
DESIGN FOR THE
UNEXPECTED
FROM HOLONIC MANUFACTURING
SYSTEMS TOWARDS A HUMANE
MECHATRONICS SOCIETY

PAUL VALCKENAERS
Faculty of Engineering Technology, KU Leuven

HENDRIK VAN BRUSSEL
Faculty of Engineering Science, KU Leuven

Amsterdam • Boston • Heidelberg • London
New York • Oxford • Paris • San Diego

San Francisco • Singapore • Sydney • Tokyo
Butterworth-Heinemann is an imprint of Elsevier

Butterworth-Heinemann is an imprint of Elsevier
The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK
225 Wyman Street, Waltham, MA 02451, USA

Copyright © 2016 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or any information storage and
retrieval system, without permission in writing from the publisher. Details on how to seek
permission, further information about the Publisher’s permissions policies and our arrangements
with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency,
can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the
Publisher (other than as may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience
broaden our understanding, changes in research methods, professional practices, or medical
treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in
evaluating and using any information, methods, compounds, or experiments described herein.
In using such information or methods they should be mindful of their own safety and the safety
of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume
any liability for any injury and/or damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods, products, instructions, or
ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

ISBN: 978-0-12-803662-4

For information on all Butterworth-Heinemann publications
visit our website at http://store.elsevier.com/

http://www.elsevier.com/permissions
http://store.elsevier.com/

ix

ABOUT THE AUTHORS

PAUL VALCKENAERS

Dr Paul Valckenaers is a Master in Com-
puter Science. His seminal doctoral thesis on
Flexibility for Integrated Production Systems
(1993) formed the basis for the ensuing ex-
tensive research on design for the unexpected
at the PMA lab of KU Leuven.

Ever since, as a postdoctoral researcher, he
has coordinated a coherent collection of proj-
ects that finally led to the underlying book
Design for the Unexpected. He published exten-
sively on the subject and gave many invited
presentations and courses worldwide on all
aspects of his research.

His present research interests are directed toward extending the design
for the unexpected paradigm outside the manufacturing world, particularly
for eHealth, intelligent traffic, smart grids, homes, and cities.

HENDRIK VAN BRUSSEL

Professor Hendrik Van Brussel is emeri-
tus professor in mechatronics and automation
at the Department of Mechanical Engineer-
ing, Division of Production Engineering,
Machine Design and Automation of Katho-
lieke Universiteit Leuven (KU Leuven),
Belgium.

He was a pioneer in robotics research in
Europe and an active promoter of the mecha-
tronics idea as the new paradigm for machine
design. He has published extensively on dif-
ferent aspects of robotics, mechatronics, and
flexible automation.

About the Authorsx

Professor Van Brussel is a Fellow of SME and IEEE. He holds hon-
orary doctor degrees from RWTH, Aachen, Germany, from “Politehnica”
University’ Bucharest, Romania, and from “Transilvania” University Bra-
sov, Romania. He was President of CIRP (International Academy for Pro-
duction Engineering) and of euspen (European Society for Precision En-
gineering and Nanotechnology). He is a Member of the Royal Flemish
Academy of Belgium for Sciences and Arts, Foreign Member of the Royal
Swedish Academy of Engineering Sciences (IVA), Foreign Member of the
US National Academy of Engineering (NAE), and Honorary Member of
the Hungarian Academy of Sciences.

xi

PREFACE

In writing a book there are two preconditions that must be fulfilled: (i)
there is a subject worth to be written about and (ii) the author(s) have the
time to write the book.

This book describes a research endeavor that spans a period of almost
30 years. The genesis of the subject of this book goes back to Japan in
the early 1990s, when MITI (Ministry of International Trade and Industry)
launched the ambitious IMS (Intelligent Manufacturing System) program,
aiming at defining the desired structure of the factory of the twenty-first
century. The second author, as head of the PMA (Production engineering,
Machine design and Automation) lab of KU Leuven, and the first author,
who just received his doctoral degree with a thesis on “Flexibility for inte-
grated production automation,” realized that joining IMS was an excellent
opportunity to develop their innovative ideas on increasing the flexibility of
manufacturing systems, they already had developed since 1986, far beyond
the then prevailing CIM (Computer Integrated Manufacturing) paradigm.
We joined the IMS feasibility study on Holonic Manufacturing Systems
(HMS) as one of the 32 international partners from all over the world. We
could elaborate on the seeds that were present in the first author’s doctoral
thesis. (At PMA we already had a holonic assembly cell up and running in
1988, as shown in Figure 7.1 of this book!)

Ever since we have been able to further develop the original seeds into a
full-fledged tree, financially supported by KU Leuven, federal (Belgian), and
regional (Flemish) funding, EU funding under the successive framework
programs, and even direct industrial funding. This varied funding structure
resulted in fundamental research results that proved their usefulness in a
wide variety of application domains, as shown in Chapter 7.

A work of such a broad scope can only be realized by a large team and
extensive funding. We are particularly grateful to our enthusiastic research
team that, over the 30-years span, substantially contributed to the edifice
that this book describes, by doctoral theses, dedicated research contributions
and technical assistance: Luc Bongaerts, Jo Wyns, Patrick Peeters, François
Bonneville, François Cottrez, Herman Claus, Jan Thielemans, Constantin
Zamfirescu, Indra Tanaya, Yuki Indrayadi, Hadeli, Tony Van Ginderachter,
Paul Verstraete, Bart Saint Germain, Johan Philips, and Osman Ali. We are
equally grateful to the different funding agencies, mentioned earlier.

Prefacexii

As to the second precondition, we had to wait for the retirement of the
second author to push forward our long overdue book-writing project.
Until then, chasing for funding and publishing papers, next to teaching of
course, absorbed most of the time of the director of a research lab of the
size of PMA. We thank Elsevier for their efficiency to have the book swiftly
published. Indeed, time is overripe to spread the message that design for the
unexpected is the only way to go for the future.

The title of the book may seem somewhat enigmatic and general to the
reader, but the subtitle clarifies much. We hope that after reading and digest-
ing the book you will be convinced of the appropriateness of its title and of
the vast potential the subject has, not only to control manufacturing systems
but entire mechatronic societies in all walks of life.

Paul Valckenaers,
Hendrik Van Brussel

Leuven, Summer 2015

xiii

INTRODUCTION

ONCE UPON A TIME

Somewhere in the 1980s, the industrial automation community
initiated the development of computer-integrated manufacturing (CIM)
 systems. These were systems of systems aiming to integrate automated work-
stations into fully automated factories. In fact, this community was design-
ing and developing systems of systems before it became a popular topic in
systems engineering. Unfortunately for industrial automation, the results
were underwhelming.

Within this setting, our research was looking for the root causes of the
above. What causes smaller systems, when integrated into a larger system of
systems, to collide? What makes it so hard to undo whatever is causing these
collisions? Which aspects of those difficulties are intrinsically inevitable?
What can be done? Which properties of an application domain (precondi-
tions) allow us to remedy this undesirable situation?

At the outset, our expectation was to discover intrinsic limitations lead-
ing to a conclusion that little could be done. This would nevertheless be
valuable whenever developers will avoid attempting the impossible (as
an analogy of the second law of thermodynamics versus the perpetuum
 mobile). In reality, the research findings revealed to be quite the opposite.
Although there are significant limitations, it proved to be possible to de-
sign systems improving the present situation in a wide range of application
 domains.

DESIGN FOR THE UNEXPECTED

Because the investigations refrained from making assumptions about
the system of systems, in which the smaller systems are integrated, this book
is about the design of systems for the unexpected. Indeed, in order to de-
velop smaller systems that avoid and/or manage collisions when integrated
into a larger system of systems, designers may not impose arbitrary con-
straints or at least must make it easy to revise them. Basically, this book lifts
low-and-late commitment to a scientific level – where low-and-late com-
mitment may be combined with early and eager preparation.

Introductionxiv

As a consequence, the research results are not only applicable to the in-
tegration into a system of systems, but they also address the frustration when
attempting to improve large complicated organizations where an effort in
one location fails to satisfy expectations because neighboring systems block
the improvement. They also address the issue of changing user requirements
as soon as a new system is deployed. Overall, they allow to develop systems
while facing uncertainty about the future requirements that they will need
to cope with. And they reveal how to design systems that will not become
future legacy systems in the negative connotations of this word.

PREDICTING THE UNEXPECTED

This book will outline and discuss in detail how to design systems
without relying on expectations that may prove to be wrong in the future
and, when design choices nonetheless are relying on expectations, how to
keep it easy to revise these choices. A major discovery was a generic scheme
to generate short-term forecasts without forfeiting this approach to cope
with the unexpected.

In fact, it were two laypersons who, after listening to an explanation of
this scheme, labeled this achievement as “predicting the unexpected,” after
which we adopted this as our “nom de guerre.”

INFORMATION INFRASTRUCTURE AND SUITABLE
APPLICATION DOMAINS

Design for the unexpected cannot be applied to any kind of system.
First, it addresses the design of information systems in relation to a world of
interest. Moreover, this world of interest, the application domain, needs to
possess certain properties such as the following:
•	 It contains valuable resources such as machines, roads, ambulances, wind

turbines, workers, nurses, rooms, trucks, ships, robots, parking space, etc.
•	 It comprises activities using those resources such as commuting em-

ployees, freight transportation, patient treatment, warehouse refrigera-
tion, production, etc.

•	 Intelligent coordination of those activities brings sufficient added value
to justify the development effort and operating expenses of the informa-
tion system.

•	 It is possible to mirror those activities and resources in executable com-
puter models.

Introduction xv

Finally, these information systems are information infrastructures that
offer a sound basis to implement case- and situation-specific information
systems.

TOWARD A HUMANE AND RESPECTFUL MECHATRONIC
SOCIETY

The above suggests that information systems – designed for the unex-
pected – may become part of everyday life wherever and whenever valuable
resources are involved. In view of our dissatisfaction with current situations
(e.g., traffic jams) and the potential benefits (e.g., prevent toxic combina-
tions of medications), such a “mechatronic society” (see Chapter 6) is ex-
pected to emerge. Moreover, other technological developments such as the
Internet of Things contribute to the likeliness of such a future.

In this respect, our research reveals that the social and people aspects
must not be addressed as afterthoughts. In fact, acceptable social behaviors,
induced by minimally intrusive social control mechanisms, have been intro-
duced and investigated within our software prototypes. Also, behaviors nor-
mally associated with humans revealed to be useful within these prototypes
(e.g., opportunism).

Furthermore, the research revealed the need and opportunity to initiate
interdisciplinary research, involving social sciences and humanities. In par-
ticular, there are opportunities to empower persons (e.g., when this empow-
erment allows systems to deliver superior services). It also becomes possible
to reconcile high service levels with privacy. And respectful and considerate
social controls can be implemented in the information infrastructure. As
they inhibit abusive behaviors, this allows for the generation of common
goods; this is especially value adding when combined with the mechanisms
to predict the unexpected.

Overall, this book presents the onset for the development of informa-
tion infrastructures that scale significantly beyond the existing and penetrate
deeply into our lives. And they will be durable as they adapt to future de-
mands avoiding to become legacy. Today, the main topic on our research
agenda is to create a mechatronic society that is empowering, considerate,
and hospitable toward humans. Our research results are inviting in this
respect.

1
Design for the Unexpected. http://dx.doi.org/10.1016/B978-0-12-803662-4.00001-1
Copyright © 2016 Elsevier Inc. All rights reserved.

Setting the Stage

Paul Valckenaers*, Hendrik Van Brussel**
*Faculty of Engineering Technology, KU Leuven
**Faculty of Engineering Science, KU Leuven

Before embarking in this book for an odyssey to find a generic control design
methodology for mechatronic societies, taking care of the unexpected (i.e.,
design for the unexpected [D4U]), we make our point by means of an illustra-
tive example from daily life. The selected application domain is mobility, which
is familiar to almost every reader and has adequate levels of complexity as well
as unsolved issues. The chapter first presents a scenario illustrating the benefits
of a D4U solution. Next, the manner in which a D4U is created is discussed.

A SAMPLE SCENARIO

This scenario illustrates how D4U decentralized traffic coordination
handles a disturbance proactively. Paul is driving from Leuven to the FP7-
ICT4EE event in Brussels (marked A on the map, Figure 1.1). His navigation
system has started executing virtual journeys to this event beforehand; actu-
ally from the moment the event was entered in Paul’s electronic agenda. The
virtual journey execution strategy, implemented in Paul’s navigation system,
accounts for how much time is left until the actual journey. Up until the time
when Paul starts his journey, nothing special happened and the navigation
system arranged a trip that avoids rush-hour traffic and limits congestion
charges. For the purpose of this scenario, payments for time slots depend on
the actual demand (i.e., only for highly solicited time/location slots).

When Paul is about halfway his journey, a collision of two cars on the
Wetstraat suddenly reduces the road capacity by 30%. The intelligent mod-
ule (IM) corresponding to the road segment containing this location ob-
serves this incident through the information it receives from the onboard
car navigation/safety systems and mobile phone tracking services. The IM
is the first to flash a warning on the display wall of the emergency services,
which investigate and indicate the severity and type of the incident on their
system, to which the IM has subscribed by now and it improves its estimate

CHAPTER ONE

Design for the Unexpected2

of the duration of this incident. The IM will keep updating this estimate as
information becomes available.

When Paul’s navigation system refreshes its journey registration, the impact
of the incident becomes known to Paul. Instability suppression mechanisms
prevent Paul’s navigation system from overreacting too fast. At first, it starts to
refresh the collection of alternative journeys that was kept up-to-date in case of
these events. Alternatives that are also affected by the incident become equally
unattractive. The navigation system also increases the intensity of its search
for alternatives. Paul’s navigation system analyzes the result of the refresh and
discovers that the degraded performance has its root cause outside of Paul’s
journey. Indeed, Paul’s intention is to use the Schumann underground parking
lot entry, which is situated before the incident site in this one-way street.

Therefore, the navigation system sticks to the current intentions (even
when it might no longer be feasible) in a first phase. In contrast, navigation
systems that have their journey cross the affected road segment start adapt-
ing their plans immediately. They will delay their arrival in the Wetstraat or
select an alternative route that avoids the incident. Possibly, these affected
travelers overreact, at which point unused capacity around the incident site
will become visible to the predicting IM, so that the capacity is likely to be
reserved again.

This D4U traffic coordination technology is model-based, where
the models support virtual execution of travel activities. Support for

Figure 1.1 Location of the Unexpected Event in the Sample Scenario. (Map data ©2011
Google).

Setting the Stage 3

multimodality was recently introduced simply by adding the required mod-
els reflecting the services offered by public transport. However, the synchro-
nization of these models (e.g., reflecting delays and rescheduling triggered
by such delays) is still under development. This causes many users to specify
the public transport option as a backup only. The incident triggers such us-
ers affected by the incident to consider public transport, which is likely to
reduce its impact.

Note how this system uses its intricate knowledge of the traffic infra-
structure and user intentions to avoid that “misery spreads to travelers that
have no business with it.” Indeed, after this first phase, inflow of travelers
that would block others when queued at the incident site has been reduced,
and actually more capacity has become available to travelers who need to
use the first sections of the Wetstraat only. Unfortunately for Paul, too many
cars that cannot avoid the choking point in the Wetstraat are already queued
up in the tunnel leading to the Avenue de Cortenbergh.

Therefore, his navigation system redirects him to another tunnel to en-
ter Brussels. Because the weather forecast predicts dry weather with a high
probability, the navigation system explores switching to a different park-
ing lot based on Paul’s profile, stating that he is willing to walk up to one
kilometer. However, this proved to be unnecessary when the effect of the
restraining of cars that need to pass the incident site became visible in
the forecast, and as expected, revealed that higher capacity became available
in the first sections of the Wetstraat. In the end, Paul drove his car to the
originally intended parking lot along a slightly longer route.

MIRROR THE WORLD-OF-INTEREST (WOI)

To apply our first design principle (see Chapter 2), the main mechanism
is to mirror the WOI in software. This first D4U principle can be paraphrased
as “do not rely on expectations/assumptions that might be proven wrong.”
Note that the principle itself is broader and goes beyond WOI mirroring.

In transport and navigation applications, maps constitute a very old ap-
plication of this principle and its implementation mechanism. On condition
that a map is accurate, integration conflicts and other issues involving such
a map cannot be attributed to the map. For instance, when a routing algo-
rithm steers a truck under a bridge with insufficient clearance, as indicated
correctly on the map, the issue needs to be addressed in the algorithm (i.e.,
it must be enhanced or replaced). Changing the clearance indicated on the
map (but not in reality) will not solve this issue.

Design for the Unexpected4

Indeed, inaccurate WOI reflection is the only situation in which the
map needs changing to solve a conflict or address an issue. This can be a
correction of an error. It can be an update (e.g., nautical maps of coastal
waters may be updated biannually). Furthermore, it can be missing informa-
tion (e.g., indication of one-way streets).

Missing information typically can be added without invalidating the
existing information or breaking other applications that are using the maps
but do not need the missing information. Indeed, changes to maps only
involve restoring and/or enhancing its WOI reflection, irrespective of the
nature of the issue that needs addressing.

Note that a system or organization that maintains such an accurate WOI
reflection will comply – to a greater extent – with the first D4U principle.
Indeed, it will adapt/update before an issue or conflict can arise. An ex-
ample is the IM of the road segment in the above scenario. It is cooperat-
ing with the onboard safety systems in the crashed cars and the emergency
services to keep its WOI reflection up-to-date, accurate, and complete.

Remark that maps, and WOI mirror images, only provide part of a solu-
tion. For example, in navigation systems, maps need to be complemented
by a global positioning system (GPS) and a route-generating system. The
GPS is compliant with the first D4U principle. However, the route genera-
tion will be inherently unable to comply with the principle in full. Recall
that our research investigated how much of an overall application can be
designed for the unexpected and which parts still need to be developed us-
ing more conventional approaches.

MOVE AS MUCH AS POSSIBLE INTO THIS WOI
MIRROR IMAGE

In the applicability range of D4U, the WOI resides in the real world.
And reality always is coherent and consistent (but not necessarily as we wish
it to be). Whenever some WOI mirroring software contributes to achieving
our objectives, that part of the system software inherits this coherency and
consistency. In a way, the Creator of the real world is contributing to our
design. Obviously, it is ill advised to ignore this Creator’s contributions
when available. Indeed, our research has progressed whenever it moved
functionality – even partially – into the WOI mirroring software.

Accordingly, design for the unexpected aims to move as much func-
tionality as possible into a reflection of the WOI. Research prototypes have
been able to do so for the following:

Setting the Stage 5

•	 Resources. This is historically the oldest and most common category. For
example, road maps are reflecting a road infrastructure. We distinguish two
subcategories: the map legend (mirroring resource types) and the map itself
(mirroring resource instances). State-of-the-art information and commu-
nication technology (ICT) allows to develop sophisticated mirror images,
reflecting both properties (e.g., number of lanes) and state of resources (e.g.,
availability of a parking space). The mirror image may cover the present
(track), the past (trace), and even the future (e.g., reservations).

•	 Activities. Commuting, holiday traveling, shopping, etc. can be mirrored in
a manner similar to resources. Likewise, it is possible to distinguish activity
types (how to complete a journey) from activity instances (executing such
a journey). Mirror images utilizing state-of-the-art ICT allow a virtual
execution of such activities on the mirror image of the resources to assess
feasibility and expected performance. It also allows for track-and-trace
implementations. Taking the future into account is covered as well.

•	 Mental states and commitments. Everything that exists in the WOI is candi-
date for inclusion in the mirror image. Caution must be given to restrict-
ing the development to mirroring what exists. When reflecting mental
states and commitments, accuracy is the key concern. The expressiveness
of the representation must cope with the corresponding reality such that
no interpretation or interfering occurs. In mobility, intended journeys and
train reservations are examples of what mirror images may reflect. Virtu-
al execution of mental states – in particular, intentions – constitutes the
starting point from which future states of resources and activities may be
predicted (see Sections “Bioinspired Coordination and Control in Ho-
lonic Execution Systems” in Chapter 5 and “The DMAS Architectural
Pattern” in Chapter 6).

•	 Policies and decision-making mechanisms. Within the WOI, there are a num-
ber of decision-making elements: humans, the laws of nature, simple rules
(e.g., first come, first served), complicated policies (e.g., a finite-capacity
scheduler), etc. Such mechanisms can be mirrored as well. For humans,
some machine learning may be indicated. Simple rules can be their
own model. The laws of nature and complicated policies may require
approximations if this mirror image needs to virtually execute activities
(a lot) faster than reality.
While developing the WOI mirroring software, the following concerns

need addressing:
•	 Completeness. As a general rule, the mirror image should be complete

such that its users (i.e., other software) always remain within this image

Design for the Unexpected6

while exploring and/or virtually navigating and executing activities. For
instance, the WOI mirror image covers space and time from minus in-
finity until plus infinity. Note that this image may and will be very
coarse at these extremities, reflecting that they are mostly irrelevant for
the application. Completeness prevents users from “crashing when they
fall off the world” because the WOI mirror extends to infinity. Com-
pleteness provides the necessary starting points for future expansion and
enhancement of this mirror image without breaking the preexisting us-
ers. Indeed, completeness confines future adaptations to refinements of
the current WOI image. Completeness implies that even highly unde-
sirable and unlikely states are mirrored, which enables ICT support for
recovery. Here again, mirror images may and will be coarse (i.e., only a
small effort is needed).

•	 Single source of truth (SSOT). In the WOI mirroring software, everything
in the WOI has a single counterpart. For instance, a parking space cannot
be mirrored twice and create the illusion that it can be occupied by two
cars at the same time. Our research results enabling to predict the unex-
pected are instrumental in reconciling this SSOT requirement with the
need to collect and process information from multiple sources to deliver
services and functionality.

•	 Updating and accuracy. A proper and correct implementation of a WOI
mirroring software needs updating whenever the corresponding reality
changes. When the composition of a team changes, the mirror image
needs to adapt. In particular, mental states may change often, which im-
plies frequent updating of the image. Moreover, the mirroring needs to
be accurate. For instance, a mental state is nothing more than a mental
state (e.g., the intention to stop smoking). Likewise, decision mecha-
nisms are only mechanisms (e.g., first-come, first-served). On their own,
they have no authority over the reality in the WOI. The WOI image
must not succumb to wishful thinking. Adding assumptions to the real-
ity that is mirrored is considered an inaccuracy.

MINIMIZE INERTIA OF DESIGN CHOICES

Application of the first D4U principle (cf. Chapter 3) results in an infra-
structure mirroring the WOI. However, it is impossible to implement a system
answering all user requirements in such an infrastructure. At some point, op-
tion-excluding design choices have to be made, which potentially may cause
serious issues in the future.

Setting the Stage 7

Consequently, a second D4U principle requires that the inertia of the
option-excluding design choices must be kept low. The corresponding ge-
neric mechanism to keep this inertia low consists of explicit and mandatory
resource allocation. This means that every decision-making component has to
obtain rights over the resources it requires before it is able to perform and
offer its services. It also means that resources can be deallocated. Again, the
D4U principle itself is broader and goes beyond the mechanism.

This resource allocation mechanism provides an upper bound on the
damage that can be inflicted by design choices causing issues and conflicts.
Indeed, the worst case consists of deallocating the resources from a nonper-
forming component and allocating them to a suitable one. If needed, such a
suitable component has to be developed. This deallocation can be preemp-
tive if indicated.

Note that resource allocation awareness will link the quality of decision-
making components to their ability to minimize their requirements for
rights over resources. Note that such minimizing is an application of the
first D4U principle, which improves the ability to coexist with other
decision-making components.

A SAMPLE SCENARIO (CONTINUED)

In the sample scenario, the road infrastructure elements are mirrored
in executable software models. These elements are the resources. On these
resource models, traveling activities are virtually executed beforehand and
much faster than in reality. As resources – the road segments – only have a
single counterpart (SSOT), each resource will be informed about all future
visits from traveling activities as they virtually execute their journey. And
resources will be informed repeatedly to account for any changes that occur
in the mental state of the travelers (i.e., a change in mind) as well as on the
roads themselves (e.g., a car crash).

Resource models use (dynamic network loading) models to compute
how congestion is likely to propagate (backwards). The results are used to
update travel time estimates for the road segments, which are then used
by the travel activity models to predict their future journeys in time and
space.

Models of the decision making by travelers are evaluated – during the
above virtual travel execution – to determine the mental state of a trav-
eler (i.e., to select the journey to execute virtually and inform the affected
resources). Other decision-making models are evaluated to steer the search

Design for the Unexpected8

for candidate journeys through virtual execution; these models determine
which part of a combinatorial solutions space will be investigated.

In other words, the D4U intelligent traffic and transportation system
(ITTS) addresses most of the challenges through executable models of its WOI.
The parts of the solution that fail to comply with the first D4U principle,
that is, the decision-making elements, are considered to be part of the WOI.
Executable models take care and handle those elements, delivering a proactive
coordination to road travelers. These decision-making elements may and do
use information about future/predicted resource loadings and activity routings.

Whenever the WOI changes, the repeated virtual execution of travel
activities will update the information for the coordination. This virtual ex-
ecution will evaluate the most recent model for its decision-making ele-
ments. In other words, it is a model-driven system that has minimal inertia
concerning these models. Accommodating changes in resources, activities,
mental states, or decision-making is automatic and effortless except for the
requirement to have the necessary executable models.

In a way, the development of a D4U ITTS is only beginning because
the decision-making elements – determining performance – still need to
be provided. However, the D4U infrastructure can be deployed already and,
on top of it, these decision-making elements can be put into operation with
little effort as soon as they are available. Also, these elements can be replaced
while the ITTS remains operational, can be personalized, etc. In the past, by
focusing on the decision making first, we have been investing in disposable
ICT. With D4U, a durable ICT platform and infrastructure can be devel-
oped, which will boost the development of high-performance decision-
making solutions as their deployment time and effort decrease.

ABBREVIATIONS
D4U Design for the unexpected
ICT Information and communications technology
IM Intelligent module
ITTS Intelligent traffic and transportation system
SSOT Single source of truth
WOI World of interest

9
Design for the Unexpected. http://dx.doi.org/10.1016/B978-0-12-803662-4.00002-3
Copyright © 2016 Elsevier Inc. All rights reserved.

On the Design of Complex
Systems

Paul Valckenaers*, Hendrik Van Brussel**
*Faculty of Engineering Technology, KU Leuven
**Faculty of Engineering Science, KU Leuven

This chapter establishes a context of our design for the unexpected (D4U).
The various levels of system complexity are defined, and the superiority of
structural design over functional design for D4U is highlighted.

ON SIMPLE, COMPLICATED, COMPLEX,
AND COMPLEX-ADAPTIVE SYSTEMS

Systems, or problems, can be simple, complicated, or complex. The
distinction has to do with the number of components and their interactions.
A car is complex relative to a bicycle, but very simple relative to a manu-
facturing plant or an economy. One could say that a bicycle, containing a
hundred components, is a simple system, and a car, with some ten thou-
sand components, a complicated system. A manufacturing plant, with many
more components, would also be a complicated system, but it is more, it is
also a complex system. Why?

The behavior of both simple and complicated systems is well predictable.
If one follows the assembly rules for a bicycle or a car, the behavior of the
assembled system is predictable by knowing the starting conditions, because
the interconnections between the system components are well-defined and
fixed, while the component interactions remain simple and predictable.

In a complex system, the same starting conditions can produce different
outcomes, depending on the nature and the sequence of the interactions
between the system components. We are unable to understand the system
by observing its constituents in isolation. At that point, we say that there
is some “emergent behavior” or even self-organization and we declare the
system “complex.” The whole is greater than the sum of the parts. Self-
organization goes beyond emergence; it is the ability of a system to sponta-
neously arrange its components or elements in a purposeful manner, under
appropriate conditions but without the help of an external agency.

CHAPTER TWO

Design for the Unexpected10

For example, building a highway is complicated, but managing urban
traffic congestion is complex. Likewise, building a state-of-the-art air traffic
control center is a complicated challenge in executing the project, while
directing air traffic is complex, involving real-time problem solving. In the
same way is a manufacturing system a complex system, hence showing
emergent behavior. This book provides a framework on how to control
suchlike systems.

While a complex system consists of a large number of components (of-
ten called “agents”) that interact, the term complex-adaptive system (CAS)
refers to a complex system in which the components (called “holons” in this
book) not only interact but also adapt and/or learn. Self-similarity is often
observed in a CAS. Adaptivity gives a complex system robustness (resilience)
against disturbances and autonomic behavior (homeostasis).

An example of such adaptive behavior is found in the human immune
system, which allows for vaccination to be an effective measure in preventive
healthcare. But, it also works the other way around; inadequate therapy ad-
herence has induced bacteria to become resistant against many/most of the
known antibiotics. Typically, this adaptive behavior represents a challenge.
For instance, commuters will react differently when receiving information
from an intelligent traffic system (ITS) based on their past experience (of
congestions), and they may change collectively (e.g., triggered by a weather
forecast), often rendering the ITS less effective.

Optimality is an important issue when designing complicated or com-
plex systems. F.W. Taylor, the father of scientific management, claimed that
a complex system/organization would be optimal when each of its com-
ponents were optimized separately. This Taylorian view stands perpendicular
to the present generally accepted view that optimality can only be achieved
if the complicated/complex system is considered in its entirety and subject
to optimization as a whole. For instance, Goldratt’s theory of constraints
identifies the utilization rate of a system’s bottleneck as the determinant for
system optimality (i.e., throughput in nonstop production) (Goldratt, 1984).
However, the location of this bottleneck is system and situation dependent.

Mechatronics is the discipline advocating a concurrent or simultaneous
engineering approach to the design of “optimal” complicated/complex
artifacts, in contrast with the traditional sequential engineering approach,
where the different aspects/behaviors are dealt with in a sequential order.
This book does not deal with designing mechatronic systems as such. It
does however deal with designing, or at least controlling, systems of me-
chatronic systems or of what are called here mechatronic societies (MSs).

On the Design of Complex Systems 11

A mechatronic system has a self-similar (fractal) nature when looked at on a
component, machine, and machine-system level but is in itself mostly not
a complex system, rather a complicated system. A system of mechatronic
systems, called “mechatronic society,” is a complex system, often adaptive.

Typical mechatronic societies are manufacturing systems, factories, traffic
systems, etc., consisting of a set of rather autonomous, mechatronic systems,
called agents or holons, interacting with each other and with the outside
world, in order to achieve an overall system goal. Such systems will be called
“holonic systems” in the remainder of this book. They behave optimally, not
in the mathematical sense of the term but in a more useful way, as explained
later. MSs are complex-adaptive systems, in that they adapt their behavior as
a function of changes in their structure (e.g., machine breakdown) or in the
environment (e.g., road block). They exhibit emergent and self-organizing
behavior, as will become clear later on.

ON THE DESIGN OF COMPLEX-ADAPTIVE SYSTEMS

Both design teams and individual designers face limitations concern-
ing the complexity of the artifacts that they may develop. When building
complex systems, designers develop subsystems that are integrated into a
larger system. The resulting system exhibits an emergent behavior that was
never explicitly planned or conceived by these designers simply because its
complexity exceeds their mental capabilities.

Many industrial design teams, designing for instance automobiles, re-
main largely in control of what their artifacts will be. In contrast, many of
the most valuable artifacts in a modern human society, especially infrastruc-
tures, simply are too complex to be conceived explicitly by humans. They
emerge by the combination and integration of simpler systems, which form
their constituents. Unfortunately, the resulting emergent behavior is too
often characterized by poor performance, missed opportunities, and the in-
ability to serve smaller user communities.

In the next chapter, the fundamental nature of the earlier issue is ad-
dressed. What causes the difficulties occurring when smaller systems are
combined and integrated into a larger and more complex system? What
can be done to remedy the integration/emergence problems, which are
observed in reality? This research builds on the ideas of Herbert Simon
(Simon, 1990) as well as insights discussed in Waldrop (1993). Waldrop gives
a readable and concise overview of relevant developments in the domain of
complex-adaptive systems.

Design for the Unexpected12

Simon emphasizes the issue of the fundamental difference between ana-
lytical (i.e., observing) sciences and synthesizing (i.e., engineering, design-
ing, creating, etc.) sciences. Every artifact design is, to a significant extent,
arbitrary; there are numerous ways in which a design problem can be solved
“correctly.” In contrast, the different manners in which the laws of physics
can be described only differ in very superficial ways (i.e., the symbols that are
used). In making this observation, Simon touches the core issue: a scientific
understanding of synthesis/design is lacking. Accordingly, Chapter 3 aims
at this “unavoidability” identified by Simon as a key property of a scientific
understanding for synthesis/design.

Furthermore, the next chapter complements more classical work on
design (Suh, 1997) aimed at design tasks where the design team remains
largely in control and typically designs for a short time horizon. Such work
typically builds on the decomposition of functional requirements (FRs) and
top–down design of solutions. In contrast, Chapter 3 aims at the design of
more long-lived artifacts that are part of an emerging overall system. Such
artifacts are typically considered as part of the existing technology base
in the shorter-term design situation. The work in this book therefore has
a closer relationship to (some approaches within) object-oriented design,
which is more targeted at problem solving while facing uncertainty and
complexity that defies our mental capabilities. These two related topics are
discussed later in this chapter.

TOP–DOWN FUNCTIONAL DESIGN
AND DEVELOPMENT

In the early days, software engineering embraced the predominant
development methodology from older engineering disciplines: top–down
decomposition and functional design. Axiomatic design (Suh, 1997) is a
representative example of this functional design approach (of artifacts rather
than of software), among which it is more formally elaborated than most.
This method starts from the FRs defined by the users. These FRs can be
satisfied by manipulating some design parameters (DPs). Axiomatic design
is based on two basic axioms: (i) the independence axiom and (ii) the in-
formation axiom. The independence axiom requires the FRs to be inde-
pendent. A design is independent if each FR is controlled by only one DP.
The information axiom states that the best design is the simplest design that
still satisfies all the FRs, where these FRs are considered to be independent
(no overlap); if necessary, user requirements must be reformulated. Next,

On the Design of Complex Systems 13

the top-level design answers these requirements. A thermostatic faucet is a
good example of an independent design. The two FRs (water temperature
and flow rate) are controlled by two independent DPs (two independently
adjustable regulators A and B on Figure 2.1).

If the top-level design cannot be implemented in a straightforward man-
ner, each of its components becomes a set of requirements and the same de-
sign process is repeated at the component level. If necessary, a second-level
design is again decomposed, and this is repeated as long as required to ob-
tain components that can readily be implemented. Consider the design
of a deep freezer as an example. The user requirements comprise cooling
performance, storage volume, energy efficiency, and accessibility. Based on
a specific set of requirements, a designer may develop a chest-type deep
freezer as his/her top-level design. The respective parts of the chest become
the requirements for the next-level design activities. The door design will
be different for a chest type from that of a cabinet type, for example, from
the viewpoint of energy efficiency.

This proven development methodology numerous times has shown to
be effective. In particular, the focus on functionality generates highly ef-
ficient systems: it minimizes the complexity of the final solution as well as
the effort, time, and resources needed to answer the given requirements.
This property still makes this development methodology the best alterna-
tive when (i) answering the initially given top-level requirements is what
matters, and/or when (ii) this efficiency is a truly dominating concern.
Unfortunately for IT developments, these two conditions hardly ever hold.
User requirements are notoriously unstable, and computer programs can
be much larger and/or slower than theoretically necessary. The latter is

Figure 2.1 Thermostatic Faucet Designed According to the Independence Axiom.
(Source: RAVAK a.s.).

Design for the Unexpected14

especially true when allocating ample computer memory and processing
power reduces software development and debugging or maintenance time
and efforts.

The attractive property of top–down functional development – op-
timized efficiency – is also its weakness: artifacts under stress, caused by
such optimization, are fragile. The typical result is exceedingly vulnerable
to changes in the user requirements. Consider our chest-type deep freezer
again. After using the freezer for a short time, the users realize that their
initial accessibility requirements were too weak (they fail to remember what
is stored at the bottom). Repeating the design process now yields a cabi-
net-style deep freezer with drawers. Second-level and higher-level designs
cannot be reused and become virtually useless; remember that these levels
rely on the given context to yield an efficient answer to their given require-
ments. The elements that survive the change in requirements are bottom-up
technological developments (e.g., thermally isolating materials) and generic
design know-how (e.g., containers with the opening at the top: chest in the
first design, drawers in the second).

Furthermore, top–down functional design forces the designers to make
important choices early in the process when they have minimal knowledge
(e.g., select a chest or cabinet design in the deep freezer example). In soft-
ware design, developers often have to learn while they develop. Undoing
early unfortunate design choices can be extremely difficult because it in-
validates much of the subsequent developments when following this con-
ventional approach.

In conclusion, top–down functional design is suitable when (i) the user
requirements are stable, (ii) the designers already have much experience
in the system they develop, and (iii) efficiency is important in the sense that
the design may not be more complex and consume more resources than
necessary. When building a large bridge, such conditions are likely to be
fulfilled: (i) the way people use bridges has remained unchanged for ages;
(ii) the main design task consists of adapting proven designs to the par-
ticular circumstances in which this bridge has to be built; (iii) efficiency is
crucial because, unlike software, a bridge cannot be twice the necessary size.
In other words, top–down functional design remains the methodology of
choice for developments that need to become operational as fast as possible,
need to be efficient, and can recover their costs by answering the initial
requirements only. Such developments typically produce macroscopic me-
chatronic systems or mechatronic societies (e.g., buildings, ships, machines,
chemical plants).

On the Design of Complex Systems 15

However, the preconditions for justifying a top–down functional
design methodology to software development are not fulfilled. Indeed, de-
velopment costs for reproduction of a solution become increasingly less
important for high-tech products, systems, and infrastructures, whereas user
requirements become less stable, and learning during the development be-
comes more important. The answer to this issue in the domain of software
engineering is the subject of the next paragraph.

OBJECT-ORIENTED DESIGN AND DEVELOPMENT

Object-oriented technology is widely recognized to be a most sig-
nificant development in IT technology in the last few decades. Object-
oriented programming languages, such as C++ and Java, have become the
dominant programming tools for leading professional software developers.
An object-oriented design methodology complements these object-
oriented programming languages. It is object-oriented design that mirrors
the deeper insights on how large, complex IT systems can be successfully
developed; especially while user requirements keep changing.

Already in the early 1980s, Michael Jackson recognized user require-
ments to be among the highly unstable parts in a software development
activity. Jackson (Jackson, 1995) also recognizes other weaknesses in top–
down design (e.g., being forced to take crucial decisions early, the absence
of a single hierarchical decomposition in the real world) and proposes his
Jackson system development (JSD) methodology as an alternative.

Jackson recognizes that the world of interest, for the software under de-
velopment, is much more stable over time. Jackson’s methodology consisted
of reflecting the entities of interest and their relationships in software first.
This comprises, for instance, the information related to the employees of a
company (e.g., name, contract, working hours, and working place). Next,
measures to keep the information in the computer system synchronized
with reality are implemented (e.g., when a person gets promoted, the ap-
propriate data fields are updated). Finally, the functionality needed to answer
the user requirements is implemented on top of this reflection of the world
of interest (e.g., management reports on the monthly expenses for wages).
Jackson’s methodology was applied for the development of COBOL ap-
plications in those days.

Jackson’s ideas constitute the core of today’s object-oriented design
methodologies. The work by Cook (Cook and Daniels, 1994) constitutes a
representative example of such methodologies. In an object-oriented design,

Design for the Unexpected16

the developer implements an essential model reflecting the world of interest
for the problem that needs to be solved. Such an essential model describes
(i) the possible states the world-of-interest can be in, (ii) which events cause
which state transitions, and (iii) the possible sequences in which events can
occur.

In the implementation, the software keeps the essential model synchro-
nized with reality. Functions are implemented on top of this essential model.

The core ideas of object-oriented design had difficulties disseminating
themselves through the world of software designers. First of all, the core
message often disappears in the information about formalisms and nota-
tions (e.g., UML diagrams), and the information related to object-oriented
programming. Second, object-oriented design is not suitable for all soft-
ware development activities (e.g., the design of quick-and-dirty solutions
for which a low developmental effort is more important than the solution
becoming useless in sometime in the future).

Nonetheless, object-oriented thinking is well established among current
IT professionals as put to evidence by Nelson et al. (2002), who discusses
a compact course to teach older expert functional software developers to
adopt object-oriented design. The key element of this course is to make
these experienced developers themselves discover that user requirements
(functions) constitute an unstable element in their world and thereby make
them discover the essential model as the stable part.

The essential model – using the wording from Cook and Daniels – has
become a part of widely recognized object-oriented software engineering
methodologies, commonly referred to as (variations of) the unified process;
note that the terminology may differ, depending on its source. A key feature
in this unified process is its architecture-centric nature. Likewise, design
for the unexpected (D4U) focuses on an architecture in which essential
models – ideally in executable implementations – have a most prominent
position indeed.

COLLECTIVE DECISION MAKING
AND ARCHITECTURE-CENTRIC DESIGN

Complex systems usually are the result of a collective effort. In such
community efforts, the argumentation of collective decisions often relies on
abductive reasoning to justify and create the perception that a given group
consensus is “the” solution. However, such reasoning can be classified as
(cf. appendix III) (i) deductive reasoning: conclusion guaranteed; (ii) inductive

On the Design of Complex Systems 17

reasoning: conclusion merely likely; and (iii) abductive reasoning: taking your
best shot.

In fact, abductive reasoning is only a heuristic where the outcome –
this group/community consensus – receives too much respect and has un-
justified authority in today’s practice. The abductive reasoning, leading to
this consensus, is considered de facto proof of correctness and unavoidability,
where abduction only delivers a possible option out of many. Specifically,
collective decision making commonly uses abduction to justify a good
enough solution respecting the comfort zones and vested interests of the
controlling parties and stakeholders.

As will be discussed in the next chapter, design for the unexpected ad-
dresses problems by first elaborating intermediate solutions – designed for
the unexpected – from which final solutions – solving the problems – are
elaborated. To achieve design for the unexpected as the result of a collec-
tive effort, a collective awareness of this divide and its purpose/benefits is
required. Architecture-centric development approaches address such con-
cerns. The software engineering community enjoys such a collective aware-
ness of the contributions by suitable architectures. Other communities may
still need to discover this.

SUMMARY AND REMARKS

Without attempting to be comprehensive, this chapter presents a con-
text in which D4U is situated. It distinguishes simple, complicated, complex,
and complex-adaptive systems where the latter have become, and continue
to be, more and more important in our society.

Next, design by means of top–down functional decomposition is dis-
cussed, highlighting axiomatic design. It is a valid approach when address-
ing shorter-term problems with stable requirements. Complementing this
approach, D4U provides, creates, enlarges, and improves what is considered
the technology base by functional design. On the whole, D4U facilitates the
application of axiomatic design.

There exist related/similar approaches. For instance, role-based de-
composition is promoted in the autonomous agents and multiagent systems
(AAMAS) community. Such approaches share with functional decomposition
that this role decomposition is human-invented, which prevents offering
scalability or integrate-ability guarantees.

Structural decomposition, found in essential models within object-
oriented design, is addressed subsequently. This matches D4U well. However,

Design for the Unexpected18

in practice the contribution and importance of these essential models is ill-
appreciated. The fact that there is no single widely used terminology for the
concept of essential models reflects this. Essential models mirror a reality
that is coherent and consistent. When designed along D4U principles, they
scale and integrate well.

Furthermore, D4U shares the architecture-centric nature of object-
oriented software engineering methodologies (see Chapters 5 and 6).
However, software objects are passive, requiring method calls to perform
actions. To effectively mirror reality, active communicating computing pro-
cesses are needed, often called agents. Therefore, the software implementa-
tion technology of choice for D4U will be an “actor language” rather than
an object-oriented language. Indeed, interaction is much more powerful
and expressive than computation (Wegner, 1997).

ABBREVIATIONS
AAMAS Autonomous agents and multiagent systems
CAS Complex adaptive system
DP Design parameter
FR Functional requirement
IT Information technology
ITS Intelligent traffic system
JSD Jackson system development
MS Mechatronic society
UML Unified modelling language

REFERENCES
Cook, S., Daniels, J., 1994. Designing Object Systems. Prentice-Hall, London.
Goldratt, E., 1984. The Goal. North River Press, Great Barrington, MA.
Jackson, M., 1995. Software Requirements and Specifications. Addison-Wesley, Amsterdam.
Nam Suh, P., 1997. Design of systems. CIRP Ann. 46 (1), 75–80.
Nelson, H.J., Armstrong, D., Ghods, M., 2002. Old dogs and new tricks: a compact course

teaches the expert procedural programmer to think OO. Commun. ACM 45 (10),
132–137.

Simon, H.A., 1990. The Sciences of the Artificial. MIT Press, Cambridge, MA.
Waldrop, M.M., 1993. Complexity: The Emerging Science at the Edge of Order and Chaos.

Simon and Schuster, New York, 380 pages.
Wegner, P., 1997. Why Interaction is more Powerful than Algorithms. Communications of

the ACM 40 (5), 80–91.

http://refhub.elsevier.com/B978-0-12-803662-4.00002-3/ref0010
http://refhub.elsevier.com/B978-0-12-803662-4.00002-3/ref0020
http://refhub.elsevier.com/B978-0-12-803662-4.00002-3/ref0025
http://refhub.elsevier.com/B978-0-12-803662-4.00002-3/ref0030
http://refhub.elsevier.com/B978-0-12-803662-4.00002-3/ref0035
http://refhub.elsevier.com/B978-0-12-803662-4.00002-3/ref0035
http://refhub.elsevier.com/B978-0-12-803662-4.00002-3/ref0035
http://refhub.elsevier.com/B978-0-12-803662-4.00002-3/ref0040
http://refhub.elsevier.com/B978-0-12-803662-4.00002-3/ref0045
http://refhub.elsevier.com/B978-0-12-803662-4.00002-3/ref0045
http://refhub.elsevier.com/B978-0-12-803662-4.00002-3/ref0050
http://refhub.elsevier.com/B978-0-12-803662-4.00002-3/ref0050

19
Design for the Unexpected. http://dx.doi.org/10.1016/B978-0-12-803662-4.00003-5
Copyright © 2016 Elsevier Inc. All rights reserved.

Design for the Unexpected

Paul Valckenaers*, Hendrik Van Brussel**
*Faculty of Engineering Technology, KU Leuven
**Faculty of Engineering Science, KU Leuven

This chapter presents a theoretical analysis/model of how designers elabo-
rate systems that can handle unpredictable user requirements and integra-
tion requirements. No advanced know-how is required to understand this
analysis; elementary set theory suffices (Cf. http://en.wikipedia.org/wiki/
Set_theory – basic concepts and notation.). The analysis provides insights
allowing designers to enhance their design and development process when
they appreciate precisely when, where, and how design choices affect the
ability to cope with the unexpected.

PROBLEMS AND SOLUTIONS

This section formally addresses what constitutes a problem and its
solution(s). The purpose of the formal approach is to present ideas more
precisely. The formal approach does not produce any calculus on problems
and solutions, nor does it claim completeness in a philosophical sense. The
formalism mainly serves to avoid ambiguity and to delineate the ideas more
sharply than would be possible in natural language.

Problems
A problem P is defined as follows:

A problem P is a constraint on the state space U of the universe U, defining
a set P = {u ∈ U | u satisfies P} ⊆ U.

When U is the world in which we live, U is an infinite state space. Every
state u ∈ U has a time coordinate t

u
 ∈ ℜ. By definition, reachable states at a

given time coordinate are states that either have been or can become the actual
state of the universe at this given time coordinate. This universe is subject
to the laws of nature (constraints), which limit the number of states that are

CHAPTER THREE

http://en.wikipedia.org/wiki/Set_theory
http://en.wikipedia.org/wiki/Set_theory

Design for the Unexpected20

reachable. These laws of physics imply that there is exactly one reachable
state u for every t

u
 ≤ t

now
.

The universe U follows a trajectory through its state space as time
progresses. This trajectory is defined for states up to t

now
. It consists of the

states in which the universe has been in the past. The future trajectory
is only partially defined. This future trajectory is constrained by physical
laws, possibly including stochastic aspects, and is affected by the actions of
the human and other entities in this world. These actions affect the choice
of the successor states of the current state corresponding to t

now
. Normally,

any significant impact on the trajectory requires sustained action during
a substantial amount of time. A problem P is solvable by an agent (human
or otherwise) if the agent is able to make this trajectory stay within the
given subset P.

Remark 1
In our world, there exist two major types of problems (Wegner, 1997). First,
there are the one-shot problems, which require the state of the universe to
comply once with a constraint at some point in time. The problem speci-
fication does not care about the states before and after. An example is to
deliver in time some quantity of goods of sufficient quality. Such problems
often are agreements between humans to coordinate their interactions. The
second type of problems consists of going concerns. Going concerns require
that the trajectory of the universe complies with requirements that span a
complete time window, typically starting from t

now
. For instance, a coordina-

tion and control system must keep its underlying system in a safe state (no
casualties etc.). Note that there exist many problem-solving technologies
that cannot handle going concerns (e.g., database query engines and most
optimization software). Inherently, most real-life problems are going con-
cerns, where one-shot problems often are artificial problems. Accordingly,
coordination and control technology normally addresses going concerns,
possibly using one-shot problem solvers as subsystems.

Remark 2
The above defines a “basic” problem as a constraint with which a solu-
tion must comply. In reality, there also exist optimization problems. These
 optimization problems can be modeled as a set of tuples, where each tuple
consists of a basic problem and a valuation, where the overall problem is
to optimize this valuation. This valuation defines the value/benefit/… of
solutions to the corresponding basic problem. Such a valuation can be

Design for the Unexpected 21

 single-valued and fully ordered, but it can also reflect multicriteria optimi-
zation problems. Since the remainder of the discussion does not require this
extension to optimization problems, it is not elaborated further.

Solutions
A solution S to a basic problem P is defined as follows:

A solution S of a problem P is a constraint on the state space U of the uni-
verse U defining a set S = {u ∈ U | u satisfies S}, where S ⊆ P ⊆ U and
∀ t ∈ ℜ, ∃ s ∈ S: t = timeCoordinateOf(s).

Agents (human or otherwise, intentionally or unintentionally) solve a given
problem P when they confine, through their actions, the trajectory of the uni-
verse U to the corresponding subset P. Therefore, their actions – combined
with the laws of the universe – correspond to constraining the state of the
universe to a subset S of P. S cannot be empty; it will always have at least
one state for every time coordinate. If S fails to comply with this condition,
the agents failed to solve the problem.

Typically, S and P will differ significantly concerning the states with a
time coordinate that is smaller than or equal to t

now
. The problem P is only

concerned with what is needed, useful, and so on. Therefore, it allows as
many states as possible as long as the choice among them does not matter.
In contrast, the solution S is embedded in the universe, which allows only
a single state for every time coordinate in the past (including the present).
Moreover, S will reflect that are severe limitations on what states can be
reached in the immediate future from the current state (e.g., it takes time to
travel from A to B, to prepare a meal, or to build a house).

In other words, S will be significantly smaller than P, especially con-
cerning states close to the present time or in the past. Therefore, problem-
solving agents unavoidably have to make choices whenever deadlines ap-
proach; they have to select a single state (per time coordinate) from all
states allowed by the problem (for the time coordinate). An example of the
introduction of constraints can be observed in the design of a railway system
to solve transportation problems: when the moment of actual usage ap-
proaches, the designers have to make more and more choices. For instance,
they must select a specific value for the track width.

In real life, a problem-solving activity consists of a sequence of actions
over time. Using the above definition, such sequence of actions corresponds
to a sequence of solutions S

1
, S

2
, … S

end
 that solve P, where S

end
 ⊂ ··· ⊂

Design for the Unexpected22

S
2
 ⊂ S

1
 ⊂ P. This reflects that the agents make more and more choices as time

progresses in order to solve the problem. This introduction of constraints by the
solution – as the agents make these choices – is a key issue. Indeed, when
confronted with new requirements (unexpected ones), S

x
 may experience a

conflict while P has no issue accommodating these requirements.

EMERGENT SOLUTIONS AND INTEGRATION PROBLEMS

When solving real-life problems, agents – human or otherwise – start
from existing subsolutions, technology, and infrastructure. Adding to these ex-
isting parts, individual agents and agent teams provide new parts for an overall
solution. These parts, existing or new, are brought together, integrated as far
as possible, and an overall solution emerges. In other words, such emergent
solutions involve integration where the integrate-ability of building blocks
determines what may emerge, what performance will be achievable.

In this situation, the individual agents or teams face a high level of un-
certainty about the other parts with which their part needs to cooperate.
Typically, the agents contribute to the solution of many problems over time
(e.g., a section of a transportation infrastructure is used in solving numerous
individual transportation problems). Moreover, an agent’s contribution is used
to solve problems unknown at the time this contribution is created, and it
must be combined with contributions from other agents. Many of these other
contributions are developed independently such that the individual agent has
limited opportunities to coordinate its contribution with the others. Some of
these other contributions only emerge after the creation of the contribution
of such an individual agent. In other words, integration problems confront
existing subsolutions with requirements that were unknown at their design
time; unsurprisingly, these requirements often will be “unexpected.”

Formally, agent x solves problem P through solution S
p
. The other agents

solve problem Q through solution S
q
. This results in the state sets S

p
 ⊆

P ⊆ U and S
q
 ⊆ Q ⊆ U. For instance, agent x has constructed the railway

system in France to answer the need for transportation. The other agents
implemented similar railway systems in the remainder of Europe. Subse-
quently, providing transportation all over Europe – that is, problem T – is to
be solved by integration of the national railway systems — that is, integra-
tion of S

p
 and S

q
 into solution S

t
. As discussed in the next chapter, such large

complex systems can only be created and sustained through combining
subsystems/subsolutions; construction from scratch is too expensive and
time-consuming.

Design for the Unexpected 23

Formally, agents must solve problem T, where T ⊆ P and T ⊆ Q.
Practically, agents must integrate the existing subsolutions into their overall
solution; formally, T ⊆ S

p
 ∩ S

q
. In the example, society is unable to du-

plicate the effort of developing their national railway systems to provide an
international one. Instead, it must reuse the existing system to create the
international connections among the national systems and obtain a system
that transports goods and passengers across the borders in Europe.

The main problem with the creation of such solutions is that the in-
tegration fails to deliver the desired performance. In the railway example,
it is relatively easy to provide international transport at a reduced service
level; goods and passengers need to change trains at the borders of Spain
and Russia (where the distance between the rails differs from the rest of
Europe). The subsolutions, which were developed independently, have made
mutually incompatible design decisions, and these decisions have accumu-
lated significant inertia (i.e., it has become costly to undo these decisions).

Formally, for any ambitious T:

∃ t ∈ ℜ, ∀ s ∈ S
p
 ∩ S

q
 ∩ T: t ≠ timeCoordinateOf(s)

In practice, a solution for T cannot readily reuse the (partial) solutions of-
fered by the individual agents without undoing a lot of design choices.
Typically, society only receives a reduced level of service (i.e., solutions to
easier problems), and will only gradually outgrow the old designs when
technology progresses sufficiently to introduce a new solution from scratch
(e.g., high-speed trains).

The key issue is the introduction of constraints, by the agents, that are
absent in the corresponding problem and that may cause future integra-
tion problems. More precisely, it is the accumulated inertia – that is, the
effort needed to undo such harmful design decisions – that constitutes the
problem.

DESIGN PRINCIPLES – DESIGN FOR THE UNEXPECTED

It becomes clear that the design of subsystems for emergent solu-
tions imposes its own requirements on a design activity. In particular, the
problem-solving agent must design a solution S

p
 capable of surviving in an

uncertain environment concerning its future.
Formally, such uncertain environment corresponds to ℘, a set of subsets

of the state space U. The actual future will offer an intersection of members

Design for the Unexpected24

of ℘ as the space that is available for S
p
 to contribute its part to the overall

solution. Some members of ℘ correspond to the constraints imposed by
the future problems for which solution S

p
 may be part of the overall emer-

gent solution. Alternatively, members of ℘ correspond to the constraints
imposed by other candidate subsolutions that may contribute to solving
the bigger problem at hand. A designer of solution S

p
 does not know which

members of ℘ will be present, and must try to avoid conflicts with any
constraints that might be presented by members of ℘.

In this context, design decisions can introduce two types of constraints:
stable and unstable. Stable constraints will be present in all conceivable fu-
ture situations within the scope of S

p
. For instance, an agent may assume

that power supply will be 240 V/50 Hz or 110 V/60 Hz when designing
an electrical appliance. Formally, no member of ℘ will be in conflict with
the stable constraint. In contrast, unstable constraints represent conflicts with
some members of ℘. Design decisions that introduce unstable constraints
harm a solution’s capability to contribute when solving future problems. For
instance, a software designer may assume that two digits suffice to represent
the year in a date field in a database design. In another case, the designer of
a rocket inertial navigation program selected to minimize the memory and
processing power requirements; this software only supported the acceleration
range of the then-current rocket. When this software was reused, without the
needed adaptations, to guide a more powerful successor, it caused the crash
of this next-generation rocket during the first launch. It was a very expensive
manner to detect a sub-solution integration conflict. A case with less serious
consequences was an army’s software system supporting only one data field
to indicate size for clothing, which caused a problem when, sometime after
this software was installed, women were allowed to become soldiers.

Based on this, design principles P1 and P2 emerge. In a way, they rede-
fine and expand the “burden of proof” for a design decision to be consid-
ered justified. For example, in P1, the word potentially calls for a much more
substantial justification than required in more conventional approaches.

P1. PROBLEM SOLVERS MUST AVOID INTRODUCING
POTENTIALLY HARMFUL CONSTRAINTS

This design principle calls for design decisions introducing stable
constraints first and as much as possible (i.e., certainly before introducing
unstable constraints). These decisions are unlikely to cause future conflicts,
as the introduction of stable constraints simply reflects the fact that these

Design for the Unexpected 25

constraints are already present in the environment (cf. the universal use of
240 V/50 Hz in Europe). A stable design decision preserves and reflects the
scope of the problem domain.

For instance, using maps in navigation systems complies with P1. More
generally, including essential models (see Chapter 2) in a solution complies
with P1. In manufacturing systems, nonlinear process plans constitute a
sample application of this first design principle. Nonlinear process plans in-
dicate all possible manners in which a product can be manufactured rather
than selecting a single sequence of processing steps.

The first principle discourages design decisions from introducing unsta-
ble constraints as they may create conflicts during future integration efforts.
As discussed, it will be impossible to avoid introducing unstable constraints
indefinitely, simply because t

now
 advances toward a deadline by which a

problem needs solving. Therefore, the design principle requires unstable
constraints to be introduced as little and as late as possible. It keeps options
open as much as possible and as long as possible.

P2. PROBLEM SOLVERS MUST AVOID/REDUCE THE
INERTIA BUILD-UP FOR POTENTIALLY HARMFUL
CONSTRAINTS

When designers cannot avoid introducing unstable constraints, they
may not use them to justify subsequent unstable design decisions, which
would have introduced these potentially harmful constraints as well. Re-
peatedly making design choices introducing an unstable constraint will
build up inertia: it will practically become impossible, take too much time
and effort to undo this introduction when it reveals to be an unfortunate
choice later. For instance, legacy systems are commonly associated with this
issue.

Obviously, later design decisions have to be compatible with earlier design
decisions, including unstable ones, in order to solve a problem. In addition,
it is tempting to rely on all previous design choices as this will simplify the
design and development task (i.e. there are less possibilities to consider);
this is precisely what top-down functional decomposition in axiomatic de-
sign advocates. However, relying on earlier unstable design choices implies
more design choices that need undoing when they reveal to be harmful (i.e.
create a conflict).

Therefore, P2 basically states that P1 needs to be applied on the original
situation: do not introduce potentially harmful constraints relative to the

Design for the Unexpected26

initial problem-solving situation. The fact that some earlier design choices
already introduced potentially harmful constraints does not represent a per-
mission to repeat their introduction.

CONCLUSION AND REMARKS

Summarizing, the novel principles for the designers are as follows:
(i) designers must prefer stable design decisions and (ii) earlier unstable de-
sign decisions are no justification for later decisions imposing the same
constraint(s). The first design principle avoids the introduction of new con-
straints. The second avoids the build-up of inertia for unstable constraints
that were introduced earlier; every unstable design decision must be justifi-
able by itself.

The theoretical analysis/modeling and design principles in this chapter
enable developers to judge more precisely when and how their design is
protected against unstable elements in their environment. The theory re-
veals that “reflection of the world of interest” intrinsically is a source of
stable constraints. Indeed, every element of the environment ℘ contains all
the constraints originating from this relevant reality.

Chapters 5–7 discuss research results applying and translating the above
to real-world application domains. Also, note that the above principles ap-
ply when designing lasting artefacts, such as infrastructures, and not for the
short-time solutions for the immediate future.

ABBREVIATIONS
P Problem
S Solution
U Universe

REFERENCE
Wegner, P., 1997. Why interaction is more powerful than algorithms. Commun. ACM 40

(5), 80–91.

http://refhub.elsevier.com/B978-0-12-803662-4.00003-5/ref0010
http://refhub.elsevier.com/B978-0-12-803662-4.00003-5/ref0010

27
Design for the Unexpected. http://dx.doi.org/10.1016/B978-0-12-803662-4.00004-7
Copyright © 2016 Elsevier Inc. All rights reserved.

Laws of the Artificial

Paul Valckenaers*, Hendrik Van Brussel**
*Faculty of Engineering Technology, KU Leuven
**Faculty of Engineering Science, KU Leuven

This chapter discusses four scientific laws or principles that apply to the artifi-
cial (i.e., to manmade systems). When bounded rationality determines what is
possible or impossible, these principles are unavoidable and simply cannot be
ignored by developers without consequences (i.e., failure, poor performance,
or high costs). These laws concern flexible aggregation (holonic systems), crit-
ical user mass, decentralized steering, and collective proactiveness.

ON THE MEANING OF THE WORD LAW

Once upon a time in a small town, a civil engineer – employed by
the town council – was instructed to elaborate a proposal for a new much-
needed water reservoir to feed the town. The engineer designed a wonder-
ful tower that was to be built on top of the highest hill in the vicinity, and
she presented this to the town council.

The mayor appreciated the beauty of the design so much that he in-
structed the engineer to build the tower in the center of town. At which
point the engineer replied, “That will not be possible because of Newton’s
law (of gravity).” Furious for not getting what he wanted, the mayor ordered
the engineer to leave the room and wait outside.

After about an hour, the engineer was called in. Proudly, the mayor an-
nounced that they had solved the problem. They had checked all applicable
legislation thoroughly and concluded that Newton’s law was not applicable to
their town.

The word law is used in at least two different ways: (i) manmade regula-
tions and (ii) statements of facts (scientific law). Examples of the latter are the
laws of nature, which are unavoidably true within their scope. Newton’s laws
on gravity and force–mass–acceleration are facts until you get outside their
scope (e.g., move at speeds approaching the speed of light, go to subatomic
dimensions). The first and second laws of thermodynamics constitute an-
other example. This chapter uses the word law in the sense of laws of nature.

CHAPTER FOUR

Design for the Unexpected28

Recognition that there are laws of the artificial, resembling laws of
nature, has been a major contribution from Nobel Prize winner Herbert
Simon. Simon even wrote a book on this titled The Sciences of the Artificial
(Simon, 1990). These laws of the artificial are statements of (unavoidable)
facts in the manner the laws of nature or physics are.

If engineers fail to account for the law of gravity while designing a canal
infrastructure, its performance will be poor while investments in pumping
stations and recurring expenses to power these stations will be high. Like-
wise, ignoring the basics of complex manmade artifact design and develop-
ment will result in disappointing performance and high costs.

This chapter discusses a (nonexhaustive) list of these laws of the artificial
providing insights that are accounted for in the remainder of this book. The
scope of these laws can be formulated “beyond a certain level of system
complexity,” which more conventional approaches fail to master. Indeed,
this scope delineates those problems that benefit from and perhaps even
require us to design for the unexpected.

AXIOMS

The laws of the artificial are derived from a number of observations
of key properties of our world. They are assumed to be true (i.e., they are
axioms, not lemmas).

Bounded rationality is a key element from which these laws are derived.
Even a team composed of the most talented human individuals in the world,
enjoying the best imaginable support and resources, has limited problem-
solving and design capabilities. Moreover, enlarging such a team rapidly
fails to improve its capabilities, i.e., when the increase in coordination and
communication efforts absorbs more brain power than is added by the new
team members.

A dynamic environment is another element from which laws of the ar-
tificial are derived. A dynamic environment implies that there is a time
window in which problems need solving, designs have to be realized, and
systems must be implemented. In combination with bounded rationality,
this results in an upper bound on the number of information-processing
steps leading to a design or solution to a problem. Above this upper bound,
solutions arrive too late to contribute.

A competitive environment constitutes a third element. Whenever it is pos-
sible to improve, systems and designs that neglect to do this disappear or
never appear at all. Again, possible-to-improve is to be seen in the finite

Laws of the Artificial 29

time window allowed in a dynamic environment. Likewise, possible-
to-improve is to consider the availability and recruitment of the necessary
resources to execute the improvement. In particular, when bigger means
better (i.e., more competitive, not necessarily more desirable), systems (of
systems) will grow bigger.

Adaptation, the final element, relates to the fact that systems change over
time. A solution may need to assume the world to be both complex (e.g.,
exhibit a butterfly effect) and nonrepeating (e.g., when past experience
influences future behavior). Designers should realize that from a certain
system size on, a perfectly predictable complicated system turns into a com-
plex system, the behavior of which is becoming (partly) unpredictable, and
for which new control approaches are needed.

LAW 1: HOLONIC SYSTEMS – FLEXIBLE HIERARCHIES

The term holon was introduced by Arthur Koestler in his book “The
Ghost in the Machine” (Koestler, 1967). Two observations of how social and
biological systems are organized motivated Koestler to propose the con-
cepts of holons and holonic systems.

The Watchmakers’ Parable (Simon, 1990)
Once upon a time, there were two watchmakers, named Hora and Tem-

pus, who both made very fine watches. The phones in their workshops rang
frequently, as new customers were constantly calling them. Hora prospered
while Tempus became poorer and poorer. In the end, Tempus lost his shop.
What was the reason behind this?

The watches consisted of about 1000 parts each. The watches that Tem-
pus made were designed such that when he had to put down a partly as-
sembled watch, for instance to answer the phone, it immediately fell into
pieces and he had to start all over again, reassembling the basic elements.

Hora had designed his watches such that he could put together subas-
semblies of about ten components each. Ten of these subassemblies could
be put together to make a larger subassembly. Finally, ten of the larger sub-
assemblies constituted the whole watch. Each subassembly could be put
down without falling apart.

The first observation was that complex systems will evolve from simple
systems much more rapidly if there are stable intermediate forms present.
This observation was influenced by Simon’s parable of the two watch-
makers (Simon, 1990). Simon’s parable (see frame) demonstrates how, in

Design for the Unexpected30

dynamic and demanding environments, the chances of emerging and sur-
viving for systems composed of suitable subsystems are vastly superior to
systems composed from basic elements without stable intermediate states
or subsystems.

Indeed, bounded or limited rationality – finite brainpower, bounded
information processing, and communication capacity – puts a ceiling on the
speed at which elements can be integrated to build a system. When these
elements are small, more time and effort is required to build a system of a
given size. In combination with a dynamic environment, the resulting sys-
tem is completed too late to be effective or competitive. Systems built from
larger building blocks are superior in environments that emphasize adapta-
tion speed over the theoretical possibility of superior ultimate performance.

In Koestler’s words, larger holons (holonic systems) are constructed from
stable intermediate forms, also called holons, where this composition repeats
in a self-similar manner until the constituents become simple. Such holonic
systems are more likely to emerge and survive in dynamic environments
than systems that would ultimately be superior but take too much design
effort and development time. The latter systems simply are too expensive
and, most importantly, obsolete long before they become operational.

The second observation was that although it is easy to identify subwholes
or parts, “wholes” and “parts” in an absolute sense do not exist anywhere.
The term holon was proposed to describe the hybrid nature of subwholes/
parts in real-life systems. Holons simultaneously are self-contained wholes
to their subordinated parts, and dependent parts when seen from the inverse
direction. Or put more simply, a holon is something that is whole in itself as
well as part of a greater whole. Koestler called this behavior the “Janus effect.”

Koestler also points out that holons are autonomous self-reliant units,
which have a degree of independence and handle contingencies without
asking higher authorities for instructions. At the same time, these holons
are subject to control from higher authorities. The first property emphasizes
that holons are stable forms and can cope with disturbances. The second
property highlights that holons are intermediate forms, providing the prop-
er functionality for the larger whole.

According to Koestler, a holonic system or holarchy is then a hierarchy
of self-regulating holons that function (i) as autonomous wholes in supra-
ordination to their parts; (ii) as dependent parts in subordination to control
at higher levels; and (iii) in coordination with their local environment.

Simon’s main goal is to explain why our universe is dominated by sys-
tems exhibiting hierarchical structure in a loose sense – which Koestler calls

Laws of the Artificial 31

“holarchies” to distinguish them from strict hierarchies (typical for rigid man-
made artifacts). Koestler makes a first attempt at characterizing these suitable
subsystems, which have to survive the dynamics of the environment better
and longer than the overall system, as illustrated in the watchmakers’ parable.
Koestler calls this ability to survive the autonomy of the subsystem or holon,
whereas the contribution of the subsystem to the overall system is called the
cooperativeness of the holon. The autonomy gives the holon the capacity to
cope with changes, uncertainty, and disturbances in its environment.

The first law of the artificial states that flexible hierarchies will dominate when
and where the first three axioms hold; holonic systems will be the superior
choice. Here, “flexible” means that these hierarchies adapt their composi-
tion over time by replacement of subsystems at appropriate hierarchical
levels. When these three axioms fully apply, holonic systems will be your
only possibility because anything else is eliminated by ruthless and fierce
holonic competitors.

However, Koestler’s analysis concerning the stability of intermediate forms
(e.g., their autonomy) fails to qualify as a law. The stability and availability of
suitable intermediate forms is dominated by the second law (i.e., membership
of strong autocatalytic sets), which is discussed below. Note that autonomous
contingency handling is likely to induce and reinforce such membership but
it is not the sole nor a dominating factor in this respect.

LAW 2: AUTOCATALYTIC SETS – CRITICAL USER MASS

An autocatalytic set is a collection of entities, each of which can be cre-
ated “catalytically” by other entities within the set, such that as a whole, the
set is able to catalyze its own production and expansion. In this way, the set
“as a whole” is said to be “autocatalytic.”

The second law of the artificial states that members of strong autocatalytic
sets have decisive competitive advantages over nonmembers. In competitive
environments, resources will go (almost exclusively) to members, rendering
nonmembers to become extinct through starvation.

Autocatalytic sets were originally and most concretely defined in terms
of “molecular entities” but have more recently been metaphorically ex-
tended to the study of systems in sociology and economics. Here, we extend

Design for the Unexpected32

them to (complex) artifacts, designed and produced by humans. Autocataly-
sis reveals to be more fundamental than autonomy for the emergence and
survival of systems, which eventually become subsystems in a larger system.
Autonomy and adaptability are secondary properties of autocatalytic sets
and their members, useful to maintain and increase autocatalysis in a dy-
namic and changing environment.

Originally, the concept of an autocatalytic set (Hordijk, 2013) served to
enhance the probabilities in the standard biologist’s theory that life emerged
by chance when energy pulses stroke a pool filled with organic molecules.
Unfortunately for this standard theory, the smallest life forms still are so big
that combining their basic molecules by chance is as likely to happen as
“a group of monkeys typing Shakespeare’s oeuvre by pure coincidence.”

These calculations change drastically, however, if combinations of mol-
ecules are formed into sets that are catalysts for themselves. If energy pulses
arrive at a sufficiently high frequency, the autocatalysis implies that the pool
rapidly becomes filled with members of such autocatalytic sets (exponen-
tial growth until raw material becomes scarce). The omnipresence of such
set members also means that they become the building blocks for larger
molecular combinations, among which the autocatalytic set members will
dominate again.

In view of the first law of the artificial, membership of sufficiently strong
autocatalytic sets delivers an exponential competitive advantage. Our ho-
lons will be members but not all members will be suitable subsystems. Note
also that being a suitable subsystem provides (indirect) membership to the
autocatalytic sets of the larger system. Indeed, the first and second law of
the artificial mutually reinforce each other.

In the biologist’s theory, this interaction creating larger entities (first law)
among which the autocatalytic set members are favored (second law) can be
repeated until life forms emerge. If this theory is correct, the dominating life
forms should be members of autocatalytic sets themselves. And indeed, mice,
rabbits, weeds and insects all provide strong empirical evidence supporting
the theory (i.e., their reproduction, sexually and otherwise is autocatalysis in-
deed). Autonomy, adaptability, manipulating the environment, etc. are second-
ary properties of the more complex life forms (including humans) that mainly
increase the intensity of the autocatalysis in favor of the own set.

To translate the above to the domain of holonic systems and mechatron-
ic systems/societies, it is necessary to identify the relevant autocatalytic sets
for manmade artifacts and software systems in particular. These sets are not
situated in artificial worlds inside computer platforms serving to investigate

Laws of the Artificial 33

artificial life. The relevant autocatalytic sets comprise both software and hu-
mans (i.e., software users and developers).

Successful software systems belong to two kinds of autocatalytic sets:
(i) the economic autocatalytic set – successful software represents economic val-
ue to its users and thus mobilizes the economic means for software develop-
ers to maintain, adapt, and enhance this software; (ii) the information feedback
autocatalytic set – successful software attracts users providing feedback on
its shortcomings and merits. This information, in combination with the
economic means, allows the developers to maintain, adapt, and enhance
the software such that it remains competitive.

The above implies that (software) system designers have to account for more
than just the technical dimension to be successful. Sufficient users (and their
payments) and sufficient diversity in the user community (and its feedback),
relative to the competitive pressures, are necessary for emergence and survival.
Most importantly, such successful members of autocatalytic sets are the (only)
systems that may become the subsystems in larger, more sophisticated systems.

The second law of the artificial translated toward (software) artifacts states that
the – potential for – critical user mass is the principal factor in achieving
membership of strong autocatalytic sets. This user mass must be high, rela-
tive to the complexity of the artifact, in both the economic and informa-
tion feedback aspects.

Ceteris paribus, software systems with the intrinsic ability to serve more
users or a more diverse community of users will have an edge over the
competition since their autocatalysis is stronger. Note that software qual-
ity and functionality levels are likely to improve significantly through the
above types of autocatalysis. Personal experience with systems experiencing
low levels of autocatalysis has provided the authors with strong empirical
evidence supporting this statement.

LOCK-IN

The previous section depicts how positive feedback is instrumental
in structuring worlds such that larger and more complex systems emerge
and survive. This section introduces a negative aspect of such positive feed-
back: lock-in into early solutions. Indeed, the competitor achieving autocata-
lytic growth first generally ends up dominating its world. Competing and
faster autocatalytic processes only have a short time window to overtake a

Design for the Unexpected34

competitor that started earlier. Soon after his start, the first one to achieve
autocatalysis will have consumed or acquired most resources – needed to
grow and sustain – which are also needed by the other competitors.

In other words, systems, in which autocatalysis occurs, may evolve along
multiple trajectories where the selection among these trajectories strongly
depends on which autocatalytic process kicks in the earliest. Because it is
an exponential process, the autocatalytic set rapidly exhausts the available
“raw material,” effectively eliminating the opportunity for other autocata-
lytic processes sharing “material requirements” to start at all.

A well-known example is the “VHS versus Betamax and Video 2000
war” in television tape recorders. VHS was the first to attract a critical user
mass and, because it was the only competitor that was certain to provide
access to a sizeable market for content providers, it deprived the compet-
ing technologies from content, in spite of their technological superiority.
Here, the exponential nature of autocatalysis prevents better solutions from
emerging; a good enough alternative that arrives earlier wins and locks the
world into staying with its first choice.

Relevant for holonic systems development is the poor level of suit-
ability and adaptability of the available systems (members of autocatalytic
sets) from which larger systems have to be developed. Today’s systems were
developed with specific user requirements in mind, and the world locks into
those early solutions. Those early solutions incorporate many design choices
that prevent the creation and maintenance of other and larger systems at
some later time. Likewise, larger systems can be created but lock-in into
design choices from the early solutions results in poor performance. This
often is referred to as “legacy” in its negative connotation.

Overall, lock-in is desirable when it simplifies the world by reducing the
options and alternatives that have to be taken into account. Lock-in is un-
desirable when a dominating system incorporates highly unfortunate design
choices, which unfortunately are commonplace because being first (and just
good enough in the short run) is more important than being well designed.

Relevant for design for the unexpected (D4U), lock-in denies our soci-
ety the ability to make progress incrementally through a sequence of short-
term good-enough solutions, which are improved and combined as time
progresses. This approach rapidly runs into the ground when early design
choices, which have become hard-to-undo, prevent the desired improve-
ment. D4U specifically aims at developing solutions that do not make prob-
lematic design choices or render it easy to undo problematic design choices.
In other words, it aims to create a legacy-free base concerning lock-in.

Laws of the Artificial 35

LAW 3: STEERING WITHOUT CENTRALIZATION

When a competitive environment favors larger systems (i.e., superior
size brings a competitive advantage), systems will grow until centralized co-
ordination and control is no longer feasible (because of bounded rationality).
The following anecdote (Kurtz and Snowden, 2003) illustrates in a small-
scale setting what happens:

A group of West Point graduates were asked to manage the playtime of a
kindergarten as a final year assignment. The cruel thing is that they were
given time to prepare. They planned; they rationally identified objectives;
they determined backup and response plans. They then tried to “order”
children’s play based on rational design principles, and, in consequence,
achieved chaos.

They then observed what teachers do. Experienced teachers allow a de-
gree of freedom at the start of the session, then intervene to stabilize desirable
patterns and destabilize undesirable ones; and, when they are very clever, they
seed the space so that the patterns they want are more likely to emerge.

At larger scales in knowledge-intensive systems, a similar situation tran-
spires. Regarding the upward information flow, the small children lacked
the required intellectual skills. In the scaled-up situation, information over-
load occurs when the information is gathered and fed into higher levels.
Moreover, bounded rationality prevents adequate condensing of this flood
of information. Concerning the downward information flow, the con-
densed nature of information flowing down – as it is generated by higher
levels with a reduced information-processing capacity – implies a need for
expansion and interpretation. This will distort the information.

Worse, the down-flowing information must be disregarded whenever
the loss of information in the upward flow causes this down-flowing in-
formation to be irrelevant and/or wrong. When it is not disregarded, cen-
tralized coordination and control become a liability and harm the overall
system. This is also observed at on a smaller scale when the upper level lacks
basic knowledge in a specialist’s domain.1

1 Everyone knows that cars and trucks should travel on the same side of the road. But in
lesser-known domains, policy makers are likely to decide that tomorrow – as an analogy –
cars shall drive on the other side of the road and, when all goes fine, trucks will change
to this new side three weeks later. Actually, knowledgeable opponents of this change may
propose and encourage such a flawed coordination and control scenario.

Design for the Unexpected36

In other words, classical command and control hierarchies become in-
effective and even counterproductive at some point when systems grow
larger. A leadership that feels responsible for the overall system performance
and considers it their duty to steer it in a centralized top–down manner be-
comes a liability. These large systems need leaders who aim to facilitate and
who primarily aim not to harm performance on the lower levels – that is,
they assume the lower levels aim to perform without the need for explicit
command whereas the higher levels cannot match the combined informa-
tion processing power of the lower levels.

The third law of the artificial states that when competition favors larger systems,
the top levels of competitive systems cannot be effectively controlled in a
centralized manner. Noncentralized designs to steer these large systems exist
but much still needs to be invented and remains to be discovered. Here, the
social sciences and humanities may find some challenges to address.

Other coordination, influencing, and guiding mechanisms are needed,
exists and can be designed. Indeed, in a competitive environment, systems
are likely to benefit from coordination and guidance, which needs to emerge
rather than resulting from higher levels imposing it. The following funda-
mental research experiment in robotics illustrates that it is possible to design
such emergent coordination; on purpose, it severely limits communication
producing a situation that normally only occurs in much larger systems:

In a room, a number of mobile robots are moving around. These robots
have no means for communication and are only capable of three actions:
moving around the room, recharging their battery in a docking station,
and pushing a button on the other side of the room. The battery charging
station is only active/powered when this button is pushed. A robot cannot
push the button while docked in the charging station. The objective of
these robots, employed to study machine-learning mechanisms, is to spend
as much time roaming around the room as possible.

A successful strategy consisted of robots pushing the button with a fre-
quency and duration that is close to what they perceive to be the overall
average while deviating slightly in the direction that the individual robot
deems desirable. As a group behavior, this would steer the overall system
toward good performance while it prevented the adaptation mechanisms
in the robots from exploiting overly generous robots, which in turn avoided
the need for detection and punishing mechanism for profiteering/abusing
robots.

Laws of the Artificial 37

The above illustrates coordination without a centralized control. Al-
though academic, it already reveals how to handle socioeconomic situations
in which a small player may wish to influence the overall system without
risking to be exploited (i.e., for being too nice and gullible) or exclusion
(i.e., for being more royalist than the king).

Our body of knowledge on the design of such mechanisms in real-world
complex cases remains embryonic today. In view of the design theory in this
book, ongoing research focuses too much on the decision mechanism design
(e.g., how much more shall a robot push the button) and not enough on an
environment to facilitate and trigger desirable behavioral patterns in the sys-
tem (cf. the experienced and clever teachers in the above kindergarten).

A well-known example in nature to achieve coordinated behavior with-
out a centralized control is food foraging in (many types of) ant colonies.
These ants use chemical trails (pheromones) to guide other members from
their colony to food sources. The brilliant element in this design is not
the tuning of the performance-determining parameters but the manner in
which the ants reuse the environment itself to cope with (the complexity
and dynamics of) this environment.

In other words, when designing noncentralized coordination and con-
trol, the main achievements will reside in structuring the environment
whereas performance-determining decision-making mechanisms and their
tuning methods are more or less instances of a limited number of generic
designs. Rather than providing elements that take decisions, the proper de-
sign must deliver an environment that
•	 enhances visibility (situational awareness), allowing the decentralized

players to take informed decisions and actions.
•	 allows for larger deviations from the average/group behavior without

repercussions. For instance, the designer may create an environment in
which good deeds are rewarded, or at least remain unpunished.

•	 provides mechanisms to assess the effect of alternative courses of action
under consideration. The actors shall have a kind of radar or crow’s nest
to take better-informed decisions.

•	 provides mechanisms to make the above a collective capability, avoiding
that individuals have to second-guess what the impact of others will be.
In such an environment, individual actors shall never conclude that “if
I had known this earlier, I would have acted differently,” particularly in
situations where the desirability and performance of their actions de-
pends on what other actors do (e.g., whether to stay longer in the office
to avoid rush hour).

Design for the Unexpected38

•	 provides mechanisms to make commitments among the participants in-
volved. This allows a participant to self-command (individually or col-
lectively) and, simultaneously, get the benefit of planned action when
this participant is sharing what she or he is intending to do (including
with a specified commitment). This renders the collective more predict-
able without needing a central coordination taking decisions.

•	 seeds the environment with information to guide decisions without im-
posing them. This will enable don’t-care decisions to be compatible, ini-
tiate search for solutions from promising starting points, and may make
the system behavior simpler and more predictable (i.e., converge faster
and converge in a more predictable manner). The discussion on staff
holons in Chapter 5, enlightens this point.
Summarizing, coordination and control in large complex-adaptive sys-

tems will not be centralized at the higher levels, simply because of limited
rationality. Nevertheless, significant system design effort remains possible
and beneficial. This design effort shall primarily focus on seeding the envi-
ronment to trigger desirable collective and individual behavior, including
simplicity, predictability, and effectiveness. The decision-making elements
in this setting are mostly instances from generic designs that need nonstop
tuning within this environment. The performance of these mechanisms is
bounded by the environment’s offerings. A top-performing ship’s captain
without radar is no match for a capable captain with effective radar. More-
over, the design of this environment needs to account itself for the theoreti-
cal insights discussed elsewhere in this book (holonic, autocatalytic, etc.).

LAW 4: COLLECTIVE IMAGINATION AND
PROACTIVENESS

The most significant word in complex-adaptive systems is “adaptive”;
this is what many research communities have barely covered or not at all.
Vaccination is a well-known mechanism that exploits this phenomenon on
the individual level. On the other extreme, whole societies adapt. In war-
fare, an army attempting to repeat a successful strategy on the same enemy,
which lost the battles in the past but survived, is unlikely to repeat the cor-
responding success. The battles in the past are likely to have “vaccinated”
this enemy. But even in noncompetitive situations, past behavior and statis-
tical data may be insufficient to enable an effective proactiveness.

Consider an intelligent transport system that monitors traffic density
and that combines historical data with models to predict congestion. When

Laws of the Artificial 39

this information is shared with a limited number of paying customers, these
privileged participants will benefit and avoid being stuck in traffic jams.
When the same information is made available to everyone, the resulting
changes in behavior of the participants will invalidate the historical data and
the models. Indeed, the participants react to the prediction in sufficiently
large numbers and extent to cause the prediction to be wrong (and they get
stuck on the routes avoiding the predicted congestions).

The above illustrates how decisive the adaptive nature of elements in
especially large systems can be. As discussed above, these systems are too
large and complex for centralized planning, scheduling, or control. At the
same time, fully decentralized designs are unable to “imagine” what will
happen (where this ability is vital for proactiveness). For instance, de-
signs in which “agents” have a closed-formula objective or utility function
(exclusively based on information owned by the agent) will be myopic
as this function fails to grasp this decisive impact of future interactions.
Nonetheless, this ability to imagine, predict, and simulate what will hap-
pen when selecting a course of action is vital for system performance and
service levels. Proactiveness needs this ability to assess future performance
to be effective.

In the present discussion, it is inherently impossible to derive such pre-
dictions based on past behavior at the level of an overall system. However,
sufficiently accurate models of smaller components do exist (it suffices to
descend until the system components become sufficiently small, simple and
stable). In the applications addressed in this book, it is equally possible to
model the courses of action under consideration. Moreover, the models are
executable software allowing to virtually execute such a course of action.

The above capabilities are used to collectively imagine – in a decentral-
ized design/manner – what will happen. To this end, the intended courses
of actions of all the participants are virtually executed on models of the
resources (e.g., cars driving given routes). Because the intentions are virtu-
ally executed to generate a collective prediction, the accuracy of the predic-
tion will depend - among others - on the respective commitments to these
intentions.

Regular refreshing, by repeating this virtual execution of the intentions,
allows this collective prediction to stay up-to-date. In addition, the vir-
tual execution of a course of action under consideration (not an intention)
serves to explore and collect information used to decide on introducing a
new course of action or changing an existing course of action. Further dis-
cussion can be found in the section on DMAS in Chapter 5.

Design for the Unexpected40

Summarizing and generalizing, proactiveness and its benefits require the
ability to imagine what will happen when selecting a course of action, in-
cluding the impact of future interactions:

The fourth law of the artificial states that effective proactiveness – and its ben-
efits – requires the ability to imagine what will happen when selecting
a course of action. This imagination must include the significant impact
of future interactions. Accounting for such future interactions requires a
collective imagination. This includes the impact of the accessibility of this
imagination, collective or otherwise.

Note that the construction of such collective imagination offers an op-
portunity to enjoy the best possible prediction of the future: “the best man-
ner to predict the future is to create the future.” Indeed, while participating
in the creation and maintenance of such a collective imagination, the par-
ticipants are – to a given extent – jointly creating their future.

CONCLUSION AND REMARKS

Four observations of key properties of our world, called axioms, give
rise to four statements, called laws of the artificial, about the man-made
world. In order to be successful, the designer of complex artifacts should
be aware of the existence of these laws in his or her design efforts, in the
same way as he/she should recognize the laws of nature.

In Chapters 5–7, these laws of the artificial will serve as the major guide-
line for designing decentralized holonic control architectures for mecha-
tronic societies.

ABBREVIATION
DMAS Delegate multiagent system

REFERENCES
Hordijk, W., 2013. Autocatalytic sets: from the origin of life to the economy. BioScience 63,

877–881.
Koestler, A., 1967. The Ghost in the Machine. The Macmillan Company, Hutchinson, UK.
Kurtz, C.F., Snowden, D.J., 2003. The new dynamics of strategy: sense-making in a complex

and complicated world. IBM Syst. J. 42 (3), 462–483.
Simon, H.A., 1990. The Sciences of the Artificial. MIT Press, Cambridge, MA.

http://refhub.elsevier.com/B978-0-12-803662-4.00004-7/ref0010
http://refhub.elsevier.com/B978-0-12-803662-4.00004-7/ref0010
http://refhub.elsevier.com/B978-0-12-803662-4.00004-7/ref0015
http://refhub.elsevier.com/B978-0-12-803662-4.00004-7/ref0020
http://refhub.elsevier.com/B978-0-12-803662-4.00004-7/ref0020
http://refhub.elsevier.com/B978-0-12-803662-4.00004-7/ref0025

41
Design for the Unexpected. http://dx.doi.org/10.1016/B978-0-12-803662-4.00005-9
Copyright © 2016 Elsevier Inc. All rights reserved.

Holonic Manufacturing Systems

Paul Valckenaers*, Hendrik Van Brussel**
*Faculty of Engineering Technology, KU Leuven
**Faculty of Engineering Science, KU Leuven

This chapter presents the earlier results in our development of a holonic
manufacturing systems framework, with a clear emphasis on manufacturing
and logistics. The insights discussed in the previous chapters were used as
precious guidelines and as a check for soundness when comparing options.
In particular, design for the unexpected (low and late commitment) and
maximizing the potential for achieving critical user mass were important
factors influencing the choices made during the development activities.

These earlier developments concentrate on manufacturing execution sys-
tems (MESs). This involves some serious challenges – unpredictable production
processes (duration, outcome), heterogeneity of products and equipment,
etc. – in combination with a competitive environment. When decisive for
the competitiveness, an MES must cope with the most exotic properties
and behaviors of a production system. Indeed, design for the unexpected
becomes a necessity.

Conversely, these developments assumed that a single organization de-
cided what software would be installed and used. In this respect, a closed-
world assumption was made, limiting the developed concepts to “closed
systems.” Chapter 6 presents more recent, consolidated successors of the de-
velopments discussed here. These successors relax and abandon this closed-
world assumption and have become agnostic concerning the application
domain enabling the formation of a humane mechatronic society.

HOLONIC SYSTEMS

As shown in Chapter 4, the Law of Holonic Systems, derived by
Koestler and Simon, is based on two observations:
•	 Complex systems will evolve from simple systems much more rapidly if

there are stable intermediate forms present.
•	 Although it is easy to identify subwholes or parts, “wholes” and “parts”

in an absolute sense do not exist anywhere.

CHAPTER FIVE

Design for the Unexpected42

The “holon” concept was proposed to describe the hybrid nature of sub-
wholes/parts in real-life systems. Holons simultaneously are self-contained
wholes to their subordinated parts, and dependent parts when seen from
the inverse direction.

Koestler points out that holons are autonomous self-reliant units, which
have a degree of independence and handle contingencies without asking
higher authorities for instructions. At the same time, these holons are sub-
ject to control from higher authorities. The first property emphasizes that
holons are stable forms and can cope with disturbances. The second prop-
erty highlights that holons are intermediate forms, providing the proper
functionality for the larger whole.

According to Koestler, a holonic system or holarchy is a hierarchy of
self-regulating holons that function
•	 as autonomous wholes in supraordination to their parts;
•	 as dependent parts in subordination to control at higher levels;
•	 in coordination with their local environment.

Shortly after its publication, Koestler’s book (Koestler, 1967) went
into oblivion. It was rediscovered by Japanese manufacturing scientists,
around 1989, in their quest, assigned by MITI (Ministry of International
Trade and Industry), to find the appropriate structure of the factory of
the 21st century. They declared the holonic system concept as the basis
for the factory of the future. It was further developed and translated
for manufacturing in the framework of the worldwide IMS (Intelligent
manufacturing system) project, launched by MITI under the impulse of
Professor H. Yoshikawa of the University of Tokyo. The authors of this
book participated, from 1993 onward, in a worldwide consortium, called
Holonic manufacturing systems (HMS). It was there that the seeds of this
book were sown.

Based on the concepts of Koestler, a new form of manufacturing sys-
tems, called holonic manufacturing systems, emerged. This new paradigm had
the ambition to provide an answer to the shortcomings of earlier factory
control systems that led to the failure, and ultimate demise, of the then-
prevailing computer integrated manufacturing (CIM) paradigm.

Previously, the control architectures of these CIM systems had evolved
from centralized via hierarchical to heterarchical architectures (Dilts
et al., 1991). A control architecture determines the interrelationships between
the various system components and allocates the different decision-making
responsibilities (e.g., part routing and resource allocation) to specific control
components.

Holonic Manufacturing Systems 43

Centralized Control
Centralized control architectures are characterized by a central computer that
performs all planning and information processing and registers the activities
of the whole manufacturing system. This way, overall system status informa-
tion can be easily retrieved from a single source. This ability to access complete
global information also makes optimization a more realistic expectation.
However, centralized architectures tend to have a poor responsiveness, re-
liability, modifiability, and extensibility.

Hierarchical Control
The shortcomings of centralized control resulted in the development
of hierarchical control architectures. These architectures introduce “levels” of
control that have a specific functionality and are organized in a top–down
structure. There are strict master–slave relationships between the levels.
Control decisions are operated top–down, whereas status reporting oper-
ates bottom–up. The benefits of these architectures include optimal be-
havior when everything keeps going right, fast response times, gradual
implementation, redundancy, and limited complexity of individual con-
trol modules. Despite these advantages, there are also many drawbacks.
The rigid structure makes it very difficult to make unforeseen modifica-
tions and the increased coupling between the modules adversely affects
modifiability, extensibility, and fault-tolerance. As low-level modules have
to consult higher levels in the hierarchy in case of a disturbance, the sys-
tem’s reactivity to disturbances is weak. Moreover, global decision-making
is often based on obsolete information.

Heterarchical Control
Heterarchical control architectures are characterized by a flat structure. They
consist of distributed locally autonomous entities that cooperate with
each other directly (without the master–slave relationship from hier-
archical architectures to make global decisions). This local autonomy
requires that global information is minimal or even nonexisting. Advan-
tages are enhanced modularity, reduced coupling between the modules,
and increased robustness against disturbances. A major disadvantage is
the low predictability of heterarchical architectures, as it is difficult to
operate according to a predefined plan. Moreover, there is no global
optimization possible and, consequently, a high performance cannot be
guaranteed.

Design for the Unexpected44

Holonic Manufacturing Systems
Holonic manufacturing systems (Babiceanu and Chen, 2006) were put forward as it
was realized that neither centralized, hierarchical nor heterarchical control sys-
tems could face the challenges the manufacturing world was confronted with.
Holonic control systems try to combine the high and predictable performance
promised by hierarchical systems with the robustness against disturbances and
the agility of heterarchical systems. To avoid the rigid structure of hierarchi-
cal systems, holonic manufacturing systems provide autonomy to the individ-
ual holons. This allows the control system to respond quickly to disturbances
and to reconfigure itself to face new requirements. In order not to ban all hier-
archy, which is essential to master complexity, holons work together in “loose”
hierarchies. Such a hierarchy is different from a traditional hierarchy in that
•	 holons can belong to various hierarchies,
•	 holons can form temporary hierarchies, and
•	 holons do not rely on the correct functioning of the other holons to

perform their tasks.
To develop a holonic manufacturing system, the concepts developed

by Koestler were translated into a set of appropriate concepts for manufac-
turing (Babiceanu and Chen, 2006). The HMS consortium developed the
following list of definitions to help understand and guide the translation of
holonic concepts into a manufacturing setting:

Holon
A holon is an autonomous and cooperative building block of a manufacturing
system for transforming, transporting, storing, and/or validating information
and physical objects. The holon consists of an information-processing part
and often a physical processing part. A holon can be part of another holon.

Autonomy
It refers to the capability of a holon to create and control the execution of
its own plans and/or strategies.

Cooperation
It is the process whereby a set of holons develops mutually acceptable plans
and executes these plans.

Holarchy
A system of holons that can cooperate to achieve a goal or objective is a
holarchy. The holarchy defines the basic rules for cooperation of the holons
and thereby limits their autonomy.

Holonic Manufacturing Systems 45

As a holon is an autonomous entity that cooperates with other holons
to achieve its goals, the multiagent systems paradigm seems very appropri-
ate to implement holonic manufacturing systems. There are however two
important differences between “holons” and “agents.” First, a holon can con-
tain one or more other holons, whereas an agent is not composed of other
agents. Second, while agents are pure software entities, holons can include
both hardware and software parts. Conceptually, multiagent systems1 are a
most natural choice to implement holonic systems. Surprisingly, Erlang/
OTP – an open source telecom technology, which is downloadable from
www.erlang.org – proved to be the most appropriate software develop-
ment and deployment technology for the research addressed in this book.
The programming tools and languages from the multiagent community
were lacking in maturity and critical user mass; they were underpowered
where it hurts, whereas their strengths barely qualified as nice-to-have.

THE PROSA REFERENCE ARCHITECTURE
(Van Brussel et al., 1998)

This section addresses the structure of a holonic manufacturing sys-
tem or, in other words, its architecture. It addresses the structure of the
system of holons (the holarchy), not the internal structure of individual
holons.

A reference architecture describes the mapping from various functionalities,
which cooperatively solve the problem, onto software components and the
data flows between these components. A reference architecture is not an
architecture in itself but can be used as the basis for designing the system ar-
chitecture for a particular system. For instance, the ADAptive holonic COn-
trol aRchitecture (ADACOR), can be considered as an instantiation of the
product-resource-order-staff architecture (PROSA) reference architecture
(see Chapter 8: Work by Others).

Reference architectures are used in a specific (mature) domain and arise
from experience (Wyns., 1999). The reference architecture “Gothic cathe-
drals” is the collection of knowledge and skills, acquired by the medieval
guilds, to build Gothic cathedrals. The cathedral of Chartres, with its exqui-
site architecture, is an impressive instantiation of that reference architecture.

PROSA was originally developed for the manufacturing domain
and, based on experience in this domain, special attention was paid to
(Wyns., 1999) (i) separating the essential elements, which are generic, from

1 See Appendix II for a discussion of some basic concepts of multi-agent systems.

http://www.erlang.org/

Design for the Unexpected46

the optional elements, which can be domain specific (the latter are
called “plugins”); (ii) separating the structural aspects from the functional
(algorithmic) aspects for resource allocation and process planning; (iii)
separating resource allocation aspects and process specific aspects; and (iv)
enabling the incorporation of legacy systems, or the introduction of new
technology.

The PROSA reference architecture is developed in accordance with the
holonic-manufacturing paradigm. The basic components are holons, and
the architecture describes the responsibilities of the various holons and their
interactions. The acronym PROSA stands for product-resource-order-staff archi-
tecture and refers to the different types of holons. Three basic types of holons
can be distinguished: product holons, resource holons, and order holons.
Staff holons complete the set of PROSA holons.

Each basic holon represents a separate concern in the application do-
main: process planning, resource allocation, and logistics management,
 respectively. The basic holons can be aggregated into larger holons and spe-
cialization can be used to structure them. Staff holons are optional and can
be added to provide the other holons with expert knowledge or to incor-
porate legacy systems. Figure 5.1 shows a module decomposition view2 of

Figure 5.1 Overview of the PROSA Reference Architecture. Each rectangle represents
one of the holon types in PROSA; the arrows between the holons represent their inter-
actions.

2A module is an implementation unit of software that provides a coherent set of responsibili-
ties. A module decomposition view describes the organization of the software as modules
and submodules and shows how responsibilities are divided across these modules.

Holonic Manufacturing Systems 47

the holonic reference architecture (Verstraete et al., 2008). The depends-on
relationships between the holons indicate that the various holons share data
with each other.

The source of inspiration for PROSA was the kernel of a modern com-
puter operating system. It recognizes resources (the microprocessor), know-
how (the code segment), and execution (the data segment), which map,
respectively, on resource, product, and order holons. The staff holon has
no counterpart in computer operating systems. The following paragraphs
elaborate on the four different holon types.

Resource Holon
A resource holon corresponds to a resource in the underlying domain (equip-
ment, infrastructure elements, personnel). In a logistic context, for instance,
this means that all transport means (trucks, freight trains, cargo aircraft, etc.)
and material handling equipment (forklift trucks, conveyors, automated guid-
ed vehicles, etc.) will be represented by a resource holon. There will also be
resource holons for other entities that are scarce and have to be shared (e.g.,
dock doors, pallet racks, and floor space). Note that a logistic execution sys-
tem (LES), like MES, can be developed under a closed-world assumption.

Each resource holon comprises the physical resource, together with a
software part that controls this resource. It offers knowledge about process-
ing capacity and processing functionality to the other holons and organizes
and controls the usage of the physical resource. More concretely, a resource
holon has the following responsibilities:
•	 Reflection of reality: A resource holon reflects its corresponding physi-

cal resource; that is, it contains information about the current state of
the resource and expected future states. It should keep the reflection of
the resource state synchronized with the actual resource state. More-
over, the holon has knowledge about the dynamic behavior of the
physical resource and can answer what-if questions (e.g., what will be
the arrival time of a truck if it departs at a certain time).

•	 Information provision: A resource holon should be able to provide re-
source-related information to the other holons. This includes process
information (e.g., possible operations), information about the local to-
pology (which other resource holons this holon is logically connected
with), and about possible constraints (e.g., truck capacity, maximum
cargo weight, etc.).

•	 Maintaining a local schedule: Each resource holon owns an agenda in
which its future tasks/operations are recorded, based on requests from

Design for the Unexpected48

order holons. This can be seen as a reservation service that keeps track of
the availability of the resource over time. Each operation to be processed
by the physical resource needs to be reserved on beforehand in this local
schedule. To cooperate with the delegate multiagent system (DMAS)
pattern (see further), the local schedule is implemented as a (virtual)
blackboard structure and applies an “evaporation-refresh” mechanism.

•	 Managing its local schedule: The resource holons have local authority on
how they organize (sequence or schedule) the various operations (from
order holon requests), for instance, by applying priority or batching rules.
This local decision-making is resource-specific and mainly depends on
the performance settings of the resource.

•	 Virtual execution: This responsibility is a service for the order holons
who can request information on the virtual outcome of an operation
(e.g., quality and end time). Based on the local schedule (to decide how
the operation can be fitted in between the already reserved operations)
and its what-if functionality (to virtually execute the operation), the re-
source holon is able to provide accurate information to the order holon.

•	 Controlling the resource: A resource holon controls the real-world resource
by starting and stopping the (scheduled) operations and by monitoring
the execution.
Several resource holons can be clustered together to form a bigger re-

source holon with its own identity. An example of such an aggregated resource
holon is shown in Figure 5.2. A cross-dock holon consists of a temporary
storage holon, one or more forklift holons, and one or more dock door
holons. The granularity of the aggregation will depend on the application
and on the need of explicitly allocating these resources. For instance, it can
be required to explicitly consider the forklift driver, and to see the forklift
holon as an aggregate of a forklift truck holon and a forklift driver holon.

Specialization can be used to differentiate between the different kinds
of resource holons. Figure 5.3 shows an example of such a specialization.

Figure 5.2 Example of an Aggregated Resource Holon. Each rectangle represents a
resource holon; the connections indicate aggregations.

Holonic Manufacturing Systems 49

Transportation vehicle and material handling equipment are both resource
holons. Transport equipment, storage equipment, and unit load formation
equipment are all kinds of material handling equipment. Pallet racks and
automated storage and retrieval systems (AS/RS) are examples of storage
equipment.

Product Holon
A product holon corresponds to a task type or order type. To accomplish the
task or to fulfill the order, a process (a sequence of operations) has to be
executed. The product holon contains the knowledge on how instances of
a specific task type (represented by order holons) can be executed by the
resources, that is, which operations are required to accomplish the task cor-
rectly and qualitatively. For instance, to deliver a package, the product holon
knows that this package has to be picked up, transferred to the cross-dock,
consolidated, and eventually brought to its destination. The product holon
also has information about constraints on or process parameters of these
operations. For instance, if the package contains refrigerated products, the
holon knows the allowable temperature range to which the package can
be exposed during transportation. Note that a product holon only holds
information about its order type, and not about individual order instances.
The main responsibilities of a product holon are as follows:
•	 Maintaining process knowledge: The product holons hold the necessary pro-

cess knowledge to realize instances of their type. This includes, amongst
others, process plans, process parameters and quality requirements. The

Figure 5.3 Example of Specialization of Resource Holons.

Design for the Unexpected50

product holons are responsible for keeping this information consistent
and up-to-date, for instance, if new operations are offered by (new)
resources.

•	 Determination of operation options: A product holon informs the order
holons about all possibilities for their next operation. Indeed, after
completion of an operation, the order holon needs information about
its next operation in order to accomplish its task. In its simplest form,
the process plan is linear and the product holon supplies the order ho-
lon with only one possibility. In general, multiple options are possible
and these alternatives depend on the current state of the order holon,
that is, based on the outcome of the previous operation. For instance,
if the quality of an operation is insufficient, the product holon can
decide that the operation has to be redone. As another example, if a
package with refrigerated products is exposed to too high tempera-
tures during its transportation, the holon can decide that the package
should be disposed of instead of being delivered. The selection of one
operation out of the available options is the responsibility of the order
holon itself.

•	 Process information provision: Just before a selected operation should start
on a resource, the resource holon needs to know the desired process pa-
rameters (e.g., temperature during transportation in a refrigerator truck).
The product holon is responsible for providing this process information
to the resource holons. By providing this information just before the
operation starts, the product holon is able to take the latest state of the
order holon into account.
Similar to resource holons, product holons can be combined into an

aggregated product holon that represents the combination of the corre-
sponding process plans. For instance, the aforementioned product holon
responsible for delivering a package could consist of three product holons:
one to transport the package to the cross-dock, one to process the package
inside the cross-dock, and one to deliver the package to its destination. The
aggregated holon delegates some of its responsibilities to these subholons,
but is still in charge. This aggregation limits the complexity of the holons
and allows an easy introduction of new product holons by combining other
product holons.

Order Holon
An order holon corresponds to a task (instance) or order (instance) that needs
to be executed, for example, the delivery of a package. Each order holon is

Holonic Manufacturing Systems 51

closely linked to the product holon representing the corresponding task or
order type. Although a product holon can be linked to multiple order ho-
lons, each order holon will be associated with only one product holon. The
order holon is responsible for handling the required resource allocations in
order to accomplish the correct execution of its task. To this end, the order
holon consults its corresponding product holon to find out which opera-
tions it needs to perform and searches for the proper resources and time
slots to execute these operations.

In a logistic context, the order holons can often be associated with phys-
ical entities, that is, the freight units that have to be transported (e.g., pal-
lets). The order holon then consists of this real-world entity, together with
a software part that controls the execution of the corresponding task. In a
manufacturing context, an order holon might correspond to a number of
products that have to be produced by a certain due date.

More concretely, an order holon has the following responsibilities:
•	 Reflection of reality: An order holon reflects the order instance, that is, it

contains information about the current state of the order and the cor-
responding physical entity. This includes, for instance, the location of the
order, the current operation being processed, the resource performing
this operation, etc. The order holon is responsible for keeping the reflec-
tion of its state up-to-date with the actual state.

•	 Searching solutions: The order holons search for solutions to execute their
tasks. During their search, the order holons will consult their product
holons to know the required operations and will virtually execute these
operations (by using the virtual execution service of the resource ho-
lons) to check for resource availability.

•	 Intention selection: Each order holon evaluates the solutions it has found
and chooses the most attractive solution (according to its performance
measure) to become its intention.

•	 Reserving its intention: The order holon then informs the other holons
about its intention by making the necessary reservations (future alloca-
tions) at the involved resource holons. As these reservations evaporate
after a certain time, the holon has to confirm its reservation at regular
time intervals.
Furthermore, order holons can be aggregated into an aggregated holon.

For instance, several orders corresponding to freight that has to be trans-
ported can be aggregated into one batch in order to be transported together
by a truck. Over time, an order can be part of multiple batches for different
transport operations.

Design for the Unexpected52

Staff Holon
The three basic types of holons can be assisted by one or more staff holons.
These holons can provide the other holons with expert knowledge about
certain aspects of their decision-making. For instance, a staff holon can give
information on which containers can be batched on a freight train to the cor-
responding train holon and the concerned order holons. Note that the staff
holons only provide advice and that the basic holons are still responsible for
taking the final decisions. This way, the concept of staff holons allows for the
presence of centralized functionality in the architecture without introducing
a hierarchical rigidity. This centralized functionality allows aiming for a good
global performance, which is otherwise difficult to obtain as every holon tries
to optimize its own (selfish) objective. To obtain its advice, a staff holon may
rely on centralized scheduling algorithms, human input, artificial intelligence
methods, etc. Next to scheduling advice, the staff holon can for instance pro-
vide advice about route planning or the balanced loading of a cargo ship. In
case of scheduling advice, the various order holons will attempt to execute
(the relevant part of) the provided schedule. They will deviate from the origi-
nal schedule only if they find a significantly better solution or the provided
advice appears to be (or has become) infeasible.

Interactions Between the Holons
As indicated in Figure 5.1, the various holons interact and share data with
each other. The main interactions between the basic holons are briefly
discussed hereafter. Remark that these interactions do not describe the
dynamics of the holonic system described by the PROSA reference archi-
tecture; these dynamics are described by the DMAS coordination system
described hereafter.
•	 Product-order interaction: The order holons interact with their correspond-

ing product holon on how to correctly execute their task by using cer-
tain resources. After (virtual) execution of an operation, the order holon
passes information about the resulting state and about next possible re-
sources to the product holon. Based on this information, the product
holon provides the order holon with all possible next operations. For
instance, after loading a container onto a trailer, the corresponding order
holon consults its product holon to know the following operation that
should be executed. Usually, multiple options are available, for example,
direct transportation to the final destination, transportation to an inter-
modal hub to be loaded onto a train or ship, etc.

Holonic Manufacturing Systems 53

•	 Product-resource interaction: Product and resource holons share process-
related information. When generating a list of possible operations for an
order holon, the product holon interacts with resource holons to know
which operations the resources can perform. The other way around, the
product holon provides the resource holon with technological aspects
to correctly process an order, that is, the necessary process parameters
to perform an operation. For instance, if refrigerated products have to
be transferred between two trucks in a noncooled terminal, the product
holon will indicate that this transfer should happen as fast as possible and
impose a maximum transfer time.

•	 Resource-order interaction: The resource and order holons mainly interact
to reserve operations on the resources. To this end, the resource holons
provide the order holons with the results of virtually executed opera-
tions and reserve capacity when requested. Once an operation is started,
the resource holon also informs the order holons about the execution
result and progress. The desired coordination and control then emerges
in a self-organizing way from the interactions between the various
holons.

Concluding Remarks
During the development of the PROSA reference architecture, special
attention was paid to separation of concerns. The three basic holons repre-
sent a separate concern of the underlying domain. An important char-
acteristic of PROSA is for instance that resource allocation aspects and
process-specific aspects are separated. The issue of technical feasibility
(executing a task in a technically correct and validated manner) is ad-
dressed by product and resource holons. Product holons are knowledge-
able concerning the capabilities of resources that are relevant to them,
but they ignore resource capacity and availability aspects. The product
holons inform the order holons about (all) technically correct manners
to execute their task instance. Order and resource holons then address the
issue of resource allocation.

Importantly, this separation of concerns safeguards and maximizes the
potential for achieving critical user mass in holonic MES (HMES) and LES
implementations. Here, the understanding that membership of suitable auto-
catalytic sets is crucial was put into practice.

Moreover, PROSA is a structural decomposition, mirroring its world-of-
interest. This complies with the first principle of design for the unexpect-
ed. In particular, when a product holon mirrors what is possible, offering

Design for the Unexpected54

multiple options to order holons, it applies this principle when a conflict
with a product holon equals a conflict with reality, in which no other
known and validated option exists.

BIO-INSPIRED COORDINATION AND CONTROL
IN HOLONIC EXECUTION SYSTEMS

Initially, PROSA implementations were heterarchical control systems.
Their order holons would steer product carriers through a manufacturing
system, visiting processing stations and having production steps performed
as allowed by the product holons. The system would be myopic, lacking
global optimization or coordination and operating much like automobiles
in traffic.

An early exercise with a staff holon delivering scheduling advice was
carried out. However, to have adequate collaboration, the order holons
became dependent on specific properties of this advice and a reactive sched-
uler was needed to handle disturbances (Bongaerts et al., 2000). Hence, the
research team started looking for a remedy for this myopia while remaining
compliant with design for the unexpected.

The source of inspiration for this remedy was twofold. First, there was a
heterarchical design in which workstations would “start emitting a signal”
when they were about to become idle. This straightforward and simplistic
idea was highly unsatisfactory. This signal arrives too late and fails to ac-
count for a product’s journey needed to arrive at this station. Second, the
behavior of food-foraging ants, called stigmergy (Grassé, 1959), revealed
how to incorporate nonlocal information in a solution while employing
only local reality-mirroring components, which fits D4U perfectly.

Food foraging ants execute a simple procedure:
•	 In absence of any signs in the environment, ants perform a randomized

search for food.
•	 When an ant discovers a food source, it drops a smelling substance, called

pheromone, on its way back to the nest while carrying some of the food.
This pheromone trail evaporates if no other ant deposits fresh phero-
mone.

•	 When an ant senses a pheromone trail it will be urged by its instinct to
follow this trail to the food source. When the ant finds the food source, it
will return with food, while depositing pheromone itself. When the ant
discovers that the food source is exhausted, it starts a randomized search
for food and the trail disappears because of the evaporation.

Holonic Manufacturing Systems 55

This simple behavioral pattern results in an emergent behavior of
the ant colony that is highly ordered and effective at foraging food
while being robust against the uncertainty and the complexity of the
environment.

An important capability of this type of stigmergy can be observed: glob-
al information about where to find food in a remote location is made avail-
able locally, indicating in which direction the ant must move to get to this
food. Also, the complexity of the environment is handled in an elegant way
by making the environment part of the solution (i.e., the complex shape
of the pheromone trails), effectively shielding the ant colony solution from
this complexity.

For the design and development of coordination and control systems,
based on stigmergy, the following principles are recognized:
•	 Make the environment part of the solution to handle a complex envi-

ronment without being exposed to its complexity. This complies with
the essential modeling approach of object-oriented design.

•	 Place relevant information (pheromones) as signs in this environment
ensuring that locally available data informs about remote system proper-
ties, supporting systemwide coordination.

•	 Limit the lifetime of this information (evaporation) and refresh the in-
formation as long as it remains valid. This allows the system to cope with
changes and disturbances.
The combination of these sources of inspiration resulted, ultimately, in

the architectural patterns that are discussed next. The signal became the local
schedule of the resource holon. The deposition of pheromones was trans-
lated into order holons reserving time slots in these local schedules. The
ability to answer what-if questions allowed “ant agents” to travel virtually
and execute virtually what an order holon might “do for real.” Details fol-
low in the next Section on the Delegate Multiagent System.

The research translated this food foraging in ant colonies into a solution
that remedies shortsightedness in decentralized coordination and control sys-
tems. The solution makes nonlocal information – using local reality-mirroring
software components – locally available. Note that “nonlocal” is to be un-
derstood both in the geographical/spatial sense and in the temporal sense.
It is about something both elsewhere and in the future. This part of the
research was termed to be “predicting the unexpected” when presented to
laypersons, unfamiliar with the application domain. This caused the adapta-
tion of “design for the unexpected” as the nom de guerre for the research
overall.

Design for the Unexpected56

Delegate Multiagent System (DMAS)
This section belongs, as it immediately presents the generic and broadly
applicable concept, in the next chapter. However, the DMAS is introduced
here to avoid duplication and confusion over terminology. Consequently,
the discussion in this chapter covers the specific DMAS designs used in
the HMES research prototypes. The broader applicability is addressed in
Chapter 6.

The DMAS is an architectural pattern. An architectural pattern is a con-
cept that solves and delineates some essential cohesive elements of a software
architecture. Typically, it comprises a description of software components and
their interactions, together with a set of constraints on these components and
interactions that define a set of architectures that satisfy them.

The DMAS pattern allows an agent – that is, a holon in the present
discussion – to delegate a responsibility to a swarm of lightweight agents.
These lightweight agents perform particular activities to support the issuing
holon in fulfilling its functions. A holon can simultaneously delegate mul-
tiple responsibilities, applying the DMAS pattern for each of them. The
holon may also use a combination of DMASs to handle just a single re-
sponsibility.

Figure 5.4 shows a module decomposition view of the architectural
pattern. There are three modules: the environment, the agent, and the ant
(Verstraete et al., 2008). The depends-on relationships between the modules
are refined in the sense that the agent and ant module share data with the
environment module, whereas the relationship between the agent and ant
module is a “creation” relationship.

These lightweight agents are called ant agents or simply ants, after
their biological source of inspiration. They are lightweight in the sense

Figure 5.4 DMAS: Module Decomposition View.

Holonic Manufacturing Systems 57

that each ant may only perform a bounded computational effort within
its bounded lifetime and has a bounded footprint (memory). They are
responsible for executing a task that serves a responsibility of the issuing
agent/holon.

Each ant is created and initialized by its issuing holon. It (virtually) trav-
els autonomously through the (virtual) environment. The ants start from a
location selected by their issuing holon. Typically, this location is where this
issuing holon resides (virtually), for example, the location of a product car-
rier. But, an issuing holon may create ant agents at a location from where
finished products are shipped to their customer. From there, the ants travel
(virtually) in opposite directions, typically toward the location of the issu-
ing holon. Ants may even (virtually) traverse their journey twice, collecting
information first and depositing information (digital pheromones) during
the return journey.

Corresponding to the description used before, the environment is a
software representation of the world-of-interest. To support navigation of
the ants, resource holons know their neighbors (note that this is local in-
formation). This effectively provides a directed graph, possibly augmented
by relevant information (e.g., maximum height), allowing ants to discover
their world-of-interest starting from their initial location. Note that the
evaporate-and-refresh mechanisms – copied and translated from the
real-world ant colony behavior – ensures that reconfigurations and other
changes will be mastered by the DMAS in an HMES or LES.

A holon delegating a responsibility to a swarm of ants is responsible for
maintaining the population size and the diversity of this swarm. It chooses
the creation frequency and initialization for every ant type. The individual
ants are not aware of these swarm properties. The holons observe and inter-
pret the (digital) pheromones in the environment and adapt their behavior
accordingly.

Three types of DMASs are distinguished in the research prototypes: fea-
sibility, exploring, and intention DMAS (Hadeli et al., 2004).

Feasibility Ants
A resource holon delegates part of its “information providing” responsibil-
ity to a swarm of so-called feasibility ants. These ants make global feasibility
information (about the capabilities of the resource) locally available for the
other holons. They put a kind of digital signposts on the blackboards of
resource holons. They enable order holons to decide locally which routing
options are available to them.

Design for the Unexpected58

Feasibility ants are created by resource holons corresponding to an end
point of the resource graph. The ants start at these nodes and traverse the
graph upstream, that is, in opposite direction of the orders. During their
trip, they collect information on the capabilities (e.g., type of supported
operations) of the visited resources. This information is also deposited on
the local blackboards of the resource holons and merged with the already
available information from other feasibility ants. In this way, every node
contains information about which capabilities are reachable via its connect-
ed nodes (somewhat similar to routing tables in computer networks). This
information permits order holons (or their corresponding product holons)
to determine which part of their process plan can be executed downstream.
This activity is performed at a regular frequency such that changes (both
in resource capabilities and topology) become quickly visible throughout
the system.

For instance, for the resource graph shown in Figure 5.5, feasibility ants
are created by the resource holons corresponding to D1 and D2. They travel
upstream toward O1 and collect information about the provided (trans-
portation) activities. The ants deposit this information at the nodes they
encounter. In this way, the information at O1 will for instance indicate that
D1 can only be reached via truck T1.

Exploring Ants
Every order agent generates explorer ant agents at a given frequency. These
explorer agents are scouts each of which searches for an attractive route
through the underlying production system, that is, to accomplish the given

Figure 5.5 Example of a Resource Graph.

Holonic Manufacturing Systems 59

task (Figure 5.6). Depending on the performance criterion, these explorer
agents search forward from the current state of the task onward (e.g., lead
time minimization) or backward from the final delivery point (e.g., due
date accuracy). Note that different order agents can have different perfor-
mance concerns; rush orders, normal orders, low-priority orders, and main-
tenance orders have different objectives. The objective of a given order may
even suddenly change (e.g., when a work piece gets damaged and needs a
speedy replacement).

These scouts use the same method as the order agent, managing the
actual execution of the task, to ensure that a proper sequence of processing
steps gets executed, but virtually. The feasibility concern is handled by the
feasibility ant agents. As explained, these ants deposit information on the in-
formation spaces (blackboards) attached to entries and exits of the resources
that allows the product agents to discern valid and invalid routings locally.
This information also evaporates and is refreshed to account for changes in
the production system.

The search strategy employed by the explorer agents is a plug-in of
the control system. Not every explorer ant uses the same strategy. Typically,
some percentage looks for the promising routes whereas other ant agents
look for solutions that aim to avoid critical resources. The key point is that
the emergent forecasting does not rely on which strategy is employed by
these scouting agents.

During its exploration journey, ant agents delegate the information pro-
cessing to the product holon and resource holons. Their product holon

Figure 5.6 Ant Agents Explore Possible Routes.

Design for the Unexpected60

provides the set of legal routing options that are open to the scout at each
routing point. It makes sure that the product recipe is obeyed. The resource
agents provide the necessary performance estimates.

Consider an explorer ant moving forward from the current position of
a work piece on a conveyor belt. The scout queries the conveyor belt ho-
lon about the estimated remaining traveling time on the belt. The explorer
ant then virtually travels to the exit of the belt and adjust its internal clock
indicating the expected arrival time. At this point, the scouting ant selects
a legal entry connected to the exit of the conveyor belt and continues its
virtual journey.

On arrival at a processing unit, the product holon indicates the possible
processing steps and the explorer ant selects a processing step. The explorer
agent queries the resource holon of the processing unit about estimated
queuing and processing times as well as processing results. In this manner,
the virtual journey continues until the final delivery point is reached. Note
that the resource holons will virtually execute their own execution strate-
gies. The emergent forecasting mechanism does not require any specific
strategy from these resources. Again, a strategy is a plug-in for the control
system.

When an explorer ant agent has virtually executed the task, it reports
back to the order holon. The report includes the journey and the perfor-
mance estimates of that journey. Based on the results of its exploring ants,
the order holon keeps a set of candidate routes. These candidates get re-
freshed regularly, either explicitly by specialized exploring ants that simply
follow a given route, or by ensuring that the normal exploring ants will re-
discover these currently attractive candidates with a high probability. The set
of candidate routes is selected based on the performance estimates and on
their complementary nature (i.e., limit the number of candidates that have
very similar routings). The candidates that have become too old are elimi-
nated from the set of candidates by evaporation. Basically, the exploring ants
implement a distributed heuristic search for good production schedules and
adapt the solution continuously to account for changes and disturbances.
The optimization heuristic itself is not the focus of our considerations here,
as its selection and configuration inherently cannot be designed for the unexpected.

Intention Ants
The above-mentioned exploration requires the resource holons to possess
an adequate estimate of their future workload. The order holons gener-
ate intention ant agents, at a given frequency, to serve this purpose. When

Holonic Manufacturing Systems 61

a suitable set of candidate solutions has been constructed (see Section on
Exploring Ants) and the estimated starting time for the processing of the
product instance(s) approaches, the order holon selects one of the candidate
solutions to become its intention. Then, the order holon generates inten-
tion ant agents to notify the holons of the affected resources of its intentions
(Figure 5.7).

The intention notification service operates as follows:
•	 The intention ants virtually execute the routing and processing of their

selected candidate solution. On their virtual journey, the intention ants
acquire travel, queuing, and processing times from the resource holons on
their path. Any changes, which occurred since the exploration, immedi-
ately become visible when these resource holons provide the information.

•	 In contrast to the exploring ants, intention ants inform the resource ho-
lon that their order holon is likely to visit them at the estimated time. In
this way, intention agents make a (evaporating) booking on the resource,
and the resource holon adapts its load forecast (local schedule of the re-
source) to account for the visit of which it is informed by an intention
ant. In other words, the intention ants enable an emergent forecasting
of the resource utilization. As a consequence, resource holons are able to
predict performance more accurately to their visitors, the exploring and
the intention ants.

•	 The intention information at the resource holon evaporates. Order ho-
lons must create intention agents at a refresh frequency that is suffi-
ciently high to maintain their bookings at the resources.

Figure 5.7 Ant Agent Propagates the Order Intentions.

Design for the Unexpected62

•	 While refreshing, the order holons observe the evolution of the ex-
pected performance of their current intentions (through intention ants’
reporting their estimated performance). This performance estimate is
compared to the estimates of the candidate solutions that are found and
refreshed by the exploring agents.

•	 When the estimated performance of the current intentions drops sig-
nificantly below the estimated performance of some candidate solutions,
an order holon may change its intentions.

•	 When the product instance(s) of an order holon reaches the point where
a decision needs to be executed, the order holon triggers the action in
the underlying system in accordance with the intentions. If an event oc-
curred that makes this impossible or highly unattractive, the order holon
delays the action shortly such that the above procedure may find a (bet-
ter) solution.

Short-term Forecasting – Predicting the Unexpected
The combination of exploring and intention DMAS provides a view on
the short-term future of the system, which is based on an estimation
constructed through a decentralized virtual execution (i.e., a simulation
embedded in the HMES). Both resource and order holons have short-term
forecasts about their predicted execution. The order holons know the ex-
pected routings and resource allocations for their orders. The resource ho-
lons know the predicted loads for the corresponding resources.

The resource holons receive the necessary information to calculate a
short-term forecast of their utilization via the intention DMAS. Based on
these forecasts (and their what-if functionality), they are able to give accurate
answers to the queries from the exploring ants. This in turn allows the order
holons to have a precise view on their short-term future. Note that the order
holons create exploring and intention ants at regular time intervals, even af-
ter they have selected an intention. This allows them to react to disturbances
and new opportunities and keeps the short-term forecasts up-to-date.

All short-term forecasts together can be seen as a “dynamic schedule.” Fig-
ure 5.8 shows an example of such a schedule. This way, these forecasts provide
visibility of future actions, which is recognized as a valuable property. This
visibility allows for instance to identify potential capacity conflicts, permitting
management to take action on time to avoid them. It also facilitates operators
to see the bigger picture and to anticipate the impact of their decisions.

Moreover, in the context of manufacturing, creating visibility on
the shop floor is considered as one of the main goals of an MES. These

Holonic Manufacturing Systems 63

short-term forecasts can be used by the order and resource holons to take
better (informed) decisions. For instance, as the order holon has an accurate
view on its intention, it can make a well-considered decision whether or
not to switch to one of its alternative solutions. The resource holons know
their expected loads and can for instance decide to process a rush order or
not, based on how many reservations will be affected. As another example,
the resource holon corresponding to a truck can, based on its expected load,
decide when it is a good moment for maintenance or refueling.

For these forecasts to be valid and reliable, the order agents cannot con-
tinuously change their intentions, making the system overly nervous. This
nervousness issue is addressed in the next section. Finally, in the Section,
Cooperation of HMES with Planning Systems, the cooperation of the
HMES with external planners and schedulers is discussed.

SOCIALLY ACCEPTABLE BEHAVIORS FOR DMAS

The DMAS pattern makes information available in locations that are
not colocated with its source of truth (the word “location” is used in a virtual
sense). For instance, order holons are aware of the available resource ca-
pacities and capabilities through information collected by a suitable DMAS.
Moreover, holonic execution systems use this DMAS technology to gener-
ate short-term forecasts, both for order routings and resource utilization.
In other words, nonlocal information is provided both in the spatial (e.g.,
inform an order holon about a distant resource) and in the temporal sense
(e.g., inform an order holon about a future state of this distant resource).

Figure 5.8 Example of Generated Short-Term Forecasts.

Design for the Unexpected64

However, there is no such thing as a free lunch. The information col-
lected by a DMAS is only a snapshot. It is a copy and there is no guarantee
that it will remain correct. An intention ant may have “refreshed” its order
holon intentions when, one second later, because of a machine breakdown,
this intention becomes invalid. In other words, there is no “lock” on the
source of truth to guarantee that information remains valid. Note that real-
ity (the sun is shining) cannot be locked (two minutes later, it rains), and
therefore locking is not an option.

This situation has implications for our ability to generate reliable and us-
able short-term forecasts. Indeed, our predictions are the results of a virtual
execution of the order holon intentions. When these intentions change, the
generated predictions may change. As order holons select their intention in
function of expected performance, which depends on the predictions, one
can imagine scenarios in which the predictions become inaccurate, useless,
and even harmful.

Indeed, order holons observe – through their DMAS – the predicted
system states and select their intention (e.g., congestion-free highway to
Brussels). These intentions are used to generate/adapt the predictions (e.g.,
too many order holons selected this highway, and now the prediction in-
dicates serious congestion). In the new prediction, other solutions – dis-
covered by the exploring DMAS – perform better and the holons change
intention (e.g., the smaller roads are predicted to be congestion-free). Too
many order holons made the same or a similar switch of intentions, and the
prediction changes again. If the system lacks a suitable dampening mecha-
nism, the emergent short-term forecasting will have a serious problem.

To avoid, order holons have to behave in a socially acceptable man-
ner. Today, humans already have such behavior. When people make an
appointment or have a working arrangement (e.g., which lecturer will
examine which students at what time and location), they do not change
this without good reason and they minimize negative impact to the re-
mainder of society. Research on designing such behavior in order holons
is discussed later.

How Order Holons Change Their Intention
Order holons have an exploring DMAS that continuously discovers can-
didate solutions. This DMAS also refreshes top-performing candidate so-
lutions. At some point, the order holons have selected such a candidate
solution to become their intention, and their intention DMAS regularly
propagates their intention by means of virtual execution.

Holonic Manufacturing Systems 65

When the estimated performance of the top-performing candidate so-
lution is better than the performance estimate for the intention (based on
the most recent intention refresh), the order holon probably wants to switch
and select this top-performing candidate as its new intention. This switch-
ing has been the subject of research about incorporating a sound resistance
to change intentions. However, such resistance must not be too strong as
this would deny the order holons to react to changes and disturbances.

Mechanism to Dampen Intention Switching in Order Holons
The research designed, implemented, and evaluated a combination of three
dampening mechanisms:
1. Thresholding. The order holon only decides to change intention when

the expected performance improvement is above a given threshold. At
least, this may and must limit changing of intentions to “only for im-
provements well above the noise level of the estimation mechanisms.”

2. Cool-off period. When an order holon effectively changes intention, its
threshold is temporarily raised (significantly). This gives other order ho-
lons the opportunity to adapt while this order holon sticks to its plans.

3. Randomized switching. Recall that the applicability of our holonic execu-
tion systems favors real-world systems that are much slower than their
virtual execution. Therefore, there will be many refresh cycles (of inten-
tions) and explorations while in reality nothing much happens or changes.
In other words, order holons may delay switching intentions in terms of
refresh cycles without a negative effect in the real world; the switch will
be fast enough to have its effect in reality. Randomized switching capi-
talizes on this. When an order holon wants to switch (e.g., the estimated
performance improvement is above the threshold), there is only a chance
that this will happen during the next refresh cycle. Based on a genuine
random number, a lottery mechanism ensures that only a fraction of the
order holons, wanting to change intentions, switch at the first opportunity.
An antistarvation mechanism in this lottery ensures an upper bound on
the number of refresh cycles an order holon may have to wait.

Switching Intentions in Case of Major Disturbances
The above dampening mechanisms have been designed with the handling
of major disturbances in mind. When an important piece of equipment
breaks down or a large rush order enters the factory, a significant number
of order holons will discover that the performance estimate for their in-
tentions has deteriorated significantly. After refreshing their top candidates,

Design for the Unexpected66

they are likely to be wanting to switch based on the illusion of free capacity
on the alternative resources.

Here, the randomized switching prevents a stampede to such alterna-
tive resources. Only a smaller number of order holons will switch and the
increased use of these alternatives will result in lower performance estimates
when the other holons refresh their top candidates. In the meantime, the
estimated downtime for the equipment that broke down often will become
more accurate (i.e., less conservative). Thus, the randomized switching en-
sures a steady stream of order holons switching to alternative resources until
“waiting for the repair” goes below the threshold (for the order holons that
did not switch yet).

Experiments, on relatively small problems in simulation, revealed a rela-
tively large sweet spot. Both “imposing a small amount of dampening” and
“only allowing to switch when there was really good cause to do so” have
been effective. There was no indication that the tuning of this combination
of dampening mechanisms was challenging. The main conclusion of these
modest experiments was that it is important to have the dampening mecha-
nism in place (Hadeli., 2006).

Evidently, the ability to execute many refresh cycles and to spread the
changing of intentions over a lot of cycles will render dampening and its
tuning easy-to-do-well. If randomized switching needs to be performed in
a low number of cycles, tuning is likely to become an issue. Indeed, no order
holon will have the opportunity to observe what is happening at a system
level before switching. In such cases, the tuning has to address this for the
order holons, which is likely to make tuning a case-dependent task (that
needs to be redone when conditions change).

Concluding Remarks
The main contribution of our research was to identify the need for damp-
ening of the intention switching by order holons. At the level of the soci-
ety of holons, this prevents a harmful system nervousness that may render
the emergent forecasting ineffective. The research has only investigated the
simplest manners of dampening. Challenges for future research include the
following:
•	 Changing intentions in small teams. Humans apply this quite often. For

instance, they change intentions in pairs when they switch slots.
•	 Changing intentions in open organizations. The above research looked

into problems with a single owner/organization: there is a boss to impose
how to behave. When looking into problems with multiple owners/

Holonic Manufacturing Systems 67

organizations/individuals that strive for their own interests, especially,
the randomized switching faces additional issues. Indeed, it is unlikely
that participants will delay switching unless a suitably authorized ar-
bitration service imposes this altruistic behavior. Moreover, there may
be a legal requirement to treat all “order holons” on an equal footing.
This implies that this arbitration service has to ensure that a good deed
(which it imposes) will be properly rewarded (or at least remains unpun-
ished). This remains an unaddressed and unresolved challenge.

•	 Detecting and measuring system nervousness to be able to adapt damp-
ening in function of the situation at hand equally remains uninvesti-
gated. Likewise, identifying where and when in a system dampening and
nervousness are important remains an open issue.
However, the positive message from modest experiments is that, especially

where high refresh rates are possible, the dampening of intention switching
to control system nervousness – to protect the validity/usability of emergent
forecasting – is first of all a matter of providing suitable mechanisms where
the tuning of these mechanism proved to be undemanding and straightfor-
ward. The reader is referred to Hadeli (2006) to find worked-out examples.

COOPERATION OF HMES WITH PLANNING SYSTEMS

Production in a factory is generally organized according to some kind
of planning scheme that is created before production starts. From an MES
perspective, such planning hardly ever provides all relevant details. While it
normally specifies which jobs need to be performed on which machines, in
what time period, it does not specify details like which transportation unit
to use for carrying parts from and to machines, where to store parts, which
tools to use, etc. A planning is released on a regular basis, weekly, daily, or
every shift or hour.

In practice, production activities deviate from this planning within the pro-
verbial first minutes. The production floor continues to use release dates and
due dates from the planning but otherwise manages the activities on the shop
floor autonomously. In fact, the planning mainly serves for the remainder of
the organization, not the production itself, to stay realistic about what produc-
tion may and will achieve (and what would be unreasonable to expect).

Admittedly, the above reflects the gap between industrial practice and
academic theory, where the latter certainly is more advanced and this gap
is closing rather rapidly. However, further developments in planning tech-
nology will not solve the problem. The planning/scheduling problem is

Design for the Unexpected68

NP-hard or worse, and a planning/scheduling algorithm must be compu-
tationally efficient if it is to be used in practice. If such an efficient algo-
rithm were to solve this combinatorial problem without making (partially
arbitrary) choices, discarding options, and so on, it would (to provide an
estimate how unlikely this is) break most of the currently used encryption
in computer networks.

Therefore, it is fairly safe to conclude that the planning functionality –
when made operational in a manufacturing system – cannot be designed
for the unexpected. More precisely, the planning/scheduling algorithm it-
self is designed for the unexpected: it just exists and can be considered as
an element in the world-of-interest (e.g., Karmarkar’s algorithm for linear
programming). It is the selection of a specific algorithm and the manners
in which it is connected and configured to the manufacturing systems that
are forced to rely on assumptions, rendering this a design for the expected.

However, manufacturing organizations have to reconcile two objectives
concerning shop floor operations:
•	 Optimization of production performance relative to the management

goals (e.g., reduce costs, satisfy customer demand). Today’s planning sys-
tems have been conceived and constructed to address this concern.

•	 Robustness and thoroughness, or the realization of the production ob-
jectives derived from management goals, while accounting for all the
relevant details and while handling uncertainties and unforeseeable dis-
turbances.
Manufacturing execution systems and especially HMESs have been

developed to address this latter concern. However, a pure self-organizing
HMES cannot solve the problem by itself. Therefore, cooperation be-
tween an HMES and a planning system is indicated such that good perfor-
mance, assured by the planner, is reconciled with robust execution, taken
care of by the HMES. This is achieved through schedule execution by the
HMES.

Schedule Execution
Schedule execution is the process of taking on-line resource allocation deci-
sions, based on an existing schedule but also considering the actual state of
the resources and orders on the shop floor.

Handling a production order in the self-organizing HMES implemen-
tation is achieved using the exploring and intention ant mechanisms ex-
plained in the Section “Bio-Inspired Coordination and Control in Holonic
Execution Systems.” A fast and frequent virtual execution of the envisaged

Holonic Manufacturing Systems 69

production activities, by these mechanisms in a virtual world, allows to
quickly detect unexpected events and to come up with alternative solutions
enabling to remedy problems and grasp opportunities.

However, every order holon or resource holon considers optimality from
its own – often selfish – perspective in the basic HMES implementations.
Therefore, research has developed and assessed versions of the exploration
and intention mechanisms that take an existing schedule into account. Note
that this research had no ambition to contribute to planning/scheduling
knowledge; only the cooperation was addressed.

To make the best trade-off between sticking as close as possible to the
original schedule or to resort to a new schedule, two processes are in-
troduced: last-mile planning and online optimization. The last mile-planning
process aims to keep execution as close as possible to the planning. The on-
line optimization process tries to find a new solution from scratch, while
the production is running. Both processes run concurrently and take re-
source allocation decisions. The schedule execution process balances both
processes. Summarizing, schedule execution is the combination of last-mile
planning and on-line optimization.

How can last-mile planning and on-line optimization be combined?
Schedule execution requires the order holons to anticipate potential

disturbances, by executing an adaptive search. Therefore, order holons send
out two types of exploring ants:
1. Type-1 exploring ants. They ignore the schedule and search for alternative

solutions in the search space in a randomized manner. While these ants
cannot cover the huge search space, they might still find interesting al-
ternative solutions that their order holon can use in case of disturbances.

2. Type-2 exploring ants. They cover the search space “around” the sched-
ule. This type of ants makes sure the required auxiliary operations are
selected while executing the planning. Indeed, these ants have to fill
in the missing details in the schedule and also have mechanisms to ap-
proximate the schedule if it is impossible to follow it completely (e.g.,
when a resource becomes available shortly after the time specified in the
schedule).
The intention selection mechanism in the order holon will favor so-

lutions from type-2 exploring ants, except when the schedule informa-
tion deviates significantly from the performance and behavior predictions,
which originate from the virtual execution by the ant. In other words, if
exploration reveals that the schedule is feasible, it will be followed. If ex-
ploration by type-2 ants reveals the schedule to be unfeasible or forced to

Design for the Unexpected70

deviate considerably, the order holons assumes the schedule to be invalid
and have all candidate solutions compete as equals.

Resource holons equally favor visits according to schedule. When inten-
tion ants request the resource holon to reserve capacity, time slots according
to the schedule have the priority over allocations/reservations deviating
from the planning. This avoids that disturbed orders cause a cascade involv-
ing nondisturbed orders.

The relative amount of each type of ants can be established in two ways:
1. In a very dynamic environment, the schedule may be outdated often

and rapidly. Therefore, the reactivity of the order holons to new op-
portunities may be more important than the execution of the schedule.
However, parts of the schedule may still be useful. In this case, the most
appropriate relative amount of exploring ants can be determined by
simulating a number of expected disturbances and investigating their
effect on performance.

2. In more predictable environments, executing the schedule may be
more important. Unexpected events occur infrequently. In that case, the
percentage of exploring ants that cover the search space “around” the
schedule determines how fast the MES reacts to variations in executing
the schedule. In addition, the quality and completeness of the schedule
determines how much exploration around the schedule is optimal. If the
exploring ants have little to add, a small number will suffice.

Experimental Verification
Manufacturing Example
The cooperation of an HMES with a general-purpose planning system has
been tested in a few simple case studies, sometimes with surprising, coun-
terintuitive results.

The first example consisted of a flexible manufacturing system where
a number of workstations (machining centers, cleaning station) were con-
nected by an automated storage and retrieval system (AS/RS) (Figure 5.9).
A crane delivers raw materials to these workstations and collects finished
products from them. The operations of both the workstations and the
AS/RS are highly interconnected.

An offline planning system, LEKIN, performs a global make-span opti-
mization, whereas the HMES performs a decentralized local optimization
(of average lead time). LEKIN is a general-purpose academic planning tool.
It ignores some of the aspects of the production system, such as transporta-
tion and warehouse management.

Holonic Manufacturing Systems 71

The experiments considered three different process plans, two of which
have alternatives. They investigated the influence of the (in)accuracy of
the LEKIN planner, of the workload (8 or 15 orders), and of the level of
guidance by the planner (self-organizing with 100% type-1 exploring ants;
schedule execution with 25% type-1 exploring ants; last-mile planning with
100% type-2 exploring ants).

Table 5.1 summarizes some relevant experimental results. The most
striking result is that in normal operation (no breakdowns), the average
lead-time is smaller for the system working in the self-organizing mode
than when the planning is taken into account. This is caused by the sched-
uling rule used in the AS/RS. The AS/RS cannot serve all orders at once.
Depending on the workload of the manufacturing system, an order may
therefore suffer a considerable delay, sometimes of more than one hour.

Figure 5.9 Flexible Manufacturing System Layout (Screen Shot).

Table 5.1 Influence average lead-time of different levels of interaction between HMES
and planner

Normal operation Machine breakdown

8 orders SO SE LMP SO SE LMP
Correct planner 1660 1900 1894 1938 2010 2653
Faulty planner 1753 2144 2058 2127 2168 2831

15 orders Correct planner 2458 2677 2597 3057 2934 3543
Faulty planner 2554 2830 2814 3941 3170 5086

SO: self-organizing mode; SE: schedule execution (25% type-1); LMP: last-mile planning

Design for the Unexpected72

Depending on the position the order has, the delay may be more or less
important. A sequence is imposed on all orders and the orders cannot devi-
ate from this sequence. If orders are delayed by the transportation system,
this effect propagates through the whole sequence. Therefore, the average
lead-time is larger than for the self-organizing level.

At the 75% guided level, all orders deviate from the planning if their av-
erage performance deviates from the planning above the predefined thresh-
old. As long as the delay imposed by the transportation system is smaller than
the threshold, the orders will not deviate. Therefore, the average lead-time is
still higher. However, because all orders that deviate above the threshold will
search another solution, the variation is reduced.

As the results indicate, an incorrect planning has a negative effect on the
average lead-time when the HMES tries to execute the planning. For the
self-organizing level, there is no significant difference.

To examine the responsiveness of the HMES, the effect of a machine
breakdown is investigated. The basic scenario remains the same. The first time
an order is executed on one workstation, however, it breaks down for about
16 h. During this time, the order cannot be removed from the workstation.
Once the workstation is repaired, the order can continue its execution. The
experiments investigate the interaction between the machine breakdown
and the other factors, shown in Table 5.1. The experiments confirm that
the schedule execution approach improves the responsiveness of the HMES
toward breakdowns. Both the variation and the average flow time suffer
less from a breakdown compared to an approach where the HMES only
executes the planning or uses no planning at all.

This responsiveness is achieved while maintaining a good separation of
concerns. On the one hand, the planning system – in this case the LEKIN
scheduling system – can be used unmodified. The HMES adds responsiveness
to the functionality the planning system already offers. On the other hand,
the HMES compensates for simplifications in the planning system. For this
study, the scheduling system ignores transportation and warehouse manage-
ment and cannot deal with parallel machines with different execution times.
The introduction of the planning system in itself did not bring a general
improvement in average performance. This is mainly due to the variation the
transportation subsystem introduces. When following the planning, this effect
is increased. Therefore, in general, an assessment of the variation in the execu-
tion system before introducing a planning technique may be appropriate. For
this case, alternative scheduling rules at the level of the transportation system
may improve the effect of the planning on the execution system.

Holonic Manufacturing Systems 73

Finally, note that these experiments remain very limited in scope. They
were performed before the introduction and use of Erlang/OTP for the
prototype developments. In addition, the schedule-generating system
(LEKIN) was elaborated for this experiment only. There certainly remains
an unaddressed gap to be addressed in future research in which this cooper-
ation is investigated more thoroughly, especially the codesign of the sched-
uling and the last-mile planning by the type-2 exploring ants. In fact, the
team developing the scheduling part is also the natural provider of plug-ins
for the type-2 ants, defining what it means to stay close to a given schedule.

Logistics Example
The following simple logistics example further shows the potential of an
HLES receiving advice from external schedulers. Figure 5.10 shows the
resource graph for this application. One cross-dock is considered and or-
ders have to be transported from their origin to their destination via this
cross-dock. Each order consists of one pallet that has to be transported.
Several trucks are available at the cross-dock, which are controlled by the
cross-dock manager. These trucks are responsible for pickup of the orders
at their origin and for delivering them at their destination. The trucks do
not perform direct transportation from an origin to a destination, and each
truck can transport up to 33 pallets at a time. Inside the cross-dock, one or
more forklift trucks are available to unload the arriving goods, to transport

Figure 5.10 Layout of the Cross-Docking Application.

Design for the Unexpected74

these goods, and to load them into the correct outbound truck. The orders
can also be transported to a temporary storage area. It is assumed that equip-
ment and personnel is always available, that is, breaks or shifts are not taken
into account. Another simplification is that the sequence in which a truck
can be loaded or unloaded is not considered. If a delivery truck has finished
its operations, it stays at its current position and does not return to the cross-
dock (although the vehicle routing scheduling system [VRSS] assumes that
all trucks make complete tours starting and ending at the cross-dock).

The considered cross-dock (CD) has six dock doors. Inside the cross-
dock, two forklift trucks (with driver) are available to process the orders.
Temporary storage of these orders is possible. The orders have to be picked
up at one of two possible origins (O1 and O2) and delivered to one of two
destinations (D1 and D2). The expected travel times between the cross-dock,
origins, and destinations are known. There are three trucks available at the
cross-dock to perform the transportation, two for freight pickup at their ori-
gins (PT1 and PT2), and one for delivery to their destinations (DT1).

In Experiment 1, eight orders have to be transported. Control is by an
HLES according to the PROSA/DMAS architecture, without advice from
a staff holon. Table 5.2 shows the performance measures of two simulation
runs. In the first run, both pickup trucks visit another origin (PT1 visits O2,
PT2 visits O1). PT2 picks up all orders in one time (orders 2, 3, 4, and 8),
whereas PT1 only picks up order 6. PT2 then picks up the remaining or-
ders at O2 (orders 1, 5, and 7) after it has delivered the orders from O1 at
the cross-dock. Shortly after the (first) arrival of both pickup trucks, the
delivery truck DT1 leaves the cross-dock with all orders for destination D2
(orders 2, 3, 4, and 6). After delivery, DT1 returns to the cross-dock to load
the remaining orders (orders 1, 5, 7, and 8) and to bring them to D2.

Experiment 2 has the same setup as Experiment 1 but a staff holon
gives an initial advice to the order holons (from a VRSS) and the cross-
dock holon (from the truck scheduling system [TSS]). The performance
measures are shown in Table 5.2. All orders at O1 are picked up in one go

Table 5.2 Performance measures of an HLES without scheduler advice (Experiment 1),
with scheduler advice (Experiment 2), and with a breakdown (Experiment 3)

Average
 tardiness (min)

Average flow
time (min)

Make-span
(min)

Total travel
distance (km)

Experiment 1 298 1054 1950 3403
Experiment 2 183 954 1710 2507
Experiment 3 337 1150 1910 2507

Holonic Manufacturing Systems 75

by PT1, and all orders at O2 by PT2. When both trucks have arrived at the
cross-dock, the eight orders are transferred to DT1, and this truck makes
a tour via D2 to D1 to deliver all orders. Experiment 2 not only indicates
that the HLES can cooperate with external scheduling systems but also
that this cooperation improves the performance. Compared to experiment
1, all performance measures have ameliorated (see Table 5.2). This can be
explained by a good batching of the orders, as advised by the staff holon.
The performance measures also have improved compared to experiment 1.

In Experiment 3, the setup is the same as Experiment 1, but a break-
down occurs. One of the pickup trucks breaks down when it is transporting
orders to the cross-dock. The control mode used is such that the staff holon
recalculates its advice based on the current situation (i.e., truck positions).
PT2 breaks down at time t = 772.0, when it is moving the orders origi-
nating from O1 to the cross-dock. The truck is repaired at t = 951.2 and
continues its trip to the cross-dock. At that time, PT1 has already arrived at
the cross-dock. The loading of delivery truck DT1 only starts once PT2 has
arrived at the cross-dock and all orders are delivered in one tour (via D2 to
D1). The corresponding performance measures are also shown in Table 5.2.

Other convincing experiments are described in detail in Van Belle (2013).
The experiments confirm that the HLES is able to cooperate with

external scheduling algorithms and that this cooperation improves the per-
formance. Moreover, if some aspects are not taken into account by the
scheduling algorithms, the HLES is able to deal with these aspects. This
approach allows for a cooperation scheme in which the staff holon gives
advice to the orders and resources when a larger disturbance (e.g., break-
down) occurs, and the order, resource, and product agents deal in a self-
organizing way with the smaller deviations in between. The experiments
also indicate that the holonic system provides visibility about the current
and future resource and order states. This allows the responsible decision
makers to intervene on time if necessary or desired.

CONCLUDING REMARKS

Based on the Design Principles and the Laws of the Artificial, ex-
pounded in Chapters 3 and 4, respectively, a Holonic Manufacturing Sys-
tems description and control framework has been developed, able to pro-
vide an answer to many challenges present-day and future manufacturing
systems are exposed to: robustness, scalability, foresight, autonomy, social
behavior.

Design for the Unexpected76

This PROSA/Delegate-MAS framework has been the solid base on
which extensions and generalizations could be built, enabling the applica-
tion of the framework beyond the manufacturing world. This generalization
is the subject of Chapter 6.

ABBREVIATIONS
ADACOR Adaptive holonic control architecture
AS/RS Automated storage and retrieval system
CIM Computer integrated manufacturing
DMAS Delegate multiagent system
Erlang Programming language used to build massively scalable soft real-time systems
HMES Holonic manufacturing execution system
HLES Holonic logistic execution system
LES Logistic execution system
LEKIN® Educational scheduling tool
MES Manufacturing execution system
OTP Set of Erlang libraries and design principles providing middle-ware to

develop these systems
PROSA Product-resource-order-staff architecture
TSS Truck scheduling system
VRSS Vehicle routing scheduling system

REFERENCES
Babiceanu, R.F., Chen, F.F., 2006. Development and applications of holonic manufacturing

systems: a survey. J. Intell. Manuf. 17 (1), 111–131.
Bongaerts, L., Monostori, L., McFarlane, D., Kádár, B., 2000. Hierarchy in distributed shop

floor control. Comput. Ind. 43 (2), 123–137, Special issue on intelligent manufacturing
systems.

Dilts, D.M., Boyd, N.P., Whorms, H.H., 1991. The evolution of control architectures for
automated manufacturing systems. J. Manuf. Syst. 10 (1), 79–93.

Grassé, P.-P., 1959. La reconstruction du nid et les coordinations Inter- Individuelles chez Bel-
licositermes natalensis et Cubitermes sp. la théorie de la stigmergie: Essai d’interprétation
du comportement des termites constructeurs. Insectes Sociaux 6 (1), 41–80.

Hadeli, Valckenaers, P., Kollingbaum, M., Van Brussel, H., 2004. Multiagent coordination and
control using stigmergy. Comput. Ind. 53 (1), 75–96.

Hadeli. Bio-inspired multi-agent manufacturing control systems with social behaviour. PhD
thesis. KU Leuven, 2006.

Koestler, A., 1967. The Ghost in the Machine. The Macmillan Company, Hutchinson, UK.
Van Belle, J. A holonic logistics execution system for cross-docking. PhD thesis. KU Leuven,

2013. ISBN 978-94-6018-749-0.
Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L., Peeters, P., 1998. Reference architec-

ture for holonic manufacturing systems: PROSA. Comput. Ind. 37, 255–274.
Verstraete, P., Saint Germain, B., Valckenaers, P., Van Brussel, H., Van Belle, J., Hadeli, 2008.

Engineering manufacturing control systems using PROSA and delegate MAS. Int. J.
Agent-Oriented Softw. Eng. 2 (1), 62–89.

Wyns, J. Reference architecture for holonic manufacturing systems: the key to support evo-
lution and reconfiguration. PhD thesis. KU Leuven, 1999. ISBN 90-5682-164-4

http://refhub.elsevier.com/B978-0-12-803662-4.00005-9/ref0010
http://refhub.elsevier.com/B978-0-12-803662-4.00005-9/ref0010
http://refhub.elsevier.com/B978-0-12-803662-4.00005-9/ref0015
http://refhub.elsevier.com/B978-0-12-803662-4.00005-9/ref0015
http://refhub.elsevier.com/B978-0-12-803662-4.00005-9/ref0015
http://refhub.elsevier.com/B978-0-12-803662-4.00005-9/ref0020
http://refhub.elsevier.com/B978-0-12-803662-4.00005-9/ref0020
http://refhub.elsevier.com/B978-0-12-803662-4.00005-9/ref0025
http://refhub.elsevier.com/B978-0-12-803662-4.00005-9/ref0025
http://refhub.elsevier.com/B978-0-12-803662-4.00005-9/ref0025
http://refhub.elsevier.com/B978-0-12-803662-4.00005-9/ref0030
http://refhub.elsevier.com/B978-0-12-803662-4.00005-9/ref0030
http://refhub.elsevier.com/B978-0-12-803662-4.00005-9/ref0045
http://refhub.elsevier.com/B978-0-12-803662-4.00005-9/ref0035
http://refhub.elsevier.com/B978-0-12-803662-4.00005-9/ref0035
http://refhub.elsevier.com/B978-0-12-803662-4.00005-9/ref0040
http://refhub.elsevier.com/B978-0-12-803662-4.00005-9/ref0040
http://refhub.elsevier.com/B978-0-12-803662-4.00005-9/ref0040

77
Design for the Unexpected. http://dx.doi.org/10.1016/B978-0-12-803662-4.00006-0
Copyright © 2016 Elsevier Inc. All rights reserved.

The ARTI Reference Architecture –
PROSA Revisited

Paul Valckenaers*, Hendrik Van Brussel**
*Faculty of Engineering Technology, KU Leuven
**Faculty of Engineering Science, KU Leuven

This chapter presents consolidated research results and the inroads made into
new application domains. It discusses the generically applicable results. The
consolidated research results connect the insights from Chapter 2 to Chapter 4
to a methodological development approach, an improved reference architec-
ture, architectural patterns, etc. These results account for needs that emerged
from various application domains, other than the manufacturing domain, as
well as requirements from challenging real-world manufacturing cases.

A key element in the consolidated research results is the Activity-
Resource-Type-Instance (ARTI) reference architecture. The most com-
pelling factor, urging us to put forward this product-resource-order-staff
architecture (PROSA) refinement, was terminology. PROSA terminology
is manufacturing-specific. Applying PROSA to neighboring application do-
mains (e.g., logistics) proved doable but far from ideal. When entering more
remote domains (e.g., health care), PROSA terminology became unsustain-
able: communication with domain specialists and practitioners is crucial for a
successful introduction of any innovation, especially when it requires that the
persons involved stretch or even leave their comfort zone. In other words, the
need for a generically applicable terminology constituted sufficient grounds,
on its own, to revisit PROSA and propose the ARTI reference architecture.

Apart from introducing a universally applicable terminology, the ARTI
reference architecture introduces a refinement. ARTI splits the resource ho-
lons (in PROSA) into resource type holons and resource instance holons.
This mirrors the split of responsibilities between the product and order
holons, which become activity type holons and activity instance holons
respectively. This constitutes a more orthogonal basis, with resource/activ-
ity on one axis and type/instance on the other axis. The advantage over
PROSA is a better-suited design when resource instances are employed
in multiple roles that are situation or time dependent. Nonetheless, every

CHAPTER SIX

Design for the Unexpected78

ARTI implementation will be a PROSA implementation (using a differ-
ent terminology). Conversely, some PROSA implementations will not be
ARTI compliant (e.g., when using specialization or, in programming jar-
gon, inheritance to combine a resource instance and its type).

The discussion of inroads into new application domains covers aspects
that have not (yet) been incorporated into the consolidated research results.
They do not invalidate these results but still require time and (human) re-
sources to be investigated further and developed in full. Often, these explora-
tions into novel application domains turn nice-to-have requirements (in ear-
lier research) into must-have requirements (originating from a new domain).

The Sections “Software/System Development,” “The ARTI Reference
Architecture,” and “The DMAS Architectural Pattern” address consolidated
results, and the Sections “Challenges and Lessons Learned from Applica-
tions” and “Toward a Humane Mechatronic Society” discuss the inroads.
But first, the relationship between design for integrate-ability and design for
the unexpected is revisited.

INTEGRATED WITH REALITY IN THE D4U PREFERRED
MANNER

As mentioned in the Introduction, the research initially focused on
integrate-ability. Building on a theoretical model, disclosing mechanisms
preventing effective and successful integration, the research results trans-
pired into design for the unexpected. Indeed, designing components and
subsystems for integration, while assuming that integration requirements
inherently are unpredictable, simply cannot be satisfied by anything less than
coping with the unexpected.

Looking at integration in practice, a leader-followers pattern can be ob-
served. Many small systems (followers) adapt to a big dominant system (the
leader). Reality occupies this leader role when developing execution sys-
tems by definition. In other words, execution systems are to be designed for
integration with their world-of-interest. Also note that the present state of
the art provides no (peaceful) answers concerning leader–leader integration.

Design for the unexpected, and more precisely the research results dis-
cussed in this chapter as well as the previous one, exploits that everything else
also needs to integrate with the reality (within the design for the unexpected
(D4U) applicability range). Admittedly, there exist big dominant systems,
leaders in integration efforts, that are not or poorly integrated with reality
(e.g., creating their own administrative version of reality). For instance, a

The ARTI Reference Architecture – PROSA Revisited 79

tree-shaped bill of materials in enterprise resource planning systems lacks
the expressive power needed to capture key characteristics of petrochemical
cracking processes, disassembly in the refurbishing of car engines, or cutting
operations for sheet metal products. Attempting to deploy them within a
context of execution systems is ill advised. Such dominant systems often are
old (mostly, they dominate because they were first). As our world changes,
these old systems generally are far from optimal today.

D4U goes beyond integration in this leader-follower pattern (with real-
ity as the leader). D4U prefers elements/components/subsystems for which
this integration with reality is not only necessary but also sufficient for in-
tegration with these elements themselves:
1. D4U preferred system elements are integrated with their corresponding

reality.
2. Other components and subsystems are assumed to be integrated with

reality.
3. Compliance with 2 suffices to be integrate-able with D4U preferred

elements.
In other words, D4U develops components and systems that use (parts/

aspects of) reality as a shelter that protects them from (integration) conflicts,
even the unexpected ones.

Using reality as a shelter against unexpected demands involves a number
of challenges. First, D4U elements must not add restrictions, which are
absent in the corresponding reality. Nonlinear process plans (Kruth and
Detand, 1992) in manufacturing systems constitute a sample technology to
answer this requirement. These plans allow to represent multiple manners/
options to correctly manufacture an instance of a product type. The precise
option that will be selected depends on “unexpected demands” imposed by
situations that present themselves (e.g., which machines have free capacity
available). Here, every situation may demand a different option.

Answering this first challenge – representing every option that exists in
the corresponding reality – often proves to be overly expensive in practice.
Hence, a D4U design supports lazy development (=adding options when
they are needed). Here, adding options later must not cause a cascade of
adaptations to other system elements. The NEU protocol (in the Section
“The ARTI Reference Architecture”) is a design pattern that precisely ad-
dresses this matter.

Second, D4U elements must be able to “keep up with their shelter.”
Reality is dynamic; it changes in function of time. When D4U elements
fail to select a suitable shelter, their shelter will have changed and become

Design for the Unexpected80

ineffective within the time needed to design and develop the D4U element
(cf. the parable of the watchmakers in Chapter 4). To this end, a suitable
architecture needs to be adopted. The Section, “The ARTI Reference Ar-
chitecture,” presents ARTI, a refinement of PROSA, which is a reference
architecture addressing this challenge. The third section, “The DMAS Archi-
tectural Pattern,” covers the delegate multiagent system (DMAS) architectural
pattern, complementing ARTI, further facilitating to cope with this second
challenge. DMAS has already been introduced in Chapter 5, which discussed
specific DMAS implementations used in holonic execution systems. The sec-
tion discusses DMAS as a generic and versatile mechanism, identifies which
specific DMASs will be present in a holonic execution system in general, and
which case/situation-specific DMASs can be developed and used.

Third, the execution system must never fall – virtually – off its world-of-
interest. This typically is the least difficult challenge, technically, but requires
a proper state of mind. For instance, consider a railway application. There will
be D4U software components mirroring railways segments, called “blocks”
in railway jargon. Safety measures ensure that more than one train are not
present at any time in such a block. However, it is possible – physically – that
multiple trains simultaneously occupy parts of a block. If the D4U compo-
nent cannot mirror its block in a state, when safety measures are malfunc-
tioning or had to be overruled, with multiple trains present at the same time,
the execution system will fail to offer support when it is needed the most. It
probably will cause the execution system to break down.

Finally, a fully functional execution system cannot avoid including sys-
tem elements that are not D4U preferred elements. The section discusses
such inherently noncompliant system elements (i.e., the intelligent agents),
but first the issue of the software/system development process is addressed.

SOFTWARE/SYSTEM DEVELOPMENT

Conforming to the D4U philosophy, this section only presents what
is necessary and different in applying D4U when designing and develop-
ing software/systems. This can be elaborated further into a comprehensive
development process by adopting an existing methodology. The discussion
assumes this existing methodology to be object-oriented and incremental
(i.e., Unified Process1 alike).

1See en.wikipedia.org/wiki/Unified_Process for more information on this widely known
methodology.

The ARTI Reference Architecture – PROSA Revisited 81

Use Cases – User Requirements
In an inception phase, the key requirements for the execution system are
elucidated. Typically, use cases are elaborated, allowing all stakeholders to
participate and contribute. A use case is a list of steps, typically defining
interactions between an actor and a system to achieve a goal. It is a straight-
forward scenario aimed at simplicity and understand-ability for all involved.

In a D4U approach, these user requirements, use cases, etc. serve to iden-
tify and delineate the world-of-interest. They serve to define and specify the
problem domain. The requirements themselves (must) remain out-of-sight
until later or, actually and ideally, as late as possible. Indeed, user requirements,
use cases – except for the identification of the problem domain – must be
ignored because (or perhaps more precisely when) they correspond to the ex-
pected. For example, for navigation applications, a D4U approach must ensure
that the solution includes/uses maps, not a booklet with route descriptions
for the specific use cases.

Problem Domain Model – The World of Interest
D4U is architecture-centric. From the use cases and key system require-
ments, an executable model of the problem domain is elaborated. This
model will/must adopt the ARTI reference architecture, a refinement of
PROSA (see Section “The ARTI Reference Architecture”).

By adopting ARTI, the resulting system maximizes the potential for the
(critical) user mass of every component or subsystem (see Chapter 4). This
reference architecture provides a separation of concerns, as PROSA does,
ensuring that the shelters from reality are easy to follow by the components
and subsystems. Simple ARTI holons corresponds to parts of the world
of interest that do not break into pieces moving in different directions,
whereas more sophisticated ARTI holons are aggregates that reconfigure as
their real-world counterparts do.

Adoption of ARTI results in a single source of truth (SSOT) design, as
PROSA does, in which information is conceptually colocated with its cor-
responding part of reality. When developing services and other functions
on top of this executable domain model, the DMAS architectural pattern
is applied to preserve SSOT, even when conceptually global/nonlocal in-
formation is needed and used (e.g., when locally selecting a direction at a
crossing to reach a remote destination). To this end, the ARTI holons must
offer suitable information services mirroring their real-world counterpart
(e.g., to answer what-if queries and manage reservations).

Design for the Unexpected82

Moreover, the domain model explicitly separates pure reality-reflect-
ing parts (of the software) from decision-making elements. The Section,
“The DMAS Architectural Pattern,” discusses how holons comprise in-
telligent agents (making decisions) and intelligent beings (mirroring re-
ality). D4U favors to offer functionality through the intelligent beings,
maximally restricting the responsibilities of the intelligent agents to the
decision-making.

Incremental Development
Modestly recognizing that the human brain is unable to design holonic
execution systems in a single design effort, D4U adopts an incremental ap-
proach. Every increment results in a working (software) system, which is
tested and assessed. From what is achieved and learned, the next incremental
development step is planned, initiated, and executed.

An incremental development step comprises the following:
•	 Delineate and define the domain model to be addressed.
•	 Design and implement the executable domain models.
•	 Select the (user) functionalities to be included.
•	 Design and implement these functionalities.
•	 Test and evaluate (involving users as much as possible).
•	 Plan the next step.

As the D4U approach consists of capturing problem domain knowl-
edge, early and significant user involvement is highly desirable. Therefore,
elaborating a minimally viable product or MVP (cf. as in the lean start-up2
approach) is desirable, where viable – for some steps – equals an ability to
verify the domain model correctness and adequacy.

At some point, adequacy of the domain model starts to demand com-
pleteness: the execution system may never, virtually, fall of its world-of-in-
terest. Typically, this implies that the top-level domain model – correspond-
ing to the world of interest in its entirety – will be an aggregate comprising
models for “the remainder of the world-of-interest.” These will be coarse
models, which require very little effort to develop, providing information
services indicating that, normally, human intervention is needed to get the
system back to normal operations.

Thus, developers may have to extend their domain model into infin-
ity, in space, in time, in any dimension that is relevant. If the problem do-
main would be playing chess, the model of the chess board would include

2theleanstartup.com.

The ARTI Reference Architecture – PROSA Revisited 83

“outside the chess board,” and “add” two rows/columns around the board
to prevent a knight falling off the world when virtually moving around.
In a manufacturing execution system (MES), the domain model needs to
include a submodel corresponding to the world outside the factory.

Here, the connections – entrances and exits – between the factory
model and this submodel are explicitly modeled. This submodel may be
refined at some later point in time, for instance, to account for trans-
portation in networked production where multiple factories operate in
a supply chain organization. This submodel may be refined to reflect
transportation (times) of products from an exit to an entrance (e.g., when
production lines are incapable of transporting products against the nor-
mal flow and some products have moved beyond a station that they still
need to visit).

Note that (user) requirements (i.e., use cases) are used in later phases of
each development step. However, they are to remain out of sight when ini-
tiating the subsequent development step. Indeed, especially, the intelligent
agents developed to answer user requirements cannot become part of the
holonic execution system’s core, which is designed for the unexpected.

In Silico3 Ramp-Up
Because D4U elaborates executable domain models, mirroring the world
of interest and offering services to answer what-if queries, the effort
needed to have a simulation of a D4U holonic execution system will be
small. As execution systems tend to be large (e.g., in steel manufacturing,
the MES typically represents an investment that is ten times the amount
spent on planning and scheduling systems), a detailed cost–benefit analy-
sis is desirable. And because of its complexity, this detailed analysis needs
to be performed on a model/simulation that closely resembles the real-
ity-to-be.

Therefore, a typical approach to handle the transition of the holonic ex-
ecution system into real-world operations will comprise a simulation phase.
The required additional effort will be minimal (cf. Appendix on simulation
and modeling). The domain models needed for simulation can be reused
without reprogramming for the deployed version of the holonic execution
system. At most, some features need disabling. When indicated, simulations
with hardware in the loop and humans in the loop will smoothen the tran-
sition even further.

3Using simulations running in computers (cf. en.wikipedia.org/wiki/In_silico).

Design for the Unexpected84

THE ARTI REFERENCE ARCHITECTURE4

This section discusses the ARTI reference architecture, a holonic ref-
erence architecture for execution systems managing real-world activities using
real-world resources. The reference architecture is both a refinement and a
generalization of the PROSA reference architecture for manufacturing sys-
tems. To avoid repetition, more detailed information about PROSA may
not be repeated here but it remains valid unless stated otherwise. ARTI’s
design applies and illustrates the principles in Chapter 3 and it accounts for
the laws of the artificial discussed in Chapter 4.

Structure of an ARTI System
The reference architecture comprises four kinds of basic component or
holons (as it is a holonic system):
•	 Activity Types (product holons in PROSA)
•	 Activity Instances (order holons in PROSA)
•	 Resource Types (parts of a resource holon in PROSA)
•	 Resource Instances (parts of a resource holon in PROSA)

In addition, there is a class of optional components called staff holons
(as in PROSA).

An ARTI system is a flexible hierarchy – also called holarchy – aggre-
gating basic and optional components in a possibly time-variant manner.
Also, there can be an abstraction relationship among components, where
the more concrete member in this relation implements all capabilities of the
more abstract component.5

Each of the above components or holons, regardless of its kind, is sub-
divided in reality-mirroring and decision-making parts: an intelligent being
(IB) and an intelligent agent (IA), respectively. Intelligent agents may be
divided into an instance (IAI) and a type (IAT). Section “The DMAS Ar-
chitectural Pattern discusses this in more detail.

5The more concrete subclass inherits from the more abstract superclass, when using object-
oriented programming terminology. Subclass instances remain superclass instances from
birth till death.

4In software engineering, a reference architecture is defined as a set of coherent engineer-
ing and design principles used in a specific domain. It aims at structuring the design of a
specific system architecture by defining a unified terminology, the structure of the system,
responsibilities of system components, by providing standard templates, components, by giv-
ing examples, etc.

The ARTI Reference Architecture – PROSA Revisited 85

ARTI refines PROSA by distinguishing a resource instance and a re-
source type as two subcomponents of each resource holon. ARTI also
makes an explicit distinction between reality-mirroring and choice-making
parts within the holons. ARTI generalizes PROSA by adapting a termi-
nology indicating its applicability beyond manufacturing. In fact, PROSA
already has been applied effectively, that is, without needing major redesign
or modification; in other domains, however, its terminology proved to be ill
adapted and confusing in several domains.

ARTI – Basic Components
Activity Types
An activity type corresponds to a class of real-world activities. It is knowl-
edgeable about all aspects that are common to activity instances of its type
but ignores instance-specific matter (e.g., the state of an instance). A “hu-
man” activity type would be considered to be an expert.

In an MES, there will be an activity type for every product model,
and this activity type is the information source for process plans, material
requirements, etc. Moreover, there will be an activity type for all other
activities within the manufacturing system: planned and unplanned mainte-
nance, transport and storage of equipment (e.g., of empty product carriers),
setup and changeover of work stations, etc.

In intelligent transport systems, an activity type is knowledgeable about
manners to travel, commute, deliver, etc. In a smart grid, activity types are
knowledgeable about manners to produce, transport, distribute, store, and
consume power, where power is to be understood in a broad sense (e.g.,
activity types may be knowledgeable about balancing power). Activity types
have been investigated, designed, and often implemented for fleet robotics,
open air engineering, health care, logistics, etc. (cf. Chapter 7).

The activity type is able to provide information that is grounded, which
means that (i) this information allows identifying resource types that are
able to execute the activity and (ii) these resource types are able to retrieve
the information they need from the activity type (e.g., a recipe).

Ordinarily, activity types are nondeterministic and have a lazy6 implemen-
tation. Nondeterministic means that an activity type is knowledgeable about

6Lazy means that the implementation effort is delivered when the need arises. Alternative
manners to execute an activity are made available when a situation presents itself in which
this is useful (i.e., the effort required to offer an alternative is likely to be recovered when
the alternative is used and, e.g., enables a more optimal resource utilisation, faster activity
execution, etc.).

Design for the Unexpected86

multiple manners in which its activity instances may execute. For example,
a commuting activity type may support multiple transport modes – road,
rail, etc. – and multiple timing options within each mode.

Ideally, activity types leave all resource allocation options open to their
activity instances; nondeterminism is essential to achieve this. In reality, an
activity type masters suitable representations of nondeterministic informa-
tion (to be able to leave all options open for their instances). However, they
employ a lazy implementation strategy whenever it is (too) expensive to offer
an option without a perspective that they will be utilized. For instance, when
offering an alternative to execute a manufacturing activity requires an ex-
pensive validation (e.g., produce test pieces) this will only occur when there
is an economic benefit that warrants such investment. And, offering another
alternative will not force the activity type to forget the current one(s).

Activity Instances
An activity instance corresponds to the execution of a real-world activity; a
“human” activity instance would be considered to be a manager. It handles
all instance-specific information processing and delegates type-related mat-
ter to its activity type. An activity instance is responsible for the proper
execution of the corresponding real-world activity. To this end, it ensures
the necessary allocations of (time slots on) resource instances. It also is the
repository for all state information concerning its execution.

However, identifying whether a resource instance is suitable for the ex-
ecution of the activity is delegated to the types (i.e., activity and resource
type determine this among themselves). Likewise, transforming the state
representation – reflecting the progress of its real-world activity execution –
is also delegated to the activity type (see further: the NEU protocol). The
activity instance is also the repository for traces (i.e., data recordings of an
activity’s history) and it may be archived, when the activity ends, for future
use (e.g., analysis when a defect in a product instance is encountered).

In manufacturing systems, there will be an activity instance for every
product instantiation activity but equally for maintenance or auxiliary ac-
tivities. In intelligent transport systems, every commute will have its activity
instance. In home automation and smart grids, climate control will have an
activity instance.

An activity type – mirroring what is known about its type – is relatively
decision-free (except perhaps for their lazy implementation deciding which al-
ternatives to support at a given time). In contrast, activity instances interact, ne-
gotiate and decide about their usage of available resource instances. Therefore,

The ARTI Reference Architecture – PROSA Revisited 87

their decision-making subcomponent(s) will have significant responsibilities.
However, these subcomponents have to remain separate (i.e., modular imple-
mentation) and final (i.e., reality-reflecting subcomponents must not rely on
the decision-making subcomponents for proper operation). More details and
advanced features in this respect are addressed below (see section on DMAS).

Resource Types
A resource type corresponds to a class of real-world resources. It is knowl-
edgeable about all aspects that are common to resource instances of its type
but ignores instance-specific matter (e.g., the state of an instance). A “hu-
man” resource type would be considered to be an expert.

In a first implementation, resource types know the technical specifica-
tion of the resource (e.g., the dimensions of a parking space) and its capa-
bilities (e.g., a railway being able to transport people possibly carrying small
luggage). More advanced capabilities of a resource type are addressed later
(see Section on DMAS).

In manufacturing systems, there will be a resource type for every type of
machinery, both for processing equipment and auxiliary equipment (trans-
port, storage, energy supply, material supply). Moreover, space, human opera-
tors and workers, etc. will have their resource type. In fact, valuable capabilities
that are in limited supply is what defines what will be a resource in the world
of interest. In intelligent transport systems, road segments, crossings, vehicles,
truck drivers, trains, parking spaces, etc. will have a resource type. Resource
types have been investigated, designed, and often implemented for fleet ro-
botics, open air engineering, health care, logistics, etc. (cf. Chapter 7).

Resource types interact with activity types to discover whether and how
a type of resource can be employed to execute one of their activity instanc-
es. For instance, an activity type limits a vehicle selection to suitable ones
(e.g., big enough) and ensures that only valid routes are indicated as possible
transportation routes (e.g., avoid low bridges with a truck).

The information processing capabilities of the resource type determine
what grounded means for the activity types that consider using it. For exam-
ple, a car driver may need detailed instructions whereas a railway system or a
taxi are able to execute larger-grained tasks. In single systems, this may range
from very concrete and ad hoc toward very autonomous and widely applicable.

Resource Instances
A resource instance corresponds to a real-world instance of a resource, which
is valuable and has a finite capacity; a “human” resource instance would be

Design for the Unexpected88

considered a manager. It handles all instance-specific information process-
ing and delegates type-related matter to its resource type. It is responsible
for the allocation of its real-world instance to activity instances that have
the resource instance perform real-world activities. Processing of techni-
cal information is delegated to the resource type (e.g., checking whether a
product part will fit in its workspace).

The resource instance is the repository for state information. This in-
cludes topological information: what are the exits and entries of the re-
source instance and to which entries and exits – of neighboring resource
instances – are they connected? Or is an entry or exit unconnected? Chang-
es in this state are tracked (i.e., in case of reconfiguration). If the resource
is composite, what are its components? Moreover, the resource instance
tracks status of the equipment itself (on, off, calibrated, etc.) and knows its
visitors (a product part on a product carrier in a machine; a driver, passenger,
or suitcase in a car; personnel in an office; etc.). Again, transformation of
state-representing information will be delegated to the resource type when-
ever this is type-specific.

Similarly to the situation with activities, resource instances are involved
in the decision making regarding their allocation. And their decision-mak-
ing subcomponents must be separate and final (i.e., the reality-reflecting
part must not need adaptation when it changes). For instance, replacing a
first-come, first-served decision-making subcomponent by a priority-based
one must be confined to easily identified modules and must not require a
modification of a reality-reflecting subcomponent.

ARTI Interactions Among Basic Components
AT–AI Interactions: The NEU Protocol
The NEU protocol is used for the interaction between an activity instance
and its activity type. The acronym stands for Next, Execute, Update. The
discussion uses Erlang7 pseudo-code to denote the software processes’ be-
havior. To be able to understand the pseudo-code, note that:
•	 Identifiers starting with a capital are variables.
•	 Identifiers starting with a small character are constants (often called an

enum); they mainly are used as tags in the messages exchanged by the
software processes.

•	 The “!” operator sends the message after this exclamation sign to a soft-
ware process identified before this sign.

7 See www.learnyousomeerlang.com and www.erlang.org for more information.

http://www.learnyousomeerlang.com/
http://www.erlang.org/

The ARTI Reference Architecture – PROSA Revisited 89

NEU Phase 1: Initialization
In an ARTI implementation, an activity instance Act_In is created mirror-
ing a corresponding event in the world of interest (e.g., an order arrival in a
factory). Act_In receives a reference Act_Typ_ADR to its type Act_Typ at this
creation.

The first action of Act_In is to acquire a representation of its state from
Act_Typ. To this end, Act_In executes:

Note that init_order_state simply is a tag indicating what is request-
ed. Act_Typ now generates Act_In_State, which contains all information
concerning progress made by Act_In. At this initial stage, Act_In_State re-
flects that nothing has been done so far.

Act_Typ sends Act_In_State to Act_In using its reference Act_In_ADR:

Note that Act_Typ remains agnostic about the instances of its type. To
this end, Act_In passes Act_In_ADR to Act_Typ with every request/message.

Conversely, Act_In remains agnostic about the structure and content of
Act_In_State. Act_In is the repository for Act_In_State but it systematically
delegates any information processing involving Act_In_State to Act_Typ.

NEU Phase 2: Execution
Act_In is coordinating its real-world activity. However, Act_In lacks do-
main-specific knowledge and is unable to determine what to do. Hence,
Act_In instructs Act_Typ to compute which actions are the candidate next
steps:

Act_Typ analyses Act_In_State and compiles a list of valid actions for
the next step. This list comprises state-changing actions (e.g., drill a hole
or perform a test) as well as auxiliary actions (i.e., transportation or storage)
from the perspective of the real-world activity.

Design for the Unexpected90

Note how Act_In is a manager – in the narrowest sense of this word. In-
deed, Act_In remains agnostic about the application domain specifics. Like-
wise, Act_Typ is an expert, fully ignorant of what is happening in its world
of interest. All state information originates from Act_In.

Act_Typ cannot even distinguish whether the state information, provid-
ed by Act_In, corresponds to an actual or a fictive state. As a consequence,
Act_Typ compiles lists of valid actions that are computed for actual states as
well as for the “might be” states in an exploration DMAS or an intention-
propagating DMAS (see section on DMAS).

Act_Typ delivers this list of possible valid next actions to Act_In:

Act_In searches, finds and selects a resource instance Res_In that is
capable of executing an action Actx from the list provided by Act_Typ.
Concerning an optimized selection of Res_In and Actx, the reader is referred
to the section “on DMAS and on Staff Holons.”

Note that Act_Typ and Res_Typ (i.e., the resource type of Res_In) co-
operate to determine whether Res_In is able to perform Actx. Note that
Res_In is agnostic concerning the application domain. Likewise, Res_Typ ig-
nores the existence and states of its resource instances. Like Act_Typ, Res_Typ
provides its services regardless whether state information about a resource
instance is real or fictional.

When Res_In finishes executing Actx, it informs Act_In about the out-
come:

In order to remain agnostic about the application domain, Act_In re-
quest an update of Act_In_State from Act_Typ:

Act_Typ computes the new state for Act_In and sends it to Act_In:

The ARTI Reference Architecture – PROSA Revisited 91

From here on, the interaction pattern repeats the phase two interactions.
Note that Act_In does not select/execute a second action from the list

of candidates for the next step. As Act_In _State has changed, Act_In ig-
nores whether this old list is still valid.

The interaction protocol derives its acronym NEU from this phase:

Phase 3: Finalization
When the list of valid actions for the next step contains finalise, Act_In may
(but must not) select it and perform any wrapping up duties (e.g., archive
the trace data). While the list still contains other actions, Act_In enjoys a
solution space offering alternatives, which Act_In may use to optimize its
activity. Note that both Act_Typ and Res_Typ remain unexposed to such
activity optimization issues.

Discussion
The above-presented protocol is not mandatory. Some application domain
requires a different solution (e.g., in smart grids where time-continuous
profiles characterize activities). Some application domains require an exten-
sion or enhancement. Nonetheless, the NEU protocol possesses some key
qualities that need to be preserved.

First, the NEU protocol creates independence – enabling a separation
of concerns – between type holons and instance holons (i.e., between
experts and managers). The activity and resource types have dependen-
cies as they exist in reality, which is OK. The activity and resource in-
stances have dependencies as they exist in reality, which is OK. However,
the dependencies among types and instances are limited to generic and
need-to-know.

For instance, the activity type – when applying the NEU protocol –
presents a list of possible next steps to an activity instance. The members
of this list are not interpreted in any manner by the instance. The activity
instance presents this “step information” to resource instances for two pur-
poses.

First of all, the activity instance needs to discover which resource
instances are able to execute this step (capability). Second, the activity

Design for the Unexpected92

instance (or its exploring and intention ant agents) needs to discover
whether and when such a capable resource instance has the capacity to
execute this step, how long it will take and what the expected outcome
will be.

In turn, the resource instance will not interpret this “step information”
by itself. Instead, it will pass this information to its resource type holon,
which generates the answers. These answers are passed to the activity in-
stance holon. At no point, the instance holons require or acquire knowledge
about the type-specific aspects.

Conversely, type holons never are the depository of instance-specific
information. The state representations, which are computed by these types,
reside with the instance holon. These instance holons provide this state in-
formation when type-specific processing is indicated. This effectively cre-
ates an independence that is relevant in the problem domain.

Second, the NEU protocol prevents exposure to the specifics of
knowledge representation inside the holons to the extent that these
holon-internal representation may change even at run-time. For example,
note that Act_Typ may utilize – internally – a nondeterministic repre-
sentation of all the possible manners to execute activity instances of its
type, whereas Act_In may use a different (typically simpler) representa-
tion. Moreover, both Act_Typ and Act_In may change their internal rep-
resentation without the other noticing (except for the content/size of
the list with candidate next steps). For instance, Act_Typ can be upgraded
to support more options, using a more expressive internal representation,
without any other component needing to change. Both Act_In and other
activity types will not notice this upgrade in a manner that affects their
software code/correctness. With the Erlang technology, such an upgrade
will be possible while the holonic execution system keeps running (i.e.,
hot software updating).

RT–RI Interactions
Resource instances interact with their resource type to delegate all infor-
mation processing that is common to the corresponding class of resources.
Determining whether an action (e.g., a processing step in manufacturing
or passing under a bridge in transportation) is feasible will be delegated by
the resource instance to its type. On the other hand, a resource type will
require its instances to be the repository for all instance-related information.
So, similar to the NEU protocol above, a resource instance will provide any
resource state information to its resource type that is needed to compute

The ARTI Reference Architecture – PROSA Revisited 93

how an action is likely to perform. Likewise, computing a new resource
state representation is done by the resource type employing state informa-
tion from the resource instance.

Consider a heat treatment furnace. Its resource type (holon) knows how
long it takes to raise the temperature from 20°C to 800°C. It is the resource
instance (holon) that provides the information that the initial temperature is
20°C to its type. Moreover, the resource instance knows the activity instance,
which is the repository for the product state information. When passed to
the activity type, the activity and resource type are able to determine that
it will be 2 tons of steel that need processing at 800°C during 4 h. The re-
source type informs the resource instance that it is possible to execute the
activity and provides an estimate of how long it will take. When such a heat
treatment step is executed, the types update the instance state information,
whereas the instances are the repositories for this state information.

The ARTI design allows to use resource types in both a reality tracking
mode and exploration or prediction mode. In the first case, the information
provided by the instance for the computation of an updated state reflects
what really happened (or, more precisely, what the resource instance be-
lieves that happened based on its input from sensors and humans). In the
latter case, the data for the update is selected, typically by the activity in-
stance (see Section on DMAS), without it happening for real. The resource
type has been used to generate the type-related elements of these data (e.g.,
estimate duration). In fact, the resource instance may have an agenda (see
Section on DMAS) and employ its resource type to generate a state trajec-
tory for the resource that corresponds to this agenda.

Consider the heat furnace again. The resource instance (holon) has an
agenda containing the processing steps, booked by activity instances, to be
executed. From this agenda, virtual execution of the activity instances em-
ploy the resource and activity types to compute the estimated future states
of both the resource (furnace) and the activities (product parts that are
treated in the furnace). The information processing services offered by types
and instance suffice to implement this (cf. PROSA discussion in Chapter 5).

AT–RT Interactions
Activity types and resource types interact when they need to provide infor-
mation, usually to one of their instances, that depends both on the resource
type and the activity type. For instance, when the processing time of a pro-
duction step depends on the CNC program and the machine tool speed,
both types will interact to compute this information.

Design for the Unexpected94

Note that ARTI does not impose which type (resource or activity) must
perform specific parts of such computations. In fact, the right choice –
in the economic sense – depends on critical user mass and case-specific
properties. For example, when a manufacturing process is very common, it
will make sense to have the process implementation (i.e., the resource type)
offer a lot of services (i.e., have its many users share development efforts). In
contrast, when it is an exotic activity, it will be more economical to have the
activity type (i.e., a low-level process plan) handle this in an ad hoc fashion
(i.e., minimize development efforts).

Resource and activity type interactions will often be triggered by in-
stances and may even occur with instances as intermediaries. Among others,
an activity instance will discover what actions may be executed through the
NEU protocol and it will contact resource instances to find out whether
they are capable of executing one of these possible actions; instances will
delegate answering to their type. In contrast, activity types will have a selec-
tion of resource types that they will/must consider while elaborating what
the possible courses-of-action are for their activity instances. This elabora-
tion may be lazy.

AI–RI Interactions
Activity instances interact with resource instances concerning the execu-
tion of both ongoing and planned activity steps. In case of a nonproactive
design, the instances have a straightforward behavior: initiate a suitable next
action, manage the execution of this action, update the state information,
and repeat until the job is done. This is the heterarchical mode of early
PROSA implementations.

In a proactive design, activity instances will virtually execute possible
courses of action to evaluate alternatives from which they will select one,
which is called the intention of the activity instance. Through the virtual ex-
ecution of this intention, the activity instance informs the resource instances
of future usage, which these resource instances reflect in their agenda. This
aspect will be discussed in the section on the DMAS architectural pattern.

ARTI: Aggregation, Abstraction, Staff Components
The ARTI reference architecture allows for the construction of large(r) sys-
tems through aggregation, identical to PROSA. These aggregates may vary
over time when subsystems and components enter, leave, or are replaced.
Importantly, these changes and reconfiguration allows to maintain a proper
correspondence with the world of interest that is reflected.

The ARTI Reference Architecture – PROSA Revisited 95

Specialization is supported to offer an abstract view on collections of
similar but nonetheless different components and systems. Its main purpose
and contribution is to simplify the environment of a given component or
subsystem when it is not forced to account for nonrelevant differences from
its own perspective. Specialization also enables reuse (of software code) but
this is considered a minor contribution. Note that using Erlang, specializa-
tion is nice to have as it uses duck typing.8 With static type checking lan-
guages, it will be a must-have.

For the introduction of non-D4U systems and components that are
not decentralized in a manner compliant with ARTI, the staff holon from
PROSA has been retained: staff holons may only have an advisory role. This
allows to introduce noncompliant information providers without risking
that the execution system breaks down when facing the unexpected.

Examples: Holonic Task Execution Control
of Multimobile-Robot Systems
Applying PROSA and DMAS to mobile robots revealed a necessity to
translate the PROSA concepts to the robotics world. First and foremost,
PROSA terminology is barely appropriate for a robotics environment. The
ARTI terminology proved to be adequate and was adopted. Note that
ARTI terminology was devised to be broadly applicable, answering the
needs of various nonmanufacturing domains while remaining suitable for
the MESs.

A distinctive feature of the ARTI/PROSA/DMAS architecture ap-
plied to robotics, when compared to existing robot control architectures,
is the need for the explicit allocation of resources. The explicit emphasis
on reflection of reality, as an SSOT, is another added value with respect
to the existing robot control systems. The robotics research community
is still struggling to grasp and appreciate the novelty of these ideas, which
have been welcomed in the holonic systems research community but have
remained unwelcome in the somehow excessively focused/specialized ro-
botics community.

Three cases are briefly treated hereafter. The reader is referred to Philips
(2012) and (Huang, 2011) for further details and more cases. The robotic
resources used in the use cases are depicted in Figure 6.1.

8The name duck typing is derived from the famous quote: “When I see a bird that walks like
a duck and swims like a duck and quacks like a duck, I call that bird a duck.” In duck typing, a
programmer is only concerned with ensuring that objects behave as demanded of them in a
given context, rather than ensuring that they are of a specific type.

Design for the Unexpected96

Case 1: Single Robot Allocation in General
At the level of a single robot, the main robot components constitute re-
source holons. Figure 6.2 shows resource holons inside a mobile robot such
as the robotic wheelchairs depicted in Figure 6.1. The level of detail is task
dependent, because only resources with an active role need to be repre-
sented. If, for example, CPU optimization is required, one of the resources
would be the CPU. By doing so, order holons can explicitly allocate CPU
time slots, for example, to guarantee real-time performance.

The Robotic Wheelchair resource type has knowledge about its dimen-
sions, its overall minimal and maximal speed and capabilities such as obstacle
avoidance and navigating from one point to another. It consists of motors
controlling translational and rotational velocity, Distance sensors scanning
for obstacles and a joystick representing the user’s input. Typically, several

Figure 6.2 Resource Type Holons for a Robotic Wheelchair.

Figure 6.1 Mobile Robots Used for the Use Cases. (a) SARA, (b) LAURA, (c) LiAS.

The ARTI Reference Architecture – PROSA Revisited 97

distance sensors are mounted on a mobile robot. In this case, a laser scanner,
sonar sensors, and IR sensors are represented by resource holons. These sen-
sors are used to detect obstacles in the environment and provide the input
to, for example, an obstacle avoidance algorithm.

At the single-robot level, activity type holons and activity instance holons
can be defined that address primitive actions such as moving the robot in a
given direction while keeping a safe distance (as measured by the available
sensors) from obstacles. ARTI implementations enable to realize such a task
as the composition of two more primitive tasks: move to a target position
and avoid obstacles. Note that this implies a resource allocation in which two
tasks own the same resource at the same time but with different ownership
rights. These rights are compatible and, normally, complementary. For in-
stance, the move to target position activity has received the right to steer the
mobile robot but the avoid obstacles activity has the right to overrule, modify,
and constrain what the mobile robot resource instance may execute.

Moreover, an ARTI implementation makes it possible to allocate these
embedded resources to tasks/activities from outside the single robot. For
example, one robot’s laser sensor may be used by another robot or another
type of activity. This other activity could be a building mapping task. Note
that this mapping can have different requirements and outputs depending
on where it resides. Every building type (factory, hospital, corn field, cop-
per mine) and every mobile robot manufacturer may have its own map-
building activity holon type.

These mapping activity types undoubtedly have companion resource
type holons for the processing of sensor data. In the example, the laser
sensor will have a basic/primitive resource type that will be used by
these more sophisticated companion resource holons. In these situations,
the split of the PROSA resource holon in two ARTI resource holons
(type and instance) ensures useful maneuvering space to combine holons
into suitable time-varying aggregates. In case of PROSA, the use of spe-
cialization – combining type and instance functionalities in a single re-
source holon – remains possible, which may imply annoying constraints
(when life cycles including creation and hibernation/destruction have
to coincide).

D4U compliance involves explicit resource instance allocation (second
design principle) to have, among others, an upper bound on the inertia of
design choices that need undoing. It also implies minimizing the needs/
requirements for resource allocation from activities offering a service (first
design principle). A D4U-compliant activity:

Design for the Unexpected98

•	 does not request allocations that it does not use. In an industrial robot,
the activity (program) that is executing will have all resource instances
of the robot allocated (as there is no explicit allocation management).

•	 does not request allocations for more time periods than needed. For
instance, access to sensors via a sensor bus often supports isochronous
channels, each providing hard real-time bandwidth to the sensor read-
outs. A D4U-compliant activity will acquire such channels (= resource
instances) that it needs, leaving the remainder for other activity in-
stances.

•	 does not request more rights than needed. For example, a safety-ensuring
activity needs isochronous channels to the sensors it needs to see
imminent danger, hard real-time CPU slots to process the sensor data
and assess the need for intervention, and preemption rights on actua-
tors/power/brakes to intervene when indicated. This leaves to other
activities sufficient rights to execute the actual robot tasks. It enables
a separate safety-ensuring activity to be provided regardless of the na-
ture, source, etc. of these other activities executing the application
tasks.

•	 does specify which alternative resource allocations exist/are possible.
Moreover, such nondeterministic specification may describe the trade-
offs between allocation and task performance, capabilities, etc.

•	 does minimize the requirements for allocation and deallocation. For
instance, a special-purpose trajectory execution activity maximizes the
robot state (e.g., positions and velocities) in which it can perform a
handover from/to other trajectory execution activity types.
Note how explicit resource allocation captures the interactions among

tasks/activities. This SSOT solution helps to cope with the complexity of
combining a multitude of tasks in a robot system while maximally utilizing
the available resources.

Case 2: Obstacle Avoidance
In mobile robotics, the goal of obstacle avoidance is generally to navigate
from one location to another while avoiding collisions with obstacles in
the environment. These obstacles can be structural or static, such as walls or
doors in the environment, but also dynamic such as other robots or humans
moving in the same environment.

Often this problem is solved in the control algorithm of the robot in a
reactive manner, in contrast to (global) path planning where a precomputed
obstacle-free path is followed by the robot. The robot controller reactively

The ARTI Reference Architecture – PROSA Revisited 99

alters the robot’s course to avoid the obstacle and afterwards steers back to
the original trajectory.

The obstacle avoidance problem can be interpreted as a resource alloca-
tion problem in which the environment is divided into a set of grid cells
and the desired trajectory is represented by the allocation of a sequence of
these grid cells. The resource holons representing the environment are, thus,
divided into grid cell resource holons that can be individually allocated.
Figure 6.3 shows the relevant resources in this use case.

The mobile robot is allowed to move along its desired path if it allocates
the required sequence of grid cells at the relevant time intervals. Another
robot moving in the same environment will not be able to allocate the
same space at the same time, and this way collisions between both robots
are avoided. The checkerboard cells are allocated by the robot during its
trajectory.

These allocations are temporal, and the time interval of each allocation
should represent the time when the robot actually occupies this location.
This solution, however, assumes that all actors in the environment adopt this
resource allocation. It does not take into account humans or other robots
moving around without allocating their space beforehand. Another problem
might be the difference between allocation time and actual execution time
of the trajectory. If the model, used to estimate the time a robot needs to
move to its target, is not adequate, robots might deviate from this schedule.

The short-term forecasts provided by DMAS are able to detect such de-
viations and, if sensor data are linked to the environment resources, dynamic
obstacles can be taken into account as well. Nevertheless, how fast the robot

Figure 6.3 Resource Type Holons in Obstacle Avoidance Task.

Design for the Unexpected100

is able to avoid obstacles depends on how fast a change in the environment is
detected. If the robot only relies on its own sensors, forecasting is very limited
and there might be not enough time to complete a full exploration and al-
location cycle using DMAS. If, however, each room is equipped with its own
sensors to keep its occupancy up-to-date, changes that are in conflict with a
robot’s trajectory can be propagated in time, through the exploring DMAS,
and alternative solutions can be selected. Likewise, all sensors of all robots can
be used, updating the resource holon corresponding to grid elements. The
DMAS will inform all activities affected by information from these sensors.

Moreover, when intention ants propagate the intentions of their mobile
robot, proactively, the resource allocation of grid elements over time will be
visible and can be managed. Among others, deadlocks will be prevented and
travel times/distances can be minimized.

Case 3: Multirobot Door Opening
This type of application requires to include the environment of the robots
explicitly and have resource holons representing the resources therein. The
goal in the multi-robot door opening task is to have one or more (mobile)
robots to navigate from one room to another through a door opening.
Some of these robots are able to open and close that door. Ideally, if more
than one robot has to move through the door within a short time interval,
the door should be opened only once.

Figure 6.4 shows the resource holons for a door-opening scenario/task.
The Universe resource allows future additions of resource holons to the
application. Here, the Universe is divided into resources belonging to
the mobile manipulator executing the task, task-relevant resources such as
the Door, its Handle and its Frame, Robotic Wheelchair resources, and the
Human operator whose control is shared with the wheelchair.

This explicit resource representation and resource allocation in the ro-
bot’s environment facilitates coordination. For example, when two wheel-
chairs arrive at the same time at the door, the explicit allocation of the door
resource ensures that the mobile robots are able to exit one by one and to

Figure 6.4 Resource Type Holons for a Door Opening Task.

The ARTI Reference Architecture – PROSA Revisited 101

avoid deadlock. Assume that both wheelchairs are driving toward to the
door opening and issue allocation requests to the Door Resource. Since
these requests are handled sequentially, the first robot requesting allocation
at a particular time, will receive that allocation slot, while the other robot
will receive a slot behind the previous slot.

If both wheelchairs reach the door within an acceptable time delay, the
door should only be opened and closed once. The door holons will handle
this in a manner analogous to a machine holon in a factory managing its
changeover and setups. When activity instance holons handling the wheel-
chairs apply the DMAS mechanism, the resources in the environment will
be informed about future allocations. Therefore, the door opening coordi-
nation is not limited to handling the current situation. The order holons
will observe the predicted future states of the resources in the environment
and are able to account for these predictions. For example, when an activity
instance holon sees that it will have to wait for other wheelchairs traversing
the door in the opposite direction, it may adapt its trajectory in space and/
or time, in order to reduce power consumption, robot component wear, or
have its occupant wait in a more agreeable or useful location (e.g., in front
of a television or at a battery recharging station).

THE DMAS ARCHITECTURAL PATTERN

The delegate multiagent system, an architectural pattern, has been
introduced in Section “Bioinspired Coordination and Control in Holon-
ic Execution Systems” of Chapter 5. This section revisits the DMAS pat-
tern and describes it as a generic problem-solving mechanism and its roles
within the consolidated research results. It presents what a DMAS mini-
mally involves; it presents which DMAS will be contributing what in an
ARTI-compliant holonic execution system; it hints at the variety of DMAS
implementations that can be present in an execution system; it discusses the
intelligent agent’s role as a “plug-in” components to isolate the nonD4U
elements from the D4U elements. Thus, this section presents a systematic
view on DMAS within a holonic execution system.

Recalling Section “Bioinspired Coordination and Control in Holonic
Execution Systems,” of Chapter 5, a DMAS involves a holon creating, at
regular time instances, lightweight agents. These agents are called ants to
honor the biological source of inspiration, which allowed for the discovery
of this pattern. These swarms of digital ants provide services to their holon
and/or the overall system.

Design for the Unexpected102

The Barebones DMAS
A DMAS allows to process “global information” while preserving an
ARTI design in which real-world counterparts have an SSOT. The
SSOT is provided by means of holons mirroring resource instances, re-
source types, activity instances, or activity types, including the structural
aspects (aggregation). The results of such nonlocal information process-
ing are made available locally, typically linked to a suitable source of truth
(stigmergy).

Biological ants deposit chemical/pheromone trails on the physical sur-
face of a real-world environment. These trails inform locally about a nonlo-
cal “truth” (i.e., in which direction there will be food). These trails have
complicated geometries without the need to mirror this within the brain
of the ants. The world itself is used as its own model. In a similar manner,
DMAS uses its ARTI mirror image of the relevant reality. The digital ants
travel across this digital mirror image, observe it, influence it, and deposit
information on this virtual image.

Furthermore, the evaporate-and-refresh in the biological world has its
counterpart in the ARTI image. Information (a digital pheromone trail) has
a finite life span and will be redeposited regularly if it is to remain available.
This enables to cope with changes in the world of interest.

Generically, digital ants behave as follows:
•	 An ant is created by a holon, which provides a procedure (code and

initializing data) to execute.
•	 The data contain the address – used to send messages – of the creat-

ing holon.
•	 The data contain the address of the current location/holon for the

ant.
•	 Either, the ant processes information on its current location.

•	 The procedure provided by the creating holon determines what
happens.

•	 This can be observing the current holon.
•	 This can be influencing/informing the current holon.
•	 This can be depositing digital pheromones.
•	 This can be observing digital pheromones.

•	 Or, the ant travels to a neighboring location.
•	 It sends a message to the current holon/location to receive a list of

connections.
•	 It selects a connection and – virtually – travels to the connected

neighbor.

The ARTI Reference Architecture – PROSA Revisited 103

The general scheme above has no restrictions except for the ants to be
lightweight and self-contained agents:
•	 Every basic step in the above procedure, an interaction with a holon is

bounded in computational effort, time and memory. Ants may never
invoke services – from holons or otherwise – that have undetermined
requirements on computational resources. For instance, ants may not
invoke an optimization service that iterates until its solution converges
without an upper bound on this number of iterations.

•	 Every ant has a hop limit, which is the maximum number of basic steps
that it may execute. Moving to a neighbor counts as a basic step. Invok-
ing a service from a holon also counts as a basic step.

•	 The DMAS itself has an upper bound on the frequency at which ants
are created.

•	 Ants must discover information starting from their initializing data. For
example, an ant may send data to the creating holon at any time, may
recall the addresses of holons that have been visited already, may utilize
information deposited by other ants, etc. However, the ant may not rely
on global information unless provided by the initializing data.
Research has investigated an optimizing variant: the cloning ant. When

the ants of a DMAS would duplicate efforts by repeating the initial part of
their virtual journey, it is more efficient to have a single ant perform the
shared part and have this ant clone itself whenever the journeys (virtual
trajectories) start to differ. Here, an ant will be created with cloning budget,
which is an upper bound on the total number of copies that can be made.
When cloning, this budget has to be divided across the copies (i.e., the clon-
ing budget is not copied). Overall, DMAS designs and implementations are
guaranteed to be (computationally) efficient; thus, they are bounded effort,
variable result service providers.

Intention-Propagating DMAS – Predicting the Unexpected
As discussed in Chapter 4 (Law 4), imagination9 is needed for a system to
be proactive in a complex-adaptive world (in which knowledge of past
behavior no longer suffices to estimate the effectiveness of an envisaged ac-
tion). This imagination needs to be collective for many of today’s challenges.

The main mechanism to generate predictions (i.e., to create this col-
lective imagination) when knowledge of past behavior is insufficient, is

9Not the imagination of a small child fantasizing about something that is impossible but the
imagination of an adult picturing what may or will happen and which is used for planning
future activities, e.g., to imagine how long it will take to drive to Brussels during rush hour.

Design for the Unexpected104

the intention-propagating DMAS. Here, activity instances (holons) create
intention ants. Intention ants virtually execute their activity instance’s in-
tention and, thereby, inform resource instances (holons) of their activity
instance’s intention to use them in the future.

This intention propagation executes as follows:
•	 Every activity instance has decided how it will execute (= the intention

of the activity instance). The DMAS itself is agnostic concerning how
the intention of the activity instance is obtained.

•	 The activity instance creates intention ants at the location(s) of its cur-
rent state, equipped with a procedure to virtually execute the remainder
of its activity along the current intentions.

•	 Each intention ant virtually executes the remainder of the activity:
•	 Executing the NEU protocol to verify whether the current inten-

tions are still feasible. Recall that activity types cannot distinguish
whether they are used for virtual or real-world execution purposes.

•	 When infeasible, the intention ant reports the extremely poor esti-
mated performance to the creating holon (activity instance) and dies.
As the intentions will not be refreshed, the involved resource capac-
ity reservations, made for an infeasible intention, will “evaporate.”

•	 When feasible, the intention ant virtually executes the next step of
the activity on the resource instance(s) indicated by the intention of
its creating holon (activity instance).

•	 This virtual execution informs the affected resource instance(s) of
the intention and, as a result, makes a reservation for the required
resource capacities.

•	 This virtual execution invokes services from the affected resource
instances to generate an estimate of how the step execution will
perform (timing and outcome). The resource instance is likely to
invoke services from its resource type and possibly the activity type
to compute the estimated outcome.

•	 The estimated outcome is used in the NEU protocol to update –
virtually – the state representation of the activity instance. Subse-
quently, the intention ant is ready to execute the next activity step of
the intention (virtually).

•	 An activity step can be an actually processing step but equally a
transportation or storage step.

Note that the intention-propagating DMAS requires that activities and
resources are knowledgeable about themselves in a what-if mode. Impor-
tantly, this knowledge remains self-knowledge (i.e., local), preserving the

The ARTI Reference Architecture – PROSA Revisited 105

SSOT characteristic. Also, it is self-knowledge that remains valid when
the predictions – generated by the intention-propagating DMAS – are
made available throughout the holonic execution system. Furthermore, re-
source instances have an agenda functionality to register reservations. This
functionality serves to accurately predict the outcomes of activity steps,
accounting for the contention among activity instances for the limited
availability of resource capacities. Likewise, activity instances have func-
tionality to represent their intentions such that intention ants may execute
them virtually.

Recall how the discussion of the PROSA reference architecture in
Chapter 5 did address this already. ARTI preserves this while increasing re-
usability when resource instances, providing the agenda management func-
tionality, can be combined with numerous types of resources/equipment.

Summary
Resource types are enhanced by self-models to simulate the execution of ac-
tivity steps. This simulation allows to compute the required properties such
as processing time and possible outcomes (with their probability). Note that
these self-models often will be very simple (e.g., time to make an omelette
plus the probability of success versus failure).

Resource instances will have an agenda containing the foreseen activity
steps. The self-modeling capability of their resource type permits to com-
pute the corresponding state trajectory of the resource instance.

Activity types, when executing the NEU protocol, are incapable of distin-
guishing being used in a simulated or real mode. As they use their instances
as a repository for state information and as a source for progress information
(what has been done with what outcome), an activity type has no way of
knowing whether the provided information corresponds to the real-world
counterpart or virtual execution.

Activity instances are able to represent their intentions, how they plan
to execute, in manner that allows their intention ants to execute virtually
whatever remains to be done.

The Exploration DMAS – Decentralized Search
The above collective imagination, generated by computing how the future
will look like if all the prevailing intentions are executed, needs to be used
to improve the coordination in the holonic execution system. The predic-
tion allows to observe issues and opportunities in time to do something
about or with them. This section presents a generic DMAS to explore for

Design for the Unexpected106

solutions – possible ways to execute activity instances – and their estimated
performance/behavior. It is called the exploration DMAS, which is com-
posed of exploring ants and created by activity instances (holons).

The exploring ants behave similar to the intention ants: they virtually
execute (the remaining part of) an activity to compute/predict/estimate its
behavior and performance. The key differences are:
•	 exploring ants do not make reservations. They only make inquiries

with the resource instances about estimated performance and outcomes
without declaring an intention to actually execute the activity steps
identified in the interaction.

•	 exploring ants are equipped with decision-making mechanisms, pro-
vided by their creating activity instance, to steer their search. Intention
ants receive the intention of their creating holon, fixing by definition
all decisions needed for virtual execution. Exploring ants have a search-
steering mechanism that determines which options they will investigate.

•	 exploring ants use this decision-making mechanism to:
•	 select a member from the list of candidates offered in the NEU pro-

tocol,
•	 select a resource instance to execute this selected member, and
•	 overall, to select a trajectory among all the possible ones.
Typically, an activity instance utilizes a mixture of exploring ants, mix-

ing decision-making mechanisms. The following DMAS concepts may, for
instance, be implemented:
•	 Candidate solution refresh. When the activity instance is about to change

intentions (see below), it first refreshes any candidate solutions, which
are considered to become the new intention. When the estimated per-
formance for the current intention, reported by the youngest intention
ant, has deteriorated because of a disturbance, it is advisable to verify
whether their replacement is not affected as well. This exploring ant
behaves precisely as an intention ant except for not making any reserva-
tions with the resource instances.

•	 Random search. The exploring ants simply select randomly a candidate
activity step or movement onto a neighbor. In a manner, this is the
ultimate in robustness in the sense that it makes no assumptions. Unfor-
tunately, these ants are unlikely to discover good solutions when there
are many options and selecting a proper one has a significant impact on
performance.

•	 Randomized search. The ants make biased randomized choices where
the bias is a heuristic favoring the more promising selections. By keeping

The ARTI Reference Architecture – PROSA Revisited 107

all options – asymptotically – open, robustness is again preserved. If the
heuristic faces unexpected conditions, rendering it contraproductive, op-
tions that are noncompliant with the heuristic may still be discovered.

•	 Shortest path. The exploring ants are assisted by a staff holon that exe-
cutes a shortest path algorithm. They follow the shortest path, possibility
managing/exploring activity steps that are neglected by the staff holon.

•	 Schedule execution. Similar to the shortest path but the path is
computed by a scheduling staff holon. This was discussed in Section
“Cooperation of HMES with Planning Systems” of Chapter 5.

•	 Track record / common practice. The activity instances leave a digital
pheromone trail indicating the path that they have followed, indicating
their class (e.g., their activity type). Exploring ants are attracted to this
trail, similar to the shortest path.

•	 Bottleneck avoidance. The prediction from the intention-propagating
DMAS is used to identify the location and time of the bottlenecks in
the system. The ants will prefer to avoid these bottlenecks.

•	 Aggregate demand profiles. This requires cooperating DMASs. A first
DMAS propagates demands where both slack and the availability of
alternatives translates in a less than 100% (imaginary) load on resource
instances. For example, if 200 minutes are available for 100 minutes’
processing, the resources load is 50% during 200 minutes. Similarly, if
four resources are available, they are each loaded for 25%. All loads are
added, resulting in aggregate load profiles, which may exceed 100%. The
second DMAS comprises ants preferring solutions that avoid the peaks
in the aggregate profiles.

•	 Alternative solutions. This DMAS complements the other ones that are
present. It requires the other exploring agents to leave a pheromone
trail. The alternative-exploring ants prefer solutions that are different.
The ants are likely to discover solutions that remain unaffected by dis-
turbances invalidating the more ordinary solutions.

•	 Continuity of care. In situation where activities are repeating (e.g., in
home nursing), solutions employing the same (human) resource for an
activity instance often will be preferred. Indeed, this avoids commu-
nication problems (when nurses visit a patient treated by a colleague).
Continuity-favoring ants will search for solutions employing the same
resource rather than hopping around, without getting stuck when con-
tinuity cannot be preserved.

•	 Batching. A DMAS may propagate “resource intentions,” making
batch properties and especially batch switching visible in a virtual

Design for the Unexpected108

neighborhood of the resource. Batching ants will aim to join suitable
batches or, otherwise, insert a new batch where a switch will happen
anyhow.

•	 Returning. The ants collect information on the first half of their virtual
journey, process this information, and finish the job on the return trip
of their virtual journey. This can be necessary/useful when the resources
exhibit constraints that make it difficult to select a feasible timing, slot,
etc. without information about the entire journey.
Clearly, the possibilities for designing an exploration DMAS are practi-

cally infinite. Because of the ARTI image and the intention-propagating
DMAS, implementing an exploration DMAS requires relatively little effort.
Case-specific designs are to be used and generalized when sufficient lessons
have been learned.

Importantly, the holonic execution system may/will combine multiple
exploration DMASs. Together, they deliver the activity instance a collection
of candidate solutions. From this collection, the activity instance selects its
intention. And, when time catches up with the intention, its execution is
initiated (to be performed by resources).

Intention Selection
The activity instances use a combination of exploration DMASs to
maintain a collection of candidate solutions. Membership depends on the
performance estimations for the solutions, and possibly, complementarity
(contribution to robustness). The intention of the activity instance is select-
ed from this collection, and its intention-propagation DMAS informs the
affected resource instances while re-computing through virtual execution
the estimated performance and behavior of this intention.

The initial intention selection depends on the proximity, in time, of
the first activity step (i.e., the resource needs a minimal amount of advance
warning) and the performance improvements of solutions discovered by the
exploration DMAS (i.e., if it converges/stagnates, an intention is selected).
Changing intentions has been already discussed in Section “Socially Ac-
ceptable Behaviors for Delegate MAS” of Chapter 5.

Other DMASs
In Chapter 5, the feasibility DMAS was presented. However, after applying
D4U in multiple application domains and a wider range of manufacturing
systems, it became apparent that this feasibility DMAS is not universal to the
same extent as the intention-propagating and exploring DMAS. Its nature will

The ARTI Reference Architecture – PROSA Revisited 109

vary depending on the application domain and even application. What remains
is that the exploring DMAS needs to be able to supply an adequate amount
of high-quality candidate solutions. A feasibility DMAS ensures that unfeasible
options are not explored. However, it is not an issue if a small percentage of
exploring ants fail while attempting to virtually execute an unfeasible journey.
Feasibility DMAS must not be perfect in some cases. In other cases, it may in-
dicate distances when activity instances may travel virtually from any location
to any other location (and all routing choices will be feasible).

Moreover, in the discussion of the exploration DMAS, supporting
DMASs have been introduced: (i) bottleneck identification, (ii) resource
intention propagation, and (iii) aggregate demand profiles. The delegate
MAS architectural pattern is polyvalent. In particular, collecting informa-
tion about a system (state) property and propagating this across the system
will provide services that comply with D4U. Much remains to be explored
in this respect.

Intelligent Agents Versus Intelligent Beings
The above reveals that the main decision-making happens in the explo-
ration DMAS and the intention selection. As stated in the Section, “The
ARTI Reference Architecture,” ARTI holons and other components ex-
plicitly separate into intelligent beings (mirroring relevant corresponding
reality) and intelligent agents (with the decision-making responsibility).
Here, it is possible to distinguish the following intelligent agents:
•	 Activity instance intention selection. The agent embodies the selection

criteria and procedures deciding:
•	 when to select the initial intention,
•	 which intention to select, and
•	 when to switch intentions.

•	 Membership of the collection of candidate solution. The agent decides
whether a solution is retained.

•	 Resource instance policy. When receiving reservation notification/re-
quest from an intention ant, the agent determines how this will be hon-
ored. For instance, a request compliant with scheduling advice may push
another reservation to a later point in time.

•	 Exploring ant decisions. The mechanisms determining which part of the
solution space will be explored are implemented in an intelligent agent.
These intelligent agents are “plug-ins” in an ARTI software platform,

which are noncompliant with D4U. When they are replaced, updated, etc.,
this must not cause a cascade of required changes.

Design for the Unexpected110

Moreover, because the DMAS pattern uses virtual execution, an intel-
ligent agent can be seen as a digital mirror image of itself. It is part of the
executable domain model. When a decision mechanism changes, its model
changes and the DMAS virtual execution adapts to the changed situation
with requiring any update or software maintenance for itself. However,
when addressing challenging real-world cases, not all intelligent agents can
be their own model. When they are computationally expensive or decisions
are made by humans, separate reality-mirroring models will need develop-
ing (cf. Section, “Toward a Humane Mechatronic Society”).

CHALLENGES AND LESSONS LEARNED FROM
APPLICATIONS

The above sections discuss consolidated research results. However,
when applying these results to real-world manufacturing10 or to new applica-
tion domains, new challenges and issues arise. They do not break or invalidate
the consolidated results but present requirements for additional services and
functionality, or they open discussions on terminology and their understand-
ing by the concerned communities. This is addressed within this section.

Interoperability
Design for the unexpected, aiming to address integration issues, sheds a new
light on the concept of interoperability. In the perspective of a profound
understanding of integration-ability, the applicability range of interoper-
ability becomes more sharply delineated.

In the research community investigating interoperability, interoperabil-
ity connects existing systems as they are. These connected systems collabo-
rate without changing themselves in an in-depth manner. In this research
community, system integration involves in-depth adaptation resulting in a
new, larger system. The systems that are integrated are more or less redevel-
oped and often are no longer capable of surviving outside the larger system
in which they are integrated. This picture may be exaggerated to enhance
the contrast with a D4U view on this matter.

To integrate D4U designs, it suffices to render them interoperable. To
obtain a larger integrated D4U system, a majority of D4U elements is made

10Invitations from and/or preparedness of manufacturing companies for joint research in-
variably involved cases that could not be handled by existing commercial solutions; some
unexpected challenges had to be tackled.

The ARTI Reference Architecture – PROSA Revisited 111

interoperable while the adding/developing a minority of non-D4U ele-
ments completes the development of this larger system.

The above should trigger a discussion on what interoperability and its
accompanying standardizations may contribute. In-depth understanding re-
veals that:
•	 When interoperability and standards remain decision-free (i.e.,

D4U-compliant), they are likely to be successful and easy to imple-
ment. For instance, converting Cartesian (x, y)-coordinates into polar
(r, Θ)-coordinates is D4U-compliant. In contrast, scalar noise measure-
ments, that is, weighted sums assigning importance to the contribution
of the respective frequencies (like dBA measurements), involve decisions.
They may not so easily be exchanged among systems. For structural
noise isolation in buildings, low-frequency contributions are likely to be
underestimated. The music industry may maximize damage to a person’s
ears within the legal constraint imposed by such a measurement. Here,
there is no guarantee that interoperability efforts will succeed in bring-
ing good value to the users.

•	 Large margins may render such decisions, needed to render systems in-
teroperable, easy to ignore, or almost irrelevant. For example, when noise
limitations can be very strict, the weighing becomes a nonissue. Likewise,
representing time in milliseconds or even microseconds by 64-bit integer
values is a good idea (from a D4U perspective), even when the applica-
tions consider 10 min to be its smallest relevant chunk of time when
coordinating their activities. Indeed, consider three systems managing
time in 15-, 20-, and 50-min timeslots (e.g., for teaching). The smallest
common multiple, when they are to collaborate, is 300 min. Here, the
second D4U principle would have limited the inertia of the decisions to
use such large timeslots. Typically, the decision-making subsystems (the
intelligent agents) dislike large margins when they inherently cause their
solution space to explode. The reality-reflecting subsystems (intelligent
beings, visualization, and user interfaces) have no problems with these
large margins. D4U design principles will minimize the amount of work
that would be needed to solve the issues with the larger timeslots (small
margins). Only some of the intelligent beings would need to be adapted.

•	 D4U avoids being penny-wise and pound-foolish. The above choice for
a large margin corresponds to what is easy to implement on today’s and
tomorrow’s computer systems. It is easy to generate time measurements
in microseconds; it is easy to synchronize clocks on a millisecond level;
it is easy to use 64 bits to represent a time instance; and 64-bit suffices to

Design for the Unexpected112

cover the foreseeable future (i.e., more than 5000 centuries when using
microseconds, five million centuries when using milliseconds).

•	 D4U design decisions first look at what is possible without a cost that
might be considered prohibitive (i.e., they are pound-wise) and use that
to maximize margins (i.e., they are not influenced by penny-sized gains).
The designers look at what is affordable first and to what is really re-
quired second. They select what is affordable even when it is overkill for
what is needed.

•	 A lot of systems are able to interoperate because they are able to squan-
der bandwidth and/or memory space when they are using XML, JSON,
etc. to exchange information. This is a widespread illustration of how
large margins render interoperability to be feasible.

•	 Many interoperability and standardization efforts are doomed to fail. Here,
D4U insights will reveal that there are inherent conflicts and how serious
they are. A common symptom of these situations is a struggle for control.

•	 In addition, there may be the perception that yielding control to another
party, and complying with the standards and application programming
interfaces (APIs) proposed by this other party, will not solve the issues.
Yielding control simply results in a never-ending effort to comply with
an ever-changing standard and API definition under the control of this
other party. In other words, the parties involved do not believe there can
be a stable interoperability standard.

•	 In fact, these parties are calling and labeling something to be a standard
that, by definition, is not a standard at all; they simply are fighting for
control and abusing the respect for standardization efforts (e.g., by gov-
ernment representatives controlling their funding).
Overall, this discussion still needs to be continued. It is too early to pres-

ent conclusions. However, it should be apparent already that way too much
value and in-depth contribution to society is expected from interoperability
and standardization efforts. Their contributions and value probably may be
limited to addressing last-mile gaps for which straightforward developments and
standardizations suffice while all in-depth issues need D4U. Furthermore, stan-
dardization and interoperability also concerns business and legal considerations
(e.g., to prevent proprietary solutions from becoming gatekeepers) outside and
beyond the present discussion. In other words, this is to be continued.

Multiresource Allocation and Auxiliary Operations
Many real-world problems involve multi-resource allocation. In a holonic
logistics execution system (HLES), transportation activities require a truck,

The ARTI Reference Architecture – PROSA Revisited 113

a truck driver, a docking slot, a forklift, a forklift driver, etc. In open air en-
gineering applications, a rendezvous has to be arranged between a combine
harvester and a tractor, between an asphalt layer and it supply truck, possibly
managing drivers for them as well. Similarly, auxiliary operations need co-
ordinating with the main/actual operations. Trucks need refueling, drivers
need to rest, machines need cleaning, changeovers, etc.

Modeling these situations is adequately addressed by the consolidated
research results discussed above. However, facilitating and supporting the
coordination and decision-making has been addressed on a case-specific
basis within the research activities until now. It remains an open question
to what extent such ad hoc problem solving, current practice in operations
research, is inherently unavoidable. Nonetheless, a collection of solution
templates can be developed.

Three classes of solutions have been identified within the case-specific
developments. First, there is the leader-follower class. Here, resource alloca-
tion of the leading resources happens along the approach discussed above.
From this allocation, the remaining resources are allocated. This assumes
that only the leading resources are scarce while the follower resources are
plentiful and almost always available.

A second class allocates these nonleading resources through fixed sched-
ules (e.g., personnel operating the machines, planned maintenance), by pro-
viding every leading resource with its nonshared nonleading resource (e.g.,
a measuring probe), by assuring a supply of consumables, etc. This is the
most common situation in practice. It can be made more adaptive and re-
sponsive when a holonic execution system has been deployed.

The predictions generated by the intention-propagating DMAS can be
used to schedule and plan these auxiliary operations (e.g., preventive main-
tenance when a machine would be idle anyhow, make sure components are
fed where they are most urgently needed). When, for example, a measuring
probe on machine A gets damaged, the predictions allow to assess whether
it is a good idea to remove an identical probe from machine B and put it
on machine A.

Conversely, when these auxiliary operations fail to keep a leading resource
fully operational, this will be detected early (by the intention-propagation
DMAS of the auxiliary operations). Intention ants and exploring ants will
observe this unavailability (temporary and possibly partial) of the leading
resource and adapt. Here, holonic execution systems provide visibility, in-
cluding prediction, which facilitates multi-resource allocation and handling
of auxiliary operations.

Design for the Unexpected114

A third class addresses nonleading resources that are very similar and avail-
able in some numbers. Transporting devices are a typical example. These re-
sources can be placed in a pool. A pool holon manages their initial allocation
as well as reallocations. When an activity needs a resource from a pool, it con-
tacts the pool holon to get a specific resource assigned. Detailed interactions
occur between the actual activity and resource holons. This pattern still needs
further investigating. Can the pool holon be a staff holon? Is it possible and
advisable to change an assignment (e.g., when a truck breaks down)?

Overall, the predictions offer interesting possibilities while further inves-
tigations, involving real-world challenges, are needed to consolidate results
concerning multi-resource allocation and handling auxiliary operations.

Probability (Distributions)
In real-world operations, the expected outcome of an activity step will be
stochastic. In electronics, the expected outcome of a (binning) test might be:
•	 7% of the integrated circuits functions above 2.9 GHz (clock rate),
•	 43% of the integrated circuits functions above 2.5 GHz (clock rate) but

fails at 2.9,
•	 33% of the integrated circuits functions above 2.1 GHz (clock rate) but

fails at 2.5,
•	 14% of the integrated circuits needs disabling of a CPU core and retest-

ing, and
•	 3% of the integrated circuits needs to be scrapped.

The production of optical lenses or of bearing balls may have a similar
characteristic.

Contributing to a sustainable society, disassembly and recycling, repair-
ing or refurbishing become increasingly important and prevalent. These ac-
tivities also have the above characteristic when, after disassembly, tests reveal
whether a component can be reused as-is, needs some further processing,
or has become scrap material.

To cope with the above, the intention propagation DMAS needs to
master probability distributions. Instead of propagating and transforming
scalars (e.g., expected arrival times), it uses a suitable probability representa-
tion. Note that this is likely to use cloning ants where each clone continues
along a possible future routing of the activity (e.g., one ant for the high-
value packaging of an integrated circuit, another for midrange, another for
trimming a CPU core, etc.).

Propagation stops when hop limits are reached and/or cloning bud-
gets get exhausted, or when the probability information no longer contains

The ARTI Reference Architecture – PROSA Revisited 115

usable information (e.g., when aggregated predictions based on historical
data – predicting the expected – deliver equivalent value/information).

No research activities have addressed this until now. Note that this does
not require to adapt the consolidated results at all. It suffices to enrich the
information handled by the ant and holon without any “structural” changes.
Conceptually, concerning D4U, this is not a challenging task.

Also note that both the scalar and the probabilistic DMAS can coexist;
the designers of a holonic execution system is not forced to choose (anal-
ogy: having both a road map and a topographic map while using each map
for which it is most suited).

Incommunicado
When discussing an open air engineering case, the issue of interrupted com-
munication lines was raised. These applications often reside in remote areas
where telecom infrastructure can be minimal. In the use cases that were
considered, vehicles only communicate when they are within a short range
(e.g., Wi-Fi or Bluetooth) and not at all at larger distances. Alternatively,
long-range communication is highly constrained and/or overly expensive.

Conceptual solutions have been elaborated on paper (i.e., when the
need would arise to address this issue of intermittent communication ca-
pabilities, the team knew how to tackle it and was confident the problem
would be solvable). The explicit modeling of a corresponding reality proved
useful. When subsystems reconnect, their internal models of the world have
been disconnected from reality in various parts. Mutual updating of and
agreeing on these models into a joint model for the connected systems
involves accounting for the most recent information (i.e., reconnected ho-
lons get information from the source-of-truth holon) and the “shock” from
this update to activities that have been working on disconnected (possibly
outdated) models is a disturbance, which is handled by the mechanisms to
handle change and disturbances that are present already. However, no in-
depth research or extensive implementation was conducted.

Other Modeling Techniques
In intelligent traffic and transportation systems (ITTSs), complementary ca-
pabilities presented themselves (Philips et al., 2013). Traffic models – dy-
namic network loading (DNL) models – revealed to be capable of mirroring
aspects that would be a challenging task for exploring and intention ants:
congestions propagating backwards in a road infrastructure. Where traffic
models have issues accounting for user intentions, DMAS has issues with

Design for the Unexpected116

collective behaviors that would require too many refresh cycles (iterations)
to converge (assuming a straightforward DMAS design). Conversely, traf-
fic models are highly effective and efficient at computing such collective
properties.

In the MODUM project (modum-project.eu), this combination of
D4U delegate MAS and models developed by the research community fo-
cusing on the application domain (ITTS) was investigated. D4U intention
propagation predicts what the load/congestion levels of road segments will
be; DNL models compute the effect of congestion propagation (backward)
through the network. The intention propagation uses the DNL estimates
for the virtual execution of their activity/traveling.

For such application-domain specific models to be available and effec-
tive, there has to exist a suitable stable target. Road infrastructure, modeled
as networks of road segments, is present on a massive scale and it will be
present for the foreseeable future. Practically, it is similar to physicists devel-
oping theoretical models about nature (e.g., Newton’s laws).

In manufacturing or logistics, installations exhibit more variability both
geographically (e.g., factories are designed differently) and time-wise (to-
morrow’s factories will be different). Models may be outdated by the time
they are available or struggle to find sufficient users to justify the develop-
ment efforts. A clever DMAS design, making a roundtrip (i.e., the exploring
ant collects information on the way out and constructs a solution on the
way back while using and needing this collected information), may be pref-
erable in some cases. In other words, research still needs to establish where
and how the above collaboration is possible and advisable.

Furthermore, a full-fledged holonic execution system, when deployed,
is able to relax the demands on the models from the application domain
experts. In the ITTS case, the execution system can be deployed to manage
bus lanes going through bottlenecks (choking points) in the road network
(note that they must not end somewhere inside the bottleneck). The execu-
tion system enables participants to use the remaining capacity, which is not
used by the buses.

Here, the intention-propagation DMAS predicts congestion, and deci-
sion-making elements (intelligent agents) ensure that this never happens in
reality (except in case of accidents/incidents, which is not considered further
in this example). Travelers remain at home, in the office, etc. until capacity
is available. Because of this service level, the DNL models must only allow
to distinguish between congested and not congested; the execution system
will even apply some safety margin to stay out of congested states. This

The ARTI Reference Architecture – PROSA Revisited 117

relaxes the requirements on the DNL model considerably. Among others,
it must not model nonlinear behaviors (e.g., waves of speed variation and
the precise onset of waves), the impact of the type of crossing, etc. Also here,
much remains to be investigated but disseminating how D4U creates novel
opportunities for research and development may be needed even more.

Trust, Reputation, Commitment
In the MABE project (Reitbauer et al., 2005), the research expanded from
closed systems (holonic manufacturing execution system (HMES) and
HLES) into semi-open systems (Holonic Execution Systems for Networked
Production – networked HMES). In networked production, access to the
network is controlled but the members in the network are independent
“selfish” organizations, participating in a positive sum game.

For such semi-open systems, it is not needed to make individual inter-
actions “bulletproof” against malicious behavior. But it is necessary to have
some “social control mechanism” in place. The network members are in a
highly repetitive gaming situation where there is only a small amount at
stake in each individual round or interaction (e.g., deliver one truckload) in
comparison to the overall game (i.e., a long-term profitable collaboration
and a company’s reputation inside and outside the network).

The research activities developed a software framework, within an
HMES design, to answer the challenge (Saint Germain et al., 2012). A
framework was developed because research in trust and reputation remains
in a flux and has no obvious solution to adopt and incorporate. A frame-
work was developed to allow the use of trust- and reputation-handling
mechanisms that are most suited to the situation as well as to switch when
a superior solution presents itself in the future.

The framework allows to use a holon’s track record (past behavior) in
interactions. In particular, it allows to estimate what information provided
by a holon actually means. When John communicates his intention to at-
tend a meeting, tomorrow at 09h00, how likely is he to attend this meeting,
at what time is he most likely to arrive, and how much uncertainty is there
on this time estimate?

The framework, completed with suitable trust and reputation mechanisms,
provides this service while enabling to account for context information. For
instance, John’s reputation concerning attending meetings professionally can
be kept separated from his behavior outside his professional environment.
Likewise, if John adds information about his commitment when promising to
attend, the framework allows to account for this information.

Design for the Unexpected118

Indeed, in this context, becoming explicit about commitment enters
into the picture. Importantly, there exists no absolute commitment in a
context of execution systems; reality does not provide locks, transactions
in the manner of IT systems (databases). There always is the possibility of
“force majeure,” and execution systems have to cope with it (cf. Section
“Software/System Development”: the digital image of relevant reality must
cover all possibilities).

In networked production, this framework implies that network members,
exchanging information, have a social control mechanism that discovers and
monitors the relationship between their words and their deeds. The mecha-
nism makes no “moral” judgments. A member can be inherently unreliable.
For instance, mounting the rotor of a wind turbine may take a long time
when the weather causes delays. On the other hand, when John systematically
books a cancelable flight at one airline while being waitlisted for his preferred
choice, the first airline may become more prone to overbook John’s flight.

The framework revealed to be useful outside its original target. When
implementing the NEU protocol in real-life cases, some possibilities for
(nice-to-have) enhancements emerged. For instance, the alternatives offered
by the activity type may not be equal. Some activity steps on some resource
instance will be mature, tried, and tested. Others may be untested and pos-
sible in theory only. The framework allows to manage this without having
to change or enhance the NEU protocol in a significant fraction of this
kind of situations. Likewise, it allows for straightforward enhancements of
the NEU protocol (i.e., add some simple indicator), whereas the framework
ensures a proper interpretation based on experience, track record, etc., in-
cluding the adaptation of the interpretation when the corresponding reality
evolves. Research in this matter still needs to be done.

Effort Versus Accuracy
The intention and exploring ants virtually execute their activity instances.
This virtual execution involves decision-making procedures, which are per-
formed thousands or millions of times before real-world activity step execu-
tion takes place. This is not an issue while these decision-making procedures
remain computationally efficient (e.g., constant time or logarithmic). Real-
world cases and moving into novel application domains reveal that there
are many highly relevant situations in which this condition is not fulfilled.

To address this, the basic ARTI design using NEU protocols and DMAS
needs refinement. There are virtual-execution components, which are used
for DMAS execution, corresponding to real-world components that are

The ARTI Reference Architecture – PROSA Revisited 119

used for actual execution. The virtual-execution components must be very
efficient but are allowed to make mistakes. The impact of these mistakes
must not be fundamentally different from other disturbances in the system.
The real-world components must be accurate, however.

The following cases can be distinguished (at the present time):
•	 Intelligent beings model a corresponding reality. The accurate compo-

nent versions normally use tracking (i.e., observe this corresponding
reality) to achieve the required accuracy. The virtual execution com-
ponents cannot wait for these observations and need a software model.
This often will be straightforward and efficient (e.g., a time delay cor-
responding to the time to drill a hole).

•	 Regularly, some (machine) learning may be indicated to provide values
for parameters and properties that are hard to estimate beforehand. Pos-
sibly, a computationally demanding model may be executed at a feasible
frequency while computationally efficient models use its output to sup-
port virtual execution in a DMAS (e.g., perform inter-/extrapolation).

•	 Intelligent agents utilizing computationally simple methods in real-
world execution (e.g., first-come, first-served) can be their own model
for virtual execution.

•	 Intelligent agents utilizing computationally demanding methods (e.g.,
a 3D nesting algorithm) may need a computationally simple model for
virtual execution, approximating the demanding one.

•	 A generic template for such a simple model is to execute the demand-
ing method at a lower (feasible) frequency in combination with a simple
mechanism to adjust the outcome of the demanding method in between
executions of this demanding method. A machine learning solution is
another possibility, especially when the detailed results of the demanding
method are not needed for virtual execution (e.g., estimating what can
be nested suffices).

•	 Humans take many of the real-world decisions and, often, need to “sign
off ” their decisions (e.g., doctors in the health care domain). The vir-
tual execution counterpart may approximate this in numerous ways, de-
pending on its use/responsibility. Typically, the authorized/responsible
humans still make the decisions (per activity instance or type) once. And
they control the autonomy settings of their virtual-execution compo-
nents to be used in a DMAS.

•	 These autonomy settings determine how long and under what condi-
tions the virtual-execution component may, for example, repeat the hu-
man’s decision. In straightforward cases, a virtual-execution component

Design for the Unexpected120

may take automated decisions. Often, the autonomy setting will steer a
triage process. Some decisions are an automatic (e.g., what to do when
medication was not taken at the prescribed time), some call and wait for
a qualified human to decide, some provide a default action but inform a
human to intervene at a time of his or her choosing, etc.
Of the above, the last case proved most interesting: how to include hu-

mans in holonic execution systems in full. This is discussed further in the
next section.

TOWARD A HUMANE (MECHATRONIC) SOCIETY

Recent D4U research investigates and focuses on the humans within
a holonic execution system, in particular, humans in integrated health care:
patients, professional and layperson care providers. Moreover, the research
has addressed open systems with very large numbers of users and resources.
In particular, intelligent traffic and transportation presents these challenges.
In combination, these investigations reveal that social aspects (e.g., social
control) and empowerment of persons (e.g., concerning data about them-
selves) become most relevant.

It is necessary to address this social sciences and humanities matter for a
successful introduction into society of the research developments discussed
in this book. Conversely, introducing these developments into society
creates opportunities to render tomorrow’s society more humane. There
 certainly is a significant potential to create a more humane society when
seen from today’s prospects characterized by big data analytics in corporat-
ist implementations running somewhere in the dark from an individual’s
perspective (Hildebrandt, 2015).

Social/Collective
D4U and its realization through ARTI and DMAS implementations differ
from current prospects by their ability to incorporate intentions explicitly.
These intentions are projected on a digital image of the world of interest,
generating a prediction of the unexpected. More precisely, past experience
is used solely to predict/model elementary activity steps such that future
behaviors and states can be estimated also in situations where historical data
on aggregate behaviors and states cannot be used.

This distinguishing feature has two implications. First, D4U can perform
better simply because it uses more relevant information, which remains
valid in more situations. Second, D4U needs participation; by design, it cannot

The ARTI Reference Architecture – PROSA Revisited 121

operate in the dark. The latter is especially true when a D4U infrastructure is
used to implement and achieve novel social interactions, which build upon
a D4U digital image of reality that includes predictions.

In particular, persons – represented by software extensions acting in this
digital image (e-Persons) – may interact socially in a virtual manner to man-
age their real-world activities (better). For starters, the D4U infrastructure
eliminates or reduces the frustration from “if I had known this beforehand,
I would have acted differently” where this “not knowing” originates from
the inability to rely on the past to predict the effectiveness of choices con-
cerning future actions.

For instance, commuters estimate – in a common mode – how a railway
strike will affect congestion and decide massively to leave earlier or stay
home. The result is a traffic jam almost an hour earlier than normal and less
congestion than normal at the usual times. D4U would have witnessed this
behavior virtually shortly after information about the railway strike became
available. There would be ample time to observe the problems/congestions
and missed opportunities. Commuters would get opportunities to adapt
their intentions. Moreover, D4U infrastructure facilitates making commit-
ments such that commuters will know their travel time beforehand with
much less uncertainty.

Nonexhaustively, the following might be realized:
•	 Abolish “no good deed remains unpunished” by ensuring one’s good

deeds are accounted for virtually. This accounting needs mechanisms
(legal or otherwise) to ensure commitment of all parties that are in-
volved. For example, when a commuter leaves his home later, con-
tributing to congestion avoidance during rush hour, he should not
have (more) difficulties finding a preferred parking space as a conse-
quence.

•	 Ensure virtually, with suitable commitment, that there is a fair deal be-
fore committing physically. Transactions, even complicated ones involv-
ing multiple participants, each performing an action, can be elaborated,
detailed, refined, etc. before committing and its real-world execution.
The “chicken game” can be played virtually. The collective may inter-
vene if this game virtually ends in disaster.

•	 Virtual buildup to an agreement becomes possible. Participants may
offer to contribute a small amount to show their goodwill but avoid
offering larger amounts inviting exploitation and abuse (i.e., no signs of
weakness). Virtual iterations may allow significant shifts, grasping win–
win opportunities that are unreachable otherwise in the same amount of

Design for the Unexpected122

time (because large steps toward the optimized solution, needed in slow
real-world negotiations, would cause parties to consider the other to be
weak and exploitable).

•	 Participative and collective change management is facilitated. Partici-
pants actively contribute to building a virtual image of a changed future
(of an organization). In iterations and parallel versions, beneficiaries/
winners and benefactors/losers become visible and can be accounted
for. For instance, departments facing a reduced workload may be as-
signed novel responsibilities and training (where the persons involved
are empowered to lead their reassignment). The change is executed as a
transaction, reducing uncertainty and fear (avoiding and reducing resis-
tance and sabotage).

•	 Organizations need less hierarchical control when the D4U infrastruc-
ture allows for coordination among peers by peers. Predictions allow ad-
justing activities over a longer time horizon and larger distances within
organizations. Predictions allow higher management levels to intervene
solely when indicated (in the predictions).

•	 Collectively and coordinated shifting of “what is considered normal” in
a desirable direction when individuals volunteer small11 contributions
to the community concerned. These are visible because of the D4U
infrastructure, inviting others to follow and join. The availability of a
collective prediction creates possibilities to speed up what can be done
compared to what real-world evolution could achieve.
Here, a D4U infrastructure (information and communication technol-

ogy (ICT)) only offers a part of the solution. Legal support is needed (e.g.,
enabling to uphold commitments under pressure, to go against undesirable
social pressure). Cultural innovation will be required to enjoy many of the
potential benefits. For instance, a culture of discretion may contribute to
self-management among peers, facilitating a frank communication where it
is needed and beneficial.

Moreover, suitable initial targets need selecting and implementing. Un-
avoidably, there will be teething problems, which need implementation
projects that are sufficiently small to succeed and large enough to learn. For
instance, managing bus lanes – offering the free remaining capacity of the
lanes to participating cars – by D4U will allow to mature its implementation
before deploying it in other parts of traffic and transportation systems.
Likewise, academic exercises, in which the D4U digital image is reused

11Small means “too small to exploit,” a sign of good will, not a sign of weakness.

The ARTI Reference Architecture – PROSA Revisited 123

to simulate a corresponding reality, may provide insights and innovative
designs. Also, some application domains may offer cases enjoying favorable
conditions (e.g., high added value and relaxed conditions for D4U applica-
bility). Overall, there remains plenty to research and develop.

Empowerment and Privacy by (Sociotechnical) Design
While applying the first part of this chapter to integrated care, the mirror-
ing of human beings in a D4U digital image constituted a key concern. Ev-
ery person, patient, as well as care provider (both professional and layperson)
is to be extended virtually. For every person, there is an e-Person, which is
an aggregate of the roles played by this person:
•	 A person as a valuable resource, which has finite capacities and capabili-

ties. Typically, this will be an aggregated resource (e.g., acknowledging
that a patient has organs, which are affected differently by medication,
food intake, exercise, diseases).

•	 A person as a (composite) activity.
•	 A person as a decision maker concerning activities.
•	 A person as a decision maker concerning resources.

Overall, there will be an e-Person that is a relatively complex aggre-
gate (holon) extending the real-world person in a D4U virtual reflection
of the world of interest. This e-Person supports (at least) two modes or
versions: signed-off and virtual-execution (cf. above). In all situations, the
human remains in control, determining what is signed and how the virtual-
execution version behaves. Moreover, this e-Person constitutes a starting
point for information retrieval (by computer processes behaving like web
crawlers).

This results, naturally, in a patient-centric design. All patient-related in-
formation is accessible through their e-Patient (a patient’s e-Person). An
e-Doctor (a doctor’s e-Person) knows patients and retrieves information
via their e-Patient. The doctor’s data files are kept by the e-Patient, but parts
might be encrypted such that only suitably authorized persons can access
it. The e-Patient typically resides in a properly accredited data server ensur-
ing minimal service levels while a patient is free to go beyond this. Note
that commonly available technology allows to have the e-Patient available
24/7, 99.999% of the time. In other words, whenever there is a connection
(Internet or another network), the e-Patient is available.

The above separates concerns:
•	 Suitably qualified ICT companies/organizations ensure that data are not

lost, stolen, or corrupted. They ensure that the patient has no difficulties

Design for the Unexpected124

to comply with legal requirements. They offer additional services, allow-
ing the patient to benefit from the latest technological possibilities.

•	 Care providers and organizations are able to manage information access
by encryption to ensure it is understood correctly when used. This should
maximize accessibility and control by the patient. The patient must even be
able to manage accessibility and, e.g., decide about data availability for re-
search purposes without requiring consent of care providers for most data.

•	 Unless there is a valid reason to do otherwise, even encrypted data must
be accessible when the reader is qualified (i.e., understands it and is under
an obligation to respect confidentiality). On the other hand, providers may
have a fully private type of document, to avoid a defensive attitude about
registering relevant information (e.g., about a patient’s lack of hygiene).

•	 The patient is conceptually in control by default. The e-Person is the
starting point for all data storage, manipulation, and retrieval. There is no
corporation or administration that intervenes when data access is con-
cerned except for encryption (to handle interests that the patient cannot
manage or is not entitled to manage).
This patient-centric design will reduce and master complexity with a

lot of ease when compared to prevailing schemes in which some external
(corporatist) organization is, conceptually, the information repository and
access controller. For example, when the patient’s GP retrieves data through
the e-Patient, relevant information can be volunteered (e.g., medication
prescribed by a kidney specialist, a slimming food supplement taken on the
patient’s own initiative). This is D4U delivering SSOT.

Summarizing the above, a patient empowering design is the natural,
perhaps only, manner to elaborate a D4U health care execution system
for integrated care. Similarly, care providers will be empowered when they
are in control of their e-Persons. However, the ICT alone is insufficient to
empower. Policies need to be facilitated and even enforced. A culture of a
person-empowering political correctness will help a lot.

Note that these e-Persons can be implemented as communicating com-
puting processes that are always available (i.e., access to a computer, a com-
puter network or Internet will be less available by an order of magnitude).
In other words, there is no justification for retrieving information from a
source other than the e-Person concerned. Thus, to empower it suffices to:
•	 Give every person maximal control over its e-Person(s).
•	 Make it a political/ethical/deontological incorrect action to access, store,

or manipulate data without involving the e-Person as the entity in charge.

The ARTI Reference Architecture – PROSA Revisited 125

•	 Legally and technically support politically/ethically/deontologically
correct behavior.

•	 Provide ICT service providers that ensure this high-quality storage
(bank/notary-like).
This empowerment provides synergetic opportunities to ensure privacy.

As data about a person are retrieved through their e-Person, the following
examples can be implemented:
•	 Please forget. The e-Person, when asked to check some fact/data/infor-

mation about its person, may indicate that this is marked to be for-
gotten. Similarly, the e-Person may refuse to confirm (i.e., qualify it as
unknown). An ethical code may now require a justification to refuse
the preference expressed by the e-Person. Technical and legal enforce-
ment may enforce publication of such information as “unconfirmed”,
“marked as to be forgotten.” Receivers of information may filter this
kind of information out. Privacy advocates may spam readers looking
for unconfirmed information.

•	 Power-abusing parties seeking unauthorized access to information. An extreme
but nevertheless important aspect of privacy protection is nondisclosure
of information to an unauthorized party while hiding the nondisclosure.
With the e-Person as the SSOT, sensitive data will be refused to anony-
mous requesters. When the requester is powerful but unauthorized, the
e-Person will honor the request but communicate information – of its
person’s choice – to which this party is entitled. It can be incomplete in-
formation or even modified information. When this unauthorized party
requests the same information through another party (e.g., GP about a
patient), this intermediary party will contact the e-Person concerned
and forward whatever this e-Person provides (or information consistent
with it).
The above illustrates how truly novel possibilities may present them-

selves. However, much still needs to be discovered and investigated before
it can become a part of reality. Also, a lot can be designed and implemented
poorly or wrongly. Looking into what the future may bring, recognizing
problems, risks, as well as opportunities and benefits is needed, preferably
beforehand rather than being forced to “repair” our society. Surprisingly,
we may learn that supporting “bad behaviors” can be beneficial when con-
structing tomorrow’s humane mechatronic society (cf. above: a collective
ability to fabricate stories to cope with power-abusing parties making un-
authorized requests).

Design for the Unexpected126

Concluding Remarks
This section only scratches the surface of what still needs to be discovered.
Only two dimensions have been recognized and presented above: social/
collective behavior and human empowerment/privacy. There probably are
others. And each of those needs further elaboration, refinement, correction,
and prioritizing. The research discussed in this section clearly is subject of
some exciting future research.

Note that D4U – including its ability to predict the unexpected – has a
competitive edge over current developments such as big data analytics: the
best way to predict the future is to create the future. D4U enables to create the
future collectively and iteratively while it requires and empowers all persons
involved to participate. It does not operate in the dark because it relies on
the active and transparent participation of all persons and parties involved
(unlike for instance big data analytics) and, as it keeps its options open, it are
the participants who create their future collectively. Highly interdisciplinary
research may discover how to do this, and to do it correctly. It may enable to
address societal issues before they constitute a real-world problem by code-
signing the ICT, and the legal, social, economic, educational, philosophical,
and political elements.

SUMMARY

The extension to nonmanufacturing applications necessitated to revisit
the reference architecture PROSA. In the resulting ARTI reference archi-
tecture, an adapted nomenclature for the underlying holons was adopted.

The NEU protocol is presented, describing the interaction between an
activity instance and its activity type. It creates an independence – enabling
a separation of concerns – between type holons (experts) and instance ho-
lons (managers). It further prevents exposure to the specifics of knowledge
representation inside the holons.

New challenges such as interoperability, multi-resource allocation, sto-
chastic issues, trust, etc. – arising when applying these results to real-world
manufacturing or to new application domains – are described and potential
research directions identified.

The authors express their conviction that D4U may pave the road to-
ward a more humane (mechatronic) society, by stimulating social/collec-
tive behavior, by positive human empowerment while preserving citizens’
privacy.

The ARTI Reference Architecture – PROSA Revisited 127

ABBREVIATIONS
ARTI Activity resource type instance
CPU Central processing unit
ITP Intelligent transport system
MVP Minimally viable product
NEU Next execute update
SSOT Single source of truth
DNL Dynamic network loading (in traffic models)

REFERENCES
Hildebrandt, M., 2015. Smart Technologies and the End(s) of Law. Edward Elgar Publishing,

ISBN: 978-1-84980-876-7.
Huang, H., Task learning and execution for behaviour-based mobile manipulation. PhD

thesis, KU Leuven, 2011. ISBN 987-94-6018-381-2.
Kruth, J.P., Detand, J., 1992. A CAPP system for nonlinear process plans. CIRP Ann. Manuf.

Tech. 41 (1), 489–492.
Philips, J., Holonic task execution control of multi-mobile-robot systems. PhD thesis, KU

Leuven, 2012.
Philips, J., Saint Germain, B., Van Belle, J., Valckenaers, P., 2013. Traffic radar: a holonic traffic

coordination system using PROSA + + and D-MAS in industrial applications of ho-
lonic and multi-agent systems. Lect. Notes Comput.r Sci. 8062, 163–174.

Reitbauer, A., Battino, A., Saint Germain, B., Karageorgos, A., Mehandjiev, N., Valckenaers, P.,
2005. The MaBE middleware in emerging solutions for future manufacturing systems.
IFIP 159, 53–60.

Saint Germain, B., Valckenaers, P., Van Belle, J., Verstraete, P., Van Brussel, H., 2012. Incorpo-
rating trust in networked production systems. J. Intell. Manuf. 23 (6), 2635–2646.

http://refhub.elsevier.com/B978-0-12-803662-4.00006-0/ref0010
http://refhub.elsevier.com/B978-0-12-803662-4.00006-0/ref0010

129
Design for the Unexpected. http://dx.doi.org/10.1016/B978-0-12-803662-4.00007-2
Copyright © 2016 Elsevier Inc. All rights reserved.

Case Studies and Research
Projects

Paul Valckenaers*, Hendrik Van Brussel**
*Faculty of Engineering Technology, KU Leuven
**Faculty of Engineering Science, KU Leuven

This chapter discusses case studies and projects applying and investigating
design for the unexpected. They focus on the design and development of
holonic execution systems in a wide variety of manufacturing and nonman-
ufacturing applications. This variety of cases shows the universal applicability
of the product-resource-order-staff architecture (PROSA) / ARTI delegate
multiagent system (DMAS) framework. The obtained results emerged from
a synergy between more fundamental research results and the application
of these in real-world cases. The case studies and research milestones are
presented in chronological order respectively for manufacturing and other
application domains. The adoption of a chronology in ordering the different
cases reflects the evolution in the minds of the authors to come to the final
results captured in this book.

Execution systems manage operations in real time. They only trigger
system-specific activities, leaving detailed control to other systems. For in-
stance, a manufacturing execution system (MES) leaves the pick-and-place
of a dashboard into a car body to the robot controller and/or human work-
ers. In contrast, the MES manages the routings and processing sequences for
these products (e.g., car bodies, doors, and dashboards).

The primary concern is to cope with all relevant aspects of a world of
interest (e.g., manufacturing equipment and products), including – in view
of this book’s title – unexpected aspects. Note that this primary concern is
irreconcilable with performance optimization, imposing restrictive views
on the world of interest. Because the case studies invariably have combina-
torial solution/search spaces, the presently known optimization techniques
can only be connected in an advisory role to the world of interest.

In this respect, it is important whether the execution system is, for in-
stance, able to represent and exploit all the possible routing and process-
ing alternatives for products (i.e., this is desirable). In contrast, rendering a

CHAPTER SEVEN

Design for the Unexpected130

routing or processing alternative unreachable, typically to accommodate an
optimization procedure, is a violation of the design principles (i.e., this is
undesirable).

Historically, holonic MESs have been the subject of our research. How-
ever, the scope of the case studies is broader. It includes the application of
product-resource-order-staff architecture (PROSA) and delegate multia-
gent system (DMAS), developed for manufacturing, to applications outside
the manufacturing environment, notably in its consolidated ARTI version.
In general terms, design for the unexpected (D4U) can be applied successfully
whenever:
•	 Activities are executed on resources.
•	 Activities are subject to constraints that render myopic1 decision making

ineffective. Typically, decisions concerning these activities have effects
later and elsewhere, and future activity interactions affect performance
significantly (e.g., create congestion).

•	 Virtual execution of these activities in a digital mirror image of the
world-of-interest is possible and can be much faster than in reality. This
allows, among others, exploring and intention ants to “predict the un-
expected.”

•	 The socio-economic benefits of such an enhanced coordination more
than compensate the (recurrent) cost and effort needed to maintain and
operate the coordinating execution system.

MANUFACTURING CASE STUDIES

The PROSA Precursor: FACCS (1985–1990) (Valckenaers
et al., 1995)

FACCS, the flexible assembly cell control system, is a holonic MES for a
robotic flexible assembly cell. This cell comprises four robotic assembly sta-
tions and a transport system allowing product carriers to visit these stations
in any sequence (Figure 7.1). This flexible assembly system was part of a
research setup in the research lab of the authors at KU Leuven.

In view of 2015’s state of the art, FACCS has the following contribu-
tions:
•	 Product-driven manufacturing control. Each production order self-

manages its routing and processing step sequencing. This results in a
(robust) heterarchical control mode.

1Only looking at past and present states.

Case Studies and Research Projects 131

Figure 7.1 Graphic representation (a) and photograph (b) of the holonic flexible assem-
bly cell at KU Leuven.

Design for the Unexpected132

•	 Process plans are based on dynamic precedence graphs. These graphs are able
to represent alternative processing sequences, including mutually exclusive
sequences, handle result-dependent sequences (e.g., repair when test results
indicate the need), and allow simultaneous execution of processes for the
same production order (i.e., lock/race-free updating of the state of a graph).

•	 Uses alternative processing sequences in opportunistic routing and/or
sequencing to handle disturbances in a heterarchical control mode.

•	 Is able to cooperate hierarchically with a reactive scheduler to optimize
performance and combine this with the heterarchical mode to cope
with disturbances and changes.

•	 Supports a fine granularity for the primitive processing steps used in the
dynamic precedence graph. The requirement limiting this granularity is
that the products are transportable and storable before and after execut-
ing such a primitive processing step.

•	 Is able to produce any combination of the available primitive processes
in a batch-of-one mode.

•	 Connects production equipment to the control system through device
drivers, thus avoiding exposure for the holonic MES to device-specific
programming languages, tools, or environments. This complies with the
autocatalytic set insight (cf. Chapter 4). Note: this device driver ap-
proach has been successfully deployed in an industrial robot application
as a spin-off activity.

•	 It is process-agnostic, which implies that the control system is able to
manage any mix of production processes (assembly, machining, painting,
packaging, etc.).

Relative to 2015’s state of the art, FACCS has the following limitations:
•	 Job shop assumption. The self-managing production orders assume that

they can loop around the production system and reach workstations
that are offering primitive processing steps without having to plan or
reason. For example, FACCS is unable to handle a flow layout in which
a needed processing capability may be passed and become unreachable
(or impractical to reach).

•	 Each workstation is modeled as sets of IDs corresponding to the primi-
tive processing steps that the workstation is capable of performing. For
example, there is no model of tooling, fixtures, operators, etc.

•	 Process plans have a predefined data format based on the IDs of avail-
able primitive processing steps. For example, any information depend-
ing on the product model needs to be retrieved by the implementation
of the primitive processing steps (using the order ID as a key for data

Case Studies and Research Projects 133

retrieval). Such information remains invisible to and cannot be used in
the process plan.

•	 The heterarchical mode is myopic. The self-managing production orders
behave opportunistically without assessing future repercussions or im-
pact on other orders.

•	 Reusability of the software and system components is low/questionable.
Dynamic precedence graphs are an option for product holon imple-
mentations but must be used internally and cannot be exposed to, for
example, the order holons (cf. NEU protocol). The device drivers and
primitive processing step implementations are case-specific. The heter-
archical control mode under the job shop assumption is easily reimple-
mented, while relaxing this assumption requires a significant effort (cf.
the other case studies).

Relative to 2015’s state of the art, FACCS utilizes the following infor-
mation and communication technology (ICT):
•	 FACCS is programmed in mainstream object-oriented programming

technologies (C++, Java) on mainstream computer platforms (Windows,
Linux). This complies with the autocatalytic set guideline/insight.

•	 FACCS has no simulation capability.
•	 FACCS is connected to industrial equipment through industrial au-

tomation technology (i.e., PLC for the transport system and robot
controllers for the assembly robots). However, FACCS minimizes its
exposure to these industrial technologies as they lack critical user mass
(i.e., they are violating the autocatalytic set guideline/insight). The in-
dustrial controllers are used to program primitive services, which are
made available on the mainstream computer platforms in mainstream
programming languages as device drivers. In case of machine tools,
a DNC option would be desirable, allowing to make the machining
functionality available on the mainstream platform.

The First Milestone: PROSA (1990–2000)
(Van Brussel et al., 1998; Simon, 1990)
Continued fundamental research on the FACCS flexible assembly cell re-
sulted in the PROSA reference architecture. This reference architecture re-
spects and accounts for the fundamental insights, discussed earlier in this
book. Consequently, PROSA represents to a large extent what is unavoid-
able, and it discourages imposing of arbitrary design choices.

In order to achieve this, PROSA is only a reference architecture; it is
not a system architecture or an implementation. The research team stopped

Design for the Unexpected134

elaborating this particular research result as soon as further development re-
quired the introduction of arbitrary design choices. Such choices had to be
made for the implementation of research prototypes but they never became
part of this reference architecture.

In view of 2015’s state of the art, PROSA has the following contribu-
tions:
•	 The reference architecture provides a terminology, greatly facilitating

the communication and discussion in the domain. Chapter 5 discusses
this in detail.

•	 PROSA cleanly separates the structural aspects from the control aspects.
PROSA emphasizes the structural aspects as the foundation for holonic
MES development; the control aspects follow in later design and devel-
opment phases. Note that this ensures scalability as systems mirror the
structure of the manufacturing system and activities concerned.

•	 PROSA aggregation – which can be time-variant – corresponds to the
insights from Herbert Simon (Simon, 1990), which constitute the core
insights in holonic systems.

•	 PROSA specialization and aggregation enable reuse and increase the
achievable user mass for software components.

•	 PROSA separation of technical concerns (addressed in product holons
interacting with resource holons) from logistical concerns (addressed in
order holons interacting with resource holons) contributes significantly
to achieving critical user mass and software reusability.

•	 Product-driven manufacturing control. PROSA mirrors a reality in
which production activities execute on manufacturing resources, and
PROSA considers both to be equal (i.e., they are so-called first-class citi-
zens). Industrial practice often collocates all intelligence with the resources
whereas the products only have data sheets/forms attached. This preserves
the nonautomated practice in which humans operate equipment whereas
products do not have a human companion. This industrial practice vio-
lates the insights and guidelines of design for the unexpected when intel-
ligent machines have to rely on expectations on the manner in which they
will be used. In PROSA, intelligent machines – resource holons – only
have to account for what they are and what they are capable of. How
these machines will be used is known by product-related holons. Among
others, this increases configurability, reconfigurability, software reusability,
and the ability to achieve and maintain critical user mass.

•	 PROSA imposes minimal requirements on the nature of the system that
is to be controlled.

Case Studies and Research Projects 135

Relative to 2015’s state of the art, PROSA has the following limitations:
•	 PROSA is a reference architecture, which means generic rather than

specific. As a consequence, its ability to handle concrete multiple pro-
duction system types – job shops, flow shops, production lines, etc. – has
been achieved by leaving most of the development work to be done.

•	 The base holons, without schedule-generating staff holons, are myo-
pic. Intelligent products will be navigating and shopping for resource
services, which perform the processing steps, like car traffic in which
drivers navigate to get serviced (work, school, home, shop). There is no
support for the base holons (product, resource, order) to anticipate the
consequences of their decisions and choices at later points in time and/
or remote location in the factory. Nonetheless, cooperation with plan-
ners is covered through staff holons.

•	 PROSA separates the product-related technical and logistical aspects (in,
respectively, product holon and order holon). PROSA neglects to do the
same for resource-related aspects. Here, PROSA mirrors its source of in-
spiration – computer operating system kernels – which also fails to sepa-
rate resource-related aspects (i.e., resources correspond to CPU cores,
orders correspond to data segments of threads, products correspond to
code segments of programs). ARTI refines PROSA in this respect.

•	 Research has addressed the development of reusable software that imple-
ments PROSA. This research has not produced software results that have
survived until today. Partially, this was caused by a lack of insight and know-
how. Partially, this was caused by subsequent research discovering impor-
tant functionality that could be added to the PROSA foundation without
violating the design for the unexpected insights and guidelines. Partially
and most decisively, it was a consequence of mainstream ICT limitations.
Even when developing the right software components, the effort needed
to develop, maintain, and support would have remained too high.

•	 The software developments have only a limited capability to simulate
faster than real time (i.e., speed-up is a fixed factor). Such a speed-
up corresponds to lowering the processing speed of the computers on
which the MES executes.
Relative to 2015’s state of the art, PROSA utilizes the following ICT:

•	 PROSA-related software development uses mainstream OO-program-
ming technologies (C++, Java) on mainstream computer platforms
(Windows, Linux).

•	 PROSA-related research developed a real-time simulation capability
with software in the loop. The factory simulation – without the holonic

Design for the Unexpected136

MES – was done in ARENATM. It was used in real-time mode and
connected to the MES through a TCP/IP socket. The MES could not
distinguish being connected to the simulation from being connected to
a real production system.

The Second Milestone (Part 1): MASCADA and Food Foraging
in Ant Colonies (Peeters et al., 2001)
The myopia of a straightforward PROSA design remained a major concern.
Scheduling staff holons may only give advice for good reasons: state-of-the-
art planning and scheduling technology fails to comply with design for the
unexpected. Furthermore, this situation is unlikely to improve as execution
systems have combinatorial solution/search spaces. Optimizing planners and
schedulers have to reduce this space to a polynomial one. As a consequence,
developing a definitive and optimizing solution to this challenge amounts to
breaking encryption systems that are currently used (cf. NP completeness).

In other words, planners and schedulers have to make choices – arbitrary
to a significant extent – to produce their results, which inherently conflicts
with design for the unexpected. As the research team aims for a holonic
execution system foundation complying with design for the unexpected,
scheduling holons had to remain optional staff holons. Apparently, elimi-
nating myopia in PROSA-based execution systems was asking for a more
innovative solution.

Stigmergic Coordination and Control
The answer was discovered in two steps. First, heterarchical control designs
in which resource holons will signal to order holons when they are about
to finish their current task were investigated by other research teams. This
was, however, too simplistic to remedy this myopia. Such an order attraction
signal should reach prospective order holons after being enriched with in-
formation accounting for space and time. It should account for a predicted
workload of the resource holon (a timetable). And, it should account for
the intended journey of the workpiece to the resource (estimated order
arrival time in this timetable). Moreover, there should be indications of
valid routing options – road signs indicating which processing options are
available/installed in which directions – to prevent order holons from selecting
routings that lack the required processing capabilities.

Second, the food foraging coordination mechanisms used in ant colonies
revealed how information may be deposited locally in an environment – re-
ferred to as stigmergy – to inform members of the colony about a remote

Case Studies and Research Projects 137

fact. When an ant discovers a food source, which is too large for a single ant
to carry, it will deposit a chemical, called a pheromone, on its way back to
the nest. Other ants will then follow this pheromone trail to the food source.

Two properties of this stigmergic coordination are interesting. First, pher-
omones evaporate. When an ant follows the trail and brings (some of the)
food back to the nest, this ant deposits more pheromone. When the food
source expires, the ants start exploring for food and will not return to the nest.
The trail is no longer reinforced; the pheromone evaporates and disappears.
This mechanism allows the ant colony to adapt and cope with the dynamics
of its environment. Second, the ants use their environment as part of their so-
lution. Ants have no model of their world inside their brain. The pheromones
are deposited on the real world. Whether their world is (geometrically) simple
or complicated has no impact on the ants’ coordination mechanism.

However, ant colony coordination is limited to the past and present. The
MASCADA project transformed this stigmergic coordination to cover the
future as well (i.e., local information about remote facts in time and space).
To this end, the MES uses a software environment in which production
activities execute virtually. During such a virtual execution, information can
be collected, generated, and deposited (i.e., digital stigmergy). In addition,
this information disappears unless it is regenerated to cope with change and
disturbances. In other words, the ant colony solution is applied in a software
that mirrors the world of interest, allowing to try and evaluate (a lot of) al-
ternative courses of action before committing to the most desirable course
of action that was encountered in this virtual world.

Car Body Painting – Holonic MES for Flexible-Flow Shops
The MASCADA project developed its solutions while addressing an indus-
trial case. A car body paint shop was an excellent case to test the applicability
of an HMES for flexible flow shops. Each day, this large shop, comprising six
floors, paints more than 1000 car bodies, of different types and in different col-
ors. It comprises more than 400 manufacturing resources: unidirectional and
bidirectional conveyors, turning tables, lifts, painting boots, etc. (Figure 7.2).

These resources are arranged in a complex topology, in which loops are
present. The system has built-in redundancy; that is, for each processing step,
multiple resources can be chosen. Similarly for the transportation, more
than one routing option is available to move a car body from one process-
ing unit to the next. As the result of a production step is uncertain, the next
processing step for a car body will depend on the outcome of the previous
one. This means that it is sometimes necessary that a product makes a loop

Design for the Unexpected138

through the paint shop. The main performance measure in this paint shop is
throughput. The throughput can be influenced by the batch size. Through-
put losses are caused by color breakdowns on the painting lines and block-
ages on the transportation system.

The control system, a precursor DMAS system, is responsible for the
routing of the car bodies through the paint shop, and it has to maintain
the required throughput in the face of disruptions. Because of loops in the
transport system, the control system also has to deal with deadlocks. There-
fore, the intelligent products (corresponding to the car bodies) use a layered
decision mechanism to choose their next processing step.

The first control layer addresses feasibility. This layer is responsible for
deadlock avoidance and ensures, for instance, that a car body is not trans-
ported in a direction that lacks the necessary processing capabilities. The
second layer is an optimizing layer, doing things such as satisfying produc-
tion goals (e.g., maximizing throughput or respecting due dates), optimizing
bottleneck usage, and avoiding material flow jams upstream and down-
stream. A third layer tunes online the parameters of the optimizing func-
tions of level 2. All these layers are application specific (plug-ins) and can
easily be replaced if necessary.

The control system is also responsible for batching the car bodies for
the painting process. Small batch sizes lead to more setups leading to lower
throughput. Moreover, as batches are small, there are more defects, and more

Figure 7.2 Partial view of the six-story spray painting shop simulation for car bodies.

Case Studies and Research Projects 139

car bodies have to be repainted, lowering the throughput even more. To
deal with this issue, the intelligent resources corresponding to the painting
equipment propagate information about their planned batches (size, color,
time window, etc.). The intelligent products use this information to decide
whether or not to join a certain batch.

MASCADA – Contributions and Limitations
In view of 2015’s state of the art, MASCADA made the following contri-
butions:
•	 MASCADA delivered the innovation needed to address myopia in

PROSA while respecting the insights and guidelines of design for the
unexpected. It invented the use of stigmergy in a software environment
supporting virtual execution as needed by the coordination and control.

•	 MASCADA addressed a full-scale industrial test case (i.e., a large car body
painting plant comprising more than four hundred pieces of equipment
and over a thousand products being processed at the same time).

•	 MASCADA is fully compliant with PROSA. At no point was there a
necessity or benefit to be gained from deviating from the reference ar-
chitecture. Or, in other words, the research did not encounter a situation
in which PROSA would benefit from a modification or revision.

•	 MASCADA developed the first generation of DMAS. More precisely,
the following was developed for the industrial case study:
•	 Feasibility ants. These digital ants virtually traverse the flexible-flow

shop in the reverse direction of the products. They collect informa-
tion about the processing capabilities of the resource holons, and
they deposit this information at routing points such that order ho-
lons may select valid routings only.

•	 Order holon ants. These digital ants are created by order holons and
virtually execute the remaining processing and transport steps for
their order (i.e., a car body). During this virtual execution, the ants
inform the affected resource holons about their intended visit. This
allows the resource holons to construct a timetable, which predicts
their future workload.

•	 Resource holon ants. These digital ants take the timetable of their
resource holon and virtually traverse the flexible-flow shop in the
reverse direction of the products. The ants collect information about
the travel time toward their resource. At routing points, the ants de-
posit a timetable for their resource adjusted for the accumulated
travel time. In other words, order holons at a routing point will ob-
serve timetables indicating processing capabilities and (free/available)

Design for the Unexpected140

capacities adjusted for the time needed to reach a resource. Spe-
cific for the industrial case, order holons also see whether a painting
workstation needs to change color when its car body will arrive.

•	 A number of case-specific stigmergic mechanisms have been devel-
oped. This mainly demonstrated the contribution a stigmergic in-
formation infrastructure can make toward the implementation of
case-specific mechanisms (i.e., fast and with little effort). An example
is batch-building mechanisms, aiming to avoid color changeovers at
the painting workstations.

•	 A deadlock avoidance mechanism was developed for the industrial test case.
Relative to 2015’s state of the art, the MASCADA results have the fol-

lowing limitations:
•	 The resource holon ants are overly specific and their design struggles

to remain usable beyond flexible-flow shops, as encountered in the car
body painting case. In particular, the collection and computation of the
accumulated travel time for an order toward a resource is problematic.
Subsequent research developed a solution that is both simpler and wide-
ly applicable. The MASCADA resource holon DMAS has been renamed
into the resource intentions DMAS. In some systems, it is still used but
solely in a supporting role where it is possible to stop propagation as
soon as computing the accumulated travel time becomes problematic.

•	 The design critically depended on the correctness of the feasibility ho-
lon information and the deadlock prevention. The above-mentioned
replacement for the resource holon ants has relaxed this requirement
significantly.

•	 The order holon ants fail to behave in a socially acceptable manner. Or-
der holon ants virtually execute to inform resources about likely future
visits; this involved a randomized decision-making mechanism. How-
ever, order holons had no mechanism to “stick to their intentions,” and
the randomized decision-making mechanism was executed, both dur-
ing refresh and for the actual routing selection, without accounting for
earlier propagation of order intentions. This severely compromised the
prediction accuracy of the resource timetables. The main reason for this
shortcoming was lack of experience for the junior researcher and lack
of time for the senior researcher (attending to an overzealous project
review board focusing on scheduling and optimization aspects). Subse-
quent research did remedy this (Hadeli 2006).

•	 MASCADA did not develop software that survived the project. First,
the above two limitations, and the subsequently developed solutions,

Case Studies and Research Projects 141

would have rendered much of the software obsolete. Second, the avail-
able software technology was inadequate in view of the holonic MES
still remaining a research prototype (which denied access to human and
financial resources that would have been required).
Relative to 2015’s state of the art, MASCADA utilizes the following

ICT:
•	 Software development in Java technology on Windows.
•	 Real-time simulation in ARENATM with MES software connected via

a socket.

The Second Milestone (Part 2): Photographic Foil Facility (Saint
Germain and Verstraete, 2002; Van Belle et al., 2014)
Where MASCADA breached the wall of decision myopia without the in-
troduction of arbitrary design choices, the photographic foil case delivered
the currently surviving design. As can be expected, industry offered a set of
manufacturing execution challenges, explained hereunder, that could not
be answered by the available commercial solutions, not even after custom-
ization and not even partially.

The photographic foil facility produces photographic products out of
large rolls of photographic foil. A customer order consists either of a stack of
sheets or a roll of a given kind of photographic paper. These rolls and sheets
are made out of big rolls, called master rolls, by dividing these big rolls into
smaller pieces. This way, these master rolls can be associated with multiple
customer orders, which only require some part of the big roll. Conversely, a
customer order can be associated with multiple master rolls since the units
in a single customer order can specify different types of foil (each master roll
only contains one type of foil).

In other words, there is a many-to-many relationship between master
rolls and customer orders in the system. To form a product, the master roll
has to be split first lengthwise, by a process called slitting. This operation di-
vides the master roll into pieces, called reels. The second operation splits the
reels along the width of the original master roll. Depending on the products
to be made, the operation is either cutting or rewinding. The final product
is a stack of sheets or a small roll, respectively. Figure 7.3 shows the elements
of the production plant and their interconnection.

PROSA+DMAS – The Definitive Design: Simple, Efficient and Robust
While applying and implementing the MASCADA solution to the pho-
tographic foil case, the team started with the order holon DMAS, which

Design for the Unexpected142

virtually executes the remaining processing and transportation steps for the
order. The team realized that this DMAS functionality could be used for
two purposes, requiring a minimal amount of software development for the
required adaptation to one of the roles.

First, virtual execution can be used to inform resource holons about the
intended visits by the order. This functionality was baptized the intention
propagation DMAS, comprising a steady stream of intention ants. Second,
this virtual execution capability was used to discover and assess possible
routings and processing sequences. This was baptized the exploration DMAS,
comprising a steady stream of exploring ants performing a decentralized
and randomized search.

The difference between the two DMASs is that the exploring ants virtual
ly execute a possible solution, selected by randomized decision-making mecha-
nisms (see Chapter 5), whereas the intention ants virtually execute the currently
selected routing and processing sequence (i.e., the order intention). The selection
of the order intention is done by a given selection mechanism plug-in.

Importantly, the above selection mechanisms are easy to replace. The
PROSA+DMAS design imposes no restrictions except that they perform
the required selection and that they are efficient (i.e., they allow virtual
execution to be faster than reality). In accordance with design for the unex-
pected, decision-making mechanisms must not build up inertia; it must be
easy and fast to change and/or replace them.

Photographic Foil Facility – Contributions and Limitations
In view of 2015’s state of the art, PROSA+DMAS has the following con-
tributions:
•	 Lasting elegance. The MASCADA discovery, cracking the myopia issue,

was translated in a superior design that is simple, intuitive, and widely

Figure 7.3 Photographic foil production plant.

Case Studies and Research Projects 143

applicable. It fully complies with design for the unexpected when it maxi-
mally solves the problems by mirroring the world of interest. Virtual ex-
ecution of single steps constitutes its basis on top of which generic and
generally applicable mechanisms provide the short-term predictions. These
predictions are updated regularly. In the created information infrastructure,
which contains these predictions, a decentralized search is facilitated. In-
deed, this PROSA+DMAS design is minimalistic yet broadly applicable.

•	 PROSA+DMAS coordination is (more) robust toward deadlock. It gen-
erates short-term forecasts that will predict/see an imminent deadlock
situation. Close to deadlock, only a few activities remain unblocked. The
assessment of solutions, discovered by exploring ants, will see no benefit
in being eager/early. It suffices to reward late commitment and/or pe-
nalize useless work-in-progress when selecting the order intentions. This
will discourage the order holons from jamming up the manufacturing
system. It may still be necessary to provide deadlock handling in an ex-
ecution system but its importance is reduced significantly.

•	 PROSA+DMAS reduces the requirements for the feasibility DMAS.
When an exploring ant selects an unfeasible route, its virtual execution
fails to finish the product. This translates in an extremely low score, and
it will never become the intention of its order holon. In other words,
it suffices that an adequate number of exploring ants selects a feasible
route. Wasting some effort on exploring infeasible routes is a small price
to pay when this allows using a simple feasibility DMAS and/or circum-
vents the need to proof that this feasibility D-MAS is “watertight”.

•	 As was discovered subsequently, sticking this close to reality rendered the
design highly suitable for further developments. It enabled cooperation
with scheduling staff holons, sticking to intentions, and adding a trust
framework. In a way, it confirmed design for the unexpected when the
design revealed to be able to cope with future – unexpected – demands.

•	 The industrial member of the research team – who was managing the real
photographic foil facility – noticed that the development is multipurpose:
•	 It can be used as a holonic MES for the actual production system.
•	 It can be used as a simulation of a production system connected to

its holonic MES. Both production system and MES can be subject of
experimentation to optimize decisions on what system to build, how
to operate it, etc.

•	 The holonic MES, while connected to the real system, could be
“forked” and start predicting two or more alternatives. This fork
starts at some point in the future where the predicted performance

Design for the Unexpected144

will become known. At that point, the best-performing alternative is
adopted.

•	 The software development replaced the commercial simulation software
(ARENA) with a pure Java emulation connected to the holonic MES,
which was also written in Java. First steps were taken to have a hybrid
simulation (real-time and discrete event) as well as tools to analyze the
results of simulation runs (visualization during the simulation run as well
as afterward using the log files).
Relative to 2015’s state of the art, the photographic foil results have the

following limitations:
•	 The case study did not develop software that survived the project. Nev-

ertheless, it constituted the basis for all software development until 2010.
From 2011 onward, development in Java was phased out.
Relative to 2015’s state of the art, photographic foil case utilizes the fol-

lowing ICT:
•	 Software development in Java technology on Windows.
•	 Emulation/simulation in Java. Originally using a simulation library in

Java but, finally, simulation was performed in self-written Java code.

Modular Plant Architecture II – Machine Shop
(Zamfirescu et al., 2003)
Around the same time as the photographic foil development, a machine
tool shop was addressed in the Modular Plant Architecture (MPA) project.
Both projects shared solutions and software development. This project fo-
cused on the industrial test case while benefiting from the past (PROSA,
MASCADA) and the present (photographic foil).

The case study concerns a job-shop used for the manufacturing of long
weaving machine components (Figure 7.4). The production is organized
around an automatic storage and retrieval system (ASRS) that acts as a tem-
porary buffer for pallets shaped as containers. A rail-based transport system,

Figure 7.4 Schematic of the machine shop.

Case Studies and Research Projects 145

called “tram” in the factory jargon, is used for storing/retrieving the containers
into/from the ASRS and changing the containers at the workstations. Each
container contains a variable number of identical parts traveling together till
the completion of their processing plan. The machines are grouped in worksta-
tions, with a variable number of container docks and with different processing
capacity. Typically, a workstation holds two containers: an empty container to
be filled with the finished parts and a full container with parts to be worked on.

Inside the workstation, a part is taken by the machine operator from
the full container and loaded into the processing machines, processed, and
then unloaded and stored in the originally empty container. When this last
container is full, the ASRS is prompted to take it away. Because the tram has
two container docks, prior to picking up the finished containers, it travels
to the ASRS to bring the next container that is going to be processed in the
requesting workstation. Therefore, once the tram took the container with
the finished parts, it unloads the next container without an additional
movement. Finished parts are stored in the ASRS and retrieved in a given
number on a daily basis, according to the assembly orders. There are also
some trolleys that can take over the transportation effort as required. The
machine operators are assigned to workstations and not to a single machine
on the basis of their skills, shifts, and preferences. Overall, the plant holds
the characteristics of a classical open job-shop, with different alternatives to
carry out an operation, either processing or transportation.

Relative to the above-discussed developments, MPA-II made the fol-
lowing contributions:
•	 During the MPA project, emulation technology was elaborated in Java,

replacing the commercial simulation package. The main advantages of
this change were:
•	 Training. Developers no longer had to master two programming

technologies. They only needed to use Java. They no longer needed
to know how to build ARENA models and templates. They only
needed to acquire programming skills representing a universal/mul-
tipurpose value to themselves, and no longer did they have to spend
time and effort on mastering an antiquated niche technology.

•	 Hybrid simulation/emulation. The holonic MES and the Java facto-
ry emulation were cooperating closely. In particular, the MES is able
to signal when all (emulation) events have been processed, which al-
lows the emulation to jump in time to the next event. This speeds up
simulation runs. Conversely, while the MES is processing events, the
emulation executes in real-time to realistically account for the fact

Design for the Unexpected146

that the world will not wait while the MES is “thinking.” The MES
also uses this to generate its internal time-based events (e.g., trigger
the refresh of a digital pheromone), which then may benefit from the
speed-up as well.

•	 Support for analyzing the results, both during a simulation run and
afterward through off-line data processing.

•	 This technology survived the project in our own research environment.
•	 Demonstration of the capability to address an industrial case, possessing

specific features to optimize production, and to contribute to resolving
real-world issues. For instance, transport units contain about ten product
parts, the transporter carries two containers, etc., which would not fit
naïve models of a world of interest (e.g., the nominal job shop model).
Note that technology developed for flow shops was used for a job shop
without the need to start over.

•	 Likewise, the prediction-generating capabilities are instrumental for the
effectiveness and comfort of the human workers, who in the existing
machine shop faced uncertainty about the arrival of work and/or tool-
ing. Having a prediction enables them to coordinate their main task
(machining) with the other task (e.g., maintenance).
Relative to 2015’s state of the art, the MPA results have the following

limitations:
•	 Software development still is too time- and effort-consuming for indus-

trial deployment while the technology has to prove itself (i.e., if it could
mobilize resources such as established ERP, it would be more than viable).

•	 Order holons fail to interact as soon as they are known (i.e., as soon as
the HMES is informed about the corresponding real-world orders). The
holons only start exploring and propagating intentions when they are
launched on the factory floor. This disturbs the generated predictions,
because their intention propagation affects operations in the immediate
future, and the system needs some time to recover. When order holons
are created some time before their order will be launched on the fac-
tory floor, their intention propagation only affects operations after their
launch date/time, which may then allow accommodating them without
disturbing actual operations. Project funding stopped before this could
be remedied and experiments could be repeated.

Relative to 2015’s state of the art, MPA utilizes the following ICT:
•	 Software development in Java technology on Windows.
•	 Emulation/simulation in Java. Originally using a simulation library in Java

but, finally, simulation was performed in self-written Java code. Advanced

Case Studies and Research Projects 147

features include hybrid emulation (discrete event jumping ahead in time
combined with real-time generating event while the MES “thinks”).

MABE Project – Networked Manufacturing/Heat Treatment
(Saint Germain et al., 2012; Saint Germain et al., 2011)
A last manufacturing case study addresses a highly automated heat treatment
multiplant facility. This facility performs heat treatment of metallic materials
and includes several processes: case hardening, vacuum hardening, induction
heating, etc. The products demand a certain temperature trajectory inside the
furnaces in order to reach the required quality. The time between different
processes (e.g., between case hardening and tempering) should not be too
long for some products. The various furnaces differ from each other in the
range of working temperature and environmental condition (e.g., carbon lev-
el). The facility is organized as a job shop in which the baskets containing the
metallic parts are transported automatically. Figure 7.5 shows the temperature
profile and corresponding resources of the case hardening process.

Figure 7.5 Case hardening facility.

Design for the Unexpected148

The control system is responsible for the routing of the to-be-treated
metallic parts through the facility, ensuring that these parts receive a cor-
rect treatment. The intelligent resources correspond to the transportation
and heat treatment equipment (e.g., furnaces, washing stations, and cooling
beds). The services offered by these resources are used by the intelligent
products, corresponding to metallic parts that have to be treated.

Specific for this application is that parts with compatible process tem-
perature trajectories and environmental conditions can be batched. This
batching, when properly executed, has a significant impact on the perfor-
mance of this capital-intensive production system. Indeed, a fully loaded
furnace and a partially loaded one operate almost at identical cost, whereas
the output differs significantly. The intelligent products can make use of a
delegate MAS to discover batching opportunities or, alternatively, to trigger
the buildup of such batches.

This case study also investigated the scalability of the HMES concepts by
coordinating manufacturing and transportation activities within networked
production. A virtual enterprise was considered, consisting of a network
of heat treatment factories. New companies can dynamically join or leave
the network and new processes and equipment are introduced as needed.
Now the intelligent products have to route their corresponding parts at
two levels: the network level and the factory level. At the network level, the
intelligent product searches for transportation services between the differ-
ent factories and heat treatment services (offered by aggregated intelligent
resources, offering all services of the resources at a factory). As such, a virtual
enterprise is a semi-open system, lacking a single command and control
center, the operations have to be organized without the disclosure of sensi-
tive information to other members of the network. Also, a mechanism is
required to deal with trust and reputation issues.

The MABE project presented two challenges. First, the effective co-
ordination and control of the highly automated heat treatment facilities
critically depends on the ability to exploit the particularities of the equip-
ment and the process plans. It is important that the (expensive) furnaces are
(almost) fully loaded with parts. Such loads have to consist of compatible
parts, which will be subject to a single/joint temperature trajectory and
environmental conditions (e.g., carbon level).

In the existing practice, a high equipment utilization is achieved at the
expense of long lead times and high inventories, which allows to find part
combinations to fully load the furnaces. The case study had to test and
demonstrate the ability to account for the particular characteristics of heat

Case Studies and Research Projects 149

treatment, and it had to achieve this high equipment utilization at lower
lead times and/or inventory levels. This amounted to a further validation of
the PROSA+DMAS solution.

Second, the main research challenge was to upscale PROSA+DMAS to
networked production. It offered the opportunity to construct furnace loads
of compatible parts from the entire network. Transportation itself was not ad-
dressed by a PROSA+DMAS design, but a simplified model was used.

The actual industrial case was simpler than the research ambition: all
networked heat treatment facilities had a single owner (no room for cheat-
ing). The research project itself aimed at networked production in which
the networked production facilities have different owners, each aiming to
optimize their own profit margins, turnover, etc. However, the network is
only semi-open. Network members enjoy a trust relationship, which typi-
cally is the result of long-term cooperation. From a holonic execution man-
agement perspective, the network members are in a highly repetitive game.
Therefore, it is not necessary to prevent abuse on beforehand. It suffices to
monitor behavior and account for it during subsequent interactions. Abuse
by network members is allowed/possible, but it will be noticed.

To this end, the research team elaborated a mechanism and framework
to deal with trust and reputation. This enables to assess the information
from members in the network. When an order holon (intelligent product)
announces to a resource holon (network node) its intention to arrive at
0900 h, this mechanism translates this information in a most likely arrival
time (0910 h), the uncertainty on this time (e.g., the 25% and 75% percen-
tiles: 0855 and 1000 h) and uncertainty whether the product will actually
visit and use the services of the network node (e.g., 99%). In other words,
the design operates much like humans judging how their coworkers behave
(e.g., when attending meetings) so they may account for it.

In addition, the enhanced design addressed information disclosure issues
by having, for instance, the order holon that is managing network-wide
execution trigger the creation of node-internal order holons to manage its
node-internal production. The network-wide holon and the node-internal
holons exchange information on a need-to-know basis.

Relative to the above-discussed developments, MABE made the follow-
ing contributions:
•	 PROSA+DMAS are able to manage networked production facilities, pro-

viding manufacturing execution for virtual manufacturing configurations.
Moreover, configuring and reconfiguring these virtual manufacturing
systems in a supply network was business as usual to the holonic MES.

Design for the Unexpected150

•	 It proved possible to enhance the single-factory design to cope with
information disclosure requirements and issues, which are encountered
in networked production as a result of the presence of multiple self-
interested owners. This did not require a fundamental extension as it
suffices to apply the pre-existing research results to mimic how humans
would handle this (cf. the above discussion of network-wide vs. the
node-internal order holons).

•	 It proved possible to enhance the existing results with a capability to
manage trust and reputation, which delivers an artificial/automated so-
cial control in the highly repetitive game that characterizes a virtual en-
terprise. Note that these developments are useful in single-factory cases
as well. For instance, it helps to cope with processes that are inherently
exhibiting significant and unpredictable variations (e.g., cooking times
of vegetables).

•	 PROSA+DMAS was applied and assessed to yet another manufacturing
system class, which again was outside the applicability range of a typi-
cal commercial MES. The relevant properties of heat and surface treat-
ment equipment, for an MES, were exotic. Rudimentary data model
approaches are unlikely to cope. In contrast, the PROSA+DMAS emu-
lation approach is unlikely to hit the proverbial wall; the required effort
nevertheless still depends on the challenge.

•	 In a short follow-up project, HFID, aimed at technology transfer, emula-
tion of the heat treatment facilities, and its production was generated from
multimodels. This generation was done by a self-developed software tool.
Relative to 2015’s state of the art, the MABE results have the following

limitations:
•	 In spite of the automated generation of emulation code from multimod-

els, the effort and time required for a specific case remained (too) high
for technology transfer, given that this holonic MES technology is not
(yet) established in the market/industry. For our own research purposes
and/or for an established MES technology, this required effort and time
are workable.

•	 Technology transfer (still) requires IT skill and service levels that are
lacking in many factories. For example, some information resides in
spreadsheets for personal use only.
Relative to 2015’s state of the art, MPA utilizes the following ICT:

•	 Software development in Java technology on Windows.
•	 Emulation/simulation in Java, featuring hybrid emulation.
•	 Multimodel based generation of Java emulation code.

Case Studies and Research Projects 151

AgCo2 (Agents for Coordination and Control, 2001–2005)/
ACDPS (Autonomic Computing for Decentralized Production
Systems, 2006–2010) (Saint Germain, 2010; Verstraete,
2009; Hadeli, 2006; Holvoet et al., 2009; Parunak et al., 2008;
Valckenaers et al., 2009; Valckenaers et al., 2011)
In parallel with the above industry-guided research, fundamental research
activities elaborated the PROSA+DMAS research results further. These
activities were made possible by extensive financial support from KU Leu-
ven, through their ambitious and very competitive Concerted Research
Actions (GOA) program.

In view of the above-discussed developments, the research team made
the following contributions:
•	 The DMAS or delegate multiagent system. The DMAS concept gen-

eralizes the nature-inspired stigmergic coordination originating from
the MASCADA project and the photographic foil case. Importantly,
the terminology for defining and describing this DMAS concept was
elaborated, improving communication. In particular, it is important to
note the distinction with ant colony optimization, which is a one-shot
problem solving/optimization technique (see Section “Ant Colonies
and Stigmergy” in Chapter 8).

•	 The trust and reputation framework, triggered by the MABE objectives,
was finalized within these fundamental research activities.

•	 A generally applicable cooperation scheme between optimizing/sched-
uling staff holons and the PROSA+DMAS holonic MES has been es-
tablished. This includes mechanisms that determine whether to follow
the staff holon’s advice (cf. Section “Cooperation of HMES with Plan-
ning Systems” in Chapter 5); note that deviating from the advice at one
point in time does not preclude reconnecting to the advice at a later
point in time.

•	 A first contribution toward nervousness control. For the DMAS-gener-
ated predictions to be useful, order holons have to resist changing their
intentions but have to remain capable of adapting their intentions when
justified. The research established three basic mechanisms for individual
order holons to manage their nervousness (cf. Section “Socially Accept-
able Behaviors for Delegate MAS” in Chapter 5).

•	 Systematically distinguishing of reality-mirroring software components
from decision-making components by the introduction of intelligent be
ings versus intelligent agents (cf. Section “The DMAS Architectural Pat-
tern,” Chapter 6).

Design for the Unexpected152

•	 The ACDPS project translated the concept of Autonomic Computing
(Sterrit et al., 2005) originally developed by IBM for automatic software
maintenance, to manufacturing and other complex adaptive systems.
Autonomic systems manage themselves: they are self-learning, self-op-
timizing, self-repairing, etc. The project aimed at making complex de-
centralized production systems autonomic by applying self-X principles.
Autonomic behavior can be compared with homeostasis in living systems.
Graceful degradation is a consequence of autonomic behavior. A holonic
manufacturing system in which a machine breaks down behaves as an
autonomic system because it stays active, although in a suboptimal way.
Future research still may/must address the following (nonexhaustive):

•	 Nervousness handling in small teams. For instance, order holons may
swap allocations and/or reservations. This allows for significant adapta-
tion of their intentions in combination with only minor changes/distur-
bances for the remainder of the system.

•	 Generating predictions that employ probabilities and probability distri-
butions. The current developments only generate the expected value. In
contrast to the trust and reputation framework, this would be explicitly
coded (the trust and reputation framework uses track records to gener-
ate expected values with uncertainty information).
Relative to 2015’s state of the art, AgCo2 and ACDPS utilize the fol-

lowing ICT:
•	 Software development in Java technology on Windows.
•	 Emulation/simulation in Java, featuring hybrid emulation.
•	 Multimodel-based generation of Java emulation code.

C4AM (Control for Additive Manufacturing, 2010–2011)
C4AM is a technology transfer project. It applied the developments discussed
above to an industrial facility for additive manufacturing (a.k.a. 3D printing).
This facility has its own MES; commercially available MES offerings can-
not cope with the complexities of additive manufacturing. The research team
realized a PROSA+DMAS implementation that cooperates with this MES
and, specifically, adds the generation of short-term predictions (which was
baptized production radar). The project successfully demonstrated this produc-
tion radar. Details are subject to a nondisclosure agreement.

A specific challenge for this project is the requirement for human in-
tervention regarding the composition of a build. A build is a composition
of products that will be produced together within the work volume of an
additive manufacturing machine. Importantly, a significant fraction of the

Case Studies and Research Projects 153

production time remains unchanged regardless of the number of products
in a build. Therefore, 3D nesting software is used to optimize productivity
when composing these builds. Human supervision and guidance allows sig-
nificant improvement over a fully automated generation of builds.

As a consequence, the team developed an estimator to compute which
product parts will fit in a single build. If the actual build, human-supervised/
improved, turns out to be different, the PROSA+DMAS system considers this
a disturbance, which is business as usual for this technology. Fortunately, im-
portant (high-value) subclasses of products rarely experience this disturbance.

This project experienced a major transition in software technology. Its
development started while the research team employed Java on Windows.
Because of the unavailability of key personnel at the industrial facility, the
final demonstration of the production radar was delayed for several months.
In the meantime, the key researcher participated in the MODUM project
(cf. below), which was using Erlang/OTP technology. The latter is more
robust and scalable by a significant margin. The remaining task for the final
demonstration was to connect the Java version to the C# version of the MES.

The researcher decided to sacrifice one day to attempt connecting Er-
lang/OTP to the MES implemented in C# and “dot-net” technology; it
worked within one day. In the following couple of weeks, the Java imple-
mentation was reimplemented in Erlang/OTP (note that MODUM al-
ready had developed generic software for DMAS in ARTI systems). This
swift transition to Erlang/OTP constituted empirical evidence that this
high-end software technology is well suited for PROSA+D-MAS imple-
mentation. In particular, it reduces the time and effort needed to move from
TRL42 or TRL5 to TRL7 (and even TRL8) considerably.

The manufacturing cases section concludes with this successful con-
frontation/marriage of the research results with industrial practice. Next,
the research and developments outside manufacturing are discussed.

NONMANUFACTURING CASE STUDIES (Van Belle, 2013;
Van Belle et al., 2011a; Van Belle et al., 2011b; Van Belle
et al., 2013; Van Belle et al., 2009)

During the final phase of the MASCADA project, an EU-spon-
sored feasibility study, called MAGECC explored the generic applicabil-
ity of the MASCADA manufacturing control technology to domains

2Technology readiness level.

Design for the Unexpected154

other than manufacturing. This study delivered a basis for the nonmanu-
facturing applications that are discussed below; recall that the introduc-
tion of this chapter discusses the generic applicability range in more
general terms.

Holonic Logistics Execution Systems (HLES)
Logistic operations are neighboring manufacturing (e.g., MABE already
addressed networked manufacturing). It therefore constituted a logical next
target. In our research, cross-docking has been studied in some detail. Cross-
docking is a frequently used logistics strategy. The idea is to transfer in-
coming shipments directly to outgoing trailers, with little or no storage in
between. This practice can serve different goals: cost reduction, consolida-
tion of shipments, etc.

A terminal dedicated for cross-docking is called a cross dock. It is a
building with docking slots for trucks. When trucks arrive, they drive back-
ward into their designated slot from which they will be loaded and unload-
ed. For instance, trucks may arrive from farmers, loaded with a single type
of vegetable, and be unloaded into the cross dock. In turn, empty trucks,
also docked, will be loaded with a mix of vegetables as they are ordered by
the shops. The load distribution is typically such that the unloading at the
shops requires minimal reshuffling of pallets. Often, cross-docking is com-
bined with warehousing and quality control.

A general cross-docking case has already been discussed in Section “Co-
operation of HMES with Planning Systems” in Chapter 5, where the co-
operation of the HLES with a planning system was outlined. An important
issue here is the need for multiresource allocation. Indeed, to perform some
logistic operations, multiple resources are required at the same time. For
instance, to unload an order from a truck at a cross dock, three resources
need to be available simultaneously: the involved truck, a dock door to
which the truck is docked, and a forklift truck to perform the unloading
operation. In fact, for every operation of a forklift truck, two resources are
needed: the forklift truck itself and a forklift driver. The HLES deals with
this issue by, first, mirroring it in its digital image of the world of inter-
est and, second, apply a search strategy suited for the prevailing situation
(cf. Section “Challenges and Lessons Learned from Applications,” Chapter 6,
on multiresource allocation and auxiliary operations).

Another logistic application (project ELC2) was the holonic control
of a chain conveyor. These chain conveyors are commonly used for in-
ternal transport in factories, often in complex interconnected network

Case Studies and Research Projects 155

configurations. In a sample case, a simple application considered a cross-
dock distribution center linked by a chain conveyor, as shown in Figure 7.6.

Trucks that arrive at the incoming docks (In1 and In2) are unloaded
and the goods are placed on carriers. These carriers are put (manually) on
a chain conveyor (Chain1). This chain conveyor has a length of 83 m and
has 10 attachment points equally distributed along the length of the chain.
Three transfers are connected to the chain (Transfer1, Transfer2, and Trans-
fer3), by means of a diverter. Before each diverter, a sensor reads out the tag
of the passing carrier. At the end of each transfer, there is an accumulation
stop with a carrier detector in front of it. These accumulation stops hold the
carriers until they are removed by a worker and the goods are loaded in a
truck at the outgoing docks (Out1, Out2, and Out3). The chain as well as
the transfers move at a constant speed of 1 m/s.

Executable domain models were used to forecast, by virtual execu-
tion, how the system reacts to a disturbance, in this case, the late arrival
of a truck (see also Appendix II on simulation). In a first scenario, five
trucks arrive at time 0, one at each dock. The two trucks at the incom-
ing docks, which have to be unloaded, each contain 12 pallets. The three
trucks at the outgoing docks are empty and have to be loaded with eight
pallets, four pallets from both of the incoming trucks. The carriers can
each transport one pallet. The outcome of the simulation shows that the
pallets for the different outgoing trucks are mixed up when they are

Figure 7.6 Layout of a (simple) cross dock using a chain conveyor.

Design for the Unexpected156

transported by Chain1. The simulation also reveals that the last pallet ar-
rives at its destination after ca. 330 s.

Scenario 2 is identical except for one of the outgoing trucks arriv-
ing later than expected. The truck at dock Out3 arrives with a delay of
300 s. The outcome of the simulation shows that the inflow of the pallets
is restrained; the pallets for dock Out3 are not released immediately. In the
beginning of the simulation, only the pallets for Out1 and Out2 are trans-
ported. The last of these pallets reaches its destination already after ca. 210 s.
The pallets that have Out3 as destination are released after 250 s. So they
arrive at Out3 after 300 s, when the truck has already arrived. The last pallet
reaches its destination after 410 s. By controlling the inflow of the carriers,
the control system adapts/optimizes the load of the chain conveyors. This
desired effect is due to the behavior of the exploring ants when they find
out that a resource is not available.

In view of the earlier-discussed developments, the research team made
the following contributions:
•	 The ELC2 project handled chain-based systems in which control ac-

tions have long and early commitments (i.e., when placing something
on a conveyor chain, the subsequent displacements and occupation of a
conveyor slot are fixed until an available removal point is reached).

•	 The cross-docking developments worked closely with planning systems,
to manage the large search spaces.

•	 The cross-docking addressed multiresource allocation (i.e., loading op-
erations require a truck, a forklift, space, an operator, and the load itself).
Future research may address the following (nonexhaustive):

•	 Generally applicable solutions for the long commitments as encoun-
tered in chain conveyor systems (i.e., a solutions library).

•	 Generally applicable solutions for multiresource allocation (i.e., a solu-
tions library).

•	 More robust manners for close cooperation with planning systems.
Loose cooperation, having the planner coping with reality, is suitably
addressed above (cf. Verstraete 2009). The cross-docking developments
selected to be more exposed to planners providing guidance. The proj-
ect ended before handling all planning cooperation issues could be ad-
dressed in full.
Relative to 2015’s state of the art, HLESs utilize the following ICT:

•	 Software development in Java technology on Windows.
•	 Emulation/simulation in Java, featuring hybrid emulation.
•	 Multimodel-based generation of Java emulation code.

Case Studies and Research Projects 157

Robot Fleets (Philips, 2012a; Philips et al., 2012b;
Philips et al., 2011)
In Section “The ARTI Reference Architecture,” Chapter 6, holonic task
execution control of multimobile-robot systems has already been elucidated
as an application of the ARTI reference architecture. As could have been
observed there, when one wants to benefit from the goodies provided by
the PROSA/ARTI/DMAS technology, the environment of the robots has
to be included explicitly as a (mostly aggregated) resource holon. For exam-
ple, Figure 6.4 shows the resource holons for a door opening scenario/task.

The explicit representation and allocation of environment resources
facilitates the execution of coordination tasks. Consider the case with an
environment consisting of two rooms A and B connected by a narrow
corridor. Two wheelchairs, SARA and LAURA, are involved (Figure 6.1);
SARA wants to go from A to B, and Laura wants to go simultaneously from
B to A. The narrow corridor allows only one robot to pass at a single time;
hence, coordination is required.

Without coordination, the mobile robots risk deadlock and live-lock situ-
ations (cf. Figure 7.7). Indeed, failure to explicitly manage resource allocation
creates the need to enhance this coordination-less system with a deadlock de-
tection and roll-back functionality, which is far from trivial even for a specific
system configuration. Without a DMAS mechanism generating predictions
concerning the time and duration of resource (narrow corridor) allocations,
the mobile robots lack information to balance a longer route against waiting
for the resource to become available.

Figure 7.7 (top) shows a trajectory resulting from this lack of informa-
tion. SARA intends to execute the dashed trajectory. When discovering that
the narrow corridor is blocked by LAURA, SARA considers the corridor to
be unavailable and recalculates its routing. Next, SARA starts to execute the
alternative route circumventing the blocked corridor (if available). When the
corridor becomes available again, SARA reverts to its original solution. There
obviously is margin for improvement (if only for the wheelchair user to keep
his or her confidence in the technology). Centralized planning is one option
but not without its known drawbacks (scalability and maintenance issues).

Using PROSA/ARTI/DMAS, the wheelchairs avoid deviations from
the shortest path except for collision avoidance (Figure 7.7, bottom). Fur-
ther simulations reveal that the traveled distances are significantly lower
than in the situation without coordination via the environment.

Figure 7.8 shows a slightly more complicated situation. Two wheelchairs,
SARA (S) and INGA (G), are to move in opposite directions between two labs

Design for the Unexpected158

in the authors’ laboratory. There is a mutually exclusive region where coordi-
nation is required. Figure 7.8 shows the 3D plot of the trajectories. The solid
lines are the executed trajectories with respect to time, and the dashed lines
indicate the corresponding trajectory projected onto the environment. The
time dimension shows that INGA, starting at the left, waits until SARA, at the
right, passes through the area where their trajectories overlap. The fact that
the solid trajectories do not intersect indicates no collisions occurred.

Figure 7.7 (a) Simulation runs of two robots without coordination. Planned (dotted
line) and executed (solid line) trajectories from start (circle) to goal (star) are depicted
of robot 1 and 2 of a failed (A–B) and a successful (C–D) run. The deviations in the suc-
cessful run are caused by one robot avoiding the other. (b) Executed trajectories of two
robots with coordination of a shared corridor. The robots first move to a transit zone at
the side of the corridor’s entrance and wait for an available slot on the corridor resource.
Whenever a robot has successfully allocated the corridor, it can move through it. The
original path, indicated by a dashed line, and the executed path, indicated by a solid
line, almost completely overlap inside the corridor.

Case Studies and Research Projects 159

In view of the earlier-discussed developments, the research team made
the following contributions:
•	 The research addressed 2D surfaces (possibly on multiple levels) as re-

sources.
•	 The research applied DMAS to improve the coordination.

Figure 7.8 3D plot of the trajectories followed by both robotic wheelchairs. The solid
lines are the executed trajectories with respect to time, and the dashed lines indicate
the corresponding trajectory projected onto the environment. The time dimension
shows how the robot starting at the left (INGA) waits until the robot at the right (SARA)
passes through the area where their trajectories overlap. The fact that the solid trajecto-
ries do not intersect indicates that no collisions occurred.

Design for the Unexpected160

•	 The DMAS prediction assist in preventing deadlock without negatively
affecting performance.
Future research may address the following (nonexhaustive):

•	 Resource allocation for internal/embedded resources in nonhierarchi-
cal fashion (e.g., use of room sensors by a mobile robot, using sensors
from another mobile robot).

Open Air Engineering (Ali, 2010; Ali et al., 2013;
Ali, EP2531014)
Open air engineering processes, such as open-pit mining, road construc-
tion, and farming are mostly carried out with high-tech mobile equip-
ment. This equipment includes self-propelled work vehicles such as exca-
vators, dump trucks, asphalt layers, road graders, combine harvesters, etc.
that are specifically designed to carry out these processes (Figure 7.9).
Open air engineering processes are capital intensive, and the operating
costs of the work vehicles account for a major proportion of the total
process cost.

Over the last few years, substantial advancement in the technological
development of the work vehicles can be observed. Besides mechanical and
mechatronic improvements, an increasing interest is directed toward opti-
mizing the productivity of the work vehicles through proper planning and
execution of their operations.

On a generic level, most open air engineering applications share the
following:
•	 The mobile equipment interacts with a surface.

•	 These are nonflat 2D surfaces shaped in 3D space.
•	 Surface shape and/or properties are modified by the equipment.

•	 Material is either removed or deposited.
•	 Harvester and mining equipment remove.
•	 Asphalt layers deposit.

•	 Some local storage may be available.
•	 Asphalt-laying equipment have an on-board buffer.
•	 Combine harvesters have an on-board reservoir.

•	 Material needs to be supplied/shipped from/to a production/processing
site.
•	 Asphalt is delivered by trucks from producing units.
•	 Ore, corn is shipped by trucks to depots and processing units.
The holonic execution systems need to coordinate these operations:

•	 The mobile equipment needs to be dispatched to (one of) the sites.

Figure 7.9 Open air engineering processes. (Top photograph “Bingham Canyon Mine,
west face detail, Utah” by Greg Goebel from Loveland CO, USA - Yibcm_3bUploaded by
PDTillman. Licensed under CC BY-SA 2.0 via Wikimedia Commons - https://commons.
wikimedia.org/wiki/File:Bingham_Canyon_Mine,_west_face_detail,_Utah.jpg#/media/
File:Bingham_Canyon_Mine,_west_face_detail,_Utah.jpg. Middle photograph by Cyron
Ray Macey [CC BY 2.0 (http://creativecommons.org/licenses/by/2.0)], via Wikimedia Com-
mons. Bottom photograph “Fertiger-ABG-5820” von Inkulpat aus der deutschsprachigen
Wikipedia. Lizenziert unter CC BY-SA 3.0 über Wikimedia Commons - https://commons.wiki-
media.org/wiki/File:Fertiger-ABG-5820.jpg#/media/File:Fertiger-ABG-5820.jpg).

https://commons.wikimedia.org/wiki/File:Bingham_Canyon_Mine,_west_face_detail,_Utah.jpg
https://commons.wikimedia.org/wiki/File:Bingham_Canyon_Mine,_west_face_detail,_Utah.jpg
https://commons.wikimedia.org/wiki/File:Bingham_Canyon_Mine,_west_face_detail,_Utah.jpg
http://creativecommons.org/licenses/by/2.0
https://commons.wikimedia.org/wiki/File:Fertiger-ABG-5820.jpg
https://commons.wikimedia.org/wiki/File:Fertiger-ABG-5820.jpg

Design for the Unexpected162

•	 The “trajectory” of the mobile equipment needs to be determined.
•	 The transport (trucks) need to be assigned for moving the material from/

to the mobile equipment to/from the processing/production units.
Since the operations of this mobile equipment are expensive, profit-

ability depends directly on how effectively this equipment is utilized. Loss
of production capacity is to be avoided and minimized by proper coordina-
tion. Idling of the bottleneck resource(s) is the key concern. Here, the co-
ordination faces significant levels of uncertainty and variations in working
conditions, possibly shifting the bottleneck from the mobile equipment to
the transporters or vice versa.

The yield of the surface processing by the mobile equipment varies and
is subject to uncertainty in function of:
•	 Technical settings of the equipment, representing a trade-off among

•	 Getting a lot of work done (e.g., tons of ore or kilos of maize per
hour).

•	 Energy consumption and/or wear.
•	 Risk of damaged equipment.
•	 Doing the job well (e.g., leaving very little maize on the field).

•	 Surface properties:
•	 Density of ore.
•	 Crop density.
•	 Crop type (maize versus beans versus wheat).
•	 Shape (slope, corners, etc.).
•	 Accessibility (e.g., transporters may not be able to drive across the

surface).
•	 Trajectory executed

•	 Parts of the surface may require maneuvering, slowing down the
equipment or requiring the equipment to move without processing.

•	 Parts of the surface may cause a rough ride, have steep slope.
•	 Density variations depending on the trajectory.
•	 Accessibility for the transporters of various types.
Coordination needs to adapt to these varying and uncertain working

conditions. But, the coordination also impacts on these working conditions.
The “trajectory executed” affects how transporters may cross the surface to
service the mobile equipment (e.g., trucks cannot drive across a 1 m steep
slope created by the excavator, tractors must not drive over still-to-be-har-
vested crops). Using information about the surface, the trajectory selection
affects the expected yield (e.g., crop density will vary across fields where
historical data or aerial photography may allow for good estimates).

Case Studies and Research Projects 163

Overall, coordination – holonic execution systems – can make a difference.
When the truck is delayed in traffic, the mobile equipment shall be operated
in an energy-saving mode, minimizing losses on the surface, tackling tricky
parts of the surface, or perhaps performing small maintenance tasks. When the
site is near the processing unit or depot, the mobile equipment utilization is a
priority and the truck may have to wait when an optimized trajectory keeps
the mobile equipment out of reach until its reservoir is full/empty.

The research investigated the ability of a holonic execution system to
generate detailed plans for the cooperating vehicles and to maintain these
plans for the changing conditions over time. In the implementation of such
on-line planning systems, modeling the planning environment precedes
planning and control stages. To model the system environment, the entities
in the open-air engineering environment are structured along the ARTI
reference architecture.

The novelty in addressing this application domain was twofold. Chron-
ologically, it was among the first to require multiresource allocation and,
especially, multiresource allocation for which a leader–follower approach
was ill-suited. In particular, the assignment of transporters to activities on
mobile equipment prompted the choice for a resource pool holon, manag-
ing a collection of very similar resources. Because this research preceded
to adoption of Erlang/OTP, the implementation of this approach did not
survive the project.

Second, this application domain involved modeling surfaces as resources
where activities modify the surface properties and where surface properties
determine resource capabilities. For instance, a corn field surface will have
initial location-dependent properties based on historical information and
measurements. When a combine starts to harvest, properties of the pro-
cessed parts of the surface need updating (e.g., indicating that tractors may
cross). Likewise, measurements by the harvesting equipment can be used
to improve the estimates for the unprocessed parts of the surface. DMAS
mechanisms explore the processing of these surface parts and, by propagat-
ing intention, predict the surface properties in function of time. For ex-
ample, the exploring ants for a tractor may see which paths to the harvesting
equipment will be available when it arrives as well as the estimated position
of the mobile equipment.

Overall, coordinating open-air engineering processes involves resource
allocation and trajectory determination. Using the DMAS mechanism,
this coordination aims to optimize one or more performance objec-
tives, for example, bottleneck utilization, energy consumption, etc. In an

Design for the Unexpected164

open-air engineering process, the work vehicles perform operations at
geographically distributed locations (mine site, storage depot, grain fields,
etc.). Because of the open and distributed nature of open-air engineering
processes, disturbances and variations are highly prevalent in their operat-
ing environments.

In practice, plans are generated before the process starts, based on ap-
proximate resource performance and predicted operating conditions. Al-
though these plans provide a good starting reference for execution, they
are unable to provide the necessary visibility for continued execution of
the processes, which are subject to uncertainty and variations. For effective
execution, gaining visibility at run time, hence, is imperative. With more
run time information, it becomes easier to identify sources of problems or
opportunities and take effective decisions. This is what holonic execution
systems are designed to provide.

In view of the earlier-discussed developments, the research team made
the following contributions:
•	 The research addressed 2D surfaces (but not necessarily flat) as resources.
•	 The research addressed 2D surface changing state/properties (e.g., fields

get harvested, open air mines get excavated).
•	 Multiresource allocation was addressed where needed (e.g., combine

harvester and tractor executing a rendezvous to transfer wheat or corn).
Future research may address the development of generally applicable
solutions for multiresource allocation (i.e., a solutions library).

MODUM – Models for Optimizing Dynamic Urban Mobility
(Philips et al., 2013; Yperman, 2007)
MODUM was an FP7 Project on intelligent traffic and transportation sys-
tems (ITTS). The holonic architecture ARTI and the architectural pattern
DMAS were applied to traffic coordination. This led to a Traffic Radar, using
ARTI to model the traffic infrastructure and several DMASs to forecast
traffic flows.

In this holonic architecture, the traffic infrastructure, that is, the road net-
work, is represented by two distinct resource type holons: link holons and node
holons. Furthermore vehicle holons, represented by activity instance holons,
correspond to trips in the traffic network, originating from traffic users.

A link holon is involved in three distinct actions. First, dynamic map
information, received by, for example, a traffic monitoring system, is used to
update its state. Second, based on this dynamic map information, for exam-
ple, indicating traffic density, propagation of flows and cumulative functions

Case Studies and Research Projects 165

are calculated. Third, back-propagation of queues, for example, due to bot-
tlenecks, is performed. Here, D4U is combined with research results from
the ITS research community (Yperman, 2007).

Link holons provide D-MAS services to other holons. The Execute
Scenario service can be used to perform a what-if scenario on the holon
returning travel time on the respective link given an arrival time and es-
timated traffic density. The ProclaimScenario service enables holons to also
indicate their intention to arrive on the link. Finally, the PropagateScenario
service supports adapting upstream or downstream flow on the link.

A node holon is involved in detecting capacity constraints. If flow in-
consistency between upstream and downstream links in a particular node
occurs, for example, due to an accident bottleneck, the flow has to be adapt-
ed. To propagate traffic flow constraints both upstream and downstream, the
node holon creates flow ants. This propagation models spill back over links
and nodes. The other services offered by node holons are identical to those
of link holons.

Vehicle holons represent users driving through the traffic network and,
therefore, also virtually move through the link and node holons. They send
out exploring and intention ants. These ants drop pheromones on the traffic
infrastructure holons to respectively search and proclaim the route of the
relevant vehicle holon from its origin to destination.

In view of the earlier-discussed developments, the research team made
the following contributions:
•	 A successful translation of the manufacturing solution to mobility ap-

plications.
•	 The integration of “dynamic network loading models” or DNL

models – from ITTS research – into the solution. This delivered a best-
of-both-worlds design. ARTI with DMAS is able to propagate user in-
tentions to generate predicted travel routings and road segment loadings.
However, a naïve DMAS implementation is ill suited at computing the
backpropagation of congestion. Here, the DNL models excel and are
highly efficient. Conversely, traffic models are ill equipped regarding
forward-propagation (as they have no concept to include detailed user
intentions) whereas DMAS excel here.

•	 Note that when the solution is deployed such that congestions rarely
occur in reality (i.e., when they are predicted, user intentions adapt ei-
ther voluntarily or through regulation when and where the congestion
prediction persists), the demands on the DNL models are low; they only
are used to stay out of congested states whereas there is no need to

Design for the Unexpected166

model the precise behavior within such congested states (i.e., no higher-
order modeling is needed, dependence on initial/boundary conditions
is low, etc.). The merger of results from two domains gives a superior
result as both are used where they function well.
Future research may address the following (nonexhaustive):

•	 The application of ARTI with DMAS to the public domain revealed
the need for accompanying innovations in the social domain. Indeed,
the developed solutions yield the most benefits when there is a high
level of participation in combination with a – beneficial level of – social
control. Specifically, the prediction generation through delegate MAS
needs high participation (the nonparticipating parties are considered
and treated as disturbances). And the social control prevents good deeds
from being punished; travelers accommodating others get rewarded for
their contribution. In fact, they can refrain from accommodating until
they have received guarantees for their reward.

•	 The project ended before it was able to address multimodal transport
in full. However, the nature of a D4U solution makes it plausible that
it only is a matter of modeling the world of interest in sufficient detail.
Note however that this open issue shares the multiresource allocation
challenges mentioned earlier already more than once.
Relative to 2015’s state of the art, HLES utilize the following ICT:

•	 This project made the transition to Erlang/OTP. It was a drastic im-
provement.

•	 Note that much of the unfinished items in the other cases, discussed
earlier, can be allotted to the difficulty/impracticality of addressing them
in the Java implementations.

Railway Operations (De Swert et al., 2006)
On a much smaller scale, the team looked at railway systems. Again, the is-
sue of handling long commitments emerged (Cf. ELC2 project). In railway
operations, with trains being unable to overtake, the challenge of anticipat-
ing the impact of decisions needs addressing, for instance by exploring and/
or intention ants making roundtrips, collecting information on the way out
and building a solution/journey on the way back.

Smart Grid (Rutten and Valckenaers, 2013)
Also on smaller scale, smart grid applications were investigated. The research
looked in active demand at the smallest granularity possible, acknowledging

Case Studies and Research Projects 167

that aggregating afterward is far easier than the reverse (in IT systems). It
foremost was an exercise in covering continuous-time domains:
•	 Whereas products in a factory and travelers on the road execute a trajec-

tory visiting resources (e.g., processing equipment and road segments re-
spectively), electricity consumers and producers have a time-continuous
profile for their consumption or production, respectively. Consequently,
intentions will be profiles in function of time of power, energy, etc. Note
that the smart grid community introduced the notion of prosumers,
which may both produce or consume.

•	 Electricity is a single commodity. Here we point out that electrons
injected at one point in the grid, sold by producer P, do not have
to be transported and distributed to consumer C, who bought this
from P. Electrons are exchangeable, which is not true for the above
applications.
This offered an interesting challenge for the application of the

PROSA+DMAS concepts. It proved possible to design an exploring DMAS
as well as an intention-propagating DMAS, not only for energy or power
consumption but equally for the distribution of this power across phases, for
voltages, for reactive power, etc.

Interacting with the smart grid community revealed that the above
remains foremost an exercise in applying D4U to an application do-
main with radically different properties, showing that it is possible to
effectively use the D4U concepts and approach in such domains. What
remains to be investigated and described is where and how D4U is best
applied and used within a smart grid. Or in other words, where are the
conditions for a successful application fulfilled in a socioeconomic sense?
And where and how can D4U be introduced within the comfort zones
of the grid community?

First of all, note that the economic gains from applying D4U in a smart
grid are limited in comparison to, for example, the potential benefits in
manufacturing or health care. Energy still is relatively and surprisingly cheap
(as is transport in logistics). D4U gains come from exploiting the demand-
response margins, not from the energy generation and consumption per se.
This represents only a fraction of the economic value in the electricity grid.
Larger gains have to come from “not having to invest in building new in-
frastructure” (e.g., power lines). Moreover, consumers may avoid discomfort
by paying more (unlike traffic where this only brings better in-traffic-jam
entertainment) as long as blackouts are avoided.

Design for the Unexpected168

Within the grid and from a D4U perspective, there roughly are three
distinctive areas:
•	 Transmission (TSO3 domain)
•	 Distribution (DSO4 domain)
•	 Home domain.

Their suitability for D4U application differs considerably.

Transmission Network Operations
In the TSO domain, power is transported along a mesh of power lines at high
voltages. Only large installations (generators, industrial installations) are con-
nected to this highest level of the grid. From a D4U perspective, this is a small
system representing large investments serving a massive number of customers.
Hence, conventional manners of operating will most likely remain effective
and efficient. It is economically feasible to have teams of (well-paid) human
experts manage the transmission system with the assistance of ICT-based
planning and/or control systems in shifts covering 24 h every day of the year.
It is economically feasible to install (very) expensive sensors and actuators.

Moreover, the meshed nature of transmission networks requires a D4U
design that is similar/analogous to the MODUM design discussed above. To
model and compute the state of a power transmission network, the appli-
cable laws (i.e., Kirchhoff ’s laws) need to be accounted for. Existing systems
in the TSO domain are able to provide suitable services, which compute
the states and available capacities of the network elements over (near-future)
time (i.e., when provided with the boundary condition values).

These TSO services must then cooperate with an ARTI and DMAS
subsystem, which is using the (predicted) available capacities to explore for
solutions and reserve capacity for the prosumers in the smart grid. The
intention propagation provides inputs for the TSO services, allowing them
to compute the network state for future (predicted) boundary conditions
(i.e., what consumers, producers, and prosumers intend to do, propagated by
DMASs through their connection by their distribution system).

This may result in predicted improper states (e.g., overloading a power
line or voltage transformer some 3 h into the future). The refresh mecha-
nism of the D-MASs will observe this and have the activity holons adapt.

3Transmission System Operator: organization responsible for the high-voltage long distance
power grid.
4Distribution System Operator: organization responsible for a medium- to low-voltage part
of the grid, sitting between the end user (homes) and (a connection to) the high-voltage
transmission system.

Case Studies and Research Projects 169

Here, timely convergence has to be ensured; note that this can be done by
a virtual safety net that simply will be picking suitable victims (when the
self-organizing mechanisms remain ineffective).

However, the economic and technical benefits of applying the above
cooperation are doubtful. Currently, considering the transmission systems
to be copper plates connecting the distribution systems is likely to be suf-
ficiently accurate for coordination with DMAS on a grid scale. The errors
would be manageable disturbances. More in general, “balancing production
and consumption” first and handling transport second (as a control prob-
lem) appears to be a feasible approach in the grid at this level (recall that
power/electricity is single commodity).

Smart Homes
On the other extreme, the home level struggles with the (meagre) amount
of power (flexibility) on offer and the amount of ICT investment needed
for these small amounts of power. However, in the long run, these ICT
investments will be shared with other concerns (home security, comfort,
health care), and perhaps even cost savings when electrical appliances use
their networking capabilities to have their control panels solely on smart-
phones, tablets, and computers (simplifying the device itself).

Here, the system is huge, which implies that conventional approaches will
not work. The question is how to make them cooperate with the conventional
system (at the TSO and DSO levels). For instance, instead of developing a full-
blown D4U execution system, D4U insights can be used to make flexibility
available to the more conventional solutions. This offers two kinds of benefits.

First, it postpones as long as possible the conversion of a representa-
tion of the actually available flexibility into a format used by the prevailing
conventional problem-solving mechanism. This allows to change, improve,
or replace this problem-solving mechanism with little effort (i.e., the early
mechanisms do not become a legacy issue). It also makes visible/known
what the potential improvements for such mechanisms are when the infor-
mation reflects the actual flexibility (and not an information-losing projec-
tion on the format needed by the current problem-solving mechanism).

Second, a D4U representation of actual flexibility will mirror how this
connects to the nongrid side. It will provide a suitable starting point to co-
ordinate, across boundaries, between the electricity grid and, for instance, the
system that is using the electricity to cool, heat, cook, clean, charge, etc. More-
over, making flexibility explicitly available has the advantage that it can be
done beforehand (e.g., soft real time over the internet), whereas actually using

Design for the Unexpected170

this flexibility can happen very fast. Indeed, it can be used as reserve power to
manage an imbalance between supply and demand within seconds.

Distribution System Operations
The DSO domain is facing serious challenges. Individually, they may be
modest-size systems from a D4U perspective but they represent smaller
investments and serve fewer customers than in the TSO domain. Cost-ef-
fectiveness is an issue5 when upgrading the current systems to address the
future challenges posed by renewable energy and prosumers.

It is undecided whether the DSO domain will have the option to ad-
dress its upcoming challenges within its own domain. It may need to drasti-
cally improve its sensing and measuring capabilities as well as it actuation
and steering capabilities. But inside their own systems, the required invest-
ments (number of sensors and actuators multiplied by their unit costs) ap-
pears to be prohibitively high. Smart solutions, implying cooperation with
nonDSO entities, appear to be superior concerning cost-benefit.

Here, research may look into rendering a large number of low-quality
sensors, actuators into a high-quality aggregated sensor-actuator. The single
commodity property offers possibilities. However, these low-quality (consum-
er-grade) sensors and actuators will reside in the home domain. Possibly, a low
number of high-quality industrial-grade sensors may serve to calibrate and
complement the low-quality ones. Note that these consumer-grade sensors in
networked electrical compliance may become very cheap if this is planned and
standardized appropriately (i.e., integrated on the device control IC).

In addition, some kind of D4U execution system may be needed to turn
a large number of small actuators into an equivalent of a high-quality actuator.
Here, single commodity implies that this actuation may reprofile and must not
be responsible to the actual full profile. Here, the DSO network is not meshed
at any given instance. (It can be reconfigured and has the potential for meshing,
but this would only complicate its control without offering an incentive to do
so.) This provides a natural environment for DMASs.

Discussion
Overall, it still are early days for D4U in smart grids. Conditions for smart
solutions will be improving for the foreseeable future. It will be possible to
share costs with other application domains, and the growing importance of
renewable energy, electrical cars, heat pump, CHP installations, etc. will render

5Looking at one’s electricity bill, distribution accounts for a most significant percentage.

Case Studies and Research Projects 171

smart solutions more viable. The speed and the magnitude of this shifting will
determine what kind of solutions will be needed. For instance, current and
forthcoming practice relies on the fact that electricity is a single commod-
ity and the aggregated demand of a massive number of users averages into a
fairly predictable profile (in function of date, time, and weather). When the
intelligence in the grid and its users increases, these predictions may no longer
remain valid, and users may need to communicate their intentions and com-
mitment levels to preserve a usable forecast (as we have today).

Today, the smart grid community is solving its future challenges as they
present themselves by adequate solutions that respect the prevailing players as
good as possible. Importantly, preventing blackouts and providing balancing
power will and can be addressed by shifting household consumption without
a lot of intelligence (e.g., increase fixed day–night prices into four to five fixed
time periods) and demand response residing at big (industrial) prosumers.

Further increasing renewable power production is likely to be achieved
more economically by keeping sufficient conventional installations in the
stand-by mode (both spinning reserves and otherwise) than by massive intel-
ligence in households in the immediate future. Home intelligence investments
need to be extremely low cost (i.e., integrated in future products rather than
installed separately on existing). Or it needs to be paid for by other parties/
concerns than shifting electricity consumption. For example, home intelli-
gence for security, comfort, and health care may also be usable for energy man-
agement purposes and provide household demand response almost for free.

In conclusion, this research was interesting because of the radically differ-
ent nature of the application domain. However, the economic reality makes
it unlikely that fine-grained demand response will become a reality in the
foreseeable future. Electrical energy, electricity, remains relatively inexpensive,
and cherry-picking, utilizing the best and least complicated/discomforting op-
portunities first, is likely to keep the grid up and running. Note, however, that
design for the unexpected goes beyond grid intelligence for demand response.
Forthcoming research addresses more technical aspects concerning interoper-
ability (cf. Section “Smart Homes, Smart Grids, and Energy Storage”).

ONGOING AND FORTHCOMING CASE STUDIES

Current and forthcoming research is expanding the applicability of
design for the unexpected into two domains. The first is e-health. The sec-
ond is smart homes and interoperability; the focus is on storage of energy,
both electrical and thermal.

Design for the Unexpected172

E-health and Integrated Care (Valckenaers and
De Mazière, 2014)
Recent ongoing research has elaborated a conceptual HHES6 design7
targeting “integrated care and multidisease.” Applying ARTI and DMAS, pa-
tients and care providers are “extended” and “enhanced” by reality-mirroring
computer processes. For instance, there will be, for each patient or care
provider, an e-Person/holon comprising
•	 A resource type holon,
•	 A resource instance holon,
•	 An activity type holon,
•	 An activity instance holon.

These will be composite/aggregated holons, where each holon may be,
in turn, divided into intelligent beings (executable software models mirror-
ing reality) and intelligent agents (modeling the decision making).

A patient will be considered an aggregated resource in both the logistic
and medical sense. In the logistic sense, a patient must be, for example, pres-
ent for a medical intervention, must be conscious to answer questions, must
be physically able to self-inject insulin, etc. In the medical sense, a patient
is considered a composite resource comprising kidneys, a liver, a stomach,
a blood circulation system, etc. where, for example, these organs need to
have the capacity to tolerate medication and other treatments. Care provid-
ers will be considered resources required to execute health care activities.
Other resources, reflected in the HHES, correspond to equipment (e.g.,
a CT scanner) or supplies (or supply channels) for medication and other
consumables.

Health care activity instances use exploring and intention ants to coor-
dinate care proactively, even across organizational boundaries. Health care
activity types inform instances about the available options (e.g., self-inject
insulin or have another person inject the insulin). The activity instances
search for and recruit suitable resources to execute one of the options. They
do this proactively, discovering problems and opportunities early.

When the patient is injured and cannot self-inject insulin, the instance
looks for a person to assist as soon as information about the injury becomes
known. When in case of multidisease multiple medications are about to en-
ter the patient’s stomach or bloodstream together, the intention-propagat-
ing DMASs will inform the affected resource instance holons as soon as the

6Holonic Healthcare Execution System.
7TRL2.

Case Studies and Research Projects 173

corresponding activity instances are activated (and send out intention ants).
This information can be fed to a triage mechanism (implemented as an in-
telligent agent) to check for interaction among these medications. This may
change the “predicted” result of an activity instance step when executed
virtually, causing the activity types to account for interactions.

In health care, the challenge addressed in C4AM returns in full. The solu-
tion needs to distinguish – that is, provide separate but paired software com-
ponents – between best-guess and signed-off implementations (cf. Section
“Challenges and Lessons Learned from Applications,” Chapter 6). To generate
predictions efficiently, fully automated software of low computational com-
plexity must and will be employed. However, when decisions and actions are
for real, suitably authorized humans are to be involved (and in control).

Furthermore, privacy and information disclosure become key concerns.
MABE already delivered insights and mechanisms but further developments
are needed. Importantly, our solution – comprising communicating com-
puting processes – offers interesting opportunities and possibilities. Indeed,
it is possible to imitate human-based solutions in which two agents share
information on a need-to-know basis.

Moreover, the open nature of e-health applications, in particular our
patient-centered and empowering design in integrated care, calls for novel
ICT-enabled cooperation. In fact, this domain is highly suited to investigate
social innovations leading to new beneficial/desired manners for people
to live together. It is a vehicle to discover what is needed to create a warm
synergy-enabling mechatronic society.

Overall, e-health and especially integrated care crossing organizational
borders are suitable targets for the design for the unexpected. It has the right
properties, and it offers interesting challenges to trigger insights and the
development of capabilities.

Smart Homes, Smart Grids, and Energy Storage
Recently, D4U research in home automation and particularly in energy
storage focuses on devices and systems of devices, addressing in-depth in-
teroperability. Here, interoperability is understood to enable far-reaching
integration achieved by establishing the proper connectivity without having
to redevelop the components, devices, or systems themselves.

The research activities look at devices as a structured collection of re-
sources, on which activities execute. In-depth interoperability implies that
those resources remain accessible, also for unexpected uses. If the native de-
vice controls fail to support such unexpected use, interoperability support

Design for the Unexpected174

signifies that its resources can be deallocated from the native controls and al-
located to another one. Furthermore, resource instances need an agenda ser-
vice to enable proactiveness (provided by an intention-propagating DMAS).

Moreover, device services lacking critical mass also have to allow deal-
location and replacement when and where desired. This applies most defi-
nitely to the programming services and facilities offered and supported by
a device or system. The research will describe and communicate that there
exists a “valley of death” for programming facilities/languages/tools (offered
on devices).

On one side of this valley, the KISS principle is upheld. Only very sim-
ple services are available, which can be used without a lot of training or
expertise/talent and which pose few debugging challenges. Here, in-depth
interoperability typically requires external systems to have access to the
sensors, actuators, and state information of the device with sufficient
bandwidth and low delay. Indeed, the device services are lacking the expres-
sivity needed for nontrivial applications.

Older industrial automation technologies reside on this side of the val-
ley but they are very close to the edge (as they are programming tools), and
the valley is expanding in manners threatening to engulf them. Human tal-
ent, capable of developing nontrivial applications, may only be motivated
externally (e.g., by high wages or positions in the organization) to dedicate
time and effort to these technologies. The survival of these industrial tech-
nologies can be ensured by shrinking their responsibilities such that they in-
creasingly comply with the KISS principle (i.e., the technology can be used
by most employees knowledgeable about the application without needing
much programming skills or expertise).

On the other side of this valley, full-fledged programming languages,
tools, and platforms are used. They need critical mass (cf. Chapter 4). In
particular, talented computer scientists – or equivalent – must either already
master the programming technology or must be self-motivated to learn how
to use it. If it is necessary to motivate them and keep them motivated by
external means (e.g., by high wages or by a position in the organization that
cannot be given to all the members of a team), it is advisable to conclude
that the programming technology resides somewhere in this valley of death.

The programming technology of choice in our more recent research,
Erlang/OTP, resides on this other side of the valley but sits still close to its
edge. Mainstream technologies (C/C++, C#, Java, Python) are situated at
a safe distance today but the valley is shifting. It is shifting in directions that
favor Erlang/OTP as distributed and massively multithreaded programming

Case Studies and Research Projects 175

rapidly are becoming the norm. Furthermore, this technology offers ad-
vantages over mainstream alternatives that are relevant and even decisive.
For instance, it significantly reduces the effort to transform a lab prototype
into deployed solution.8 Moreover, the robustness and stability of Erlang
technology implies that it is sitting on very firm ground next to the valley,
allowing it to survive for more than 25 years.

In contrast, the newer sophisticated technologies from industrial automa-
tion are situated inside this valley, which is expanding in manners that make
this situation worse for the foreseeable future. The absence of mature open
source support is a tell-tale sign for many of these technologies. Indeed, how
does industry expect a widespread adoption by teaching institutes when it is
behind payment walls or requires time-consuming9 negotiations to get free
access for ICT or industrial automation courses? Likewise, many technolo-
gies from the academic communities, including the artificial intelligence or
multiagent communities, do not appear to escape from this valley.

In general, it is a decisive and nontrivial matter to decide which program-
ming technologies to embrace. Too conservative is a sure death in the longer
run. Too adventurous equals risking death in the shorter run. It inherently is a
balancing act (Waldrop, 1993) confirming that life indeed resides in the small
region between order (too conservative) and chaos (too adventurous).

Concerning the activities that execute on the devices, which are imple-
mented with these programming tools, D4U principles require to make flex-
ibilities available. In this respect, research needs to discover what the agenda
services of devices have to offer. The discussed explorations in the smart grid
domain will be continued here. Overall, the smart homes and energy stor-
age research constitutes an instrument to design and describe (mechatronic)
device control architectures and systems that are designed for the unexpected.

ABBREVIATIONS
ARENA® Discrete event simulation and automation software
C4AM Control for additive manufacturing
CHP Combined heat and power
DSO Distribution system operators
FACCS Flexible assembly cell control system
HHES Holonic healthcare execution system
IC Integrated circuit
TRL Technology readiness level

8Going from TRL4/5 to TRL7/8.
9Time from ICT lectors and teachers.

Design for the Unexpected176

REFERENCES
Ali, O., 2010. Operational planning for outdoor engineering processes, Doctoral thesis, KU

Leuven.
Ali, O., Valckenaers, P., Van Belle, J., Saint Germain, B., Verstraete, P., Van Oudheusden, D.,

2013. Towards online planning for open-air engineering processes. Comput. Ind. 64 (3),
242–251.

Ali, O., Valckenaers, P., Van Belle, J., Saint Germain, B., Verstraete, P. In use adaptation of sched-
ule for multi-vehicle ground processing operations – EP2531014, US20130046525,
WO2011095614, European patent register.

De Swert, K., Valckenaers, P., Saint Germain, B., Verstraete, P., Hadeli, K., Van Brussel, H.,
2006. Coordination and control for railroad networks inspired by manufacturing. In:
Proceedings of the IEEE Workshop on Distributed Intelligent Systems. IEEE Work-
shop on Distributed Intelligent Systems. Prague, Czech Republic, June 15-16, 2006,
pp. 201-206.

Hadeli, K., 2006. Bio-inspired multi-agent manufacturing control systems with social behav-
iour, Doctoral thesis, KU Leuven.

Holvoet, T., Weyns, D., Valckenaers, P., 2009. Patterns of delegate MAS. Self-Adaptive and Self-
Organizing Systems. In: IEEE Computer Society. International Conference on Self-Adaptive
and Self-Organizing Systems. San Francisco, CA, USA, September 14-18, 2009, pp. 1-9.

Parunak, H., Brueckner, S., Weyns, D., Holvoet, T., Verstraete, P., Valckenaers, P., 2008. E plu-
ribus unum: Polyagent and delegate MAS architectures. In: Lecture Notes in Computer
Science, Vol. 5003, Springer, Berlin, Heidelberg, pp. 36–51.

Peeters, P., Van Brussel, H., Valckenaers, P., Wyns, J., Bongaerts, L., Kollingbaum, M., Heikkilä,
T., 2001. Pheromone based emergent shop floor control system for flexible flow shops.
Artif. Intell. Eng. 15 (4), 343–352.

Philips, J., 2012. Holonic task execution control of multi-mobile-robot systems, Doctoral
thesis, KU Leuven.

Philips, J., Valckenaers, P., Aertbeliën, E., Van Belle, J., Saint Germain, B., Bruyninckx, H., Van
Brussel, H., 2011. PROSA and delegate MAS in robotics. Holonic and Multi-Agent
Systems for Manufacturing, Vol. 6867, Springer, Berlin, Heidelberg, pp. 195-204.

Philips, J., Valckenaers, P., Bruyninckx, H., Van Brussel, H., 2012. Scalable and robust co-
ordination of multiple mobile robots using PROSA and delegate MAS. International
Symposium on Robotics, pp. 527-532.

Philips, J., Saint Germain, B., Van Belle, J., Valckenaers, P., 2013. Traffic radar: a holonic traffic
coordination system using PROSA++ and D-MAS. In: Lecture Notes in Computer Sci-
ence, Subseries Lecture Notes in Artificial Intelligence. Industrial Applications of Holon-
ic and Multi-Agent Systems, Vol. 8062, Springer-Verlag, Berlin, Heidelberg, pp. 163-174.

Rutten, L., Valckenaers, P., 2013. Self-organizing prediction in smart grids through delegate
multi-agent systems. In: Bajo Pérez, J., Corchado Rodríguez, J., Fändrich, J., Mathieu,
P., Campbell, A., Suarez-Figueroa, M., Ortega, A., Adam, E., Navarro, R., Moreno, M.
(Eds.), Advances in Intelligent System and Computing, Vol. 221, Springer International
Publishing, PAAMS, Salamanca, June 23-25, 2013.

Saint Germain, B., 2010. Distributed coordination and control for networked production
systems, Doctoral thesis, KU Leuven.

Saint Germain, B., Verstraete, P., 2002. Multi-agent fabrieksbesturing in Java, Master thesis
KU Leuven, (in Dutch).

Saint Germain, B., Valckenaers, P., Van Brussel, H., Van Belle, J., 2011. Networked manufac-
turing control: an industrial case. CIRP J. Manuf. Sci. Tech. 4 (3), 324–326.

Saint Germain, B., Valckenaers, P., Van Belle, J., Verstraete, P., Van Brussel, H., 2012. Incorpo-
rating trust in networked production systems. J. Intell. Manuf. 23 (6), 2635–2646.

Simon, H.A., 1990. The Sciences of the Artificial. MIT Press, Cambridge, MA.

http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0010
http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0010
http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0010
http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0015
http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0015
http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0015
http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0020
http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0020
http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0020
http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0025
http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0025
http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0025
http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0030
http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0030
http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0030
http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0030
http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0035
http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0035
http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0035
http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0035
http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0035
http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0040
http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0040
http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0045
http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0045
http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0050

Case Studies and Research Projects 177

Sterrit, R., Parashar, M., Tianfield, H., Unland, R., 2005. A concise introduction to auto-
nomic computing. Adv. Eng. Inf. 19, 181–187.

Valckenaers, P., De Mazière, P., 2014. Innovative ICT Systems for Integrated Care. Pro-
ceedings Med-e-tel, global telemedicine and ehealth updates: knowledge resources 7,
464–468, ISSN: 1998-5509.

Valckenaers, P., Van Brussel, H., Bongaerts, L., Bonneville, F., 1995. Programming, scheduling,
and control of flexible assembly systems. Comput. Ind. 26, 209–218.

Valckenaers, P., Saint Germain, B., Verstraete, P., Van Belle, J., Van Brussel, H., Hadeli, K., 2009.
Intelligent products: agere versus essere. Comput. Ind. 60 (3), 217–228.

Valckenaers, P., Van Brussel, H., Bruyninckx, H., Saint Germain, B., Van Belle, J., Philips, J.,
2011. Predicting the unexpected. Comput. Ind. 62 (6), 623–637.

Van Belle, 2013. A holonic logistics execution system for cross-docking, Doctoral thesis, KU
Leuven.

Van Belle, J., Saint Germain, B., Verstraete, P., Valckenaers, P., Ali, O., Van Brussel, H., Cattrysse,
D., 2009. A holonic chain conveyor control system: an application. International Con-
ference on Industrial Applications of Holonic and Multi-Agent Systems, pp. 234-243.

Van Belle, J., Saint Germain, B., Valckenaers, P., Van Brussel, H., Bahtiar, R., Cattrysse, D.,
2011. Intelligent products in the supply chain are merging logistic and manufacturing
operations. Eighteenth IFAC World Congress, pp. 1596-1601.

Van Belle, J., Valckenaers, P., Saint Germain, B., Bahtiar, R., Cattrysse, D., 2011. Bio-inspired
coordination and control in self-organizing logistic execution systems. Ninth IEEE In-
ternational Conference on Industrial Informatics, pp. 713-718.

Van Belle, J., Saint Germain, B., Philips, J., Valckenaers, P., Cattrysse, D., 2013. Cooperation
between a holonic logistics execution system and a vehicle routing scheduling system. In:
Eleventh IFAC Workshop on Intelligent Manufacturing Systems, vol. 11(1), pp. 184-189.

Van Belle, J., Philips, J., Ali, O., Saint Germain, B., Van Brussel, H., Valckenaers, P., 2014.
A service-oriented approach for holonic manufacturing control and beyond, section
3.1.2. In: Service Orientation in Holonic and Multi-agent Manufacturing and Robotics,
Springer, Berlin, 2014.

Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L., Peeters, P., 1998. Reference architec-
ture for holonic manufacturing systems: PROSA. Comput. Ind. 37, 255–274.

Verstraete, P., 2009. Integrating existing scheduling techniques into the holonic manufactur-
ing execution system, Doctoral thesis, KU Leuven.

Waldrop, Mitchell M., 1993. Complexity: The Emerging Science at the Edge of Order and
Chaos. Simon and Schuster, New York, 380 pages.

Yperman, I., 2007. The link transmission model for dynamic network loading, PhD thesis,
KU Leuven.

Zamfirescu, C., Valckenaers, P., Hadeli, K., Van Brussel, H., Saint Germain, B., 2003. A case
study for modular plant control. In: Holonic and Multi-Agent Systems for Manufactur-
ing, Springer, Berlin, pp. 268–279.

http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0055
http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0055
http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0060
http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0060
http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0060
http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0065
http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0065
http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0070
http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0070
http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0075
http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0075
http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0080
http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0080
http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0080
http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0080
http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0085
http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0085
http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0090
http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0090
http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0095
http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0095
http://refhub.elsevier.com/B978-0-12-803662-4.00007-2/ref0095

179
Design for the Unexpected. http://dx.doi.org/10.1016/B978-0-12-803662-4.00008-4
Copyright © 2016 Elsevier Inc. All rights reserved.

Work by Others

Paul Valckenaers*, Hendrik Van Brussel**
*Faculty of Engineering Technology, KU Leuven
**Faculty of Engineering Science, KU Leuven

This chapter discusses work on multiagent (manufacturing) execution sys-
tems by others. It is not our intention at all to provide coverage or com-
pleteness for the research domain. Moreover, the inclusion or omission of
contributions by other research teams does not reflect their importance or
impact. The sole goal of our selection is to deepen the readers’ understand-
ing of this book. In particular, the section aims to highlight differences and
similarities while discussing the trade-offs involved as well as the context,
which induced these other teams to make their choices.

PRODUCTION 2000+ (Bussmann et al., 2004; Schild and
Bussmann, 2007)

This research is well documented at www.stefan-bussmann.de/en/
agents/p2000p.html. Its agent-based control system comprises three types
of agents:
•	 A work piece agent for every work piece in the system
•	 A machine agent for every machine tool of the system
•	 A switch agent for every routing element in the transport system

The work piece agents – knowing the state and processing graph of
their work piece – look for processing capacity to execute their “operations
to be performed next.” The allocation of a next machine is carried out by a
simple first-price, single-round auction.

The protocol is initiated by a work piece agent. It determines the next op-
erations to be performed as well as a list of all the machines that are configured
to perform (part of) these next operations (by looking into a static configura-
tion list). The work piece agent then sends an invitation to bid, which includes
a specification of the operations to be performed, to all the machines in the list.

Next, the machine agents send a bid, including (i) the current size of
their virtual buffer and (ii) the maximal set of operations they can perform
during a single visit by the work piece. The work piece agent then collects

CHAPTER EIGHT

http://www.stefan-bussmann.de/en/agents/p2000p.html
http://www.stefan-bussmann.de/en/agents/p2000p.html

Design for the Unexpected180

all bids and awards the best bid. Both components of a bid are used where
the current size of the machine’s virtual buffer has the higher priority (to
balance the workload). The awarded machine then includes the work piece
in its input buffer.

This allocation protocol (www.stefan-bussmann.de/en/agents/
p2palgorithm.html#allocation) is actually more elaborate. Importantly, this
protocol was designed for the following operating range, in which good
performance will be achieved:
•	 A flexible transportation system able to move a work piece from any

machine to any other machine as required by product variants.
•	 Flexible machines providing a range of operations to produce any vari-

ant of a product type.
•	 Large-series manufacturing in which a single work piece must be fin-

ished at some time, but not in the shortest time possible and not with a
relative priority.
Overall, these are conditions in which a local and myopic decision is

competitive with planning ahead. Note also that major characteristics of
the underlying production system (e.g., flexible transport) are “hardcoded”
in the design. And data formats are exchanged that inherently make as-
sumptions about the process plans (product holon) and resource (type)
capabilities.

The control system development itself applied the following steps:
1. Analysis of decision-making. The team identifies and analyses the control

decisions that are necessary to operate the manufacturing process. Also,
dependencies between the decisions, causing a need for interaction
during the execution, are identified and incorporated into a decision
model.

2. Identification of agents. This step determines the system architecture of the
agent-based control system. In particular, it decides about the agents in
the control system while focusing on the decisions they are responsible
for (including the interaction needed for these decisions).

3. Selection of interaction protocols. From a library of existing (agent-oriented)
interaction protocols, a (most) suitable interaction protocol is selected
and, as required, adapted to the specific needs of the particular case.
The development approach is based on the observation that, in industry,

every manufacturing process requires a different kind of flexibility and func-
tionality; there is no one-fits-it-all agent-based control system. When designing
a control application, designing/customizing the agents of the control system
must be part of the implementation process. This observation is correct: as a

http://www.stefan-bussmann.de/en/agents/p2palgorithm.html
http://www.stefan-bussmann.de/en/agents/p2palgorithm.html

Work by Others 181

rule, manufacturing systems will have special needs relating to and, when de-
cisions are the concern, impacting on a company’s competitiveness.

The adopted approach leaves all participants in their comfort zone. Its
objectives include providing methodologies that enable an ordinary1 (man-
ufacturing) engineer to apply agent technology without being an expert
in agent technology. It also does not encourage the IT specialist to capture
insightful manufacturing expertise and knowhow in software components
or systems; reflection of the world of interest, as in D4U, is not prominently
present in the approach or methodology.

The project was extremely successful concerning technical performance
improvement over conventional dedicated production lines using hard au-
tomation. Nonetheless, the agent-based control system was not adopted
beyond the initial manufacturing plant. The company learned which flex-
ibility is most beneficial and, subsequently, introduced more targeted
flexibility in more conventional production systems using industrial auto-
mation software technologies. This was less expensive and could be done
with readily available (human) expertise. Because too many properties of
the ultra-flexible manufacturing system in Production 2000+ had been
“hardcoded” into the agent-based control system, this system could not
adapt fast enough and, thus, was unable to compete against solutions that
benefited from insights generated by this project.

Discussion
Production 2000+ advocates the complete opposite of design for the unex-
pected. Its approach and development methodology is based and focusing on
the decision making whereas in design for the unexpected, reality mirroring
in executable models constitutes this primary concern. In D4U, decision-
making elements are introduced late and the overall system must never
become highly committed to them.

The inability of Production 2000+ to adapt to a different underlying
(manufacturing) system played a key role in its demise. However, a D4U
solution would have been significantly more complex, if only because of the
DMAS implementations that it uses to have its decentralized decision making
compete with more conventional planning ahead. Applying the KISS prin-
ciple did not save the DACS2 methodology proposed by Bussmann. Agent
interaction protocols, which are its main source of reusable software, deliver

1 From the perspective of the ICT developers in the Production 2000+ team.
2 The design methodology proposed by Bussmann from his Production 2000+ experience.

Design for the Unexpected182

far too little of the overall functionality that is required from a control system.
More reuse of software and more sharing among multiple users is needed.

D4U and DACS are opposites. But this does not imply that either needs
to be wrong. The DACS approach and steps in Production 2000+ are well
suited for a final development phase: they come last and implement the fea-
tures and functionality as requested by the user. It is suited to finish the job.
In contrast, design for the unexpected is superior to develop the reusable
platforms on top of which a Production 2000+ approach builds a specific
working system. Note that, when combining D4U and DACS, this final
phase develops pure decision making components, not full-fledged agents.

XPRESS (XPRESS, 2007–2011)

XPRESS – Flexible Production experts for reconfigurable assem-
bly technology – is a so-called Integrated Project funded by the European
Commission under FP6-NMP. Its research has been continued in an aca-
demic setting and published in Peschl (2014). The goal of XPRESS was
to establish a flexible production concept based on the idea of “special-
ized intelligent process units” (called expertons) for customized production.
XPRESS aimed to integrate intelligence and flexibility at the highest level
of the production control system as well as at the lowest level of the singular
machine. The expertons have been renamed into manufactrons for “legal”
reasons (some other party already possessed rights on the experton name).

Developments Driven by End User Requirements
In contrast to D4U, which started from a theoretical understanding of the
root causes for failure during integration, XPRESS starts from identifying
and consolidating industrial requirements. While starting from end user re-
quirements is not a panacea for success, these requirements reflect the desid-
erata of the industrial automation and manufacturing communities as well
as their (lack of) insight. They constitute a valuable research result as such.

A common risk, when using user requirements to drive developments,
are overly tight connections to these requirements. For instance, consider the
requirement for deterministic behavior. This normally is achieved by con-
straining what the system elements may do. However, such constraining can
be introduced late. A user requirement for deterministic behavior implies that
early developments may not prevent such constraining but does not mandate
that such constraining needs to be introduced at all levels and at all times.

Work by Others 183

Wishful thinking – the Christmas list syndrome – is another issue, with
user requirements driving development too tightly. Technology hyping is caus-
ing considerable damage whenever user expectations prove illusionary. For
instance, looking again at the requirement for deterministic behavior, a highly
constraining design may – deterministically – result in some unacceptably
poor behaviors when adapting to a-nominal situations is rendered impossible.

Failure to recognize how the world is changing outside the own domain,
and how inevitable and serious its impact will be, is common in industrial
and manufacturing automation. For instance, the Manufacturing Automation
Protocol3 failure and demise is easily explained by the insights on autocata-
lytic sets in Chapter 4 (i.e., caused by the absence of critical user mass).

Today, the industrial automation community needs to recognize that the
sophistication of their envisaged automation projects requires the skill level
of a master in information and communications technology (ICT). When
considering the implications for the own career, the talented holders of
such an ICT degree will be reluctant to invest their own time in industrial-
automation-only technologies (as they have plenty of other opportunities
to dedicate their career to).

In other words, user requirements are valid information but need further
“processing” if they are to drive developments. In this respect, XPRESS has
a lot of respect for the comfort zone of the industries (manufacturing and
industrial automation) but has little consideration for the manner in which
the world is changing, and how mainstream ICT may impact industry.

Task-Description-Driven Manufacturing (Peschl, 2014)
XPRESS distinguishes:
•	 Task-driven intelligent production equipment. Input is a task description, goal,

and boundary conditions. Output is the result of the task execution. The
experton/manufactron interprets the input, executes the task, and as-
sesses the result.

•	 Workflow execution at the manufacturing execution system (MES) level. In-
put is the eBOP (electronic bill of processes) and feedback from previ-
ous processing steps. Output is task descriptions for the next processing
steps, possibly modifying the sequence (e.g., to perform rework). Ex-
perton/manufactron orchestration by workflow and quality managers
handles workflow routing as demanded by the situation and optimizing
as indicated.

3 http://en.wikipedia.org/wiki/Manufacturing_Automation_Protocol.

http://en.wikipedia.org/wiki/Manufacturing_Automation_Protocol

Design for the Unexpected184

•	 Workflow generation at the ERP level. Input is product description and
optimization target. Output is the eBOP for the MES level and task
descriptions for all processing steps.
The overall idea is a task-driven manufacturing system in which exper-

tons/manufactrons are self-contained entities, encapsulating expertise and
functionality, which interact with their environment by the exchange of
standardized synchronous messages. These self-contained entities aim for
plug & produce.

Note that from a PROSA and ARTI perspective, the overall idea is more
accurately described by “task description driven.” Indeed, a key distinction
from PROSA and ARTI (or Production 2000+) is the passive role of the
activity instances (or work pieces). XPRESS automates the common orga-
nization in manufacturing: production lines comprising processing units/
stations, which are intelligent (experts), executing tasks on dumb products/
parts.

XPRESS uses TDDs (task description documents) and QRDs (quality
result documents), which corresponds to holons (agents) that are so-called
first-class citizens in PROSA and ARTI (Production 2000+). Resource in-
stances have self-description documents whereas ARTI has holons.

Discussion
A major merit of XPRESS is its respect for the manufacturing community
and its comfort zone. Its main weakness is too much respect for the manu-
facturing automation community and its comfort zone; there is a lack of at-
tention to the influence and impact from changes beyond this community. As
the wording “experton” betrays, the project sees the world through the eyes
of manufacturing process experts while the remainder aims at fitting as good
as possible with current practices in existing manufacturing organizations.

The innovations that XPRESS attempts to introduce (will) reside, most
likely, inside the valley of death discussed in Section 7.3. The description docu-
ments in XPRESS may either need a level of expressiveness that requires an
unachievable critical user mass or may be overly simplistic for the project’s
ambitions. Here, the original terminology (experton) reveals the bias of this
research effort: manufacturing process experts running the factory while
management remains an afterthought. XPRESS is focusing on the consid-
erable challenges of getting the manufacturing processes running correctly
and efficiently while the logistic concerns have to follow.

ARTI aims for a separation of concerns, which enables these process
experts to focus on their manufacturing process without bothering with

Work by Others 185

the routing, logistics, etc. But D4U also induces these experts to minimize
their interfering and meddling with these workflow management concerns.

However, this does not disqualify the XPRESS results. It only positions
them where most of the industrial automation is likely to end: they will
implement the elementary processing steps in a manufacturing environment.
However, the orchestration in a demanding and dynamic environment and
integration on a larger scale will escape them. Indeed, as soon as the applica-
tion’s complexity escapes the abilities of a bachelor in industrial automation,
a suitably skilled master in IT (or equivalent) is required. But recruiting
of such human talent will require and results in a much larger role of
mainstream ICT, hardened for industrial application but not invented by
industrial automation (cf. industrial implementations of Ethernet).

The days in which industrial and manufacturing automation is allowed to
create its own ICT solutions are gone. In communication technology, Ethernet
has pushed MAP (manufacturing automation protocol) into oblivion already
some decades ago. Other ICT technologies will follow. Autocatalytic set domi-
nance (critical user mass) is a law of the artificial that cannot be ignored as soon
as the conditions for its applicability become a reality. This is happening now.

Relative to D4U, XPRESS neglected to exploit all major sources for
components and systems that comply with the first design principle. It has
no first-class citizenship for activity instances and types; they are reduced to
documents. This has repercussions for the (non-)adaptation of the technol-
ogy (cf. valley of death). This impairs its range of scalability and applicability.
When facing a network of production departments within a factory, organi-
zations without production lines, and products with challenging processing
requirements, obstacles will be encountered.

PROSA SIBLINGS – ADACOR (ADACOR, home page;
Leitão, 2004; Leitão and Restivo, 2006)

This section discusses ADACOR – an agile and adaptive holonic ar-
chitecture for manufacturing control – which is PROSA compliant but not
D4U compliant.

ADACOR distinguishes four basic holons: supervisor, product, task, and
operational. Product, task, and operational holons readily map onto the base
holons in PROSA. However, the supervisor holons are no staff holons: they
are mandatory. In PROSA terminology, this holon is an aggregated resource
holon providing supervisor functionality and comprising operational ho-
lons and even task holons as sub-holons.

Design for the Unexpected186

ADACOR recognizes two alternative states: a stationary state, where the
supervisor holon provides global optimization of the production process,
and a transient state, triggered by the occurrence of disturbances, where
the operational holons operate in a heterarchical mode. In stationary state,
the holons are organized in a federated architecture, with the supervisor
holon elaborating optimized schedules as a coordinator. If the system de-
viates from the planned behavior, for example, due to a machine failure,
the control system enters in the transient state. ADACOR provides mecha-
nisms to return from a transient state to a stationary state. To this end, these
mechanisms spread a digital pheromone establishing an “autonomy” level,
which determines whether and where the control operates in a “stationary”
or “transient” state.

The focus of ADACOR architecture is the shop floor level, and es-
pecially flexible manufacturing systems organized in job shop production
type, characterized by concurrent and asynchronous processes with non-
preemptive operations and offering alternative product routings. In this re-
spect, ADACOR is a partial instantiation of PROSA. Conceptually, it starts
from the reference architecture and introduces additional properties, reduc-
ing the scope but increasing the functionality. For its focus, ADACOR is
closer to a fully operational production control system (less implementation
work remains to be done). But it pays a price: outside its focus, it needs to
be adapted (design choices need to be undone) whereas PROSA only needs
to be further elaborated. This increased focus is not D4U compliant.

The exploration and intention propagation DMASs in PROSA and
ARTI employ a different mechanism to cooperate with optimizing/sched-
uling holons. Each activity instance holon re-evaluates individually – when
creating an intention ant – whether to follow the scheduling advice. Each
resource instance holon gives priority to reservation requests in accordance
with the scheduling advice. The scheduling remains optional, and switching
between “stationary” and “transient” is fine-grained. Note that implementa-
tions of these individual decisions by activity and/or resource instances are
able to coordinate, for example, by using a DMAS (i.e., D4U keeps options
open). It is possible to have an ADACOR-like design to manage schedule
adherence.

Importantly, ADACOR does not separate the generation of predic-
tions from the scheduling for optimization purposes. PROSA and ARTI
acknowledge that predictions are useful on their own (e.g., to organize aux-
iliary operations). Moreover, this D4U prediction generation – as it is un-
concerned with and therefore unconstrained by the needs of optimization

Work by Others 187

mechanisms – is able to give priority to an accurate reality-reflection cover-
ing all the might-be-relevant concerns and characteristics. This distinctive
quality of D4U designs (PROSA, ARTI, DMAS) is often overlooked in the
discussion of work-by-others by researchers aiming for optimized produc-
tion. In addition, the manner in which activity instances reconnect with
scheduling advice in a fine-grained manner equally fails to be registered
in these discussions. The ability to adopt schemes for reconnection with
advice, used by others, remains completely out-of-sight.

ADACOR is a prominent member of this collection of “PROSA sib-
lings.” ORCA-FMS is another example (Pach et al., 2014). Here, activity
instance holons never return to a stationary mode. However, they switch
individually. The idea is that the ORCA-FMS applicability range is charac-
terized by relatively short-lasting production times (from product launch till
shipment). Therefore, switching back is not important when more recently
launched (or to-be-launched) products benefit from a schedule based on
up-to-date information.

Relative to the work discussed in this book, this work-by-others spends
considerably more effort on performance optimization and evaluation. This
includes research into novel optimization mechanisms that adapt, self-organize,
etc. Until now, such performance optimization remains out of reach for
D4U, as it is inherently choice-rich and noncompliant with the first design
principle. How much is inherently and unavoidably out of reach for D4U
remains an open question. The prediction capabilities, generated by inten-
tion ants, also seemed out of reach in the past. It stays undecided whether
there are more discoveries to be made reconciling D4U with performance.
However, these are likely to bring a body of knowledge or a collection of
mechanisms/templates, not an enhanced architectural feature or pattern.

ANT COLONIES AND STIGMERGY

This section presents work by others that is mistakenly considered to
be closely related to D4U research. Two examples are discussed. There ex-
ists undoubtedly other work that is erroneously assumed to be relevant in
a D4U context.

ACO – Ant Colony Optimization
ACO is a single-shot problem-solving mechanism. This category of research
is completely out of scope for the research in this book. Holonic execution
systems address going concerns.

Design for the Unexpected188

This distinction is fundamental (Wegner, 1997). Taken to its extreme, a
technology like IBM’s Watson is outclassed by a basic thermostat in view of
Wegner’s insight that interaction is more powerful/expressive than compu-
tation. Watson receives a query, goes to work, and delivers a result. Nothing
happens until Watson receives another query. Each query initiates a single-
shot problem-solving activity. The thermostat takes care of a going concern:
keeping the temperature at its sensor close to the setting. It interacts with its
environment and it takes care.

It makes little sense to discuss or address single-shot problem solving and
handling going concerns in a single research context. Single-shot problem
solving allows to measure, qualify, and compare performance to an extent
that is unachievable for research addressing going concerns. Going concerns
research may utilize single-shot problem solving as a step in an ongoing
problem handling process. But cooperation across the border between the
two classes is pointless, even counterproductive, as soon as one party fails
(refuses) to appreciate how different these classes are (analogy: “still photog-
raphy specialists” looking at real-time TV images and judging based on the
quality of single images out of a TV broadcast fragment).

Stigmergy in Agent-Based Simulation and Decision
Support Systems
Another class of applications, which was inspired by stigmergy in ant colony
food foraging, develops considerably simpler systems than the holonic ex-
ecution systems discussed above. The world of interest is typically modelled
as a 2D grid, possibly with some levels (reflecting multistory buildings) or a
shaped surface (reflecting a mountainous area).

In this grid model, simple agents (e.g., programmed as small state ma-
chines) evolve, deposit simple digital pheromones (i.e., scalar values and
the pheromone type identifier), and sense digital pheromones. Importantly,
these applications are sufficiently simple for one person to be able to pro-
gram them in a matter of days, maybe a few weeks. The challenge is in
tuning these models and designing the agents (state models). Parunak and
Brueckner have developed numerous applications based on this approach.

An interesting example utilizes automated programming to generate the
agent programs (Parunak et al., 2007). The world model is extended with
a discrete third dimension: time. It is like a book with the middle page
corresponding to the present, the previous pages to the past, and the fol-
lowing pages to a – predicted – future. The past pages contain the observed
states (trace). The automatically generated agents are injected in the past and

Work by Others 189

execute their – programmed – behavior until the present. A criterion is eval-
uated to estimate how well they fit the past. The best-performing agents are
allowed to progress into the future. The result is used for decision support.

Note how this solution can operate online, processing new information
as it becomes available. It addresses the going concern of providing a predic-
tive situational awareness in situations where knowledge about the world
of interest is lacking and/or less than perfect. It not only predicts but learns
about the characteristics of the underlying system in a manner that can be
used for the predictions.

This is an approach that can be integrated in an ARTI system. Machine
learning can be used to estimate relevant properties, preferably with lots of
training data and slow changing properties. The learned properties can then
be used for virtual execution, or DMASs that deposit these scalar digital
pheromones can be used. In the latter case, the simplicity – which is very
desirable – normally introduces a tuning task: how to interpret these scalar
values that have no direct relationship to the corresponding reality. Overall,
this is complementary and captivating research. It shares interests with D4U,
unlike single-shot problem solving.

ABBREVIATION
ACO Ant colony optimization

REFERENCES
ADACOR, Web page: www.ipb.pt/∼pleitao/index.php/adacor.
Bussmann, S., Jennings, N.R., Wooldridge, M., 2004. Multi-agent systems for manufacturing

control: a design methodology. In: Series on Agent Technology. Springer-Verlag, Berlin,
Germany.

Pach, C., Berger, T., Bonte, T., Trentesaux, D., 2014. ORCA-FMS: a dynamic architecture for
the optimized and reactive control of flexible manufacturing scheduling. Comput. Ind.
65(4), 706–720.

Parunak, H.V.D., Brueckner, S., Matthews, R., Sauter, J., Brophy S., 2007. Real-time evolu-
tionary agent characterization and prediction. In: Sixth International Joint Conference
on Autonomous Agents and Multi-Agent Systems, Industrial Track.

Leitão, P., 2004. An agile and adaptive holonic architecture for manufacturing control, PhD
thesis, University of Porto, www.ipb.pt/∼pleitao/pjl-tese.pdf.

Leitão, P., Restivo, F., 2006. ADACOR: a holonic architecture for agile and adaptive manu-
facturing control. Comput. Ind. 57(2), 121–130.

Peschl, M., 2014. An architecture for flexible manufacturing systems based on task-driven
agents. PhD thesis, University of Oulu, jultika.oulu.fi/Record/isbn978-952-62-0366-9.

Schild, K., Bussmann, S., 2007. Self-organization in manufacturing operations. In: Commu-
nications of the ACM, Vol. 50, No. 12, pp. 74–79, Berlin, Germany.

Wegner, P., 1997. Why interaction is more powerful than algorithms. In: Communications of
the ACM, Vol. 40, No. 5, pp. 80–91, New York, USA.

XPRESS, Flexible production experts for reconfigurable assembly technology. FP6-NMP
Project no. 26674, 2007-2011.

http://www.ipb.pt/∼pleitao/index.php/adacor
http://refhub.elsevier.com/B978-0-12-803662-4.00008-4/ref0010
http://refhub.elsevier.com/B978-0-12-803662-4.00008-4/ref0010
http://refhub.elsevier.com/B978-0-12-803662-4.00008-4/ref0010
http://refhub.elsevier.com/B978-0-12-803662-4.00008-4/ref0015
http://refhub.elsevier.com/B978-0-12-803662-4.00008-4/ref0015
http://refhub.elsevier.com/B978-0-12-803662-4.00008-4/ref0015
http://www.ipb.pt/∼pleitao/pjl-tese.pdf
http://refhub.elsevier.com/B978-0-12-803662-4.00008-4/ref0020
http://refhub.elsevier.com/B978-0-12-803662-4.00008-4/ref0020
http://refhub.elsevier.com/B978-0-12-803662-4.00008-4/ref0025
http://refhub.elsevier.com/B978-0-12-803662-4.00008-4/ref0025

191
Design for the Unexpected. http://dx.doi.org/10.1016/B978-0-12-803662-4.00009-6
Copyright © 2016 Elsevier Inc. All rights reserved.

Summary and Outlook

SUMMARY

The story behind this book started by a fairly minimalistic modeling
of the mechanisms causing the failure of system integration efforts. From
the insights provided by this theoretical model, the research looked into the
design of systems and components avoiding the failure-causing mechanisms.
This resulted in design for the unexpected. Indeed, when developers want to
ensure that their design is suited for integration without control over what
needs to be integrated with, everything – even the unexpected – needs to
be accounted for (Taleb, 2010).

Design for the unexpected is not a brute-force approach, vainly at-
tempting to account for all eventualities. Instead and first, it is about devel-
oping as much as possible elements of a solution without the need to rely
on expectations (Chapter 3: Design Principles). Subsequent developments
that cannot avoid relying on expectations are introduced in manners that
still minimize this relying on expectations and minimize the effort required
to revise or undo. In other words, this book is about a scientific approach to low-
and-late commitment (while still allowing for early preparation).

Inherently, design for the unexpected only provides an intermediate solution – a
platform or basis – on which final solutions still have to be elaborated (see
Section “The Watchmakers’ Parable” of Chapter 4). The (stable) intermedi-
ate solution reduces the time and effort needed for such finalization while
improving service levels considerably. The surprising aspect of this research
is how much can be achieved by designing for the unexpected first and how
little remains to be done by finalization efforts afterward.

The most advanced research result is the development, based on the
Design Principles (Chapter 3) and the Laws of the Artificial (Chapter 4),
of a reference architecture (PROSA and its generalization ARTI) enabling the
description of the structure of the complex adaptive systems occurring and
emerging in mechatronic societies, and their interactions. The formalism is
scalable by its rigorous “separation of concerns” (Section “The PROSA Refer-
ence Architecture” of Chapter 5).

CHAPTER NINE

Design for the Unexpected. 192

The control dynamics (task execution) are ruled by the DMAS (Section
“Bio-inspired Coordination and Control in Holonic Execution Systems”
of Chapter 5), with the ability of short-term forecasting as the most important
ensuing feature, obtained by a decentralized virtual execution based on a digital
mirror image of the world of interest that reflects reality at all times, as a single
source of truth. DMAS is scalable and provides robustness to the controlled
system.

The universality and general applicability of the PROSA/ARTI/DMAS
framework are convincingly demonstrated in Chapter 7, with case studies
from a wide variety of mechatronic societies.

OUTLOOK – TOWARD A HUMANE AND RESPECTFUL
MECHATRONIC SOCIETY

Today’s society is transforming into a mechatronic society at a breath-
taking pace: ubiquitous computing, ambient intelligence, web 2.0, Internet
of Things, big data analytics, smart power grids, smart homes, smart cities,
smart harbors, intelligent traffic, intelligent multimodal transport and lo-
gistics, intelligent networked manufacturing, intelligent products, eHealth,
domestic robots, smart watches, self-driving cars, industry 4.0, etc. There is
no shortage of such buzzwords and slogans corresponding to the creation of
a world in which information processing and communication increasingly
play a larger role.

Every major change in society, although initiated to reap benefits, creates
issues. Privacy, responsibility, accountability, empowerment, social control,
etc. all need to be reinvented (Floridi, 2015). In today’s initial stages of this
transformation of our society, much remains to be learned. Among others,
the increasing returns1 characterizing ICT naturally result in monopolistic
and oligopolistic situations (e.g., Microsoft, Google, and Apple). Large orga-
nizations, including governments and other authorities, obtain the leverage
and power to unhealthy, risky2 extents. Whenever these large organizations
experience the wrong kind of pressure, which only is a matter of time, abuse
and damage to society will become reality.

1https://hbr.org/1996/07/increasing-returns-and-the-new-world-of-business
2The self-organizing mechanisms in our society imply that overly powerful authorities,
where this amount of power often is justified by crime fighting requirements, result in
organized crime becoming the authorities. Indeed, there is no balance/divide of power to
control the authorities and there is no way to hide, for organised crime, except by becoming
these authorities. It is only a matter of time and not a question whether this will happen.

https://hbr.org/1996/07/increasing-returns-and-the-new-world-of-business

Summary and Outlook 193

The contribution of design for the unexpected in this respect comprises
an architecture that stays close to its world of interest. D4U solutions mir-
ror the corresponding reality precisely to be protected against unexpected
future demands (Chapter 6). This has a beneficial side effect: humans are
mirrored in a single-source-of-truth design. For every human, there is a
single “e-person” available 24/7. In a D4U design, this e-person provides
the maximum amount of services and functionality related to the corre-
sponding real-world person. Indeed, this is exactly what makes the D4U
solution scale-able, integrate-able, and able to survive unexpected demands.

This opens perspectives to empower the individual well beyond the cur-
rent state of affairs. Information requests related to a person can be handled
by this e-person, whereby the human stays in control. For instance, requests
for medical information can be honored by not only providing the request-
ed information but also volunteering relevant additional information (e.g.,
flagging a relevant risk factor related to the requested information). When
all such requests are directed at this e-person, the corresponding human has
a handle to self-manage information processing that concerns his or her
person in cyberspace. Among others, the e-person will have an overview of
the parties asking and providing information.

This empowerment through an e-person provides, at least conceptu-
ally, solutions to tricky issues. For instance, when a powerful organization
makes an unauthorized request (e.g., for sensitive medical information), this
e-person may provide sanitized information. When another person (e.g.,
the medical doctor of this person) receives a similar request for the same
information from this unauthorized but powerful organization, consistently
sanitized information may be provided as this other person (medical doctor)
consults the e-person (of the patient) concerned. This effectively neutralizes
the dominant position that a powerful organization may abuse (e.g., under
competitive pressure).

Another example is an e-person receiving a request to confirm whether
some information is true and this is about an embarrassing situation some
20 years ago during this person’s youth. The e-person may label it as “please
forget, I sincerely regret…” and receivers of information about other per-
sons may filter such information out.

Such innovative solutions transcend the technological aspects on which
this book focuses. They call for inter-, trans-, and multidisciplinary ap-
proaches in which, for instance, an effective strategy is elaborated to estab-
lish an appropriate kind of “political correctness.” This correctness involves
always consulting the e-person and respecting its wishes in the absence of

Design for the Unexpected. 194

ample, relevant justification to do otherwise. Likewise, legal measures need
elaborating to achieve desired behavior under heavy pressures (e.g., in com-
petitive or political domains). Here, D4U needs joint research and develop-
ment with the social sciences and humanities.

Moreover, D4U offers (the potential to establish) superior services, in
comparison to current practice, precisely because it empowers its users (both
individual persons and groups). In particular, predicting the unexpected (by
exploring and intention propagation DMAS designs) delivers a service that
is out of reach of, for example, big data analytics. Indeed, the best way to
predict the future is to create the future. The intention propagation in com-
bination with commitment mechanisms is exactly implementing this saying
(in a distributed and collective manner). Here, persons are in charge of their
future (subject to respecting others) when their e-person searches for and
commits to a future by using DMASs on an ARTI infrastructure.

Again, this transcends technology; social sciences and humanities be-
come relevant, essential factors. Legal support may be needed to enforce
(self-decided, self-imposed) commitments. For example, a person leaving
for work late, allowing others to drive congestion-free to work during rush
hours, may have a commitment from the other drivers to leave a given
parking space free. This must be enforceable (such good deeds must remain
unpunished if a superior service from D4U traffic management systems is
to become a reality). Likewise, policy design needs to address situations in
which the individuals cannot agree within the DMAS-generated predic-
tions (e.g., what happens when the prediction indicates an undesirable con-
gested state and no improvement can be observed).

Moreover, completely new models for a world of interest may need
investigating. For instance, how can we model a world of interest for an in-
novative change management in organizations that empowers the individu-
als concerned, both for radical changes and continuous improvement pro-
cesses? Current practice reveals huge margins for improvement (cf. statistical
data on burnouts and depressions). How can we achieve the value-creation,
characteristic for market based organizations, in public services? How can
we counter unhealthy dominance in supply chains, resulting in selective and
poor information flows in markets (e.g., failure to have increasingly better
food at constant prices instead of apparently constant, but de facto lower,
quality food at lower prices)?

Today, the main topic on our research agenda is to create a mechatron-
ic society that is empowering, considerate, and hospitable toward humans.
This book reveals the tremendous opportunities that are still available and

Summary and Outlook 195

partially uncharted to make better use of the world’s scarce resources, to
a better functioning of the world’s infrastructure at all levels of size and
complexity, and to a more harmonic (mechatronic) society. Here, the an-
swers and solutions are available to researchers that are willing, able, and
allowed (by society) to transcend the borders of their own discipline and
comfort zone.

REFERENCES
Taleb, N., 2010. The Black Swan, second ed. Random House, New York.
Floridi, L. (Ed.), 2015. The Onlife Manifesto, Being Human in a Hyperconnected Era.

Springer International Publishing, ISBN 978-3-319-04092-9.

http://refhub.elsevier.com/B978-0-12-803662-4.00009-6/ref0010
http://refhub.elsevier.com/B978-0-12-803662-4.00009-6/ref0015
http://refhub.elsevier.com/B978-0-12-803662-4.00009-6/ref0015

197
Design for the Unexpected. http://dx.doi.org/10.1016/B978-0-12-803662-4.00010-2
Copyright © 2016 Elsevier Inc. All rights reserved.

What are (Software) Agents?

There is no widely accepted definition of the term agent that the authors
are aware of, which – by definition1 – implies that there exists no such
definition. A weak definition of a computing agent given by Wooldridge &
Jennings (Wooldridge, 2002).

Definition: An agent is a software program with the following properties:
•	 Autonomy: agents operate without the direct intervention of humans or

others, and have some kind of control over their actions and internal
state ...;

•	 Social ability: agents interact with other agents (and possibly humans) via
some kind of agent-communication language ...;

•	 Reactivity: agents perceive their environment (...), and respond in a time-
ly fashion to changes that occur in it;

•	 Proactiveness: agents do not simply act in response to their environment;
they are able to exhibit goal-directed behavior by taking the initiative.
Note that strong(er) definitions of an agent mainly reflect research com-

munities attempting to “hijack” something that may strengthen their “brand
name” in order to get access to funding, prestige, etc. and, therefore, rarely
provide any significant added value.

D4U, PROSA, ARTI, and DMAS mostly correspond to situations in
which several agents are interacting with each other, which leads to the
following definition:

Definition: A multiagent system (MAS) is a set of interacting agents.

DESIGN FOCUS

When developing such a multiagent system, two aspects have to be
considered:
•	 Agent design, focusing on the design of (the internal model of) the indi-

vidual agent.
•	 Society design, focusing on the responsibilities and corresponding interac-

tion between the different agents without specifying the internals of an
agent.

APPENDIX I

1To be widely accepted, a term needs to be widely known.

Design for the Unexpected198

The BDI (Beliefs-desires-Intentions) model (Rao and Georgeff, 1995)
and the subsumption architecture (Brooks, 1986) are both concerned with
agent design, as they offer guidelines for the design of an individual agent.
The PROSA and ARTI reference architectures on the other hand can be
considered as involved with society design.

SITUATED IN AN ENVIRONMENT

When using agent technology in a holonic execution system, D4U,
PROSA, ARTI, and DMAS have their agents evolve in a digital image of
the relevant reality: the agents are situated in a software environment. In con-
trast to high-profile research on situated agents, D4U agents may reason
by performing sophisticated computations and communications. What is
important is that these situated agents do not need their own representation
of the world to perform this reasoning. For example, each relevant physical
entity has a software counterpart in this software environment (the digital
image). There will be a single-source-of-truth design, which makes it easier
to maintain a correct and up-to-date representation of the world of interest
and it avoids inconsistencies and incompatibilities between internal repre-
sentations of different agents.

REFERENCES
Wooldridge, M., 2002. An Introduction to MultiAgent Systems. John Wiley & Sons,

Chicester,UK.
Rao, A.S., Georgeff, M. P., 1995. BDI-agents: from theory to practice (PDF). Proceedings of

the First International Conference on Multiagent Systems (ICMAS’95).
Brooks, R.A., 1986. A robust layered control system for a mobile robot. IEEE J. Rob. Autom.

RA-2, 14–23.

http://refhub.elsevier.com/B978-0-12-803662-4.00010-2/ref0010
http://refhub.elsevier.com/B978-0-12-803662-4.00010-2/ref0010
http://refhub.elsevier.com/B978-0-12-803662-4.00010-2/ref0020
http://refhub.elsevier.com/B978-0-12-803662-4.00010-2/ref0020

199
Design for the Unexpected. http://dx.doi.org/10.1016/B978-0-12-803662-4.00011-4
Copyright © 2016 Elsevier Inc. All rights reserved.

Simulation, Emulation, and
Modeling

The innovative software platform designs discussed in this book utilize sim-
ulation in a multitude of places for different purposes. However, the words
simulation and emulation have widely varying meanings depending on the
context in which they are used. This appendix intends to clarify this issue
for the purposes of the discussion in this book.

SIMULATION – WHAT IT IS NOT (FOR US)

This section concisely discusses simulation as it is used/defined by
others but not as the present discussion considers relevant. It is a nonex-
haustive list:
•	 Animation. In many domains, for example, entertainment, robotics, or

machining, a real-world activity is simulated in 3D. The software gener-
ates a movie that visually depicts/simulates the object of the simulation.
For instance, a pick-and-place operation by a robot.

•	 Physics. A whole subdomain of simulation targets physical systems such
as computational fluid dynamics, targeting the flow of air over a wing of
a next-generation aircraft.

•	 DEDS. In discrete event dynamic systems, mathematical models are used
to analyze and simulate. The key requirement for the models is to allow
and support analysis techniques; to this end significant simplification
of reality commonly needs introducing. The theoretical nature of these
models makes it nontrivial to ensure a correct correspondence between
reality and the model, failing to guarantee the ability to mirror the struc-
ture of reality in the model (i.e., composition-ability).

•	 KISS. Keep it simple s… simulation is the prevailing textbook approach
to simulation. Here, a simulation model of the complete system – that
is to be simulated – is modeled keeping the simulation as simple as pos-
sible. In others words, it will be a simulation targeted and limited to an-
swering specific questions (e.g., how long it will take to empty a car park
near a football stadium). Again, such simulations are unlikely to mirror
the structure of what is simulated from reality.

APPENDIX II

Design for the Unexpected200

There are two motivations for excluding the above. The first reason is
overkill (the simulation goes into too much detail). The required extra effort
will cause the simulation to be time-consuming while the extra informa-
tion has little or no importance. Such simulation still may contribute indi-
rectly. For instance, it can be used to compute (initial values for) parameters
of the models below (e.g., to compute the duration of a pick-and-place
operation by a robot) and/or initial parameter values for components that
will use on-line estimation methods (e.g., machine learning to track the
duration of this pick-and-place operation). In addition, these more detailed
simulations might be used during ramp-up and deployment. They can be
used to confront the coordination and control system with an almost real-
world challenge and allow to remedy issues before establishing the connec-
tion to the real world (and exposing real-world assets to teething problems).

The second reason is too large a distance between the world-of-interest
that is simulated and the model (elements). This prevents composition of
the models when good-enough specific-purpose models are used. More
importantly, this causes validation issues. When a model of a conveyor mod-
els directly how it behaves, measurements on such a conveyor provide the
necessary data. When an aggregated model simulates a transport system,
statistical validation is required where the range of conditions, under which
the validation holds, remains difficult to assess. This kind of simulation lacks
reusability and compose-ability. This type of simulation has little relevance
for our purposes but shares simulation techniques (i.e., they use more or less
the same tools and programming but apply a different methodology: fast
results but not reusable).

SIMULATION – WHAT IT IS (FOR US)

Simulation and Emulation
The present discussion is concerned with simulation models that render
interacting with the real world indistinguishable from interacting with a
(model-using) emulation for the coordination and control. The coordina-
tion and control system may dispatch an operation and receive feedback on
its progress and outcome from a simulation model or from an interface to
a corresponding real-world operation. It will not perceive a difference. For
instance, when a robotic pick-and-place is initiated, the simulation will send
information as if the real-world operation took place.

In this case, it is possible to call this emulation: the simulation mimics/
replaces a real-world component or subsystem. The rest of the world is

Simulation, Emulation, and Modeling 201

unaware and unexposed to the fact that it is interacting with a computer
program instead of a real-world process.

A key advantage/requirement of our approach is to mirror the struc-
ture/composition of the world that is simulated. This enables an initial vali-
dation on a component per component basis. For example, the emulation
of the robot operations need to generate the right delays (time to perform
a given operation) and outcome distributions (e.g., a small percentage of
failures).

Software in the Loop
In order to validate the simulation of the coordination and control soft-
ware automatically, this software will be included in the simulation without
modification except for an additional capability that can be disabled in de-
ployed systems. This software in the loop simulation ensures that validation
of the simulation of the coordination and control is automatic and without
any effort.

The additional capability consists of the coordination and control sys-
tem being able to signal when it is idling. This will allow a significant speed-
up of the simulation: the simulation may jump on its time axis to the next
event. When the coordination and control system is busy, the simulation has
to remain in a real-time mode such that events keep happening at the cor-
rect time (while the coordination and control is taking perhaps too much
time to decide what to do).

Next to software, the hardware in the loop may be part of a deploy-
ment and ramp-up campaign. This entails that the coordination and control
system is not only using the actual software within the simulation but also
a computer network, as it will be deployed. Computing processes now ex-
perience more realistic delay when communicating over, for example, the
Internet. However, hardware in the loop is optional and not an essential part
of the approach in this book. Software in the loop is required.

Simulating Decision Making
To simulate as a standalone implementation, all decision-making processes
need a model. Such standalone simulation comprises emulation models for
the resources and processes in the world of interest but also executable
models for the decision-making processes. Here, there are three categories:
•	 Simple decision-making software. This software will be its own model.
•	 Complex decision-making software. This may be its own model in

the later phases that are part of a deployment activity (cf. hardware

Design for the Unexpected202

in the loop and use of detailed/physical simulation models). How-
ever, there is a need for approximating simulation models, which are
used for much-faster-than-real-time simulation (see further). These
computationally simple models may use data generated by the com-
plex decision-making software, which is then executed at a lower fre-
quency.

•	 Human decision-making. There is a need for computationally simple
models that generate – estimated – decisions made by the humans that
they model. In deployed versions, these models may learn from feedback
about the real decisions made by real humans.
Below, the uses of simulation are discussed in more detail. This will re-

veal why different decision-making models are needed, and how models are
reused for different purposes.

Finally, decision-making software may need to support two or more
modes:
•	 Low effort and good-enough estimation of the real decision-making

outcome (e.g., only used to plan activities where this planning can/will
be revised regularly).

•	 High effort producing a decision that can be executed in reality (e.g.,
needs to be signed off by an authorized person).
Currently, two modes are sufficient, but an intermediate version may

emerge in future designs.

Hybrid Real-Time and Discrete-Event Simulation
Our simulation needs to address two conflicting requirements:
•	 Speed. As much simulation time needs to be covered in as little real-

world time as possible. This calls for discrete event simulation in which
simulation time jumps to the next event as soon as the current event has
been processed. Many simulation tools use this approach assuming that
decision-making takes negligible time. Unfortunately, this assumption
does not hold in our cases.

•	 Account for the time needed for decision-making. This calls for real-
time simulation in which event are generated when they occur on the
real-time axis. When a decision-making process takes (too) much time,
events will occur and the simulation will make the effect visible (e.g.,
poor performance caused by decisions after the facts).
As stated, the coordination and control software, executing in the loop,

signals whether it is idle or not. When idle, the fast discrete event mode is
used. Otherwise, the real-time simulation mode is used.

Simulation, Emulation, and Modeling 203

USES OF SIMULATION

The simulation/emulation models are used multiple times.

Embedded Simulation at Run-Time
The proactive coordination and control systems use the executable models
for – at least – two purposes. First, the exploration DMAS uses simulated/
virtual execution to discover and assess/evaluate candidate courses of action.
Second, the intention propagation delegate MAS uses simulated/virtual ex-
ecution to inform all resources of their expected loadings/usage while pro-
viding each activity with its expected routing, including timing.

Here, much-faster-than-real-time virtual execution is essential. The
models generate expected behavior. Alternatively, some safety margins
might be included. Advanced models may generate probability distributions
instead of scalar values (= future research).

Standalone Simulation
Whereas the above use occurs during actual deployed operations, the stand-
alone simulation connects the above to an emulated version of reality. The
executable models used for virtual execution by the DMAS, rendering the
system proactive, are used twice. First, they are used as above (= software in
the loop). Second, the same models emulate the world of interest; the coordi-
nation and control system can/will not see any difference with the embedded
mode, except that its idling indicator will be used to speed up the simulation.
The embedded simulation operates in real time for obvious reasons (i.e., the
events originate from the world of interest, which happens to be real).

The models emulating reality are generating stochastic data, sampled
from the probability distributions in the models. The embedded models
generate nonsampled distribution parameters (e.g., median values).

Deployment Supporting Simulation
Transitions from the standalone simulation toward the deployed system
with embedded simulation may be performed directly. However, simulation
is able to provide intermediate steps in which more control and observabil-
ity can be provided while real-world assets stay out of risk.

The emulation of the real-world system can be done in more accurate –
usually much slower – simulation models (often providing detailed anima-
tion). Hardware in the loop can be added, and human decision-making and
complex decision mechanisms can be introduced. All this is optional.

Design for the Unexpected204

TECHNOLOGIES USED FOR SIMULATION

Chronologically, software technologies have been used for research
purposes. There has been an evolution from solutions suited for small-scale
academic prototypes toward a highly scalable solution supporting emulation
model development at commercially viable speed and cost. The main steps
are discussed concisely:
•	 The initial solution was a combination of an established industrial simu-

lation tool in its most advanced version (i.e., Arena Professional edition
supporting user-defined model templates) with C++. This solution only
supported real-time mode. The hybrid mode is impossible because in-
dustrial simulation software does not support switching between real-
time mode and discrete-event mode within a single simulation run. In
fact, most industrial tools only support discrete-event mode.

•	 This initial solution is complicated (e.g., needs a message distribution sys-
tem in Arena cooperating with a C++ counterpart). It also requires pro-
ficient developers knowledgeable in both C++ and the Arena modeling/
programming facilities. In summary, it was a barely workable solution al-
lowing to develop academic prototypes that were impractical to maintain.

•	 The second solution adopted Java in combination with a simulation
software library. Difficulties to debug software – where it remained un-
clear whether the problem resided in the library, the Java control system
or the cooperation among those two – gradually reduced our reliance
on the library. After a relatively short transition period, the entire devel-
opment occurred in standard Java.

•	 During that time, both industrial software tools (e.g., FLEXSIM,
IEC64199) and multiagent tools (e.g., Jade, AnyLogic) have been as-
sessed but offered advanced functionality where it was not needed with-
out functionality compensating for their smaller user community (rela-
tive to Java). The native Java solution enjoys a large community of users
and proficient professionals. It allowed for larger prototype implementa-
tions that could be adapted to address novel problem domains. However,
scalability and maintenance remained a serious concern.

•	 In 2011, the team adopted Erlang/OTP (cf. www.erlang.org). This
solved the scalability issue. Model development in Erlang enjoys the
speed-up brought by a functional/actor language with pattern matching
(one or two orders of magnitude faster development). Other advantages
are high availability, hot code updating, and distributed computing. It
also connects excellently to other languages and can run on embedded
computers (e.g., raspberry pi). Software model maintenance and sharing

http://www.erlang.org/

Simulation, Emulation, and Modeling 205

within a community is subject of ongoing research. Widespread accep-
tance of the technology still remains undecided (but multicore comput-
ers are pushing us in this direction).

•	 One Java implementation, which had to be connected to a .net system
programmed in C#, was ported to the Erlang solution in a couple of
weeks while the connection to C# occurred in a single day. Erlang /
OTP is a product from the telecom industry.

THE HYBRID SIMULATION ENGINE

The hybrid – switching between real-time and discrete-event modes
– simulation engine comprises two Erlang modules: event_table and event_
mgr. The event_table contains all the events that have been created by the
holons. The manager generates the next event in the table, either shortly after
sufficient time has passed (in real-time mode) or when entering the discrete-
event mode. The code below is not optimized for performance but rather for
readability and observability. Readers familiar with Erlang may inspect it to
understand how this hybrid simulation works. In general, the code provides
an indication how (not so) complex this simulation approach is.

Design for the Unexpected206

Simulation, Emulation, and Modeling 207

Design for the Unexpected208

209
Design for the Unexpected. http://dx.doi.org/10.1016/B978-0-12-803662-4.00012-6
Copyright © 2016 Elsevier Inc. All rights reserved.

Design by Abduction
No Longer Suffices

When a community designs a complex system or infrastructure, abductive
reasoning is commonly used to discover and identify candidate solutions.
Unfortunately, it also is used to justify the solution that will be adopted
as the only option (as if they had used deduction to arrive at the selected
design).

Abduction is a kind of logical inference that could be described as edu-
cated guessing. When C is assumed to be true and C follows from A, ab-
duction puts forward the hypothesis that A is true. This clearly is a search
heuristic rather than a logical deduction. Indeed, logical inference only
yields that ¬C implies ¬A. In fact, there is no evidence regarding the non-
existence of alternative hypotheses A

1
, A

2
, … A

n
 that equally are sufficient

but not necessary conditions for C.
When C is the service or functionality required from a system or in-

frastructure, the community involved will use abduction to generate valid
candidate designs A

1
, A

2
, … A

n
. In other words, implementing any design A

x

∈ {A
1
, A

2
, …, A

n
} will result in a world in which the services required by

C will be available. Next, standard practice in abductive reasoning searches
for and selects the most economical design A

x
 among the candidates. This

last procedure is used to justify calling A
x
 the solution whereas, logically, A

x

is only a solution (among many). Such a claim that the choice of solution
A

x
 is “beyond discussion” is unjustified in a fast-changing and unpredictable

world.
Indeed, this most economical criterion favors the quick and dirty solu-

tion that is good enough. Moreover, there often exists another criterion
that filters the set of candidate solutions before the most economical crite-
rion is applied: the comfort zone. Candidate solutions that are outside the
comfort zone of the decision makers in the community that controls the
development and deployment of the solution will not be generated nor
will they be retained in the set of candidate solutions. Especially when go-
ing outside this comfort zone may reduce the dominance of these decision
makers over their domain, filtering will be stringently applied. This regu-
larly results in a very poor service at high costs in comparison to what is

APPENDIX III

Design for the Unexpected210

inherently achievable. Moreover, it reinforces the existing lock-in by legacy
designs, imposing severe limitations.

Design for the unexpected prefers candidate solutions that are the least
likely to cause future conflicts, both with future requirements and other
solutions, especially solutions that were designed for the unexpected. For-
mally, it prefers partial solutions (insufficient to guarantee C) that have no
conflict with anything that has no conflict with C or reality. In other words,
when an unexpected demand emerges that respects C and reality, these
partial solutions remain intact and useful.

Background information can be found at butte.edu/departments/cas/
tipsheets/thinking/reasoning.html, which classifies and typifies reasoning
as follows:
•	 Deductive reasoning: conclusion guaranteed
•	 Inductive reasoning: conclusion merely likely
•	 Abductive reasoning: taking your best shot

211

SUBJECT INDEX

A
Abductive reasoning, 16, 209–210
Activity instance, 86
Activity resource type instance (ARTI)

NEU protocol, 79
reference architecture, 77, 163
single source of truth (SSOT) design, 81
software/system development, 78

Activity resource type instance (ARTI)
interactions, 88

aggregation, abstraction, staff
components, 94–95

AI–RI interactions, 94
AT–AI interactions, 88
discussion, 91–92
holonic task execution control, of

multimobile-robot systems, 95
multirobot door opening, 100–101
NEU protocol, 88

execution, 89
finalization, 91
initialization, 89

obstacle avoidance, 98–100
plug-ins, 109
RT–RI interactions, 92–93
RT–RT interactions, 93–94
single robot allocation in general, 96–98

Activity resource type instance (ARTI)
reference architecture, 77, 84

activity instance, 86
activity type, 85–86
auxiliary operations, 112–114
challenges/lessons learned from

applications, 110
interoperability, 110–112

commitment, 117
DMAS architectural pattern, 101

barebones, 102–103
decentralized search, 105–108
intelligent agents vs. intelligent

beings, 109
intention-propagating, 103–105
intention selection, 108

effort vs. accuracy, 118

humane (mechatronic) society, 120
empowerment and privacy, 123–126
social/collective, 120–123

incommunicado, 115
modeling techniques, 115
multiresource allocation, 112–114
probability (distributions), 114–115
reputation, 117
resource instance, 87–88
resource type, 87
structure of, 84
trust, 117

Adaptation, 29
ADAptive holonic COntrol aRchitecture

(ADACOR), 45
architecture, 186
design, 186

Agent-based control system, 181
Agent design, 197
Agent technology, in holonic execution

system, 198
Allocation protocol, 180
Analytical sciences vs. synthesizing

sciences, 12
Animation, 199
Ant agents, 56
Ant colonies, agent-based simulation/

decision support systems, 188–189
Ant colony optimization (ACO), 187–188
Application programming interfaces

(APIs), 112
Architecture-centric design

collective decision, 16–17
development approaches, 17

ARENA®, discrete event simulation and
automation software, 135

Arena Professional edition supporting
user, 204

ARTI-compliant holonic execution
system, 101

Artificial intelligence methods, 52
ARTI implementation, 89
ARTI interactions. See Activity resource

type instance (ARTI) interactions

Subject Index212

The ARTI Reference Architecture, 78
Autocatalytic sets, 31

critical user mass, 31
Automated storage and retrieval system

(AS/RS), 48, 70, 71, 144
Automation technologies, 174
Autonomic behavior, 10
Autonomous agents and multiagent systems

(AAMAS) community, 17
Axiomatic design, 12
Axioms, 27

adaptation, 29
bounded rationality, 28
competitive environment, 28
dynamic environment, 28

B
Background information, 210
BDI model, 198
Bio-inspired coordination and control in

holonic execution systems, 68
Blackboards. See Information spaces
Bluetooth, 115
Bounded rationality, 28
Building blocks, integrate-ability of, 22
Burden of proof, 24

C
C++, 15
Car navigation/safety systems, 1
Centralized control architectures, 43
Centralized coordination/control, 35

complex-adaptive systems, 38
coordinated behavior, 37
information-processing capacity, 35
socioeconomic situations, 37
third law of the artificial states, 36

Central processing unit (CPU), 96
Christmas list syndrome, 183
CNC program, 93
COBOL applications, 15
Collective imagination

adaptive nature of elements, 39
complex-adaptive systems, 38
prediction to stay up-to-date, 39
proactiveness, 38

Combined heat and power (CHP), 170
installations, 170

Community designs, economical criterion
favors, 209

Competitive environment, 28
Complex-adaptive system (CAS), 9–11

design of, 11–12
holonic systems, 11
mechatronics, 10
mechatronic societies (MSs), 10
optimality, 10

Computer integrated manufacturing
(CIM), 42

Constraints identifies, Goldratt’s theory
of, 10

Control architecture, 42
Control for additive manufacturing

(C4AM), 152
Cool-off period, 65
CPU optimization, 96
Cross-dock (CD), 74, 154

D
DACS approach, 182
dBA measurements, 111
Decision making

elements, 38
future/predicted resource, 8
mechanisms, 5, 106
models, 7
process of, 201

complex decision-making software,
201

human decision-making, 202
simple decision-making

software, 201
simulation of, 201–202
by travelers, 7

Deductive reasoning, 16, 210
Delegate multiagent system

(DMAS), 39, 47
architectural pattern, 78, 79, 90, 101

barebones, 102–103
decentralized search, 105–108
intelligent agents vs. intelligent

beings, 109
intention-propagating, 103–105
intention selection, 108

auxiliary operations, 113
coordination system, 52

Subject Index 213

intention-propagating, 104, 108, 113
module decomposition view, 56
socially acceptable behaviors, 66

mechanism to dampen intention
switching, 65

order holons, 64
virtual execution, 110

Design for the unexpected (D4U), 1, 16,
34, 130

compliant activity, 98, 111
digital image, 123
infrastructure, 122
intelligent traffic and transportation

system (ITTS), 8
addresses, 8
development of, 8

preferred manner, reality integrated, 78
elements/components/subsystems, 79
NEU protocol, 79
reality as a shelter against unexpected

demands, 79
software/system development, 80

incremental development, 82–83
problem domain model, 81
in silico ramp-up, 83
user requirements, 81

traffic coordination technology, 2
Design parameters (DPs), 12
Design principles

potentially, 24
stable constraints, 24
for unexpected, 23–24
unstable constraints, 24

Discrete event dynamic systems
(DEDS), 199

Distribution system operators (DSO)
domain, 169, 170

DMAS. See Delegate multiagent system
(DMAS)

DNC option, 133
Door opening task, resource

holons, 100
Down-flowing information, 35
D4U. See Design for the unexpected (D4U)
Dynamic environment, laws of

artificial, 28
Dynamic network loading (DNL) models.

See Resource models

E
e-Doctor, 123
e-health, 171, 173
ELC2 project, 156
Electronic bill of processes (eBOP), 183
Emergent behavior, 9
Emergent solutions, integration problems,

22–23
Emulation, definition, 200
Environment, situated in, 198
e-Patient, 123
e-Persons, 121, 123–125, 172
Erlang modules, codes, 205
Erlang/OTP, 153
ERP level, workflow generation, 184
Executable domain models, 155
Executable software models, 7
Execution systems managing real-world

activities
using real-world resources, 84

Explicit/mandatory resource allocation, 7

F
Feasibility ants, 57
Feedback, 33
First-come, first-served, 6
Flexible assembly cell control system

(FACCS), 130
contributions, 130
dynamic precedence graphs, 132
limitations, 133

Flexible production, 182
Flexible transport, 180
Food-foraging ants, 54, 136–141
Food foraging coordination

mechanisms, 136
FP7-ICT4EE event, 1
Full-fledged holonic execution system, 116
Functional requirements (FRs), 12

decomposition of, 12

G
Global positioning system (GPS), 4
GOA program, 151
Going concerns, 20
Goldratt’s theory of constraints identifies, 10
Good-enough specific-purpose

models, 200

Subject Index214

H
Health care activity, 172
Heterarchical control architectures, 43
Hlonic systems, 30

hierarchical structure, 30
HMES. See Holonic manufacturing

execution system (HMES)
Holarchies, 30
Holonic execution systems, 163

architectural patterns, 55
bio-inspired coordination and control,

54, 55
delegate multiagent system, 56–57
exploring ants, 58–60
feasibility ants, 57–58
food foraging, 54
intention ants, 60–62
short-term forecasting–predicting,

unexpected, 62–63
Holonic execution systems for networked

production–networked
(HMES), 117

flow shops, 137
Holonic healthcare execution system

(HHES), 172
Holonic logistic execution system (HLES),

75, 112
performance measures, 74

Holonic manufacturing execution system
(HMES), 53, 56, 57, 63, 67, 68,
72, 117

cooperation with planning systems, 67
average lead-time, influences, 71
cross-docking application, layout, 73
exploring ants, 69

type-1, 69
type-2, 69

logistics example, 73–75
manufacturing example, 70–73
manufacturing execution systems, 68
manufacturing organizations, 68
schedule execution, 68
type of ants, 70

Holonic manufacturing systems, 41, 42, 44.
See also Holonic manufacturing
execution system (HMES)

aggregated resource holon, 48

autonomous and cooperative building
block, 44

autonomy, 44
centralized control architectures, 43
cooperation, 44
explorer agents, 59
flexible manufacturing system

layout, 71
heterarchical control, 43–44
hierarchical control, 43
holarchy, defined, 44
interactions between holons, 52

product-order interaction, 52
product-resource interaction, 53
resource-order interaction, 53

law of holonic systems, 41–42
order holon, 50–51

intention selection, 51
reflection of reality, 51
reserving, its intention, 51
searching solutions, 51

order intentions, ant agent propagates, 61
product holon, 49–50
resource graph, 58
resource holon, 47

aggregated, 48
controlling, 48
information provision, 47
local schedule maintaining, 47, 48
reflection of reality, 47
specialization, 48
virtual execution, 48

short-term forecasts generation, 63
staff holon, 52

Holonic systems, 11. See also Holonic
manufacturing systems

Humane/respectful mechatronic society,
192–194

Hybrid simulation
emulation, 145
engine, 205

I
IEC64199, 204
Inductive reasoning, 16, 210
Industrial automation community, 183
Inertia of design choices, minimize, 6–7

Subject Index 215

Information and communications
technology (ICT), 8, 122,
133, 183

enabled cooperation, 173
mirror images, 5
planning, 168
solutions, 185

Information provision, 47
Information spaces, 59
Instability suppression mechanisms, 2
Integrated circuit (IC), 170
Intelligent agent (IA), 84
Intelligent being (IB), 84
Intelligent manufacturing system (IMS)

project, 42
Intelligent module (IM), 1

road segment, 4
Intelligent traffic and transportation systems

(ITTSs), 115, 164
addresses, 8
development of, 8

Intelligent traffic system (ITS), 10, 15, 118
professionals, object-oriented

thinking, 16
Intelligent transport systems (ITP), 38, 85

J
Jackson system development (JSD)

methodology, 15
Java, 15

emulation, 144
implementation, 205
version, 153

K
Karmarkar’s algorithm, for linear

programming, 68
Keep it simple s… simulation (KISS), 199

principle, 174

L
Last mile-planning process, 69
Law

autocatalytic sets, 33
economic autocatalytic set, 33
information feedback autocatalytic

set, 33

autocatalytic sets-critical user mass, 31
axioms. See Axioms
biologist’s theory, 32
bounded information processing, 30
finite brainpower, 30
first law of the artificial, 31
fourth law of the artificial, 40
holonic system/holarchy, 30
holonic systems-flexible hierarchies, 29
law of gravity, 28
manmade regulations, 27
second law of the artificial, 31

translated toward (software)
artifacts, 33

software systems, 33
statements of facts, 27

Law of holonic systems, 41–42
LEKIN

academic planning tool, 70
scheduling system, 72, 73

Linear programming, Karmarkar’s
algorithm, 68

Linux, 135
Lock-in, into early solutions, 33

competing technologies from content, 34
design for unexpected (D4U), 34
feedback, 33
holonic systems, 34

Log files, 144
Logistic execution system (LES), 47

M
MABE project, 148
Manufacturing case studies, 130

AgCo
2
/ACDPS, 151–152

C4AM, technology transfer project,
152–153

case hardening facility, 147
chematic of machine shop, 144
cross dock layout using conveyor chain,

155
holonic flexible assembly cell, graphic

representation of, 131
MABE project–networked

manufacturing/heat treatment,
147–150

MASCADA/food foraging, 136–141

Subject Index216

car body painting–holonic MES, for
flexible-flow shops, 137–138

contributions and limitations, 139–141
stigmergic coordination/control,

136–137
modular plant architecture (MPA)

project, 144–146
open air engineering processes, 161
photographic foil facility, 141

contributions and limitations, 142–144
PROSA+DMAS–definitive design,

141–142
photographic foil production plant, 142
PROSA precursor, 130

FACCS, contributions, 130–133
PROSA reference architecture, 133–135
robotic wheelchairs, 3D plot of

trajectories, 159
robots without coordination, 158
six-story spray painting shop simulation

for car bodies, 138
Manufacturing execution system (MES),

41, 68, 82, 129
workflow execution, 183

Map data ©2011 Google, 2
MASCADA manufacturing control

technology, 153
MASCADA project, 137
Master rolls, many-to-many

relationship, 141
Mechatronics, 10
Mechatronic societies (MSs), 10
Mental states, virtual execution, 5
Minimally viable product (MVP), 82
Minimize inertia of design, choices, 6–7
Mobile robots, 99

uses, 96
Models for optimizing dynamic urban

mobility (MODUM), 164–166,
168

Modular plant architecture (MPA) project,
144–146

Much-faster-than-real-time virtual
execution, 203

Multiagent system (MAS), 45
definition, 197

N
Navigation system, 1, 2
Newton’s law (of gravity), 27, 116
Next execute update (NEU), 79

protocol, 92, 104, 118
Next-generation rocket, 24
Non-D4U systems, 95
Nonmanufacturing case

studies, 153
holonic logistics execution systems

(HLES), 154–156
models for optimizing dynamic

urban mobility (MODUM),
164–166

open air engineering processes,
160–164

railway operations, 166
robot fleets, 157–160
smart grid applications, 166–171

community, 171
distribution system operations, 170
smart homes, 169
transmission network operations,

168–169

O
Object-oriented language, 18
Object-oriented software, architecture-

centric nature of, 18
Object-oriented technology, 15

design and development, 15
essential model, 15, 16
implementation, 16
IT professionals, 16
Jackson system development (JSD)

methodology, 15
programming, 133
UML diagrams, 16

Obstacle avoidance problem, 99
resource holons, 99

One-shot problems, 20
Ongoing/forthcoming research case

studies, 171
e-health/integrated care, 172–173
energy storage, 173–175
smart grids, 173–175
smart homes, 173–175

Manufacturing case studies (cont.)

Subject Index 217

On-line optimization, 69
Open air engineering applications, 160
Open-air engineering processes, 160, 163
Option-excluding design, 6
ORCA-FMS applicability range, 187
Order holons

cool-off period, 65
mechanism to dampen intention

switching, 65
randomized switching, 65
switching intentions, 65–66
thresholding, 65

OTP, open source telecom technology, 45

P
Performance-determining decision-making

mechanisms, 37
Photographic foil facility, 141
Plug-in components, 101
Problem P, defined, 19–21
Problem solvers, potentially harmful

constraints
avoid introducing, 24–25
avoid/reduce the inertia build-up for,

24–25
Problem solving, 27
Process information provision, 50
ProclaimScenario service, 165
Produce test pieces, 86
Production 2000+, 179–182
Product-order interaction, 52
Product-resource interaction, 53
Product-resource-order-staff architecture

(PROSA), 76, 77, 130
execution systems, 136
reference architecture, 45, 46, 47, 77

overview of, 46
siblings-ADACOR, 185–187

Programming language used to build
massively scalable soft real-time
systems (Erlang), 45, 73

PROSA/ARTI/D-MAS technology, 157
PROSA/DMAS architecture, 74
PROSA+DMAS design, 142, 143, 149

Q
Quality result documents (QRDs), 184

R
Randomized switching, 65
Reachable states at a given time

coordinate, 19
Reference architecture, 45
Resource holons, 47

controls, 48
specialization of, 49

Resource models, 7, 115, 116
Resource-order interaction, 53
Resource type, 87
Robotic wheelchair, resource type

holons, 96
Robots

laser sensor, 97
type of application requires, 100

S
Safety measures, 80
Scenario illustrates, D4U decentralized

traffic, 1
Schedule execution, 107
Schedule-generating staff holons, 135
Sciences of the Artificial, The, 28
Self-driving cars, 192
Self-organization, 9
Self-regulating holons, hierarchy, 42
Simple-adaptive systems, 9–11
Simulation

decision making, 201–202
definition, 199, 200
discrete-event, 202
hybrid real-time, 202
hybrid simulation engine, 205
software in loop, 201
targets physical systems, 199
technologies for, 204–205
uses of, 203

deployment supporting, 203
embedded at run-time, 203
standalone simulation, 203

Single-shot problem solving, 189
Single source of truth (SSOT) design, 6,

81, 198
Smart watches, 192
Social control mechanism, 117
Society design, 197

Subject Index218

Software program, definition, 197
Software systems, autocatalytic sets, 33
Solution S, defined, 19, 21
Solving real-life problems, 22
Source of inspiration, 54
Source of truth, 63
Stable constraints, 24
State-of-the-art air traffic control

center, 10
Static configuration, 179
Stigmergy. See Food-foraging ants
Structural decomposition, 53

T
Taffic density, monitoring, 38
Task-driven intelligent production

equipment, 183
TCP/IP socket, 135
Thermostatic faucet designed, to axiomatic

design, 13
Thresholding, 65
Top-down functional design

axiomatic design, 12
chest-type deep freezer, 14
design parameters (DPs), 12
and development, 12–15
second-level and higher-level

designs, 14
software development, 15
software engineering, 12
thermostatic faucet designed, 13

Top–down functional development, 14
Traffic infrastructure, 3
Transportation problems solving, 21, 22
Truck scheduling system (TSS), 74
TSO domain, 168
TSO services, 168
TV images, real-time, 188

U
Unified modelling language (UML)

diagrams, 16
Universe U, 20
Unstable constraints, 24
User intentions, 3

V
Vehicle routing scheduling system

(VRSS), 73
Virtual execution, 48

W
Wi-Fi, 115
Windows, 135
WOI. See World-of-interest (WOI)
World-of-interest (WOI), 3–4, 8, 81

information and communication
technology (ICT), 5

mirror images, 4–6
activities, 5
completeness, 5
mental states and commitments, 5
policies and decision-making

mechanisms, 5
resources, 5
single source of truth (SSOT), 6
software, 4, 5
updating and accuracy, 6

missing information, 4
transport and navigation applications, 3

X
XPRESS, flexible production experts, 182

end user requirements, developments,
182–183

task-description-driven manufacturing,
183–185

