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Preface  

The area of differential equations has played a central role in the development of 

mathematics and its applications for nearly four centuries, yet it still displays an 

unabated vitality. The field involves vigorous cross-disciplinary interactions, and 

research papers appear in a variety of mathematics and science journals. Such 

breadth and fertility create difficulties for those who wish to keep abreast of 

recent developments. Consequently, it is beneficial to have occasions which bring 

together experts in this field in a forum that  encourages the exchange of ideas 

and leads to timely publication of new results. Such an occasion occurred during 

January 13 to 16, 1990 when some two hundred research workers participated 

in the International Conference on Differential Equations and Applications to 

Biology and Population Dynamics which was held in Claremont. The occasion 

was particularly noteworthy because it provided a venue for the celebration of 

the 65th birthday of Kenneth Cooke, a seminal worker who has made numerous 

pioneering contributions in delay differential equations and population dynamics. 

This volume contains a selection of papers on delay differential equations and 

dynamical systems which were presented at the conference and accepted after 

peer review. A companion volume in the Biomathematics Lecture Notes series 

of Springer contains papers devoted to applications in biology and population 

dynamics. The areas of these volumes have close and fruitful interactions, and 

Kenneth Cooke has been one of the most artful and original practitioners in this 

interdisciplinary research work. 

The contributions in this volume are collected in two groups, the first con- 

sisting of survey articles and the second of research papers. The three survey ar- 

ticles are by Kenneth Cooke and Joseph Wiener who review the recently opened 

area of differential equations with piecewise continuous arguments; by Jack Itale 

who discusses a fascinating array of results in the stability of delay differential 

equations viewed as dynamical systems; and by Paul Waltman who presents an 

overview of useful new results on persistence in dynamical systems. The research 

contributions part  of the volume consists of nineteen papers which present new 

results in delay differential equations and dynamical systems. The papers are 

united by the common thread of the underlying topic but, as is characteristic 

of this field, employ a wide array of deep mathematical  theories and techniques. 

These include methods from linear and nonlinear functional analysis, a num- 

ber of topological and topological degree techniques, as well as asymptotic and 

other classical analysis methods. Many of these mathematical  techniques were 

originally created in order to address problems arising in the field of differential 

equations and are still being stimulated by challenges from this field. 

The research conference which lead to this volume was supported by the Na- 

tional Science Foundation through grant number MCS-8912391 and by Harvey 

Mudd College which hosted the meeting. A large number of individuals gave 

invaluable help during all phases of the conference. Our special gratitude goes 

to those who helped prepare the manuscripts for publication: Sue Cook, Jeffrey 
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McClelland, Beth Nyerges, Barbara Schade and David Williamson. The edito- 

rial staff of Springer gave us constant support and was always ready to respond 

to our requests for help and information. Finally, the many researchers who 

contributed time and expertise in refereeing the papers provided an invaluable 

service to the members of the mathematical community who will use this vol- 

ume. Our sincere gratitude goes to all, both named and unnamed, who have 

helped in this mathematical endeavor. 

Stavros Busenberg and Mario Martelli 

Claremont, California 
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A Survey of Differential Equations with 
Piecewise Continuous Arguments 

K e n n e t h  L .  C o o k e  1 a n d  J o s e p h  W i e n e r  2 

1 Mathematics Department Pomona College, Claremont, CA 91711 
2 Department of Mathematics The University of Texas-Pan American Edinburg, Texas, 

78539 

1 I n t r o d u c t i o n  

The general theory and basic results for functional differential equations have 

by now been thoroughly explored and are available in the famous book of Hale 

[19] and subsequent articles by many authors. Nevertheless, there is still need 

for investigation of special equations, which may have interesting properties and 

provide insight into the more abstract theory. In this review article, we shall 

describe some of the work that  has been done by us and others over the last 

few years on the differential equations that  we call equations with piecewise con- 

tinuous arguments, or EPCA. Our attention was directed to these equations by 

an article of A.D. Myshkis [23], who observed that  a substantial theory did not 

exist for differential equations with lagging arguments that  are piecewise con- 

stant or piecewise continuous. Since that  time several authors have investigated 

equations of this type. The purpose of this article is to give a brief survey of 

the present status of this research and to point out some directions for further 

study. 

A typical EPCA is of the form 

. ' ( t )  = y ( t ,  . ( t ) ,  . ( h ( t ) ) )  , (1) 

where the argument h( t )  has intervals of constancy. For example, in [9] equations 

with h( t )  = [t], It - n], t - nit] were investigated, where n is a positive integer 

and [ ] denotes the greatest integer function. Note that  h( t )  is discontinuous 

in these cases, and although the equation fits within the general paradigm of 

delay differential or functional differential equation, the delays are discontinuous 

functions. Also note that  the equation is non-autonomous, since the delays vary 

with t. Moreover, as we show below, the solutions are determined by a finite 

set of initial data, rather than by an initial function as in the case of general 

functional differential equations. 

Before delving into a general theoretical discussion, we mention an example, 

the equation 

x ' ( t )  = ax ( t ) (1  - x([t])) . (2) 
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This equation is analogous to the famous logistic differential equation, but t in 

one argument has been replaced by It]. As we shall explain in further context 

in Sect. 6, the equation has solutions that display complicated dynamics. It is a 

first order equation, and is one of the simplest examples of a differential equation 

with chaotic dynamics. It seems likely that other simple nonlinear EPCA's may 

display other interesting behavior. 

This paper is organized in the following way. In Sect. 2, we attempt to intro- 

duce most of the kinds of EPCA that have been considered, including linear and 

nonlinear, retarded, advanced, neutral, and mixed. Basic definitions of solution 

will be given, connections with difference equations will be shown, and theorems 

on existence, uniqueness, representation, and stability will in some typical cases 

be given. In Sect. 3, we derive specific conditions for stability as it depends on 

the "delay" for a class of scalar equations. In Sect. 4, we survey some of the work 

that has been done on oscillation and existence of periodic solutions. 

The numerical approximation of differential equations can give rise to EPCA 

in a natural way, although it is unusual to take this point of view. For example, 

the simple Euler scheme for an ordinary differential system x ' ( t )  = f ( x ( t ) )  h a s  

the form x , + l  - x , ,  = h f ( x , ~ ) ,  where ~,~ = z(nh) and h is the step size. This is 

equivalent to the EPCA 

z ' ( t )  = f ( x ( [ t / h ] h ) )  . (3) 

In Sect. 5, we take this point of view and present some theorems on the approx- 

imation of differential delay equations by EPCA. 

Another potential application of EPCAs is in the stabilization of hybrid 

control systems with feedback delay. By a hybrid system we mean one with a 

continuous plant and with a discrete (sampled) controller. Some of these systems 

may be described by EPCA. This problem is presently being investigated by Mr. 

Gregg Turner at the Claremont Graduate School. 

Section 6 contains additional comments, including a description of equations 

of alternating type, and more information concerning the above chaotic equation. 

2 E x i s t e n c e ,  u n i q u e n e s s ,  r e p r e s e n t a t i o n ,  s t a b i l i t y  

An equation in which x~(t) is given by a function of x evaluated at t and at 
arguments [t] , . . . ,  [t - k] where k is a non-negative integer may be called of 

retarded or delay type. If the arguments are t and It + 1], . . . ,  It + k], the equation 

is of advanced type. If both these types of argument appear in the equation, it 

may be called of mixed type. If the derivative of highest order appears at t 

and at another point, the equation is generally said to be of neutral type. The 

equations may, of course, be linear or nonlinear. Equations of retarded type have 

been studied by Cooke and Wiener [9], [12], Aftabizedeh, et. al. [6] and Gyori and 

Ladas [16]. Equations of advanced, neutral, and mixed types were investigated 

by Shah and Wiener [25], Cooke and Wiener [10], and others. Equations of 

alternating type have also been investigated and these will be described later in 
Sect. 6. 
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We now describe how an initial value problem may be posed and solved for 

the following linear equation of mixed type, since it provides a simple framework 

for understanding more complicated problems. 

N 

z ' ( t )  = Ax( t )  + Z Ajx[[t  + j]] , 
j = - N  

(4) 

x ( j ) = c j ,  - N < j < N - 1  , (5) 

where [.] designates the greatest-integer function, A and Aj are constant r × r 

- matrices, and z and cj are r-vectors. Following [10], we say that  a solution 

of (4)-(5) on ( -0% oo) is a vector x(t) that satisfies the conditions: (i) x(t)  is 

continuous on ( -oo,  oo); (ii) the derivative x'(t)  exists everywhere, with the pos- 

sible exception of the points It], where one-sided derivatives exist; (iii) Equations 

(4)-(5) are satisfied on each interval In, n + 1), with integer n. 

In contrast to the situation with general functional differential equations, 

the fact that  (4)-(5) contains both retarded and advanced arguments does not 

pose particular difficulties. We shall now" prove Theorem 1, which generalizes 

Theorem 2.4 in [10]. First, we define some notation. Let 

Mo(t) = e At -I- [e At - I]A-1Ao , (6) 

Mj( t )  = [eAt - I ]A-1Aj ,  j = : t : l , + 2 , . . . , + N  

B1 -- MI(1) - I, Bj = MS(1 ), j ~ 1 

(7) 

(s) 

T h e o r e m  1. I f  the matrices A and BgcN defined in (8) are nonsingular, then 
problem (4)-(5) has a unique solution on (O, oo). This solution cannot grow to 

infinity faster than exponentially. 

Proof. Let xn(t)  be a solution of (4)-(5) on the interval [n,n + 1). If we let 

cn = x(n) ,  for integer n, then we have the equation 

N 

z ' , ( t)  = Axo( t )  + y ~  Ajc°+j 
j = - N  

(9) 

with the solution 

N 

= ea '--)Co + [ca('--)_ I] Z 
j = - N  

which can be written, by virtue of (6)-(7), as 

N 

• °(t) = M (t - . 

j=-N 

(1o) 
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From (10) we see that  it suffices to know the constants cn in order to determine 

x(t). Taking into account that  x , ( n  + 1) = xn+1(n + 1) = c~,+1, we obtain 

N 

This equation takes the form 

j = - N  

n >_ 0 . (11 )  

N 

B j c . + i  = 0 (12) 

j = - N  

Its  part icular  solution is sought as zn = A'~k, where k is a nonzero vector, then 

det  B_N+j)d = 0 . (13) 

L j=0 

Equation (13) has 2Nr nontrivial solutions if de tB_N ¢ 0 and detBN ¢ 0. 

Assuming that  these roots are simple we write the general solution of (12) 

2Nr 

c,~ -- ~ A2k j , (14) 

j= l  

with constant vectors kj each of which depends on the corresponding value Aj 

and contains one arbi trary scalar factor. These factors can be found from the 

initial conditions in (5). Letting n = - g , . . . ,  N - 1 and c,~ = z(n) in (4)-(5), 

we get a system of equations with Vandermonde's  determinant  det [A~] which is 

different from zero. Hence, the unknown vectors kj are uniquely determined by 

initial conditions (5). If  some roots of (13) are multiple, then 

n 

c .  = m _< 2 N r  

j = l  

where the components of the vectors pj (n) are polynomials of degree not exceed- 

ing m - 1. Substi tuting the vectors c,, in (10) yields the solution of problem (4) 

on n < t < n + 1. This concludes the proof. 

Remark. Another way to interpret Theorem 2.1 is as follows. We see that  the 

values Cn = x(n) satisfy an autonomous difference equation, and so there is an 

underlying discrete dynamical  system that  determines the solution x(t) for real 

t. 

Remark. The requirement tha t  B_N be nonsingular is nonessential. If  B-N is 

singular, solution (10) on (0, c~) depends on, at most 2 N -  1 initial conditions 

x(j) = cj, - ( N - 1 )  < j < N - 1 .  
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If B - N  is nonsingular, the solution of problem (4)-(5) has a unique backward 

continuation on ( -c~ ,0 ) .  From (10) and (14) it follows that the solution x = 0 
of (4) is globally asymptotically stable as t ~ +oo if and only if the roots of 

(13) satisfy the inequalities 

IA/I < 1 j - - - - 1 , . . . , 2 N r  . (15) 

T h e o r e m  2. The problem 

N 

z ' ( t ) = A x ( t ) +  E A j x [ [ t + j ] ] + f ( t ) ,  N > 2  (16) 
j = - N  

x(j)  = cj, j = 0 , 1 , . . . , 2 N -  1 (17) 

has a unique solution on [ 2 N - 1 ,  oe) i f  the matrices A and B:t:N are nonsingular 

and the vector f ( t )  is locally integrable on [0, cx~). 

The proof has been given in [10] and employs the formula 

N t 

x , ( t )  = E Mj( t  - n)c,+j + f~ eA( t - s ) f ( s )ds  (18) 
j = - N  

for the general solution of (16) on the interval n _< t < n + 1, where the Aij(t) 
are defined in (6)-(7). 

The following results have also been established in [10]. 

T h e o r e m  3. All solutions of (16) are bounded on [ 2 N -  1, co) if  f ( t )  is bounded 

on [0, oo) and inequalities (15) hold true. 

T h e o r e m  4. All solutions of (16) tend to zero as t ---, +c~ if the roots of ( 1 #  

satisfy (15) and l imf ( t )  = 0 as t ~ +c~. The solutions of (16) cannot grow 

faster than exponentially if f ( t )  has the same property. 

If the coefficients of (4) are variable matrices of t E [0, oe), its solution xn(t) 

on n _< t < n + 1 satisfying the condition zn(n)  = e,~ is given by the expression 

[ z ] u(t) v-l(n)c.  + } 2  , (19) 
j = - N  

where U(t) is the solution of the matrix equation 

U'(t) = A(t )U(t) ,  U(O) = I . (20) 

In [10], this representation was derived and used to obtain sufficient conditions 

in order that solutions tend to zero as t approaches oo. 

In concluding this section, we point out that existence-uniqueness theorems 

for nonlinear EPCA have been proved in [9,10,28]. Logistic equations with piece- 

wise constants arguments have been explored in [7,13]. The study of differential 

inequalities with piecewise constant argument and their application to EPCA 

was initiated in [1,3]. Continued fractions appeared useful in the theoretical and 

numerical analysis of EPCA [29]. 
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3 S t a b i l i t y  as a f u n c t i o n  o f  d e l a y  

In this section, we consider stability of the null solution of equations of the form 

x ' ( t )  = ax( t )  + ~-'~ a j x  "~r a r -  jo~r (21) 

j=0 

where a and aj are real constants, r > 0, and c~ is a positive parameter.  Special 

cases of (21) may arise in hybrid systems where there is a time delay r in applying 

feedback control. For the case r = ~ = 1, this equation was studied in [9]. We 

now direct attention to the way in which stability depends on c~r, as well as on 

the coefficients. 

Let Xn(t) denote a solution on the interval [n~r, (n + 1)~r). On this interval, 

we have 
N 

x~(t)  = axn( t )  + ~ ajx•((n - j)c~r) (22) 

j=0 

which has the solution 

N 
;gn(t) : Xn(nOll*)e a(t-nc~r) -1- (e  a ( t - n a r )  -- l )a  -1 ~ a j X n ( ( n  -- j ) a r )  (23) 

j=0 

Let x ( n a r )  = c , .  Then for continuity at (n + 1)(~r we obtain 

N 

c ,+l  =Cne a~r + (e a"r - 1)a-1 Z ajc,~_j (24) 
j=o 

Stability for this difference equation is governed by the characteristic equation 

f ( A , ~ r , A )  = A N+l - Bo(~)A N - . . . -  B N ( a )  = O (25) 

where 

B j ( a  ) = ( e  a r a - 1 ) a - l a j  ( j =  I , . . . , N ) .  

Bo(a)  = e c'ra + (e ara - 1)a- la0.  

We now prove the following theorem 

T h e o r e m  5. Let r > 0 and assume 

(H1) 
N 

a + ~ a j  < O. 

j=0 

Then there exists a maximal  interval (0, a0), with 0 < ao < oo, such that all 

roots of  f ( )Lc~r ,A)  lie in I~1 < 1 force E (0, c~0), and therefore the zero solution 

of  (21) is asymptotically stable. 
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Proof. Since Bj(0) = 0, B0(0) = 1, (25) has, at o~ = 0, an N-fold root at ~ = 0 

and a simple root at ,~ = 1. Consider the root ~(~) such that  A(0) = 1. This 

root depends continuously on c~ and is a differentiable function of a for small a .  

We have 

( g + t ) , - N _~d A _ g ~ n _ t B o ( c~ ) d_~a s - Bt° ( ~ ) +~ N 

N N 
-- E B~ (a )AN- j  - E ( u  - J)AN-j-IB~(°~) dA = O. 

da 
j = l  j = l  

N o w  

B; = e 

! 

Bj (0) = raj,  

Setting o~ = 0, ,~ -- 1, we obtain 

"to, 

d ~ l a  0 = r  a +  aj . 
d~ = 

By hypothesis (H1), this is negative. Consequently, ,~(ot) < 1 and ,~(c~) is real for 

all sufficiently small positive a.  Thus all roots of f (~,c~r ,A) = 0 lie in [h I < 1 

for sufficiently small positive a.  Since B0 and Bj depend continuously on o~, so 

do the roots, and the existence of the maximal or0 follows. 

C o r o l l a r y  6. Assume that (H1) holds and also 

(H2) f (~ ,  c~r, A)  • O, for IAI--- 1, 0 < a < c¢ . 

Then (21) is asymptotically stable for every positive a. 

Indeed, since (Ht)  holds, there exists ao such that  all roots of f()~, a t ,  A) = 0 

lie inside the unit circle for 0 < a < a0. By (H2), no root reaches or crosses the 

unit circle as o~ increases, and hence there is asymptot ic  stability for 0 < o~ < 0o. 

C o r o l l a r y  7. Assume that (H1) holds and also 

(H3) f(A, ar ,  A ) # 0 ,  f o r l A l = l .  0 < ~ _ < 1 .  

Then (21) is asymptotically stable for 0 < a < 1, and, in particular, for  (21) 
with ce = 1. 

In [12], the "first-order" equation with N = 0 was examined and the stability 

region in the (a, a0) parameter  space was precisely described and was compared 

with the stability region for the first order differential-difference equation with 

constant lag r. The  "second-order" equation with N = 1 was also investigated 

and a set of (a, ao,al)  found for which there is asymptot ic  stability for every 

positive r. 
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4 O s c i l l a t o r y  a n d  p e r i o d i c  s o l u t i o n s  

The oscillatory and asymptotic behavior of solutions of differential equations 

with deviating argument has been the subject of many recent investigations. 

Of particular importance, however, has been the study of oscillations which are 

caused by the argument deviations and which do not appear in the corresponding 

ordinary differential equation. Although some oscillatory properties of EPCA 

were mentioned in [9,10,25,27], the first consistent at tempt in this direction was 

made in [5]. For scalar equations with constant coefficients, examination of the 

related difference equation can yield results. The following theorem was proved 

in [25]. 

T h e o r e m  8. In each interval (n, n + 1) with integral endpoinis the solution of  

the equation 

x ' ( t )  = ax( t )  + aox (It]) + a l x  (It + 1]) 

with the condition x(O) = co ~ 0 has precisely one zero 

1 ao + ale a 
t,~ = n +  - I n  

a a + a o + a a  

ff 
~e a ] a [o1 >0. 

g (26) is not satisjqed and ao # - a e ° / ( e  o - 1), the solution has no zero in [0, o~). 

The paper [5] deals with the oscillatory properties of solutions of the scalar 

first order EPCA 
• '(t) + a(t)x(t) + p(t)x ([t]) = 0 ,  (27) 

and 
~'(t) + a(t)~,(t) + q(t)x  ([t + 1]) = 0 , (28) 

where a( t ) ,p ( t ) ,  and q(t) are continuous on [0, c~). Sufficient conditions under 

which equations (27) and (28) have oscillatory solutions are given. These con- 

ditions are the "best possible" in the sense that  when a,p,  and q are constants, 

these conditions reduce to 

a --ae a 
P > (c a - 1"-------~ and q < (e a _ 1"-----~ 

which are necessary and sufficient conditions. The proof of these conditions de- 

pends on establishing the following results on differential inequalities. 

T h e o r e m  9. Consider the delay differential inequality 

x ' ( t )  + a( t )x ( t )  + p( t )x  (It]) _< 0 , (29) 

where a(t) and p(t)  are continuous on [0, c¢). Assume that 

in+ [£ ] lira sup p(t)  exp a(s)ds  dt > 1 . (30) 

Then (29) has no eventually positive solution. 
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T h e o r e m  10. I f  (30) is satisfied, the delay differential inequality 

x'(t) + a(t)z(t)  + p(t)x ([t]) > 0 

has no eventually negative solution. 

From these theorems it follows that subject to (30), (27) has oscillatory 

solutions only. Note that when a(t) and p(t) are constants (30) reduces to 

a 

P >  (e° - 

which is sharp. In the same fashion, the condition 

lim i n f /  q(t)exp - a(s)ds dt < - 1  . (31) 
n ""-* I ~  J n 

is sufficient to show that  (28) has oscillatory solutions only. If a(t) and q(t) are 

constants, (31) becomes 
- - h e  a 

q < ~  
(e a - 1) 

which is sharp, according to (26). 

Oscillatory and periodic solutions of the equation 

z'(t) + a(t)z(t)  + b(t)x (It - 13) = 0 , (32) 

where a(t) and b(t) are continuous on [0, co), have been studied in [6]. In par- 

ticular, suppose that  b(t) > 0, and for t > 0 

[// ] tim sup / b(t) exp a(s)ds dt > 1 , 
n o c  a n  - 1  

then (32) has oscillatory solutions only. Another condition of this kind is obtained 

in the following: 

T h e o r e m  11. Assume that 

[ [ U  ]] [/7 [ i ' ] ]  1 lim inf exp a(s)ds • lira inf b(t) exp a(s)ds ds > -~ . 
n - ' ~  OO n -"*  OO 

(33)  

Then (32) has oscillatory solutions only. 

Similar results for higher order equations have not yet been found. 

If a(t) and b(t) are constants, i.e. 

x'(t) + ax(t) + bx ([t - 1]) = 0 , (34) 

then the solution of (34) with the initial conditions x ( - 1 )  = e - l ,  x(0) = co can 

be written as 

x(t) = ene -a(~-n) q- b (e-a(t-n) - 1)Cn-1 , 
12 
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for t E [n ,n  + 1) ,n  = 0 , 1 , 2 , . . . ,  and  

[ , ,~?+1(C 0 - -  , ~ 2 C _ 1 )  - -  ( C  O - -  ~ 1 C _ 1 ) , , ~  + 1 ]  

Cn = A1 -- A2 ' 

where  A1, A2 are the  roots  of  

A 2 - e - a A + - b ( 1 - e  - ° ) = 0  . 
a 

I f  these roots  are re'M, assume At > A2. Equa t ion  (34) has no osci l la tory solut ion 

if e i ther  of  the following hypotheses  holds true: 

1. b < 0 a n d c 0 - A 2 c _ l  # 0 ,  or 
ae - a  

2. 0 <  b <  4-(Zz: ~ . 

Observe  t ha t  any one of  these condit ions implies A1 and A2 are real. Fur the rmore ,  

if b < 0 and Co = A2c_1, then  (34) has oscil latory solutions.  Hence,  we conclude 

t ha t  a necessary and sufficient condit ion for the solutions of  (34) to be  osci l latory 

is e i ther  
ae-a 

b > (35) 
4(e ~ - 1) 

o r  

b < 0 and co = A~c_l . (36) 

This  proves tha t  (33) is the "best  possible" in the sense t ha t  when a and b are 

constants ,  it reduces to (35)-(36) which is sharp.  I f  ei ther  

u e  - a  a e  a 
< b <  - -  

4(e" - 1) e ~ - 1 

o r  

- a  < b < 0 and co = , ,~2c_1 

takes place, then  every oscil latory solution of (34) tends to zero as t ~ + o c .  

Equa t ion  (34) exhibi ts  unusual ly  interest ing proper t ies  concerning the exis- 

tence of per iodic  solutions.  Some results  in this direct ion m a y  be  found in [6]. 

T h e o r e m  12. Assume b > O, and let k be a positive inieger. Then every oscil- 

latory solution of (34) is periodic of period k if and only if 

f 2 7 r m l  
aea and a = - l n  [ 2 c o s - - ~ J  , (37) b - e . - - - ~ l  

where m k , l tively p r ime  m = 1 , 2 , . . . ,  

T h e o r e m l 3 .  Let b < 0 and e0 = A2e- t .  Then every oscillatory solution is 

periodic of period 2 if and only if 

b - - ~(e° + 1) 

e a -  1 
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T h e o r e m  14. For given co and c-1, the set of all equations of type (34) having 
periodic solutions is countable. 

The above results were obtained with the implicit assumption a ~ 0. If a = 0, 

then (37) becomes 
a e  a 

b = l i m -  - 1 . 
a--*o c a -- 1 

In this case (34) with a = 0 and b = 1 has periodic solutions of period 6. 

In conclusion, we list a few properties of (4)-(5) with constant scalar coeffi- 

cients concerning the existence of oscillatory solutions. 

T h e o r e m  15. Suppose that x(t)  is a solution of (4) such that x(n)  # 0 and 

x(n + 1) # 0. Then x(t)  has a zero in (n, n + 1) if  and only if x(n) and x(n  + 1) 

have different signs, and this zero is unique. 

Proof. I f x ( n +  1)Ix(n)  < 0, it is clear that x(t) has a zero in (n, n +  1). Assuming 

the existence of several zeros implies that between any two consecutive zeros 

there is a point ~ such that  x'(~) = 0. On the given intcrval (4) becomes 

N 

x'(t)  = ax(t)  + E ajCn+j , 
j = - N  

and differentiating this relation successively yields 

~(k)({)=o, k > 2 .  

Since x(t)  is analytic in (n, n +  1), it is constant which is impossible. On the other 

hand, i f x ( n + l ) / x ( n )  > 0 and we assume that  x ( t , )  = 0 for some t,~ e (n, n + l ) ,  

then we must conclude that  either x ' ( t , )  = 0 or that  x(t) has another zero in 

(n, n + 1). In both cases, x(t) is constant. 

T h e o r e m  16. I f  all roots of (13) are positive, equation (4) has no nontrivial 

oscillatory solution. 

Proof. We have 

x(n + 1) _ c ,+ ,  E2=N1 kjA~ +1 

and since not all of the coefficients kj equal zero, then 

lim (c,,+l/en) = A,, > 0 

where A,,~ is a root of (13). Hence, cn+l/cn > 0 for large n, and the proof follows 

from Theorem 15. 

T h e o r e m  17. I] all roots o f (13)  are negative, every solution of (4) is oscillatory 

and has a unique zero in each inter~,al [n, n + 1), for large n. 
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Oscillatory properties of n-dimensional systems (4) have been studied in [18] 

and [21], where it is shown that  every solution of (4) oscillates (componentwise) 

if and only if its characteristic equation has no positive roots. Oscillatory prop- 

erties of some classes of nonlinear EPCA may be found in [16], where it is shown 

that  under appropriate hypotheses a nonlinear EPCA oscillates if and only if an 

associated linear equation oscillates. Stability and oscillation of neutral EPCA 

with both constant and piecewise constant delays have been investigated in [24]. 

These properties for a second order EPCA alternately of retarded and advanced 

type were also explored in [22]. The characteristic equation for linear EPCA with 

both constant and pieeewise constant delays was discussed in [14]. The forth- 

coming book [17] contains a chapter devoted to EPCA. The study of oscillations 

in systems of EPCA was originated for the first time in [30]. 

5 A p p r o x i m a t i o n  o f  e q u a t i o n s  w i t h  d i s c r e t e  d e l a y  

Equations with piecewise constant delay can be used to approximate delay dif- 

ferential equations that  contain discrete delays. For example, consider the scalar 

equation, with one constant delay r, 

with the intial condition 

• '(t)  = - p ( t ) x ( t  - r ) ,  t >_ o (38) 

x(t)  = ¢(t) ,  < t < 0 (39) 

where ¢ is a given function in C = C([-r,O],IR). Let k be any positive integer 

and let h = r/k. We may approximate this problem by the EPCA 

y~(t):-p(t)Y([h-[h]]h ) (40) 

with initial condition 

y(nh) = ¢(nh), n = - k . . . , O  . (41) 

Moreover, by using the methods already described we find that  y(nh) = c,~ 
satisfies the difference equation 

(n+l)h 

C n + l  - -  Cn ~- - -  p ( u ) d u c n _ k  (42) 
d n h  

c,, = ¢(nh), n = - k , . . . , 0  . (43) 

It was proved in [15] that the solution of (40), (41) provides a uniformly good 

approximation to the solution of problem (38), (39) on any compact interval 

[0,T], T > 0. This result was extended in [8] to convergence on t E (0, oo), in 

case the zero solution of (38) is exponentially stable. Specifically, the following 

theorem was proved. Let x(t0, ¢) denote the solution of (38) with initial condition 
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set on [to - r, to]. Assume that there exist constants L and a such that  for every 

to > 0 and continuous ¢ 

Ix(to,¢)(t)l < L]l¢lle -~ ( ' - ' ° ) ,  t > to (44) 

where I1¢11 denotes the supremum norm of ¢. 

T h e o r e m  18. (a) For every h = r /k  (k > 1) and every ¢ in C, there exist 
constants k ,Ml(¢ ,h)  >_ O, and M~(¢) > 0 such that Ml(¢,h)  tends to zero as 
h ~ O, and such that the solutions x(¢)(t) of (38), (39) and y(t) of (40), (41) 
satisfy 

Ix(¢)(t)  - y(C)(t)l < {Mx(¢, h) + htM2(¢)}e -(a-Kh)' (45) 

for t > 4r. 
(b) Assume the additional hypothesis that ¢ is differentiable on I - r ,  0] and 

satisfies the consistency condition ¢ ' (0 - )  = - p ( 0 ) ¢ ( - r ) .  Then there exists a 
constant Ma(¢) > 0 such that for t > 0 

Ix(¢)(t)  - y(¢)(t)l < {Mz(¢) + tM2(¢)}he -(a-Kh)t (46) 

Thus, if h is small enough, y(t) provides a uniform approximation on [0, (x)) 

and has an exponential decay rate very close to that  of x(t). 
This result generalizes easily to the case of any finite number of discrete 

delays ~h, . . . ,  vm, and to systems of equations. 

6 C o n c l u d i n g  r e m a r k s  

Differential equations of the form 

x'(t) = f (x(t),x([t + l]) )  (47) 

have stimulated considerable interest and have been studied in [2,11,20,28]. In 

these equations, the argument deviation T(t) = t - [t + ½] changes its sign in 

1 t < n + ½ (n integer). Indeed, T(t) < 0 for n - ½ < t < n each interval n - ~ < 

and T(t) > 0 for n < t < n + ½, which means that  the equation is alternately 

of advanced and retarded type. This complicates the asymptotic behavior of the 

solutions, generates two essentially different conditions for oscillations in each 

interval [n - ½,n + ½], and leads to interesting properties of periodic solutions. 

In Sect. l, we mentioned the equation 

x'(t) = ax(t)(1 - x([t])), x(0) = e0 , (48) 

where a > 0, co > 0. This equation may be regarded as a semi-discretization of 

the ordinary logistic equation, but its solutions display a much greater variety 

of dynamics. In fact, if we let c,, = x(n) for integer n, the continuity of x(t) at 

each integer implies the discrete difference equation 

cn = c , - l e  a(1-¢"-'), n = 1 ,2 , . . .  (49) 
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Since the function f ( x )  = xea(1-~) is a C 1 unimodal map on [0, cx)), it is not 

difficult to establish that  there are period-doubling bifurcations, and the whole 

Sarkovskii sequence of periodic solutions and chaotic behavior [7]. It is intriguing 

to note that,  in contrast, the semi-discretization 

x ' ( t )  = ax ( t ) (1  - x([t  + 1])) (50) 

has the property that  the equilibrium x ( t )  - 1 is asymptotically stable for all 

a > 0 .  

EPCA have only been studied for a few years, and it is not yet clear how 

important  they may become in theory or application. At the least, they provide 

us with a new class of hereditary and anticipatory differential equations and 

with the challenge of working out the properties of these equations. The problems 

studied so far are closely related to ordinary difference equations and indeed have 

stimulated new work on these. In each of the areas touched on above - existence, 

asymptotic behavior, periodic and oscillating solutions, and approximation - 

there appears to be ample opportunity for extending the known results. 
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To Kenneth Cooke on his 65 th birthday 

1 I n t r o d u c t i o n  

Delay differential equations or more generally functional differential equations 

have been studied rather extensively in the past thir ty years and are used as 

models to describe many physical and biological systems. In spite of this fact, 

there are few examples for which one can describe how the flow defined by the 

equation changes with the delays. One of these is the class of equations with 

one delay in which the vector field has negative feedback. In this case, Mallet- 

Paret (1988) has shown that there is a Morse decomposition of the at tractor  

with the basic sets being given by the number of zeroes of solutions on a delay 

interval. Further development of these ideas has led to many interesting results 

on the existence of periodic solutions for large delays. See, for example, Chow 

and Mallet-Paret (1983), Mallet-Paret and Nussbaum (1986), Chow, Lin and 

Mallet-Paret (1989), Cao (1989) and the references therein. 

When there is more than one delay in the equation, there is very little infor- 

mation about the behavior of solutions. Even the local theory is not complete. 

The purpose of this paper is to point out some of the recent results dealing with 

several delays in order to illustrate present and future directions of research. 

2 D y n a m i c s  o n  c e n t e r  m a n i f o l d s  

For a given r > O, we let C = C ( [ - r ,  0], lRn). If x : [ - r ,  c~) --+ IR n is a given 

continuous function, we denote by xt E C, t E [0, ~) the function xt(O) = x(t + 0) 

for 9 E [ - r ,  0]. For a given neighborhood U C C of the origin and a given 

function f E Ck(U, IR n) and a given continous linear map L : C --+ IR n, we 

consider the functional differential equation 

= Lx, + f (x t ) .  (1) 

The eigenvalues of the linear equation 
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= Lxt (2) 

are defined to be the solutions of the characteristic equation 

de t (M - LeX'I) = O. (3) 

We suppose that  there are exactly p eigenvalues ) t l , . . .  , )t v of (2) on the 

imaginary axis. If we suppose also that  llfllck(tr,~t,) < di with 8 sufficiently 

small, then there is a center manifold M ( L ,  f )  of (1). The flow on the center 

manifold is given by an ordinary differential equation (ODE). In case n = 1, the 

flow on the center manifold is given by pta-order scalar ODE. 

T h e o r e m  2.1 (sca lar  F D E ) .  The flow on the center manifold M(L, f )  is given 
by a pth-order ODE 

y(P) + a ly  (p-l) -I- • • " q- apy : gL,f(Y, y(1) , . . . ,  y(p-1)), (4) 

where gL,o = 0 and the eigenvalues of the left hand side of (~) are )q , . . . , ~p. 

The next result states that  all polynomial vector fields on center manifolds 

can be realized by delay differential equations with p ,  1 delays. 

T h e o r e m  2.2 (Sca lar  de lay  e q u a t i o n ) .  For any polynomial G ( z l , . . . ,  zp) of 

degree q, there are a neighborhood U C C of zero, a positive constant 6, real num- 

bers a l , . . .  ,ap, postive constants rl,  . . .  , r e - l ,  and a function f E Cq+t(U, IR) 

with Ilfllc,+,(u,m-) < 6 such that the flow on the center manifold of the delay 

differential equation 

i ( t )  = al x(t)  + a2 x ( t -  rl)  + . . .  + ap ~:(t - rr_l)  + f ( x ( t ) ,  x( t  - rl ) , . . . ,  z ( t  - rp_~ )) 
(5) 

in U is given by the ODE 

y(~) q- a ly  (p-D q- . . .  -4- apy = G(y, y(1), . . . ,  y(p-1)). (6) 

The proofs of these results as well as those in Remarks 2.3 and 2.4 below may 

be found in Hale (1985), (1986). Theorem 2.1 is a consequence of elementary 

properties of control systems treating the function f as the control parameter. 

The proof of Theorem 2.2 makes use of the Implicit Function Theorem and the 

linear independence of the eigenfunctions. In Hale (1985), (1986), it is asserted 

that  the function G in Theorem 2.2 may be an arbitrary Cq-function. A careful 

examination of those papers (as pointed out to the author by P. Pol£~ik) shows 

that  the proof there holds only for a G polynomial. The general case remains 

open. 

From Theorem 2.2, we see that  each flow in the ODE (6) with a polynomial 

G can be realized by delay differential equations with p -  1 delays. Thus, compli- 

cated dynamics can be expected with several delays and complicated behavior 

of solutions can be observed in a local neighborhood of an equilibrium point. 
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Theorem 2.2 asserts that  there exist p -  1 delays. We remark that  the de- 

lays can be chosen almost arbitrarily; that  is, there are few restrictions on the 

delays and the restrictions that  are imposed depend upon the nature of the 

eigenfunctions associated to the eigenvalues. In the examples, this will be made 

precise. 

R e m a r k  2.3. Is is not known if the number of delays in Theorem 2.2 is optimal. 

The optimal number must depend upon the eigenvalues on the imaginary axis. 

For example, if all of the eigenvalues are equal to zero, then we must have p - 1 

delays in order to have the linear part  of the delay differential equation to have 

p zero eigenvalues. If the eigenvalues are distinct and equal to 0, i w j ,  - i w i ,  j = 

1 , . . . ,  m, then we need only m delays to have a linear part  with these eigenvalues. 

On the other hand, it is not known if this number is sufficient to take care of 

the nonlinear terms in the flow on the center manifold. 

R e m a r k  2.4. For n > 1, that  is, systems of equations, using ideas from control 

theory with the function f as the control parameter,  we can show that  Theorems 

2.1 and 2.2 remain valid for some special L and f .  For general L and f ,  it is not 

known how to relate in a systematic way the flow on center manifolds for FDE 

to that  of delay differential equations. 

R e m a r k  2.5. Theorems 2.1 and 2.2 remain valid for the neutral FDE 

d 
-~ nx~ = i x t  + f (x , )  

where D is a stable linear operator.  

Let us illustrate these results with a few examples. 

E x a m p l e  2.6. Suppose that  (2) has a double eigenvalue 0 and no other eigen- 

values on the imaginary axis. We can realize this situation with a linear delay 

differential equation with one delay: 

~ ( t )  = x ( t )  - x ( t  - 1) 

Since Theorem 2.2 states that  we need only one delay to reproduce all polynomial 

flOWS 
v" = c (v ,  v'), 

we may rescale time to permit  the choice of the delay as 1. If we choose 

G ( Z l ,  z2) "- )~lZl -I- )12z2 -J[- otz 2 -q- f~ZlZ2, 

then there is a function f such that  the flow on the center manifold of the 

equation 

i : ( t )  = x ( t )  - x ( t  - 1) + : f ( x ( t ) , x ( t  - 1)) 

is given by the ODE 
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£'1 = z2, £'2 = Alz l  + )~2z2 + az~ + f lz lz2.  

This is the Bogdanov-Takens bifurcation for A1 = A2 = 0. 

Example  2.7. We now consider an equation with two delays, one of which can 

be taken to be 1 without loss of generality: 

~(t)  = - a o ~ ( t )  - box(t - 1) - Co~(t - r) + / ( x ( t ) ,  ~:(t - 1), ~(t - r)), (7) 

where a0, b0, co, r are chosen so that the only eigenvalues on the imaginary axis 
are 0, i w , - i w  with w > 0. For a given w > 0, it is easy to verify that the 

coefficients a0, b0, co are uniquely determined provided that s i n ( r -  1)w ¢ 0. 

Let ~ = (91,92, 93) be a real basis for the eigenfunctions corresponding to 

the eigenvalues on the imaginary axis. As shown in Hale (1985), if the vectors 

• (0), 4~(-1), ~ ( - r )  are linearly independent, then it is possible to reproduce any 

polynomial flow 

y'" + = v(y,  y', y") (8) 

on the center manifold. It is easily verified that the condition of linear indepen- 

dence is equivalent to 

s i n ( r -  1)w +sinw - s i n r w  ¢ 0 

which is satisfied except for a discrete set of values r. 

In appropriate coordinates, the normal form for (8) up through terms of order 

three is given by 

e = l  
/ ) :  ~p + apy + dp 3 

~1 = ~ y  + by 2 + cp 2, 

which is a famous singularity for ~ = ~ = 0 (see, for example, Chow and Hale 

1982). 

3 H o p f  b i f u r c a t i o n  w i t h  r e s p e c t  t o  d e l a y s  

In this section, we consider the problem of the creation of periodic orbits from an 

equilibrium point by varying the delays following the approach in Hale (1979). 

We obtain a bifurcation function which is C k-1 in the delays if the vector field 
is C k. The stability properties of the periodic orbits are determined from this 

bifucation function. 

Suppose a E 12 C IRk is a parameter and consider the equation 

= L(ot)z ,  + f ( a ,  z , )  (9) 

in C, where L(a)9 is continuous and linear in 9 and the function f (a ,  9) is C 2 

in 9, f ( a ,  0), D~(a, 0) = 0. We need the following hypothesis: 
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(HI) The characteristic matrix of the linear part of (9) 

A ( , ,  ~) = )~I -- L(a)eX'I  

is a C 1 function of e~ and there are simple eigenvatues ~o = ivo, ~o = - i vo ,  Vo > 

O, of A(oto,)~) and all other eigenvalues )U satisfy )~j ~ m)~o for any integer m. 

The next result is almost an immediate consequence of the Implicit Function 

Theorem. 

L e m m a  3.1 Under hypothesis (H1), there is a 5 > 0 such that, for 1~-~01 < 5, 
there is a simple eigenvalue )~(c~) of A(c~,A) which is a Cl-function, Im~(c~) > 0, 

and A(C~o) = ivo. 

From this lemma and the classical theory of FDE, we can decompose the 

space C as the sum C = Pa ~ Q~, where Pa, Q .  are subspaces, invariant under 

the flow defined by the linear equation 

it(t) = L(a)x t ,  (10) 

and P~ = sp[O~],O~ = (~1,T2), where ~l ,T2 are real solutions of the linear 

equation (10) corresponding to the eigenvalues ~(a), ~((r). The function O~ has 

an explicit representation as 

¢ . ( 0 )  = ~ . (0 )eB(")  °, o • l - r ,  0], 

B ( . )  = ~0B0 + B ~ ( . )  

B0 = ( 01 1 
- o) 

((.-.0) 
B~(c~) = - ( o ~ -  (r0).7(0¢) (c~ o~0).¢(a) " 

The functions ff and 7 are continuously differentiable. 

Even though the parameter ot may contain the delays in the equation, the 

smoothness in o~ in hypothesis (HI) will be satisfied. On the other hand, not 

all solutions of (9) are differentiable with respect to c~. Therefore, it is not rea- 

sonable to assume that  the functions L(~) and f(oc,.) are differentiable in ~. 

As a consequence, we must be careful in the statement of the Hopf bifurcation 

theorem. We do know that we will have differentiability in o~ along periodic so- 

lutions of (9), which are the solutions of interest. This is the motivation behind 

the hypotheses in the next result. 

T h e o r e m  3.3 ( H o p f  b i fu r ca t i on )  In addition to (H1), suppose that 

(U2) For any K > O, ~ E C with ¢ E C, I1#11 < K, the functions L(o0: ,  f(c~, 9) 
are C 1 in ~. 

(Ha) ~(ao) # 0. 
Then there is an e > 0 such that, for any a E IR, Ial < e, there is a C 1- 

manifold Fa C IR k of codimension one, Fa is C 1 in a, 

Co = {~  e IR~ : Re~(~)  = 0, Is - sol  < ~} 
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and, for each c~ C F,, there are el- functions w(c~,a),x*(c~,a) with x*(~,a) be- 

ing an w(c~, a)-periodic solution of equation (9). Furthermore, w(e~o, O) = Wo = 

~ , I  O) = O. ~-~o ~ X kOto, 

Theorem 3.3 states that  there is a Hopf bifurcation across the manifold F0. 

The proof of this theorem is in Hale (1979). As remarked earlier, a scalar bi- 
furcation function G(~, a) is constructed with the property that  the periodic 

orbits of (9) near the origin are in one-to-one correspondance with the zeros of 

G. Furthermore, if there are only two eigenvalues of (10) for c~0 on the imagi- 
nary axis, then the stability properties of the periodic orbit are determined from 

the stability properties of the corresponding zero a0 of the scalar differential 

equation 

h = G(~, a). (11) 

See, for example, de Oliveira and Hale (1980). 

R e m a r k  3.3. If we strenghten the differentiable requirements in hypotheses 

(H1) and (H2), then it is possible to show that the function G(~,a) as well as 

the functions w(a, a), x*(~, a) have additional differentiability properties with 

respect to o~, a. 

R e m a r k  3.4. Hypothesis (H2) may appear to be difficult to satisfy. However, 

this in not the case. In fact, if we suppose that  o~ = ( r l , . . .  ,rp) with each rj >_ 0 

and 

f(c~, ~,) = F(~(r l ) , .  . . ,  to(rp)) 

and the function F : IP~ p ---* IR '~ is C 1, then (H2) is satisfied. 

If F is C k, then each periodic orbit of (9) has initial data which is C ~. We 

then can show that  the bifurcation function is C k. 

4 D i s c r e t e  v e r s u s  d i s t r i b u t e d  d e l a y s  

In the modeling of physical phenomena where the past history is important,  we 

often assume that  the influence of the past occurs at discrete points. If the model 

is an FDE, this implies that  the function f in (1) is given by 

f ( ~ )  = g ( ~ ( - - r l )  , ~ ( - - r 2 ) , . . .  , ~ ( - - r p ) ) .  (12) 

On the other hand, this is probably only an approximation to the true sit- 

uation. The influence of the past should be destributed over an interval I - r ,  0] 

where r > m a x ( r y , . . . ,  rp}. One possible way in which to incorporate this more 

general situation into the model is to assume that  f is given by the relation 

(/o /; )/ 
f(~,) = g drh(O)~o(O),..., dvp(O)~a(O , 

7" 

(13) 
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where the functions z/1,. . . ,~p are functions of bounded variation continuous 

from the right. If each of the functions ~?j is a step function with jump one at 

rj ,  then the functions f in (12) and (13) are the same. 

One important  problem is to determine when a property that has been ob- 

served in an equation with discrete delays persists when the delays are dis- 

tr ibuted and each distribution function 7/j is close to the above mentioned step 

function. Of course, we must be precise about the concept of closeness. In this 

situation, we say y(~) converges to 7/as k ~ oo if, for each ~, E C, 

~ d(r/(k) - ~)~ --. as ---, 0¢. 0 k 

This is equivalent to saying that  the total variation of rl (k) - r /approaches zero 

a s  k ----~ OO. 

In this general setting, the IIopf bifurcation theorem of the previous section 

applies with the parameter  a lying in the dual space of C. For a parital discussion, 

see Hale (1979). 

Due to the complications that  arise in the study of distributed delays, we 

encounter very often the following situtation in the literature. It is first assumed 

that  the past history in infinite. The next step is to assume that some or all 

of the distribution functions are simple exponential functions or at least of the 

type that  the derivatives are very simple. When appropriate assumptions are 

made, it is possible to reduce the number of delays by increasing the order of 

the differential equation. In some cases, this approach leads to a much simpler 

problem, but  it remains to discuss the sensitivity of the obtained results to 

small perturbations of the distribution function. Very little attention has been 

devoted to this latter problem although it is obviously important.  For the IIopf 

bifurcation, see Hale (1979). For a stability problem, see Lenhart and Travis 

(1985). See also Busenberg and Travis (1982), Busenberg and Hill (1988). 

5 H o p f  b i f u r c a t i o n  s u r f a c e  

In Section 3, we have seen that  it is possible to consider the IIopf bifurcation 

with the delays chosen as the bifurcation parameters. Therefore, it is important  

to know the structure of the curves in the delay space that correspond to the 

situation where there are eigenvalues on the imaginary axis of the linear vari- 

ation equation about an equilibrium point. In this section, we reproduce some 

recent results of IIuang (1990) and B~lair and Mackey (1989) for the first IIopf 

bifurcation curve; that  is, the curve for which all eigenvalues have nonpositive 

real parts. The  verification of the results requires many nontrivial computations 

and we therefore present only the diagrams with a few remarks. 

IIuang (1990) has considered the characteristic equation 

.~ + ae -~rl  + be -~'r2 = 0, (14) 

which corresponds to the linear equation 
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~ ( t )  - -  - - a x ( t  - -  r l )  - -  b x ( t  - / ' 2 ) -  (15) 

For fixed values of a, b, the first Hopf bifurcation curve takes one of the types 

shown in Figures 5.1-5.6. In each of these situations except when b = 0, there 
0 1 are r ° < r~ such that ,  for fixed rx E @1, r l ) ,  there is a possibility of a Hopf 

bifurcation as r2 is varied. For any case and fixed rx E (r  °, r]) ,  there can be only 

a finite number of Hopf bifurcations with respect to the parameter r~. For the 

situation that  - b  > a > 0 > b, the origin is unstable for all delays r l  > 0, r2 > 0. 

In each case, except when a = b > 0 or b = 0, the first Hopf bifurcation curve is 

not a smooth curve. At the points of discontinuity in the tangent vector to this 

curve, there are two points of eigenvalues on the imaginary axis. For most values 

of the constants a, b, these are distinct pairs. Therefore, a complete analysis of 

the dynamics near the equilibrium of a nonlinear perturbation of (15) cannot be 

accomplished using only the Hopf bifurcation theorem. In general, we expect very 

complicated behavior near these points. As b ~ a, the points of discontinuity of 

the tangent vector approaches infinity and one arrives at Figure 5.1. 

We remark that  the dotted curves in these figures also are Hopf bifurcation 

curves. However, they are not the first Hopf bifurcation curves. There are purely 

imaginary eigenvalues on these dotted curves, but  also there are eigenvalues with 

positive real parts. 

Bdlair and nackey  (1989) (see also an der Heiden (1979)) consider the char- 

acteristic equation 

+ _ R _ Q  + = 0, (16) 
I + R ~  

which corresponds to the characteristic equation of the second order equation 

with one delay 

R~( t )  + ~(t)  + Ri:(t - r) + Qz( t )  + z ( t  - r) = O. (17) 

Equation (16) also is the characteristic equation for the linear equation with one 

distributed delay and one discrete delay: 

+ + O)dO + - r)  = o. 
o o  

(is) 

This is a situation where the special form of the distributed delay leads to an 

equation of higher order with one delay (see Section 4). 

The parameter Q can be used as a measure of the strength of the distributed 

delay. For this reason, the plots of the first Hopf bifurcation curve are made in 

the (Q, r)-plane with R fixed. The different situations are depicted in Figures 

5.6-5.8. As in the situation for equation (14) with two discrete delays, for a fixed 

value of Q, there are never more than a finite number of Hopf bifurcations. The 

points of discontinuity in the tangent vectors again correspond to two pairs of 

eigenvalues on the imaginary axis. 
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6 D e l a y  d i f f e r e n t i a l  e q u a t i o n s  a n d  m a p s  

In recent years, there has been some discussion about the relationship between 

the dynamics defined by maps and the dynamics defined by delay differential 

equations with a singular perturbation term (see, for example, Chow and Mallet- 

Paret 1983, Chow, Diekmann and Mallet-Paret 1985, Mallet-Paret and Nuss- 

baum 1986, Ivanov and Sharkovsky 1990). More specifically, suppose that  e > 0 

is a small parameter and consider the equation 

ek(t) + x(t)  = f ( x ( t  - r)).  (19) 

For e = 0, we have the map y = f ( z )  on IR. Is the dynamics of this map related 

to equation (19)? For example, if the map has a periodic point of period two, 

does there exist, for e small, a periodic solution of (19) of period approximately 

two and is it close to a square wave? Under some conditions on the nonlinear 

function f ,  this is known to be true. On the other hand, it is not known to be 

true in the general case. If we ask the same question for periodic points of f of 

higher period, then it is known that equation (19) does not behave as the map. 

From the above remarks, it seems as if it is not reasonable to expect delay 

differential equations to behave as maps. However, it is possible that the question 

is not posed in the proper way. The left hand side of (19) may be considered as 

an "approximation" to the function x(t + e): 

x(t + ,)  = =(t) + + . . . .  (20) 

If it is a good approximation, then the appropriate map for comparison should 

be 

x( t  + e) = f ( z ( t  - r) ) .  (21) 

Since e is a parameter which we want to vary, the equation (21) no longer can 

be considered as a map on IR, but must be considered in a function space. If we 

want to compare this map to a delay differential equation, we could consider the 

function space to be C = C ( [ - r ,  0], IR) with r chosen to be greater than r + e0 

and 0 < e < e0. Of course, to have the solutions of (21) remain in C, we must 

impose restrictions on the initial data. Even if a solution remains in C, its limit 

as t ---* cx) may not be in C. For example, suppose that  f has three fixed points 

a < b < c with a, c asymptotically unstable and b unstable and every orbit of 

f has its limit set as one of these points. If ¢ E C has values which lie in both 

of the intervals (a, b) and (b, c), then the limit of the solution zt through ~o will 

be a step function. The same remark holds for the orbit of functions ~ E C that  

approach a period two orbit of the map f .  As a consequence, we must exercise 

care in the selection of the space in which (21) and (22) will be compared. In our 

discussion to follow, we at tempt  to make these remarks somewhat more precise. 

Let us proceed first by taking a bet ter  approximation to x(t + e). More 

precisely, for a given integer N, we consider the equation 

- ~ - ~  + 1 x( t )  = f ( x ( t  - r)) .  (22) 
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For N sufficiently large, the operator 

e d ) - N  
A = + 1  (23) 

should be a good approximation to the translation semigroup e -td\dt evaluated 

at - e  acting on uniformly continuous functions on IR and taking x(t) to x( t  + e). 

From this remark, it is therefore reasonable to expect that  we should be 

able to compare the solutions of (22) which are defined and bounded on IR with 

the solutions of (21) which are defined and bounded on lR. If we suppose that  

the corresponding semigroups are dissipative (that is, orbits of bounded sets are 

bounded and each orbit evetually enters and remains in a fixed bounded set), 

then these globally defined and bounded solutions are precisely the ones that  

belong to the global attractors. We recall that  the global attractor is a compact 

invariant set with the property that  the w-limit set of any bounded set belongs 

to it. 

L e t / 2  = / 2 ( ( - r ,  0), ~t") for some 1 <_ p < c~. We choose the space of initial 

data  for (21) to b e / 2  and the space of initial data  for (22) to b e / 2  x IR n. Let 

PL~ be the projection o f / 2  x IR n o n t o / 2 .  For a fixed e, 0 < e < e0, and a fixed 

integer N, let .At,N be the global attractor for (22) in L p x IRN~-. Let us suppose 

that  (21) has a maximal bounded invariant set .At in L P. An important problem 

is to compare the flow of (21) on .At with the flow of (22) on .At,N. The first 

interesting thing to do would be to show that  

d i s t L , ( P L p A e , N , A t )  --* 0 as N --+ c~. (24) 

At first sight, it appears that  it would be impossible to consider relation (24) 

because the space of initial data  for (22) is L P x lK N. However, this is not the 

case. Let us suppose that  the function f is analytic. Then the elements of -Ac,N 

are analytic functions (see Nussbaum (1973)). Therefore, the elements of -Ac,N 

are determined uniquely by their projections onto L P, and to attempt to verify 

(24) is meaningful. Relation (24) is a first step in the comparison of the size of 

attractors of (22) with the maximal bounded invariant set of (21). If we show 

that  II-Ae,NHL~ is uniformly bounded in N, then we should be able to use the 

stability properties of the attractor .A~ and the appropriate variation of constants 

formula to prove that  (24) is true. We remark that  this in not the usual type 

of problem that  is encountered when semigroups are compared on infinite time 

intervals since the semigroup for (22) is compact for t >_ 1 and the semigroup 

for the limit equation (21) is not compact. 

Of course, the next step is to discuss the corresponding flows in more detail. 

For example, if we suppose that  Ae contains a periodic orbit of period 2(v + e) 

which is stable, is there a periodic solution of (22) for N large which is periodic 

with a period close to 2(v -I- e)? Other more complicated compact invariant sets 

in -At also should be considered. 

We remark that,  with the emphasis being placed upon the parameter N (the 
order of the differential delay equation), the parameter e will play a minor role 
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in much of the analysis. Of course, many interesting problems will arise when 

N ---* oo and e ---* 0. 

We also should attempt the same analysis for equations with several delays: 

for example, for a nonlinear function 

f(~o) = f(~o(-rl), ~o(-r2)). 

We are in the process of making these remarks more rigorous. 

In recent papers of Vall6e, Dubois, CSte and Delisle (1987) and Vall6e and 

Marriott (1989), equation (22) has been used as models of hybrid bistable op- 

tical devices when N components contribute to the total reponse time. The 

parameter e -1 is a measure of the response time. The models are tested against 

experimental results and there is particular interest in the comparison in the 

chaotic regions. Also, are these models reasonable for explaining the onset of 

chaos? In the chaotic region, the ratio of the delay to the response time does 

not seem to be large and this had led to discrepencies between the model (19) 

(N = 1) and the experimental observations. In the several component model, the 

above authors have investigated (22) numerically and found better agreement 

with the experiments when N > 1. 

They also analyzed precisely the linear variational equation near the equi- 

librium and have shown that the curve for the first Hopf bifurcation becomes 

insensitive to the delay for large values of N. We reproduce these results since 

they are relatively simple and serve as a good motivation for the comparison of 

(21) and (22) as outlined above. In the physical problem, the function f depends 

upon a parameter/t  which can vary. The characteristic equation for the linear 

variational equation has the form 

1 + + = O, B~,e - ~  (25) 

where B~, is the derivative of f evaluated at the equilibrium. For N large this 

equation is almost the same as the equation 

e (~+r)x + B u = 0. (26) 

From this equation, for N large, we see that the threshold for the existence 

of a Hopf bifurcation (that is, purely imaginary solutions of equation (25)) is 

essentially independent of N since it requires that the parameter/t be chosen so 

that Bu is approximately -1 .  Equation (26) is the linear variational equation 

for (21) and thus the expected correspondance of dynamics. 

We remark that other authors also have considered approximating the trans- 

lation semigroup e ed\dt to higher order in an attempt to obtain better corespon- 

dence between the delay differential equation and the map (see Zhao, Wang and 

Huo 1988, Longtin 1988). 
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1 I n t r o d u c t i o n  

The equations governing interacting populations in a closed environment often 

take the form 

x: = x i f , (x ] ,  x 2 , . . . ,  xn) (1.1) 
xi(0) = xi0 > 0, i = 1 ,2 , . . . ,n  

To avoid technical conditions assume that f is such that  solutions of initial value 

problems are unique and extend to all of R. The form of the equations makes the 

positive cone invariant and the coordinate axes and the bounding faces invariant 

(and represent lower order dynamical systems). 

The notion of persistence at tempts to capture the idea that  if the above dif- 

ferential equation represents a model ecosystem, all components of the ecosystem 

survive. In this survey we at tempt  to show how the idea has led to an interest- 

ing class of abstract mathematical  problems which have applications in biology. 

While the emphasis is on the mathematical  problems, the references give an 

introduction to the applications. 

The system (1.1) is said to be persistent if 

l iminfx i ( t )  > 0, i = 1 ,2 , . . . ,n  
$--* C~ 

for every trajectory with positive initial conditions. 

The system (1.1) is said to be uniformly persistent if there exists a positive 

number ~ such that  

liminfxi(t) >__o~, i= l,2,...,n 
~---4 cO 

for every t rajectory with positive initial conditions. The term persistent was 

first (?) used in this context by Freedman and Waltman [12], with lim sup 

instead of lim inf. Other definitions are relevant, see Freedman and Moson [8] 

for a discussion. Earlier use of the term persistence corresponded to a stability 

condition. See Harrison [22] and the references cited therein. The work of [12] 
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was continued in [13] and [14] where three level food chains and competition 

problems were investigated. Other work in this spirit includes Hallam and Ma 

[23], Hutson and Law [31], Freedman and So [10] [11], Freedman and Rai [9], 

Li and Hanam [38], and So [42]. A similar notion appears in Hofbauer [25], and 

Schuster, Sigmund, and Wolf [40], where the term cooperative is used. (This 

later became permanence.) 

One can distinguish two approaches: 

i) Analysis of the flow on the boundary 

ii) Use of a Liapunov-like function 

Each approach has lead to interesting mathematical problems. This survey will 

try to point out examples of theorems in each approach. The interest has been 

focused on three-population models since this is the simplest case of interest but 

Kirlinger [36] [37] and So [42] have higher dimensional examples. The survey 

article of ttutson and Schmitt [33] and the book of ttofbauer and Sigrnund [28] 

contain more complete references. 

A key tool in some of the applications using the first method was the following 

lemma: 

Lemma But l e r -McGehee  Let P be an isolated hyperbolic rest point in the 
omega limit set, w(~), of a point x. Then eitherw(x)={ P} or there exists points 

ql and q~ in w(t)  with ql and q2 different from P but with ql E M+(P) and 

q2 E M - ( P )  where M + and M -  are the stable and unstable manifolds of P. 

The central difficulty in extending to the general situation is to develop the 

counterpart of this lemma in the setting of dynamical systems. Those using the 

Liapunov-like technique have to construct the appropriate function. The key to 

extending this idea to more general situations was to develop a theory with as 

few hypotheses as possible on the Liapunov function. Each of these techniques 

is explored in an abstract setting in the following sections. 

2 A n  abstract  pers i s tence  t h e o r e m  

The general setting is that of topological dynamics in a metric space. We review 
the basic definitions and set up the dynamical system appropriate for systems 

of the form (1.I). Let X be a locally compact metric space with metric d and 

let E be a closed subset of X with boundary OE and interior E °. Let 7r be a 

dynamical system defined on E which leaves its boundary invariant. (A set B in 

X is said to be invariant if Ir(B,t)=B.) Denote the flow on the boundary by lr0. 

The flow is said to be dissipative if for each x E E, w(x) is not empty and there 

exists a bounded set G such that the invariant set 12 = UxeBw(z) lies in G. A 

nonempty invariant subset M of X is called an isolated invariant set if it is the 

maximal invariant set of a neighborhood of itself. Such a neighborhood is called 

an isolating neighborhood. 

The stable (or attracting) set of a compact invariant set A is denoted by W + 

and is defined as 



A Brief Survey of Persistence in Dynamical Systems 33 

W+(A) = {xlx • X, to(x) # ¢, w(x) C A}. 

The unstable set, W -  is defined by 

W - ( A )  = {xlx • X, a(x) # ¢, a(x) C A} 

where c~(x) is the alpha limit set. 

The weakly stable and unstable sets are defined as 

W+(A) = {xlx • X,  to(x) # ¢, w(x) M A # ¢} 

and 

W j ( A )  = {xlx E X,  a(z) ~ ¢, a (z )  NA ¢ ¢}. 

L e m m a .  (Butler and Waltman [4], Dunbar, Rybakowski, and Schmitt [6]) Let 
M be a compact isolated invariant set for ~r defined on a locally compact metric 

space. Then for any x E W+(M) \W+(M)  it follows that w(x )NW+(M) \M ¢ ¢ 
and w(x) fq W - ( M ) \ M  ~ ¢. A similar statement holds for o~(x). 

The following set of definitions are motivated by the technique used in the 

proof in [FW2],[FW3]. Unfortuately some of the terms are the same as those in 

the work of Conley [5] in dynamical systems where they have a different meaning. 

This overlap is regrettable but the definitions are now well established in both 

places. Let M,N be isolated invariant sets (not necessarily distinct). M is said 

to be chained to N, written M --* N,  if there exists an element x, x ~ M U N 

such that  x E W -  (M) [q W+(N). A finite sequence M1, M 2 , . . . ,  Mk of isolated 

invariant sets will be called a chain if M1 --~ M2 ---* .. .  --* Mk (M1 ~ 1141, if 

k= l . )  The chain will be called a cycle if Mk = M1. 

7r will be said to be persistent if for all x E E °, l iminft. . .~ d(r(x, t), OE) > 0 
and 7r will be said to be uniformly persistent if there exists an e0 such that  for all 

x E E °, liminf,._.~ d(Tr(x, t), OE) > e0 > 0.7to is said to be isolated if there exists 

a covering M=t.J~=~ M~ of 12(~ro) by pairwise disjoint, compact, isolated invariant 

sets 1141, M 2 , . . . ,  Mk for 1to such that  each Mi is also an isolated invariant set for 

7r. (This is a sort of "hyperbolicity" assumption; for example, it prevents interior 

rest points, or other invariant sets, from accumulating on the boundary.) M is 

called an isolated covering, ro will be called acyclic if there exists some isolated 

covering M=U~=IMi of 7to such that  no subset of the Mi's forms a cycle. An 

isolated covering satisfying this condition will be called acyclic. 

The following theorem provides a criterion for uniform persistence in terms 

of the flow on the boundary. 

T h e o r e m .  [4],[3] Let lr be a continuous dynamical system on a locally compact 
metric space E with invariant boundary. Assume that r is dissipative and the 
boundary flow 1to is isolated and is acyclic with acyclic covering M. Then 7r is 

uniformly persistent if and only if 

(H) for each Mi e M, W+(M~) M E ° = ¢. 
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The acyclic condition in the abstract persistence theorem is suggestive of a 

Morse decomposition. This idea appears in the work of Freedman and So [FS2], 

who were interested in persistence for maps and in the work of Hofbauer [Ho2] 

and Garay [15]. We sketch a portion of Garay's paper. 

Let S denote the maximal compact invariant set in E and consider 7r restricted 

to S N OE, denoted by ~rsnoE. The collection M={MI,  M 2 , . . . ,  M,}  is a Morse 

decomposition if the Mi's are pairwise disjoint, compact, isolated invariant sets 

for rSnOE with the property that  for each x E S n OE there are integers i(z)  

and j ( z )  with i < j and w(x) C Mi and c~(x) C Mj and if i=j, the z E Mi = 

Mj. Note that  the above definition makes a requirement on all x while the 

chained definition makes a requirement for some x. Garay generalized the above 

persistence theorem in the spirit of Conley. We state the following result (which 

is equivalent to the above theorem) to show the nature of the setting. It is a 

corollary of Garay's main theorem. 

T h e o r e m .  Let X be a locally compact metric space and let E be a closed subset 

of X. Suppose we are given a dissipative dynamical system ~r on E for which a E  

is invariant. Let M = { M 1 , M 2 , . . . , M n }  be a Morse decomposition for 7rSnOE. 

Further assume that for each i 

O There exists a 7 > 0 such that the set {x E i n t ( E ) l d ( x , M )  < 7} contains 

no entire trajectory 

i i ) In t (E)  N W+(Mi )  = ¢ 

Then 7r is uniformly persistent. 

To show that this is equivalent to the above theorem, Garay shows that  "Any 

acyclic covering of 12(TroE) is a Morse decomposition for tahOE and conversely." 

The first condition is a type of "hyperbolicity" requirement. Garay's main result 

requires the above two conditions only on a more restricted set. 

3 A n  e x a m p l e  

Consider three logistic-like competing populations 

x~ = z i f i ( x l , x2 ,  x3) i = 1,2,3. 

By competitive, one means that  OfilOxj < 0 for i ¢ j .  By logistic-like, one 

intends that  there exist numbers Ki, i=1,2,3, such that whenever xi = Ki for 

some i and all of the xj 's, j ¢ i, are zero, then fi  is zero and Ofi/Oxi < 0. Thus 

there are three rest points, called axial rest points, denoted by Ei, i.e., E1 = 

(K1,0, 0) and the origin, denoted by E0. Suppose that the boundary has only one 

additional rest point (x~, x~) which we will label E* and that f3(x~, x~, 0) > 0. 

We are supposing that  Xl outcompetes x3 and that x3 outcompetes z2. (Other 

rest points could be allowed. We are making the example as simple as possible.) 

We suppose also that  all rest points are hyperbolic. 

One must check the acyclic condition and (H). Because of the invariance 

of the dynamical systems on the boundary, the stable and unstable manifolds 
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of the axial rest points all lie in the boundary. Moreover, planar competitive 
systems do not have limit cycles, so E* is a global attractor in the zl - z 2  plane. 

In particular, the stable manifold of E* connects to the origin and to infinity. 

Moreover, the origin is unstable. Fence if the covering is taken to be the five 

rest points, there are no cycles. 

The linearization of E* takes the form 

- ~ 0_/! 0 / z -  I 
Xl 0xx Xl 0x~ Xl Oars 

] z- °-h °-h z ° 2 ~  z Oxa X2 Ox2 

0 0 
];° 

where everything is evaluated at the rest point. The matrix decomposes and the 

positive eigenvalue given by f3 > 0 has an eigenvector pointing into the posi- 

tive cone - hence (H) is satisfied. The example is pivotM - if one removes the 
requirement for the existence of E*, an acyclie covering may not exist (for exam- 
ple, if z~ outcompetes xl). The system may or may not be uniformly persistent. 
The following example was given by May and Leonard [39]. (See also Schuster, 

Sigmund, and Wolf [41].) 

z~ = x2(1 - fix1 - x2 - az3) (3.1) 

• =  3(1 - - - 

If 0 < j3 < 1 < a and ~ + f l  > 2, then (H) is satisfied hut there is no 

acyclic covering. The abstract persistence theorem does not apply and, indeed, 

limsup,_.o~ xi(t) = 1 and liminf,-.oo x{(t) = 0. The Liapunov approach, how- 
ever, can yield information. 

4 T h e  L i a p u n o v  a p p r o a c h  

The Liapunov approach has appeared in various forms, for example as "persis- 

tence functions", "average Liapunov functions", etc. The principal contributors 

include Gard and Hallam [18], Gard, Hallam, Svoboda [19], Gard [16][17], Hut- 

son and Vickers [34], Hutson[30], Jansen [35], Hofbauer, Hutson, and Jansen [27], 

Kirlinger [36][37], Hofbauer and So [29], and Schuster, Sigrnund, and Wolf [41]. 

The nicest statement may be one due to Fonda, [7], who stated his result 

in terms of repellers. (See also [29].) Let X and lr be as above. A subset S of 

X is said to be a uniform repeller if there exists an 7/ > 0 such that for all 

x E X \ S ,  lim inft--.oo d(Tr(x, t), S) > ~/. In terms of the original definition for the 
ordinary differential equations, the system is uniformly persistent if the boundary 

is a uniform repeller. 

T h e o r e m .  Let S be a compact subset of X such that X \ S  is positively invariant. 

A necessary and sufficient condition for S to be a uniform repeller is that there 

exists a neighborhood U of S and a continuous function P :X  ~ R + satisfying: 

i) P(x)--O if  and only if  x is in S 
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it) For all x • U \ S  there is a Tx > 0 such that P ( r ( x ,  T~)) > P(x ) .  

Although nicely stated the condition appears difficult to verify. The following 

corollary is easier (and is essentially the work of IIutson and IIofbauer). 

Corollary.  Let S be as above and P E C ( X , R  +) N C I ( x \ s ,  R) be such that 

P(x)--O if and only if x is in S and let there exist a lower semicoutinuous function 

: X ~ R, bounded below, and an a E [0, 1], such that 

i) P ' (x )  > [P(x)]" ~(x) ,  x E X \ S  
T 

iO For altx • E, supT>0 f > 0 
0 

where ~ denotes S or, whenever S is positively invariaut, ~2(S). Then S is a 

uniform repeller. 

3 

If one takes P(x)=x l z2xa  and O(x) -- ~ f i ( z ) ,  then a short computation 
i = 1  

shows that if a-{-fl  < 2, then the system of May and Leonard is uniformly 

persistent. 

5 P e r s i s t e n c e  f o r  d y n a m i c a l  s y s t e m s  o n  n o n - l o c a l l y  

c o m p a c t  s p a c e  

The preceding result would apply to dynamical systems generated by au- 
tonomous ordinary differential equations models. However, the models of popu- 
lation ecology encompass much broader systems, so it is of interest to have an 

even more general theory. Results in this direction may be found in Dunbar, Ry- 

bakowski, and Schmitt [6], ttutson and Moran [32], and Burton and tIutson [2], 

who consider persistence either for delay equations or reaction-diffusion equa- 

tions. The previously cited paper [33] gives an account of work in this direction. 

Hale and Waltman [24] attempt to recover the abstract persistence theorem in 

a setting appropriate for delay and reaction-diffusion equations. The general idea 

is easy; replace the dynamical system by a semi-dynamical system and remove 

the local compactness hypothesis. However, certain technical difficulties arise, in 
particular, the lack of backward orbits or the nonuniqueness of backward orbits. 

The general tool is the theory of dissipative systems, as found, for example, in 
the book of Hale [21]. The key idea is to work on the "global attractor". Several 

of the definitions need to be modified to take advantage of this setting. 
As before, a complete metric space, denoted by X, (with metric d) is the 

basic setting. The dynamical system is replaced by a C°-semigroup on X. Let 

T(t):X --* X, t >__ 0, satisfy 

i) T(0)=I, 

it) T(t+s)=T(t)T(s)  for t,s_> 0, 

iii) T(t)x is continuous in t,x. 

The semigroup T(t) is said to be asymptotically smooth if for any bounded subset 
B of X, for which T(t)BC B for t~  0, there exists a compact set K such that 
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d(T( t )B ,  K )  --* 0 as t --* co. The semigroup T(t) is said to be point dissipative 
in X i f  there is a bounded nonempty set B in X such that,  for any z E X, there 

is a to = to(z, B)  such that  T( t )xeB for t>  to. 

A basic result on the existence of global attractors is contained in the follow- 

ing statement, [21]. 

T h e o r e m .  I f  
i) T(t)  is asymptotically smooth, 

ii) T(t)  is point dissipative in X, 

iii) 7+(U) is bounded in X if U is bounded in X, 
then there is a nonempty global attractor A in X. 

Assume that  the metric space X is the closure of an open set X°; that  is, 

X = X ° O OX °, where OX ° (assumed to be nonempty) is the boundary of X °. 

Suppose that  the C°-semigroup T(t) on X satisfies 

T(t )  : X ° ~ X ° 

T( t )  : OX ° ~ OX ° 

and let To(t) = T(t)]xo,  To = T(t) loxo.  The set OX ° is a complete metric space 

(with metric d). If T(t) satisfies the above conditions then To will satisfy the 

same conditions in OX ° and there will be a global attractor Ao in OX °. 

The difficulty with backward orbits requires some modification of the original 

definitions. A set B in X is said to be invariant if T( t )B=B for t_> 0; that  is, the 

mapping T(t) takes B onto B for each t>_ 0. This implies that there is a negative 

orbit through each point of an invariant set. To denote the alpha limit set of a 

specific orbit through the point x, we use a-r(x ). 

The stable set of a compact invariant set A is as defined before 

W + ( A )  = {xlx e X ,  w(x)  ¢ ¢, w(x)  c A}.  

The unstable set, W - ,  requires modification and is defined by 

W - ( A )  = {z[z E X ,  there exists a backward orbit 7 - ( z )  such that  

# ¢, c A}. 

The other definitions including weakly stable and unstable sets require no modi- 

fication. Let -40 denote the set of omega limit points of the flow of the boundary. 

T h e o r e m .  Suppose T(t)  satisfies the basic assumptions and 
i) T(t)  is asymptotically smooth, 

iO T(O is point dissipative in X, 
iii) 7 + (Y )  is bounded in X if  U is bounded in X, 

iv) Ao is isolated and has an acyclic covering M = { M 1 , M 2 , . . .  ,Mk}.  

Then T(t)  is uniformly persistent if and only if for each Mi E M 

W+(M,)  n x ° = ¢. 
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The above theorem may be applied to a system of delay equations which 

model competing populations. Consider the system 

x ' ( t )  = r l x ( t ) [ 1  - x ( t  - 1 )  -  ly(t)] 

y ' ( t )  = r 2 y ( t ) [ 1  - y ( t  - 1) - p2x(t)] 

where r i ,  i=1,2, are sufficiently small. If, in addition, #1 and P2 are less than 

one, the system is persistent. The appropriate space X is the positive cone of 
C[-1,0]  x C[-1,0].  For any pair of initial functions (¢ ,¢)  E X, let x ( t , ¢ , ¢ )  be 

a solution and define T(t)(¢, ¢) E X, t > 0, by 

T(t)(¢, ¢)(0) = (x(t + 0, ¢, ¢), y ( t  + 0, ¢, ¢)), - 1  < 0 < 0. 

Straightforward computations [24] show that  the conditions of the theorem are 

satisfied. 

A more significant example may be found in Thieme and Castillo-Chavez [43] 
who used the result to show that  the infectives persist in a model of HIV/AIDS. 

The model is that  of a structured population and invloves both ordinary and 

partial differential equations. The idea of persistence although not as a direct 

application of the theorems presented here, appears in Busenberg, Cooke, and 

Thieme [1] who also were considering an AIDS model. 
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1 I n t r o d u c t i o n  

Consider the Li~nard equation 

~: + p ( z ) ~  + z = O, 

where p is a real polynomial of degree n, and the equivalent planar vector field 

( y , - x  - yp(x)),  i.e. the first-order system on IR 2 

~ = y  

9 = - ~  - y p ( ~ ) .  

An isolated nontrivial periodic orbit of this vector field is called a limit cycle. 

In [2] Lins, de Melo and Pugh proposed the following conjecture: the number of 

limit cycles of the Lidnard vector field defined by p does not exceed [~] (here 

[/3] denotes the integer part of fl). In the same paper it is shown that  this bound 

is the best possible and that  the conjecture is true for n < 2. 

The more general question about the existence of a bound (depending only 

on n) for the number of limit cycles of planar polynomial vector fields of degree 

< n was stated as part of Hilbert's 16th problem (see e.g. [3] for a history of the 

problem and an extensive bibliography). 

The main result in this paper is the following. 

T h e o r e m  1. For every polynomial p of degree n there exists an eo > 0 such that 

for all e satisfying l~l <_ eo the vector fietd ( y , - x -  eyp(x)) has at most [9] limit 

cycles. 
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2 B a c k g r o u n d  

This section recalls certain known facts from perturbation theory applied to 

Lidnard systems and establishes the notation. Throughout the paper p will de- 

note a polynomial of degree < n and P will be defined by P(x)  = fo  p(,~)d,f,. 
Consider the Lifinard equation 

~3 + ep(x)J: + z = O, (1) 

where e is a real parameter, and the equivalent first- order systems 

~ = y  

9 = - ~  - 'YP(~) (2) 

and 

= y - eP(x) (3) 

Observe that  the vector field defined by (2) is transversal to the positive 

y-axis and denote by S C IR x IR the open set of pairs (s, e), s > 0, with the 

property that  the positive semi-orbit of (2) through the point (0,s) intersects 

the positive y-axis again at a first point (0, A(s, e)). Thus s , , A(s, e) is the 

Poincar~ mapping defined by (2) and the function A is analytic. 
Set V(x ,y )  = 1 2 7(x 4- y2) and, for (s,e) E S, 

E(s,  c) = V(O, A(s, c)) - V(0, s). 

By a standard argument (see e.g. [1], Section 12.10) 

E(s, e) = c ~ ypdx + ¢(s, c), (4) 

where C8 = { (z ,y ) [ z2+y  2 = s2}, ¢(s, 0) = 0 and lim~-+0 ¢(',0 = 0for all s > 0. 

The function G : (0, oo) ---* IR defined by the above line integral, 

G(s) = i~ ypdx, 

is analytic, hence so is the function ¢. It is immediate that  

0¢ 
(~, 0) = ~ (~, 0) = 0 

U S "  

for all a > 0 and all i > 0. Therefore, by a simple induction argument, 

hence 

lim 1 0i¢ 0i+1¢(~,0~ = 0 ( a i¢  
, 4 0  7 0 ,  - - 7  - 0 , , 0 , "  " \ o s , - , o , )  (' '  o) 

o 

= \,__.o 7 
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lim 1 0 i ¢ ,  , 
- q = 0 ( 5 )  

e---* 0 

for all ~r > 0 and all i > 0. 

In order to compute G(s) let p(x) = ~ = 0  ak vek" Then 

a(s)  = - s  ~ sin 2 t p(s cost)dr = - aks k+2 sin 2 t cos k tdt. (6) 

k=O 

Recall the recursion formula for the indefinite integral 

/ s i n " + l t c ° s ~ - l t  P_~. 1 j ~ _ ~ , p + v ~ O .  
J r  ~ = sin g t cos ~ tdt = + 

' I ~ + v  # 4 - v  ' 

It follows that  in (6) the coefficients of the odd powers of s are zero and thus G 

is an even polynomial in s of the form 

G(s) = s 2 ~ m2is 2i. (7) 

i = 0  

Remark 1. Since the zeros of s ,  ~ E(s, e) yield all the nontrivial periodic orbits 

of (2) it follows by analyticity that  either each or else none of these orbits is 

a limit cycle. Notice also that  the function G is completely determined by the 

even part of the polynomial p; it is independent of the odd part. If p is an odd 

polynomial it is known that  E is identically zero on S, i.e. (2) has no limit cycles 

(see also Section 4 below). Otherwise the periodic orbits of (2) for e ~ 0 lie in a 

bounded region of IR ~ and are hence finite in number. 

Another known result which will be needed later is the following. 

L e m m a  1. (see,  fo r  i n s t a n c e ,  [4]) Let P be a non-even polynomial and 

Po be its odd part. I f  Po does not change sign at any x ~ 0 then (3) has no 

nontrivial periodic orbits (and hence Theorem 1 is trivially true). Otherwise 

every nontrivial periodic orbit of (2) intersects the z-azis outside the segment 

<_ a}, where a > o is the smallest positive zero of Po at which Po 
changes sign. 

3 M a i n  R e s u l t  

EquMity (4) and the preceding considerations imply that  a nontrivial periodic 

orbit of (2) intersects the positive y-axis at a point (0, s) with the property that  

s lies near a zero of G, provided lel is sufficiently small. In order to obtain a 

bound for lel which is valid for every such orbit it will be necessary to establish 

that there exists a compact set in IR 2 containing all the periodic orbits of (2), 

or of the equivalent system (3), for every sufficiently small ]el, ¢ ¢ 0. This result 

is stated below; its proof will be given in Section 4. 
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T h e o r e m  2. Let P be a non-even polynomial of degree > 1, with P(O) = 
O. There ezist 70 and Ko, 0 < 70 < Ko, depending on P, such that the set 
{(x,y)[7o 2 < x2 + y2 < K~} contains all the nontrivial periodic orbits of (3) for 

lel_< 1 , , #  o. 

It  is now possible to prove the main result. 

Proof of Theorem 1. In view of Remark 1 assume that  the polynomial P is not 

even. Theorem 2 implies that  the zeros of the function s ,  ~ E,(s) = E(s, e) 
defined in Section 2 lie in the segment [70, K0] for all [e[ < 1, e # 0. Equality (4) 

shows tha t  for every 6 > 0 one can choose an e0 > 0 so that  for lel <: e0, c ¢ 0 

and for each zero ~r~ of E~ there is a (unique) positive zero V of G such that  

1~ - v[ < 6. Assume that  ~ is a zero of order £ of G, t _> 1, i.e. G(J)(-~) = 0 for 

0 <_ j <_ ~ -  1, Gt('~) ~ O. Then for 6 > 0 sufficiently small and the corresponding 

e0 the function E~, [el < e0, e ¢ 0, has at most £ zeros in the 8-neighborhood of 
_ OrE 
~. Indeed, otherwise repeated use of Rolle's theorem would imply that  ~ has 

a zero in this neighborhood which is impossible since by (4) and (5) 

1 O'E~ lOlfCcr e~ 

for [ c r -  Vl < 6. It  is now clear that  for an appropriate  e0 > 0 and all le[ _< e0, 

e ¢ 0, the number  of distinct zeros of E~ in the compact interval [70, K0] does 

not exceed the number of positive zeros of G, i.e. of the even part  of p, counting 

their multiplicities. 

Finally, the even polynomial G is of the form 

m 

a ( s )  = - 

h = l  

where each "fib >_ O, ~hm=l dh <_ [9] and the function ~ is nowhere zero. In 

particular ~h is a zero of G of order dh and hence Ee has at most [~] zeros. By 

Remark 1 the proof  of Theorem 1 is complete. [] 

4 P r o o f  o f  T h e o r e m  2 

This section is devoted to the proof  of Theorem 2. Under the additional assump- 

tion that  the polynomial P has odd degree this theorem is proved in [2]. For 

completeness a slightly modified proof of this result is given below. 

L e m m a  2. I f  P is a polynomial of odd degree and P(O) = 0 then the conclusion 
of Theorem 2 holds. 

Proof. Let c > 0 be such that  the segment [ -c ,c]  contains all the zeros of 

P and p in its interior. Choose so > 0 so that  for (s,e) E S, with s >_ So, 
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I~1 < 1, the positive semi- orbit of (3) through the point (0, s) intersects the lines 

z = c and x = - c  for the first time at (e, Al(s,e)), (c, A2(s,c)), ( - c ,  A3(s,e)) 

and ( - e ,  A4(s,e)), with )q(s, e) > eP(c), A~(s, e) < oR(c), A3(s, e) < eP(-c), 
A4(s, e) > eP(-c) and At(s,e) -A~(s ,  e) > 1, A4(s,e) -A3(s ,  c) > 1. 

Fix s > So and e # 0, ]c] < 1 and denote by t ~ (x(t) ,y( t))  the integral 

curve of (3) with initial condition (0, s). The derivative of the function t , ) 

½(x2(t) + y~(t)) = V(x(t),y(t)) is -ex(t)P(x(t)), therefore 

V(c, A2(s, e)) -- V(c, A,(s, e)) - -e  P(xl(y))dy, 

j[,X4(s,e) 
V(-c, A4(s, e)) - V(-c, A3(s, e)) = c P(z2(y))dy, 

(8) 

where y ,  , z l (y)  and y ,  , x~(y) are the parametrizations by y of the ap- 

propriate arcs of the orbits of (3) through (0, s) lying in {(x,y)]z > c} and 

{(z, y)[z < - c }  respectively. Since P has odd degree and is strictly monotone 

for Ix[ > c the right-hand sides in the above equalities have the same sign and 

}V(c, A2(s, c)) - V(c, A,(s, e)) I > loP(c)}. 

Now 

I V ( - e ,  V(c, A2(s, ))l c ~P(x) dz, 

where z i ~ y~(z) is the parametrization by x of the appropriate arc of the 
orbit of (3) through (0, s). The integrand can be made arbitrarily small for So 

sufficiently large and [c[ < 1; in particular, for s > s0 and [~[ < 1, e # 0, 

IV(-e, A3(s, ~)) - V(e, A2(s, e)) I < 3 I~P(e) 1" 

It is obvious that one can obtain the same bound for V(0, A(s, ~))-V(-e, A4(s, E)) 

and V(c, Al(S,e))- V(O,s) and hence V(0, A(s, c)) ~ V(0, s). Thus it has been 

shown that the periodic orbits of (3) lie in some closed disc about the origin. In 

order to complete the proof of Lemma 2 observe that by Lemma 1 this disc can 

be replaced by an annulus. 13 

The proof for Lemma 2 fails if the polynomial P in (3) has even degree since 
in this case the right-hand sides in (8) have opposite signs. The analysis of this 

situation requires a preliminary investigation. 

Let P~ be an even polynomial of degree > 2, with P~(0) = 0. Consider the 

system 

=y-eRe(x), e > 0  (9) 

Recall the phase portrait  of (9) (see e.g. [2]). Every orbit of (9) is symmetric 

with respect to the y-axis and there is a nonperiodic orbit F~ separating IR 2 into 
two unbounded components, one of which is the union of all the periodic orbits 
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of (9). Furthermore F~ intersects the y-axis in a unique point lying below the 

x-axis if lim,--.oo Pe(x) = +co and above the x-axis if lim,__.~o Pe(x) = -co .  

Denote by De the union of all the nontrivial periodic orbits of (9). Clearly 

De is open in IR ~ and contains the positive, respectively the negative, y-axis. 

It is easy to see that  0 < e2 < q implies De, C D,~. Define a first integral 

We : De ---* IR of (9) by 

i p  z 
W,(z)  = - ( ) if lim~...oo P~(x) = +oo 

a2(z) if l im~oo P~(x) = -oo  

where (O,p(z)), respectively (0, a(z)), is the (unique) intersection point of the 

orbit of (9) through z = (x, y) E D, with the positive, respectively the negative, 

y-axis. Set W(x ,  y, e) = W,(x ,  y) and observe that  W : D --* ]R is analytic, 

where D = { ( z , y , e ) I ( x , y  ) E De} is open in IR 3. Notice that  for e ~ 0 one has 

w , ( x , y )  -~ v ( x ,  ~) = ½(x ~ + y~). 

L e m m a  3. There exists a nowhere vanishing analytic function k : D ~ IR such 

that 

OW 
(x,y,e)  = k(x,y,e)x,  =~-~u (x ,y , , )  = k (x ,y , , ) (y  - ,Re(x)), 

~ ( x , y , c ) x  Ok 
= ~ ( x ,  y, ~)(y - ~P~(x)) - ok(x, y, c)p0(x), 

where the odd polynomial po = P~ is the derivative of P~. 

(10) 

Proof. The third equality (10) follows from the other two and from the analyt- 

icity of W. Since We is constant along the orbits of (9) in D, one has, for every 

(x ,y ,  ~) ~ D,  

O~z ( x , y , e ) ( y - e P ~ ( x ) ) =  ~ y  (X,y,e)x,  (11) 

with ow and ow ~ not vanishing simultaneously. Therefore x and ow are si- 

multaneously zero on D and so are y - ePe(x) and ow -~-y. Define k : D --~ ]R 

by 

l o w ,  e) i f x ~ O  
k(x ,y ,~ )  = ; - ~ - ~ x , y ,  

1 OW (X e) if O. ~ Oy ~. ~y, x--- 

The principle of analytic continuation and (11) imply that  k is analytic and 

also the first two equalities (10). [] 

L e m m a  4. The function k has the following properties: 

(i) k(O,y,c) = I for arty > 0, e > 0 iflim~-~oo P~(z) = +co, or for al ly  < O, 

e > 0 zflim~...oo Pc(x) = -oo.  

(ii) I f  po(x) ~ 0 for x ~ 0 then k ( x , y , , )  > 1 on D. Otherwise for every 

0 < a < 1 there exists an Ro > 0 such that k(x, y, c) > c~ for all (x, y, c) E D for 
which x 2+y2  >_ R2o and O < e < 1. 
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Proof. For (r, s, e) E De denote by t ,  ~ (x~(t, r, s, e), y~(t, r, s, ¢)) the (periodic) 
integral curve of (9) with initial condition (r, s). Let 

re(v, s) = max{t < Olxe(t , r, s, e) = 0}. 

The mappings xe, y~ and r are analytic and 

[~'(r '~) d 1 2 1 ~ + s2). (V (x~ (t, r, s, e), y~(t, r, s, e) ) )dt = -~ Ye (re(r, s), r, s, e) - -~ (r 
J O  

Thus 

W(r,~,~) = -~ F'(~")~(t,~,~,~)P~(~(t,r,~,~))dt + ½(r ~ + ~1. (12) 
J 0  

Now assume that  r >_ 0 if lim P~(x) = +cx~, or r < 0 if lim P~(x) = -c¢ .  Then 

W ( r , s , e ) = c  Pe(~(y ,r ,s ,c))dy+ ( r2+s2) ,  
, 2 5  

where y , * ~(y, r ,s ,e)  is the parametrization by y of the appropriate arc of 

the integral curve. Since ~(x/2W(r, s, c), r, s, e) = 0 and P~(0) = p0(0) = 0 one 

obtains 

f ~  c3~ ¢)dy + r (13) 
OW 

(r, s, ~) = ~ po(~(y,  r, ~, ~ ) ) ~ ( y ,  r, ~, 
J $  

and 

[ ~  0~, r c92W (r, s, e) = e -~x (y' ' s, e)dy + 1, (14) 

where ~(y, r, s, e) denotes the integrand in (13). Since W(0, s, ¢) = ½s 2 for every 

s > 0 if lim Pe(x) = -4-c¢ or for every s < 0 if lim Pe(x) = - c ¢  it follows from 

(10) and (14) that 

k(O,s ,c )  = 0 2 W  -5-~-~ ( O, s, c ) = 1 

for s > 0, respectively for s > 0, and hence property (i) has been proved. 

Observe now that  the symmetry of the phase portrait of (9) implies that  

W(x ,  y, c) = W ( - x ,  y, e) for all (x, y, e) e D. Therefore k(x, y, e) : k ( - x ,  y, e) 
and thus it suffices to prove property (ii) for (x, y, c) e D with x > 0 (or x < 0). 

Let again (r, s, e) E D. Compute the variation ofk  along the arc of the integral 

curve t ,  , (x~(t, r, s, e), ye(t, r, s, c)) of (9) between (0, ye(v~(r, s), r, s, e)) and 

(r, s). The third equality (10) yields 

0 
~ k ( ~ ( t ,  r, ~, ~), ye(t, r, ~, ~), ~) = ~k(~( t ,  r, ~, ~), w ( t ,  r, s, ~), ~)po(~(t ,  ~, s, ~)), 

hence 
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(/o ) 
k(r, s, e) = k(O, ye(r,(r, s), r, s, e), e) exp e po(xe(t, r, s, e))dt 

or, by (i), 

k(r,  s, = exp s, (15) 
\ -,(~,,) 

The first s tatement in (ii) is now obvious. For the second statement it will be 

assumed below that  lim P~(x) = +oo. The other ease is treated in the same 
• "-'4 O0 

way by considering the set of points (z, y, e) E D, x _< O. 

Let b > 0 be such that  P,(b) > 0 and po(x) > 0 for x > b. If s > ePe(b), the 

orbit of (9) through the point (b, s) is periodic, intersects the line z = b again 

at (b,u), with u < eP~(b), and its two arcs contained in the band {(z,y)]0 < 

z < b} and lying respectively above and below the curve y = eP,(x) admit 

parametrizations by z: 

• , , > b, s ,  ¢)  = s 

Notice that  these functions are strictly monotone. Let L > O, M > 0 be such 

that ]p0(x)] < L, ]P,(x)[ < M on [0, b], and let 

Lb 
So > M -  21ogc~ , 

where a is the constant in the statement of (ii), 0 < a < 1. Consider the 

compact set { ( z , y ) l W ( z , y , c  ) = W(b, so,e),O < e < 1}, where W(z ,y ,  0) = 
V(x , y )  = 1 2 ~(x + y2), and denote by R0 > 0 the radius of a disc containing this 

set. Henceforth it will be assumed that 0 < e < 1. 

Let (xa ,y l )  e D, be such that  z~ + y l  2 > R02 and zl > 0. The closed curve 

{ ( z , y ) l W ( x , y , e  ) = W(X l , y t , e ) }  intersects the line x = b at (b, sl(e)) and 

(b, ul(e)), with sl(e) > so > 0, ux(e) < - s o  < 0 (obviously sl(e) and Ul(~ ) 

depend also on xl and Yl). In order to compute k(xl ,  Yl, ~) by means of (15) one 

distinguishes the following three cases. 

(I) Xl _< b, Yl > 0. One has, for 0 < x < xl,  

rh(z,b, S l (C) ,e ) -  eP~(x) > rh(xl ,b,  sl(e),e ) -  M = Yl - M > sl(e) - M.  

2 Lb S i n c e s l ( e ) - M > s 0 - M > -  ~ one has 

~ 1  po(x)dx exl 1 1 1 
e ~l(x,b, s l (c) ,e  ) ~pe(x) < - - ~ - l o g -  < l o g -  - ~ 2 ~ "  

( x 6 )  

It follows that  k(x l ,Y l , e )  > exp( - 1  1 7log Z) = V ~ > a. 
(II) xl _> b. In this case 
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f o  fo b po(x)dx • po(z~(t, xl, Yl, •))dr = • ,(~,,y,) 7h(z, b, sl(~), •) - •P~(x) + •I(Zl,  yl,  •), 

where I(Xl, Yl, •) > 0 since po(x) > 0 for x > b. Also, 

I J0 111 • b po(x)dx < (17) 
T I l ( z , b , s ~ -  eP,(x) ~ l o g ~  

by the same reasoning as that  used for proving (16). Thus, by (15), k(xl, Yl,•) > 
exp(-½ log ~) > ~. 

(III) x~ < b, Yx < O. Proceeding as in ease (I) one gets, for 0 < x < xl ,  

• P~(x) - rl2(x , b, u1(•), •) > - M  - '/]2(Xl, b ,  Ill(C), •) : - M  - Yl > - M  - '121 (~). 

2Lb 1 Since ul(•) < -so one concludes that  - M  - ul(•) > l-~g Z, hence 

I~  b po(z)dx 1 1 

e tl2(x,b, ul-~,~)--epe(x) < ~ log - -  1 O/ 

and 

Jr o fo b po(x)dx e po( e(t, y l ,  • ) ) d r  = • .(~,~,) rll (x, b, sl(•), e) - •Pc(x) + •I(b, ul(•), •) 

j~b po(x)dx >-log 1. 
a cPe(x) -~-~ ,~Ul(• ) ,e )  cr 

Thus, again, k(za, yl, e) > a. This completes the proof of (ii). [] 

Remark 2. Lemmas 3 and 4 hold, with obvious modifications, for system (9) with 

• < 0. Indeed, it suffices to replace the polynomial Pe by - P c  and to define the 

first integral We accordingly. Notice also that the second assertion of property 

(ii) in Lemma 4 admits the following generalization: for every 0 < a < 1 and 

every •0 > 0 there exists an R0 > 0 such that k(x, y, •) > a for all (x, y, •) • D 

for which x 2 + y2 >_ R0 and [•[ < e0, • # 0. 

It is now possible to prove Theorem 2. 

Proof of Theorem 2. If the polynomial P has odd degree the theorem is true by 

Lemma 2. Assume that  P has even degree > 2 and write P = P~ + P0, where Pe 
and P0 are respectively the even and the odd parts of P. Consider system (9) with 

this Pe (respectively with -P~ if e < 0 in system (3)) and the corresponding first 
integral We : D~ ~ IR. For definiteness, let l im~_~ ePe(x) = +c¢, and c > 0 be 

such that  the segment [-c, c] contains all the zeros of P0 and of its derivative in 

its interior. It will be shown that  there exists a q0 > elP(-c)[  with the following 

property: if q >_ q0 and e :~ 0, le[ < 1, are such that  the positive semi-orbit of 

(3) through the point ( -c ,  q) intersects the ray x = -c ,  y > e[P(-c)[ again at 

a first point (-c,  h(q, e)) then W~(-c, q) ¢ We(-c, h(q, e)). The assertion of the 
theorem is then immediate by Lemma 1. 
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Consider q > 0 and e ¢ 0 such that q > {IP(-c)l and if h(q, {) exists then 

the positive semi-orbit of (3) through ( - c , q )  intersects the lines x = c and 

x = - c  for the first time at (c, hi(q,e)),  (c, h2(q,¢)) and ( -c ,  h3(q,e)), with 

hl(q,c) > eP(c), h2(q,e) < {P(c), h3(q,~) < eP( -c ) ,  h l ( q , e ) -  h2(q,e) > 1, 
h(q, e) - h3(q, c) > 1. Notice that there exists a q0 > 0 such that  this holds for 

al lq>_q0 and a l l c # 0 ,  ]e I_< 1. 

Let (q, c) be such a pair and t ,  , (x(t, - c ,  q, e), y(t, - c ,  q, e)) be the integral 

curve of (3) with initial condition ( - c ,  q). The derivative of We along this curve, 

written for simplicity t ,  , (x(t), y(t)), is 

OW~ z t ,  owe ¢¢e(~(t), y(t)) --~-x ( ( ) y(t))(y(t)  - cP(x(t)))  - --~-y (X(t), y(t))x(t) .  

By (11) and (10) 

wdx(t), v(t) ) = -{Po(x(t))2gT2/(~(t), v(t) ) 

= -cx( t )Po(x( t ) )k (x ( t ) ,  y(t), {). 

It follows from (3) that  

W~(c, h2(q, e)) - We(c, hi(q, c)) = e 

(18) 

fh h2(q'e) P0(xl (y))k(xl (y), y,  { )dy ,  
hl(q,e) 

f 
h(q,O 

We(-c ,  h(q, e)) - We(c, h3(q, e)) = c Po(x2(y))k(x2(y),  y, e)dy, 
Jh3(q,e) 

where y ,  ) xl (y)  and y ~ ~ x2(y) are the parametrizations by y of the appropri- 

ate arcs of the orbit through ( - c ,q )  lying in {(x,y)]x >_ c} and {(x ,y ) lx  <_ - c }  
respectively. Since the odd function P0 is nonzero and strictly monotone for 

Ixl > c one gets by Lemma 4 for o~ = ½ and a suitable choice of q0: 

We(c, h2(q, e) ) - We(c, hi(q, e) ) < - e  po(c)( hl (q, e) - h2(q, {)), 
(10) 

We(-c ,  h(q, ~)) - We( -e ,  h3(q, e)) < --~Po(e)(h(q, c) - h3(q, {)), 

if ePo(c) > 0 and the reverse inequalities if {Po(e) < 0. In order to obtain the 

desired inequality We(-c ,  h(q, e)) - W~(-c,  q) # 0 it remains to be shown that  

IWe(c, hi(q, ¢)) - W~(-c ,  q)[ < llePo(c)l(hl(q, ~) - h2(q, c)), 
(20) 1 

I W d - e ,  h3(q, ~)) - W~(c, h~(q, *))1 < ~ I*P0(c)l(h(q, c) - h3(q, {)) 

These inequalities cannot be proved in the same way as (19) since even for fixed 

c # 0 the function k is not bounded on {(x,y)  E D,ilzl <_ c}. It is therefore 

necessary to use a different approach. 

Recall that  We(x, y) = W , ( - x ,  y) and that  We is defined by (12). With the 
notation introduced earlier 
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We(c, hl(q,e))  - W~(-c ,q)  = We(c, hl(q,¢)) - W~(c,q) 

= e [r '(e 'q) z e ( t , c , q , e )Pe ( ze ( t , c , q , e ) )d t -  1(c2 + q2) 
.!o 

- e [r,(c,ha(q,e)) Xe(t, C, hl(q, '), ¢)Pe(ze(t, c, hi(q, e), e))dt 
dO 

1 2 
+ 7(c  + h~(q,¢)). 

Reparamet r ize  by z the por t ions  of  the two integral curves of (9) with initial 

conditions (c, q) and (c, hi(q, c)) determined by the limits of the corresponding 
integrals above: 

z ,  , r/l(z, c, q, ¢), z ,  ,rh(x,C, hl(q,e) , , ) ,  O < z < c .  

One obtains 

We(c, hi(q, c) - W , ( - c ,  q) 

fo  e rh(X , c, q, e) - rh(z  , c, hi(q, c), e) 
= e z P e ( z ) ( t l t ( z , c , q , D - e P e ( z ~ O I l ( Z , c ,  , , , ,  , , ,  - e P e ( z ) )  dz (21) 

+ 2(h~(q, ~) -- 
q2). 

In order  to es t imate  hi(q, e) - q and h21(q,e) - q2 notice tha t  

/_ ~ xdx 

hl(q,e) - q = - c y l ( z , - c , q ,  e) - eP( z ) '  

where x J ~ y l ( z , - c ,  q,e) is the parametr iza t ion  by z of the appropr ia te  por- 

t ion of  the integral  curve of (3) with initial condit ion ( - c ,  q). Differentiation of  
1 2 ( z , y )  ~ , ~ (z  + y2) along this arc and subsequent  integrat ion yield 

~_ : z P ( x ) d z  
h~(q,e) - q~ = - e  ¢ y1(z , - -~ ,~ ,  ~) ~ ¢P(z)"  

It is now obvious tha t  for q0 sufficiently large Ihx(q, e) - ql and In'~(q")-q21 Id are 

arbi t rar i ly  small for q > qo and I¢1 < 1, ~ # 0. 

Next  set ~(z)  = 7h(Z, c, q, e) - 71x(z , c, hi(q, ~), ¢) and observe tha t  for 0 < 

z < e  

~ ( ~ )  = q - h ~ ( q , ~ ) +  ,7~(~,c,h~(q,~) ,~)  - ~P~(~) - , 7 1 ( ~ , ~ , q , ~ ) -  ~P~(~) 

Differentiation yields 

#(~) = (,7~(~, ~, q, ~) - ~P~(~ ) ) ( , l ~ (~ ,  c, h~(q, ~), ~) - ~P~(~) 

and hence 
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(d( 
~(x)  = ( q - h l ( q , ¢ ) ) e x p  (rh( ( ,c ,q ,e )  - ePe(z))(rh(( ,c ,  hl(q,e) ,e)  - ePe(z))" 

It follows that  I~(x)l < Ihl(q,e) - ql for 0 < x < c and therefore (21) implies 

that  q0 > 0 can be chosen so that  

1 ]We(c, hl(q,¢) - W , ( - c , q ) ]  < iPo(c) I 

H 

for lel _< 1, e ¢ 0. The other inequality (20) is proved in a similar manner 

observing that  Ih3(q,e) - h 2 ( q , e ) l  is bounded for q > q0. This completes the 

proof of Theorem 2. [] 

Remark 3. If P0 does not change sign at any z ¢ 0 then the r ight-hand side 

of (18) has constant sign along every nontrivial orbit of (3). Lemma 1 is a 

straightforward consequence of this observation. 

Notice that  Theorem 2 can be replaced by a more general statement: for 

every e0 > 0 the constants ~/0 and K0 can be chosen so that  the conclusion of 

the theorem holds for all H -< e0, e ¢ 0 (see also Remark 2). Notice also that  

the preceding proof requires only that P~ ~ 0, P0 ~ 0 and remains valid if the 

degree of P is odd. Finally, for every polynomial p and e = 1 system (2) (or the 

equivalent system (3)) has at most finitely many limit cycles. 

Acknowledgment 

This paper was written while the second author held a C.N.R. fellowship spon- 

sored by NATO and was visiting the University of Illinois at Urbana-Champaign. 

He expresses his grati tude to the Department of Mathematics for its warm hos- 

pitality. 

References 

1. Arnold, V.I. (1973): Ordinary differential equations. MIT Press 
2. Lins, A., de Melo, W., Pugh, C.C. (1976): On Li~nard's equation, geometry and 

topology. Rio de Janeiro, Lect. Notes in Math. 597, 335-357, Springer-Verlag 
3. Lloyd, N.G. (1988): Limit cycles of polynomial systems-some recent developments. 

New Directions in Dynamical Systems, London Math. Soc. Lecture Notes Series 
127, Cambridge Univ. Press, 192-234 

4. Villari, G. (1987): A new system for Li~nard's equation. Bollettino Un. Mat. Ital. 
(7), l-A, 375-382 



Hopf Bifurcation in Quasilinear Reaction- 
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1 I n t r o d u c t i o n  a n d  m a i n  r e s u l t s  

During the last two decades, renction-diffusion systems have been widely stud- 

ied, usually in the form 

Otur - -arAur=fr (u )  i n l2x (O ,  oo) r = l , . . . , Y ,  (1) 

where I2 is a bounded domain in R n such that 12 is an n-dimensional smooth 

(i.e., C °°-) submanifold of R n, the 'diffusion coefficients', at, are positive, and 

the 'reaction terms', fr, are smooth functions of u := (u l , . . . ,  UN). Of course, ar 
and fr can also depend smoothly upon x E Y2 and --arAur can be replaced by 

• ArUr, where .Ar is a strongly uniformly elliptic second order differential operator. 

The system (1) has to be complemented by boundary conditions, which are 

usually Dirichlet boundary conditions: 

url0Y2 = 0, l < r < g ,  (2) 

or Neumann, that is, 'no flux' conditions: 

O~ur = O, l < r < N , (3) 

where v := ( v l , . . . , v  n) is the outer unit normal on 0Y2 and 0r the normal 

derivative along 0Y2, or a combination of (2) and (3). 

The basic existence, uniqueness, and continuity questions for problem (1)-(3) 
are by now well understood and a great deal is known concerning the qualitative 

behavior of the semiflow generated by (1)-(3) (cf. [9] for pioneering work in this 

field). 

If we introduce the 'flux vectors' 

j r ( u ) : = - a r V u r ,  r = l , . . . , N ,  (4) 

we can rewrite (1) as 

Otur+div jr (u)=fr (u)  inY2×(0,  oo), r = l , . . . , Y ,  (5) 
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and the no flux conditions (3) are equivalent to 

I = 0 o n  012 x (0,  o o ) ,  r = 1 , . . . ,  N ,  (6)  

where (. I ") is the inner product i n /g ' .  This formulation of the reaction-diffusion 

system (1), (3) reveals the importance of the flux vectors jr(u), since (5) is noth- 

ing else but a basic conservation law which governs a great variety of physical, 

physico-chemical, biological etc. processes (e.g., [6, 8]). However, in a general 

N-component system the flux vector jr(u), belonging to the r-th quantity ur, 
will not be of the simple form (4), but will depend on the other quantities us, 
s # r, too. General physical principles (e.g., [6]) imply that  in a great many 

cases jr(u) is given by 

N 

jr(u) := - E[ar , (u)Vu ,  + ar , (u)u,]  , (7) 
$----1 

where ars and a t ,  depend smoothly on u and z • 12. (For simplicity we suppress 

here the x-dependence in our notation.) Moreover, instead of 'no flux' boundary 

conditions one often finds 'prescribed flux' boundary conditions for some com- 

ponents of u, which may be nonlinear, and Dirichlet boundary conditions for 

the remaining components. This means that  the boundary conditions are of the 

form 

St(jr(u) [ v ) + ( 1 - b r ) u r  --6rgr(u) o n 0 1 2 x  (0, cx~) , (8) 

where 5r • C(012, {0, 1}), so that  5~ is constant on each component of 012, and 

gr is a smooth function of u (and of x • 012). Observe that  (8) reduces to the 

Dirichlet boundary condition (2) if 6r = 0, whereas it is a nonlinear Neumann 

condition 

(jr(u) ] v) = gr(u) 

if 5r -- 1. 

By inserting (7) in (5) and (8) we obtain a strongly coupled system of quasilin- 

ear evolution equations subject to nonlinear boundary conditions. Using matrix 

notation, we can write this system in the form 

cO, u - cOj(a(u)Oju) + aj(u)Oju + ao(u)u -- f(u) in 12 x (0, co) , 
(9) 

5(a(u)O~u + b(u)u) + (1 - 5)u = 5g(u) on 0F2 x (0, co) , 

where a(u) := [ar,(u)]l<r,,<N, ai(u), no(u), and b(u) are suitable g x N- 

matrices depending smoothly on u, where 5 := diag[51 , . . . ,  5g], and where the 

summation convention is being used, j running from 1 to n. 

In fact, we assume that the system (9) depends smoothly upon a real param- 

eter A. To be more precise, we assume that  G is a domain in R g containing 0 

and being starshaped with respect to 0, and that 

a, a i , a o • C ° ° ( - ~ x G x R ,  L(Rg)),  j = l , . . . , n  , (10) 
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where L(E,  F) is the Banach space of all bounded linear operators mapping the 

Banach space E into the Banach space F,  where L(E) := L(E,  E), and where 
L(R iv) is identified with the space of N x N-matrices. We also assume that  

b • Coo(c952 × G x R, L(RN))  

and that  

f • C °o ( ~  x G x R, RN), 

Finally, we suppose that  

(11) 

¢ ( , , ( ~ , , 7 , X ) ) C { z • C ; r t e z > O } ,  ( ~ , , , A ) • D x  G ×  R ,  (13) 

where a(.) denotes the spectrum, and - -  for simplicity - -  that  

51 = 52 = .. .  = 5N • (14) 

We fix p > n + 1 arbitrarily and put 

Hi, . := {v • ~ ( 5 2 ,  RN); (1 - 5)7ov = 0} , 

where 7o is the trace operator on c352. Moreover, 

Y := {v • HI,B;V(~) C G} , 

so that,  thanks to Sobolev's embedding theorem, V is an open subset of H~, B , 

where the latter is a closed subspace of the Sobolev space H~(52, RN), whence 

a Banach space. Given (v, A) • V x R, we put 

¢4(v, A)u := -Oj(a(. ,v,A)Oju)-]-aj(. ,v,A)Oju-4-ao(. ,v,A)u (15) 

and 
B(v, .X)u := 5(a(., v, A)Ovu + b(., v, A)'you) + (1 - 5)7ou (16) 

for u • H~(52, RN). Then (9) can be rewritten as 

Otu -4- .A(u, A )u = f (., u, A) 

~(~,~)= =@(- ,~ ,~ )  

Finally, we assume that  

in 52 × (0, oo) , ( 1 7 ) x  

on 052 x (0, c¢) . 

(f(. ,  0, .), g(., 0, .)) = (0, 0 ) .  (18) 

Given (v, A) • Y x R, it follows from (13) and (14), thanks to [3, Theorem 

4.4], that  (A(v, A), /3(v, A)) is normally elliptic in the sense of [3, Section 1]. 

Hence we deduce from [3, Corollary 9.4], (10)-(12), and (18) that,  given any 

u0 • V , (19) 

there exists a unique maximal classical solution 

"( ' ,"o,~) • C([O,t+("o,:~)),V)nCoo( -~ × (0,t+(u0,A)), RN) (20) 

g • Coo(052 x G x R , R  N) . (12) 
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of (17)x satisfying u(0, u0, A) = u0 (cf. also formulas (3) and (4) of [3]). Moreover, 

[3, Corollary 7.4 and Theorem 10.5] guarantee that 

(t, uo) ~ u(t, uo, A) (21) 

is a smooth local semiflow on V depending smoothly on A E R. Observe that 

(18) implies that 0 is a restpoint for this semiflow, independently of A E R. 

In this paper we address the question whether 0 E V is a bifurcation point 
for periodic orbits of this semiflow. This is known to be the case for semilinear 
reaction-diffusion systems of the form (1), where f depends on A E R, provided, 

for example, the linearized problem (at u = 0) possesses a pair of simple eigen- 

values +iw0 crossing the imaginary axis as A crosses 0, say, and there are no 

other eigenvalues at A = 0, which are integer multiples of iw0 (e.g., [5,9]). It is 
clear from this eigenvalue condition that Hopf bifurcation, that is, bifurcation of 

periodic orbits from the rest point 0, is caused by the coupling in the reaction 

terms in the case of semilinear reaction-diffusion systems with symmetric diag- 

onal principal part, whose prototype is given by (1)-(3). In the case of strongly 

coupled quasilinear reaction-diffusion systems of the form (17), it is to be ex- 
pected that  Hopf bifurcation can be caused by the coupling in the principal part, 

even if the reaction terms are decoupled. 

To see this, we consider a simple two component m o d e l  p r o b l e m ,  given by 

(5) and (8), where 51 = 52 = 1, and 

jl(U) := --all(U, A)VUl -- al2(U,A)Vu2 , 

j2(u) := a21(u,A)Vul , (22) 

where we assume that all,a12,a21 E C ~ ( R  2 × R,R) and 

all(r/, )t) > 0, al2(r/, A)a21(r/, A) > 0, (r/, A) E R 2 x _~ . (23) 

We also assume that 

f(u,  A) := (~(Ul, A)ul, O) (24) 

and that 
g l ( u ,  A) := - 0/11(u, ~ ) u l  - 0/1~(u, A)u2 , 

g2(u, ~) :=0/21(u, ~)u~, (25) 

where ~o E C ~ ( R  x R, R) and a l l ,  O/12,0/21 ~ 6c¢( 11~2 X R, /~). Letting 

a(u,A) := r all(U,A) 
[ -a21(u ,  A) 

our system takes the form 

c3tu - c3j(a(u, A)Oju) = f(u, A) 

a(u, ~)o.~ = g(u, ~) 

al2(0u, A) ] 

in 19 x (0, ~x~) , 
(26) 

o n  0r2 x (0,  ~ )  , 

and (23) guarantees that condition (13) is satisfied, where now G := R 2. Setting 

L - ~ 2 1 ( u , ~ )  o J 
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we assume - -  to simplify some computations below - -  that  there exists a positive 

constant/3 so that  

~(0, A ) = ~ a ( 0 ,  A), A e R  . (27) 

It is useful to interpret (22)-(27) as a two  p o p u l a t i o n s  m o d e l .  Then - -  

assuming that  at2(u, A) > 0 - -  the first quantity in (22) means that ' the flux 

of the first population goes in the direction where the density of its own species 

decreases and also to the places where the density of the second population ( ' the 

enemies') is low'. Thus att(u)Vul can be interpreted as a 'social friction' term, 

which prevents 'overcrowdedness'.The second quantity simply means that  the 

second population 'runs in the direction where there is a higher density of the 

first species'. Similarly, the boundary condition 

(jr(u,A) l v) = gr(u,A) on0$2,  r = l , 2 ,  

thanks to (25), means that  ' the first population tends to stay away from those 

parts of the boundary, where there is already a lot of its own species or a lot 

of enemies', whereas the second population 'wants to go to those places on the 

boundary, where there is a lot of the first species'. This is true for small popu- 

lations, thanks to (27). 

Thus the above model essentially says that  the 'second species chases the 

first one', that  the first one 'runs away from the second species' and that  it 

'diffuses' too, that  is, 'runs away from places of high density of its own species'. 

Consequently, it seems reasonable to expect that there exists periodic behavior if 

no diffusive behavior of the first population occurs. Thus, if one wants to have a 

periodic behavior in the presence of diffusion, one will have to 'produce'  the first 

species at an appropriate rate in order to compensate for the 'loss' caused by 

diffusion. It will be a simple consequence of our general results that this is indeed 

the case. This shows that  periodic behavior is caused by the strong coupling of 

the highest order term - -  by 'cross diffusion terms' - -  and not by the reaction 

terms. It is now obvious how (22)-(27) can be interpreted if al2(U, A) < 0. 

We associate with (17)~ the linear elliptic eigenvalue problem at u = 0: 

[ -A(0 ,  A) + a2f(- ,0,  A)] v =#(A)v in ~2, 
(28)x 

[ -B(0,  A) + 602g(., O, A)] v =0 on 0t2 

Since the Lv-realization of this problem has a compact resolvent, this eigenvalue 

problem is well posed. 

We can now formulate the main existence theorem for Hopf bifurcation. 

T h e o r e m  1. Suppose that 

i .  are simpte eigen,,alues # (2S)o, whe,  > 0 .  

2. (28)0 has no eigenvalues of the form ikwo for k C Z \ {+1} . 

3. OxRe#(O) # O, where p(A) is the unique eigenvalue of (28):~ for A in a 
neighborhood of 0 satisfying #(0) = iwo. 
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Then the system (17)x has in a neighborhood of (0,0) E V x R a unique one- 

parameter family {7(s); 0 < s < ¢} of noncritical periodic orbits. More precisely: 
there exist ~ > 0 and 

satisfying 

such that 

(u(.), T(-), A(.)) E C°°( ( -c ,e ) ,  V x R x R) 

(u(o), V(O), = (0, O) 

:= 7(u(s) )  

is for 0 < s < lel a noncritical periodic orbit of (17)x(,) of period T(s) pass- 
ing through u(s) E V. If  0 < S 1 < 82 < E, t h e n  7(81) ¢ 7(82). The family 
{7(s);0 < s < ~} contains every noncritical periodic orbit of (17) lying in a 

suitable neighborhood of (0, T(O), O) E V x R x R. 

It should be remarked that the existence of a unique smooth continuation 

tt(A) of iwo for )~ near 0 is part of the Theorem. 

Observe that  condition (3) is the standard 'Hopf condition' guaranteeing that  

a pair of simple eigenvalues crosses the imaginary axis at A = 0 with nonzero 

speed ([5, 9, 11]). 

In order to apply the Theorem to our e x a m p l e  (22)-(27), we have to study 
the linear elliptic eigenvalue problem 

a(O,)~)Av + Oaf(O,)~)v =#(,~)v in 12, 
(29) 

a(O, )~)Ovv + c~(O,)~)v =0 on a~f2 , 

which, thanks to assumption (27), is equivalent to the system: 

a(O,A)Av + Otf(O,)~)v =/t()~)v in I2 , 

O~v + fly =0 on 0~2 . (30) 

Consider the scalar eigenvalue problem 

A p = n ~  in /2 ,  

0 ~  +/3~ =0 on 0 /2 ,  (31) 

where ~o : I2 --~ C, and denote by 

0 >  t¢ 0 > ~ l  >__ K2 ~ . . .  

the sequence of eigenvalues of (31), each one counted according to its multiplic- 

ity. By using the fact that the orthonormalized sequence (~o~) of corresponding 

eigenfunetions forms an orthonormal basis in L2(JT, C) and that  the spectrum 

and the eigenfunctions of (31) are independent of q E (1,co), if (31) is being 

considered as an eigenvalue problem in Lq([2), it is not difficult to see that  the 
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eigenvalues of (30) are given by {pk,j(A); k E N, j = 1,2}, where #k,l(A) and 

pk,2(A) are the eigenvalues of the matrices 

a(0, A)~k+01f(0 ,  A) EL(R2) ,  k E N  . 

Thanks to the special form of f in (24), we see that 

a12(0,A)xk ] k E N .  a(O, )Otck + Olf(O, ~) = 
/ --a21(0, ,,X)m, 0 J ' 

Denoting by a(A) the spectrum of (29), that is, the set of eigenvalues of (29), we 
easily deduce from the above that 

~(A) C [Rez < 0] if ~o(0, A) < - a l l ( 0 ,  A)x0 (32) 

and that 

~(~) c [ ~ z  <__ 0], ~(a) n in  = { ± i ~ 0 } ,  

where w0 := ~o~/a l l (0 ,  )k)a21(0), provided ~o(0, )k) = -a11(0, A)x0 . 

We now assume that 

~o(0, X) < - a l l ( 0 ,  A)xo if A < 0, 9(0,0) = -a11(0,0)xo . (33) 

Then it follows that 

O~te~(0) = 1/2(O~a,x(0, 0)x0 + O~(0,  0)) . 

We deduce from (32), (33) and [7], for example, that zero is an asymptotically 

stable critical point of the semiflow induced by (22)-(27), provided A < 0, which 
loses its stability at A = 0. If 

O2all(0, 0)to0 + 02~o(0, 0) # 0 , (34) 

it follows from the Theorem that a 'branch' of periodic orbits of period close to 

21r 

~0 ~/a12(0, 0)a21(0, 0) 

bifurcates off the restpoint as A crosses 0. Observe that conditions (33) and (34) 

are satisfied, for example, if al l  is independent of A, that is, all(U, A) = al l(u) ,  

and ~,(u, A) = A -all(U)t~o. This shows that our heuristic considerations based 
upon the population model interpretation were correct. 
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2 P r o o f  o f  t h e  T h e o r e m  

Given q E (1, co), we put 

{ { v C H i ;  (1-~f)7ov=O),  ~ < s < l + } ,  

Hi,B:= Hi ,  - l + ~ < s < ! ,  (35) 
- a  i 1 < s < _ l + l  ( H q , , B )  , - - 2  + ~ -~ , 

H i := H~(l'2, R N) being the Bessel potential spaces and the duality pairing 

being induced by (u,v):= fn(u(x) ,v(x))dx,  where (u(x),v(z))is  the standard 

duality pairing in C N. It follows from [3, Proposition 5.4] that  (except for equiv- 

alent norms) 

" ,  (36) Hq,B = [Hq,B,Hq,B] s - s o  , 
$ 1 - - 8 0  

for So < s < sl and s, s0,sl E ( - 2 +  I / q , l +  1 / q ) \ Z + l / q ,  where [.,.]e, 

0 < 0 < 1, denotes the complex interpolation functor. 

Given u E C(~ ,  G) and A E R, we put 

a(u,A)(v, w) := (Ojv, a(., u,.~)Ojw) + (v,aj(., u,)OOjw + ao(., u,~)w) 
1 1 +(Tav,b(.,u,.~)Taw)a , (v,w) ¢ H~,,B x g•, B , 

where (v, w)a := foa(v(x), w(x))dc~. It follows from [3, Theorem 6.1] that 

[(u,,~) ~-~ a(u,)0] E C°°(V × R, f 2tr~2-" rz, . "~ ~-p',B, "p,S, R)) (37) 

for 1 < s < l + l / p ,  where L2(E, F; R) denotes the Banach space of all continuous 

bilinear forms on E × F.  

We fix s E (1, 1 + 1/p) and put 

E1 : :  E0 : :  

Then it follows from (37) that  there exists 

A(., .) E C ~ ( V  x R,L(E1,Eo)) 

satisfying 

(v,A(u,~)w) : a(u,~)(v,w), (u,)Q e V x R ,  (v,w) E E~o x E1 • 

We also put 

F(u, .~) :=f ( . ,u ,~)+7~g( . ,u ,A) ,  ( u , ~ ) E V x n  , 

Da--1 /p~  where 7~ is the dual of the trace operator ~/o E L(H~,,B, ~p, j for 1 - 1/p < 

a < 2 - s ,  where B;, -1/p~ "- r~a-1/P't,~o R N) are Besov spaces. Then it is easily 

verified that  

F E C°°(V x R, ET) , 

wher  := 
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We associate with (17)x the abstract Cauchy problem 

i~+A(u,) t)u=F(u,)~),  O < t < c ¢ ,  u(O)=uo (38)x 

in E0. Since (A(u,)0, B(u, A)) is normally elliptic for (u,)~) E V x R, it follows 

from [3, Theorem 5.6] that  -A(u ,  ,~) is for each (u, $) E V x R the infinitesimal 

generator of a strongly continuous analytic semigroup on E0. Now the results of 
[3] imply that (38)x has for each u0 E V a unique maximal solution 

c([0, v) n c((0, t+(u0, El) 

n 61((0, t+(u0, E0) 

such that 

(t, u0) u(t, u0, a) 

is a local semittow on V, which depends smoothly upon (t, u0, .~) for t > 0 (cf. 

also [2]). Moreover, the derivatives of u with respect to the various variables are 

the unique solutions of the various linear Cauchy problems which are obtained 

by linearizing (38)x at u(., u0, ,~) with respect to the corresponding variables (of. 

[2, Section 11] and [3, Theorem 10.5]). Finally, it follows from the considerations 

in [3, Section 9] that u(., u0, ~) is the unique maximal classical solution of (17)x 

satisfying (20) and u(0, u0, ~) = u0. 

At this point there are two distinct possibilities to prove the Theorem. 

Namely, we can either apply the results of Da Prato and Lunardi [11], or we 
can modify the finite--dimensional approach given in [4]. 

In the first case, we put V1 := V gl El, equipped with the El-topology. We 
then define 

E C°°(V1 × R, Eo) 

by 

Since 

• (u, A) := - A ( u ,  )t)u + F(u, )~) . 

c91~(0, O) = -A(O, O) + 01F(O, O) 

and D1F(0,0) e L(Ea, Eo), where E~ := Hip,B, a standard perturbation theo- 

rem for analytic semigroups (e.g., [10, Corollary 3.2.4]) implies that 01~(0, 0) E 

L(E1, Eo) is the infinitesimal generator of a strongly continuous analytic semi- 

group on E0. Since E1 is compactly injected in E0 (e.g., [3, Proof of Lemma 8.1]), 
we see that 014i(0, 0) has a compact resolvent (considered as a linear operator 
in E0). Finally, it is easily verified that  the eigenvalue problem 

al~(o,  ~)v = ~(~)v 

in E0 is equivalent to (28)x. Hence the Theorem follows from [11, Theorem 2.2]. 

As for the second approach, we replace the independent variable t in (38)~ 

by r2-~r t , where r0 := 27r/wo and r E R. Then (38);~ transforms into 

i) = h(v, a), tr := ()t, r ) ,  h(v, a) := ~+.~[-A(v,)t)v + F(v, A)] . (39) 
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Let v( . ,~ ,o ' )  be the unique maximal solution of (39) satisfying 

v(0,~, a) = ~ E V. Since 0 E V is a critical point for the semiflow generated 

by (39), there exists a neighborhood W x ,U of 0 in V x R 2 such that  

: =  - v(2 , e c ° ° ( w  × 

It is easily verified that  

big(O, O) = 1 - e 2~L 

in E~, where {e tL; t  >__ 0} is the semigroup generated (in E~) by 

L := { ~ [ - A ( 0 , 0 ) +  01F(O, 0)]. By carrying out obvious modifications, one ver- 

ifies that  the proofs of [4, Theorems (26.21) and (26.25)] remain true. For this 

it suffices to observe that  g is a nonlinear Fredholm operator of index 2 and 

{e=L;t > 0} restricts to a flow on ker(1 - e2~L). Thus the Theorem follows by 

this approach too. U 

3 R e m a r k s  

• It is clear that  our regularity conditions can be considerably weakened. 

Moreover, it is also clear that (15) and (16) can be replaced by more gen- 

eral systems. It is only necessary that (.A(v,$),B(v,,~)) are normally elliptic 

for (v, ~) E V x R (cf. [31 for more details). 

• It is, of course, of considerable interest to study the stability of the bi- 

fureating periodic orbits. We refrain from doing this here, but we mention that  

again there are two possible approaches to this problem. Namely we can either 

use the techniques of Da Prato and Lunardi [12], or we can modify the proofs 

of [4, Theorems (27.11) and (27.14)]. 

• In concrete applications it is, of course, essential to determine to some 

extent the eigenvalues of the linear elliptic system (28)9,, at least so far that  

conditions (i)-(iii) of the Theorem can be verified. Whereas a lot is known about 

the eigenvalue problem for a single elliptic equation, not very much seems to be 

known for elliptic systems. For example, we are not able to verify conditions 

(i)-(iii) of the Theorem for the 'simple' problem (29) if assumption (27) is not 

satisfied or if the coefficients of (22) depend upon x E I2 for u = 0. 

• The proof of [2, Proposition 6.1], which is the basis for the demonstration 

in [3] that  (17)x generates a local semiflow on V, contains a mistake. In fact, the 

assumption in [2, Q1] that  Ea be relatively complete with respect to E# should 

be dropped. Moreover, hypothesis (Q2) in [2] can be simplified by dropping 

the 'local regular boundedness' assumption. Thus - -  using the notations of [2] 

- -  the results of the latter paper remain valid under the following simplified 

assumptions: 

(Q1) E E B2, 0 < 7 < fl < ~ < 1, fl and ~ are well related, and (7, a) and 

(7, fl) are stable. 
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(Q2) A is a metric space, 

A e CP'I-'~([0, r ] x  V~ x A,7/ (E))  

for s o m e p e ( 0 , 1 ) ,  ¢ • [ 0 , 1 )  U { 1 - } , a n d T > 0 ,  and 

f • C° ' l - 'a([0,  T] x Ya x A , E . ¢ )  . 

To see this, it suffices to observe that  the proof of [1, Lemma 6.2] gives the desired 

result, since the 'local regular boundedness', which is needed, is a consequence 

of the continuity hypotheses in (Q2). 
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Pau, France 

A b s t r a c t  

We present a fairly general s tudy for a class of semi-flows defined on an ab- 

stract space, which are monotonically increasing and possess a first integral, 

also increasing. Examples of that are systems of delay differential equations 

generated by compartmental  models. Under reasonable restrictions, a complete 

description of the asymptotic behavior can be obtained in situations including 

almost-periodic dependence. We will not go into these details here. Rather  the 

paper intends to enlighten the main aspects of the theory. Finally, a comparison 

with related literature is made. 

I n t r o d u c t i o n  

My purpose here is to present some results on the asymptotic behavior of so- 

lutions of monotone semi-flows which have a monotone first integral. First, I 

will present the class of equations which motivated my interest in this partic- 

ular question. It goes back a little more than ten years to some work I did in 

collaboration with Pierre S6guier. I discussed this work with Ken Cooke during 

a Conference in Italy (Cortona, July, 1979). Ken encouraged me to improve the 

results. The paper which stemmed from this effort appeared in the Journal of 

Mathematical Analysis and Applications (1984); it was my first ever paper in 

such a journal. This, by the way, made my choice of a subject for this Confer- 

ence quite obvious. The work with P.S6guier was restricted to a scalar equation 

and the techniques we used there are not easily extendable to the vector case. 

In collaboration with E.Haourigui, I developed a more general approach. This 

allowed us to extend my previous results with P.S6guier to the case of a system 

of delay differential equations, which had been introduced by Istvan GySri ([7]) 

as a general compartmental  model. 
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In Sect. 1, I will briefly illustrate on this class of equations the methods we 

used and the results we obtained. It should be clear, looking at this example, 

that it is only a particular example of a broader class; indeed, in collaboration 

with F.Bourad ([5]), I extend the results obtained previously with E.Haourigui 

to abstract dynamical systems. In Sect. 2, I will give a brief presentation of the 

appropriate setting, and derive the results in the autonomous case. The general 

situation will be considered elsewhere. As far as I know, monotonicity was not 

very popular at the time I started working on delay differential equations of 

monotone type, not counting, of course, specific areas such as parabolic equa- 

tions where it led to such concepts as upper, lower solutions. Things changed 

when M.Hirsch began to produce his fundamental results on monotone dynam- 

ical systems ([9]). A number of people have since pursued the idea of applying 

Hirsch's results to monotone systems generated by delay or functional differen- 

tial equations. Probably, the most significant contribution in that  respect was 

done by H.Smith ([13]). In the last section of this paper, I will show how some 

of Hirsch's results can be used in the autonomous case to study the asymptotic 

behavior of solutions for systems with a first integral. A few remarks on related 

works will also be found there. 

1 A class of  delay differential  equat ions  w i t h  a first 

integral  

The first equation I considered is 

dx 
d---[ = f ( t  - 1, z ( t  - 1)) - f ( t ,  x ( t ) ) ,  (1) 

which can also be written in the integral form: 

~t t x( t )  = C - f ( s ,  x ( s ) )ds .  (2) 
- 1  

here, f ( t ,  x)  is a function: ~ x ~ --* ~, continuous in (t, x), increasing in x, with, 

in addition, enough regularity to ensure uniqueness of solutions. It is convenient 

to assume that  f ( t ,  O) = O, which means that  0 is a trivial solution of (1). This 

condition is motivated by biological considerations. Equation (1) may be viewed 

as the non-autonomous form of a model introduced by K.Cooke and J.Yorke ([6]). 

A major difference, however, is that these authors did not assume monotonicity 

in their model or at least did not make any use of it. 

Let us define the following nonlinear functional 

/o 
J ( t ,  ¢) = ¢(0) + f ( t  + s, ¢(s ) )ds .  

1 
(3) 

It is then a mat ter  of straightforward computation to observe that J ( t , z t )  = 

Constant, if x is a solution of (1). This is the property we refer to when we say 
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that  (1) has a first integral. We will now state in a theorem the main properties 

and asymptotic results we obtained for (1). 

T h e o r e m  1.1 ([4]) Let ¢, ¢ be given in C([-1 ,0] ,~) ,  to E ~. Denote by x(t) 

(resp. y(t)) the solution of (I) such that Xto = ¢ (resp. Yto = ¢).  
1) Suppose first that ¢ > 0 (resp. ¢ < 0). Then, 0 < x(t) < if(to, ¢), t > to, 

(r~sp. 3"(to, ¢) <_ ~(t) <_ o, t >__ to). 
2) Suppose now ¢ < ¢. Then, i f( to,C) < i f ( to,C),  and z(t) < y(t), for 

t >_ to, and z(t)  < y(t) for t >_ to + 1 (monotonicity of the first integral and the 
solution operator). 

s) J(to,-I¢1) _< ~(t) _< J(to, ICl), f o r t  >_ to, so, in particular, every solution 
of (1) is bounded. 

4) Suppose fl(to,  ¢) = i f(to, ¢). Then, limt....~ x(t) - y(t) = O. 
5) Suppose f ( t , x )  is periodic in t, of period T. Let o~ e ~. Then, (1) has 

exactly one periodic solution p, of period T, such that ff(to,Pto) = o~; any other 
periodic solution q of (1) such that if(to, qto) = ~ is just a translate ofp. Finally, 
each solution of (1) is asymptotically periodic. 

The results obtained in ([4]) go far beyond the periodic case. However, for a 

better understanding of the present paper, we will restrict ourselves to this case. 

The main technique involved in the proof of these results is the comparison of 

solutions and, through that, an estimate of successive minima and maxima of a 

solution. 

The method seems to depend a lot on the fact that  solutions are scalar. At 

the time these results appeared, I.GySri ([7]) introduced a general model which 

in fact looks very much like the vector formulation of equation (1); namely, 

d z i _  
~g~, i ( t ,x~( t ) )+  gi ,~(t-ri ,~,x~(t-ri ,~)) ,  i = 1  . n .  (4) 

dt ""  ' 
j = l  j = l  

If n = l ,  this reduces to (1). We may observe that  (4) is slightly different from 

GySri's model in which gi,j(t, u) = g~,.i(u), but a forcing term, a sort of source 

term, is allowed. The difference can be interpreted by saying that  the system 

modelled by (4) is closed with no input or output while GySri's model assumes 

the system may be open, however asymptotically closed. 

The main feature of (4), shared with GySri's model, is that the functions 

gi,j(t, u) are increasing in u. This, together with some reasonable regularity as- 

sumption, yields the same monotonicity property of the solution operator as for 

(1). It is also easily verified that the function 

f f ( y , ¢ ) = ~ ' ~ ¢ i ( 0 ) ' k -  ~ f O  . gi,j(t "l- s, ¢j(s)) ds, (5) 

i=1  s~3 I ~" J 

is a constant along the solutions of (4). 

The first three properties stated in Theorem 1.1 can be easily extended to (4) 
with appropriate care in defining the state space. For each j 6 [1, n], we denote 
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by ~j = m a z { n , j  : 1 < j < n}. The optimal state space in the sense of a remark 

made by H.Smith ([13]) is then 

n 

c ( [ - e , ,  0], ~)  - x .  (6) 
i = 1  

Let us now recall the following definitions which are more or less standard in 

the literature of monotone flows. 

We first need to specify the orders we will consider. On ~" ,  it is the "usual" 

order: 
x < y  iff z i < y i ,  for l < i < n .  (7) 

On X,  

¢ < ¢ iff¢i < ¢i [that is, ¢i(8) < ¢i(0), for all 0] for 1 < i < n. (8) 

We write x < y to mean that  x < y and x ¢ y; this convention holds for any 

order. Both the orders we introduced are associated to a cone with a non-empty 

interior. This gives the possibility of considering a relation stronger than <.  We 

write 
x << y iff y - x lies in the interior of the positive cone. (9) 

We denote by [.[ the 11 norm in ~", Ixl = Ei~l IXil ; likewise, we denote by I.I 
n 

the norm on X,  I¢1 = E~=I max{l¢~(O)l: - 1  < O < 0}. 

T h e o r e m  1.2 ([3]) Let ¢, ¢ be given in X ,  to in ~. Denote by x(t) (resp. y(t)) 
the solution of (4) such that ~,o = ¢ (resv. y~o = ¢). 

I) . ] ( t 0 , - I ¢ l )  < Ix(t)[ < .](to, I¢l), for  t > to. So, in particular, every 
solution of (4) is bounded. 

2) Suppose ¢ < ¢.  Then, Y(t0 ,¢)  < Y( t0 ,¢ ) ,  and x(t) < y(t) for  t > to; 
moreover, x(t) << y(t) for t > to + ~', where ~ = max{~'j : 1 < j < n}. 

3) Suppose .](to, ¢) = .](to, ¢).  Then li,nt...o~ x(t) - y(t) = O. 

Finally, if the functions gi,j are periodic in time, with the same period, then, 

as in 4) of Theorem 1.1, we can conclude that there is a periodic solution on each 

"level set", [that is, for each first value of the first integral], and the solutions 

are asymptotically periodic. The main tool in the derivation of these results is a 

Lyapunov functional on pairs of solutions, which is defined as follows: 

V(t,  ¢, ¢) = . ]( t ,  [¢ - ¢]+ + ¢) - J ( t ,  ¢).  (10) 

Here, []+ denotes the positive part  of an element in X,  [x] + = sup{x,O}. 
Similarly, if we denote []-  the negative part of an element in X,  that  is, 

[x]- = i n f { x ,  0}, we can define another Lyapunov functional 

w ( t ,  ¢ , ¢ )  = y ( t ,  [¢ - ¢ ] -  + ¢)  - y ( t ,  ¢) .  (11) 

It is not difficult to see that  all these results can be extended to a much more 

general situation, using the framework of dynamical systems. This has been done 

in detail in F.Bourad's thesis ([5]). I will now discuss a few aspects of this theory. 
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2 M o n o t o n e  s e m i - d y n a m i c a l  s y s t e m s  w i t h  a m o n o t o n e  

f i r s t  i n t e g r a l  

We first consider the case of autonomous systems: the essential ingredients of 

the proof of asymptotic behavior are more apparent in this simplified situation. 

The extension to non-autonomous systems in the abstract setting seems to pose 

some specific problems, which require additional assumptions. We will briefly 

discuss these questions. 

T h e  " a b s t r a c t "  s e t t i n g  

Given a Banach lattice X ([11]); we use the notations <, <, and << in the sense 

defined in Sect. 1. The lattice structure allows us to define []+ []-  and these 

applications are continuous. Moreover, we assume that the positive cone X + 

has a non-empty interior. On X,  we suppose a semi-flow is defined, denoted ~r 

or ~r(t, .) : X --* X,  for t > 0, monotone in the sense that 

z < y =~ r ( t ,  z) < 7r(t, y), for t > O. ( M S )  

We will need in fact a stronger monotonicity, denoted (SMS), that is, if z < y, 

there exists to > 0, such that t > to ::¢, r ( t , z )  << 7r(t,y). Note that to may 

depend on x and y. 

Our next two assumptions do not involve the order: 

~r(t, 0) = 0, and each positive orbit is precompact. (12) 

We now assume the existence of a functional ,7, ,7 : X --* ~, continuous, ,7(0) = 

0, and ,7 is strictly monotone in the sense that 

z << y =,- ,7(x) < f l (y) .  ( S M I )  

Finally, J is a first integral of rr, that  is, for each x E X, 

f l  ( Tr( t, z ) ) = Constant.  

Proposition 2.1 ([2]) Denote V ( z )  = f f ( z  +) (resp. W ( z )  = , 7 ( z - ) ) .  Then, 

V > O, V is non-increasing along the solutions of lr (resp. W < O, W is non- 
decreasing...). 

The proof of this is not difficult. We refer to ([2],[5]) for it. However, it is the 

essential ingredient when deriving the asymptotic behavior of the solutions. 

T h e o r e m  2.2 ([2]) Let X be a Banach lattice, such that X+ (the positive cone) 
has a non-empty interior. Let 7r be a semi-dynamical system on X ,  such that: 

i) ~(t, O) = O. 

ii) The positive orbits of ~r are precompact. 

iii) ~r is both (MS) and (SMS). 
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iv) r has a first integral ,7, ,7 : X ~ ~, ,7(0) = 0, ,7 is continuous and 

(SMI}. Then, for every x E X ,  such that ,7@) = O, the solution of rr through z, 

7r(t, x), t > O, approaches zero at infinity. 

Proof. Let z be given in X,  such that `7(x) = 0. From assumption ii), we know 

that  the omega limit set of any solution, [w(x) will denote as usual the omega 

limit set of the solution through z], is non-empty and compact. All we have to 

do is show that w(z) = {0}. 

Let £' be an element ofw(x).  From the property o fV  (resp. W) stated in Prop. 

2.1, we have Y(Tr(t, £')) =Constant ,  so ,7([r(t ,  £')]+) =Constant .  More precisely, 

from the invariance of ,7 along the solutions of r ,  we can conclude that  

,7([Tr(t, £')]+) = ,7(Tr(t, £'+)), for all t > 0. (13) 

On the other hand, from £' < £'+, and the monotonicity of rr, we can deduce 

that ~r(t, £,+) > r ( t ,  £'), and, from £'+ > 0, and the condition i), we also have 

r ( t ,  2 +) > 0. Therefore, it follows from the definition of []+ as the least upper 

bound of [] and 0 that  7r(t,£' +) > [Tr(t,~)] +. In view of (13) and the condition 

(SMI) verified by f l ,  we conclude that 

7r(t, £'+) = [Tr(t, 2)] + for all t > 0. (14) 

We are not yet done. We want to conclude that ~ = £'+. Suppose this has 

been done. By the same argument, we will also conclude that £' = £'-, which in 

particular implies that  £' is both > 0 and < 0. Therefore ~ = 0, which is the 

desired result. In fact, the proof does not work exactly this way. We proceed by 

contradiction. Suppose 2 + is neither = ~', nor = 0. From (SMS), we conclude 

that  ~r(t,£' +) >> r ( t ,~ ) ,  and 7r(t,~ +) >> 0, for t > to, for some to. This in turn 

implies that  r(t ,  2 +) >> [a'(t, ~)]+, in contradiction with the equality in (14). So, 

we have either 2 + = £' or £'+ = 0. But, we also have `7(£') = 0, because by 

continuity of `7 and invariance along the solutions, the omega limit set of any 

element lies in the same level set as the element. So, from the first part  of the 

alternative, we conclude that ,7(£'+) = 0, which in view of (SMI) implies that  

£'+ = 0. The proof is complete. [] 

C o r o l l a r y  2.3 We assume the same as in Theorem 2.2. Suppose that for some 

a E ~, there exists an element a E X ,  such that 7r(t,a) = a, for all t, and 

,7(a) = ~. Then, for every z E X ,  such that i f ( z )  = c~, the solution ~r(t,z) 

approaches a at infinity. 

The proof consists of just changing the variable x into x - a, for z E X, 

and changing X,  7r, and f l  accordingly so that  we can apply Theorem 2.2. This 

observation motivated the search for a more general result about the asymptotic 

behavior, valid even in the non-autonomous setting, which ideally would be that  

"the omega limit set of a solution is the same for all solutions lying in the 

same level set", or even more precisely, "if x(t) and y(t) are solutions of 7r, with 

f l (x( t ) )  = ff(y(t)) ,  then limt--.oo(x(t) - y(t)) = 0", whatever the asymptotic 

behavior of x(t) may be. 
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The idea is to make a change of variable which in fact is nothing other than 

a change of the origin of state space using an arbi trary solution x( t )  as the 

new origin. One difficulty is tha t  this leads automatically to a non-autonomous 

system; another problem is that  this system is not necessarily a semi-flow. We 

will now briefly explain how these difficulties can he overcome. 

Regarding the non-autonomous character, we considered in fact the exten- 

sion of monotone semi-flows from the autonomous to a non-autonomous setting. 

Using the analog of skew-products ([12]), we can interpret such systems as au- 

tonomous semi-systems on a larger space. In addition to the space X,  enjoying 

the same properties as s tated in Theorem 2.2, we introduce a space Y, the space 

of equations defined on X.  Y is a metric space, with a group of translations 

defined on it: for each y E Y, t E ~,  we denote y~ the t- translate of y. There are 

some properties, describing the asymptot ic  behavior of the equations. We will 

not elaborate on them here. 

Denote Z = X x Y. By a non-autonomous semi-flow on X ,  we mean a 

mapping r : ~+ x Z -+ Z, which is a semi-flow on Z, such that  the second 

component  of ~" is just  the translation y --* Yt, while the first component,  denoted 

~rl, corresponds more or less to a solution operator associated with an equation. 

We assume that  r satisfies the same assumptions as i ) , . . . ,  iv) of Theorem 2.2, 

with the obvious modifications. 

For example, condition i) reads as 

0, y) = (0, y,) .  

We assume that  7r is continuous in (t, x, y), and the positive orbits are precom- 

pact. We also assume that  7rl (t, x, y) is (MS) and (SMS) in x. We can in fact 

deduce an order on Z from the order on X:  

( x l , y l )  N (x~,y2) i f fz l  < x2 [in X] and Yl = Y2- 

We can accordingly define <, <<; thus, it is immediate to see that  7r is (MS) 

(resp. SMS)) if 7rl is (MS) (resp. (SMS)). Finally, we assume that ,  associated 

with 7r, there is a first integral ,7, ,7 : ~ x X × Y ~ ~, continuous in ( t , x , y ) ,  

increasing in x, f l ( t ,0 ,  y) = 0, for all y E Y. With these assumptions, we can 

prove the analog of Prop. 2.1 and Theorem 2.2, by the same method.  

In order to extend the validity of Corollary 2.3, we introduce the notion of 

origin. 

D e f i n i t i o n  2.4 ([2],[5]) Let z0 = (x0, Y0) G Z. We will call z0 an origin for 7r if 

there exists y0 E Y, such that  for any x E X,  

i) 7rl (t, z, Y0) - 7rl (t, z0, Y0) = 7rl (t, x - x0, Y0). 

ii) J ( x ,  y0) - J ( z 0 ,  yo) = J ( z  - x0, 90)- 

In the case of systems generated by evolution equations, each y in Y is just  

the right hand side of the equation: any element z0 in Z is an origin. The notion of 

origin merely corresponds to centering the solutions of a given equation Y0 around 

a given solution ~rl(t, z0, Y0)- Of  course, the properties of the centered equation 
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are not necessarily the same as those of the original equation: for example, if the 

original equation is periodic, and the solution used as an origin is not periodic, 

then the centered equation will not be periodic either. However, the main features 

of the equations under consideration are preserved, that is, (SM) and (SMS). 

While the notion of origin is trivial in the case of evolution equations, it does 

not seem to follow necessarily in the case of general semi-dynamical systems, 

even though we do not have an example indicating that  it may fail. Note that  if 

z0 is an origin, then for t > 0, ~r(t, z0) is an origin. 

Let z0 be an origin for rr. We may then define the following functionals on 

pairs of solutions of ~" associated with the equation y0: for z E Z, such that  

z = (z, y0), 
V(z, z0) = :r([~  - ~0] + + ~0, y0) - J ( ~ 0 ,  y0),  

W(z, zo) = J ( [ ~  - ~ 0 ] -  + ~0, y0) - J ( ~ 0 ,  y0). 

Using these functionals and the same arguments as in the proof of Theorem 2.2, 

we can prove that:  

if i f ( z )  = ff(Zo), then r l  (t, z) - r t ( t  , z0) ---* 0, as t ~ +c~. (15) 

This theory applies in particular to delay differential equation (4) of Sect. 1. In 

this case, the space Y is a set of equations. Each equation (4) is equivalent to a 

matrix function G(t,  u) = (gi,j(t, u))l<.i,j<.,,. So, Y is a set of G's, restricted by a 
few reasonable assumptions on these functions. As indicated above, each element 

(¢, G) can be used as an origin. There is an obvious correspondence between V 

and W defined by (10) and (11), and the functions V(z ,  zo) and W(z ,  zo) defined 

above. The relation (15) yields, in this situation, the asymptotic result stated in 

part 3 of Theorem 1.2, that  is: let G verify the assumptions of Theorem 1.2. Let 

¢, ¢ be given in X, such that  J ( ¢ ,  G) = f l (¢ ,  G). If we denote by x(t) (resp. 

y(t)) the solution of (4) associated with G, such that Xo = ¢ (resp. yo = ¢), 

then (x(t)  - y(t)) ~ 0 as t --* + ~ .  

3 C o m p a r i s o n  w i t h  works  by Hirsch ,  M i e r c z y n s k i ,  S m i t h ,  

Tak~ic and  o t h e r s  

First of all, I would like to mention a paper by J.Mierczynski ([10]) on a subject 

very closely related to the one treated here. In ([10]), this author considers an 

ordinary differential system of equations in ~ .  (the positive orthant in ~n) of 

the cooperative type (see below and [13]) 

x'(t) = F(z ( t ) ) ,  (16) 

which has a first integral, defined in terms of the function H : ~ --, ~, such 

that grad H(x) > 0, for x ¢ 0. It is also assumed that F(0) = 0, H(0) = 0. The 

main tool in proving the asymptotic results (convergence or unboundness) is a 

Lyapunov functional defined in terms of the constant solutions of the equation. 

This example can be studied using the theory described in the previous section. 
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We will do it briefly now. For this purpose, we have to be more specific regarding 

the assumptions. F is continuously differentiable, and such that for every z, y 6 
~ ,  i 6 [1, n], 

zi < Yi, xj = yj, for j # i, --* Fj(x) < Fj(y), for j # i. (17) 

This is the property of cooperativity. From (17) and the regularity assumption, 

it follows that the operator solution associated to (16) is defined from ~_  into 

~.]_, and is (MS) and (SMS). 

Let x(t) be a solution of (16). The equation centered around x(t) is 

dz 
d--t = F(x( t )  + z(t)) - F(x(t)) .  

We denote 

c ( t ,  z) = F(x( t )  + z(t))  - F(x(t)). (lS) 

G verifies the same assumptions as F. If, accordingly, we denote 

g ( t ,  z) = Y ( x ( t )  + z) - H(x(t)) ,  (19) 

K is the transformed first integral: if z(t) is a solution of 

dz 
d---[ = G(t, z(t)), (20) 

we have K(t ,  z(t)) =Constant .  We still haveVzK(t,  z) > 0, for z # 0. 

As in Sect. 2, we define 

V(t,  z) = I f ( t ,  z +) [resp. W(t,  z) = I f ( t ,  z-)].  (21) 

Lemma 3.1 V is > O, non-increasing along the solutions of (20) [resp. W is 
< O, non-decreasing]. 

Proof. The function V(t ,  z) is differentiable in t, Lipschitz continuous in z. In fact, 

it is differentiable in z except possibly at points z where one of the coordinates 

is 0. We can and will restrict our attention to points z with all components ~ 0. 

Given such a point z, the components of z can be split into two disjoint subsets: 

I = { i : z i > 0 } ;  g = { i : z i < 0 } .  

We will use the notation xx to denote the vector $ such that ~i = xi, for i 6 I, 

xl = 0, for i $ I, and similarly for x j .  

Let to 6 N. We want to evaluate the derivative of V with respect to (20), at 

(to, z), that  is, I~0)(t0 , z) according to a classical notation, or simply Y'(to,  z). 
We have 

0 
y'( to ,  z) = - y(to, z) + y(t0, z)G(to,  z), 

= [VH(x(to) + zi) - VH(x(to))] x'(to) + v t g ( x ( t o )  + zt)Gi(to,  z). 
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Here, V1 means the collection of derivatives with respect to the xi's, i E I.  From 

the fact that  H is a first integral of (16), we have VY(x( to))x ' ( to)  = 0. This 

fact together with the relation (18) leads to the following expression for W: 

V'(to, z) = ViH(x( to )  + zi)F(x(to) + z) + V jH(x ( to )  + zi)F~(x(to)). 

We add two final observations: 

1) In view of (17), and zj  < 0, we have F1(x(to + z) < Fl(x(to + zl). 
2) FromVH(x)F(x )  = 0, applied to x -: x(to) + zr, we can deduce that  

ViH(x( to )  q- zr)Fl(x(to) -t- z,) < - v j g ( x ( t o )  -t- zl)F1(x(to) -t- zi). 

These two facts combined with the positivity of ~TH yield 

Y'(to, z) <_ - V j H ( x ( t o )  + z,)[Fj(x(to) + zl) - rj(z(to))] 

< 0 [using once more the relation (17) and V H  > 0.] 

The proof of the lemma is complete. [] 

The above lemma could be stated in the following way: Let x(t), y(t) be 

solutions of (16). Then,  [taking z(t) = y(t) - x(t)], the function H(x(t)  + [y(t) - 

x(t)] +) - H(x( t ) )  is non-increasing. The same function with []-  instead of []+ 

is non-decreasing. In fact, these results are implied by our theory of monotone 

systems with a monotone first integral. We thought however it might be interest- 

ing to see through a simple example how these monotonicity properties connect 

to each other to yield Lyapunov functionals. We should observe finally that,  

using the general theory, a number of asymptotic properties could probably be 

concluded from the study of these functionals. One assumption that we do not 

make here is the precompactness of the solutions. In fact, this assumption can 

be weakened by restricting our attention to solutions which have this property. 

We can also infer it by assuming a little more on the function H, namely, that  

U(x)  ---* +c~, as ix] ~ + ~ .  
The last question we will discuss in this paper is: what can the results ob- 

tained by Hirsch ([9]) and other investigators (e.g. [15]) do in the case of a 

monotone system with a monotone first integral? We will concentrate on au- 

tonomous systems; this is where Hirsch's results apply. Probably, the most sig- 

nificant achievement in his recent work is the "dichotomy principle", which says 

that,  for a strongly monotone semi-flow 7r, if x < y, either w(x) << w(y), or 

~(x) = w(y) E E, where S is the set of equilibria of 7r. ([9]) 

Suppose X is a Banach lattice, with in t (X  +) ~ O. Assuming a lattice struc- 

ture is a little more restrictive than in Hirsch's theory. We add the assumption 

that X is separable. Suppose 7r is a strongly monotone semi-dynamical system, 

with a strictly monotone first integral ,7. In fact, it is probably enough to assume 

that 7r is eventually strongly monotone as we did in Sect. 2. Suppose finally that  

the orbits are precompact, which is also more than in Hirsch's paper ([9]). 

Let x E X.  We will show, using the dichotomy principle, that  w(x) is reduced 

to a single element. This means that,  for every x E X, 7r(t, x) converges as 

t ---* +oo, that  is to say, 7r is quasi-convergent. 
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Choose e E X+\{0} .  The dichotomy principle and the separability axiom 

imply that  w(x + .~x) is reduced to a single element for all A except at most 

a denumerable family of ~. Choose a sequence )~n > 0, ~,~ --* 0, as n --+ A-oo, 

such that  for .k ~ -4-.kn, w(x + he) is a single element. Suppose that w(x) ¢ 0, 

otherwise there is nothing to prove. From w(x - )the) << w(x) << w(x + ~ne), it 

follows that  

w ( z -  ,~,e) < infw(z)  < sup w(z) _< w(x + )~,,e). 

Prom these inequalities and the invariance of J along the solutions of lr, we 

obtain 

J ( x -  )~ne) < J ( i n f w ( z ) )  < J ( s u p w ( z ) )  < J ( x  + ,~,,e). 

Letting n --* +o0, we obtain J ( z )  on both ends of this chain of inequalities. 

Therefore, we conclude that  

= S ( s u p  

which, in view of the strict monotonicity of J ,  implies that 

infw(x) = sup w(x), 

that  is, w(x) is reduced to a single element. 

It is not completely clear form the above considerations that solutions lying 

in a same level set with respect to J converge to the same equilibrium. This 

fact together with the convergence can be deduced at once as an application 

of a recent theorem due to P.Tak£c ([15]). This theorem can be used in that  

case, by just  applying it separately to each operator ~r(t, .). Tak£c's theorem 

states that  if an operator T is order-compact, strongly increasing, and every 

equiilibrium is Lyapunov stable, then: 1) The set of equilibria is linearly ordered, 

and ii) each solution converges to an equilibrium. Of course, the assumption of 

order-compactness may be thought of as restrictive in the context of "abstract" 

semi-flows. However, it is nearly automatic in most systems of interest generated 

by evolution equations as soon as we know that the solutions are bounded. The 

fact that  the Lyapunov stability has to be checked for the equilibria only is 

an interesting feature of the theorem; in our situation, it is a straightforward 

consequence of the existence of the Lyapunov functionals for the system centered 

around an equilbrium. 

As final remarks, we would like to mention some other works connected to 

ours. H.Smith ([13]) worked on cooperative systems generated by functional 

differential equations; this is mainly an adaptation of Hirsch's ideas to the set- 

ting of F.D.E. The equilibria are supposed to be isolated and hyperbolic, which 

seems unlikely to occur in the presence of a first integral. Lately, II.Smith and 

H.Thieme considered strongly monotone systems with a linearly ordered set of 

equilibria ([14]). J.Haddock, M.Nkashama and J.Wu introduced the notion of 

pseudo-monotone semi-flows ([8]): the order in their case is restricted to pairs 

(e, ¢) where e is an equilibrium. The main motivation for this theory seems to lie 

in the study of equations similar to (1), with the property that  all the constants 

are solutions. Among them is the neutral type delay differential equation 
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d [ z ( t )  - c x ( t  - 1)] = f ( x ( t  - 1)) - f ( x ( t ) ) .  

A more general version of this equation, with f(t,x) instead of f(x), has been 

studied by F.Bourad and myself, as an application of our theory of monotone 

semi-flows with a monotone first integral ([5],[1]). 
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1 Introduct ion  

In a recent paper [1], we have shown that if 12 is an open bounded set of the 

space Cw of continuous and w-periodic functions with values in R m such that  

the autonomous equation 

x'(t) - f (x ( t ) )  = 0, (1) 

with f : R m ~ R m continuous, has no w-periodic solution on al2, then the 

coincidence degree of the operator in C~ associated to the left-hand member of 

(1) is equal to ( - 1 )  m times the Brouwer degree of f with respect to 12 n R m. 

Of course, we identify here R m with the space of constant mappings from R to 
R m . 

In other words, this coincidence degree (which is essentially a Leray-Schauder 

degree of an equivalent fixed point operator, see [9, 10] ), is "blind" to the non- 

trivial w-periodic solutions and depends only on the equilibria of (1). The positive 

aspect of this result is that  this degree is rather easy to compute and provides 

then effective continuation theorems for the existence of w-periodic solutions of 

nonautonomous differential equations of the form 

z ' ( t )  - f ( x ( t ) )  = e(t, z)  

with e "small" or having restricted growth, via the homotopy 

x'( t )  -- f ( x ( t ) )  = Ae( t ,x) ,  A E [0, 1]. 
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The proof of the mentioned result depends upon the Kupka-Smale approximation 
theorem [5, 12] for the closed orbits of autonomous systems and on some delicate 

degree computations. 

The aim of this paper consists in stating and proving the corresponding result 

for the autonomous retarded functional differential equation (RFDE) 

x'(t) -- f (x t )  = O, (2) 

where f : Cr ---* R 'n is continuous and takes bounded sets into bounded sets, 

Cr = C ([ - r ,  0], R m) and, for each t, xt is the element of C~ defined by xt(8) = 

x(t + 0), /9 E [ - r ,  0] (see [3] for these notations and a thorough treatment of 

RFDE). If £2 is like above, it is well known [8, 9] that  the coincidence degree of 

the mapping in Co~ defined by the left-hand member of (2) exists and we shall 

prove in Theorem 1 that  it is agMn equal, up to a factor ( -1 )  m, to the Brouwer 

degree of the restriction of f to £2 N R m. 

A basic ingredient in the proof will be an extension to RFDE of the Kupka- 

Smale theorem due to Mallet-Paret [7] and following earlier generic results for 

fixed points of a RFDE defined on a compact manifold due to Oliva [11]. See 

also interesting remarks in [2] and [4]. 

Although our proof will follow the same main lines as the one given in [1] for 

the ordinary differential equation case, the different nature of (2) will require at 

various stages nontrivial variants of the arguments and even completely different 

ones due in particular to the fact that  time-scaling involve modifications of the 

delay in a RFDE. 

We then relate the coincidence degree associated to a RFDE of the form 

x'(t) - h(t,  x t)  = O, t E R 

with h w-periodic in t and positively homogeneous of degree a ~ 1 in its second 

variable, to that associated to the autonomous RFDE 

. ' ( t )  - = 0 ,  t e r t  

with 

= h(s,  ,)ds 

and we give related existence theorems. 

We finally state and prove a continuation theorem for the ~o-periodic solutions 

of non-autonomous RFDE 

x'(t)  = F(t ,  x,),  t e r t  

based upon the previous degree calculations. 
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2 A f o r m u l a  f o r  t h e  c o i n c i d e n c e  d e g r e e  o f  a n  a u t o n o m o u s  

R F D E  i n  t h e  s p a c e  o f  c o - p e r i o d i c  f u n c t i o n s  

Let Cr = C ( [ - r ,  0 ] ,Rm) ,  (r >__ 0) and let f :  C~ - * R  m be continuous and such 

that  it takes bounded sets into bounded sets. We consider the 

w,periodic solutions ( w > 0 fixed ) 

of the corresponding RFDE 

x'(t)  = f (x t ) ,  (3) 

i.e., the functions x : R --* R rn of class C 1 such that 

x ( t + w ) = x ( t ) ,  t • t t  

which satisfy (3) on It .  We denote by C~ the Banach space of continuous w- 

periodic functions z :  R ~ 1%" with the uniform norm II • II-- ~a~ I~(t)l. 

If we define L : D ( L )  C C o ~ C , ,  by D ( L ) =  { x • C o ~ : x i s o f c l a s s C  1} 

and Lx = z ' ,  and F :C~  ~ C~ by F(z) ( t )  = f (x , ) ,  t • R (Nemitzky 

operator),  then it is well known [8, 9] that L is a Fredholm operator of index zero, 

F is L-completely continuous on Co~ and the existence of w-periodic solutions 

of (3) is equivalent to the abstract equation 

Lx = Fx,  x • D(L).  

Moreover, if 12 C C~ is an open bounded set such that 

Lx ~ Fx,  x • D(L) M012, 

then the coincidence degree DL(L - F, 12) is defined as the Leray-Schauder de- 

gree of an associated fixed point problem. 

We denote by dB the Brouwer degree of a mapping from R m into R m (see, 

e.g. [9, 10] for details). 

T h e o r e m  1 Assume that 12 C C~ is an open bounded set such that there is no 

x • aM such that x'(t)  = f ( x , ) ,  t • It.  Then 

DL(L - F, 12) = (--1)mdB ( f i r th ,  12 n R m, 0). 

Proof. First of all, we observe that,  as 12 is bounded, there is a constant R > 0 

such that  ]lxll < R for every x E cll2. Furthermore, we point out that  the 

assumption is equivalent to 

Lx # Fx ,  (4) 

for all x • D(L) M 012; therefore, the coincidence degree DL(L - F, 1-2) is well 

defined, and as we also have 

y(c) # 0 

for all c • RmM 012, the Brouwer degree dB (flR,~, 12 gl R m , 0) is defined as well. 
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The proof is performed by means of Mallet-Paret's extension of the Kupka- 

Smale's theorem [7]; this result ensures the existence of a sequence of C 1- 

functions (~k), ~k : Cr --* R m, taking bounded sets into bounded sets, and 

such that  

(a) ( ~ )  ---* f uniformly on closed bounded sets 

(b) for every closed hounded subset B of Cr and for all k E N, the equation 

x '  = ~(x~) 

has finitely many singular orbits in C~ (i.e., rest points and closed orbits) with 

minimal period in [0, w + 1] which are contained in B and they are all hyperbolic. 

Let N k,~' be the Nemitzky operator induced by the functions x ~ ) p f ( x . ) +  

(1 - p ) ~ ( x . ) ,  p e [0, 1]. We claim that  there is k0 > 0 such that,  for all k >_ ko 

and for all p E [0, 1], 

L x  ¢ g k ' • x  for all x E D ( L )  n 012. (5) 

This fact will imply, in particular, that  

~ k ( z ) ¢ 0  for all z E 0 5 2 N R  m, k_>k0. 

Then, a classical compactness argument ensures that, for any k > k0, there is 

51 = 51(k) such that  

~k(y) # 0 for all y e B(O52nRm,51). 

To obtain (5), it is sufficient to observe that the sequence of operators N k'~ 

converges, as k --* +oo, to F in C~ uniformly on c152 x [0, 1] and that, by (4), 

inf{ H (L - F ) x  I1: x ~ D ( L )  n O n  } > O. 

Hence, the claim is proved and, using the homotopy property of the coincidence 
degree (see [9, p. 15]), we can write 

D L ( L  - F, 52) = D L ( L  - g L1, 52) = D L ( L  - g L°, 52), 

for every k >_ k0 and, in particular, 

dB(flR.. ,  52 n R ' ,  O) = d.(~oklR~, :2 n R",  0), 

for every k _> ko • 

Let us fix k* >_ ko • For brevity, we set 

~a := ~k. , N~ := N k' '° , 51 := 5i(k*) .  

Consider the singular orbits (i.e. rest points and closed orbits) with minimal 

period in [0, w + 1] of the equation 

x' = ~a(xt). (6) 

By the Kupka-Smale's property, there exist finitely many such orbits which are 
contained in B(0, R) C Cr and they are hyperbolic. Recall that  for a rest point, 



80 Capietto, Mawhin, Zanolin 

this means that  the spectrum of the infinitesimal generator of its linearized 

equation contains no purely imaginary values and, for a nonconstant periodic 

solution, this means that  the characteristic multiplier /a = 1 of the linearized 

equation is simple and no other characteristic multiplier satisfies I/~[ = 1 (see 

[3]). We denote these orbits by $1, ..., Sn. They are mutually disjoint (two orbits 

of (6) may cross in Cr because uniqueness of the Cauchy problem only holds in 

the future, but  this may not happen to closed orbits). Pick, for each i = 1, ..., n 

a point (in Cr ) ¢i E Si. Then, ¢~ is a periodic point (possibly a rest point). 

We can assume that  ¢i is a rest point (i for 1 < i < p (p > 0 an integer) 

and a periodic point for p + 1 < i < n. We denote its minimal period by 7) 
( p +  1 < i < n). We can also assume that T~ < 03 for p +  1 < i < q and 

03 < T / <  03 + 1 for q + 1 < i < n. We denote by ki the largest integer such that  

kiT/ <_ 03 (p + 1 < i < q), so that  (ki + 1)7] > 03 (p + 1 < i < q). We denote by 

xi(.) the solution of (6) with zi0 = ¢i (p + 1 < i < n). 

We claim that  for each 03~ such that 

w < w' < min {(kp+l + 1)%+1, ..., (kq + 1)Tq,Tq+l, . . . ,Tn,w + 1} := v ,  

the problem 

x' = ~(x,) ,  ~(t + 03') = x ( J )  (7) 

has no solution x(-), with x, E B(0, R), and hence Ix(t)l < R, for all t, other 

than the equilibria ~1, ...,~p. 

Indeed, if x satisfies (7) and x~ E B(0, R), for all t, then S = {x~ : t E P~) is 

a singular orbit of (6) contained in B(0, R). If it is not a rest point, then S = Si 

for some p + 1 < i < n and hence there exists ti E R such that 

x~ = x~+~,, t E R 

(indeed ti is such that  z - t ,  = ¢i = z~0 ). 

In particular, 

x % /  + t,) = x'(t,). 

This is impossible for q+  1 < i < n as then w ~ < 7] and 7] is the smallest period. 

This is impossible for p + 1 < i < q as in this case kiTi < 03' < (ki + 1)7] . 

Therefore the claim is proved. [] 

Now, the solutions of (7) correspond, by the transformation 

to the solutions of the problem 

03! 03 

Thus, problem (8) has, by construction, no nontrivial (i.e. non-equilibrium) so- 

lution on clf2 and, by assumption, no rest point on 0D (as its rest points are 

the same as those of (6) and all its possible solutions in B(0, R) are rest points). 
Defining 
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by 

v :C~  x [w,r[-, C~ , 

(M I 

we shall show that  4~ is continuous so that  we can apply a homotopy argument. 

If e > 0, y E C,~, w' E [w,r[ are given, then as { (y~ ( ~ ( . ) ) ) :  t E [0,w] } is 

compact, there exists 5 > 0 such that  

~ )  _<6. whenever t E  [0,w] (and hence whenever r E  P~ ) a n d  I ¢ -  Yt (~-7(')[¢~ 

Now, y being uniformly continuous, there exists 5 ~ > 0, such that  

5 
lu(t')-  y(t")l _< 

when I t~ - t"] ~ 5 ~ and hence i fw < w~ < v and w~ _~ w~/2, we shall have 

I~(,÷ 5( , ))-~( ,÷ 5(~))1 <-~ _ ~  

w h e n  

, ~ lel< 

which will be the case if 

I ~ " - J I  < 5'(w')----~ 
- -  2 ~ x J r  

Now, if z E C~ is such that  [1 z - y II< 5/2, we have 

Iz( ' ÷ 5 ( ~ ) ) -  ~ (' ÷ ~(~)) I 

-I~(  ' ~ ( ) ) - ~ ( '  ~())1÷ ~ 5(~))1 

_<11 z - y II +~ _< 5 

for all t E R and 9 E [ - r ,  0] and hence 

~ (  ~(  

Summarizing, if z E C~ with ]] z - y II_~ 6/2, and if w" E [w, v[ with 

I w l l - w '  I < m i n  2 '  2 w r  ' 

we shall have 

I~ (~, (5())) -~ (~' (~,()))I <- ~- 
for all t E t t  and this easily implies the continuity of 45 on C~ x [w, v[. 
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Now, as (6) has no solution on 0~ ,  the homotopy invariance of the coincidence 
degree implies that  

D L ( L -  N~, 12) = DL(L-¢( . ,w ' ) ,Y2)  (9) 

for a l l w < w  ~ < r .  
Thus, by excision, 

where 

D~(L-# ( . ,w ' ) , I ? )  = E 
l_<j_<p 
GE~ 

DL(L-~( . ,w ' ) ,B(~ j ,6 ) ) ,  (10) 

6 = min { 61, ~//2 }, I /=  min { d(Si, S j ) :  1 _< i ~ j _< n }. 

But,  by the choice of 6, L - N~, has no solution on OB((j,6) and hence, by 
homotopy invariance again we have, for all w _< w' < r, 

Dz (L - ~(., w'), B(¢j, 6)) = DL (L - N~, B(¢j, ~)), (1 l) 

l < j < p , ~ j e Y 2 .  

As ~o is of class C 1, the same is true for N~ and hence, by the linearization 

property of the degree (see e.g. [9, Prop. VIII.3]), 

DL (L - N~, B(~j, t~)) = On (L - N~((i), B(O, 1)), (12) 

l<_j<_p, i j e D .  

where Y(o(¢i) has the form 

= = 

7" 

for some function ry whose elements are of bounded variation ( [3] ). Moreover, 
the hyperbolicity of Q implies that the corresponding characteristic equation 

detAj(/~) = O, 

where 

f det Aj(/t) = # I  - eU°dr/J(0), 

has all its roots with nonzero real part (see e.g. [3] ). 
Consequently, the same is true for the characteristic equation of the equations 

in the family 

which therefore only admit the trivial w-periodic solution. A standard argument 
(see e.g. [9, Th. IV.12] ) then shows that the same is true for the family 

x'(t) = (1 - ~)~o'(¢j)~ + )~'(¢j)xt,  ,X • [0, 1] 

where 
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= w -1 x(s)ds  = P z .  

Consequently, by the homotopy invariance, and a classical property of coinci- 
dence degree (see e.g. [9, Prop. II.12] ), 

DL (L - N~(~i) ,  B(O, 1)) = DL (L - N~(~i)P,  B(O, 1)) 

= (--1)mdB (~v'(¢i)IR-, B(0, 1) f3 R m, 0) 

= ( - 1 ) m d B  ( lrt-, B(¢i, 8) n R m, 0), (13) 

l < j < p , ~ j E l 2 .  

Therefore, combining (9), (10), (11), (12) and (13), we obtain 

D L ( L -  N~,I2)  = Z ( - -1 )mdB(~ l r tm 'B(~J '6 ) f ' lRm'O)  

l<_jSp 
Cj~a 

= (-1)mdn (~oIR,. , 12 N Rm,0) ,  

and the proof is complete. 

3 A f o r m u l a  f o r  t h e  c o i n c i d e n c e  d e g r e e  o f  n o n l i n e a r  

h o m o g e n e o u s  n o n a u t o n o m o u s  R F D E  i n  t h e  s p a c e  o f  

w - p e r i o d i c  f u n c t i o n s  

We consider the R F D E  

x'( t )  = h(t,  x t)  + 6(o~)p(t) (14) 

where h: R×Cr ~ t t  m, (t, to) ~-* h(t, ~o) is a continuous mapping, taking bounded 
set into bounded sets, w-periodic in t and positively homogeneous of order a ~ 1 
in ~o, 6(or) = max(0, (1 - ~)/11 -ot l )  and p E C~. We define the averaged vector 
field it: Cr --+ R m by 

= ( i / w )  h(s ,   ,)ds 

and the corresponding Nemitzky mappings H: C~o ~ C~ and H: C~o -* C~ by 

H ( x ) ( t )  = h(t,  z t ) , -H(x) ( t )  = [~(xt), 

for all t E R. 

T h e o r e m  2 Assume that h(z)  # 0 for  [z I = 1 in R m. Then there exists ro > 0 

such that, i f  a < 1 and r > ro or a > 1 and 0 < r < to, ( l f )  has no w-periodic 

solutions x with I1 11 = ," and 

DL(L  - H - 6(a)p, B(O, r)) = DL(L - -if, B(O, r)). 

Proof .  Let us define 7/: C~ x [0, 1] ---+ C~ by 
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~ ( x ,  ~) = (1 - ~ ) H ( x )  + ~ (H(~ )  + ~(~)P). 

We have only to show that there is some r0 > 0 such that for each r > r0 if 

a < 1 or each 0 < r < ro i f a  > 1, and for each A E [0, 1], the equation 

L x  = 7-/(x; A) 

has no solution x with Hx]] = r. 

If this is not the case, there are sequences (rk) in R+,  (Xk) in C,o and (Ak) 

in [0,1] such that  HxkH = rk, rk < 1 / k  i f a  > 1, rk > k i r a  < 1 and 

z~(t) = (1 - Ak)h((zk),) + Ak[h(t, ( z , ) t )  + 8(a)p(t)] 

(k E N).  Letting uk = xk/llxkll = ~- l~k,  we get 

u'k(t) = r~- l [ (1  - Ak)h((uk)t) + Ak[h(t, (uk),)] + r '~ lAk6(a)p( t ) ,  (15) 

so that  

lu~(t)l < r~-lf1-4-  ~' 

for some fl ,7 > 0 and all t E R. Consequently there are subsequences (Ajk), 

(ujk) and a* • [0, 1], v • C~, Ilvll-- I such that (uj , )  ~ v uniformly on R and 
( ~ )  -~ ~,. 

From 

l uk(t) - uk(0) = r~ -1 [(1 - ,~k)~(uk),)+ 

Z' +akh(s,(u~),)ld~ +,';-1 ~(~)p(~)ds,  

we get 

v(t) - v @  = O,t • R,  

so that  v is constant and Ilvll = 1. ~ o m  (15) we also get 

f 0 = [(1 - ,Xk)/~((uk),) + ,~kh(s, (uk),) + r~"~(cO,~kp(s)l  

and hence, letting jk ~ ~ ,  

0 = ~ ( ~ ) ,  

a contradiction. 

Hence, for 0 < r _ < r 0 i f o t > l  a n d r > _ _ r 0 i f a <  1, wehave  

D L (  L - H - 6(c~)p, B(O, r) ) = DL(  L - 7t( . ,  1), B(0, r)) = 

= D L ( L  - 7~(., 0), B(O, r))  = D L ( L  - "-H, B(O, r)), 

and the proof is complete. [] 

By using Theorem 1 and 2, the existence property of degree and its invariance 

for sufficiently small perturbations of the nonlinear term we immediately deduce 

the following existence results. 
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C o r o l l a r y  1 Assume that h satisfies the assumptions of Theorem 2 and that 

dn(hlR,. ,  B(0, 1) O R m, 0) • 0. 

Then, i ra  < 1, the R F D E  

x'(t)  = h(t, xl) + p(t) (16) 

has at least one o~-periodic solution for each p • C~ and, i f  a > 1, there exists 

¢o > 0 such that (16) has at least one oJ-periodic solution for each p • C~ with 

Ilpll < ¢o. 

4 C o n t i n u a t i o n  t h e o r e m s  f o r  w - p e r i o d i c  s o l u t i o n s  o f  

n o n a u t o n o m o u s  R F D E .  

Let F: R x Cr ~ R '~, (t, ta) ~-+ F(t ,  9) be a continuous mapping, taking bounded 

sets into bounded sets and such that 

F(t  + w, 9) = F(t ,  ta) 

for some w > 0 and all t E R and ~ E Cr. We consider the existence of w-periodic 
solutions of the R F D E  

x'(t)  = F ( t , x , ) , t  E R,  (17) 

i.e. of solutions x such that 

x(t) = x(t + ~), t • I%. (18) 

As it is the case in any continuation theorem, we introduce a mapping f :  R x 
Cr x [0, 1] --+ R m which is continuous, takes bounded sets into bounded sets and 
is such that 

f ( t  +0~,ta, A ) = f ( t ,~ ,A)  

for a l l t  • R ,  !a 6 Cr, A •  [0, 1], 

f ( t ,  9,  0) = I0(9)  

for all t • R,  9 • Cr (i.e. f(- , . ,  0) is autonomous), and 

f ( t ,  9, 1) = F(t ,  9)  

for all t • R,  9 • Cr. 

T h e o r e m  3 Let I2 C C• be an open bounded set such that the following condi- 
tions are satisfied: 

(Pl) there is no x • 012 such that 

z'( t)  = f ( t ,  x,, A), t • R,  a • [0, 1); (19) 
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(P2) dB(SoIR~, a n R '~, O) # O. 

The,, (17) - (18)  ha,,e , .  least one sol,aio,  x e J a .  

Proof. We use the framework of coincidence degree as in Theorem 1. The classi- 

cal Leray-Schauder continuation theorem [6] could be used instead by the equiv- 

alence stated at the beginning of Section 2. Besides the spaces and operators 

considered there, we further define M: = M(z; A): C~ x [0, 1]--+ C~: 

m(x ;  A)(t) = f( t ,  zt; ,X). 

Observe that M(.;O) = M0 where 

Mo:C~ --* C~,z  ~ f0(z.). 

According to [9, Chapter I], M is L-compact on cll2 x [0, 1]. We remark that z 
is an w-periodic solution of z '( t)  = f(t ,  xt; A), A e [0, 1], if and only if z e D(n) 
is a solution of the coincidence equation Lz = M(z;  A), A E [0, 1]. In particular, 

(17)-(18) is equivalent to Lz = M(x;  1). Without  loss of generality, we suppose 

that (Pi) holds in (19). Otherwise, the result is proved for z E 012. Accordingly, 

by the definition of M(.,  A) and using (Pl) we have: 

Lz # M(z;  A), A e [0, 1] 

for all z E D(L)fq 012. Thus we can apply the homotopy property of the coinci- 

dence degree and obtain: 

D L ( L -  Mo,12) = DI.(L - M(.;0) ,  12) = DL(L - M(-; 1), 12). (20) 

Assumption (PI) (for A = 0) ensures that Theorem 1 can be applied, so that 

(20) and (P2) imply: 

[DL( L - M0, D)[ = [(dB(fo[R=, ~ N Rm, O)[ # O. 

Hence, by the existence property of the coincidence degree, there is ~" E D(L)nD 
such that L~: = M(~:; 1); thus ~(.) is a solution to (17)-(18), with ~" E D(L) tq ~2. 
The proof is complete. [3 

Theorem 3 is particularly suitable for the study of w-periodic solutions of 

perturbed autonomous R F D E  of the form 

x'(t )  = + t R ,  

with e E C~, through the homotopy 

z ' ( t )  = f ( z , )  + Ae(t),t E R,A E [0, 1]. 
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1 I n t r o d u c t i o n  

In [1] the author has given an extension of Liapunov's direct method to discrete 

equations. In this paper  we present both  an improvement  of this method as 

well as an application of it to the s tudy of the asymptot ic  behavior of ordinary 

differential equations. As a consequence of the technique used here, a small con- 

tr ibution to the comparative analysis of the asymptot ic  behavior of the solutions 

of some o.d.e.'s and of their discretized versions is furnished. 

In order to achieve a certain degree of completeness and objectiveness we 

give below a summary  of the results that  are of interest to this paper.  We re- 

strict ourselves to stability and asymptot ic  stability properties of autonomous 

equations. 

Let f : lR N --+ 11% N be a given continuous map and consider the discrete 

equation 

zr, = f(agn-l) ,  n = 1, 2 , . . .  (1.1) 

subject to the initial condition 

x0 = y • (1.2) 

The solution of (1.1-1.2), which is a sequence z0, z l ,  z2 , . . .  , x , , . . . ,  exists, 

is unique and depends continuously on y. It  will be denoted by z , (y ) .  We shall 

suppose that  f (0)  = 0. This makes of the null sequence, x ,  = 0, a solution of 

(1.1), which will be, accordingly, denoted by Xn(0) and will be called the null 

equilibrium of (1.1). 

D e f i n i t i o n  1.1. 1.1 The null equilibrium of (1.1) is said to be stable (in the sense 

of Liapunov) if, given e > O, we can find a 6 > 0 such that  [ y ]< 5 implies that  

[ zn (y )1<  e for all n >_ O. 

Here, ] . [ denotes the Euclidean norm of IR N, i.e., 

i = 
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where x = (x 1, x 2 , . . . ,  xN). Of course, the stability character of xn(0) does not 

change if another norm is used in lR N. 

D e f i n i t i o n  1.2. 1.2 The equilibrium x , (0)  is said to be asymptotically stable if 

it is stable and, moreover, there exists a 7 > 0 such that  I Y l< 7 implies that  

xn( y ) ---* 0 as n --* (x). 

We shall denote the open ball of radius r centered at the origin in IR g by 

Br. 12, on the other hand, will always denote a certain given neighborhood of 

the origin in IR N and, if A is a set, A will be its closure. In particular, if A C 12, 

A is its closure relative to 12, unless otherwise stated. 

A map V : ll:t N ---* ]lEt is said to be positive semi-definite (in 12) if V(x)  >_ 0 
for all x E 12. If, moreover, V(x)  > 0 when x ¢ 0, z E 12, we say that  V is 

positive definite (in 12). The variation of V with respect to (1.1) is the map 

A V :  IR N ---, IR given by AV(x )  = V( f ( x ) )  - V(x).  This concept is generalized 

as follows. Given integers p, q, 0 < p, q, we define the (p, q) - variation of V 
with respect to (1.1) as being the map APqV : IR N ~ IR defined by APV(x) = 

V(fP(x))  - v ( fq (x ) ) ,  where fJ is the j-th iterate of f . In particular, we note 

that  AV = A01V and that,  according to our previous notation for a solution of 

(1.1-2), ~a~V(y) = V(xp(y)) - V(xq(y)). 

D e f i n i t i o n  1.3. 1.3 A continuous map V : I ~  N ~ IR is said to be a Liapunov 
function for (1. I) whenever there exists 12 such that AV is negative semi-definite 

in 12. 

The following two theorems contain the fundamental results of Liapunov's 

direct method as applies to the stability of the null equilibrium of equation (1.1) 

T h e o r e m  1.4. Suppose that there exists a positive definite Liapunov function 
for (1.1). Then, the null equilibrium is stable. 

T h e o r e m  1.5. Suppose, in addition to the hypothesis of the above theorem, that 

A V  is negative definite. Then, xn(O) is asymptotically stable. 

To extend these results we make the following definitions. 

D e f i n i t i o n  1.6. A continuous map V : IR N --* lR is said to be dichotomic with 
respect to (1.1) (in 12) if there exists an integer k > 2 such that  whenever we 

have y a and  a _lV(y) >_ 0, we also have _< 0 

Observe that it is not required in the above definition that  either A~_IV or 

A0kV have a definite sign in 12, but  rather, that they mantain a kind of opposite 

sign in that  neighborhood of the origin, as specified. 

Definit ion 1.7. 1.5 A map V is said to be strictly dichotomic with respect to 

(1.I) if it is dichotomic with respect to this equation and, moreover, it satisfies 

the condition that  whenever y E/2 ,  y # 0 and A~_IV(y  ) >__ O, then AkoV(Y) < O. 
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Note that  every Liapunov function is automatically a dichotomic map already 

for k = 2, due to the fact that  one such map is non-increasing along the solutions 

of (1.1). 

The refinements of Theorems 1.4, 1.5 given above (see [1]) are as follows: 

T h e o r e m  1.8. Suppose that V is both positive definite and dichotomic with re- 

spect to (1.1). Then, the equilibrium x,(O) is stable. 

T h e o r e m  1.9. Suppose, in addition to the hypothesis of Theorem 1.8, that V is 

strictly dichotomic with respect to (1.1). Then, xn(O) is asymptotically stable. 

Notice the fact that  the application of these results takes clear advantage of 

the fact that  xk(y) can be, so to say, easily computed. 

2 A n  i m p r o v e m e n t  

Given a map V : ] ~ N  ~ ]a and integers p,q with p,q > 0 , we consider the 

following sets, 
12+(p,q) = {x e 12: A~V(x )  > 0} 

12_(p,q) = {x e 12: APqV(x) < 0} 

f2o(p,q) = {x e 12: A~V(x )  = 0} , 

and put f2°(p,q) = f2_(p ,q)U ~o(P,q). Also, if A is a set which contains the 

origin 0, we let A* be the set {x E A : x # 0}. Then, we reformulate definitions 

1.6 and 1.7, respectively, as follows. 

D e f i n i t i o n  2.1. A continuous map V : IR N ~ IR is said to be dichotomic with 

respect to (1.1) (in f2) if there exists an integer k > 2 such that  ~2+(k,k - 1) 

c (k, 0). 

Note that  the requirement that  ~+ (k ,  k -  1) C 12°(k, 0) in this definition is 

weaker than the requirement that  A0kV(x) < 0 whenever A ~ _ I V ( x  ) >_ 0 of Defi- 

nition 1.6, since it now permits the existence of points x such that  A~_ 1V(x) = 0 

and AkoV(x ) > O. 

D e f i n i t i o n  2.2. A map V which is dichotomie with respect to (1.1) is said to be 

strictly dichotomic with respect to (1.1) if it satisfies the further condition that  

"-~+(k,k - 1) C 12_(k,0) and 12o(k,k - 1) fq/20(k, 0) = {0}. 

The same observation made just above applies to this definition as well, when 

compared to its counterpart,  namely, Definition 1.7. 

From now on, whenever we refer to either dichotomic or strictly dichotomic 

maps with respect to (1.1), unless explicitly stated on the contrary, we are re- 

ferring to maps that  satisfy either Definition 2.1 or Definition 2.2, respectively. 

Given a map V : IP~ y ----+ I~, a point y C 11% N and an integer k > 0, we put  

cj = max{Y(x,~(y))  : ( j - 1 ) k  < n < j k } , j  = l , 2 , . . .  (2.1) 

and let 
j * = m i n { n : ( j - 1 ) k < n < j k  and c j = V ( x n ( y ) ) }  , (2.2) 

and obtain the following useful lemmas. 
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L e m m a 2 . 3 .  I f V  is positive definite and cj = 0 for some j ,  then xn(y) = 0 for 

n > j* (and,  hence, cn =O for n > j ). 

Proof. In fact,  in this case we have tha t  V(x j .  (y)) = 0 and, since V(x)  = 0 

implies tha t  x = 0, the result follows. [] 

L e m m a 2 . 4 .  I f V  is dichotomic with respect to (1.1), k is as in Definition 2.1 

and j >_ 2, then ej < c j - i .  

Proof. Suppose tha t  j* > (j  - 1)k. Then ,  we have (j  - 1)k < j* - 1 < j* < j k  

and so, V(x j ._ I ( y ) )  < Y (x j . ( y ) ) ,  which means tha t  x j . - k ( y )  E / 2 + ( k , k -  1). 

By hypothesis ,  we must  also have xj*-k(y)  E f2°(k,O), i.e., 

cj = _< _< c -1. 

If, on the other  hand,  j* = ( j  - 1)k, it immedia te ly  follows from (2.1) t ha t  

c j - i  > cj, since ( j  - 1)k is also in the range of definition of c j - i  • [] 

C o r o l l a r y  2.5.  I f V  is strictly dichotomic with respect to (1.1) and j* > ( j - 1 ) k ,  

it follows that c j - i  > cj. 

Proof. In fact,  this t ime x j . _ k ( y )  E 12+(k,  k - 1) implies tha t  it also belongs to 

/ '2_(k,0) and so, cj = V(x j . ( y ) )  < V(x j ._k (y ) )  <_ Cj-1. [] 

L e m m a  2.6.  I f  V is strictly dichotomic with respect to (1.1), k is as in Defini- 

tion 2.2, j > 3 and c j - i  # O, then cj-2 > cj. 

Proof. Under  the above hypothesis ,  we know from L e m m a  2.4 tha t  cj-2 > cj-1 > 

cj. Fur thermore ,  f rom Corollary 2.5, we know tha t  if j* > ( j -  1)/k,  then  cj-1 > 

cj, so tha t  cj-2 > cj. In the case tha t  j* = (j  - 1)k, we have ei ther  cj-1 > cj or 

cj-1 = cj. Now, if cj_l > c1, then again cj-2 > cj. If c j - i  = cj, we do not  have 

( j  - 1)* = ( j  - 2)k. In fact f rom/20(k ,  0) FI ;20(k, k - 1) = {0} and cj-1 ¢ O, 

we obtain  V (x j* - l )  < V (x j . )  which implies Y ( x j . )  < Y ( x j . - k ) ,  i.e., cj < cj-1, 

a contradict ion.  Therefore  ( j  - 1)* > ( j  - 2)k, when cj-1 = cj. This  means  

cj_2 > cj-1 = cj and the proof  is complete.  [] 

We can now prove the following result.  

M e t a t h e o r e m 2 . 7 .  Theorems 1.8 and 1.9 hold also under Definitions 2.1 and 
2.2, respectively. 

Proof. Take R > 0 w i t h / 2  D {[Yl < R) ,  and take any r > 0 with sup{I f (y) l  : 

[y[ < r}. Let  5 = i n f { Y ( y ) [ : r  < lYl < R}, and note  since Y is continuous tha t  

5 > 0. If lYl < R and V(y)  < 5, then ]y[ < r.  Not ing continuity of f and V, we 

can take/~ E (0, r)  such tha t  for n = 0 , . . .  ,k  and lYl </~,  one has If"(Y)l < R, 

Y ( f " ( y ) )  < 5/2. For such n,y,  one has If"(Y)[ < r, and since cl(y) < 5, we 

know tha t  cj (y) < 5 for all j > 1. Now a simple inductive argument  on the index 

n > k will show tha t  [ fn(y) l  < r for all n > 0. This  proves T h e o r e m  1.8. 
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Now let V be strictly dichotomic, and take y having ]y[ < p, with p as above. 

Let cj = cj (y), and since {cj } is nonincreasing, we let cj ~ ~ as j ---* co. Now 

suppose a > 0. Then since {fn(y)} lies entirely within a compact set, we have 

increasing sequences {jl}, {mi} of positive integers with (Ji - 1)k _< ml < jile, 
cji = V( fm' (y) ) ,  and fm, (y)  _. Yo. Take any p with 0 < p < 4k. As i ---* co, we 

have fm, (y)  .__. Yo, so that fv+m,(y) ~ fV(Yo) and Y(fV+m'(y)) ~ Y(fV(yo)).  
Now note that  cj ~ c~ and V(fP+m'(y)) <_ m a x ( c j , , . . . ,  e4+j,), and conclude that  

Y(fV(yo)) < c~. For the discrete process ~, = f'~(Yo), we let ~j = cj(Yo) and see 

that  51 ~ c~, so that  5j _< o~ for all j > 1. In fact, since V is strictly dichotomic, we 

know that  c~ >_ ~1 > 53 >_ ~4- For any p with 2k < p < 4k, note that  V(fV(yo)) < 

~3, and set 7 = (or - 53)/2. Since there is i v with V(fV+m(y)) <_ 7 + V(fP(Yo)) 
for all i > ip, we set i0 = max{i  v : 2k < p <_ 4k}, and see that  for i > i0 and 

2k <_ p < 4k, one has V(fV+m'(y)) < 7 + V(fV(Yo)) ~ 7 + 53. For j = 3 + jio 

this makes cj _< 7+53 ,  so that  cj < c~. This contradicts the fact that  cj ~ o~, and 

we conclude that  o~ = 0. [] 

The above result constitutes, therefore, a little improvement of the method 

given in [1]. 

3 T h e  o . d . e ,  c a s e  

We shall now present a version of the above method which is suitable for ordinary 

differential equations. 

Consider the equation 

subject to the intitial condition 

x'(t) = (3 .1 )  

x ( 0 ) = y .  

Here, we suppose that g : ] a  N ~ ] a N  is continuous, locally Lipschitzian and 

satisfies g(0) = 0. Thus, the solution of (3.1-2) exists, is unique and is defined 

for all t E ]a. It is denoted by x(t, y) and, as a function of y, it is continuous. 

Observe that  the null function x(t, 0) is a solution of (3.1-2) when y = 0, called 

the null equilibrium of (3.1). 

The definitions of stability and asymptotic stability of the null equilibrium 

of (3.1) are easily carried out from definitions 1.1 and 1.2 upon the simple sub- 

stitution of n by t and xn(y) by x(t, Y)'N 
Given a differentiable map V : IR ~ ]a, we define the variation of V 

with respect to (3.1) as being the map Y' : ] a N  ----+ ]a given by Y'(y)  = 

a Y ( x ( t ,  y)) It=0 = GradY(y).g(y),  where GradV is the gradient of V. We say 

that  V is a Liapunov function for (3.1) when there exists a neighborhood 12 

of the origin where W is negative semi-definite. The basic results of Liapunov's 

direct method for ordinary differential equations are contained in the following 

analogues of Theorems 1.4, 1.5. 

T h e o r e m 3 . 1 .  Suppose that there exists a positive definile Liapunov function 
for (3.1). Then, the null equilibrium is stable. 
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T h e o r e m  3.2. Suppose, in addition to the hypothesis of the above theorem, that 
V ~ is negative definite. Then the null equilibrium is asymptotically stable. 

Following our previous notations, we now define some sets that  will play 

a role similar to those of Section 2. If T > 0 is a given constant and /2 is a 

neighborhood of the origin having x(t, y) defined for - T  < t < T, y E Y2, we put 

(2_(T) = {y E a :  V(y) < V ( x ( - T , y ) ) }  

no(T)  = {y E J2 : V(y) = V ( x ( - T , y ) ) }  

aS  = {u • a :  v '(u) > 0} 

= ( u  • a :  v ' ( u )  = 0}  , 

and let J2°(T) = a _ ( T ) U a 0 ( T ) .  Also, i fA  and B are sets, we let A \  B denote 

the set {x E A :x  ~ B}. 

De f in i t i o n  3.3. We say that a differentiable map V : ] R  N ----+ ~R is dichotomic 
with respect to (3.1) if there are a constant T > 0 and a neighborhood Y2 of the 

origin in IR N such that  ~ +  C a ° (T). 

D e f i n i t i o n  3.4. We say that a given map V is strictly dichotomicc with respect 
to (3.1) if it is diehotomic with respect to that  equation and, moreover, it satisfies 

the supplementary condition that  (~+)* C a _ ( T )  and J20(T)N ~ = {0}. 

Thus, the above definitions extend to ordinary differential equations the 

concept of diehotomie and strictly dichotomic maps, formerly given for differ- 

ence equations. As before, we see that  Liapunov functions are automatically 

dichotomic with respect to the given equation. Note that  there may exist points 

y • $2~ which do not belong to ~ + .  

Also, this time we put, for a given y E IR N, 

c j = m a x { V ( x ( t , y ) ) : ( j - 1 ) T < t < _ j T } , j = O , l , 2 , . . .  (3.3) 

and 

tj = min{t e [ ( j -  1)T, jT] : c i = V(x( t j , y ) ) }  . (3.4) 

Then, we have: 

L e m m a 3 . 5 .  I f  V is diehotomic and x( t ,y)  is defined for 0 <_ t <_ jT ,  then 

Proof. I f t j  = ( j -  1)T, then by the definition of cj-1,  we have cj = V(x( t j ,  y)) <_ 
cj-1. Now i f t j  > ( j - 1 ) T ,  then set f ( t )  = V(x(t ,  y)), and note that  f ( t )  < f ( t i )  
for ( j  - 1)T _< t < tj. By the mean value theorem there is t • (t, tj) with 

( f ( t j ) - f ( t ) ) / ( t j - t )  = f'(t'), and this gives 0 < f'(t ') = Grad V(x([, y)).g(x({)). 

Now x(t', y) x(t j ,  y) as t t j ,  which immediately means that  x(tj ,  y) E +. 
Thus Y(x ( t j ,  y)) < V(x( t j  - T ,  y)), so that cj = V(x( t j ,  y)) < V(x( t j  - T ,  y)) < 

Cj-1. [] 
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By referring to the proof of Lemma 3.5, we now obtain. 

L e m a n a 3 . 6 .  I f  V is strictly dichotomic, x ( t , y )  is defined for  0 < t < i T ,  and 
ty > ( j  - 1)T, then cj-1 > cj. 

The next lemma parallels Lemma 2.6. 

L e m m a  3.7. I f  V is strictly dichotomic, x( t ,  y) is defined for  0 < t < i T ,  and 
cj-1 ~ O, then cj_2 > cj. 

Proof. If tj > ( j  - 1)T, then cj-2 > cj-1 > cy. Now if tj = ( j  - 1)T, then either 

cj-1 > cy, or cj-1 = cj. In the first case we again have cj-2 > Cj-y > cj. In 

the case that  cj-1 = cy, one notes that  /20(T) N/2~ = {0) and cj_~ ¢ O, and 

sees that  if one had t j -1  = ( j  - 2)T, then for f ( t )  = V(x ( t ,  y)), one could not 

have f ' ( t j )  ~ O. In fact, for t j -1  = ( j  - 2)T, one could not have f ' ( t j )  < O, 

since that  would immediately contradict ty-1 = (j  - 2)T, not could one have 

f ' ( t j )  > 0, since that  would contradict ty = ( j -  1)T. We conclude then that  

t j -1  > ( j  - 2)T, so that  cy-2 > cj-1 = cj. [] 

T h e o r e m  3.8. I f  V is a positive definite map that is dichotomic with respect to 

equation (3.1), then the equilibrium x(t,O) is stable. 

Proof. Take R > 0 w i th /2  D {lYl -< R}, and take any r > 0 with sup{Ix(t, Y)I: 

lYl < r, 0 < t < T} < R. Set 6 = inf{Y(y) : r  < lYl < R), and note that  6 > 0. 

If lYl < R and V(y )  < 6, then lY[ < r. Noting continuity of Y and of the map 

(t, y) ---+ x(t, y), we can take/~ e (0, r) such that for 0 < t < T and lY{ < #, one 

has Y ( x ( t ,  y)) < 6/2, Ix(t, Y)I -< R. For such t, y one has Ix(t, y)l < r. Now take 

j > 1, and note that  if Ix(t,y)l < r for ( j  - 1)T < t < j T ,  then Ix(t ,y) l  < R for 

j T  < t < ( j + I ) T ,  and since cl(y) < 6, we have cj+l(y) < 6. Thus V ( x ( t , y ) )  < 6 

for j T  < t < ( j  + 1)T, and we find that Ix(t ,y)l  < r for j T  < t < ( j  + 1)T. 

From this inductive argument on the index j > 1 we see that  Ix(t, Y)I < r for all 

t > 0 .  [] 

The proof of the next theorem is nearly identical to the proof of the second 

part  of the Metatheorem. For this reason we merely establish the notation and 

indicate the direction of proof. 

T h e o r e m 3 . 9 .  I f  V is a positive definite map that is strictly dichotomic with 
respect to equation (3.1), then the equilibrium x(t ,  O) is asymptotically stable. 

Proof. Le t / t  be as in Theorem 3.8 and take y with ]y] < p. Let c i = cy (y), note 

that  {cj}  is nonincreasing, and let c i ~ ~ as j --* co. Again suppose ~ > 0. 

Since {x ( t j ,  y)} lies within a compact set, we have an increasing sequence {Ji} 

of positive integers such that  for rn i = tji ,  one has x ( m i , y )  ---+ yo as i ---+ ¢x). 

Note that  cy, = V(x (rn i , ,  y)), take t with 0 < t < 4T, and proceed just  as in the 

proof of the Metatheorem, with fm,(y)  replaced by x(mi,  y). To be specific we 

note that  the difference equation ~,~ = fn(yo)  is replaced here by the differential 

equation k(t) = g(x( t ) ) ,  x(O) = Yo, and ~j is again given by ~j = cj(yo). [] 
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It is clear from the above theorems that  we can obtain sharp stability results 

for ordinary differential equations in the spirit of Liapunov's direct method [2] 

even when V' is not negative semi-definite. Theorems 3.8 and 3.9 can, therefore, 

be viewed as adaptations of Theorems 1.4 and 1.5, respectively, to the case of 

ordinary differential equations. The apparent drawback here is that,  unlike Lia- 

punov's theorems, we have to somehow integrate equation (3.1) over an interval 

[-T,  0] in order to check the dichotomic character of a given map V. In Example 
IV of the next section we indicate a numerical technique which in many cases 

allows one to overcome this difficulty. 

4 E x a m p l e s  

ly2 Then, V is posi- I. Take N = 2 , g ( x , y )  = ( y , - x )  and V ( x , y )  = x 2 + -~ . 

tive definite in IR 2 and its variation with respect to the o.d.e. ( x ' ( t ) , y ' ( t ) )  = 

g ( x ( t ) ,  y ( t ) ) ,  x(O) = x o , y (O)  = yo is given by V'(x0, Yo) = xoYo, which is not 
negative semi-definite in any neighborhood of the origin. Hence, it is not a 

Liapunov function for this equation. The solution of this equation is x ( t )  = 

x0cost + y o s i n t , y ( t )  = - x o s i n t  + y0cost. If we pick T = 2~r, we obtain: 

V ( x ( - 2 r ) ,  y(-27r)) - Y(x0, Y0) = 0. Hence, we have for £2 = B1, for instance, 

= v) • > 0} 

(27r) = B, 

so that  ~ +  C ~0_ (2~r), and Theorem 3.8 applies in order to prove the stability 

of the given equilibrium. 

II .  Everything as in example I, except that  g(x ,  y) = ( y , - 2 x  - 2y). Then, 

V'(x0, Y0) = -2y0 ~. Thus V is a Liapunov function to the given o.d.e, but, since 

V' is just negative semi-definite, it cannot prove (directly) the asymptotic sta- 

bility of the null equilibrium. Since x ( t )  = e- t [Xo cost + (Xo + y0)sint] and 

y ( t )  = x'(t) is the solution through (x0, y0), we obtain 

+ = 0  

= 8 ;  

Hence, the null equilibrium is asymptotically stable because V is a strictly 
dichotomic map with respect to the given o.d.e, in B1. 

I I I .  Everything as in example II, but V ( x ,  y) = ½(3x2+y2). Then, V ' ( x o ,  Yo) = 

x y  - 2y  a. Thus, V is not a Liapunov function for the o.d.e, because V' is not 

negative semi-definite in/'2. A straightforward computation shows that  

1 e4,r)x 2 0} /2* . O_(21r) -- {(x,y) • B I :  ~ [ 3 ( 1 -  + (1 - e4~)y 2] < = 

Hence, we have that  V is strictly dichotomic in $2 with respect to the given 

o.d.e., and its null equilibrium is asymptotically stable. 
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IV .  I f  we discretize the o.d.e, of example I I I  by, say, Euler 's method,  we 

obtain 

(4.1) Zn = xn-1 + hyn-1 y ,  = - 2 h x n - 1  + (1 - 2h)yn-1.  

The matr ix  of (4.1) is 

Given T > 0 and m > 1, let h = T / m .  Then,  one can diagonalize the matr ix  

Am(h,~)  and use L'Hopital 's  rule, and eventually find that  Am(hm)  ---* g o ( T )  as 

m ---, ~ ,  where 

A o ( T ) = e _ ~ O [ c o s T + s i n T  s i n T  ] 
- 2  sin T c o s t  - s i n T  

and this convergence is uniform in T for T in compact sets. 

Using this feature, we shall again show that  the map V ( z , y )  = 1(3x2 + y~) 

is strictly dichotomic for the differential equation of Example III.  

In fact, note that  for any T > 0, we have hmkm --* T as m ---* oc. Now 

() write Y0 = U0v0 , and for j ___ 1 write yj = AJyo. Then y,~+l = \v , , ,+ l  = 

A ( h ' ~ ) A ' ~ ( h m ) ( : : ) ' s ° t h a t ( U m + l ) - - * A ° ( T ) ( U ° )  v0 

e-  T yo as m ---+ oo. 

In investigating whether V is dichotomic, one can first note for each (u0, v0) E 

R 2 tha t  -~-~A~V(uo,vo) - -  (UoVo --2v~) as m ~ ~x), so that  V'(uo, Vo) = uovo - 

2v02, as expected. Now this quadratic form g(u0, Vo) = UoVo - 2v 2 is not sign 

definite. However, a simple calculation shows that  A'~+lV(uo ,vo)  ~ - - ½ ( 1 -  

e-2T)(3uo 2 + v0 ~) uniformly in compact neighborhoods of the origin as m ---* oc. 

If we write 3U2o + v~ = (u~ + V2o) + 2u2o, we see that  for each nonzero y0 e R 2, 

there is M > 0 such that  Ar~+lY(yo) < - ¼ ( 1 -  e-2T)lyol2 for all m > M. Since 

A'~+lY(yo)  --~ V ( z (T ,  y o ) ) - V ( y o )  as m ~ oo, we see that  for all y0 ¢ 0, one has 

Y ( z ( T ,  yo)) - Y(yo))  < 0. We can now conclude that  V is strictly dichotomic 

for the differential equation of Example I I I  so that  the null solution of this 

differential equation is asymptotically stable. 
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Introduction 

In this paper  we give sufficient conditions for the solvability of set-valued systems 

of the form 

• y) (1) 

where F and G are multivalued maps,  defined in the following way 

F(x,  y) = y - F(x,  y) , G(x, y) = x - G(x, y) 

where x • X, y • Y, with X, Y Banach spaces, and /~ and G are upper  

sernicontinuous, compact  multivalued maps,  defined on the closure of a suitable 

open subset U of the X x Y, taking values in X and Y respectively. For simplicity 

we will call F and G multivalued compact vector fields, even if in the l i terature 

this definition may be used also with different meaning in a different context. 

Roughly speaking, we solve the first equation in t e rm of y as a function of "the 

parameter"  x considering the application x --o S(x)  = {y • Y : 0 • E ( x , y ) }  

and hence we introduce the solution set S(x)  in the second one. The fixed points 

of the composite function G(x, S(x) )  are the solutions of system (1). 

The paper  is organized as follows. In Section 1 we give some definitions about  

set-valued maps and we recall some known results we will need in the sequel. In 

Section 2 we give a first result for solving system (1) by assuming F with convex, 

compact values and G single valued. Successively we solve system (1) under the 

hypotheses tha t  G is a multivalued admissible map and the set of solutions S(x)  

is acyclic. We want to note here that  in general, in the convex case, the solution 

set S(x)  is not necessarily aeyclic. 

In Section 3 we give applications of our results. More precisely, we consider 

the problem of finding conditions for the solvability of two point boundary  value 

problems for a multivalued differential system. We want to point out that  while 

such problems can be formulated within the framework of the general theory of 

differential inclusions, they may also be viewed as models of problems in control 

theory. 
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D e f i n i t i o n  1.1. Let X and Y be topological spaces. A set-valued map M from 

X into Y is said to be upper semicontinuous at x E X if for every neighborhood 

V of M(x )  there exists a neighborhood U of x such that  M(x)  C V for every 

x E U. If, for every x E X, M is upper  semicontinuous at x and M(x)  is compact ,  

then M is said to be upper  semicontinuous on X. I f  M sends bounded sets into 

relatively compact  sets, then it is said to be compact. M is said to be proper if, 

for each compact  set K of Y, M - I ( K )  is compact.  We will denote a multivalued 

map M from X to Y with the symbol M : X --o Y. By an r-neighborhood of 

a subset 12 of a metric space X we mean the set B(12, r) = {y E X : 3 x E 

12 such tha t  d(x, y) < r}. 

D e f i n i t i o n  1.2. Let X and Y be Banach spaces and M : X ---o Y be a 

multivalued map. We say that  a continuous map # : X --* Y is a e-graph 

approximation of M (shortly e-approximation) if graph ~ C B (graph M, e). We 

will say that  a map/~ : X ~ Y is a e-pointwise approximation for M : X ---o y 

if #(x)  e B(M(x) ,  e) for all x e X. 

The following result is due to Cellina [2]. 

T h e o r e m  1.3. Let X and Y be metric locally convex spaces and let M : X -.-o y 

be an upper semiconlinuous map with compact and convex values. Then for any 
e > 0 there exists an e-approximation of M. 

Using this result, in [3] Cellina and Lasota gave a definition of degree (we will 

denote it by Deg) for multivalued compact  vector fields with convex values. 

D e f i n i t i o n  1.4. Let X and Y be topological Hausdorff spaces. An upper semi- 

continuous map,  with a finite number of points as images, M : X -o  y will be 

called a weighted map (shortly w-map) if to each x and y E M(x)  a multiplicity 

or weight re(y, M(x) )  E Z is assigned in such a way that  the following proper ty  

holds 

a) if U is an open set in Y with OU f3 M(x)  = 0, then 

Z re(y, M(x) )  = ~ m(y', M(x ' ) )  
yEM(x)nU y'EM(x')nU 

whenever x '  is close enough to x, (see [5] and [11]). 

D e f i n i t i o n  1.5. The  number 

i (M(z) ,  U ) =  ~ re(y, M(x))  

yEM(x)NU 

will be called the index or multiplicity of M(x)  in U. 
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If  U is a connected set, the number i(M(x), U) does not depend on x • X. In 

this case the number i(M) = i(M(x), U) will be called the index of the weighted 

map M, (see e.g. [11]). 

D e f i n i t i o n  1.6. ([13]) Let X be a metric space. An upper semicontinuous set 

valued map M : X ---o X is admissible if there are maps Gi : Yi ---* Yi+l, i = 
0, 1, ..., n (Yi metric spaces, ]So = Yn+l = X)  satisfying 

i) F = G , o . . . o G 0 ;  

ii) Gi is upper  semicontinuous with acyclic, compact values for each i = 

0, 1, ...,n. 

Each sequence Go, ..., Gn is called an admissible sequence for M. 

We recall that  the composition of upper semicontinuous maps is upper semi- 

continuous. 

D e f i n i t i o n  1.7. Let X be a Banach space and let B(0, r) be a closed ball in X 

of radius r. We will say that  the upper semicontinuous map M : B(0, r) --o X 

verifies the Borsuk-Ulam (B. U.) properly on OB if for all x • OB(O, r), M(z)  
and M ( - x )  are strictly separated by a hyperplane, i.e. for all x • OB(O, r) there 

exists a continuous functional x* • X*, the dual space of X,  such that  x* (y) > 0 

for all y • M(x)  and x* (y) < 0 for all y • M ( - x ) .  

D e f i n i t i o n  1.8. Let X, Y be metric spaces. Given 8 C X x Y and A C X,  

denote by: 

s (~)  = (y • r : (~, y) • s ) ;  

S ( A ) = { y  • Y : ( x , y )  • S, x •  A}; 

8 ~ = 8 C l ( { x } x Y )  a n d S A = S n ( A x Y ) f o r A C X .  

D e f i n i t i o n  1.9. Let X and Y be metric spaces. Let U C X × Y be open 

and locally bounded over X,  i.e. for any (x, y) • U there exists a neighborhood 

N C X of x such that  UN is a bounded set in X x Y. We shall say that  F : U --o y 

is a parametrized compact vector field if F(x,y)  = y - [z(x, y) with /~ upper  

semicontinuous and / ~ (D)  relatively compact in Y for any bounded set D of ft .  

We shall denote by 

s F = {(~,y)  • ~ : y • k (~ ,y )} ;  

79 r = { ~  • x  : s [ n o u = o } .  

D e f i n i t i o n  1.10. Let M : B(0, r) C X --o X be an upper semicontinuous set 

valued map.  The map M satisfies the boundary condition "P" if x E OB(O, r) 

and Ax E M(x) implies ~ < 1. 
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D e f i n i t i o n  1.11. A multivalued map M : X x Y --o Z is said to be uniformly 

quasibounded with respect to x if there exist a ,  /3 • R + such that:  

I IM(x ,y )  ll= sup I l z l l ~  ,~ IlYll + f l f o r a n y x e X .  
zEM(x,y) 

In the sequel by eM(ep) we will denote the set B ( M ( B ( p ,  e)), e). 

2 R e s u l t s  

We want to investigate now the existence of solutions for the system 

y • F ( x , y )  or { 0 • Y - P ( x ' Y ) = F ( x ' Y )  (2) 
x = # ( . ,  V) 0 = x - O(*, V) = g(x,  V) 

T h e o r e m  2.1. Let X , Y  be Banach spaces, let U C X x Y be an open, locally 

bounded set over X .  Let T' : -ff .--0 y be an upper semicontinuous compact map 

with convex values and ~ : U ~ X be a continuous and compact map. Suppose 

that there exists r > 0 such that B(0, r) C :/)F and Deg (F(O,-), U(O), O) # O. Let 

T : -B(O,r) -o  X be defined b y T ( x )  = x - T(x) ,  whereT(x )  = [7(x, S (x ) )  

and S(x)  = {y e Y : y E F ( x , y ) } .  Let us suppose that for  all x e cOB, such that 

o ¢ T(x), T(x) and T ( -x )  are st~ctly separated by an hyperplane. Then there 

exists x • ~ ( 0 ,  r) such that 0 • T(x) .  Hence system (e) has a solution. 

Before proving theorem 2.1 we need some preliminary results. First observe that  

the map S : B(0, r) C X - o  y defined by x -o  S (x )  is upper semicontinuous 

on B(0, r). In fact the local boundedness of U implies that  S(x0), is compact 

for every x0 E X.  Moreover, if V is an open neighborhood of S(x0), then there 

exists an open neighborhood N of x0, N C D r ,  such that  S(x)  C V, Vx E N.  To 

see that  let y E S(xo) and let us consider neighborhoods of the form N~ o × V v, 

with N~ o a neighborhood of x0 in 7) F and Vv a neighborhood of y in Y, such 

that  

Vy C V ( x o ) n  V a n d N ~ o X V y  C V. 

Let S be the set {(x,y)  E X x Y : y E /~(x,y)}. By tile compactness of 

S .  o = S f~ ({Xo) x Y) there exists a finite number,  say s, of neighborhoods of 

the previous form covering S.  o. Let 

' 0 No = N Ni and V I =  

i = 1  i = 1  

Clearly for each neighborhood N of x0, with N C N0, we have that  N x  V ~ C U. 

Let us prove that  there exists a neighborhood N of x0 such that  S(x)  C V ~ 

for all x E N. Suppose not, then there exists a bounded sequence {(xn, yn)} 

with xn -+ x0 ,Yn E F ( x , ,  Yn) and yn ~ V'.  As P is compact and upper 

semicontinuous, we may assume (by passing to a subsequence, if necessary) that  
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y,, --* Y0. Then Y0 e -P(x0, Y0), that  is Yo E S(xo), contradicting S(xo) C V'. 
[] 

Note that  S(x) ~ 0 because of the hypothesis on the degree of F.  

m 

L e m m a  2.2. Let X = R n, Y = R m and let B(0, r) C 

neighborhood W of S~ there exists e > 0 such that if  ] 

e-approximation of FIUB' then S~ C W. 

"D F . Then for each 

: UB --~ R m is an 

Proof. S F is a closed and compact set. In fact, let {(x,,y,~)} C S F and 

( x , , y n )  ---* (xo,yo). As {(zn,y , )}  C S~, we have that  y ,  e F ( x n , y , )  for any 

n E N. As ~" is upper semicontinuous, then Y0 e ~'(x0, Y0), that is (x0, Y0) e S r .  
Then SB F is closed and obviously compact. 

Let W be a neighborhood of SB F, V a el-neighborhood of SB F, V C W, with 

O V N O W  = ~. Let e2 = d(OV, OW) and A = UB\V.  Since A is a compact set,we 

have that  

inf {11 s - Y l l ,  s E / ' ( ~ , ~ ) }  =e3  > 0. 
(~',~)EA 

^ 

Let e = min {ex, e2, e3} and let ] : U --~ Y be an e-approximation of FlU B. 

Let (x,y)__e -UB\W and let y = ] (x ,y ) ,  that  is (x,y) in S/B . Then there exists 

('x,-Y) E UB such that: 

II ( x , y )  - + II / (x,u)  - z II < e f o r  s o m e  z e 

As I[ (x,y) - (~,~) II < e i t  follows that  (~,~) ~ S r .  Since y =  ] ( x , y )  we 

get that II Y - z [[< e. Hence (~,y) ~ A. Thus (~,y) 6 V\S~.This  is absurd, 

since (x ,y )  E U \ W  and II (x ,y)  - (~ ,~) I I<c  and so (7, ~) ~ V. [] 

L e m m a  2.3. Let X = R n, Y = R m and let B(O,r) C :D v.  There exists an 

eo > 0 such that for all e < eo there exists ] : -U ~ R '~, such that ]IUB is an 
^ 

e-approximation Of Fl-ffB and 

a) S ! is a finite subset of U(x),Vx E B(O, r);  

b) Dcg(F(O,.), U(O), O)= Deg ( f(O, .), U(O), 0). 

Proof. The definition of degree given by Cellina and Lasota, [3], ensures the 

existence of a positive number, say e0, with the property that  for any e < e0 

every e-approximation of FI-ffB has the same degree as FlU B . Fix e < e0 and let 

f : UB ---* R m be an e/2 approximation of FIUB" Using the same arguments as in 

Lemma 2.4 of [11] we can prove that  there exists ]1 : ~B  --~ R m, e/2-pointwise 

approximation of f ,  that satisfies property a). Then ]1 is an e-approximation of 

FIUB that  satisfies property a). The map ] is then any continuous extension to 

of ] i ,  therefore b) follows immediately from the choice of e. D 

L e m m a  2.4. Let X and Y be Banach spaces. Let U be a locally bounded, open 

subset in X x Y .  Let us suppose that for all x G D F the equation y E ~'(x,y)  
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has only isolated solutions. Then the application x ---o S ( x )  i s  a w-map and 
i(S) = Deg(F(x,.), U(x), 0). 

Proof. We have already seen that  the map x --o S(x) is an upper sernicontinuous 

map. We want to prove that  to any y E S(x) it is possible to associate an integer 

re(y, S(x)) with the property of Definition 1.4. If y is an isolated solution for F 

then there exists a neighborhood 12 of y such that  12 f3 S(x) = {y}. 

Let us define re(y, S(x)) = Deg ( F(x,-), 12, 0). Using the excision property, 

re(y, S(x)) does not depend on the choice of 12 provided that  12 f3 S(x) = {y}. 

Let W be an open set in Y such that  S(x) NOW = 0. As S is upper semicontinu- 

ous there exists a ball B(x ,  r) such that  Vx ~ E -B(x, r)MY we get S(x') MOW = 0. 

Let us consider now the following homotopy, H : [0, 1] x W --o y ,  defined 

by 

H(t, y) = F(tx + (1 - t)x', y). 

As tx + (1 - t)x' E B(x,  r) 1"1 Y for all t E [0, 1], n is an admissible homotopy 

between F(x, ")tw and F(x', ")lW" From this fact, using the additivity property 

of the degree, we get: 

Z re(y, S(x)) = Deg( F(x, .), W, O) = 
y~s(x)nw 

Oeg( F(x', .),  W, O)= Z m(y,S(x')).  
yeS(~')nW 

The following lemmata, whose proofs can be found in [11], hold. 

[] 

L e m m a 2 . 5 .  Let B = B(O,r) be an open ball in l~  and let M : B--o 1~ be a 
w-map with i(M) ~ O. I f  M verifies the B.U. condition on OB, then there ezists 
x E B(0,  r) such that 0 E M(z).  

L e m m a  2.6. Let M : B ---o X be a compact vector field satisfying the B.U. 
property. Then there exists e > 0 such that every e-approximation of M satisfies 
the B.U. property. 

We can now give the proof of Theorem 2.1 

Proof. The result is obviously true if there exists z C OB, B = B(0, r),  such that  

0 E T(x) .  In any other case, assume that system (2) does not have solutions 

(x ,y)  with y E S ( B ) , i . e .  0 ~ T(x)  for all x E B.  Since T i s  an upper 

semicontinuous and "compact" vector field, its image is closed. The assumption 

0 ~ T(x)  implies the existence of el > 0 such that B(0, el) MT(B(O,r)) = q}. On 

the other hand from Lemma 2.6 there exists e2 such that every e2-approximation 

T ~ of T, T '  : B --o X verifies the B.U. property. 

Let ~i = min {el, e~} and let Y C U be defined by: V = {(x, y) E U : 

(x,g(x,y)) e ~ Gr T}, where Gr T stands for the graph of T and SA is the 
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b-neighborhood of the set A. Clearly V is an open set being the inverse image 

of the open set b Gr T, through the continuous map g. 

We divide the proof into three parts. 

First part. X = R n, Y = R m. 

Let e* be that one given in Lemma 2.2, i.e. every e* approximation ] of/v has the 

property that  S]B C V. Let e0 given by Lemma 2.3 and let e t = min {e*, e0, b}. 

By Lemmata 2.3 and 2.4 there exists a continuous map ] : V ~ / ~ "  which is an 

e'-approximation for F on V \ B  and such that  the set valued map S ~ : B -o  R ~ 

defined by x --o S ' (x)  = SI(x) ,  f = I - ], is a w-map such that  S~ C V. The 

index of the map is given by 

i(S')  = Deg( F(O,.), V(O), O)= Deg( F(O,.), U(O), O)~t O. 

The set valued map T ' (z )  = g(z, S ' (z))  is a w-map with index i(T') = i(S') ~t O, 

(see [5]). As S~ C V we have that Gr T '  C e' Gr T. Since T'  verifies the B.U. 

property then, by Lemma 2.5, there exists • E B such that 0 E T ' (x) .  Then 

0 6 eIT(elz). This contradiction establishes the result. 

Second part. X = R n, Y Banach space. 
I . . I . . 

Let ] be a ~-approxlmatlon of F on UB, and let ] be a ~-pomtw,se approxi- 

mation of ] whose range is contained in a finite dimensional subset K1 of Y. By 

Lemma 2.2 and the properties of the degree, we get 

0 7t Deg( F(O, .), V(O), O) = deg( f (0 ,  .), V (0), 0) 

= deg(f(O, ")IV,, V(0) A K, ,  0) 

with V1 = V N ( X  x g l )  and SIB C V1. Then S/B ~t 0. Let gl = girl and 

]1 = ]tvl. These two maps satisfy the hypotheses of Theorem 2.1. Then,  for the 

first part  of the proof, the set valued map T"(x)  = gl(x, SI l (x) )  has a zero in 

B.  As SIB ̀(x) C V we have that  Gr T"  C c' Gr T, contradicting the fact that  

0 ¢ elT(elx). 

Third part. X,Y Banach spaces. 

Let g2 : UB --~ X be an e-pointwise approximation of .~ on UB with finite 

dimensional range. Let X1 C X be the subspace containing the range of g2 and 

let g2 = 1 - g~l(X, xY)nUB and ~'~ = ['I(Xx×Y)nUB" Let T' : B '  = -B n X1 ---o X1 

defined by T'(~) = g2(~, S(x)). T'  is an e-approximation of TI~ and by Lemma 

2.6, T ~ satisfies the B.U. property on OB'. By the second part of the proof T '  

has a zero on B '  C B ,  contradicting the fact that  0 ~ e T(ex).  [3 

With a similar proof to the one of Theorem 1.4 of Ill] we can prove the 

following 

Theorem 2.7 Let X and Y be as in Theorem 2.1. Let U be a locally bounded open 

set in X x Y and let F : -U ---o y be an upper semicontinuous convex valued 

mapping. Consider a compact, convex set Q c X such that for every z E Q we 
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have y ~ F(x ,  y) on OU(x). Assume that for some (and hence for all) z E Q we 

have Deg (F(z , . ) ,  U(z),O) 7£ O. I f  O : S o ---* X is any continuous map such 

that ~(x, S(z)) C Q for any z E Q, then there exists a solution (z, y) E U of (2) 

with z E Q and y E S(x). 

In the next theorem we give an existence result for system (2) under the as- 

sumption that  F and G are both multivalued maps and G is admissible. However 

we have to assume that  the set S(x) is acyclic for every x E :D F. Notice that  

this assumption holds in many cases (see e.g. [7] and [8]). 

T h e o r e m  2.8 Let X, Y be Banach spaces, let U C X x Y be an open, lo- 

cally bounded set. Let ~" : -U ---o Y be an upper semicontinuons, uniformly 

quasibounded with respect to x, compact map with closed values. Let us suppose 

that there exists r > 0 such that "B(0, r) C ~F and for any x E ~F the set 

S ( x ) = { y E Y : y E F ( x , y ) }  is non empty and acyclic. Let G : -U--~ X be a 

compact, admissible map, and T : B(0, r) ---o X be the map defined by: 

x--o ~(~) = O ( , , S ( x ) ) .  

Suppose that the map T(x )  satisfies property "P" of Definition 1.10. Then the 

system 

{ y E /~(z 'y )  (1) 
e y) 

has a solution. 

Proof. We have already proved that  the map S is upper semicontinuous. There- 

fore, 7 ~ is an admissible map with compact values. Furthermore, being G compact 

and F uniformly quasibounded, we get that ~b is a compact map. We want to 

show that  7 ~ has fixed point in B(0, r). 

Using Lemma 2 in [10] we know that  there exists a compact convex set 

g C B(0, r) such that  To(a" o 7~(K)) = K,  where 7r is the radial projection of Z 

on B(0, r). Since ~ro7 ~ is admissible, there exists 3: E K such that x E ~r o 7~(x). 

Condition "P"  implies that  x E T(x). I-1 

3 A p p l i c a t i o n s  

In this section we present two applications of our results to problems involving 

convex-valued differential inclusions. While such problems can be formulated 

within the framework of the general theory of differential inclusions, a topic of 

independent interest, they may also be viewed as models of problems of a very 

different nature, for example: control theory. To be definite, consider a nonlinear 

control process described by a system of ordinary differential equations of the 

form: 

= f ( t ,  x, ( c )  
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where f : [0, 1] x R n x R m ~ R n satisfies Caratheodory's conditions and the 

control u is in 12, with 12 a non-empty compact subset of R m. If  for (t, x) • 
[0, 1] x R n we set 

f ( t ,  x,  12) = ~(1, x)  

and assume that  the multivalued map • is convex, then the trajectories of 

system (C) corresponding to controls from the set of functions U = {u • 

L°Q((0, 1), R m) : u(t)  • a for a.a. t • [0, 1]} are precisely those corresponding 

to the multivalued differential equation 

• x). 

One of the advantages of dealing with this equation rather than the original 

equation (C) is in the fact that  in various situations it is easier to use differen- 

tim inclusions in order to determine conditions sufficient to guarantee specified 

behaviour of the trajectories. On differential inclusions and their relationships 

with other fields see, for example, [1]. As mentionated above, the following two 

examples may also be viewed as control problems. Specifically, example 1 may be 

viewed as a problem of periodic controllability. Such problems have been treated 

in [9] and in [12] using degree theory (see also references therein). Example 2 

may be considered as a teachability problem between two given sets. On this 

subject, see for example [4]. 

Example  1. Consider the initial value problem 

{ y • ~(t,  y) (E l )  
y(0) = y0 

where 4) : [0, 1] x R n ---, R n is a Caratheodory function with compact, convex 

values, i.e. ~b satisfies the following conditions 

(fl) • is a t-measurable, y-upper semicontinuous function; 

(f2) for each p > 0 there exists ~p, tip • LI((0,1) ,R) such that  I ~ ( t , p )  I< 

ap(t) + /3 p(t) I P I, for a.a. t • [0, 1] and every p • R '~ with IPl -< P, where 

I (t,p) l= sup I z l .  
ze~(t,p) 

Under our assumptions (El) is equivalent to the integral form y E F(yo,  Y), 

where F :  R" x (C)" ---* (C)" is defined by: 

(y0, y) --o y0 + y( . ))  

where the integral is intended in the Aumann sense and (C) '~ stands for the 

nanach space C([0, 1], R ' ) .  

Formulation of  the problem: We want to give conditions on the map O(t, y) in or- 

der to prove, using Theorem 2.8, the existence of an initial state yo corresponding 

to a 1-periodic solution of (El). 
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First of all observe that,  since 4~ satisfies (fl)  - (f2), for any Y0 E R n the solution 

set S(yo) is a non empty, compact, acyclic subset of (C) n. Moreover the solution 

map S : R" --* (C)"  is upper semicontinuous and sends bounded sets of R" into 

bounded sets of (C)" ,  which in turn, by (f'2) are bounded in AC([0, 1], R")  = 

(AC)" ,  and so they are compact in ((7)". 

Assume the following condition 

(C1)-there exists r > 0 such that  

o t s(t)dt < O, 

where s(t) = sup ~(t, y) for almost all t E [0, 1] and a(t, y) = sup < y, z > .  
lYl>r ze~(t,y) 

Here < .,. > denotes the standard Eudidean inner product in R".  

In what follows we will rewrite our problem in a suitable form to apply 

Theorem 2.8. Since the set 

U S(yo) 
~0~(0,r) 

is bounded in (C) n, say by p > 0, we define a bounded, open set U C R" x (C)"  

by U = B(0, r) x B(O,p). 
Let G : U --o R ~ be the map defined by G(y0, y) = y(1). It is easy to see that  

is a compact, continuous map. 

Consider the map 55 : B(0,  r) --o R n, defined by 

~o - o  55(yo) = O(vo,  s(~0)). 

Clearly 55 is an admissible map and a fixed point of T is the initial condition of 

a 1-periodic solution to (El) .  We will prove the existence of a fixed point of 55 

by showing that,  via the condition (C1), T satisfes property "P". For this, let 

us prove the following 

P r o p o s i t i o n  3.1. Assume condition (C1). For any y E S(yo) with ly0l - -  r we 

have that I v ( l )  I_< r. 

Proof :. Let ro = sup{t E [0, 1] : [ y(t) I< r}. If r0 = 1, we are done. 

On the other hand, if r0 < 1, then ] y(t) ]> r for any t Ei (v0, 1). By integrating 

on (r0, 1) the inequality 

d [y(t)12 

dt 2 
- < y(t) ,  y(t)  > _< s(t )  for a.a. t e [0, 1], 

and using (C1), we obtain that  

1 12 
[I y(1) - ly(~0)12] < 0 and so l y(1) 1_< r. 

I'1 

Now it is immediate to see that Proposition 3.1 implies that the map 5 5 

satisfies property "P" ,  in fact from )~Y0 E 55(Y0) it follows A _< 1. 



108 G. Conti, P. Nistri, P. Zecca 

Notice that  the problem treated in Example 1, under different assumptions, 

can be solved by using Theorem 2.1. 

Example 2. We consider the following system: 

9 • ¢ ( t ,y )  

v(0) = y0 
v(1) • K c R" 

where • is the map defined as in Example 1. 

(E2) 

Formulation of  the problem: Given K C R n, K compact and acyclic, we want 

to give conditions ensuring the existence of Y0 in a suitable ball B(0, r) C R n, 

such that  (E2) is solvable. 

Assume the following condition. 

(C2)- there exists r > 0 such that  

r 2 =  i( t ,yo)  dt >__ sup < y o ,  yl > for a n y l y o l  = r ,  
y1EK 

where i(t,  Yo) = inf inf < Y0, z >, 
lyl<_p ze~(t,y) 

for a.a.t • [0, 1], lY01 = r, and p is determined as in Example 1. 

Let U = S ( 0 ,  r) × B ( 0 , p )  C R '~ x (C) n and let G : U - - - o R  n be the map 

defined by 

G(y0,y) = {y0 + y l -  y(1), yl • ]-~}. 

is a compact,  continuous map with compact,  acyclic values. 

Consider the map 7 ~ : B(0,  r) --o R ~ defined by y0 --o 7~(y0) = G(y0, S(yo)) .  

Clearly 5 b is an admissible map and a fixed point of T will be a solution to 

problem (E2). 

We prove now the following proposition. 

P r o p o s i t i o n  3.2. Assume condition (C2). Then < Yo, x > >_ 0 for any x • 

T(yo)  = ( I  - ~b)(y0). 

Proof. Let l Y0 1= r. For a given x E T(yo)  we have, 

< yo, x >=l Yo l2 - < Yo, Yl > Jr 

< Yo, y( t )dt  > for some y • S(yo) and yl • K.  

By using (C2) we obtain the assertion. [] 

This  result ensures that  the property "P" is satisfied by the map T. In fact, 

if for some ] Y0 I = r we have that  

Ayo = - ~l(t) dt + Yl, for some y • S(yo) and Yl • K, 
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or equivalently (1 - )~)Yo e ( I  - T)(y0),  then using Proposi t ion  3.2 we obta in  

( 1  - $)ly0l 2 > 0 and so ~ < 1. 
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Abstract Volterra Equations and Weak 
Topologies 

C. Corduneanu 

University of Texas at Arlington, Arlington, TX 76019 

The equations involving abstract Volterra operators have been investigated 

since 1929 by many authors. We mention here the contributions made by L. 

Tonelli, S. Cinquini, D. Graffi, A.N. Tychonoff, L. Neustadt, which have been 

discussed in our recent book [6]. 

Roughly speaking, an abstract Volterra operator V (sometimes also called 

causal or nonanticipative) is an operator acting on a function space, the main 

feature consisting in the fact that  x(t) = y(t) for t < t implies (Vz)( t )  = (Vy)(t)  
for t < L Such operators have the distinction of introducing !in the equations the 

past history of the phenomena governed by attached equations. They appear 

in many areas of investigation, and in [6] we have provided illustrations from 

Continuum Mechanics and the Dynamics of Nuclear Reactors. Applications of 

such operators/equations in Control Theory are contained in [4], [5], [8]. 

The existence problem, as well as other basic problems related to the abstract 

Volterra equation 

~:(t) = (Vx)(t) ,  t e J C R, (1) 

can be dealt with in various manners. The fixed point method is certainly one 

of the most inviting if one takes into account the form of equation (1). In our 

paper [3] (see also the book [6]), existence has been obtained mainly under the 

assumption of compactness of V on various function spaces (C, L p, 1 < p < ~ ) .  

This paper has as main objective to provide similar results, but  using the 

weak topology instead of the norm topology (consequently, weak continuity and 

weak compactness will apear as natural  assumptions). This approach has the ad- 

vantage that  a Dunford-Pettis theorem, initially obtained for finite dimensional 

spaces, has been extended to infinite-dimensional spaces (see J.K. Brooks and 

N. Dinculeanu [1]). Therefore, results applicable to equations in Hilbert or Ba- 

naeh spaces can be obtained by this method. We shall consider here the case 

of Hilbert spaces, due to the fact that  weak compactness and boundedness are 

equivalent concepts for such spaces. 

As an illustration of the fact that  weak topologies can be used with success 

in case of abstract Volterra equations, we shall prove a theorem similar to that  

given in [3] (see also [6]), concerning the existence of solutions. However, this 

time the restriction to the finite-dimensional case is not necessary. In the sequel, 

H will stand for a t t i lbert space over the reals. 
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T h e o r e m  1. Consider the functional equation (1) and assume that V is an 
operator from the space L2([0, T ] ,H)  into itself (0 < T < cx~), verifying the 

following conditions: 

I. V is an operator of Volterra type, i.e., z ( t )  = y(t) a.e. on [0, r], implies 

( v x ) ( t )  = ( v u ) ( t )  a.e. on for any < T;  

2. V is weakly continuous on L2([0,T], g ) ;  

3. there exist two functions A : [0,7"] ~ R+ continuous, and B : [0,7"] ---* 
R+ integrable, such that for any x E L~([0, 7q, H)  satisfying 

one  has  

fo ' Ix(s)l~ds ~ A(t),  t C [0,T], (2) 

I(Wx)(t)l 2 < B(t), a.e. on  [0 ,7] ,  (3) 

while 

fo t B(s )ds  < A(t) ,  E [0, 7]. (4) t 

Then there exists a solution x E L2([0, 7"], H)  of the equation (1), such that 
estimate (2) holds true. 

Proof.  Since a solution of (1) is a fixed point of V, we will apply the Tyehonoff 
fixed point theorem in the space L2([0, T], H),  endowed with the weak topology. 

This space is a locally convex space, and the usual Schauder fixed point theorem 

is not applicable. 

The convex set on which the operator V is acting is defined by the inequality 

(2). Let us denote this set by S. We notice that S is convex, and it is closed in 

the norm topology. But the convex closure is the same in both norm and weak 

topologies. Therefore, the set S is closed in the weak topology of L2([0, T], H).  

Taking into account (2), (3), and (4), there results 

vs c s.  (5) 

On the other hand, the set V S  is obviously bounded in L~([0,T], H),  and 
therefore it is weakly compact. 

By hypothesis V is weakly continuous on S, which means that all conditions 

required by Tychonoff Theorem (see, for instance, [2]) are satisfied for the oper- 

ator V, the set S, and the space L~([0, T], H)  endowed with the weak topology. 

Hence, the existence of (at least) a fixed point is guaranteed for the operator 

V (in S). This ends the proof of Theorem 1. [] 

Remark. Apparently, the fact that  V is of Volterra type does not enter in the 

proof. Yet, conditions (2), (3) do not make sense if the operator V is not of 
Volterra type. 

Remark. If A(t)  > 0, which is a natural assumption, then condition (4) will be 
always verified if we restrict the interval [0, T] to a sufficiently small interval 
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[0, 6] C [0, T]. In other words, if we drop condition (4) from the statement of 

Theorem 1, then the remaining conditions assure the local existence of a solution. 

Furthermore, this local solution can be extended to a larger interval [0, 6x] D 

[0, 6], by using the same kind of argument. In a very standard way, the process 

of extension can be continued until a maximal interval of existence is obtained 

(see [6]). 

C o r o l l a r y  It is relatively easy to apply Theorem 1 to the special case of linear 
integral equations in H: 

~(t) = hit) + kit, s)~i~)e~, t e [0,73. (6) 

In (6), h e L~([0, T], H) while k(t, s) stands for a family 4 bounded linear 
operators on It,  0 < x < t < T, such that 

f f  dt to' Itk(t's)tl    < (7) 

Of course, the measurability (Bochner) of the map (t, s) ---+ kit , s) E L(H, H), is 
assumed. 

It can be easily seen that  the operator 

(vx) (0  = h(t) + k(t,.)~:(s)es (8) 

is weakly continuous on L2([0, T], H), under assumption (7). 

In order to get the existence for (6) in L2([0, T], H), it suffices to construct 

the functions Air ) and B(t) which appear in condition 3) of Theorem 1. This 

construction has been carried out in [3] (see also [6]), when we dealt with the 

finite-dimensionM case. There are no differences at all when passing from / ~  

to a IIilbert space H. However, the discussion in [6] is conducted in a slightly 

more general situation, when L~([0, T], H) is substituted by L~oc([0 , T], H), with 
T = +c~ a possible choice. 

Another example of a classical integral equation for which existence can be 
obtained by applying Theorem 1 is the Volterra-Hammerstein equation 

~(t) = hit) + k(t ,~)~(s,~(s))ds,  (VH)  

in which h and k are as in the above Corollary, while g is a weakly continuous 

map on L2i[0,T], H), satisfying an estimate of the form ]g(t, x)l _< ko(t, ~)lxl, 

with ko( t, s)like kit , s). 
If instead of equation (1) we consider the functional differential equation 

~(t) = (Vx) ( t ) ,  t e [0, TI, (9) 

x(0) = x ° e H, (10) 
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then we can reduce (by integrating both sides of (9) and taking (10) into account) 

this problem to the case dealt with in Theorem 1 above. Indeed, the right hand 

side of 

// x( t )  = x ° + (V l(s)ds (11) 

still represents an operator of Volterra type on L~([0, 71], H), if V has this prop- 

erty. 

Instead of proceeding to a direct application of Theorem 1 to the equation 
(11), we shall pursue a different approach, also based on the Tychonoff fixed 

point theorem. 

We will assume that the oprator V in (9) can be represented in the form 

V = L + N, in which L is linear, and N is, in general, a nonlinear operator. 

Hence, the equation (9) will become 

it(t) = (Lx)( t )  + (Nx) ( t ) ,  (12) 

where L is a linear Volterra operator acting on the space L2([0,T],H). It is 

natural to assume the continuity of L on the space L2([0, T], H). Of course, the 
case when L is unbounded is also of interest, mainly in regard to applications 
to integrodifferential equations with partial derivatives. This case will be dealt 

with in subsequent papers. 
Let us point out that equation (12), which appears as a perturbation of the 

linear equation 

i:(t) = (Lx)( t )  + f ( t ) ,  (13) 

has been recently investigated in our paper [7], in which only the finite- 

dimensional case and, therefore, strong topologies have been considered. 

L e m m a  Consider equation (13), with the initial condition (10), and assume 

that 

L :  L2([0, T], H) ---* L2([0, T], H), (14) 

is a continuous linear operator of Volterra type, while 

f E L2([0, T], H). (15) 

Then there exists a unique absolutely continuous solution of the problem (13), 

(10), defined on the interval [0, T]. The following estimate is valid: 

Ix(t)lL~ ~ K(lx°l + IflL~), (16) 

where K > 0 is a constant depending only of the operator L. 

Proof.  The problem (13), (10) is equivalent to the functional-integral equation 

J0' Jo' = + f ( s ) d .  + (17) 
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which can be treated by the method of successive approximations. The details 

can be found in [6], where the case H = R '~ is dealt with. However, no significant 

changes are required when passing from R n to H. 

After having the existence and uniqueness of a solution to (13), (10), in order 

to obtain the inequality (16) we can proceed as follows. We notice first that  (17) 
and (a + b + e) 2 < 3(a 2 + b 2 + c 2) imply 

ff fo' Ix(t)l  = _< 31x°l 2 + 3T If(t)ledt + 3T I(Lx)(s)12ds (18) 

for 0 < t < T. Using the continuity of the operator L on L~([0, T], H),  we can 

write for some constant M > 0 

~ t i(Lx)(s)l~ds < M ~o' lx(s)12ds, 

which taken into (18), and applying the Gronwall's integral inequality leads to 

(16). Obviously, we first get an estimate for Ix(t)lc, but we have 

I~IL~ < V~I~fc, 

and this ends the proof of the Lemma. D 

We shall use now the Lemma and the Tychonoff (actually, Sehauder's fixed 

point theorem for the weak topology, which is a particular case of the general 

Tychonoff result for locally convex spaces), in order to obtain existence for the 

equation (12), under initial conditions (10). 

T h e o r e m  2. Assume the following conditions are satisfied for equation (1£): 

1) L is as described in the Lemma; 

2) N is a weakly continuous operator on L2([0, T], H), taking bounded sets 

into bounded sets, and such that 

verifies 

¢(r) = sup{lNXlL~; I~IL2 _< r)  (19) 

limsup ¢(r) < K- ' .  (20) 
r - - *  oo  r 

Then there exists a solution x(t)  of the problem (12), (10), defined on [O,T] and 

absolutely continuous. This solution verifies the estimate IZIL= < r, where r > 0 

is the smallest solution of the equation K(I~°I + ¢(r))  = r. 

Proof.  Let r > 0 be as described above. Such a number does exist because of 

the assumption (20). We shall apply the fixed point theorem to the operator V, 

u ---* x = Vu, where 

k(t) = ( Lz)( t )  + ( Nu)( t )  (21) 

a.e. on [0, r], under initial condition (10), with u E Br = { x : x  E L2([0, T], H), 

IxlL~ < r}. 
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One needs to prove that  the operator V is weakly continuous on L2([0, T], H),  

and takes bounded sets of L2([0, T], H) into bounded sets. Of course, we keep in 

mind here that  bounded sets into a Hilbert space are weakly compact (relatively). 

Since V is the product of the operator N by the operator f --* z from the 

Lemma, and N is by hypothesis weakly compact, it suffices to show that  f ~ x 

is continuous. But inequality (16) shows even more than that,  namely, that  

(z °, f )  --* x is continuous from H x L 2 into L =. A fortiori, f ~ x, is continuous 

from L ~ into itself. The linearity of f --* x proves that this operator is also 

weakly continuous. Hence, the operator V is weakly continuous. It is almost 

obvious that  V takes bounded sets of L2([0, T], H) into bounded sets. 

The only property to be checked, before we apply the fixed point theorem is 
the inclusion 

c (22) 
for the particular r precised at the beginning of the proof. This is obvious if we 

take into account condition (20). 

To summarize, the operator V defined above is continuous and compact in 

the weak topology of L2([0,T],H), taking a closed convex set (i.e., B,)  into 

itself. This suffice to conclude, on behalf of the Tychonoff theorem, the existence 

of a fixed point in B, .  

This ends the proof of Theorem 2. [] 

Applications of Theorem 2 to equations of the form 

it(t) = ~ A j x ( t  - t j )  + B ( s ) z ( t  - s )ds  + f ( t ;  x),  
j=0 

with tj > 0 and ~ Ilajll < co, IIBII ~ LI(R+), can be easily obtained following 
j=0 

the pattern in [6, Ch. VI]. 
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1 I n t r o d u c t i o n  

Mathematical  descriptions of the dynamics of structured populations take vari- 

ous forms. In many cases, most notably in linear age-dependent population dy- 

namics, integral equations form a natural modelling tool. For an age structured 

population in a constant environment it is possible to derive a renewal equation 

(Lotka's equation) for the birth rate of the population from first principles. 

An other approach to structured population dynamics is to start  by writing 

down a population balance equation. This equation takes the form of a first 

order hyperbolic partial differential equation describing the continuous change 

of individual state as well as death. The birth process is described by a boundary 

condition supplementing the pde. 

In the case of linear age-dependent population dynamics the two approaches 

described above are equivalent. Integrating the population balance equation 

(McKendrick's equation) along characteristics one obtains the age distribution 

of the population in terms of the birth rate. Substituting this into the boundary 

condition one obtains Lotka's renewal equation. On the other hand, once Lotka's 

equation has been solved, one can easily write down an explicit expression for 

the age distribution. 

The purpose of this paper is to show that  the equivalence of the renewal equa- 

tion and pde approaches is not confined to age structured populations but  has 

a much wider generality. A general structured population problem can usually 

be formulated as an abstract Cauchy problem in M(/2), the space of all Borel 

measures on the individual state space ~2 (see [7]). In the linear case this Cauchy 

problem generates a w*-semigroup on M(~2) (see [2, 5]). We show that  a cer- 

tain family of operators associated with the corresponding integrated semigroup 

satisfies a renewal equation on M(~2) and conversely that the solution to this 
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renewal equation uniquely determines the semigroup. All our results will be for- 

mulated in a general setting without any reference to population dynamics, but 

they will be illustrated by applications to age dependent population dynamics. 

In section 2 we recall some facts from perturbation theory of dual semigroups 

as developed in [2-5] and we recall how this theory is related to Cauchy problems 

on dual Banach spaces. In section 3 we show how the perturbation problem gives 

rise to a renewal equation, the solutions of which can be used to define the solu- 

tion semigroup of the problem. Finally in section 4 we take an abstract renewal 

equation as the starting point and we give conditions for when the solutions of 

this equation determine a semigroup on the dual Banach space. To achieve this 

goal which eventually yields the equivalence between the perturbation problem 

and renewal equation we introduce a new concept, that of a "multiplied inte- 

gral of a semigroup". The relationship between this new notion and some more 

established ones like "integrated semigroup" is investigated. 

2 P e r t u r b a t i o n  t h e o r y  f o r  d u a l  s e m i g r o u p s  

Let X be a Banach space. Recall that  a w*-semigroup on X* is a family 

T × = {T×(t)}t>0 of bounded linear operators on X*, which in addition to 

the semigroup properties T × (0) = I ,  T × (t + s) = T x (t)T × (s), satisfies the con- 

tinuity condition that  t ---* ( x , T × ( t ) z  *) is continuous for any x E X,x* E X*. 

The w*-generator A × of T x is defined by 

AXx  * = weak* - lim l [ T x  (h)x* - x*] 
h,o h 

the domain D(A x) being defined as the set of all x* E X* for which the above 

limit exists. In general there is not a unique correspondence between semigroup 

and generator (see [6] where properties (i) and (ii) of Theorem 2.1 below are 

motivated). 

Let To = {To(t)}t>o be a strongly continuous semigroup of linear operators 

on X with infinitesimal generator A0. Then T~ = {T~(t)}t>o is a w*-semigroup 

on X* with w*-generator A t. Define X ° :  = D(A~). Then To ° ,  the restriction of 

T~ to X e,  is a strongly continuous semigroup whose generator A0 O is the part 

of A t in Z ° ,  that  is m0°x 0 = A*o z ° ,  D(A°o) = {z @ • D(A~) :A;x  ® • X ° } .  

Let C be a bounded linear operator from X 0 into X*. The basic perturbation 
result is given by the following theorem. 

T h e o r e m  2.1 Let A×:= A t + C , D ( A  ×) = D(A~). Then A × generales a w*- 
semigroup T x = {T x (t)}t>0 on X* with the properties 

(i) x* E D ( A  x) and AXx * = y *  

if  and only if 

-~(x,d T×( t ) x . )  = ( x ,TX( t ) y* )Vx  E X,  Vt > 0 

(ii) For all x* E X* and all t >_ O 
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/ /' *T×(r )x*dr  e D(A ×) and A × T×(v)~*dr  = T×( t )x"  - x*. 

Note that  the integral in (ii) is defined as a weak*-integral, i.e. 

' Z '  ( 
(x, TX (r)x * d r ) : =  x,T×(l")x*)dr. 

Theorem 2.1 can be proved in several different ways. In [6] we used a general 

Hille-Yosida type characterization of w*-generators of w*-semigroups. A perhaps 

more appealing approach is to first construct a strongly continuous semigroup 

T ° = {T ° (t)}t>0 on the smaller space X o by the variation of constants formula 

Z 
t 

T e ( t ) x  0 = To°(t)x 0 + T~(t - r ) C T ° ( v ) x ° d r ,  x 0 E X e,  (1) 

and then extend T ° to all of X*. That  the variation of constants formula (1) 

indeed defines a strongly continuous semigroup T ° on X O was proved in [2]. The 

extension of T ° to X* can be performed in two different ways, either through 

the intertwining formula 

T× (t): = (AI - A × ) T ° ( t ) ( A I  - A×) -1, (2) 

or by duality. In the latter case one obtains, after taking adjoints of T ° ( t ) ,  a 

w*-semigroup T °* on X O* and after restricting to the space X ° ° : =  D(A  °*) 
of strong continuity, a strongly continuous semigroup T ° o  on X OO. There is a 

duality pairing [, ] between X oo  and X* and hence T × (t) can be defined on 

X* by 

[x OO, T × (t)x*] - -  [T°O (t)x OO , x ' ]  (3) 

for all x OO E X °O (in particular all x OO E X) ,x*  E X*. The details and 

equivalence of these approaches are explained in [5]. 

Observe that  a variation of constants formula like (1) is not possible for T × 

since the perturbation C is defined on X ° only. (A more involved variant which 

also holds for T x on X* is derived in [8]). However, we will be able to write down 

a renewM equation for an associated family of operators on X* from which the 

semigroup T x can be recovered. This leads to yet another method of defining 

the solution semigroup on all of X*. 

We close this section by illustrating the abstract setting with an example 

from population dynamics. 

The classical age-dependent population problem is usually formulated in the 

population state space LI[0, oo) by the McKendrick equation supplemented by 

boundary and initial conditions 
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On On 
4 - 

Ot Oa 

n(t ,  O) = f l (a)n( t ,  a)da, (4) 

n(O, a) = ¢(a) .  

Here the age-specific fertility function fl is assumed to belong to L¢¢[0, oo). The 
problem (4) can be put in the abstract framework by considering the birth 

process as a perturbation of the process of aging and dying. On the predual 

space X = C0[0, c¢) the unperturbed semigroup, i.e, the solution semigroup for 

the problem with fl = 0, is given by 

_ ~-a+t 
[To(t)f](a) = e J.  IJ(a)da f ( a  "4- t). (5) 

The population state space is X* = M[0, oo). T~ is strongly continuous on 

X ° = D(A~) ,  the subspace of absolutely continuous (with respect to Lebesque 
measure) measures on [0, c¢). X ° can of course be identified with L 1 [0, ~ )  

by the Radon-Nikodym theorem, thus yielding the classical state space. The 
birth process is described by the bounded perturbation C :X  ° ~ X*, where 
C: L 1 [0, cx~) ~ M[0, ¢x~) is defined by 

/5 CO = </3, ¢)6 = f l (a)¢(a)da 6, (6) 

where 6 is the Dirac measure concentrated at the origin. Thus the problem can 

be abstractly reformulated as the Cauchy problem 

dn 
d--[ = (A t  + C)n ,  (7) 

n(O) = no 

on X* = M[O, co). If no E L1[0, c¢) then the variation of constants formula (1) 
yields the usual mild solution in L 1 [0, cx~). 

3 T h e  r e n e w a l  e q u a t i o n  

In the last section we showed how the classical McKendrick formulation of age 

dependent population dynamics could be viewed as an abstract perturbation 

problem on a dual Banach space. In order to motivate the subsequent derivation 

of a renewal equation associated with the perturbation problem, we start by 

considering the same example again. 

Let the semigroup To on X = C0[0, oo) be given by (5) and let the perturba- 

tion C be given by (6). Applying the linear functional induced by fl E L ~ [0, c¢) 
to both sides of the variation of constants formula (1) one obtains the equation 

~0 t b(t) = b0(t) + (Z, TG(t - r ) 6  (8) 
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where 

and 
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b(t): : (fl, T®(t)x®), (9) 

b0( t ) :=  (Z, To°(t)=®). (10) 

The function b(t) may be interpreted as the instantaneous birth rate of the pop- 

ulation and bo(t) as the instantaneous birth rate of offspring of parents present 
in the initial population. We want to transform equation (8) into a renewal 

equation. To this end we note that  the function K defined by 

K ( t ) : =  ( /3,  T~)(v)Sdr) (11) 

is locally Lipschitz continuous and therefore is differentiable almost everywhere, 

the derivative k belonging to L~oc[0,oo): 

K(t) = k(r)dv. (12) 

It is now easily seen (for details, see [3]) that b satisfies the renewal equation 

b(t) = b0(t) + k(t - r)b(,-)~T. (13) 

Equation (13) is nothing but Lotka's integral equation. Once b is solved from 

(13), the solution is obtained on X ® = LI[0, co) by the explicit formula 

/0' T°(t)~ ° = r0°( t)~ ° + TG(t - r ) ~  ~( , )e r .  (14) 

As a matter  of fact we obtain the solution on all of X* = M[O, oo), not in terms 

of the instantaneous birth rate, but in terms of the cumulative number of births. 

Exactly as in the case of K above, we see that  

B0(t): = (/3, ~ '  T~(v)x* dr) (15) 

defines a locally Lipschitz continuous function B0. Therefore the renewal equa- 
tion 

i' B(t )  = Bo(t)  + I ( ( t  - ~ ) d B ( , )  (16) 

has a unique solution B, which is again locally Lipschitz continuous. It follows 

that  B has a derivative b E Lto~[O, e~) almost everywhere: 

/0' B(t )  = b(,-)e,-. (1~) 
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If x* = x O E X O, then b is of course the continuous function defined by (9). It 

follows that  B(t) is the cumulative number of births in the time interval [0, t]. 

We have the following explicit representation of the perturbed sernigroup T x on 

X*: 

TX(Ox" = T~(t)x* + TG(t - ,-)6dS(r).  (lS) 

The crucial "trick" in the derivation above was integration with respect to time. 

We will now extend this idea to the general theory. It will therefore come as no 

surprise that integrated semigroups will play a key role. 

If one integrates the variation of constants formula (1) from 0 to t one obtains 

fotT°(r)xedr = ~o~Toe(r)xedv 

+/ 'T~(t-u)Cfo '~Te(r)xedvdu.  (19) 

Applying the operator C: X e --* X* to both sides of equation (19) one obtains 

C fo'Te(r)xedr = C fo'Toe(r)zedr 

(20) 

Observe that  since fo T~ (r)x* dr  • X O and fJ T × (r)x* dr • X e for all x* • X*, 
all terms in equations (19) and (20) still make sense if x e • X e is replaced by 

x* • X*, To O by T~ and T e by T ×. Introducing the integrated semigroups 

S~(t) : T~ (r)dr,  (21) 

£ s×(o = T×(r)dr, (22) 

mapping X* into X e and the operators 

Vo(t) = CS~(t), (23) 

V(t) = CS × (t), (24) 

mapping X e into X* and integrating by parts we arrive at the representation 

/' 
s × ( o  = N ( t )  + s~(t  - r )dU(r)  (25) 

of S x (t), where V(t) is the solution of the abstract renewal equation 
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v ( 0  = v0(0 + u0(t - , -)dV(,-) .  (26) 

Once S × (Q has been obtained from (26) one gets the semigroup T × (t) by dif- 
ferentiation with respect to the weak*-topology: 

d* f0 t T × ( 0 ~  • = ~ S × ( t ) ~  • = Tg(t)~" + T~(t - ,-)d[V(r)~*]. (27) 

The Stieltjes integrals in equations (25) and (26) are in the operator norm, 
whereas the Stieltjes integral in (27) must be interpreted in the weak *-sense. 

In [8] we show how the formal manipulations above can be made rigorous. 
There we develop a convolution calculus on a Fr~chet algebra of Lipschitz contin- 

uous operators. Resolvent theory (see [9]) then implies that the renewal equation 
(26) has a unique solution in this algebra and that it is given by the generation 
expansion 

v(t) = ~ v~*(t), (2s) 
n~O 

where the terms in the series are powers with respect to the Stieltjes convolution 

(tr , y ) ( o  = v ( t  - ~ )ey (~ ) .  (29) 

It follows that the integrated semigroup S×(t)  and the semigroup T×(t) also 
have representations in terms of generation expansions: 

where 

and 

where 

oo 

s ~ (t) = ~ s .  ~ (t), (30) 
n----0 

~0 t S~+l(t  ) = S ~ ( t  - r)dV0(r), (31) 

T × (t) - ~ T ff (t), (32) 

n----0 

T~X+l(t)x* = Tn x (t - r)d[Vo (r)x*], x* • X*. (33) 

Finally we note that (the integrated version of) Lotka's integral equation (16) is 
a special case of the abstract renewal equation (26). In age dependent population 
dynamics the perturbation C is a rank one operator and hence so are Vo(t) and 

V(t) .  Equation (16) i simply the scalar component of (26), with Vo(t) = Bo(t)6 
and Y( t )  = B( t )& 
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4 Multiplied integrals of semigroups 

The main result of  the last section was tha t  if the per turbat ion C: X ° --* X* 

is given, then the per turbed semigroup TX(t)  on X* is obtained in terms of 

solutions of  an associated renewal equation on B ( X * ) ,  the space of bounded 

linear operators  on X*. In the McKendrick model of age dependent population 

dynamics it was clear how to define C, but this is not longer true in more general 

models of s tructured populations. If  for instance the individual s tate space Y2 is 

multidimensional (a subset of R '~ with n > 2), then there is no reasonable rep- 

resentation of X ° as a space of functions or measures, and hence it is not clear 

where exactly the instantaneous birth rate operator C should be defined. In some 

concrete models it is not even clear from biological arguments how to define C, 

see e.g. [12]. However, it is usually possible to define directly the cumulative birth 

function of a given populat ion in M(f2) .  In the case of multidimensional indi- 

vidual s tate space this is not a scalar, but  a measure-valued function. Moreover, 

cumulative births, not rates, are what  one can actually measure. 

We are thus led to the following converse problem : Given a w*-semigroup 

T~ on X* and a family {Vo(t)}t>_o of locally Lipschitz continuous operators  in 

13(X*), under what conditions does the formula 

T X ( t ) x  * = T~( t ) z*  + T~;(t - r )d[V(r)x*] ,  (34) 

where V is the solution of the renewal equation 

I' y ( t )  = g o ( t )  + - , - ) e y ( , - ) ,  (35) 

define a w*-semigroup T × on X*? Does there exist a bounded linear operator  

C: X ° ---, X* such that  V( t )  = C S  x (t), where S x (t) = f~ T × ( r )dr?  The rest of 

this section is concerned with these and related questions. We star t  with some 

definitions. 

D e f i n i t i o n  4.1 (see [6]) A w*-semigroup T x on X* is called an integral w*- 
scmigroup if  

I' f TX(t) rx(t+r) *er (38) 
3 

for all x* E X* and all s, t >_ O. 

D e f i n i t i o n  4.2 (see [1, 10, 11, 13]) A family S = {S(t))t>.o of bounded linear 

operators on a Banach space is called an in~!egvated semigroup if 

S(0) = 0 (37) 

t ~ S ( t ) i s  strongly continuous (38) 
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S(s )S ( t )  = [S(t + 7-) - S(7-)1d7-, s, t > O. (39) 

It is clear from the above definitions that  T × is an integral w*-semigroup if and 

only if S x defined by Sx(t) :  = f~ T X ( r ) d r  is an integrated semigroup. 

Def in i t ion  4.3 Let T × be an integral w*-semigroup on X* and let S × be the 

corresponding integrated semigroup. A family V = {V(t)}t>0 of bounded linear 

operators on X* is called a multiplied integral of T x if it satisfies the following 

conditions 

V(0) = 0 (40) 

t ~ V(t)  is locally Lipschitz continuous 

with respect to the operator norm 

v ( s ) s  × ( t )  = [v (7 -  + s )  - V(7-)]dT-, t, ~ >__ o. 

(41) 

(42) 

R e m a r k  4.4 Formal differentiation of (42) with respect to t yields 

V(t  + s) = V(t)  + V ( s ) T  x (t). (43) 

In the context of population dynamics condition (43) has a clear biological inter- 

pretation. V(t)  then stands for cumulative births. Let x* be the initial population 

state. In the time interval [0,t] there are V(t)x* births while the population itself 

evolves to T × (t)z*. In the time interval It, t +  s] there are therefore Y ( s ) T  x (t)x* 

births. This should equal V(t  + s)z*, that  is, equation (43) should hold. 

Note that  (42) is equivalent to 

V(s)S×(t) = [ v ( t  + r)  - V ( r ) l  dT-, 

which shows that  the integrated semigroup corresponding to an integral w*- 

semigroup is also a multiplied integral of that semigroup. 

The terminology "multiplied integral of T x " introduced in Definition 4.3 is 

justified by the following proposition. 

P r o p o s i t i o n  4.5 Let T x be an integral w*-semigroup with w*-generator A × on 

the Banach space X*.  Let X O = D(A ×) and let C be a bounded linear operator 

from X ° into X*.  Then 

V ( t )  = C S  × ( t ) ,  t > 0 (44) 
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defines a multiplied integral of T x. Conversely, i f  V i s a  multiplied integral of 
T ×, then there exists a unique bounded linear operator C : X  ° ~ X* such that 
(44) holds. One has 

Cz ° = lim 1 V ( t ) z o  (45) 
qo t 

for all z ° E X ° .  

Proof. Let V be defined by (44). Then it is obvious that  V satisfies (40) and 

(41). Also, 

/o' ]o' [V(r + s) - V ( r ) l d r  = C[S x (7- + s) - S × (r)]dr 

Z' 
= c [ s  × (,- + . )  - s x (,-)]d,- 

= C S  × ( s i s  × (t)  

= V ( s ) S × ( t ) ,  

that  is, (42) holds. 

Conversely, let V satisfy (40) - (42). Let z* E X*,  h > 0. Then 

1 1 f0 t -~ V ( h ) S  x (t)z* = ~ [V(v + h)x* - V(r)x*]dr (46) 

--* V(t)x* ash I O. 

In fact, ~ Y ( h ) S × ( t )  ---+ Y( t )  in the operator norm as h I 0. Since x O = 

limb10 f :  T×(r) -~x°dr ,  x ° e X O, the set of elements of the form S×(t)x * is 

dense in X ° .  Since moreover ~ ]] V(h)  ]l< L < ~x~, 0 < h < 1, it follows that  
the limit in (45) exists for all z ® E X ° and defines a bounded linear operator 

C: X o ---* X*. It follows from (46) that  (44) holds. Uniqueness is clear. 

R e m a r k  4.6 The limit in (45) agrees with the notion of instantaneous birth 

rate as the derivative of cumulative number of births. 

We now turn our attention to the main question of this section. Let To = 

{To(t))t>o be a strongly continuous semigroup on X and let V0 be a multiplied 

integral of T~. Let S~ (t): = fd T~(v)dv, t > O. Let Y( t )  be the unique solution of 

the renewal equation 

v ( t )  = Vo(t)  + Vo(t - ,-)dV(~-),  (47)  

or equivalently, 

~0 t v ( t )  = Vo(t)  + v ( t  - r)dVo(r), (4S) 
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and let S × (t) be defined by 

s x ( t )  = N ( t )  + s~(t  - r )dV( r ) .  (49) 

Then S × (t) is the unique solution of the equation 

s×( t )  = s~( t )  + s × ( t -  ,-)dVo(T) (5O) 

(for details, see [8]). It follows from (50) that  the mapping t ~ SX(t)x * is 

differentiable in the weak*-sense. So we can define 

T×(t)x*:  = d*s× t z* = Tg(t)x* + Tg(t - r)d[V(r)x*] (51) 
dt 

for x* E X* and t > 0. It is obvious that 

Z' 
s ×(t)~* = T ×(,-)x-e,-.  (52) 

P r o p o s i t i o n  4.6 Let C: X ° --~ X* be the unique bounded linear operator satis- 

fying Vo(t) = C S j ( t ) , t  > O. Then Y( t )  = CS×( t ) , t  > O. 

Proof. By (47) and (49) we have 

c s  X (t) = c s ~ ( t )  + c s~(t  - r )eu( , - )  

= Uo(t) + Vo(t - , - )dY(r)  

= v ( t ) .  

Proposition 4.6 shows that  we are exactly in the situation described in section 

3 and rigorously treated in [8]. However, the point of this section consists in 

deriving the main result - -  that  V is a multiplied integral of the integral w*- 

semigroup T × - -  without any reference to the operator C. 

T h e o r e m  4 . 7  T × is an integral w* -semigroup and V is a multiplied integral 

o f T  x. 

Proof. Since T × and S x are related by (52) we have to show that  S × is an 

integrated semigroup. It follows then immediately that  T x is an integral w*- 

semigroup. To this end, note that  it follows from (50) that  
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and hence that  

s " ( t  + r )  - s " ( r )  = s ; ( t  + r )  - s ; ( r )  

t + r  

+ S x (t + r - a)dVo(o') 
, I0  

- s × ( r -  ~)ev0(~)  

f0 " IS× (t + r)  - (r)]dr  (53) S × 

= [ N ( t  + r) - N ( r ) ] d r  

~a /r+t 
+ S × (t + r - ~)dVo(~r) dr  

J ' r  

/o'/o" + IS  × (t  + r - ~1 - s × ( r  - ~ ) ] d V 0 ( ~ l d r  

Since S~ is an integrated semigroup the first term on the right hand side 

of (53) is of course equal to S~( t )S~(s ) .  Using the fact that  V0 is a multiplied 

integral of T~, one finds that  the second term to the right of (53) equals 

~ "  ~ t S × ( t -  ~)do[Vo(~ + r )]dr  

Z'Z' 
= S × (t - a)da [Vo(tr + r) - Vo(r)]dr 

Jo' Jo" = S X ( t - t r ) d , , [  { V o ( o ' + r ) - V o ( r ) } d r ]  

= S×( t  - o)d, ,[Vo(o)S~(S)],  

while the third term can be written as 

(The subscript ~r in da indicates the integration variable). Defining 

£ u , ( s ) : -  [ s × ( r + t ) - s × ( r ) l e r  

it follows from (53) that  

u , ( . )  = s ; ( t ) N ( s )  + s×( t -  ~)do[Vo(,~)S~(.)] (54) 

I" + U,(s  - tr)dVo(o'), 
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or, by (50), 

Ut(s) = S×( t )S~( s )  + U,(s - a)dVo(a).  (55) 

But (47) and (48) show that  V is the resolvent kernel of V0 and hence Ut, as the 

solution of (55), has the representation 

Ut(s) = Sx ( t )S ; ( s )  + SX(t)S~(s - ¢ )dV(a )  (56) 

= s × ( 0 [ N ( . )  + s ; ( s  - 

= S x ( 0 S  × ( s ) ,  

which shows that  S × is an integrated semigroup. 

It remains to be shown that  V is a multiplied integral of T × . Tha t  (40) 

and (41) hold is obvious. The proof that  V and S × satisfy (42) is completely 

analogous with the proof that S × is an integrated semigroup. Again using the 

fact that  V0, S~ satisfy (42) one derives an equation similar to (55) for U,(t): = 

f~ [V(r + s ) - V ( r ) ] d r ,  after which the resolvent representation yields the desired 

result. 
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1 I n t r o d u c t i o n  

In this paper we are concerned with a priori bounds for globally defined solutions 

to a class of weakly coupled semilinear parabolic equations which may include 

spatio-temporal inhomogeneity. Specifically we consider an m-component system 

of the form: 

Oui/Ot = £i (x , t )u i  + f i ( x , t , u )  = V"  (ai(x,t)  V ui) + f i ( x , t , u )  (1.1a) 

x E l 2 ,  t > O ,  i = 1  to m, 

u i ( x , t ) = 0  xE0Y2,  t > 0 ,  i = l  to m (lAb) 

ui(a:,O) = Uo,(x) x e ~2, i =  1 to m, (1.1c) 

where Y2 is a bounded domain in R"  whose boundary is an (n - 1) dimensional 

C 2+a manifold for some c~ E (0, 1) such that  Y2 lies locally on one side of 0/'2. 

The closure of Y2 and the Lebesgue measure of f2 shall be given by /2 and 1£21 

respectively. We let R ~  denote the positive orthant of R m, i.e., R ~  = {u E 

R lui > 0}. 
To put things in perspective we consider a biological model investigated in 

[19] and [20]. The system was developed to portray the interaction of oxygen O2, 

carbon dioxide C02 and hemoglobin Hb as blood travels through a pulmonary 

capillary. The relevant reaction scheme is: 

Hb + 02 c , Hb02 Hb + C02 ( ~ HbC02 

If we add diffusion to the associated kinetics we obtain the following semilinear 

parabolic system for all x E $2, t >_ 0: 

OUl/C~t - -  ~ "  (GI (X, t )  ~ ~1) = k2~t2 - ~1'N1~5 (1.2a) 
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O u 2 1 0 t  - -  ~ .  (a2(~, t) V u2) : --k2u2 -t- klUlU5 (1.2b) 

OqU2/0t -- ~7" (a3(x, t) ~7 U3) "- k4U4 -- k3u3u5 (1.2c) 

Ou2/Ot - ~7" (a4(z,  t) ~7 u4) = - k 4 u 4  "Jr k3u3u5 (1.2d) 

0 , 2 / 0 t  - v .  ( ah (~ , t )  v us)  = k~u2 + k , u ,  - kxu,u~  - k3u3u5 (1.2~) 

where ~ is bounded domain with sufficiently smooth boundary. We impose ho- 

mogeneous Dirichlet boundary conditions ui(z, t) = 0, i = 1 to 5 on 012. If the 

initial date is nonnegative straightforward maximum principle arguments imply 

that the solutions remain nonnegative. If we set 

5 

H(u) = ~_hi(ul) = ul q-2u2 + uz q- 2u4 q-uh, 
i=1 

we may multiply the/- th  component by h~(ul), integrate in space time and sum 

the result to produce the formal a priori L1 estimate 

f T/nH(u)d~:dt<_{/nH(u,(z,O)dx}(T-r ) (1.3) 

for 0 <  r < T .  

The question becomes that of bootstrapping the L1 estimate 1.3 (or more gen- 

erally a Lp estimate for (1.1a-c)) to Loo estimate. We shall exploit the existence 

of a separable convex function to guarantee the existence of uniform bounds for 

globally defined solutions. Here, we are extending recent work of Morgan [14]. 

We do not address the question of existence of solutions for all time. Criteria 

which guarantee this existence for (1.1) (including 1.3) are provided in [6]. 

We point out that for reasons of simplicity we have chosen not to include 

transport terms in our differential operators. Such terms will be treated within 

a more general context by the authors in forthcoming work [7]. 

2 P r e l i m i n a r y  e s t i m a t e s  

We shall assume that the reader is familiar with standard Sobolev spaces. We 

use Q(1-, T) for the space time cylinder I2 × (v, T). If p E [1, c¢] we introduce 

W~J(Q(r, T)) as the Banach space of functions ~o e Lp(Q(r, T)) having gen- 

eralized derivatives of the form O~/c3t, O~o/Oxi and c92~o/OzjOxk as elements of 

Lp(Q(r, T)). The norm for W~J(Q(r, T)) is given by 

(2) 
II w ~, q(~, T> =11 W 11~, Q(~, r~ + I1 9, I1~,~(,, r~ + II O~W II~,q(~, T> (2.1) 

+ II D2W II~,Q¢~, r~. 

We place the following conditions on our initial data, coefficients and non- 

linearities. 

u "~ +) n co(~, R~) C1 uo = ( o,)~=1 ~ C2( t~, R"~ 
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C2 f = (fi())~'=1 : 1"2 x [0, c¢)x R~ ~ R "  is locally Lipschitz in each variable. 

C3 a = (ai())~=1 e C2'1('~ × [0, c¢), R~)  and there exists e > 0 so that  for 

i = 1 to m and all z, t • E2 x [0, c¢), ai(z, t) > e. 

C4 There exists M > 0 so that  sup {ai , (x , t ) ,  IOtai(z,t)l, la~(x,t):jl} < M. 

C5 For e a c h i =  l t o m ,  z • 1 2 ,  t > O ,  v • R  m f i ( x , t , v ) > O w h e n e v e r v i = O .  

We remark that it is possible to consider more general cases of elliptic op- 

erators; however, we restrict ourselves to the present case to avoid additional 

notational and technical difficulties. The extension of our theory to boundary 

conditions of Robin or Neumann type is more difficult and it will be the subject 

of future work. 

We shall need the concept of strong Lv solutions for parabolic equations. By 

a strong Lp solution to a parabolic equation of the form, 

Ov/Ot = £ (~ , t ) v  + f ( t ,  x), ~ • ~ (2.3a) 

v = 0 ,  z • 0 ~ 2  (2.3b) 

0) = • • a (m3c) 

on ~ x [0, T) we shall mean a function v • W~,I(Q(O,T))  which satisfies the 

boundary conditions, the initial condition and satisfies the differential equation 

a.e. We shall now produce several estimates for parabolic equations and results 

from semigroup theory which will serve to develop our analysis of the relevant 

adjoint equations. 

We shall consider equations of the form 

O~olOt - V "  (d(x, t) V 9) + ~o = 0 

t )  = o 

= 0 

x EY2, r < t  < T  (2.4a) 

x E 0Y2, v < t < T (2.4b) 

~: • I2 (2.4c) 

where 0 E Lv(Q(v, T)),O >_ O, and ]] 0 ]]p,Q(T,T)= 1. The diffusivities satisfy 

conditions Ca and C5. 

L e m m a  2.5 / f p  E (1, c¢), and 0 E Lp(Q(r, T) )  there exists a unique strong Lv 
solution to (2.4 a -  c) such that: 

( i )  

(ii) 

~ > 0 .  

There exists Cp > 0 such that I] ~o p.~(-2)~(r T)~ Cp. 
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n + 2 p(n + 2) 
(iii) I f l < p <  ~ a n d p < q <  

- - n + 2 - 2 p  
then there exists Cp such that 

m 

II ~ II~,Q¢~, T)~ cp. 

Proof. Part (i) is a maximum principle consequence. Part (ii) follows from La- 

dyzenskaja, Solonnikov and Uralceva [Theorem 9.1, 13] and Part (iii) follows 

from Ladyzenskaja, Solonnikov and Uralceva [Lemma 3.10,13] 

We shall also consider globally defined parabolic equations of the form 

O~o/Ot - d/k~ + ~ = 0 x 6 R n, v < t < T (2.6a) 

~(~,r) = 0 • • r t -  (2.6b) 

where 0 • np (R"  × (r, T)) and d > 1. For each p • ( 1 , ~ )  we define Ap on 

Lp(R")  by 
Apw = d l X w - w  (2.7a) 

with 
D(gp) = {wlw • Wp2(R")}. (2.7b) 

It is well known, cf. Pazy [16], that Ap is the infinitesimal generator of an 

analytic semigroup on Lp(R") ,  {Tp(t)lt >_ 0}. Moreover, 0 ~ ~(Ap) and there 

exists ,~o > 0 so that  

II TA t) IIp,R-~ e -~'°~ (2.8) 

Fractional powers of -Ap  exist. For 0 < 7 < 1 we define, cf [16], 

B~ = ( - A p ) ~ .  (2.9) 

Each - B p  ~ is the infinitesimal generator of an analytic semigroup on Lp(Rn). 
For ~1 > "/2 >__ 0, n(s '~ ')  C_ n(u'~:). Because D(B °) = Lp(a  n) we can define 
the graph norm on Xp-¢ = D(B~) by setting Iwlp,~ =[] B'~w Hp, R". We shall 

need the following result. 

L e m m a  2.10 Suppose {Tp(t)lt > 0) and B~ ave as above. The following are 
true: 

(i) 

(ii) 

(iii) 

Tp(t) : Lp(R") ---* D(B'~) for all t > 0. 

II B'~ Tp(t)w IIp,R-~ C-v, vt -~ II w lip, R- for some C~,p > 0 and all 

w 6 Lp(R")and t > 0. 

For all t > 0, if w e D(BT) ,  Tp(t)B'~ w = BTTp(t)w.  

(iv) If 7 > n/2p then D(B~) C_ Loo(R") and II w Iloo, R-< M~,p II B~'w lip,R- 
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for some constant M r ,p > 0 and all w e D(B~) 

(,) 
If # > n(q - p ) / 2pq  then D(B;)  C_ Lq(R n) and ][ w He,R-_< Nu,pUB;w]]p,R. 

for some constant N,,p and all w E D(B;)  

Proof. Parts (i-tit) are standard estimates from the theory of analytic semigroups, 

cf. eazy [16]. Part (iv) may be also found in eazy and the proof of (v) is contained 

in Henry [p.40,9]. 

We now return to the spatio-temporal dependent equation (2.4 a-c). 

L e m m a  2.11 Assume the hypotheses of Lemma 2.5 are satisfied. I f  ~o( ) is the 
stong Lp solution to (2.4a-c) then the following are true. 

(i) If p E (1, o¢) then [[ ~o(., T) lip, a < 

(ii) If p E (1, oo) then there exists a d > 0 and N > 0 so that 

[( ]) II ~, lip, Q(,, r)<_ N + d(p - 1) 1 - exp ( - (T  - r)  N + d(PN - 1) 

(iii)) I f  p > ~ then there exists Kp(T-,) > 0 such that 

II II ,k T)< Kp(T_,) 

Or) If  1 < p < ~ and 1 < q < ~ then there exists Kp,q,(T-.) > 0 

such that 

I1 Kp,q,(T-,). 

Proof. Let d(x , t )  be an extension of d(x,t)  to R" which preseves the positivity, 
smoothness and boundedness properties of d(x, t) and its first partials. Similarly 
let 0 be an extension of 0 which is identically zero on R n - -~. We consider the 
Cauchy initial value problem 

O~/Ot - ~7" (d(x.t)V~5) + ~5 = 0 x E R n, t E (V, T) (2.12a) 

~(x, v) = 0 x e R n (2.12b) 

Standard maximum principle arguments show that if (x, t) E Q(v, T) then 

0 _< ~o(x, t) < ~5(x, t). Powerful estimates of Aronson [2], [3] and Ladyzenskaja, 

Uralceva and Solonnikov [13] permit us to estimate the fundamental solution 

7(x, T/, t, v) associated with a~l/dt - XT" (dx7 ~1) = 0 by means of an appropriately 
chosen heat kernel. In particular there exists c > 0 and a heat kernel p(x-~ ,  t-~') 
associated with some aAu = au/at(a > 0) so that if x ¢ ~, t ¢ v 

0 < 7(x,~, t, r)  < c p ( x -  ~, t - r)  (2.13) 



Reaction Diffusion Systems 

Consequently, 

135 

0 < eCt-r)7(z, ~, t, r )  <_ c e-Ct-r)p(z - ~, t - r) (2.14) 

and 

(2.15) 
However the left hand side of (2.15) is a strong solution to 

o~/ot - v ( d r  ~) + ~ = 

~(x, r )  = 0 

while the right hand side satisfies 

O w l O t  - h A W  + w = 

w ( x ,  r )  = 0 

x e R" ,  t e i f ,  T)  

x e R'* (2.16) 

x 6 R n, t E ( r , T )  (2.17a) 

x E R n (2.17b) 

in the sense of a strong solution. Therefore 

0 _< ~p(z,t) _< ~(x , t )  < cw(x,t)  (2.18) 

for x e 12 and r < t < T. 

The estimates (i), (ii) are a straightforward adaptions of a lemma in Morgan 

[14]. In a forthcoming paper on globally defined reaction diffusion systems [7] 
the authors establish the inequality of Part  (iii) for w(¢, t); hence, by virtue of 

(2.18) the same estimates hold for ~(¢, t). To obtain Part  (iv) we write (2.17a-b) 
as abstract ordinary differential equation in Lp(Rn).  

dw/dt+Apw = 0 (2.19a) 

w(r) = 0 (2.19b) 

Solutions to (2.19 a-b) have variation of parameters representation 

f w(t) = T,(t - s) O(s)da. (2.20) 

We mention that the constant c depends on d. However the facts that d(z, t) 
is bounded above and below and satisfies a uniform Lipschitz condition in xi 

and t imply that a uniform c can be chosen for all x and t, cf [13, p360]. Our 
hypotheses imply that  there exists 0 < / t  < 1 such that p > n(q - p ) / 2 p q  and 

p p / ( p -  1) < 1. Thus from Lemma 2.10 we have 

[I ~o(.,T) IIq,a <_ N~,p II B~w(. ,T)  lip,R" 

~0 T-r < N~,,pC~,., (T - v - s)-"  ][ 0( ,  s) lip,R" ds (2.21) 
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f o T - r ( T  -- 7" -- s ) -"  I10(.,S)liP,R" [ ( T -  s)I-----'~-~ 
[ 

ds < 
- [ 1 - ~f l  

P 

(2.22) 

The argument establishing Part (ii) uses Lemma 2.10 in much the same way. We 

note that  if 2p > n + 2 then the choice q = co is admissible. 

The final next lemma which appears in Morgan [14] provides some necessary 

numerical estimates. 

L e m m a  2.23 I l l  <_ r < k andthere existsO < I ~ < 2 such lhatr+ ~n--+-~2+2 < 1+-~+ 2 

then there exist 6 > 1 and 1 < p < ~ such that 

( i )  k = np 
( .  + 2)(p - I) ~' 

k < p ( .  + 2) 

(it) k - r -  n + 2 - 2p' 

(iii) p.__p___ > n + 2 k. 
p - 1  - n + #  

Our subsequent results are predicated on the existence foa priori cylinder 

bounds. These a priori bounds are bootstrapped to higher Lp spaces by use of 

duality arguments. We now formulate the system of adjoint equations used in 
the duality argument. 

We let ~'i, i = 1 to m, be the unique strong solution to 

O ~ i / O t -  XT" (ai(x, t)  X7~i) + ~ i  = 0 

~i = 0  

~ i (x , r )  = 0 

x El2,  t E ( r ,  T) (2.24a) 

x e 012, t e (v, T) (2.24b) 

x E 12 (2.24c) 

where 0 e Lv(Q(r, T)),  0 > O, and II 0 IIp,Q(T,T)= 1. We set O(x, t) = O(x, T + 

r -  t) and ¢i (x , t )  = ¢ i ( x , T +  r -  t) on ~ × [r,T] for i = 1 to m and observe 

¢i, satisfies 

0 ¢ ~ / 0 t  = - v . ( , ,  (x , t )  ~ ¢~) + ¢~ - 

¢i(x, ) = 0  z e012, t e ( v ,  T) 

¢ i ( z ,  T)  = 0 x e t2. 

x c12, t c ( r ,T)  (2.25a) 

(2.25b) 

(2.25c) 

We hereby obtain a system formally adjoint to (2.24 a-c). The estimates of this 
section hold for !hi as well. 
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We conclude this section by detailing the hypotheses needed for the separable 

convex functional alluded to in the introduction. We assume that  there exist 

H( ) e C2(R~, I~+ ) and hi( ) • C2(R+, R+) for i = 1 to m such that:  

HI 

m 

H(v) = E h i ( v i )  for v e R 7 
i=1  

H2 H(z) = 0 if and only if z = (0, ..., 0) w. 

H3 O~H(v) is nonnegative definite for v E R~ 

We now introduce the intermediate sums condition. 

H4 There exists A = (aij) E R 'nx'~ satisfying aij > 0, aij > 0 for all 1 < i < m 

such that  for each 1 < j < m there exists r, Kt ,  K2 > 0 independent of j so 

that  
J 

y ~  ai~h~(v~)f~(x,t , v) < Kt(H(,))" + K2. 
i=1  

Finally we need, 

H5 There exist ql, Ks, K4 such that for 1 < i < m and v E / ~  

< K3(H( ))q + K 4 

Some remarks are in order. We point out that H 5 places a polynomial growth 

bound on the vector field. Moreover it will insure that  condition //4 holds for 

some exponent. However the exponent produced in this fashion is generally too 

large to be useful. Smaller exponents for / /4  are produced by careful examination 

of the additive cancellation of terms of the form h~(vi)fi(x, t, v). Morgan [15] was 

the first to recognize the importance of the role played by the intermediate sums 

condition. It is subsequently used in [14], [6], [7], [17]. 

3 Main  r e s u l t - b o u n d n e s s  and decay 

Our development continues techniques constructed by Hollis, Martin and Pierre 

[10]. The initial extension to m-components systems was done by Morgan [14]. 
We repeat for emphasis that  we are assuming the existence of globally defined so- 

lutions to (1.1a-c). The results of their section are predicated upon the following 
lemma. 

L e m m a  3.1 Suppose that C1-C6, H1-H3 and H5 hold, p > (n + 2)/2 and there 
exists T > O, a sequence {ti} and ~ E C([O,c~)) such that 
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tl  > 0 and T / 4  < ti+l - t{ < T / 2  for all i _> 1, 

H u q~ _ _ llH('Ollp,Q(~,~+r), 11( ( ) )  llp,Q(~,,+r) < ~(~-) for all ~- > 0, 

Ilhi(uj( . , td)l lv,a < ~(ti) for all i > 1, 1 < j < m. 

I f  there exists K > 0 such that ~(t) < K for  all t >__ O, then there exists N > 0 

such that Ilu{(.,t)ll~,a <_ N for  h i l t  >__ O, 1 < i < m.  Furthermore, i l K 4  = 0 

and limt...~ ~(t) = 0 then limt--,o~ Ilu{(.,t)ll~,a = O. 

Proof. Suppose t > t3. There exists i > 1 so that  ti < ti+l < t ~ t{+2; further- 

more, t - ti < T .  Also there exist 6 > 0 such that  p = (n + 2 + 6)/2. Hence if 

p = n / ( n  + 2) then n / 2 p  < p < 1. 

If we multiply (1.1a) by h~(u{) we may use the convexity of hi(u{), the ellip- 

ticity and H5 to observe that  

Ot(hi(ui))  < £ i ( x , t ) h i ( u )  + K a ( H ( u ) )  qt + K4 on Q(O, co), (3.2a) 

hi(ui (x ,  0)) = 0 on 0 a  x [0, oo), (3.2b) 

hi(ui (x ,O))  = hi(uo,(z ,  0)) on 12, (3.2c) 

for i = 1 to m. Hence, 

Ot(hi(u{)) <_ £ { ( x , t ) h i ( u )  - hi(ul)  + H(u)  + K 3 ( H ( u ) )  qt + K4 (3.3) 

on Q(0, oo) with the same boundary and initial conditions. We let Z~i(x, t) extend 

/~/(x,t) to all of Itn and preserve all boundedness and smoothness properties. 

Additionally we define 

and 

{ o  
Gi(x,t) = (u) + K a ( H ( u ) )  q' + K4 if (x, t) • a x [0, ¢x~) (3.4) 

if (x,t) • ( R -  ~ )  x [0, ~) 

- 
vo,(x) = ,(Uo,(X)) x • a (3 5) 

Standard maximum principle arguments insure that  if v{( , ) is a solution to 

OvdOt = ~{(z, t)v{ - v{ + G{ z • I t" , t  > 0 (3.6a) 

v , (x ,o )  = Vo,(X) ~ • It" (3.6b) 

then for all (x,/)  • J2 x [0, c~), v i ( x , t )  >_ h i ( u i ( x , t ) )  >_ O. Let 7i(x, ( . t ,  r) , cf 

Aronson [2], be the fundamental solution associated with Oyi/Ot = £ i ( x , t ) y { .  

Then the solution to (3.6a-b) has the Duhamel representation 



Reaction Diffusion Systems 139 

/o /0'/o vi(x,t)  = e - t  7i(x,~,t,O)vo,(~)d~ + e-(t-s)7i(x,~, t ,s)Gi(~,s)d~ds.  

(3.7) 

The aforementioned work of [2], [3], [13] established the existence of c > 0 

and a heat kernel of pi(x, t) associated with an appropiated chosen heat equation 

Oz/Ot = d iAz  such that  if x ¢ ~, t ¢ r,  then 0 < 7i(x, ~, t, r) <_ c p i ( x -  ~, t -  r) .  

Thus we may observe that  

o <_ vi(z,t) <_ ce-' [_ pi(z  - ~, 0)~o,(~)d~ 

(3.8) 

+ fo' f a e ~ - t , i ( ~ - , , t -  ,)G,(,,,)a~d,. 

However if wi(x, t)  is defined to be the right hand side 3.8 we see that  

cOwi/cOt = diAwi - wi + Gi (x, t )  6 I t "  × [0, c~) (3.9) 

~ i ( ~ , 0 )  = vo,(~) ~ • R".  (3.10) 

Moreover cwi(x,t)  >_ vi(x,t)  > hi(ui(x,t)) for (x, t )  • 12 x [0, oo) and i = 1 to 

m. As we have seen in Lemma 2.11 a uniform c can be chosen. 

Referring back to (2.17 a-b) and (2.18) we cast (3.9 a-b) as a system of 

ordinary differential equations in Lp(l:tn), 

(vi(t) + Aipw(t) = Gi(t) (3.10a) 

w(0) = wo, (3.10b) 

which has componentwise variation of parameters solution 

I' wi(t) - ~,,(t)wo, + ~,~(t - ~)ai(s)ds. (3.11) 

By virtue of Lemma 2.11, part  (iii) we have 

IIw~(t)ll~,R- _< M,,pC~,p [ ( t -  tO-'llhj(ui(.,ti))llp,o 

+ II(t - s ) - '  II-~_.,(,,,0((K3 + 1)~(t) + K 4 ( t  - ti)~)] 

< M,,pC,,p [~i(ti) 

+ II(T - s)-"ll_~_.,(0,z)(gz + 1).~(ti) Jr K4T~] 

Because p p / ( p -  1) < 1 there exists N~, > 0 such that  

II(T- ~)-~ll.-¢r_,,(0,~) -< g .  

Becasue we have produced a uniform bound for I lwi ( t ) l loo ,a  we have a uniform 

bound for Ilhi(ui(', t))ll~,a and the coerciveness of hi 0 implies the existence of 

N > 0 so that  
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IM(.,t)ll ,a < N (3.14) 

To obtain the final assertion we suppose limt~oo ~(t) = 0 and K4 = 0. From 

(3.12) and (3.13) we obtain: 

I lhj(uj( ' ,  t))lloo,a < Ilwj(t)lloo,rt- _ M~,pC~,,p + N~,K5 + 1 (3.15) 

Hence lim,_..~ Ilhj(uj(.,t))lloo,a = 0 a n d / / 2  implies limt--+c~ [[uj(.,t)llo~,a = 0. 

Our boundedness result is obtained by boots t rapping known as a priori cylin- 

der bounds by an iterative process to sufficently high cylinder bounds via utiliza- 

tion of duality arguments in conjunction with the intermediate sums condition. 

We have the following theorem. 

T h e o r e m  3.16 Let C1 - C5 hold and H1 - H3 and H5 hold. Let u -- (ui)im=l 

be the globally defined classical solution to (1.1 a-c). I f  H4 holds with exponent 

r satisfying 1 < r < a or 1 < r = a < ( n + 2 ) / 2  then there exists an N > 0 such 

that Ilui(',t)ll ,Q(o,o ) <_ N for  all 1 < i < m. 

Proof. We get M1 = g(3) and observe that  IIH(u)II.,Q(T-~) ~ g(T - r )  for 

all 0 _< 7" < T implies that  there exists a sequence {tl,i} such that  Q,1 > 0, 

0 < tl,i+l - t l , i  < 3 and I]H(u(.,tl,i))]]a,o < M1 for all i > t. Thus i f T  > tl,i 
there exists i > 1 such that  tl,i < T < tl,i+l. Set r = tl,i following Morgan [14] 

we subdived our argument  into two cases. 

Case 1. Suppose 1 < r < a. Because r < 1 +  ( 2 a ) / n + 2  there exists 

0 < p < 2 such that  r + (2 - p ) / ( n  + 2) < 1 + (2a) /n  + 2. Lemma 2.21 implies 

there exist ~f > 1 and 1 < p < (n + 2)/2 such that  a = np~/(n + 2 ) ( p -  1), 

a/(a - r) <_ p(n + 2) / (n  + 2 - 2p) and p/ (p  - 1) >_ a(n + 2) / (n  + #). We set 

Pl = P / ( P -  1). We now find ourselves able to invoke the intermediate sums 

hypothesis. Suppose tha t  1 < j < m and there exists M2 > 0 such that  for 

all ! > 1 and 1 < i < j ,  [[hi(ui)llp,,Q(h,,,h,,+,) <_ M2. Assume there exists 

6m • (0, 1) and constants Khm and Kfm so that  if j < k < m then 

Ilhi(ul)llp,,Q(r,T) < Khp, + Kfp, IIH(u)[[Q(T,T ) (3.17) 

is satisfied for j < i < k but  not for i = k. Here we let 7- = tiff < T < tl , /+l.  

Our immediate  objective will be to use H4 to show via contradiction that  an 

inequality of the form (3.17) must hold for all j < i < m. 

Let 0 • np(Q(r,  T) )  be such that  0 >__ 0 a n d  [[O[[p,Q(r,T) ---- 1 and suppose that  

Ck is the solution to the adjoint equation (2.6a - c) with i = k. We integrate 

hi(ui) for 1 < i < k against 0 on the space time cylinder Q ( r , T )  and obtain via 

integration by parts  and the convexity of hi() 
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~rT Sohi(ui)Odxdt <_ LT i hi(ui)(~i(¢k)-Li(¢k)) dxdt 

+ .io hi(ui(x, r ) )¢k(x ,  r)dx (3.18a) 

+ Ck [hi(ui) + h'(ui)fi@, t, u)] dzdt. 

We use / /4 ,  to sum the integrals from i = 1 to k and obtain 

T k k - 1  T 

f l.v'a"hi('OOd'd'<- a"i, f h,(.,)(C,(+,)-C,(+,))d.dt 
i = 1  i = 1  

k 

+ Z aki/1i hi(ui(x, r ) )¢k(x ,  r)dx 
i=1  

-I- L T i.Q +k[[~'l(H(U))r de. I<2]d.dt" 

T k 
-t- L /#i¢k ~-~akihi(ui)dxdt. 

i=l 

(3.1861 
We proceed to estimate the right hand side of (3.18b) termwise. For the first 

term we have 

k - 1  T 

Zaki L /tihi(ui)(~i(¢k)--~'k(¢k)) dxdt 
i=1  

J-~ T 

= ~"~ak~ L /ohi(ui)(f-i(¢k)-~k(¢k))dxdt (3.19) 
i=1  

=~akijT/tihi(ui)(~'i(¢~:)--~'k(¢,)) dxdt. 
I---- 3 

We now observe that  

L T/12 hi(ui)(f-.i(¢k)- £i(¢kl)dxdt (3.20) 

<_ I Ih , (u , ) l lp , ,Q( , , r ) l lL~(¢k)  -- C , ( ~ ) I I p , Q ( r , T )  

From Lemma 2.5 we are guaranteed the existence of a c o n s t a n t  Cp,T-r so that  

NZ:i(¢k)- Z:,(¢~)Np,Q(,,r) _< ~p,T-, (3.21) 

Therefore, we may obtain 
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k - 1  T 

~-~aki ~ /n hi(ui)(£i(¢2) - fi(¢k))dxdt 
i --1 

2-1 (3.22) 

< ~ a21Cr,T-, [M2 + g(3) + g(3)llg(u)ll,..qC~.r)] 
i=l 

The succeeding terms are estimated in exactly same manner as in [14]. We 
therefore simply list the estimates and refer the reader to [14] for the details. We 

have: 

and 

~T /,~ ¢2 [K,(H(u)) r + K2] dzdt <_ Cv,(T_T) [K1(g(3)) r + K2(3 I l) f ]  

(3.23) 

f, ¢(~, r))d~ _< Kp,o/o_~,(T_~)M~ 7")hi(ui(2~ (3.24) 

k - 1  T 

)--:~,a2i / /~ e2(hi(ui))dxdt <- 
i=l 

2-1 
~a2iep,T-r [M2 + g(3)+ g(3)HH(u)[[~P:Q(r,T) ] 
i=l 

(3.25) 

~T /n a22 ¢2h2(u2 )dxd t _~ [1_ e_(T_r) ] IIh2(u2 )llp,,~(~,T) (3.26) 

Combining these estimates we obtain 

T k-1 
~r /. akkhk('k)Oda:dt < ~-~aki(2Vp'T-r)[M2"J- 

i=l 

+g(3)llH(u)ll~l.,~(.,r)] + K.,a/.-L(T-r)M, (3.27) 

÷ C,,T-, [g,(g(3))" -k K2(3 ] ~2 ])}] 

+ akk(1 -- e-3)[Ihk(uk)[[p,,q(W,,) 

Therefore using (3.27) and viewing hk(u2) as a linear function on Lp(Q(r, T)) 
we are guaranteed the existence of KT, Ks > 0 such that  

IIhk (~k)ll,,~,q(~,T) ~ K7 + KB]Jg(u) ll~:,q(~,w) (3.28) 

for all ~" = t l j  < T < t l j + l  independent of i > 1. Thus K~,, and K6p, may be 

chosen so that  (3.17) holds for k. This leads to a contradiction and hence (3.17) 

holds for all j < i < m. Because ]]hi(ui)]],l,Q(~,w) <_ M2 for 1 _< i < j we have 
for i >  1 
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IIH(u)llp,,q(,, , , , . , ,+,) < elm(M2 + g(3)) + (re(g(3))"  = lt7/2 (3.29) 

where e 1 = 1/(1 - St,). Recall that  Pl -> n--+'2an+~, ' ~n+g > 1 and 1 < tl,i+l - tl,i < 3. 
t oo Therefore there exists a sequence { 2,1}i=1 such that  ti,2i-1 < t2,i < tl,2i for all 

i > 1 and IlH(u(.,t~,O)Np~,a < fd2 for all i > 1. We note tha t  1 < t2,~+~-t2,~ < 9 
% % 

for all i > 1 and that  there exists M2 > 0 such that  [[n(u)llp,,o(t~,,,t~,,+,) < M2 

for all i > 1. We now iterate the foregoing argument. We replace a by pl,  chose 

the same vaule of / t ,  a corresponding value of p > 1 and set p2 = p/(p - 1) >__ 

\n+~,/ ] a. Following the preceeding argument we find there exists M3 > 0 

such that  IlH(u)llp~,o(t~.,,,~.,+,) < ~/3 for an i > 1 

If we proceed inductively, the for k > 2, there exists /Qk+l > 0,pk > 

\n+t*/ ] a and a sequence { k,i}i=l such that  

(i) tk,x > 0 and 1 < tk,i+l - tk,i < 3kfor all i > 1 

(ii) liB(u(, tk,i))llp,_,,a < Mk for all i > 1 

(iii) IIn(u)llp.,q(,.,,,,.,,+,) < ll/Ik+l for all i > 1 

Note that  limk--,oo Pk = oo because (n + 2) / (n  + #) > 1. Hence if we can 

take k sufficiently large, we may apply Lemma 3.1 to guarantee the existence of 

N > 0 so that  for 1 < i < m, Iluill~,Q(0,oo) < g .  

The second case assumes that  1 < r = a < (n + 2)/n. Then there exists 

0 < e < 2 such that  a < ~ and we can set p = ~ > n-~22. Once again we let 
n -l-  e 

OeLp(Q(T, T))  be such that  0 > 0 and II011p,q(.,T) = 1. The second case is reduced 

to the first case via arguments totally analogous to those of [14, Theorem 2.5]. 

We also obtain a decay result. 

T h e o r e m  3.30 Let the hypotheses of Theorem 3.18 hold and K2 = K6 = O. I f  

there exists T > 0 such that for all p > 1 

lim [IIH(=)II.,q(T,~+T)] = 0 
T - - - *  OO 

then limt--.¢o Ilui(-, t)lloo,a = 0 for  art 1 < i < m.  

Proof. One argues that  there exists M1 E C([0, or)) and a sequence {tl,i}i°°=l 

such that  limt-.oo Ml( t )  = O, t l  > O, 1 < t l , l + i - h , i  < 3 and IIH(u(,tl,i))lla,a < 

Ml(t l , i ) .  Proceeding as in the proof Therom 3.16 with K2 = K4 = 0 one 

shows the existence of M2 E C([0, oo)) such that limt--.oo M2(t) = 0 and 

IIH(u)llp,,Q(,,,,,~,,,+,) _< M2(tl,i) for i _> 1 and Pl = -_.+_Z,+, if r < a and 

pl = ha+n+2 if 1 < r = a < ( n + 2 ) / 2 .  One observes that  Pl > r > 1 
2 n  - -  

and can proceed as in Theorem 3.16 and establish for k >__ 2 the existence of 

/,__+_~-1 and a sequence {tk,i}i=l°° such that  Mk+l E C([O, co)), Pk > a \n+•/ 

(i) limt-.oo Mk+l(t) = O, 
(ii) tk,1 > 0 and 1 < tk,i+l - tk,i < 3 k for all i > 1, 

(iii) IIH(u(',tk,i))llvk_,,a < Mk(tk- l , i )  for all i > 1, 
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(iv) IIH(u)llp,,Q(,,.,,,~.,+,) <_ J~7/tc+l(tk-l,i) for all i _> 1 
We note that if (n + 2)/(n + #) > 1 we can apply the second assertion of Lemma 

3.2 to conclude that for each 1 < i < m, limt...~ Ilu,(., t)ll~,a = 0. 

We conclude this section with a simple result wich guarantees the existence 

of L1 cylinder bounds which satisfy the hypotheses of Theorem 3.16. 

Propos i t ion  3.31 Suppose that C1 - Cg hold and that H1 - Ha hold. I f  for all 
m 

v e R m A H ( v ) f ( x , t , v )  = ff~i=l h~(vi) f i (x , t ,v)  < 0 lhen for all 0 < r < T we + 

have [In(u)lll,o(~,T) <_ [lln(u0)lll,a] ( T -  r). 

Proof. We multiply each component by h~(u~) and obtain 

h~(ui)V . (a i (x , t )Vui)  + h~(ui)fi(x,t ,  u). 

The convexity of hi 0 yields 

Ohi(u)/Ot <_ A . (ai(x, t )Aui )  + h~(ul)fi(z, t, u) 

Integrating (3.33) on Q(r, T) and summing we obtain 

(3.32) 

(3.33) 

IlH(u(,t))lll,~ ~ IlH(u(,r))l l l ,n 

Consequently, for all r _> 0 

(3.34) 

IlH(u(', r))lll ,n _< IlH(uo)lll,n 

If we integrate (3.20) on (r, T) and use (3.21), we have 

(3.35) 

IIH(u)]h,Q(.~,T) <_ [IH(uo)lla,n(T- v) 

We return to example (1.2 a-e) of the first section. We have demonstrated the 

existence of a priori nl  (Q(r, T)) bounds for the functional H(u) 5 = E i = l  h~(ui) = 

ui + 2u2 + u3 + 2u4 + u5 applied along the trajectories of the solutions. These 

bounds depend only upon L1(12) norm of the intial data and upon (T - r). A 

cursory examination of the vector field reveals the intermediate sums condition 
holds for matrix  ;000 ] 

½ ½ 0 0  
A =  1 1 1 (3.36) 

1 1 1 
2 2 2 

1 1 1 

and exponent r = 1. The question of global existence of solutions is settled in [6]. 

Because 1 < (n + 2)In, Theorem 3.16 may be invoked to produce uniform L~ 

bounds. We refer the reader to [14], [15], [5], [6] for further examples of vector 

fields and convex functionals H 0 which satisfy our hypotheses. We remark that 

additional arguments can be constructed to guarantee the precompactness of 

trajectories. 
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Introduction 

In this paper, we present notions of Lusternik-Schnirelman relative category and 

some applications to differential equations. There are many notions of the relative 

category see Fadell [5], Fournier-Willem [6], and Szulkin [13]. In this work, we 

shall a t tempt  to show that ,  provided one uses the strong relative category as the 

basic count of critical points and the (weak) relative category to calculate it, the 

relative category almost behaves like a degree or a fixed point index theory. We 

shall a t tempt  to do so by proving the mountain circle theorem, a modification 

of the well known mountain pass theorem [1], but which gives the existence of 

one more critical point than the latter. 

1 Lusternik-Schnirelman category 

Let A be a closed subset of a topological space X. 

The Lusternik-Schnirelman category of A in X, catx (A), is the least integer n 

such that  A can be covered by n closed subsets of X each of which is contractible 

in X [A is contractible in X if there exists a continuous h:A x I --* X, where 

I=[0,1], such that  h(x ,0)=x Vx E A and 3y E X such that h(x ,1)=y Yx e A]. 

The following properties are easy consequences of the definition. 

(1.1) if X D S D A then catx(A) < catx(B), 
(1.2) catx(m O B) < catx(A) + catx(B), 
(1.3) i fA  is closed and ifhEC([0, 1] × A, X) is such that  h(0 ,x)=x for every xEA, 

then catx(A) < catx(hl(A)). 

D e f i n i t i o n  1.4 ( P a l a i s - S m a l e  c o n d i t i o n ;  see [11]) A map ¢ : M ~ ~, where 

M is a C 1 Finsler manifold and ¢ is C 1, satisfies P-S if every sequence {s,~} of 

elements of M such that  {¢(sn)} is bounded and II#(s,~)ll--* 0 as n --* c¢, has 

a convergent subsequence. 

The following result is due to Palais [11]. 
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T h e o r e m  1.6 Let M be a complete C 2 Finsler manifold and ¢ • CI(M, ~) be 
a map satisfying the Palais-Smale condition. Then ire is bounded from below, 
¢ has at least cat(M) critical points. 

2 R e l a t i v e  c a t e g o r y  

For the definitions of relative category given here see [6], for other definitions 

see [5] [13]. 

Def in i t ion  2.1 Let X be a topological space and Y a closed subset ofX. A closed 

subset A of X is of the n-th category relative to Y (we write catxy (A) = n) if 

and only if n is the least positive integer such that 

and 

A =  O A i  
i - -0  

(1) Vi > 1 Ai is contractible in X, 

(2) Ao is strongly deformable into Y in X. 

[A is strongly deformable into Y in X if there exists h:A x I --* X, such that  

h(x,O)=xandh(x, 1) E Y  V x E A  and h(x , t )=x  V x • A M Y ] .  

We say that  A is of the n-th strong category relative to Y (we write 

Catx,y(A) = n) if and only if n is the least positive integer such that 

and 

A =  O A i  
i = 0  

(1) Vi > 1 Ai is contractible in X\Y,  

(2) A0 is touch and stop deformable into Y in X. 

[A is touch and stop deformable into Y in X if there exists h:A x I ---* X, such that  

h ( x , 0 ) = x a n d h ( x , 1 ) E Y  V x • A  and if h ( x , t ) = y • Y  implies h(x,s)= 
y > t]. 

Remark 2.2. 
(1) We have that catx,y(A) < Catx(A). 
(2) If Y - - 0  then A 0 - - 0  and catx,$(A)= Catx(A). 

Def in i t ion  2.3 Let Z, Z'  be subsets of X. Then Z < y  Z'  if and only if there 
exists h:Z x I ~ X such that  

(1) ho = iz : Z ~ X is the inclusion 
(2) z'  hi(Z) 
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(3) h(x, t) = x Vx e Y, Vt L 

We have the following properties most of which are generalizations of prop- 

erties of the category itself. 

Propos i t ion  2.4 Let A,B, Y be closed subsets of X. 

(i} if B D A then catx ,r(A)  < catx,y(B) 

(it) A <y B implies catx,y(A) < c a t x y ( B )  

(iii) A <r  B and B <y A imply catx,y(A) = eatx,y(B) 

(iv) catx ,r(A U B) < catx,y(A) + catx(B)  

(v) ca tx , r (X)  >__ ca tx (X)  - caty(Y)  

(vi) catx,r (A) = 0 ¢* A < r  Y. 

Furthermore, in each of the above properties we may replace cat by Cat, provided 

we replace <y by the obvious corresponding relation <<y and that in (iv) we 

replace catx(B) by catx\y(B) with the added condition that X \ Y  D B. 

Propos i t ion  2.5 Let X '  D X D A and X '  D Y '  D Y and X '  D A' D A and 

X D Y.  Then, 

(a) catx, ,y(A) < catx,y(A),  

(b) catx,y,(A) > catx,y(A),  provided that catx ,y(Y ' )  = O, 

(e) catx,,y,(A') > ca txy (A) ,  provided that there is a retraction r:X' --~ X 

(i.e. r(x)=x Vx e X )  such that A' D A, and r -a (Y)  = Y' ,  

(d) catx, v , (A')  <_ catx,y(A) if A ' kA  = Y ' \ Y  = X ' \ X  and X is closed in 
X t . 

Furthermore, in each of the above properties, we may replace cat by Cat. 

In the following, we may not replace eat by Cat. 

Propos i t ion  2.6 Let X ~ D X D A, X D Y and X ~ D Y '  D Y .  If  there exists a 

retraction r:X' --~ X such that r (Y  ~) <y Y in X ,  then catx, ,r ,(A ~) >_ catx,y(A) 

provided that A C A'. 

In the following, we may not replace Cat by cat. 

P ropos i t ion  2.7 (Excision) Let X D A and X D Y,  then 

Catx,y (A) = Catx \v ,Y \v  (A \V)  = CatxnF, ynF(A fq F), 

for any V contained in the interior of Y and any closed F such that F U Y  = X .  

The next proposition is evident but is useful for applications; in it Cat can 

be replaced by cat. 

Propos i t ion  2.8 Let {Xj }je s be a finite set of disjoint closed non-empty subsets 
whose union is X, then 
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Catx ,y(A)  = y ~  Catxj,YnXj (A fq Xj) .  
jEJ 

3 C o n n e c t i o n  w i t h  t h e  c u p  l e n g t h  

For the results presented here see [7]; see also [5,3,13]. In the following Y is a 
closed subset of an ANR X and we use the singular cohomology over the real 

field. 

Def in i t i on  3.1 cuplength(X,Y)=n iff n is the maximum number such that  there 

are ao E H k ( X , Y ) ,  with k >_ 0, and am E Hk(X) ,  with k > 0, for m = 

1 , . . . , n ,  such that:  a0 U a l  U . . .  U a ,  ~ 0. If such an a0 does not exist put 

cuplength(X,Y)=-oo.  [cuplength X=cuplength (X,0).] 

T h e o r e m  3.2 I f  X is an ANR and Y C X is closed non empty, then 

catx,y (X)  > 1 + cuplength(X, Y) .  

T h e o r e m  3.3 I f  Y is closed in X and H * ( X , Y )  or H*(Z) is of infinite type, 
then cuplength(X x Z, Y x Z) >_ cuplength(X, Y)  + cuplength(Z). 

C o r o l l a r y  3.4 I f  T is a topological space then catTxB.+I,Txs.(T X Bn+l) > 
cuplength(T) + 1. 

4 A p p l i c a t i o n  t o  c r i t i c a l  p o i n t  t h e o r y  

Let M be a complete C ~ Finsler manifold i.e. a C 2 Banach manifold with a Finsler 

structure on its tangent bundle (Important examples are complete Riemannian 

manifolds and Banach spaces). Let ¢ E e l ( M ,  ~). Set 

¢c -- {u e M[¢(u) < c} 

Kc = {u E Ml¢(u) -- c, de(u) = 0}. 

We shall use the following variation of the deformation lemma due to Clark 

[4] for Banach spaces and to Ni [10] for Finsler manifolds. 

L e m m a  4.1 I r e  E C I ( M , ~ )  satisfies the Palais-Smale condition and if U is 

an open neighbourhood of Kc, then, for every e ~ > 0 there exists c E]0, e'[ and a 

map f :m  ---* m isotopic to idM such that for all d E [0, e], ¢c-a D f(¢c+~\U). 

For the following see [6], see also [5] [13]. 
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T h e o r e m  4.2 I re  E CX(M, ~) satisfies the Palais-Smale condition and i f - c o  < 

a < b < +oo and Ka = Kb = 0, then 

# { z  E ¢-l([a,bl) ld¢ = 0} _> Cat~, ,¢,(¢ ~) > CatM,¢,(¢b). 

5 T h e  m o u n t a i n  p a s s  t h e o r e m  

These results can be proved using the relative category [8], they can also be 

proved using the Minimax principle (Palais [12]). Note also that  the homological 

approach to the mountain pass theorem was pointed out in Tian [14] and in 
Chang [2]. 

T h e o r e m  5.1 Let ¢ e C I (M,  R)  satisfy the Palais-Smale condition on ¢-~[a, b], 

when M is a complete C 2 Finsler manifold, with - c o  < a < b < + ~ .  I f  Ca is 

disconnected and cb is a connected set, then ¢ has at least one critical point in 
cb\¢a. 

T h e o r e m  5.2 ( T h e  A m b r o s e t t i - R a b i n o w i t z  m o u n t a i n  pass  t h e o r e m  [1]) 

Let ¢ E e l ( B ,  R) satisfy the Palais-Smale condition on ¢-1[a, cx>), where B is a 

Banach space and a E R. I f  there exist x , y  E B and r E R such that II*-yll  > r 

and, ¢(z) > b for all z with I1~ - zll = r, for some b > a = max{¢(z), ¢(y)}, 
then ¢ has a critical point in B \ ¢  a. 

6 T h e  m o u n t a i n  c i r c l e  t h e o r e m  

The following is similar to the mountain pass theorem [1], but gives the existence 

of two critical points instead of one. The method of proof is to first apply the 

excision property (to augment cat but not Cat) and secondly to obtain a better 

lower bound for Cat by calculating the new cat, using the results of Sect. 3. Un- 

fortuately, the method seems to use, in an essential way, the finite dimensionality 

of the circle or sphere of its hypotheses. 

T h e o r e m  6.1 ( T h e  m o u n t a i n  circle t h e o r e m )  Let ¢ E C I ( B  x R n , R )  

satisfy the Palais-Smale condition on ¢-1[a, c¢), where B is a Banach space and 

a, b E R. I f  there exisls x E R n such that, for some r > s > t > 0, ¢(u,y)  > 

b > ~ >_ ¢(~,~) for a l lu  • B and all I1'~ - u l l  = ~ and II~ - zll  = r , t ,  then ¢ has 

two critical points in (B  x R n ) \ ¢  a. 

Proof. Choose b > c > a. By (4.2) we need only to show that the strong category 

of (B x R n) relative to Ce, is greater than or equal to 2. By excision twice and 

by (2.8), if F is the complement of the interior of ¢c and if Z = F O B x A, then, 
since (B x OA) n F = 0, 
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CatBxR, ,¢o(B × R")  = CatF, Fn¢c(F) > Catz , zn¢o(Z)  

= CatBxA,¢~n(BxA)(B X A) >_ catBxA,¢~n(BxA)(B × A), 

where A = {x e R'*]r > []x]] > t}. 

By (2.5b), if OA is the boundary of A in R n, we get that,  

catBxA,¢,n(B×A)(B X A) > catBXA,BxoA(B X A). 

By (3.2), 

catB×A,B×oA(B X A) > 1 + cuplength(B x A, B x OA). 

Finally, by (3.3) we get that  

1 + cuplength(B x A, B x OA) > 1 + cuplength(B)+ 

cuplength(A, OA) > 1 + 0 + 1 = 2. 

That  is the conclusion. [] 

T h e o r e m  6.2 ( T h e  m o u n t a i n  circle t h e o r e m )  Let ¢ E C I ( B  × R a , R )  
satisfy the Palais-Smale condition on ¢-1[a, c~), where B is a Banach space and 

a,b E R. I f  there exist x E R ~ and r , s , t  : B ---* R continuous and such that 

r(u) > s(u) > t(u) > 0 for all u • B, and ¢(u,y) > b > a >__ ¢(u,z)  for 

au I1= - yll = s(u) and IIz - zll = r(u) ,t(u) ,  then ¢ has two critical points in 
(B x R - ) \ ¢  ~. 

Proof. This theorem is a corollary of the proof of the preceding theorem. In fact 
it is sufficient to notice that  the relative categories are invariant under home- 

omorphism preserving the subspaces (the two whose categories are calculated 

and the two relative to which the categories are calculated). And to notice that  

obviously such a homeomorphism exists. [] 

7 E x a m p l e  

Consider the following system of equations 

I x"  = - a x  + by + Ax  113 + Fz(x,  y) 

I y" = bm - cy + B y  1/3 + F~(z, y) 

• (0) = x(T) ,  y(O) = y(T) ,  x'(O) = z ' (T) ,  y'(O) = y ' (T)  

where a, c, A, B > 0 and F is continuously differentiable. 

For simplicity let us assume that F~ and Fy are continuous and bounded by 

M and that  F is bounded by N. Then the solutions of I are the critical points of 

¢, where 

¢(~'Y) = ~ ( ~ ' 2 + ~ ' 2 -  a=~-cY2 + 2 b ~ ) +  4 + 
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Here ¢ is defined on the space H = H# x H~ where 

H~ = ( y :  [0, 7~ --~ Rly' E L2, y(0) = y(T)} 

is given by the scalar product 

lff 
<< x, y >>= ~ (xy + x'y')dt. 

1 T Let us define ~ = ~ fo x dr. Then x = ~ + ~ where ~ = 0. Thus we can write 

1 .~n T [X,2 ..~ y t 2  _ 2b~9] dt 1 [2b~9 - ¢ ( z ,  y) -- ~-~ - a~ 2 c92 + + ~ a~: 2 - C,~ 2] 

+ ~ [Ax4/3 + B~4/3] el + ~ F(x,y) et (7.1) 

= ~(~, 9) + ~(~', 9) + ~(~, y) + ~(~, ~) in short. 

P r o p o s i t i o n  7.1. I f  (a + c)T 2 < 47r 2 and b ~ < ac then 

a) cr(~, Y) > 0 V(z,  y) e H 

b) ¢ satisfies tha P-S condition on H. 

Proof. 
a) By the Wirtinger inequality (w]]~:]]2 < ]]x']]2 where w = 2~rT-1), c~(k,9) 

dominates 

] 2--f (1 - .)(x'~ + ¢~) + ((~o ~ - a ) ~  + 2 ~ 9  + ( . ~  - c)9 ~) el (7.2) 

for any s < 1. Our conditions imply that  a + e < ~o 2 and b 2 < (~o 2 - a)(~0 2 - e) 

so we may choose 0 < s < 1 close enough to 1 such that  a + c < s~o 2 and 

b 2 < @ ~ s -  a ) ( w 2 s -  c). Thus (7.2) can be split into squares and so it dominates 

1 - ~ / f (  ~-~ r '2 + y'2) dt > O. (7.3) 
, ] U  

b) Assume that  S .  = ( z . , y ~ )  E H where f(S,~) is bounded and IlvC(s.)ll 
0. 

i) Let us show that  ~ .  and 9 . ,  ~:-, 9 . ,  ~ . ,  Y~ are bounded. 

In fact if we denote < z ,u  > =  -~ f :  zud t  and I1~11~ = <  ~ ,x  > we have that  

<< VC(x ,y ) , (u , v )  >>=< ~,/t > + < y, 6 > + < - a x  + by + Ax  ~/3 

+ F r ( x , y ) , u > + < - c y + b x + B y  t / 3 + F ~ ( x , y ) , v > .  (7.4) 

We may assume that  I¢(x, ,yn)[  < K and 1~7¢(~:,,yn)l < K Vn > 0, for some 

K > 0 .  

a)  Let us put  (x, y) = (xn, Yn) and (u, v) = (~n, 9~) in (7.4). We get 
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K( I~ . I  + 19.1) _> I - .~2 + b9.~.  + A i .  < =V3,  ] > +~, ,  < F=, 1 > 

-- C9 2 "t- bgn~n + SOn • yl]3, 1 > + 9 .  < Fu, 1 > [, 
and since 

] < xa/3, Y > I = ]'~ Y =l/3dt] 

< 1  

_ ( ~ ( ~ T ( 2 t 2 ' 3 ) 3 ) 1 [ 3 ( / T 1 3 ] 2 ) 2 ' 3 ) l ] 2  
< Ilul12 _< II=ll~/~llul12 

we obtain that 

a~.  - 2~1~.119.1 + ~#.~ < ( g  + M)(I~.I  + 19.1)+ 
1/3 

AI~.III~.I[~/~ + BIg . l l lu . lh  • (7.~) 

fl) Let us put (~,y) = (z . ,y . )  and (u,v) = (k.,!).) in (7.4). We get 

~(11~.112 + 119.112 + Ili.112 + [19.112) 

2b jfo r >_ ] II~.ll~ + II/'.11~ - all~.ll~ + T ~ . O . d t - c l l g . l l ~  

1/3 - [ +A<xn~/3,~n > + B < y .  ,y. > + < F ~ , ~ .  > + < F  u,9. > .  

Since 
II ~TkFx _1(/T~:2) 112" rT 2 '1/2 

< ('Jo (F= ) )  = II~II2M 

we get 

i<(ll~.ll~ + II~. 112 + II~.II~ + fly. II~) + All=. II~/~II~. 112 

+ BIIv.II~/~II~.II~. + M(II~-II~ + II~-II~) > II~-II~ + IIu-II~ 
2b f T  

- all~.ll~ - c119.11~ + T ~ . 9 .  dt 

7) Let us put together (7.5) and (7.6). We obtain 

(K + m ) ( l ~ .  I + 19.1) + AII~.II~/3(I~.I + II~.ll~) 

+ Bllu.ll~/3(19.1 + 119.11~) + ( m  + K)(II~.II2 + 119.112) 

+ K(II~.II2 + 11/,,,112) 
• 2 • 2 

_>a~-. 2 - 2bl~,,,119.1 + c9~ + 11=.112 + IIv,,lt2 

2b f T  

>a(1  -- t ) ~  + c(1 -- t)gn 2 Jr (1 -- ~)(ll~.ll~ + II/,.11~) 

_>~(1 - t )~.  + ~(1 - t)9~. + (1 - .)~2(11~.11~ + 110.1122) 

G. Fournier and M. Willem 

(7.6) 

(7.7) 
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(where s is as in a), 0 < t < 1, and act  9 = b 2. This implies at~.2rk 2 b ~  + ctfl 2 : 

( v ~  + v ~ )  2 _> 0. 
That  is there exists positive constants, K1, K2, Ks such that  

Kl(Xn)4/a--kKa >_ K 2(Xn)  2 , Xn  = m~x{ll~.ll2,11ff.ll2, I~1, I~1,11~.112,11~112}. 

Thus X,, is bounded, i.e. I1~.11~, 119-11z, I~1,191, I1~-I1=, 11~-112 are bounded. 
ii)Let us prove that  (x . j ,  y.1) --* (zo, Yo) for some (zo, Yo) ~ H and some 

subsequence nj.  By passing to a subsequence, we may assume that  ( x . , y . )  --* 

(x0, Yo) weakly in H for some (xo, Yo) ~ H. So (xn, y,,) --* (Zo, Y0) in C[0, T] thus 
~t t 

s t r o n g l y  in L~. It remains to show that II . - ~o11~ --* 0 a n d  IlY'. - Yhl12 --* 0.  I n  

fact 

<< v ¢ ( ~ . ,  ~ . ) , ( ~ .  - ~0 ,~ .  - ~0) >> - << v ¢ ( ~ 0 ,  ~0) , (~ .  - ~0 ,~ .  - ~0) >> 
l l l I l l l 

= <  Xn -- XO,Xn -- X~O > + < Yn -- Yo, Yn -- Yo > 
+ < Az~ 1 3 -Az~o la -aO:n - z o )+b(y . - yo )+F~: ( x . ,  y . ) - F ~ ( x o ,  yo), x . - z o  > 

+ < S Y ~ n l a - B y ~ l a - c ( y . - y o ) + b ( x n - x o ) + r . ( x n , y . ) - F y ( x o ,  Yo) ,Yn-Yo  > 

Now since V¢(~ . ,  y . )  -* 0 strongly and (z .  - x0, y .  - Y0) ~ 0 weakly in H~. 

and so is bounded, the first term goes to O; evidently the second one Mso goes 

to zero. The last two terms of the right side also go to zero since for those the 

convergences are strong. We are left with 

o ~ IIY'.-Y'olI22 " -*Oasn - -*° ° .  [] 

P r o p o s i t i o n  7.2 I f  the conditions of proposition 7.1 are satisfied, then 

a) ¢(0,0) < N 
b) ¢(x,y)  ~ 3(k - e)4/3D - k2(a + c) - g = Se i f  ~ 2 + fl 2 = (k - 0 2 for all 

0 < t < e where D = m i n { A , B }  

c) ¢(x,y)  < f (~ ,~)+g(~ , f f ) ,  where g(~,~3) =/3(~ , f t )+~(Al~la la+Bl#141s)+ 

N ,  and f is continuous. 

Proof. 

a) ,~(o, o) = ~ f f  e(o, o),~t <_ N 
b) ¢(~, y) = ~(~,  ~) + p(~, ~) + ~(~, y) + ~(~, y) _> 0 + ~(~,  ~) + ~(~,  y) - N 

but ~(~,~) = ½[2b~f]- a~, 2 - c ~  2] >_ - a ~  ~ -  cfl 2 >_ -k2[a + c] since [£,[ _< k and 

[.~[ _< k, and 

T 
7(z,y ) _: A f [A;~4/3 .~_ By4/3]dt 

4T  Jo 

~> 3[A~413-~- B~I4/3] :> 3-~ (~2-~-~12)2/3 ~ 3-~-~ (k-{)4J3 

since for any positive numbers z and y we have that  z 2/a + y2/~ > (x + y)2/a 

and since 

_I_lfT 1 /  rT \ 3 / 4 / r T  )1/4 (1  ~T ,3/4 
+~ = ~ Jo x dt--<= "~ ~]0 ("{-X)413) ~J0 14 = "T x4/3) 
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which implies that  ~ f [ x  4/3 > 1~14/3. 

c) Let 

= +  -[AII II /3 + BIL II /3] 

g(~, 9) = fl(~, 9) + 3( A~4/3 + BY 4/3) + N 

since 7(z, y) _< N and 

÷/0  T 1 

_ = dt) = (11 11 + < II ll / + I"1 

3 P r o p o s i t i o n  7.3 I f  in addition to the conditions of  (7.1) we have that - ~ D -  

2 N  > a + c, and i f  S = So is given by (7.2b) with e = O, then, f o r  some k > 1, 

¢ has a critical point  in 

v = { (x ,  u) l¢(x ,  v) < - -  
S + N  

and R 2 = ~2 + 92 < k2}. 

Proof. 

By 7.2 and our condition, for any k > 1 close enough to 1 we have that 

3k4 /ZD > 2 N +  k2(a + c) and so N < S which gives ¢(0,0) < Y < ¢(z ,y)  for 

all (x, y) E OV. 

But if (x,y) • V then 1~21+ 1921 < k 2 so 

k 2 

¢(x, y) = a(k,  .~) +/3(~, .0) + 7(x, Y) + 6(x.y) > 0 -- -~-[21b I + a + c] + 0 - N 

So ¢ is bounded below on V which is a sub-manifold of H. If ¢ satisfies P-S 

in V, since V is not empty, ca t (V )  > 0 and, by (1.6), ¢ has a critical point in 

V. If ¢ does not satisfy P-S in V (and this for any k close enough to 1), it does 
satisfy the P-S in H so there must exist a sequence on which ¢ is bounded with 

vanishing gradient and converging to a point in H \ V .  This point must then be 

a critical point of ¢ contained in OV, that is contained in the V corresponding 

to any k bigger than the one previously considered. In any case we may assume 

that  V contains a critical point of ¢. [3 

Remark  7.g. Using the mountain pass theorem, one finds another critical point 

of critical value > s. But we would like to find one more critical point. 

L e m m a  7.5 I f  in addition to the conditions of  7.8 we have that and w > (a + 

c +  2M) < D then i f  we denote R 2 = ~2 + 9 2 ' there ezists k > 1 and e > 0 and 

F : H = H~. x H~. ~ ~ a C a funct ional  such that: 

a) F satisfies P - S  on R >_ k - 2e 

b) if, F have no critical points on k - 2e < R < k 
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~) r(~,  v) = ¢(~, v) if R > k 
d) ff R < k - 2 ,  th ,~  r ( ~ ,  v) < 0. 

Proof. We may assume that  there exist k > 1 satisfying ~k413D > 2 N + k 2 ( a + c )  

and such that  D > (a + c + 2 M ) k  2/3. Choose ,  > 0 such that  k - 2, > 1 and 

D ( k  - 2e) 4/z > (a + c + 2 M ) k  2 and ¢(x, y) >_ $2, > 0 if k - 2e < R < k. 

This is possible by (7.3) and (7.2b) since S, is a continuous function o f ,  and 

So > N.  Choose L > N ,  (A  + B ) k  413. 

a) << V¢(x,  y), (x, y) >3, > 0 if (k - 2,) 2 _< ~2 + 92 _< k 2 and ¢ has no critical 

points on k - 2, _< R _< k. 

In fact, 

<<v¢(~,v),(~,v)>> 

since 

ax 2 - cy 2 + 2bxy + A x l l 3 x  + B y l l 3 y  

+ F ~ ( x , y ) x  + F ~ ( x , y ) y i d t  

> ,,,2 I1£'11~ + ~211.011~ - al l~l l~ - ~11.011~ 

- ebll~l1211~l12 - 2 M I I ~ I I ~  - e M I I ~ I I ~  

+ A~41a + B Y  413 - ax,2 - cY 2 - 2bill I#1 - 2M~2 - 2My 2 

1 ,T dt 1 T 1/2 1 T 
IF=( ,y)a 

< M ( I I ~ I I ~  + ~2)~12, 

because a 112 + b 112 < 2(a + b) provided that  a + b >_ 1, a, b >_ 0 and ~2 + 92 >_ 

(k - 2 , )  2 > 1. 

So we get 

<7 r e ( x ,  y), ( x , y )  ~ ,  >_ (w 2 - a - c - 2M)II~II~ % (w 2 - a - c - 2M)[[~1i2 ~ 

-{- D ( x  4/3 -I- 9 4/3) - (a + e Jr 2M)(~ 2 + 92) 

> D ( k -  2,) 4 / 3 -  (a + c +  2 M ) k  2 > O, 

by our choice of ,. 

b) Define 

y) = f ( n )  [~(~, v) - ~(e, 9) + L + ~(~, v)] + ~(~, ~) + n(~, 9) + ~(~, 9) - ¢ ( ~ ,  L 

where f E C ° ° ( ~ , ~ )  is 0 on ( -oo ,  k -  e], is 1 on [k, oo) and f ' ( t )  > 0 Vt E 

(k - ,, k). Then ¢ satisfies P-S, has no critical points on k - 2, < R < k and 

¢(~, v) = ¢ (~ ,  v) if R > k. 
In fact, since 
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<< v ¢ ( ~ ,  y), (u, v) > = <  ~,~ > + < ~,~ > 

+ < - a x  + by + f ( R ) ( A x  113 + F~(~:, y)), u > 

+ < - c y +  bx + f ( R ) ( B y  1/3 + F~(x ,y ) ) ,v  > 

+(1 - y(R))[A < ~l/a, fi > + B  < ~l/a, ~ >] 

+ R f ' ( R ) [ 7 ( x , y )  - "f(~.,fl) + L + 6(x, y)] [< ~,fi > + < ~,~ >] 

For R > 0, if we give the proof that  ¢ satisfies P-S (7.1b), the first two lines 

of the above equation would give the same bounds as before; the last would add 

only a term of the form Ci + C211~I1413 + Ca~: 4/3 + C~]I~II~ 13 + C3~ 4Is, since 

the last line is zero if R > k. This would still permit us to obtain that  £'n, ~n, 

k,~ are bounded (the same for y). In ii) the same proof, with the added terms, 

still gives that  ¢ satisfies P-S. As for the fact that  << V¢(x,  y), (x, y) >>> 0 if 

(k - 2e) 2 <_ ~ + .02 < k 2 we need only repeat the proof of a) obtaining the same 

right member with the exception of the addition of the following positive term, 

f ' (R )R[7(x ,  y) - 7(~, ~) + L + ~(x, y)]. 

Thus we get the conclusion of this section. 

c) Define 

I ( R ) [ ' y ( x , y ) -  7(~,~)  + L + 6(=, y)] F ( x , y )  

+ I ( R  + e)a(~., ~) + fl(~, fl) + 7(~, fl) - L. 

Then F(x ,  y) = ¢(x, y) if R > k - e and F satisfies P-S in R _> k - 2e and has 

no critical points on k - 2e < R _< k. 

In fact if k - 2e < R < k - e we have that  

<< v r ( ~ ,  y), (~, ~) >> = I ' (R + ,)R~(~:, ~) + 2 b ~  

_ a~ ~ _ cfl ~ + A~: 4Is + Bf141a 

> D R  4 / s -  ( a +  c)R ~ >_ D ( k -  2e) ' / 3 -  (a + c)k ~ > 0 

s o  

I lVr(x,  y)ll _ > D(k  - 2e) 4/ak- (a + c)k 2 > 0  

since II(~,ff)ll = R ~ k. 
Thus F(x,  y) satisfies P-S in R > k - 2e and has no critical points on k > 

R > k - 2 e .  

d) If R < k - 2e then F(z ,  y) < 0. 

In fact if R < k - 2e then 

F(x,  y) - 1~(~, Y) q- 7(~:, fl) - Z 
2 1 

= -~(A~ 4/3 + Bf~ "/~) - i + 7 1 2 b ~  - a~ ~ - e~ 21 

<_ ~ ( A  + B)k  4Is - L < O, 
q~ 
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by our choice of L. [] 

P r o p o s i t i o n  7.6 Assume that the conditions of Lemma 7.5 are satisfied, then 

¢ has two critical points in R > k. 

Proof. By (6.2) and our hypothesis, it is sufficient to prove that  the hypotheses 

of (6.2) are satisfied for F with a = 0, b = S, t = k -  2e, s = k and r(u) to be 

determined later, since by (7.5b) and (7.5d) the critical points of F that  we find 

must also be critical points of ¢. 

By (7.5a) and (7.5d), F satisfies P-S on F-l[a,oo) .  Since t is a constant 

function, t is continuous. By (7.5d) it also satisfies its required condition. The 

same is true for s, by (7.5c) and (7.25). As for r, by(7.5c) and (7.2c), since for 

R > k we have that  ¢(x, y) = F(x,  y) and 

2 + N 

< - K 1 R  2 "4- K2R 4/3 "4- K3 ~ -oo  

as R ~ oo, it is clearly possible to choose r continuous and satisfying its condi- 

tion. [] 

C o r o l l a r y  7.7 Assume that the conditions of Lemma Z5 are satisfied, then ¢ 

has three critical points and so problem I has 3 solutions. 

Proof. Evident from (7.3) and (7.6). [] 
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A b s t r a c t  

A previously derived algorithm for the analysis of the Hopf bifurcation in func- 

tional differential equations is extended, allowing the elementary approximation 

of an existence and stability - determining scalar bifurcation function. With 

the assistance of the symbolic manipulation program MACSYMA [5], [9] this 
algorithm is used to implement the algorithm and to investigate the nature of 

nongeneric IIopf bifurcations in scalar delay - difference equations. 

1 I n t r o d u c t i o n  

The practical application of the now well - understood theory of t topf bifur- 

cations in functional differential equations still poses many significant compu- 

tational issues. The thorough analysis of the bifurcation structures (including 

questions of stability and direction of bifurcation) for specific applications often 

requires a sizeable amount of computation. Even when a computer - assisted 

analysis is considered adequate, the selection of the appropriate technique is an 

important consideration. 

Over the last 15 years, many techniques have been developed to treat such 

problems [10]. Among them, three have been most extensively discussed in the 

literature. Specifically, we refer to the method of averaging [3] [4], the use of the 

Poincar~ normal form [8], and the method of Liapunov-Schmidt [13]. Of course, 

each of these methods must ultimately produce the same result when applied to 

a specific equation. However, the ease of application of each of these methods 

can vary significantly. 
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Our purpose in this paper is to report on the use of symbolic manipulation 
software in the implementation of the third of these methods. This method differs 

from the other two in that it does not require the approximation of the center 

manifold existing near criticality at the equilibrium point under consideration. 

Thus it appears to have an advantage when hand calculations are at tempted 

and, as we shall see, lends itself to a computationally efficient symbolic imple- 
mentation, as well. 

The specific technique to be considered here was introduced in [13]. A gen- 

eralized algorithm appeared in [14], and a FORTRAN - based implementation 

was developed in [1], [11], [2]. We consider here the use of symbolic - manip- 

ulation software in the extension of the algorithm of [14], and the application 

of this algorithm to a class of scalar delay - difference equations. The material 

presented on these two topics is based on the results of [6], where additionally 

a MACSYMA [5], [9] - based symbolic manipulation package (BIPACK) was 

designed for analyzing generic and third-order nongeneric scalar FDE. 

In the section to follow, the specific class of functional differential equations 

under consideration, and the technical assumptions required will be presented. 
Theorems 2.2 and 2.3 represent extensions of the results in [13] to the case of fifth 

order nongeneric systems. The need for such results is illustrated in [12] where 

within the class of scalar integro-differential equations, elementary necessary and 

sufficient conditions are derived for third order degeneracy. A corollary addresses 

the important case of systems with odd nonlinearities. Section 3 is devoted to 

the application of these results to scalar delay - difference equations. 

2 T h e  b i f u r c a t i o n  f u n c t i o n  

In this section, we begin by making assumptions which remain throughout this 

paper. We define C = C([-1,  0]: IR"), L(a)  : C --* IR n, and Y(a)  : C --~ IR" 
and consider the system of equations 

y(t) = L(~)yt + H(ot; Yt) (1) 

where L and H are continuous, and a is a parameter in some (Euclidean) space. 

For fixed a, we assume H(a; ¢) can be expressed in the following expansion 

7 

H(a;  ¢) = ~ Hj (gj)  + O(ll¢llS), (2) 
j=2 

where the Hi's,  j = 2 , . . . ,  7 are a-dependent, continuous, symmetric, j-linear 

forms taking values in IR n. By the term symmetric, we mean that  each Hj is 

invariant under a permutation of its j arguments. More precisely, we assume 

L and H are continuous in (a, ¢), and for fixed ~, H(c~; ¢) is at least 9 times 

continuously differentiable in ¢. As in [14], we assume that  for ¢ E C with 

derivatives ¢(J) e C,j  = 1, 2 , . . . ,  7, the functions L(a)¢ ,  Hi(a ;  ¢), and g(oq ¢) 

are C 7 functions of a. Such assumptions are not uncommon to applications, 
where often derivatives of all orders are present. 
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Observe that  y - 0 defines a steady state for (1). The linearized equation 

1)(t) = L(a)y, (3) 

has nontrivial solutions of the form y(t) = ~e at with ~ E C n if and only there is 

a nontrivial ~ satisfying the characteristic system 

0 = [:kI - L(a)eX']~ - A(a; A)~. (4) 

Assume for a near a0 (4) possesses a nontrivial solution with A = A(c~) such 

that  )~(ao) = iw,w 7 t O. As usual, we assume t h a t  A = iw is a simple root of 

detA(ao; A) = 0 and all other roots ( other than :t=iw ) have negative real parts. 

Define ~* = ~*(a) ¢ 0 to be any solution of~*(a)A(a;A(a))  = 0 for a near c~0, 

and for A near A(a), let 

= - ( 5 )  

where A ' =  0A/0A. See [13], [14] for details. 

Our primary goal is to provide computational means of resolving the struc- 

ture of Hopf bifurcations for (1) near criticality. The following proposition, 

proved in [13], asserts the existence of a scalar bifurcation function g(a,  c) that  

facilitates such a study. 

P r o p o s i t i o n  2.1 For w in a neighborhood of wo there exists a computable real- 
valued function g defined and C s in a neighborhood of (olo, O) whose zeros corre- 
spond in a 1-1 fashion with the small periodic solutions of (1) with period near 
2r/w.  Under this correspondence, the periodic solution of (I)  associated to a root 

c of g(a;.) has the form 

u( t ,  c, = + O(c2) ,  (6) 

(up to phase shift). Moreover, y(t) is orbitally asymptotically stable (unstable) 

if and only if c is stable (unstable) when viewed as an equilibrium of the scalar 
equation ~ = g(a; c). 

Essential to the application of this result to specific equations is the effective 

approximation of the scalar bifurcation function g. This issue is considered in 

[14], where an inductive approximation algorithm is derived. It is shown in that  

reference that  the small periodic solutions of (1) with periods 27r/v and c~ near 

a0 coincide with those of the (complex) scalar bifurcation equation 

0 = a (~ ;  u, c) (7) 

[2 , t /v  e-v'u~ • H(a; yu)du (8) 
1.J 

= - i ]c + J0 

= (A(a) - iv)c + M3(a; u)c 3 + Mh(w;v)c 5 + Mr(w; u)c 7 + ' " ,  (9) 

where y(t) = 2Re{c~o(t)} + ~,'~=2 Y(O(t) cl + . . .  for m < 8, is defined inductively 
according to the following algorithm: 
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1. The expansion y(t)(t) has the form 

y(I)(t) = Ai,le tuit + Az,l_2e (t-2)uit + .. .  + At,_te -lvit, 

where Atd = At,- j .  

2. yO)(t) = 2Re{~(t)} = Al,le ~i' + ftl,xe -~it, with Ax,1 = ¢(~) and ~(s) = 

¢(~)e ~'', 

3. Define [~- ] to be the linear map from C n to C given by 

TI 

~ . h =  ~ j . h j .  
j = l  

If, for l > 2, the coefficient of c t in 

l I - 1  

j=2  m = l  

is Y'~i Bi,j(e~; u)e j~it, then 

f A- l (a; j~ i )Bt , j (a;  ~,) for j ¢ + i ,  

Atd(~;v)  
( ~ - 1 ( ~ ; ~ i ) _  ~ [ ~ .  ])BI,,(~; ~) for j = 1. 

The singularity at A = A(a), in 

A_I(~ ;~)  ~ _ i  (~).~[(1 

is removable. In particular, for h E C n, and A near A(cr), we have the expansion 

1 
A - a ( a ; a ) h  ~ _ A(c~)~[~- h] = 

- [ ~ ' ( ~ ;  :~(~))d]~ - ~[~"(~; : ~ ( o 0 ) , , ] [ ~  • h]~ d 

+ [e- [~'(~; ~(~))e]~ + ~[~"(~;~(~))~1 [~'(~; ~(~))~]~ 

-}[~,,(~; ~(~))~]~ + {(1E~A"(~; ~))~])~ 

_ 1[~,~,,,(~; ~(~)),1 }[~. h]~] ~ - ~ ) )  + o((~- ~))~), 

where d ~ C" is any solution of 

~(~;  ~(~))d = h - ~a'(~(~))~[~ - h], 

and e ~ C n is any solution of 
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za(~; ~(4))e  = - ~ ' (4 ;  ~(4))d + ~ ' (4 ;  ~(4))~[&a'(4; ~(4))d] 

For details, see [14], where the first term in this expansion is derived. 
Implementation of this algorithm is obviously difficult to do by hand. We 

have choosen to perform the necessary details with the aid of the symbolic ma- 
nipulation software MACSYMA [5], [9]; see [6] for complete details. As a result, 
we obtain the following theorem, which represents an extension of Theorem 2.1 
[13], where the expansion through order 5 is presented. 

Theorem 2.2 Under the above hypotheses, there are ¢ > 0 and C 7 functions 
G(ot; c, v) (C -valued), y(t, o~; c, u) oRn-valued and -~- -periodic in t) defined for 
real c, Icl < ~, I~' - ~1 < ~, 114 - 4oll < c,  and t E IR such that (1) has a 2 f lu  
-periodic solution y(t) with lYl < ~, Iv - ~1 < ~, and 114 - 4011 < ¢ if and only if 
y(t) = y(t, 4; c, v) (up to phase shift) and (4, c, v) solves the bifurcation equation: 
G(4; c, v) = O. Moreover, y satisfies (6), G is odd in c and 

G(4; c, v) = [ a - i v ] c + M z ( a ;  v, ,~)cZ+Ms(a; v, ,~)c5+Mr(~; v, ~)c7+0(c9) ,  (10) 

where )t = ,~(4), M3(a; v, )~) = ~(a; ),). N3(c~; v), 

N3(a;v) -- 3H~(~2, ~) + 2H2(~,A2,~e 2vi') + 2H2(~, A2,0), (11) 

with T(s) = ~(4)e iv" for s <_ 0 and A2,2, A2,o the unique solutions of 

~a(4; 2~i)A~,2 = g ~ & ) ,  

A(a; 0)A~,o = 2H2(~, ~), 

respectively. 

Similarly, Ms(-; v, A) = g(-; A). gs ( , ;  v), where 

N~(4; v) =2Hg.(T, A4,0) + 2H2(~, A4,2e 2~i) + 2H2(A2,2e 2vi , -A3,1 e -~i)  

+ 2H2(A2,2e -2~i', A3,ae 3~i) + 2H2(A2,0, A3,1e ~i') 

+ 3H3(~ 2 , ~3,~e - ~ )  + 6Hz(~,  ~, A3,~e ~ ) 

+ 3H3(~ 2, Aa,ae aui') + 6Ha(~, A~,~e ~vi' , A~,o) 

+ 6H3(to, A2,ze ~vi" , A2,~e -9~i') + 3H3(to, (A~,o) ~) 

+ 12H4(~, ~,Az ,ue  ~vi') + 12H4(io~, ~, A~,0) 

+ 4H4(~ a, .4~,2e -2vi" ) + 10H~ (to 3, ~ ) ,  

with A3,3, Az,~,A4,~, A4,0 the unique solutions of 

Ll(a; 3vi)A3,3 = H3(~p 3) + 2H~(~, A~,~e ~ i )  
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1 
A3,I = d - [~A'(a; A(a))d]~ - 2[~A"(a; A(a))~]M3~ 

+ [?A'(< + [?a'(< 

- + 

where a i ,  .nu ,otution oy A(o,; A(~))a = Na - (A'~)Ma. e is any ,otution of 

A(a; A(a))e = -- A'(a; A(a))d + A'(a; A(a)){[~A'(a; A(a))d] 

and 
A i =-- (OiZl/OAi)(a; A(a)); i - 1, 2, . . .  

A(a; 2vi)A4,~ = 2H2(~o, Aaje ui') + 2II2(~, Aa,3e 3vi') + 2H~.(A2,2e 2"i' , A2,o) 

+ 6H3(~,, ~, A~,2e ~'i') + 3H~(~o2, A2,o) + 4H4(~03, ~), 

A(a; 0)A4,o = 2H~(~o, A a j e  -~i') + 2H~(~, Aa, le ~i') + H~((A2,o) ~) 

+ 2H2(A2,=e ~i" , .A2,=e -=ui') + 3Ha(~o =, ~,=,=e - ~ ' )  

+ 3H3(~ =, A2,ue =~i') + 6Ha(~o, ~b, A~,o) + 6H4(~2, ~=). 

Fi..Uu, M ~ ( . ;  ~, a) = ~ ( . ;  ~ ) .  N~( . ;  ~), ~ . . ~  . ~ .  = -o  . . d  ~ = 

NT(Oq u) =2H2(~, A6,2e 2~'i') + 2H2(~0, A6,o) + 2H2(A2,2e -2vi', A~,ae 3ui') 

+ 2H2(A2,o, As,le ui') + 2H2 (Aa,3e -3u/', A4,4e 4vi') 

q- 2H2( f[3,1e -ui" , A4,2e 2vi" ) -k 2H2 (Aa,1 e ~'/" , A4,o) 

+ 2H2(.A4,2e -~vi" , A3,3e 3ui') + 2H2(A~,le -vi" , A~,~e 2vi') 

+ 3H3(93 ~, As,3e 3~'i') + 6H3(~, ~, As,le "/') 

--]- 6H3(~, .A2,2e -2vi" , A4,4 e4vi') -1- 6H3 (~, -,42,o, A4,2 e2vi') 

+ 6Ha(~o, .42,2e -2ui" , A4,2e ~'i') + 6H3(~, A2,2e 2ui" , A4,o) 

+ 6H3(T, A2,o, A4,o) + 6H3(f12,2e -2vi" , A2,o, A3,3, e 3ui) 

+ 6H3(Az,ze -3~i, ~o, Aa,3, e 3"~) + 6H3(p, A3,~e -"i ,  Az,a, e 3"~) 

+ 3H3(~, (A3,teVi') 2) + 6H3(f12,2e -2~i" , A2,~e 2~i" , A3,1e ui') 

+ 3H3((A2,o)~,Aaje ~')  + 6H3(A3,1e -~i" , ~o, A3,te ~i) 

+ 3H3(f13,3e -3~i" , (A~,2e2~i') 2 ) + 6H3(A3,1e -vi" , A2,o, A~,2e 2ui') 

+ 6H3(f~4,2e -2~i" , ~, A2,2e 2ui') + 3H3(fts,~e -~i" , ~o ~) 

-J- 4H4((~) 3, A4,4e 4ui" ) -{- 12H4((95) 2 , ~o, A4,2e 2vi" ) 

+ 12H4(~, ~o~, A4,o) + 12H4((~) ~, A~,o, Aa,ae 3~i') 
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+ 24H4(~, ~, 22,~e - ~  , A3,3e ~"~) + ~2H~((~) s, As,~e ~ , A~,~e ~ )  

+ 24H4 (~, ~', A2,o, A3,1e ~'/') + 12H4(fts,2e svi" , 9~ s , A3,1 e vi') 

+ 12H4(~, A2,2e -~vi' , (As,2eS"i') s) + 12H4(~, (As,o) s , A2,se s~i" ) 

+ 24H4(fts,~e ~i' ,  ~o, As,o, As,se s~i') + 12H4 (z/,3,3e 3~i', ~o s, A~,~e ~vi') 

+ 24H4(~, .43,te ui" , ~o, A~,se s~i) + 4H4 (~o, (A~,o) 3) 

+ l~g4(23,ae -"~, (~)~, A~,o) + 4H.(A~ae -s"~, (~)~) 
+ 20Hs (~ 3, ~o, A~,3) + 30H~ (9~ ~, ~o ~, A3,ie vi') 

+ 10Hs(~ 3 , (As,~esui') s) + 60Hs(~ s, ~o, A2,o, A~,~e s"i" ) 

+ 60H~(~, ~is,se - s ~  , ~s, A~,~F.~.) + 30H~(~, V~, (A~,o) s) 

+ 20H~(fi.s,~e-su~., ~p3, As,o) + 5H~(ft~,~e -~i" , ~o 4) 

+ 20H5(~,/13,~ e -~i' , ~o 3 ) + 60H6(~ 3, ~ ,  A~9.e s~i" ) 

+ 60H6 ( ~ ,  ~3, A~,o) + 60H6(~, 9~ 4, fl~s,se -sui)  + 35H7(~ 3, ~o4). 

In addition, A4,4, As j ,  A~,a, A6,o, and A6,2 are unique solutions of 

A(a; 4vi)A4,4 = 2H~(~o, A3,33ui.) + Hs((As,seS~i') s) 

+ H3(~o ~, A2,~e s ~ )  + g~(~4), 
1 

As,~ = f -  [~A']]~ -- fi[~A"~IM~, 

where f is any solution of A(c~; A(ot))f = Ns - (A'~)Ms, 

A(c~; 3ui)As,3 =2Hs(~, A4,4e 4vi') -'k 2H2 (~o, A4,2e 2ui') 

+ 2H2(As,o, A3,3e 3Vi) + 2H2(A2,2e s~i" , A3,1e ui') 

+ 6Ha(~, ¢,, A3,3e 3~i') + 3Ha(~o 2, A3,1e ui') 

+ 3Ha(~, (As,2es~i') s) + 6H3(~', A2,o, A2,2e s~i') 

+ 12H4(~, ~o s, A~,~e s~i') + 4H4(~o 3, As,o) + 5H5 (~, ~4), 

A(a; 0)A6,o = 2H2 (~, As,le ~i') + 2H2 (A~,2e -2~i" , A4,2e 2vi" ) 

+ 2H2(A2,o, A4,o) -4- 2H2(A3,3e -3vi', A3,3e 3vi') 

+ 2H2(A3,1 e -ui" , Aa, xe vi') + 2Hg.(.A4,2e -2ui" , A2,2e 2"i" ) 

+ 2H2 (fi.sj e -ui" , ~,) + 3H3(~ 2, A4,2e 2~i') 

+ 6H3(~, ~o, A4,o) + 6Ha(~, A2,2e -2~i" , Aa,ae 3~i') 

+ 6H3(~, A~,o, A3je  ui') + 6H3(fts,2e -2ui" , ~, A3,1e ~/') 

+ 6H3(f~2,2e -2ui" , As,o, A2,se s~i') + 6H3(f~3,3e -3ui" , ~, A2,2e 2vi" ) 

-k 6H3(~,f~3,1e-Ui',A2,2e 2ui') -k H3((a2,o) 3) 

+ 6H3(ft3,xe -ui" , ~o, A2,o) + 3H3(f14,2e -2ui" , ~o 2) 

+ 4H4(~ 3, A3,3e 3ui" ) + 12H4(~ 2 , ~P, A3,1e ui" ) 

+ 12H4(9~ s, As,o, A2,se ~ i  ) + 24H4(~, A~,2e -~i"  , ~, A2,2e ~i" ) 
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+ 12H4(~, ~o, (A~,o) ~) + 12H4(fi.~,2e -~i" , ~ou, A~,o) 

+ 4H~(.~a,ae-a"~', ~o a) + 12H4(~,.~3,~e-~', ~ ~) 

+ 20H~ (~ 3, ~o, A~,~e ~ui) + 30Ha (~ u , to ~, A~,o) 

+ 20H~(~, A~,~e -~"~, ~3) + 20H~(~3, ~3), 

A(a; 2vi)As,2 = 2H2(~, As,3e 3~'i') + 2H2 (~, As,le ~'i" ) 

+ 2H2(fi~2,2e -2ui , A4,4e 4Vi') + 2H2 (A2,o, A4,2c 2vi') 

+ 2H2(A2,2e 2"i" , A4,o) + 2H2(.A3,1e -vi" , A3,3e 3vi') 

+ H2((A3,1eVi') 2) + 3H3(~2,A4,4e 4ui') 

+ 6H3(~, ~, A4,2e  2vi" , ) .-[- 3H3(~ 2, fiJ-4,0) 
+ 6H3(#, A~,o, Aa,ae 3vi" ) + 6H3(.A2,2e -2vi" , ~p, A3,ae 3ui') 

+ 6Ha(~, A2,2e ~ , A3,1e ~i) + 6H3(A2,o, ~, Aa,~e ~)  

+ 6H3(~, A3,1e - ~ ,  A2,2e 2~) + 3H3((A2,o) 2, A2,2e 2~) 
+ 3Ita((A2,2e2"i') 2, .A2,u e -2~I') + 12H4(~ ~, ~,A3,3c 3Vi') 

+ 12H~(~, ~ ,  A~,~e ~' ) + ¢Y~(~ ~ , (A~,~e=~) ~) 
+ 24H4 (~5, ~o, A~,o, A~,2e ~ui) + 12H4(A2,~e -~ui , ~p~, A~,~e ~ui') 

+ 6H4(~2, (A~,o)~) + 4H4(.~3,~e-,,i., ¢p3) 

+ ~og~(~, ~ ,  A~,o) + 30H~(~ :, ~ ,  A:,~e ~ '  ) 

+ 5y~(fi~:,2e-~Ui-, ~04) + 15He(~2, ~,4). 

Assuming A(ct) = #(c 0 + iw (a), the real and imaginary parts of G(cq c, v) = 0 

become 

0 ----/t(c0c + Re{M3(c~; u, A)}c 3 + Re{Ms(c~; u, A)}c s 

+ Re{MT(cq y, A)}c 7 + O(c9), 

v = w(oe) + Im{M3(c~; u, A)}c 2 + Im{Ms(oe; v, A)}c 4 

+ Im{MT(Oe; v, A)}c 6 + O(cS), 

(12) 

(13) 

for c #  0. 

The following theorem (proved by iteration on equation (13) and elimination 
of variable v) relates the real bifurcation function g of Proposition 2.1 to the 
complex bifurcation function G of the previous theorem. 

T h e o r e m  2.3 The reduced bifurcation equation for higher order bifurcations is 
given by 

0 = g(~; c) =/~(a)c + K3(~)c 3 + Ks(~)c s + K7((~)c 7 + 0(c9), (14) 

where 
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and 

g 3 _- 

K~ = 

K7 : 

Re{M~(~; ~(~), ~(~))}, 

0 
Re{Ms(c~; w(a), A(a))} + Re{~--~v (M3(a; v, A(a)))lv=~(~)} - 

0 
Re{MT(a; w(a), A(c~))} + Re{~-~v (Ms(a; v, A(a)))lv=~(a) } • 

0 M + R e { ~ (  3(oq ~, A(c~)))l~,=~(a)} • w4 

1 O~ 
+ 7 Re{ b-~ (M~(°~; ~', "~(a)))l~=~(-)}" (w~) ~, 

W2~ 

W2 

w2 =Im{M3(oq w(cr), A(ot))}, 

w4 =Im{Ms(oG w(cr), A(~))} 

+ Im{~v (M3(c~; v, A(~)))l~=w(a) } • Im{M3(a; w(a), A(~))}. 
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The analysis of a particular equation then rests on identifying the critical 

parameter s0 and the associated characteristic values and vectors, computing 
the terms in the expansion of the bifurcation function G in Theorem 2.2, then 
the evaluation of the expansion of g from the previous theorem. See [6] for 
a MACSYMA - based implemetation of these formulas for scalar functional 
differential equations. A FORTRAN -based approach (numerical evaluation of 
K3 and Ks) for systems is described in [2]. Only under very special circumstances 
can one hope to apply such a lengthy algorithm by hand calculation. However, 
in some important situations, many of the higher order terms Hj are identically 
zero causing significant simplifications. One such situation is that of equations 

with odd nonlinearities. 

Corol lary  2.4 Under the above hypotheses, if H is odd there are ~ > 0 and C 7 
function, G(~; c, ~) (¢ -valued), y(t,,~; c, ~') ORn-valued and ~" -periodic in O -Z- 

defined for ,'eat c, Icl < ~, I v - ~ l  < e, I1~-~oll < ~, and t ~ ~ such that (I) has 

a 27r/v -periodic solution y(t) with lYl < e, I" -~1  < e, and I1~-~011 < ~ if and 
only ff y(t)  = y(t, ,~; c, v) (up to phase shift) and (o,, ~, ~,) solves the bif,,rcation 

equation: G(a;e, v) = 0. Moreover, relation (6} holds, G is odd in c, and 

3 5 7" 9 G(a;c,u) = D,-iu]c+M3(~;v,)Oc +Md~;v,a)c +MT(~;v,a)c +O(c ), (15) 

where a = A(a), Mz(c~; v, A) = ~(a; A)- N3(c~; v), 

g3(~; . )  - 3H3(~ 2, ~), (16) 

with ~,(s) = ~(,~)e ~'  for s < O. Simila,'ly, M~(~;. ,  a) = i(~; a). g~(~; ~), where 

Ns(ot; v) 3H3(~2, - -vl. = A3,1e ) + 6H3(~0, Cp, A3,1e ~'i) 

+ 3113[~'-2, Aa,3 e3Ui'~] + 10Hs(~P3, @2), 
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with A3,3, A3,1 the unique solutions of 

A(o~; 3vi)Aa,3 =H3(~o 3) 

1 [~,a"(,~; ;~(,~))~]/3~ 
A3,1 = d -  [~A'(a; ~(a))d]~ - 

[~ _ [~A'(.; ~(~))e]~ + ~[~"(~; ~(~))~1 [~A'(~; ~(~))~ + 

where d and e are any solutions of 

z~(~; ~(~))~ = -z~'(~;,~(~))a + z~'(~; ~(,~))([~z~'(~; ~(~))~ 

1 [~A"(~; a(~))~]a'(~; ~(~))~} i ~  + (_1~,,(~;~(~))~ + ~ 

and A '  = (OiA/OAi)(a;~(a));i  = 1,2,3. Likewise, Me(a;v ,  2) = ~(o~;)0 " 

N7(~;v), where at a : C~o and v : w 

NT(ot; v) = 3Ha(~ ~, A~,3e 3~i') + 3H3(~, ~o, As,~e ~i') 

-F 6 H 3 ( . ~ 3 , a e  -3v i"  , ~O , A3,3, e 3ui" ) -F 6H3(~, .Aa, l  e - v i "  , A3,3, e 3vi" ) 

-J- 3H3(~, (Aa,levi') 2) + 6H3(A3,1e -ui" , ~o, Aa, levi') 

+ 3H3(As,~e -ui" , ~o ~) + 20H~(@ 3 , ~o, A3,3) 

+ 30H5(@ 2 , to 2 , Aa,~e ui') + 5H~(A3,3e -3~/" , ~o 4) 

+ 20H~(@, fla,le -vi" , to 3) + 35H7(@ 3, ~4), 

and 
e 3vi .  x A(a; 3vi)As,z = 6H3(~, ~, -,'13,3 j 

q_ 3H3(~02, ui. A3,1e ) + 5Hs(~5,~a4), 

A5,1 = f -  [ ~ A ' f ] ~ -  I[~A't~]Ms~ , 

where f is any solution of A(~; a(~))f = lV5 - (A'~)Ms. 

Example 2.5 The ease of integrodifferential equations 

f 1 

where g(y) = y + h2y 2 + ha~  + . . .  illustrates the type of results obtainable, 

and their complexity. The previous results imply that K3(~;w) = el(O~,w)h3 + 
e2(eqw)h~, with el and e2 computable functions of the bifurcation parameters 
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Ot ---- (0~1,0/2) and frequency w. (See [12] for an examination of the generic case in 

greater detail, and a derivation of conditions under which K3 = 0 for all choices 

of h2 and h3.) Similarly, one sees that  K5 will be a linear combination of the coef- 

ficient combinations hs, h2h4, hah29, h~, and h~, while K7 will be a linear combi- 

nation of the eleven terms hT, hsh3, hsh~, h4h2h3, h4h~, h~, hah2,2 2 hi, hah 4, 
h~ and h2h6. These reduce greatly in the case of odd nonlinearities since 

h2 = h4 = h6 = 0. 

3 S c a l a r  d e l a y - d i f f e r e n c e  e q u a t i o n s  

In this final section we will consider the scalar delay difference equation 

~(t) = f (x( t ) ,  x ( t -  1)) 

= ax(t) + ~x(t  - 1) + h(x(t), x(t - 1)) 

(17) 

where h(x, y) = a2x2+b2xy+c~y2+aaxa+bzx2y+ca~:y~+day3+.., is assumed to 

be smooth. Our goal is to illustrate the results of the previous section and provide 

insight into the nongeneric bifurcation structure for this important equation. 

The analysis of the linearized equation k(t) = , z ( t )  + flz(t - 1) is found in 

[7]. With A(a,/~; $) = $ - (~ - /~e  -x one easily identifies the line cr +/3  = 0 to 

characterize those parameter values at which $ = 0 is a characteristic root. Simi- 

larly, substituting $ = iw into the characteristic equation and separating the real 

and imaginary parts leads to the parametrization j3 = f~(w) -- -w/s in(w);  , = 

~(w) - -/~(w)cos(w) characterizing those parameter values along which there 

are (simple) imaginary root pairs ), = -l-iw; w > 0. The interval 0 < w < a" gen- 

erates the remaining boundary of the region 12_ of parameter values at which all 

characteristic roots have negative real parts. This region contains the negative 

half-axis a < 0, f / =  0, and is pictured in Figure 5.1 (page 109) of [7] subject to 

the elementary change of variables a = - a ,  b = -/~, and r = 1.. See Section 2 of 

[12] for generalizations. 

Along the imaginary root curve the usual transversality criteria are easy 

to verify, and at (5(w), fl(w)) all characteristic roots other that  ~ = q-iw have 

negative real parts. The representation of the higher order terms h(x(t), x ( t -  1)) 

in terms of symmetric, multilinear functionals is trivial, allowing one to apply 

Theorems 2.2 and 2.3 directly. The generic bifurcation constant K3 = Kz(w) 

with ~ = ~(w), j3 = ~(w) is seen to take the form 

K3(w) =co o2(w)a  + ca b (w)a2b2 + Cb,b,(W)b  

+ c..2(w)a2c  + + 

+ + + + cd (w)d  

where by direct (but symbolically assisted) computation 
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eaa(W ) : 

Cba(00 ) : 

Cea (00) : 

Caaaa (00) : 

Ca2b2(00 ) = 

Cb2b~ (00) --~ 

Cb.,c., (W ) = 

t o . d o 0 )  = 

= 

where 

3 sin(00)(sin(00) - 00 cos (w) ) /D l (W)  

sin(w)(3 cos(w) sin(w) - 2w cos(w) 2 - w ) / D l ( W )  

( - 3 w  cos(w)sin(w) - 2 cos(00) 4 + cos(00) 2 + 1)/D1(00) 

3 sin(00)(cos(00) sin(00) - 00)/D1(00) 

2(cos(00) + 1)[3(2 cos(w) + 3) sin(w) 

- 00(cos(w) + 2)(4 cos(w) + 1)]/D2(00) 

(cos(00) + 1)[3(2 cos(w) + 3)(3 cos(w) + 1) sin(w) 

- w(8 cos(w) 3 + 26 cos(w) 2 + 19 cos(w) + 7 ) ] /D2@)  

(cos(00) + 1)2[(4cos(00) 2 + 10 cos(00) + 1) sin(00) 

- 00(8 cos(00) 2 + 4 cos(00) + 3)1/D2(00) 

- (cos(00) + 1)[(S ¢O8(00) 4 -- 8 ¢OS(00) 3 

- 32 cos(00) 2 - 19 cos(00) - 9) sin(00) 

- 00(4 cos(00) 3 - 20 cos(00) 2 - 37 cos(w) - 7)]/D2(00) 

- 2(cos(w) + 1)[(4 cos(w) 3 - 4 cos(00) 2 - 13 cos(w) - 2)sin(w) 

- 00(2 cos(w) 2 - 6 cos(00) - 11)]/D2(00) 

2(cos(w) + 1)213(2 cos(w) + 3)sin(00) - 00(8 cos(00) + 7)]/D2(00) 

D1(00) = sin(w) 2 - 200 cos(00) sin(00) + 00 2 

D2(w) = 00(4 cos(w) + 5)(sin(00) 2 - 2w cos(w)sin(w) + w2). 

Along the curve 0 < 00 < ~r the scalar equat ion ~ = / z c  + K3(00)c 3 completely 

characterizes the generic Hopf  bifurcat ion s t ruc ture  of the equat ion (3.1). For 

example,  as the coefficients ea3(W) > 0 and ed3(00) < 0 for w in tha t  interval, 

increases in the corresponding coefficients aa and d3 are seen to have destabilizing 

and stabilizing effects, respectively, on the equil ibrium x = 0 at criticality, as 

well as on nearby Hopf  bifurcations.  

The  special case 00 = lr/2 is of par t icular  impor tance .  Wi th  a = 0 and 

fl = -7 r /2  one computes  

K 3 ( r / 2 )  = 212(c3 + 3a3) - 7r(b3 + 3d3)]/Qr 2 + 4) 

+ 4[4(9 - 7r)a~ + (2 - 37r)b~ + 2(4 - Xlrr)c 2 

+ ( i s  - 7 )(a262 + 2.2c2 + 2 + 4)) 

This  extends  Example  4.1 of  [13]. Again the effects of the coefficients 

a2, b 2 , . . . ,  d3 on the stabil i ty of Hopf  bifurcations can be easily deduced. Where  

Ka(00) = 0 (a cone in (a2, b2, c2) space),  one must  compute  (at  least) K5(00) to 

fully unders tand  the bifurcat ion s t ruc ture  for (17). This  can be accomplished 

symbol ica l ly /numerica l ly  wi thout  serious difficulty. We il lustrate this point  by 

considering the quadrat ic  delay difference equat ion 

i~(t) = a x ( t )  + f lx( t  - 1) + a2x2(t)  + b2x( t )x( t  - 1) + c2x2(t - 1). (19) 
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For such an equation, one might consider asking an analogue of Hilbert 's  16 ~h 

Problem: How many  simultaneous periodic orbits can this equation support?  

While this question is clearly difficult, our results of Section 2 shed light on 

the number  of small  periodic orbits that  can be created via Hopf bifurcation at 

X ~ 0 .  

Using the quadratic nature  of (19), we can normalize the coefficients of the 

higher order terms as a 2 = c o s ( C )  , b 2 = sin(C)sin(/9) and c2 = sin(C)cos(/9), 

w i t h 0  < ¢ <  ~" _ _ _ _ y ,  0 < 17 < 2 r  now defining our parameter  space (w fixed). An 

examination of the results of the previous section shows that  the K5 and K7 

are homogeoneous polynomials of degree 4 and 8, respectively, in the variables 

a2, b2, c2, the coefficients of these polynomials again being functions of w. As 

these polynomials and their coefficients are quite complicated we will restrict 

our at tention to specific selections for w, and identify the curves K5 = 0, K7 = 0 

by numerical evaluation. 

Figure 3.1 depicts the situation at w = Ir/2. Each of the coefficients 

K3, K5, K7 are observed to be positive for ¢ = 0 (corresponding to a2 = 

1,b2 = c2 = 0). A careful examination of these curves reveals that  there are 

no simultaneous solutions of K3 = K5 = K7 = 0 other than the trivial case 

a2 = b2 = c2 = 0. (The apparent  simultaneous zero near ¢ = .9,/7 = 1.5 is an ar- 

tifact of the low graphics resolution and large scale). Thus K3 = K5 = 0 implies 

K7 ¢ 0 and consequently at w = 7r/2 the complete Hopf bifurcation structure 

for (17) can be described by the normal equation ~ = pc + K3c 3 + Ksc  5 + K7c 7 

with p, K3, K5 ,~ 0; K7 ¢ 0. We conclude that  the equation 

~(t) = fix(t - 1) + a2x2(t)  + b2~:(t)x(t - 1) + c2z2(t - 1). (20) 

for fi ~ -7r /2  can support  at most  three small periodic solution families bifur- 

cating f rom z = 0. 

A similar numerical analysis at other selected values of w suggests this be- 

havior to be generic for (19). However, by an examination of the crossing orders 

of the curves K i = 0 ; j  = 3 ,5 ,7  and observing their apparent  continuity in w, 

we are lead to conclude the existence of at least one value of w in the inter- 

val (27r/3, 37r/4) at which Ka = Ks = KT = 0 nontrivially. At such a value, a 

complete resolution of the Hopf  bifurcation structure for (19) would require (at 

least) the computat ion of Kg. Such a computation,  while theoretically within 

the scope of the algorithm of [14], would be a nontrivial task likely requiring 

careful parti t ioning of the calculations and hundreds of hours of cpu time on a 

current SUN or VAX-like workstation. 

See [6] where Corollary 2.4 is used to derive analogous computat ions for 

K3, K5 and K7 for (17) when h(z(t) ,  x(t - 1)) is assumed to be odd. 
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Consider the differential equation 

O(t) =/ ( t ,O( t ) ) ,  t ~ R, (,) 

where f : R × R ---+ R is continuous, T periodic with respect to the first variable 

and 2rr-periodic with respect to the second one. Because of the 2rr-periodicity of 

f with respect to 0, (*) can be regarded as a second order differential equation 

on a circle S 1. It is in fact the motion equation of the forced planar pendulum 

(without friction). Tha t  is, a mass point (of mass one) constrained on a circle 

(by a weightless rigid rod, for example) and acted on by a T-periodic (normal 

to the rod) force f .  Clearly, a solution 0(.) of (*) is a forced oscillation (i.e., a 

periodic solution on S 1 of the same period as that of the forcing term) if and 

only if it satisfies the periodic boundary conditions; 

O.(T) - 0 .(0)  = 2 k r r ,  f o r  some k E Z 

O(T) O(O) = O. 

It is known that  (*) may not have forced oscillations, unless f satisfies some 

suitable assumptions. To see this observe that any non-vanishing autonomous 

tangent vector field on S 1 may be regarded as a periodic forcing term of any 

arbitrary period. Clearly, in this case, there are no periodic oscillations, since 

the energy of any solution of the motion equation is unbounded as t --+ +co.  For 

an extensive survey paper on the forced ordinary pendulum we recommend [6]. 

The above argument, however, does not work for the spherical pendulum. 

In fact, in this case the constraint is the 2-dimensional sphere S 2 and, as a 

consequence of the Poincar~-Hopf theorem, any tangent vector field on the sphere 

vanishes somewhere. So one gets equilibrium points, which can be regarded, of 

course, as periodic solutions (of arbitrary period). 

In [4] we made the conjecture that the spherical pendulum (or, more gen- 

erally, a constrained system, whose configuration space is a compact smooth 

manifold with nonzero Euler-Poincar4 characteristic) admits forced oscillations 

even in the non-autonomous ease, i.e., when it is excited on by a time periodic 
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force. In [4], and independently in [2] with completely different methods, it has 

been proved that if the coefficient of friction is non-zero than the forced spherical 

pendulum (or more generally, a compact constrained system with nonzero Euler- 

Poincard characteristic) does have forced oscillations. Moreover, in [2] V. Benci 

and M. Degiovanni proved that in the case when the exciting force is sufficiently 

small the system admits forced oscillations (even in the frictionless case). An- 

other interesting result related to this argument has been obtained by V. Benci 

in [1], where he proved the existence of infinitely many forced oscillations for 

a system whose constraint is a smooth manifold with finite fundamental group 

(recall that 7r1(S ~) is trivial), provided that the force admits a time periodic 

Lagrangian satisfying certain physically reasonable assumptions. 

Our aim here is to prove that the forced spherical pendulum has forced 

oscillations even in the frictionless case, in spite of the fact that, because of 

the presence of closed geodesics, a priori estimates for the speed of the forced 

oscillations cannot be established. 

A crucial idea for our proof is to use the concept of the classical winding 

number in order to assign, in a continuous and canonical way, to any periodic 

orbit with sufficiently high speed, an integer, which, roughly speaking, counts 

the number of rotations the mass point makes in a subset of the sphere obtained 

by removing two appropriate antipodal points (which depend only on the given 

orbit). To get the proof, this idea is combined with a global (Rabinowitz type) 

bifurcation result for parametrized forced constrained systems recently obtained 

by the authors in [5]. 

We point out that the concept of winding number has been recently and 

successfully used in a joint interesting paper by A. Capietto, J. Mawhin and F. 

Zanolin in order to obtain existence results and information about the structure 

of the set of solutions of a parametrized forced first order system in R n (see [3]). 

Their integer, however, depends on the choice of a two dimensional subspace 

of I t"  and indubitably the strong geometric properties of the sphere cannot be 

used in that general case. 

In what follows the inner product of two vectors v and w in R 3 will be 

denoted by (v, w), the vector product by v x w and Iv[ will stand for the euclidean 

norm of v (i.e. = • 

Consider a (frictionless) forced spherical pendulum, that is a point of mass m 

suspended by a rigid weightless rod of length R and acted on by a time-periodic 

force which we assume to include the force of gravity. The configuration space 

of this problem is the two-dimensional sphere 

S = {q ~ R 3 :  Iql = R}. 

The motion of this constrained system is described by the following second 

order differential equation on S 

m~(t) + m(l&(t)12/n2)x(t)  = f ( t , x ( t ) ) ,  t ~ I t ,  x(t)  ~ S (1) 

where f : R x S ~ It3 is a T-periodic (T > 0) continuous forcing term which 

may be assumed to be orthogonal to the rod (just replace f ( t ,  q) with f ( t ,  q) - 
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((q, f ( t ,  q))/R~)q, if necessary). The term r(q, v) = m(]vl~/R2)q is the reactive 
force (or force of constraint) at q • S corresponding to the velocity v • TqS, 
where 

TqS = {v • I t a :  (q, v) = O} 

denotes the tangent space of S at q. 

T h e o r e m  1. The equation (1) admits a forced oscillation. 

The proof will make use of Theorem 2 below, which is a special case of 

a global bifurcation result recently obtained by the authors in [5] in the more 

general context of a constrained system whose configuration space is a compact 

boundaryless manifold with nonzero Euler-Poincar6 characteristic. 

In order to state Theorem 2 we need some preliminaries. 

Consider in S the parametrized motion equation 

m~(t) + m(l~(t)12/R2)x(t) = Af(t, x(t)), t • It ,  A > 0 (2) 

Let C~(S) denote the metric subspace of the Banach space (C~(R3),  I1" II1) 

of all the T-periodic C 1 maps x :  I t  ---* S. An element (,~, x) • [0, oo) x C~(S) will 

be called a solution pair of (2) provided that x is a solution of (2) corresponding 

to ~. 

Let X denote the subset of [0,oc) x C~(S) of all the solution pairs of (2) 

and observe that,  because of Ascoli's theorem, X is a locally compact closed set. 

Clearly, any element q • S is an equilibrium point of (2) corresponding to the 

value )~ -- 0 of the parameter.  So, S can be considered as a subset of X just  

taking the embedding which assigns to any q • S the trivial solution pair (0, q). 

We shall call S the trivial-solution's manifold of (2). A nontrivial solution pair 

will be an element of X \ S .  
We observe that  not all the solution pairs of the form (0, x) are trivial. In 

fact, there are infinitely many T-periodic solutions of the inertial equation 

m~(t) + m(l~(t)121R2)x(t) = 0 

spinning along any given maximal circle of S (necessarily, with constant speed 

u = 2krR/T,  k = 1 ,2 , . . . ) .  Consequently, the forced oscillations of (2) are not a 

priori bounded in the C 1 norm when A ranges in the interval [0, 1]. This makes 

the classical continuation methods hard to be applied in this situation. 

T h e o r e m  2 The parametrized equation (2) admits an unbounded connected 
branch of nontrivial solution pairs whose closure meets the trivial solulion's man- 
ifold S C [0, ~ )  x C~(S). 

The following two lemmas provides some inequalities directly involving the 

mechanics of the considered motion and will he crucial to prove our result. 

L e m m a  1 Let x : R ---* S be a T-periodic solution of (2) corresponding to a 
given )~ > O. Let u(t) --  I~(t)l  and F -- m a x { I f ( t ,  q)l : t • R ,  q • S } .  Then the 
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norm of the momentum vector p(t) = m~(t) is a Lipschitz function with constant 

AF. So, in particular, for any tl,t2 E R,  one has 

mlu(t2) - u(tx)l < AFT. (3) 

Proof. Since x(.) satisfies the differential equation (2), if u(t) # O, one has 

mid(t) = m(~(t), ~(t))/u(t) = (k(t), At(t, x)))/u(t). 

Thus, Im/,(t)l < AF for all t ~ It such that u(t) ¢ O. 

Now, let tl,t2 E t t  with tl  < t2. If u(t) # 0 for all t E (tl , t2),  then the 

inequality (3) is obvious. Otherwise, without loss of generality, we may assume 

u(tl)  < u(t2) and u(t2) > 0. Let c = max{t E [tl,t2] : u(t) = 0}. Then, since the 

function u is nonnegative, one obtains 

mlu(t2) - u(h) l  < mu(t2) = m(u(t2) - u(c)) < AFIt2 - c] < AFIt2 - ill. 

[] 

L e m m a  2 Let z(.), u(.), F be as in Lemma 1. Assume that mu(t) > AFT for 
each t E It. Take r E I t  and let a be the straight line through the origin spanned 
and oriented by the vector product x(r) x ~(r). Denote by p(t) the distance of 
z(t) from the a-axis. Then, for any t E R the angular momentum M~,(t) with 
respect to the a-axis is such that 

(mu(r) - AFT)R <_ Ma(t) < (mu(r)  + AFT)R (4) 

Moreover, the distance p(t) of z(t) from the a-axis satisfies the inequality 

p(t) >_ 

So, in particular z(.) lies in S \a .  

mu(r) - AFT 
mu(T)¥ygfR. (5) 

Proof. Since Ma(t) is the projection of the angular momentum z(t) x m~(t) onto 

the a-axis, one has 

and 

Moreover, 

M,~(t) < mp(t)u(t), for all t E R, 

M~(r) = mRu(r).  

IM~(t)l _< Ap(t)lf(t, x(t))l  _< AFR.  

Therefore, for any t E It ,  

IM~(O - M~O')I = I M~(s)es l  _< AFRT, 

so that  
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(mu( r )  - AFT)R < M~(t) < (mu(r )  + XFT)R. 

Now, by applying the inequality (3) to t and T, one obtains 

(mu(v) - AFT)R < M~,(t) < mp(t)u(t) < (mu(v) + XFT)p(t) 

which implies 

mu(r) - AFT 
p(t) >_ mu(rl ¥-~-~R.  

[] 

The following lemma turns out to be useful in the proof of our existence 

result (see [51). 

L e m r a a  3 Let C be an unbounded closed connected subset of a metric space Y .  
Assume that any bounded subset of C is relatively compact. I f  Yo is a bounded 
closed subset of Y which intersects C, then there exists an unbounded connected 
subset C of C\Yo whose closure intersects Yo. 

We are now in a position to give the 

Proof (of Theorem 1). Let us associate to equation (1) the parametrized forced 

equation on S 

m~:(t)+m(lk( t)12/R2)x(t)=Af( t ,z( t ) ) ,  t E R ,  A_>O. (2) 

By Theorem 2, the equation (2) admits an unbounded branch 2? C [0, c¢ )xC~(S)  

of nontrivial solution pairs (A, x) of (2) whose closure intersects S. We will prove 

Theorem 1 by showing that  Z' must contain a solution of the form (1, x). Suppose 

not. Thus E is contained in [0, 1) x C~(S). So, necessarily, its projection onto 

C~(S) is unbounded. Let us prove that this leads us to a contradiction. 

We say that  a curve x E CI(S)  is admissible if, for any 7",t E R one has 

~(r)  ¢ 0 and p(t) > 0, where p(t) denotes the distance of x(t) from the axis 

through the origin spanned by the vector product  X(r) X k(r ) .  It is evident that  

the set of all the admissible curves is an open subset of C~(S). We will assign, in 

a continuous manner, an integer to any admissible curve and we will show that  

forced oscillations with sufficiently high energy are admissible. 

Observe first that ,  because of the T-periodicity, any curve x E C~(S) can be 

considered as defined on the unit circle S 1 of the complex plane by identifying t 

with exp(27rit/T). Moreover, if x is admissible and r E S 1, we have 

( y ( r ) ,  x ( t ) )  2 + ( z ( r ) ,  x ( t ) )  2 = p( t )  2 > 0, for all t e S 1. 

where ~( r ) / l~( r ) l  and z(v) = ~(~)/ l~(r) l .  So, we may consider the map z~ : 
S 1 ---* S t given by 

x~(t) = (y(r),x(t)) +i((z(r),z(t)) 
V(y(r), ~(t))2 + (z(r), ~(t))~" 
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Clearly, the Brouwer degree deg(z~) of x~, because of the homotopy property, is 

independent of r )  (see e.g., [7]). Hence the integer i(z) = deg(x~) is well defined 

and will be called the index of the admissible curve z. Again for the homotopy 

property of the degree, the index is a locally constant function defined on the 

open set of all the admissible curves. Moreover, it is well known that  the degree 

of a map a : S 1 ---, S 1 coincides with the winding number of the closed curve cr 

around the origin. So, since Xr is C 1, one has 

= ¢ ( t ) a t ,  

where ¢(t) = arg(zr(t)). 
Now, since S is bounded, Lemma 1 implies the existence of a constant M > 0 

with the property that  if z(.) is a forced oscillation of (2), with ]]zlh > M and 

corresponding to some A • [0, 1), then ml~(t)] > FT for all t • S 1. So, by 

Lemma 2, the curve z(-) is admissible. To evaluate i(z), observe that ,  given 

r • S 1, the rate of chanse of the angle ¢(t) = arg(z~(t)) is given, with the 

notation of Lemma 2, by ¢(t) = Ma(t)/mp2(t). Hence, from (4) one obtains 

¢(t) > ( m [ ~ ( r ) [ -  AFT)R m [ ~ ( r ) [ -  FT 
- mp2(t) > mR ' 

so that  

i(z) > (T/2rr)mliC(rm, R~I- FT 

Consequently, since S is bounded and v arbitrary, one can find two constants 

a, b > 0 such that  the inequality 

i(z) > allzlla - b (6) 

holds for any forced oscillation z of (2) corresponding to some A < 1, provided 

that  II~lh > M. 
Let us now go back to our branch 27. Denote by C the closure of 27 in the 

space Y = [0, 1] x C~(S) and set 

Y0 = • v :  Ilxlla _< M}. 

Ascoli's theorem shows that  any element (A,x) E C is still a solution pair and 

any bounded subset of C is relatively compact in Y. Moreover, the intersection 

CNYo is nonempty, since, by Theorem 2, C meets the subset S of 310. Therefore 

Lemma 3 applies to get an unbounded connected subset C of C\Yo. It is clear, 

by the definition of Y0, that  any forced oscillation x in the projection F of 

onto C,~(S) is such that  I1~111 > M and, consquently, admissible. Now, since/~ 

is connected, the index, which is a continuous integer valued function, must be 

constant on F. Therefore, from the inequality (6), one obtains that  /7 cannot 

be unbounded. This contradiction shows that  there exists Xo E C~(S) such that  

(1, x0) E 27, as claimed. [] 
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Abstract  

We extend study of regularity properties of elliptic operators (c.f. [2]) to second 

order operators on domains bounded by finite numbers of hyperplanes. Previous 

results for Euclidean space and the symmetry of the domains are exploited to 

obtain resolvent bounds. Corollaries include semigroup generation, essential self- 

adjointness, and regularity of eigenfunction expansions for such operators. The 

present work provides basic results aimed at extending regularity information for 

partial differential operators (especially with singular coefficients) to a general 

class of operators in domains with boundary. In one dimension these results 

encompass a body of work in Sturm-Liouville theory on the half-line. 

Introduct ion  

In this note we study regularity properties of second order elliptic operators on 

certain domains of R ". This work is part of a program directed at ascertaining 
behavior of elliptic operators (with possibly singular coefficients) on domains, 

through study of resolvent kernels and other functions of such operators. In [2] 

and [3] regularity properties are derived by bounding resolvent kernels with L 1 

convolution kernels. 

Here we consider analogous results for SchrSdinger operators A = - A  + b(x) 
on domains F C R n of the form F = (R+) k × R n-k, i.e. regions bounded by 

a finite number of hyperplanes xj = 0 (j = 1 , . . . ,  k). We study the resolvent 

kernel (Green function) ( ~ - A )  - t  for operators A under Dirichlet and Neumann 
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boundary conditions. A consequence is a variety of results concerning A, includ- 

ing LP-spectral bounds, closedness, semigroup generation, and summability. 

Our results (in particular their consequences for eigenfunction expansions) 

specialize in one dimension to results in Sturm-Liouville theory (see for instance 

[5], [4]). In particular, a body of work in spectral theory and summability for 

Sturm-Liouville operators on the half line is subsumed in the summability, self- 

adjointness, and semigroup results here (note that a half line is an example of 

the domains under consideration). 

Results similar to ours have been previously obtained in various situations 

without boundary, e.g., for Schrbdinger operators on R ~, elliptic operators on 
compact manifolds, and perturbations of elliptic operators on R"  ([2],[3]) to list 

some. Little has been previously known (in the direction of the present results) 

regarding operators arising from boundary value problems. The limitations of 

what might be called standard approaches correspond to difficulties in construc- 

tion of the resolvent kernel even for the unperturbed operator A0 = --A. We 

circumvent this by exploiting symmetries which allow explicit construction of 

the free resolvent kernel (~ + A) -1, and then the full kernel as a perturbation 

of the free resolvent. Indications are that our results extend qualitatively to the 

general situation involving an elliptic operator in a (not necessarily compact) 

domain with boundary. 

1 T h e  u n p e r t u r b e d  r e s o l v e n t  k e r n e l  

Let A0 denote (--A) on F, with boundary condition 

a ju  + fljOnu = 0 (M) 

on the hyperplane xj = 0, j = 1 , 2 , . . . , k .  Here (aj , f l j )  = (0,1) or (1,0) for 

each j ,  and On denotes the normal derivative on OF. Clearly, (M) includes both 

Dirichlet (ulor = 0), and Neumann (O,,ulor = 0) boundary conditions, which 

may differ on different parts of the boundary. 

We denote by G o = G~(z, y) the resolvent kernel of A0 and by R = Re(x, y) 

that of - A  on all of R'*. The kernel R¢ is well known, being for each complex 

¢, Re~ < 0 a convolution kernel Ri(Ix  - Yl), with 

0 ° ~ _a 
R((Ixl) = e '~- ,, (4~t) ~ dt, (1) 

a radial function. It is shown, e.g., in [3] that,  uniformly for l arg~] >_ 00 (for any 

given 00 > 0), R e can be written as an LLdilation 

R¢(Ixl)  = Ro(v'71 l), p = I¢1 (2,,) 

of the radial function R0 (0 = arg¢), which is estimated for n > 2 by 
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C f l x l  2-'~, ( 1 - - 1 o g l x l i f n = 2 ) ;  I x l < l  

IRo(Ixl)[ __ ho(M) - isin °1--------7 / ~-.I . , .g.- .  
I~1' ; I~1 > 1 

(2b) 
with s > n-~-21, t = ~ + s > n, any 3" < 1, and a constant C = C(3", s). For 

our purposes it is significant that  h8 is in L 1, and is radial and monotonically 

decreasing. 

To express the resolvent kernel G O for the domain F in terms of R we can 

use standard reflection principle arguments. For convenience we use the following 

notation: let e = ( q , . . .  ,ek) be a k-tuple with entries -4-1; sgn e = 1-I~ e/. Each 
vector x • F will be written as a pair (z', z") with z '  • (R+) k, z"  • R n-~, and 

~(z) will denote the point ( q x l , . . .  ,¢kzk; z")  • R n. 

We introduce bj = flj - crj, ( j  = 1 , . . . ,  k) and denote by {c~}~ the coefficients 

in the formal expansion of the product 

k 

l'I(c ~ + b ~ c - ~ ) = ~ c ~  ~~, ~=(~1, . . ,~ ) ;  
j = l  e 

the summation is over all e, and e • x denotes a dot product. Then standard 

reflection principle arguments yield the representation 

a~(~,y) =~'c,R~(~-e(y)). (3) 

Indeed, it is easy to check that G~(x,y) solves the Green function equation, 

and satisfies the boundary condition (M). Thus G o is a linear combination of 

"convolution-type" kernels. 

2 R e s o l v e n t  o f  t h e  p e r t u r b e d  o p e r a t o r  

We now construct the resolvent G = G¢(x, y) of the operator A = - A  + b(x), 
with the perturbation series identity (cf. [5], [2]) 

oo 

a = c o Z ' ( b c ° ) ~ .  (4) 

k={I 

Above, b denotes the operator consisting of multiplication by b(x). 

The k ~h term of (4) is a composition of convolution-type kernels G o and 

multiplications with b(x). The problem of analyzing (4) reduces to the Euclidean 

case R n, by the following extension procedure. We extend each function f on F 

to all of R n by setting 

](~(~)) = e,f(~) w, ~ • r. 

Obviously, the subsets {e(F)}~ disjointly partition I t" .  Hence IIfIIL,(rt-) "~ 

IIflILP(r) and by (3) 
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c0(f) = R ,  L 

with convolut ion on all of R n , where above R = R i.  Now we proceed to establish 

the following: 

T h e o r e m  1 Let b(~:) E L r + L °° on R n or on the quotient F /L ,  where L is a 

subspace of t t  n, d i m R " / L  = m. Let m < 2. Then 7 

(I) For ~ outside .01 = ~ = pe iO : [sin~le.,~ < 1 , a parabolic domain 

about R +, the operator b(~ - Ao) -1 is bounded in all LP(F), 1 <_ l) <_ r, and its 

norm is estimated by 

llbG~(f)ll, < ~ p d - ~ [ l f [ I  p, 

where d = m < 1, and s > n_+~_l, ~ = pei8 

(1I) The geometric series (~) converges absolutely for all ~ in the complement 

of ~2 = ~ = pe iO : isin~le_ ~ < 1 , and defines an integral kernel Gc(x ,y  ) 

which admits the bound 

[Go(x, Y)I ~ C(p, O)p ~-1 ha(x/-filx - Y[), 

with he given by (2a) and 

p ~ - I  \ - 1  
C._____L__~ 1 

C ( p , O ) - I s i n  ~1' - C 2 ~ )  

(III) I f  ~ ~ 122, then for all Lr-spaces, 1 < p < r, G c is the resolvent of 

A = - A  + b(x) in L p. 

Proof. We first prove I I  by considering the pe r tu rba t ion  series (4). By writing 

out  the kernels of  the terms in (4) we conclude tha t  the j~h t e rm Lj -- G°(BG°) j 

has kernel 

L j ( x , y )  = ~ ~ / v . .  . / r  R(X - Q(z l ) )b(z l )R(z l  - e2(z2)) (5) 

. . .  b(zj)R(z 1 - ej+l(y))dZl .. . dz 1. 

The  summat ion  above is over all tuples of reflections ~ = ( e l , . . . ,  era+l) ( tha t  is, 

vl  m+l and x, y, zi E F. it is a sum over the variables el,  e 2 , . . . ,  era+l), ~ = xi i=l  eel, 
We now assume tha t  b E L r on F;  the same argument  will hold in the case 

b E L °°, and thus more  generally in the case b E L r + L °° • Applying a mult iple 

HSlder inequali ty to (5), we have 

Ini( x, Y)I < I]bll/Y~ I~IIIR( x - e l ( Z l ) ) . . .  R(zj - ej+l(y))llr',...,r', (6) 
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with r t = r r l  , where the subscript r', r', ..., r'; denotes an L r' norm with respect 

to all of the variables Zl, z 2 , . . .  , z  i .  We remark that  the norm Ilbllr is taken in 

the quotient space R n / L ,  as HSlder's inequality is applied here to the integration 

only with respect to the variables on which b depends (b does not depend on the 

variables complementary to L). In the case where L is nontrivial, the last term 
• ° , I . . 

In (6) revolves a mtxed L r norm; see the dmcusmon after (9). 

We now define a modification of the standard convolution, which we denote 

as the p, e convolution. For two functions f ,  g on R n, this is defined by 

1 

( f  .p,~ g) (x)  = [ f (x  - e(y))g(y)lPdy (7) 

If we define g'(x) = g(e-l(x)) ,  (7) becomes the "F part" of a p-convolution on 

all of R n: 

1 

( / . ) '  ( f  *p,e g) (x)  = If(x - y)g'(y)[Pdy 

< . I f ( x  - y ) g ' ( y ) l  p d y  - ( f , p  g ' ) ( x ) ,  

where the last equality is the definition of the p-convolution *p. It is immediate 

from the definition of the ,p,~-convolution that  the last term of (6) can be written 

R *r',e R *r',e • • • *r',e R.  

We then bound each kernel R = Ri using the radial function (2a) with the 

help of the following Lemma, proved in [3]: 

Leinma Let 

/ Izl -~ (1-1oglzl); I z l < l  
h,,t , .c(M) = (s < n < t, 7 > 0); 

[z[-%-'~H; [z[ > 1 

then there is a constant C (which may depend on si, ti, and 7) such that 

h.l,tl,.y *p,e h,2,t2,.r <_ Chs,t,.r; 

with s = min{sl,s2}, t = min{tl , t2}. 

(8) 

By induction (8) extends to an arbitrary number of (p, e)-convolutions. 

Considering the dilating factor vffi (p = [~1), we estimate the term Lj by 

observing that  the *p convolution has the following scaling property: 

f (v / 'px)  *v g ( v ~ x )  = v f ~ - " l P ( f  *p g)(VfPX). 

Combining this with the Lemma and the bounds (2), we have 
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(C'llbll~P~-x ~ i 
ILj(x,y)l<_C'kz. .~lc,  ~ isin_~l, ] h0(v/'~lx - yl), (9) 

with hs given by (2), where d = m Note that  the exponent o f p i s  ~ -  1, 

where m = d i m R " / L .  If m # n (i.e., if L is nontrivial), then the convolutions 

in (7) as they are used to bound the last term in (6) must be slightly modified, 

whence the modified scaling in this situation yields the power ~ - 1 for m # n. 

Summing up a geometric series of bounds (9), ( I I )  follows. 

To prove (I) is straightforward now, since to estimate I IbG~ll, we need only 

replace G~ by its convolution kernel upper bound above, and then apply first 

Young's inequality, followed by HSlder's inequality. Similarly, ( I I I )  now follows, 

since it is clear that  the kernel defined by the series (4) must define the /-Y- 

resolvent of the full operator A if it converges in/_2. The constraint 1 < p < r 

is necessary because even though the series (4) defines a right inverse of ~ - A 

for all p, it is clear that  if the potential b ~ Lp, then the operator ~ - A may 

not even have a dense domain (e.g., if b has a dense set of singularities). This 

completes the proof of the theorem. [] 

Remark. The above argument shows that the main contribution to the kernel 

G(z ,y)  comes, as in the Euclidean case, from the sum of "true convolution" 

terms, in (5), i.e. el = . . .  = em+i = I .  The influence of the remaining (re- 

flected) terms (ei # I) decays as ~ ~ c¢; this can be observed from (9), when 

one studies the behavior of the integral in reflected domains e(F), (e # I). It is 

expected that  the corresponding observation for an analogous reflection proce- 

dure involving higher order operators (on more general domains) will imply the 

same conclusions for resolvent kernels (and thus for related analytic properties 

of operators, see, e.g., below). 

Theorem 1 has a number of functional analytic applications. 

C o r o l l a r y  1 The operator A is closeable in all L p, 1 < p < r and its spectrum 
is included in 121. 

This follows immediately from the theorem, since (~ - A)-1 is bounded for 

¢ 122. 

C o r o l l a r y  2 The domain of A in L p (1 < p < r) is equal to the domain of 

Ao = - .4 ,  the latter being the Sobolev space £~(F). 

This corollary follows from the bounds on the resolvents of A0 and A, which 
in turn immediately lead to a priori inequalities between A0 and A. The standard 

(Kato-Rellich) perturbation theorems then apply to show that  A0 and A have 

the same domain. The following corollary also follows from the standard theory: 

C o r o l l a r y  3 I f  r >_ 2 and b(z) is real, then A is semibounded from below, and 

hence essentially self-adjoint on C~°( F). 
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We also have 

T h e o r e m  2 (resolvent summability) 

For each f E L p (1 < p < co) or C °, the operator 

(Go( f )  --, f ( x ) ,  (10) 

as ~ --, oo, uniformly in each sector ~0 : {~[ [arg ~1 ~ 0 > 0}, i n / F - n o r m  and 

pointwise on the Lebesgue set of f E / F .  

Proof. The convolution bounds on G( established in the Theorem reduce the 

problem to showing that  a scaled convolution kernel behaves as an approximate 

identity, which reduces the problem to elementary harmonic analysis (see [2, 

Theorem 1]). [] 

Summability theory for eigenfunction expansions has been studied exten- 

sively in certain contexts. Previous classes of results, however, have been re- 

stricted to one dimensional domains, compact manifolds (with or without bound- 

ary), or general domains without boundary. 

Note the theorem implies that  the convergence in (10) holds a.e. 

We briefly indicate some other consequences. With Theorem 2 one can study 

other multipliers ¢(A) and analytic summation families, {¢~(A)}6, using the 

Dunford functional calculus, i.e. Cauchy integration along a suitable contour 7 

in C, 

¢(A) = ¢(C)acdC. (11) 

Using ¢(~) = e -~c gives the semigroup. Specifically, it is easy to show (using the 

convolution bounds on the integrand obtained from Theorem 1) that in this case 

(11) represents a holomorhpic semigroup. Corresponding bounds on the kernel 

of (11), obtained by substituting the bounds of Theorem 1 into (11), then show 
in the same way as we did in Theorem 2 for ~ ---, cx~ that  the behavior of the 

semigroup as t ~ 0 is correct. Indeed, the statements are equivalent, since t --~ 0 

corresponds by a change of variables in (11) to the limit ~ ---, eo in the integrand. 

Thus we have: 

T h e o r e m  3 The operator A is the generator of a holomorphic semigroup Tt = 

e -At in the right half plane Re t > O, in all ~F-spaces (1 < p < r). The semigroup 

is continuous at {0}, i.e. 

T t f ( x )  t__.--*of(X) 

in L p and pointwise on the Lebesgue set of f ,  uniformly in any sector 12~ = 

{I argtl _< O < 

Remark. The above analysis applies to higher order constant-coefficient operators 

with boundary conditions analogous to (M), and a general class of lower order 

perturbations of these, (see [2]). 



190 Gurarie, et al 

R e f e r e n c e s  

1. Copson, E.T. (1965): Asymptotic Expansions. Cambridge University Press, London 
2. Gurarie, D., Kon, M. (1984): Radial bounds for perturbations of elliptic operators. 

J. Functional Analysis 56, 99-123 
3. Gurarie, D. (1984): Kernels of elliptic operators: bounds and summability. J. Dif- 

ferential Equations 55, 1-29 
4. Levitan, B.M., Sargsjan, I.S. (1975): Introduction to Spectral Theory: Self-Adjoint 

Ordinary Differential Operators. American Mathematical Society, Providence 
5. Titchmarsh, E. (1946): Eigenfunction Expansions Associated with Second Order 

Differential Equations. Vol. I, II. Oxford University Press, Oxford 



J u m p i n g  N o n l i n e a r i t y  for  2 n d  O r d e r  O D E  w i t h  

P o s i t i v e  F o r c i n g  

P.  Habets ,  1 M.  R a m o s  2.  a n d  L.  S a n c h e z  2 

1 Mathem. Institute, Universit~ de Louvain, Chemin du Cyclotron 2, Louvain-la-Neuve, 
Belgium 

2 INIC/CMAF, Av. Professor Gama Pinto, 2, P 1699 Lisboa, Portugal 

1 I n t r o d u c t i o n  

In this paper we study the Neumann boundary value problem (BVP) 

u" + i~u + - v u -  = p( t )  (1.1) 
~'(o) = u'(~)  = o, 

where p( t )  is a positive function, p > 0, v > 0, u+(t)  = max(u(t) ,0) and 
~ -  (t) = ,nax(-~(t), 0). 

Our main motivation goes back to the theory of suspension bridges. If one 

looks for solutions of the form 

u(t)  sin(Trx/L) 

(see [5]) it can be shown that  u must satisfy a BVP 

u" + Izu + - v u -  = p(t) ,  (1.2) 
~(0) = ~(2~), ~'(0) = ~'(2~). 

If further we assume the forcing satisfies the symmetry condition 

p(,~ + t)  = p ( ~  - t) ,  0 < t < ~, 

one obtains solutions of (1.2) from solutions of (1.1). 

The periodic problem (1.2) has been investigated by A. C. Lazer and P. J. 

McKenna [5], [6]. Some results on the Neumann problem (1.1) can be found in 

D. C. Hart, A. C. Lazer and P. J. McKenna [4]. In all these papers, the forcing 

is a small perturbation of a positive constant. 

In the present work, we investigate some general positive forcing p for some 

regions of the (/~, v) plane. 

In case 0 < ~ < 1/4, we prove (1.1) has a unique positive solution. In the 

region R1 
1 1 

1 / 4 < t t < l , v > 0 ,  ~ - - ~ + ~ - - - ~ > 1  

* On leave from Faculd~de de Ci~ncias de Lisboa with a scholarship from I.N.I.C. 
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we give necessary and sufficient condition for existence of a positive solution, of a 

solution u with a simple zero such that  u(0) > 0 and of a solution u with a simple 

zero such that  u(0) < 0. Putt ing these results together we obtain existence and 

uniqueness of solutions in this region and the positive cone of forcings can be 

divided into three cones, each of them corresponding to solutions of a given type. 

Such necessary and sufficient conditions were obtained for Dirichlet problem and 

in a very specific case by L. Aguinaldo and K. Schmitt  [1]. We also obtain a 

similar description of solutions in the region R2 

1 1 

where three solutions may exist simultaneously. For nonlinear problems such as 

u" + pu + - v u -  = p(t, u) 

u ' ( 0 )  = = 0 

similar results can be obtained and will be published elsewhere. 

~4 

R\!4 ! 

Fig. 1. 

2 A u x i l i a r y  L e m m a s  

In this section, we collect some elementary results which we use in the sequel. 

We denote by g[a, b] the space of continuous functions u : [a, b] ~ Iq and write 

C for C[O, 7r]. 
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L e m m a 2 . 1  Let p E C[a,b] be such that p(t) > O, let 7 > 0 and u(t) be a 

solution of 

u " +  "fu = p(t) (2.1) 
u'(a) = u(b) = O. 

Then 

(a) u(t)  > 0 in (a, b) implies b - a > 7r/2v/~ ; 

(b) u(t)  < 0 in [a,b) i f  and only i f b -  a < 7r/2v/" ~. 

I f  further 7 # (2n + 1)21r2/4(b - a) ~, n 6 N one has : 

1 b 
(c) u'(b) = co~(¢V(b-,)) f,: p(t) cos(v~(t  - a)) dt. 

L e m m a  2.2 Let p e C[a,b] be such that p(t) > O, let 7 > 0 and u(t)  be a 

solution of 

u" + 7u = p(t) (2.2) 
~ ( a )  = ~ ' (~ )  = 0. 

Then 

(a) u(t)  > 0 in (a, b) implies b - a > 7r/2vr~ ; 

(b) u(t)  < 0 in (a,b] i f  and only i f b -  a < ~r/2v/~. 

g further 7 # ( 2 .  + 1 ) ~ 2 / 4 ( ~  - a ) L  - e N o . e  has : 

(~) ~ '(a)  - '  = f•p(t)  c~(v~(b-.)) cos(x/~(b - t)) dt. 

L e m m a  2.3 Let p E C[a,b] be such that p(t) > O, "r > 0 and let u(t) be a 

solution of 

u" + 7u = p(t) (2.3) 
u ( a )  = u(b) = O. 

Then 

(a) u(t)  < 0 in ( . ,  b) i f  and only i f  b - a < 7r/v/~ ; 

(b) u(t)  < 0 in (a, b) implies u'(a) < 0 and u'(b) > O. 

Lemma 2.3 is contained in Theorem 1.14 and Propositions 1.15 and 1.16 in 

D. De Figueiredo [2]. The other lemmas can he proved in a similar way. 

3 P o s i t i v e  s o l u t i o n s  

Our first result is a necessary and sufficient condition for existence of positive 

solution u, i.e. such that  Vt e [0, ~r], u(t) > O, in case # E (0, 1). 
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P r o p o s i t i o n  3.1. Let 0 < IJ < 1, u E R and p E C be such that p(t) > O. Then 

the B V P  

¢ '  + ~,~+ - ~ _  = p ( t )  (3.1) 
u' (0 )  = u ' ( ~ )  = o 

has a positive solution i f  and only i f  

A := p(s)cos(vffis)ds > 0 

and (3.2) 

~0 ~ 
B : =  p(s) cos(x/~(Tr - s))ds >_ 0 

Proof. If u is a positive solution of (3.1), one computes 

£ u(t) = a( t ,  s)p(s)ds 

where 

G(t, s) = cos(~/-fis) cos(v/'fi(Tr - t))/v/~sin(vffiTr), if s _< t, 

G(t, s) = cos(v/fit ) cos(vffi(rr - s))/v~sin(~ffiTr), if s > t. 

Hence one has 

A = u(Tr)x/-fisin(v/'fi~r) > 0 and B -- u(0)ff-fisin(v/-fi~r ) > 0. 

(3.3) 

Reciprocally, let u be defined by (3.3). The conditions (3.2) imply u(0) > 0 

and u(~r) > 0. Let to E (0, ~-) be such that u(to) is negative. One deduces then 

from Lemmas 2.1 and 2.2 

7l" 7f 
~ = to + ( ~ -  to) >_ -~--~ + ~ > 

which is a contradiction. Hence u(t) is positive. [] 

R e m a r k  3.1. The conditions A > 0, B > 0 can be replaced by u(0) > 0 and 

u0r ) > 0. Also, we proved that the positive solution is such that u(t) > 0 on 

(0, ~). 
The next result proves the uniqueness of the positive solution in one region 

of the/~, v plane. 

P r o p o s i t i o n  3.2. Let 0 < I 1 < 1 and u > 0 be such that 

1 1 
2--~ + ~---~ > 1. 

Then, i f  u is a positive solution of (3.1), it is the only solution of (3.1). 
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Proof. Let v be a solution of  (3.1) and assume w = u - v ¢ 0. The  funct ion w is 

such tha t  

w" + M w  = ( M  - a( t ) )w (3.4) 
~'(o) = w'(~) = o, 

where rn = min(/~, v) < a( t )  < max(/~, v) < M .  

I f  w has constant  sign, direct integrat ion of  (3.4) gives 

f0" f0" 0 = a( t )w(t )  dt = ~(t) lw( t ) J  dt 

and since a ( t )  > m > 0, one deduces w(t) = O, which is a contradict ion.  

If  w changes sign at t = b, by uniqueness of  solutions of  (3.4), one has w'(b) 

0. Hence, we can find 0 < a < b < c <_ 7r such tha t  w'(a) = w(b) = w'(c) = 0 

and either 

w(t) > 0 on [a, b) and w(t) < 0 on (b, c] 

o r  

w(t) < 0 on [a,b) and w(t) > 0 on (b,c]. 

7t 
In  the first case, L e m m a  2.1 implies b - a > zr/2v/-MM, and since c -  b = ~ one 

has 
7r  ? r  

> ( b - a ) + ( c - b ) >  ~ +  2 7 "  

We can choose M small enough so tha t  2--,-ff~ + ~  '~ > ~r, which is a contradict ion.  

A similar a rgument  holds in the second case. [] 

C o r o l l a r y  3.1.  Let O < p < 1/4,  v > 0 a n d p E C  be such that p(t) >0 .  Then 

the B V P  (3.1) has exactly one solution which is positive. 

Proof. If  p < 1/4, one has A > 0 and B >_ 0. [] 

In  case p = 1, we can stitl give a necessary and sufficient condit ion for 

existence of  positive solution bu t  in tha t  case there exist a cont inuum of solutions. 

P r o p o s i t i o n  3.3.  Let I~ = 1, u E R and p E C be such that p(t) > O. Then the 

B V P  (3.1) has a positive solution i f  and only i f  

fo  r p(s)  cos s = ds O. (3.5) 

Further, all positive solutions are 

u(t) = Uo cos t + p(s) sin(t - s) ds, (3.6) 

. 

where u0 E [0, V] and  V :=  fo p(s) san s ds > O. 
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Proof. To prove (3.5) is necessary, multiply the equation by cos t and integrate. 

Notice that  all possible positive solutions u of (3.1) are given by (3.6). Further 

we must have 

u(0) = uo >_ 0 and u( ~r ) = - u o  + p( s) sin s ds >_ O, 

i.e. uo E [0, V]. 

At last, if (3.5) is satisfied and uo E [0, V], the function u defined by (3.6) is 

a positive function. Indeed, one has u(0) >_ 0 and u(~r) >_ 0. Let then to be such 

that  u(to) <_ O. One has from Lemmas 2.1 and 2.2 that  

7I" 71" 

t 0 >  ~ a n d T r - t 0 > 2 ,  

i.e. to = 7r/2, and one computes 

( , , )  u(to) = u = p(s) sin 7 -  s ds > O. 
JO 

[] 

If It > 1, necessary and sufficient conditions for existence of positive solutions 

do not seem to exist. However one can write sufficient conditions. 

P r o p o s i t i o n  3.4. Let 1 < I t  < 4 a n d p E C  be such that p(t) > O. Then the 

B V P  (3.1) has a positive solution i f  

Jo" L" A = p(s)  cos(v~S) ds _< 0, B = p(s)  cos(v'-~(,~ - s)) d~ _< 0 

and 

p(s)  c o s ( v ~ s )  d~ ~ 0, p(~) cos( , /~( ,~  - ~)) ds >__ 0. (3.7) 
a0 /~ 

Proof. Let u be defined by (3.3). As in Proposition 3.1 we prove u(0) > 0, 

u0r ) > 0. Let then to E (0, ~r) be a minimum of u. Multiply the equation 

u" + It~ = p( t )  

by cos(vrfis ) or cos(v/-fi(Tr - s)) and integrate to obtain 

1 L t° 
u(to) -- ~/..~sin(v~to) p(s) cos v/-fis ds 

o r  

,~(to) = v ~ s i n ( v ~ ( , ~  - to)) p(s)  cos , /~ ( ,~  - ~) as. 

From (3.7), one can see that u(to) >_ O. Hence, u is a positive solution of (3.1). 
[] 
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4 A u n i q u e n e s s  r e s u l t  

In this section, we prove the uniqueness of solutions of (3.1) in case (#, 7) E 

R0 U R1, i.e., 
1 1 

0 < i t < l ,  ~ > 0 a n d ~ - ~ + ~ - - - ~ > l .  

We shall need the following lemmas, the proof  of which are consequences of 

Lemmas 2.1 and 2.2. 

L e m m a  4.1. Let 0 < tt < 1, r, > O, p E C be such that p(t) > 0 and let v be 

any solution of(3.1).  Then v has at most one zero. 

Proof. I f  u(0) > 0 and u(Tr) > 0 we know from Remark 3.1 that  u(t) > 0 on 

(0, zr). Hence, we can assume u(0) < 0 or u(Tr) _< 0. In case u(0) < 0, let a > 0 

( ~ ) a n d  be the first zero of u. We know from Lemma 2.3 that  u > 0 on a, a + 

we are done. The same argument holds true if u(Tr) < 0. [] 

L e m m a 4 . 2 .  Let O < it < 1, v > O be such that 

1 1 
2---~ + ~--~  > 1 

and let p E C be such that p(t) > O. Let u(t) be the solution of  

u" + Itu = p(t) (4.1) 
¢(0) = ¢(¢)  = 0 

and v(t) be any solution of  (3.1). Then 

sign u(O) = sign v(O). 

Proof. By direct integration of the equations (3.1) or (4.1), it is easy to see 

that  u and v take positive values. If  u or v is positive, then by proposition 3.2, 

u(t) = v(t). I f  u and v are not positive, we know from Lemma 4.1 that  these 

functions have exactly one zero and 

u(O)u(Tr) < O, v(O)v(~r) < 0. (4.2) 

Let us assume first 

u(0) > 0 > v(0). (4.3) 

From Lemmas 2.1 and 2.2, one has 

( 5 ]  u ( t ) > 0 o n  0, , v ( t ) > 0 o n  r 2 , r  . 

F~rtheron[~ -  " ] ~-- -~ ,  7r , 

w(t) := u(t) - v ( t )  = ( u ( ~ )  - v ( ~ )  ) c o s  ¢ ' f i (  ~ - t ) .  
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From (4.2) and (4.3) we have v(Tr) > 0 > u(a') so that  

Define 

On [ a , . -  ~ - ~ )  

(G) ~'  . - = ( u ( . )  - v ( - ) ) v ~  < o. 

7r 

a = sup i t  < . -  ~ I ~ ' ( t )  = 0} < . -  2 - - ~  

, we have w(t)  > 0 and 

w" + M w  = ( M -  a ( t ) ) w  > 0 

w' (a)  = w l r -  = 0  

where M > max(p, v) ~ a(t) .  From Lemma 2.1 

71" 7/" 
~r a > - -  

2 v ~  - 2 v ~  

and we can choose M such that 

7f ?r  

which is a contradiction. 

A similar argument proves u(0) < 0 < v(0) is impossible and the lemma in 

proved. [] 

P r o p o s i t i o n  4.1. Let  0 < p < 1, g > 0 be such that  

1 1 
2---~ + ~--~ > 1 

and let p E C be such that p(t)  > O. Then the B V P  (3.1) has at mos t  one 

sol u tion. 

Proof. Let u and v be two solutions of (3.1). From Lemma 4.2 we know 

sign u(0) = sign v(0). Assume u(0) > v(0) > 0. We deduce then from Lemma 

2.1 that  Vt e [0, ~'/2vffi), u(t)  > O, v(t)  > 0 and 

w(t )  : =  v(t)  - u( t )  = ( v ( 0 )  - u ( 0 ) )  c o s  x / f i t .  

w'(~12v~) = v ~ ( ~ ( o )  - v (o ) )  > o. 

If we define 

b = inf{t > - / 2 ~ f ~  : w'(t) = o)  > .12v~ 

we have w(t )  > 0 on ( r /2v f f i ,  b] and 

w" + M w  = ( M  - c~(t))w > 0 

Hence 



Jumping Nonlinearity for 2nd Order ODE 199 

w ( . / 2 , / ~ - )  = w'(b) = 0, 

where o~(t) < max(p, v) < M. Next we deduce from Lemma 2.2 that  b -  ~r/2vr fi _> 

~'/2v/-M and we can choose M such that  

7r 7¢ 
- >__ b > 2 - ~  + y ~  > - ,  

which is a contradiction. 

If u(0) > v(0) = 0, Lemma 2.3 implies v is positive and uniqueness follows 

from Proposition 3.2. 

A similar conclusion holds if u(0) < v(0) < 0. Hence u(0) = v(0) and u = v. 
[] 

5 O n e  z e r o  s o l u t i o n s  b e l o w  t h e  f i r s t  

Fu~:ik c u r v e  

We have seen (Corollary 3.1) that if/~ < 1/4, there exists a unique solution of 

(3.1) which is positive. If # > 0, v > 0 and 

1 1 

it is easy to show using degree argument (see e.g. [3]) that  there exists at least one 

solution and from section 4, if p < 1, this solution is unique. In this section we 

shall characterize this solution from the forcing p. Let ,4 be the set of functions 

u E C1[0, ~r] such that  there exists a E (0,Tr) with the property that  u(t) > 0 if 

t E [0, a), u(t) < 0 if t C (a, It] and a is a simple zero of u. Let also B = - . 4 .  

P r o p o s i t i o n  5.1. Let ¼ < p < 1, v > 0 be such that 

1 1 
2 7  + > 1, 

let p E C be such that p(t) > O. Then 

(a) the B V P  (3.1) has a solution u E A if  and only i f  

~0 ~ 
A =  v(,)cos(v"~)d~ < 0, 

(b) the BVP (3.1) has a solution u E I3 i f  and only i f  

~00 ~ 
B = p ( s )  c o s ( v ~ ( .  - s ) ) e .  < o. 
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Proof. Assume first A < 0 and let a be such tha t  

7r 
~ < a < ~ - .  
2 v ~  

According to L e m m a  2.1, the B V P  

v"  + IJv = p(t)  (5.1) 
v'(0) = v(a) = 0 

has a unique solution v such tha t  

v'(a) - 1 fo ~ cosi v ~  ) pit ) cos( v~Zt ) dt. 

As r - a < 7r - ~ < 2--,-~, we deduce f rom L e m m a  2.2 tha t  the B V P  

w" + , w  = pi t )  (5.2) 
w(~) = w'(~) = o 

has a unique negative solution w such tha t  

- 1  p( t )  cos( v ~ ( , ~  - t ) )  dt < o. 
w ' ( a )  = c o s ( v ~ ( , ~  - a)) 

Let us now choose a such tha t  

~'(a) := cos(,/-~a) p(t) cos(,/-~(,~ - t)) et + 

za 
+ cos(,/~(,~ - ~)) p(O cos iv~t )e t  -- o. 

Such an a is easy to obtain f rom the intermediate  value theorem since 

G))r = cos r -  p(t)  c o s ( v ~ t  ) dt > 0 
-10 

and 

F(Tr) = p(t)  cos(v~ ' t  ) d t  < O. 

For such an a, one has v'(a) = w'(a) < 0 and since a < 7r < 7r/v/-fi, it follows 

f rom L e m m a  2.3 tha t  v(t)  > 0 on [0, a). The  solution u of  (3.1) can now be 

obta ined  placing side by side v and w. 

I f  B < 0, a similar a rgument  proves there exists a solution u E B. 

At last, we notice tha t  A + B > 0 so tha t  only three cases are possible : 

(i) A > 0, B _> 0 ; (ii) A < 0, B > 0 ; (iii) A > 0, B < 0. 

In each of  t h e m  we proved existence of  a solution of  a specific type.  As 

these solutions are unique, we also have tha t  these conditions are necessary for 

existence of  a solution of  the given type.  [] 

R e m a r k  5.1.  If  existence is already proved, Proposi t ion 5.1 can be deduced 

f rom L e m m a  4.2, Proposi t ion 4.1 and Remark  3.1. 

Sufficient conditions for existence of solutions u E .A or u E B can be given 

if/~ > 1. For example one has the following proposit ion.  
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P r o p o s i t i o n  5.2. Let It > 1, v > 0 be such that 

1 1 
2--'~ + ~--~ > 1 

and let p 6 C be such that p(t) > O. Then : 

(a) The B V P  (3.1) has a solution u E .4 i f  

cos v ~  ~ - p(t) cos (re f i t )  dt 
J 0  

- p ( t )  c o s ( v ~ ( ~  - t)) dt < 0; 
/ c a  

(b) The B V P  (3.1) has a solution u E B i f  

( ( v( t )  cos( v~( ,~ - t) ) at cos v/'ff r -  -"/ca 

- p(t) cos(x/fit) dt < O. 
dO 

6 O n e  ze ro - so lu t ions  above  t he  first 

Fu~ik cu rve  

P r o p o s i t i o n  6.1.  

Then 

In this section, we study the existence of solutions of (3.1) in the region R2, i.e. 

1 1 1 
v > 0 , ~  < #  < 1 and ~--~ ÷ ~--~ < 1 (6.1) 

Let It, v besuch that (6.1) holds andp E C such that p(t) > O. 

(a )  i f  

~0 if 
A = p(s) cos(v/-fis ) ds > 0 

the B V P  (3.1) has exactly one solution u E A ; 

(h) i f  

A<_O 

the B V P  (3.1) has at most two solutions u E .4. 

Proof. Let u E .4 be a solution of (3.1) and a be its unique zero. From Lemma 
2.2, we have 

~ - - a < ~ - - - ~  i.e. a > ~ r  1 -  

Further, if we proceed as in Proposition 5.1, we have 

Z" F(~) = ¢os(v'-~a) v(t) ¢os(v'-~(,~ - t ) )  et 

+ cos ( v~ (~  - ~)) p(t)  ¢os (v~ t )  dt = O. 
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Reciprocally, if a E  (x ( 1 -  ~--~v), r )  is a zero of F,  we can build a solution 

u E A placing side by side the solutions v and w of (5.1) and (5.2). Hence 

solutions u E A correspond to the zeros of F in ( r  (1 - 2 - ~ ) ,  ~r). 

One computes 

j/'~ cos(v/~(r s)) ds O, p(s)  < 
- ~--Yz  

Z" r(,~) = p(s) co s ( , / ~ s ) e ,  = A, 

F' (a )  = -x/-~sin(v~a ) p(s) cos(v'-~(rr - s)) ds 

/o ° 
+v~sin(vr~(~r - a)) p(s)  cos(vrfis) ds 

F"(a) = - ~  cos(,/-~a) p(s) cos(v~(~  - s)) e~ 

- ~ ,  cos(,/-~(~ - a)) ~ °  p(~) c o s ( , / ~ )  ds 

+ [~"~sin(v~a ) cos(v'~(~r - a)) 

+ x/-~sin(v/'~(lr - -  a)) cos(v~a)] p(a).  

Therefore, if F(a)  = 0, one has 

F' (a )  = [x/~ tg (v~a)  + V~ tg (,¢~(x - a)] 

cos(v~(Tr -- a)) --Z a p(s) cos(x/~s ) ds 

and if F(a )  = F ' (a)  = 0 

F"(a) = (~ - ~) cos( , /~(~ - a)) p(s) ~os(, /-~) es. 

If A > 0, we deduce from the intermediate value theorem, there exists a zero 
of F.  Further this zero is unique since : 

F(a)  = O , a < ao implies F'(a)  > 0; 

F(a)  = 0,  a > a0 implies F' (a)  < 0; 

F(a)  = 0 , a : ao implies F'(ao) = 0 and F"(ao)  < O. 

Here, a0 is the only zero in (Tr ( 1 -  5 - ~ ) ,  ~r) of 

V~ tg (V/-fia) + ~ tg (x/'~(~r - a)). 

If A < 0, the same type of argument proves there exist at most two zeros of 
F.  [] 

Using the same type of argument, one proves 
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P r o p o s i t i o n  6.2. Let #, v be such that (6.1)holds andp E C such that p(t) > O. 

Then 

(a) if  

/o B = p(s) cos(v/'fi(Tr - s)) ds > 0 

the B V P  (3.1) has exactly one solution u E 13, 

(b) i f  

B < 0  

the B V P  (3.1) has at most two solutions u E B. 

R e m a r k  6.1. From proposition 3.1, 6.1 and 6.2 we can give a global description 

of solutions in the region (6.1) : 

(a) if A > 0, B > 0, there is exactly one positive solution, one solution in .4 and 

one in B ; 

(b) if A < 0, B > 0, there is no positive solution, at most two in .4 and exactly 

one in B ; 

(c) if A > 0, B < 0, there is no positive solution, exactly one in `4 and at most  

two in B. 

R e m a r k  6.2. In case A < 0, one can find forcings p such that  there is exactly 

0, 1 or 2 solutions in `4. 

References  

1. Aguinaldo, L., Schmitt, K. (1978): On the boundary value problem u" + u = 
t~u- + p(/), u(0) = 0 = u(Tr). Proc. AMS 68, 64-68 

2. De Figueiredo, D. (1982): Positive solutions of semilinear elliptic problems. Lect. 
Notes 957, Springer Verlag, Berlin-Heidelberg-New York, 34-87 

3. Habets, P., Metzen, G., (1989): Existence of periodic solutions of Duffing equations. 

J. Diff Eq. 78, 1-32 
4. Hart, D.C., Lazer, A.C., McKenna, P.J. (1986): Multiplicity of solutions of non- 

linear boundary value problems. SIAM J. Math. Anal. 17, 1332-1338 
5. Lazer, A.C., McKenna, P.J. (1987): Large scale oscillatory behaviour in loaded 

asymmetric systems. Ann. Inst. Henri Poincar~ 4, 243-274 
6. Lazer, A.C., McKenna, P.J. (1989): Existence, uniqueness and stability of oscil- 

lations in differential equations with asymmetric nonlinearities. Trans. AMS 315, 
721-739 





M o m e n t  C o n d i t i o n s  f o r  a V o l t e r r a  I n t e g r a l  

E q u a t i o n  i n  a B a n a c h  S p a c e  

Kenneth  B. Hannsgen and Robert L. Wheeler 

Department of Mathematics and Interdisciplinary Center for Applied Mathematics, 
Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0123. 

A b s t r a c t  

For a linear Volterra equation of scalar type in a Banach space, sufficient condi- 

tions are given for three related resolvent kernels to be integrable with respect 

to certain weights on the positive half-line. The problem arises in the study of 

energy decay in viscoelastic solids, and the results lead to integral estimates for 

the rate of this decay. 

1 I n t r o d u c t i o n  

Let X be a Banach space and L a closed, densely defined, linear operator in X. 

Assume that  

L generates a strongly continuous cosine family 
(1.1) 

C(t) in X with IIC(t)ll < Me '°°ltl (t E IR) 

(see [3, 11]. I1" II denotes both the norm in X and the operator norm in / : (X) ,  

the space of bounded linear operators on X). 

Set .~0(L = inf{.~0 I (1.1) holds }. Let 

x l  = {x ~ x :  c(t) x ~ c l (rt+ ,x)}  

(ll~ + = [0, c~)) with norm 

Ilxlll = Ilxll+ sup IIC(t)xll • 
0<t<l 

Thus in the important special case where 

X is a Hilbert space and L is a negative definite selfadjoint operator, (1.2) 

w0(L) = 0 and Xl  is the domain of M = ( - L )  1/~. 
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We consider the problem 

iN(t) = E L u ( t ) +  a(t - r ) L u ( r )  dr  + f(t),  

u(O)  ---- UO, I~I(0) ---- U l ,  

where E > 0 

(P) 

u 0 E X l ,  u 0 E X ,  f E L I ( I R + , X )  . (1.3) 

The kernel a(t) satisfies either 

a • C(0, co) 17 LI(0, 1) f'l AC~oc(O , oo) with a positive, 

non - increasing and log - convex on (0, c~) and (1.4a) 

0 = a(cx~) < a(0 +) < oo, or 

a • AC~oc(lR +) with a(0) > 0, h(0) < 0 and a(t) --* 0 as t --* ~ .  (lAb) 

Solutions of (1.3) can be studied by means of resolvent formulas such as 

. ( t )  = u ( t ) . .  + w ( t ) . l  + w ( t  - r ) r ( r )  dr, 

(1.5) 

,i(t) = v ( t )u0  + u ( t ) . l  + u ( t  - r ) f (r )  dr, 

where the resolvent kernels can be defined formally either via the homogeneous 

version of (1.5) or via the Laplace transform formulas 

l:l(s) = ( s -A(s )L)  -x, V(s) = A(s)LU(s),  
(1.6) 

s 2 ( s ) L w ( s )  = v(s) ,  

where A(s )  = h(s) + E s  -1.  Note that 

/o' /o v ( t )  = I +  v ( r )  dr, w i t )  = U(r )  dr. (1.7) 

J. Priiss [9, 10] has obtained detailed results on the existence, norm continuity 

and integrability of U(t) and v(t) under assumptions (1.1) and (1.4a) and with 

E _> 0. Here we use Priiss's methods in the special situation where E > 0 (ap- 

propriate to the equations of motion for a viscoelastic solid) to deduce estimates 

on the integrability of these resolvents with respect to a weight function. As a 

consequence, in the case (1.2), we obtain integrability conditions on the energy 

of solutions of (P) ,  defined by 

C(t)= 1A(t)llMu(t)ll2 +lll6(t)[,2-1 foth(t- r)llM(u(t)-u(r)),l 2 dr. (1.8) 

A more detailed presentation of some of these results, together with a dis- 

cussion of an example in viscoelasticity, will be found in [5]. In particular, it is 
shown that  boundary feedback mechanisms are ineffective in improving energy 

decay rates when viscoelastic creep dominates the asymptotic behavior. These 

applications were suggested by recent work of J. Lagnese [7] and G. Leugering 

[8]. 
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2 I n t e g r a b i l i t y  o f  r e s o l v e n t s  

A function p(t) is called a (regular) weight on IR + if p is positive, continu- 

ous and nondecreasing on IR +, p(0) = 1, p(t + s) < p(t)p(s) (t, s • IR +) and 

l i m t - ~  t -1 logp(t) = 0. We have in mind such weights as 

p,( t )  = (l  + t y ,  r > 0 ,  

p2(t) = (1 + log(1 + t))'~pl(t), 7 > O, 

ps(t) = exp(t")p2(t) ,  0 < a < 1. 

= E + a(t) where E > 0 and (1.4a) holds and ti(0 +) = 

(2.1) 

(2.2) 

T h e o r e m  2.1 Let A(t)  

- co .  Let L satisfy (1.1) and the stability conditions 

L has a bounded inverse, 

s / A ( s )  E T~ - resolvent set of L ( R e s > 0 ,  s i~0) .  

Let p(t) be a regular weight, and assume that 

f °°(Ih(t)l + Ita(t)l + < co. It2d(t)[)p(t) dt (2.3) 

The transform relations (1.6) determine strongly continuous functions U(t) : 

IR + ~ Z:(X) and V ( t ) , L W ( t )  : IR + ~ /~(Xl,X),  and (1 + t)U(t) e LI(IR +, 

£(X);  p) while both (1 + t)2V(t) and LW(t) belong to L 1 (IR +, £ ( X l ,  X); p). 

As shown in 9_n.[~, U(t) is a resolvent in.the sense of [2], and one can justify (1.5). 

When p - ~/A(0 +) < co and ,¢ = - A ( 0 + ) / 2 p  are both finite, the resolvents 

cannot be measurable in the norm [9] and so cannot belong to the L 1 spaces of 

Theorem 2.1. The appropriate conclusion in this case is that  the resolvents are 

p-integrable: 

{there exists ~o E LI(IR+;p) such that 

{(1 + t)llU(t)ll + (1 + t)211v(t)llz:(xl,x) + IIr,w(t)ll~(x,,x) } _< ~,(t) (2.4) 

a.e. on IR +. 

T h e o r e m  2.2 Let A( t )  = E + a(t) with E > O, and suppose (1.1) and (2.1) 

hold and that p + x < c¢ with wo(L) < tc/p 2. 

5) q (1.4a), (2.2) and (2.3) hold, then the conclusions of Theorem 2.1 hold 
with the L 1 inclusions replaced by (2.4). 

(it) I f  (1.4b), (2.2), (2.3) and 

q(s) -- 1 + xA(s) ¢ 0, Re s > 0, s :f- 0, (2.5) 

hold, then the relations (1.6) determine strongly measurable functions U(t) : 

Ie~ ÷ ~ •(X) a n d V ( t ) , L W ( t ) :  ]R + ~ £ ( X l , X  ) and (2.4) holds. 
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R e m a r k s  

(See [5] for further details.) In (i) above, the resolvents are again strongly con- 

tinuous as in Theorem 2.1, and (1.5) holds. The same can be said in (ii) in the 

special case (1.2), provided 

a(t) is positive, decreasing and convex. (2.6) 

In addition, (2.6) implies (2.5) and, if w0(L) = 0 and a e ACtor, then (2.6) 
implies (2.2). If t#(t) < Mp(t) (t > 1), and if (2.6) holds and - h  is convex, then 
(2.3) follows from 

J ~ I;~(t)lp(t) < oo; (2.7) dt 

this would include the kernels generally used for viscoelastic models with, say, 

P =  Pl- 
The following sketch of the proof of Theorem 2.2 (ii) for U will indicate the 

perturbation technique that is involved. We write 

u l ( t )  = c ( , t )  exp(-~t/,)  

and 

U0 = U - U1. 

Then Ul ( t )  decays exponentially and so is p-integrable with respect to any 

regular weight. Rearranging terms (as in [9, Theorem l l  D and working with 
Laplace transforms one obtains a Volterra equation 

u0(t )  = Rl ( t )  + R2 * U0(t) (2.8) 

for U0, where l~j (s) (j  = 1, 2) is a sum of terms that are either scalar or scalars 

multiplied by Ol(s) .  Using local analyticity [6], one establishes that the scalar 
factors are transforms of functions in L 1 (IR+; p+), where p+ (t) = (1 + t)p(t);the 
scalar factors involved are A(s)/q(s), a(s)/q(s) and a(s)/q(s). As a consequence, 

and by means of Gripenberg's version of the Paley-Wiener lemma [4], (2.8) can 

be solved for U0 in the Banach algebra LI( IR+, / : (X) ;p+) ,  and the proof is 

complete. [] 

Theorem 2.2 (i) is proved in much the same manner. For Theorem 2.1, Priiss's 
representation [9] 

v ( 0  = ,,,,(t, r )c ( , - )  e,-, 

where w solves a certain Rayleigh problem, plays the central role, and there are 
additional technical complications. Once again the model is [9, Theorem 11]. 

The proofs for V(t)  are analogous (cf [10]), and they quickly yield the results 
for W( t ) ,  via (1.6). 
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3 E n e r g y  d e c a y  

In this section we assume (1.2), (1.3), f E LI ( IR+,X;p)  and the hypotheses of 

Theorem 1.2 with a(0 +) < cx~, or of Theorem 2.2 (either part) with (2.6) in case 

(ii). Then by (1.5) and the conclusions of Theorem 2.1 or 2.2 we get 

f °°([IMu(t)ll + Ilu(t)ll)p(t)dt < K(IIMuoll  + Huall + Ilfllp) (3.1) 

with II. lip =the  norm in LI(IR +, X; p) and K depending only on the L 1 bounds 
of the various resolvents. 

The energy computation of [1, Theorem 3.1] (together with an approximation 
argument) yields boundedness of ]]Mu(t)H + [[u(t)l I on IR +. Combining this with 
(3.1), we obtain the following. 

T h e o r e m  3.1 

satisfies 

Under the assumptions of this section, the solution u of (P) 

fo °°(l[Mu(t)[[ I[d(t)l[2)p(t)dt < + o o .  

As a consequence, we deduce that E(t) is integrable with respect to p; the 

estimate for the viscoelastic stored energy term of (1.8) is 

f0 f0' p(t) Ih(r)l t l M ( u ( t ) -  u(t - r))}l ~ d-cdt 

/J F _< 2 la(~-)l p(t)( l lMu(t)l l  2 + IIMu(t - r)ll 2) dtdr 

/5 /J _< 2 la(T)l dr IIMu(t)ll2p(t) dt 

+ 2 I•(r)l e(t + r) l lMu(t) l l  2 dtdr 

___ 2~(0) IIM~(t)ll~e(t) dt 

+ 2 I/z(r)lp(r) d r  [[Mu(t)ll2p(t) dt < ~ .  
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1 I n t r o d u c t i o n .  

A fundametal  result of N. Levinson [2] describes the asymptot ic  behavior of 

solutions of a linear differential sys tem 

dx 
d---t = A(t)x (1) 

as t ~ +co ,  where x is an n-dimensional vector and A(t) is an n × n matrix.  

According to this theorem, if 

A(t) = Ao + V(t) + R(t), 

where A0 is an n × n constant matrix,  V(t) is an n × n matr ix  such that  IV(t)'l is 

integrable over the interval [0, +c¢)  and R(t) is an n × n matr ix  such that  IR(t)l 

is integrable over the interval [0, +c¢) ,  and if eigenvalues )~(t)(k = 1 , . . . ,  n) of 

the mat r ix  Ao + V(t) satisfy some additional requirements, then system (1) can 

be reduced to 

dy 
d---[ = A(t)y, 

by a linear t ransformation 

A(t) = d i ag Dh( t ) , . . . ,  An(t)] (2) 

x = P(t)y (3) 

with an n x n matr ix  P(t) such that  l imt - .+~  P(t) exits and is nonsingular. 

The basic idea of the proof  of this result is 

(i) regarding Ao + V(t) as a constant matrix,  diagonalize Ao + V(t), i.e. 

A(t) = Q(t)- l{Ao + V(t)}Q(t), 

(ii) change system (1) to 



Asymptotic Behaviors of Solutions 

du 
d-7 = {A(t) - Q(t)- lQ'( t )  + Q( t ) - lR( t )Q( t )}u  

by 
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(4) 

by a linear transformation 

u = Q(t, e)v, (9) 

where Q is periodic of period 1 in t and smooth in (t, c) (cf. Y. Sibuya [3]). Note 

that  

B = Q - 1 A Q -  Q-IOQ 
Ot" 

Next, we change system (6) to 

dw ( B ( h ( t ) ) _ h , ( t ) Q ( t , h ( t ) ) _ l ~ ( t , h ( t ) ) l w  ' 

by the linear transformation 

x = Q(t, h(t))w. (11) 

(10) 

x = Q(t)u, 

(iii) show that  [Q(t)-iQt(t)[ is integrable over an interval [to,+C~), 

(iv) remove -Q( t ) - tQ ' ( t )  + Q(t ) - lR( t )Q(t )  from the right-hand side of (4) by 

another linear transformation. 

Step (iv) is now known as "Levinson's theorem" and has been shown (of. Harris- 

Lutz [1]) to be the basis for many asymptotic integration results. 

The method indicated in steps (i) and (iii) does not apply directly to the 

scalar equation 

d2~7 
dt--- ~ + {1 + h(t) sin(at)}rj = 0, (5) 

1 1 • 1 when h(t) is a small function such as 1, t-~-' Ins, In~ sln(t 2 ), because derivatives 

of h(t) sin(at) do not become small enought, i.e. integrable. In this paper we will 

use Floquet theory with parameters to recast this type of problem so that  the 

procedure outlined above can be applied directly. 

Given an n x n matrix A(t,e) whose entries are periodic of period 1 in a 

real variable t and smooth in (t, c), where c is a vector-valued parameter, let us 

consider a system: 
dx 
d--~ = A(t, h(t))x, (6) 

where x is an n-dimensional vector, and h(t) is a vector-valued function of t. To 

study the asymptotic behaviors of solutions of system (6) as t --* +c~, we first 

look at the system: 
du 
d--[ = A(t, e)u. (7) 

Utilizing the Floquent theorem, we change system (7) to 

dv 
d--[ = B(e)v (8) 
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Then under the assumption that  [h'(t)[ is integrable over a t-interval [to,+C¢), 

we can apply the theorem of Levinson given above to system (10). Note that  

B(h(t)) depends only on h(t), i.e. the periodic part is completely eliminated. 

We may also condsider repeated applcations of this procedure when succes- 
1 

are smaller, e.g. h(t) = ~ .  sive derivatives of h 

2 A n  e q u a t i o n  w i t h  p e r i o d i c  c o e f f i c i e n t s .  

Let A(t,e) be an n × n matrix whose entries are continuous in (t ,e) E R × A(r)  

and holomorphic in c E A(r) for each fixed t E R, where 

I R =  {t;-oo < t < + }, 

= ,era) c R 

I~1 = m a x l < j < m  [Cj 1, 

zX(r) = {c; IEI < r} 

and r is a positive number. The following result was obtained by Y. Sibuya [4]. 

T h e o r e m  2.1 l f  A is periodic in t of period ~, i.e. 

A(t + )~, e) = A(t, e) for (t, ~) E R × A(r), (12) 

where )t is a positive number, there exist n × n matrices P(t,¢) and H(¢) such 
that 
(i) the entries of P(t,e) are continuous in (t,e) E R × A(~) and holomorphic 

in e E A(f) for each fixed t E R, where ~ is a suitable positive number, 
(it) P(t + a, e) = P(t, e) for (t, e) E n x A(~), 

Oii) P(t, e) is invertible for every (t, ¢) C R x A(÷), 

(iv) the entries of H(¢) are holomorphic in ¢ E A(÷), 
(v) any two distinct eigenvalues of H(O) do not differ by integral multiples of 

2~ri 
A ' 

(vi) ° P ( t ,  ¢) exists for (t, e) e R × A(÷) and given by 

O P(t, e) = A(t, e)P(t, e) - P(t, e)H(e) (13) 

for  (t, e R × A(÷).  

Let Bo(e) be an n x n matr ix whose entries are holomorphic in e E A(r),  

and let Ba(t,e,lt) be an n x n matrix whose entries are continuous in (t,e,p) E 
R × D(r )  and holomorphic in (e,/t) e :D(r) for each fixed t e R, where 
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{ ~ = ( ~ l , . . . , C m )  • R m, # =  ( / t l , . . . , # p )  • R p, 

I~1 = maXl<_j<rn lejl, I~1 = maxx<h<p I~hl, 

79(0 = {(e,i,); I~1:+ It, I < r} 

and r is a positive number.  Our first fundamental  result is the theorem below. 

T h e o r e m  2.2 Assume that 

B,( t  + A,e,/~) = Bl ( t , e ,# )  for  (t, ~,/~) E R x ~D(r), (14) 

where A is a positive number, and that 

B,( t ,  e, O) = 0 for  (t, e) • R x A(r).  (15) 

Assume also that any two distinct eigenvalues of B0(0) do not differ by integral 
multiples of 2,, Then there exist n x n matrices P~(t,e,l~) and nl(e, /~)  such "-X-" 

that 
(i) the entries of P l ( t , e ,p )  are continuous in ( t ,e ,p)  E Rx/) (~)  and hoiomorphic 

in (~, ~) E 9 ( f )  for each fixed t E R, where ~ is a sui table positive number, 

(it) Pl(t  + A,e,p)  = Pl ( t , e ,p )  for ( t ,e ,p)  • R × 73(~), 
(iii) P1 (t, ¢, O) = 0 for (t, e) • R x A(~), 
(iv) the entries of Hx(e,p) are holomorphic in (e,lt) • 79(~) and H i ( e , 0 ) =  0 

for ~ • ~(~), 
(v) ~ P l ( t , e ,  lJ) exists for (t,e,l~) • R x 79(÷) and is given by 

~tP1 (t, c, p) = {B0(c) + Bl(t ,  e, p)} {I + Pl(t ,  c, p)} 

- {I  + Pl(t ,e, l~)}{So(e) + Hl(e, lz)} (16) 

for (t,e, lt) • R x ~D(~), where I is the n × n identity matrix. 

R e m a r k  2.3 Equation (16) can be simplified as 

~ Pl( t ,e ,p)  = Bo(e)Pi(t,e,l~) - Pl(t ,c ,p)Bo(~) + {B l ( t , e , p )P l ( t , c , p )  

- Pl(t,e,l~)Hl(e,lz) + B l ( t , c ,p ) }  - Hl(e ,p) .  (17) 

Proof of Theorem 2.2. Given m = ( m l , . . . ,  rap), where the m i are non-negative 
m p  

integers, let us d e n o t e  El<j<p [mj[ and tu~' . . . / tp  by [m[ and / t  m respectively. 
Set 

{ 
P l ( t , ~ , a ) =  E t'mel,m(t,c), 

Iml_>l 

B l ( t , c , p ) =  E ttmBl,m(t'6)'  
Iml>l 

HI (e , /~ )=  E p'~Hl,,~(e). 
I,,,1___1 
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Then equation (17) is equivalent to 

OPl,m 
Ot -- BO(C)PI,m -P l ,mBo(c )+Ql ,m( t , $ )  -Hl,m(C), 

where 

Hence 

Ql,m(t, ~) = ~ (Bl,hPl,k -- Pl,kHl,h) + Bl,m(C). 

h+~=,,~,(thl,lkl> 1) 

(18) 

(19) 

Pl,ro(t,¢) =exp[t Bo(¢)](C(¢)+ ~ol exp[-s Bo(e)](Ql,m(s,e) 

- Hl,m(s,c))  exp[s Bo(c)lds} exp[-t  Bo(e)], (20) 

where C(e) and Hi,re(e) are n x n matrices to be determined by the condition 
that Pl,m(t,e) is periodic in t of period A, i.e. 

exp[A Bo(c)]C(e) - C(¢) exp[A Bo(e)] 

£ -exp[A B0(s)] exp[-s Bo(e)]Hl,m(e)exp[s Bo(e)]ds 

£ = exp[a B0(c)] exp[-s  Bo(~)]Ql,,~(s,s)exp[s B0(~)les. (21) 

It is not difficult to see that condition (21) determines the matrices C(e) 

and Hi,re(e). Then the matrix Pl,m(t,e) is determined by (20). Convergence of 
power series P1 and H1 can be shown by utilizing suitable majorant series. [] 
For further details as well as questions relating to the sufficiency of condition 
(21) see Sibuya [31. 

R e m a r k  2.4 If Bo(0) has v distinct eigenvalues, we can assume without any 
loss of generality that Bo(¢) has a block-diagonal form: 

0 0 ... 0 00 ] (22) 
Bo(~)=  Bo,2(c) 0 . . .  0 

L 0 0 . . .  0 B o , ( ~ )  

such that each block B0,j(¢) corresponds to an eigenvalue of B0(0). Then, we 
can determine C(¢) and Hi,re(e) so that Hi,re(e) has the same block-form as 
Bo(e), i.e. 

Hl,m (~) = 

"Hl,m,l(g) 0 0 ... 0 0 ] 

0 HI,m,2(E) 0 . . .  0 u 

: : • . .  • : J " 0 0 0 . . .  0 Hl,m,v(e) 

(23) 
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A p p l i c a t i o n s  o f  t h e o r e m s  2.1 a n d  2.2 Let A(t, ¢), P(t, ¢) and H(¢) be the 

same as in theorem 2.1. Consider a differential equation 

dy 
d--t = A(t, h(t))y, (24) 

where y is and unknown vector in R" and h(t) = (hi(t),..., hm(t)) is an R m- 

valued differentiable function in t on the interval [0, +c~). 

Case L Let us first prove the theorem below. 

T h e o r e m  3.1 The transformation 

y = P(t, h(t))u (25) 

changes differential equation (24) to 

du I H(h(t)) - P(t, h( t ) )  - a  

t 
Z h~i (t) o"P(t'h(t))} u. 

l<_j<_m acj 
(26) 

Proof. In fact 

dUdt = P(t'h(t))-I {A(t,h(t))P(t,h(t)) - d [p(t,h(t))]} u 

f OP "t P(t, h(t))-l]A(t,  h(t))P(t, h(t)) - --~( , h(t)) 

, OP }u. 
- ~ hj(t)-~j(t,h(t)) 

l < j < m  

Since H(¢) is given by (13), we can derive (26) from (27). 

(27) 

[] 

R e m a r k  3.2 

(i) H(h(t)) does not contain any periodic terms, 

(ii) any two distinct eigenvalues of H(0) do not differ by integral multiples of 
2~ri 

(iii) if we assume that  

{ f+oo Ih'(t)ldt < +c¢, 
(28) 

limt--.+oo h(t) = O, 

then 

fo +°° P(t,h(t)) -1 ~ h~(t)~(t ,h( t ))  dt < +0o. 
l<_j<_m 

(29) 
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Case II. If we set 

Bo(¢) = H(e),p = m, 

Bl( t ,e ,  tt) = - P ( t , ¢ )  -1 . O P  [ t  ~ 

l<j<rn 

(30) 

we can apply theorem 2.2 to the two matrices B0(E) and B~(t,E,p). Note that  

B0(0) = H(0). Furthermore differential equation (26) can be written as 

du 
d-~ = {Bo(h(t)) + Bl(t,  h(t), h'(t))}u. 

In the same way as the proof of theorem 3.1, we can prove the theorem below. 

T h e o r e m  3.3 The transformation 

u = {I + Pl(t, h(t), h'(t))}v (31) 

changes differential equation (25) to 

{ d--[ = H(h(t)) + Hl(h(t) ,h '( t))  

l <_j <_m 

+h~'(t)Oo~j(t,h(t),h'(t))]}v, (32) 

where Pl( t ,~ ,#)  and Hl(~,t*) are the two matrices given in Theorem e.e. 

R e m a r k  3.4 

(i) H(h( t ) )+ Ht(h(t), h'(t)) does not contain any periodic terms, 

(it) H(0) + Hi(0, 0) = H(0), 

(iii) if we assume that  

f+oo Ih~(t)ldt < +c~, 

limt...+~ hj (t) = O, 

then 

f + ~  [h~(t)h~(t)]dt < + ~ ,  

limt-.+oo h~ (t) = 0, 

/ y p [ .  + h'¢,.] -1 '~-~ fh'tt~OPi(t,h(t),h'(t)) 
l~_;j<., L J ~ " Ovj 

+ h~'(t)~--Z-~-Pl(t,h(t),h'(t))l dt < + ~ ,  (34) 
al~j ] 

(33) 

(iv) condition (33) is in general weaker than condition (28), 
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(v) since Pl(t,e,O) = 0, we can write 

- [I+Pl(t,h(t),h'(t))]-t ~_t[h;(t)~(t,h(t),h,(t))+,, .Op1, (t)~--~i , . .  ,h(t),  h'(t))]_ 

= ~ h~(t)h~(t)~,k(t,h(t),h'(t))+ ~ h~(t)Tj(t,h(t),h'(t)), (35) 

l<_j<m l<_j<_m 

where the matrices TLk(t, ~, It) and Tj (t, ~, It) satisfy the conditions below: 

(a) the entries of ~ ,k(t ,  ~, It) and ~ ( t ,  ~, It) are continuous in (t, ~, It) • n × V(p) 
and holomorphic in (¢, It) • / ) ( p )  for each fixed t • R if p > 0 is sufficiently 

small, 

(b) ~,~ (t + A, e, It) = ~,k (t, c, It) and ~ (t + A, e, It) = Tj (t, e, It) for 

(t, ~, It) • n x 9(p) .  
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Implicit  Differential  Equations  which are not 
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1 Introduct ion  

This paper is motivated by the following example given by W.V. Petryshyn in 

[111: 

(P1) .! Y"=y(O) =h(t)+y(X) =Y3: (y,)2 + ksin(y"), t E [0, 1], 

Petryshyn proved (with the use of A-proper mapping theory) that  (/'1) has 
a solution y E C2([0, 1]) provided 0 < k < 1. We will show here, by entirely 
different methods, that (P1) has solutions y E W02'1([0, 1]) for any real constant 
k, and it has C ~ solutions if ]k] < 1. 

In general, we study the solvability of two-point boundary value problems 
for implicit differential equations 

F(t, y, ¢,  ¢9  = O, t • [ 0 , 1 ] .  (1) 

Ideally, we would like to solve the equation F(t ,y ,p ,x)  = 0 for x in order to 

reduce (1) to 

y" = f(t ,  y,y'), t • [0, 1], (2) 

where a variety of existence results based on the Leray-Schauder theory is avail- 

able. Let us remark that in the case of an initial value problem {(1) subject to 

y(to) = Y0, y~(t0) = P0} the local solvability of F(t,y,p,  x) = 0 in x about a 

point (to, Yo,Po, x0) is entirely sufficient. In the case of a boundary value prob- 
lem, however, we need a global continuous solution x = f(t ,  y,p) defined for all 
(t, y,p) • [0, 1] × R 2, and that is very rarely available. The situation changes 
if we set the problem in the space W 2,1 of functions y • C 1, with absolutely 

continuous derivative. New results of Bielawski and Gorniewicz [1] are helpfull 

in reducing (1) to a differential inclusion 

y" • ¢(t ,  y, y'), t • [0, 1], (3) 

where ¢ is a lower semicontinuous selection of the multifunction 
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~o(t, y, p) = {z  E R[ F(t ,  V,p, z) = 0}. (4) 

Then the Fryszkowski selection theorem on mappings with decomposable values 
in L a (improved by Bressan and Colombo [2] in the completion with [10]) and a 
priori estimate techniques of Frigon [7] and Granas, Guennoun [9], are used to 
acomplish proofs of existence. 

For the simplicity of the presentation, we restricted the study to equations 

involving functions y : [0, 1] ~ R and to the homogeneous Dirichlet boundary 

value problem. Our results, however, have straightforward extensions to systems 

of equations (i.e. y(t) E R n) and to various classes of boundary conditions. We 

will briefly discuss those extensions at the end of this note. 

2 S o l v a b i l i t y  o f  d i f f e r e n t i a l  i n c l u s i o n s  

We first s tudy the homogeneous Dirichlet boundary value problem for 

y" E ¢(t ,  y, y'), a.e. t E [0, 1], (5) 

where ¢ : [0, 1] x R 2 --* 2 n is a multifunction with closed values satisfying the 

following conditions: 

(a) ¢ is £:®B measurable (Lebesgue on [0, 1], Sorel on R 2) and ¢(t , . ,  .) is lower 
semicontinuous for a.e. t; 

(b) ¢( t ,y ,p)  C [f l ( t ,y ,p) , f2( t ,y ,p)]  for all y,p and a.e. t, where fl  and f2 
are two Carath6odory functions satisfying the growth conditions (H1) and 
(//2) stated below. 

We recall from [9] that f ( t ,  y, p) is a Carath6odory function if it is measurable 
in t, continuous in (y,p) and, for (y,p) in a bounded B C R 2, dominated by an 

integrable funciton gB(t). We also restate the following conditions from [9]: 

(Ha) There is a constant M > 0 such that yf ( t ,y ,O)  > 0 for all y with [y[ > M 
and a.e. t; 

(H2) I f( t ,y ,p)l  < ~(lp[), for all y with [Yl < M,  p e R, and a.e. t, where ~ is a 

positive locally bounded function with f o  ~-~s) ds > 2M. 

It is easily verified that (H2) holds for any f satisfying the classical Bernstein 
growth restriction: 

(H~) There are constants A, B > 0 such that If(t, y, p)l < A + Bp 2, for all y with 

lY[ < M, p E R and a . e . t .  

T h e o r e m  1 I f  ¢ satisfies (a) and (b) then the inclusion (5) has a solution 
'11 U7_: W2o "1 such that [lullo< M (/.e. lu(t)l <_ m for a.e. l). 

Proof. Let f l  and f2 be as in (b), M a constant from (Hi)  common to f l  and 
f2, ai a function defined for fi as in (H2), i = 1,2, and let M1 > 0 be defined 
by 
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J~O M1 $ ai(s----~ds > 2M, i = 1, 2. 

Next, let g e LI([0,1]) be a positive function with Ifi(t,y,p)[ <_ g(t) for all 

lYl < M, IPl < M1 and a.e. t e [0, 1], i = 1,2. We define 

~0 
1 

M 2  = IJgJJl = Ig( t )Jdt  

and let 

I ~  2.1 U { y E , . 0  [ ] [ y [ [ 0 < M + l ,  [ [y~[ [0<Ul+l ,  ] l y "HI<M2+I} .  

Consider the diagram 

CI([0,1], R) ' ,  C([0,1],R ~) 

W0~,l([0, 1], R) L LI([0, 1],R ) 

where the operators are defined as follows: Ly = y ' ,  j is the inclusion mapping, 
i is the imbedding defined by i(y) = (y, y'), and ¢* is the multivalued mapping 
defined for ¢ by 

¢*(y ,z ) ( t )  = {u E LI[ u(t) ~ ¢ ( t , y ( t ) , z ( t ) )  d . C .  t}. 

The inclusion (5) subject to y(0) = y(1) = 0 is equivalent to L y e  
(¢*ij)(y),  y E W~ 'I and, next, to y E (L- l¢* i j ) (y ) ,  since L is bijective. Corol- 
lary 3.3 in [8] shows that the restrictions of ¢* to compact subsets of C([0, 1], R 2) 
have continuous single-valued selections. Since j is completely continuous, the 
mapping L - l ¢ * i j  restricted to 0 has a continuous selection F : 0 ---* W02J. 

Clearly, any fixed point of F also is a solution of (5) satisfying the boundary 
conditions. In order to complete the proof, we must show that all possible solu- 

tions of the parametrised family of equations 

y = A F ( y ) ,  0 < A < I ,  (6) 

belong to U. If so, then the condition follows from the Theorem 5.1, Ch. II, §4 
of [3]. Let us note that (6) and (b) imply 

Af l ( t , y ,y ' )  <_ y" <_ )~f2(t,y,y'), a.e. t, (7) 

where the functions on both sides satisfy the growth conditions (H1) and (H2). 
Proving that ly(t)l _< M and ly'(t)l <_ M1 for a.e. t is based on the same 
arguments as those in the proof of the assertion (ii), Lemma 3.1 in [9]. Next, 

IlY"II1 g M2 by the definition of M2 and by (7). This shows that y e V. 
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3 Reduction of implicit equations to differential 

inclusions 

We may now study the homogeneous Dirichlet problem for the differential 

equation (1). Let F be a continuous function from [0, 1] x R 3 to R and let 

: [0, 1] x R 2 ~ 2 R be the multifunction corresponding to F, defined by (4). 

The following assumptions are posed: 

(i) For any ( t ,y ,p)  E [0,1] x R 2 there is an open U C R such that ~ ( t , y , p ) n  
OU = 0 and deg(F(t,  y,p, .), U) ~ 0 (by deg we mean the Leray-Schauder 

degree). 

(ii) For any (t, y, p) e [0, 1] x R ~, the covering dimension of ~(t, y, p) is  zero (c.f. 

[4]). 
(iii) ta(t, y, p) satisfies the condition (b) of the previous section. 

Note that  ~ is an u.s.c, mapping but not necessarily a 1.s.c. mapping. The 

multivalued mapping fP* : C([0, 1], R ~) --+ ci LI([0, 1],R), corresponding to ~, 

is not 1.s.c. in general, so Theorem 1 cannot be directly applied. However, our 

assumptions and Theorem 2.5 in [1] imply that ~ has a lower semicontinous 

selection ¢( t , y ,p )  C ~( t , y ,p )  with nonempty closed values. Geometrically, ¢ 

is obtained from ~ by deleting f romthe  graph of F(t, y ,p ,x )  = 0 all points at 

which that  equation is not locally solvable for x. That  and Theorem 1 imply the 

following: 

T h e o r e m  2 I f  F satisfies the conditions (i), (ii), and (iii) then the equation (I) 
has at least one solution y E W~o J.  

Since the formulation of Theorem 2 is very general and the assumptions 

might seem not easily verified, we now give two more explicit examples. First let 

us consider the problem mentioned in the introduction: 

(P1) ! [ y(O) y'' ==h(t)y(1) + =Y3:(y~)2 + ksin(y"),  a.e. t E [0, 1], h E C([0, 1]), 

C o r o n a r y  1 The problem (P1) has solutions u E W2o '1 for all real constants k. 
Moreover a C 2 solution exists i f  Ikl < 1. 

Proof. Define ~pl(Z) ---- {X  E R I x "~ z -~ ks inx} .  It is clear that  the mapping 

x ~ z + k s i n x -  x has a nonzero degree on sufficiently large intervals ( - M z ,  Mz) 
for all z E R, in particular, Tl(z) is nonempty. The set ~t(z)  is finite so, in 

particular, its covering dimension is zero. Consequently, the multifunetion 

u, p) =  t(h(t) + u 3 + p2) 

satisfies the conditions (i) and (ii). Let us observe that  ~l(z)  C z + [-k ,k] ,  so 

that (iii) is verified with 
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f i ( t , y , p ) = h ( t ) + y 3 + p 2  +( - 1 ) i J k  h i = 1 , 2 .  

It is easily proved that  f l  and f2 satisfy (H1) and (H~), and we may now refer 

to the Theorem 1. Finally, if Ikl < 1 then the equation x = z + ks inx  has a 

unique solution z = tol(z) for all z, and !oa is a continuous function of z. Hence 

(1) is reduced to y" = tol(h(t) + y3 + (y,)2) with the continuous right-hand side 

and the second conclusion follows. 

The second example is 

(. P~n+I(Y") -= f ( t , y , y ' ) ,  a.e. t E [0, 1], 
(P~) 

y(O) = y(1) -- 0 

where P2n+x is a polynomial of odd degree 2n + 1 with constant coefficients. 

C o r o l l a r y  2 Suppose that f : [0, 1] x R 2 ~ R is a continuous function satisfying 

(H1) and the following conditions: 

(H~') There exists e > 0 such thai 

l i m i n f y - l f ( t , y , O )  > ~ fora.e. t ,  
]yl--'~ 

(H~) For any M > O, there are constants A , B  > 0 such that, for all y with 
]y[ < M , p E  R, and a.e. t, [f(t ,y,p)[ < A + Bp 4p+2, 

Then (P~) has at least one solution y E W0 ~'1. 

Proof. We define ~l(Z) = {x] P2,+a(x) = z) and repeat the arguments of the 

previous proof. For verifying that  (iii) holds, let us note that  the roots of the 

equation P2n+a(x) = z can be estimated by the roots of x 2n+1 = z so that  

~l(z)  c k~z 1/2"+1 + [-k~,k2] 

for some constants kl, ks > 0. We define 

£( t , y , v )  = kl + ( f ( t ,v ,p))  1/2"+1 + ( - 1 ) % .  

The conditions (H~") and (H2") on f imply that  f l  and f2 satisfy (H~) and 
(H~), and the conclusion follows. 

4 R e m a r k s  o n  p o s s i b l e  g e n e r a l i s a t i o n s  

1) Our results have extensions to non-homogeneous Dirichlet, periodic, Neu- 

man, or Sturm-Liouville boundary value problems considered in [9], with 

the analogue modification of the growth condition (H2) in the case of the 

Sturm-Liouville boundary conditions. 

2) Theorems 1 and 2 can be extended to systems of equations (or inclusions). 

That  will be fullfilled upon replacing our growth conditions (H1) and (H2) 
by the growth conditions (H1, H2,//3) of [5]. 
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3) 

4) 

It seems that  the continuity of F(t,  y,p, z) in t is not essential if we seek 

solutions in W 2,1, although it simplifies the arguments. 

The assumption (ii) in section 3 is essential. However, if we go to another 

extreme and assume that  ~(t, y, p) is convex, then the results of [6] based 

on the theory of convex-valued u.s.c, mappings can be used instead. As an 

example, consider the equation analogous to (P1): 

~t" = h(t) + ~13 + (y,)2 + S(y"), 

where the sinusoide in (PI) is replaced by the "piece-wise linear sinusoide" 

of slopes +1 defined by 

{ ~: i f  xE[- - . / ,1 ]  

S ( x ) =  2 -  x i f  (1,31 
S ( x - - 4 n )  " x E [ 4 n - l , 4 n + 3 ) ,  n = + l , + 2 , . . .  

Then the multifunction ~(z) = {x I x = z + S(x)} is u.s.e, with nonempty 

compact convex values and the results of [6] apply. 
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A Stability Analysis for a Class of Differential- 
Delay Equations Having Time-Varying Delay 

James  Louisell  

Department of Mathematics, University of Southern Colorado, Pueblo, CO 81001 

1 I n t r o d u c t i o n  

The subject of this paper is differential-delay equations having time-varying 
delays. Time-varying differential-delay equations have a long history, and the 

literature on systems defined by such equations is vast. Within this area, the 

special case of systems in which the delay is itself a function of time has a much 

smaller literature, and results are more rare ([1]), ([2]), ([3]), ([5]), ([8]). 

The specific topic of interest in this paper will be the differential-delay equa- 

tion (t) ~(t) = A o x ( t ) + A l x ( t -  h(t)), where A0, A1 are fixed members of IR "x", 
and h(t) is a bounded function having domain [0, oo) and range contained in 

[0, oo). If h >_ 0 is any fixed constant for which all zeros of the characteristic 

function fh(S) = ]sI -- Ao - e- 'hAl]  are contained in the open left half-plane 

{Re(s) < 0}, we say that  h lies in the stability set, which we denote by Hs. 

Thus H, = {h e [0, ¢x~) : fh(S) = ]sI--Ao - e - ' h A 1  [is nonzero for each complex 
s having Re(s) > 0}. We will assume that  h(t) takes its values in the set Y,,  

and investigate the following question: Which hypotheses on the function h(.) 

guarantee that  the solutions of the above differential-delay equation (t) decay 

as t ---* c~? 

In order to clarify the discussion we now fix the notations used throughout 

this paper, and recall those aspects of the autonomous system (.) k(t) = Aox(t)+ 

A l x ( t  - h) which will be useful as a point of reference in our investigation. To 

begin, we let H = [0, c~), and for each h E H, we let ~rh denote the delay 

operator having duration h. A simple and useful way to form the characteristic 

function fh(S) for the system (*) is to first write p(s, ah) = ]sI -- Ao - AlCrh] = 
Sn-}-an_l(ffh)S n-1 "1 t-'' "+ao(~rh), where for k = 0 , . . - ,  n - l ,  each ak(~rh) • IR[~rh] , 

the ring of real polynomials in the operator ah. We then have fh(s) = p(s, e-sh). 

The utility of this formula is clearly seen in the following lemma. 

L e m m a  1.1 Let A0,A1 E lR nxn. Then there exisls wo > 0 such thai for all 

h E H, the characlerislic function fh(s) = ] s I -  Ao - e - S h A l l  has no zeros in 

{Isl > ~0, Re(s) > 0}. 
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Proof. For z e C, write p(s, z) = ] s I - A o - A l z [  = s" + a , _ l ( z ) s  "-1 + . . .+ao( z ) .  
Then p(s ,z )  = sn[1 + (an_l(z ) / s )  + ... + (ao(z)/sn)], and thus p(s , z ) / sn  --* 1 

uniformly for ]z[ < 1 as Is[ ~ ¢x~. Since ]e - ' h i  < 1 for Re(s) >_ 0,h >_ 0, we thus 

see that  h ( s ) / s "  ---* 1 uniformly for (s, h) q {Re(s) > 0} × H as IsI---* c~, and 

the lemma is now apparent. [] 

The following lemma can be proven with the aid of Lemma 1.1 by apply- 

ing the principle of the argument to the function fh(s) over any curve c(-) 

parametrizing the set {iT : [w[ <_ w0} U {Is[ = w0, Re(s) > 0}. 

L e m m a  1.2 Let ho E H, and suppose fho(s) has no zeros in {Re(s) > 0}. Then 
there is an open set U = H A  {Ih - hol < r}, having the properly that i f  h e U, 
then fh(s)  has no zeros in {Re(s) _> 0}. 

2 A L y a p u n o v  f u n c t i o n a l  

The purpose of this section is to present the basic facts found necessary in the 

construction and use of the Lyapunov functional employed in Section 3. 

We begin by taking any two matrices A0, A1 E lR nxn. We set H = [0, oo), 

and for each h E H,  we define the matrix functions Th(s) = sI  -- Ao - A le  -ah, 
Mh(s) = Th(s) -1, and the scalar function fh(s) = ]Th(s)]. It will frequently be 

useful to denote Th(s) by T(h,  s), and to denote Mh(s) by M(h,  s). Finally, we 

remind the reader that  here Ha is defined by Ha = {h E g : fh(S) is nonzero for 

each complex s having Re(s) _> 0}. 

The simple formula Th(s) = s(I  - l=Ao - ~e-ShA1) , valid for s E C - {0}, 

immediately yields Mh(s) = s - l ( I - - "  { A o -  !e -ahAx) -x ,  valid throughout 

{s # O, fh(s) # 0}. Setting F(h, iw) = ( I -  ~ A o -  ~ e - ' ~ h A x )  -1, we im- 

mediately see that  F(h,  iw) --~ I uniformly for h E H as [w[ ---* ~ .  Writing 

Mh(iw) = ~ r ( h ,  iw), we have (Mh)*(iw)Mh(iw) = wf-~F*(h,iw)F(h, iw), and 

thus we see that  if fh(iw) is nonzero for each w E IR, then each of the entries of 

the matr ix (Mh)*(iw)Mh(iw) will be absolutely integrable over the unbounded 

interval ( - c~ ,  oo). For each h E Ha, we now form the matrix Q(h, o~), defined 

for every c~ E IR as 

/? 1 (Mh),( iw)Mh(iw)e_i~adw. 
Q(h, a) = ~ o~ 

There are several basic formulas which simplify the analysis of the matr ix 

function Q(h, a). First among these is the formula for fh(S) given in Section 1. 

Recall that  we there wrote h ( s )  = p(s, e- 'h) ,  wherc p(s, ah) = [sI -- A(ah)[ = 

s n + a n - l ( a h ) s n - l +  ''  .+ao(Crh), and ah is the delay operator of duration h, with 

A(~h) = A o + A l e h .  We used this formula to deduce the fact that there is w0 > 0 

having the property that  for each h E H, fh(s) is nonzero for every complex s 

having Re(s) >_ 0, Is[ >_ w0. From this formula it is also easily seen that  if K 

is any compact subset of @, and h0 is any member of Ha, then fh(S) ~ fho(S) 
uniformly for s E K as h ~ h0. 
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Another  formula useful for analyzing the matr ix  Q ( h , , )  is the formula 

for Mh(s) in terms of the matr ix  adjugate to Th(s), i.e. Mh(s) = Th(s) -1 = 

( f h - ~ )  (adj Th(s)) for each complex s having fh(s) ¢ O. From this formula 

it is seen that ,  given any h0 E H ,  if fho(s) is nonzero for every complex s ly- 

ing in some compact  subset K of C, then Mh(s) is defined throughout K for 

each h lying in some relatively open set U = H n {[h - h0l < r}, and in fact 

Mh (s) --+ Mho (s) uniformly for s • I f  as h --* h0. With these comments as back- 

ground, we can now present the first of several lemmas dealing with the matr ix  

Q(h, or) found useful in Section 3. 

Lemma 2.1 Let ho • H,. Then there is a neighborhood U = H n {[h-  ho] < r}, 
contained in H,, for which Q(h, a) is defined and continuous throughout U × lit. 
Furthermo,~, Q(h, ~) ~ Q( ho, ~) uniformtu throughout ~ as h -~ ho. 

Proof. Existence: For any ho E H, , we know from Lemma 1.2 that  there is a 

neighborhood U -- H M {[h - h0[ < r} with /4, D U. For any h • U, since 

h • H , ,  we know that  Q(h, a) is defined for each a • IR. 

Continuity: Let U be as immediately above, and for each h • U, set R(h, w) = 
2-~(Mh)*(iw)Mh(iw), and /~(h,w) - R(h,w) - R(ho,w). For any fixed Wl > 0, 
we write 

Since ho • Hs, we know from the comments preceding this l emma that  for 

any Wl > O, [~(h,w) ~ 0 uniformly for Iw] < wl as h ---* h0. Thus, for any wz > O, 

we have 

flu IIR(h,~)l ld~ ~ 0 as h --* h0. 
I<~1 

Again referring to the comments preceding this lemma, we write 2~r/~(h, w) = 
1 * ~--~[F (h, iw)F(h, iw) - F*(ho,iw)F(ho,iw)] and recall that  F(h, iw) ---+ I uni- 

formly for h • H as Iw] ~ ~ .  We thus see that  

fl~ IIk(h,~)lld,~ ~ 0 uniformly for h • H as ~ c¢. 
I_>~1 

Now writing 

[[Q(h,~) - Q(ho,~)[[ _< fl~ IIR(h,~)IId~ + fl~ [[R(h'~)lld~' 

and recalling tha t  for any wz > 0, / IIk(h,~)lldw ~ 0 ~ h ~ h0, we 

conclude tha t  IIQ(h,~) - Q(ho, ~)11 ~ 0 uniformly for o~ • IR as h --+ ho. 

I f  we now set S(h,w, oz) = R(h,w)e -i'~'~, and if for fixed a0 E IR we set 

S (h ,w,c0  = S(h,w,o 0 -S(ho,w,C~o), then by applying an argument  similar 
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to the above, using the functions S(h,w, or) and ~5(h,w, a), one will find that  

I lQ(h,a)-  Q(ho, ~o)11 -~ 0 as (h,o 0 --~ (ho, C~o) . Since the original choice of 
ho E Hs was arbitrary, the proof is complete. [] 

The next lemma, which is actually a basic fact of real analysis, is included 

for use in the two lemmas which immediately follow this lemma. The proof is 

derived from standard real analysis techniques, and is :not given here. 

L e r n m a  2.2 Let Ut be any real interval, and let U2 be either of (-oo, ~ ) ,  [v, ~) ,  
where v is any member oflR. Let f : U1 x (]2 "-~ •nxn , where both f and D l f  
are continuous throughout U1 x U2 • For any 7 > O, se~' J(7) = U2 f'l {Ix2] > 3'}, 

and now suppose that there exist 7o > 0 and a real function q~ : J(7o) ~ [0, c¢) 

having the properties a), b) written below: 

a) [ < 
.It (70) 

b) f o r  each (Xl,X2) ~ UI x U 2 having 1~21 _> 70, both I l f (z l ,Xz) l l  < ¢(z=)  and 

 2)11 _< 

Then for F(x l )  = [ _  f ( x l ,  x2)dx2, we know that F(x l )  is defined and fi- 
JU 

nile for all g~l ~ U1, and in fact the derivative F'(Xl) exists and is continuous 

throughout U1, with F'(xl) = / _  D~f(x~, x2)dx~. 

ib 

JU 
2 

In the next lemma, we again examine the behavior of the function R(h, w) = 
1M*(h ,  iw)M(h, iw). Here we employ two formulas for oR ~-ff(h,w) to prove exis- 

tence and continuity of -~h (h, cQ. To obtain the first of these formulas we recall 

that  M(h,iw) = T- l (h ,  iw), where T(h, iw) = i w I -  A o -  e-i~hA1. Setting 
Nl(h,w) = --i---~e-iWhM*(h, iw ) i (h ,  iw)A1i(h ,  iw), we can give the first of the 

two formulas for oR 

OR * 
2 ~ r ~ - ( h , w ) =  ( ~ h  (h, iw)) M(h, iw)+ M*(h, iw) ( ~ h  (h, iw)) 

= ( -M(h ,  iw)AiM(h, iw)iwe-iwh)*M(h, iw) 

+ M*(h, iw)(-M(h,  iw)AtM(h, iw)iwe -i~'h) 

= 2~r[U~(h,w) + Xl(h,w)], 

i.e. °R(h,w) = N~(h,w) + Nl(h ,~)  for any (h,w) having [T(h,iw)l # O. -g~ 

We now return to the formula R(h,w) = 1 F*(h, iw)F(h, iw), where 27rw~ 
F(h, iw) = (I x x o-i..hA ~-1 -- 7-~A0 - ~ Zal] . Setting N2(h,w) = -1--e-iWhF*th2.~ t ,iw) 

F(h, iw)A1F(h, iw), we can give the second of the formulas for °A(h, w): 
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~. OR OF * OF . 

= ( -F(h ,  iw)A~ F(h, iw)e-~)*F(h, i~) 

+ F*(h, iw)(-F(h,  iw)AiF(h, iw)e -i°~h) 

= 2r[N~(h,w) + U2(h,w)], 

i.e.-~(h,w)°n = A~[N~(h,w) + N~(h,w)] for (h,w) having w C O, lT(h, iw)[ # O. 

L e m m a  2.3 Let ho E H,. Then there is a neighborhood U = HM{lh-ho[  < r}, 
contained in Ha, for which O0--~hh (h , a) is defined and continuous throughout U x l i t ,  

uniformly throughout IR as h ---* ho. 

Proof. Let h0 E Hs, and let U be the neighborhood of Lemma 2.1, i.e., U = H N  

{ I h -  h0l < r}, with Hs D U, and with Q(h, o~) defined and continuous through- 

outUxlR.  Notingtheformulas27rR(h,w) = M*(h, iw)M(h, iw),and -~(h,w)°R = 
N~(h,w) + Nl(h,w), both valid throughout U x IR, with -2rN~(h,w) = 
iwe-i~hM*(h, iw)M(h, iw)A1M(h, iw), we see that  both R(h,w), °n(h,w) are 

continuous throughout U x IR. 

Now note the formulas 27rR(h,w) = 1 , -.~F (h,iw)F(h, iw), and -~h(hw) = 
~--~[N~(h,w) + N2(h,w)], both valid for h E U,w # O, where 2rN2(h,w) = 
-e-iWhF*(h, iw)F(h, iw)A1F(h, iw). Recall that  F(h, iw) ---* I uniformly for h E 

{ H a s l w l - - ~ e ~ , a n d s e t K = m a x  1 + ~ , 1 +  2,~ j ' T h e n t h e r e i s s ° m e 7 0 > 0  

such that  for I~1 _> -r0 and h E H, both IlR(h,w)l I < Kw -2, and I I~(h,~) l l  _< 
Kw -2. Writing Q(h, a) = f_°°oo R(h, w)e- i~dw,  we can apply Lemma 2.2 with 

U1 = U, Us = (-cx~,oo), and ¢(w) = Kw -2 for I~l > ~0, and conclude that 

for each a E ]R,-~h (h ,a )  exists and is continuous in h throughout U, with 

O0--qhh (h,a ) = f~_~co -~h (h,w)e-iW~dw. 

Finally, noting the formulas oR -~(h,w) = g~(h,w)+ Nl(h,w), and °nth w~ 
wA~[N~(h,w) + N~(h,w)], one can employ a technique comparable to that  used 

in Lemma 2.1 in proving that  Q(h, a) Q(t ° ) as ---* h0, a uniformly throughout lR 

h---* h0, and likewise prove that  ~h (h, ~)---* ~qh (h0, a)uni formly throughout IR 
as h ---* ho. Similarly, using a technique comparable to that mentioned in Lemma 

2.1 for proving that  Q(h,o 0 --* Q(ho,ao) as (h,c 0 ---* (h0,o~0), again noting 

the above formulas for -~h(h,w), one can prove that  °o--~h(h,a ) --~ °o--~h(ho,ao ) as 
h, a) ---* (h0, c~0). Since the choice of h0 E H, was arbitrary, we conclude that  

Oh (h, or) is continuous throughout U x IR. [] 

Before introducing a formula for use in dealing with Q(h,o 0 throughout 

this paper, we first recall some basic facts from Fourier transform theory 

([9]). Consider any matrix function f ( t)  having domain ( -e~,  oo) and range 

in C n x ' .  If f E L2(-oo,  c~), the Fourier transform ] of f is defined as 
/ ( 0 , ) )  w~ 1 CO f:oo f(t)  e-i~tdt" The function f will lie in L2( -ec ,  oo), and in fact 

f ( l )  : l co f:co We let J: denote the operator 
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L2 ( - c¢ , c¢ )  defined by .T(f)  = f ,  and we let .T -1 denote the inverse op- 

erator. Defining the convolution of any two members f ,g  of L2( -c¢ ,  c¢) by 

( f*  g)(t) = f:~oo f(u)g(t - u)du, we recall that 9 r ( f*  g) = ( ~ / ~ ) ( ] ) ( ~ )  provided 

f ,  g E L i ( - o o ,  c¢). Finally, we shall use the formula f~-~oo fT(u)g( u -- t)du = 

f~o~(f)*(w)~(w)e-i~tdw, valid for f ,g  E (L 1 f3 L2) ( -oo ,  c¢) and t G IR if 

f ,  g have range in IR '~x". This formula is readily derived by noting first that  

(f)* = ]0, where fo(t) = fT(--t), by next writing ~ f-~oo ]o(w)g(w) e-i°'tdw = 

( y -~ { ( ]o ) (~ ) } ) ( - t )=  1 ~ ( f o  * g)(-t) ,  and by then using the variable substitu- 

tion fi" = - u  in the expression (f0 * g)(-t) = f ~  fT(--u)g(--t -- u)du. 

The next formula, which proves extremely useful as a characterization of 

the matr ix Q(h, 4), arises from the link between Mh (s) and its inverse Laplace 

transform. To explore this further, for any h E He, we denote the inverse Laplace 

transform of Mh(s) by Xh(t), or, when h is fixed and understood from the 

context, merely by X(t).  Then X(.)  is the solution to the differential-delay 

equation X(t) = X(t)go + X( t  - h)ml having initial data X(u) = 4~(u) for 

- h  < u _< 0, where O(u) = 0 for - h  < u < 0, and ~(0) = I. Noting that  

Z(t)  = 0 for t < 0, we write Mh(s) = ~ X(t)e-etdt = f _ ~  X(t)e-etdt. Since 

h q He, we know that  there exist C > 1,fl > 0 such that  ]lX(t)]] < Ce -or 
for all t > 0. Thus X(.)  e (L 1 91 L2)(--cc, cxD), and with X = $ '{X}, we 
have )((w) = 1 ~ M h ( z w ) .  If we now set f = g = X in the previously given 

formula f~_~ fW(u)g(u -- 4)du = f_~ (f)*(w)O(w)e-'~dw, we obtain the im- 

portant  formula f o  XT(u )X(  u -- 4)du = ~ f_~oo(Mh)*(iw)Mh(iw)e-i~'dw, i.e. 

Q(h, 4) = f o  XT( t )X(  t - 4)dr for each 4 E IR. 

From this formula it is obvious that Q(h, 4) E ]R ~×" for h E He, 4 E IR. 

x f_~(Mh) , ( iw)Mh( iW)e-~dw,  one easily Noting the definition Q(h,4) = ~-~ 

sees that  Q*(h,4) = Q(h , -4 ) .  Thus for h E He, 4 E IR, we have QT(h,4) = 
Q(h , -4 ) .  Based also on the formula for Q(h,4) just derived, one may now 

refer to Infante and Castelan ([6]), or to Datko ([4]), and deduce the formulas 

for ~--~a (h, 4) given in the following lemma. Alternatively, after some elementary 

analysis, one may use the formula derived for Q(h, a) to directly apply Lemma 

2.2, and differentiate the integral for Q(h, 4) with respect to a. 

L e m m a  2.4 Let ho E He. Then there is a neighborhood U = H M {[h - h0] < 

r}, contained in He, for which ~ ( h , 4 )  is defined and continuous throughout 

v × ( ~  - {0}). ~n fact, the following formulas hotd for ~ ( h ,  4): 

a) OQ (h, ~) = -Q(h,  a)Ao - Q(h, 4 + h)Ax for (h, c~) E U × (-c¢,  O) 

b) OQ (h, ~) = AToQT(h,-~) + ATQT(h,--4 + h) for (h, a) E V × (0, ~ ) .  

C o r o l l a r y  2.5 Let V1 be any compact subset of He, and let ;/2 be any bounded 
subset o f ~ -  (0}.  The.  l l ~ ( h , ~ ) l l  is bounded over V1 × V2. 
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Proof. Choose aa,ot~ E lR + such that [ - u l , 0 ) U  (0, a2] D ½.  Set Pl(h,a) = 
- Q ( h , a ) A o -  Q(h,a + h)A1, and note that  for h E H,,c~ < 0, we have 
°-R (h, a)  = P1 (h, a).  Noting continuity of P1 (h, o~) and compactness of V1, we see 
Oa 

that  [[PI(h, a)[I is bounded over V1 x [ - a l ,  0], and hence [[~-~a (h, a)[ [ is bounded 
over V1 x [ - a l ,  0). Setting P2(h, a) = AToQT(h,-a)+ATQ~(h,-a+h),  and not- 

ing that  ~-~a (h, a)  = P2(h, ~) for h • H s , a  > 0, we similarly find that [[ °0--~ (h, a)[[ 

is bounded over V1 x (0, c~2]. We now conclude that [[~--~ (h, a)l [ is bounded over 

V~x½.  o 

It is worth noting that for any h • Hs, the matrix function Q(h, .) is differ- 

entiable from the right at a = 0, with right derivative given by the formula 

( ~ a  (h,a)la=o+) = - I  - Q(h,a)Ao -Q(h,h)A1.  

In fact, the matrix function Q(h, .) is also differentiable from the left at a = 0, 

with left derivative given by 

OQ (h, o~)[a=0_) = -Q(h,O)Ao - Q(h,h)A1 

Since these formulas will not be used in any of the lemmas or theorems in this 

paper, the proofs of these formulas will not be given here. The interested reader 
will find several more formulas for ~-~ (h, c~) in a paper of Datko on autonomous 

differential-delay equations in Hilbert space ([4]). 

3 S t a b i l i t y  

In this section we consider the system (t)~(t) = Aox(t) + Alx(t  - h(t)), having 

time-varying delay h(t). Recalling that H,  is that subset of members h of H 

for which the characteristic function fh(s) = [sI -- Ao - Ale-'h[ has no zeros 
in {Re(s) > 0), we examine the stability of the system (t) for certain functions 

h(t) taking values in Hs. Thus we relate the stability of the system (t) to the 

stability of the system ( . )~(t)  = Aox(t) + Alx(t  - h). 
As is frequently the case in stability theory, we approach the system (t) 

with the aid of a Lyapunov functional. This functional is a generalization for 
time-varying systems of a Lyapunov functional first used to analyze autonomous 

systems by Infante ([7]) and Datko([4]). In order to construct this functional 

and identify its salient properties, we now fix the notation which will be used 

throughout the remainder of this section. 

We begin, as throughout this paper, by taking any fixed matrices Ao,A1 E 
]R nxn. We then consider the differential-delay equations ( . )k( t)  = Aoz(t) + 
Alz( t  - h), and ( t)k(t)  = Aox(t) + Aax(t - h(t)). As in Section 1, we write 

A(crh) = Ao-}" AlCrh, obtaining the differential-delay equations ( . )~(t)  = 

A(ah)x(t), and (t)~(t) = A(ah(O)x(t). We now let C[ -h ,0 ]  denote the space 
of continuous functions ~ mapping the interval [ -h ,  0] into IR n. As in Infante 

([7]), for each h E Hs, we use the matrix function Q(h, a) to define the following 
functional Vh , taking members ¢ of C[-h, 0] into IR: 
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F Va(~) = ~T(O)Q(h, 0)~(0) + 2~T(0) Q(h, u + h)Al~(u)du  
h 

f l  ° + CT(u)(A1)TQ(h,  v -- u)Al~(v)dvdu.  
h h 

If we let x(.) be any trajectory of the system (,)~?(t) = A(~h)X(t), with 

corresponding sections x~ E C[-h,O] defined by xt(u) = x ( t+u)  for - h  < u < 0, 

we may write the functional Vh as below: 

/_0 
=  r(t)O(h, + 2 r(t) O(h, u + h)A1 (t + u)du 

h 

; f  + xT(t  + u)(A1)TQ(h, v -- u )A lx ( t  + v)dvdu. 
h h 

Finally, making use of the elementary variable transformation u ~ = t + u, v ~ -- 

t + v, we obtain the form for Vh given below, which is often convenient for 

calculating the time derivative of Vh(x~): 

f Vh(x~) = zT(QQ(h,  O)x(t) + 2zT(0  Q(h, u' + h - t)AlX(U')du' 
- h  

+ xT(u')(A1)TO(h, v '  - 

h - h  

Now for any ¢ e C[-h,O], let i(a~) = i(e,~o) denote 2{x( t )} ,  where x(t) = 
x(~, t) is the solution, defined for 0 _< t < oe , to the differential-delay equation 

( . )  i(t) = A(~,)~(¢) having initial data • on [-h,  0]. It is a routine, though some- 

what lengthy exercise ([7]) to prove the formula Vh(4)) = f~cc(i)*(~)i(~)d~. If 

one now applies Parseval's equality to this formula Vh(¢) = f-~oo (~)* (w)~:(w)dw, 

one will immediately see that Vh(CP) = f o  xT(v)X(r) dr" Expressed in terms of 

the sections x, of the solution z(.), this becomes Vh(x,) = f ~  xT(r )x(v)dr .  

From this we see that  Vh(x,) = dVh(,,) --xT(t)x(t) .  As in Infante ([7]), 
dt 

it is now seen that  if x(.) is any solution to the differential-delay equation 

(*)~(t) = Aox(t)  + A l x ( t  - h), then for t > 0, we have dVh(xt____~) _ xT(t)x(t) ,  
- -  dt 

i.e. V~(~ )= - -~T(0 )~ (0 ) .  

Naturally, the motivation for the definition of Vh was the expression for Vh (~) 
as the energ.y of the trajectory x(~, t), along with the important  corresponding 

expression Vh(~) = --~T(0)4~(0). The reason for the form of the original choice 

for the definition of Vh(¢) was to emphasize the fact that,  via the formula for 

Vh(~) as an integral functional in ~, one may obtain explicit information on the 

behavior of Vh(~) as h varies throughout Hs. 

Before showing how to modify the functional Vh for use in time-varying sys- 

tems, we give the following lemma. This lemma is included for use in a technical 

detail occurring in Lemma 3.2 and in Lemma 3.3 . Since the following lemma is 

a basic fact of real analysis, the proof will not be given here. However, it should 

not be assumed that  the proof is routine. 
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L e m m a  3.1 Let f : (a, b) × [c-8, d] ---* IR '~xn be continuous, where ~ is a positive 
real number. Set V = (a,b) x {c - 6 < x2 < d, z~ # c}, and suppose first that 

D l f ( x l ,  ~:2) is defined and continuous on V, and also that there is a constant M 

such that IlOlf(~, ~2)11 <_ M for (~1, ~2) • Y. Now, for each ~ ~ (a, b), define 

F(xl )  = f :  f ( x l ,  x2)dz2. Then the derivative F ' (x l )  ezists for each xl E (a, b), 

and in fact r ' (~,)  = JJ D~f (~ ,  ~ ) ~ .  

We are now equipped to modify the functional Vh(4i) for use in the case 

where the delay is a function of t. To begin, we let S be the class of all functions 

h(t) with domain [0, ¢x~) and range in H, having the following properties: 

i) h(-) is bounded and continuous 

it) There is a compact subset D of H, and a real number v > 0 such that 

h(t) e D for t > v  

iii) h(-) is differentiable at t for t > v. 

Now, for any h(t) E S, set "h = sup{h(t) :  t > 0), and define the time-varying 

functional G(t,4') for t > v and 4' E C [ - h ,  Ol, as G(t,q') = Vh(t)(4~). 

As is the case with Vh(¢), it will be useful to have the functional G(t,q~) 
written out explicitly for the case that ~ = xt. Letting z(.) be any trajectory 

of the system (t) k(t) = A(~h(t))x(t), with corresponding sections xt E [ -h ,  O] 

defined as usual by xt(u) = x(t  + u), and again setting u' = t + u, v' = t + v, we 

write the functional G(t, xt) as below: 

G(t, xt) = xT(t)Q(h(t),  0)z(t) 

f' 
Q(h(t), u' + h(t) - t )Alx(u')du'  + 2zT (t) -h(t) 

( u ' l ( A ~ ) ~ Q ( h ( t ) ,  v '  - n')Al~(v')dv'e~'. 
+ h(t) 

The next lemmas provide formulas for Vh' along trajectories of the system 

(*) ~(t) = A(ah)x(t) ,  and for G along trajectories of the system (t)~(t) = 

A(O'h(t))x(t). The relationship between these two quantities will be clearly dis- 

played in these formulas, and this relationship will be the basis of the analysis 

relating the stability of the system (t) to the stability of (*). 

L e m m a  3.2 Let h be any member of H,, and let El(h,  .), E2(h, .), E3(h, .) be 
the functionals taking members q~ of C[ -h ,  0] into ]R as given in the formulas 

below: 
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El(h,@) = 214~T(0)(A0) T + @7"(-h)(A1)T]Q(h, 0)~(0) 

E2(h,~) = 2 [~T(O)(Ao) T + ~T(--h)(A~)T l Q(h,u + h)A~,(u)du 
h 

+ ~T(O)Q(h, h)Al~(O) - ~T(O)Q(h, O)Al~(-h) 

-- ~r (o) J_: ( ~ff (h, ~)l~=~+h ) Aa~(u) du] 

Ea(h,~) = ~7'(0)/;h(Aa)TQ(h, U)AlO(U)du 

f_ - e T ( - h )  (A~)rQ(h,u + h)A~e(u)eu 
h 

- t -[Lq~T(u)(A1)TO(h,-u)Aldu]~(O) 

Now consider (zh(xt), the time derivative of Vh(x,) along solutions of( ,)  ie(t) 
= A(ah)x(t), the differential equation with constant delay h. We have: 

(a)  ~rh(xt) = E3=1 Ei(h, x,) 

(b) --~T(t)~(t) 3 = E i = I  Ei (h ,  x , ) .  

Proof. The formula in b) follows from the formula in a) and the fact that 
v~(x,) = --~T(t)~(t). 

To prove the formula in a) for ~'h(xt) ---- dVh(,,) consider the third of the dt 
formulas given in the definition of Vh, displayed for convenience immediately 
below: 

L vh(x,) = ~r(t)Q(h,  O)x(t) + 2~r(t) Q(h, u' + h - t)Alx(u')au' 
h 

Slf' + xT(u')(A1)TQ(h, v '  - u ' ) A l ~ ( V ' ) e v ' d u ' .  
h -h  

Noting Lemma 2.1, one can make direct use of the chain rule and the product 
rule to ealculate the time derivative of the first and third terms in the above 

expression for Vh(~,).. One thus arrives at the functionals E~(h, .) and E3(h, .) 
in the expression for Vh(x~). 

The technical detail mentioned prior to Lemma 3.1 occurs in finding the time 

derivative of the second term in the above expression for Vh (x¢). Here one begins 

by setting J(~l, ~2, c~3) = f ~  Q(h, u' + h - ~)Al~(u')du' ,  and noting that the 

term being examined is equal T to 2x (t)J(t - h,t , t) .  After noting Lemma 2.4, 
OJ 

Corollary 2.5, and Lemma 3.1, one can calculate - ~ - ( t - h ,  t, o~3)[a3=t. One then 
OO~3 
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makes routine use of the chain rule to find the derivative with respect to time 
of J(t - h, t, t). The differentiation is completed by applying the product rule to 

the expression 2xT(t)J.(t -- h, t, t), and thus one arrives at the functional E2(h, .) 
in the expression for Vh(Xt). [] 

Coronary  3.3 For any • • C[-h,  0], we have - -~T(0)~(0)  a = ~ i = l  Ei(h,~). 

Proof. This follows immediately if we let 4~ be the initial data on [-h, 0] for the 

differential-delay equation (*) ~(t) = Aox(t) + AlX(t - h), and then apply the 

second part of the above lemma with t = 0+. [] 

L e m m a  3.4 For each h e Hs , let Fl(h,.),F~(h,.),F3(h,.) be the functionals 
taking members • of C[-h, 0] into IFt as given in the formulas below: 

Ft (h,~/') = ~T(o)~h(h,  0)~(0) 

F2(h, ~) = 2 ]¢T(O)Q(h, 0)Alq~(-h) 

o OQ 

-]-~T(o) f~h (-~7 (7 'u+ h)lT=h) At~(u)du 

o OQ 
+ ~T (o) f~h (-ffg(h,~)'.=~+h ) Al~(u)du ] 

?_ F3(h,~') = ~T(--h) (Ax)TQ(h, u + h)Al~(u)du 
h 

where 

Now let h(t) be any member of the class S, with h(t) • Hs for t > v. Consider 

da(t,~:,) be the derivative the functional G(t,¢) = Yh(t)(¢), and let G(x,) = d, 
of G(t, xt) along solutions of (t)i(t) = Aox(t) + Axz(t - h(t)), the differential 
equation with time-varying delay h(t). For t > v, we have: 

(b) G(x , )=  - x  T(t)x(t) + h'(t) [E,3=l Fi(h(t),xt)] . 

Proof. The formula in b) is obtained by first noting the formula in a), by then 

noting the re la t ion  --{19T(0){19(0) 3 = ~i=1 Ei(h,¢), true for any h E Hs and 
4~ E C[-h, 0], and finally, by setting h = h(t) and • = xt in this relation. 
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To prove the formula in a) for G(xt), we use the formula given in the definition 
of G, displayed for convenience immediately below: 

G(t, xt) = xT (t)Q(h(t), O)x(t) 

Q(h(t),,,' + h( t )  - t ) A ~ ( , , ' ) d , , '  + 2zT(t) -h(0 

£j' + xT(u')(A1)TQ(h(t), v' -- u')Alx(v')dv'du'. 
h(t) -h(t) 

Note that  this formula is merely Vh(t)(xt), where the formula used for Vh is 
the one displayed in the preceding lemma. Now noting Lemma 2.1, Lemma 2.3, 
Lemma 2.4, Corollary 2.5, and Lemma 3.1, the formula in a) is obtained by a 

technique similar to the one used in the preceding lemma. 1:3 

It will simplify the proof of the following theorem to first present the useful 
lemma below. 

L e m m a  3.5 Let h(t) • S, with v > 0 and compact D contained in H~ both as 

in the definition of members of S, and recall that h = sup{h(t) : t > 0}. Then 
each of the quantities defined below is finite: 

~O 
bl = sup{ll~4(7,0)ll  : 7 C D}; 

b~l = Hml[lsup{llQ(% 0)[[ : 7 • D}; 

0Q 
b22 = IlAlllsup{ll-~7 (7,a)ll : 7 • D,0 < c~ < h}; 

0Q 
b23 = Hm,llsup{H~-~-(7, a)H : 7 • D,0 < a _< h}; 

b2 = 2(b21 + b22h + b23h); 

b31 = Ilmlll2sup{llO(7, ~)11 : "r • D ,0  < ~ < ~}; 

b32 = [IAlll2sup{ilQ(7, a) l l :  7 • D , - h  < o~ < 0}; 

2 OQ 
b33 = Ilmxll sup{ll-b-~-(7, ~)11 : 7 • D , - ~  < ~ < ~}; 

b3 ---- h(b31 -4- b32 -4- b33"h); 

B = bl + b2 + b3. 

Proof. From Lemma 2.1, Lemma 2.3, and Lemma 2.4, we know that Q(7, o~), 

~-~ (7, c~) are both defined and continuous on Dx lR ,  and ~-~ (7, c~)is defined and 

continuous on D x (IR - {0}). Noting continuity of Q(7, o~) and -~-Sq~ (7, c~), we see 

that both IIQ(7, c~)lt, I1~-~ (7, cr)ll are bounded over D x [ -h ,h] .  Likewise, noting 

Corollary 2.5, we know that I]~-~ (7, c~)H is bounded over D x ( I -h ,  0) U (0,hi), 
and the lemma is proven. [] 
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Now introducing the notation ]E] to denote the Lebesgue measure of any 

Lebesgue measurable subset E of IR, we give a theorem providing a bound on 

the quantity Ix(tl)l 2 + e~l{v g t < tl,  Ix(t)[ > e}l in terms of the behavior of 

Ih'(t)l over the interval Iv, t1). 

T h e o r e m  3.1 Let h(t) E S, with v as in the definition o r s  and B as in Lemma 
3.5, and consider the differential-delay system (t)k(t) = Aox(t)  + A l x ( t -  h(t)). 
Zf x(.) is any bounded trajectory of the system (t), with Ix(t)l _< o for all t > O, 
then for any e > O, the following inequalities hold for all tl  > v: 

(a) G(h ,x~ , )  + egl{v < t < tl ,  Ix(t)l ~ c}l 

< G(v, xv) + By  2 Ih'(t)ldt 

(b) Ix(t012 + 01{v _< t < t~, Ix(t)l >_ e}l 

< G ( v , x , )  + BO 2 Ih'(t)ldt. 

Proof. The formula in (b) follows from the formula in (a) and the fact that 

I@(0)12 < G(t,@). To prove the formula in (a), we let z(.) be a bounded solution 

of the system (t), with Ix(t)l < r/for t > 0. Noting the quantities defined in 

Lemma 3.5, we apply the Cauchy-Sehwartz inequality to obtain the inequalities 

below for the functions Fl(h(t) ,  xt), F~(h(t), xt), and F3(h(t), zt) occuring in the 

expression for G(zt)  in Lemma 3.4: 

IFl(h(t), x,)l < bl~;  

IF2(h(t), xt)l <_ 2(b21 + b22h + b23h)~72; i.e. IF2(h(t),x,)l < b2r/2; 

IF3(h(t), x01 < h(~31 + b3~ + b33~),j=; i.e. IF3(h(t), x,)l < b~0 ~. 

For t >_ v, we thus see that 1~3=1 Fi(h(t), rt)l <_ Brl 2, with B = bl + b2 + b3. 

Now take any e > 0, and for each tl > v, define the set Ev,h as Ev, h = 
Ev,h(e ) = (v  < t < tl ,  Iz(t)l > e}. We examine the quantity G(t l , z t l ) :  

fv tl G(tx, xh)  - G(v, xv) = O(x,)dt  

< -eZlE,. , ,  I+ Brl ~ Ih'(t)ldt, 
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i.e. G( t i , x t l )  - G(v,x,)  5 - E ~ ~ E ~ , ~ ~ ( E ) I  + B v 2 X 1  Ihl(t)ldt, and the theorem is 
proven. 0 

One may desire to  use this theorem to find hypotheses on h(. )  which imply 
for any given E > 0 that sup { t i  : Ix(tl)l < E )  = co, or which yield assigned 
asymptotic bounds for the quantity ( IEv , t l (~ ) l ) / ( t l  - v )  as t l  -, m. For the 
remainder of this paper, however, we investigate the consequences of the special 
hypothesis that hl(.) E L1[O,m). 

Theorem 3.2 Again let h( t )  E S,  with v as in the definition of S ,  and consider 
the differential-delay system ( t ) i ( t )  = Aox(t) + Alx(t  - h(t ) ) .  ~f Sy Ihl(t)ldt < 
oo, then for any bounded trajectory x(.)  of the system ( t ) ,  and for any E > 0, we 
have I{t > t i ,  lx(t)l > €)I -+ 0 as t l  -+ co. 

Proof. Take any E > 0, and for each t l  > v ,  define the sets E,J, and Etl , ,  
as &,tl = EU,tl(c) = { v  I t < t i ,  Ix(t)l 2 E ) ,  and Etl,, = Etl , ,(~) = 
{ t  2 t i ,  Ix(t)l E).  Now note that if we had 1EW,,1 = co, then by the Mono- 
tone Convergence Theorem, we would have IEuStll -) oo as t l  -, co. Noting 
that Sr [hl(t)ldt < oo, there would thus be some t l  making Bq2 Sum (hl(t)ldt + 
G(v,x,) < c21~, , t l (~) l l  i.e. - E ~ [ E , , ~ , I  + Jr Ihr(t)[dt +G(zI,x,)  < 0. Noting 
the above theorem, this would immediately yield G(t l ,  x t l )  < 0. Put concisely, if 
we had IEU,,I = m, then there would be some t l  > v with G ( t l , x t l )  < 0. Since 
G(t ,@) = Vh(t)(@) 2 0 for t > O , @  E c [ - X , O ] ,  we conclude that IE,,,I < co. 
Now, since IEu,,l < co, we can again apply the Monotone Convergence Theo- 
rem to see that IEv,,I - IE,,tl I 1 0 as t l  f co, i.e. IE,,, - Eu,t1I 1 0  as t l  T oo. 
Since E,,, - Ev,tl = Et ,,,, we have shown that IEtl,,l 1 0 as t l  f a, i.e. 
I{t L t l , Ix( t ) l> €11 1 0  a s t l  t m. o 

Theorem 3.3 Again consider the differential-delay system ( t ) x ( t )  = Aox(t) + 
Alx( t -h( t ) ) ,  with h( t )  E S and with v as in the definition of S. ~f Sum Ihl(t)ldt < 
co, then for any bounded trajectory x(.) of the system (t), we have x( t )  -+ 0 as 
t -, co. 

Proof. Let x(.) be a bounded solution of the system (t), with Ix(t)l 5 9 for t > 0. 

Recall the definition = sup{h(t) : t > 01, and for v < t l ,  t l  + x 5 C1 < C2 5 - 
t l  + 2h, examine the vector x(C2) - x(C1): 
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i.e. for v < t l , t l  + h  < C1 < C~ < t,  + 2h, we have Ix(C2) - z(C1)l < L('he + 

If we note from Theorem 3.2 that  8(tl, e) ~ 0 as tt  ~ co, we see that  there is 

r = r(e)  > v with ~(t~,e) < h for each t~ >__ r .  We thus know that  for any t~ > r ,  

there is C0 E (tl q-h, tl "l- 2"h) with C0 ~ Et~,oo(e), and hence with I~(C0)l < , .  For 

r <_ t l , t l  + 'h  < t < t l  + 2h, we now obtain: ]x(t)l < Ix(t) - x(ffo)l + Ix(Co)l < 

L('he+dfO)+e = ( l +  L h ) e +  Ldfr I . It is now seen that  for r(e)+'h < t, t - h  < tl  < t, 

one has Ix(/)l < (1 + L'h)e + Lri6(tl,  e). 

Using the above inequality, the conclusion of the theorem follows easily. In 

fact, since 6(tl,  e) ~ 0 as tl  ~ co, we immediately see that  limsup,...co Iz(t)l  < 

(1 + L'h)e. Since the initial choice of e > 0 was arbitrary, we conclude that  

limsup,~oo Iz(t)l = 0,  i .e .  z ( t )  ~ 0 a s  t ~ c o .  [] 

It is instructive to note the effect of adding terms to Vh to construct a strictly 

positive functional. For this purpose, we first take any real vector k = (kl, kg., k3) 

having ki > 0 for each i = 1, 2, 3. For h ~ H ,  and ~ ~ C [ - h ,  0], we then define 

the functional Wh as 

? Wh((I )) = kl(~T(0)~(0) "Jr- k2 ¢pT(u)~(u)du + k3Vh(4~). 
h 

If one now introduces the functional n(h,  ~), defined for h _> 0 and ~ E C [ - h ,  0] 

by n ( h , ~ )  ~ = ~ T ( 0 ) ~ ( 0 ) +  fOhd)T(u)~P(u)du , it is readily seen that  for 

cl = min(kl,k2),  one has cxn(h,4~) 2 < W h ( ~ )  for all h E H, .  This inequal- 

ity will prove quite useful when we modify the functional Wh for use in systems 

having time-varying delays. Finally, to complete our introductory comments on 

the functional Wh, we note that  after applying Lemma 3.2 to the functional 

Vh, a direct calculation will then yield the following formula for l)dh along the 

trajectories of the system (*)k(t) = Aox( t )  + A l x ( t  - h): 

d W h ( x t )  _ zT( t )[k3  I _  2klATo _ 2k2I]x(t)  - [xT"(t) 
dt 

- xT ( t  -- h)] k k l A  a 

As before, a simple modification of the functional Wh can be used to examine 

the system (t)~(t)  = A(ah(O)x( t ) .  Here we define the time-varying functional 

Y ( t , # ) ,  for any h(t)  in the class S and 4~ E C[ -h ,0 ] ,  as Y(t,¢i) = Wh(,)(4~). 

After applying Lemma 3.4, a straightforward calculation then yields the fol- 

dY(*'~') the time derivative of the functional Y lowing formula for ~'(xt) = d~ , 

along solutions of the differential-delay equation (t): ~'(xt) = D(h( t ) ,  h ' ( t ) ,  x t)  + 

h ' ( t ) kaF(h ( t ) ,  x , )  , where F(h( t ) ,  x~) = ~ = 1  Fi(h( t ) ,  x , )  as in Lemma 3.4, and 

D(h,  h', ~)  = - oT(O)[kaI  -- 2 k l A  T - 2k2/]~(0) 

- [oT(0) -- oT(--h)]A~[q~T(o) -- 4~T(--h)] T, 
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where 
( k2I (ka + h'k3Q(h,O))A,) 

.It4= AT(kx+h,k3QT(h,O)) ( l+h ' ) k2 I  " 

If we again write F(h(t), x,) 3 = ~i=1 Fi(h(t), x,) with the Fi(h(t), x,) as in 

Lemma 3.4, then for h E/ /8 ,  we can define the functional Fo(h,~) by 

Fo(h, ¢)  = 245T(0)0(h, O)A~(-h) + ~T(-h) A~Q(h, u + h)Axq~(u)du 
h 

Setting ~'o = F - Fo, and noting the quantities bi, blj defined in Lemma 3.5, we 

can set/30 = 2b~1 + b31 + ba2, and flo = bx + 2(b~. + b23) + b33. Recalling that  

n(h,~) 2 = ~T(0)~(0) + fO_h~T(u)~(u)du, and applying the Cauchy-Schwarz 

inequality separately to the terms of Fo and F0, one will obtain the following 

inequalities for Fo and F0: 

IF0(h,¢)l < I~T(-h)lflon(h,e); ]F0(h,~)l < ~on(h,~) ~. 

Noting for Cl -- min(k~, ks) that  c~n(h,¢~) ~ < Wh(~), we immediately find 

that  I~o(h,~)l < (~o/cx)Wn(~). If one now separately examines the eases a) 

I~(-h)l < I~(0)1, b) I~(0)1 < I~(-h)l < n(h,~), and c) n(h,~) < I~(-h)l,  
then lengthy but relatively straightforward 

inequality will show the following: 

There exist constants /q,/~2 with -1  < Pl 

k3 > 0, such that  for Pl < h I < P2 and ¢ E 

D(h,h' ,~)  + h'k3Fo(h,(P) 

applications of the Cauchy-Schwarz 

< 0 < P2, and constants ~o,kl,k~, 
C[-h,  0], one has 

< [h' [k3ffon(h, 4~) ~. 

Here fro does not depend on the choice of h, h' having h ~ [0,h], h' E (/~1, #2). 

From this one can immediately write 

D(h, h ' ,¢ )  + h'kzFo(h,q~) < Ih'lk3(~o/ca)Wh(~) for ~1 < hI < l-t2" 

Setting fl~ = ~0/cl, ~ = ¢o/cl, we now have 

D(h, h ' ,~)  q- h'k3(Fo(h,~) -I-/~o(h, ~)) < Ih'lk3(~ + ¢~)Wh(¢'), 

i .e. 

D(h,h' ,~)  + h'kzF(h,¢) < Ih'lle3(D~ + ¢~)Wh(~) for m < h' </~2. 

Finally, setting 7]0 = k3(fl~ + ff~), we summarize this analysis in the following 

lemma: 

L e m m a  3.6 Let Ao,A1 E IR nxn. Then there exist constants//1,//2, with -1  < 
~1 < 0 < #2, having the following property: If h(.) is any member of the class 
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S satisfying ttx < h'(t) < 1~2 for all t > v, then there is a constant ~7o > 0 and 

a strictly positive time-varying functional Y(t,q~) = Wh(o(4 ~) having dY(t,xt)dt - -  <~ 

Ih'(t)looY(t,z,)  for all t > v along each solution z(.) of the differential-delay 

equation (t)k(t) = Ao*(t) + A lx ( t  - h(t)). 

Noting this inequality Y(x,) < [h'(t)luoY(t,x D for the function Y(t ,  xt), 
and recalling elementary analysis, one now obtains the following inequality for 

Y(t ,  xt), valid along the solutions of the differential-delay equation (t) if h'(-) 

satisfies Pl < h'(t) < /~ for all t > v: Y ( t , x , )  < y(O, xo)eOOi(O for all t > 

v, where i(t) = f~ Ih'(r)ldr.  This inequality yields a simple proof of the final 

theorem for this paper. 

T h e o r e m  3.4 Let Ao,A1 E IR nxn. Let ~I,~2 be as in Lemma 3.6, and let 

h(.) be any member of the class S satisfying Pl < h'(t) < P2 for all t > v. I f  

f ~  Ih'(t)ldt < co, then for each solution x(.) of the differential-delay equation 
(t)~(t) = Aox(t) + A~x(t - h(t)), we have x(t) ~ 0 as t --* ~ .  

Proof. Set I = J~ Ih'(t)ldt, and let i(t),~o be as above. Then for each solu- 

tion x(.) of the differential-delay equation (t), one has Ix(t)l ~ _< Y(t ,z t )  < 

Y(O, x0)e 0°i(0 < Y(0, x0)e "°t for all t > v. Thus all trajectories x(.) of the sys- 

tem (t) are bounded, and now the theorem follows directly from Theorem 3.3. 
[] 

In a paper now in preparation, we examine a Lyapunov functional for the case 

where the characteristic function has no zeros in {Re(s) > 7}, where 3' is any real 
number ([6]). By modifying this functional to apply to differential equations of 

the form ( t ) i ( t )  = Aoz( t )+  A l X ( t -  h(t)), we will find insights having particular 

significance when 3' < 0. In fact, we will be able to replace the hypothesis 

that  h(-) is differentiable with h'(.) E Ll[v,c~), by the hypothesis that  h(.) is 

absolutely continuous with h'(.) satisfying pl < h'(t) < P2 for all t > v, where 

/~1, P2 are determined by the matrices A0, A1. Our theorems will then come as 
, 1 t 

inequalities of the form Ix(t)l 2 < C0e'(~+c1"(0) where a(t) = T f~ Ih'(r)ldr is 

the average value of the magnitude of h '(r)  over the interval [0, t]. For 3' < 0 and 

C1 limsupt... ~ a(t) < 213'1, we will then have exponential asymptotic stability 

for the system (t). 
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On an Interval  Map Assoc ia ted  w i th  a De lay  
Logist ic  Equat ion  w i th  D i scont inuous  Delays  

George  S e i f e r t  

Iowa State University, Ames, Iowa 50011 

We consider a delay logistic equation of the form 

g ' ( t )  = Y ( t ) ( b  - g([t])) ,  t >_ 0, g ( 0 )  > 0. (1) 

where b is a positive constant, and It] denotes the greatest integer in t. Such 

an equation could model a feedback control problem where the feedback term 

g([ t ] )  depends only on the discrete values g ( k ) ,  k = 0, 1, 2, .... By a solution 

of (1), we mean a function Y ( t )  continuous for t > 0, and satisfying (1) in each 

interval (k, k -t- 1), k = 0, 1, 2,...., with N(0) given. Clearly, these solutions 

N ( t )  are to a great extent determined by the values N(k),  k = 0, 1, 2, ..., and it 

is this set of values we propose to investigate. It is easy to see that  these values 

satisfy 

N ( k  ÷ 1) = a N ( k ) e x p ( - N ( k ) ) ,  k = O, 1, 2, .... 

where a = e b > 1. Hence, we study the function Fa(x)  = axe - x ,  and in particu- 

lar, the semi-dynamical system generated by the iterates of Fa. 

Although interval maps of a large class of functions, including quadratic 

functions of the form ax(1 - x), have been studied in detail (c f .  for example 

[1], [2]), the specific details in proving our results for Fa do not seem to be in 

the standard literature. While many of these results can be derived from more 

general results appearing in this literature, it is felt that  the non-specialist might 

appreciate seeing sufficiently detailed proofs of our results, even though in many 

cases, shorter arguments are possible; cf., for example, the remark appearing 

after the proof of Prop. 2. 

Eq.(1) as well as the associated interval function Fa(x) are discussed to some 

extent in [5]. Some estimates are given there for values of the parameter a for 

which certain periodic orbits of this semi-dynamical system appear but no details 

are given. We note that  the function F~ has also been considered in a model for 

certain types of population variations [3]. 

We make the following definitions for any map F of an interval J into itself; 

for x in J:  
(i) Fn(x)  = F ( F n - l ( x ) ) ,  n = 1,2,...; F°(x)  = x; 
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(ii) If F ( x )  = x,  x is called a fixed point, or a 1-periodic point, of F. 

(iii) If n >  l a n d  F n ( x ) = x ,  F m ( x ) ¢  x f o r  m =  1, 2,..., n - l ,  x i s c a l l e d a  

n-periodic point of F. 

(iv) The fixed point x is globally attracting if F " ( y )  --* x as n --+ co for any y 

in J. 

(v) The n-periodic point x is stable (locally attracting) if there exists a 6 > 0 

such that  for any y in J with I Y - x  I< 6, F n m ( y )  --~ x as m --. co. 

We shall use the following stability theorem for n-periodic points, cf. [1]. 

T h e o r e m .  Let F be continuously differentiable on J ,  and x be an n-periodic 

point o f  F. Then x is stable i l l  F " ' ( x )  l< 1 and unstable / f l  F " ' ( x ) 1 >  1; here 
F n ' ( x )  = d ( F  n ( x ) ) / d x .  

We establish the following properties of Fa : (0, co) --+ (0, co) which show 

that  as a increases from 1, F~ becomes in a sense increasingly chaotic. We always 

assume a > 1 and x > O. 

P r o p o s i t i o n  1. Fa(x)  < a /e ,  and Fa(x)  = x i f  and only i f  x = loga. 

This follows easily; we omit the proof. 

P r o p o s i t i o n  2. I f  a < e ~, Fa has no n-periodic points for  n > 1, and f ixed 

point log a is globally attracting. 

Proof. To show that  for a < e 2, loga is a global at tractor for Fa(x) we can use an 

argument in Devaney [1]: pp. 71-72, which applies to an arbitrary continuous map 

F ( x )  with a locally stable fixed point p; if W ( p )  denotes the maximal connected 

component containing p of points at tracted to p, W(p) is open and invariant 

under F. Thus its end points, if finite, are fixed points of F or of F 2. But by the 

first part  of our proof, F~(x) = x only if x = log a, and since also Fa(x) = x 

only i f z  = loga, W ( p )  in our case must be (0,co). We get the stability o f l o g a  

for a < e 2, from the fact that I F ' ( log a) ]< 1, and for a = e 2, from the fact that  

log a = 2 is an inflection point for the graph of y = Fa(x); we omit the details. 

P r o p o s i t i o n  3 . / f a  > e 2, there exist x l ( a ) ,  z2(a)  such that 0 < x l (a )  < loga < 

x2(a) < 2loga,  and 

F o ( x l ( a ) )  = x2(a) ,  Va(x (a)) = 

Also xl (a)  ~ 0 and x2(a) ---+ oo as a ~ (~3, and x l (a )  ~ loga and x2(a) ---+ 
log a as a ---+ e 2. 

Finally,  the fixed point log a is unstable. 

Proof. From (2) we find that F~a(x) = x is equivalent to 

xe -~ = (2 log a - ~:)/a. (2) 
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Since (xe~) ' ~=loga = (1 - l o g a ) / a  < - 1 / a ,  it follows easily tha t  x l ( a )  and 

(x2(a) exist and have the asserted properties;  cf. fig. 1. Note tha t  x2(a) - log a = 

log a - x l ( a ) .  

The  instabil i ty of  log a follows f rom the fact tha t  

F ,  ~ (log a) = 1 - log a < - 1, 

and the stabil i ty theorem ment ioned earlier. 

2 A a ~  
a 

Y 
X 

xl(a) In a x2(a) 2 In a 

Fig.  1. 

P r o p o s i t i o n  4. There exists an ao > e 2 such thai i f  e 2 < a < ao, the 2- 

periodic points z l ( a )  and x2(a) are stable, while f o r  a > ao they are unstable. 

Also ao < e 1+yrs. 

Proof. Let al  be the unique solution of  a/e  = 2 log a - 1 such tha t  al  > e2; note 

tha t  21oge 2 - 1 > e2/e,  while 2 1 o g a -  1 < a/e  for a > e 2 and sufficiently large, 

and since 21ogz  - 1 has decreasing derivative, the existence and uniqueness 

of  such a a l  follows. Then  z l ( a l )  = 1, and x l (a )  < 1 for a > hi.  By direct 

calculations, we get 

F2~'(x) = (1 - x)(1 - axe - z )  

for x = x l (a ) ,  x = x2(a),  and x = loga .  

Using (2) in (3) we see tha t  

(3) 

Fa2'(z) = (1 - x)(1 + x - 2 log a). (4) 

for x = x l (a) ,  x = x2(a),  and z = loga .  Using this with z = x l (a ) ,  we get 
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F2a'(xx(a)) = (1 - x , ( a ) )  (1 4- x l ( a )  - 2 log a) 

and since 0 < x , ( a )  < 1 for a > hi ,  and x , ( a )  < 2log al we have F2a'(xl(a)) < 1 

for e 2 < a < a l .  

Now from (4), with x = xx(a) we obtain  

d st 
~aaF~ (x l (a) )  = 2 x ~ ( a ) ( l o g a -  x l (a ) )  - 2/a 

and since x ] (a )  < 0 and x l ( a )  < loga  for a > e 2, it follows tha t  

d F: ' (x , (a))  < 0 a > for e 2" 

Since f rom (4) we also have F~'(zi(a)) --* -co ,  there exists a unique ao such 

tha t  F~o'(Zl(ao)) = -1 .  
Clearly also ao > a~, since F~' (z , (ax) )  = 0. Summarizing,  we see tha t  

F~'(xx(a)) < 1 for e 2 < a < a l ,  F~'(xl(a)) = 0 when a = al ,  - 1  < 

F~t(zl(a)) < 0 for aa < a < ao, and F~'(z,(a)) < - 1  for a > ao. Using our 

stabil i ty theorem we conclude tha t  zl(a) has the asserted stabil i ty propert ies  

with respect  to ao. 
To show tha t  z2(a)  has the same stabil i ty propert ies as x l (a )  has, we note 

tha t  if I z - z2(a) ] is sufficiently small, since F,(z~(a)) = z~(a), there exists a 

F [ I ( z )  such tha t  Fa(F2l(z ) )  = z, F21(z2(a)) = z l ( a ) ,  and 

a s  • - - ,  

In fact,  if xl(a) yt 1; i.e., a ¢ al ,  we have Fla(zl(a)) ¢ 0 and so F~l (x )  is 

unique for I x - xl(a) ] sufficiently small. If  xl(a) = 1, i.e., a = a l ,  we choose 

F~-l(x)  to be the unique number  greater  than  I which satisfies F,(F~-I(x)) = x. 
By the stabil i ty of xl(a),  we find tha t  for such z, 

 l(a) ,, so 

Fa(F~n(F:a(x)))  ---* Fa(x,(a)) as n ---, c¢; i.e., 

The  fact tha t  log a is unstable  for a > e 2 follows easily f rom (4) with x = log a; 

i.e., f rom r•'(x) = (1 - log a) ~ > 1. 

To show tha t  ao < e l+vr~, we note tha t  ao satisfies 

F:o'(Xl(ao)) = 1. 

Using (4) and the fact tha t  xl(ao) < logao,  we have 

xl(ao) = logao - ~/(log ao - 1) 2 4- 1 

If  we put  v = x/( log ao - 1) 2 + 1, we find tha t  logao = 1 + ~ / ~ 7 _  1, and so 

z l ( a o )  = 1 + ~ / v  2 - 1 - v .  
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Since xx(ao) satisfies (2) with a = ao, we have eventually 

( 1 +  X / ~ -  1 -  v)e" = v + 1 +  ~ / ~ - -  1. 

This last equation can be written as 

V ?) 

t a n h ~ -  l + v ~ - I  

But t anh~  < v~,2 while tanh ~ > ~ which show that ~ < v < 2; i.e., 

2 < log ao < 1 + ~,/3. This shows ao < e l+~/'g and completes the proof of Prop. 4. 

Much smaller upper bounds in ao can be obtained by using more detailed 

computations; however, our aim here is not toward that  purpose. 

P r o p o s i t i o n  5. Let a2 > 3e and satisfy a3e -a21e = e. Then i f  a > a2, Fa has 

a 3-periodic point and so by Sarkovskii 's  theorem [1], or the result due to Li and 

Yorke [4], Fa has a n-periodic points fo r  each integer n >_ 1. Also i f  a > a2, the 

2-periodic points are unstable. 

Proof. Let Zl be unique solution of axe -~: = 1, such that  Zl < 1; since a > 3e 

such an Zl exists. So 

and so 

Fa2(Xl) -- Fa(ax le  -~ ' )  -= F~(1) = ale ,  

F3(Xl) = Fa(a le )  : a2e -a le / e .  

But since a > a2, we have 

(a2/e)e  -a /e  < 1/a = Xl e-x1 < Xl; 

i.e., F~(xl )  < xl .  

Next, let x2 be the unique solution of axe -~ = log a such that  x2 < 1; such an 

x2 exists since a > e, and x2 > Xl. So F,(x2) = loga, and F3(x2) = loga > x2; 

i.e., F2(x2 ) > x2. 

By the intermediate value theorem, the existence of an ~ such that F3(~) = ~', 

where xl  < ~ < x2 follows. 

If F , (~)  = ~', then ~ = loga > 1, a contradiction since ~ < x2 < 1. If 
F~(~) = ~, by (2) we have 

~ 

a~:e -~ = 2 log a - k. 

But ake -~; • ax2e - ~  -~ log a, and since also 

2 log a - k > log a, 

we have a contradiction. So k is a 3-periodic point. 
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To show x~(a) and x2(a) unstable ,  we use Prop.  4. Since it is easy to verify 

t ha t  8e < az < 9e, and since ao < e l+v~,  it follows tha t  a2 > e l+v~  > ao, and 

so x l ( a )  and  x2(a) are uns table  for a > a2, and our p roof  is complete .  

P r o p o s i t i o n  6. If  a > e, then for any x > 0 there exists a N(x) > 0 such that 

(a2/e)e --~ < F~(x) < ale for  n > N(x).  

Proof. Note t ha t  (a2/e)e -"1~ = F,(a/e) < a/e f rom Prop.1 .  

We also have (a2/e)e -a/e < loga  since it easy to show tha t  ale > loga  for 

a > e. For any Xl, Fa(a/e) <_ Xl <_ loga ,  we have 

Fa(a/e ) ~_ X 1 ~_ Fa(Xl) <_ a/e, since Fa(x) > x for 0 < x _< loga  

I f  x l  satisfies log a < Xl <_ a/e, we have 

(5) 

Fa(a/e) <_ Fa(xl) g a/e, since Fa(x) <_ x for  x >_ toga .  (6) 

F rom (5) and (6) we see tha t  the interval  Fa(a/e) <_ x <_ a/e is m a p p e d  into 

itself by Fa. 
Suppose  now 0 < xl < Fa(a/e). I f  F~(xl) _< 1 for all n > 0, then  using a 

previous  a rgument ,  we find t ha t  F~(xl) -* log a as n --* oo, a contradic t ion since 

l o g a  > 1. So there  exists a nl  > 0 such tha t  yl -- Fn l (X l )  > 1; i.e., 1 < Yl < 

a/e. But  since Fa(x) is decreasing for x >_ 1, we have Fa(Yl) >_ b~(a/e); i.e., 

Fa(a/e) <_ Fa (y l )  _< a/e. So f rom the previous case, F n l + n ( x l )  E [Fa(a/e), a/e] 
for all n > 1. 

Final ly  if xl  > a/e > 1, we have F~(Xl) < F,(a/e) and by the  preceding 

a rgumen t  Fan(x1) E [Fa(a/e), a/e], for n sufficiently large. This  completes  the 

proof.  

Proposition 7. Ira > a2, a2 as in Prop. 5, F, has at most one stable periodic 
orbit. 

Proof. A simple c o m p u t a t i o n  shows tha t  the Schwarzian derivat ive 

i l l  / II \ 2 

2 p:(o)] 

of Fa(x) is negat ive  for a > a2. Since the fixed point  loga  of Fa(x) is unstable ,  

it follows immedia t e ly  f rom Corol lary  IIA.2,  on p. 52 in [2] t ha t  Fa has  a t  mos t  

one s table  per iodic  orbit .  

T h e  following questions for Fa with a > a2 seem to be open and nontr ivial .  

I f  Ia = [Fa(a/e), a/e], 

(i) Is the set  of  periodic points  dense in I~? 

(it) Does there  exists x in Ia such t ha t  F~(x) : n = 0, 1, 2, ... is dense in I~? 



Interval Map of a Delay Equation 249 

(iii) Does there exist a 6 > 0 such that  for each x in Ia there exists a sequence 

xn ---* x as n ---* c~ such that  for each integer n ~ 1, there exists an integer 

m such that  [F ~ (z~ )  - F ~ ( x )  I:> 6? 

If  these questions all have affirmative answers, then Fa is chaotic in I~ in the 

sense of, for example,  Devaney [1]. 
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