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PREFACE

In writing a book there are two preconditions that must be fulfilled: (i) 
there is a subject worth to be written about and (ii) the author(s) have the 
time to write the book.

This book describes a research endeavor that spans a period of almost 
30 years. The genesis of the subject of this book goes back to Japan in 
the early 1990s, when MITI (Ministry of International Trade and Industry) 
launched the ambitious IMS (Intelligent Manufacturing System) program, 
aiming at defining the desired structure of the factory of the twenty-first 
century. The second author, as head of the PMA (Production engineering, 
Machine design and Automation) lab of KU Leuven, and the first author, 
who just received his doctoral degree with a thesis on “Flexibility for inte-
grated production automation,” realized that joining IMS was an excellent 
opportunity to develop their innovative ideas on increasing the flexibility of 
manufacturing systems, they already had developed since 1986, far beyond 
the then prevailing CIM (Computer Integrated Manufacturing) paradigm. 
We joined the IMS feasibility study on Holonic Manufacturing Systems 
(HMS) as one of the 32 international partners from all over the world. We 
could elaborate on the seeds that were present in the first author’s doctoral 
thesis. (At PMA we already had a holonic assembly cell up and running in 
1988, as shown in Figure 7.1 of this book!)

Ever since we have been able to further develop the original seeds into a 
full-fledged tree, financially supported by KU Leuven, federal (Belgian), and 
regional (Flemish) funding, EU funding under the successive framework 
programs, and even direct industrial funding. This varied funding structure 
resulted in fundamental research results that proved their usefulness in a 
wide variety of application domains, as shown in Chapter 7.

A work of such a broad scope can only be realized by a large team and 
extensive funding. We are particularly grateful to our enthusiastic research 
team that, over the 30-years span, substantially contributed to the edifice 
that this book describes, by doctoral theses, dedicated research contributions 
and technical assistance: Luc Bongaerts, Jo Wyns, Patrick Peeters, François 
Bonneville, François Cottrez, Herman Claus, Jan Thielemans, Constantin 
Zamfirescu, Indra Tanaya, Yuki Indrayadi, Hadeli, Tony Van Ginderachter, 
Paul Verstraete, Bart Saint Germain, Johan Philips, and Osman Ali. We are 
equally grateful to the different funding agencies, mentioned earlier.
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As to the second precondition, we had to wait for the retirement of the 
second author to push forward our long overdue book-writing project. 
Until then, chasing for funding and publishing papers, next to teaching of 
course, absorbed most of the time of the director of a research lab of the 
size of PMA. We thank Elsevier for their efficiency to have the book swiftly 
published. Indeed, time is overripe to spread the message that design for the 
unexpected is the only way to go for the future.

The title of the book may seem somewhat enigmatic and general to the 
reader, but the subtitle clarifies much. We hope that after reading and digest-
ing the book you will be convinced of the appropriateness of its title and of 
the vast potential the subject has, not only to control manufacturing systems 
but entire mechatronic societies in all walks of life.

Paul Valckenaers,  
Hendrik Van Brussel

Leuven, Summer 2015
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INTRODUCTION

ONCE UPON A TIME

Somewhere in the 1980s, the industrial automation community 
initiated the development of computer-integrated manufacturing (CIM) 
 systems. These were systems of systems aiming to integrate automated work-
stations into fully automated factories. In fact, this community was design-
ing and developing systems of systems before it became a popular topic in 
systems engineering. Unfortunately for industrial automation, the results 
were underwhelming.

Within this setting, our research was looking for the root causes of the 
above. What causes smaller systems, when integrated into a larger system of 
systems, to collide? What makes it so hard to undo whatever is causing these 
collisions? Which aspects of those difficulties are intrinsically inevitable? 
What can be done? Which properties of an application domain (precondi-
tions) allow us to remedy this undesirable situation?

At the outset, our expectation was to discover intrinsic limitations lead-
ing to a conclusion that little could be done. This would nevertheless be 
valuable whenever developers will avoid attempting the impossible (as 
an analogy of the second law of thermodynamics versus the perpetuum 
 mobile). In reality, the research findings revealed to be quite the opposite. 
Although there are significant limitations, it proved to be possible to de-
sign systems improving the present situation in a wide range of application 
 domains.

DESIGN FOR THE UNEXPECTED

Because the investigations refrained from making assumptions about 
the system of systems, in which the smaller systems are integrated, this book 
is about the design of systems for the unexpected. Indeed, in order to de-
velop smaller systems that avoid and/or manage collisions when integrated 
into a larger system of systems, designers may not impose arbitrary con-
straints or at least must make it easy to revise them. Basically, this book lifts 
low-and-late commitment to a scientific level – where low-and-late com-
mitment may be combined with early and eager preparation.
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As a consequence, the research results are not only applicable to the in-
tegration into a system of systems, but they also address the frustration when 
attempting to improve large complicated organizations where an effort in 
one location fails to satisfy expectations because neighboring systems block 
the improvement. They also address the issue of changing user requirements 
as soon as a new system is deployed. Overall, they allow to develop systems 
while facing uncertainty about the future requirements that they will need 
to cope with. And they reveal how to design systems that will not become 
future legacy systems in the negative connotations of this word.

PREDICTING THE UNEXPECTED

This book will outline and discuss in detail how to design systems 
without relying on expectations that may prove to be wrong in the future 
and, when design choices nonetheless are relying on expectations, how to 
keep it easy to revise these choices. A major discovery was a generic scheme 
to generate short-term forecasts without forfeiting this approach to cope 
with the unexpected.

In fact, it were two laypersons who, after listening to an explanation of 
this scheme, labeled this achievement as “predicting the unexpected,” after 
which we adopted this as our “nom de guerre.”

INFORMATION INFRASTRUCTURE AND SUITABLE 
APPLICATION DOMAINS

Design for the unexpected cannot be applied to any kind of system. 
First, it addresses the design of information systems in relation to a world of 
interest. Moreover, this world of interest, the application domain, needs to 
possess certain properties such as the following:
•	 It contains valuable resources such as machines, roads, ambulances, wind 

turbines, workers, nurses, rooms, trucks, ships, robots, parking space, etc.
•	 It comprises activities using those resources such as commuting em-

ployees, freight transportation, patient treatment, warehouse refrigera-
tion, production, etc.

•	 Intelligent coordination of those activities brings sufficient added value 
to justify the development effort and operating expenses of the informa-
tion system.

•	 It is possible to mirror those activities and resources in executable com-
puter models.
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Finally, these information systems are information infrastructures that 
offer a sound basis to implement case- and situation-specific information 
systems.

TOWARD A HUMANE AND RESPECTFUL MECHATRONIC 
SOCIETY

The above suggests that information systems – designed for the unex-
pected – may become part of everyday life wherever and whenever valuable 
resources are involved. In view of our dissatisfaction with current situations 
(e.g., traffic jams) and the potential benefits (e.g., prevent toxic combina-
tions of medications), such a “mechatronic society” (see Chapter 6) is ex-
pected to emerge. Moreover, other technological developments such as the 
Internet of Things contribute to the likeliness of such a future.

In this respect, our research reveals that the social and people aspects 
must not be addressed as afterthoughts. In fact, acceptable social behaviors, 
induced by minimally intrusive social control mechanisms, have been intro-
duced and investigated within our software prototypes. Also, behaviors nor-
mally associated with humans revealed to be useful within these prototypes 
(e.g., opportunism).

Furthermore, the research revealed the need and opportunity to initiate 
interdisciplinary research, involving social sciences and humanities. In par-
ticular, there are opportunities to empower persons (e.g., when this empow-
erment allows systems to deliver superior services). It also becomes possible 
to reconcile high service levels with privacy. And respectful and considerate 
social controls can be implemented in the information infrastructure. As 
they inhibit abusive behaviors, this allows for the generation of common 
goods; this is especially value adding when combined with the mechanisms 
to predict the unexpected.

Overall, this book presents the onset for the development of informa-
tion infrastructures that scale significantly beyond the existing and penetrate 
deeply into our lives. And they will be durable as they adapt to future de-
mands avoiding to become legacy. Today, the main topic on our research 
agenda is to create a mechatronic society that is empowering, considerate,  
and hospitable toward humans. Our research results are inviting in this  
respect.
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Setting the Stage

Paul Valckenaers*, Hendrik Van Brussel**
*Faculty of Engineering Technology, KU Leuven
**Faculty of Engineering Science, KU Leuven

Before embarking in this book for an odyssey to find a generic control design 
methodology for mechatronic societies, taking care of the unexpected (i.e., 
design for the unexpected [D4U]), we make our point by means of an illustra-
tive example from daily life. The selected application domain is mobility, which 
is familiar to almost every reader and has adequate levels of complexity as well 
as unsolved issues. The chapter first presents a scenario illustrating the benefits 
of a D4U solution. Next, the manner in which a D4U is created is discussed.

A SAMPLE SCENARIO

This scenario illustrates how D4U decentralized traffic coordination 
handles a disturbance proactively. Paul is driving from Leuven to the FP7-
ICT4EE event in Brussels (marked A on the map, Figure 1.1). His navigation 
system has started executing virtual journeys to this event beforehand; actu-
ally from the moment the event was entered in Paul’s electronic agenda. The 
virtual journey execution strategy, implemented in Paul’s navigation system, 
accounts for how much time is left until the actual journey. Up until the time 
when Paul starts his journey, nothing special happened and the navigation 
system arranged a trip that avoids rush-hour traffic and limits congestion 
charges. For the purpose of this scenario, payments for time slots depend on 
the actual demand (i.e., only for highly solicited time/location slots).

When Paul is about halfway his journey, a collision of two cars on the 
Wetstraat suddenly reduces the road capacity by 30%. The intelligent mod-
ule (IM) corresponding to the road segment containing this location ob-
serves this incident through the information it receives from the onboard 
car navigation/safety systems and mobile phone tracking services. The IM 
is the first to flash a warning on the display wall of the emergency services, 
which investigate and indicate the severity and type of the incident on their 
system, to which the IM has subscribed by now and it improves its estimate 

CHAPTER ONE
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of the duration of this incident. The IM will keep updating this estimate as 
information becomes available.

When Paul’s navigation system refreshes its journey registration, the impact 
of the incident becomes known to Paul. Instability suppression mechanisms 
prevent Paul’s navigation system from overreacting too fast. At first, it starts to 
refresh the collection of alternative journeys that was kept up-to-date in case of 
these events. Alternatives that are also affected by the incident become equally 
unattractive. The navigation system also increases the intensity of its search 
for alternatives. Paul’s navigation system analyzes the result of the refresh and 
discovers that the degraded performance has its root cause outside of Paul’s 
journey. Indeed, Paul’s intention is to use the Schumann underground parking 
lot entry, which is situated before the incident site in this one-way street.

Therefore, the navigation system sticks to the current intentions (even 
when it might no longer be feasible) in a first phase. In contrast, navigation 
systems that have their journey cross the affected road segment start adapt-
ing their plans immediately. They will delay their arrival in the Wetstraat or 
select an alternative route that avoids the incident. Possibly, these affected 
travelers overreact, at which point unused capacity around the incident site 
will become visible to the predicting IM, so that the capacity is likely to be 
reserved again.

This D4U traffic coordination technology is model-based, where 
the models support virtual execution of travel activities. Support for 

Figure 1.1 Location of the Unexpected Event in the Sample Scenario. (Map data ©2011 
Google).
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multimodality was recently introduced simply by adding the required mod-
els  reflecting the services offered by public transport. However, the synchro-
nization of these models (e.g., reflecting delays and rescheduling triggered 
by such delays) is still under development. This causes many users to specify 
the public transport option as a backup only. The incident triggers such us-
ers affected by the incident to consider public transport, which is likely to 
reduce its impact.

Note how this system uses its intricate knowledge of the traffic infra-
structure and user intentions to avoid that “misery spreads to travelers that 
have no business with it.” Indeed, after this first phase, inflow of travelers 
that would block others when queued at the incident site has been reduced, 
and actually more capacity has become available to travelers who need to 
use the first sections of the Wetstraat only. Unfortunately for Paul, too many 
cars that cannot avoid the choking point in the Wetstraat are already queued 
up in the tunnel leading to the Avenue de Cortenbergh.

Therefore, his navigation system redirects him to another tunnel to en-
ter Brussels. Because the weather forecast predicts dry weather with a high 
probability, the navigation system explores switching to a different park-
ing lot based on Paul’s profile, stating that he is willing to walk up to one 
kilometer. However, this proved to be unnecessary when the effect of the  
restraining of cars that need to pass the incident site became visible in  
the forecast, and as expected, revealed that higher capacity became available 
in the first sections of the Wetstraat. In the end, Paul drove his car to the 
originally intended parking lot along a slightly longer route.

MIRROR THE WORLD-OF-INTEREST (WOI)

To apply our first design principle (see Chapter 2), the main mechanism 
is to mirror the WOI in software. This first D4U principle can be paraphrased 
as “do not rely on expectations/assumptions that might be proven wrong.” 
Note that the principle itself is broader and goes beyond WOI mirroring.

In transport and navigation applications, maps constitute a very old ap-
plication of this principle and its implementation mechanism. On condition 
that a map is accurate, integration conflicts and other issues involving such 
a map cannot be attributed to the map. For instance, when a routing algo-
rithm steers a truck under a bridge with insufficient clearance, as indicated 
correctly on the map, the issue needs to be addressed in the algorithm (i.e., 
it must be enhanced or replaced). Changing the clearance indicated on the 
map (but not in reality) will not solve this issue.
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Indeed, inaccurate WOI reflection is the only situation in which the 
map needs changing to solve a conflict or address an issue. This can be a 
correction of an error. It can be an update (e.g., nautical maps of coastal 
waters may be updated biannually). Furthermore, it can be missing informa-
tion (e.g., indication of one-way streets).

Missing information typically can be added without invalidating the 
existing information or breaking other applications that are using the maps 
but do not need the missing information. Indeed, changes to maps only 
involve restoring and/or enhancing its WOI reflection, irrespective of the 
nature of the issue that needs addressing.

Note that a system or organization that maintains such an accurate WOI 
reflection will comply – to a greater extent – with the first D4U principle. 
Indeed, it will adapt/update before an issue or conflict can arise. An ex-
ample is the IM of the road segment in the above scenario. It is cooperat-
ing with the onboard safety systems in the crashed cars and the emergency 
services to keep its WOI reflection up-to-date, accurate, and complete.

Remark that maps, and WOI mirror images, only provide part of a solu-
tion. For example, in navigation systems, maps need to be complemented 
by a global positioning system (GPS) and a route-generating system. The 
GPS is compliant with the first D4U principle. However, the route genera-
tion will be inherently unable to comply with the principle in full. Recall 
that our research investigated how much of an overall application can be 
designed for the unexpected and which parts still need to be developed us-
ing more conventional approaches.

MOVE AS MUCH AS POSSIBLE INTO THIS WOI 
MIRROR IMAGE

In the applicability range of D4U, the WOI resides in the real world. 
And reality always is coherent and consistent (but not necessarily as we wish 
it to be). Whenever some WOI mirroring software contributes to achieving 
our objectives, that part of the system software inherits this coherency and 
consistency. In a way, the Creator of the real world is contributing to our 
design. Obviously, it is ill advised to ignore this Creator’s contributions 
when available. Indeed, our research has progressed whenever it moved 
functionality – even partially – into the WOI mirroring software.

Accordingly, design for the unexpected aims to move as much func-
tionality as possible into a reflection of the WOI. Research prototypes have 
been able to do so for the following:
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•	 Resources. This is historically the oldest and most common category. For 
example, road maps are reflecting a road infrastructure. We distinguish two 
subcategories: the map legend (mirroring resource types) and the map itself 
(mirroring resource instances). State-of-the-art information and commu-
nication technology (ICT) allows to develop sophisticated mirror images, 
reflecting both properties (e.g., number of lanes) and state of resources (e.g., 
availability of a parking space). The mirror image may cover the present 
(track), the past (trace), and even the future (e.g., reservations).

•	 Activities. Commuting, holiday traveling, shopping, etc. can be mirrored in 
a manner similar to resources. Likewise, it is possible to distinguish activity 
types (how to complete a journey) from activity instances (executing such 
a journey). Mirror images utilizing state-of-the-art ICT allow a virtual 
execution of such activities on the mirror image of the resources to assess 
feasibility and expected performance. It also allows for track-and-trace 
implementations. Taking the future into account is covered as well.

•	 Mental states and commitments. Everything that exists in the WOI is candi-
date for inclusion in the mirror image. Caution must be given to restrict-
ing the development to mirroring what exists. When reflecting mental 
states and commitments, accuracy is the key concern. The expressiveness 
of the representation must cope with the corresponding reality such that 
no interpretation or interfering occurs. In mobility, intended journeys and 
train reservations are examples of what mirror images may reflect. Virtu-
al execution of mental states – in particular, intentions – constitutes the 
starting point from which future states of resources and activities may be 
predicted (see Sections “Bioinspired Coordination and Control in Ho-
lonic Execution Systems” in Chapter 5 and “The DMAS Architectural  
Pattern” in Chapter 6).

•	 Policies and decision-making mechanisms. Within the WOI, there are a num-
ber of decision-making elements: humans, the laws of nature, simple rules 
(e.g., first come, first served), complicated policies (e.g., a finite-capacity 
scheduler), etc. Such mechanisms can be mirrored as well. For humans, 
some machine learning may be indicated. Simple rules can be their 
own model. The laws of nature and complicated policies may require 
approximations if this mirror image needs to virtually execute activities 
(a lot) faster than reality.
While developing the WOI mirroring software, the following concerns 

need addressing:
•	 Completeness. As a general rule, the mirror image should be complete 

such that its users (i.e., other software) always remain within this image 
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while exploring and/or virtually navigating and executing activities. For 
instance, the WOI mirror image covers space and time from minus in-
finity until plus infinity. Note that this image may and will be very 
coarse at these extremities, reflecting that they are mostly irrelevant for 
the application. Completeness prevents users from “crashing when they 
fall off the world” because the WOI mirror extends to infinity. Com-
pleteness provides the necessary starting points for future expansion and 
enhancement of this mirror image without breaking the preexisting us-
ers. Indeed, completeness confines future adaptations to refinements of 
the current WOI image. Completeness implies that even highly unde-
sirable and unlikely states are mirrored, which enables ICT support for 
recovery. Here again, mirror images may and will be coarse (i.e., only a 
small effort is needed).

•	 Single source of truth (SSOT). In the WOI mirroring software, everything 
in the WOI has a single counterpart. For instance, a parking space cannot 
be mirrored twice and create the illusion that it can be occupied by two 
cars at the same time. Our research results enabling to predict the unex-
pected are instrumental in reconciling this SSOT requirement with the 
need to collect and process information from multiple sources to deliver 
services and functionality.

•	 Updating and accuracy. A proper and correct implementation of a WOI 
mirroring software needs updating whenever the corresponding reality 
changes. When the composition of a team changes, the mirror image 
needs to adapt. In particular, mental states may change often, which im-
plies frequent updating of the image. Moreover, the mirroring needs to 
be accurate. For instance, a mental state is nothing more than a mental 
state (e.g., the intention to stop smoking). Likewise, decision mecha-
nisms are only mechanisms (e.g., first-come, first-served). On their own, 
they have no authority over the reality in the WOI. The WOI image 
must not succumb to wishful thinking. Adding assumptions to the real-
ity that is mirrored is considered an inaccuracy.

MINIMIZE INERTIA OF DESIGN CHOICES

Application of the first D4U principle (cf. Chapter 3) results in an infra-
structure mirroring the WOI. However, it is impossible to implement a system 
answering all user requirements in such an infrastructure. At some point, op-
tion-excluding design choices have to be made, which potentially may cause 
serious issues in the future.
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Consequently, a second D4U principle requires that the inertia of the 
option-excluding design choices must be kept low. The corresponding ge-
neric mechanism to keep this inertia low consists of explicit and mandatory 
resource allocation. This means that every decision-making component has to 
obtain rights over the resources it requires before it is able to perform and 
offer its services. It also means that resources can be deallocated. Again, the 
D4U principle itself is broader and goes beyond the mechanism.

This resource allocation mechanism provides an upper bound on the 
damage that can be inflicted by design choices causing issues and conflicts. 
Indeed, the worst case consists of deallocating the resources from a nonper-
forming component and allocating them to a suitable one. If needed, such a 
suitable component has to be developed. This deallocation can be preemp-
tive if indicated.

Note that resource allocation awareness will link the quality of decision- 
making components to their ability to minimize their requirements for 
rights over resources. Note that such minimizing is an application of the  
first D4U principle, which improves the ability to coexist with other  
decision-making components.

A SAMPLE SCENARIO (CONTINUED)

In the sample scenario, the road infrastructure elements are mirrored 
in executable software models. These elements are the resources. On these 
resource models, traveling activities are virtually executed beforehand and 
much faster than in reality. As resources – the road segments – only have a 
single counterpart (SSOT), each resource will be informed about all future 
visits from traveling activities as they virtually execute their journey. And 
resources will be informed repeatedly to account for any changes that occur 
in the mental state of the travelers (i.e., a change in mind) as well as on the 
roads themselves (e.g., a car crash).

Resource models use (dynamic network loading) models to compute 
how congestion is likely to propagate (backwards). The results are used to 
update travel time estimates for the road segments, which are then used 
by the travel activity models to predict their future journeys in time and 
space.

Models of the decision making by travelers are evaluated – during the 
above virtual travel execution – to determine the mental state of a trav-
eler (i.e., to select the journey to execute virtually and inform the affected  
resources). Other decision-making models are evaluated to steer the search 
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for candidate journeys through virtual execution; these models determine 
which part of a combinatorial solutions space will be investigated.

In other words, the D4U intelligent traffic and transportation system 
(ITTS) addresses most of the challenges through executable models of its WOI. 
The parts of the solution that fail to comply with the first D4U principle, 
that is, the decision-making elements, are considered to be part of the WOI. 
Executable models take care and handle those elements, delivering a proactive 
coordination to road travelers. These decision-making elements may and do 
use information about future/predicted resource loadings and activity routings.

Whenever the WOI changes, the repeated virtual execution of travel 
activities will update the information for the coordination. This virtual ex-
ecution will evaluate the most recent model for its decision-making ele-
ments. In other words, it is a model-driven system that has minimal inertia 
concerning these models. Accommodating changes in resources, activities, 
mental states, or decision-making is automatic and effortless except for the 
requirement to have the necessary executable models.

In a way, the development of a D4U ITTS is only beginning because 
the decision-making elements – determining performance – still need to 
be provided. However, the D4U infrastructure can be deployed already and, 
on top of it, these decision-making elements can be put into operation with 
little effort as soon as they are available. Also, these elements can be replaced 
while the ITTS remains operational, can be personalized, etc. In the past, by 
focusing on the decision making first, we have been investing in disposable 
ICT. With D4U, a durable ICT platform and infrastructure can be devel-
oped, which will boost the development of high-performance decision-
making solutions as their deployment time and effort decrease.

ABBREVIATIONS
D4U Design for the unexpected
ICT Information and communications technology
IM Intelligent module
ITTS Intelligent traffic and transportation system
SSOT Single source of truth
WOI World of interest
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On the Design of Complex 
Systems

Paul Valckenaers*, Hendrik Van Brussel**
*Faculty of Engineering Technology, KU Leuven
**Faculty of Engineering Science, KU Leuven

This chapter establishes a context of our design for the unexpected (D4U). 
The various levels of system complexity are defined, and the superiority of 
structural design over functional design for D4U is highlighted.

ON SIMPLE, COMPLICATED, COMPLEX, 
AND COMPLEX-ADAPTIVE SYSTEMS

Systems, or problems, can be simple, complicated, or complex. The 
distinction has to do with the number of components and their interactions. 
A car is complex relative to a bicycle, but very simple relative to a manu-
facturing plant or an economy. One could say that a bicycle, containing a 
hundred components, is a simple system, and a car, with some ten thou-
sand components, a complicated system. A manufacturing plant, with many 
more components, would also be a complicated system, but it is more, it is 
also a complex system. Why?

The behavior of both simple and complicated systems is well predictable. 
If one follows the assembly rules for a bicycle or a car, the behavior of the 
assembled system is predictable by knowing the starting conditions, because 
the interconnections between the system components are well-defined and 
fixed, while the component interactions remain simple and predictable.

In a complex system, the same starting conditions can produce different 
outcomes, depending on the nature and the sequence of the interactions 
between the system components. We are unable to understand the system 
by observing its constituents in isolation. At that point, we say that there 
is some “emergent behavior” or even self-organization and we declare the 
system “complex.” The whole is greater than the sum of the parts. Self-
organization goes beyond emergence; it is the ability of a system to sponta-
neously arrange its components or elements in a purposeful manner, under 
appropriate conditions but without the help of an external agency.

CHAPTER TWO
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For example, building a highway is complicated, but managing urban 
traffic congestion is complex. Likewise, building a state-of-the-art air traffic 
control center is a complicated challenge in executing the project, while 
directing air traffic is complex, involving real-time problem solving. In the 
same way is a manufacturing system a complex system, hence showing 
emergent behavior. This book provides a framework on how to control 
suchlike systems.

While a complex system consists of a large number of components (of-
ten called “agents”) that interact, the term complex-adaptive system (CAS) 
refers to a complex system in which the components (called “holons” in this 
book) not only interact but also adapt and/or learn. Self-similarity is often 
observed in a CAS. Adaptivity gives a complex system robustness (resilience) 
against disturbances and autonomic behavior (homeostasis).

An example of such adaptive behavior is found in the human immune 
system, which allows for vaccination to be an effective measure in preventive 
healthcare. But, it also works the other way around; inadequate therapy ad-
herence has induced bacteria to become resistant against many/most of the 
known antibiotics. Typically, this adaptive behavior represents a challenge. 
For instance, commuters will react differently when receiving information 
from an intelligent traffic system (ITS) based on their past experience (of 
congestions), and they may change collectively (e.g., triggered by a weather 
forecast), often rendering the ITS less effective.

Optimality is an important issue when designing complicated or com-
plex systems. F.W. Taylor, the father of scientific management, claimed that 
a complex system/organization would be optimal when each of its com-
ponents were optimized separately. This Taylorian view stands perpendicular 
to the present generally accepted view that optimality can only be achieved 
if the complicated/complex system is considered in its entirety and subject 
to optimization as a whole. For instance, Goldratt’s theory of constraints 
identifies the utilization rate of a system’s bottleneck as the determinant for 
system optimality (i.e., throughput in nonstop production) (Goldratt, 1984). 
However, the location of this bottleneck is system and situation dependent.

Mechatronics is the discipline advocating a concurrent or simultaneous 
engineering approach to the design of “optimal” complicated/complex 
artifacts, in contrast with the traditional sequential engineering approach, 
where the different aspects/behaviors are dealt with in a sequential order. 
This book does not deal with designing mechatronic systems as such. It 
does however deal with designing, or at least controlling, systems of me-
chatronic systems or of what are called here mechatronic societies (MSs).  
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A mechatronic system has a self-similar (fractal) nature when looked at on a  
component, machine, and machine-system level but is in itself mostly not 
a complex system, rather a complicated system. A system of mechatronic 
systems, called “mechatronic society,” is a complex system, often adaptive.

Typical mechatronic societies are manufacturing systems, factories, traffic 
systems, etc., consisting of a set of rather autonomous, mechatronic systems, 
called agents or holons, interacting with each other and with the outside 
world, in order to achieve an overall system goal. Such systems will be called 
“holonic systems” in the remainder of this book. They behave optimally, not 
in the mathematical sense of the term but in a more useful way, as explained 
later. MSs are complex-adaptive systems, in that they adapt their behavior as 
a function of changes in their structure (e.g., machine breakdown) or in the 
environment (e.g., road block). They exhibit emergent and self-organizing 
behavior, as will become clear later on.

ON THE DESIGN OF COMPLEX-ADAPTIVE SYSTEMS

Both design teams and individual designers face limitations concern-
ing the complexity of the artifacts that they may develop. When building 
complex systems, designers develop subsystems that are integrated into a 
larger system. The resulting system exhibits an emergent behavior that was 
never explicitly planned or conceived by these designers simply because its 
complexity exceeds their mental capabilities.

Many industrial design teams, designing for instance automobiles, re-
main largely in control of what their artifacts will be. In contrast, many of 
the most valuable artifacts in a modern human society, especially infrastruc-
tures, simply are too complex to be conceived explicitly by humans. They 
emerge by the combination and integration of simpler systems, which form 
their constituents. Unfortunately, the resulting emergent behavior is too 
often characterized by poor performance, missed opportunities, and the in-
ability to serve smaller user communities.

In the next chapter, the fundamental nature of the earlier issue is ad-
dressed. What causes the difficulties occurring when smaller systems are 
combined and integrated into a larger and more complex system? What 
can be done to remedy the integration/emergence problems, which are 
observed in reality? This research builds on the ideas of Herbert Simon 
(Simon, 1990) as well as insights discussed in Waldrop (1993). Waldrop gives 
a readable and concise overview of relevant developments in the domain of 
complex-adaptive systems.
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Simon emphasizes the issue of the fundamental difference between ana-
lytical (i.e., observing) sciences and synthesizing (i.e., engineering, design-
ing, creating, etc.) sciences. Every artifact design is, to a significant extent, 
arbitrary; there are numerous ways in which a design problem can be solved 
“correctly.” In contrast, the different manners in which the laws of physics 
can be described only differ in very superficial ways (i.e., the symbols that are 
used). In making this observation, Simon touches the core issue: a scientific  
understanding of synthesis/design is lacking. Accordingly, Chapter 3 aims 
at this “unavoidability” identified by Simon as a key property of a scientific 
understanding for synthesis/design.

Furthermore, the next chapter complements more classical work on 
design (Suh, 1997) aimed at design tasks where the design team remains 
largely in control and typically designs for a short time horizon. Such work 
typically builds on the decomposition of functional requirements (FRs) and 
top–down design of solutions. In contrast, Chapter 3 aims at the design of 
more long-lived artifacts that are part of an emerging overall system. Such 
artifacts are typically considered as part of the existing technology base 
in the shorter-term design situation. The work in this book therefore has 
a closer relationship to (some approaches within) object-oriented design, 
which is more targeted at problem solving while facing uncertainty and 
complexity that defies our mental capabilities. These two related topics are 
discussed later in this chapter.

TOP–DOWN FUNCTIONAL DESIGN 
AND DEVELOPMENT

In the early days, software engineering embraced the predominant 
development methodology from older engineering disciplines: top–down 
decomposition and functional design. Axiomatic design (Suh, 1997) is a 
representative example of this functional design approach (of artifacts rather 
than of software), among which it is more formally elaborated than most. 
This method starts from the FRs defined by the users. These FRs can be 
satisfied by manipulating some design parameters (DPs). Axiomatic design 
is based on two basic axioms: (i) the independence axiom and (ii) the in-
formation axiom. The independence axiom requires the FRs to be inde-
pendent. A design is independent if each FR is controlled by only one DP. 
The information axiom states that the best design is the simplest design that 
still satisfies all the FRs, where these FRs are considered to be independent 
(no overlap); if necessary, user requirements must be reformulated. Next, 
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the top-level design answers these requirements. A thermostatic faucet is a 
good example of an independent design. The two FRs (water temperature 
and flow rate) are controlled by two independent DPs (two independently 
adjustable regulators A and B on Figure 2.1).

If the top-level design cannot be implemented in a straightforward man-
ner, each of its components becomes a set of requirements and the same de-
sign process is repeated at the component level. If necessary, a second-level  
design is again decomposed, and this is repeated as long as required to ob-
tain components that can readily be implemented. Consider the design 
of a deep freezer as an example. The user requirements comprise cooling 
performance, storage volume, energy efficiency, and accessibility. Based on 
a specific set of requirements, a designer may develop a chest-type deep 
freezer as his/her top-level design. The respective parts of the chest become 
the requirements for the next-level design activities. The door design will  
be different for a chest type from that of a cabinet type, for example, from 
the viewpoint of energy efficiency.

This proven development methodology numerous times has shown to 
be effective. In particular, the focus on functionality generates highly ef-
ficient systems: it minimizes the complexity of the final solution as well as 
the effort, time, and resources needed to answer the given requirements. 
This property still makes this development methodology the best alterna-
tive when (i) answering the initially given top-level requirements is what 
matters, and/or when (ii) this efficiency is a truly dominating concern. 
Unfortunately for IT developments, these two conditions hardly ever hold. 
User requirements are notoriously unstable, and computer programs can 
be much larger and/or slower than theoretically necessary. The latter is 

Figure 2.1 Thermostatic Faucet Designed According to the Independence Axiom. 
(Source: RAVAK a.s.).
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especially true when allocating ample computer memory and processing 
power reduces software development and debugging or maintenance time 
and efforts.

The attractive property of top–down functional development – op-
timized efficiency – is also its weakness: artifacts under stress, caused by 
such optimization, are fragile. The typical result is exceedingly vulnerable 
to changes in the user requirements. Consider our chest-type deep freezer 
again. After using the freezer for a short time, the users realize that their 
initial accessibility requirements were too weak (they fail to remember what 
is stored at the bottom). Repeating the design process now yields a cabi-
net-style deep freezer with drawers. Second-level and higher-level designs 
cannot be reused and become virtually useless; remember that these levels 
rely on the given context to yield an efficient answer to their given require-
ments. The elements that survive the change in requirements are bottom-up 
technological developments (e.g., thermally isolating materials) and generic 
design know-how (e.g., containers with the opening at the top: chest in the 
first design, drawers in the second).

Furthermore, top–down functional design forces the designers to make 
important choices early in the process when they have minimal knowledge 
(e.g., select a chest or cabinet design in the deep freezer example). In soft-
ware design, developers often have to learn while they develop. Undoing 
early unfortunate design choices can be extremely difficult because it in-
validates much of the subsequent developments when following this con-
ventional approach.

In conclusion, top–down functional design is suitable when (i) the user 
requirements are stable, (ii) the designers already have much experience  
in the system they develop, and (iii) efficiency is important in the sense that 
the design may not be more complex and consume more resources than 
necessary. When building a large bridge, such conditions are likely to be 
fulfilled: (i) the way people use bridges has remained unchanged for ages; 
(ii) the main design task consists of adapting proven designs to the par-
ticular circumstances in which this bridge has to be built; (iii) efficiency is 
crucial because, unlike software, a bridge cannot be twice the necessary size. 
In other words, top–down functional design remains the methodology of 
choice for developments that need to become operational as fast as possible, 
need to be efficient, and can recover their costs by answering the initial 
requirements only. Such developments typically produce macroscopic me-
chatronic systems or mechatronic societies (e.g., buildings, ships, machines, 
chemical plants).
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However, the preconditions for justifying a top–down functional  
design methodology to software development are not fulfilled. Indeed, de-
velopment costs for reproduction of a solution become increasingly less 
important for high-tech products, systems, and infrastructures, whereas user 
requirements become less stable, and learning during the development be-
comes more important. The answer to this issue in the domain of software 
engineering is the subject of the next paragraph.

OBJECT-ORIENTED DESIGN AND DEVELOPMENT

Object-oriented technology is widely recognized to be a most sig-
nificant development in IT technology in the last few decades. Object-
oriented programming languages, such as C++ and Java, have become the 
dominant programming tools for leading professional software developers.  
An object-oriented design methodology complements these object- 
oriented programming languages. It is object-oriented design that mirrors 
the deeper insights on how large, complex IT systems can be successfully 
developed; especially while user requirements keep changing.

Already in the early 1980s, Michael Jackson recognized user require-
ments to be among the highly unstable parts in a software development 
activity. Jackson (Jackson, 1995) also recognizes other weaknesses in top–
down design (e.g., being forced to take crucial decisions early, the absence 
of a single hierarchical decomposition in the real world) and proposes his 
Jackson system development (JSD) methodology as an alternative.

Jackson recognizes that the world of interest, for the software under de-
velopment, is much more stable over time. Jackson’s methodology consisted 
of reflecting the entities of interest and their relationships in software first. 
This comprises, for instance, the information related to the employees of a 
company (e.g., name, contract, working hours, and working place). Next, 
measures to keep the information in the computer system synchronized 
with reality are implemented (e.g., when a person gets promoted, the ap-
propriate data fields are updated). Finally, the functionality needed to answer 
the user requirements is implemented on top of this reflection of the world 
of interest (e.g., management reports on the monthly expenses for wages). 
Jackson’s methodology was applied for the development of COBOL ap-
plications in those days.

Jackson’s ideas constitute the core of today’s object-oriented design 
methodologies. The work by Cook (Cook and Daniels, 1994) constitutes a 
representative example of such methodologies. In an object-oriented design, 
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the developer implements an essential model reflecting the world of interest 
for the problem that needs to be solved. Such an essential model describes 
(i) the possible states the world-of-interest can be in, (ii) which events cause 
which state transitions, and (iii) the possible sequences in which events can 
occur.

In the implementation, the software keeps the essential model synchro-
nized with reality. Functions are implemented on top of this essential model.

The core ideas of object-oriented design had difficulties disseminating 
themselves through the world of software designers. First of all, the core 
message often disappears in the information about formalisms and nota-
tions (e.g., UML diagrams), and the information related to object-oriented 
programming. Second, object-oriented design is not suitable for all soft-
ware development activities (e.g., the design of quick-and-dirty solutions 
for which a low developmental effort is more important than the solution 
becoming useless in sometime in the future).

Nonetheless, object-oriented thinking is well established among current 
IT professionals as put to evidence by Nelson et al. (2002), who discusses 
a compact course to teach older expert functional software developers to 
adopt object-oriented design. The key element of this course is to make 
these experienced developers themselves discover that user requirements 
(functions) constitute an unstable element in their world and thereby make 
them discover the essential model as the stable part.

The essential model – using the wording from Cook and Daniels – has 
become a part of widely recognized object-oriented software engineering 
methodologies, commonly referred to as (variations of) the unified process; 
note that the terminology may differ, depending on its source. A key feature  
in this unified process is its architecture-centric nature. Likewise, design  
for the unexpected (D4U) focuses on an architecture in which essential 
models – ideally in executable implementations – have a most prominent 
position indeed.

COLLECTIVE DECISION MAKING 
AND ARCHITECTURE-CENTRIC DESIGN

Complex systems usually are the result of a collective effort. In such 
community efforts, the argumentation of collective decisions often relies on 
abductive reasoning to justify and create the perception that a given group 
consensus is “the” solution. However, such reasoning can be classified as 
(cf. appendix III) (i) deductive reasoning: conclusion guaranteed; (ii) inductive 
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reasoning: conclusion merely likely; and (iii) abductive reasoning: taking your 
best shot.

In fact, abductive reasoning is only a heuristic where the outcome – 
this group/community consensus – receives too much respect and has un-
justified authority in today’s practice. The abductive reasoning, leading to 
this consensus, is considered de facto proof of correctness and unavoidability, 
where abduction only delivers a possible option out of many. Specifically,  
collective decision making commonly uses abduction to justify a good 
enough solution respecting the comfort zones and vested interests of the 
controlling parties and stakeholders.

As will be discussed in the next chapter, design for the unexpected ad-
dresses problems by first elaborating intermediate solutions – designed for 
the unexpected – from which final solutions – solving the problems – are 
elaborated. To achieve design for the unexpected as the result of a collec-
tive effort, a collective awareness of this divide and its purpose/benefits is 
required. Architecture-centric development approaches address such con-
cerns. The software engineering community enjoys such a collective aware-
ness of the contributions by suitable architectures. Other communities may 
still need to discover this.

SUMMARY AND REMARKS

Without attempting to be comprehensive, this chapter presents a con-
text in which D4U is situated. It distinguishes simple, complicated, complex, 
and complex-adaptive systems where the latter have become, and continue 
to be, more and more important in our society.

Next, design by means of top–down functional decomposition is dis-
cussed, highlighting axiomatic design. It is a valid approach when address-
ing shorter-term problems with stable requirements. Complementing this 
approach, D4U provides, creates, enlarges, and improves what is considered 
the technology base by functional design. On the whole, D4U facilitates the 
application of axiomatic design.

There exist related/similar approaches. For instance, role-based de-
composition is promoted in the autonomous agents and multiagent systems 
(AAMAS) community. Such approaches share with functional decomposition  
that this role decomposition is human-invented, which prevents offering 
scalability or integrate-ability guarantees.

Structural decomposition, found in essential models within object-
oriented design, is addressed subsequently. This matches D4U well. However, 
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in practice the contribution and importance of these essential models is ill-
appreciated. The fact that there is no single widely used terminology for the 
concept of essential models reflects this. Essential models mirror a reality 
that is coherent and consistent. When designed along D4U principles, they 
scale and integrate well.

Furthermore, D4U shares the architecture-centric nature of object-
oriented software engineering methodologies (see Chapters 5 and 6).  
However, software objects are passive, requiring method calls to perform 
actions. To effectively mirror reality, active communicating computing pro-
cesses are needed, often called agents. Therefore, the software implementa-
tion technology of choice for D4U will be an “actor language” rather than 
an object-oriented language. Indeed, interaction is much more powerful 
and expressive than computation (Wegner, 1997).

ABBREVIATIONS
AAMAS Autonomous agents and multiagent systems
CAS Complex adaptive system
DP Design parameter
FR Functional requirement
IT Information technology
ITS Intelligent traffic system
JSD Jackson system development
MS Mechatronic society
UML Unified modelling language
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This chapter presents a theoretical analysis/model of how designers elabo-
rate systems that can handle unpredictable user requirements and integra-
tion requirements. No advanced know-how is required to understand this 
analysis; elementary set theory suffices (Cf. http://en.wikipedia.org/wiki/
Set_theory – basic concepts and notation.). The analysis provides insights 
allowing designers to enhance their design and development process when 
they appreciate precisely when, where, and how design choices affect the 
ability to cope with the unexpected.

PROBLEMS AND SOLUTIONS

This section formally addresses what constitutes a problem and its 
solution(s). The purpose of the formal approach is to present ideas more 
precisely. The formal approach does not produce any calculus on problems 
and solutions, nor does it claim completeness in a philosophical sense. The 
formalism mainly serves to avoid ambiguity and to delineate the ideas more 
sharply than would be possible in natural language.

Problems
A problem P is defined as follows:

A problem P is a constraint on the state space U of the universe U, defining 
a set P = {u ∈ U | u satisfies P} ⊆ U.

When U is the world in which we live, U is an infinite state space. Every 
state u ∈ U has a time coordinate t

u
 ∈ ℜ. By definition, reachable states at a 

given time coordinate are states that either have been or can become the actual 
state of the universe at this given time coordinate. This universe is subject 
to the laws of nature (constraints), which limit the number of states that are 

CHAPTER THREE
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reachable. These laws of physics imply that there is exactly one reachable 
state u for every t

u
 ≤ t

now
.

The universe U follows a trajectory through its state space as time 
progresses. This trajectory is defined for states up to t

now
. It consists of the 

states in which the universe has been in the past. The future trajectory 
is only partially defined. This future trajectory is constrained by physical 
laws, possibly including stochastic aspects, and is affected by the actions of 
the human and other entities in this world. These actions affect the choice 
of the successor states of the current state corresponding to t

now
. Normally, 

any significant impact on the trajectory requires sustained action during 
a substantial amount of time. A problem P is solvable by an agent (human 
or otherwise) if the agent is able to make this trajectory stay within the 
given subset P.

Remark 1
In our world, there exist two major types of problems (Wegner, 1997). First, 
there are the one-shot problems, which require the state of the universe to 
comply once with a constraint at some point in time. The problem speci-
fication does not care about the states before and after. An example is to 
deliver in time some quantity of goods of sufficient quality. Such problems 
often are agreements between humans to coordinate their interactions. The 
second type of problems consists of going concerns. Going concerns require 
that the trajectory of the universe complies with requirements that span a 
complete time window, typically starting from t

now
. For instance, a coordina-

tion and control system must keep its underlying system in a safe state (no 
casualties etc.). Note that there exist many problem-solving technologies 
that cannot handle going concerns (e.g., database query engines and most 
optimization software). Inherently, most real-life problems are going con-
cerns, where one-shot problems often are artificial problems. Accordingly, 
coordination and control technology normally addresses going concerns, 
possibly using one-shot problem solvers as subsystems.

Remark 2
The above defines a “basic” problem as a constraint with which a solu-
tion must comply. In reality, there also exist optimization problems. These 
 optimization problems can be modeled as a set of tuples, where each  tuple 
consists of a basic problem and a valuation, where the overall problem is 
to optimize this valuation. This valuation defines the value/benefit/… of 
solutions to the corresponding basic problem. Such a valuation can be 
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 single-valued and fully ordered, but it can also reflect multicriteria optimi-
zation problems. Since the remainder of the discussion does not require this 
extension to optimization problems, it is not elaborated further.

Solutions
A solution S to a basic problem P is defined as follows:

A solution S of a problem P is a constraint on the state space U of the uni-
verse U defining a set S = {u ∈ U | u satisfies S}, where S ⊆ P ⊆ U and 
∀ t ∈ ℜ, ∃ s ∈ S: t = timeCoordinateOf(s).

Agents (human or otherwise, intentionally or unintentionally) solve a given 
problem P when they confine, through their actions, the trajectory of the uni-
verse U to the corresponding subset P. Therefore, their actions – combined  
with the laws of the universe – correspond to constraining the state of the 
universe to a subset S of P. S cannot be empty; it will always have at least 
one state for every time coordinate. If S fails to comply with this condition, 
the agents failed to solve the problem.

Typically, S and P will differ significantly concerning the states with a 
time coordinate that is smaller than or equal to t

now
. The problem P is only 

concerned with what is needed, useful, and so on. Therefore, it allows as 
many states as possible as long as the choice among them does not matter. 
In contrast, the solution S is embedded in the universe, which allows only 
a single state for every time coordinate in the past (including the present). 
Moreover, S will reflect that are severe limitations on what states can be 
reached in the immediate future from the current state (e.g., it takes time to 
travel from A to B, to prepare a meal, or to build a house).

In other words, S will be significantly smaller than P, especially con-
cerning states close to the present time or in the past. Therefore, problem-
solving agents unavoidably have to make choices whenever deadlines ap-
proach; they have to select a single state (per time coordinate) from all 
states allowed by the problem (for the time coordinate). An example of the 
introduction of constraints can be observed in the design of a railway system 
to solve transportation problems: when the moment of actual usage ap-
proaches, the designers have to make more and more choices. For instance, 
they must select a specific value for the track width.

In real life, a problem-solving activity consists of a sequence of actions 
over time. Using the above definition, such sequence of actions corresponds 
to a sequence of solutions S

1
, S

2
, … S

end
 that solve P, where S

end
 ⊂ ··· ⊂ 
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S
2
 ⊂ S

1
 ⊂ P. This reflects that the agents make more and more choices as time 

progresses in order to solve the problem. This introduction of constraints by the 
solution – as the agents make these choices – is a key issue. Indeed, when 
confronted with new requirements (unexpected ones), S

x
 may experience a 

conflict while P has no issue accommodating these requirements.

EMERGENT SOLUTIONS AND INTEGRATION PROBLEMS

When solving real-life problems, agents – human or otherwise – start 
from existing subsolutions, technology, and infrastructure. Adding to these ex-
isting parts, individual agents and agent teams provide new parts for an overall 
solution. These parts, existing or new, are brought together, integrated as far 
as possible, and an overall solution emerges. In other words, such emergent 
solutions involve integration where the integrate-ability of building blocks 
determines what may emerge, what performance will be achievable.

In this situation, the individual agents or teams face a high level of un-
certainty about the other parts with which their part needs to cooperate. 
Typically, the agents contribute to the solution of many problems over time 
(e.g., a section of a transportation infrastructure is used in solving numerous 
individual transportation problems). Moreover, an agent’s contribution is used 
to solve problems unknown at the time this contribution is created, and it 
must be combined with contributions from other agents. Many of these other 
contributions are developed independently such that the individual agent has 
limited opportunities to coordinate its contribution with the others. Some of 
these other contributions only emerge after the creation of the contribution 
of such an individual agent. In other words, integration problems confront 
existing subsolutions with requirements that were unknown at their design 
time; unsurprisingly, these requirements often will be “unexpected.”

Formally, agent x solves problem P through solution S
p
. The other agents 

solve problem Q through solution S
q
. This results in the state sets S

p
 ⊆  

P ⊆ U and S
q
 ⊆ Q ⊆ U. For instance, agent x has constructed the railway 

system in France to answer the need for transportation. The other agents 
implemented similar railway systems in the remainder of Europe. Subse-
quently, providing transportation all over Europe – that is, problem T – is to 
be solved by integration of the national railway systems — that is, integra-
tion of S

p
 and S

q
 into solution S

t
. As discussed in the next chapter, such large 

complex systems can only be created and sustained through combining 
subsystems/subsolutions; construction from scratch is too expensive and 
time-consuming.
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Formally, agents must solve problem T, where T ⊆ P and T ⊆ Q. 
Practically, agents must integrate the existing subsolutions into their overall 
solution; formally, T ⊆ S

p
 ∩ S

q
. In the example, society is unable to du-

plicate the effort of developing their national railway systems to provide an 
international one. Instead, it must reuse the existing system to create the 
international connections among the national systems and obtain a system 
that transports goods and passengers across the borders in Europe.

The main problem with the creation of such solutions is that the in-
tegration fails to deliver the desired performance. In the railway example, 
it is relatively easy to provide international transport at a reduced service 
level; goods and passengers need to change trains at the borders of Spain 
and Russia (where the distance between the rails differs from the rest of  
Europe). The subsolutions, which were developed independently, have made 
mutually incompatible design decisions, and these decisions have accumu-
lated significant inertia (i.e., it has become costly to undo these decisions).

Formally, for any ambitious T:

∃ t ∈ ℜ, ∀ s ∈ S
p
 ∩ S

q
 ∩ T: t ≠ timeCoordinateOf(s)

In practice, a solution for T cannot readily reuse the (partial) solutions of-
fered by the individual agents without undoing a lot of design choices. 
Typically, society only receives a reduced level of service (i.e., solutions to 
easier problems), and will only gradually outgrow the old designs when 
technology progresses sufficiently to introduce a new solution from scratch 
(e.g., high-speed trains).

The key issue is the introduction of constraints, by the agents, that are 
absent in the corresponding problem and that may cause future integra-
tion problems. More precisely, it is the accumulated inertia – that is, the 
effort needed to undo such harmful design decisions – that constitutes the  
problem.

DESIGN PRINCIPLES – DESIGN FOR THE UNEXPECTED

It becomes clear that the design of subsystems for emergent solu-
tions imposes its own requirements on a design activity. In particular, the 
problem-solving agent must design a solution S

p
 capable of surviving in an 

uncertain environment concerning its future.
Formally, such uncertain environment corresponds to ℘, a set of subsets 

of the state space U. The actual future will offer an intersection of members 
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of ℘ as the space that is available for S
p
 to contribute its part to the overall 

solution. Some members of ℘ correspond to the constraints imposed by 
the future problems for which solution S

p
 may be part of the overall emer-

gent solution. Alternatively, members of ℘ correspond to the constraints 
imposed by other candidate subsolutions that may contribute to solving 
the bigger problem at hand. A designer of solution S

p
 does not know which 

members of ℘ will be present, and must try to avoid conflicts with any 
constraints that might be presented by members of ℘.

In this context, design decisions can introduce two types of constraints: 
stable and unstable. Stable constraints will be present in all conceivable fu-
ture situations within the scope of S

p
. For instance, an agent may assume 

that power supply will be 240 V/50 Hz or 110 V/60 Hz when designing 
an electrical appliance. Formally, no member of ℘ will be in conflict with 
the stable constraint. In contrast, unstable constraints represent conflicts with 
some members of ℘. Design decisions that introduce unstable constraints 
harm a solution’s capability to contribute when solving future problems. For 
instance, a software designer may assume that two digits suffice to represent 
the year in a date field in a database design. In another case, the designer of 
a rocket inertial navigation program selected to minimize the memory and 
processing power requirements; this software only supported the acceleration 
range of the then-current rocket. When this software was reused, without the 
needed adaptations, to guide a more powerful successor, it caused the crash 
of this next-generation rocket during the first launch. It was a very expensive 
manner to detect a sub-solution integration conflict. A case with less serious 
consequences was an army’s software system supporting only one data field 
to indicate size for clothing, which caused a problem when, sometime after 
this software was installed, women were allowed to become soldiers.

Based on this, design principles P1 and P2 emerge. In a way, they rede-
fine and expand the “burden of proof” for a design decision to be consid-
ered justified. For example, in P1, the word potentially calls for a much more 
substantial justification than required in more conventional approaches.

P1. PROBLEM SOLVERS MUST AVOID INTRODUCING 
POTENTIALLY HARMFUL CONSTRAINTS

This design principle calls for design decisions introducing stable 
constraints first and as much as possible (i.e., certainly before introducing 
unstable constraints). These decisions are unlikely to cause future conflicts, 
as the introduction of stable constraints simply reflects the fact that these 
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constraints are already present in the environment (cf. the universal use of 
240 V/50 Hz in Europe). A stable design decision preserves and reflects the 
scope of the problem domain.

For instance, using maps in navigation systems complies with P1. More 
generally, including essential models (see Chapter 2) in a solution complies 
with P1. In manufacturing systems, nonlinear process plans constitute a 
sample application of this first design principle. Nonlinear process plans in-
dicate all possible manners in which a product can be manufactured rather 
than selecting a single sequence of processing steps.

The first principle discourages design decisions from introducing unsta-
ble constraints as they may create conflicts during future integration efforts. 
As discussed, it will be impossible to avoid introducing unstable constraints 
indefinitely, simply because t

now
 advances toward a deadline by which a 

problem needs solving. Therefore, the design principle requires unstable 
constraints to be introduced as little and as late as possible. It keeps options 
open as much as possible and as long as possible.

P2. PROBLEM SOLVERS MUST AVOID/REDUCE THE 
INERTIA BUILD-UP FOR POTENTIALLY HARMFUL 
CONSTRAINTS

When designers cannot avoid introducing unstable constraints, they 
may not use them to justify subsequent unstable design decisions, which 
would have introduced these potentially harmful constraints as well. Re-
peatedly making design choices introducing an unstable constraint will 
build up inertia: it will practically become impossible, take too much time 
and effort to undo this introduction when it reveals to be an unfortunate 
choice later. For instance, legacy systems are commonly associated with this 
issue.

Obviously, later design decisions have to be compatible with earlier design 
decisions, including unstable ones, in order to solve a problem. In addition,  
it is tempting to rely on all previous design choices as this will simplify the 
design and development task (i.e. there are less possibilities to consider); 
this is precisely what top-down functional decomposition in axiomatic de-
sign advocates. However, relying on earlier unstable design choices implies 
more design choices that need undoing when they reveal to be harmful (i.e.  
create a conflict).

Therefore, P2 basically states that P1 needs to be applied on the original 
situation: do not introduce potentially harmful constraints relative to the 
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initial problem-solving situation. The fact that some earlier design choices 
already introduced potentially harmful constraints does not represent a per-
mission to repeat their introduction.

CONCLUSION AND REMARKS

Summarizing, the novel principles for the designers are as follows: 
(i) designers must prefer stable design decisions and (ii) earlier unstable de-
sign decisions are no justification for later decisions imposing the same 
constraint(s). The first design principle avoids the introduction of new con-
straints. The second avoids the build-up of inertia for unstable constraints 
that were introduced earlier; every unstable design decision must be justifi-
able by itself.

The theoretical analysis/modeling and design principles in this chapter 
enable developers to judge more precisely when and how their design is 
protected against unstable elements in their environment. The theory re-
veals that “reflection of the world of interest” intrinsically is a source of 
stable constraints. Indeed, every element of the environment ℘ contains all 
the constraints originating from this relevant reality.

Chapters 5–7 discuss research results applying and translating the above 
to real-world application domains. Also, note that the above principles ap-
ply when designing lasting artefacts, such as infrastructures, and not for the 
short-time solutions for the immediate future.

ABBREVIATIONS
P Problem
S Solution
U Universe
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This chapter discusses four scientific laws or principles that apply to the artifi-
cial (i.e., to manmade systems). When bounded rationality determines what is 
possible or impossible, these principles are unavoidable and simply cannot be 
ignored by developers without consequences (i.e., failure, poor performance, 
or high costs). These laws concern flexible aggregation (holonic systems), crit-
ical user mass, decentralized steering, and collective proactiveness.

ON THE MEANING OF THE WORD LAW

Once upon a time in a small town, a civil engineer – employed by 
the town council – was instructed to elaborate a proposal for a new much-
needed water reservoir to feed the town. The engineer designed a wonder-
ful tower that was to be built on top of the highest hill in the vicinity, and 
she presented this to the town council.

The mayor appreciated the beauty of the design so much that he in-
structed the engineer to build the tower in the center of town. At which 
point the engineer replied, “That will not be possible because of Newton’s 
law (of gravity).” Furious for not getting what he wanted, the mayor ordered 
the engineer to leave the room and wait outside.

After about an hour, the engineer was called in. Proudly, the mayor an-
nounced that they had solved the problem. They had checked all applicable 
legislation thoroughly and concluded that Newton’s law was not applicable to  
their town.

The word law is used in at least two different ways: (i) manmade regula-
tions and (ii) statements of facts (scientific law). Examples of the latter are the 
laws of nature, which are unavoidably true within their scope. Newton’s laws 
on gravity and force–mass–acceleration are facts until you get outside their 
scope (e.g., move at speeds approaching the speed of light, go to subatomic 
dimensions). The first and second laws of thermodynamics constitute an-
other example. This chapter uses the word law in the sense of laws of nature.

CHAPTER FOUR
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Recognition that there are laws of the artificial, resembling laws of 
nature, has been a major contribution from Nobel Prize winner Herbert  
Simon. Simon even wrote a book on this titled The Sciences of the Artificial 
(Simon, 1990). These laws of the artificial are statements of (unavoidable) 
facts in the manner the laws of nature or physics are.

If engineers fail to account for the law of gravity while designing a canal 
infrastructure, its performance will be poor while investments in pumping 
stations and recurring expenses to power these stations will be high. Like-
wise, ignoring the basics of complex manmade artifact design and develop-
ment will result in disappointing performance and high costs.

This chapter discusses a (nonexhaustive) list of these laws of the artificial 
providing insights that are accounted for in the remainder of this book. The 
scope of these laws can be formulated “beyond a certain level of system 
complexity,” which more conventional approaches fail to master. Indeed, 
this scope delineates those problems that benefit from and perhaps even 
require us to design for the unexpected.

AXIOMS

The laws of the artificial are derived from a number of observations 
of key properties of our world. They are assumed to be true (i.e., they are 
axioms, not lemmas).

Bounded rationality is a key element from which these laws are derived. 
Even a team composed of the most talented human individuals in the world, 
enjoying the best imaginable support and resources, has limited problem-
solving and design capabilities. Moreover, enlarging such a team rapidly 
fails to improve its capabilities, i.e., when the increase in coordination and 
communication efforts absorbs more brain power than is added by the new 
team members.

A dynamic environment is another element from which laws of the ar-
tificial are derived. A dynamic environment implies that there is a time 
window in which problems need solving, designs have to be realized, and 
systems must be implemented. In combination with bounded rationality, 
this results in an upper bound on the number of information-processing 
steps leading to a design or solution to a problem. Above this upper bound, 
solutions arrive too late to contribute.

A competitive environment constitutes a third element. Whenever it is pos-
sible to improve, systems and designs that neglect to do this disappear or 
never appear at all. Again, possible-to-improve is to be seen in the finite  
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time window allowed in a dynamic environment. Likewise, possible- 
to-improve is to consider the availability and recruitment of the necessary 
resources to execute the improvement. In particular, when bigger means 
better (i.e., more competitive, not necessarily more desirable), systems (of 
systems) will grow bigger.

Adaptation, the final element, relates to the fact that systems change over 
time. A solution may need to assume the world to be both complex (e.g., 
exhibit a butterfly effect) and nonrepeating (e.g., when past experience 
influences future behavior). Designers should realize that from a certain 
system size on, a perfectly predictable complicated system turns into a com-
plex system, the behavior of which is becoming (partly) unpredictable, and 
for which new control approaches are needed.

LAW 1: HOLONIC SYSTEMS – FLEXIBLE HIERARCHIES

The term holon was introduced by Arthur Koestler in his book “The 
Ghost in the Machine” (Koestler, 1967). Two observations of how social and 
biological systems are organized motivated Koestler to propose the con-
cepts of holons and holonic systems.

The Watchmakers’ Parable (Simon, 1990)
Once upon a time, there were two watchmakers, named Hora and Tem-

pus, who both made very fine watches. The phones in their workshops rang 
frequently, as new customers were constantly calling them. Hora prospered 
while Tempus became poorer and poorer. In the end, Tempus lost his shop. 
What was the reason behind this?

The watches consisted of about 1000 parts each. The watches that Tem-
pus made were designed such that when he had to put down a partly as-
sembled watch, for instance to answer the phone, it immediately fell into 
pieces and he had to start all over again, reassembling the basic elements.

Hora had designed his watches such that he could put together subas-
semblies of about ten components each. Ten of these subassemblies could 
be put together to make a larger subassembly. Finally, ten of the larger sub-
assemblies constituted the whole watch. Each subassembly could be put 
down without falling apart.

The first observation was that complex systems will evolve from simple 
systems much more rapidly if there are stable intermediate forms present. 
This observation was influenced by Simon’s parable of the two watch-
makers (Simon, 1990). Simon’s parable (see frame) demonstrates how, in  
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dynamic and demanding environments, the chances of emerging and sur-
viving for systems composed of suitable subsystems are vastly superior to 
systems composed from basic elements without stable intermediate states 
or subsystems.

Indeed, bounded or limited rationality – finite brainpower, bounded 
information processing, and communication capacity – puts a ceiling on the 
speed at which elements can be integrated to build a system. When these 
elements are small, more time and effort is required to build a system of a 
given size. In combination with a dynamic environment, the resulting sys-
tem is completed too late to be effective or competitive. Systems built from 
larger building blocks are superior in environments that emphasize adapta-
tion speed over the theoretical possibility of superior ultimate performance.

In Koestler’s words, larger holons (holonic systems) are constructed from 
stable intermediate forms, also called holons, where this composition repeats 
in a self-similar manner until the constituents become simple. Such holonic 
systems are more likely to emerge and survive in dynamic environments 
than systems that would ultimately be superior but take too much design 
effort and development time. The latter systems simply are too expensive 
and, most importantly, obsolete long before they become operational.

The second observation was that although it is easy to identify subwholes 
or parts, “wholes” and “parts” in an absolute sense do not exist anywhere. 
The term holon was proposed to describe the hybrid nature of subwholes/
parts in real-life systems. Holons simultaneously are self-contained wholes 
to their subordinated parts, and dependent parts when seen from the inverse 
direction. Or put more simply, a holon is something that is whole in itself as 
well as part of a greater whole. Koestler called this behavior the “Janus effect.”

Koestler also points out that holons are autonomous self-reliant units, 
which have a degree of independence and handle contingencies without 
asking higher authorities for instructions. At the same time, these holons 
are subject to control from higher authorities. The first property emphasizes 
that holons are stable forms and can cope with disturbances. The second 
property highlights that holons are intermediate forms, providing the prop-
er functionality for the larger whole.

According to Koestler, a holonic system or holarchy is then a hierarchy 
of self-regulating holons that function (i) as autonomous wholes in supra-
ordination to their parts; (ii) as dependent parts in subordination to control 
at higher levels; and (iii) in coordination with their local environment.

Simon’s main goal is to explain why our universe is dominated by sys-
tems exhibiting hierarchical structure in a loose sense – which Koestler calls 
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“holarchies” to distinguish them from strict hierarchies (typical for rigid man-
made artifacts). Koestler makes a first attempt at characterizing these suitable 
subsystems, which have to survive the dynamics of the environment better 
and longer than the overall system, as illustrated in the watchmakers’ parable. 
Koestler calls this ability to survive the autonomy of the subsystem or holon, 
whereas the contribution of the subsystem to the overall system is called the 
cooperativeness of the holon. The autonomy gives the holon the capacity to 
cope with changes, uncertainty, and disturbances in its environment.

The first law of the artificial states that flexible hierarchies will dominate when 
and where the first three axioms hold; holonic systems will be the superior 
choice. Here, “flexible” means that these hierarchies adapt their composi-
tion over time by replacement of subsystems at appropriate hierarchical 
levels. When these three axioms fully apply, holonic systems will be your 
only possibility because anything else is eliminated by ruthless and fierce 
holonic competitors.

However, Koestler’s analysis concerning the stability of intermediate forms 
(e.g., their autonomy) fails to qualify as a law. The stability and availability of 
suitable intermediate forms is dominated by the second law (i.e., membership 
of strong autocatalytic sets), which is discussed below. Note that autonomous 
contingency handling is likely to induce and reinforce such membership but 
it is not the sole nor a dominating factor in this respect.

LAW 2: AUTOCATALYTIC SETS – CRITICAL USER MASS

An autocatalytic set is a collection of entities, each of which can be cre-
ated “catalytically” by other entities within the set, such that as a whole, the 
set is able to catalyze its own production and expansion. In this way, the set 
“as a whole” is said to be “autocatalytic.”

The second law of the artificial states that members of strong autocatalytic 
sets have decisive competitive advantages over nonmembers. In competitive 
environments, resources will go (almost exclusively) to members, rendering 
nonmembers to become extinct through starvation.

Autocatalytic sets were originally and most concretely defined in terms 
of “molecular entities” but have more recently been metaphorically ex-
tended to the study of systems in sociology and economics. Here, we extend 
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them to (complex) artifacts, designed and produced by humans. Autocataly-
sis reveals to be more fundamental than autonomy for the emergence and 
survival of systems, which eventually become subsystems in a larger system. 
Autonomy and adaptability are secondary properties of autocatalytic sets 
and their members, useful to maintain and increase autocatalysis in a dy-
namic and changing environment.

Originally, the concept of an autocatalytic set (Hordijk, 2013) served to 
enhance the probabilities in the standard biologist’s theory that life emerged 
by chance when energy pulses stroke a pool filled with organic molecules. 
Unfortunately for this standard theory, the smallest life forms still are so big  
that combining their basic molecules by chance is as likely to happen as  
“a group of monkeys typing Shakespeare’s oeuvre by pure coincidence.”

These calculations change drastically, however, if combinations of mol-
ecules are formed into sets that are catalysts for themselves. If energy pulses 
arrive at a sufficiently high frequency, the autocatalysis implies that the pool 
rapidly becomes filled with members of such autocatalytic sets (exponen-
tial growth until raw material becomes scarce). The omnipresence of such 
set members also means that they become the building blocks for larger 
molecular combinations, among which the autocatalytic set members will 
dominate again.

In view of the first law of the artificial, membership of sufficiently strong 
autocatalytic sets delivers an exponential competitive advantage. Our ho-
lons will be members but not all members will be suitable subsystems. Note 
also that being a suitable subsystem provides (indirect) membership to the  
autocatalytic sets of the larger system. Indeed, the first and second law of  
the artificial mutually reinforce each other.

In the biologist’s theory, this interaction creating larger entities (first law) 
among which the autocatalytic set members are favored (second law) can be 
repeated until life forms emerge. If this theory is correct, the dominating life 
forms should be members of autocatalytic sets themselves. And indeed, mice, 
rabbits, weeds and insects all provide strong empirical evidence supporting 
the theory (i.e., their reproduction, sexually and otherwise is autocatalysis in-
deed). Autonomy, adaptability, manipulating the environment, etc. are second-
ary properties of the more complex life forms (including humans) that mainly 
increase the intensity of the autocatalysis in favor of the own set.

To translate the above to the domain of holonic systems and mechatron-
ic systems/societies, it is necessary to identify the relevant autocatalytic sets 
for manmade artifacts and software systems in particular. These sets are not 
situated in artificial worlds inside computer platforms serving to investigate 
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artificial life. The relevant autocatalytic sets comprise both software and hu-
mans (i.e., software users and developers).

Successful software systems belong to two kinds of autocatalytic sets:  
(i) the economic autocatalytic set – successful software represents economic val-
ue to its users and thus mobilizes the economic means for software develop-
ers to maintain, adapt, and enhance this software; (ii) the information feedback  
autocatalytic set – successful software attracts users providing feedback on 
its shortcomings and merits. This information, in combination with the  
economic means, allows the developers to maintain, adapt, and enhance  
the software such that it remains competitive.

The above implies that (software) system designers have to account for more 
than just the technical dimension to be successful. Sufficient users (and their 
payments) and sufficient diversity in the user community (and its feedback), 
relative to the competitive pressures, are necessary for emergence and survival. 
Most importantly, such successful members of autocatalytic sets are the (only) 
systems that may become the subsystems in larger, more sophisticated systems.

The second law of the artificial translated toward (software) artifacts states that  
the – potential for – critical user mass is the principal factor in achieving 
membership of strong autocatalytic sets. This user mass must be high, rela-
tive to the complexity of the artifact, in both the economic and informa-
tion feedback aspects.

Ceteris paribus, software systems with the intrinsic ability to serve more 
users or a more diverse community of users will have an edge over the 
competition since their autocatalysis is stronger. Note that software qual-
ity and functionality levels are likely to improve significantly through the 
above types of autocatalysis. Personal experience with systems experiencing 
low levels of autocatalysis has provided the authors with strong empirical 
evidence supporting this statement.

LOCK-IN

The previous section depicts how positive feedback is instrumental 
in structuring worlds such that larger and more complex systems emerge 
and survive. This section introduces a negative aspect of such positive feed-
back: lock-in into early solutions. Indeed, the competitor achieving autocata-
lytic growth first generally ends up dominating its world. Competing and 
faster autocatalytic processes only have a short time window to overtake a 
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competitor that started earlier. Soon after his start, the first one to achieve 
autocatalysis will have consumed or acquired most resources – needed to 
grow and sustain – which are also needed by the other competitors.

In other words, systems, in which autocatalysis occurs, may evolve along 
multiple trajectories where the selection among these trajectories strongly 
depends on which autocatalytic process kicks in the earliest. Because it is 
an exponential process, the autocatalytic set rapidly exhausts the available 
“raw material,” effectively eliminating the opportunity for other autocata-
lytic processes sharing “material requirements” to start at all.

A well-known example is the “VHS versus Betamax and Video 2000 
war” in television tape recorders. VHS was the first to attract a critical user 
mass and, because it was the only competitor that was certain to provide 
access to a sizeable market for content providers, it deprived the compet-
ing technologies from content, in spite of their technological superiority. 
Here, the exponential nature of autocatalysis prevents better solutions from 
emerging; a good enough alternative that arrives earlier wins and locks the 
world into staying with its first choice.

Relevant for holonic systems development is the poor level of suit-
ability and adaptability of the available systems (members of autocatalytic 
sets) from which larger systems have to be developed. Today’s systems were 
developed with specific user requirements in mind, and the world locks into 
those early solutions. Those early solutions incorporate many design choices 
that prevent the creation and maintenance of other and larger systems at 
some later time. Likewise, larger systems can be created but lock-in into 
design choices from the early solutions results in poor performance. This 
often is referred to as “legacy” in its negative connotation.

Overall, lock-in is desirable when it simplifies the world by reducing the 
options and alternatives that have to be taken into account. Lock-in is un-
desirable when a dominating system incorporates highly unfortunate design 
choices, which unfortunately are commonplace because being first (and just 
good enough in the short run) is more important than being well designed.

Relevant for design for the unexpected (D4U), lock-in denies our soci-
ety the ability to make progress incrementally through a sequence of short-
term good-enough solutions, which are improved and combined as time 
progresses. This approach rapidly runs into the ground when early design 
choices, which have become hard-to-undo, prevent the desired improve-
ment. D4U specifically aims at developing solutions that do not make prob-
lematic design choices or render it easy to undo problematic design choices. 
In other words, it aims to create a legacy-free base concerning lock-in.
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LAW 3: STEERING WITHOUT CENTRALIZATION

When a competitive environment favors larger systems (i.e., superior 
size brings a competitive advantage), systems will grow until centralized co-
ordination and control is no longer feasible (because of bounded rationality). 
The following anecdote (Kurtz and Snowden, 2003) illustrates in a small-
scale setting what happens:

A group of West Point graduates were asked to manage the playtime of a 
kindergarten as a final year assignment. The cruel thing is that they were 
given time to prepare. They planned; they rationally identified objectives; 
they determined backup and response plans. They then tried to “order” 
children’s play based on rational design principles, and, in consequence, 
achieved chaos.

They then observed what teachers do. Experienced teachers allow a de-
gree of freedom at the start of the session, then intervene to stabilize desirable 
patterns and destabilize undesirable ones; and, when they are very clever, they 
seed the space so that the patterns they want are more likely to emerge.

At larger scales in knowledge-intensive systems, a similar situation tran-
spires. Regarding the upward information flow, the small children lacked 
the required intellectual skills. In the scaled-up situation, information over-
load occurs when the information is gathered and fed into higher levels. 
Moreover, bounded rationality prevents adequate condensing of this flood 
of information. Concerning the downward information flow, the con-
densed nature of information flowing down – as it is generated by higher 
levels with a reduced information-processing capacity – implies a need for 
expansion and interpretation. This will distort the information.

Worse, the down-flowing information must be disregarded whenever 
the loss of information in the upward flow causes this down-flowing in-
formation to be irrelevant and/or wrong. When it is not disregarded, cen-
tralized coordination and control become a liability and harm the overall 
system. This is also observed at on a smaller scale when the upper level lacks 
basic knowledge in a specialist’s domain.1

1  Everyone knows that cars and trucks should travel on the same side of the road. But in 
lesser-known domains, policy makers are likely to decide that tomorrow – as an analogy –  
cars shall drive on the other side of the road and, when all goes fine, trucks will change 
to this new side three weeks later. Actually, knowledgeable opponents of this change may 
propose and encourage such a flawed coordination and control scenario.
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In other words, classical command and control hierarchies become in-
effective and even counterproductive at some point when systems grow 
larger. A leadership that feels responsible for the overall system performance 
and considers it their duty to steer it in a centralized top–down manner be-
comes a liability. These large systems need leaders who aim to facilitate and 
who primarily aim not to harm performance on the lower levels – that is, 
they assume the lower levels aim to perform without the need for explicit 
command whereas the higher levels cannot match the combined informa-
tion processing power of the lower levels.

The third law of the artificial states that when competition favors larger systems, 
the top levels of competitive systems cannot be effectively controlled in a 
centralized manner. Noncentralized designs to steer these large systems exist 
but much still needs to be invented and remains to be discovered. Here, the 
social sciences and humanities may find some challenges to address.

Other coordination, influencing, and guiding mechanisms are needed, 
exists and can be designed. Indeed, in a competitive environment, systems 
are likely to benefit from coordination and guidance, which needs to emerge 
rather than resulting from higher levels imposing it. The following funda-
mental research experiment in robotics illustrates that it is possible to design 
such emergent coordination; on purpose, it severely limits communication 
producing a situation that normally only occurs in much larger systems:

In a room, a number of mobile robots are moving around. These robots 
have no means for communication and are only capable of three actions: 
moving around the room, recharging their battery in a docking station, 
and pushing a button on the other side of the room. The battery charging 
station is only active/powered when this button is pushed. A robot cannot 
push the button while docked in the charging station. The objective of 
these robots, employed to study machine-learning mechanisms, is to spend 
as much time roaming around the room as possible.

A successful strategy consisted of robots pushing the button with a fre-
quency and duration that is close to what they perceive to be the overall 
average while deviating slightly in the direction that the individual robot 
deems desirable. As a group behavior, this would steer the overall system  
toward good performance while it prevented the adaptation mechanisms 
in the robots from exploiting overly generous robots, which in turn avoided 
the need for detection and punishing mechanism for profiteering/abusing 
robots.
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The above illustrates coordination without a centralized control. Al-
though academic, it already reveals how to handle socioeconomic situations 
in which a small player may wish to influence the overall system without 
risking to be exploited (i.e., for being too nice and gullible) or exclusion 
(i.e., for being more royalist than the king).

Our body of knowledge on the design of such mechanisms in real-world 
complex cases remains embryonic today. In view of the design theory in this 
book, ongoing research focuses too much on the decision mechanism design 
(e.g., how much more shall a robot push the button) and not enough on an 
environment to facilitate and trigger desirable behavioral patterns in the sys-
tem (cf. the experienced and clever teachers in the above kindergarten).

A well-known example in nature to achieve coordinated behavior with-
out a centralized control is food foraging in (many types of) ant colonies. 
These ants use chemical trails (pheromones) to guide other members from 
their colony to food sources. The brilliant element in this design is not 
the tuning of the performance-determining parameters but the manner in 
which the ants reuse the environment itself to cope with (the complexity 
and dynamics of) this environment.

In other words, when designing noncentralized coordination and con-
trol, the main achievements will reside in structuring the environment 
whereas performance-determining decision-making mechanisms and their 
tuning methods are more or less instances of a limited number of generic 
designs. Rather than providing elements that take decisions, the proper de-
sign must deliver an environment that
•	 enhances visibility (situational awareness), allowing the decentralized 

players to take informed decisions and actions.
•	 allows for larger deviations from the average/group behavior without 

repercussions. For instance, the designer may create an environment in 
which good deeds are rewarded, or at least remain unpunished.

•	 provides mechanisms to assess the effect of alternative courses of action 
under consideration. The actors shall have a kind of radar or crow’s nest 
to take better-informed decisions.

•	 provides mechanisms to make the above a collective capability, avoiding 
that individuals have to second-guess what the impact of others will be. 
In such an environment, individual actors shall never conclude that “if 
I had known this earlier, I would have acted differently,” particularly in 
situations where the desirability and performance of their actions de-
pends on what other actors do (e.g., whether to stay longer in the office 
to avoid rush hour).
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•	 provides mechanisms to make commitments among the participants in-
volved. This allows a participant to self-command (individually or col-
lectively) and, simultaneously, get the benefit of planned action when 
this participant is sharing what she or he is intending to do (including 
with a specified commitment). This renders the collective more predict-
able without needing a central coordination taking decisions.

•	 seeds the environment with information to guide decisions without im-
posing them. This will enable don’t-care decisions to be compatible, ini-
tiate search for solutions from promising starting points, and may make 
the system behavior simpler and more predictable (i.e., converge faster 
and converge in a more predictable manner). The discussion on staff 
holons in Chapter 5, enlightens this point.
Summarizing, coordination and control in large complex-adaptive sys-

tems will not be centralized at the higher levels, simply because of limited 
rationality. Nevertheless, significant system design effort remains possible 
and beneficial. This design effort shall primarily focus on seeding the envi-
ronment to trigger desirable collective and individual behavior, including 
simplicity, predictability, and effectiveness. The decision-making elements 
in this setting are mostly instances from generic designs that need nonstop 
tuning within this environment. The performance of these mechanisms is 
bounded by the environment’s offerings. A top-performing ship’s captain 
without radar is no match for a capable captain with effective radar. More-
over, the design of this environment needs to account itself for the theoreti-
cal insights discussed elsewhere in this book (holonic, autocatalytic, etc.).

LAW 4: COLLECTIVE IMAGINATION AND 
PROACTIVENESS

The most significant word in complex-adaptive systems is “adaptive”; 
this is what many research communities have barely covered or not at all. 
Vaccination is a well-known mechanism that exploits this phenomenon on 
the individual level. On the other extreme, whole societies adapt. In war-
fare, an army attempting to repeat a successful strategy on the same enemy, 
which lost the battles in the past but survived, is unlikely to repeat the cor-
responding success. The battles in the past are likely to have “vaccinated” 
this enemy. But even in noncompetitive situations, past behavior and statis-
tical data may be insufficient to enable an effective proactiveness.

Consider an intelligent transport system that monitors traffic density 
and that combines historical data with models to predict congestion. When 
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this information is shared with a limited number of paying customers, these 
privileged participants will benefit and avoid being stuck in traffic jams. 
When the same information is made available to everyone, the resulting 
changes in behavior of the participants will invalidate the historical data and 
the models. Indeed, the participants react to the prediction in sufficiently 
large numbers and extent to cause the prediction to be wrong (and they get 
stuck on the routes avoiding the predicted congestions).

The above illustrates how decisive the adaptive nature of elements in 
especially large systems can be. As discussed above, these systems are too 
large and complex for centralized planning, scheduling, or control. At the 
same time, fully decentralized designs are unable to “imagine” what will 
happen (where this ability is vital for proactiveness). For instance, de-
signs in which “agents” have a closed-formula objective or utility function 
(exclusively based on information owned by the agent) will be myopic 
as this function fails to grasp this decisive impact of future interactions. 
Nonetheless, this ability to imagine, predict, and simulate what will hap-
pen when selecting a course of action is vital for system performance and 
service levels. Proactiveness needs this ability to assess future performance 
to be effective.

In the present discussion, it is inherently impossible to derive such pre-
dictions based on past behavior at the level of an overall system. However, 
sufficiently accurate models of smaller components do exist (it suffices to 
descend until the system components become sufficiently small, simple and 
stable). In the applications addressed in this book, it is equally possible to 
model the courses of action under consideration. Moreover, the models are 
executable software allowing to virtually execute such a course of action.

The above capabilities are used to collectively imagine – in a decentral-
ized design/manner – what will happen. To this end, the intended courses 
of actions of all the participants are virtually executed on models of the 
resources (e.g., cars driving given routes). Because the intentions are virtu-
ally executed to generate a collective prediction, the accuracy of the predic-
tion will depend - among others - on the respective commitments to these 
intentions.

Regular refreshing, by repeating this virtual execution of the intentions, 
allows this collective prediction to stay up-to-date. In addition, the vir-
tual execution of a course of action under consideration (not an intention) 
serves to explore and collect information used to decide on introducing a 
new course of action or changing an existing course of action. Further dis-
cussion can be found in the section on DMAS in Chapter 5.
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Summarizing and generalizing, proactiveness and its benefits require the 
ability to imagine what will happen when selecting a course of action, in-
cluding the impact of future interactions:

The fourth law of the artificial states that effective proactiveness – and its ben-
efits – requires the ability to imagine what will happen when selecting 
a course of action. This imagination must include the significant impact 
of future interactions. Accounting for such future interactions requires a 
collective imagination. This includes the impact of the accessibility of this 
imagination, collective or otherwise.

Note that the construction of such collective imagination offers an op-
portunity to enjoy the best possible prediction of the future: “the best man-
ner to predict the future is to create the future.” Indeed, while participating 
in the creation and maintenance of such a collective imagination, the par-
ticipants are – to a given extent – jointly creating their future.

CONCLUSION AND REMARKS

Four observations of key properties of our world, called axioms, give 
rise to four statements, called laws of the artificial, about the man-made  
world. In order to be successful, the designer of complex artifacts should  
be aware of the existence of these laws in his or her design efforts, in the 
same way as he/she should recognize the laws of nature.

In Chapters 5–7, these laws of the artificial will serve as the major guide-
line for designing decentralized holonic control architectures for mecha-
tronic societies.

ABBREVIATION
DMAS Delegate multiagent system
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This chapter presents the earlier results in our development of a holonic 
manufacturing systems framework, with a clear emphasis on manufacturing 
and logistics. The insights discussed in the previous chapters were used as 
precious guidelines and as a check for soundness when comparing options. 
In particular, design for the unexpected (low and late commitment) and 
maximizing the potential for achieving critical user mass were important 
factors influencing the choices made during the development activities.

These earlier developments concentrate on manufacturing execution sys-
tems (MESs). This involves some serious challenges – unpredictable production  
processes (duration, outcome), heterogeneity of products and equipment, 
etc. – in combination with a competitive environment. When decisive for 
the competitiveness, an MES must cope with the most exotic properties 
and behaviors of a production system. Indeed, design for the unexpected 
becomes a necessity.

Conversely, these developments assumed that a single organization de-
cided what software would be installed and used. In this respect, a closed-
world assumption was made, limiting the developed concepts to “closed 
systems.” Chapter 6 presents more recent, consolidated successors of the de-
velopments discussed here. These successors relax and abandon this closed-
world assumption and have become agnostic concerning the application 
domain enabling the formation of a humane mechatronic society.

HOLONIC SYSTEMS

As shown in Chapter 4, the Law of Holonic Systems, derived by 
Koestler and Simon, is based on two observations:
•	 Complex systems will evolve from simple systems much more rapidly if 

there are stable intermediate forms present.
•	 Although it is easy to identify subwholes or parts, “wholes” and “parts” 

in an absolute sense do not exist anywhere.

CHAPTER FIVE
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The “holon” concept was proposed to describe the hybrid nature of sub-
wholes/parts in real-life systems. Holons simultaneously are self-contained  
wholes to their subordinated parts, and dependent parts when seen from 
the inverse direction.

Koestler points out that holons are autonomous self-reliant units, which 
have a degree of independence and handle contingencies without asking 
higher authorities for instructions. At the same time, these holons are sub-
ject to control from higher authorities. The first property emphasizes that 
holons are stable forms and can cope with disturbances. The second prop-
erty highlights that holons are intermediate forms, providing the proper 
functionality for the larger whole.

According to Koestler, a holonic system or holarchy is a hierarchy of 
self-regulating holons that function
•	 as autonomous wholes in supraordination to their parts;
•	 as dependent parts in subordination to control at higher levels;
•	 in coordination with their local environment.

Shortly after its publication, Koestler’s book (Koestler, 1967) went 
into oblivion. It was rediscovered by Japanese manufacturing scientists, 
around 1989, in their quest, assigned by MITI (Ministry of International 
Trade and Industry), to find the appropriate structure of the factory of 
the 21st century. They declared the holonic system concept as the basis 
for the factory of the future. It was further developed and translated 
for manufacturing in the framework of the worldwide IMS (Intelligent 
manufacturing system) project, launched by MITI under the impulse of 
Professor H. Yoshikawa of the University of Tokyo. The authors of this 
book participated, from 1993 onward, in a worldwide consortium, called 
Holonic manufacturing systems (HMS). It was there that the seeds of this 
book were sown.

Based on the concepts of Koestler, a new form of manufacturing sys-
tems, called holonic manufacturing systems, emerged. This new paradigm had 
the ambition to provide an answer to the shortcomings of earlier factory 
control systems that led to the failure, and ultimate demise, of the then-
prevailing computer integrated manufacturing (CIM) paradigm.

Previously, the control architectures of these CIM systems had evolved 
from centralized via hierarchical to heterarchical architectures (Dilts 
et al., 1991). A control architecture determines the interrelationships between 
the various system components and allocates the different decision-making 
responsibilities (e.g., part routing and resource allocation) to specific control 
components.
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Centralized Control
Centralized control architectures are characterized by a central computer that 
performs all planning and information processing and registers the activities 
of the whole manufacturing system. This way, overall system status informa-
tion can be easily retrieved from a single source. This ability to access complete  
global information also makes optimization a more realistic expectation. 
However, centralized architectures tend to have a poor responsiveness, re-
liability, modifiability, and extensibility.

Hierarchical Control
The shortcomings of centralized control resulted in the development 
of hierarchical control architectures. These architectures introduce “levels” of 
control that have a specific functionality and are organized in a top–down 
structure. There are strict master–slave relationships between the levels. 
Control decisions are operated top–down, whereas status reporting oper-
ates bottom–up. The benefits of these architectures include optimal be-
havior when everything keeps going right, fast response times, gradual 
implementation, redundancy, and limited complexity of individual con-
trol modules. Despite these advantages, there are also many drawbacks. 
The rigid structure makes it very difficult to make unforeseen modifica-
tions and the increased coupling between the modules adversely affects 
modifiability, extensibility, and fault-tolerance. As low-level modules have 
to consult higher levels in the hierarchy in case of a disturbance, the sys-
tem’s reactivity to disturbances is weak. Moreover, global decision-making 
is often based on obsolete information.

Heterarchical Control
Heterarchical control architectures are characterized by a flat structure. They 
consist of distributed locally autonomous entities that cooperate with 
each other directly (without the master–slave relationship from hier-
archical architectures to make global decisions). This local autonomy 
requires that global information is minimal or even nonexisting. Advan-
tages are enhanced modularity, reduced coupling between the modules, 
and increased robustness against disturbances. A major disadvantage is 
the low predictability of heterarchical architectures, as it is difficult to 
operate according to a predefined plan. Moreover, there is no global 
optimization possible and, consequently, a high performance cannot be 
guaranteed.
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Holonic Manufacturing Systems
Holonic manufacturing systems (Babiceanu and Chen, 2006) were put forward as it 
was realized that neither centralized, hierarchical nor heterarchical control sys-
tems could face the challenges the manufacturing world was confronted with. 
Holonic control systems try to combine the high and predictable performance 
promised by hierarchical systems with the robustness against disturbances and 
the agility of heterarchical systems. To avoid the rigid structure of hierarchi-
cal systems, holonic manufacturing systems provide autonomy to the individ-
ual holons. This allows the control system to respond quickly to disturbances 
and to reconfigure itself to face new requirements. In order not to ban all hier-
archy, which is essential to master complexity, holons work together in “loose” 
hierarchies. Such a hierarchy is different from a traditional hierarchy in that
•	 holons can belong to various hierarchies,
•	 holons can form temporary hierarchies, and
•	 holons do not rely on the correct functioning of the other holons to 

perform their tasks.
To develop a holonic manufacturing system, the concepts developed 

by Koestler were translated into a set of appropriate concepts for manufac-
turing (Babiceanu and Chen, 2006). The HMS consortium developed the 
following list of definitions to help understand and guide the translation of 
holonic concepts into a manufacturing setting:

Holon
A holon is an autonomous and cooperative building block of a manufacturing 
system for transforming, transporting, storing, and/or validating information 
and physical objects. The holon consists of an information-processing part 
and often a physical processing part. A holon can be part of another holon.

Autonomy
It refers to the capability of a holon to create and control the execution of 
its own plans and/or strategies.

Cooperation
It is the process whereby a set of holons develops mutually acceptable plans 
and executes these plans.

Holarchy
A system of holons that can cooperate to achieve a goal or objective is a 
holarchy. The holarchy defines the basic rules for cooperation of the holons 
and thereby limits their autonomy.
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As a holon is an autonomous entity that cooperates with other holons 
to achieve its goals, the multiagent systems paradigm seems very appropri-
ate to implement holonic manufacturing systems. There are however two  
important differences between “holons” and “agents.” First, a holon can con-
tain one or more other holons, whereas an agent is not composed of other 
agents. Second, while agents are pure software entities, holons can include 
both hardware and software parts. Conceptually, multiagent systems1 are a 
most natural choice to implement holonic systems. Surprisingly, Erlang/
OTP – an open source telecom technology, which is downloadable from 
www.erlang.org – proved to be the most appropriate software develop-
ment and deployment technology for the research addressed in this book. 
The programming tools and languages from the multiagent community 
were lacking in maturity and critical user mass; they were underpowered 
where it hurts, whereas their strengths barely qualified as nice-to-have.

THE PROSA REFERENCE ARCHITECTURE  
(Van Brussel et al., 1998)

This section addresses the structure of a holonic manufacturing sys-
tem or, in other words, its architecture. It addresses the structure of the 
system of holons (the holarchy), not the internal structure of individual 
holons.

A reference architecture describes the mapping from various functionalities, 
which cooperatively solve the problem, onto software components and the 
data flows between these components. A reference architecture is not an 
architecture in itself but can be used as the basis for designing the system ar-
chitecture for a particular system. For instance, the ADAptive holonic COn-
trol aRchitecture (ADACOR), can be considered as an instantiation of the 
product-resource-order-staff architecture (PROSA) reference architecture 
(see Chapter 8: Work by Others).

Reference architectures are used in a specific (mature) domain and arise 
from experience (Wyns., 1999). The reference architecture “Gothic cathe-
drals” is the collection of knowledge and skills, acquired by the medieval 
guilds, to build Gothic cathedrals. The cathedral of Chartres, with its exqui-
site architecture, is an impressive instantiation of that reference architecture.

PROSA was originally developed for the manufacturing domain 
and, based on experience in this domain, special attention was paid to 
(Wyns., 1999) (i) separating the essential elements, which are generic, from  

1 See Appendix II for a discussion of some basic concepts of multi-agent systems.

http://www.erlang.org/
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the optional elements, which can be domain specific (the latter are 
called “plugins”); (ii) separating the structural aspects from the functional 
(algorithmic) aspects for resource allocation and process planning; (iii) 
separating resource allocation aspects and process specific aspects; and (iv) 
enabling the incorporation of legacy systems, or the introduction of new 
technology.

The PROSA reference architecture is developed in accordance with the 
holonic-manufacturing paradigm. The basic components are holons, and 
the architecture describes the responsibilities of the various holons and their 
interactions. The acronym PROSA stands for product-resource-order-staff archi-
tecture and refers to the different types of holons. Three basic types of holons 
can be distinguished: product holons, resource holons, and order holons. 
Staff holons complete the set of PROSA holons.

Each basic holon represents a separate concern in the application do-
main: process planning, resource allocation, and logistics management, 
 respectively. The basic holons can be aggregated into larger holons and spe-
cialization can be used to structure them. Staff holons are optional and can 
be added to provide the other holons with expert knowledge or to incor-
porate legacy systems. Figure 5.1 shows a module decomposition view2 of 

Figure 5.1 Overview of the PROSA Reference Architecture. Each rectangle represents 
one of the holon types in PROSA; the arrows between the holons represent their inter-
actions.

2A module is an implementation unit of software that provides a coherent set of responsibili-
ties. A module decomposition view describes the organization of the software as modules 
and submodules and shows how responsibilities are divided across these modules.
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the holonic reference architecture (Verstraete et al., 2008). The depends-on 
relationships between the holons indicate that the various holons share data 
with each other.

The source of inspiration for PROSA was the kernel of a modern com-
puter operating system. It recognizes resources (the microprocessor), know-
how (the code segment), and execution (the data segment), which map, 
respectively, on resource, product, and order holons. The staff holon has 
no counterpart in computer operating systems. The following paragraphs 
elaborate on the four different holon types.

Resource Holon
A resource holon corresponds to a resource in the underlying domain (equip-
ment, infrastructure elements, personnel). In a logistic context, for instance, 
this means that all transport means (trucks, freight trains, cargo aircraft, etc.) 
and material handling equipment (forklift trucks, conveyors, automated guid-
ed vehicles, etc.) will be represented by a resource holon. There will also be 
resource holons for other entities that are scarce and have to be shared (e.g., 
dock doors, pallet racks, and floor space). Note that a logistic execution sys-
tem (LES), like MES, can be developed under a closed-world assumption.

Each resource holon comprises the physical resource, together with a 
software part that controls this resource. It offers knowledge about process-
ing capacity and processing functionality to the other holons and organizes 
and controls the usage of the physical resource. More concretely, a resource 
holon has the following responsibilities:
•	 Reflection of reality: A resource holon reflects its corresponding physi-

cal resource; that is, it contains information about the current state of 
the resource and expected future states. It should keep the reflection of  
the resource state synchronized with the actual resource state. More-
over, the holon has knowledge about the dynamic behavior of the 
physical resource and can answer what-if questions (e.g., what will be 
the arrival time of a truck if it departs at a certain time).

•	 Information provision: A resource holon should be able to provide re-
source-related information to the other holons. This includes process 
information (e.g., possible operations), information about the local to-
pology (which other resource holons this holon is logically connected 
with), and about possible constraints (e.g., truck capacity, maximum 
cargo weight, etc.).

•	 Maintaining a local schedule: Each resource holon owns an agenda in 
which its future tasks/operations are recorded, based on requests from 
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order holons. This can be seen as a reservation service that keeps track of 
the availability of the resource over time. Each operation to be processed 
by the physical resource needs to be reserved on beforehand in this local 
schedule. To cooperate with the delegate multiagent system (DMAS) 
pattern (see further), the local schedule is implemented as a (virtual) 
blackboard structure and applies an “evaporation-refresh” mechanism.

•	 Managing its local schedule: The resource holons have local authority on 
how they organize (sequence or schedule) the various operations (from 
order holon requests), for instance, by applying priority or batching rules. 
This local decision-making is resource-specific and mainly depends on 
the performance settings of the resource.

•	 Virtual execution: This responsibility is a service for the order holons 
who can request information on the virtual outcome of an operation 
(e.g., quality and end time). Based on the local schedule (to decide how 
the operation can be fitted in between the already reserved operations) 
and its what-if functionality (to virtually execute the operation), the re-
source holon is able to provide accurate information to the order holon.

•	 Controlling the resource: A resource holon controls the real-world resource 
by starting and stopping the (scheduled) operations and by monitoring 
the execution.
Several resource holons can be clustered together to form a bigger re-

source holon with its own identity. An example of such an aggregated resource 
holon is shown in Figure 5.2. A cross-dock holon consists of a temporary 
storage holon, one or more forklift holons, and one or more dock door 
holons. The granularity of the aggregation will depend on the application 
and on the need of explicitly allocating these resources. For instance, it can 
be required to explicitly consider the forklift driver, and to see the forklift 
holon as an aggregate of a forklift truck holon and a forklift driver holon.

Specialization can be used to differentiate between the different kinds 
of resource holons. Figure 5.3 shows an example of such a specialization. 

Figure 5.2 Example of an Aggregated Resource Holon. Each rectangle represents a  
resource holon; the connections indicate aggregations.
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Transportation vehicle and material handling equipment are both resource 
holons. Transport equipment, storage equipment, and unit load formation 
equipment are all kinds of material handling equipment. Pallet racks and 
automated storage and retrieval systems (AS/RS) are examples of storage 
equipment.

Product Holon
A product holon corresponds to a task type or order type. To accomplish the 
task or to fulfill the order, a process (a sequence of operations) has to be 
executed. The product holon contains the knowledge on how instances of 
a specific task type (represented by order holons) can be executed by the 
resources, that is, which operations are required to accomplish the task cor-
rectly and qualitatively. For instance, to deliver a package, the product holon 
knows that this package has to be picked up, transferred to the cross-dock, 
consolidated, and eventually brought to its destination. The product holon 
also has information about constraints on or process parameters of these 
operations. For instance, if the package contains refrigerated products, the 
holon knows the allowable temperature range to which the package can 
be exposed during transportation. Note that a product holon only holds 
information about its order type, and not about individual order instances. 
The main responsibilities of a product holon are as follows:
•	 Maintaining process knowledge: The product holons hold the necessary pro-

cess knowledge to realize instances of their type. This includes, amongst 
others, process plans, process parameters and quality requirements. The 

Figure 5.3 Example of Specialization of Resource Holons.
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product holons are responsible for keeping this information consistent 
and up-to-date, for instance, if new operations are offered by (new) 
resources.

•	 Determination of operation options: A product holon informs the order 
holons about all possibilities for their next operation. Indeed, after 
completion of an operation, the order holon needs information about 
its next operation in order to accomplish its task. In its simplest form, 
the process plan is linear and the product holon supplies the order ho-
lon with only one possibility. In general, multiple options are possible 
and these alternatives depend on the current state of the order holon, 
that is, based on the outcome of the previous operation. For instance, 
if the quality of an operation is insufficient, the product holon can 
decide that the operation has to be redone. As another example, if a 
package with refrigerated products is exposed to too high tempera-
tures during its transportation, the holon can decide that the package 
should be disposed of instead of being delivered. The selection of one 
operation out of the available options is the responsibility of the order 
holon itself.

•	 Process information provision: Just before a selected operation should start 
on a resource, the resource holon needs to know the desired process pa-
rameters (e.g., temperature during transportation in a refrigerator truck). 
The product holon is responsible for providing this process information 
to the resource holons. By providing this information just before the 
operation starts, the product holon is able to take the latest state of the 
order holon into account.
Similar to resource holons, product holons can be combined into an 

aggregated product holon that represents the combination of the corre-
sponding process plans. For instance, the aforementioned product holon 
responsible for delivering a package could consist of three product holons: 
one to transport the package to the cross-dock, one to process the package 
inside the cross-dock, and one to deliver the package to its destination. The 
aggregated holon delegates some of its responsibilities to these subholons, 
but is still in charge. This aggregation limits the complexity of the holons 
and allows an easy introduction of new product holons by combining other 
product holons.

Order Holon
An order holon corresponds to a task (instance) or order (instance) that needs 
to be executed, for example, the delivery of a package. Each order holon is 
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closely linked to the product holon representing the corresponding task or 
order type. Although a product holon can be linked to multiple order ho-
lons, each order holon will be associated with only one product holon. The 
order holon is responsible for handling the required resource allocations in 
order to accomplish the correct execution of its task. To this end, the order 
holon consults its corresponding product holon to find out which opera-
tions it needs to perform and searches for the proper resources and time 
slots to execute these operations.

In a logistic context, the order holons can often be associated with phys-
ical entities, that is, the freight units that have to be transported (e.g., pal-
lets). The order holon then consists of this real-world entity, together with 
a software part that controls the execution of the corresponding task. In a 
manufacturing context, an order holon might correspond to a number of 
products that have to be produced by a certain due date.

More concretely, an order holon has the following responsibilities:
•	 Reflection of reality: An order holon reflects the order instance, that is, it 

contains information about the current state of the order and the cor-
responding physical entity. This includes, for instance, the location of the 
order, the current operation being processed, the resource performing 
this operation, etc. The order holon is responsible for keeping the reflec-
tion of its state up-to-date with the actual state.

•	 Searching solutions: The order holons search for solutions to execute their 
tasks. During their search, the order holons will consult their product 
holons to know the required operations and will virtually execute these 
operations (by using the virtual execution service of the resource ho-
lons) to check for resource availability.

•	 Intention selection: Each order holon evaluates the solutions it has found 
and chooses the most attractive solution (according to its performance 
measure) to become its intention.

•	 Reserving its intention: The order holon then informs the other holons 
about its intention by making the necessary reservations (future alloca-
tions) at the involved resource holons. As these reservations evaporate 
after a certain time, the holon has to confirm its reservation at regular 
time intervals.
Furthermore, order holons can be aggregated into an aggregated holon. 

For instance, several orders corresponding to freight that has to be trans-
ported can be aggregated into one batch in order to be transported together 
by a truck. Over time, an order can be part of multiple batches for different 
transport operations.
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Staff Holon
The three basic types of holons can be assisted by one or more staff holons. 
These holons can provide the other holons with expert knowledge about 
certain aspects of their decision-making. For instance, a staff holon can give 
information on which containers can be batched on a freight train to the cor-
responding train holon and the concerned order holons. Note that the staff 
holons only provide advice and that the basic holons are still responsible for 
taking the final decisions. This way, the concept of staff holons allows for the 
presence of centralized functionality in the architecture without introducing 
a hierarchical rigidity. This centralized functionality allows aiming for a good 
global performance, which is otherwise difficult to obtain as every holon tries 
to optimize its own (selfish) objective. To obtain its advice, a staff holon may 
rely on centralized scheduling algorithms,  human input, artificial intelligence 
methods, etc. Next to scheduling advice, the staff holon can for instance pro-
vide advice about route planning or the balanced loading of a cargo ship. In 
case of scheduling advice, the various order holons will attempt to execute 
(the relevant part of) the provided schedule. They will deviate from the origi-
nal schedule only if they find a significantly better solution or the provided 
advice appears to be (or has become) infeasible.

Interactions Between the Holons
As indicated in Figure 5.1, the various holons interact and share data with 
each other. The main interactions between the basic holons are briefly 
discussed hereafter. Remark that these interactions do not describe the  
dynamics of the holonic system described by the PROSA reference archi-
tecture; these dynamics are described by the DMAS coordination system 
described hereafter.
•	 Product-order interaction: The order holons interact with their correspond-

ing product holon on how to correctly execute their task by using cer-
tain resources. After (virtual) execution of an operation, the order holon 
passes information about the resulting state and about next possible re-
sources to the product holon. Based on this information, the product 
holon provides the order holon with all possible next operations. For 
instance, after loading a container onto a trailer, the corresponding order 
holon consults its product holon to know the following operation that 
should be executed. Usually, multiple options are available, for example, 
direct transportation to the final destination, transportation to an inter-
modal hub to be loaded onto a train or ship, etc.
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•	 Product-resource interaction: Product and resource holons share process-
related information. When generating a list of possible operations for an 
order holon, the product holon interacts with resource holons to know 
which operations the resources can perform. The other way around, the 
product holon provides the resource holon with technological aspects 
to correctly process an order, that is, the necessary process parameters 
to perform an operation. For instance, if refrigerated products have to 
be transferred between two trucks in a noncooled terminal, the product 
holon will indicate that this transfer should happen as fast as possible and 
impose a maximum transfer time.

•	 Resource-order interaction: The resource and order holons mainly interact 
to reserve operations on the resources. To this end, the resource holons 
provide the order holons with the results of virtually executed opera-
tions and reserve capacity when requested. Once an operation is started, 
the resource holon also informs the order holons about the execution 
result and progress. The desired coordination and control then emerges 
in a self-organizing way from the interactions between the various 
holons.

Concluding Remarks
During the development of the PROSA reference architecture, special 
attention was paid to separation of concerns. The three basic holons repre-
sent a separate concern of the underlying domain. An important char-
acteristic of PROSA is for instance that resource allocation aspects and 
process-specific aspects are separated. The issue of technical feasibility 
(executing a task in a technically correct and validated manner) is ad-
dressed by product and resource holons. Product holons are knowledge-
able concerning the capabilities of resources that are relevant to them, 
but they ignore resource capacity and availability aspects. The product 
holons inform the order holons about (all) technically correct manners 
to execute their task instance. Order and resource holons then address the 
issue of resource allocation.

Importantly, this separation of concerns safeguards and maximizes the 
potential for achieving critical user mass in holonic MES (HMES) and LES 
implementations. Here, the understanding that membership of suitable auto-
catalytic sets is crucial was put into practice.

Moreover, PROSA is a structural decomposition, mirroring its world-of-
interest. This complies with the first principle of design for the unexpect-
ed. In particular, when a product holon mirrors what is possible, offering 
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multiple options to order holons, it applies this principle when a conflict 
with a product holon equals a conflict with reality, in which no other 
known and validated option exists.

BIO-INSPIRED COORDINATION AND CONTROL 
IN HOLONIC EXECUTION SYSTEMS

Initially, PROSA implementations were heterarchical control systems. 
Their order holons would steer product carriers through a manufacturing 
system, visiting processing stations and having production steps performed 
as allowed by the product holons. The system would be myopic, lacking 
global optimization or coordination and operating much like automobiles 
in traffic.

An early exercise with a staff holon delivering scheduling advice was 
carried out. However, to have adequate collaboration, the order holons  
became dependent on specific properties of this advice and a reactive sched-
uler was needed to handle disturbances (Bongaerts et al., 2000). Hence, the 
research team started looking for a remedy for this myopia while remaining 
compliant with design for the unexpected.

The source of inspiration for this remedy was twofold. First, there was a 
heterarchical design in which workstations would “start emitting a signal” 
when they were about to become idle. This straightforward and simplistic 
idea was highly unsatisfactory. This signal arrives too late and fails to ac-
count for a product’s journey needed to arrive at this station. Second, the 
behavior of food-foraging ants, called stigmergy (Grassé, 1959), revealed 
how to incorporate nonlocal information in a solution while employing 
only local reality-mirroring components, which fits D4U perfectly.

Food foraging ants execute a simple procedure:
•	 In absence of any signs in the environment, ants perform a randomized 

search for food.
•	 When an ant discovers a food source, it drops a smelling substance, called 

pheromone, on its way back to the nest while carrying some of the food. 
This pheromone trail evaporates if no other ant deposits fresh phero-
mone.

•	 When an ant senses a pheromone trail it will be urged by its instinct to 
follow this trail to the food source. When the ant finds the food source, it 
will return with food, while depositing pheromone itself. When the ant 
discovers that the food source is exhausted, it starts a randomized search 
for food and the trail disappears because of the evaporation.
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This simple behavioral pattern results in an emergent behavior of 
the ant colony that is highly ordered and effective at foraging food 
while being robust against the uncertainty and the complexity of the 
environment.

An important capability of this type of stigmergy can be observed: glob-
al information about where to find food in a remote location is made avail-
able locally, indicating in which direction the ant must move to get to this 
food. Also, the complexity of the environment is handled in an elegant way 
by making the environment part of the solution (i.e., the complex shape 
of the pheromone trails), effectively shielding the ant colony solution from 
this complexity.

For the design and development of coordination and control systems, 
based on stigmergy, the following principles are recognized:
•	 Make the environment part of the solution to handle a complex envi-

ronment without being exposed to its complexity. This complies with 
the essential modeling approach of object-oriented design.

•	 Place relevant information (pheromones) as signs in this environment 
ensuring that locally available data informs about remote system proper-
ties, supporting systemwide coordination.

•	 Limit the lifetime of this information (evaporation) and refresh the in-
formation as long as it remains valid. This allows the system to cope with 
changes and disturbances.
The combination of these sources of inspiration resulted, ultimately, in 

the architectural patterns that are discussed next. The signal became the local 
schedule of the resource holon. The deposition of pheromones was trans-
lated into order holons reserving time slots in these local schedules. The 
ability to answer what-if questions allowed “ant agents” to travel virtually 
and execute virtually what an order holon might “do for real.” Details fol-
low in the next Section on the Delegate Multiagent System.

The research translated this food foraging in ant colonies into a solution 
that remedies shortsightedness in decentralized coordination and control sys-
tems. The solution makes nonlocal information – using local reality-mirroring  
software components – locally available. Note that “nonlocal” is to be un-
derstood both in the geographical/spatial sense and in the temporal sense. 
It is about something both elsewhere and in the future. This part of the 
research was termed to be “predicting the unexpected” when presented to 
laypersons, unfamiliar with the application domain. This caused the adapta-
tion of “design for the unexpected” as the nom de guerre for the research 
overall.
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Delegate Multiagent System (DMAS)
This section belongs, as it immediately presents the generic and broadly 
applicable concept, in the next chapter. However, the DMAS is introduced 
here to avoid duplication and confusion over terminology. Consequently, 
the discussion in this chapter covers the specific DMAS designs used in 
the HMES research prototypes. The broader applicability is addressed in 
Chapter 6.

The DMAS is an architectural pattern. An architectural pattern is a con-
cept that solves and delineates some essential cohesive elements of a software 
architecture. Typically, it comprises a description of software components and 
their interactions, together with a set of constraints on these components and 
interactions that define a set of architectures that satisfy them.

The DMAS pattern allows an agent – that is, a holon in the present 
discussion – to delegate a responsibility to a swarm of lightweight agents. 
These lightweight agents perform particular activities to support the issuing  
holon in fulfilling its functions. A holon can simultaneously delegate mul-
tiple responsibilities, applying the DMAS pattern for each of them. The 
holon may also use a combination of DMASs to handle just a single re-
sponsibility.

Figure 5.4 shows a module decomposition view of the architectural 
pattern. There are three modules: the environment, the agent, and the ant 
(Verstraete et al., 2008). The depends-on relationships between the modules 
are refined in the sense that the agent and ant module share data with the 
environment module, whereas the relationship between the agent and ant 
module is a “creation” relationship.

These lightweight agents are called ant agents or simply ants, after 
their biological source of inspiration. They are lightweight in the sense 

Figure 5.4 DMAS: Module Decomposition View.
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that each ant may only perform a bounded computational effort within 
its bounded lifetime and has a bounded footprint (memory). They are 
responsible for executing a task that serves a responsibility of the issuing 
agent/holon.

Each ant is created and initialized by its issuing holon. It (virtually) trav-
els autonomously through the (virtual) environment. The ants start from a 
location selected by their issuing holon. Typically, this location is where this 
issuing holon resides (virtually), for example, the location of a product car-
rier. But, an issuing holon may create ant agents at a location from where 
finished products are shipped to their customer. From there, the ants travel 
(virtually) in opposite directions, typically toward the location of the issu-
ing holon. Ants may even (virtually) traverse their journey twice, collecting 
information first and depositing information (digital pheromones) during 
the return journey.

Corresponding to the description used before, the environment is a  
software representation of the world-of-interest. To support navigation of 
the ants, resource holons know their neighbors (note that this is local in-
formation). This effectively provides a directed graph, possibly augmented 
by relevant information (e.g., maximum height), allowing ants to discover  
their world-of-interest starting from their initial location. Note that the 
evaporate-and-refresh mechanisms – copied and translated from the  
real-world ant colony behavior – ensures that reconfigurations and other 
changes will be mastered by the DMAS in an HMES or LES.

A holon delegating a responsibility to a swarm of ants is responsible for 
maintaining the population size and the diversity of this swarm. It chooses 
the creation frequency and initialization for every ant type. The individual 
ants are not aware of these swarm properties. The holons observe and inter-
pret the (digital) pheromones in the environment and adapt their behavior 
accordingly.

Three types of DMASs are distinguished in the research prototypes: fea-
sibility, exploring, and intention DMAS (Hadeli et al., 2004).

Feasibility Ants
A resource holon delegates part of its “information providing” responsibil-
ity to a swarm of so-called feasibility ants. These ants make global feasibility 
information (about the capabilities of the resource) locally available for the 
other holons. They put a kind of digital signposts on the blackboards of 
resource holons. They enable order holons to decide locally which routing 
options are available to them.
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Feasibility ants are created by resource holons corresponding to an end 
point of the resource graph. The ants start at these nodes and traverse the 
graph upstream, that is, in opposite direction of the orders. During their 
trip, they collect information on the capabilities (e.g., type of supported 
operations) of the visited resources. This information is also deposited on 
the local blackboards of the resource holons and merged with the already 
available information from other feasibility ants. In this way, every node 
contains information about which capabilities are reachable via its connect-
ed nodes (somewhat similar to routing tables in computer networks). This 
information permits order holons (or their corresponding product holons) 
to determine which part of their process plan can be executed downstream. 
This activity is performed at a regular frequency such that changes (both 
in resource capabilities and topology) become quickly visible throughout 
the system.

For instance, for the resource graph shown in Figure 5.5, feasibility ants 
are created by the resource holons corresponding to D1 and D2. They travel 
upstream toward O1 and collect information about the provided (trans-
portation) activities. The ants deposit this information at the nodes they 
encounter. In this way, the information at O1 will for instance indicate that 
D1 can only be reached via truck T1.

Exploring Ants
Every order agent generates explorer ant agents at a given frequency. These 
explorer agents are scouts each of which searches for an attractive route 
through the underlying production system, that is, to accomplish the given 

Figure 5.5 Example of a Resource Graph.
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task (Figure 5.6). Depending on the performance criterion, these explorer 
agents search forward from the current state of the task onward (e.g., lead 
time minimization) or backward from the final delivery point (e.g., due  
date accuracy). Note that different order agents can have different perfor-
mance concerns; rush orders, normal orders, low-priority orders, and main-
tenance orders have different objectives. The objective of a given order may 
even suddenly change (e.g., when a work piece gets damaged and needs a 
speedy replacement).

These scouts use the same method as the order agent, managing the 
actual execution of the task, to ensure that a proper sequence of processing 
steps gets executed, but virtually. The feasibility concern is handled by the 
feasibility ant agents. As explained, these ants deposit information on the in-
formation spaces (blackboards) attached to entries and exits of the resources 
that allows the product agents to discern valid and invalid routings locally. 
This information also evaporates and is refreshed to account for changes in 
the production system.

The search strategy employed by the explorer agents is a plug-in of 
the control system. Not every explorer ant uses the same strategy. Typically, 
some percentage looks for the promising routes whereas other ant agents 
look for solutions that aim to avoid critical resources. The key point is that 
the emergent forecasting does not rely on which strategy is employed by 
these scouting agents.

During its exploration journey, ant agents delegate the information pro-
cessing to the product holon and resource holons. Their product holon 

Figure 5.6 Ant Agents Explore Possible Routes.
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provides the set of legal routing options that are open to the scout at each 
routing point. It makes sure that the product recipe is obeyed. The resource 
agents provide the necessary performance estimates.

Consider an explorer ant moving forward from the current position of 
a work piece on a conveyor belt. The scout queries the conveyor belt ho-
lon about the estimated remaining traveling time on the belt. The explorer 
ant then virtually travels to the exit of the belt and adjust its internal clock 
indicating the expected arrival time. At this point, the scouting ant selects 
a legal entry connected to the exit of the conveyor belt and continues its 
virtual journey.

On arrival at a processing unit, the product holon indicates the possible 
processing steps and the explorer ant selects a processing step. The explorer 
agent queries the resource holon of the processing unit about estimated 
queuing and processing times as well as processing results. In this manner, 
the virtual journey continues until the final delivery point is reached. Note 
that the resource holons will virtually execute their own execution strate-
gies. The emergent forecasting mechanism does not require any specific 
strategy from these resources. Again, a strategy is a plug-in for the control 
system.

When an explorer ant agent has virtually executed the task, it reports 
back to the order holon. The report includes the journey and the perfor-
mance estimates of that journey. Based on the results of its exploring ants, 
the order holon keeps a set of candidate routes. These candidates get re-
freshed regularly, either explicitly by specialized exploring ants that simply 
follow a given route, or by ensuring that the normal exploring ants will re-
discover these currently attractive candidates with a high probability. The set 
of candidate routes is selected based on the performance estimates and on 
their complementary nature (i.e., limit the number of candidates that have 
very similar routings). The candidates that have become too old are elimi-
nated from the set of candidates by evaporation. Basically, the exploring ants 
implement a distributed heuristic search for good production schedules and 
adapt the solution continuously to account for changes and disturbances. 
The optimization heuristic itself is not the focus of our considerations here, 
as its selection and configuration inherently cannot be designed for the unexpected.

Intention Ants
The above-mentioned exploration requires the resource holons to possess 
an adequate estimate of their future workload. The order holons gener-
ate intention ant agents, at a given frequency, to serve this purpose. When 
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a suitable set of candidate solutions has been constructed (see Section on 
Exploring Ants) and the estimated starting time for the processing of the 
product instance(s) approaches, the order holon selects one of the candidate 
solutions to become its intention. Then, the order holon generates inten-
tion ant agents to notify the holons of the affected resources of its intentions 
(Figure 5.7).

The intention notification service operates as follows:
•	 The intention ants virtually execute the routing and processing of their 

selected candidate solution. On their virtual journey, the intention ants 
acquire travel, queuing, and processing times from the resource holons on 
their path. Any changes, which occurred since the exploration, immedi-
ately become visible when these resource holons provide the information.

•	 In contrast to the exploring ants, intention ants inform the resource ho-
lon that their order holon is likely to visit them at the estimated time. In 
this way, intention agents make a (evaporating) booking on the resource, 
and the resource holon adapts its load forecast (local schedule of the re-
source) to account for the visit of which it is informed by an intention 
ant. In other words, the intention ants enable an emergent forecasting 
of the resource utilization. As a consequence, resource holons are able to 
predict performance more accurately to their visitors, the exploring and 
the intention ants.

•	 The intention information at the resource holon evaporates. Order ho-
lons must create intention agents at a refresh frequency that is suffi-
ciently high to maintain their bookings at the resources.

Figure 5.7 Ant Agent Propagates the Order Intentions.



Design for the Unexpected62

•	 While refreshing, the order holons observe the evolution of the ex-
pected performance of their current intentions (through intention ants’ 
reporting their estimated performance). This performance estimate is 
compared to the estimates of the candidate solutions that are found and 
refreshed by the exploring agents.

•	 When the estimated performance of the current intentions drops sig-
nificantly below the estimated performance of some candidate solutions, 
an order holon may change its intentions.

•	 When the product instance(s) of an order holon reaches the point where 
a decision needs to be executed, the order holon triggers the action in 
the underlying system in accordance with the intentions. If an event oc-
curred that makes this impossible or highly unattractive, the order holon 
delays the action shortly such that the above procedure may find a (bet-
ter) solution.

Short-term Forecasting – Predicting the Unexpected
The combination of exploring and intention DMAS provides a view on  
the short-term future of the system, which is based on an estimation  
constructed through a decentralized virtual execution (i.e., a simulation 
embedded in the HMES). Both resource and order holons have short-term 
forecasts about their predicted execution. The order holons know the ex-
pected routings and resource allocations for their orders. The resource ho-
lons know the predicted loads for the corresponding resources.

The resource holons receive the necessary information to calculate a 
short-term forecast of their utilization via the intention DMAS. Based on 
these forecasts (and their what-if functionality), they are able to give accurate 
answers to the queries from the exploring ants. This in turn allows the order 
holons to have a precise view on their short-term future. Note that the order 
holons create exploring and intention ants at regular time intervals, even af-
ter they have selected an intention. This allows them to react to disturbances 
and new opportunities and keeps the short-term forecasts up-to-date.

All short-term forecasts together can be seen as a “dynamic schedule.” Fig-
ure 5.8 shows an example of such a schedule. This way, these forecasts provide 
visibility of future actions, which is recognized as a valuable property. This 
visibility allows for instance to identify potential capacity conflicts, permitting 
management to take action on time to avoid them. It also facilitates operators 
to see the bigger picture and to anticipate the impact of their decisions.

Moreover, in the context of manufacturing, creating visibility on 
the shop floor is considered as one of the main goals of an MES. These 
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short-term forecasts can be used by the order and resource holons to take 
better (informed) decisions. For instance, as the order holon has an accurate 
view on its intention, it can make a well-considered decision whether or 
not to switch to one of its alternative solutions. The resource holons know 
their expected loads and can for instance decide to process a rush order or 
not, based on how many reservations will be affected. As another example, 
the resource holon corresponding to a truck can, based on its expected load, 
decide when it is a good moment for maintenance or refueling.

For these forecasts to be valid and reliable, the order agents cannot con-
tinuously change their intentions, making the system overly nervous. This 
nervousness issue is addressed in the next section. Finally, in the Section, 
Cooperation of HMES with Planning Systems, the cooperation of the 
HMES with external planners and schedulers is discussed.

SOCIALLY ACCEPTABLE BEHAVIORS FOR DMAS

The DMAS pattern makes information available in locations that are 
not colocated with its source of truth (the word “location” is used in a virtual 
sense). For instance, order holons are aware of the available resource ca-
pacities and capabilities through information collected by a suitable DMAS. 
Moreover, holonic execution systems use this DMAS technology to gener-
ate short-term forecasts, both for order routings and resource utilization. 
In other words, nonlocal information is provided both in the spatial (e.g., 
inform an order holon about a distant resource) and in the temporal sense 
(e.g., inform an order holon about a future state of this distant resource).

Figure 5.8 Example of Generated Short-Term Forecasts.
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However, there is no such thing as a free lunch. The information col-
lected by a DMAS is only a snapshot. It is a copy and there is no guarantee 
that it will remain correct. An intention ant may have “refreshed” its order 
holon intentions when, one second later, because of a machine breakdown, 
this intention becomes invalid. In other words, there is no “lock” on the 
source of truth to guarantee that information remains valid. Note that real-
ity (the sun is shining) cannot be locked (two minutes later, it rains), and 
therefore locking is not an option.

This situation has implications for our ability to generate reliable and us-
able short-term forecasts. Indeed, our predictions are the results of a virtual 
execution of the order holon intentions. When these intentions change, the 
generated predictions may change. As order holons select their intention in 
function of expected performance, which depends on the predictions, one 
can imagine scenarios in which the predictions become inaccurate, useless, 
and even harmful.

Indeed, order holons observe – through their DMAS – the predicted 
system states and select their intention (e.g., congestion-free highway to 
Brussels). These intentions are used to generate/adapt the predictions (e.g., 
too many order holons selected this highway, and now the prediction in-
dicates serious congestion). In the new prediction, other solutions – dis-
covered by the exploring DMAS – perform better and the holons change 
intention (e.g., the smaller roads are predicted to be congestion-free). Too 
many order holons made the same or a similar switch of intentions, and the 
prediction changes again. If the system lacks a suitable dampening mecha-
nism, the emergent short-term forecasting will have a serious problem.

To avoid, order holons have to behave in a socially acceptable man-
ner. Today, humans already have such behavior. When people make an 
appointment or have a working arrangement (e.g., which lecturer will 
examine which students at what time and location), they do not change 
this without good reason and they minimize negative impact to the re-
mainder of society. Research on designing such behavior in order holons 
is discussed later.

How Order Holons Change Their Intention
Order holons have an exploring DMAS that continuously discovers can-
didate solutions. This DMAS also refreshes top-performing candidate so-
lutions. At some point, the order holons have selected such a candidate 
solution to become their intention, and their intention DMAS regularly 
propagates their intention by means of virtual execution.
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When the estimated performance of the top-performing candidate so-
lution is better than the performance estimate for the intention (based on 
the most recent intention refresh), the order holon probably wants to switch 
and select this top-performing candidate as its new intention. This switch-
ing has been the subject of research about incorporating a sound resistance 
to change intentions. However, such resistance must not be too strong as 
this would deny the order holons to react to changes and disturbances.

Mechanism to Dampen Intention Switching in Order Holons
The research designed, implemented, and evaluated a combination of three 
dampening mechanisms:
1. Thresholding. The order holon only decides to change intention when 

the expected performance improvement is above a given threshold. At 
least, this may and must limit changing of intentions to “only for im-
provements well above the noise level of the estimation mechanisms.”

2. Cool-off period. When an order holon effectively changes intention, its 
threshold is temporarily raised (significantly). This gives other order ho-
lons the opportunity to adapt while this order holon sticks to its plans.

3. Randomized switching. Recall that the applicability of our holonic execu-
tion systems favors real-world systems that are much slower than their 
virtual execution. Therefore, there will be many refresh cycles (of inten-
tions) and explorations while in reality nothing much happens or changes. 
In other words, order holons may delay switching intentions in terms of 
refresh cycles without a negative effect in the real world; the switch will 
be fast enough to have its effect in reality. Randomized switching capi-
talizes on this. When an order holon wants to switch (e.g., the estimated 
performance improvement is above the threshold), there is only a chance 
that this will happen during the next refresh cycle. Based on a genuine 
random number, a lottery mechanism ensures that only a fraction of the 
order holons, wanting to change intentions, switch at the first opportunity. 
An antistarvation mechanism in this lottery ensures an upper bound on 
the number of refresh cycles an order holon may have to wait.

Switching Intentions in Case of Major Disturbances
The above dampening mechanisms have been designed with the handling 
of major disturbances in mind. When an important piece of equipment 
breaks down or a large rush order enters the factory, a significant number 
of order holons will discover that the performance estimate for their in-
tentions has deteriorated significantly. After refreshing their top candidates, 
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they are likely to be wanting to switch based on the illusion of free capacity 
on the alternative resources.

Here, the randomized switching prevents a stampede to such alterna-
tive resources. Only a smaller number of order holons will switch and the 
increased use of these alternatives will result in lower performance estimates 
when the other holons refresh their top candidates. In the meantime, the 
estimated downtime for the equipment that broke down often will become 
more accurate (i.e., less conservative). Thus, the randomized switching en-
sures a steady stream of order holons switching to alternative resources until 
“waiting for the repair” goes below the threshold (for the order holons that 
did not switch yet).

Experiments, on relatively small problems in simulation, revealed a rela-
tively large sweet spot. Both “imposing a small amount of dampening” and 
“only allowing to switch when there was really good cause to do so” have 
been effective. There was no indication that the tuning of this combination 
of dampening mechanisms was challenging. The main conclusion of these 
modest experiments was that it is important to have the dampening mecha-
nism in place (Hadeli., 2006).

Evidently, the ability to execute many refresh cycles and to spread the 
changing of intentions over a lot of cycles will render dampening and its 
tuning easy-to-do-well. If randomized switching needs to be performed in 
a low number of cycles, tuning is likely to become an issue. Indeed, no order 
holon will have the opportunity to observe what is happening at a system 
level before switching. In such cases, the tuning has to address this for the 
order holons, which is likely to make tuning a case-dependent task (that 
needs to be redone when conditions change).

Concluding Remarks
The main contribution of our research was to identify the need for damp-
ening of the intention switching by order holons. At the level of the soci-
ety of holons, this prevents a harmful system nervousness that may render 
the emergent forecasting ineffective. The research has only investigated the 
simplest manners of dampening. Challenges for future research include the 
following:
•	 Changing intentions in small teams. Humans apply this quite often. For 

instance, they change intentions in pairs when they switch slots.
•	 Changing intentions in open organizations. The above research looked 

into problems with a single owner/organization: there is a boss to impose 
how to behave. When looking into problems with multiple owners/
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organizations/individuals that strive for their own interests, especially, 
the randomized switching faces additional issues. Indeed, it is unlikely 
that participants will delay switching unless a suitably authorized ar-
bitration service imposes this altruistic behavior. Moreover, there may 
be a legal requirement to treat all “order holons” on an equal footing. 
This implies that this arbitration service has to ensure that a good deed 
(which it imposes) will be properly rewarded (or at least remains unpun-
ished). This remains an unaddressed and unresolved challenge.

•	 Detecting and measuring system nervousness to be able to adapt damp-
ening in function of the situation at hand equally remains uninvesti-
gated. Likewise, identifying where and when in a system dampening and 
nervousness are important remains an open issue.
However, the positive message from modest experiments is that, especially 

where high refresh rates are possible, the dampening of intention switching 
to control system nervousness – to protect the validity/usability of emergent 
forecasting – is first of all a matter of providing suitable mechanisms where 
the tuning of these mechanism proved to be undemanding and straightfor-
ward. The reader is referred to Hadeli (2006) to find worked-out examples.

COOPERATION OF HMES WITH PLANNING SYSTEMS

Production in a factory is generally organized according to some kind 
of planning scheme that is created before production starts. From an MES 
perspective, such planning hardly ever provides all relevant details. While it 
normally specifies which jobs need to be performed on which machines, in 
what time period, it does not specify details like which transportation unit 
to use for carrying parts from and to machines, where to store parts, which 
tools to use, etc. A planning is released on a regular basis, weekly, daily, or 
every shift or hour.

In practice, production activities deviate from this planning within the pro-
verbial first minutes. The production floor continues to use release dates and 
due dates from the planning but otherwise manages the activities on the shop 
floor autonomously. In fact, the planning mainly serves for the remainder of 
the organization, not the production itself, to stay realistic about what produc-
tion may and will achieve (and what would be unreasonable to expect).

Admittedly, the above reflects the gap between industrial practice and 
academic theory, where the latter certainly is more advanced and this gap 
is closing rather rapidly. However, further developments in planning tech-
nology will not solve the problem. The planning/scheduling problem is 
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NP-hard or worse, and a planning/scheduling algorithm must be compu-
tationally efficient if it is to be used in practice. If such an efficient algo-
rithm were to solve this combinatorial problem without making (partially 
arbitrary) choices, discarding options, and so on, it would (to provide an 
estimate how unlikely this is) break most of the currently used encryption 
in computer networks.

Therefore, it is fairly safe to conclude that the planning functionality – 
when made operational in a manufacturing system – cannot be designed 
for the unexpected. More precisely, the planning/scheduling algorithm it-
self is designed for the unexpected: it just exists and can be considered as 
an element in the world-of-interest (e.g., Karmarkar’s algorithm for linear 
programming). It is the selection of a specific algorithm and the manners 
in which it is connected and configured to the manufacturing systems that 
are forced to rely on assumptions, rendering this a design for the expected.

However, manufacturing organizations have to reconcile two objectives 
concerning shop floor operations:
•	 Optimization of production performance relative to the management 

goals (e.g., reduce costs, satisfy customer demand). Today’s planning sys-
tems have been conceived and constructed to address this concern.

•	 Robustness and thoroughness, or the realization of the production ob-
jectives derived from management goals, while accounting for all the 
relevant details and while handling uncertainties and unforeseeable dis-
turbances.
Manufacturing execution systems and especially HMESs have been 

developed to address this latter concern. However, a pure self-organizing  
HMES cannot solve the problem by itself. Therefore, cooperation be-
tween an HMES and a planning system is indicated such that good perfor-
mance, assured by the planner, is reconciled with robust execution, taken 
care of by the HMES. This is achieved through schedule execution by the 
HMES.

Schedule Execution
Schedule execution is the process of taking on-line resource allocation deci-
sions, based on an existing schedule but also considering the actual state of 
the resources and orders on the shop floor.

Handling a production order in the self-organizing HMES implemen-
tation is achieved using the exploring and intention ant mechanisms ex-
plained in the Section “Bio-Inspired Coordination and Control in Holonic 
Execution Systems.” A fast and frequent virtual execution of the envisaged 
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production activities, by these mechanisms in a virtual world, allows to 
quickly detect unexpected events and to come up with alternative solutions 
enabling to remedy problems and grasp opportunities.

However, every order holon or resource holon considers optimality from 
its own – often selfish – perspective in the basic HMES implementations. 
Therefore, research has developed and assessed versions of the exploration 
and intention mechanisms that take an existing schedule into account. Note 
that this research had no ambition to contribute to planning/scheduling 
knowledge; only the cooperation was addressed.

To make the best trade-off between sticking as close as possible to the 
original schedule or to resort to a new schedule, two processes are in-
troduced: last-mile planning and online optimization. The last mile-planning 
process aims to keep execution as close as possible to the planning. The on-
line optimization process tries to find a new solution from scratch, while 
the production is running. Both processes run concurrently and take re-
source allocation decisions. The schedule execution process balances both 
processes. Summarizing, schedule execution is the combination of last-mile 
planning and on-line optimization.

How can last-mile planning and on-line optimization be combined?
Schedule execution requires the order holons to anticipate potential 

disturbances, by executing an adaptive search. Therefore, order holons send 
out two types of exploring ants:
1. Type-1 exploring ants. They ignore the schedule and search for alternative 

solutions in the search space in a randomized manner. While these ants 
cannot cover the huge search space, they might still find interesting al-
ternative solutions that their order holon can use in case of disturbances.

2. Type-2 exploring ants. They cover the search space “around” the sched-
ule. This type of ants makes sure the required auxiliary operations are 
selected while executing the planning. Indeed, these ants have to fill 
in the missing details in the schedule and also have mechanisms to ap-
proximate the schedule if it is impossible to follow it completely (e.g., 
when a resource becomes available shortly after the time specified in the 
schedule).
The intention selection mechanism in the order holon will favor so-

lutions from type-2 exploring ants, except when the schedule informa-
tion deviates significantly from the performance and behavior predictions, 
which originate from the virtual execution by the ant. In other words, if 
exploration reveals that the schedule is feasible, it will be followed. If ex-
ploration by type-2 ants reveals the schedule to be unfeasible or forced to 
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deviate considerably, the order holons assumes the schedule to be invalid 
and have all candidate solutions compete as equals.

Resource holons equally favor visits according to schedule. When inten-
tion ants request the resource holon to reserve capacity, time slots according 
to the schedule have the priority over allocations/reservations deviating 
from the planning. This avoids that disturbed orders cause a cascade involv-
ing nondisturbed orders.

The relative amount of each type of ants can be established in two ways:
1. In a very dynamic environment, the schedule may be outdated often 

and rapidly. Therefore, the reactivity of the order holons to new op-
portunities may be more important than the execution of the schedule. 
However, parts of the schedule may still be useful. In this case, the most 
appropriate relative amount of exploring ants can be determined by 
simulating a number of expected disturbances and investigating their 
effect on performance.

2. In more predictable environments, executing the schedule may be 
more important. Unexpected events occur infrequently. In that case, the 
percentage of exploring ants that cover the search space “around” the 
schedule determines how fast the MES reacts to variations in executing 
the schedule. In addition, the quality and completeness of the schedule 
determines how much exploration around the schedule is optimal. If the 
exploring ants have little to add, a small number will suffice.

Experimental Verification
Manufacturing Example
The cooperation of an HMES with a general-purpose planning system has 
been tested in a few simple case studies, sometimes with surprising, coun-
terintuitive results.

The first example consisted of a flexible manufacturing system where 
a number of workstations (machining centers, cleaning station) were con-
nected by an automated storage and retrieval system (AS/RS) (Figure 5.9). 
A crane delivers raw materials to these workstations and collects finished 
products from them. The operations of both the workstations and the  
AS/RS are highly interconnected.

An offline planning system, LEKIN, performs a global make-span opti-
mization, whereas the HMES performs a decentralized local optimization 
(of average lead time). LEKIN is a general-purpose academic planning tool. 
It ignores some of the aspects of the production system, such as transporta-
tion and warehouse management.
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The experiments considered three different process plans, two of which 
have alternatives. They investigated the influence of the (in)accuracy of 
the LEKIN planner, of the workload (8 or 15 orders), and of the level of 
guidance by the planner (self-organizing with 100% type-1 exploring ants; 
schedule execution with 25% type-1 exploring ants; last-mile planning with 
100% type-2 exploring ants).

Table 5.1 summarizes some relevant experimental results. The most 
striking result is that in normal operation (no breakdowns), the average 
lead-time is smaller for the system working in the self-organizing mode 
than when the planning is taken into account. This is caused by the sched-
uling rule used in the AS/RS. The AS/RS cannot serve all orders at once. 
Depending on the workload of the manufacturing system, an order may 
therefore suffer a considerable delay, sometimes of more than one hour. 

Figure 5.9 Flexible Manufacturing System Layout (Screen Shot).

Table 5.1 Influence average lead-time of different levels of interaction between HMES 
and planner

Normal operation Machine breakdown

8 orders SO SE LMP SO SE LMP
Correct planner 1660 1900 1894 1938 2010 2653
Faulty planner 1753 2144 2058 2127 2168 2831

15 orders Correct planner 2458 2677 2597 3057 2934 3543
Faulty planner 2554 2830 2814 3941 3170 5086

SO: self-organizing mode; SE: schedule execution (25% type-1); LMP: last-mile planning
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Depending on the position the order has, the delay may be more or less 
important. A sequence is imposed on all orders and the orders cannot devi-
ate from this sequence. If orders are delayed by the transportation system, 
this effect propagates through the whole sequence. Therefore, the average 
lead-time is larger than for the self-organizing level.

At the 75% guided level, all orders deviate from the planning if their av-
erage performance deviates from the planning above the predefined thresh-
old. As long as the delay imposed by the transportation system is smaller than 
the threshold, the orders will not deviate. Therefore, the average lead-time is 
still higher. However, because all orders that deviate above the threshold will 
search another solution, the variation is reduced.

As the results indicate, an incorrect planning has a negative effect on the 
average lead-time when the HMES tries to execute the planning. For the 
self-organizing level, there is no significant difference.

To examine the responsiveness of the HMES, the effect of a machine 
breakdown is investigated. The basic scenario remains the same. The first time 
an order is executed on one workstation, however, it breaks down for about 
16 h. During this time, the order cannot be removed from the workstation. 
Once the workstation is repaired, the order can continue its execution. The 
experiments investigate the interaction between the machine breakdown 
and the other factors, shown in Table 5.1. The experiments confirm that 
the schedule execution approach improves the responsiveness of the HMES 
toward breakdowns. Both the variation and the average flow time suffer 
less from a breakdown compared to an approach where the HMES only 
executes the planning or uses no planning at all.

This responsiveness is achieved while maintaining a good separation of 
concerns. On the one hand, the planning system – in this case the LEKIN 
scheduling system – can be used unmodified. The HMES adds responsiveness 
to the functionality the planning system already offers. On the other hand, 
the HMES compensates for simplifications in the planning system. For this 
study, the scheduling system ignores transportation and warehouse manage-
ment and cannot deal with parallel machines with different execution times. 
The introduction of the planning system in itself did not bring a general 
improvement in average performance. This is mainly due to the variation the 
transportation subsystem introduces. When following the planning, this effect 
is increased. Therefore, in general, an assessment of the variation in the execu-
tion system before introducing a planning technique may be appropriate. For 
this case, alternative scheduling rules at the level of the transportation system 
may improve the effect of the planning on the execution system.
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Finally, note that these experiments remain very limited in scope. They 
were performed before the introduction and use of Erlang/OTP for the 
prototype developments. In addition, the schedule-generating system  
(LEKIN) was elaborated for this experiment only. There certainly remains 
an unaddressed gap to be addressed in future research in which this cooper-
ation is investigated more thoroughly, especially the codesign of the sched-
uling and the last-mile planning by the type-2 exploring ants. In fact, the 
team developing the scheduling part is also the natural provider of plug-ins 
for the type-2 ants, defining what it means to stay close to a given schedule.

Logistics Example
The following simple logistics example further shows the potential of an 
HLES receiving advice from external schedulers. Figure 5.10 shows the 
resource graph for this application. One cross-dock is considered and or-
ders have to be transported from their origin to their destination via this 
cross-dock. Each order consists of one pallet that has to be transported. 
Several trucks are available at the cross-dock, which are controlled by the 
cross-dock manager. These trucks are responsible for pickup of the orders 
at their origin and for delivering them at their destination. The trucks do 
not perform direct transportation from an origin to a destination, and each 
truck can transport up to 33 pallets at a time. Inside the cross-dock, one or 
more forklift trucks are available to unload the arriving goods, to transport 

Figure 5.10 Layout of the Cross-Docking Application.
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these goods, and to load them into the correct outbound truck. The orders 
can also be transported to a temporary storage area. It is assumed that equip-
ment and personnel is always available, that is, breaks or shifts are not taken 
into account. Another simplification is that the sequence in which a truck 
can be loaded or unloaded is not considered. If a delivery truck has finished 
its operations, it stays at its current position and does not return to the cross-
dock (although the vehicle routing scheduling system [VRSS] assumes that 
all trucks make complete tours starting and ending at the cross-dock).

The considered cross-dock (CD) has six dock doors. Inside the cross-
dock, two forklift trucks (with driver) are available to process the orders. 
Temporary storage of these orders is possible. The orders have to be picked 
up at one of two possible origins (O1 and O2) and delivered to one of two 
destinations (D1 and D2). The expected travel times between the cross-dock, 
origins, and destinations are known. There are three trucks available at the 
cross-dock to perform the transportation, two for freight pickup at their ori-
gins (PT1 and PT2), and one for delivery to their destinations (DT1).

In Experiment 1, eight orders have to be transported. Control is by an 
HLES according to the PROSA/DMAS architecture, without advice from 
a staff holon. Table 5.2 shows the performance measures of two simulation 
runs. In the first run, both pickup trucks visit another origin (PT1 visits O2, 
PT2 visits O1). PT2 picks up all orders in one time (orders 2, 3, 4, and 8),  
whereas PT1 only picks up order 6. PT2 then picks up the remaining or-
ders at O2 (orders 1, 5, and 7) after it has delivered the orders from O1 at 
the cross-dock. Shortly after the (first) arrival of both pickup trucks, the 
delivery truck DT1 leaves the cross-dock with all orders for destination D2 
(orders 2, 3, 4, and 6). After delivery, DT1 returns to the cross-dock to load 
the remaining orders (orders 1, 5, 7, and 8) and to bring them to D2.

Experiment 2 has the same setup as Experiment 1 but a staff holon 
gives an initial advice to the order holons (from a VRSS) and the cross-
dock holon (from the truck scheduling system [TSS]). The performance 
measures are shown in Table 5.2. All orders at O1 are picked up in one go 

Table 5.2 Performance measures of an HLES without scheduler advice (Experiment 1), 
with scheduler advice (Experiment 2), and with a breakdown (Experiment 3)

Average 
 tardiness (min)

Average flow 
time (min)

Make-span 
(min)

Total travel 
distance (km)

Experiment 1 298 1054 1950 3403
Experiment 2 183 954 1710 2507
Experiment 3 337 1150 1910 2507
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by PT1, and all orders at O2 by PT2. When both trucks have arrived at the 
cross-dock, the eight orders are transferred to DT1, and this truck makes 
a tour via D2 to D1 to deliver all orders. Experiment 2 not only indicates 
that the HLES can cooperate with external scheduling systems but also 
that this cooperation improves the performance. Compared to experiment 
1, all performance measures have ameliorated (see Table 5.2). This can be 
explained by a good batching of the orders, as advised by the staff holon. 
The performance measures also have improved compared to experiment 1.

In Experiment 3, the setup is the same as Experiment 1, but a break-
down occurs. One of the pickup trucks breaks down when it is transporting 
orders to the cross-dock. The control mode used is such that the staff holon 
recalculates its advice based on the current situation (i.e., truck positions). 
PT2 breaks down at time t = 772.0, when it is moving the orders origi-
nating from O1 to the cross-dock. The truck is repaired at t = 951.2 and 
continues its trip to the cross-dock. At that time, PT1 has already arrived at 
the cross-dock. The loading of delivery truck DT1 only starts once PT2 has 
arrived at the cross-dock and all orders are delivered in one tour (via D2 to 
D1). The corresponding performance measures are also shown in Table 5.2.

Other convincing experiments are described in detail in Van Belle (2013).
The experiments confirm that the HLES is able to cooperate with  

external scheduling algorithms and that this cooperation improves the per-
formance. Moreover, if some aspects are not taken into account by the 
scheduling algorithms, the HLES is able to deal with these aspects. This 
approach allows for a cooperation scheme in which the staff holon gives 
advice to the orders and resources when a larger disturbance (e.g., break-
down) occurs, and the order, resource, and product agents deal in a self-
organizing way with the smaller deviations in between. The experiments 
also indicate that the holonic system provides visibility about the current 
and future resource and order states. This allows the responsible decision 
makers to intervene on time if necessary or desired.

CONCLUDING REMARKS

Based on the Design Principles and the Laws of the Artificial, ex-
pounded in Chapters 3 and 4, respectively, a Holonic Manufacturing Sys-
tems description and control framework has been developed, able to pro-
vide an answer to many challenges present-day and future manufacturing 
systems are exposed to: robustness, scalability, foresight, autonomy, social 
behavior.
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This PROSA/Delegate-MAS framework has been the solid base on 
which extensions and generalizations could be built, enabling the applica-
tion of the framework beyond the manufacturing world. This generalization 
is the subject of Chapter 6.

ABBREVIATIONS
ADACOR Adaptive holonic control architecture
AS/RS Automated storage and retrieval system
CIM Computer integrated manufacturing
DMAS Delegate multiagent system
Erlang Programming language used to build massively scalable soft real-time systems
HMES Holonic manufacturing execution system
HLES Holonic logistic execution system
LES Logistic execution system
LEKIN® Educational scheduling tool
MES Manufacturing execution system
OTP  Set of Erlang libraries and design principles providing middle-ware to  

develop these systems
PROSA Product-resource-order-staff architecture
TSS Truck scheduling system
VRSS Vehicle routing scheduling system
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This chapter presents consolidated research results and the inroads made into 
new application domains. It discusses the generically applicable results. The 
consolidated research results connect the insights from Chapter 2 to Chapter 4 
to a methodological development approach, an improved reference architec-
ture, architectural patterns, etc. These results account for needs that emerged 
from various application domains, other than the manufacturing domain, as 
well as requirements from challenging real-world manufacturing cases.

A key element in the consolidated research results is the Activity-
Resource-Type-Instance (ARTI) reference architecture. The most com-
pelling factor, urging us to put forward this product-resource-order-staff 
architecture (PROSA) refinement, was terminology. PROSA terminology 
is manufacturing-specific. Applying PROSA to neighboring application do-
mains (e.g., logistics) proved doable but far from ideal. When entering more 
remote domains (e.g., health care), PROSA terminology became unsustain-
able: communication with domain specialists and practitioners is crucial for a 
successful introduction of any innovation, especially when it requires that the 
persons involved stretch or even leave their comfort zone. In other words, the 
need for a generically applicable terminology constituted sufficient grounds, 
on its own, to revisit PROSA and propose the ARTI reference architecture.

Apart from introducing a universally applicable terminology, the ARTI 
reference architecture introduces a refinement. ARTI splits the resource ho-
lons (in PROSA) into resource type holons and resource instance holons. 
This mirrors the split of responsibilities between the product and order 
holons, which become activity type holons and activity instance holons 
respectively. This constitutes a more orthogonal basis, with resource/activ-
ity on one axis and type/instance on the other axis. The advantage over 
PROSA is a better-suited design when resource instances are employed 
in multiple roles that are situation or time dependent. Nonetheless, every 

CHAPTER SIX
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ARTI implementation will be a PROSA implementation (using a differ-
ent terminology). Conversely, some PROSA implementations will not be 
ARTI compliant (e.g., when using specialization or, in programming jar-
gon, inheritance to combine a resource instance and its type).

The discussion of inroads into new application domains covers aspects 
that have not (yet) been incorporated into the consolidated research results. 
They do not invalidate these results but still require time and (human) re-
sources to be investigated further and developed in full. Often, these explora-
tions into novel application domains turn nice-to-have requirements (in ear-
lier research) into must-have requirements (originating from a new domain).

The Sections “Software/System Development,” “The ARTI Reference 
Architecture,” and “The DMAS Architectural Pattern” address consolidated 
results, and the Sections “Challenges and Lessons Learned from Applica-
tions” and “Toward a Humane Mechatronic Society” discuss the inroads. 
But first, the relationship between design for integrate-ability and design for 
the unexpected is revisited.

INTEGRATED WITH REALITY IN THE D4U PREFERRED 
MANNER

As mentioned in the Introduction, the research initially focused on 
integrate-ability. Building on a theoretical model, disclosing mechanisms 
preventing effective and successful integration, the research results trans-
pired into design for the unexpected. Indeed, designing components and 
subsystems for integration, while assuming that integration requirements 
inherently are unpredictable, simply cannot be satisfied by anything less than 
coping with the unexpected.

Looking at integration in practice, a leader-followers pattern can be ob-
served. Many small systems (followers) adapt to a big dominant system (the 
leader). Reality occupies this leader role when developing execution sys-
tems by definition. In other words, execution systems are to be designed for 
integration with their world-of-interest. Also note that the present state of 
the art provides no (peaceful) answers concerning leader–leader integration.

Design for the unexpected, and more precisely the research results dis-
cussed in this chapter as well as the previous one, exploits that everything else 
also needs to integrate with the reality (within the design for the unexpected 
(D4U) applicability range). Admittedly, there exist big dominant systems, 
leaders in integration efforts, that are not or poorly integrated with reality 
(e.g., creating their own administrative version of reality). For instance, a 
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tree-shaped bill of materials in enterprise resource planning systems lacks 
the expressive power needed to capture key characteristics of petrochemical 
cracking processes, disassembly in the refurbishing of car engines, or cutting 
operations for sheet metal products. Attempting to deploy them within a 
context of execution systems is ill advised. Such dominant systems often are 
old (mostly, they dominate because they were first). As our world changes, 
these old systems generally are far from optimal today.

D4U goes beyond integration in this leader-follower pattern (with real-
ity as the leader). D4U prefers elements/components/subsystems for which 
this integration with reality is not only necessary but also sufficient for in-
tegration with these elements themselves:
1. D4U preferred system elements are integrated with their corresponding 

reality.
2. Other components and subsystems are assumed to be integrated with 

reality.
3. Compliance with 2 suffices to be integrate-able with D4U preferred 

elements.
In other words, D4U develops components and systems that use (parts/

aspects of) reality as a shelter that protects them from (integration) conflicts, 
even the unexpected ones.

Using reality as a shelter against unexpected demands involves a number 
of challenges. First, D4U elements must not add restrictions, which are 
absent in the corresponding reality. Nonlinear process plans (Kruth and 
Detand, 1992) in manufacturing systems constitute a sample technology to 
answer this requirement. These plans allow to represent multiple manners/
options to correctly manufacture an instance of a product type. The precise 
option that will be selected depends on “unexpected demands” imposed by 
situations that present themselves (e.g., which machines have free capacity 
available). Here, every situation may demand a different option.

Answering this first challenge – representing every option that exists in 
the corresponding reality – often proves to be overly expensive in practice. 
Hence, a D4U design supports lazy development (=adding options when 
they are needed). Here, adding options later must not cause a cascade of 
adaptations to other system elements. The NEU protocol (in the Section 
“The ARTI Reference Architecture” ) is a design pattern that precisely ad-
dresses this matter.

Second, D4U elements must be able to “keep up with their shelter.” 
Reality is dynamic; it changes in function of time. When D4U elements 
fail to select a suitable shelter, their shelter will have changed and become 
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ineffective within the time needed to design and develop the D4U element  
(cf. the parable of the watchmakers in Chapter 4). To this end, a suitable 
architecture needs to be adopted. The Section, “The ARTI Reference Ar-
chitecture,” presents ARTI, a refinement of PROSA, which is a reference 
architecture addressing this challenge. The third section, “The DMAS Archi-
tectural Pattern,” covers the delegate multiagent system (DMAS) architectural 
pattern, complementing ARTI, further facilitating to cope with this second 
challenge. DMAS has already been introduced in Chapter 5, which discussed 
specific DMAS implementations used in holonic execution systems. The sec-
tion discusses DMAS as a generic and versatile mechanism, identifies which 
specific DMASs will be present in a holonic execution system in general, and 
which case/situation-specific DMASs can be developed and used.

Third, the execution system must never fall – virtually – off its world-of-
interest. This typically is the least difficult challenge, technically, but requires 
a proper state of mind. For instance, consider a railway application. There will 
be D4U software components mirroring railways segments, called “blocks” 
in railway jargon. Safety measures ensure that more than one train are not 
present at any time in such a block. However, it is possible – physically – that 
multiple trains simultaneously occupy parts of a block. If the D4U compo-
nent cannot mirror its block in a state, when safety measures are malfunc-
tioning or had to be overruled, with multiple trains present at the same time, 
the execution system will fail to offer support when it is needed the most. It 
probably will cause the execution system to break down.

Finally, a fully functional execution system cannot avoid including sys-
tem elements that are not D4U preferred elements. The section discusses 
such inherently noncompliant system elements (i.e., the intelligent agents), 
but first the issue of the software/system development process is addressed.

SOFTWARE/SYSTEM DEVELOPMENT

Conforming to the D4U philosophy, this section only presents what 
is necessary and different in applying D4U when designing and develop-
ing software/systems. This can be elaborated further into a comprehensive 
development process by adopting an existing methodology. The discussion 
assumes this existing methodology to be object-oriented and incremental 
(i.e., Unified Process1 alike).

1See en.wikipedia.org/wiki/Unified_Process for more information on this widely known 
methodology.
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Use Cases – User Requirements
In an inception phase, the key requirements for the execution system are 
elucidated. Typically, use cases are elaborated, allowing all stakeholders to 
participate and contribute. A use case is a list of steps, typically defining 
interactions between an actor and a system to achieve a goal. It is a straight-
forward scenario aimed at simplicity and understand-ability for all involved.

In a D4U approach, these user requirements, use cases, etc. serve to iden-
tify and delineate the world-of-interest. They serve to define and specify the 
problem domain. The requirements themselves (must) remain out-of-sight 
until later or, actually and ideally, as late as possible. Indeed, user requirements, 
use cases – except for the identification of the problem domain – must be 
ignored because (or perhaps more precisely when) they correspond to the ex-
pected. For example, for navigation applications, a D4U approach must ensure 
that the solution includes/uses maps, not a booklet with route descriptions 
for the specific use cases.

Problem Domain Model – The World of Interest
D4U is architecture-centric. From the use cases and key system require-
ments, an executable model of the problem domain is elaborated. This 
model will/must adopt the ARTI reference architecture, a refinement of 
PROSA (see Section “The ARTI Reference Architecture” ).

By adopting ARTI, the resulting system maximizes the potential for the 
(critical) user mass of every component or subsystem (see Chapter 4). This 
reference architecture provides a separation of concerns, as PROSA does, 
ensuring that the shelters from reality are easy to follow by the components 
and subsystems. Simple ARTI holons corresponds to parts of the world 
of interest that do not break into pieces moving in different directions, 
whereas more sophisticated ARTI holons are aggregates that reconfigure as 
their real-world counterparts do.

Adoption of ARTI results in a single source of truth (SSOT) design, as 
PROSA does, in which information is conceptually colocated with its cor-
responding part of reality. When developing services and other functions 
on top of this executable domain model, the DMAS architectural pattern 
is applied to preserve SSOT, even when conceptually global/nonlocal in-
formation is needed and used (e.g., when locally selecting a direction at a 
crossing to reach a remote destination). To this end, the ARTI holons must 
offer suitable information services mirroring their real-world counterpart 
(e.g., to answer what-if queries and manage reservations).
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Moreover, the domain model explicitly separates pure reality-reflect-
ing parts (of the software) from decision-making elements. The Section, 
“The DMAS Architectural Pattern,” discusses how holons comprise in-
telligent agents (making decisions) and intelligent beings (mirroring re-
ality). D4U favors to offer functionality through the intelligent beings, 
maximally restricting the responsibilities of the intelligent agents to the 
decision-making.

Incremental Development
Modestly recognizing that the human brain is unable to design holonic 
execution systems in a single design effort, D4U adopts an incremental ap-
proach. Every increment results in a working (software) system, which is 
tested and assessed. From what is achieved and learned, the next incremental 
development step is planned, initiated, and executed.

An incremental development step comprises the following:
•	 Delineate and define the domain model to be addressed.
•	 Design and implement the executable domain models.
•	 Select the (user) functionalities to be included.
•	 Design and implement these functionalities.
•	 Test and evaluate (involving users as much as possible).
•	 Plan the next step.

As the D4U approach consists of capturing problem domain knowl-
edge, early and significant user involvement is highly desirable. Therefore, 
elaborating a minimally viable product or MVP (cf. as in the lean start-up2 
approach) is desirable, where viable – for some steps – equals an ability to 
verify the domain model correctness and adequacy.

At some point, adequacy of the domain model starts to demand com-
pleteness: the execution system may never, virtually, fall of its world-of-in-
terest. Typically, this implies that the top-level domain model – correspond-
ing to the world of interest in its entirety – will be an aggregate comprising 
models for “the remainder of the world-of-interest.” These will be coarse 
models, which require very little effort to develop, providing information 
services indicating that, normally, human intervention is needed to get the 
system back to normal operations.

Thus, developers may have to extend their domain model into infin-
ity, in space, in time, in any dimension that is relevant. If the problem do-
main would be playing chess, the model of the chess board would include 

2theleanstartup.com.
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“outside the chess board,” and “add” two rows/columns around the board 
to prevent a knight falling off the world when virtually moving around. 
In a manufacturing execution system (MES), the domain model needs to 
include a submodel corresponding to the world outside the factory.

Here, the connections – entrances and exits – between the factory 
model and this submodel are explicitly modeled. This submodel may be 
refined at some later point in time, for instance, to account for trans-
portation in networked production where multiple factories operate in 
a supply chain organization. This submodel may be refined to reflect 
transportation (times) of products from an exit to an entrance (e.g., when 
production lines are incapable of transporting products against the nor-
mal flow and some products have moved beyond a station that they still 
need to visit).

Note that (user) requirements (i.e., use cases) are used in later phases of 
each development step. However, they are to remain out of sight when ini-
tiating the subsequent development step. Indeed, especially, the intelligent 
agents developed to answer user requirements cannot become part of the 
holonic execution system’s core, which is designed for the unexpected.

In Silico3 Ramp-Up
Because D4U elaborates executable domain models, mirroring the world 
of interest and offering services to answer what-if queries, the effort 
needed to have a simulation of a D4U holonic execution system will be 
small. As execution systems tend to be large (e.g., in steel manufacturing, 
the MES typically represents an investment that is ten times the amount 
spent on planning and scheduling systems), a detailed cost–benefit analy-
sis is desirable. And because of its complexity, this detailed analysis needs 
to be performed on a model/simulation that closely resembles the real-
ity-to-be.

Therefore, a typical approach to handle the transition of the holonic ex-
ecution system into real-world operations will comprise a simulation phase. 
The required additional effort will be minimal (cf. Appendix on simulation 
and modeling). The domain models needed for simulation can be reused 
without reprogramming for the deployed version of the holonic execution 
system. At most, some features need disabling. When indicated, simulations 
with hardware in the loop and humans in the loop will smoothen the tran-
sition even further.

3Using simulations running in computers (cf. en.wikipedia.org/wiki/In_silico).
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THE ARTI REFERENCE ARCHITECTURE4

This section discusses the ARTI reference architecture, a holonic ref-
erence architecture for execution systems managing real-world activities using 
real-world resources. The reference architecture is both a refinement and a 
generalization of the PROSA reference architecture for manufacturing sys-
tems. To avoid repetition, more detailed information about PROSA may 
not be repeated here but it remains valid unless stated otherwise. ARTI’s 
design applies and illustrates the principles in Chapter 3 and it accounts for 
the laws of the artificial discussed in Chapter 4.

Structure of an ARTI System
The reference architecture comprises four kinds of basic component or 
holons (as it is a holonic system):
•	 Activity Types (product holons in PROSA)
•	 Activity Instances (order holons in PROSA)
•	 Resource Types (parts of a resource holon in PROSA)
•	 Resource Instances (parts of a resource holon in PROSA)

In addition, there is a class of optional components called staff holons  
(as in PROSA).

An ARTI system is a flexible hierarchy – also called holarchy – aggre-
gating basic and optional components in a possibly time-variant manner. 
Also, there can be an abstraction relationship among components, where 
the more concrete member in this relation implements all capabilities of the 
more abstract component.5

Each of the above components or holons, regardless of its kind, is sub-
divided in reality-mirroring and decision-making parts: an intelligent being 
(IB) and an intelligent agent (IA), respectively. Intelligent agents may be 
divided into an instance (IAI) and a type (IAT). Section “The DMAS Ar-
chitectural Pattern discusses this in more detail.

5The more concrete subclass inherits from the more abstract superclass, when using object-
oriented programming terminology. Subclass instances remain superclass instances from 
birth till death.

4In software engineering, a reference architecture is defined as a set of coherent engineer-
ing and design principles used in a specific domain. It aims at structuring the design of a 
specific system architecture by defining a unified terminology, the structure of the system, 
responsibilities of system components, by providing standard templates, components, by giv-
ing examples, etc.
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ARTI refines PROSA by distinguishing a resource instance and a re-
source type as two subcomponents of each resource holon. ARTI also 
makes an explicit distinction between reality-mirroring and choice-making 
parts within the holons. ARTI generalizes PROSA by adapting a termi-
nology indicating its applicability beyond manufacturing. In fact, PROSA 
already has been applied effectively, that is, without needing major redesign 
or modification; in other domains, however, its terminology proved to be ill 
adapted and confusing in several domains.

ARTI – Basic Components
Activity Types
An activity type corresponds to a class of real-world activities. It is knowl-
edgeable about all aspects that are common to activity instances of its type 
but ignores instance-specific matter (e.g., the state of an instance). A “hu-
man” activity type would be considered to be an expert.

In an MES, there will be an activity type for every product model, 
and this activity type is the information source for process plans, material  
requirements, etc. Moreover, there will be an activity type for all other 
activities within the manufacturing system: planned and unplanned mainte-
nance, transport and storage of equipment (e.g., of empty product carriers), 
setup and changeover of work stations, etc.

In intelligent transport systems, an activity type is knowledgeable about 
manners to travel, commute, deliver, etc. In a smart grid, activity types are 
knowledgeable about manners to produce, transport, distribute, store, and 
consume power, where power is to be understood in a broad sense (e.g., 
activity types may be knowledgeable about balancing power). Activity types 
have been investigated, designed, and often implemented for fleet robotics, 
open air engineering, health care, logistics, etc. (cf. Chapter 7).

The activity type is able to provide information that is grounded, which 
means that (i) this information allows identifying resource types that are 
able to execute the activity and (ii) these resource types are able to retrieve 
the information they need from the activity type (e.g., a recipe).

Ordinarily, activity types are nondeterministic and have a lazy6 implemen-
tation. Nondeterministic means that an activity type is knowledgeable about 

6Lazy means that the implementation effort is delivered when the need arises. Alternative 
manners to execute an activity are made available when a situation presents itself in which 
this is useful (i.e., the effort required to offer an alternative is likely to be recovered when 
the alternative is used and, e.g., enables a more optimal resource utilisation, faster activity 
execution, etc.).
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multiple manners in which its activity instances may execute. For example, 
a commuting activity type may support multiple transport modes – road,  
rail, etc. – and multiple timing options within each mode.

Ideally, activity types leave all resource allocation options open to their 
activity instances; nondeterminism is essential to achieve this. In reality, an 
activity type masters suitable representations of nondeterministic informa-
tion (to be able to leave all options open for their instances). However, they 
employ a lazy implementation strategy whenever it is (too) expensive to offer 
an option without a perspective that they will be utilized. For instance, when 
offering an alternative to execute a manufacturing activity requires an ex-
pensive validation (e.g., produce test pieces) this will only occur when there 
is an economic benefit that warrants such investment. And, offering another 
alternative will not force the activity type to forget the current one(s).

Activity Instances
An activity instance corresponds to the execution of a real-world activity; a 
“human” activity instance would be considered to be a manager. It handles 
all instance-specific information processing and delegates type-related mat-
ter to its activity type. An activity instance is responsible for the proper 
execution of the corresponding real-world activity. To this end, it ensures 
the necessary allocations of (time slots on) resource instances. It also is the 
repository for all state information concerning its execution.

However, identifying whether a resource instance is suitable for the ex-
ecution of the activity is delegated to the types (i.e., activity and resource 
type determine this among themselves). Likewise, transforming the state 
representation – reflecting the progress of its real-world activity execution –  
is also delegated to the activity type (see further: the NEU protocol). The 
activity instance is also the repository for traces (i.e., data recordings of an 
activity’s history) and it may be archived, when the activity ends, for future 
use (e.g., analysis when a defect in a product instance is encountered).

In manufacturing systems, there will be an activity instance for every 
product instantiation activity but equally for maintenance or auxiliary ac-
tivities. In intelligent transport systems, every commute will have its activity 
instance. In home automation and smart grids, climate control will have an 
activity instance.

An activity type – mirroring what is known about its type – is relatively 
decision-free (except perhaps for their lazy implementation deciding which al-
ternatives to support at a given time). In contrast, activity instances interact, ne-
gotiate and decide about their usage of available resource instances. Therefore, 
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their decision-making subcomponent(s) will have significant responsibilities. 
However, these subcomponents have to remain separate (i.e., modular imple-
mentation) and final (i.e., reality-reflecting subcomponents must not rely on 
the decision-making subcomponents for proper operation). More details and 
advanced features in this respect are addressed below (see section on DMAS).

Resource Types
A resource type corresponds to a class of real-world resources. It is knowl-
edgeable about all aspects that are common to resource instances of its type 
but ignores instance-specific matter (e.g., the state of an instance). A “hu-
man” resource type would be considered to be an expert.

In a first implementation, resource types know the technical specifica-
tion of the resource (e.g., the dimensions of a parking space) and its capa-
bilities (e.g., a railway being able to transport people possibly carrying small 
luggage). More advanced capabilities of a resource type are addressed later 
(see Section on DMAS).

In manufacturing systems, there will be a resource type for every type of 
machinery, both for processing equipment and auxiliary equipment (trans-
port, storage, energy supply, material supply). Moreover, space, human opera-
tors and workers, etc. will have their resource type. In fact, valuable capabilities 
that are in limited supply is what defines what will be a resource in the world 
of interest. In intelligent transport systems, road segments, crossings, vehicles, 
truck drivers, trains, parking spaces, etc. will have a resource type. Resource 
types have been investigated, designed, and often implemented for fleet ro-
botics, open air engineering, health care, logistics, etc. (cf. Chapter 7).

Resource types interact with activity types to discover whether and how 
a type of resource can be employed to execute one of their activity instanc-
es. For instance, an activity type limits a vehicle selection to suitable ones 
(e.g., big enough) and ensures that only valid routes are indicated as possible 
transportation routes (e.g., avoid low bridges with a truck).

The information processing capabilities of the resource type determine 
what grounded means for the activity types that consider using it. For exam-
ple, a car driver may need detailed instructions whereas a railway system or a 
taxi are able to execute larger-grained tasks. In single systems, this may range 
from very concrete and ad hoc toward very autonomous and widely applicable.

Resource Instances
A resource instance corresponds to a real-world instance of a resource, which 
is valuable and has a finite capacity; a “human” resource instance would be 
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considered a manager. It handles all instance-specific information process-
ing and delegates type-related matter to its resource type. It is responsible 
for the allocation of its real-world instance to activity instances that have 
the resource instance perform real-world activities. Processing of techni-
cal information is delegated to the resource type (e.g., checking whether a 
product part will fit in its workspace).

The resource instance is the repository for state information. This in-
cludes topological information: what are the exits and entries of the re-
source instance and to which entries and exits – of neighboring resource 
instances – are they connected? Or is an entry or exit unconnected? Chang-
es in this state are tracked (i.e., in case of reconfiguration). If the resource 
is composite, what are its components? Moreover, the resource instance 
tracks status of the equipment itself (on, off, calibrated, etc.) and knows its 
visitors (a product part on a product carrier in a machine; a driver, passenger, 
or suitcase in a car; personnel in an office; etc.). Again, transformation of  
state-representing information will be delegated to the resource type when-
ever this is type-specific.

Similarly to the situation with activities, resource instances are involved 
in the decision making regarding their allocation. And their decision-mak-
ing subcomponents must be separate and final (i.e., the reality-reflecting 
part must not need adaptation when it changes). For instance, replacing a 
first-come, first-served decision-making subcomponent by a priority-based 
one must be confined to easily identified modules and must not require a 
modification of a reality-reflecting subcomponent.

ARTI Interactions Among Basic Components
AT–AI Interactions: The NEU Protocol
The NEU protocol is used for the interaction between an activity instance 
and its activity type. The acronym stands for Next, Execute, Update. The 
discussion uses Erlang7 pseudo-code to denote the software processes’ be-
havior. To be able to understand the pseudo-code, note that:
•	 Identifiers starting with a capital are variables.
•	 Identifiers starting with a small character are constants (often called an 

enum); they mainly are used as tags in the messages exchanged by the 
software processes.

•	 The “!” operator sends the message after this exclamation sign to a soft-
ware process identified before this sign.

7 See www.learnyousomeerlang.com and www.erlang.org for more information.

http://www.learnyousomeerlang.com/
http://www.erlang.org/
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NEU Phase 1: Initialization
In an ARTI implementation, an activity instance Act_In is created mirror-
ing a corresponding event in the world of interest (e.g., an order arrival in a 
factory). Act_In receives a reference Act_Typ_ADR to its type Act_Typ at this 
creation.

The first action of Act_In is to acquire a representation of its state from 
Act_Typ. To this end, Act_In executes:

Note that init_order_state simply is a tag indicating what is request-
ed. Act_Typ now generates Act_In_State, which contains all information  
concerning progress made by Act_In. At this initial stage, Act_In_State re-
flects that nothing has been done so far.

Act_Typ sends Act_In_State to Act_In using its reference Act_In_ADR:

Note that Act_Typ remains agnostic about the instances of its type. To 
this end, Act_In passes Act_In_ADR to Act_Typ with every request/message.

Conversely, Act_In remains agnostic about the structure and content of 
Act_In_State. Act_In is the repository for Act_In_State but it systematically 
delegates any information processing involving Act_In_State to Act_Typ.

NEU Phase 2: Execution
Act_In is coordinating its real-world activity. However, Act_In lacks do-
main-specific knowledge and is unable to determine what to do. Hence, 
Act_In instructs Act_Typ to compute which actions are the candidate next 
steps:

Act_Typ analyses Act_In_State and compiles a list of valid actions for 
the next step. This list comprises state-changing actions (e.g., drill a hole 
or perform a test) as well as auxiliary actions (i.e., transportation or storage) 
from the perspective of the real-world activity.
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Note how Act_In is a manager – in the narrowest sense of this word. In-
deed, Act_In remains agnostic about the application domain specifics. Like-
wise, Act_Typ is an expert, fully ignorant of what is happening in its world 
of interest. All state information originates from Act_In.

Act_Typ cannot even distinguish whether the state information, provid-
ed by Act_In, corresponds to an actual or a fictive state. As a consequence, 
Act_Typ compiles lists of valid actions that are computed for actual states as 
well as for the “might be” states in an exploration DMAS or an intention-
propagating DMAS (see section on DMAS).

Act_Typ delivers this list of possible valid next actions to Act_In:

Act_In searches, finds and selects a resource instance Res_In that is 
capable of executing an action Actx from the list provided by Act_Typ.  
Concerning an optimized selection of Res_In and Actx, the reader is referred 
to the section “on DMAS and on Staff Holons.”

Note that Act_Typ and Res_Typ (i.e., the resource type of Res_In) co-
operate to determine whether Res_In is able to perform Actx. Note that 
Res_In is agnostic concerning the application domain. Likewise, Res_Typ ig-
nores the existence and states of its resource instances. Like Act_Typ, Res_Typ 
provides its services regardless whether state information about a resource 
instance is real or fictional.

When Res_In finishes executing Actx, it informs Act_In about the out-
come:

In order to remain agnostic about the application domain, Act_In re-
quest an update of Act_In_State from Act_Typ:

Act_Typ computes the new state for Act_In and sends it to Act_In:
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From here on, the interaction pattern repeats the phase two interactions.
Note that Act_In does not select/execute a second action from the list 

of candidates for the next step. As Act_In _State has changed, Act_In ig-
nores whether this old list is still valid.

The interaction protocol derives its acronym NEU from this phase:

Phase 3: Finalization
When the list of valid actions for the next step contains finalise, Act_In may 
(but must not) select it and perform any wrapping up duties (e.g., archive  
the trace data). While the list still contains other actions, Act_In enjoys a 
solution space offering alternatives, which Act_In may use to optimize its 
activity. Note that both Act_Typ and Res_Typ remain unexposed to such 
activity optimization issues.

Discussion
The above-presented protocol is not mandatory. Some application domain 
requires a different solution (e.g., in smart grids where time-continuous 
profiles characterize activities). Some application domains require an exten-
sion or enhancement. Nonetheless, the NEU protocol possesses some key 
qualities that need to be preserved.

First, the NEU protocol creates independence – enabling a separation 
of concerns – between type holons and instance holons (i.e., between 
experts and managers). The activity and resource types have dependen-
cies as they exist in reality, which is OK. The activity and resource in-
stances have dependencies as they exist in reality, which is OK. However, 
the dependencies among types and instances are limited to generic and 
need-to-know.

For instance, the activity type – when applying the NEU protocol – 
presents a list of possible next steps to an activity instance. The members 
of this list are not interpreted in any manner by the instance. The activity 
instance presents this “step information” to resource instances for two pur-
poses.

First of all, the activity instance needs to discover which resource 
instances are able to execute this step (capability). Second, the activity 
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instance (or its exploring and intention ant agents) needs to discover 
whether and when such a capable resource instance has the capacity to 
execute this step, how long it will take and what the expected outcome 
will be.

In turn, the resource instance will not interpret this “step information” 
by itself. Instead, it will pass this information to its resource type holon, 
which generates the answers. These answers are passed to the activity in-
stance holon. At no point, the instance holons require or acquire knowledge 
about the type-specific aspects.

Conversely, type holons never are the depository of instance-specific 
information. The state representations, which are computed by these types, 
reside with the instance holon. These instance holons provide this state in-
formation when type-specific processing is indicated. This effectively cre-
ates an independence that is relevant in the problem domain.

Second, the NEU protocol prevents exposure to the specifics of 
knowledge representation inside the holons to the extent that these  
holon-internal representation may change even at run-time. For example, 
note that Act_Typ may utilize – internally – a nondeterministic repre-
sentation of all the possible manners to execute activity instances of its 
type, whereas Act_In may use a different (typically simpler) representa-
tion. Moreover, both Act_Typ and Act_In may change their internal rep-
resentation without the other noticing (except for the content/size of 
the list with candidate next steps). For instance, Act_Typ can be upgraded 
to support more options, using a more expressive internal representation, 
without any other component needing to change. Both Act_In and other 
activity types will not notice this upgrade in a manner that affects their 
software code/correctness. With the Erlang technology, such an upgrade 
will be possible while the holonic execution system keeps running (i.e., 
hot software updating).

RT–RI Interactions
Resource instances interact with their resource type to delegate all infor-
mation processing that is common to the corresponding class of resources. 
Determining whether an action (e.g., a processing step in manufacturing 
or passing under a bridge in transportation) is feasible will be delegated by 
the resource instance to its type. On the other hand, a resource type will 
require its instances to be the repository for all instance-related information. 
So, similar to the NEU protocol above, a resource instance will provide any 
resource state information to its resource type that is needed to compute 
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how an action is likely to perform. Likewise, computing a new resource 
state representation is done by the resource type employing state informa-
tion from the resource instance.

Consider a heat treatment furnace. Its resource type (holon) knows how 
long it takes to raise the temperature from 20°C to 800°C. It is the resource 
instance (holon) that provides the information that the initial temperature is 
20°C to its type. Moreover, the resource instance knows the activity instance, 
which is the repository for the product state information. When passed to 
the activity type, the activity and resource type are able to determine that 
it will be 2 tons of steel that need processing at 800°C during 4 h. The re-
source type informs the resource instance that it is possible to execute the 
activity and provides an estimate of how long it will take. When such a heat 
treatment step is executed, the types update the instance state information, 
whereas the instances are the repositories for this state information.

The ARTI design allows to use resource types in both a reality tracking 
mode and exploration or prediction mode. In the first case, the information 
provided by the instance for the computation of an updated state reflects 
what really happened (or, more precisely, what the resource instance be-
lieves that happened based on its input from sensors and humans). In the 
latter case, the data for the update is selected, typically by the activity in-
stance (see Section on DMAS), without it happening for real. The resource 
type has been used to generate the type-related elements of these data (e.g., 
estimate duration). In fact, the resource instance may have an agenda (see 
Section on DMAS) and employ its resource type to generate a state trajec-
tory for the resource that corresponds to this agenda.

Consider the heat furnace again. The resource instance (holon) has an 
agenda containing the processing steps, booked by activity instances, to be 
executed. From this agenda, virtual execution of the activity instances em-
ploy the resource and activity types to compute the estimated future states 
of both the resource (furnace) and the activities (product parts that are 
treated in the furnace). The information processing services offered by types 
and instance suffice to implement this (cf. PROSA discussion in Chapter 5).

AT–RT Interactions
Activity types and resource types interact when they need to provide infor-
mation, usually to one of their instances, that depends both on the resource 
type and the activity type. For instance, when the processing time of a pro-
duction step depends on the CNC program and the machine tool speed, 
both types will interact to compute this information.
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Note that ARTI does not impose which type (resource or activity) must 
perform specific parts of such computations. In fact, the right choice – 
in the economic sense – depends on critical user mass and case-specific  
properties. For example, when a manufacturing process is very common, it 
will make sense to have the process implementation (i.e., the resource type) 
offer a lot of services (i.e., have its many users share development efforts). In 
contrast, when it is an exotic activity, it will be more economical to have the 
activity type (i.e., a low-level process plan) handle this in an ad hoc fashion 
(i.e., minimize development efforts).

Resource and activity type interactions will often be triggered by in-
stances and may even occur with instances as intermediaries. Among others, 
an activity instance will discover what actions may be executed through the 
NEU protocol and it will contact resource instances to find out whether 
they are capable of executing one of these possible actions; instances will 
delegate answering to their type. In contrast, activity types will have a selec-
tion of resource types that they will/must consider while elaborating what 
the possible courses-of-action are for their activity instances. This elabora-
tion may be lazy.

AI–RI Interactions
Activity instances interact with resource instances concerning the execu-
tion of both ongoing and planned activity steps. In case of a nonproactive 
design, the instances have a straightforward behavior: initiate a suitable next 
action, manage the execution of this action, update the state information, 
and repeat until the job is done. This is the heterarchical mode of early 
PROSA implementations.

In a proactive design, activity instances will virtually execute possible 
courses of action to evaluate alternatives from which they will select one, 
which is called the intention of the activity instance. Through the virtual ex-
ecution of this intention, the activity instance informs the resource instances 
of future usage, which these resource instances reflect in their agenda. This 
aspect will be discussed in the section on the DMAS architectural pattern.

ARTI: Aggregation, Abstraction, Staff Components
The ARTI reference architecture allows for the construction of large(r) sys-
tems through aggregation, identical to PROSA. These aggregates may vary 
over time when subsystems and components enter, leave, or are replaced. 
Importantly, these changes and reconfiguration allows to maintain a proper 
correspondence with the world of interest that is reflected.
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Specialization is supported to offer an abstract view on collections of 
similar but nonetheless different components and systems. Its main purpose 
and contribution is to simplify the environment of a given component or 
subsystem when it is not forced to account for nonrelevant differences from 
its own perspective. Specialization also enables reuse (of software code) but 
this is considered a minor contribution. Note that using Erlang, specializa-
tion is nice to have as it uses duck typing.8 With static type checking lan-
guages, it will be a must-have.

For the introduction of non-D4U systems and components that are 
not decentralized in a manner compliant with ARTI, the staff holon from 
PROSA has been retained: staff holons may only have an advisory role. This 
allows to introduce noncompliant information providers without risking 
that the execution system breaks down when facing the unexpected.

Examples: Holonic Task Execution Control  
of Multimobile-Robot Systems
Applying PROSA and DMAS to mobile robots revealed a necessity to 
translate the PROSA concepts to the robotics world. First and foremost, 
PROSA terminology is barely appropriate for a robotics environment. The 
ARTI terminology proved to be adequate and was adopted. Note that 
ARTI terminology was devised to be broadly applicable, answering the 
needs of various nonmanufacturing domains while remaining suitable for 
the MESs.

A distinctive feature of the ARTI/PROSA/DMAS architecture ap-
plied to robotics, when compared to existing robot control architectures, 
is the need for the explicit allocation of resources. The explicit emphasis 
on reflection of reality, as an SSOT, is another added value with respect 
to the existing robot control systems. The robotics research community 
is still struggling to grasp and appreciate the novelty of these ideas, which 
have been welcomed in the holonic systems research community but have 
remained unwelcome in the somehow excessively focused/specialized ro-
botics community.

Three cases are briefly treated hereafter. The reader is referred to Philips 
(2012) and (Huang, 2011) for further details and more cases. The robotic 
resources used in the use cases are depicted in Figure 6.1.

8The name duck typing is derived from the famous quote: “When I see a bird that walks like 
a duck and swims like a duck and quacks like a duck, I call that bird a duck.” In duck typing, a  
programmer is only concerned with ensuring that objects behave as demanded of them in a 
given context, rather than ensuring that they are of a specific type.
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Case 1: Single Robot Allocation in General
At the level of a single robot, the main robot components constitute re-
source holons. Figure 6.2 shows resource holons inside a mobile robot such 
as the robotic wheelchairs depicted in Figure 6.1. The level of detail is task 
dependent, because only resources with an active role need to be repre-
sented. If, for example, CPU optimization is required, one of the resources 
would be the CPU. By doing so, order holons can explicitly allocate CPU 
time slots, for example, to guarantee real-time performance.

The Robotic Wheelchair resource type has knowledge about its dimen-
sions, its overall minimal and maximal speed and capabilities such as obstacle 
avoidance and navigating from one point to another. It consists of motors 
controlling translational and rotational velocity, Distance sensors scanning 
for obstacles and a joystick representing the user’s input. Typically, several 

Figure 6.2 Resource Type Holons for a Robotic Wheelchair.

Figure 6.1 Mobile Robots Used for the Use Cases. (a) SARA, (b) LAURA, (c) LiAS.
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distance sensors are mounted on a mobile robot. In this case, a laser scanner, 
sonar sensors, and IR sensors are represented by resource holons. These sen-
sors are used to detect obstacles in the environment and provide the input 
to, for example, an obstacle avoidance algorithm.

At the single-robot level, activity type holons and activity instance holons 
can be defined that address primitive actions such as moving the robot in a 
given direction while keeping a safe distance (as measured by the available 
sensors) from obstacles. ARTI implementations enable to realize such a task 
as the composition of two more primitive tasks: move to a target position 
and avoid obstacles. Note that this implies a resource allocation in which two 
tasks own the same resource at the same time but with different ownership  
rights. These rights are compatible and, normally, complementary. For in-
stance, the move to target position activity has received the right to steer the 
mobile robot but the avoid obstacles activity has the right to overrule, modify, 
and constrain what the mobile robot resource instance may execute.

Moreover, an ARTI implementation makes it possible to allocate these 
embedded resources to tasks/activities from outside the single robot. For 
example, one robot’s laser sensor may be used by another robot or another 
type of activity. This other activity could be a building mapping task. Note 
that this mapping can have different requirements and outputs depending 
on where it resides. Every building type (factory, hospital, corn field, cop-
per mine) and every mobile robot manufacturer may have its own map-
building activity holon type.

These mapping activity types undoubtedly have companion resource 
type holons for the processing of sensor data. In the example, the laser 
sensor will have a basic/primitive resource type that will be used by 
these more sophisticated companion resource holons. In these situations, 
the split of the PROSA resource holon in two ARTI resource holons 
(type and instance) ensures useful maneuvering space to combine holons 
into suitable time-varying aggregates. In case of PROSA, the use of spe-
cialization – combining type and instance functionalities in a single re-
source holon – remains possible, which may imply annoying constraints 
(when life cycles including creation and hibernation/destruction have 
to coincide).

D4U compliance involves explicit resource instance allocation (second 
design principle) to have, among others, an upper bound on the inertia of 
design choices that need undoing. It also implies minimizing the needs/
requirements for resource allocation from activities offering a service (first 
design principle). A D4U-compliant activity:
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•	 does not request allocations that it does not use. In an industrial robot, 
the activity (program) that is executing will have all resource instances 
of the robot allocated (as there is no explicit allocation management).

•	 does not request allocations for more time periods than needed. For 
instance, access to sensors via a sensor bus often supports isochronous 
channels, each providing hard real-time bandwidth to the sensor read-
outs. A D4U-compliant activity will acquire such channels (= resource 
instances) that it needs, leaving the remainder for other activity in-
stances.

•	 does not request more rights than needed. For example, a safety-ensuring  
activity needs isochronous channels to the sensors it needs to see  
imminent danger, hard real-time CPU slots to process the sensor data 
and assess the need for intervention, and preemption rights on actua-
tors/power/brakes to intervene when indicated. This leaves to other 
activities sufficient rights to execute the actual robot tasks. It enables 
a separate safety-ensuring activity to be provided regardless of the na-
ture, source, etc. of these other activities executing the application 
tasks.

•	 does specify which alternative resource allocations exist/are possible. 
Moreover, such nondeterministic specification may describe the trade-
offs between allocation and task performance, capabilities, etc.

•	 does minimize the requirements for allocation and deallocation. For 
instance, a special-purpose trajectory execution activity maximizes the 
robot state (e.g., positions and velocities) in which it can perform a 
handover from/to other trajectory execution activity types.
Note how explicit resource allocation captures the interactions among 

tasks/activities. This SSOT solution helps to cope with the complexity of 
combining a multitude of tasks in a robot system while maximally utilizing 
the available resources.

Case 2: Obstacle Avoidance
In mobile robotics, the goal of obstacle avoidance is generally to navigate 
from one location to another while avoiding collisions with obstacles in 
the environment. These obstacles can be structural or static, such as walls or 
doors in the environment, but also dynamic such as other robots or humans 
moving in the same environment.

Often this problem is solved in the control algorithm of the robot in a 
reactive manner, in contrast to (global) path planning where a precomputed 
obstacle-free path is followed by the robot. The robot controller reactively 
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alters the robot’s course to avoid the obstacle and afterwards steers back to 
the original trajectory.

The obstacle avoidance problem can be interpreted as a resource alloca-
tion problem in which the environment is divided into a set of grid cells 
and the desired trajectory is represented by the allocation of a sequence of 
these grid cells. The resource holons representing the environment are, thus, 
divided into grid cell resource holons that can be individually allocated. 
Figure 6.3 shows the relevant resources in this use case.

The mobile robot is allowed to move along its desired path if it allocates 
the required sequence of grid cells at the relevant time intervals. Another 
robot moving in the same environment will not be able to allocate the 
same space at the same time, and this way collisions between both robots 
are avoided. The checkerboard cells are allocated by the robot during its 
trajectory.

These allocations are temporal, and the time interval of each allocation 
should represent the time when the robot actually occupies this location. 
This solution, however, assumes that all actors in the environment adopt this 
resource allocation. It does not take into account humans or other robots 
moving around without allocating their space beforehand. Another problem 
might be the difference between allocation time and actual execution time 
of the trajectory. If the model, used to estimate the time a robot needs to 
move to its target, is not adequate, robots might deviate from this schedule.

The short-term forecasts provided by DMAS are able to detect such de-
viations and, if sensor data are linked to the environment resources, dynamic 
obstacles can be taken into account as well. Nevertheless, how fast the robot 

Figure 6.3 Resource Type Holons in Obstacle Avoidance Task.
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is able to avoid obstacles depends on how fast a change in the environment is 
detected. If the robot only relies on its own sensors, forecasting is very limited 
and there might be not enough time to complete a full exploration and al-
location cycle using DMAS. If, however, each room is equipped with its own 
sensors to keep its occupancy up-to-date, changes that are in conflict with a 
robot’s trajectory can be propagated in time, through the exploring DMAS, 
and alternative solutions can be selected. Likewise, all sensors of all robots can 
be used, updating the resource holon corresponding to grid elements. The 
DMAS will inform all activities affected by information from these sensors.

Moreover, when intention ants propagate the intentions of their mobile 
robot, proactively, the resource allocation of grid elements over time will be 
visible and can be managed. Among others, deadlocks will be prevented and 
travel times/distances can be minimized.

Case 3: Multirobot Door Opening
This type of application requires to include the environment of the robots 
explicitly and have resource holons representing the resources therein. The 
goal in the multi-robot door opening task is to have one or more (mobile) 
robots to navigate from one room to another through a door opening. 
Some of these robots are able to open and close that door. Ideally, if more 
than one robot has to move through the door within a short time interval, 
the door should be opened only once.

Figure 6.4 shows the resource holons for a door-opening scenario/task. 
The Universe resource allows future additions of resource holons to the  
application. Here, the Universe is divided into resources belonging to  
the mobile manipulator executing the task, task-relevant resources such as 
the Door, its Handle and its Frame, Robotic Wheelchair resources, and the 
Human operator whose control is shared with the wheelchair.

This explicit resource representation and resource allocation in the ro-
bot’s environment facilitates coordination. For example, when two wheel-
chairs arrive at the same time at the door, the explicit allocation of the door 
resource ensures that the mobile robots are able to exit one by one and to 

Figure 6.4 Resource Type Holons for a Door Opening Task.



The ARTI Reference Architecture – PROSA Revisited 101

avoid deadlock. Assume that both wheelchairs are driving toward to the 
door opening and issue allocation requests to the Door Resource. Since 
these requests are handled sequentially, the first robot requesting allocation 
at a particular time, will receive that allocation slot, while the other robot 
will receive a slot behind the previous slot.

If both wheelchairs reach the door within an acceptable time delay, the 
door should only be opened and closed once. The door holons will handle 
this in a manner analogous to a machine holon in a factory managing its 
changeover and setups. When activity instance holons handling the wheel-
chairs apply the DMAS mechanism, the resources in the environment will 
be informed about future allocations. Therefore, the door opening coordi-
nation is not limited to handling the current situation. The order holons 
will observe the predicted future states of the resources in the environment 
and are able to account for these predictions. For example, when an activity 
instance holon sees that it will have to wait for other wheelchairs traversing 
the door in the opposite direction, it may adapt its trajectory in space and/
or time, in order to reduce power consumption, robot component wear, or 
have its occupant wait in a more agreeable or useful location (e.g., in front 
of a television or at a battery recharging station).

THE DMAS ARCHITECTURAL PATTERN

The delegate multiagent system, an architectural pattern, has been 
introduced in Section “Bioinspired Coordination and Control in Holon-
ic Execution Systems” of Chapter 5. This section revisits the DMAS pat-
tern and describes it as a generic problem-solving mechanism and its roles 
within the consolidated research results. It presents what a DMAS mini-
mally involves; it presents which DMAS will be contributing what in an 
ARTI-compliant holonic execution system; it hints at the variety of DMAS 
implementations that can be present in an execution system; it discusses the 
intelligent agent’s role as a “plug-in” components to isolate the nonD4U 
elements from the D4U elements. Thus, this section presents a systematic 
view on DMAS within a holonic execution system.

Recalling Section “Bioinspired Coordination and Control in Holonic 
Execution Systems,” of Chapter 5, a DMAS involves a holon creating, at 
regular time instances, lightweight agents. These agents are called ants to 
honor the biological source of inspiration, which allowed for the discovery 
of this pattern. These swarms of digital ants provide services to their holon 
and/or the overall system.
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The Barebones DMAS
A DMAS allows to process “global information” while preserving an 
ARTI design in which real-world counterparts have an SSOT. The 
SSOT is provided by means of holons mirroring resource instances, re-
source types,  activity instances, or activity types, including the structural 
aspects (aggregation). The results of such nonlocal information process-
ing are made available locally, typically linked to a suitable source of truth 
(stigmergy).

Biological ants deposit chemical/pheromone trails on the physical sur-
face of a real-world environment. These trails inform locally about a nonlo-
cal “truth” (i.e., in which direction there will be food). These trails have 
complicated geometries without the need to mirror this within the brain 
of the ants. The world itself is used as its own model. In a similar manner, 
DMAS uses its ARTI mirror image of the relevant reality. The digital ants 
travel across this digital mirror image, observe it, influence it, and deposit 
information on this virtual image.

Furthermore, the evaporate-and-refresh in the biological world has its 
counterpart in the ARTI image. Information (a digital pheromone trail) has 
a finite life span and will be redeposited regularly if it is to remain available. 
This enables to cope with changes in the world of interest.

Generically, digital ants behave as follows:
•	 An ant is created by a holon, which provides a procedure (code and 

initializing data) to execute.
•	 The data contain the address – used to send messages – of the creat-

ing holon.
•	 The data contain the address of the current location/holon for the 

ant.
•	 Either, the ant processes information on its current location.

•	 The procedure provided by the creating holon determines what 
happens.

•	 This can be observing the current holon.
•	 This can be influencing/informing the current holon.
•	 This can be depositing digital pheromones.
•	 This can be observing digital pheromones.

•	 Or, the ant travels to a neighboring location.
•	 It sends a message to the current holon/location to receive a list of 

connections.
•	 It selects a connection and – virtually – travels to the connected 

neighbor.
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The general scheme above has no restrictions except for the ants to be 
lightweight and self-contained agents:
•	 Every basic step in the above procedure, an interaction with a holon is 

bounded in computational effort, time and memory. Ants may never 
invoke services – from holons or otherwise – that have undetermined 
requirements on computational resources. For instance, ants may not 
invoke an optimization service that iterates until its solution converges 
without an upper bound on this number of iterations.

•	 Every ant has a hop limit, which is the maximum number of basic steps 
that it may execute. Moving to a neighbor counts as a basic step. Invok-
ing a service from a holon also counts as a basic step.

•	 The DMAS itself has an upper bound on the frequency at which ants 
are created.

•	 Ants must discover information starting from their initializing data. For 
example, an ant may send data to the creating holon at any time, may 
recall the addresses of holons that have been visited already, may utilize 
information deposited by other ants, etc. However, the ant may not rely 
on global information unless provided by the initializing data.
Research has investigated an optimizing variant: the cloning ant. When 

the ants of a DMAS would duplicate efforts by repeating the initial part of 
their virtual journey, it is more efficient to have a single ant perform the 
shared part and have this ant clone itself whenever the journeys (virtual 
trajectories) start to differ. Here, an ant will be created with cloning budget, 
which is an upper bound on the total number of copies that can be made. 
When cloning, this budget has to be divided across the copies (i.e., the clon-
ing budget is not copied). Overall, DMAS designs and implementations are 
guaranteed to be (computationally) efficient; thus, they are bounded effort, 
variable result service providers.

Intention-Propagating DMAS – Predicting the Unexpected
As discussed in Chapter 4 (Law 4), imagination9 is needed for a system to 
be proactive in a complex-adaptive world (in which knowledge of past 
behavior no longer suffices to estimate the effectiveness of an envisaged ac-
tion). This imagination needs to be collective for many of today’s challenges.

The main mechanism to generate predictions (i.e., to create this col-
lective imagination) when knowledge of past behavior is insufficient, is 

9Not the imagination of a small child fantasizing about something that is impossible but the 
imagination of an adult picturing what may or will happen and which is used for planning 
future activities, e.g., to imagine how long it will take to drive to Brussels during rush hour.
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the intention-propagating DMAS. Here, activity instances (holons) create 
intention ants. Intention ants virtually execute their activity instance’s in-
tention and, thereby, inform resource instances (holons) of their activity 
instance’s intention to use them in the future.

This intention propagation executes as follows:
•	 Every activity instance has decided how it will execute (= the intention 

of the activity instance). The DMAS itself is agnostic concerning how 
the intention of the activity instance is obtained.

•	 The activity instance creates intention ants at the location(s) of its cur-
rent state, equipped with a procedure to virtually execute the remainder 
of its activity along the current intentions.

•	 Each intention ant virtually executes the remainder of the activity:
•	 Executing the NEU protocol to verify whether the current inten-

tions are still feasible. Recall that activity types cannot distinguish 
whether they are used for virtual or real-world execution purposes.

•	 When infeasible, the intention ant reports the extremely poor esti-
mated performance to the creating holon (activity instance) and dies. 
As the intentions will not be refreshed, the involved resource capac-
ity reservations, made for an infeasible intention, will “evaporate.”

•	 When feasible, the intention ant virtually executes the next step of 
the activity on the resource instance(s) indicated by the intention of 
its creating holon (activity instance).

•	 This virtual execution informs the affected resource instance(s) of 
the intention and, as a result, makes a reservation for the required 
resource capacities.

•	 This virtual execution invokes services from the affected resource 
instances to generate an estimate of how the step execution will 
perform (timing and outcome). The resource instance is likely to 
invoke services from its resource type and possibly the activity type 
to compute the estimated outcome.

•	 The estimated outcome is used in the NEU protocol to update – 
virtually – the state representation of the activity instance. Subse-
quently, the intention ant is ready to execute the next activity step of 
the intention (virtually).

•	 An activity step can be an actually processing step but equally a 
transportation or storage step.

Note that the intention-propagating DMAS requires that activities and 
resources are knowledgeable about themselves in a what-if mode. Impor-
tantly, this knowledge remains self-knowledge (i.e., local), preserving the 
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SSOT characteristic. Also, it is self-knowledge that remains valid when 
the predictions – generated by the intention-propagating DMAS – are 
made available throughout the holonic execution system. Furthermore, re-
source instances have an agenda functionality to register reservations. This 
functionality serves to accurately predict the outcomes of activity steps, 
accounting for the contention among activity instances for the limited 
availability of resource capacities. Likewise, activity instances have func-
tionality to represent their intentions such that intention ants may execute 
them virtually.

Recall how the discussion of the PROSA reference architecture in 
Chapter 5 did address this already. ARTI preserves this while increasing re-
usability when resource instances, providing the agenda management func-
tionality, can be combined with numerous types of resources/equipment.

Summary
Resource types are enhanced by self-models to simulate the execution of ac-
tivity steps. This simulation allows to compute the required properties such 
as processing time and possible outcomes (with their probability). Note that 
these self-models often will be very simple (e.g., time to make an omelette 
plus the probability of success versus failure).

Resource instances will have an agenda containing the foreseen activity 
steps. The self-modeling capability of their resource type permits to com-
pute the corresponding state trajectory of the resource instance.

Activity types, when executing the NEU protocol, are incapable of distin-
guishing being used in a simulated or real mode. As they use their instances 
as a repository for state information and as a source for progress information 
(what has been done with what outcome), an activity type has no way of 
knowing whether the provided information corresponds to the real-world 
counterpart or virtual execution.

Activity instances are able to represent their intentions, how they plan 
to execute, in manner that allows their intention ants to execute virtually 
whatever remains to be done.

The Exploration DMAS – Decentralized Search
The above collective imagination, generated by computing how the future 
will look like if all the prevailing intentions are executed, needs to be used 
to improve the coordination in the holonic execution system. The predic-
tion allows to observe issues and opportunities in time to do something 
about or with them. This section presents a generic DMAS to explore for 
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solutions – possible ways to execute activity instances – and their estimated 
performance/behavior. It is called the exploration DMAS, which is com-
posed of exploring ants and created by activity instances (holons).

The exploring ants behave similar to the intention ants: they virtually 
execute (the remaining part of) an activity to compute/predict/estimate its 
behavior and performance. The key differences are:
•	 exploring ants do not make reservations. They only make inquiries 

with the resource instances about estimated performance and outcomes 
without declaring an intention to actually execute the activity steps 
identified in the interaction.

•	 exploring ants are equipped with decision-making mechanisms, pro-
vided by their creating activity instance, to steer their search. Intention 
ants receive the intention of their creating holon, fixing by definition 
all decisions needed for virtual execution. Exploring ants have a search-
steering mechanism that determines which options they will investigate.

•	 exploring ants use this decision-making mechanism to:
•	 select a member from the list of candidates offered in the NEU pro-

tocol,
•	 select a resource instance to execute this selected member, and
•	 overall, to select a trajectory among all the possible ones.
Typically, an activity instance utilizes a mixture of exploring ants, mix-

ing decision-making mechanisms. The following DMAS concepts may, for 
instance, be implemented:
•	 Candidate solution refresh. When the activity instance is about to change 

intentions (see below), it first refreshes any candidate solutions, which 
are considered to become the new intention. When the estimated per-
formance for the current intention, reported by the youngest intention 
ant, has deteriorated because of a disturbance, it is advisable to verify 
whether their replacement is not affected as well. This exploring ant 
behaves precisely as an intention ant except for not making any reserva-
tions with the resource instances.

•	 Random search. The exploring ants simply select randomly a candidate 
activity step or movement onto a neighbor. In a manner, this is the 
ultimate in robustness in the sense that it makes no assumptions. Unfor-
tunately, these ants are unlikely to discover good solutions when there 
are many options and selecting a proper one has a significant impact on 
performance.

•	 Randomized search. The ants make biased randomized choices where 
the bias is a heuristic favoring the more promising selections. By keeping 
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all options – asymptotically – open, robustness is again preserved. If the 
heuristic faces unexpected conditions, rendering it contraproductive, op-
tions that are noncompliant with the heuristic may still be discovered.

•	 Shortest path. The exploring ants are assisted by a staff holon that exe-
cutes a shortest path algorithm. They follow the shortest path, possibility 
managing/exploring activity steps that are neglected by the staff holon.

•	 Schedule execution. Similar to the shortest path but the path is  
computed by a scheduling staff holon. This was discussed in Section 
“Cooperation of HMES with Planning Systems” of Chapter 5.

•	 Track record / common practice. The activity instances leave a digital 
pheromone trail indicating the path that they have followed, indicating 
their class (e.g., their activity type). Exploring ants are attracted to this 
trail, similar to the shortest path.

•	 Bottleneck avoidance. The prediction from the intention-propagating 
DMAS is used to identify the location and time of the bottlenecks in 
the system. The ants will prefer to avoid these bottlenecks.

•	 Aggregate demand profiles. This requires cooperating DMASs. A first 
DMAS propagates demands where both slack and the availability of 
alternatives translates in a less than 100% (imaginary) load on resource 
instances. For example, if 200 minutes are available for 100 minutes’ 
processing, the resources load is 50% during 200 minutes. Similarly, if 
four resources are available, they are each loaded for 25%. All loads are 
added, resulting in aggregate load profiles, which may exceed 100%. The 
second DMAS comprises ants preferring solutions that avoid the peaks 
in the aggregate profiles.

•	 Alternative solutions. This DMAS complements the other ones that are 
present. It requires the other exploring agents to leave a pheromone 
trail. The alternative-exploring ants prefer solutions that are different. 
The ants are likely to discover solutions that remain unaffected by dis-
turbances invalidating the more ordinary solutions.

•	 Continuity of care. In situation where activities are repeating (e.g., in 
home nursing), solutions employing the same (human) resource for an 
activity instance often will be preferred. Indeed, this avoids commu-
nication problems (when nurses visit a patient treated by a colleague). 
Continuity-favoring ants will search for solutions employing the same 
resource rather than hopping around, without getting stuck when con-
tinuity cannot be preserved.

•	 Batching. A DMAS may propagate “resource intentions,” making 
batch properties and especially batch switching visible in a virtual 
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neighborhood of the resource. Batching ants will aim to join suitable 
batches or, otherwise, insert a new batch where a switch will happen 
anyhow.

•	 Returning. The ants collect information on the first half of their virtual 
journey, process this information, and finish the job on the return trip 
of their virtual journey. This can be necessary/useful when the resources 
exhibit constraints that make it difficult to select a feasible timing, slot, 
etc. without information about the entire journey.
Clearly, the possibilities for designing an exploration DMAS are practi-

cally infinite. Because of the ARTI image and the intention-propagating 
DMAS, implementing an exploration DMAS requires relatively little effort. 
Case-specific designs are to be used and generalized when sufficient lessons 
have been learned.

Importantly, the holonic execution system may/will combine multiple 
exploration DMASs. Together, they deliver the activity instance a collection 
of candidate solutions. From this collection, the activity instance selects its 
intention. And, when time catches up with the intention, its execution is 
initiated (to be performed by resources).

Intention Selection
The activity instances use a combination of exploration DMASs to  
maintain a collection of candidate solutions. Membership depends on the 
performance estimations for the solutions, and possibly, complementarity 
(contribution to robustness). The intention of the activity instance is select-
ed from this collection, and its intention-propagation DMAS informs the 
affected resource instances while re-computing through virtual execution 
the estimated performance and behavior of this intention.

The initial intention selection depends on the proximity, in time, of 
the first activity step (i.e., the resource needs a minimal amount of advance 
warning) and the performance improvements of solutions discovered by the 
exploration DMAS (i.e., if it converges/stagnates, an intention is selected). 
Changing intentions has been already discussed in Section “Socially Ac-
ceptable Behaviors for Delegate MAS” of Chapter 5.

Other DMASs
In Chapter 5, the feasibility DMAS was presented. However, after applying 
D4U in multiple application domains and a wider range of manufacturing 
systems, it became apparent that this feasibility DMAS is not universal to the 
same extent as the intention-propagating and exploring DMAS. Its nature will 
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vary depending on the application domain and even application. What remains 
is that the exploring DMAS needs to be able to supply an adequate amount 
of high-quality candidate solutions. A feasibility DMAS ensures that unfeasible 
options are not explored. However, it is not an issue if a small percentage of 
exploring ants fail while attempting to virtually execute an unfeasible journey. 
Feasibility DMAS must not be perfect in some cases. In other cases, it may in-
dicate distances when activity instances may travel virtually from any location 
to any other location (and all routing choices will be feasible).

Moreover, in the discussion of the exploration DMAS, supporting 
DMASs have been introduced: (i) bottleneck identification, (ii) resource 
intention propagation, and (iii) aggregate demand profiles. The delegate 
MAS architectural pattern is polyvalent. In particular, collecting informa-
tion about a system (state) property and propagating this across the system 
will provide services that comply with D4U. Much remains to be explored 
in this respect.

Intelligent Agents Versus Intelligent Beings
The above reveals that the main decision-making happens in the explo-
ration DMAS and the intention selection. As stated in the Section, “The 
ARTI Reference Architecture,” ARTI holons and other components ex-
plicitly separate into intelligent beings (mirroring relevant corresponding 
reality) and intelligent agents (with the decision-making responsibility). 
Here, it is possible to distinguish the following intelligent agents:
•	 Activity instance intention selection. The agent embodies the selection 

criteria and procedures deciding:
•	 when to select the initial intention,
•	 which intention to select, and
•	 when to switch intentions.

•	 Membership of the collection of candidate solution. The agent decides 
whether a solution is retained.

•	 Resource instance policy. When receiving reservation notification/re-
quest from an intention ant, the agent determines how this will be hon-
ored. For instance, a request compliant with scheduling advice may push 
another reservation to a later point in time.

•	 Exploring ant decisions. The mechanisms determining which part of the 
solution space will be explored are implemented in an intelligent agent.
These intelligent agents are “plug-ins” in an ARTI software platform, 

which are noncompliant with D4U. When they are replaced, updated, etc., 
this must not cause a cascade of required changes.
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Moreover, because the DMAS pattern uses virtual execution, an intel-
ligent agent can be seen as a digital mirror image of itself. It is part of the 
executable domain model. When a decision mechanism changes, its model 
changes and the DMAS virtual execution adapts to the changed situation 
with requiring any update or software maintenance for itself. However, 
when addressing challenging real-world cases, not all intelligent agents can 
be their own model. When they are computationally expensive or decisions 
are made by humans, separate reality-mirroring models will need develop-
ing (cf. Section, “Toward a Humane Mechatronic Society”).

CHALLENGES AND LESSONS LEARNED FROM 
APPLICATIONS

The above sections discuss consolidated research results. However, 
when applying these results to real-world manufacturing10 or to new applica-
tion domains, new challenges and issues arise. They do not break or invalidate 
the consolidated results but present requirements for additional services and 
functionality, or they open discussions on terminology and their understand-
ing by the concerned communities. This is addressed within this section.

Interoperability
Design for the unexpected, aiming to address integration issues, sheds a new 
light on the concept of interoperability. In the perspective of a profound 
understanding of integration-ability, the applicability range of interoper-
ability becomes more sharply delineated.

In the research community investigating interoperability, interoperabil-
ity connects existing systems as they are. These connected systems collabo-
rate without changing themselves in an in-depth manner. In this research 
community, system integration involves in-depth adaptation resulting in a 
new, larger system. The systems that are integrated are more or less redevel-
oped and often are no longer capable of surviving outside the larger system 
in which they are integrated. This picture may be exaggerated to enhance 
the contrast with a D4U view on this matter.

To integrate D4U designs, it suffices to render them interoperable. To 
obtain a larger integrated D4U system, a majority of D4U elements is made 

10Invitations from and/or preparedness of manufacturing companies for joint research in-
variably involved cases that could not be handled by existing commercial solutions; some 
unexpected challenges had to be tackled.
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interoperable while the adding/developing a minority of non-D4U ele-
ments completes the development of this larger system.

The above should trigger a discussion on what interoperability and its 
accompanying standardizations may contribute. In-depth understanding re-
veals that:
•	 When interoperability and standards remain decision-free (i.e., 

D4U-compliant), they are likely to be successful and easy to imple-
ment. For instance, converting Cartesian (x, y)-coordinates into polar  
(r, Θ)-coordinates is D4U-compliant. In contrast, scalar noise measure-
ments, that is, weighted sums assigning importance to the contribution 
of the respective frequencies (like dBA measurements), involve decisions. 
They may not so easily be exchanged among systems. For structural 
noise isolation in buildings, low-frequency contributions are likely to be 
underestimated. The music industry may maximize damage to a person’s 
ears within the legal constraint imposed by such a measurement. Here, 
there is no guarantee that interoperability efforts will succeed in bring-
ing good value to the users.

•	 Large margins may render such decisions, needed to render systems in-
teroperable, easy to ignore, or almost irrelevant. For example, when noise 
limitations can be very strict, the weighing becomes a nonissue. Likewise, 
representing time in milliseconds or even microseconds by 64-bit integer 
values is a good idea (from a D4U perspective), even when the applica-
tions consider 10 min to be its smallest relevant chunk of time when 
coordinating their activities. Indeed, consider three systems managing 
time in 15-, 20-, and 50-min timeslots (e.g., for teaching). The smallest 
common multiple, when they are to collaborate, is 300 min. Here, the 
second D4U principle would have limited the inertia of the decisions to 
use such large timeslots. Typically, the decision-making subsystems (the 
intelligent agents) dislike large margins when they inherently cause their 
solution space to explode. The reality-reflecting subsystems (intelligent 
beings, visualization, and user interfaces) have no problems with these 
large margins. D4U design principles will minimize the amount of work 
that would be needed to solve the issues with the larger timeslots (small 
margins). Only some of the intelligent beings would need to be adapted.

•	 D4U avoids being penny-wise and pound-foolish. The above choice for 
a large margin corresponds to what is easy to implement on today’s and 
tomorrow’s computer systems. It is easy to generate time measurements 
in microseconds; it is easy to synchronize clocks on a millisecond level; 
it is easy to use 64 bits to represent a time instance; and 64-bit suffices to 
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cover the foreseeable future (i.e., more than 5000 centuries when using 
microseconds, five million centuries when using milliseconds).

•	 D4U design decisions first look at what is possible without a cost that 
might be considered prohibitive (i.e., they are pound-wise) and use that 
to maximize margins (i.e., they are not influenced by penny-sized gains). 
The designers look at what is affordable first and to what is really re-
quired second. They select what is affordable even when it is overkill for 
what is needed.

•	 A lot of systems are able to interoperate because they are able to squan-
der bandwidth and/or memory space when they are using XML, JSON, 
etc. to exchange information. This is a widespread illustration of how 
large margins render interoperability to be feasible.

•	 Many interoperability and standardization efforts are doomed to fail. Here, 
D4U insights will reveal that there are inherent conflicts and how serious 
they are. A common symptom of these situations is a struggle for control.

•	 In addition, there may be the perception that yielding control to another 
party, and complying with the standards and application programming 
interfaces (APIs) proposed by this other party, will not solve the issues. 
Yielding control simply results in a never-ending effort to comply with 
an ever-changing standard and API definition under the control of this 
other party. In other words, the parties involved do not believe there can 
be a stable interoperability standard.

•	 In fact, these parties are calling and labeling something to be a standard 
that, by definition, is not a standard at all; they simply are fighting for 
control and abusing the respect for standardization efforts (e.g., by gov-
ernment representatives controlling their funding).
Overall, this discussion still needs to be continued. It is too early to pres-

ent conclusions. However, it should be apparent already that way too much 
value and in-depth contribution to society is expected from interoperability 
and standardization efforts. Their contributions and value probably may be 
limited to addressing last-mile gaps for which straightforward developments and 
standardizations suffice while all in-depth issues need D4U. Furthermore, stan-
dardization and interoperability also concerns business and legal considerations 
(e.g., to prevent proprietary solutions from becoming gatekeepers) outside and 
beyond the present discussion. In other words, this is to be continued.

Multiresource Allocation and Auxiliary Operations
Many real-world problems involve multi-resource allocation. In a holonic 
logistics execution system (HLES), transportation activities require a truck, 
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a truck driver, a docking slot, a forklift, a forklift driver, etc. In open air en-
gineering applications, a rendezvous has to be arranged between a combine 
harvester and a tractor, between an asphalt layer and it supply truck, possibly 
managing drivers for them as well. Similarly, auxiliary operations need co-
ordinating with the main/actual operations. Trucks need refueling, drivers 
need to rest, machines need cleaning, changeovers, etc.

Modeling these situations is adequately addressed by the consolidated 
research results discussed above. However, facilitating and supporting the 
coordination and decision-making has been addressed on a case-specific 
basis within the research activities until now. It remains an open question 
to what extent such ad hoc problem solving, current practice in operations 
research, is inherently unavoidable. Nonetheless, a collection of solution 
templates can be developed.

Three classes of solutions have been identified within the case-specific 
developments. First, there is the leader-follower class. Here, resource alloca-
tion of the leading resources happens along the approach discussed above. 
From this allocation, the remaining resources are allocated. This assumes 
that only the leading resources are scarce while the follower resources are 
plentiful and almost always available.

A second class allocates these nonleading resources through fixed sched-
ules (e.g., personnel operating the machines, planned maintenance), by pro-
viding every leading resource with its nonshared nonleading resource (e.g., 
a measuring probe), by assuring a supply of consumables, etc. This is the 
most common situation in practice. It can be made more adaptive and re-
sponsive when a holonic execution system has been deployed.

The predictions generated by the intention-propagating DMAS can be 
used to schedule and plan these auxiliary operations (e.g., preventive main-
tenance when a machine would be idle anyhow, make sure components are 
fed where they are most urgently needed). When, for example, a measuring 
probe on machine A gets damaged, the predictions allow to assess whether 
it is a good idea to remove an identical probe from machine B and put it 
on machine A.

Conversely, when these auxiliary operations fail to keep a leading resource 
fully operational, this will be detected early (by the intention-propagation  
DMAS of the auxiliary operations). Intention ants and exploring ants will 
observe this unavailability (temporary and possibly partial) of the leading 
resource and adapt. Here, holonic execution systems provide visibility, in-
cluding prediction, which facilitates multi-resource allocation and handling 
of auxiliary operations.
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A third class addresses nonleading resources that are very similar and avail-
able in some numbers. Transporting devices are a typical example. These re-
sources can be placed in a pool. A pool holon manages their initial allocation 
as well as reallocations. When an activity needs a resource from a pool, it con-
tacts the pool holon to get a specific resource assigned. Detailed interactions 
occur between the actual activity and resource holons. This pattern still needs 
further investigating. Can the pool holon be a staff holon? Is it possible and 
advisable to change an assignment (e.g., when a truck breaks down)?

Overall, the predictions offer interesting possibilities while further inves-
tigations, involving real-world challenges, are needed to consolidate results 
concerning multi-resource allocation and handling auxiliary operations.

Probability (Distributions)
In real-world operations, the expected outcome of an activity step will be 
stochastic. In electronics, the expected outcome of a (binning) test might be:
•	 7% of the integrated circuits functions above 2.9 GHz (clock rate),
•	 43% of the integrated circuits functions above 2.5 GHz (clock rate) but 

fails at 2.9,
•	 33% of the integrated circuits functions above 2.1 GHz (clock rate) but 

fails at 2.5,
•	 14% of the integrated circuits needs disabling of a CPU core and retest-

ing, and
•	 3% of the integrated circuits needs to be scrapped.

The production of optical lenses or of bearing balls may have a similar 
characteristic.

Contributing to a sustainable society, disassembly and recycling, repair-
ing or refurbishing become increasingly important and prevalent. These ac-
tivities also have the above characteristic when, after disassembly, tests reveal 
whether a component can be reused as-is, needs some further processing, 
or has become scrap material.

To cope with the above, the intention propagation DMAS needs to 
master probability distributions. Instead of propagating and transforming 
scalars (e.g., expected arrival times), it uses a suitable probability representa-
tion. Note that this is likely to use cloning ants where each clone continues 
along a possible future routing of the activity (e.g., one ant for the high-
value packaging of an integrated circuit, another for midrange, another for 
trimming a CPU core, etc.).

Propagation stops when hop limits are reached and/or cloning bud-
gets get exhausted, or when the probability information no longer contains  
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usable information (e.g., when aggregated predictions based on historical 
data – predicting the expected – deliver equivalent value/information).

No research activities have addressed this until now. Note that this does 
not require to adapt the consolidated results at all. It suffices to enrich the 
information handled by the ant and holon without any “structural” changes. 
Conceptually, concerning D4U, this is not a challenging task.

Also note that both the scalar and the probabilistic DMAS can coexist; 
the designers of a holonic execution system is not forced to choose (anal-
ogy: having both a road map and a topographic map while using each map 
for which it is most suited).

Incommunicado
When discussing an open air engineering case, the issue of interrupted com-
munication lines was raised. These applications often reside in remote areas 
where telecom infrastructure can be minimal. In the use cases that were 
considered, vehicles only communicate when they are within a short range 
(e.g., Wi-Fi or Bluetooth) and not at all at larger distances. Alternatively, 
long-range communication is highly constrained and/or overly expensive.

Conceptual solutions have been elaborated on paper (i.e., when the 
need would arise to address this issue of intermittent communication ca-
pabilities, the team knew how to tackle it and was confident the problem 
would be solvable). The explicit modeling of a corresponding reality proved 
useful. When subsystems reconnect, their internal models of the world have 
been disconnected from reality in various parts. Mutual updating of and 
agreeing on these models into a joint model for the connected systems 
involves accounting for the most recent information (i.e., reconnected ho-
lons get information from the source-of-truth holon) and the “shock” from 
this update to activities that have been working on disconnected (possibly 
outdated) models is a disturbance, which is handled by the mechanisms to 
handle change and disturbances that are present already. However, no in-
depth research or extensive implementation was conducted.

Other Modeling Techniques
In intelligent traffic and transportation systems (ITTSs), complementary ca-
pabilities presented themselves (Philips et al., 2013). Traffic models – dy-
namic network loading (DNL) models – revealed to be capable of mirroring 
aspects that would be a challenging task for exploring and intention ants: 
congestions propagating backwards in a road infrastructure. Where traffic 
models have issues accounting for user intentions, DMAS has issues with 
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collective behaviors that would require too many refresh cycles (iterations) 
to converge (assuming a straightforward DMAS design). Conversely, traf-
fic models are highly effective and efficient at computing such collective 
properties.

In the MODUM project (modum-project.eu), this combination of 
D4U delegate MAS and models developed by the research community fo-
cusing on the application domain (ITTS) was investigated. D4U intention 
propagation predicts what the load/congestion levels of road segments will 
be; DNL models compute the effect of congestion propagation (backward) 
through the network. The intention propagation uses the DNL estimates 
for the virtual execution of their activity/traveling.

For such application-domain specific models to be available and effec-
tive, there has to exist a suitable stable target. Road infrastructure, modeled 
as networks of road segments, is present on a massive scale and it will be 
present for the foreseeable future. Practically, it is similar to physicists devel-
oping theoretical models about nature (e.g., Newton’s laws).

In manufacturing or logistics, installations exhibit more variability both 
geographically (e.g., factories are designed differently) and time-wise (to-
morrow’s factories will be different). Models may be outdated by the time 
they are available or struggle to find sufficient users to justify the develop-
ment efforts. A clever DMAS design, making a roundtrip (i.e., the exploring 
ant collects information on the way out and constructs a solution on the 
way back while using and needing this collected information), may be pref-
erable in some cases. In other words, research still needs to establish where 
and how the above collaboration is possible and advisable.

Furthermore, a full-fledged holonic execution system, when deployed, 
is able to relax the demands on the models from the application domain 
experts. In the ITTS case, the execution system can be deployed to manage 
bus lanes going through bottlenecks (choking points) in the road network 
(note that they must not end somewhere inside the bottleneck). The execu-
tion system enables participants to use the remaining capacity, which is not 
used by the buses.

Here, the intention-propagation DMAS predicts congestion, and deci-
sion-making elements (intelligent agents) ensure that this never happens in 
reality (except in case of accidents/incidents, which is not considered further 
in this example). Travelers remain at home, in the office, etc. until capacity 
is available. Because of this service level, the DNL models must only allow 
to distinguish between congested and not congested; the execution system 
will even apply some safety margin to stay out of congested states. This 
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relaxes the requirements on the DNL model considerably. Among others, 
it must not model nonlinear behaviors (e.g., waves of speed variation and 
the precise onset of waves), the impact of the type of crossing, etc. Also here, 
much remains to be investigated but disseminating how D4U creates novel 
opportunities for research and development may be needed even more.

Trust, Reputation, Commitment
In the MABE project (Reitbauer et al., 2005), the research expanded from 
closed systems (holonic manufacturing execution system (HMES) and 
HLES) into semi-open systems (Holonic Execution Systems for Networked 
Production – networked HMES). In networked production, access to the 
network is controlled but the members in the network are independent 
“selfish” organizations, participating in a positive sum game.

For such semi-open systems, it is not needed to make individual inter-
actions “bulletproof” against malicious behavior. But it is necessary to have 
some “social control mechanism” in place. The network members are in a 
highly repetitive gaming situation where there is only a small amount at 
stake in each individual round or interaction (e.g., deliver one truckload) in 
comparison to the overall game (i.e., a long-term profitable collaboration 
and a company’s reputation inside and outside the network).

The research activities developed a software framework, within an 
HMES design, to answer the challenge (Saint Germain et al., 2012). A 
framework was developed because research in trust and reputation remains 
in a flux and has no obvious solution to adopt and incorporate. A frame-
work was developed to allow the use of trust- and reputation-handling 
mechanisms that are most suited to the situation as well as to switch when 
a superior solution presents itself in the future.

The framework allows to use a holon’s track record (past behavior) in 
interactions. In particular, it allows to estimate what information provided 
by a holon actually means. When John communicates his intention to at-
tend a meeting, tomorrow at 09h00, how likely is he to attend this meeting, 
at what time is he most likely to arrive, and how much uncertainty is there 
on this time estimate?

The framework, completed with suitable trust and reputation mechanisms, 
provides this service while enabling to account for context information. For 
instance, John’s reputation concerning attending meetings professionally can 
be kept separated from his behavior outside his professional environment. 
Likewise, if John adds information about his commitment when promising to 
attend, the framework allows to account for this information.
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Indeed, in this context, becoming explicit about commitment enters 
into the picture. Importantly, there exists no absolute commitment in a 
context of execution systems; reality does not provide locks, transactions 
in the manner of IT systems (databases). There always is the possibility of 
“force majeure,” and execution systems have to cope with it (cf. Section 
“Software/System Development”: the digital image of relevant reality must 
cover all possibilities).

In networked production, this framework implies that network members, 
exchanging information, have a social control mechanism that discovers and 
monitors the relationship between their words and their deeds. The mecha-
nism makes no “moral” judgments. A member can be inherently unreliable. 
For instance, mounting the rotor of a wind turbine may take a long time 
when the weather causes delays. On the other hand, when John systematically 
books a cancelable flight at one airline while being waitlisted for his preferred 
choice, the first airline may become more prone to overbook John’s flight.

The framework revealed to be useful outside its original target. When 
implementing the NEU protocol in real-life cases, some possibilities for 
(nice-to-have) enhancements emerged. For instance, the alternatives offered 
by the activity type may not be equal. Some activity steps on some resource 
instance will be mature, tried, and tested. Others may be untested and pos-
sible in theory only. The framework allows to manage this without having 
to change or enhance the NEU protocol in a significant fraction of this 
kind of situations. Likewise, it allows for straightforward enhancements of 
the NEU protocol (i.e., add some simple indicator), whereas the framework 
ensures a proper interpretation based on experience, track record, etc., in-
cluding the adaptation of the interpretation when the corresponding reality 
evolves. Research in this matter still needs to be done.

Effort Versus Accuracy
The intention and exploring ants virtually execute their activity instances. 
This virtual execution involves decision-making procedures, which are per-
formed thousands or millions of times before real-world activity step execu-
tion takes place. This is not an issue while these decision-making procedures 
remain computationally efficient (e.g., constant time or logarithmic). Real-
world cases and moving into novel application domains reveal that there 
are many highly relevant situations in which this condition is not fulfilled.

To address this, the basic ARTI design using NEU protocols and DMAS 
needs refinement. There are virtual-execution components, which are used 
for DMAS execution, corresponding to real-world components that are 
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used for actual execution. The virtual-execution components must be very 
efficient but are allowed to make mistakes. The impact of these mistakes 
must not be fundamentally different from other disturbances in the system. 
The real-world components must be accurate, however.

The following cases can be distinguished (at the present time):
•	 Intelligent beings model a corresponding reality. The accurate compo-

nent versions normally use tracking (i.e., observe this corresponding 
reality) to achieve the required accuracy. The virtual execution com-
ponents cannot wait for these observations and need a software model. 
This often will be straightforward and efficient (e.g., a time delay cor-
responding to the time to drill a hole).

•	 Regularly, some (machine) learning may be indicated to provide values 
for parameters and properties that are hard to estimate beforehand. Pos-
sibly, a computationally demanding model may be executed at a feasible 
frequency while computationally efficient models use its output to sup-
port virtual execution in a DMAS (e.g., perform inter-/extrapolation).

•	 Intelligent agents utilizing computationally simple methods in real-
world execution (e.g., first-come, first-served) can be their own model 
for virtual execution.

•	 Intelligent agents utilizing computationally demanding methods (e.g., 
a 3D nesting algorithm) may need a computationally simple model for 
virtual execution, approximating the demanding one.

•	 A generic template for such a simple model is to execute the demand-
ing method at a lower (feasible) frequency in combination with a simple 
mechanism to adjust the outcome of the demanding method in between 
executions of this demanding method. A machine learning solution is 
another possibility, especially when the detailed results of the demanding 
method are not needed for virtual execution (e.g., estimating what can 
be nested suffices).

•	 Humans take many of the real-world decisions and, often, need to “sign 
off ” their decisions (e.g., doctors in the health care domain). The vir-
tual execution counterpart may approximate this in numerous ways, de-
pending on its use/responsibility. Typically, the authorized/responsible 
humans still make the decisions (per activity instance or type) once. And 
they control the autonomy settings of their virtual-execution compo-
nents to be used in a DMAS.

•	 These autonomy settings determine how long and under what condi-
tions the virtual-execution component may, for example, repeat the hu-
man’s decision. In straightforward cases, a virtual-execution component 
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may take automated decisions. Often, the autonomy setting will steer a 
triage process. Some decisions are an automatic (e.g., what to do when 
medication was not taken at the prescribed time), some call and wait for 
a qualified human to decide, some provide a default action but inform a 
human to intervene at a time of his or her choosing, etc.
Of the above, the last case proved most interesting: how to include hu-

mans in holonic execution systems in full. This is discussed further in the 
next section.

TOWARD A HUMANE (MECHATRONIC) SOCIETY

Recent D4U research investigates and focuses on the humans within 
a holonic execution system, in particular, humans in integrated health care: 
patients, professional and layperson care providers. Moreover, the research 
has addressed open systems with very large numbers of users and resources. 
In particular, intelligent traffic and transportation presents these challenges. 
In combination, these investigations reveal that social aspects (e.g., social 
control) and empowerment of persons (e.g., concerning data about them-
selves) become most relevant.

It is necessary to address this social sciences and humanities matter for a 
successful introduction into society of the research developments discussed 
in this book. Conversely, introducing these developments into society 
creates opportunities to render tomorrow’s society more humane. There 
 certainly is a significant potential to create a more humane society when 
seen from today’s prospects characterized by big data analytics in corporat-
ist implementations running somewhere in the dark from an individual’s 
perspective (Hildebrandt, 2015).

Social/Collective
D4U and its realization through ARTI and DMAS implementations differ 
from current prospects by their ability to incorporate intentions explicitly. 
These intentions are projected on a digital image of the world of interest, 
generating a prediction of the unexpected. More precisely, past experience 
is used solely to predict/model elementary activity steps such that future 
behaviors and states can be estimated also in situations where historical data 
on aggregate behaviors and states cannot be used.

This distinguishing feature has two implications. First, D4U can perform 
better simply because it uses more relevant information, which remains 
valid in more situations. Second, D4U needs participation; by design, it cannot 
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operate in the dark. The latter is especially true when a D4U infrastructure is 
used to implement and achieve novel social interactions, which build upon 
a D4U digital image of reality that includes predictions.

In particular, persons – represented by software extensions acting in this 
digital image (e-Persons) – may interact socially in a virtual manner to man-
age their real-world activities (better). For starters, the D4U infrastructure 
eliminates or reduces the frustration from “if I had known this beforehand, 
I would have acted differently” where this “not knowing” originates from 
the inability to rely on the past to predict the effectiveness of choices con-
cerning future actions.

For instance, commuters estimate – in a common mode – how a railway 
strike will affect congestion and decide massively to leave earlier or stay 
home. The result is a traffic jam almost an hour earlier than normal and less 
congestion than normal at the usual times. D4U would have witnessed this 
behavior virtually shortly after information about the railway strike became 
available. There would be ample time to observe the problems/congestions 
and missed opportunities. Commuters would get opportunities to adapt 
their intentions. Moreover, D4U infrastructure facilitates making commit-
ments such that commuters will know their travel time beforehand with 
much less uncertainty.

Nonexhaustively, the following might be realized:
•	 Abolish “no good deed remains unpunished” by ensuring one’s good 

deeds are accounted for virtually. This accounting needs mechanisms 
(legal or otherwise) to ensure commitment of all parties that are in-
volved. For example, when a commuter leaves his home later, con-
tributing to congestion avoidance during rush hour, he should not 
have (more) difficulties finding a preferred parking space as a conse-
quence.

•	 Ensure virtually, with suitable commitment, that there is a fair deal be-
fore committing physically. Transactions, even complicated ones involv-
ing multiple participants, each performing an action, can be elaborated, 
detailed, refined, etc. before committing and its real-world execution. 
The “chicken game” can be played virtually. The collective may inter-
vene if this game virtually ends in disaster.

•	 Virtual buildup to an agreement becomes possible. Participants may 
offer to contribute a small amount to show their goodwill but avoid  
offering larger amounts inviting exploitation and abuse (i.e., no signs of 
weakness). Virtual iterations may allow significant shifts, grasping win–
win opportunities that are unreachable otherwise in the same amount of 
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time (because large steps toward the optimized solution, needed in slow 
real-world negotiations, would cause parties to consider the other to be 
weak and exploitable).

•	 Participative and collective change management is facilitated. Partici-
pants actively contribute to building a virtual image of a changed future 
(of an organization). In iterations and parallel versions, beneficiaries/
winners and benefactors/losers become visible and can be accounted 
for. For instance, departments facing a reduced workload may be as-
signed novel responsibilities and training (where the persons involved 
are empowered to lead their reassignment). The change is executed as a 
transaction, reducing uncertainty and fear (avoiding and reducing resis-
tance and sabotage).

•	 Organizations need less hierarchical control when the D4U infrastruc-
ture allows for coordination among peers by peers. Predictions allow ad-
justing activities over a longer time horizon and larger distances within 
organizations. Predictions allow higher management levels to intervene 
solely when indicated (in the predictions).

•	 Collectively and coordinated shifting of “what is considered normal” in 
a desirable direction when individuals volunteer small11 contributions 
to the community concerned. These are visible because of the D4U 
infrastructure, inviting others to follow and join. The availability of a 
collective prediction creates possibilities to speed up what can be done 
compared to what real-world evolution could achieve.
Here, a D4U infrastructure (information and communication technol-

ogy (ICT)) only offers a part of the solution. Legal support is needed (e.g., 
enabling to uphold commitments under pressure, to go against undesirable 
social pressure). Cultural innovation will be required to enjoy many of the 
potential benefits. For instance, a culture of discretion may contribute to 
self-management among peers, facilitating a frank communication where it 
is needed and beneficial.

Moreover, suitable initial targets need selecting and implementing. Un-
avoidably, there will be teething problems, which need implementation 
projects that are sufficiently small to succeed and large enough to learn. For 
instance, managing bus lanes – offering the free remaining capacity of the 
lanes to participating cars – by D4U will allow to mature its implementation  
before deploying it in other parts of traffic and transportation systems. 
Likewise, academic exercises, in which the D4U digital image is reused 

11Small means “too small to exploit,” a sign of good will, not a sign of weakness.
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to simulate a corresponding reality, may provide insights and innovative 
designs. Also, some application domains may offer cases enjoying favorable 
conditions (e.g., high added value and relaxed conditions for D4U applica-
bility). Overall, there remains plenty to research and develop.

Empowerment and Privacy by (Sociotechnical) Design
While applying the first part of this chapter to integrated care, the mirror-
ing of human beings in a D4U digital image constituted a key concern. Ev-
ery person, patient, as well as care provider (both professional and layperson) 
is to be extended virtually. For every person, there is an e-Person, which is 
an aggregate of the roles played by this person:
•	 A person as a valuable resource, which has finite capacities and capabili-

ties. Typically, this will be an aggregated resource (e.g., acknowledging 
that a patient has organs, which are affected differently by medication, 
food intake, exercise, diseases).

•	 A person as a (composite) activity.
•	 A person as a decision maker concerning activities.
•	 A person as a decision maker concerning resources.

Overall, there will be an e-Person that is a relatively complex aggre-
gate (holon) extending the real-world person in a D4U virtual reflection 
of the world of interest. This e-Person supports (at least) two modes or  
versions: signed-off and virtual-execution (cf. above). In all situations, the 
human remains in control, determining what is signed and how the virtual-
execution version behaves. Moreover, this e-Person constitutes a starting 
point for information retrieval (by computer processes behaving like web 
crawlers).

This results, naturally, in a patient-centric design. All patient-related in-
formation is accessible through their e-Patient (a patient’s e-Person). An 
e-Doctor (a doctor’s e-Person) knows patients and retrieves information 
via their e-Patient. The doctor’s data files are kept by the e-Patient, but parts 
might be encrypted such that only suitably authorized persons can access 
it. The e-Patient typically resides in a properly accredited data server ensur-
ing minimal service levels while a patient is free to go beyond this. Note 
that commonly available technology allows to have the e-Patient available 
24/7, 99.999% of the time. In other words, whenever there is a connection 
(Internet or another network), the e-Patient is available.

The above separates concerns:
•	 Suitably qualified ICT companies/organizations ensure that data are not 

lost, stolen, or corrupted. They ensure that the patient has no difficulties 
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to comply with legal requirements. They offer additional services, allow-
ing the patient to benefit from the latest technological possibilities.

•	 Care providers and organizations are able to manage information access 
by encryption to ensure it is understood correctly when used. This should 
maximize accessibility and control by the patient. The patient must even be 
able to manage accessibility and, e.g., decide about data availability for re-
search purposes without requiring consent of care providers for most data.

•	 Unless there is a valid reason to do otherwise, even encrypted data must 
be accessible when the reader is qualified (i.e., understands it and is under 
an obligation to respect confidentiality). On the other hand, providers may 
have a fully private type of document, to avoid a defensive attitude about 
registering relevant information (e.g., about a patient’s lack of hygiene).

•	 The patient is conceptually in control by default. The e-Person is the 
starting point for all data storage, manipulation, and retrieval. There is no 
corporation or administration that intervenes when data access is con-
cerned except for encryption (to handle interests that the patient cannot 
manage or is not entitled to manage).
This patient-centric design will reduce and master complexity with a 

lot of ease when compared to prevailing schemes in which some external 
(corporatist) organization is, conceptually, the information repository and 
access controller. For example, when the patient’s GP retrieves data through 
the e-Patient, relevant information can be volunteered (e.g., medication 
prescribed by a kidney specialist, a slimming food supplement taken on the 
patient’s own initiative). This is D4U delivering SSOT.

Summarizing the above, a patient empowering design is the natural, 
perhaps only, manner to elaborate a D4U health care execution system 
for integrated care. Similarly, care providers will be empowered when they 
are in control of their e-Persons. However, the ICT alone is insufficient to 
empower. Policies need to be facilitated and even enforced. A culture of a 
person-empowering political correctness will help a lot.

Note that these e-Persons can be implemented as communicating com-
puting processes that are always available (i.e., access to a computer, a com-
puter network or Internet will be less available by an order of magnitude). 
In other words, there is no justification for retrieving information from a 
source other than the e-Person concerned. Thus, to empower it suffices to:
•	 Give every person maximal control over its e-Person(s).
•	 Make it a political/ethical/deontological incorrect action to access, store, 

or manipulate data without involving the e-Person as the entity in charge.
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•	 Legally and technically support politically/ethically/deontologically 
correct behavior.

•	 Provide ICT service providers that ensure this high-quality storage 
(bank/notary-like).
This empowerment provides synergetic opportunities to ensure privacy. 

As data about a person are retrieved through their e-Person, the following 
examples can be implemented:
•	 Please forget. The e-Person, when asked to check some fact/data/infor-

mation about its person, may indicate that this is marked to be for-
gotten. Similarly, the e-Person may refuse to confirm (i.e., qualify it as 
unknown). An ethical code may now require a justification to refuse 
the preference expressed by the e-Person. Technical and legal enforce-
ment may enforce publication of such information as “unconfirmed”, 
“marked as to be forgotten.” Receivers of information may filter this 
kind of information out. Privacy advocates may spam readers looking 
for unconfirmed information.

•	 Power-abusing parties seeking unauthorized access to information. An extreme 
but nevertheless important aspect of privacy protection is nondisclosure 
of information to an unauthorized party while hiding the nondisclosure. 
With the e-Person as the SSOT, sensitive data will be refused to anony-
mous requesters. When the requester is powerful but unauthorized, the 
e-Person will honor the request but communicate information – of its 
person’s choice – to which this party is entitled. It can be incomplete in-
formation or even modified information. When this unauthorized party 
requests the same information through another party (e.g., GP about a 
patient), this intermediary party will contact the e-Person concerned 
and forward whatever this e-Person provides (or information consistent 
with it).
The above illustrates how truly novel possibilities may present them-

selves. However, much still needs to be discovered and investigated before 
it can become a part of reality. Also, a lot can be designed and implemented 
poorly or wrongly. Looking into what the future may bring, recognizing 
problems, risks, as well as opportunities and benefits is needed, preferably 
beforehand rather than being forced to “repair” our society. Surprisingly, 
we may learn that supporting “bad behaviors” can be beneficial when con-
structing tomorrow’s humane mechatronic society (cf. above: a collective 
ability to fabricate stories to cope with power-abusing parties making un-
authorized requests).
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Concluding Remarks
This section only scratches the surface of what still needs to be discovered. 
Only two dimensions have been recognized and presented above: social/
collective behavior and human empowerment/privacy. There probably are 
others. And each of those needs further elaboration, refinement, correction, 
and prioritizing. The research discussed in this section clearly is subject of 
some exciting future research.

Note that D4U – including its ability to predict the unexpected – has a 
competitive edge over current developments such as big data analytics: the 
best way to predict the future is to create the future. D4U enables to create the 
future collectively and iteratively while it requires and empowers all persons 
involved to participate. It does not operate in the dark because it relies on 
the active and transparent participation of all persons and parties involved 
(unlike for instance big data analytics) and, as it keeps its options open, it are 
the participants who create their future collectively. Highly interdisciplinary 
research may discover how to do this, and to do it correctly. It may enable to 
address societal issues before they constitute a real-world problem by code-
signing the ICT, and the legal, social, economic, educational, philosophical, 
and political elements.

SUMMARY

The extension to nonmanufacturing applications necessitated to revisit 
the reference architecture PROSA. In the resulting ARTI reference archi-
tecture, an adapted nomenclature for the underlying holons was adopted.

The NEU protocol is presented, describing the interaction between an 
activity instance and its activity type. It creates an independence – enabling 
a separation of concerns – between type holons (experts) and instance ho-
lons (managers). It further prevents exposure to the specifics of knowledge 
representation inside the holons.

New challenges such as interoperability, multi-resource allocation, sto-
chastic issues, trust, etc. – arising when applying these results to real-world 
manufacturing or to new application domains – are described and potential 
research directions identified.

The authors express their conviction that D4U may pave the road to-
ward a more humane (mechatronic) society, by stimulating social/collec-
tive behavior, by positive human empowerment while preserving citizens’ 
privacy.
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ABBREVIATIONS
ARTI Activity resource type instance
CPU Central processing unit
ITP Intelligent transport system
MVP Minimally viable product
NEU Next execute update
SSOT Single source of truth
DNL Dynamic network loading (in traffic models)
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This chapter discusses case studies and projects applying and investigating 
design for the unexpected. They focus on the design and development of 
holonic execution systems in a wide variety of manufacturing and nonman-
ufacturing applications. This variety of cases shows the universal  applicability 
of the product-resource-order-staff architecture (PROSA) / ARTI  delegate 
multiagent system (DMAS) framework. The obtained results emerged from 
a synergy between more fundamental research results and the application 
of these in real-world cases. The case studies and research milestones are 
presented in chronological order respectively for manufacturing and other 
application domains. The adoption of a chronology in ordering the different 
cases reflects the evolution in the minds of the authors to come to the final 
results captured in this book.

Execution systems manage operations in real time. They only trigger 
system-specific activities, leaving detailed control to other systems. For in-
stance, a manufacturing execution system (MES) leaves the pick-and-place 
of a dashboard into a car body to the robot controller and/or human work-
ers. In contrast, the MES manages the routings and processing sequences for 
these products (e.g., car bodies, doors, and dashboards).

The primary concern is to cope with all relevant aspects of a world of 
interest (e.g., manufacturing equipment and products), including – in view 
of this book’s title – unexpected aspects. Note that this primary concern is 
irreconcilable with performance optimization, imposing restrictive views 
on the world of interest. Because the case studies invariably have combina-
torial solution/search spaces, the presently known optimization techniques 
can only be connected in an advisory role to the world of interest.

In this respect, it is important whether the execution system is, for in-
stance, able to represent and exploit all the possible routing and process-
ing alternatives for products (i.e., this is desirable). In contrast, rendering a 

CHAPTER SEVEN
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routing or processing alternative unreachable, typically to accommodate an 
optimization procedure, is a violation of the design principles (i.e., this is 
undesirable).

Historically, holonic MESs have been the subject of our research. How-
ever, the scope of the case studies is broader. It includes the application of 
product-resource-order-staff architecture (PROSA) and delegate multia-
gent system (DMAS), developed for manufacturing, to applications outside 
the manufacturing environment, notably in its consolidated ARTI version. 
In general terms, design for the unexpected (D4U) can be applied successfully 
whenever:
•	 Activities are executed on resources.
•	 Activities are subject to constraints that render myopic1 decision making 

ineffective. Typically, decisions concerning these activities have effects 
later and elsewhere, and future activity interactions affect performance 
significantly (e.g., create congestion).

•	 Virtual execution of these activities in a digital mirror image of the 
world-of-interest is possible and can be much faster than in reality. This 
allows, among others, exploring and intention ants to “predict the un-
expected.”

•	 The socio-economic benefits of such an enhanced coordination more 
than compensate the (recurrent) cost and effort needed to maintain and 
operate the coordinating execution system.

MANUFACTURING CASE STUDIES

The PROSA Precursor: FACCS (1985–1990) (Valckenaers 
et al., 1995)

FACCS, the flexible assembly cell control system, is a holonic MES for a 
robotic flexible assembly cell. This cell comprises four robotic assembly sta-
tions and a transport system allowing product carriers to visit these stations 
in any sequence (Figure 7.1). This flexible assembly system was part of a 
research setup in the research lab of the authors at KU Leuven.

In view of 2015’s state of the art, FACCS has the following contribu-
tions:
•	 Product-driven manufacturing control. Each production order self-

manages its routing and processing step sequencing. This results in a 
(robust) heterarchical control mode.

1Only looking at past and present states.



Case Studies and Research Projects 131

Figure 7.1 Graphic representation (a) and photograph (b) of the holonic flexible assem-
bly cell at KU Leuven.
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•	 Process plans are based on dynamic precedence graphs. These graphs are able 
to represent alternative processing sequences, including mutually exclusive 
sequences, handle result-dependent sequences (e.g., repair when test results 
indicate the need), and allow simultaneous execution of processes for the 
same production order (i.e., lock/race-free updating of the state of a graph).

•	 Uses alternative processing sequences in opportunistic routing and/or 
sequencing to handle disturbances in a heterarchical control mode.

•	 Is able to cooperate hierarchically with a reactive scheduler to optimize 
performance and combine this with the heterarchical mode to cope 
with disturbances and changes.

•	 Supports a fine granularity for the primitive processing steps used in the 
dynamic precedence graph. The requirement limiting this granularity is 
that the products are transportable and storable before and after execut-
ing such a primitive processing step.

•	 Is able to produce any combination of the available primitive processes 
in a batch-of-one mode.

•	 Connects production equipment to the control system through device 
drivers, thus avoiding exposure for the holonic MES to device-specific 
programming languages, tools, or environments. This complies with the 
autocatalytic set insight (cf. Chapter 4). Note: this device driver ap-
proach has been successfully deployed in an industrial robot application 
as a spin-off activity.

•	 It is process-agnostic, which implies that the control system is able to 
manage any mix of production processes (assembly, machining, painting, 
packaging, etc.).

Relative to 2015’s state of the art, FACCS has the following limitations:
•	 Job shop assumption. The self-managing production orders assume that 

they can loop around the production system and reach workstations 
that are offering primitive processing steps without having to plan or 
reason. For example, FACCS is unable to handle a flow layout in which 
a needed processing capability may be passed and become unreachable 
(or impractical to reach).

•	 Each workstation is modeled as sets of IDs corresponding to the primi-
tive processing steps that the workstation is capable of performing. For 
example, there is no model of tooling, fixtures, operators, etc.

•	 Process plans have a predefined data format based on the IDs of avail-
able primitive processing steps. For example, any information depend-
ing on the product model needs to be retrieved by the implementation 
of the primitive processing steps (using the order ID as a key for data 
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retrieval). Such information remains invisible to and cannot be used in 
the process plan.

•	 The heterarchical mode is myopic. The self-managing production orders 
behave opportunistically without assessing future repercussions or im-
pact on other orders.

•	 Reusability of the software and system components is low/questionable. 
Dynamic precedence graphs are an option for product holon imple-
mentations but must be used internally and cannot be exposed to, for 
example, the order holons (cf. NEU protocol). The device drivers and 
primitive processing step implementations are case-specific. The heter-
archical control mode under the job shop assumption is easily reimple-
mented, while relaxing this assumption requires a significant effort (cf. 
the other case studies).

Relative to 2015’s state of the art, FACCS utilizes the following infor-
mation and communication technology (ICT):
•	 FACCS is programmed in mainstream object-oriented programming 

technologies (C++, Java) on mainstream computer platforms (Windows, 
Linux). This complies with the autocatalytic set guideline/insight.

•	 FACCS has no simulation capability.
•	 FACCS is connected to industrial equipment through industrial au-

tomation technology (i.e., PLC for the transport system and robot  
controllers for the assembly robots). However, FACCS minimizes its 
exposure to these industrial technologies as they lack critical user mass 
(i.e., they are violating the autocatalytic set guideline/insight). The in-
dustrial controllers are used to program primitive services, which are 
made available on the mainstream computer platforms in mainstream 
programming languages as device drivers. In case of machine tools, 
a DNC option would be desirable, allowing to make the machining 
functionality available on the mainstream platform.

The First Milestone: PROSA (1990–2000) 
(Van Brussel et al., 1998; Simon, 1990)
Continued fundamental research on the FACCS flexible assembly cell re-
sulted in the PROSA reference architecture. This reference architecture re-
spects and accounts for the fundamental insights, discussed earlier in this 
book. Consequently, PROSA represents to a large extent what is unavoid-
able, and it discourages imposing of arbitrary design choices.

In order to achieve this, PROSA is only a reference architecture; it is 
not a system architecture or an implementation. The research team stopped 
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elaborating this particular research result as soon as further development re-
quired the introduction of arbitrary design choices. Such choices had to be 
made for the implementation of research prototypes but they never became 
part of this reference architecture.

In view of 2015’s state of the art, PROSA has the following contribu-
tions:
•	 The reference architecture provides a terminology, greatly facilitating 

the communication and discussion in the domain. Chapter 5 discusses 
this in detail.

•	 PROSA cleanly separates the structural aspects from the control aspects. 
PROSA emphasizes the structural aspects as the foundation for holonic 
MES development; the control aspects follow in later design and devel-
opment phases. Note that this ensures scalability as systems mirror the 
structure of the manufacturing system and activities concerned.

•	 PROSA aggregation – which can be time-variant – corresponds to the 
insights from Herbert Simon (Simon, 1990), which constitute the core 
insights in holonic systems.

•	 PROSA specialization and aggregation enable reuse and increase the 
achievable user mass for software components.

•	 PROSA separation of technical concerns (addressed in product holons 
interacting with resource holons) from logistical concerns (addressed in 
order holons interacting with resource holons) contributes significantly 
to achieving critical user mass and software reusability.

•	 Product-driven manufacturing control. PROSA mirrors a reality in 
which production activities execute on manufacturing resources, and 
PROSA considers both to be equal (i.e., they are so-called first-class citi-
zens). Industrial practice often collocates all intelligence with the resources 
whereas the products only have data sheets/forms attached. This preserves 
the nonautomated practice in which humans operate equipment whereas 
products do not have a human companion. This industrial practice vio-
lates the insights and guidelines of design for the unexpected when intel-
ligent machines have to rely on expectations on the manner in which they 
will be used. In PROSA, intelligent machines – resource holons – only 
have to account for what they are and what they are capable of. How 
these machines will be used is known by product-related holons. Among 
others, this increases configurability, reconfigurability, software reusability, 
and the ability to achieve and maintain critical user mass.

•	 PROSA imposes minimal requirements on the nature of the system that 
is to be controlled.
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Relative to 2015’s state of the art, PROSA has the following limitations:
•	 PROSA is a reference architecture, which means generic rather than 

specific. As a consequence, its ability to handle concrete multiple pro-
duction system types – job shops, flow shops, production lines, etc. – has 
been achieved by leaving most of the development work to be done.

•	 The base holons, without schedule-generating staff holons, are myo-
pic. Intelligent products will be navigating and shopping for resource 
services, which perform the processing steps, like car traffic in which 
drivers navigate to get serviced (work, school, home, shop). There is no 
support for the base holons (product, resource, order) to anticipate the 
consequences of their decisions and choices at later points in time and/
or remote location in the factory. Nonetheless, cooperation with plan-
ners is covered through staff holons.

•	 PROSA separates the product-related technical and logistical aspects (in, 
respectively, product holon and order holon). PROSA neglects to do the 
same for resource-related aspects. Here, PROSA mirrors its source of in-
spiration – computer operating system kernels – which also fails to sepa-
rate resource-related aspects (i.e., resources correspond to CPU cores, 
orders correspond to data segments of threads, products correspond to 
code segments of programs). ARTI refines PROSA in this respect.

•	 Research has addressed the development of reusable software that imple-
ments PROSA. This research has not produced software results that have 
survived until today. Partially, this was caused by a lack of insight and know-
how. Partially, this was caused by subsequent research discovering impor-
tant functionality that could be added to the PROSA foundation without 
violating the design for the unexpected insights and guidelines. Partially 
and most decisively, it was a consequence of mainstream ICT limitations. 
Even when developing the right software components, the effort needed 
to develop, maintain, and support would have remained too high.

•	 The software developments have only a limited capability to simulate 
faster than real time (i.e., speed-up is a fixed factor). Such a speed-
up corresponds to lowering the processing speed of the computers on 
which the MES executes.
Relative to 2015’s state of the art, PROSA utilizes the following ICT:

•	 PROSA-related software development uses mainstream OO-program-
ming technologies (C++, Java) on mainstream computer platforms 
(Windows, Linux).

•	 PROSA-related research developed a real-time simulation capability 
with software in the loop. The factory simulation – without the holonic 
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MES – was done in ARENATM. It was used in real-time mode and 
connected to the MES through a TCP/IP socket. The MES could not 
distinguish being connected to the simulation from being connected to 
a real production system.

The Second Milestone (Part 1): MASCADA and Food Foraging 
in Ant Colonies (Peeters et al., 2001)
The myopia of a straightforward PROSA design remained a major concern. 
Scheduling staff holons may only give advice for good reasons: state-of-the-
art planning and scheduling technology fails to comply with design for the 
unexpected. Furthermore, this situation is unlikely to improve as execution 
systems have combinatorial solution/search spaces. Optimizing planners and 
schedulers have to reduce this space to a polynomial one. As a consequence, 
developing a definitive and optimizing solution to this challenge amounts to 
breaking encryption systems that are currently used (cf. NP completeness).

In other words, planners and schedulers have to make choices – arbitrary 
to a significant extent – to produce their results, which inherently conflicts 
with design for the unexpected. As the research team aims for a holonic 
execution system foundation complying with design for the unexpected, 
scheduling holons had to remain optional staff holons. Apparently, elimi-
nating myopia in PROSA-based execution systems was asking for a more 
innovative solution.

Stigmergic Coordination and Control
The answer was discovered in two steps. First, heterarchical control designs 
in which resource holons will signal to order holons when they are about 
to finish their current task were investigated by other research teams. This 
was, however, too simplistic to remedy this myopia. Such an order attraction 
signal should reach prospective order holons after being enriched with in-
formation accounting for space and time. It should account for a predicted 
workload of the resource holon (a timetable). And, it should account for 
the intended journey of the workpiece to the resource (estimated order 
arrival time in this timetable). Moreover, there should be indications of 
valid routing options – road signs indicating which processing options are  
available/installed in which directions – to prevent order holons from selecting  
routings that lack the required processing capabilities.

Second, the food foraging coordination mechanisms used in ant colonies 
revealed how information may be deposited locally in an environment – re-
ferred to as stigmergy – to inform members of the colony about a remote 
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fact. When an ant discovers a food source, which is too large for a single ant 
to carry, it will deposit a chemical, called a pheromone, on its way back to 
the nest. Other ants will then follow this pheromone trail to the food source.

Two properties of this stigmergic coordination are interesting. First, pher-
omones evaporate. When an ant follows the trail and brings (some of the) 
food back to the nest, this ant deposits more pheromone. When the food 
source expires, the ants start exploring for food and will not return to the nest. 
The trail is no longer reinforced; the pheromone evaporates and disappears. 
This mechanism allows the ant colony to adapt and cope with the dynamics 
of its environment. Second, the ants use their environment as part of their so-
lution. Ants have no model of their world inside their brain. The pheromones 
are deposited on the real world. Whether their world is (geometrically) simple 
or complicated has no impact on the ants’ coordination mechanism.

However, ant colony coordination is limited to the past and present. The 
MASCADA project transformed this stigmergic coordination to cover the 
future as well (i.e., local information about remote facts in time and space). 
To this end, the MES uses a software environment in which production 
activities execute virtually. During such a virtual execution, information can 
be collected, generated, and deposited (i.e., digital stigmergy). In addition, 
this information disappears unless it is regenerated to cope with change and 
disturbances. In other words, the ant colony solution is applied in a software 
that mirrors the world of interest, allowing to try and evaluate (a lot of) al-
ternative courses of action before committing to the most desirable course 
of action that was encountered in this virtual world.

Car Body Painting – Holonic MES for Flexible-Flow Shops
The MASCADA project developed its solutions while addressing an indus-
trial case. A car body paint shop was an excellent case to test the applicability 
of an HMES for flexible flow shops. Each day, this large shop, comprising six 
floors, paints more than 1000 car bodies, of different types and in different col-
ors. It comprises more than 400 manufacturing resources: unidirectional and 
bidirectional conveyors, turning tables, lifts, painting boots, etc. (Figure 7.2).

These resources are arranged in a complex topology, in which loops are 
present. The system has built-in redundancy; that is, for each processing step, 
multiple resources can be chosen. Similarly for the transportation, more 
than one routing option is available to move a car body from one process-
ing unit to the next. As the result of a production step is uncertain, the next 
processing step for a car body will depend on the outcome of the previous 
one. This means that it is sometimes necessary that a product makes a loop 
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through the paint shop. The main performance measure in this paint shop is 
throughput. The throughput can be influenced by the batch size. Through-
put losses are caused by color breakdowns on the painting lines and block-
ages on the transportation system.

The control system, a precursor DMAS system, is responsible for the 
routing of the car bodies through the paint shop, and it has to maintain 
the required throughput in the face of disruptions. Because of loops in the 
transport system, the control system also has to deal with deadlocks. There-
fore, the intelligent products (corresponding to the car bodies) use a layered 
decision mechanism to choose their next processing step.

The first control layer addresses feasibility. This layer is responsible for 
deadlock avoidance and ensures, for instance, that a car body is not trans-
ported in a direction that lacks the necessary processing capabilities. The 
second layer is an optimizing layer, doing things such as satisfying produc-
tion goals (e.g., maximizing throughput or respecting due dates), optimizing 
bottleneck usage, and avoiding material flow jams upstream and down-
stream. A third layer tunes online the parameters of the optimizing func-
tions of level 2. All these layers are application specific (plug-ins) and can 
easily be replaced if necessary.

The control system is also responsible for batching the car bodies for 
the painting process. Small batch sizes lead to more setups leading to lower 
throughput. Moreover, as batches are small, there are more defects, and more 

Figure 7.2 Partial view of the six-story spray painting shop simulation for car bodies.



Case Studies and Research Projects 139

car bodies have to be repainted, lowering the throughput even more. To 
deal with this issue, the intelligent resources corresponding to the painting 
equipment propagate information about their planned batches (size, color, 
time window, etc.). The intelligent products use this information to decide 
whether or not to join a certain batch.

MASCADA – Contributions and Limitations
In view of 2015’s state of the art, MASCADA made the following contri-
butions:
•	 MASCADA delivered the innovation needed to address myopia in 

PROSA while respecting the insights and guidelines of design for the 
unexpected. It invented the use of stigmergy in a software environment 
supporting virtual execution as needed by the coordination and control.

•	 MASCADA addressed a full-scale industrial test case (i.e., a large car body 
painting plant comprising more than four hundred pieces of equipment 
and over a thousand products being processed at the same time).

•	 MASCADA is fully compliant with PROSA. At no point was there a 
necessity or benefit to be gained from deviating from the reference ar-
chitecture. Or, in other words, the research did not encounter a situation 
in which PROSA would benefit from a modification or revision.

•	 MASCADA developed the first generation of DMAS. More precisely, 
the following was developed for the industrial case study:
•	 Feasibility ants. These digital ants virtually traverse the flexible-flow 

shop in the reverse direction of the products. They collect informa-
tion about the processing capabilities of the resource holons, and 
they deposit this information at routing points such that order ho-
lons may select valid routings only.

•	 Order holon ants. These digital ants are created by order holons and 
virtually execute the remaining processing and transport steps for 
their order (i.e., a car body). During this virtual execution, the ants 
inform the affected resource holons about their intended visit. This 
allows the resource holons to construct a timetable, which predicts 
their future workload.

•	 Resource holon ants. These digital ants take the timetable of their 
resource holon and virtually traverse the flexible-flow shop in the 
reverse direction of the products. The ants collect information about 
the travel time toward their resource. At routing points, the ants de-
posit a timetable for their resource adjusted for the accumulated 
travel time. In other words, order holons at a routing point will ob-
serve timetables indicating processing capabilities and (free/available) 
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capacities adjusted for the time needed to reach a resource. Spe-
cific for the industrial case, order holons also see whether a painting 
workstation needs to change color when its car body will arrive.

•	 A number of case-specific stigmergic mechanisms have been devel-
oped. This mainly demonstrated the contribution a stigmergic in-
formation infrastructure can make toward the implementation of 
case-specific mechanisms (i.e., fast and with little effort). An example 
is batch-building mechanisms, aiming to avoid color changeovers at 
the painting workstations.

•	 A deadlock avoidance mechanism was developed for the industrial test case.
Relative to 2015’s state of the art, the MASCADA results have the fol-

lowing limitations:
•	 The resource holon ants are overly specific and their design struggles 

to remain usable beyond flexible-flow shops, as encountered in the car 
body painting case. In particular, the collection and computation of the 
accumulated travel time for an order toward a resource is problematic. 
Subsequent research developed a solution that is both simpler and wide-
ly applicable. The MASCADA resource holon DMAS has been renamed 
into the resource intentions DMAS. In some systems, it is still used but 
solely in a supporting role where it is possible to stop propagation as 
soon as computing the accumulated travel time becomes problematic.

•	 The design critically depended on the correctness of the feasibility ho-
lon information and the deadlock prevention. The above-mentioned 
replacement for the resource holon ants has relaxed this requirement 
significantly.

•	 The order holon ants fail to behave in a socially acceptable manner. Or-
der holon ants virtually execute to inform resources about likely future 
visits; this involved a randomized decision-making mechanism. How-
ever, order holons had no mechanism to “stick to their intentions,” and 
the randomized decision-making mechanism was executed, both dur-
ing refresh and for the actual routing selection, without accounting for 
earlier propagation of order intentions. This severely compromised the 
prediction accuracy of the resource timetables. The main reason for this 
shortcoming was lack of experience for the junior researcher and lack 
of time for the senior researcher (attending to an overzealous project 
review board focusing on scheduling and optimization aspects). Subse-
quent research did remedy this (Hadeli 2006).

•	 MASCADA did not develop software that survived the project. First, 
the above two limitations, and the subsequently developed solutions, 
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would have rendered much of the software obsolete. Second, the avail-
able software technology was inadequate in view of the holonic MES 
still remaining a research prototype (which denied access to human and 
financial resources that would have been required).
Relative to 2015’s state of the art, MASCADA utilizes the following 

ICT:
•	 Software development in Java technology on Windows.
•	 Real-time simulation in ARENATM with MES software connected via 

a socket.

The Second Milestone (Part 2): Photographic Foil Facility (Saint 
Germain and Verstraete, 2002; Van Belle et al., 2014)
Where MASCADA breached the wall of decision myopia without the in-
troduction of arbitrary design choices, the photographic foil case delivered 
the currently surviving design. As can be expected, industry offered a set of 
manufacturing execution challenges, explained hereunder, that could not 
be answered by the available commercial solutions, not even after custom-
ization and not even partially.

The photographic foil facility produces photographic products out of 
large rolls of photographic foil. A customer order consists either of a stack of 
sheets or a roll of a given kind of photographic paper. These rolls and sheets 
are made out of big rolls, called master rolls, by dividing these big rolls into 
smaller pieces. This way, these master rolls can be associated with multiple 
customer orders, which only require some part of the big roll. Conversely, a 
customer order can be associated with multiple master rolls since the units 
in a single customer order can specify different types of foil (each master roll 
only contains one type of foil).

In other words, there is a many-to-many relationship between master 
rolls and customer orders in the system. To form a product, the master roll 
has to be split first lengthwise, by a process called slitting. This operation di-
vides the master roll into pieces, called reels. The second operation splits the 
reels along the width of the original master roll. Depending on the products 
to be made, the operation is either cutting or rewinding. The final product 
is a stack of sheets or a small roll, respectively. Figure 7.3 shows the elements 
of the production plant and their interconnection.

PROSA+DMAS – The Definitive Design: Simple, Efficient and Robust
While applying and implementing the MASCADA solution to the pho-
tographic foil case, the team started with the order holon DMAS, which 
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virtually executes the remaining processing and transportation steps for the 
order. The team realized that this DMAS functionality could be used for 
two purposes, requiring a minimal amount of software development for the 
required adaptation to one of the roles.

First, virtual execution can be used to inform resource holons about the 
intended visits by the order. This functionality was baptized the intention 
propagation DMAS, comprising a steady stream of intention ants. Second, 
this virtual execution capability was used to discover and assess possible 
routings and processing sequences. This was baptized the exploration DMAS, 
comprising a steady stream of exploring ants performing a decentralized 
and randomized search.

The difference between the two DMASs is that the exploring ants virtual
ly execute a possible solution, selected by randomized decision-making mecha-
nisms (see Chapter 5), whereas the intention ants virtually execute the currently 
selected routing and processing sequence (i.e., the order intention). The selection 
of the order intention is done by a given selection mechanism plug-in.

Importantly, the above selection mechanisms are easy to replace. The 
PROSA+DMAS design imposes no restrictions except that they perform 
the required selection and that they are efficient (i.e., they allow virtual 
execution to be faster than reality). In accordance with design for the unex-
pected, decision-making mechanisms must not build up inertia; it must be 
easy and fast to change and/or replace them.

Photographic Foil Facility – Contributions and Limitations
In view of 2015’s state of the art, PROSA+DMAS has the following con-
tributions:
•	 Lasting elegance. The MASCADA discovery, cracking the myopia issue, 

was translated in a superior design that is simple, intuitive, and widely 

Figure 7.3 Photographic foil production plant.
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applicable. It fully complies with design for the unexpected when it maxi-
mally solves the problems by mirroring the world of interest. Virtual ex-
ecution of single steps constitutes its basis on top of which generic and 
generally applicable mechanisms provide the short-term predictions. These 
predictions are updated regularly. In the created information infrastructure, 
which contains these predictions, a decentralized search is facilitated. In-
deed, this PROSA+DMAS design is minimalistic yet broadly applicable.

•	 PROSA+DMAS coordination is (more) robust toward deadlock. It gen-
erates short-term forecasts that will predict/see an imminent deadlock 
situation. Close to deadlock, only a few activities remain unblocked. The 
assessment of solutions, discovered by exploring ants, will see no benefit 
in being eager/early. It suffices to reward late commitment and/or pe-
nalize useless work-in-progress when selecting the order intentions. This 
will discourage the order holons from jamming up the manufacturing 
system. It may still be necessary to provide deadlock handling in an ex-
ecution system but its importance is reduced significantly.

•	 PROSA+DMAS reduces the requirements for the feasibility DMAS. 
When an exploring ant selects an unfeasible route, its virtual execution 
fails to finish the product. This translates in an extremely low score, and 
it will never become the intention of its order holon. In other words, 
it suffices that an adequate number of exploring ants selects a feasible 
route. Wasting some effort on exploring infeasible routes is a small price 
to pay when this allows using a simple feasibility DMAS and/or circum-
vents the need to proof that this feasibility D-MAS is “watertight”.

•	 As was discovered subsequently, sticking this close to reality rendered the 
design highly suitable for further developments. It enabled cooperation 
with scheduling staff holons, sticking to intentions, and adding a trust 
framework. In a way, it confirmed design for the unexpected when the 
design revealed to be able to cope with future – unexpected – demands.

•	 The industrial member of the research team – who was managing the real 
photographic foil facility – noticed that the development is multipurpose:
•	 It can be used as a holonic MES for the actual production system.
•	 It can be used as a simulation of a production system connected to 

its holonic MES. Both production system and MES can be subject of 
experimentation to optimize decisions on what system to build, how 
to operate it, etc.

•	 The holonic MES, while connected to the real system, could be 
“forked” and start predicting two or more alternatives. This fork 
starts at some point in the future where the predicted performance 
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will become known. At that point, the best-performing alternative is 
adopted.

•	 The software development replaced the commercial simulation software 
(ARENA) with a pure Java emulation connected to the holonic MES, 
which was also written in Java. First steps were taken to have a hybrid 
simulation (real-time and discrete event) as well as tools to analyze the 
results of simulation runs (visualization during the simulation run as well 
as afterward using the log files).
Relative to 2015’s state of the art, the photographic foil results have the 

following limitations:
•	 The case study did not develop software that survived the project. Nev-

ertheless, it constituted the basis for all software development until 2010. 
From 2011 onward, development in Java was phased out.
Relative to 2015’s state of the art, photographic foil case utilizes the fol-

lowing ICT:
•	 Software development in Java technology on Windows.
•	 Emulation/simulation in Java. Originally using a simulation library in 

Java but, finally, simulation was performed in self-written Java code.

Modular Plant Architecture II – Machine Shop 
(Zamfirescu et al., 2003)
Around the same time as the photographic foil development, a machine 
tool shop was addressed in the Modular Plant Architecture (MPA) project. 
Both projects shared solutions and software development. This project fo-
cused on the industrial test case while benefiting from the past (PROSA, 
MASCADA) and the present (photographic foil).

The case study concerns a job-shop used for the manufacturing of long 
weaving machine components (Figure 7.4). The production is organized 
around an automatic storage and retrieval system (ASRS) that acts as a tem-
porary buffer for pallets shaped as containers. A rail-based transport system, 

Figure 7.4 Schematic of the machine shop.
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called “tram” in the factory jargon, is used for storing/retrieving the containers 
into/from the ASRS and changing the containers at the workstations. Each 
container contains a variable number of identical parts traveling together till 
the completion of their processing plan. The machines are grouped in worksta-
tions, with a variable number of container docks and with different processing 
capacity. Typically, a workstation holds two containers: an empty container to 
be filled with the finished parts and a full container with parts to be worked on.

Inside the workstation, a part is taken by the machine operator from 
the full container and loaded into the processing machines, processed, and 
then unloaded and stored in the originally empty container. When this last 
container is full, the ASRS is prompted to take it away. Because the tram has 
two container docks, prior to picking up the finished containers, it travels 
to the ASRS to bring the next container that is going to be processed in the  
requesting workstation. Therefore, once the tram took the container with 
the finished parts, it unloads the next container without an additional 
movement. Finished parts are stored in the ASRS and retrieved in a given 
number on a daily basis, according to the assembly orders. There are also 
some trolleys that can take over the transportation effort as required. The 
machine operators are assigned to workstations and not to a single machine 
on the basis of their skills, shifts, and preferences. Overall, the plant holds 
the characteristics of a classical open job-shop, with different alternatives to 
carry out an operation, either processing or transportation.

Relative to the above-discussed developments, MPA-II made the fol-
lowing contributions:
•	 During the MPA project, emulation technology was elaborated in Java, 

replacing the commercial simulation package. The main advantages of 
this change were:
•	 Training. Developers no longer had to master two programming 

technologies. They only needed to use Java. They no longer needed 
to know how to build ARENA models and templates. They only 
needed to acquire programming skills representing a universal/mul-
tipurpose value to themselves, and no longer did they have to spend 
time and effort on mastering an antiquated niche technology.

•	 Hybrid simulation/emulation. The holonic MES and the Java facto-
ry emulation were cooperating closely. In particular, the MES is able 
to signal when all (emulation) events have been processed, which al-
lows the emulation to jump in time to the next event. This speeds up 
simulation runs. Conversely, while the MES is processing events, the 
emulation executes in real-time to realistically account for the fact 
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that the world will not wait while the MES is “thinking.” The MES 
also uses this to generate its internal time-based events (e.g., trigger 
the refresh of a digital pheromone), which then may benefit from the 
speed-up as well.

•	 Support for analyzing the results, both during a simulation run and 
afterward through off-line data processing.

•	 This technology survived the project in our own research environment.
•	 Demonstration of the capability to address an industrial case, possessing 

specific features to optimize production, and to contribute to resolving 
real-world issues. For instance, transport units contain about ten product 
parts, the transporter carries two containers, etc., which would not fit 
naïve models of a world of interest (e.g., the nominal job shop model). 
Note that technology developed for flow shops was used for a job shop 
without the need to start over.

•	 Likewise, the prediction-generating capabilities are instrumental for the 
effectiveness and comfort of the human workers, who in the existing 
machine shop faced uncertainty about the arrival of work and/or tool-
ing. Having a prediction enables them to coordinate their main task 
(machining) with the other task (e.g., maintenance).
Relative to 2015’s state of the art, the MPA results have the following 

limitations:
•	 Software development still is too time- and effort-consuming for indus-

trial deployment while the technology has to prove itself (i.e., if it could 
mobilize resources such as established ERP, it would be more than viable).

•	 Order holons fail to interact as soon as they are known (i.e., as soon as 
the HMES is informed about the corresponding real-world orders). The 
holons only start exploring and propagating intentions when they are 
launched on the factory floor. This disturbs the generated predictions, 
because their intention propagation affects operations in the immediate 
future, and the system needs some time to recover. When order holons 
are created some time before their order will be launched on the fac-
tory floor, their intention propagation only affects operations after their 
launch date/time, which may then allow accommodating them without 
disturbing actual operations. Project funding stopped before this could 
be remedied and experiments could be repeated.

Relative to 2015’s state of the art, MPA utilizes the following ICT:
•	 Software development in Java technology on Windows.
•	 Emulation/simulation in Java. Originally using a simulation library in Java 

but, finally, simulation was performed in self-written Java code. Advanced 
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features include hybrid emulation (discrete event jumping ahead in time 
combined with real-time generating event while the MES “thinks”).

MABE Project – Networked Manufacturing/Heat Treatment 
(Saint Germain et al., 2012; Saint Germain et al., 2011)
A last manufacturing case study addresses a highly automated heat treatment 
multiplant facility. This facility performs heat treatment of metallic materials 
and includes several processes: case hardening, vacuum hardening, induction 
heating, etc. The products demand a certain temperature trajectory inside the 
furnaces in order to reach the required quality. The time between different 
processes (e.g., between case hardening and tempering) should not be too 
long for some products. The various furnaces differ from each other in the 
range of working temperature and environmental condition (e.g., carbon lev-
el). The facility is organized as a job shop in which the baskets containing the 
metallic parts are transported automatically.  Figure 7.5 shows the temperature 
profile and corresponding resources of the case hardening process.

Figure 7.5 Case hardening facility.
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The control system is responsible for the routing of the to-be-treated 
metallic parts through the facility, ensuring that these parts receive a cor-
rect treatment. The intelligent resources correspond to the transportation 
and heat treatment equipment (e.g., furnaces, washing stations, and cooling 
beds). The services offered by these resources are used by the intelligent 
products, corresponding to metallic parts that have to be treated.

Specific for this application is that parts with compatible process tem-
perature trajectories and environmental conditions can be batched. This 
batching, when properly executed, has a significant impact on the perfor-
mance of this capital-intensive production system. Indeed, a fully loaded 
furnace and a partially loaded one operate almost at identical cost, whereas 
the output differs significantly. The intelligent products can make use of a 
delegate MAS to discover batching opportunities or, alternatively, to trigger 
the buildup of such batches.

This case study also investigated the scalability of the HMES concepts by 
coordinating manufacturing and transportation activities within networked 
production. A virtual enterprise was considered, consisting of a network 
of heat treatment factories. New companies can dynamically join or leave 
the network and new processes and equipment are introduced as needed. 
Now the intelligent products have to route their corresponding parts at 
two levels: the network level and the factory level. At the network level, the 
intelligent product searches for transportation services between the differ-
ent factories and heat treatment services (offered by aggregated intelligent 
resources, offering all services of the resources at a factory). As such, a virtual 
enterprise is a semi-open system, lacking a single command and control 
center, the operations have to be organized without the disclosure of sensi-
tive information to other members of the network. Also, a mechanism is 
required to deal with trust and reputation issues.

The MABE project presented two challenges. First, the effective co-
ordination and control of the highly automated heat treatment facilities 
critically depends on the ability to exploit the particularities of the equip-
ment and the process plans. It is important that the (expensive) furnaces are 
(almost) fully loaded with parts. Such loads have to consist of compatible 
parts, which will be subject to a single/joint temperature trajectory and 
environmental conditions (e.g., carbon level).

In the existing practice, a high equipment utilization is achieved at the 
expense of long lead times and high inventories, which allows to find part 
combinations to fully load the furnaces. The case study had to test and 
demonstrate the ability to account for the particular characteristics of heat 
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treatment, and it had to achieve this high equipment utilization at lower 
lead times and/or inventory levels. This amounted to a further validation of 
the PROSA+DMAS solution.

Second, the main research challenge was to upscale PROSA+DMAS to 
networked production. It offered the opportunity to construct furnace loads 
of compatible parts from the entire network. Transportation itself was not ad-
dressed by a PROSA+DMAS design, but a simplified model was used.

The actual industrial case was simpler than the research ambition: all 
networked heat treatment facilities had a single owner (no room for cheat-
ing). The research project itself aimed at networked production in which 
the networked production facilities have different owners, each aiming to 
optimize their own profit margins, turnover, etc. However, the network is 
only semi-open. Network members enjoy a trust relationship, which typi-
cally is the result of long-term cooperation. From a holonic execution man-
agement perspective, the network members are in a highly repetitive game. 
Therefore, it is not necessary to prevent abuse on beforehand. It suffices to 
monitor behavior and account for it during subsequent interactions. Abuse 
by network members is allowed/possible, but it will be noticed.

To this end, the research team elaborated a mechanism and framework 
to deal with trust and reputation. This enables to assess the information 
from members in the network. When an order holon (intelligent product) 
announces to a resource holon (network node) its intention to arrive at 
0900 h, this mechanism translates this information in a most likely arrival 
time (0910 h), the uncertainty on this time (e.g., the 25% and 75% percen-
tiles: 0855 and 1000 h) and uncertainty whether the product will actually 
visit and use the services of the network node (e.g., 99%). In other words, 
the design operates much like humans judging how their coworkers behave 
(e.g., when attending meetings) so they may account for it.

In addition, the enhanced design addressed information disclosure issues 
by having, for instance, the order holon that is managing network-wide 
execution trigger the creation of node-internal order holons to manage its 
node-internal production. The network-wide holon and the node-internal 
holons exchange information on a need-to-know basis.

Relative to the above-discussed developments, MABE made the follow-
ing contributions:
•	 PROSA+DMAS are able to manage networked production facilities, pro-

viding manufacturing execution for virtual manufacturing configurations. 
Moreover, configuring and reconfiguring these virtual manufacturing 
systems in a supply network was business as usual to the holonic MES.
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•	 It proved possible to enhance the single-factory design to cope with 
information disclosure requirements and issues, which are encountered 
in networked production as a result of the presence of multiple self-
interested owners. This did not require a fundamental extension as it 
suffices to apply the pre-existing research results to mimic how humans 
would handle this (cf. the above discussion of network-wide vs. the 
node-internal order holons).

•	 It proved possible to enhance the existing results with a capability to 
manage trust and reputation, which delivers an artificial/automated so-
cial control in the highly repetitive game that characterizes a virtual en-
terprise. Note that these developments are useful in single-factory cases 
as well. For instance, it helps to cope with processes that are inherently 
exhibiting significant and unpredictable variations (e.g., cooking times 
of vegetables).

•	 PROSA+DMAS was applied and assessed to yet another manufacturing 
system class, which again was outside the applicability range of a typi-
cal commercial MES. The relevant properties of heat and surface treat-
ment equipment, for an MES, were exotic. Rudimentary data model 
approaches are unlikely to cope. In contrast, the PROSA+DMAS emu-
lation approach is unlikely to hit the proverbial wall; the required effort 
nevertheless still depends on the challenge.

•	 In a short follow-up project, HFID, aimed at technology transfer, emula-
tion of the heat treatment facilities, and its production was generated from 
multimodels. This generation was done by a self-developed software tool.
Relative to 2015’s state of the art, the MABE results have the following 

limitations:
•	 In spite of the automated generation of emulation code from multimod-

els, the effort and time required for a specific case remained (too) high 
for technology transfer, given that this holonic MES technology is not 
(yet) established in the market/industry. For our own research purposes 
and/or for an established MES technology, this required effort and time 
are workable.

•	 Technology transfer (still) requires IT skill and service levels that are 
lacking in many factories. For example, some information resides in 
spreadsheets for personal use only.
Relative to 2015’s state of the art, MPA utilizes the following ICT:

•	 Software development in Java technology on Windows.
•	 Emulation/simulation in Java, featuring hybrid emulation.
•	 Multimodel based generation of Java emulation code.
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AgCo2 (Agents for Coordination and Control, 2001–2005)/
ACDPS (Autonomic Computing for Decentralized Production 
Systems, 2006–2010) (Saint Germain, 2010; Verstraete, 
2009; Hadeli, 2006; Holvoet et al., 2009; Parunak et al., 2008; 
Valckenaers et al., 2009; Valckenaers et al., 2011)
In parallel with the above industry-guided research, fundamental research 
activities elaborated the PROSA+DMAS research results further. These  
activities were made possible by extensive financial support from KU Leu-
ven, through their ambitious and very competitive Concerted Research 
Actions (GOA) program.

In view of the above-discussed developments, the research team made 
the following contributions:
•	 The DMAS or delegate multiagent system. The DMAS concept gen-

eralizes the nature-inspired stigmergic coordination originating from 
the MASCADA project and the photographic foil case. Importantly, 
the terminology for defining and describing this DMAS concept was 
elaborated, improving communication. In particular, it is important to 
note the distinction with ant colony optimization, which is a one-shot 
problem solving/optimization technique (see Section “Ant Colonies 
and Stigmergy” in Chapter 8).

•	 The trust and reputation framework, triggered by the MABE objectives, 
was finalized within these fundamental research activities.

•	 A generally applicable cooperation scheme between optimizing/sched-
uling staff holons and the PROSA+DMAS holonic MES has been es-
tablished. This includes mechanisms that determine whether to follow 
the staff holon’s advice (cf. Section “Cooperation of HMES with Plan-
ning Systems” in Chapter 5); note that deviating from the advice at one 
point in time does not preclude reconnecting to the advice at a later 
point in time.

•	 A first contribution toward nervousness control. For the DMAS-gener-
ated predictions to be useful, order holons have to resist changing their 
intentions but have to remain capable of adapting their intentions when 
justified. The research established three basic mechanisms for individual 
order holons to manage their nervousness (cf. Section “Socially Accept-
able Behaviors for Delegate MAS” in Chapter 5).

•	 Systematically distinguishing of reality-mirroring software components 
from decision-making components by the introduction of intelligent be
ings versus intelligent agents (cf. Section “The DMAS Architectural Pat-
tern,” Chapter 6).
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•	 The ACDPS project translated the concept of Autonomic Computing 
(Sterrit et al., 2005) originally developed by IBM for automatic software 
maintenance, to manufacturing and other complex adaptive systems. 
Autonomic systems manage themselves: they are self-learning, self-op-
timizing, self-repairing, etc. The project aimed at making complex de-
centralized production systems autonomic by applying self-X principles. 
Autonomic behavior can be compared with homeostasis in living systems. 
Graceful degradation is a consequence of autonomic behavior. A holonic 
manufacturing system in which a machine breaks down behaves as an 
autonomic system because it stays active, although in a suboptimal way.
Future research still may/must address the following (nonexhaustive):

•	 Nervousness handling in small teams. For instance, order holons may 
swap allocations and/or reservations. This allows for significant adapta-
tion of their intentions in combination with only minor changes/distur-
bances for the remainder of the system.

•	 Generating predictions that employ probabilities and probability distri-
butions. The current developments only generate the expected value. In 
contrast to the trust and reputation framework, this would be explicitly 
coded (the trust and reputation framework uses track records to gener-
ate expected values with uncertainty information).
Relative to 2015’s state of the art, AgCo2 and ACDPS utilize the fol-

lowing ICT:
•	 Software development in Java technology on Windows.
•	 Emulation/simulation in Java, featuring hybrid emulation.
•	 Multimodel-based generation of Java emulation code.

C4AM (Control for Additive Manufacturing, 2010–2011)
C4AM is a technology transfer project. It applied the developments discussed 
above to an industrial facility for additive manufacturing (a.k.a. 3D printing). 
This facility has its own MES; commercially available MES offerings can-
not cope with the complexities of additive manufacturing. The research team 
realized a PROSA+DMAS implementation that cooperates with this MES 
and, specifically, adds the generation of short-term predictions (which was 
baptized production radar). The project successfully demonstrated this produc-
tion radar. Details are subject to a nondisclosure agreement.

A specific challenge for this project is the requirement for human in-
tervention regarding the composition of a build. A build is a composition 
of products that will be produced together within the work volume of an 
additive manufacturing machine. Importantly, a significant fraction of the 
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production time remains unchanged regardless of the number of products 
in a build. Therefore, 3D nesting software is used to optimize productivity 
when composing these builds. Human supervision and guidance allows sig-
nificant improvement over a fully automated generation of builds.

As a consequence, the team developed an estimator to compute which 
product parts will fit in a single build. If the actual build, human-supervised/
improved, turns out to be different, the PROSA+DMAS system considers this 
a disturbance, which is business as usual for this technology. Fortunately, im-
portant (high-value) subclasses of products rarely experience this disturbance.

This project experienced a major transition in software technology. Its 
development started while the research team employed Java on Windows. 
Because of the unavailability of key personnel at the industrial facility, the 
final demonstration of the production radar was delayed for several months. 
In the meantime, the key researcher participated in the MODUM project  
(cf. below), which was using Erlang/OTP technology. The latter is more 
robust and scalable by a significant margin. The remaining task for the final 
demonstration was to connect the Java version to the C# version of the MES.

The researcher decided to sacrifice one day to attempt connecting Er-
lang/OTP to the MES implemented in C# and “dot-net” technology; it 
worked within one day. In the following couple of weeks, the Java imple-
mentation was reimplemented in Erlang/OTP (note that MODUM al-
ready had developed generic software for DMAS in ARTI systems). This 
swift transition to Erlang/OTP constituted empirical evidence that this 
high-end software technology is well suited for PROSA+D-MAS imple-
mentation. In particular, it reduces the time and effort needed to move from 
TRL42 or TRL5 to TRL7 (and even TRL8) considerably.

The manufacturing cases section concludes with this successful con-
frontation/marriage of the research results with industrial practice. Next, 
the research and developments outside manufacturing are discussed.

NONMANUFACTURING CASE STUDIES (Van Belle, 2013; 
Van Belle et al., 2011a; Van Belle et al., 2011b; Van Belle 
et al., 2013; Van Belle et al., 2009)

During the final phase of the MASCADA project, an EU-spon-
sored feasibility study, called MAGECC explored the generic applicabil-
ity of the MASCADA manufacturing control technology to domains 

2Technology readiness level.
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other than manufacturing. This study delivered a basis for the nonmanu-
facturing applications that are discussed below; recall that the introduc-
tion of this chapter discusses the generic applicability range in more 
general terms.

Holonic Logistics Execution Systems (HLES)
Logistic operations are neighboring manufacturing (e.g., MABE already 
addressed networked manufacturing). It therefore constituted a logical next 
target. In our research, cross-docking has been studied in some detail. Cross-
docking is a frequently used logistics strategy. The idea is to transfer in-
coming shipments directly to outgoing trailers, with little or no storage in  
between. This practice can serve different goals: cost reduction, consolida-
tion of shipments, etc.

A terminal dedicated for cross-docking is called a cross dock. It is a 
building with docking slots for trucks. When trucks arrive, they drive back-
ward into their designated slot from which they will be loaded and unload-
ed. For instance, trucks may arrive from farmers, loaded with a single type 
of vegetable, and be unloaded into the cross dock. In turn, empty trucks, 
also docked, will be loaded with a mix of vegetables as they are ordered by 
the shops. The load distribution is typically such that the unloading at the 
shops requires minimal reshuffling of pallets. Often, cross-docking is com-
bined with warehousing and quality control.

A general cross-docking case has already been discussed in Section “Co-
operation of HMES with Planning Systems” in Chapter 5, where the co-
operation of the HLES with a planning system was outlined. An important 
issue here is the need for multiresource allocation. Indeed, to perform some 
logistic operations, multiple resources are required at the same time. For 
instance, to unload an order from a truck at a cross dock, three resources 
need to be available simultaneously: the involved truck, a dock door to 
which the truck is docked, and a forklift truck to perform the unloading 
operation. In fact, for every operation of a forklift truck, two resources are 
needed: the forklift truck itself and a forklift driver. The HLES deals with 
this issue by, first, mirroring it in its digital image of the world of inter-
est and, second, apply a search strategy suited for the prevailing situation  
(cf. Section “Challenges and Lessons Learned from Applications,” Chapter 6, 
on multiresource allocation and auxiliary operations).

Another logistic application (project ELC2) was the holonic control 
of a chain conveyor. These chain conveyors are commonly used for in-
ternal transport in factories, often in complex interconnected network 
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configurations. In a sample case, a simple application considered a cross-
dock distribution center linked by a chain conveyor, as shown in Figure 7.6.

Trucks that arrive at the incoming docks (In1 and In2) are unloaded 
and the goods are placed on carriers. These carriers are put (manually) on 
a chain conveyor (Chain1). This chain conveyor has a length of 83 m and 
has 10 attachment points equally distributed along the length of the chain. 
Three transfers are connected to the chain (Transfer1, Transfer2, and Trans-
fer3), by means of a diverter. Before each diverter, a sensor reads out the tag 
of the passing carrier. At the end of each transfer, there is an accumulation 
stop with a carrier detector in front of it. These accumulation stops hold the 
carriers until they are removed by a worker and the goods are loaded in a 
truck at the outgoing docks (Out1, Out2, and Out3). The chain as well as 
the transfers move at a constant speed of 1 m/s.

Executable domain models were used to forecast, by virtual execu-
tion, how the system reacts to a disturbance, in this case, the late arrival 
of a truck (see also Appendix II on simulation). In a first scenario, five 
trucks arrive at time 0, one at each dock. The two trucks at the incom-
ing docks, which have to be unloaded, each contain 12 pallets. The three 
trucks at the outgoing docks are empty and have to be loaded with eight 
pallets, four pallets from both of the incoming trucks. The carriers can 
each transport one pallet. The outcome of the simulation shows that the 
pallets for the different outgoing trucks are mixed up when they are 

Figure 7.6 Layout of a (simple) cross dock using a chain conveyor.
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transported by Chain1. The simulation also reveals that the last pallet ar-
rives at its destination after ca. 330 s.

Scenario 2 is identical except for one of the outgoing trucks arriv-
ing later than expected. The truck at dock Out3 arrives with a delay of 
300 s. The outcome of the simulation shows that the inflow of the pallets 
is restrained; the pallets for dock Out3 are not released immediately. In the 
beginning of the simulation, only the pallets for Out1 and Out2 are trans-
ported. The last of these pallets reaches its destination already after ca. 210 s. 
The pallets that have Out3 as destination are released after 250 s. So they 
arrive at Out3 after 300 s, when the truck has already arrived. The last pallet 
reaches its destination after 410 s. By controlling the inflow of the carriers, 
the control system adapts/optimizes the load of the chain conveyors. This 
desired effect is due to the behavior of the exploring ants when they find 
out that a resource is not available.

In view of the earlier-discussed developments, the research team made 
the following contributions:
•	 The ELC2 project handled chain-based systems in which control ac-

tions have long and early commitments (i.e., when placing something 
on a conveyor chain, the subsequent displacements and occupation of a 
conveyor slot are fixed until an available removal point is reached).

•	 The cross-docking developments worked closely with planning systems, 
to manage the large search spaces.

•	 The cross-docking addressed multiresource allocation (i.e., loading op-
erations require a truck, a forklift, space, an operator, and the load itself).
Future research may address the following (nonexhaustive):

•	 Generally applicable solutions for the long commitments as encoun-
tered in chain conveyor systems (i.e., a solutions library).

•	 Generally applicable solutions for multiresource allocation (i.e., a solu-
tions library).

•	 More robust manners for close cooperation with planning systems. 
Loose cooperation, having the planner coping with reality, is suitably 
addressed above (cf. Verstraete 2009). The cross-docking developments 
selected to be more exposed to planners providing guidance. The proj-
ect ended before handling all planning cooperation issues could be ad-
dressed in full.
Relative to 2015’s state of the art, HLESs utilize the following ICT:

•	 Software development in Java technology on Windows.
•	 Emulation/simulation in Java, featuring hybrid emulation.
•	 Multimodel-based generation of Java emulation code.
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Robot Fleets (Philips, 2012a; Philips et al., 2012b; 
Philips et al., 2011)
In Section “The ARTI Reference Architecture,” Chapter 6, holonic task 
execution control of multimobile-robot systems has already been elucidated 
as an application of the ARTI reference architecture. As could have been 
observed there, when one wants to benefit from the goodies provided by 
the PROSA/ARTI/DMAS technology, the environment of the robots has 
to be included explicitly as a (mostly aggregated) resource holon. For exam-
ple, Figure 6.4 shows the resource holons for a door opening scenario/task.

The explicit representation and allocation of environment resources 
facilitates the execution of coordination tasks. Consider the case with an  
environment consisting of two rooms A and B connected by a narrow 
corridor. Two wheelchairs, SARA and LAURA, are involved (Figure 6.1); 
SARA wants to go from A to B, and Laura wants to go simultaneously from 
B to A. The narrow corridor allows only one robot to pass at a single time; 
hence, coordination is required.

Without coordination, the mobile robots risk deadlock and live-lock situ-
ations (cf. Figure 7.7). Indeed, failure to explicitly manage resource allocation 
creates the need to enhance this coordination-less system with a deadlock de-
tection and roll-back functionality, which is far from trivial even for a specific 
system configuration. Without a DMAS mechanism generating predictions 
concerning the time and duration of resource (narrow corridor) allocations, 
the mobile robots lack information to balance a longer route against waiting 
for the resource to become available.

Figure 7.7 (top) shows a trajectory resulting from this lack of informa-
tion. SARA intends to execute the dashed trajectory. When discovering that 
the narrow corridor is blocked by LAURA, SARA considers the corridor to 
be unavailable and recalculates its routing. Next, SARA starts to execute the 
alternative route circumventing the blocked corridor (if available). When the 
corridor becomes available again, SARA reverts to its original solution. There 
obviously is margin for improvement (if only for the wheelchair user to keep 
his or her confidence in the technology). Centralized planning is one option 
but not without its known drawbacks (scalability and maintenance issues).

Using PROSA/ARTI/DMAS, the wheelchairs avoid deviations from 
the shortest path except for collision avoidance (Figure 7.7, bottom). Fur-
ther simulations reveal that the traveled distances are significantly lower 
than in the situation without coordination via the environment.

Figure 7.8 shows a slightly more complicated situation. Two wheelchairs, 
SARA (S) and INGA (G), are to move in opposite directions between two labs 
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in the authors’ laboratory. There is a mutually exclusive region where coordi-
nation is required. Figure 7.8 shows the 3D plot of the trajectories. The solid 
lines are the executed trajectories with respect to time, and the dashed lines 
indicate the corresponding trajectory projected onto the environment. The 
time dimension shows that INGA, starting at the left, waits until SARA, at the  
right, passes through the area where their trajectories overlap. The fact that  
the solid trajectories do not intersect indicates no collisions occurred.

Figure 7.7 (a) Simulation runs of two robots without coordination. Planned (dotted 
line) and executed (solid line) trajectories from start (circle) to goal (star) are depicted 
of robot 1 and 2 of a failed (A–B) and a successful (C–D) run. The deviations in the suc-
cessful run are caused by one robot avoiding the other. (b) Executed trajectories of two 
robots with coordination of a shared corridor. The robots first move to a transit zone at 
the side of the corridor’s entrance and wait for an available slot on the corridor resource. 
Whenever a robot has successfully allocated the corridor, it can move through it. The 
original path, indicated by a dashed line, and the executed path, indicated by a solid 
line, almost completely overlap inside the corridor.
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In view of the earlier-discussed developments, the research team made 
the following contributions:
•	 The research addressed 2D surfaces (possibly on multiple levels) as re-

sources.
•	 The research applied DMAS to improve the coordination.

Figure 7.8 3D plot of the trajectories followed by both robotic wheelchairs. The solid 
lines are the executed trajectories with respect to time, and the dashed lines indicate 
the corresponding trajectory projected onto the environment. The time dimension 
shows how the robot starting at the left (INGA) waits until the robot at the right (SARA) 
passes through the area where their trajectories overlap. The fact that the solid trajecto-
ries do not intersect indicates that no collisions occurred.
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•	 The DMAS prediction assist in preventing deadlock without negatively 
affecting performance.
Future research may address the following (nonexhaustive):

•	 Resource allocation for internal/embedded resources in nonhierarchi-
cal fashion (e.g., use of room sensors by a mobile robot, using sensors 
from another mobile robot).

Open Air Engineering (Ali, 2010; Ali et al., 2013; 
Ali, EP2531014)
Open air engineering processes, such as open-pit mining, road construc-
tion, and farming are mostly carried out with high-tech mobile equip-
ment. This equipment includes self-propelled work vehicles such as exca-
vators, dump trucks, asphalt layers, road graders, combine harvesters, etc. 
that are specifically designed to carry out these processes (Figure 7.9). 
Open air engineering processes are capital intensive, and the operating 
costs of the work vehicles account for a major proportion of the total 
process cost.

Over the last few years, substantial advancement in the technological 
development of the work vehicles can be observed. Besides mechanical and 
mechatronic improvements, an increasing interest is directed toward opti-
mizing the productivity of the work vehicles through proper planning and 
execution of their operations.

On a generic level, most open air engineering applications share the 
following:
•	 The mobile equipment interacts with a surface.

•	 These are nonflat 2D surfaces shaped in 3D space.
•	 Surface shape and/or properties are modified by the equipment.

•	 Material is either removed or deposited.
•	 Harvester and mining equipment remove.
•	 Asphalt layers deposit.

•	 Some local storage may be available.
•	 Asphalt-laying equipment have an on-board buffer.
•	 Combine harvesters have an on-board reservoir.

•	 Material needs to be supplied/shipped from/to a production/processing 
site.
•	 Asphalt is delivered by trucks from producing units.
•	 Ore, corn is shipped by trucks to depots and processing units.
The holonic execution systems need to coordinate these operations:

•	 The mobile equipment needs to be dispatched to (one of) the sites.



Figure 7.9 Open air engineering processes. (Top photograph “Bingham Canyon Mine, 
west face detail, Utah” by Greg Goebel from Loveland CO, USA - Yibcm_3bUploaded by 
PDTillman. Licensed under CC BY-SA 2.0 via Wikimedia Commons - https://commons.
wikimedia.org/wiki/File:Bingham_Canyon_Mine,_west_face_detail,_Utah.jpg#/media/
File:Bingham_Canyon_Mine,_west_face_detail,_Utah.jpg. Middle photograph by Cyron 
Ray Macey [CC BY 2.0 (http://creativecommons.org/licenses/by/2.0)], via Wikimedia Com-
mons. Bottom photograph “Fertiger-ABG-5820” von Inkulpat aus der deutschsprachigen 
Wikipedia. Lizenziert unter CC BY-SA 3.0 über Wikimedia Commons - https://commons.wiki-
media.org/wiki/File:Fertiger-ABG-5820.jpg#/media/File:Fertiger-ABG-5820.jpg).

https://commons.wikimedia.org/wiki/File:Bingham_Canyon_Mine,_west_face_detail,_Utah.jpg
https://commons.wikimedia.org/wiki/File:Bingham_Canyon_Mine,_west_face_detail,_Utah.jpg
https://commons.wikimedia.org/wiki/File:Bingham_Canyon_Mine,_west_face_detail,_Utah.jpg
http://creativecommons.org/licenses/by/2.0
https://commons.wikimedia.org/wiki/File:Fertiger-ABG-5820.jpg
https://commons.wikimedia.org/wiki/File:Fertiger-ABG-5820.jpg
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•	 The “trajectory” of the mobile equipment needs to be determined.
•	 The transport (trucks) need to be assigned for moving the material from/

to the mobile equipment to/from the processing/production units.
Since the operations of this mobile equipment are expensive, profit-

ability depends directly on how effectively this equipment is utilized. Loss 
of production capacity is to be avoided and minimized by proper coordina-
tion. Idling of the bottleneck resource(s) is the key concern. Here, the co-
ordination faces significant levels of uncertainty and variations in working 
conditions, possibly shifting the bottleneck from the mobile equipment to 
the transporters or vice versa.

The yield of the surface processing by the mobile equipment varies and 
is subject to uncertainty in function of:
•	 Technical settings of the equipment, representing a trade-off among

•	 Getting a lot of work done (e.g., tons of ore or kilos of maize per 
hour).

•	 Energy consumption and/or wear.
•	 Risk of damaged equipment.
•	 Doing the job well (e.g., leaving very little maize on the field).

•	 Surface properties:
•	 Density of ore.
•	 Crop density.
•	 Crop type (maize versus beans versus wheat).
•	 Shape (slope, corners, etc.).
•	 Accessibility (e.g., transporters may not be able to drive across the 

surface).
•	 Trajectory executed

•	 Parts of the surface may require maneuvering, slowing down the 
equipment or requiring the equipment to move without processing.

•	 Parts of the surface may cause a rough ride, have steep slope.
•	 Density variations depending on the trajectory.
•	 Accessibility for the transporters of various types.
Coordination needs to adapt to these varying and uncertain working 

conditions. But, the coordination also impacts on these working conditions. 
The “trajectory executed” affects how transporters may cross the surface to 
service the mobile equipment (e.g., trucks cannot drive across a 1 m steep 
slope created by the excavator, tractors must not drive over still-to-be-har-
vested crops). Using information about the surface, the trajectory selection 
affects the expected yield (e.g., crop density will vary across fields where 
historical data or aerial photography may allow for good estimates).
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Overall, coordination – holonic execution systems – can make a difference. 
When the truck is delayed in traffic, the mobile equipment shall be operated 
in an energy-saving mode, minimizing losses on the surface, tackling tricky 
parts of the surface, or perhaps performing small maintenance tasks. When the 
site is near the processing unit or depot, the mobile equipment utilization is a 
priority and the truck may have to wait when an optimized trajectory keeps 
the mobile equipment out of reach until its reservoir is full/empty.

The research investigated the ability of a holonic execution system to 
generate detailed plans for the cooperating vehicles and to maintain these 
plans for the changing conditions over time. In the implementation of such 
on-line planning systems, modeling the planning environment precedes 
planning and control stages. To model the system environment, the entities 
in the open-air engineering environment are structured along the ARTI 
reference architecture.

The novelty in addressing this application domain was twofold. Chron-
ologically, it was among the first to require multiresource allocation and, 
especially, multiresource allocation for which a leader–follower approach 
was ill-suited. In particular, the assignment of transporters to activities on 
mobile equipment prompted the choice for a resource pool holon, manag-
ing a collection of very similar resources. Because this research preceded 
to adoption of Erlang/OTP, the implementation of this approach did not 
survive the project.

Second, this application domain involved modeling surfaces as resources 
where activities modify the surface properties and where surface properties 
determine resource capabilities. For instance, a corn field surface will have 
initial location-dependent properties based on historical information and 
measurements. When a combine starts to harvest, properties of the pro-
cessed parts of the surface need updating (e.g., indicating that tractors may 
cross). Likewise, measurements by the harvesting equipment can be used 
to improve the estimates for the unprocessed parts of the surface. DMAS 
mechanisms explore the processing of these surface parts and, by propagat-
ing intention, predict the surface properties in function of time. For ex-
ample, the exploring ants for a tractor may see which paths to the harvesting 
equipment will be available when it arrives as well as the estimated position 
of the mobile equipment.

Overall, coordinating open-air engineering processes involves resource 
allocation and trajectory determination. Using the DMAS mechanism, 
this coordination aims to optimize one or more performance objec-
tives, for example, bottleneck utilization, energy consumption, etc. In an 
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open-air engineering process, the work vehicles perform operations at 
geographically distributed locations (mine site, storage depot, grain fields, 
etc.). Because of the open and distributed nature of open-air engineering 
processes, disturbances and variations are highly prevalent in their operat-
ing environments.

In practice, plans are generated before the process starts, based on ap-
proximate resource performance and predicted operating conditions. Al-
though these plans provide a good starting reference for execution, they 
are unable to provide the necessary visibility for continued execution of 
the processes, which are subject to uncertainty and variations. For effective 
execution, gaining visibility at run time, hence, is imperative. With more 
run time information, it becomes easier to identify sources of problems or 
opportunities and take effective decisions. This is what holonic execution 
systems are designed to provide.

In view of the earlier-discussed developments, the research team made 
the following contributions:
•	 The research addressed 2D surfaces (but not necessarily flat) as resources.
•	 The research addressed 2D surface changing state/properties (e.g., fields 

get harvested, open air mines get excavated).
•	 Multiresource allocation was addressed where needed (e.g., combine 

harvester and tractor executing a rendezvous to transfer wheat or corn). 
Future research may address the development of generally applicable 
solutions for multiresource allocation (i.e., a solutions library). 

MODUM – Models for Optimizing Dynamic Urban Mobility 
(Philips et al., 2013; Yperman, 2007)
MODUM was an FP7 Project on intelligent traffic and transportation sys-
tems (ITTS). The holonic architecture ARTI and the architectural pattern 
DMAS were applied to traffic coordination. This led to a Traffic Radar, using 
ARTI to model the traffic infrastructure and several DMASs to forecast 
traffic flows.

In this holonic architecture, the traffic infrastructure, that is, the road net-
work, is represented by two distinct resource type holons: link holons and node 
holons. Furthermore vehicle holons, represented by activity instance holons, 
correspond to trips in the traffic network, originating from traffic users.

A link holon is involved in three distinct actions. First, dynamic map 
information, received by, for example, a traffic monitoring system, is used to 
update its state. Second, based on this dynamic map information, for exam-
ple, indicating traffic density, propagation of flows and cumulative functions 
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are calculated. Third, back-propagation of queues, for example, due to bot-
tlenecks, is performed. Here, D4U is combined with research results from 
the ITS research community (Yperman, 2007).

Link holons provide D-MAS services to other holons. The Execute
Scenario service can be used to perform a what-if scenario on the holon 
returning travel time on the respective link given an arrival time and es-
timated traffic density. The ProclaimScenario service enables holons to also 
indicate their intention to arrive on the link. Finally, the PropagateScenario 
service supports adapting upstream or downstream flow on the link.

A node holon is involved in detecting capacity constraints. If flow in-
consistency between upstream and downstream links in a particular node 
occurs, for example, due to an accident bottleneck, the flow has to be adapt-
ed. To propagate traffic flow constraints both upstream and downstream, the 
node holon creates flow ants. This propagation models spill back over links 
and nodes. The other services offered by node holons are identical to those 
of link holons.

Vehicle holons represent users driving through the traffic network and, 
therefore, also virtually move through the link and node holons. They send 
out exploring and intention ants. These ants drop pheromones on the traffic 
infrastructure holons to respectively search and proclaim the route of the 
relevant vehicle holon from its origin to destination.

In view of the earlier-discussed developments, the research team made 
the following contributions:
•	 A successful translation of the manufacturing solution to mobility ap-

plications.
•	 The integration of “dynamic network loading models” or DNL  

models – from ITTS research – into the solution. This delivered a best-
of-both-worlds design. ARTI with DMAS is able to propagate user in-
tentions to generate predicted travel routings and road segment loadings. 
However, a naïve DMAS implementation is ill suited at computing the 
backpropagation of congestion. Here, the DNL models excel and are 
highly efficient. Conversely, traffic models are ill equipped regarding 
forward-propagation (as they have no concept to include detailed user 
intentions) whereas DMAS excel here.

•	 Note that when the solution is deployed such that congestions rarely 
occur in reality (i.e., when they are predicted, user intentions adapt ei-
ther voluntarily or through regulation when and where the congestion 
prediction persists), the demands on the DNL models are low; they only 
are used to stay out of congested states whereas there is no need to 
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model the precise behavior within such congested states (i.e., no higher-
order modeling is needed, dependence on initial/boundary conditions 
is low, etc.). The merger of results from two domains gives a superior 
result as both are used where they function well.
Future research may address the following (nonexhaustive):

•	 The application of ARTI with DMAS to the public domain revealed 
the need for accompanying innovations in the social domain. Indeed, 
the developed solutions yield the most benefits when there is a high 
level of participation in combination with a – beneficial level of – social 
control. Specifically, the prediction generation through delegate MAS 
needs high participation (the nonparticipating parties are considered 
and treated as disturbances). And the social control prevents good deeds 
from being punished; travelers accommodating others get rewarded for 
their contribution. In fact, they can refrain from accommodating until 
they have received guarantees for their reward.

•	 The project ended before it was able to address multimodal transport 
in full. However, the nature of a D4U solution makes it plausible that 
it only is a matter of modeling the world of interest in sufficient detail. 
Note however that this open issue shares the multiresource allocation 
challenges mentioned earlier already more than once.
Relative to 2015’s state of the art, HLES utilize the following ICT:

•	 This project made the transition to Erlang/OTP. It was a drastic im-
provement.

•	 Note that much of the unfinished items in the other cases, discussed 
earlier, can be allotted to the difficulty/impracticality of addressing them 
in the Java implementations.

Railway Operations (De Swert et al., 2006)
On a much smaller scale, the team looked at railway systems. Again, the is-
sue of handling long commitments emerged (Cf. ELC2 project). In railway 
operations, with trains being unable to overtake, the challenge of anticipat-
ing the impact of decisions needs addressing, for instance by exploring and/
or intention ants making roundtrips, collecting information on the way out 
and building a solution/journey on the way back.

Smart Grid (Rutten and Valckenaers, 2013)
Also on smaller scale, smart grid applications were investigated. The research 
looked in active demand at the smallest granularity possible, acknowledging 
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that aggregating afterward is far easier than the reverse (in IT systems). It 
foremost was an exercise in covering continuous-time domains:
•	 Whereas products in a factory and travelers on the road execute a trajec-

tory visiting resources (e.g., processing equipment and road segments re-
spectively), electricity consumers and producers have a time-continuous 
profile for their consumption or production, respectively. Consequently, 
intentions will be profiles in function of time of power, energy, etc. Note 
that the smart grid community introduced the notion of prosumers, 
which may both produce or consume.

•	 Electricity is a single commodity. Here we point out that electrons 
injected at one point in the grid, sold by producer P, do not have 
to be transported and distributed to consumer C, who bought this 
from P. Electrons are exchangeable, which is not true for the above 
applications.
This offered an interesting challenge for the application of the 

PROSA+DMAS concepts. It proved possible to design an exploring DMAS 
as well as an intention-propagating DMAS, not only for energy or power 
consumption but equally for the distribution of this power across phases, for 
voltages, for reactive power, etc.

Interacting with the smart grid community revealed that the above 
remains foremost an exercise in applying D4U to an application do-
main with radically different properties, showing that it is possible to 
effectively use the D4U concepts and approach in such domains. What 
remains to be investigated and described is where and how D4U is best 
applied and used within a smart grid. Or in other words, where are the 
conditions for a successful application fulfilled in a socioeconomic sense? 
And where and how can D4U be introduced within the comfort zones 
of the grid community?

First of all, note that the economic gains from applying D4U in a smart 
grid are limited in comparison to, for example, the potential benefits in 
manufacturing or health care. Energy still is relatively and surprisingly cheap 
(as is transport in logistics). D4U gains come from exploiting the demand-
response margins, not from the energy generation and consumption per se. 
This represents only a fraction of the economic value in the electricity grid. 
Larger gains have to come from “not having to invest in building new in-
frastructure” (e.g., power lines). Moreover, consumers may avoid discomfort 
by paying more (unlike traffic where this only brings better in-traffic-jam 
entertainment) as long as blackouts are avoided.
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Within the grid and from a D4U perspective, there roughly are three 
distinctive areas:
•	 Transmission (TSO3 domain)
•	 Distribution (DSO4 domain)
•	 Home domain.

Their suitability for D4U application differs considerably.

Transmission Network Operations
In the TSO domain, power is transported along a mesh of power lines at high 
voltages. Only large installations (generators, industrial installations) are con-
nected to this highest level of the grid. From a D4U perspective, this is a small 
system representing large investments serving a massive number of customers. 
Hence, conventional manners of operating will most likely remain effective 
and efficient. It is economically feasible to have teams of (well-paid) human 
experts manage the transmission system with the assistance of ICT-based 
planning and/or control systems in shifts covering 24 h every day of the year. 
It is economically feasible to install (very) expensive sensors and actuators.

Moreover, the meshed nature of transmission networks requires a D4U 
design that is similar/analogous to the MODUM design discussed above. To 
model and compute the state of a power transmission network, the appli-
cable laws (i.e., Kirchhoff ’s laws) need to be accounted for. Existing systems 
in the TSO domain are able to provide suitable services, which compute 
the states and available capacities of the network elements over (near-future) 
time (i.e., when provided with the boundary condition values).

These TSO services must then cooperate with an ARTI and DMAS 
subsystem, which is using the (predicted) available capacities to explore for 
solutions and reserve capacity for the prosumers in the smart grid. The 
intention propagation provides inputs for the TSO services, allowing them 
to compute the network state for future (predicted) boundary conditions 
(i.e., what consumers, producers, and prosumers intend to do, propagated by 
DMASs through their connection by their distribution system).

This may result in predicted improper states (e.g., overloading a power 
line or voltage transformer some 3 h into the future). The refresh mecha-
nism of the D-MASs will observe this and have the activity holons adapt. 

3Transmission System Operator: organization responsible for the high-voltage long distance 
power grid.
4Distribution System Operator: organization responsible for a medium- to low-voltage part 
of the grid, sitting between the end user (homes) and (a connection to) the high-voltage 
transmission system.
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Here, timely convergence has to be ensured; note that this can be done by 
a virtual safety net that simply will be picking suitable victims (when the 
self-organizing mechanisms remain ineffective).

However, the economic and technical benefits of applying the above 
cooperation are doubtful. Currently, considering the transmission systems 
to be copper plates connecting the distribution systems is likely to be suf-
ficiently accurate for coordination with DMAS on a grid scale. The errors 
would be manageable disturbances. More in general, “balancing production 
and consumption” first and handling transport second (as a control prob-
lem) appears to be a feasible approach in the grid at this level (recall that 
power/electricity is single commodity).

Smart Homes
On the other extreme, the home level struggles with the (meagre) amount 
of power (flexibility) on offer and the amount of ICT investment needed 
for these small amounts of power. However, in the long run, these ICT 
investments will be shared with other concerns (home security, comfort, 
health care), and perhaps even cost savings when electrical appliances use 
their networking capabilities to have their control panels solely on smart-
phones, tablets, and computers (simplifying the device itself).

Here, the system is huge, which implies that conventional approaches will 
not work. The question is how to make them cooperate with the conventional 
system (at the TSO and DSO levels). For instance, instead of developing a full-
blown D4U execution system, D4U insights can be used to make flexibility 
available to the more conventional solutions. This offers two kinds of benefits.

First, it postpones as long as possible the conversion of a representa-
tion of the actually available flexibility into a format used by the prevailing 
conventional problem-solving mechanism. This allows to change, improve, 
or replace this problem-solving mechanism with little effort (i.e., the early 
mechanisms do not become a legacy issue). It also makes visible/known 
what the potential improvements for such mechanisms are when the infor-
mation reflects the actual flexibility (and not an information-losing projec-
tion on the format needed by the current problem-solving mechanism).

Second, a D4U representation of actual flexibility will mirror how this 
connects to the nongrid side. It will provide a suitable starting point to co-
ordinate, across boundaries, between the electricity grid and, for instance, the 
system that is using the electricity to cool, heat, cook, clean, charge, etc. More-
over, making flexibility explicitly available has the advantage that it can be 
done beforehand (e.g., soft real time over the internet), whereas actually using 
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this flexibility can happen very fast. Indeed, it can be used as reserve power to 
manage an imbalance between supply and demand within seconds.

Distribution System Operations
The DSO domain is facing serious challenges. Individually, they may be 
modest-size systems from a D4U perspective but they represent smaller 
investments and serve fewer customers than in the TSO domain. Cost-ef-
fectiveness is an issue5 when upgrading the current systems to address the 
future challenges posed by renewable energy and prosumers.

It is undecided whether the DSO domain will have the option to ad-
dress its upcoming challenges within its own domain. It may need to drasti-
cally improve its sensing and measuring capabilities as well as it actuation 
and steering capabilities. But inside their own systems, the required invest-
ments (number of sensors and actuators multiplied by their unit costs) ap-
pears to be prohibitively high. Smart solutions, implying cooperation with 
nonDSO entities, appear to be superior concerning cost-benefit.

Here, research may look into rendering a large number of low-quality 
sensors, actuators into a high-quality aggregated sensor-actuator. The single 
commodity property offers possibilities. However, these low-quality (consum-
er-grade) sensors and actuators will reside in the home domain. Possibly, a low 
number of high-quality industrial-grade sensors may serve to calibrate and 
complement the low-quality ones. Note that these consumer-grade sensors in 
networked electrical compliance may become very cheap if this is planned and 
standardized appropriately (i.e., integrated on the device control IC).

In addition, some kind of D4U execution system may be needed to turn 
a large number of small actuators into an equivalent of a high-quality actuator. 
Here, single commodity implies that this actuation may reprofile and must not 
be responsible to the actual full profile. Here, the DSO network is not meshed 
at any given instance. (It can be reconfigured and has the potential for meshing, 
but this would only complicate its control without offering an incentive to do 
so.) This provides a natural environment for DMASs.

Discussion
Overall, it still are early days for D4U in smart grids. Conditions for smart 
solutions will be improving for the foreseeable future. It will be possible to 
share costs with other application domains, and the growing importance of 
renewable energy, electrical cars, heat pump, CHP installations, etc. will render 

5Looking at one’s electricity bill, distribution accounts for a most significant percentage.



Case Studies and Research Projects 171

smart solutions more viable. The speed and the magnitude of this shifting will 
determine what kind of solutions will be needed. For instance, current and 
forthcoming practice relies on the fact that electricity is a single commod-
ity and the aggregated demand of a massive number of users averages into a 
fairly predictable profile (in function of date, time, and weather). When the 
intelligence in the grid and its users increases, these predictions may no longer 
remain valid, and users may need to communicate their intentions and com-
mitment levels to preserve a usable forecast (as we have today).

Today, the smart grid community is solving its future challenges as they 
present themselves by adequate solutions that respect the prevailing players as 
good as possible. Importantly, preventing blackouts and providing balancing 
power will and can be addressed by shifting household consumption without 
a lot of intelligence (e.g., increase fixed day–night prices into four to five fixed 
time periods) and demand response residing at big (industrial) prosumers.

Further increasing renewable power production is likely to be achieved 
more economically by keeping sufficient conventional installations in the 
stand-by mode (both spinning reserves and otherwise) than by massive intel-
ligence in households in the immediate future. Home intelligence investments 
need to be extremely low cost (i.e., integrated in future products rather than 
installed separately on existing). Or it needs to be paid for by other parties/
concerns than shifting electricity consumption. For example, home intelli-
gence for security, comfort, and health care may also be usable for energy man-
agement purposes and provide household demand response almost for free.

In conclusion, this research was interesting because of the radically differ-
ent nature of the application domain. However, the economic reality makes 
it unlikely that fine-grained demand response will become a reality in the 
foreseeable future. Electrical energy, electricity, remains relatively inexpensive, 
and cherry-picking, utilizing the best and least complicated/discomforting op-
portunities first, is likely to keep the grid up and running. Note, however, that 
design for the unexpected goes beyond grid intelligence for demand response. 
Forthcoming research addresses more technical aspects concerning interoper-
ability (cf. Section “Smart Homes, Smart Grids, and Energy Storage”).

ONGOING AND FORTHCOMING CASE STUDIES

Current and forthcoming research is expanding the applicability of 
design for the unexpected into two domains. The first is e-health. The sec-
ond is smart homes and interoperability; the focus is on storage of energy, 
both electrical and thermal.
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E-health and Integrated Care (Valckenaers and 
De Mazière, 2014)
Recent ongoing research has elaborated a conceptual HHES6 design7  
targeting “integrated care and multidisease.” Applying ARTI and DMAS, pa-
tients and care providers are “extended” and “enhanced” by reality-mirroring  
computer processes. For instance, there will be, for each patient or care 
provider, an e-Person/holon comprising
•	 A resource type holon,
•	 A resource instance holon,
•	 An activity type holon,
•	 An activity instance holon.

These will be composite/aggregated holons, where each holon may be, 
in turn, divided into intelligent beings (executable software models mirror-
ing reality) and intelligent agents (modeling the decision making).

A patient will be considered an aggregated resource in both the logistic 
and medical sense. In the logistic sense, a patient must be, for example, pres-
ent for a medical intervention, must be conscious to answer questions, must 
be physically able to self-inject insulin, etc. In the medical sense, a patient 
is considered a composite resource comprising kidneys, a liver, a stomach, 
a blood circulation system, etc. where, for example, these organs need to 
have the capacity to tolerate medication and other treatments. Care provid-
ers will be considered resources required to execute health care activities. 
Other resources, reflected in the HHES, correspond to equipment (e.g., 
a CT scanner) or supplies (or supply channels) for medication and other 
consumables.

Health care activity instances use exploring and intention ants to coor-
dinate care proactively, even across organizational boundaries. Health care 
activity types inform instances about the available options (e.g., self-inject 
insulin or have another person inject the insulin). The activity instances 
search for and recruit suitable resources to execute one of the options. They 
do this proactively, discovering problems and opportunities early.

When the patient is injured and cannot self-inject insulin, the instance 
looks for a person to assist as soon as information about the injury becomes 
known. When in case of multidisease multiple medications are about to en-
ter the patient’s stomach or bloodstream together, the intention-propagat-
ing DMASs will inform the affected resource instance holons as soon as the 

6Holonic Healthcare Execution System.
7TRL2.
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corresponding activity instances are activated (and send out intention ants). 
This information can be fed to a triage mechanism (implemented as an in-
telligent agent) to check for interaction among these medications. This may 
change the “predicted” result of an activity instance step when executed 
virtually, causing the activity types to account for interactions.

In health care, the challenge addressed in C4AM returns in full. The solu-
tion needs to distinguish – that is, provide separate but paired software com-
ponents – between best-guess and signed-off implementations (cf. Section 
“Challenges and Lessons Learned from Applications,” Chapter 6). To generate 
predictions efficiently, fully automated software of low computational com-
plexity must and will be employed. However, when decisions and actions are 
for real, suitably authorized humans are to be involved (and in control).

Furthermore, privacy and information disclosure become key concerns. 
MABE already delivered insights and mechanisms but further developments 
are needed. Importantly, our solution – comprising communicating com-
puting processes – offers interesting opportunities and possibilities. Indeed, 
it is possible to imitate human-based solutions in which two agents share 
information on a need-to-know basis.

Moreover, the open nature of e-health applications, in particular our 
patient-centered and empowering design in integrated care, calls for novel 
ICT-enabled cooperation. In fact, this domain is highly suited to investigate 
social innovations leading to new beneficial/desired manners for people 
to live together. It is a vehicle to discover what is needed to create a warm 
synergy-enabling mechatronic society.

Overall, e-health and especially integrated care crossing organizational 
borders are suitable targets for the design for the unexpected. It has the right 
properties, and it offers interesting challenges to trigger insights and the 
development of capabilities.

Smart Homes, Smart Grids, and Energy Storage
Recently, D4U research in home automation and particularly in energy 
storage focuses on devices and systems of devices, addressing in-depth in-
teroperability. Here, interoperability is understood to enable far-reaching 
integration achieved by establishing the proper connectivity without having 
to redevelop the components, devices, or systems themselves.

The research activities look at devices as a structured collection of re-
sources, on which activities execute. In-depth interoperability implies that 
those resources remain accessible, also for unexpected uses. If the native de-
vice controls fail to support such unexpected use, interoperability support 
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signifies that its resources can be deallocated from the native controls and al-
located to another one. Furthermore, resource instances need an agenda ser-
vice to enable proactiveness (provided by an intention-propagating DMAS).

Moreover, device services lacking critical mass also have to allow deal-
location and replacement when and where desired. This applies most defi-
nitely to the programming services and facilities offered and supported by 
a device or system. The research will describe and communicate that there 
exists a “valley of death” for programming facilities/languages/tools (offered 
on devices).

On one side of this valley, the KISS principle is upheld. Only very sim-
ple services are available, which can be used without a lot of training or 
expertise/talent and which pose few debugging challenges. Here, in-depth 
interoperability typically requires external systems to have access to the  
sensors, actuators, and state information of the device with sufficient  
bandwidth and low delay. Indeed, the device services are lacking the expres-
sivity needed for nontrivial applications.

Older industrial automation technologies reside on this side of the val-
ley but they are very close to the edge (as they are programming tools), and 
the valley is expanding in manners threatening to engulf them. Human tal-
ent, capable of developing nontrivial applications, may only be motivated 
externally (e.g., by high wages or positions in the organization) to dedicate 
time and effort to these technologies. The survival of these industrial tech-
nologies can be ensured by shrinking their responsibilities such that they in-
creasingly comply with the KISS principle (i.e., the technology can be used 
by most employees knowledgeable about the application without needing 
much programming skills or expertise).

On the other side of this valley, full-fledged programming languages, 
tools, and platforms are used. They need critical mass (cf. Chapter 4). In 
particular, talented computer scientists – or equivalent – must either already 
master the programming technology or must be self-motivated to learn how 
to use it. If it is necessary to motivate them and keep them motivated by 
external means (e.g., by high wages or by a position in the organization that 
cannot be given to all the members of a team), it is advisable to conclude 
that the programming technology resides somewhere in this valley of death.

The programming technology of choice in our more recent research, 
Erlang/OTP, resides on this other side of the valley but sits still close to its 
edge. Mainstream technologies (C/C++, C#, Java, Python) are situated at 
a safe distance today but the valley is shifting. It is shifting in directions that 
favor Erlang/OTP as distributed and massively multithreaded programming 
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rapidly are becoming the norm. Furthermore, this technology offers ad-
vantages over mainstream alternatives that are relevant and even decisive. 
For instance, it significantly reduces the effort to transform a lab prototype 
into deployed solution.8 Moreover, the robustness and stability of Erlang 
technology implies that it is sitting on very firm ground next to the valley, 
allowing it to survive for more than 25 years.

In contrast, the newer sophisticated technologies from industrial automa-
tion are situated inside this valley, which is expanding in manners that make 
this situation worse for the foreseeable future. The absence of mature open 
source support is a tell-tale sign for many of these technologies. Indeed, how 
does industry expect a widespread adoption by teaching institutes when it is 
behind payment walls or requires time-consuming9 negotiations to get free 
access for ICT or industrial automation courses? Likewise, many technolo-
gies from the academic communities, including the artificial intelligence or 
multiagent communities, do not appear to escape from this valley.

In general, it is a decisive and nontrivial matter to decide which program-
ming technologies to embrace. Too conservative is a sure death in the longer 
run. Too adventurous equals risking death in the shorter run. It inherently is a 
balancing act (Waldrop, 1993) confirming that life indeed resides in the small 
region between order (too conservative) and chaos (too adventurous).

Concerning the activities that execute on the devices, which are imple-
mented with these programming tools, D4U principles require to make flex-
ibilities available. In this respect, research needs to discover what the agenda 
services of devices have to offer. The discussed explorations in the smart grid 
domain will be continued here. Overall, the smart homes and energy stor-
age research constitutes an instrument to design and describe (mechatronic) 
device control architectures and systems that are designed for the unexpected.

ABBREVIATIONS
ARENA® Discrete event simulation and automation software
C4AM Control for additive manufacturing
CHP Combined heat and power
DSO Distribution system operators
FACCS Flexible assembly cell control system
HHES Holonic healthcare execution system
IC Integrated circuit
TRL Technology readiness level

8Going from TRL4/5 to TRL7/8.
9Time from ICT lectors and teachers.
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Work by Others
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This chapter discusses work on multiagent (manufacturing) execution sys-
tems by others. It is not our intention at all to provide coverage or com-
pleteness for the research domain. Moreover, the inclusion or omission of 
contributions by other research teams does not reflect their importance or 
impact. The sole goal of our selection is to deepen the readers’ understand-
ing of this book. In particular, the section aims to highlight differences and 
similarities while discussing the trade-offs involved as well as the context, 
which induced these other teams to make their choices.

PRODUCTION 2000+ (Bussmann et al., 2004; Schild and 
Bussmann, 2007)

This research is well documented at www.stefan-bussmann.de/en/
agents/p2000p.html. Its agent-based control system comprises three types 
of agents:
•	 A work piece agent for every work piece in the system
•	 A machine agent for every machine tool of the system
•	 A switch agent for every routing element in the transport system

The work piece agents – knowing the state and processing graph of 
their work piece – look for processing capacity to execute their “operations 
to be performed next.” The allocation of a next machine is carried out by a 
simple first-price, single-round auction.

The protocol is initiated by a work piece agent. It determines the next op-
erations to be performed as well as a list of all the machines that are configured 
to perform (part of) these next operations (by looking into a static configura-
tion list). The work piece agent then sends an invitation to bid, which includes 
a specification of the operations to be performed, to all the machines in the list.

Next, the machine agents send a bid, including (i) the current size of 
their virtual buffer and (ii) the maximal set of operations they can perform 
during a single visit by the work piece. The work piece agent then collects 
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all bids and awards the best bid. Both components of a bid are used where 
the current size of the machine’s virtual buffer has the higher priority (to 
balance the workload). The awarded machine then includes the work piece 
in its input buffer.

This allocation protocol (www.stefan-bussmann.de/en/agents/ 
p2palgorithm.html#allocation) is actually more elaborate. Importantly, this  
protocol was designed for the following operating range, in which good 
performance will be achieved:
•	 A flexible transportation system able to move a work piece from any 

machine to any other machine as required by product variants.
•	 Flexible machines providing a range of operations to produce any vari-

ant of a product type.
•	 Large-series manufacturing in which a single work piece must be fin-

ished at some time, but not in the shortest time possible and not with a 
relative priority.
Overall, these are conditions in which a local and myopic decision is 

competitive with planning ahead. Note also that major characteristics of 
the underlying production system (e.g., flexible transport) are “hardcoded” 
in the design. And data formats are exchanged that inherently make as-
sumptions about the process plans (product holon) and resource (type) 
capabilities.

The control system development itself applied the following steps:
1. Analysis of decision-making. The team identifies and analyses the control 

decisions that are necessary to operate the manufacturing process. Also, 
dependencies between the decisions, causing a need for interaction 
during the execution, are identified and incorporated into a decision 
model.

2. Identification of agents. This step determines the system architecture of the 
agent-based control system. In particular, it decides about the agents in 
the control system while focusing on the decisions they are responsible 
for (including the interaction needed for these decisions).

3. Selection of interaction protocols. From a library of existing (agent-oriented) 
interaction protocols, a (most) suitable interaction protocol is selected 
and, as required, adapted to the specific needs of the particular case.
The development approach is based on the observation that, in industry, 

every manufacturing process requires a different kind of flexibility and func-
tionality; there is no one-fits-it-all agent-based control system. When designing  
a control application, designing/customizing the agents of the control system 
must be part of the implementation process. This observation is correct: as a 

http://www.stefan-bussmann.de/en/agents/p2palgorithm.html
http://www.stefan-bussmann.de/en/agents/p2palgorithm.html
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rule, manufacturing systems will have special needs relating to and, when de-
cisions are the concern, impacting on a company’s competitiveness.

The adopted approach leaves all participants in their comfort zone. Its 
objectives include providing methodologies that enable an ordinary1 (man-
ufacturing) engineer to apply agent technology without being an expert 
in agent technology. It also does not encourage the IT specialist to capture 
insightful manufacturing expertise and knowhow in software components 
or systems; reflection of the world of interest, as in D4U, is not prominently 
present in the approach or methodology.

The project was extremely successful concerning technical performance 
improvement over conventional dedicated production lines using hard au-
tomation. Nonetheless, the agent-based control system was not adopted  
beyond the initial manufacturing plant. The company learned which flex-
ibility is most beneficial and, subsequently, introduced more targeted 
flexibility in more conventional production systems using industrial auto-
mation software technologies. This was less expensive and could be done 
with readily available (human) expertise. Because too many properties of 
the ultra-flexible manufacturing system in Production 2000+ had been 
“hardcoded” into the agent-based control system, this system could not 
adapt fast enough and, thus, was unable to compete against solutions that 
benefited from insights generated by this project.

Discussion
Production 2000+ advocates the complete opposite of design for the unex-
pected. Its approach and development methodology is based and focusing on 
the decision making whereas in design for the unexpected, reality mirroring 
in executable models constitutes this primary concern. In D4U, decision-
making elements are introduced late and the overall system must never 
become highly committed to them.

The inability of Production 2000+ to adapt to a different underlying 
(manufacturing) system played a key role in its demise. However, a D4U 
solution would have been significantly more complex, if only because of the  
DMAS implementations that it uses to have its decentralized decision making 
compete with more conventional planning ahead. Applying the KISS prin-
ciple did not save the DACS2 methodology proposed by Bussmann. Agent 
interaction protocols, which are its main source of reusable software, deliver 

1 From the perspective of the ICT developers in the Production 2000+ team.
2 The design methodology proposed by Bussmann from his Production 2000+ experience.
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far too little of the overall functionality that is required from a control system. 
More reuse of software and more sharing among multiple users is needed.

D4U and DACS are opposites. But this does not imply that either needs 
to be wrong. The DACS approach and steps in Production 2000+ are well 
suited for a final development phase: they come last and implement the fea-
tures and functionality as requested by the user. It is suited to finish the job. 
In contrast, design for the unexpected is superior to develop the reusable 
platforms on top of which a Production 2000+ approach builds a specific 
working system. Note that, when combining D4U and DACS, this final 
phase develops pure decision making components, not full-fledged agents.

XPRESS (XPRESS, 2007–2011)

XPRESS – Flexible Production experts for reconfigurable assem-
bly technology – is a so-called Integrated Project funded by the European 
Commission under FP6-NMP. Its research has been continued in an aca-
demic setting and published in Peschl (2014). The goal of XPRESS was 
to establish a flexible production concept based on the idea of “special-
ized intelligent process units” (called expertons) for customized production. 
XPRESS aimed to integrate intelligence and flexibility at the highest level 
of the production control system as well as at the lowest level of the singular 
machine. The expertons have been renamed into manufactrons for “legal” 
reasons (some other party already possessed rights on the experton name).

Developments Driven by End User Requirements
In contrast to D4U, which started from a theoretical understanding of the 
root causes for failure during integration, XPRESS starts from identifying 
and consolidating industrial requirements. While starting from end user re-
quirements is not a panacea for success, these requirements reflect the desid-
erata of the industrial automation and manufacturing communities as well 
as their (lack of) insight. They constitute a valuable research result as such.

A common risk, when using user requirements to drive developments, 
are overly tight connections to these requirements. For instance, consider the 
requirement for deterministic behavior. This normally is achieved by con-
straining what the system elements may do. However, such constraining can 
be introduced late. A user requirement for deterministic behavior implies that 
early developments may not prevent such constraining but does not mandate 
that such constraining needs to be introduced at all levels and at all times.
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Wishful thinking – the Christmas list syndrome – is another issue, with 
user requirements driving development too tightly. Technology hyping is caus-
ing considerable damage whenever user expectations prove illusionary. For 
instance, looking again at the requirement for deterministic behavior, a highly 
constraining design may – deterministically – result in some unacceptably 
poor behaviors when adapting to a-nominal situations is rendered impossible.

Failure to recognize how the world is changing outside the own domain, 
and how inevitable and serious its impact will be, is common in industrial 
and manufacturing automation. For instance, the Manufacturing Automation 
Protocol3 failure and demise is easily explained by the insights on autocata-
lytic sets in Chapter 4 (i.e., caused by the absence of critical user mass).

Today, the industrial automation community needs to recognize that the 
sophistication of their envisaged automation projects requires the skill level 
of a master in information and communications technology (ICT). When 
considering the implications for the own career, the talented holders of 
such an ICT degree will be reluctant to invest their own time in industrial-
automation-only technologies (as they have plenty of other opportunities 
to dedicate their career to).

In other words, user requirements are valid information but need further 
“processing” if they are to drive developments. In this respect, XPRESS has 
a lot of respect for the comfort zone of the industries (manufacturing and 
industrial automation) but has little consideration for the manner in which 
the world is changing, and how mainstream ICT may impact industry.

Task-Description-Driven Manufacturing (Peschl, 2014)
XPRESS distinguishes:
•	 Task-driven intelligent production equipment. Input is a task description, goal, 

and boundary conditions. Output is the result of the task execution. The 
experton/manufactron interprets the input, executes the task, and as-
sesses the result.

•	 Workflow execution at the manufacturing execution system (MES) level. In-
put is the eBOP (electronic bill of processes) and feedback from previ-
ous processing steps. Output is task descriptions for the next processing 
steps, possibly modifying the sequence (e.g., to perform rework). Ex-
perton/manufactron orchestration by workflow and quality managers 
handles workflow routing as demanded by the situation and optimizing 
as indicated.

3 http://en.wikipedia.org/wiki/Manufacturing_Automation_Protocol.

http://en.wikipedia.org/wiki/Manufacturing_Automation_Protocol
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•	 Workflow generation at the ERP level. Input is product description and 
optimization target. Output is the eBOP for the MES level and task 
descriptions for all processing steps.
The overall idea is a task-driven manufacturing system in which exper-

tons/manufactrons are self-contained entities, encapsulating expertise and 
functionality, which interact with their environment by the exchange of 
standardized synchronous messages. These self-contained entities aim for 
plug & produce.

Note that from a PROSA and ARTI perspective, the overall idea is more 
accurately described by “task description driven.” Indeed, a key distinction 
from PROSA and ARTI (or Production 2000+) is the passive role of the 
activity instances (or work pieces). XPRESS automates the common orga-
nization in manufacturing: production lines comprising processing units/
stations, which are intelligent (experts), executing tasks on dumb products/
parts.

XPRESS uses TDDs (task description documents) and QRDs (quality 
result documents), which corresponds to holons (agents) that are so-called 
first-class citizens in PROSA and ARTI (Production 2000+). Resource in-
stances have self-description documents whereas ARTI has holons.

Discussion
A major merit of XPRESS is its respect for the manufacturing community 
and its comfort zone. Its main weakness is too much respect for the manu-
facturing automation community and its comfort zone; there is a lack of at-
tention to the influence and impact from changes beyond this community. As 
the wording “experton” betrays, the project sees the world through the eyes 
of manufacturing process experts while the remainder aims at fitting as good 
as possible with current practices in existing manufacturing organizations.

The innovations that XPRESS attempts to introduce (will) reside, most 
likely, inside the valley of death discussed in Section 7.3. The description docu-
ments in XPRESS may either need a level of expressiveness that requires an 
unachievable critical user mass or may be overly simplistic for the project’s 
ambitions. Here, the original terminology (experton) reveals the bias of this 
research effort: manufacturing process experts running the factory while 
management remains an afterthought. XPRESS is focusing on the consid-
erable challenges of getting the manufacturing processes running correctly 
and efficiently while the logistic concerns have to follow.

ARTI aims for a separation of concerns, which enables these process 
experts to focus on their manufacturing process without bothering with 
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the routing, logistics, etc. But D4U also induces these experts to minimize 
their interfering and meddling with these workflow management concerns.

However, this does not disqualify the XPRESS results. It only positions 
them where most of the industrial automation is likely to end: they will 
implement the elementary processing steps in a manufacturing environment. 
However, the orchestration in a demanding and dynamic environment and 
integration on a larger scale will escape them. Indeed, as soon as the applica-
tion’s complexity escapes the abilities of a bachelor in industrial automation,  
a suitably skilled master in IT (or equivalent) is required. But recruiting  
of such human talent will require and results in a much larger role of  
mainstream ICT, hardened for industrial application but not invented by 
industrial automation (cf. industrial implementations of Ethernet).

The days in which industrial and manufacturing automation is allowed to 
create its own ICT solutions are gone. In communication technology, Ethernet 
has pushed MAP (manufacturing automation protocol) into oblivion already 
some decades ago. Other ICT technologies will follow. Autocatalytic set domi-
nance (critical user mass) is a law of the artificial that cannot be ignored as soon 
as the conditions for its applicability become a reality. This is happening now.

Relative to D4U, XPRESS neglected to exploit all major sources for 
components and systems that comply with the first design principle. It has 
no first-class citizenship for activity instances and types; they are reduced to 
documents. This has repercussions for the (non-)adaptation of the technol-
ogy (cf. valley of death). This impairs its range of scalability and applicability. 
When facing a network of production departments within a factory, organi-
zations without production lines, and products with challenging processing 
requirements, obstacles will be encountered.

PROSA SIBLINGS – ADACOR (ADACOR, home page; 
Leitão, 2004; Leitão and Restivo, 2006)

This section discusses ADACOR – an agile and adaptive holonic ar-
chitecture for manufacturing control – which is PROSA compliant but not 
D4U compliant.

ADACOR distinguishes four basic holons: supervisor, product, task, and 
operational. Product, task, and operational holons readily map onto the base 
holons in PROSA. However, the supervisor holons are no staff holons: they 
are mandatory. In PROSA terminology, this holon is an aggregated resource 
holon providing supervisor functionality and comprising operational ho-
lons and even task holons as sub-holons.
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ADACOR recognizes two alternative states: a stationary state, where the 
supervisor holon provides global optimization of the production process, 
and a transient state, triggered by the occurrence of disturbances, where 
the operational holons operate in a heterarchical mode. In stationary state, 
the holons are organized in a federated architecture, with the supervisor 
holon elaborating optimized schedules as a coordinator. If the system de-
viates from the planned behavior, for example, due to a machine failure, 
the control system enters in the transient state. ADACOR provides mecha-
nisms to return from a transient state to a stationary state. To this end, these 
mechanisms spread a digital pheromone establishing an “autonomy” level, 
which determines whether and where the control operates in a “stationary” 
or “transient” state.

The focus of ADACOR architecture is the shop floor level, and es-
pecially flexible manufacturing systems organized in job shop production 
type, characterized by concurrent and asynchronous processes with non-
preemptive operations and offering alternative product routings. In this re-
spect, ADACOR is a partial instantiation of PROSA. Conceptually, it starts 
from the reference architecture and introduces additional properties, reduc-
ing the scope but increasing the functionality. For its focus, ADACOR is 
closer to a fully operational production control system (less implementation 
work remains to be done). But it pays a price: outside its focus, it needs to 
be adapted (design choices need to be undone) whereas PROSA only needs 
to be further elaborated. This increased focus is not D4U compliant.

The exploration and intention propagation DMASs in PROSA and 
ARTI employ a different mechanism to cooperate with optimizing/sched-
uling holons. Each activity instance holon re-evaluates individually – when 
creating an intention ant – whether to follow the scheduling advice. Each 
resource instance holon gives priority to reservation requests in accordance 
with the scheduling advice. The scheduling remains optional, and switching 
between “stationary” and “transient” is fine-grained. Note that implementa-
tions of these individual decisions by activity and/or resource instances are 
able to coordinate, for example, by using a DMAS (i.e., D4U keeps options 
open). It is possible to have an ADACOR-like design to manage schedule 
adherence.

Importantly, ADACOR does not separate the generation of predic-
tions from the scheduling for optimization purposes. PROSA and ARTI 
acknowledge that predictions are useful on their own (e.g., to organize aux-
iliary operations). Moreover, this D4U prediction generation – as it is un-
concerned with and therefore unconstrained by the needs of optimization 
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mechanisms – is able to give priority to an accurate reality-reflection cover-
ing all the might-be-relevant concerns and characteristics. This distinctive 
quality of D4U designs (PROSA, ARTI, DMAS) is often overlooked in the 
discussion of work-by-others by researchers aiming for optimized produc-
tion. In addition, the manner in which activity instances reconnect with 
scheduling advice in a fine-grained manner equally fails to be registered 
in these discussions. The ability to adopt schemes for reconnection with 
advice, used by others, remains completely out-of-sight.

ADACOR is a prominent member of this collection of “PROSA sib-
lings.” ORCA-FMS is another example (Pach et al., 2014). Here, activity 
instance holons never return to a stationary mode. However, they switch 
individually. The idea is that the ORCA-FMS applicability range is charac-
terized by relatively short-lasting production times (from product launch till 
shipment). Therefore, switching back is not important when more recently 
launched (or to-be-launched) products benefit from a schedule based on 
up-to-date information.

Relative to the work discussed in this book, this work-by-others spends 
considerably more effort on performance optimization and evaluation. This 
includes research into novel optimization mechanisms that adapt, self-organize,  
etc. Until now, such performance optimization remains out of reach for 
D4U, as it is inherently choice-rich and noncompliant with the first design 
principle. How much is inherently and unavoidably out of reach for D4U 
remains an open question. The prediction capabilities, generated by inten-
tion ants, also seemed out of reach in the past. It stays undecided whether 
there are more discoveries to be made reconciling D4U with performance. 
However, these are likely to bring a body of knowledge or a collection of 
mechanisms/templates, not an enhanced architectural feature or pattern.

ANT COLONIES AND STIGMERGY

This section presents work by others that is mistakenly considered to 
be closely related to D4U research. Two examples are discussed. There ex-
ists undoubtedly other work that is erroneously assumed to be relevant in 
a D4U context.

ACO – Ant Colony Optimization
ACO is a single-shot problem-solving mechanism. This category of research 
is completely out of scope for the research in this book. Holonic execution 
systems address going concerns.
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This distinction is fundamental (Wegner, 1997). Taken to its extreme, a 
technology like IBM’s Watson is outclassed by a basic thermostat in view of 
Wegner’s insight that interaction is more powerful/expressive than compu-
tation. Watson receives a query, goes to work, and delivers a result. Nothing 
happens until Watson receives another query. Each query initiates a single-
shot problem-solving activity. The thermostat takes care of a going concern: 
keeping the temperature at its sensor close to the setting. It interacts with its 
environment and it takes care.

It makes little sense to discuss or address single-shot problem solving and 
handling going concerns in a single research context. Single-shot problem 
solving allows to measure, qualify, and compare performance to an extent 
that is unachievable for research addressing going concerns. Going concerns 
research may utilize single-shot problem solving as a step in an ongoing 
problem handling process. But cooperation across the border between the 
two classes is pointless, even counterproductive, as soon as one party fails 
(refuses) to appreciate how different these classes are (analogy: “still photog-
raphy specialists” looking at real-time TV images and judging based on the 
quality of single images out of a TV broadcast fragment).

Stigmergy in Agent-Based Simulation and Decision 
Support Systems
Another class of applications, which was inspired by stigmergy in ant colony 
food foraging, develops considerably simpler systems than the holonic ex-
ecution systems discussed above. The world of interest is typically modelled 
as a 2D grid, possibly with some levels (reflecting multistory buildings) or a 
shaped surface (reflecting a mountainous area).

In this grid model, simple agents (e.g., programmed as small state ma-
chines) evolve, deposit simple digital pheromones (i.e., scalar values and 
the pheromone type identifier), and sense digital pheromones. Importantly, 
these applications are sufficiently simple for one person to be able to pro-
gram them in a matter of days, maybe a few weeks. The challenge is in 
tuning these models and designing the agents (state models). Parunak and 
Brueckner have developed numerous applications based on this approach.

An interesting example utilizes automated programming to generate the 
agent programs (Parunak et al., 2007). The world model is extended with 
a discrete third dimension: time. It is like a book with the middle page 
corresponding to the present, the previous pages to the past, and the fol-
lowing pages to a – predicted – future. The past pages contain the observed 
states (trace). The automatically generated agents are injected in the past and  
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execute their – programmed – behavior until the present. A criterion is eval-
uated to estimate how well they fit the past. The best-performing agents are 
allowed to progress into the future. The result is used for decision support.

Note how this solution can operate online, processing new information 
as it becomes available. It addresses the going concern of providing a predic-
tive situational awareness in situations where knowledge about the world 
of interest is lacking and/or less than perfect. It not only predicts but learns 
about the characteristics of the underlying system in a manner that can be 
used for the predictions.

This is an approach that can be integrated in an ARTI system. Machine 
learning can be used to estimate relevant properties, preferably with lots of 
training data and slow changing properties. The learned properties can then 
be used for virtual execution, or DMASs that deposit these scalar digital 
pheromones can be used. In the latter case, the simplicity – which is very 
desirable – normally introduces a tuning task: how to interpret these scalar 
values that have no direct relationship to the corresponding reality. Overall, 
this is complementary and captivating research. It shares interests with D4U, 
unlike single-shot problem solving.

ABBREVIATION
ACO Ant colony optimization
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Summary and Outlook

SUMMARY

The story behind this book started by a fairly minimalistic modeling 
of the mechanisms causing the failure of system integration efforts. From 
the insights provided by this theoretical model, the research looked into the 
design of systems and components avoiding the failure-causing mechanisms. 
This resulted in design for the unexpected. Indeed, when developers want to 
ensure that their design is suited for integration without control over what 
needs to be integrated with, everything – even the unexpected – needs to 
be accounted for (Taleb, 2010).

Design for the unexpected is not a brute-force approach, vainly at-
tempting to account for all eventualities. Instead and first, it is about devel-
oping as much as possible elements of a solution without the need to rely 
on expectations (Chapter 3: Design Principles). Subsequent developments 
that cannot avoid relying on expectations are introduced in manners that 
still minimize this relying on expectations and minimize the effort required 
to revise or undo. In other words, this book is about a scientific approach to low-
and-late commitment (while still allowing for early preparation).

Inherently, design for the unexpected only provides an intermediate solution – a 
platform or basis – on which final solutions still have to be elaborated (see 
Section “The Watchmakers’ Parable” of Chapter 4). The (stable) intermedi-
ate solution reduces the time and effort needed for such finalization while 
improving service levels considerably. The surprising aspect of this research 
is how much can be achieved by designing for the unexpected first and how 
little remains to be done by finalization efforts afterward.

The most advanced research result is the development, based on the 
Design Principles (Chapter 3) and the Laws of the Artificial (Chapter 4), 
of a reference architecture (PROSA and its generalization ARTI) enabling the 
description of the structure of the complex adaptive systems occurring and 
emerging in mechatronic societies, and their interactions. The formalism is 
scalable by its rigorous “separation of concerns” (Section “The PROSA Refer-
ence Architecture” of Chapter 5).

CHAPTER NINE
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The control dynamics (task execution) are ruled by the DMAS (Section 
“Bio-inspired Coordination and Control in Holonic Execution Systems” 
of Chapter 5), with the ability of short-term forecasting as the most important 
ensuing feature, obtained by a decentralized virtual execution based on a digital 
mirror image of the world of interest that reflects reality at all times, as a single 
source of truth. DMAS is scalable and provides robustness to the controlled 
system.

The universality and general applicability of the PROSA/ARTI/DMAS 
framework are convincingly demonstrated in Chapter 7, with case studies 
from a wide variety of mechatronic societies.

OUTLOOK – TOWARD A HUMANE AND RESPECTFUL 
MECHATRONIC SOCIETY

Today’s society is transforming into a mechatronic society at a breath-
taking pace: ubiquitous computing, ambient intelligence, web 2.0, Internet 
of Things, big data analytics, smart power grids, smart homes, smart cities, 
smart harbors, intelligent traffic, intelligent multimodal transport and lo-
gistics, intelligent networked manufacturing, intelligent products, eHealth, 
domestic robots, smart watches, self-driving cars, industry 4.0, etc. There is 
no shortage of such buzzwords and slogans corresponding to the creation of 
a world in which information processing and communication increasingly 
play a larger role.

Every major change in society, although initiated to reap benefits, creates 
issues. Privacy, responsibility, accountability, empowerment, social control, 
etc. all need to be reinvented (Floridi, 2015). In today’s initial stages of this 
transformation of our society, much remains to be learned. Among others, 
the increasing returns1 characterizing ICT naturally result in monopolistic 
and oligopolistic situations (e.g., Microsoft, Google, and Apple). Large orga-
nizations, including governments and other authorities, obtain the leverage 
and power to unhealthy, risky2 extents. Whenever these large organizations 
experience the wrong kind of pressure, which only is a matter of time, abuse 
and damage to society will become reality.

1https://hbr.org/1996/07/increasing-returns-and-the-new-world-of-business
2The self-organizing mechanisms in our society imply that overly powerful authorities, 
where this amount of power often is justified by crime fighting requirements, result in 
organized crime becoming the authorities. Indeed, there is no balance/divide of power to 
control the authorities and there is no way to hide, for organised crime, except by becoming 
these authorities. It is only a matter of time and not a question whether this will happen.

https://hbr.org/1996/07/increasing-returns-and-the-new-world-of-business
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The contribution of design for the unexpected in this respect comprises 
an architecture that stays close to its world of interest. D4U solutions mir-
ror the corresponding reality precisely to be protected against unexpected 
future demands (Chapter 6). This has a beneficial side effect: humans are 
mirrored in a single-source-of-truth design. For every human, there is a 
single “e-person” available 24/7. In a D4U design, this e-person provides 
the maximum amount of services and functionality related to the corre-
sponding real-world person. Indeed, this is exactly what makes the D4U 
solution scale-able, integrate-able, and able to survive unexpected demands.

This opens perspectives to empower the individual well beyond the cur-
rent state of affairs. Information requests related to a person can be handled 
by this e-person, whereby the human stays in control. For instance, requests 
for medical information can be honored by not only providing the request-
ed information but also volunteering relevant additional information (e.g., 
flagging a relevant risk factor related to the requested information). When 
all such requests are directed at this e-person, the corresponding human has 
a handle to self-manage information processing that concerns his or her 
person in cyberspace. Among others, the e-person will have an overview of 
the parties asking and providing information.

This empowerment through an e-person provides, at least conceptu-
ally, solutions to tricky issues. For instance, when a powerful organization 
makes an unauthorized request (e.g., for sensitive medical information), this 
e-person may provide sanitized information. When another person (e.g., 
the medical doctor of this person) receives a similar request for the same 
information from this unauthorized but powerful organization, consistently 
sanitized information may be provided as this other person (medical doctor) 
consults the e-person (of the patient) concerned. This effectively neutralizes 
the dominant position that a powerful organization may abuse (e.g., under 
competitive pressure).

Another example is an e-person receiving a request to confirm whether 
some information is true and this is about an embarrassing situation some 
20 years ago during this person’s youth. The e-person may label it as “please 
forget, I sincerely regret…” and receivers of information about other per-
sons may filter such information out.

Such innovative solutions transcend the technological aspects on which 
this book focuses. They call for inter-, trans-, and multidisciplinary ap-
proaches in which, for instance, an effective strategy is elaborated to estab-
lish an appropriate kind of “political correctness.” This correctness involves 
always consulting the e-person and respecting its wishes in the absence of 
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ample, relevant justification to do otherwise. Likewise, legal measures need 
elaborating to achieve desired behavior under heavy pressures (e.g., in com-
petitive or political domains). Here, D4U needs joint research and develop-
ment with the social sciences and humanities.

Moreover, D4U offers (the potential to establish) superior services, in 
comparison to current practice, precisely because it empowers its users (both 
individual persons and groups). In particular, predicting the unexpected (by 
exploring and intention propagation DMAS designs) delivers a service that 
is out of reach of, for example, big data analytics. Indeed, the best way to 
predict the future is to create the future. The intention propagation in com-
bination with commitment mechanisms is exactly implementing this saying 
(in a distributed and collective manner). Here, persons are in charge of their 
future (subject to respecting others) when their e-person searches for and 
commits to a future by using DMASs on an ARTI infrastructure.

Again, this transcends technology; social sciences and humanities be-
come relevant, essential factors. Legal support may be needed to enforce 
(self-decided, self-imposed) commitments. For example, a person leaving 
for work late, allowing others to drive congestion-free to work during rush 
hours, may have a commitment from the other drivers to leave a given 
parking space free. This must be enforceable (such good deeds must remain 
unpunished if a superior service from D4U traffic management systems is 
to become a reality). Likewise, policy design needs to address situations in 
which the individuals cannot agree within the DMAS-generated predic-
tions (e.g., what happens when the prediction indicates an undesirable con-
gested state and no improvement can be observed).

Moreover, completely new models for a world of interest may need 
investigating. For instance, how can we model a world of interest for an in-
novative change management in organizations that empowers the individu-
als concerned, both for radical changes and continuous improvement pro-
cesses? Current practice reveals huge margins for improvement (cf. statistical 
data on burnouts and depressions). How can we achieve the value-creation, 
characteristic for market based organizations, in public services? How can 
we counter unhealthy dominance in supply chains, resulting in selective and 
poor information flows in markets (e.g., failure to have increasingly better 
food at constant prices instead of apparently constant, but de facto lower, 
quality food at lower prices)?

Today, the main topic on our research agenda is to create a mechatron-
ic society that is empowering, considerate, and hospitable toward humans. 
This book reveals the tremendous opportunities that are still available and  
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partially uncharted to make better use of the world’s scarce resources, to 
a better functioning of the world’s infrastructure at all levels of size and 
complexity, and to a more harmonic (mechatronic) society. Here, the an-
swers and solutions are available to researchers that are willing, able, and 
allowed (by society) to transcend the borders of their own discipline and 
comfort zone.
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What are (Software) Agents?

There is no widely accepted definition of the term agent that the authors 
are aware of, which – by definition1 – implies that there exists no such 
definition. A weak definition of a computing agent given by Wooldridge & 
Jennings (Wooldridge, 2002).

Definition: An agent is a software program with the following properties:
•	 Autonomy: agents operate without the direct intervention of humans or 

others, and have some kind of control over their actions and internal 
state ...;

•	 Social ability: agents interact with other agents (and possibly humans) via 
some kind of agent-communication language ...;

•	 Reactivity: agents perceive their environment (...), and respond in a time-
ly fashion to changes that occur in it;

•	 Proactiveness: agents do not simply act in response to their environment; 
they are able to exhibit goal-directed behavior by taking the initiative.
Note that strong(er) definitions of an agent mainly reflect research com-

munities attempting to “hijack” something that may strengthen their “brand 
name” in order to get access to funding, prestige, etc. and, therefore, rarely 
provide any significant added value.

D4U, PROSA, ARTI, and DMAS mostly correspond to situations in 
which several agents are interacting with each other, which leads to the 
following definition:

Definition: A multiagent system (MAS) is a set of interacting agents.

DESIGN FOCUS

When developing such a multiagent system, two aspects have to be 
considered:
•	 Agent design, focusing on the design of (the internal model of) the indi-

vidual agent.
•	 Society design, focusing on the responsibilities and corresponding interac-

tion between the different agents without specifying the internals of an 
agent.

APPENDIX I

1To be widely accepted, a term needs to be widely known.
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The BDI (Beliefs-desires-Intentions) model (Rao and Georgeff, 1995) 
and the subsumption architecture (Brooks, 1986) are both concerned with 
agent design, as they offer guidelines for the design of an individual agent. 
The PROSA and ARTI reference architectures on the other hand can be 
considered as involved with society design.

SITUATED IN AN ENVIRONMENT

When using agent technology in a holonic execution system, D4U, 
PROSA, ARTI, and DMAS have their agents evolve in a digital image of 
the relevant reality: the agents are situated in a software environment. In con-
trast to high-profile research on situated agents, D4U agents may reason 
by performing sophisticated computations and communications. What is 
important is that these situated agents do not need their own representation 
of the world to perform this reasoning. For example, each relevant physical 
entity has a software counterpart in this software environment (the digital 
image). There will be a single-source-of-truth design, which makes it easier 
to maintain a correct and up-to-date representation of the world of interest 
and it avoids inconsistencies and incompatibilities between internal repre-
sentations of different agents.
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Simulation, Emulation, and 
Modeling

The innovative software platform designs discussed in this book utilize sim-
ulation in a multitude of places for different purposes. However, the words 
simulation and emulation have widely varying meanings depending on the 
context in which they are used. This appendix intends to clarify this issue 
for the purposes of the discussion in this book.

SIMULATION – WHAT IT IS NOT (FOR US)

This section concisely discusses simulation as it is used/defined by 
others but not as the present discussion considers relevant. It is a nonex-
haustive list:
•	 Animation. In many domains, for example, entertainment, robotics, or 

machining, a real-world activity is simulated in 3D. The software gener-
ates a movie that visually depicts/simulates the object of the simulation. 
For instance, a pick-and-place operation by a robot.

•	 Physics. A whole subdomain of simulation targets physical systems such 
as computational fluid dynamics, targeting the flow of air over a wing of 
a next-generation aircraft.

•	 DEDS. In discrete event dynamic systems, mathematical models are used 
to analyze and simulate. The key requirement for the models is to allow 
and support analysis techniques; to this end significant simplification 
of reality commonly needs introducing. The theoretical nature of these 
models makes it nontrivial to ensure a correct correspondence between 
reality and the model, failing to guarantee the ability to mirror the struc-
ture of reality in the model (i.e., composition-ability).

•	 KISS. Keep it simple s… simulation is the prevailing textbook approach 
to simulation. Here, a simulation model of the complete system – that 
is to be simulated – is modeled keeping the simulation as simple as pos-
sible. In others words, it will be a simulation targeted and limited to an-
swering specific questions (e.g., how long it will take to empty a car park 
near a football stadium). Again, such simulations are unlikely to mirror 
the structure of what is simulated from reality.

APPENDIX II



Design for the Unexpected200

There are two motivations for excluding the above. The first reason is 
overkill (the simulation goes into too much detail). The required extra effort 
will cause the simulation to be time-consuming while the extra informa-
tion has little or no importance. Such simulation still may contribute indi-
rectly. For instance, it can be used to compute (initial values for) parameters 
of the models below (e.g., to compute the duration of a pick-and-place 
operation by a robot) and/or initial parameter values for components that 
will use on-line estimation methods (e.g., machine learning to track the 
duration of this pick-and-place operation). In addition, these more detailed 
simulations might be used during ramp-up and deployment. They can be 
used to confront the coordination and control system with an almost real-
world challenge and allow to remedy issues before establishing the connec-
tion to the real world (and exposing real-world assets to teething problems).

The second reason is too large a distance between the world-of-interest 
that is simulated and the model (elements). This prevents composition of 
the models when good-enough specific-purpose models are used. More 
importantly, this causes validation issues. When a model of a conveyor mod-
els directly how it behaves, measurements on such a conveyor provide the 
necessary data. When an aggregated model simulates a transport system, 
statistical validation is required where the range of conditions, under which 
the validation holds, remains difficult to assess. This kind of simulation lacks 
reusability and compose-ability. This type of simulation has little relevance 
for our purposes but shares simulation techniques (i.e., they use more or less 
the same tools and programming but apply a different methodology: fast 
results but not reusable).

SIMULATION – WHAT IT IS (FOR US)

Simulation and Emulation
The present discussion is concerned with simulation models that render 
interacting with the real world indistinguishable from interacting with a 
(model-using) emulation for the coordination and control. The coordina-
tion and control system may dispatch an operation and receive feedback on 
its progress and outcome from a simulation model or from an interface to 
a corresponding real-world operation. It will not perceive a difference. For 
instance, when a robotic pick-and-place is initiated, the simulation will send 
information as if the real-world operation took place.

In this case, it is possible to call this emulation: the simulation mimics/
replaces a real-world component or subsystem. The rest of the world is 
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unaware and unexposed to the fact that it is interacting with a computer 
program instead of a real-world process.

A key advantage/requirement of our approach is to mirror the struc-
ture/composition of the world that is simulated. This enables an initial vali-
dation on a component per component basis. For example, the emulation 
of the robot operations need to generate the right delays (time to perform 
a given operation) and outcome distributions (e.g., a small percentage of 
failures).

Software in the Loop
In order to validate the simulation of the coordination and control soft-
ware automatically, this software will be included in the simulation without 
modification except for an additional capability that can be disabled in de-
ployed systems. This software in the loop simulation ensures that validation 
of the simulation of the coordination and control is automatic and without 
any effort.

The additional capability consists of the coordination and control sys-
tem being able to signal when it is idling. This will allow a significant speed-
up of the simulation: the simulation may jump on its time axis to the next 
event. When the coordination and control system is busy, the simulation has 
to remain in a real-time mode such that events keep happening at the cor-
rect time (while the coordination and control is taking perhaps too much 
time to decide what to do).

Next to software, the hardware in the loop may be part of a deploy-
ment and ramp-up campaign. This entails that the coordination and control 
system is not only using the actual software within the simulation but also 
a computer network, as it will be deployed. Computing processes now ex-
perience more realistic delay when communicating over, for example, the 
Internet. However, hardware in the loop is optional and not an essential part 
of the approach in this book. Software in the loop is required.

Simulating Decision Making
To simulate as a standalone implementation, all decision-making processes 
need a model. Such standalone simulation comprises emulation models for 
the resources and processes in the world of interest but also executable 
models for the decision-making processes. Here, there are three categories:
•	 Simple decision-making software. This software will be its own model.
•	 Complex decision-making software. This may be its own model in 

the later phases that are part of a deployment activity (cf. hardware  
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in the loop and use of detailed/physical simulation models). How-
ever, there is a need for approximating simulation models, which are 
used for much-faster-than-real-time simulation (see further). These 
computationally simple models may use data generated by the com-
plex decision-making software, which is then executed at a lower fre-
quency.

•	 Human decision-making. There is a need for computationally simple 
models that generate – estimated – decisions made by the humans that 
they model. In deployed versions, these models may learn from feedback 
about the real decisions made by real humans.
Below, the uses of simulation are discussed in more detail. This will re-

veal why different decision-making models are needed, and how models are 
reused for different purposes.

Finally, decision-making software may need to support two or more 
modes:
•	 Low effort and good-enough estimation of the real decision-making 

outcome (e.g., only used to plan activities where this planning can/will 
be revised regularly).

•	 High effort producing a decision that can be executed in reality (e.g., 
needs to be signed off by an authorized person).
Currently, two modes are sufficient, but an intermediate version may 

emerge in future designs.

Hybrid Real-Time and Discrete-Event Simulation
Our simulation needs to address two conflicting requirements:
•	 Speed. As much simulation time needs to be covered in as little real-

world time as possible. This calls for discrete event simulation in which 
simulation time jumps to the next event as soon as the current event has 
been processed. Many simulation tools use this approach assuming that 
decision-making takes negligible time. Unfortunately, this assumption 
does not hold in our cases.

•	 Account for the time needed for decision-making. This calls for real-
time simulation in which event are generated when they occur on the 
real-time axis. When a decision-making process takes (too) much time, 
events will occur and the simulation will make the effect visible (e.g., 
poor performance caused by decisions after the facts).
As stated, the coordination and control software, executing in the loop, 

signals whether it is idle or not. When idle, the fast discrete event mode is 
used. Otherwise, the real-time simulation mode is used.
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USES OF SIMULATION

The simulation/emulation models are used multiple times.

Embedded Simulation at Run-Time
The proactive coordination and control systems use the executable models 
for – at least – two purposes. First, the exploration DMAS uses simulated/
virtual execution to discover and assess/evaluate candidate courses of action. 
Second, the intention propagation delegate MAS uses simulated/virtual ex-
ecution to inform all resources of their expected loadings/usage while pro-
viding each activity with its expected routing, including timing.

Here, much-faster-than-real-time virtual execution is essential. The 
models generate expected behavior. Alternatively, some safety margins 
might be included. Advanced models may generate probability distributions 
instead of scalar values (= future research).

Standalone Simulation
Whereas the above use occurs during actual deployed operations, the stand-
alone simulation connects the above to an emulated version of reality. The 
executable models used for virtual execution by the DMAS, rendering the 
system proactive, are used twice. First, they are used as above (= software in 
the loop). Second, the same models emulate the world of interest; the coordi-
nation and control system can/will not see any difference with the embedded 
mode, except that its idling indicator will be used to speed up the simulation. 
The embedded simulation operates in real time for obvious reasons (i.e., the 
events originate from the world of interest, which happens to be real).

The models emulating reality are generating stochastic data, sampled 
from the probability distributions in the models. The embedded models 
generate nonsampled distribution parameters (e.g., median values).

Deployment Supporting Simulation
Transitions from the standalone simulation toward the deployed system 
with embedded simulation may be performed directly. However, simulation 
is able to provide intermediate steps in which more control and observabil-
ity can be provided while real-world assets stay out of risk.

The emulation of the real-world system can be done in more accurate –  
usually much slower – simulation models (often providing detailed anima-
tion). Hardware in the loop can be added, and human decision-making and 
complex decision mechanisms can be introduced. All this is optional.
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TECHNOLOGIES USED FOR SIMULATION

Chronologically, software technologies have been used for research 
purposes. There has been an evolution from solutions suited for small-scale 
academic prototypes toward a highly scalable solution supporting emulation 
model development at commercially viable speed and cost. The main steps 
are discussed concisely:
•	 The initial solution was a combination of an established industrial simu-

lation tool in its most advanced version (i.e., Arena Professional edition 
supporting user-defined model templates) with C++. This solution only 
supported real-time mode. The hybrid mode is impossible because in-
dustrial simulation software does not support switching between real-
time mode and discrete-event mode within a single simulation run. In 
fact, most industrial tools only support discrete-event mode.

•	 This initial solution is complicated (e.g., needs a message distribution sys-
tem in Arena cooperating with a C++ counterpart). It also requires pro-
ficient developers knowledgeable in both C++ and the Arena modeling/
programming facilities. In summary, it was a barely workable solution al-
lowing to develop academic prototypes that were impractical to maintain.

•	 The second solution adopted Java in combination with a simulation 
software library. Difficulties to debug software – where it remained un-
clear whether the problem resided in the library, the Java control system 
or the cooperation among those two – gradually reduced our reliance 
on the library. After a relatively short transition period, the entire devel-
opment occurred in standard Java.

•	 During that time, both industrial software tools (e.g., FLEXSIM, 
IEC64199) and multiagent tools (e.g., Jade, AnyLogic) have been as-
sessed but offered advanced functionality where it was not needed with-
out functionality compensating for their smaller user community (rela-
tive to Java). The native Java solution enjoys a large community of users 
and proficient professionals. It allowed for larger prototype implementa-
tions that could be adapted to address novel problem domains. However, 
scalability and maintenance remained a serious concern.

•	 In 2011, the team adopted Erlang/OTP (cf. www.erlang.org). This 
solved the scalability issue. Model development in Erlang enjoys the 
speed-up brought by a functional/actor language with pattern matching 
(one or two orders of magnitude faster development). Other advantages 
are high availability, hot code updating, and distributed computing. It 
also connects excellently to other languages and can run on embedded 
computers (e.g., raspberry pi). Software model maintenance and sharing 

http://www.erlang.org/
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within a community is subject of ongoing research. Widespread accep-
tance of the technology still remains undecided (but multicore comput-
ers are pushing us in this direction).

•	 One Java implementation, which had to be connected to a .net system 
programmed in C#, was ported to the Erlang solution in a couple of 
weeks while the connection to C# occurred in a single day. Erlang /
OTP is a product from the telecom industry.

THE HYBRID SIMULATION ENGINE

The hybrid – switching between real-time and discrete-event modes 
– simulation engine comprises two Erlang modules: event_table and event_
mgr. The event_table contains all the events that have been created by the 
holons. The manager generates the next event in the table, either shortly after 
sufficient time has passed (in real-time mode) or when entering the discrete-
event mode. The code below is not optimized for performance but rather for 
readability and observability. Readers familiar with Erlang may inspect it to 
understand how this hybrid simulation works. In general, the code provides 
an indication how (not so) complex this simulation approach is.
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Design by Abduction 
No Longer Suffices

When a community designs a complex system or infrastructure, abductive 
reasoning is commonly used to discover and identify candidate solutions. 
Unfortunately, it also is used to justify the solution that will be adopted 
as the only option (as if they had used deduction to arrive at the selected 
design).

Abduction is a kind of logical inference that could be described as edu-
cated guessing. When C is assumed to be true and C follows from A, ab-
duction puts forward the hypothesis that A is true. This clearly is a search 
heuristic rather than a logical deduction. Indeed, logical inference only 
yields that ¬C implies ¬A. In fact, there is no evidence regarding the non-
existence of alternative hypotheses A

1
, A

2
, … A

n
 that equally are sufficient 

but not necessary conditions for C.
When C is the service or functionality required from a system or in-

frastructure, the community involved will use abduction to generate valid 
candidate designs A

1
, A

2
, … A

n
. In other words, implementing any design A

x
 

∈ {A
1
, A

2
, …, A

n
} will result in a world in which the services required by 

C will be available. Next, standard practice in abductive reasoning searches 
for and selects the most economical design A

x
 among the candidates. This 

last procedure is used to justify calling A
x
 the solution whereas, logically, A

x
 

is only a solution (among many). Such a claim that the choice of solution 
A

x
 is “beyond discussion” is unjustified in a fast-changing and unpredictable 

world.
Indeed, this most economical criterion favors the quick and dirty solu-

tion that is good enough. Moreover, there often exists another criterion 
that filters the set of candidate solutions before the most economical crite-
rion is applied: the comfort zone. Candidate solutions that are outside the 
comfort zone of the decision makers in the community that controls the 
development and deployment of the solution will not be generated nor 
will they be retained in the set of candidate solutions. Especially when go-
ing outside this comfort zone may reduce the dominance of these decision 
makers over their domain, filtering will be stringently applied. This regu-
larly results in a very poor service at high costs in comparison to what is 

APPENDIX III
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inherently achievable. Moreover, it reinforces the existing lock-in by legacy 
designs, imposing severe limitations.

Design for the unexpected prefers candidate solutions that are the least 
likely to cause future conflicts, both with future requirements and other 
solutions, especially solutions that were designed for the unexpected. For-
mally, it prefers partial solutions (insufficient to guarantee C) that have no 
conflict with anything that has no conflict with C or reality. In other words, 
when an unexpected demand emerges that respects C and reality, these 
partial solutions remain intact and useful.

Background information can be found at butte.edu/departments/cas/
tipsheets/thinking/reasoning.html, which classifies and typifies reasoning 
as follows:
•	 Deductive reasoning: conclusion guaranteed
•	 Inductive reasoning: conclusion merely likely
•	 Abductive reasoning: taking your best shot
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