner edge and corresponding hoop stress redistribution are
shown in Fig.5.3a, b. Hoop stress relaxes with time to failure but not fast enough to overtake
the finite time of initial failure .

In order to account for effect of thermo—damage coupling on the lifetime prediction,
two models A (5.8) and C (5.10) have been examined by Skrzypek and Ganczarski [50] for
carbon steel and stainless steel cylinder material, respectively (Table 5.2).

When the linear conductivity drop is used (model A), if time increases the conduction
across the damaged surface in the failure zone asymptotically approaches zero, and, as a
result, both temperature and hoop stress jumps are produced in this zone (Fig. 5.4b, ). An
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accompanying stress relaxation is not fast enough to prevent the structure from fracture.
The corresponding lifetime ¢& is finite and shorter by amount of 15% when compared to
the sampling solution if thermo—damage coupling is disregarded, t* = 0.85t.

In case of a more advanced model C (5.10), when equivalent coefficient of thermal
conductivity accounts for both the conduction and radiation terms in stainless steel cylin-
der under thermo—damage conditions, damage localization close to the inner cylinder edge
results in a corresponding redistribution of the temperature field which is, however, not
as quick as in the case of model A, since even the completely damaged surface is capa-
ble of head transferring due to the residual radiation equivalent conduction (Fig. 5.5b).
A hoop stress redistribution that eventually yields a discontinuity formed across the com-
pletely damaged surface, results in 22% shorter lifetime prediction when compared to the
corresponding sampling solution, tf = 0.78¢®.

5.4. Example: Optimal design of rotationally—symmetric disks in thermo—damage
coupling conditions
A. Assumptions

Figure 5.6. Rotating disk of variable thickness (vs. constant thickness disk of the same volume)
stretched at periphery and cooled through faces (after Ganczarski and Skrzypek [98])

Thin axisymmetric disk of a variable thickness under plane stress conditions is considered
(cf. Fig. 5.6). The geometrically linear theory of small displacements and the additive
decomposition of strains are applied: € = £°+&°+¢&h. The fully coupled orthotropic creep—
damage approach is used (Table 3.1). The coupled thermo—damage problem is solved (model
C (5.12)) by the use of equivalent conduction concept. 1D non-stationary temperature field
is assumed T [r, D (r,t)] (temperature homogenization through the disk thickness) but only
quasi-static changes of temperature are allowed (7' = 0). 1D volumetric inner heat sources
are assumed

o = Gu {h (r), d’:lff’),fr I, D (r, t)]} . (5.25)

A uniform constant temperature along the periphery Ty = const and the constant temper-
ature of the cooling fluid stream (through the disk faces) T., = const are assumed as the
thermal boundary conditions. The body forces due to steady rotation with angular velocity
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w and the uniform peripheral tension, in a sense of constant force per unit length of the
periphery pg, are assumed as the mechanical loadings.

B. General equations of the mechanical state

A general mixed approach originally derived for a plate under membrane-bending state
by Ganczarski and Skrzypek [80], where the equation of membrane state is written by use of
the Airy function F whereas the equation of bending state is expressed by the appropriate
deflection function, is reduced to the case of a disk. Hence, n, = (F' /r)+U, ng = F" +U
where a potential of body forces is defined as U’ = —gw?rh, whereas symbol prime stands
for the derivative with respect to r. Finally, the fundamental mechanical state equations
are furnished:

U
B(r)

FIF)+ (1 - v)B(r)V? [
FIF] + (1 = v)B(r)aV?T + B(r)V? [

] + (1= 1)B(r)aV’T =0,
] ok 1] o
(5.26)

for t = 0 and ¢ > 0 respectively, where the differential operator F7...] as well as the auxiliary
operators V2 and V*, independent of circumferential coordinate, take the form (k = 0):

d 1 dd.. 2-vd:. 1d..
— 4 —_ 2
Fll=Vvi+ B(r)dr [B(r)} (2 T R dr)

d? 1 d?... vd..
B 3 [—B(T)J (W - m:) ! (527)
oo e 1de o dl 2d 1d 1d.
odr?2  ordr’ Toodrt rdrd r2dr?2 o pP3dr

The inelastic membrane forces expressed in terms of inelastic strains and the membrane
stiffness are defined as follows:

c c E(r)h(r
e = Br)(eSyo +ves), Blr) = 2 (529)
and constitutive equations for coupled creep—damage problem hold:
3éeq~
ézl = _~_eq'5kla k’l = Ta’ﬁy
Oeq
. 2 o ag
¢ _ (= \m(T) ~ _ r/d d/r
g = . f(t), S == - ,
€q (U Q) ( ) $ /9 3 <1 . Dr/ﬂ 2(1 _ Dﬂ/r))
(5.29)

o () + (225) -
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1-D,

C. Coupled thermo—mechanical boundary problem
The mechanical state fulfills (5.26) and the following mechanical boundary conditions (see
Fig. 5.6):

. o (T
D, = C’,,(T)< - > , v=r1.

ne(0) = 19(0), n.(R) =poho (¢ =0),

(5.30)
n-(0) = ng(0), n.(R)=0 (t>0).
The inner heat source intensity is defined:
B O (5.31)

= 7av T “ravhdr’
where an overall effect of convection through both disk faces is expressed by the classical
Newton law of cooling (cf. Holman [107]):

. rdddr 1 1
Q,=20dA(T - T,), dA=——, cosO = = )
( ) cos © V1+tan?© /14 (dh/dr)?

(5.32)

where Ty, is the temperature of the cooling fluid, hence:

1+ (dh/dr)?
G = _2ﬁ—+—(ﬁﬁ(T ~T,). (5.33)
The thermal boundary conditions are:
dT'/dr|,_,=0, T(R)=T (t=0),

0 (5.34)

dT/dr‘ (=0, T(R)=0 (t>0).

D. Optimization

As the optimality criterion the local condition for structures of uniform orthotropic
damage strength UODS (4.2) is used. The distribution of the disk thickness & (r) is consid-
ered as the decision variable. Two inequality constraints of a limited thickness and limited
temperature gradients are checked

honin < B (1) < humax,  max {dT/dr} < (dT/dr)

and the condition of constant volume (4.11) is used as the equality constraint.

A numerical procedure of optimization, based on the iterative corrections of the decision
variable, is used. When optimization with respect to uniform orthotropic creep damage under
constant volume is performed, increments of thickness are chosen proportionally to the level
of dominant damage tensor components

Ah; = PAD; — Ahm, AD; = sup{Dr},, (5.36)

(5.35)

max ’
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Table 5.3: Comparison of lifetimes for optimally designed disks (Model C)

constant thickness h(r) = hg ; thermo-damage coupling
No Aeq = Ao ¥es Aeq = Aeq (Mo, €0)
lifetime | e — ¢ ghea=rea00)) _ 1 014
uniform elastic strength hygs(r) ; thermo-damage coupling
No Aeqg = Ao ¥es Aeq = Aeq (Ao, €0)
lifetime tQea=reaCo0)) 1 03¢,.¢
uniform creep strength hycs(z) ; thermo-damage coupling
No Aeq = Ag yes Aeq = Aeq (Ao, €0)
lifetime | 0™ = 4.43t,¢ t0ga=tea00)) — 4 704,
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Figure 5.7: Optimal profiles of disks (after Ganczarski and Skrzypek [98])
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where the average thickness correction satisfies the constant volume condition
Zj PAD]'T‘]'
)
Zj s

whereas the step factor P is experimentally chosen. The process of damage equalization is
continued until the following condition is met:

sup {Dy9}; < EPS = 1. (5.38)

To solve the complete coupled initial-boundary problem the FDM is applied where (5.12)
and differential operators (5.27) are rewritten in terms of finite differences of T;, F;, h;, A*
with respect to r; coordinate at each time step ¢; (cf. [98]). Numerical procedure begins
when the elastic solution of the thermal and mechanical problems is known. Next, the creep
problem is entered that requires the vector of equivalent effective stress as well as damage
and strain tensors components are computed. The thermal problem is non—linear, hence, by
inserting the previous solution for temperature [T*]j to the equivalent thermal conductivity
A%, the solution of (5.12) in terms of finite differences provides the new temperature dis-
tribution [T');, considered as an approximate solution for A*! and temperature subiteration,
until the calculated [T'); differs from [T™]; with a given accuracy. Eventually, when rates

of temperature [T]; and inelastic forces [hﬁﬂ,]j are known, rates of Airy functions [F]; are

Ahpy = (5.37)

found and, finally, the vector of state is determined [T, 15 9, Tro);. In the next time step,
the Runge—Kutta Il is applied for the thermal and mechanical states, and when the new
vector of state is computed the program jumps at the beginning of the creep loop. Numer-
ical procedure is repeated until the conditional statement for highest damage component
(5.38) is met.

Numerical simulation is done for ASTM 321 stainless steel at temperature ranging from
500C to 650C (Table 5.2). Profiles of disks of Uniform Elastic Strength (UES) and Uniform
Creep Strength (UCS) are shown in Fig. 5.7. None essential difference in shape in cases of
thermo—damage coupling disregarded (A* = Xg) or accounted for A°}(\g, €9) is observed.
However, the essential differences in lifetime predictions occur (Table 5.3).

5.5. Three-dimensional thermo—damage coupling in initially isotropic material

In order to extend the previously discussed 1D thermo—damage coupling models to
the 3D case, consider the heat flux decomposition into the conduction and the radiation
vectors {q®n} = {qg‘;“d,qg‘;“d,q;‘;"d}j and {q™} = {q;ﬁd,q;d,qu}T, as controlled
by the tensors of thermal conduction L;; and thermal radiation I';; of damaged material
defined as follows:

Eij = Ao (Ii; — Dyj), I'ij = oeoDj;. (5.39)
Hence, the extension of the model B is written as:
div [)\0 (1 - D)gradT — aeoDnT4] + ¢, = copT, (5.40)

or
0

7

T , .
/\0 ([,] — D,’j) 87 had 0’60D,’j1’l,jT4 + qQy = Cva. (541)
J
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When the explicit representation is used we obtain

_3_{,\0 [(1—sz)g—:+(1—Dw)§z S )Z_T]

Oz Oy
— 0€g (Dyzng + Dyyny + Dg,ny) 4}
0 { oT BT
b {2 |1- DG+ 1= D) T+ -0, T
— 0€o (Dyzng + Dyyny + Dy,n,) ) T }
0 oT BT
+o {Ao [(1 ~Dn)a—x+(1 ~D,) — ay ]

— 0eg (Dygng + Dyyny + Dyon,) T } + Gy = copT.

The off-diagonal components of the corresponding matrices play a role of the diffusional
conduction and radiation portions due to the transverse temperature gradients. However,
both tensors L and I" are co—axial in their principal axes with the damage tensor D,
therefore, there exists a locally orthogonal frame coinciding with directions of damage
orthotropy such that (5.39) can be written as:

L,=X(1-D,), T,=0eD, v=123 (5.43)

Consequently, the heat flux rates expressed in terms of damage eigenvalues take the form
(Fig. 5.8)

0 (r)-Q“‘(x +dx)=d 0%
=0 +d0%

Figure 5.8: Three-dimensional concept of the equivalent heat conductivity
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geond 1-D; 0 0 dT 0z,
q§°“d = —)\0 0 1-— Dz 0 6T/6x2 R
cond
@ 0 0 1 — Ds 9T/ Dz
g D0 0 " (5.44)
@ p=o0e|0 Dy 0 ny T
5 0 0 Ds n3

A heat flux equation reduced to the case of thermo~mechanical orthotropy (model B)
is furnished now as follows:

0 orT
2 [,\0 (1= D)L oeoDiTt| + 2= 20 (1 = D2) 2L ey Dyt
oz, ' Oz, ; 0z Ozy (5.45)
9 _pa 9T _ 4| 9% _ 0T '
+8x3 [)\0(1 Ds;) 9o, UsngT] + T Cop TR

Model A is recovered from (5.45) when the radiation terms are omitted (g9 = 0).

Extension of the equivalent thermal conductivity model to the case of thermo—mechanical
orthotropy (model C) consists in introducing diagonal substitutive conductivity tensor Affj’d
in pseudo-undamaged material that corresponds to the equivalent radiation in damaged
material, such that:

0D, /0z,
0T/ oz,

A, denote average dimensions (v = 1,2, 3) of the defects (microcracks) in damaged mate-
rial. Eventually, the 3D equivalent heat flux equation in terms of three components of the
diagonal substitutive conductivity tensor Leq =L, + AL“’d, is furnished:

0 (7eq 0T 0 [7eq 0T 0 [5eq0T Jq orT
- Leq__ i eq ¥t v eq " v = )
Oz ( ! 63:1) + 0z <L2 61‘2) * O3 (L3 8z3> * ot~ ot (5.47)

In a general case, when the damaged material is anisotropic, complete representation
of thermal conductivity and radiation tensor L;; and I';; must be used instead of their
diagonal representation, such that additional terms connected with a diffusion due to the
transverse temperature gradients must appear. On the other hand, when principal directions
of the stress and damage change, a combined thermo—damage equations may be considered
at current principal damage directions to yield current heat flux anisotropy, though in a
reference space a general heat orthotropy occurs.

AL™ = ge, (4D,,T3 + T4> A, v=1,23. (5.46)
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MATERIALS DATA BASES AND MECHANISMS-BASED
CONSTITUTIVE EQUATIONS FOR USE IN DESIGN

D.R. Hayhurst
University of Manchester, Manchester, UK

ABSTRACT

The paper reviews the role of supercomputer simulation as a wealth creational tool in
the design and manufacture process. The route is highlighted from laboratory testing of
materials, through selection of mechanisms-based constitutive equations to the super-
computer simulation of the behaviour of high-temperature engineering components. The
theory of creep Continuum Damage Mechanics (CDM) is used as an example of a tool
that can be used to analyse/simulate the damage/rupture behaviour of a wide range of
engineering components operated at high-temperatures. The importance is stressed of
using mechanisms-based constitutive equations in order to achieve accurate
prdictions/extrapolations. Procedures are discussed for the selection of the dominant
mechanisms from laboratory data, and hence the relevant constitutive equations. It is
argued that the barrier to progress in the use of these techniques to achieve wealth
creation will be a paucity of good materials data.
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1. INTRODUCTION

Design and manufacture of new products are the key to sustaining a healthy
wealth creational base. However possession of a design and manufacturing facility
is no longer a passport to success. There are many other factors which are
decisive in the determination of successful wealth creation. Some of these may be
appreciated by reference to Fig. 1 in which a top-down systems approach is given
to the design process. The diagram is presented not as a definitive methodology
but as a discussion aid, and certainly it is recognised that many countries carry out
such functions in a highly parallel or concurrent mode, Preiss [1].

Marketing research, sometimes referred to as marketing but which is very
different from the sales function, is the key to the identification of which market
sectors, and of their size, that a particular product should be aimed at. Having
done that, market research can then be used to create the design specification.
Traditionally technologists have felt able, and qualified, to "know the minds" of
their clients and customers, and to be able to bypass the first two stages in the
process i.e. marketing research and design specification. Current activity in world,
and in national markets is such that large databases on market information have to
be established and continually updated. Quick access, ahead of the competition, is
an important aspect of maintaining and of extending ones market share. It is
recognised that data and information management associated with marketing are
an increasingly important part of design management. However, it will not be
covered in this paper explicitly.

Having identified a product and a market sector and from this information
written an unprejudiced design specification, which can be cast in basic or abstract
terms, the engineering design process can commence. It does so with the
formation of concept designs by encouraging the design team to think laterally; to
innovate, often using new technological breakthroughs; to use new materials; and,
to use new manufacturing techniques which will get the product to market quicker,
at the required quality, and at lower cost. This process requires large databases,
not just involving the lead company, but those of other companies such as design
out-sources, component suppliers, manufacturers and fabricators. This leads to
the requirements of shared data between companies, often competing, with a
need to maintain confidentiality and ones competitive edge. The very process of
sharing data, whilst exercising bounded control over accessibility, can slow down
the very process which one needs to speed up in order to be successful. In this
environment the correct hierarchical structuring of data, and the level of
accessibility is vital to success. Hence, data structures and robust software are an
essential part of the competitive process.

At the concept design stage the principal function is to propose design
variants, and to carry out assessments of the extent to which they satisfy the
design specification. It will be necessary to carry out design calculations operating
with lower levels of information for which the degree of precision need not
necessarily be high. The coarse sorting type of assessments carried out at the
concept phase lead to the rejection of inadmissible concept variants and to the
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identification of a reduced sub-set; which, in turn, requires assessment at higher
levels of information to enable the final concept selection to take place. This
further process is often referred to as embodiment design. It repeats the concept
level feedback - feed forward; and interactions with the manufacturing - assembly -
packaging functions, i.e. feed forward - feedback. Many of these functions are
materials selection dependent, and require the use of materials databases
containing different data sets each possessing a range of information qualities.
The embodiment phase naturally leads to a chosen design preference with clearly
delineated options and fall back strategies. However, in what follows in this paper
attention will be focussed on the materials database requirements.

The detailed design phase then follows in which a single design is examined
in great detail. Traditionally the role of this phase has been to satisfy the designer
that the technical function and the risk of unacceptable failure, as perceived by the
user and society, are acceptable. The phase naturally leads on to the manufacture
of the product or system, and to its infeed to the marketplace.

The manufacturing function is key to product quality and reliability. The
subject of manufacturing systems impacts on the cost and time to market, whilst
the technological aspects of manufacture relate directly to product integrity,
quality, cost and technological function. The role of materials processing in
manufacture is the technological aspect which is considered here. This has been
selected since it involves an upstream - downstream coupling with the design
stage of the process, which is brought about by the common material thread.

The major technological change which has taken place in recent years is the
availability of lower cost computer workstations and supercomputers, with access
to large, low cost, fast-access data storage facilities. At the same time, numerical
techniques and software for the solution of combined boundary-initial value
problems, often involving the finite element method, are becoming available in
robust forms. Hence it is possible, given the appropriate materials data and
models, to simulate complex physical processes in design and manufacture. In
parallel with these advances computer visualisation techniques and the
development of video animation facilities have reached a state of the art where
real time simulation, sometimes labelled virtual reality, is an accessible tool for use
in decision making in design and manufacture.

In this paper these aspects are first covered in more detail, then the materials
data requirements for supercomputer simulation in high-temperature design are
examined. The generation of materials data from laboratory testing is addressed,
and its subsequent conversion into higher levels of data and.information are
discussed in the context of several applications which are related to high-
temperature design. Firstly, the theory and principles of creep continuum damage
mechanics are reviewed for a single damage state variable theory. Secondly, the
multi-state variable modelling of an aluminium alloy, and the relationship of the
models to the physics of damage evolution are discussed. Thirdly, the model is
used to analyse the behaviour of a simple uni-axial creep testpiece to assess the
accuracy of the measurement process. Fourthly, the paper considers general
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formulations of multi-damage state variable theories and addresses the problems
associated with mechanism identification and model calibration. Finally,
conclusions are made on general methodologies for use of materials databases to
select mechanisms-based constitutive equations, and to calibrate them against
laboratory data for use in detailed design/analysis.

Firstly, before these detailed aspects are addressed, an overview is now
presented of data requirements throughout engineering.

2. REQUIREMENTS FOR DATA THROUGHOUT ENGINEERING

2.1. The wealth creation process

A top-down sequential approach to the wealth creation process [2] is shown
in Fig. 1. The serial approach from market research to the delivery of the product
in the marketplace is not always enacted in industry. This is largely dependent
upon the type of design to be carried out. For example if the design is totally
original then market research is essential and the entire process is enacted. If the
design is an adaptive one then only part of it is original, and for that part the entire
process is utilised as shown in Fig. 1; for the remaining part of the design

MARKET RESEARCH

\

DESIGN SPECIFICATION

CONCEPT DESIGN

DETAILED DESIGN

4

MANUFACTURE

MARKET PLACE

Figure 1. Top-down serial approach to Marketing, Design, and Manufacture,
within the Wealth creation process.
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activity, which could involve repetition of a previous design, only the latter phases
of detailed design and manufacture etc. are implemented. If the design is variant in
nature then by definition this involves the scaling of a previous design without any
major conceptual or procedural changes; and in this case only sub-sets of the
entire process of Fig. 1 are enacted, usually involving parametric computer
techniques. A cost effective solution is then simply achieved by implementing what
has been done before using the same workforce, without any innovation.

In practice the serial approach shown in Fig. 1 is increasingly less used as
the benefits of simultaneous or parallel operation become more generally
accepted [1]. The degree of parallelisation depends upon many factors which can
include: company size; the divisibility of the product into sub-units; the muilti-
disciplinary nature of the design; and, whether the design is original, adaptive or
variant. What is clear, however, is that the shift to parallelism highlights the need
to plan, execute and control the design using a software based system. The
difficulties associated with the management of task forces or design teams, and
also the rewards to be gained are well known. They highlight the need for data
which defines the current design status, the level of input from several disciplinary
groups, the degrees of interaction, and project management; and, they all require
dynamic databases for use with appropriate levels of interaction, accessibility and
user constraints.

The main industrial drivers are to shorten:

(a) the time from concept initiation to the commissioning of the first prototype;
(b) the time from concept initiation to product launch;
(c) increase product quality, reduce cost;

(d) maximise reliability and minimise the risk of failure.

Since the use of materials is central to the creation of new products, their
selection and utilisation are essential to success. In the following sections the
materials related aspects are considered with particular reference to concept
design and to detailed design and manufacture.

2.2, Materials data requirements for concept design

Implied in Fig. 1 are the information flow and material requirements for
concept design. The first three boxes may include solid-surface modelling, rapid
prototyping, and the need to consider company manufacturing methods,
constraints and costs, and customer liaison. The need for materials data
encompassing basic physical properties, availability and cost is required prior to
the formal concept design stage. These needs are well known, Ashby [3] has
discussed the type and level of precision of the data required at this stage. At the
conceptual stage there is a need to technically innovate, and to utilise methods of
market forecasting. Both of these features are crucial to the identification of new
market opportunities; they each require a considerable company-industry
database which is progressively updated, and which is seen as a major
competitive edge for the particular company involved. It is therefore a database for
which a high level of confidentiality must be maintained, and therefore access and
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level of usage has to be carefully controlled. At the bottom of Fig. 1 connectivity is
required with company manufacturing methods etc. It is here that the
manufacturing systems aspects of the company are logged in a large database,
and opportunities for using spare manufacturing capacity within given time
windows can be identified.<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>