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Preface

The seed of this book was set in 2003, at the Institute of Structural Mechanics of

the German Aerospace Center (DLR) in Braunschweig. Oriol joined the Institute as

a Marie Curie Fellow and Flavio, as a member of the Center of Excellence “Adap-

tronics” at DLR, was in charge of coordinating the Marie Curie Training Site “Smart

lightweight structures and transportation application”. The “daily bread” of the Cen-

ter of Excellence and, as a consequence, the focus of the Marie Curie Training Site,

was solid-state actuation, in particular piezoceramic actuation.

While working with solid-state actuation, scientists always encounter (sooner or

later) fancy histograms or tables showing the comparison between different actu-

ator principles on a quantitative and seemingly objective basis. After having seen

such comparisons a couple of times, (and at latest after a couple of lectures or con-

ference talks in which he shows such a histograms or table himself) the scientist

begins to wonder what is behind those numbers, which claim, for instance, that the

performance of Shape-Memory-Alloy actuators is, say, twice as large as the one of

hydraulic cylinders.

And since we could not find an exhaustive answer in published literature, we tried

to compute performance quantities for conventional actuators on a model basis, in

the way we knew from solid-state actuators. We realized soon that the designer of

solid-state actuators lives in a quite ideal and comfortable universe, in which power-

ful design rules and meaningful performance quantities can be obtained, on the basis

of simple assumptions, in a straightforward way. For conventional actuation things

revealed definitely more complicated, and intriguing enough to be worth starting a

research project. This project eventually became part of Oriol’s doctoral thesis, and

we kept working on this topic after he went back to Catalonia to get involved in

CITCEA-UPC and Flavio took a new professional challenge at Empa in Dübendorf,

Switzerland.

The model-based definition of performance quantities implies dealing with the

whole design and optimization process of actuators in a systematic way, which gave

added value to this work and taught us a lot of new things on solid-state actuation

as well. Last year, we finally decided that the topic of model-based design rules for
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viii Preface

actuators (conventional as well as solid-state ones) could be an interesting topic for

a book.

Besides the original issue, i.e. on which objective and quantitative basis different

actuator principles can be compared to each other, the contents of this book tries to

give an answer to the following questions, which are strongly related to the above

mentioned one:

• which is the dependance of the actuator’s primary output quantities force and

stroke from the mechanical load applied to the actuator?

• for a given actuator kind (i.e. actuators based on the same principle), which is the

relationship between actuator geometry and primary output quantities?

• how scalable are actuators of a given kind?

• how are energetic output quantities (work and power) related to mechanical load

and geometry?

• how should actuators be designed and sized to obtain the best performance for

the chosen actuator kind and for a given application?

Of course it was not possible to answer the above mentioned questions in an

exhaustive way and for all existing actuator classes in the time and space framework

which was available for this book. So we had to limit the range of our treatment in

a twofold sense:

• we reduced the number of dimensions of the design space by successive opti-

mization: after having identified proper specific quantities, we look for the best

combination between actuator and load, then we analyze the optimal value of the

specific quantities with respect to the actuator design variables;

• we restricted our focus to four actuator principles: solenoid actuators, voice-coil

actuators, hydraulic actuators and solid-state, strain-induction based actuators.

The reader who will make it to the end of this book will discover three distinct

parts:

In the first one, the most common actuator principles are introduced, and the phi-

losophy behind the above sketched actuator analysis is described in detail. The sec-

ond one is dedicated to the application of the described analysis procedure to three

classes of conventional actuators: solenoid, voice-coil and hydraulic actuators. The

third part, dedicated to solid state actuation, is – paradoxically – of more conven-

tional nature in the context of this book. As mentioned above, model-based analysis

of solid-state actuator is a common tool and several papers or book chapters can be

found in literature which deal with the basic concept treated in part three, like block-

ing force, free stroke, energy density or design of a pre-stressed solid-state actuator.

Additionally, due to the exact mechanical scalability of solid-state actuators (un-

der the assumptions of the prescribed-strain theory) the design analysis introduced

in Chapter 2 and applied to conventional actuators in Chapters 3 to 5 reduces to a

few quite simple concepts when applied to solid-state actuators. In order to make

things more interesting, we put this material in an unusual form by introducing a

new kind of graphic representation and by complementing the classic issues with
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some remarks on hybrid actuators relying on a compliant passive element as well as

on design analysis for solid-state actuators for dynamic applications.

We believe that this book can be of interest for anyone dealing with actuator

design, and in particular:

• as a textbook for undergraduate and graduate students of mechanical engineer-

ing, aerospace engineering, mechatronics control and virtually all other special-

izations dealing with actuators and active materials; in particular, the graphic

representation introduced in Chapter 6 can be an useful didactic tool to learn –

by solving exercises – how to analyze solid-state actuators coupled with passive

structural elements;

• as a reference for engineers dealing with the design of conventional as well as

solid-state actuators;

• as a basis for researchers operating in the fascinating areas of smart mechanical

systems as well as coupled mechanical design and optimization, who can profit

from some criteria and general concepts exposed in this book, in particular while

approaching – in a simultaneous way – the design of passive and active compo-

nents of mechatronic and adaptive structural systems.

We are aware of the fact that if no book at all is perfect, a book which was

compiled in one – even if intensive – year is quite far from being perfect. We are

therefore thankful for any suggestion and comment which can help us to improve

and enrich possible new editions of this work.

Dübendorf, Switzerland Lucio Flavio Campanile
Barcelona, Spain Oriol Gomis-Bellmunt
November 2008
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Chapter 1
Actuator Principles and Classification

An actuator can be defined [16, 15] as an energy converter which transforms energy

from an external source into mechanical energy in a controllable way. The actuator

input quantities depend on the type of energy used and can be chosen among all the

quantities involved in the energy conversion from the energy source to the output

mechanical quantities. For electromagnetic, piezoelectric and magnetostrictive ac-

tuators the input quantities can be the current, the charge or the voltage; for fluid

power actuators the fluid pressure or the flow; for shape memory alloys and thermal

expansion actuators the temperature. The output quantities are of mechanical nature.

We will distinguish among (primary) output quantities (actuator force and stroke),

and (derived) output quantities, which can be computed on the basis of the primary

quantities. The most used derived output quantities are the actuator work and the

actuator power.

Actuators play a decisive role in industrial mechatronic systems. They are re-

sponsible of moving the load to the required set point transforming an input energy

source into mechanical energy. This can be done transferring energy from the power

source to the mechanical load when working as motors or actuators, but also return-

ing the energy to the power source when they have to brake, operating as generators.

A typical mechatronic system scheme can be seen in Figure 1.2, including the

usual elements:

• The power source provides the energy needed to drive the actuator. In industrial

systems the most common power sources are electrical or fluid power.

• The power converter supplies (or returns) the energy from the power source to the

actuator according to the controller orders. Some industrial examples of power

converters are electrical inverters or hydraulic proportional valves.

• The actuator is the energy converter which converts the power source energy into

mechanical energy.

• The mechanical load is the mechanical system being driven.

• The controller is responsible of making the whole system follow the reference

set points established by an external system operator. This is achieved by sensing

the critical quantities and applying appropriate control algorithms.

3



4 1 Actuator Principles and Classification

Fig. 1.1 Example industrial system. Press transfer system in sheet-metal working. Courtesy of
Bosch Rexroth AG

Fig. 1.2 Usual block diagram of a mechatronic system

The present chapter deals with actuator principles and classification. Firstly, dif-

ferent actuator principles and technologies are described. Then the main distinction

between conventional and solid-state actuators is introduced and discussed.
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1.1 Actuator Principles

As it has been stated, actuators convert a given kind of energy into mechanical en-

ergy. Depending on the physical principle on which the energy conversion is based,

different classes of actuators can be identified. The present section deals with the

actuator classes which are most relevant to the scope of this book. Some of them

(electromagnetic actuators, electrostatic actuators, hydraulic actuators, pneumatic

actuators, thermal expansion actuators) are state-of-the art in industrial applications;

other are emerging actuator technologies in the main focus of past and current re-

search (piezoelectric actuators magnetostrictive actuators, thermally-induced shape

memory alloy actuators and electroactive polymer actuators based on dielectric elas-

tomers). Other, less common, actuator classes like magnetic shape-memory alloys,

electrochemical actuators as well as ionic electroactive polymers will not be treated

here. The reader can refer to specific literature [21] to this purpose. Semi-active

devices like magnetorheological and electrorheological devices are not actuators in

the above mentioned sense and will be not considered in this book.

1.1.1 Electromagnetic Actuators

Electromechanic actuators convert electrical or magnetic energy to mechanical en-

ergy. The energy conversion takes place in the so-called air gap which separates the

moving part of the actuator and the fixed part of the actuator.

Electromechanic actuators can be classified between electromagnetic and elec-

trostatic actuators [5]. Electromagnetic actuators produce force and torque by means

of magnetic energy while electrostatic and piezoelectric actuators employ directly

electrical energy. The present section analyzes firstly electromagnetic actuators to

later deal with electrostatic and piezoelectric actuators.

Electromagnetic actuators are commonly used in many engineering fields. They

feature good force and work densities, although not as high as hydraulic actuators.

They are easily controllable, since the electrical which drive the actuators may be es-

tablished by means of power converters. Moreover, the power source providing the

energy can be placed as far away as necessary. They permit power flow in both di-

rections allowing to use the actuators as generators to brake whenever it is necessary.

Their use must be avoided when their environment must be free of electromagnetic

fields or interferences.

Electromagnetic actuators have two important circuits to take into account: the

electrical circuit which establishes the currents and voltages according to the well

known electrical circuit analysis laws, and the magnetic circuit which establishes

the magnetic flux and magnetic field strength. The magnetic flux φ and magnetic

flux density
−→
B is produced by the magnetic field strength

−→
H as

−→
B = μr(

−→
H )μ0

−→
H (1.1)
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where μ0 = 4π10−7NA−2 is the permeability constant and μr is the relative per-

meability of the material and its dependance on
−→
H is usually analyzed by means of

B−H or μ −H curves.

An scalar expression, analogous to the Ohm law for electrical circuits, can be

used by considering the electrical-magnetic analogy. For coil-type circuits the mag-

netic flux can be considered a current, the magnetomotive force F is considered a

voltage (with F = Ni being N the number of turns and i the electrical current flow-

ing in the coil) and the magnetic reluctance R is considered as a resistance. The

relationship between F and φ yields

F = Rφ (1.2)

where the reluctance can be defined for a constant section element as

R =
l

μ0μrA
(1.3)

where l corresponds to the element length in the direction of the flux flow and A is

the cross-section being crossed by the flux.

The fundamental principles for electromagnetic actuators are the Lorentz law, the

Faraday law and the Biot-Savart law. The Lorentz law states that a current i flowing

in a conductor
−→
L in the presence of a magnetic flux density

−→
B produces a force

−→
F

given by −→
F = i

−→
L ×−→

B (1.4)

which in a number of cases where
−→
B and

−→
L are orthogonal can be rewritten as

F = BLi (1.5)

considering
−→
F orthogonal to both

−→
B and

−→
L .

Faraday law is also known as electromagnetic induction law. It states that the

induced voltage in a closed circuit is equal to the time rate of change of the magnetic

flux through the circuit

e = −dφ
dt

(1.6)

The Biot-Savart law describes the magnetic field generated by an electrical cur-

rent. For a straight long (assumed infinite) conductor, it yields

B =
μrμ0

2πr
i (1.7)

where r is the distance to the conductor.

In the case of a solenoid, it yields

B = μ0μr
Ni
L

(1.8)

where N is the number of turns and L the solenoid length.
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1.1.1.1 Electrical Motors

Michael Faraday built the first electric motor in 1831. Since then, electrical motors

have been increasingly used in more and more applications, becoming the most

generalized actuators. Electrical motors can be classified according to a number of

different criteria:

Fig. 1.3 Industrial DC motor.
Courtesy of BEI Kimco Mag-
netics

• Depending on the command input type electrical motors can be classified in DC

or AC motors. The first DC motor was proposed in 1831 by Michael Faraday

while the first AC motor was presented in 1887 by Nikola Tesla. While DC mo-

tors (Figure 1.3) have been extensively used for many years, nowadays the use

of AC motors is becoming more significant. The main advantage of DC motors

based on its ease of control has been overcome by the powerful control devices

available at reduced price. Moreover, some AC machines are brushless with the

corresponding maintenance cost reduction.

• Depending on how the magnetic field is created, electrical motors can be clas-

sified between those using permanent magnets, those using electromagnets or

induction principles.

• In AC machines, synchronization between mechanical and electrical frequencies

is another important issue. AC motors can be classified according to this criterion

as:

– Synchronous motors present a mechanical speed ωm of ωm = Pωe where ωe
is the electrical pulsation and P is the number of pole pairs of the motor. The

torque is proportional to the angle between the rotating field and the rotor

position, while the mechanical speed is constant as long as the motor is oper-

ating stably. The synchronous motor field can be created by either a permanent

magnet (typical brushless AC or DC motors) or by an electromagnet. The use

of electromagnets allow to change the magnetic field as desired at the cost

of needing a connection between static and rotating parts or more complex

induction-based excitation systems.

– Induction or asynchronous motors present a mechanical speed ωm of ωm =
(1− s)Pωe where ωe is the electrical pulsation, s is the so-called slip and P
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is the number of pole pairs of the motor. The motor slip characterizes its be-

havior so that the higher the slip the higher the motor torque, which is zero

for s = 0. Therefore, an induction motor rotating at synchronous speed does

not produce any torque. The magnetic field of such induction machines is cre-

ated by the currents induced in the rotor. this is the reason why asynchronous

motors are called induction motors.

• Other motor concepts include:

– Stepper motors based on a permanent magnet. The stator windings provide the

magnetic field which is followed by the permanent magnet rotor. A sequence

is applied to the different stator windings in order to move the rotor to a given

position step by step. There are different well-known sequences to be used in

this class of motors:

· Wave drive: the different windings are excited during a certain period of

time. Only one winding is excited each time.

· Full step drive: two consecutive windings are excited each cycle, producing

a higher torque.

· Half step drive: the two previous drive modes are alternated, achieving

double resolution at the cost of torque pulsation.

– Reluctance motors: reluctance motors are based on a variable airgap reluc-

tance which makes the rotor move to the less reluctance position.

Detailed analysis on electrical motors can be found in [7, 22].

1.1.1.2 Solenoid Actuators

Solenoid actuators (Figure 1.4) provide motion exciting a magnetic field where a

plunger (movable part) tries to minimize the reluctance (i.e. the air gap) moving to

the less reluctance position. Solenoid actuators are analyzed in Chapter 3.

Fig. 1.4 Industrial solenoid
actuators. Courtesy of NSF
Controls Ltd
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1.1.1.3 Moving Coil Actuators

Moving coil actuators are based on the interaction of a magnetic flux provided by

a permanent magnet and the electrical current flowing in the so-called moving coil,

described in the Lorenz force law. The force can be expressed by

F = Blwi (1.9)

where B is the field density provided by the permanent magnet, lw is the length of

the wire and i the current flowing in the wire.

Typical industrial moving coil actuators are shown in Figure 1.5 and analyzed in

Chapter 4.

Fig. 1.5 Industrial moving
coil actuators. Courtesy of
BEI Kimco Magnetics

1.1.1.4 Thermal Effects in Electromagnetic Actuators

The electrical circuit of an electromagnetic actuator supplies current to the coils.

This current flows through wires and produces heat due to the well known Joule

effect. Different materials can be employed for the wires but usually copper, silver

or aluminium are used because they present the lowest resistivity (see Table 1.1).

New technologies with superconductor materials (of extremely low resistivity) are

being developed, but they are beyond the scope of this work.

The magnetic circuit provides the flux and the force also producing heat due

to the magnetic losses in the magnetic circuit. Different materials can be used in

the magnetic circuit depending on their magnetic permeability as illustrated in Ta-

ble 1.2.

Electromechanical actuators have an electrical and a magnetic circuit. Such cir-

cuits are built together, and therefore, the heat generated in the coils by Joule effect

must flow through part of the magnetic circuit. The heat transfer circuit includes

all the components of the actuator and depends on the geometry of each of them.

Although different materials can be used in both the electric and magnetic circuit,

it is common to talk about copper for the electric circuit and iron for the magnetic

circuit.
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Table 1.1 Resistivity of different materials

Material Resistivity [Ω m]

Silver 1.59 ×10−8

Copper 1.68 ×10−8

Gold 2.44 ×10−8

Aluminium 2.65 ×10−8

Tungsten 5.6 ×10−8

Iron 9.71 ×10−8

Platinum 1.06 ×10−7

Lead 2.2 ×10−7

Mercury 9.8 ×10−7

Silicon 6.4 ×102

Glass 1010-1014

Teflon 1022-1024

Table 1.2 Magnetic permeability of different materials

Material μr

Iron (99.91 %) 200
Ferrite M33 750
Nickel 600
Ferrite N41 3000
Iron (99.95 %) 5000
Ferrite T38 10000
Permalloy 78 20000
Silicon GO steel 40000
Supermalloy 100000

Although some magnetic (demagnetization, saturation and magnetization hys-

teresis) and mechanical (friction and mechanical stress) effects are important in

electromagnetical actuators, this work assumes that the temperature is the quantity

that limits the available force. Therefore, to maximize the force, a study of the heat

transfer phenomenon is to be done. Although there are losses caused by the mag-

netic hysteresis, eddy currents and friction, the resistive losses are dominant in the

considered actuators operation, and hence, only such resistive losses are considered.

An expression of the maximum current or current density allowed in an actuator in

order to keep the temperature under the safety threshold has been developed. For

the sake of simplicity, continuous operation (100 % duty cycle) has been assumed,

nonetheless the case of non-continuous operation can be considered by using the

RMS current. The model will be valid as long as the thermal transients are signif-

icantly slower than the mechanical. Otherwise (for fast temperature transients), the

worst case should be considered, and thus, the maximum current of the cycle should

be chosen instead of the RMS current.
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1.1.2 Fluid Power Actuators

Fluid power actuators use the fluid power to provide mechanical work; the difference

between the pressures P in two different chambers results in a relative pressure

which produces a force F in a given surface S which yields

F = PS (1.10)

Fluid power actuators employed in the industry are mainly classified according

the state of the fluid employed: hydraulic actuators employ an incompressible liquid

(usually oil), while pneumatic actuators employ a compressible gas (air).

1.1.2.1 Hydraulic Actuators

Hydraulic actuators are commonly used in many engineering fields. They feature

the following advantages:

• very good force and work densities (more than any other actuator).

• strokes as long as necessary (if enough fluid is supplied).

• easily controllable.

• the power source providing the energy can be placed far away from the actuator

(but not as far as with the electromagnetic actuators).

Their main disadvantages are:

• the safety problems generated by the high pressures needed (the same fact that

provides the advantages).

• the leakage flow (that can become an important problem for actuator perfor-

mance, safety conditions and environmental issues).

• the inflammability of the oil employed.

An example hydraulic cylinder is shown in Figure 1.6, while the detailed parts

composing such cylinder are sketched in Figure 1.7. Hydraulic actuators are further

analyzed in Chapter 5.

1.1.2.2 Pneumatic Actuators

Pneumatic actuators are also used in many engineering fields. They present the fol-

lowing advantages:

• good force and work densities, even though not as high as the hydraulic actuators.

• able to perform strokes as long as needed like their hydraulic counterparts.

• easily controllable.

• the power source providing the energy can be placed far away from the actuator.

• able to work at higher temperatures than hydraulic actuators.



12 1 Actuator Principles and Classification

Fig. 1.6 Example hydraulic
cylinder. Courtesy of Bosch
Rexroth AG

Fig. 1.7 Hydraulic cylinder parts. Courtesy of Bosch Rexroth AG

Pneumatic actuators present the following drawbacks:

• not able to work with pressures as high as the hydraulic actuators because of the

problems derived from the high compressibility of the gases.
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• less fast and less stiff against perturbations than their hydraulic counterparts.

• less efficient than hydraulic actuators. It is caused by the losses of energy due to

the heat transfer (in the air cooling), higher leakage and worse lubrication which

occurs in the pneumatic systems.

An example pneumatic cylinder is shown in Figure 1.8.

Fig. 1.8 Example pneumatic
cylinder. Courtesy of Bosch
Rexroth AG

1.1.3 Piezoelectric Actuators

Piezoelectric and electrostatic actuators convert electrical energy to mechanical en-

ergy without the need of using magnetic energy. The word Piezo derives from the

Greek piezein, which means to squeeze or press. When joined with electricity form-

ing piezoelectricity it stands for the material property that links directly the mechan-

ical and electrical states. The piezoelectric effect was firstly described in 1880 by

Jacques and Pierre Curie [10]. In certain materials with crystalline non-symmetrical

structure, dipoles are formed when the material is deformed, i.e. a mechanical strain

produces an electrical field, reciprocally the application of an electric field produces

a strain.

Although the piezoelectric behavior observed is highly nonlinear, linear equa-

tions are presented in [19, 28, 27] introducing the direct and inverse piezoelectric

effect:

D = dTT+ εE (1.11)

S = sT+dE (1.12)

where:

• d is defined as the piezoelectric coefficients matrix.

• ε is the piezoelectric permittivity matrix.

• s is the compliance of the material matrix.

• T is the vector including the six components of the mechanical stress.

• S is the vector of mechanical strain.
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• E is the vector including the three components of the electric field.

• D is the vector with the components of the electric displacement.

All the expressions can be written in matrix form. Using the tetragonal crystal

system [19]:⎛
⎜⎜⎜⎜⎜⎜⎝

S1

S2

S3

S4

S5

S6

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎢⎣

s11 s12 s13 0 0 0

s12 s11 s13 0 0 0

s13 s13 s33 0 0 0

0 0 0 s44 0 0

0 0 0 0 s44 0

0 0 0 0 0 s66

⎤
⎥⎥⎥⎥⎥⎥⎦
×

⎛
⎜⎜⎜⎜⎜⎜⎝

T1

T2

T3

T4

T5

T6

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 d31

0 0 d31

0 0 d33

0 d15 0

d15 0 0

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
×
⎛
⎝E1

E2

E3

⎞
⎠ (1.13)

Analogously:

⎛
⎝D1

D2

D3

⎞
⎠=

⎡
⎣ 0 0 0 0 d15 0

0 0 0 d15 0 0

d31 d31 d33 0 0 0

⎤
⎦×

⎛
⎜⎜⎜⎜⎜⎜⎝

T1

T2

T3

T4

T5

T6

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎡
⎣ ε11 0 0

0 ε11 0

0 0 ε33

⎤
⎦×
⎛
⎝E1

E2

E3

⎞
⎠ (1.14)

Fig. 1.9 Sample piezoelectric actuators. Courtesy of Noliac
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Fig. 1.10 Sample piezoelectric actuators. Courtesy of Cedrat

1.1.3.1 Deformation Modes

The deformation directions are shown in Figure 1.11. It is important to note that

all the parameters used in (1.12) have to be considered in the different deformation

directions.

Fig. 1.11 Axes and deformation directions

Depending on the electrical field application and the deformation of interest,

piezoelectric actuators can be employed using different modes:

• Longitudinal mode d33. See Figure 1.12(a). Expression (1.13) turns into:

S3 =
6

∑
i=1

(s3iTi)+d33E3 (1.15)

• Transverse mode d31. See Figure 1.12(b). Expression (1.13) turns into:

S1 =
6

∑
i=1

(s1iTi)+d31E3 (1.16)
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• Shear mode d15. See Figure 1.12(c). Expression (1.13) turns into:

S5 =
6

∑
i=1

(s5iTi)+d15E1 (1.17)

(a) (b) (c)

Fig. 1.12 Different deformation modes: (a) longitudinal mode, (b) transverse mode, (c) shear mode

1.1.3.2 Simplified Model

A piezoelectric element can be modeled from (1.12) as the association in parallel of

a capacitor and a charge source, since the charge can be obtained from the electric

displacement D, and the voltage can be derived from the electrical field E, assuming

that it is uniformly distributed in a length l (V = E/l). Expression (1.12) can be

written as:

Qe

A
= d

F
A

+ ε
V
z

(1.18)

x
l0

= s
F
A

+d
V
z

(1.19)

where Qe is the electrical charge, A is the cross-section in the movement direc-

tion, F is the force, V is the applied voltage, l0 is the initial length in the movement

axis and z is the thickness in electrical field direction. Expression (1.18), (known as

the sensor expression) can be written as:

Qe = dF + ε
A
z

V = dF +CV (1.20)

where C = εA/z is the equivalent capacitance.

Equation 1.19, (known as the actuator expression) can be written as:

x = sl0
F
A

+V d
l0
z

= k−1F +d
l0
z

V (1.21)

where k = A/sl0 is the equivalent stiffness constant. Note that in the longitudinal

mode, the electrical field is applied in the motion direction and thus:
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x = k−1F +dV (1.22)

The approximations of (1.20), (1.21) and (1.22) apply for low frequencies. When

the dynamic behavior for higher frequencies (close to the mechanical resonance fre-

quency) is concerned, the model from [30] characterized in Figure 1.13 has to be

used. It includes the equivalent capacitor and a RLC branch in parallel where R1

includes the mechanical losses, L1 is the equivalent inductance of the mechanical

circuit and C1 the capacitance of the mechanical circuit. Each branch has a mechan-

ical resonance at fi = 1/2π
√

LiCi. A current (or charge) source can be added if the

system is mechanically loaded. More branches can be added corresponding to the

resonance frequencies of the mechanical system.

Fig. 1.13 Equivalent circuit of a piezoelectric element excited at high frequency

1.1.3.3 Load Dependance

The relationship between force and displacement can be extracted from expression

(1.21). Manufacturers usually provide the force with no displacement and the free

displacement. Defining F0 as the force with no displacement (clamped actuator) and

x0 the free displacement with no force:

x0 = dV
l0
z

(1.23)

F0 = dV
A
zs

(1.24)

Hence expression (1.21) can be rewritten as:

F =
F0

x0
(x0 − x) (1.25)

where both F0 and x0 depend linearly on the applied voltage. Note that the pre-

viously defined stiffness constant k, can be expressed as F0/x0 and does not depend
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on the voltage but on the material stiffness. An alternative expression of (1.25) is:

F = k (x0 − x) = F0 − kx (1.26)

Example 1.1. An example can be shown with a sample actuator working in the

transversal mode. The parameters are:

l0 = 50 ·10−3m
z0 = 0.2 ·10−3m
A = 6 ·10−6m2

s31 = 15 ·10−12m2/N
d31 = −250 ·10−12m/V

Then:

k =
A

sE · l0 =
6 ·10−6

15 ·10−12 ·50 ·10−3
= 8 ·106N/m

For V = 400 V :

x0 = d ·V · l0
z0

= −250 ·10−12 ·400 · 50·10−3

0.2·10−3 = 25 ·10−6m
F0 = x0 · k = 200N
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Fig. 1.14 Displacement-force curves

In Figure 1.14 the load-displacement characteristic for different voltages can be

seen. Also the load-displacement characteristic for different voltages under a con-

stant load and linear load (for example a spring or a attached structure) are shown.
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1.1.3.4 Piezoelectric Materials

The piezoelectric materials are divided in single-crystal materials, piezoceramics,

piezopolymers, piezocomposites and piezofilms. Comprehensive information about

them may be found in [27]. The most significant parameters employed to describe

piezoelectric actuators can be found in Table 1.3. The most relevant properties of

some piezoelectric materials are shown in Table 1.4.

Table 1.3 Piezoelectric material relevant parameters

Quantity Description Units

di j Piezoelectric Strain Constant C/N
gi j Piezoelectric Voltage Constant V m/N
kt Thickness-extensional coupling factor
kp Planar coupling factor
ε Relative permittivity
Qm Mechanical Quality Factor
TC Curie Temperature ◦C

Table 1.4 Piezoelectric material properties [27]

Parameter Quartz BaTiO3 PZT PST (Pb,Sm) PVDF
4 5H TiO3 TrFE

d33 pC/N 2.3 190 289 593 65 33

g33 10−3V m/N 57.8 12.6 26.1 19.7 42 380
kt 0.09 0.38 0.51 0.50 0.50 0.30
kp 0.33 0.58 0.65 0.03
ε 5 1700 1300 3400 175 6

Qm > 105 500 65 900 3-10
TC

◦C 120 328 193 355

1.1.3.5 Applications

The employment of piezoelectric actuators has been increased in the last decades.

The main advantages [26] shown by the piezoelectric actuators are:

• High resolution: a piezoelectric actuator can perform very small and precise po-

sition changes to the subnanometer range.

• Easy miniaturization: The fact that they are solid state actuators allows to minia-

turize them and allow their application to micro and nano-scale applications. This

advantage is very significative in comparison with their electromagnetic counter-

parts [16].
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• Work in different directions: it is not necessarily an advantage but it certainly

allows a wide range of applications, not only longitudinal traction.

• Large force generation: piezoelectric actuators generate large forces. It leads to

high energy and power densities.

• Very rapid response: piezoelectric actuators offer very fast time response. It en-

ables to be used in applications requiring very high frequencies.

• Absence of magnetic fields: piezoelectric actuators are especially indicated for

applications where magnetic fields are not allowed.

• Low power consumption: the piezoelectric effect converts directly electrical en-

ergy to motion. The electrical energy is consumed only during the motion. The

static losses can be considered very low in comparison with other kinds of actu-

ators.

• Compatible with vacuum and clean rooms: piezoelectric actuators use ceramic

elements which do not need lubrication and exhibit no wear or abrasion. This

makes them clean-room compatible and ideally suited for ultra-high-vacuum ap-

plications.

The main drawbacks include:

• Reduced displacement: the piezoelectric actuators range is small in compari-

son with other actuators. The maximum typical deformation is approximately

< 0.2 %.

• High voltage operation: to obtain a certain displacement usually requires high

voltage operation, with all the drawbacks involved.

• High nonlinearity: piezoelectric actuators show an elevated nonlinearity due to

hysteresis and creep.

The mentioned advantages make piezoelectric actuators appropriated for a wide

range of applications. They are summarized in Table 1.5.

1.1.4 Thermal Shape Memory Alloy Actuators

The shape memory effect was firstly observed in 1932 by A. Ölander in a gold-

cadmium alloy. The shape memory effect is the property of some materials to re-

cover a predefined memorized shape once they have deformed. Such an effect is

based on solid-solid phase transition and it occurs in a given temperature interval

[21]. The most known kind of shape memory alloys is nickel-titanium alloy, how-

ever other alloys as copper-zinc-aluminum-nickel and copper-aluminum-nickel also

reproduce a similar behavior and can be used at higher temperatures than nickel-

titanium alloys.

The employment of shape memory alloys as actuators reside in their capability

of return to the original shape when they are heated up and move from martensite

to austenitic structure producing high force. While shape memory alloy actuators

present many advantages including easy miniaturization, high energy density and
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Table 1.5 Main applications of piezoelectric devices

Linear Bending Generator Transformer
actuator actuator sensor sensor/actuator

Fuel injection Drug dispensers Accelerometers LCD backlighting
Printers Valves Force sensor Ion generators

Microscopes Pumps Pressure sensor Power supplies
Micropositioning Micropositioning Knock sensors
Nanopositioning Nanopositioning Gyroscopes
Tunable lasers Textile machines Medical

Ultrasonic motors Optics Gas ignition
Micro pumps Micro pumps Sonars

Ultrasound scanners Vibration control Medical scanners
Droplet dispensing Droplet dispensing Blood flow meters

Hard disc drives Wire bonding Distance sensors
Process control Tunable lasers
Mechatronics Mechatronics

Optics Optics
Vibration control Vibration control

Ultrasound welding Telecommunication
Ultrasound cleaning Moving opt. fibres
Stretching opt. fibers

flexible configuration, they present some important drawbacks related to their low

speed, temperature dependance and low efficiency.

Shape memory alloy actuators are used in a broad range of engineering applica-

tions including among others, medical equipment, robotics and aeronautics applica-

tions. Some shape memory alloys components used in medical applications can be

seen in Figures 1.15 and 1.16.

Fig. 1.15 Shape memory
alloy actuator used in medical
applications. It consists in a
tissue spreader used in open
heart surgery. Courtesy of
Memory Metalle GmbH
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Fig. 1.16 Shape memory
alloy parts. Courtesy of Mem-
ory Metalle GmbH

1.1.5 Other Actuators

1.1.5.1 Electrostatic Actuators

Electrostatic actuators are based on the well-known Coulomb law, which was re-

ported in 1780 and describes the force between two electrical charges as

F =
1

4πε0

Q1Q2

r2
(1.27)

where Q1 and Q2 are the interacting electrical charges, r is the distance between

such charges and ε0 is the electric constant, which yields ε0 = 8.854×10−12. When

the charges are of the same sign there is a positive force which implies a repulsion.

If the charges are of opposite sign, there is a negative force implying attraction.

In practice, a number of electrostatic actuators are based on capacitive actuators.

They use the energy stored EC by a capacitor of capacitance C, which yields EC =
(1/2)CV 2, being V the applied voltage. Considering two opposite parallel plates, the

capacitance C can be expressed as C = εA/r,where ε is the dielectric permittivity,

A is the plate surface and r the distance between plates.

The force between plates yields:

FC = −εAV 2

2r2
(1.28)

Because electrostatic actuators show lower energy density than their magnetic

counterparts [5], their use is restricted to micromechanical actuators, like the well-

known comb actuators [1] of Figure 1.17.

1.1.5.2 Magnetostrictive Actuators

A magnetic field applied to ferromagnetic materials produces magnetostriction,

which forces the expansion (in the case of positive magnetostriction) or contraction

(for negative magnetostriction) of the element which is subjected to a longitudinal

static magnetic field [21]. It is actually the same effect that produces the well-known

undesired transformer hum. Regardless the direction of the magnetic field, magne-
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Fig. 1.17 Comb actuator by Ando et al. [1]

tostriction is experienced always in the same direction and shows a quadratic rela-

tionship between strain and magnetic field. Magnetostriction was first observed with

nickel by James Joule in 1842.

According to [17] some relevant data on magnetostrictive maximum strains for

some materials is given in Table 1.6. It can be noted that some materials like nickel

show negative magnetostriction like others as Terfenol-D show positive magne-

tostriction.

Table 1.6 Magnetostrictive maximum strain. Data from [17]

Material Max. strain (ppm)

Ni -50
Fe -14
Fe3O4 60
Terfenol-D 2000
Tb0.5Zn0.5 5500
Tb0.5DyxZn 5000
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Magnetostrictive actuators (Figure 1.18) feature larger strains than their piezo-

electric counterparts and therefore they can be used in applications where piezo-

electric actuators are used, ranging from ultrasonic motors (Figure 1.19) to minia-

ture micro-actuators. Furthermore, magnetostrictive actuators show less hysteresis

than piezoelectric actuators. The main drawback is the cost and volume implied by

the need of a solenoid or a another device to produce the magnetic field.

Fig. 1.18 Magnetostrictive
actuator concept. Courtesy of
ETREMA Products, Inc.

Fig. 1.19 Ultrasonic magnetostrictive actuator. Courtesy of ETREMA Products, Inc.

1.1.5.3 Thermal Expansion Actuators

Thermal expansion actuators are usually designed using thermal bimorphs. In such

actuators, two bonded element expand at different rates when temperature changes

and therefore a stress is produced in the bimorph and it curves to one side.

The typical expression for the curvature radius yields

R =
(w1 +w2)

2

6(α1 −α2)ΔTw1w2
(1.29)
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where w1 and w2 are the thicknesses of the two bonded elements, αi is the mate-

rial thermal expansion coefficient and ΔT is the temperature increment.

Thermal expansion actuators feature strong forces and relatively large displace-

ments. The main drawbacks are their temperature dependency, slow actuation and

control difficulties.

1.2 Solid-State versus Conventional Actuation

Piezoceramic actuators are solid-state actuators, since they exploit a material effect.

They are inherently monolithic, while conventional actuators like hydraulic cylin-

ders or solenoid actuator need moveable or sliding parts.

The basic ingredient of a solid-state actuator is an active material1 . Active ma-

terials typically respond, when unconstrained, with the generation of a mechanical

strain to an input of non-mechanical nature (e.g. a change in the electric or thermal

field). Due to this reason, the term “induced-strain actuators” is often used to denote

solid-state actuators. When the strain generation is hindered, mechanical stresses are

generated (according to the stress-strain behavior of the material). Besides the active

material, the solid-state actuator is provided with elements apt to produce the non-

mechanical input (electrodes, coils, leading wires) and to transfer the mechanical

output (forces and displacements) to the host system. Finally, auxiliary components

like insulation elements or casing complete the device.

Besides piezoceramic actuators, the most common kind of solid-state actuators

are thermal shape-memory alloy actuators. Electrostrictive and magnetostrictive ac-

tuators also belong to this actuator class. Despite of their monolithic nature, Elec-

troactive Polymers based on dielectric elastomers cannot be considered as solid-

state actuator in the sense introduced above, since they do not operate according

to the strain induction principle, but they are stress inducing instead. An electro-

static force is primarily generated and the dielectric elastomer works essentially in

a passive way (as an insulator as well as a mechanical transmission element).

Solid state actuators and the closely related area of smart structural systems con-

stitute a very broad field involving a large number of disciplines. It has experienced

a strong growth in the last ten to twenty years, and the amount of available litera-

ture is correspondingly very large. Within the scope of this book, only a few aspects

can be discussed in detail, mainly related to simple rules for the preliminary design

1 In the literature devoted to active or adaptive structures, several (more or less equivalent) denom-
inations are used for active materials. The terms “smart materials” and “intelligent materials” are
widely used, despite of their inconsistence (the materials as such are neither intelligent nor smart,
but allow for interfacing a structural system with the “intelligence” or smartness of a control algo-
rithm). The same holds for the term “adaptive materials”, since adaptivity is not a property of the
material, but of the system or structure which incorporates the material. A more lucky choice is
represented by the term “multifunctional materials”, which points at the fact that active materials
join the conventional load-carrying function of a passive, construction material with actuating or
sensing capabilities.
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of single actuators. The interested reader can find plenty of details on solid-state

actuation and smart structures in [8, 2, 13, 25, 11, 29, 24, 3, 9, 12, 4].

Solid-state actuators present some peculiar advantages with respect to conven-

tional actuators [6]:

• Configurability. Since they are material-based, solid-state actuators profit from

a high level of configurability: They can be virtually shaped in any form and be

therefore easily customized for a particular application.

• Multifunctionality. Solid-state actuators are load-carrying elements. This feature

involves two distinct aspects: firstly, while conventional actuators are built to

carry loads in one single mode, a solid-state actuator virtually interacts with

its mechanical environment by means of distributed stresses and strains and of-

fers therefore the possibility of carrying loads in multiple directions; secondly,

in its main loading mode and due strain induction, a solid-state actuator stiff-

ens the host structure without requiring additional mechanical energy to work

“against” this stiffness contribution. Additionally, the load-carrying function of a

solid-state actuator is present even if the actuator input (e.g. electrical tension) is

switched off.

• Integrability. Solid-state actuators can be better integrated into structures. They

can be virtually distributed over the structure, in a continuous fashion or as arrays

of miniaturized actuators. This helps reducing load concentrations and saving

structural weight.

• Scalability. Solid-state actuators are mechanically scalable. This implies the pos-

sibility of realizing small-scale actuators (useful for the above mentioned dis-

tributed actuation) as well as the possibility of realizing full functional, reduced-

scale models of active structural systems for investigation purposes (e.g. wind

tunnel models).

• Damage tolerance. Solid-state actuators can experience a partial mechanical fail-

ure and still being able to operate. A typical case is represented by piezoceramic

plate actuators which break in several pieces due to excessive bending and still

work (each piece operates as a single actuator).

• High specific performance. Due to the strain-induction principle, actuator forces

per unit area are of the order of magnitude of the modulus of elasticity times

the active strain. This leads to a high static specific performance (energy density,

see Section 6.4.1) for high-strain materials like Shape Memory Alloys and to a

high dynamic performance (deliverable power per unit volume or weight) for fast

reacting materials like piezoceramics [23, 20, 18, 14].

• Compactness. Solid-state actuators are of inherently monolithic nature: they

show no backlash, are wear and lubrication free and profit from a reduced need

for assembly.

• Simple modeling. This is the most relevant feature in the context of this book.

Solid-state actuation can be modeled at the material level, which makes the anal-

ysis of the actuator performance as a function of its geometry straightforward (at

least within the limits of a linear theory based on the prescribed-strain approach).

This presents large advantages for preliminary design of actuators as well as for

the coupled optimization of actuator and structure.
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The theory of single-stroke linear solid-state actuators as well as the design rules

presented in Chapter 6 are limited to materials and actuators based on the strain

induction principle. Moreover, we will explicitly refer to single-stroke actuators,

i.e. actuators which interface with the host mechanical systems through one single

force and one single stroke. A SMA wire and a piezoceramic stack actuator are com-

mon examples of single-stroke solid-state actuators. Even if some of the mentioned

advantages (mainly related to multifunctionality and integrability) of solid-state ac-

tuation are put into perspective for this class of actuators, this restriction allows for

formulating simple and expedient design rules. Most of the documented applica-

tions of solid-state actuators are still kept at a relatively low integration level, and

even in the case of higher integration (e.g. piezoelectric patches glued on the surface

of a thin-walled structure), the interaction between actuator and host structure can

often be regarded, as a first approximation, as of single-stroke nature, which makes

the single-stroke assumption useful in most cases of practical relevance.
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Chapter 2
Actuator Design Analysis

2.1 Nature and Objectives of Actuator Design Analysis

The primary quantities of an actuator depend on

1. the actuator principle or class (e.g. piezoceramic stack actuator, solenoid actua-

tor, hydraulic cylinder);

2. a set of non-geometrical design variables (e.g. the kind of active material used,

the amount of pre-strain of a Shape-Memory wire);

3. a set of geometrical variables;

4. the actuator input quantity;

5. the external load.

While designing an actuator for a particular application, the engineer deals ex-

plicitly or implicitly with this multi-variable dependency. Even with the help of

formal optimization algorithms, the design task can reveal extremely challenging if

no preliminary information is made available to the engineers as a guide to effec-

tively move in the highly multidimensional design space the actuator. With limited

resources for the design procedure, the result is inevitably a sub-optimal actuator

device. Things become even more complex if the actuator is to be designed together

with the host mechanical system.

The scope of this study is to provide such a guide by analyzing the above listed

dependencies in a systematic and general way, discerning strong trends from the

weak ones and finally extracting rules and criteria to be used as a basis for a powerful

and efficient design process.

In particular, those rules and criteria should guide the engineer in:

• choosing the proper actuator class or principle for a given application.

• optimizing the actuator size and geometry for given output quantities.

• perform a simultaneous design of the actuator’s geometry and of its interface

with a given host mechanical system (in this case the required actuator output

quantities are not defined explicitly but are function of the actuator position and

29
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of the direction of the actuator forces, which are among the unknowns of the

problem).

• perform a coupled optimization with the external system in which the whole

system is to be concurrently designed.

For some design tasks it can be useful not to refer to the primary output quantities,

but to derived quantities, mostly of energetic nature, like work or power. The work

performed by the actuator against an external load will depend on all the variables

listed above, with the difference that on point d. not a single value of the input

quantity is to be considered but a defined change of the input quantity between a

minimum and a maximum value. The actuator power will be defined by a cyclic

variation of the input quantity as a function of time instead.

The key facts which will be considered in the actuator design analysis presented

in this chapter are discussed in the following:

• Effect of the external load. For a given choice of the variables on items 1 to

4, the actuator defines a relationship between the primary output quantities. The

actual value of the actuator force and stroke are only defined if the characteristic

curve of the external load is considered, which provides a second relationship be-

tween those quantities. While considering a parametric choice of possible loads

(e.g. all linear elastic springs, defined by their spring constant) the primary output

quantities can be usually maximized with respect to the load. The same applies

to derived quantities (with the adjustments discussed above). The maximum val-

ues of the considered output quantities are taken into a second step of the design

analysis; the optimal load for a given quantity to be maximized gives a valuable

insight on how actuator and host system have to be adapted to another in order to

exploit the chosen actuation principle in an efficient way.

• Thresholds on the input quantities. While considering now the maximum val-

ues resulting by the above described load analysis, these will depend only on the

variables listed on items 1 to 4. The dependency on the input variable chosen to

drive the actuator will usually be of monotonic nature but just up to a thresh-

old value beyond which the input variable cannot be increased. By analyzing the

threshold effects and identifying the limit values the design space can be reduced

by a further dimension.

• Geometrical parameterization. The maximum output quantities resulting by

the threshold analysis can now be analyzed as a function of the actuator geom-

etry (for a fixed choice of the variables on items 1 and 2). The first step of the

geometry analysis is the identification of a global representative length which de-

fines the actuator size and of an appropriate number of aspect ratios which relate

the actuator size to a corresponding number of reference lengths along different

axes. The further geometrical variables are then related to the reference lengths

on the same axis by additional non-dimensional variables. In most cases, these

additional variables express the relationship between an active length, area or

quantity of active material to the length, area or quantity of a passive component.

We will therefore use the name filling factors for geometrical ratios defined on

the same axis, implicitly including geometrical ratios of different nature.
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• Size analysis. Since the output quantities are expected to increase indefinitely as

a function of the actuator size, the next step in the actuator design analysis is to

identify the law which rules the dependency of the maximum output quantities

on the size and try to separate, if possible, this dependency from the dependency

on aspect ratios and filling factors. If the dependency on size is defined, the anal-

ysis can now be reduced to the study of the dependency of the maximum output

quantities for a given size as a function of aspect ratios, filling factors and finally

the non-geometrical variables listed on items 1 and 2.

• Scalability. One important implication of size analysis is the scalability issue. It

deals with the question if the output quantities are mechanically scalable, i.e. if

they change with size like in a passive mechanical system which can be analyzed

by continuum mechanics. This implies forces to scale with the square of size and

strokes linearly with the size. As a consequence, work scales with the cube of

the size. Mechanical scalability is quite relevant for mechatronic and adaptronic

systems, since it allows to globally scale the whole active system consisting of a

passive and an active part.

• Shape analysis. Once the output quantities have gone through the successive

steps of load optimization, input quantity threshold and size analysis, the optimal

aspect ratios and filling factors can be found, in order to finally achieve a set of

performance quantities which are representative for the chosen actuator principle

(item 1) and only depend on non-geometrical design variables (item 2).

• Actuator principle analysis. This is the final step of the actuator design anal-

ysis, in which the chosen actuator principle can be analyzed on a general ba-

sis, independently on geometry, thresholds and loads. After having performed

– if possible – an optimization with respect to the non-geometrical design vari-

ables of item 2, indexes of merit for the chosen actuator principle can be defined

on an objective and quantitative basis, which helps comparing different possible

choices for a given application.

The designer can take advantage from the described design analysis as a whole or

in part, making use of intermediate results and integrating them with conventional

design procedures based on statistical methods or on trial-and-error techniques. In

order to get familiar with the proposed design philosophy, we will summarize it in

form of a stepwise design algorithm which essentially reproduces the successive

reduction of the design space described above.

This algorithm will be applied once the designer chooses a certain class of actu-

ator and defines a first sketch of the actuator geometry as illustrated in Figure 2.1.

After applying the algorithm, the actuator designer can decide whether the obtained

actuator performance is optimum or not and to introduce or change the actuator class

or geometry and start the procedure again. The procedure can be repeated until it

becomes clear that the best actuator has been chosen for the given application.

The forthcoming sections illustrate the different methodology steps, stressing the

most important concepts which are to become relevant in the design of the actua-

tor. The different step procedures are explained and illustrated by means of exam-

ples. Although the whole methodology is described, it has to be noted that for some

classes of actuators not all the steps will have the same importance. Dimensional
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Fig. 2.1 Actuator design procedure
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analysis, for example, may become valuable in some applications related to fluid

power or thermal transfer and may provide trivial results when dealing with other

kind of actuator applications. In any case, it is strongly recommended to follow all

the steps, since some relevant non-expected results may be obtained in certain cases.

Although the present chapter describes different examples to illustrate the method-

ology, a detailed analysis of three classes of conventional actuators (solenoid, mov-

ing coil and hydraulic actuators) will be developed in the following Chapters 3, 4

and 5. The application to solid-state actuators will be the topic of Chapter 6.

2.2 Performance Indexes

Before explaining the actuator design analysis philosophy in more detail, we will

shortly review some published results on actuator performance indexes, which

somehow represent the state of the art on the issue of quantitative comparison of

different actuator class and principles.

As a rule, published performance indexes of actuators are based on statistical

methods, with the exception of solid-state actuators for which a model-based analy-

sis is quite straightforward and customary. With the design analysis described later

in the chapter we aim to provide a novel contribution to this topic by extending

model-based techniques to conventional actuator principles.

The data presented in this section are taken from [5, 4, 11], where the reader can

find more details on the definition of the used performance indexes and on how the

quantitative results were obtained.

The basic characteristics of actuators are well defined as the stress σ and the

strain ε . As stress and strain apply for a broad range of actuator sizes, for a specific

application it is common to use the force F and displacement or stroke x. Stress

and force are linked by the section A as F = σA, while strain and displacement are

linked by the reference length l as x = εl.
The present Section analyzes and compares different actuator classes according

to different performance criteria. When an actuator has to be chosen for a given

application, the designer has to decide what the relevant criteria are and choose one

actuator or the other according to it.

The analyzed classes of actuators are:

1. Low strain piezoelectric actuators

2. High strain piezoelectric actuators

3. Polymeric piezoelectric actuators

4. Thermal expansion actuators 10 K

5. Thermal expansion actuators 100 K

6. Magnetostrictive actuators

7. Shape memory alloy based actuators

8. Moving coil actuators

9. Solenoid actuators

10. Muscles
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11. Pneumatic actuators

12. Hydraulic actuators

The different actuator classes have been compared using different performance

indices. Such indices include:

1. Maximum strain

2. Maximum stress

3. Maximum frequency

4. Maximum volumetric power density

5. Maximum mass power density

6. Efficiency

7. Resolution

A plot showing the different maximum strain versus maximum stress is shown

in Figure 2.2. It can be noted that the diagonal lines from left-top to right-bottom

show constant volumetric energy. It implies that a certain actuator can move along

this diagonal by using mechanical amplification or reduction. For example, a high

strain piezoelectric actuator performs strains in the range of 10−4. If a mechanical

amplification is added it can increase notably the strain at the cost of reducing the

stress in the same proportion.
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Fig. 2.2 Maximum stress versus maximum strain for different classes of actuators (Data extracted
from [5])

Another important quantity is the maximum available frequency. Some actuators

can provide large strains, while others feature high frequencies. Again, mechanical

transmissions can be used in order to increase frequency or strain, but they increase

the volume, weight and cost of actuation system chosen. Figure 2.3 illustrates the
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Fig. 2.3 Maximum frequency versus maximum strain for different classes of actuators (Data ex-
tracted from [5])

maximum frequency versus the maximum strain for different classes of actuators. It

can be seen that the actuators featuring the best frequency to strain ratio are mov-

ing coil actuators, muscles, pneumatic actuators, hydraulic actuators and magne-

tostrictive actuators. The thermal expansion actuator 10 K is the worst positioned

according to this index.
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Fig. 2.4 Maximum frequency versus maximum stress for different classes of actuators (Data ex-
tracted from [5])
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It can be also useful to see the maximum frequency against the maximum stress,

as shown in Figure 2.4. It can be noted that the actuator featuring a best frequency to

stress ratio is the magnetostrictive actuator, while the solenoid actuator is the worst

positioned according to this index.

The maximum power density is an extremely important quantity since it ex-

presses the maximum power that can be provided per unit of volume or mass. Fig-

ure 2.5 shows the maximum volumetric power density versus maximum strain while

Figure 2.6 shows the maximum mass power density versus maximum strain. Hy-

draulic actuators dominate both volumetric and mass power density to strain ratios,

while thermal expansion 10 K actuators feature the worst power density to strain

ratio.

Multiplying the maximum strain times the maximum stress another interesting

quantity is obtained, which corresponds to the volumetric work. The plot linking

power density and volumetric work of Figure 2.7 shows that the actuator featuring a

best ratio is again the hydraulic actuator, while moving coils, solenoid and thermal

expansion actuators 10 K show the worst ratios.

The resolution versus the maximum strain is illustrated in Figure 2.8. It should

be noted that the resolution is expressed as the minimum controllable strain and

therefore the smaller the value the better the resolution is. It can be seen that the

worst resolutions are obtained by the actuators that provide large strains, like the

muscles or the solenoid actuators, while the best resolution is obtained by low strain

piezoelectric actuators. The diagonal lines bottom-left to up-right show the number

available and controllable positions where the actuator can be moved. The number

of positions is obtained by dividing the strain into the resolution. It can be noted

that the maximum number of positions is obtained by the different piezoelectric

actuators, moving coils and pneumatic and hydraulic actuators, while the thermal

expansion 10 K actuator feature the worst number of positions. Therefore, such

thermal expansion 10 K actuators will be recommended for applications requiring a

low number of positions, such as bistable switches.

The efficiency versus the maximum mass power density is illustrated in Fig-

ure 2.9. It can be noted that the actuators with higher efficiency are the piezoelectric,

magnetostrictive and hydraulic actuators.

2.3 Design Parameters

The first step introduces the relevant design parameters in the construction of the ac-

tuator. A detailed schematic drawing is presented showing the geometric quantities

and the materials used. In order to obtain a clear design parameterization geometri-
cal factors, aspect ratios and filling factors are used.
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Fig. 2.5 Maximum volumetric power density versus maximum strain for different classes of actu-
ators (Data extracted from [5])
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Fig. 2.6 Maximum mass power density versus maximum strain for different classes of actuators
(Data extracted from [5])

2.3.1 Geometrical Factors

Geometrical factors define the ratio between any geometrical dimension and a ref-

erence geometrical dimension in the same axis.
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Fig. 2.7 Maximum volumetric power density versus maximum strain times maximum stress for
different classes of actuators (Data extracted from [5])
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Fig. 2.8 Resolution versus maximum strain for different classes of actuators (Data extracted from
[5])

A non-dimensional geometrical factor ki is obtained for each length li as a quo-

tient of this length and the reference length l in its axis as:

ki =
li
l
→ li = kil (2.1)
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Fig. 2.9 Efficiency versus maximum mass power density for different classes of actuators (Data
extracted from [5])

Using these factors, all the lengths in the same axis can be related to one sin-

gle length, simplifying the analysis of the size dependance of different quantities.

The number n of independent reference lengths depend on the degrees of symmetry

of the actuator. An actuator with cylindrical shape presents two different reference

lengths (n = 2, since a cross-section diameter and a length define a cylinder), a

spherical actuator would be defined with one reference length (n = 1, only a diam-

eter defines a sphere).

Example 2.1. Evaluate the mass of a hollow sphere.

A hollow sphere can be characterized by the outer diameter D2 and the inner

diameter D1. Considering the material density ρ the mass msphere of the sphere can

be expressed as:

msphere = ρ
π
6

(D3
2 −D3

1) (2.2)

The previously mentioned number of independent reference lengths is n = 1 in

this case. Using the geometrical factor k1 = D1/D2 the dependance on D1 can be

removed, allowing to express (2.2) as

msphere = ρ
π
6

D3
2(1− k3

1) (2.3)
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2.3.2 Aspect Ratios

The proportions between different axes can be characterized by means of aspect

ratios.

Aspect ratios express the relationship between different reference lengths as:

η =
χi

χ
(2.4)

where χi refers to the reference length corresponding to the axis i, while χ corre-

sponds to the absolute reference length, as a function of whom all the other geomet-

ric quantities will be expressed.

For the cylindrical coordinates case, it yields:

η =
r
l

(2.5)

where r corresponds to the main radial reference length and l corresponds to the

main axial reference length.

If n independent reference dimensions are necessary, n−1 aspect ratios are to be

defined. The combination of the previous two concepts implies that all the geomet-

ric dimensions are expressed as a function of one single reference length, which is

associated to the size of the actuator and allows the independent study of the perfor-

mance of an actuator with a limited size and the actuator performance when the size

is changed.

Example 2.2. Evaluate the weight of the pipe illustrated in Figure 2.10.

Fig. 2.10 Pipe analyzed in
Example 2.2

The pipe can be characterized by the geometrical quantities D1, D2 and L. Con-

sidering the material density ρ the mass mpipe of the pipe can be expressed as:

mpipe = ρπ
(D2

2 −D2
1)L

4
(2.6)
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The previously mentioned number of independent reference lengths is n = 2 in

this case. Using the geometrical factor k1 = D1/D2 the dependance on D1 can be

removed. As we need n−1 = 1 aspect ratios to express the weight as a function of

a single geometrical quantity, an aspect ratio η = D2/L can be defined, allowing to

express (2.6) as

mpipe = ρπD3
2

(1− k2
1)

4η
(2.7)

where it can be noted that the pipe mass is expressed as a function of a single

length D2, a material property ρ , the defined geometrical relationship k1 and the

aspect ratio η .

2.3.3 Filling Factors

The filling factor provides the portion of usable material against the total needed

material. This is of great importance when dealing with multiple conductors, since

they usually need isolation from the surrounding conductors losing also some space

due to construction issues or the design of the actuator. Such multiple conductors can

be found in a broad range of actuators technologies, from the electrical conductors

employed in an inductance or an electromagnet to the fluid conductors of pneumatic

or hydraulic systems. In the mentioned cases the entire cross-section designed for

the conductors wires is not employed.

Filling factors express the relationship between the usable area and the total area

as:

k f f =
Suse

Stotal
(2.8)

where Suse is the usable cross-section, Stotal is the total cross-section and k f f de-

pends not only on the isolators width but in the distribution of the wires or conduc-

tors. If squared or rectangular conductors are used, the most optimum filling factors

are obtained, since no space is lost as it happens with circular or elliptic conductors.

For such squared conductors the ratio between the usable surface of D1 ×D1 and

the total surface of D2 ×D2 would be k f f = k2
1, being k1 = D1/D2.

For the example of an electrical coil illustrated in Figures 2.11 and 2.12, Suse =
Scopper is the copper section and Stotal the overall cross-section of the coil. The filling

factor depends on the configuration of the wires in the available space.

If the configuration of Figure 2.11 is used, the filling factor can be defined as

k f f =
Scopper

Stotal
=

mnπD2
1/4

mnD2
2

=
π
4

k2
1 (2.9)

Using the configuration of Figure 2.12, Stotal can be expressed as
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Fig. 2.12 Coil wiring scheme employed in the k f f calculation developed in (2.11)

Stotal = D2

(
m+

1

2

)(
D2 +D2 (n−1)sin

(π
3

))
= D2

2

(
m+

1

2

)(
1+

n−1

2

√
3

)
(2.10)

for n > 1 and m > 1.

The filling factor

k f f =
Scopper

Stotal
=

mnπD2
1/4

D2
2

(
m+ 1

2

)(
1+ n−1

2

√
3
) =

mnπ
4
(
m+ 1

2

)(
1+ n−1

2

√
3
)k2

1 (2.11)

In order to compare the different configurations regardless coefficient k1, the

previously defined filling factors can be expressed as k f f i = αik2
1. Comparing the αi

parameters for squared conductors (i = 0), circular placed as in Figure 2.11 (i = 1)

and circular placed as in Figure 2.12 (i = 2), the results displayed in Figure 2.13

are obtained, where it can be noted that squared conductors do not loose any space

due to their configuration and the configuration sketched in Figure 2.12 performs

better than that of Figure 2.11 when the number of conductors is large enough. It

can also be observed that for i = 0 α0 = 1 and for i = 1 α1 = π/4 ≈ 0.7854. For

i = 2 α2 is a monotonically increasing function, with an horizontal asymptote at

α3 = π/(2
√

3) ≈ 0.9069.

Fig. 2.11 Coil wiring scheme employed in the k f f calculation developed in (2.9)
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Fig. 2.13 Comparison of the αi parameters of the different exposed conductor configurations

Although it has been shown that the filling factor depends significantly on the

wiring configuration coefficient α , it is usually considered as a constant known value

between 0.75 and 0.8.

2.4 Output Quantities

An actuator can be defined as an energy converter which transforms energy from

an external source into mechanical energy in a controllable way. The actuator input

quantities depend on the type of energy used and include all the quantities involved

in the energy conversion from the energy source to the output mechanical quan-

tities. For electromagnetic, piezoelectric and magnetostrictive actuators the input

quantities can be the current, the charge or the voltage; for fluid power actuators the

fluid pressure or the flow; for shape memory alloys and thermal expansion actuators

the temperature. The output quantities are the relevant mechanical quantities force,

stroke, work or power.

2.4.1 Output Quantities Expression

The output quantities developed by an actuator can be controlled by modifying the

input quantities described in Table 2.1. Such input quantities are provided by a con-

trol system which lead output quantities to the referenced values. Such quantities

are ruled by the mechanical load system or structure, which defines the relationship
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between the force and the stroke. The integration of actuators and loads in a mecha-

tronic or adaptronic1 system allows the conception of a unique system which is to

be analyzed.

Table 2.1 Actuator drive input quantities for different actuator technologies

Actuator technology Actuator drive input quantity

Electromagnetic actuators Electrical voltages and currents
Electrostatic actuators Electrical voltages and currents
Hydraulic actuators Oil pressure
Pneumatic actuators Air pressure
Thermal expansion actuators Temperature
Piezoelectric actuators Electrical voltage and charge
Magnetostrictive actuators Electrical voltages and currents
Magnetorheological actuators Electrical voltages and currents
Electrorheological actuators Electrical voltages and currents
Shape memory alloy actuators Temperature

A general expression of output quantities as a function of all input quantities

involved is developed in the second step. These expressions are taken from the gen-

eral physics laws ruling the actuators concerned. Each type of actuator behaves in a

different way and its expressions are presented describing all the assumptions done.

If the load is considered, the different steady-state working points depending on the

load can be discussed and shown graphically.

Example 2.3. Evaluate the force produced by a hollow cube submerged in water

sketched in Figure 2.14.

Fig. 2.14 Sketch of the sys-
tem under analysis in Exam-
ple 2.3

The force produced by the cube can be expressed as the force due to submerging

it into water minus the weight of the cube as

Fcube = ρwaterD2
1xg−ρcube

(
D3

1 −D3
2

)
g (2.12)

1 Adaptronics is a term referred to the analysis, design and integration of smart structures and
systems.
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where g ≈ 9.81 m/s2 is the gravity constant . Using the geometric factor k1 =
D2/D1 and the relative cube density ν = ρcube/ρwater

Fcube = ρwaterD3
1g
(

x
D1

−ν
(
1− k3

1

))
(2.13)

where it can be noted that the maximum force is produced for x ≥ D1 when

the cube is absolutely submerged Fcube−max = ρwaterD3
1g
(
1−ν

(
1− k3

1

))
and the

minimum force is produced for x = 0 and yields Fcube−min = −ρwaterD3
1gν
(
1− k3

1

)
as shown in Figure 2.15. Between these limits the force varies linearly, being exactly

equal to zero for x = D1ν
(
1− k3

1

)
.
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Fig. 2.15 Cube force characteristic of Example 2.3

2.4.2 Steady-State Analysis

The output quantities analysis can be addressed by considering static or steady-state

conditions of the system or considering the system dynamics. Depending on the

necessary analysis different approaches have to be taken. The steady-state analysis

provide useful information about steady operating points, where the actuator and

the load find the equilibrium. The steady-state analysis does not consider how the

system moves from one equilibrium to another, but it provides very important infor-

mation to be employed in the design of the actuator. The present section considers

steady-state analysis. Some considerations on actuators dynamics are exposed in

Section 2.10
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In order to establish the characterization plot of the actuator, force-stroke curves

and work-stroke curves can be used, taking into account the output quantities as a

function of the displacement or stroke of the actuator. The inputs (currents, voltages,

pressures, etc.) capable of changing these curves are presented, explaining why and

how they can influence the actuator performance. The design parameters cannot be

considered inputs and their influence is discussed in following steps.

Example 2.4. Capacitive actuators (Figure 2.16) are a class of electrostatic MEMS

actuators. Obtain the force-stroke and work-stoke curves for such actuators.

Fig. 2.16 Capacitive actuator
of Example 2.4

V

z

A

F

The energy stored EC by a capacitor of capacitance C yields EC = (1/2)CV 2

where V is the applied voltage. Considering two opposite parallel plates, the capac-

itance C can be expressed as C = εA/z where ε is the dielectric permittivity , A is

the plate surface and z the distance between plates. The force between plates yields:

FC = −εAV 2

2z2
(2.14)

The work can be expressed as:

WC =
εAV 2

2z
(2.15)

Force-stroke and work-stroke curves are plotted in Figures 2.17 and 2.18.

Example 2.5. Considering the capacitive electrostatic actuator of Example 2.4, dis-

cuss the evolution of the equilibrium points when changing the voltage if the actua-

tor is attached to an elastic load.

The actuator and load curves are defined by

FC−actuator =
εAV 2

2z2
(2.16)
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Fig. 2.17 Force-stroke curve of Example 2.4
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Fig. 2.18 Work-stroke curve of Example 2.4

FC−load = kLoadz (2.17)

The equilibrium if found when FC−actuator = FC−load , that is

zeq = 3

√
εAV 2

2kLoad
(2.18)

FC−load−eq = FC−actuator−eq =
3

√
εAV 2k2

Load
2

(2.19)
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Equilibrium points are plotted in Figure 2.19 using the values ε = 8.854×10−12

F/m, A = 10−6 m2, kLoad = 3×105 N/m and voltage varying from 10 to 50 V.
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Fig. 2.19 Force-stroke curve equilibrium points of Example 2.5

2.5 Thresholds

Some physical limits (maximum allowed temperature, mechanical resistance etc.)

do not allow the actuator output quantities to be increased indefinitely. Since the

purpose is to separately deal with the maximum force, stroke and work available in

a given size and the performance scalability the allowed quantities and parameters

are:

• geometric quantities (reference lengths)

• geometric relationships (geometrical factors, aspect ratios and filling factors)

• material properties (magnetic permeability, resistivity, temperature coefficient,

conductivity, etc.)

• universal physics constants (μ0, ε0, etc.)

• physical thresholds (maximum temperature, stress, etc.)

Therefore, all the other quantities (currents, magnetic fluxes, pressures, etc.) must

be expressed as functions of the mentioned quantities. The physical thresholds limit-

ing the maximum force, stroke and work must be analyzed, showing how they limit

the performance of the actuator.

The principle limiting quantities in some common actuators are shown in Ta-

ble 2.2.



2.5 Thresholds 49

Table 2.2 Actuator limiting quantities

Actuator technology Actuator limiting quantities

Electromagnetic actuators Temperature, magnetic saturation, mechanical resistance
Electrostatic actuators Electrical field, mechanical resistance, temperature
Hydraulic actuators Mechanical resistance, fluid losses, temperature
Pneumatic actuators Mechanical resistance, fluid losses, temperature
Thermal expansion actuators Mechanical resistance, temperature
Piezoelectric actuators Electrical field, mechanical resistance, temperature
Magnetostrictive actuators Magnetic saturation, temperature, mechanical resistance
Magnetorheological actuators Magnetic saturation, temperature, mechanical resistance
Electrorheological actuators Electrical field, temperature, mechanical resistance
Shape memory alloy actuators Mechanical resistance, temperature

Example 2.6. Discuss the limiting electrical limiting quantities involved in the elec-

trostatic capacitive actuators studied in Example 2.4.

The maximum applicable voltage Vmax depends on the maximum allowed elec-

trical field Emax and the displacement z as

Vmax = Emaxz (2.20)

Therefore, the more the distance between plates is increased the higher the volt-

age that can be applied. A reasonable example value for Emax could be around

1000 V/mm, where it can be noted that this class of actuator may be specially ade-

quate in the micro-range where a voltage of 1 V would correspond to a displacement

of 1 μm.

Example 2.7. Analyze the flux flowing in a toroidal inductance and discuss the max-

imum flux considering the magnetic saturation as the limiting quantity.

The magnetization curve (Figure 2.20) show the relationship between the flux

density B and the magnetic field intensity H. It is common to use the expression

B = μH = μrμ0H (2.21)

where μ is the magnetic permeability obtained as the product of the rela-

tive permeability μr characteristic of each material and the vacuum permeability

μ0 = 4π10−7NA−2. If there was no saturation, μ would be constant regardless the

value of H. In practice, this is only the case for operation at low values of H, for

higher values saturation effects become more important and μ cannot be considered

constant anymore.

Nonlinearities linking B and H have been deeply analyzed in the last decades [17,

15, 14, 13, 12, 6], considering saturation and hysteresis limit cycles. In this example

a very simplified μ expression is employed, since the purpose of the example is to

illustrate the methodology rather than obtain exact expressions. Expression (2.21)

can be for example expressed as
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Fig. 2.20 BH saturation curve of Example 2.7

B = μ0μH
r k1

(
Hn

k0 +Hn

) 1
n

(2.22)

where μH
r is a constant that corresponds to the value of μr for H = 0.

The magnetic field intensity H can be defined as H = Ni/l, where N is the num-

ber of turns of the coil and i is the current flowing in the coil. In order to pre-

vent saturation, a threshold Hmax has to be defined, implying a limit in the current

imax = Hmax/N. The magnetic flux φ flowing in the coil can be expressed as φ = B/S
where S is the cross-section. The maximum flux will be given by

φmax =
μ0μH

r k1

S

(
Hn

max

k0 +Hn
max

) 1
n

(2.23)

Similar expressions could be derived using an alternative formulation which

links the flux φ to the magnetomotive force F by defining the magnetic reluctance

ℜ = F/φ . This alternative formulation allows to analyze such a system as an elec-

trical circuit , where flux corresponds to electrical current, magnetomotive force

corresponds to voltage and reluctance corresponds to resistance.

2.6 Maximum Target Quantity for a Given Size

The limiting quantities expressions developed in the latter section, can be substituted

in the target quantities expressions, allowing them to be maximized for the given
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limiting values and design parameters. Such target quantities can range from the

output mechanical quantities to other relevant quantities.

2.6.1 Output Mechanical Quantities Maximization

The analysis of a given output quantity, for a given class of actuators, as a func-

tion of the design variables, shows (as a rule) a monotonic dependance on certain

size variables. For instance, the limit force will typically depend monotonically on

the actuator cross section and the actuator stroke on the length. Other design vari-

ables will exist (typically some aspect or shape factors) for which the considered

output quantity can be maximized. The search of such optimal design variables is

very useful, since it enables a fair and effective comparison between actuators of

different kinds and can be of essential importance for the optimization of the whole

active mechanical system. These expressions are carefully analyzed keeping the size

constant.

The limit force, stroke and work available in a given size are studied depending

on the different design parameters. The geometric factors, aspect ratios and the ma-

terials selected providing the best performance are discussed. This leads to a general

expression of the maximum force, stroke and work in a given volume and provides

design rules to optimize the actuator’s performance with the proper ratios and ma-

terials.

The output quantity to be maximized χ can be expressed as a function of a refer-

ence length L, limiting quantities λ1,λ2, ..., universal constants, material properties

ν1,ν2, ..., geometrical factors k1,k2, ...,kn, aspect ratios η1,η2, ...ηm, filling factors

k f f .

In many cases it is possible to separate the different kind of terms appearing in the

output quantity χ expression, allowing a separated analysis of the different terms.

Geometrical factors, aspect ratios and filling factors can be separated from other

involved quantities, defining a design factor. The maximization of such a design

factor implies the maximization of the concerned output quantity by means of an

appropriate actuator design.

Moreover, with the purpose of separating all the different factors involved in the

output quantities expression the following functions can be defined:

• Universal constants kuc
• Design factor ϑd f

(
k1,k2, ...,kn,η1,η2, ...ηm,k f f

)
• Geometric function ςL(L)
• Limiting quantities function ςlim(λ1,λ2, ...)
• Material properties function ςmat(ν1,ν2, ...)

If it is possible to algebraically separate the different previous functions, the se-

lected output quantity to be optimized χ can be represented by

χmax = f
(
kuc,ϑd f ,ςL,ςlim,ςmat

)
(2.24)
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In a number of practical cases the previous functions are easily separable and it is

possible to express (2.24) as

χmax = kucςLςlimςmat (2.25)

which has the straightforward property of allowing to maximize or minimize χ
by maximizing or minimizing all the terms separately.

Example 2.8. Discuss the maximum force and work in the electrostatic capacitive

actuator studied in Examples 2.4 and 2.6.

The previously developed maximum voltage (2.20) can be substituted in (2.16).

The maximum output force yields

FC−max = −εAE2
max

2
(2.26)

which is the type of (2.25) with:

• kuc = −1/2

• ϑd f = 1

• ςL = A
• ςlim = E2

max with λ1 = Emax
• ςmat = ε

The maximum work:

WC−max =
εAzE2

max

2
(2.27)

which is again the type of (2.25) with:

• kuc = 1/2

• ϑd f = 1

• ς = Az
• ςlim = E2

max with λ1 = Emax
• ςmat = ε

Example 2.9. A given actuator force is expressed as

F = APmaxk2
1η
(
1− k2

1

)
(−η +1) (2.28)

where Pmax is the maximum limiting pressure, A is the actuator cross-section, k1

is a geometrical factor and η is an aspect ratio. Discuss the maximum force.

The force expression is similar to (2.25), therefore it will be enough to maximize

all the separate terms to maximize the force. Actually, the only non-constant terms

are those included in the design factor ϑd f , which can be defined as:

ϑd f = k2
1η
(
1− k2

1

)
(−η +1) (2.29)

Analyzing the previous expression a maximum can be found for k1−max =
√

2/2,

ηmax = 1/2 and ϑd f−max = 1/16 as illustrated in Figure 2.21. The maximum force

yields Fmax = APmax/16.
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Fig. 2.21 Design factor of Example 2.9

2.6.2 Other Quantities

Other target quantities can be considered instead of the mentioned mechanical out-

put quantities. It may be interesting to address the minimization of the actuator cost

or other indices related to economics, maintenance, control or environmental issues.

Moreover, in many cases it can be specially useful to study some cost to mechanical

quantities ratios, such cost/energy [C/J].

Example 2.10. Discuss the minimum cost/energy ratio β for the actuator studied in

Examples 2.4, 2.6 and 2.8.

The actuator cost c can be considered proportional to the n-power of the actuator

volume as cE = kcAnzn, where kc is the proportionality constant between size and

cost. The energy expression (2.15) can be employed to compute the cost/energy

ratio as

β =
cE

WC
=

kcAnzn

εAV 2

2z

=
2kcAn−1zn+1

εV 2
(2.30)

Using the maximum voltage from (2.20)

β =
2kcAn−1zn−1

εE2
max

(2.31)

where it can be noted that the higher the maximum allowed electrical field Emax or

the electrical permittivity ε the lower the ratio β . Obviously, the ratio β can also

be minimized by reducing the parameter kc. As long as the volume dependance is

concerned, this is to be discussed in the following step, which considers the target

quantities as functions of the size.
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2.7 Scalability

In the fifth step the actuator performance as a function of the size is analyzed and the

scalability and application range are discussed. If two geometrically similar passive

mechanical systems with a given scale factor are considered, and their mechanical

behavior can be described by an approach based on continuum mechanics, they are

to be loaded by forces whose ratio is the square of the scale factor in order to produce

the same stress and strain distribution and, consequently, a similar displacement

field.

A certain actuator class is mechanically scalable if its output quantities follow

the same rules, i.e. if (by proportional scaling in all directions) the actuator force is

proportional to the square of the size and the actuator displacement is proportional

to the size. Usually, a certain actuator class will be mechanically scalable only in a

certain size range; beyond this range, the required actuator size changes with respect

to the rest of the mechanical system, which can make the use of the considered type

of actuator unpractical.

If the force is proportional to the area and the stroke to the length in the whole

actuator’s domain it follows that the work is proportional to the volume since the

work is obtained from the integration of the force between two different strokes. If

all these requirements are fulfilled and the actuator is fully scalable significant con-

sequences arise. The structures working in the elastic region are considered fully

scalable loads, the expression ruling its behavior σ = Eε shows that the quotient

between the stress σ = F/A and the strain ε = x/L is the Young Modulus E without

dependance on the size of the structure. Therefore, if the actuator is shown to be

scalable and the load is scalable in the sense described above, the whole system (ac-

tuator plus load structure) would be scalable, allowing the development of models

of easy (normal size) construction as a preliminary step to the construction of large

or small systems (inside the scalability range), with the corresponding saving of re-

sources. In this case, the experimental results must be analyzed as non-dimensional

numbers and provide information for all the range of sizes where the scalability can

be assumed.

Scalability analysis is based on certain assumptions. Since the described assump-

tions are necessary to consider one actuator scalable, the non-scalability when these

assumptions do not hold true has to be also studied.

Example 2.11. The force of a certain actuator is expressed as Fa = kπrγ , where γ is a

constant γ > 0. Discuss the scalability of the actuator as a function of the parameter

γ .

It is straightforward to note that the actuator will be scalable in the sense de-

scribed above as long as γ = 2. In such a case the actuator force per cross-section

will be constant Fa/πr2 = k. Considering the general case, the force per cross sec-

tion yields
Fa

πr2
= krγ−2 (2.32)
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The force per cross section performance as a function of the parameter γ is plotted

in Figure 2.22, where it is shown that for γ = 2 the force is clearly scalable. For larger

γ values, the force per cross section is increased with the size, recommending the

use of such actuators for large actuators. On the other side, when γ < 2, the actuator

performance improvement is decreased when the size is increased, recommending

its use for applications demanding small actuators.
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Fig. 2.22 Force per cross section performance as a function of the parameter γ

2.8 Dimensional Analysis

It is not always possible to use analytical methods to derive the expressions ruling

actuators. Furthermore, even when analytical methods are feasible it can be conve-

nient to validate such results by means of simulations and experimental validation.

Such validations may be complemented (or in some cases even substituted) with the

so-called dimensional analysis techniques.

2.8.1 The Buckingham Pi Theorem

Dimensional analysis [18] is based on considering dimensionless groups of quan-

tities to form the analyzed expressions. Such analysis allows to obtain some rela-

tionships that can become a valuable complement to other developed analysis and

experimentation.
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The dimension of a certain quantity u can be expressed as [u]. All the quantities

can be expressed in some systems containing the basic reference dimensions. The

most common systems are:

• Mass-Length-Time MLT
• Force-Length-Time FLT
• Mass-Length-Time-Temperature MLT θ

However, the reference system can be chosen depending on each application. Some

usual quantities dimensions can be expressed depending on the reference system as:

• Length, in both MLT and FLT systems yields [l] = L
• Time,in both MLT and FLT systems yields [t] = T
• Mass, in MLT system [m] = M, in FLT system [m] = FL−1T 2

• Force, in MLT system [F ] = MLT−2, in FLT system [F ] = F
• Volume, in both MLT and FLT systems yields [V ] = L3

• Acceleration, in both MLT and FLT systems yields [a] = LT−2

The so-called Buckingham Pi Theorem [1] proposes a method of forming dimen-

sionless groups to characterize a certain system. If an equation f (u1,u2, ...um) = 0

is characterized by m quantities ui, i = 1..m, it can be reduced to an equation with

m− n dimensionless groups where n is the minimum number of reference dimen-

sions required to characterize the system. The m−n dimensionless groups Π satisfy

φ(Π1,Π2, ...Πm−n) = 0 (2.33)

The Buckingham Pi Theorem can be applied according to the following steps:

1. List the m quantities involved in the analyzed expression.

2. Define a reference system of n dimensions (MLT , FLT ,...) and express the

quantities dimensions in such a reference system.

3. Construct a matrix, having n rows and m columns, where the components ai j
correspond to the index of dimension j corresponding to the quantity i.

4. Find the m−n dimensionless groups solving the system ∑m
i=0 ai j = 0, j = 1..n

5. Using expression (2.33) substitute the m−n Π dimensionless groups.

Example 2.12. Analyze the force produced by a fluid power actuator using dimen-

sional analysis considering only the force, pressure and area.

The quantities involved can be listed and expressed in the FL system:

• Force [F ] = F
• Pressure [P] = FL−2

• Area [A] = L2

The dimension matrix yields:

F P A
F 1 1 0

L 0 −2 2

(2.34)
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Considering F = KPaAb the following equations are obtained

1 = a (2.35)

0 = −2a+2b (2.36)

obtaining a = 1 and a = b = 1. Thus

F = KPA (2.37)

which matches perfectly with the well known force expression if K = 1.

Example 2.13. Analyze the force of an electrostatic capacitive actuator using dimen-

sional analysis.

The quantities involved can be listed and expressed in the FLV system:

• Force (N) [F ] = F
• Voltage (V) [V ] = V
• Dielectric permittivity (C2N−1m−2 =N V−2) [ε] = FV−2

• Area (m2) [A] = L2

• Distance (m) [z] = L

The dimension matrix yields:

F V ε A z
F 1 0 1 0 0

L 0 0 0 2 1

V 0 1 −2 0 0

(2.38)

Considering F = KV aεbAczd the following equations are obtained

1 = b
0 = 2c+d
0 = a−2b

→
b = 1

d = −2c
a = 2

(2.39)

Substituting in the previous force expression

F = KV 2εAcz−2c (2.40)

Therefore, the force can be expressed as

F = KV 2εΠ
(

A
z2

)
(2.41)

which matches clearly with the well known expression FC−actuator = εAV 2

2z2 , using

K = 1/2 and Π (u) = u.

Example 2.14. Analyze the force performed by a pneumatic actuator.

Before facing the dimensional analysis problem, some important concepts have

to defined:
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• The orifice flow expression of a gas entering in a chamber yields

ṁ = Qρ = KC0A
P√
T

(2.42)

where ṁ is the mass flow, Q is the volumetric flow, ρ the gas density, A is the

orifice area, P the gas pressure, T the gas temperature and K and C0 are constants.

• The ideal gases constant yields

R =
P

ρT
(2.43)

• The adiabatic process constant taking place in the cylinder can be expressed as

Kpt = PT
γ

1−γ (2.44)

where γ = CP/CV being CP the specific heat coefficient for constant pressure and

CV is the heat coefficient for constant volume [2].

• The orifice constant can be defined

C0 =

√√√√ γ
R

(
2

γ +1

) γ+1
γ−1

(2.45)

It is important to note that the previous expressions are not known before begin-

ning the dimensional analysis. The quantities involved in the dimensional analysis

can be listed and expressed in the FLT θ system:

• Force (N) [F ] = F
• Position (m) [x] = L
• Pressure (Nm−2) [P] = FL−2

• Density (Ns2m−4) [ρ] = FT 2L−4

• Flow (m3s−1) [Q] = L3T−1

• Temperature (K) [T ] = θ
• Ideal gases constant (m2s−2K−1) [R] = L2T−2θ−1

• Adiabatic process constant (K
γ

1−γ N m−2) [Kpt ] = FL−2T
γ

1−γ

• Orifice constant (sK1/2m−1) [C0] = T L−1θ 1/2

The dimension matrix yields:

F x P ρ Q T R Kpt C0

F 1 0 1 1 0 0 0 1 0

L 0 1 −2 −4 3 0 2 −2 −1

T 0 0 0 2 −1 0 −2 0 1

θ 0 0 0 0 0 1 −1
γ

1−γ 1/2

(2.46)
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Considering F = KxaPbρcQdT eR f Kg
ptCh

0 the following equations are obtained

1 = b+ c+g
0 = a−2b−4c+3d +2 f −2g−h
0 = +2c−d −2 f +h
0 = e− f + γ

1−γ g+h/2

→
b = 1−d/2− f +h/2−g
a = 2−2d
c = d/2+ f −h/2

e = f −g γ
1−γ −h/2

(2.47)

Therefore, the force can be expressed as

F = Kx2−2dP1−d/2− f +h/2−gρd/2+ f−h/2QdT f−g γ
1−γ −h/2R f Kg

ptC
h
0 (2.48)

Rearranging, the following force expression using the different non-dimensional

groups can be found:

F
x2P

= Kφ

( √ρ
x2
√

P
,

ρRT
P

,
Kpt

PT
γ

1−γ
,
C0

√
P√

ρT

)
(2.49)

obtaining the non-dimensional numbers Π0 = F
x2P , Π1 = Q

√ρ
x2
√

P
, Π2 = ρRT

P , Π3 =
Kpt

PT
γ

1−γ
and Π4 = C0

√
P√

ρT .

The following set of non-dimensional numbers can be defined:

• Πa = Π0 = F
x2P represents the well known relationship between pressure and

force F = PA.

• Πb = Π1 ×Π−1
4 = Q

√
T

C0Px2 characterizes the orifice expression (2.42).

• Πc = Π2 = ρRT
P corresponds to the ideal gases law expressed in (2.43).

• Πd = Π3 = Kpt

PT
γ

1−γ
matches the adiabatic process expression (2.44).

• Πe = Π4 ×Π 1/2
2 = C0

√
R which corresponds to the orifice constant (2.45).

The final expression can be represented as

F
x2P

= Kφ

(
Q
√

T
C0Px2

,
ρRT

P
,

Kpt

PT
γ

1−γ
,C0

√
R

)
(2.50)

2.8.2 Non-Dimensional Numbers

Non-dimensional numbers are useful to characterize certain behaviors that are not

easily established by a given quantity. Some non-dimensional numbers are well es-

tablished in different engineering disciplines, ranging from thermal to fluid dynam-

ics engineering. Representative non-dimensional numbers employed in fluid dynam-

ics are:
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• The Reynolds number defines the relationship between the inertial and viscous

forces in a moving fluid. It yields

Re =
ρvd
μ

(2.51)

where ρ is the fluid density, v is the fluid velocity, d is significant length and μ is

the absolute fluid viscosity.

• The Euler number characterized the ratio between pressure and inertia forces in

a fluid. It yields

Eu =
2P
ρv2

(2.52)

where P is the pressure, ρ is the fluid density and v is the fluid velocity.

Some well-known thermal transfer non-dimensional numbers:

• The Nusselt number defines forced convection, being established as

Nu =
hcL
λ

(2.53)

where hc is the convection coefficient, L is a characteristic length and λ is the

thermal conductivity of the fluid producing the forced convection.

• The Fourier number quantifies heat conduction. It yields

Fo =
αt
R2

(2.54)

where α is the thermal diffusivity, t a characteristic time and R the physical length

where conduction is being produced.

• The Grashof number characterizes free convection. It yields

Gr =
gβ (Ts −T∞)L3

ν2
(2.55)

where g is the gravity acceleration, β the volumetric thermal expansion coeffi-

cient, Ts the source temperature, T∞ the quiescent temperature, ν the kinematic

viscosity and L a characteristic length.

• The Prandtl number quantifies the relationship between viscous and thermal dif-

fusion rate. It is usually expressed as

Pr =
cpμ
λ

=
ν
α

(2.56)

where cp is the specific heat, μ is the viscosity, λ the thermal conductivity, ν is

kinematic viscosity and α is the thermal diffusivity.

• The Rayleigh number establishes the ratio between buoyancy and viscous forces

in free convection. It yields
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Ra =
gβ (Ts −T∞)L3

να
(2.57)

satisfying Ra = GrPr

Other well-known non-dimensional numbers are:

• The Poisson ratio ν is employed in mechanical engineering and links the defor-

mations ε produced in different axes as

ν = −εx

εy
(2.58)

• The power factor cosϕ is employed in electrical engineering and defines the re-

lationship between active P power and reactive Q power in an alternating current

circuit as

cosϕ =
P√

P2 +Q2
(2.59)

2.9 Validation

The seventh and final methodology step validates the obtained results by means

of prototyping and/or simulation and/or comparison with industrial devices. This

will usually allow the designer to decide whether the actuator is the optimum or

if it is convenient to introduce new modifications and to start again all the design

procedure.

2.9.1 Prototype Construction

The classical approach of results validation is based on the construction of a proto-

type and the validation of the theoretically developed expressions with such a real

prototype. The scalability of the actuator discussed in Step 5 can be used to build

scale actuators and structures and generalize conclusions for different sizes.

2.9.2 Industrial Actuators

Comparison with data of industrial actuator can provide very relevant information.

Firstly, it will illustrate whether the actuator behaves similarly to other actuators of

the same class. On the other hand, the designer will be able to decide if the actuator

performs better than other competing actuators or whether the same performance is

achieved but at lower cost, weight or volume.
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2.9.3 Simulation

The simulation of the system under study can provide relevant information in or-

der to validate the conclusions extracted in the previous steps. Moreover, computer

aided engineering (CAE) tools allow the designer to test the proposed actuators

without the need for building a real prototype. Different particular cases can be

studied by using the obtained optimal geometries and dimensions. In such cases,

not only the relevant output quantities can be validated, assuring that the obtained

analytic expressions hold for a particular case, but also the assumed limiting quan-

tities can be checked and it can be observed which are the most critical areas of the

actuator.

Finite element analysis (FEA) [19, 7, 16] employs the finite element method

(FEM) to deal with a broad range of engineering applications. There are a num-

ber of finite element simulation packages like COMSOL�, ALGOR�, ANSYS�,

NASTRAN�, etc. Most of such packages are based on the virtual work principle

or the minimum total potential energy principle. Finite Element Analysis was firstly

proposed in 1943 by Richard Courant who established the mathematical basis. In the

1950s and 1960s it started to be employed in engineering applications, starting with

mechanical engineering. Nowadays, finite element analysis is a fundamental tool

for systems simulation, since it has changed deeply the way engineers approach the

design of their applications.

In order to simulate using finite element analysis a certain actuator along with the

system and structure where it is integrated, the following steps have to be followed:

1. Definition of all the constants involved in the simulation, including the so-called

universal constants but also the material properties assumed. Most packages

include material library where the different material properties are already in-

cluded.

2. Definition of the assumed symmetries in order to simplify the analysis. The

higher the complexity of the system under study, the more important to consider

symmetries, studying a single portion and extract conclusions for the overall

system.

3. Drawing (or import) of the system under analysis. In order to obtain relevant

results it is extremely important to have an accurate drawing of the studied

actuator. The drawings can be also imported from common CAD packages.

4. Specification of the boundary conditions. Typically the surrounding of the sys-

tem has to be included in the drawing, since it also plays an important role in the

physical system. Air, for example has a certain magnetic permeability, so that

the magnetic flux can flow through it. The surrounding system limits have to

be clearly defined stating their boundary conditions. For example, in an system

analyzed from the electromagnetism point of view, it is common to establish

electrical or magnetic isolation as boundary conditions.

5. Specification of the physics laws to be considered in the analysis. Each system

part is ruled by different physics laws. It has to be clearly established what is

the physical law ruling each system block.
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6. Definition of the finite element mesh, considering different types of mesh ac-

cording to the importance of the region. Most critical regions have to have the

finest a mesh.

7. Problem solving. Once all the previous steps have been properly addressed, the

system can be solved, by firstly tuning the solver appropriately, specifying what

kind of analysis is to be done.

8. Post-processing. The obtain results can be plotted so that the desired results can

be easily graphically seen.

All these steps are illustrated with a simple system containing a permanent magnet

and a levitating ball:

1. Constant definition. The following constants have been defined: permeability

of vacuum μ0 = 4π10−7NA−2, permanent magnet magnetization Mpm = 750×
103A/m and the magnetic relative permeability μr = 15000.

2. Definition of the assumed symmetries. In this examples no symmetries are con-

sidered, since it is a very simple system.

3. Drawing. The drawing can be seen in Figure 2.23. The permanent magnet is a

block of 40 mm× 40 mm × 50 mm, the ball is a sphere of radius 20 mm whose

closest point to the permanent magnet is placed at 5 mm.

4. Specification of the boundary conditions. The air surrounding the permanent

magnet and the ball includes a large region, whose boundary conditions estab-

lish magnetic isolation as shown in Figure 2.23.

5. Specification of the physics laws to be considered in the analysis. The air and

the ball are ruled by

−∇ ·μ0μr∇Vm = 0 (2.60)

where Vm is the so-called magnetic potential. The so-called constitutive law

yields B = μ0μrH with the difference that while the ball has a high μr = 15000,

the air has μr = 1. The permanent magnet is governed by

−∇ · (μ0∇Vm −μ0Mpm) = 0 (2.61)

with the constitutive law B = μ0H + μ0Mpm. The stress and force in the ball are

the relevant output quantity, therefore it has to be specified that such electro-

magnetic stress and force is to be computed.

6. Definition of the finite element mesh. As illustrated in Figure 2.24, the system

mesh is performed, considering a finer mesh for the permanent magnet and the

ball.

7. Problem solving. The system is solved using the stationary linear solver.

8. Post-processing. The obtained results are graphically shown as illustrated in

Figure 2.25 using streamlines for the magnetic flux and boundary colors for

the ball electromagnetic stresses, Figure 2.26 using boundary colors and arrows

related to the Maxwell tensor stresses, Figure 2.27 where slices are used to plot

the magnetic flux density and Figure 2.28 where the a number of isosurfaces

show the points having the same magnetic flux density.
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Fig. 2.23 Typical screen of a finite analysis software (COMSOL� by COMSOL AB) of the ex-
ample of the permanent magnet and the levitating ball
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Fig. 2.24 Example element
mesh using COMSOL� by
COMSOL AB. It can be noted
that the permanent magnet
and the ball are finer meshed
that the surrounding air

Example 2.15. Analyze the force-position characteristic of ball levitating due to the

attraction of a permanent magnet.

The force expression of a permanent magnet attracting a levitating ball cannot be

easily expressed analytically. A simplified expression can be used

FM =
1

∑N
i=0 aizi

(2.62)

In order to determine the optimum degree N and the coefficients ai different

simulations have been developed for different distances z. The obtained results are

shown in Table 2.3 and Figure 2.29.

Table 2.3 Force-position data obtained using FEA

z [mm] 0 0.5 1 1.5 2 3 5 7 10 15 20 30
F [N] 36.2 31.71 27.66 24.25 21.45 16.46 10.1 6.2 3.13 1.12 0.45 0.1

Using standard regression techniques, FEA results can be analyzed with different

degree polynomials. It can be observed in Figure 2.30 that the best matching is

obtained for N = 5. The obtained force expression yields

FM(z) =
1

c0 + c1z+ c2z2 + c3z3 + c4z4 + c5z5
(2.63)
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Fig. 2.25 Post-processing of the solved examples. The streamlines show the magnetic flux flow
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Fig. 2.26 Post-processing of the solved examples. The ball colors and arrows show the different
Maxwell tensor stresses in the ball
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Fig. 2.27 Post-processing of the solved examples. The slices show the different values of magnetic
flux density
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Fig. 2.28 Post-processing of the solved examples. The isosurface show the different surfaces hav-
ing the same magnetic flux density
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Fig. 2.29 Obtained FEA results for the permanent magnet and ball system of Example 2.15

with c0 = 1.47 × 10−7, c1 = 5.14 × 10−6, c2 = 3.35 × 10−5, c3 = 0.0013, c4 =
0.0066 and c5 = 0.028.
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Fig. 2.30 Comparison of the different polynomials proposed to model the force-displacement
curve of Example 2.15
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2.10 Considerations on Actuators Dynamics

2.10.1 Dynamical Analysis

If the dynamical quantities are considered, it is necessary to consider not only the

actuator but the load attached to it. A typical linear load can be characterized by an

elastic constant kL, damping coefficient bL and mass mL. Considering the actuator

force Fa(t), the dynamics differential equation yields:

Fa(t) = mLẍ(t)+bLẋ(t)+ kLx(t) (2.64)

where x(t) is the actuator displacement.

The transfer function between the displacement and the force can be expressed

as
X(s)
Fa(s)

=
1

mLs2 +bLs+ kL
(2.65)

where s is the Laplace operator and X(s) and Fa(s) are the Laplace transforms of

x(t) and Fa(t).
Analyzing the transfer system poles according to linear systems theory [8], the

following system poles are obtained:

s12 =
−bL ±

√
b2

L −4mLkL

2mL
(2.66)

where it can be clearly noted that the system dynamics will importantly depend

on

b2
L −4mLkL (2.67)

The natural frequency ω0 ≥ 0 and the damping ratio ζ may be defined as

ω0 =
√

kL

mL
(2.68)

ζ =
bL

2
√

kLmL
(2.69)

Substituting (2.68) and (2.69) in (2.66) the poles yield

s12 = ω0

(
−ζ ±

√
ζ 2 −1

)
(2.70)

Depending on the value of ζ different system behaviors can be considered:

• ζ = 1 The system is critically damped. There is double pole at −ω0ζ , assuring

stability for ω0 > 0. The homogenous solution of the system dynamic yields

x(t) = (k1 + k2t)e−ω0t (2.71)
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where k1 and k2 depend on the initial conditions x(0) and ẋ(0).
• ζ > 1: the system is over-damped. Both poles are real and the system will be

stable as long as both poles have negative real part. Hence, it will always be

stable since

−ζ ±
√

ζ 2 −1 < 0 (2.72)

for any ζ > 1. The homogenous solution of the system dynamic yields

x(t) = k1e−ω0

(
−ζ−

√
ζ 2−1

)
t + k2e−ω0

(
−ζ+

√
ζ 2−1

)
t

(2.73)

where k1 and k2 depend on the initial conditions x(0) and ẋ(0).
• ζ < 1 The system is under-damped. The poles yield

−ζ ω0 ± jω0

√
1−ζ 2 (2.74)

where the pole negative real part for ζ > 0 guarantees stability. The homogenous

solution of the system dynamic yields

x(t) = e−ζ ω0t
(

k1 cos
(

ω0

√
1−ζ 2t

)
+ k2 sin

(
ω0

√
1−ζ 2t

))
(2.75)

where k1 and k2 depend on the initial conditions x(0) and ẋ(0).
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Fig. 2.31 Real part of the poles of (2.70)

The system poles for the different poles can be observed in Figures 2.31 and 2.32.

The step response of under, over and critical damped systems is illustrated in Fig-

ure 2.33 for different values of ζ and ω0 = 10 rad/s. It can be noted that there is

only one case for ζ = 0 where the displacement oscillates permanently since it has
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Fig. 2.32 Imaginary part of the poles of (2.70)

both poles with real part equal to zero. The frequencial response is illustrated in the

bode diagram of Figure 2.34, where it can be noted that the resonance frequency of

the system corresponds to the natural frequency ω0, and it is important for poorly

damped systems.

2.10.2 Control System

In previous Section 2.10, the dynamics of the load have been described. When the

whole system considering also the actuator is to be analyzed, it is important to in-

clude the control system. The control system can be either an open loop control

system or a closed loop control system:

• In open loop, the actuator input quantities are established arbitrarily without feed-

back and therefore without verifying that the control output quantity is actually

achieving the desired value. Most open loop applications are undertaken in open

loop because no sensor for the output quantity is needed, with the cost reduction

involved. The main drawback is the lack of precision. A typical open loop system

is sketched in Figure 2.35.

• Closed loop system measure or estimate the output quantity and feed it back to

the control system in order to eliminate the so-called controller error. A typical

closed loop system is sketched in Figure 2.36.

The block diagrams of Figures 2.35 and 2.36 illustrate typical open loop and

closed loop control systems. The main elements are:
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Fig. 2.33 Dynamic step response of the system with different ζ and ω0 = 10 rad/s

• The power grid (1) provides the energy needed to drive the actuator (3). It can

be by means of electricity, fluid power, heat, etc.

• The power conversion (2) unit takes the output of the control system (5) and

drives the actuator. Typical examples of converters are electrical inverters or hy-

draulic proportional valves.

• The actuator (3) transforms the energy supplied into the mechanical energy ap-

plied to the load (4).
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Fig. 2.35 Typical open loop control block diagram of a mechatronic system

• The controller (5) takes the set point values referenced by the operator (6) and

applies the obtained control effort output to the power conversion unit (2).

It can be noted that the energy can flow in both directions in many applications.

Although actuators are designed to behave transforming a certain energy source into

mechanical energy in some occasions they have to operate as generators and trans-

form mechanical energy in the source energy. Actuators featuring such bidirectional

energy flow allow to brake or return to the original position without the need for ex-
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Fig. 2.36 Typical closed loop control block diagram of a mechatronic system

ternals brakes. Furthermore, they are more efficient since part of the energy may be

returned to the power grid. A typical example of these efficient reversible machines

are electrical machines.

The object of the present book is not to delve into control aspects of dynamical

systems, and hence some assumptions can be done in order to simplify the analysis:

1. The controller can be executed in continuous time. It is important to remark that

it is not the case when digital discrete time systems are concerned. To delve into

such discrete time systems [10] can be consulted.

2. The analyzed systems are considered linear[8], i.e. the state variables x(t) of the

system can be expressed as functions of the inputs u(t) as

ẋ(t) = Ax(t)+Bu(t) (2.76)

y(t) = Cx(t)+Du(t) (2.77)

where y(t) is the system output and A,B,C and D are the system matrixes. If

at least one of such matrixes vary with time, the system is considered Linear
Time-Varying (LTV) or Linear Parameter-Varying (LPV), otherwise if the four

matrixes do not vary with time, a Linear Time-Invariant (LTI) system is consid-

ered. If the system is not linear, it can be linearized used standard linear systems

tools [8].

Nonlinear systems are carefully studied in [9]. Their state variables can be ex-

pressed in the general form:

ẋ(t) = φ(x(t),u(t)) (2.78)
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where it can be noted that the function φ represent a number of different non-

linearities. Depending on the function φ , the appropriate analysis procedure can

be used [9].

3. No perturbations are considered.

4. The control effort (controller output to be applied by the actuator) is unbounded

or its bounds are not overcome during the analyzed time. To consider systems

not satisfying such assumption, see [3].

Although control theory is an extremely broad engineering discipline, and there

exist numerous different controllers to be applied in active systems, it is common

define the error ε(t) = x∗(t)− x(t) as the difference between the reference value

x∗(t) and the measured value x(t) and the output control effort as function of such

an error as

y = f
(

ε(t), ε̇(t),
∫

ε(t)dt
)

(2.79)

According to the previous assumptions, the system (2.64) can be studied

f
(

ε(t), ε̇(t),
∫

ε(t)dt
)

= mLẍ(t)+bLẋ(t)+ kLx(t) (2.80)

Although there are a number of available families of controllers, the simpler and

more extensively used controllers are the so-called PID controllers. Such controllers

compute the output as

f
(

ε(t), ε̇(t),
∫

ε(t)dt
)

= KPε(t)+KI

∫
ε(t)dt +KDε̇(t) (2.81)

where KP, KI and KD are controller constant, which are to be designed analyzing

carefully the system under study.

Example 2.16. Consider a control law

f
(

ε(t), ε̇(t),
∫

ε(t)dt
)

= kpε(t) (2.82)

with a reference value x∗(t) = 0. Discuss how the controller can modify the response

of the system.

Substituting the control law in the system (2.80)

−kpx(t) = mLẍ(t)+bLẋ(t)+ kLx(t) (2.83)

It is straightforward to note that the new system dynamics will be the same as the

unactuated system with a modified elastic constant

k′L = kL + kp (2.84)

The new system dynamics will be characterized by:
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ω0 =

√
kL + kp

mL
(2.85)

ζ =
bL

2
√

(kL + kp)mL
(2.86)

allowing to freely choose the system response by choosing the adequate constant

kp. Note that the while the sign of kp can be chosen the system will be stable as long

as kp > −kL.
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Part II
Conventional Actuators



Chapter 3
Design Analysis of Solenoid Actuators

3.1 Design Parameters

The solenoid actuators provide motion exciting a magnetic field where a plunger

(movable part) tries to minimize the reluctance (i.e. the air gap ) moving to the less

reluctance position. A typical geometry is shown in Figure 3.1.

l2

l

l1 r
r3 r1

r2

hcu

x

copper wires

iron pipe

iron plates

Fig. 3.1 Solenoid actuator sketch

The geometric constants and aspect ratios can be defined as [4, 5, 3]:

kri =
ri

r
(3.1)

kli =
li
l

(3.2)

η =
l
r

(3.3)

81
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where the non-dimensional constants associated to the radial lengths correspond to

kri, while the axial lengths constants correspond to kli.

The filling factor can be computed as the ratio between the profitable copper

section Suse and the overall actuator section Stotal as

k f f =
Suse

Stotal
=

NAw

Stotal
(3.4)

where Aw is the single copper wire section and N is the number of turns.

3.2 Output Quantities

The solenoid force is produced for the change of reluctance due to the change of the

air gap distance. Its expression can be derived from the energy stored in a solenoid

Wm =
∫

idλ =
∫

NidΦ (3.5)

Before evaluating the energy stored in the solenoid, it is necessary to compute

the magnetic flux. The magnetic flux flowing inside a solenoid can be derived from

the reluctance expression

Φ =
Fmm

ℜ
(3.6)

were Fmm is the magneto-motive force, equal to the number of turn N times the

current i and ℜ is the reluctance expressed as a function of the magnetic properties

of the iron μr, the length l2, the cross-section of the plunger S = πr2
1 and the length

leq, which is the plunger length with a reluctance equivalent to the reluctance of the

plates and the pipe.

It can be written as:

Φ =
Fmm

ℜ
=

Ni
x

μ0S + l2+leq−x
μrμ0S

=
Niμrμ0S

l2 + leq + x(μr −1)
(3.7)

Using the obtained magnetic flux expression, the stored energy yields:

Wm =
∫

idλ =
∫ SN2i2μ2

r μ0

2(l2 + leq +(μr −1)x)2
dx (3.8)

The solenoid actuator force can be derived as:

F =
dWm

dx
=

SN2i2μ2
r μ0

2(l2 + leq +(μr −1)x)2
(3.9)

The energy can be obtained integrating the force (3.9) between a given displace-

ment x and 0 as:
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W =
∫ x

0
Fdx =

SN2i2μ2
r μ0x

2(l2 + leq +(μr −1)x)(l2 + leq)
(3.10)

It can be seen that W is the total energy which the actuator stores in each

position. This energy is transformed in work against a load and kinetic energy

Wk = (1/2)mv2, since this work focuses on the static behavior of the studied actu-

ators, a quasi-static movement is considered. Therefore, if it is not otherwise stated

all the energy is assumed to be transformed into work. The force and work curves

are shown in Figures 3.2 and 3.3.
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Fig. 3.2 Force-displacement curves for the solenoid actuator

The force-stroke curves (Figure 3.4) are presented when the input quantity (elec-

trical current) is changed for different loads (one elastic load, equivalent to a struc-

ture, and one constant load). It can be seen that for a constant force load the equilib-

rium point xeq are established for

xeq =

√
SN2i2μ2

r μ0
2Fload

− l2 − leq

μr −1
(3.11)

If the actuator is attached to an elastic load with Fload(x) = F0 − kex, the equi-

librium point yields
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Fig. 3.3 Work-displacement curves for the solenoid actuator

F0 − kexeq =
SN2i2μ2

r μ0

2(l2 + leq +(μr −1)xeq)
2

(3.12)

where xeq can be found as the solution of a three-degree equation.

It can be seen in Figure 3.4 how the operating points are changing depending on

the input quantity and the load, when the current is increased working against an

elastic load the working point is moving from E1 to E5. From the initial working

point the load can be moved to the other points depending on the input current.

The work against a constant load presents more difficulties. When the current is not

large enough the actuator cannot begin to move and remains blocked at the initial

position, needing a minimum current to begin the traction.

3.3 Thresholds

The main limiting quantity considered in this chapter is the maximum allowed ac-

tuator temperature. To analyze how the maximum temperature implies a limitation

in the actuator electrical current a detailed analysis of the heat transfer phenomena

taking place in the solenoid actuator has to be performed.

First of all, the resistance of the coils of all the actuators is expressed as a function

of the geometrical dimensions and the copper resistivity as:
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Fig. 3.4 Force-displacement curves for elastic and constant loads

R =
δreslw

Aw
=

δ0 (1+ γΔT ) lw
Aw

(3.13)

where γ is the resistivity temperature coefficient, δ0 the resistivity at a given temper-

ature T0, ΔT = Tmax −T0 the temperature increment, and lw and Aw the length and

cross-section of the wire. The steady-state heating balance equals the heat power

produced in the coils due to the Joule effect with the heat power which the actuator

can dissipate by means of conduction and convection as:

Ri2 = Q̇ =
ΔT

ϑcond +ϑconv
(3.14)

where ϑcond is the thermal resistance by means of conduction and ϑconv is the ther-

mal resistance by means of convection . The thermal resistance is defined in [1] as

the temperature increment ΔT divided into the heat flow Q̇. Since the solenoid actu-

ator studied in this work presents cylindrical shape, only this actuator shape will be

considered. If the heat produced in the coils flows radially, the thermal resistances

can be written as:

ϑcond =
log(r/r3)
2πlλiron

=
log(1/kr3)

2πlλiron
(3.15)

ϑconv =
1

2πlrhc
(3.16)
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where l is the length of the actuator, λiron the conductivity of the iron, hc the con-

vection coefficient between the iron surface and the air, and r3 and r the internal and

external radium of the pipe surrounding the actuator. If no pipe is surrounding the

actuator there will be no heat transfer by means of conduction, and therefore, less

thermal resistance.

From the heating balance (3.14) an expression of the maximum allowed current

is obtained. The maximum current can be expressed as:

imax =

√
ΔT

R(ϑcond +ϑconv)
(3.17)

Substituting the resistance obtained in (3.13) and the thermal resistances from (3.15)

and (3.16) in the last expression, the maximum current can be written as:

imax =
√√√√ Aw2πlΔT

δ0 (1+ γΔT ) lw(
log
(

1
kr3

)
λiron

+ 1
rhc

)

(3.18)

The conduction coefficient λ is a material property, but the convection coefficient

hc depends on the non-dimensional Nusselt number which may be expressed as:

NuL =
hcl
λair

(3.19)

The maximum allowed current can be expressed substituting the convection co-

efficient using the Nusselt number as

imax =
√√√√ Aw2πlΔT

δ0 (1+ γΔT ) lw(
log
(

1
kr3

)
λiron

+ 2
NuLλair

)

(3.20)

3.4 Maximum Output Quantities

Before evaluating the maximum output quantities, the different relevant expressions

obtained can be summarized as the maximum current obtained in (3.18), the con-

vection coefficient of (3.19) and the geometrical expressions of (3.3). As far as the

number of turns N is concerned, it can be expressed as a function of the actuator

dimensions as:

N =
hcul2k f f

Aw
(3.21)

where hcu is the thickness of copper, l2 the coil’s length, k f f the filling factor de-

scribed in (3.4) and Aw the cross-section of a single wire.

Replacing (3.18), (3.21), (3.19) and (3.3) in (3.9), the maximum force (obtained

when x = 0) can be expressed as:
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Fmax

Sact
=

λairμ0ΔT μ2
r

δ0 (1+ γΔT )

k2
Lk2

r1

(
kr3−kr1

kr2

)
k f f(

2kλ λair
λiron

+ 4
NuLη

) (3.22)

with kλ = log(1/kr3) and kL = l2/(l2 + leq). The equivalent length ratio can be

expressed as:

leq

l
=

k2
r1(1−2kl1)

1− k2
r3

+
k2

r1η2 log 1
kr1

kl1
(3.23)

It can be noted that the maximum force divided into the cross-section of the

actuator is expressed as a function of material constants, physical thresholds and

geometrical relationships. A design factor depending on the design parameters can

be defined from (3.22) as:

q f =
k2

Lk2
r1

(
kr3−kr1

kr2

)
k f f(

2kλ λair
λiron

+ 4
NuLη

) (3.24)

Substituting all the terms in the last expression it can be written as:

q f =
2k2

l2k2
r1k f f

kr3−kr1
kr3+kr1(

kl2 + k2
r1kl2

1−k2
r3

+
k2

r1η2 log 1
kr1

(1−kl2)/2

)2(
2kλ λair

λiron
+ 4

NuLη

) (3.25)

The expression (3.25) has been analyzed numerically. The best design parame-

terization has been found for values kr1 = 0.29, kr2 = 0.535, kr3 = 0.78, kl1 = 0.25,

kl2 = 0.50 and η = 0.7. The optimized found design factor is q f = 0.2299.

In Figure 3.5 the design factor q f depending on the ratios kr1 and kr3 is plotted.

The aspect ratio η , the ratio rl1 and the filling factor are kept constant to allow a

three-dimensional plot. The filling factor k f f is typically around 0.75 and can be

considered independent of the other design parameters.

Regarding the aspect ratio, it is shown in Figures 3.6 and 3.7 that the best perfor-

mance aspect ratio is achieved for η = 0.7.

The dependance on the factor kl2 is shown in Figure 3.8 where it is clearly shown

that the best performance is achieved for kl2 = 0.5.

The maximum displacement is l2 and is proportional to the length of the actu-

ator l since l2 = kl2l. The maximum volumetric work is achieved when the whole

displacement is done. It can be obtained integrating the force. The maximum work

expression found yields:

Wmax

Vact
=

q fW λairμ0ΔT μ2
r

δ0 (1+ γΔT )
(

2kλ λair
λiron

+ 4
NuLη

) (3.26)

with the work design factor
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Fig. 3.5 Solenoid force design factor depending on kr1 and kr3 with kl2 = 0.5 and η = 0.7
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Fig. 3.6 Solenoid force design factor depending on η and kr1 with kl2 = 0.5 and kr3 = 0.78

q fW =
2k2

l2k2
r1k f f

kr3−kr1
kr3+kr1

(
2kλ λair

λiron
+ 4

NuLη

)−1

(
kl2 + k2

r1kl2
1−k2

r3

+
k2

r1η2 log 1
kr1

(1−kl2)/2

)(
kl2 + k2

r1kl2
1−k2

r3

+
k2

r1η2 log 1
kr1

(1−kl2)/2
+ μr −1

) (3.27)

The evaluation of the expression (3.27) shows that the best design parameteriza-

tion is achieved for kr1 = 0.39, kr2 = 0.625, kr3 = 0.86, kl1 = 0.125, kl2 = 0.75 and

η = 1.01. The optimized found work design factor is q fW = 0.0015.
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Fig. 3.7 Solenoid force design factor depending on η and kr3 with kl2 = 0.5 and kr1 = 0.29

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.05

0.1

0.15

0.2

0.25

k
l2

Design factor q
f

k
r1

Fig. 3.8 Solenoid force design factor depending on kl2 and kr1 with η = 0.7 and kr1 = 0.29

In Figure 3.9 the work design factor q fW depending on the ratios kr1 and kr3 is

plotted. In order to analyze the influence of the aspect ratio, it is shown in Figures

3.10 and 3.11 that the best performance aspect ratio is achieved for η = 1.01. The

dependance on the factor kl2 is shown in Figure 3.12 where it is shown that the best

performance is achieved for kl2 = 0.75.
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Fig. 3.9 Solenoid work design factor depending on kr1 and kr3 with kl2 = 0.75 and η = 1.01
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Fig. 3.10 Solenoid work design factor depending on η and kr1 with kl2 = 0.75 and kr3 = 0.86

3.5 Scalability

If the leq/l ratio is kept constant in (3.22) and (3.26), scalability will depend only

on the Nusselt number.

The Nusselt number can be written as a function of Reynolds, Prandtl and

Grashof numbers, in [6] it is presented as:

Nu = CRm
e Pn

r Gp
r (3.28)
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Fig. 3.11 Solenoid work design factor depending on η and kr3 with kl2 = 0.75 and kr1 = 0.39
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Fig. 3.12 Solenoid work design factor depending on kl2 and kr1 with η = 1.01 and kr1 = 0.39

where Re is the Reynolds number (ρvL/η) which shows the relationship between

the inertial forces and the viscous forces in the dynamics of a fluid, Pr is the Prandtl

number (ηc/λ ) which characterizes the regime of convection, Gr is the Grashof

number(βgΔT L3/ν2) analog to the Reynolds number when natural convection is

concerned and C, m, n and p can take different values in forced convection (C <
1,m < 1,n = 1/3, p = 0) and natural convection (C < 1,m = 0,n < 1/3, p < 1/3).

The Nusselt number can be in all the cases expressed as:

Nu−r = KNurα (3.29)
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where KNu and α must be discussed in each case.

If the Nusselt number is assumed to be constant (α = 0), the force will be inde-

pendent of the actuator length and it will be proportional to the cross-section. The

work will be proportional to both the length and the cross-section, and therefore to

the volume so that a constant volumetric energy will be shown. Such an assumption

cannot generally be done when studying the different convection cases. With a pos-

itive value of α (which is the behavior observed) the actuator force and work are

not scalable anymore and their maximum performance values are increased when

the size is increased. In such a case the maximum force per cross-section can be

expressed as:
Fmax

Sact
= ka

rα

kb + rα (3.30)

It can be noted that for high values of r the maximum force tends to be scalable

since lim
r→∞

karα/(kb + rα) = ka, as it is observed in Figure 3.13. For tiny actuators

the force and work performance becomes worse. It may explain that these actuators

are not used when a small actuator is required.
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Fig. 3.13 Solenoid force scalability for different α coefficients in the Nusselt number expression

3.6 Dimensional Analysis

The force provided by these actuators can be analyzed with dimensional analysis

using the Buckingham Pi Theorem [2], the quantities involved are shown in the

Table 3.1. The FLT Iθ (force – length – time – current – temperature) system is

used.
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Table 3.1 Solenoid actuator dimensional analysis quantities

F Force [F ]
x Position [L]
μ Permeability [FI−2]
hc Convection coef. [FL−1T−1θ−1]
λ Conduction coef. [FT−1θ−1]
δ Resistivity [FL2I−2T−1]
T Temperature [θ ]

Table 3.2 Dimension matrix for the solenoid force analysis

F Force x Position μ Permeability hc Convection λ Conduction δ Resistivity T Temperature

F 1 0 1 1 1 1 0
L 0 1 0 -1 0 2 0
T 0 0 0 -1 -1 -1 0
I 0 0 -2 0 0 -2 0
θ 0 0 0 -1 -1 0 1

The dimension matrix is shown in Table 3.2. Since there are seven involved quan-

tities and a five dimension FLT Iθ (force – length – time – current – temperature)

system, the number of non-dimensional groups will be 7-5=2.

Considering F = xaμchd
c λ eδ f θ g the following equations are obtained:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 = c+d + e+ f

0 = a−d+2 f
0 = −d− e− f

0 = −2c−2 f
0 = −d− e+g

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

→

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c = 1

a = +d+2

e = 1−d
f = −1

g = 1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.31)

Therefore

F = x2+d μhd
c λ 1−dδ−1θ (3.32)

The maximum force can be expressed as:

Fδ
x2μθλ

= φ
(

xhc

λ

)
= φ (Nu) (3.33)

Arranging the terms:
F
x2

= K
μT λ

δ
Φ (Nu) (3.34)

where it can be observed that it matches perfectly with (3.22) since δ = δ0 (1+ γΔT )
and μr and all the geometrical constants are adimensional. The results obtained for

the work match with the expression (3.26), the maximum work given by dimen-

sional analysis can be expressed as:

W
x3

= K
μT λ

δ
Φ (Nu) (3.35)
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3.7 Finite Element Analysis

The configuration featuring the maximum work performance has been simulated

using Finite Element Analysis software COMSOL� by COMSOL AB in order to

validate the obtained expression. The optimal configuration found in the previous

steps for values kr1 = 0.39, kr2 = 0.625, kr3 = 0.86, kl1 = 0.125, kl2 = 0.75 and

η = 1.01 has been analyzed, considering the material properties:

• λair = 0.0257 W/Km
• λiron = 80 W/Km
• μ0 = 1.25664×10−6 T m/At
• ΔT = 50 K
• μr = 200

• ρ0 = 1.68×10−8 Ωm
• γ = 0.0068 Ωm/K
• Nu=60

Considering an actuator radius of 5 cm, the actuator dimensions used in the FEA

analysis yield:

• l =5.05 cm

• r1=1.95 cm

• r2=3.125 cm

• r3=4.3 cm

• l1=3.79 cm

• l2=0.63 cm

A sketch of the actuator can be seen in Figure 3.14, where it can be noted that

only half a section of the actuator is considered due to the cylindrical symmetry of

the actuator under analysis.

To use Finite Element Analysis, the current density of the copper has to be com-

puted. The maximum current density can be expressed as:

Jmax =
Nimax

Scu
=

imax

k f f Aw
(3.36)

where Scu is the overall copper section and Aw the single wire section. Using (3.20),

it can be expressed as

Jmax =
√√√√ 2πlΔT

k2
f f Awδ0 (1+ γΔT ) lw(

log
(

1
kr3

)
λiron

+ 2
NuLλair

)

(3.37)

substituting lw = 2πr2N and N = (r3 − r1)l2k f f /Aw in the previous expression:

Jmax =
1

r

√√√√ ΔT

k3
f f δ0 (1+ γΔT )kr2(kr3 − kr1)kl2(

log
(

1
kr3

)
λiron

+ 2
NuLλair

)

(3.38)
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Fig. 3.14 Geometry of the actuator analyzed with COMSOL�
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which corresponds to a current density of 2.7303 × 107 Am−2. The effective

current density to be applied in the FEA model corresponds to k f f Jmax = 2.025×
107 Am−2.

The FEA mesh of the analyzed actuator is shown in Figure 3.15. The results

illustrating the magnetic flux densities along with the maxwell tensor stresses are

presented in Figures 3.16 and 3.17. The force obtained is 100.52 N.

The maximum force using the analytic procedure described in Step 4 can be

evaluated as:

Fmax

Sact
=

λairμ0ΔT μ2
r

ρ0 (1+ γΔT )

k2
Lk2

r1

(
kr3−kr1

kr2

)
k f f(

2kλ λair
λiron

+ 4
NuLη

) (3.39)

Substituting the values and using a solenoid radius of 5 cm (and the correspond-

ing length l=5.05 cm for the aspect ratio η = 1.01), the maximum force obtained is

102.1 N, which matches reasonably well with the FEA analysis result.

3.8 Comparison with Industrial Actuators

The comparison of different actuators using available industrial actuator data can

provide relevant information. The present section presents an analysis of data from

different manufacturers of solenoid actuators. A typical solenoid datasheets is illus-

trated in Figure 3.18.

Since electromagnetic actuators are often cooled with air by means of free con-

vection, a numerical analysis is presented assuming natural convection. In such case

the Nusselt number can be written as a function of the Rayleigh number in the

form NuD = CRn
a where C and n are to be discussed for different values of Ra as it

is exposed in [6]. It has been found (assuming an air temperature of 293 K and a

temperature increment of 50 K) that for diameters between 2.6 mm and 0.124 m the

coefficients C = 0.48 and n = 1/4 can be used, while for diameters between 0.124 m
and 5.75 m, C = 0.125 and n = 1/3 can be used. This range of diameters covers all

the industrial electromagnetic actuators found, but other ranges can be considered

using other coefficients. The Nusselt numbers can be written as:

NuD = 129.20×D1/4 0.0026 < D < 0.124 m

NuD = 217.25×D1/3 0.124 ≤ D < 5.75 m (3.40)

Different manufactured industrial solenoids actuators have been studied. Its out-

put mechanical quantities compared to the maximum quantities developed in this

work are shown in Figures 3.19 and 3.20. The maximum quantities have been cal-

culated using the design factor q f = 0.04.

The data from industrial actuators have been analyzed and approached us-

ing a linear regression after taking logarithms of the quantities concerned. The

force provided by the solenoid actuators has been approached with the function
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Fig. 3.15 Finite element mesh of the actuator analyzed with COMSOL�
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Fig. 3.16 Flux densities and Maxwell tensor stresses in the analyzed actuator
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Fig. 3.17 Detail of the airgap flux densities and Maxwell tensor stresses in the analyzed actuator
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Fig. 3.18 Datasheet of an industrial solenoid actuator. Courtesy of NSF Controls Ltd

9.35× 106r2.3336. It has been stated that the limiting force for the solenoid holds

F ∝ r2Nu. Therefore, the α coefficient should be located between 2.25 and 2.333
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(according to (3.40), 2+1/4 and 2+1/3 ). It matches with the α coefficient 2.3336

obtained with the regression.

The solenoid work has been fitted with 1.369×105V 1.167, where the coefficient

is close to the expected between 1.083 and 1.111 (1+ 1/4
3 and 1+ 1/3

3 ).

As shown in the regression analysis and in Figures 3.19 and 3.20, it can be con-

cluded that the behavior of industrial solenoid actuators follows the trends developed

theoretically.
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3.9 Dynamics

Although the proposed methodology focuses on the statical output mechanical quan-

tities, some considerations on actuator dynamics are very important for most appli-

cations. As it has been stated in Section 2.10, the dynamic behavior does not de-

pend only on the actuator but in the load attached to it and the controller governing

the overall system. The present section presents examples of some classical applica-

tions employing solenoid actuators. A brief example dealing with a complete system

comprising a solenoid actuator, the attached load and a linear controller is shown.

3.9.1 System Modeling

As it has been shown in Section 3.2, the solenoid actuator force stated in (3.9) can

be written as

F(x, i, t) =
κsol i(t)2(

κμ + x(t)
)2

(3.41)

where

κsol =
SN2μ2

r μ0

2(μr −1)
(3.42)

and

κμ =
l2 + leq

(μr −1)
(3.43)

Although different loads can be considered as it has been shown in 2.10, it is

common to consider the system (2.64)

F(x, i, t) = mLẍ(t)+bLẋ(t)+ kLx(t) (3.44)

Using the solenoid force it can be rewritten as

κsol i(t)2(
κμ + x(t)

)2
= mLẍ(t)+bLẋ(t)+ kLx(t) (3.45)

where it can be noted that the system is nonlinear and it is not possible to derive

the Laplace transformation of such a differential equation in order to analyze its

properties.
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3.9.2 Open Loop Simulation

Before dealing with control issues, the system can be simulated in open loop as

illustrated in Figure 3.21 applying certain currents to the actuator and analyzing the

system response. The system has been simulated using the following parameters:

• κsol = 1.983×10−4 N m2 A−2

• κμ = 2.6×10−4 m

• mL = 0.1 Kg

• bL = 41 N s m−1

• kL = 100101 N m−1

Fig. 3.21 Simulated solenoid actuator scheme

The system response is shown in Figures 3.22–3.24. The speed-position curves

of Figure 3.24 show the difference between the transition from the zero equilib-

rium point to the equilibrium point where the actuator is excited. This transition is

provoked by the solenoid force and is much faster (see also Figure 3.22) than the

return to the initial position. The return is performed by the structure itself, since the

actuator does not provide any return force.

3.9.3 Control Design

Although the current i(t) cannot be applied instantaneously, it is commonly assumed

that the current dynamics are much faster than the motion dynamics and hence the

transients needed to establish the reference currents are neglected.
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Fig. 3.22 Position response of the solenoid actuator to an open loop simulation
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Fig. 3.23 Speed, current and force response of the solenoid actuator to an open loop simulation

The system (3.45) is nonlinear due to force dependance on the inverse square

of the actuator position. Hence, it is not possible to use linear standard techniques

[7] to study such a system and to design an optimal controller. Several nonlinear

approaches may be used[8], but they are out of the scope of this work. A very simple

linear PI controller is proposed as an example of the system under analysis.

The current to be applied to the actuator is therefore computed as:
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Fig. 3.24 Position-speed curve response of the solenoid actuator to an open loop simulation

i∗(t) = kp (x(t)− x∗(t))+ ki

∫
(x(t)− x∗(t))dt (3.46)

where kp and ki are the proportional and integral constants of the PI controller,

which are adjusted linearizing the system close to the operating point x = 5 mm.

3.9.4 Closed Loop Simulation

The system under analysis has been simulated with Simulink� according to the

scheme sketched in Figure 3.25. The following parameters have been used:

• κsol = 1.983×10−4 N m2 A−2

• κμ = 1.005×10−4 m

• mL = 0.1 Kg

• bL = 39 N s m−1

• kL = 10201 N m−1

• kp = 110 A m−1

• ki = 28000 A s−1 m−1

Different simulations have been performed for rectangular, triangular and sinu-

soidal tracking functions. The system responses are shown in Figures 3.26–3.31.
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Fig. 3.25 Simulated solenoid actuator scheme
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Fig. 3.26 Solenoid actuator response tracking a rectangular reference
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Fig. 3.27 Speed, current and force of the solenoid actuator tracking a rectangular reference

0 1 2 3 4 5 6 7 8

0

2

4

6

8

10

x 10
−3

Time [s]

P
o
s
it
io

n
 x

 [
m

]

x*

x

Fig. 3.28 Solenoid actuator response tracking a triangular reference
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Fig. 3.29 Speed, current and force of the solenoid actuator tracking a triangular reference
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Fig. 3.31 Speed, current and force of the solenoid actuator tracking a sinusoidal reference
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Chapter 4
Design Analysis of Moving Coil Actuators

4.1 Design Parameters

Moving coil actuators are based on the interaction of a magnetic flux provided by a

permanent magnet and the electrical current flowing in the so-called moving coil.

The geometric dimensions are shown in Figure 4.1. For the sake of simplicity

and without loss of generality it has been assumed that l1 = l2 = l3.

The geometric constants and aspect ratios are defined as [3, 4, 2]

kri = ri/r (4.1)

kli = li/l (4.2)

η =
l
r

(4.3)

where the non-dimensional constants associated to the radial lengths correspond to

kri, while the axial lengths constants correspond to kli.

The filling factor can be computed similarly to the solenoid actuator as the ratio

between the profitable copper section Suse and the overall actuator section Stotal as

k f f =
Suse

Stotal
=

NAw

Stotal
(4.4)

where Aw is the single copper wire section and N is the number of turns.

4.2 Output Quantities

Moving coil actuators use the force produced by the interaction of perpendicular

magnetic field and electrical current, described in the Lorenz force law. It yields:

F = Blwi (4.5)

111
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Fig. 4.1 Moving coil actuator sketch

where B is the field density provided by the permanent magnet, lw is the length of

the wire and i the current flowing in the wire.

The present work assumes that the moving coil stroke is limited to the region

where the flux is flowing, so that the force-stroke curve presents a constant force

depending linearly on the current applied to the coil. The work is obtained by the

integration of a constant function. Without the assumption of limited stroke, the

length of wire lw being crossed by magnetic flux decreases as the coil is moving

outside the flux region, whereas the flux density and the current are kept constant

since the copper permittivity can be considered equal to the air permittivity.

The flux density B in the coil can be derived from the reluctance expression. In

this case the magneto-motive force is provided by the permanent magnet Fmm =
Hcl, where Hc is the coercitive field (a magnet constant). The reluctance can be
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Fig. 4.2 Moving coil actuator reluctances

calculated as the series association of all the reluctances sketched in Figure 4.2. The

total reluctance of the magnetic circuit can be expressed as:

ℜ =

log

⎛
⎝ k

1
kl1

− μr
μcukl4

r2 k
μr−1
kl1

r4

k
2

kl1
r1 k

μr
kl1

− μr
μcukl4

r3

⎞
⎠+ 2(1−2kl1)

(1−k2
r5)η2 + 2

μm
μr k2

r1η2

μrμ02πl
(4.6)

The flux density (B = Φ/S) can be written as:

B =
Hcl/ℜ

r3l4
=

Hc

rℜkr3kl4
(4.7)

The number of turns can be expressed as a function of the actuator dimensions

as:

N =
dl4k f f

Aw
=

(r3 − r2)l4k f f

Aw
(4.8)

The length lw used in (4.5) can be expressed as:

lw = 2π
r3 + r2

2
N = πr2l

(k2
r3 − k2

r2)kl4k f f

Aw
(4.9)

Since the permanent magnet is always providing the same magneto-motive force,

and the length of wire crossed by the flux is constant, the force from (4.5) can be

considered proportional only to the current.
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4.3 Thresholds

The main limiting quantity considered for the moving coil actuator is the maximum

allowed actuator temperature. The heat transfer taking place in the moving coil ac-

tuator is related mainly to convection, since the coil producing heat is surrounded

directly by air.

Using the resistance expression (3.13), the heat transfer equilibrium is found for

Ri2 = Q̇ =
ΔT

ϑconv
(4.10)

where ϑconv is the thermal resistance by means of convection. The maximum current

can be expressed as:

imax =

√
ΔT

R(ϑconv)
(4.11)

The maximum current can therefore be expressed as:

imax =

√
AwΔT π(r2

out − r2
in)hc

δ0 (1+ γΔT ) lw
(4.12)

The previously developed expression of the convection coefficient Nu−r = hcr
λair

can be used in order to express the maximum current as function of the non-

dimensional Nusselt number as:

imax =
Aw√

rl

√
ΔT Nuλair

2ηδ0 (1+ γΔT )kl4kr3k f f
(4.13)

4.4 Maximum Output Quantities

Using the maximum current from (4.13), the length from (4.9) and the flux density

from (4.7), the force expression (4.5) turns into:

Fmax

Sact
= q f Hcμrμ0

√
ΔT Nuλair

2ηδ0 (1+ γΔT )
(4.14)

where q f is the design factor which can be expressed as:

q f =

2π
η (k2

r3 − k2
r2)
√

k f f

k3
r3kl4

log

⎛
⎝ k

1
kl1

− μr
μcukl4

r2 k
μr−1
kl1

r4

k
2

kl1
r1 k

μr
kl1

− μr
μcukl4

r3

⎞
⎠+ 2(1−2kl1)

(1−k2
r5)η2 + 2

μm
μr k2

r1η2

(4.15)
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The expression (4.15) has been analyzed numerically in order to obtain the

most optimum parameterization. It has been found with values kr1 = kr2 = 0.72,

kr3 = kr4 = kr5 = 0.94, kl1 = kl4 = 0.50 and η = 2.08. The optimized design factor

obtained is q f = 0.0054.

In Figure 4.3 the design factor q f depending on the ratios kr1 and η is plotted.

The filling factor and the other geometric relationships are kept constant to allow

a three-dimensional plot. The filling factor k f f is typically around 0.75 and can be

considered independent of the other design parameters.
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Fig. 4.3 Moving coil design factor depending on η and kr1 with kr3 = 0.94 and kl1 = kl4 = 0.5

It has been assumed that the coil movement is limited to the region where the

whole coil is being crossed by the magnetic flux provided by the permanent magnet.

Therefore, the available stroke is l1 − l4, which can be written as l (kl1 − kl4). Since

the force does not depend on the displacement in this region, the work can be easily

obtained multiplying the force times the displacement as:

Wmax

Vact
= Fmax (kl1 − kl4) (4.16)

A modified design factor q fW = q f (kl1 − kl4) is to be analyzed to obtain the best

performance design concerning the work. It can be easily seen that the design pa-

rameters providing maximum force produce no work because they are using the

maximum coil width kl4 = kl1 = 1/2, allowing no stroke. A numerical analysis has

been undertaken to obtain the optimum modified design factor. The best perfor-

mance values has been found with kr1 = kr2 = 0.78, kr3 = kr4 = kr5 = 0.94, kl1 =
0.50, kl4 = 0.07 and η = 1.1. The optimized design factor obtained is q fW = 0.0023.
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Fig. 4.4 Moving coil work modified design factor depending on kr1 and kl4 with kl1 = 0.5 and
η = 1.1

4.5 Scalability

Regarding the scalability, it can be seen that the force and work depend on the Nus-

selt number, while the stroke can be considered completely scalable. As it has been

discussed for the solenoid actuator, if the Nusselt number is considered constant

all the output mechanical quantities can be considered scalable. Nonetheless, this

assumption cannot be done and it is observed that both the force per cross-section

and the volumetric work density depend linearly on
√

Nu. Hence, the cited output

quantities present a linear dependance on rα/2, implying an improvement of the per-

formance when the size is increased and not allowing the use of these actuators for

tiny applications.

4.6 Dimensional Analysis

The force provided by these actuators can be analyzed with dimensional analysis

using the Buckingham Pi Theorem [1]. The quantities involved are shown in the

Table 4.1. The FLT Iθ (force – length – time – current – temperature) system is

used.

The dimension matrix is shown in Table 4.2. Since there are eight involved quan-

tities and a five dimension FLT Iθ (force – length – time – current – temperature)

system, the number of non-dimensional groups will be 8−5 = 3.

Considering the expression
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Table 4.1 Moving coil actuator dimensional analysis quantities

F Force [F ]
x Position [L]
μ Permeability [FI−2]
H Magnetic Field Intensity [IL−1]
hc Convection Coef. [FL−1T−1θ−1]
λ Conduction Coef. [FT−1θ−1]
δ Resistivity [FL2I−2T−1]
T Temperature [θ ]

Table 4.2 Dimension matrix for the moving coil force analysis

F x μ hc λ δ T H
Force Position Permeability Convection Conduction Resistivity Temperature Magnetic F.

F 1 0 1 1 1 1 0 0
L 0 1 0 -1 0 2 0 -1
T 0 0 0 -1 -1 -1 0 0
I 0 0 -2 0 0 -2 0 1
θ 0 0 0 -1 -1 0 1 0

F = xaμchd
c λ eδ f T gHh (4.17)

the following equations are obtained:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 = c+d + e+ f

0 = a−d+2 f −h
0 = −d− e− f

0 = −2c−2 f +h
0 = −d− e+g

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

→

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c = 1

a = +d +2

f = −g

h = 2−2g
e = g−d

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.18)

Therefore

F = x2+d μ1hd
c λ g−dδ−gT gH2−2g (4.19)

The maximum force can be written as

F
x2

= μH2φ
(

xhc

λ
,

λT
δH2

)
(4.20)

Rearranging the terms and using the Nusselt number

F
x2

= μH2φ

(
Nu,

1

H

√
λT
δ

)
(4.21)

The maximum force can be finally expressed as

F
x2

= KμH

√
T λNu

δ
(4.22)
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where it can be observed that it matches perfectly with (4.14) since δ = δ0 (1+ γΔT )
and μr and all the geometrical constants are non-dimensional.

The maximum work can be derived similarly. It can be expressed as:

W
x3

= KμH

√
T λNu

δ
(4.23)

which matches with Expression 4.16.

4.7 Finite Element Analysis

The configuration featuring best work design factor performance have been chosen

to be validates using Finite Element Analysis. The chosen configuration geometric

constants yield kr1 = kr2 = 0.78, kr3 = kr4 = kr5 = 0.94, kl1 = 0.50, kl4 = 0.07 and

η = 1.1. Considering a reference length r = 5 cm it implies:

• l = 4.5 cm

• r1 = r2 = r3 = 3.9 cm

• r4 = r5 = 4.7 cm

• l1 = l2 = l3 = 2.25 cm

• l4 = 0.31 cm

The material properties considered yield:

• λair = 0.0257 W/Km
• λiron = 80 W/Km
• μ0 = 1.25664×10−6 T m/At
• ΔT = 50 K
• μr = 200

• ρ0 = 1.68×10−8 Ωm
• γ = 0.0068 Ωm/K
• Nu=60

• Hc = 0.5×106 A/m
• μc = μm = 1

A sketch of the moving coil actuator can be seen in Figure 4.5. As in the analysis

of the solenoid actuator, before applying finite element analysis it is necessary to

compute the maximum current density of the copper as:

Jmax =

√
2πlΔT

k2
f f Awδ0 (1+ γΔT ) lw( 2

NuLλair
)

(4.24)

substituting lw = 2πr2N and N = (r3 − r1)l2k f f /Aw:
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Fig. 4.5 Geometry of the actuator analyzed with COMSOL�
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Jmax =
1

r

√
ΔT NuLλair

2k3
f f δ0 (1+ γΔT )kr2(kr3 − kr1)kl2

(4.25)

The FEA mesh of the analyzed actuator is shown in Figure 4.6. The results il-

lustrating the magnetic flux densities and Maxwell tensor stresses are presented in

Figures 4.7 and 4.8 .

4.8 Comparison with Industrial Actuators

The present section presents an analysis of data from different manufacturers of

moving coil actuators. A typical datasheet is illustrated in Figure 4.9.

Similarly as described in Section 3.8, moving coil actuators can be considered to

be cooled by means of natural convection. The Nusselt number can be written[5] as:

NuD = 129.20×D1/4 0.0026 < D < 0.124 m

NuD = 217.25×D1/3 0.124 ≤ D < 5.75 m (4.26)

Different manufactured industrial moving coil actuators have been studied. Their

output mechanical quantities compared to the maximum quantities previously stated

are shown in Figures 4.10 and 4.11. The maximum quantities have been calculated

using design factors q f = 0.0108 and q fW = 0.0029.

Data analysis has shown that moving coil actuator can be approached with the

function 4.59× 104r2.1270. The force holds F ∝ r2
√

Nu and therefore α = 2.1270

coefficient is located between 2.125 and 2.166. The moving coil work has been

approached with 8.775×103V 1.129, slightly higher than the expected between 1.041

and 1.056.

As shown in Figures 4.10 and 4.11, the behavior of the moving coil industrial

actuators follows the trends developed theoretically.

4.9 Dynamics

The present section presents simple examples of some classical applications em-

ploying moving coil actuators.

4.9.1 System Modeling

The force performed by a moving coil actuator can be derived from Expression 4.5

as
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Fig. 4.6 Finite element mesh of the actuator analyzed with COMSOL�
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Fig. 4.7 Flux densities of the analyzed actuator
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Fig. 4.8 Flux densities and Maxwell tensor stresses in the analyzed actuator
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Fig. 4.9 Datasheet of an industrial moving coil actuator. Courtesy of BEI Kimco Magnetics



4.9 Dynamics 125

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
0

10
2

10
4

10
6

Area [m2]

F
or

ce
 [N

]
1e+015 Pa 1e+013 Pa 1e+011 Pa 1e+009 Pa

1e+007 Pa

1e+005 Pa

1e+003 Pa

1e+001 Pa

Moving coil Beikimco
Moving coil Maccon
Maximum moving coil
Regression moving coil

Fig. 4.10 Industrial electromagnetic actuator force-area comparison

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
−4

10
−2

10
0

10
2

10
4

10
6

Volum [m3]

W
or

k 
[J

]

1e+016 J/m3 1e+014 J/m3 1e+012 J/m3 1e+010 J/m3 1e+008 J/m3 1e+006 J/m3

1e+004 J/m3

1e+002 J/m3

1 J/m3

0.01 J/m3

Moving coil Beikimco
Moving coil Maccon
Maximum moving coil
Regression moving coil

Fig. 4.11 Industrial electromagnetic actuator work-volume comparison

F(i, t) = κBli(t) (4.27)

where

κBl = Blw (4.28)

Considering the load attached to a flexible structure, the system equation yield

F(i, t) = mLẍ(t)+bLẋ(t)+ kLx(t) (4.29)

Using the moving coil force it can be rewritten as
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κBli(t) = mLẍ(t)+bLẋ(t)+ kLx(t) (4.30)

Applying the Laplace transformation with initial null position and speed:

κBlI(s) = mLX(s)s2 +bLX(s)s+ kLX(s) (4.31)

The system transfer function can be stated as

X(s)
I(s)

=
κBl

mLs2 +bLs+ kL
(4.32)

Analogously to the developments of Section 2.10 the transfer system poles can

be analyzed according to linear systems theory [6]. The following system poles are

obtained:

s12 =
−bL ±

√
b2

L −4mLkL

2mL
(4.33)

where it can be clearly noted that the system dynamics will importantly depend

on b2
L − 4mLkL. The natural frequency ω0 ≥ 0 and the damping ratio ζ may be

defined as

ω0 =
√

kL

mL
(4.34)

ζ =
bL

2
√

kLmL
(4.35)

Substituting (4.34) and (4.35) in (4.33) the poles yield

s12 = ω0

(
−ζ ±

√
ζ 2 −1

)
(4.36)

where depending on the vale of ζ the system can be considered under-damped,

critically damped or over-damped as discussed in Section 2.10.

4.9.2 Control Design

In the present example, the closed loop control system is considered. Considering

a controller whose transfer function is G(s) the system equations in the Laplace

domain yield

κBlG(s)(X(s)−X∗(s)) = mLX(s)s2 +bLX(s)s+ kLX(s) (4.37)

which can be rearranged as

X(s)
X∗(s)

=
−κBlG(s)

mLs2 +bLs+ kL −κBlG(s)
(4.38)
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Using a PI controller G(s) = kp + ki
s

X(s)
X∗(s)

=
−κBlkps+ ki

mLs3 +bLs2 +(kL −κBlkp)s+ ki
(4.39)

4.9.3 Closed Loop Simulation

The considered system parameters:

• κBl = 23.1 N A−1

• mL = 0.1Kg

• bL = 39N s m−1

• kL = 10201N m−1

The PI controller can be designed by assigning appropriate poles to the closed

loop system. The obtained PI constants are kp = 15.21×103 A m−1 and ki = 20.11×
103 A s m−1.

Fig. 4.12 Simulated moving coil actuator scheme
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The system has been simulated with MATLAB� Simulink� according to the

scheme sketched in Figure 4.12. Different simulations have been performed for

rectangular, triangular and sinusoidal tracking functions. The system response are

shown in Figures 4.13–4.18.
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Chapter 5
Design Analysis of Hydraulic Actuators

5.1 Design Parameters

In the present chapter, hydraulic actuators are studied. However, some of the results

obtained also apply for their pneumatic counterparts.

An ideal power supply with no losses will be considered. It implies that the load

will not change the supplied pressure. This fact can be assumed with no loss of

generality as long as the power of the power supply is much larger than the nominal

power consumed by the actuator.

In Figure 5.1 a hydraulic actuator is sketched [3]. It can be seen that for x = 0

both orifices are completely closed, when x > 0 follows P1 > P2 since Ps > Pr, and

the plunger moves forward, when x < 0 follows P2 < P1 and it moves backward. The

sections can be written as

A1 =
π
4

D2
1 (5.1)

A2 =
π
4

(
D2

1 −D2
2

)
(5.2)

where D1 is the diameter of the cylinder and D2 is the diameter of the rod which

guides the plunger.

The geometry of hydraulic cylindrical actuators is shown in Figure 5.2. The same

geometry would be valid for pneumatic actuators, with the only difference of the

fluid used and the corresponding limitations.

5.2 Force-Stroke and Work-Stroke Characteristic

F = P1A1 −P2A2 (5.3)

133

The cylinder force can be expressed as [5, 4, 7]
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Fig. 5.1 Hydraulic actuator

Fig. 5.2 Geometry of a hydraulic actuator

where Pi is the pressure in the chamber i and Ai is the effective section of the

piston. It can be expressed as:

F = P1π
D2

1

4
−P2π

(
D2

1 −D2
2

)
4

(5.4)

The force performed by the cylinder in steady-state conditions depends on

whether the movement is done forward or backward, since the section is different.

Assuming P2 = Pr = 0 and P1 = Ps, the forward force can be expressed as:

Ff = Ps
π
4

D2
1 (5.5)

Concerning the backward force, P2 = Ps and P1 = Pr = 0. The force yields:

Fb = Ps
π
4

(
D2

1 −D2
2

)
(5.6)

Assuming quasistatic behavior the work can be obtained assuming the force is

constant during the time and therefore multiplying the force times the displacement.
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5.3 Thresholds

The maximum allowed shear stress is the main quantity limiting the available me-

chanical force and work. It can be expressed using the Mohr circle as half the dif-

ference between the radial and tangential stresses. The radial stress in a thick walled

cylinder can be written from [6] as a function of the position r in the wall as follows:

σrr =
PD2

1

D2 −D2
1

(
1− D2

4r2

)
(5.7)

The tangential stress in a thick walled cylinder from [6] yields:

σθθ =
PD2

1

D2 −D2
1

(
1+

D2

4r2

)
(5.8)

The equivalent shear stress can be derived from (5.7) and (5.8) as:

τeq =
σrr −σθθ

2
=

PD2
1

D2 −D2
1

D2

4r2
(5.9)

It can be clearly seen in (5.9) that the maximum shear stress is produced for the

minimum value of r, i.e. r = D1/2. Using the defined geometric relationships the

maximum shear stress yields:

τeq =
P

1− k2
D1

(5.10)

Hence, to not overcome the shear stress threshold, the maximum pressure must

be established as:

PL1 = τeq
(
1− k2

D1

)
(5.11)

For backward motion, there arises another fact: there exists a maximum axial

stress σaa in the rod attaching the load. It implies another pressure limitation:

PL2 = σaak2
D2 (5.12)

Then, the maximum pressure for backward motion PLb can be written as:

PLb = min{PL1,PL2} = min{τeq
(
1− k2

D1

)
,σaak2

D2} (5.13)

Defining ϕ = σaa/τeq,ϕ > 0, it may be expressed as:

PLb = τeqmin{(1− k2
D1

)
,ϕk2

D2} (5.14)
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5.4 Maximum Force, Stroke and Work

5.4.1 Forward Motion

Using (5.11) and (5.5), the maximum available force per cross-section can be ex-

pressed for the forward motion as:

Ff

πD2/4
= τeq

(
1− k2

D1

)
k2

D1 (5.15)

The design factor q f can be defined as:

q f =
(
1− k2

D1

)
k2

D1 (5.16)

and is the factor to be maximized in the design.
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Fig. 5.3 Forward force design factor

Analyzing the latter expression, it can be seen that for a given size the forward

force is maximized for kD1 = 1/
√

2 performing a force per cross section of τeq/4

with a design factor q f = 1/4. Graphical results may be seen in Figure 5.3.

5.4.2 Backward Motion

Using (5.14) and (5.6), the maximum available force per cross-section can be ex-

pressed for the backward motion as:



5.4 Maximum Force, Stroke and Work 137

Ff

πD2/4
= τeqmin{(1− k2

D1

)
,ϕk2

D2}
(
k2

D1 − k2
D2

)
(5.17)

An alternative formulation yields:

Ff

πD2/4
= τeq

(
1− k2

D1

)(
k2

D1 − k2
D2

)
1− k2

D1 < ϕk2
D2

Ff

πD2/4
= τeqϕk2

D2

(
k2

D1 − k2
D2

)
1− k2

D1 ≥ ϕk2
D2 (5.18)

The design factor q f = 4Ff /τeqπD2 may be defined as:

q f =
(
1− k2

D1

)(
k2

D1 − k2
D2

)
1− k2

D1 < ϕk2
D2

q f = ϕk2
D2

(
k2

D1 − k2
D2

)
1− k2

D1 ≥ ϕk2
D2 (5.19)

Analyzing the expression (5.19), the maximum design factor may be found by

using 1−k2
D1 = ϕk2

D2 or its equivalent formulation kD2 =
√(

1− k2
D1

)
/ϕ . In such a

case:

q f =
(
1− k2

D1

)(
k2

D1 −1+ k2
D1/ϕ

)
(5.20)

It can be expressed as:

q f = −ϕ +1

ϕ
k4

D1 +
2ϕ +1

ϕ
k2

D1 −1 (5.21)

To obtain the maximum design factor:

q̇ f = −4
ϕ +1

ϕ
k3

D1 +2
2ϕ +1

ϕ
kD1 → 4

ϕ +1

ϕ
k3

D1max = 2
2ϕ +1

ϕ
kD1max (5.22)

The maximum kD1max yields:

kD1max =

√
2ϕ +1

2ϕ +2
(5.23)

It can be demonstrated that it is maximum, since q̈ f (kD1max) = −12
ϕ+1

ϕ k2
D1 +

2
2ϕ+1

ϕ = −4
2ϕ+1

ϕ which is q̈ f (kD1max) < 0,∀ϕ > 0. The maximum design factor

yields:

q f max =
1

4

1

ϕ2 +1
(5.24)

And kD2:

kD2max =

√
1

2ϕ(ϕ +1)
(5.25)
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For ϕ = 1, kD1max =
√

3/2 and the maximum design factor q f = 1/8 for kD2 =
1/2. It can be noted that the maximum design factor is half the value of the one

found for forward motion. Graphical results may be seen in Figure 5.4. It is shown

how the maximum design factors may be found in the value stated previously for

ϕ = 1.
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Fig. 5.4 Backward force design factor, ϕ = 1

5.4.3 Considering Forward and Backward Motion

In practical cases, both forward and backward motion are used. If the average force

including forward and backward motion are considered:

Ff b

πD2/4
=

τeq

2

[
min{(1− k2

D1

)
,ϕk2

D2}
(
k2

D1 − k2
D2

)
+
(
1− k2

D1

)
k2

D1

]
(5.26)

An alternative formulation yields:

Ff

πD2/4
= τeq

(
1− k2

D1

)
k2

D1 +
(
1− k2

D1

)(
k2

D1 − k2
D2

)
1− k2

D1 < ϕk2
D2

Ff

πD2/4
= τeq

(
1− k2

D1

)
k2

D1 +ϕk2
D2

(
k2

D1 − k2
D2

)
1− k2

D1 ≥ ϕk2
D2 (5.27)

A detailed analysis (similar to the developed for the backward motion, and ex-

cluded here) show that the maximum can be derived from (5.27), by differentiating

against kD1 and kD2 and equaling to zero. The following system of equations is ob-
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tained:

kD2 − kD1
1√
2

= 0 (5.28)

ϕk2
D2 −2k2

D1 = −1 (5.29)

Solving, the maximum is shown for:

kD1max =

√
2

4−ϕ
(5.30)

kD2max =

√
1

4−ϕ
(5.31)

Taking ϕ = 1, graphical results may be seen in Figure 5.5.
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Fig. 5.5 Forward-backward averaged force design factor, ϕ = 1

5.4.4 Stroke and Work

The stroke is given by l − 2l1 − l2. For the sake of simplicity, and without lost of

generalization, l1 can be considered equal to l1 = l2 = (D−D1)/2, since they cor-

respond to the wall thickness. The stroke is then l − 3l1 = l − (3/2)D(1− kD1) =
l (1−3η(1− kD1)). It will be maximized for η = 0, which is clearly not possible,

due to the fact that no force would be performed for such an aspect ratio. In this case,
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the force criterion would be dominant, while trying to obtain the smaller aspect ratio

η for stroke maximization purposes.

Similar conclusions can be extracted analyzing the work. The maximum forward

work per volume can be expressed as:

Wf

πlD2/4
= τeq

(
1− k2

D1

)
k2

D1 (1−3η(1− kD1)) (5.32)

As it has been highlighted for the stroke, the work is maximized for η = 0.

Concerning the dependance on kD1, the maximum volumetric work can be found

as the solution kD1 of the equation:

−2k3
D1(1−3η(1− kD1))+2(1− k2

D1)kD1(1−3η(1− kD1))
+3(1− k2

D1)k
2
D1η = 0 (5.33)

whose solution is omitted because of its length. For η = 0, it yields:

kD1max =
√

2

2
(5.34)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

2

2.5

3

0

0.05

0.1

0.15

0.2

0.25

k
D1

η

Fig. 5.6 Forward work design factor

Graphical results may be seen in Figure 5.6. It can be noted that only the forward

motion has been addressed. Similar effects to those observed with the force when

dealing with backward and averaged forward and backward motion appear also with

the work.
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5.5 Scalability

Regarding the scalability, the static behavior of hydraulic actuators does not have the

dependance on size-dependant numbers such as the Nusselt number (as happened

with electromagnetic actuators [2]). Hence, as long as the static behavior is con-

cerned the scalability criterion applies for the usual industrial range of dimensions.

5.6 Dimensional Analysis

The force provided by these actuators can be analyzed with dimensional analysis

using the Buckingham Pi Theorem [1]. The quantities involved are shown in the

Tables 5.1 and 5.2. The FL (force-length) system is used.

Table 5.1 Hydraulic actuator dimensional force analysis quantities

F Force [F ]
x Length [L]
σ Stress [FL−2]

Table 5.2 Hydraulic actuator dimensional work analysis quantities

W Work [FL]
x Length [L]
σ Stress [FL−2]

The results show that the maximum force can be expressed as:

F
x2

= Kσ (5.35)

where it can be observed that it matches perfectly with previous analytical results.

The results obtained for the work match with the previous results. The maximum

work given by dimensional analysis can be expressed as:

W
x3

= Kσ (5.36)

5.7 Industrial Actuators

The results obtained analytically are compared with industrial actuators in the

present section. Actuators from different manufacturers including Bosch Rexroth
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AG, Parker and Enerpac have been studied, taking into account their dimensions,

maximum allowed pressures, strokes, etc.

The comparison between the inner-output diameter ratio of the analyzed actua-

tors and the optimum extracted analytically from the equations show that the match-

ing is remarkable. It can be seen in Figure 5.7. It can be noted that the real actuator

data regression lies between the optimum for forward and backward motion. It is

placed very close to the forward motion optimum.

Fig. 5.7 Comparison between the input to output diameter ratio existing in industrial actuators and
the results of the present work

The force-cross section relationship analyzed in Section 5.4 has proven to apply

for the real actuators. In Figure 5.8 it can be noted that the real actuator performance

for different actuators is below the maximum threshold. The regression analysis of

each class of actuator shows that the relationship between the force and the cross-

section can be found as the considered operating pressure.

5.8 Dynamics

Although the proposed methodology focuses on the statical output mechanical quan-

tities, some considerations on actuator dynamics may be relevant for most applica-

tions. As it has been stated in Section 2.10, the dynamic behavior does not depend
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Fig. 5.8 Industrial hydraulic actuator force-area performance

only on the actuator but in the load attached to it and the controller governing the

overall system. The present section presents examples of some classical applications

employing the described hydraulic actuators.

The presented examples do not include any discussion on control issues. The dis-

cussion on control developed in Section 2.10.2 can be applied to this class actuators.

5.8.1 System Modeling

As it is sketched in Figure 5.1, x corresponds to the cylinder orifice aperture and it

can be controlled in order to control the actuator motion. For x=0 both orifices are

completely closed, when x¿0 the cylinder 1 is connected to the pressure supply Ps
allowing the flow to go into the chamber 1 and thus making the cylinder move from

1 to 2. In the other hand, when x < 0 the cylinder 2 is connected to Ps and the motion

is produced in the opposite direction.

The orifices expressions depend on the sign of x. If x > 0, they yield:

Q1 = Cori f xwori f

√
2(Ps −P1)

ρ1
(5.37)
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Q2 = −Cori f xwori f

√
2(P2 −Pr)

ρ2
(5.38)

where Cori f is the orifice discharge coefficient, wori f is the orifice width and ρi is the

density of the fluid in the chamber i.
If x < 0:

Q2 = −Cori f xwori f

√
2(Ps −P2)

ρ2
(5.39)

Q1 = Cori f xwori f

√
2(P1 −Pr)

ρ1
(5.40)

Although the changes are typically very small, the fluid density can be either

considered variable. The isothermal bulk modulus establishes the linkage between

pressure and density as

β = ρ0

∣∣∣∣∂P
∂ρ

∣∣∣∣
P0,T0

(5.41)

where ρ0 corresponds to the initial density with pressure P0 and temperature T0.

The cylinder displacement y implies a chamber expansion of the chamber con-

nected to the pressure Ps and a compression of the other chamber. Such expansion

and compression implies a small density variation of the fluid according to (5.41).

If it is considered that the fluid density is constant over the fluid and allowed

to change with time according to the bulk modulus expression, it is possible to

apply the conservation of mass principle in order to obtain the following mass flows

expressions:

ṁ1 = ρ1Aẏ (5.42)

ṁ2 = −ρ2Aẏ (5.43)

The corresponding volumetric flows yield:

Q1 = Aẏ (5.44)

Q2 = −Aẏ (5.45)

Although different loads can be considered as it has been shown in 2.10, the

following dynamics equation can be considered:

(P1 −P2)A = mLÿ(t)+bLẏ(t)+ kLy(t) (5.46)
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5.8.2 Open Loop Simulation

5.8.2.1 Simulation 1

The system has been evaluated in open loop applying a rectangular signal to the

orifice aperture x between -1 cm and 1 cm. A general scheme is shown in Figure 5.9.

The system has been simulated using the following parameters:

• Cori f = 0.6

• wori f = 10−2 m

• β = 109 Pa

• A = 5×10−4 m2

• Ps = 106 Pa

• Pr = 0 Pa

• ρ0 = 1000 Kg m−3

• mL = 0.1 Kg

• bL = 400 N s m−1

• kL = 10000 N m−1

Fig. 5.9 Simulated hydraulic actuator scheme

The system response is shown in Figures 5.10–5.13. Figure 5.10 shows the posi-

tion y evolution when changing the orifice aperture x. It can be noted that the tran-

sient is smooth without peaks due to the high damping of the system. In Figure 5.10

also the speed ẏ response is plotted. A detail of a position and speed transient is

illustrated in Figure 5.11, also showing the position-speed curve. The mass flow and

pressure responses are plotted in Figures 5.12 and 5.13.
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Fig. 5.10 Position and speed response of the hydraulic actuator to an open loop simulation. Simu-
lation 1
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Fig. 5.11 Transient of the position and speed response. Simulation 1

5.8.2.2 Simulation 2

Another simulation establishing a poorer damping has been performed, in order to

illustrate the importance of the load attached to the actuator. This second simulation

has been done with the following parameters:
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Fig. 5.12 Mass flow and pressure response of the hydraulic actuator to an open loop simulation.
Simulation 1



5.8 Dynamics 149

Fig. 5.13 Pressure-flow curve response of the hydraulic actuator to an open loop simulation. Sim-
ulation 1

• Cori f = 0.6

• wori f = 10−2 m

• β = 109 Pa

• A = 5×10−4 m2

• Ps = 106 Pa

• Pr = 0 Pa

• ρ0 = 1000 Kg m−3

• mL = 0.1 Kg

• bL = 10 N s m−1

• kL = 10000 N m−1

The system response is shown in Figures 5.14–5.17. Figure 5.14 shows the po-

sition y evolution when changing the orifice aperture x. It can be noted that the

transient is not smooth like in the previous example due to the poor damping of the

system. In Figure 5.14 also the speed ẏ response is plotted. The position and speed

transients are illustrated in Figure 5.15, where it can be noted how the steady-state

point is reached. The position-speed curve is also plotted in Figure 5.15. The mass

flow and pressure responses are plotted in Figures 5.16 and 5.17.
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Fig. 5.14 Position and speed response of the hydraulic actuator to an open loop simulation. Simu-
lation 2
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Fig. 5.15 Transient of the position and speed response. Simulation 2
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Fig. 5.16 Mass flow and pressure response of the hydraulic actuator to an open loop simulation.
Simulation 2
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Part III
Solid-State Actuators



Chapter 6
Design Principles for Linear, Axial Solid-State
Actuators

6.1 Complexity Levels in Modeling Solid-State Actuators

A complete description of the behavior of solid-state actuators requires a multi-

field approach, which involves full coupling with the non-mechanical field quan-

tities (of electrical or thermal nature, for instance). Powerful simulation tools like

COMSOL� allow for such an accurate multi-field analysis for an actuator device

of given geometry and material distribution. The complexity (and accurateness) of

a multi-field approach depend on the number of feedback loops which are consid-

ered in the analysis. In the case of a shape memory actuator (SMA) heated by Joule

effect, for instance, the activation can be modeled by prescribing the temperature

in the SMA-element, the heating power, the electrical current or the electrical ten-

sion. Even in the latter case, which includes the full thermo-mechanical modeling

of the SMA actuator as well as the modeling of its electrical resistance as a func-

tion of temperature and transformation state, the analysis is still incomplete since it

neglects the coupling with the supply circuitry and the control system. The simplest

modeling option in this sense is the direct prescription of a given induced strain. The

only feedback which is considered by this option is the mechanical one, which con-

verts the imposed induced strain into the actual strain by means of the stress-strain

relationship of the active material. This option is often denoted as “thermal anal-

ogy”, since it is equivalent to the prescription of a temperature change in a material

subject to thermal expansion (with anisotropic thermal expansion properties in or-

der to allow for generating a non-hydrostatic strain state). Usually, the stress-strain

relationship of the active material is linearized, which is consequent with the super-

position principle implicit in the prescribed induced strain approach (actual strain =

induced strain + elastic strain).

157
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6.2 Limits and Advantages of a Linear Theory of Solid-State
Actuation Based on Prescribed Induced Strain

Despite of its simplicity, the prescribed induced strain approach catches the rele-

vant aspects of solid-state actuation in most practical cases with an accuracy level

which is adequate for preliminary design and optimization purposes. The theories

and design rules presented in the following are based on this approach. Extensions to

higher levels of complexity are beyond the scopes of this book. The reader interested

in the fascinating topic of multi-field based constitutive models of active materials

will find plenty of details in specialised publications and textbooks, e.g. [3, 8]. Al-

though simple and of limited validity, the prescribed induced strain approach is of

high practical relevance, for the same reason for which the preliminary design of a

steel bridge can be brought to a quite advanced level without requiring a microme-

chanical analysis of the employed steel. Thousands of text books on mechanical

design de facto reduce the high complexity of the behavior of construction steel

to two essential scalar parameters: the elasticity modulus and the allowable stress.

This approach just extends this claim to the class of active materials by adding the

maximum induced strain to the list of essential material parameters. As mentioned

above, the induced strain approach allows for a simple analysis of the actuator per-

formance as a function of its geometry and size. It additionally provides very useful

material-related quantities like the volume related and the weight related energy

density. It also essentially simplifies the treatment of hybrid actuators (consisting of

a passive linear elastic component and a solid-state actuator) by introducing equiva-

lent material-related quantities. In the following, special focus is given to solid-state

actuators interfaced with a linear elastic system, since this is the common case for

smart structures applications. Other kind of external loads (e.g. a constant force)

will be treated in a short fashion for the sake of completeness.

The theory of single-stroke linear solid-state actuators, which is treated in Chap-

ter 6.3, can be applied to virtually any solid-state actuator behaving linearly (as

far as the stress-strain relationship is concerned) and whose interaction with the

host mechanical system can be essentially reduced to a self-equilibrated couple of

concentrated forces. Typical examples are piezoelectric stack actuators and Shape

Memory Wires directly interfaced with a structural system at their ends. Integrated

actuators like glued piezoelectric patches, surface-bonded Shape Memory thin films

and embedded wires can be treated as well, in many cases, as single-stroke actua-

tors since the most part of the load transfer with the host structure is localized near

the ends. The models and relationships presented for hybrid actuators can be typi-

cally applied to pre-stressed piezoceramic stacks as well as to a large range of linear

actuators consisting of active and passive components.
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6.3 Theory of Single-Stroke Linear Solid-State Actuators

6.3.1 Definitions and Symbols

As mentioned before, a single-stroke actuator interfaces with its mechanical en-

vironment (or host mechanical system) through two scalar variables, the actuator

force and the actuator stroke. The actuator force F has the nature of an internal ax-

ial reaction or a zero moment couple. It is defined as positive if the actuator exerts

a tension load on the host system (i.e. if it is subjected to compression loading by

external forces). The actuator stroke u is the relative displacement of the actuator’s

end points and is positive if their relative distance increases (see Figure 6.1).1

Fig. 6.1 Actuator force and stroke

Mathematically, the actuator can be described by a parametric relationship be-

tween force and stroke:

f (F,u,α) = 0 (6.1)

The parameter α represents the actuator input quantity – usually of non-mechanical

nature 2 – which allows controlling the actuator by modifying the force which the

actuator makes available for a given stroke or, conversely, the stroke provided by the

actuator for a given force.

1 In the following, we will apply the word stroke also to passive mechanical components to denote,
in general, a positive or negative elongation, i.e. the change of the distance between two points. The
word force will be used, as a rule, in the sense of an internal axial reaction (tension or compression).
2 In the case of a piezoceramic actuator, this can be the voltage applied to the electrodes; for a
shape-memory wire, the wire temperature or the electrical current in the wire are possible choices
for the input quantity.
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In a solid-state actuator the relationship between actuator force and stroke is sub-

stantially ruled by the passive mechanical behavior of the actuator material (stress-

strain relationship). In order to give this fact proper relevance, we can specify Equa-

tion 6.1 as

h(F,u,Xi (α)) = 0 (6.2)

where Xi represents a quantity of mechanical nature (displacement or force) which is

induced by the input quantity α . The function h is directly related to the mechanical

behavior of the actuator material. For a solid-state actuator with a linear mechanical

behavior Equation 6.2 can be further specified as

F + ku−Fi (α) = 0 (6.3)

with Fi(α) as induced force, or

F + k [u−ui (α)] = 0 (6.4)

with ui(α) as induced stroke.

Most solid-state actuators are strain-inducing, i.e. activation primarily results in

material strain; stresses – and, consequently, forces – are produced only secondarily,

if the active strain is somehow constrained. In those cases, the second formulation is

physically more appropriate. From a strictly formal point of view, however, both for-

mulations are equivalent 3, since the induced stroke ui can always be converted into

an induced force of value kui. Nevertheless, the induced-force representation (6.3),

is often preferred, since it is customary to prescribe forces rather than displacements

while analyzing mechanical systems. If the actuator stiffness k vanishes, Equation

6.3, becomes:

F = Fi(α) (6.5)

which represents an ideal force generator, i.e. an actuator providing a constant force,

defined by the value of the input variable independently of the actuator stroke. On

the other hand, if the stiffness of an induced-stroke actuator tends to infinity, the

actuator degenerates into an ideal stroke generator:

u = ui(α) (6.6)

i.e. an actuator which is able to supply a constant stroke independently of the actu-

ator force. Finally, by setting the induced quantities to zero, both Equations 6.3 and

6.4 turn into

F + ku = 0 (6.7)

3 This equivalence holds only as long as the mere relationship between actuator force and stroke
is considered. If the internal loading of the actuator material is of concern, the application of the
induced-force representation to a strain-inducing solid-state actuator can be misleading. If such
an actuator, for instance, is operated without external load (F = 0,u = ui), the active material is
stress-free. By regarding it as a spring of stiffness k loaded by the induced force Fi (according to
(6.3)), however, the solid-state actuator is subject to a tension or compression loading (depending
on the sign of the induced stroke) equal to Fi.
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which describes a linear elastic spring.

We will assign to these special cases the symbols represented in Figure 6.2. The

symbols used for the ideal generators recall the graph of their respective character-

istic curve in the Fu-plane.

Fig. 6.2 Symbols for (a) ideal force generator , (b) ideal stroke generator and (c) linear elastic
spring

These symbols will be used in the following to graphically represent active me-

chanical systems in a similar way used by the theory of electrical circuits. In this

analogy, forces replace electric currents and strokes correspond to electric voltages

(forces “flow” through components and strokes are measured between terminals).

Wires and nodes will be used to build circuits out of the above mentioned compo-

nents: wires transfer forces unchanged in value and have zero stroke, while nodes

connect three or more terminals. The node law which translates the equilibrium con-

ditions requires the sum of all forces “flowing” into a node to be zero. The loop law
results from compatibility considerations and states that the sum of all strokes of the

components building a closed loop must vanish.

In this form, the electric analogy only applies to mechanical systems in which

the involved quantities (forces and strokes) can be treated as scalars (like electric

voltages and currents in the theory of circuits). This requires all mechanical com-

ponents to be arranged axially, co-axially or in an equivalent fashion (forces and

displacements at terminals must have the same spatial direction).

The small triangle near the top of each symbol allows distinguishing positive

and negative forces in the graph: a compression (positive) force is represented by a

current flowing toward the triangle, whereas a tension (negative) force “flows” in the

opposite direction (from the triangle towards the other terminal). A positive stroke

(elongation) is represented by a positive voltage measured from the terminal with

the triangle to the other one, while a negative voltage represents a negative stroke

(shortening). According to this convention, the circuits of Figure 6.3, which look

similar, represent two different mechanical systems (see Figure 6.4).

Further, we will introduce symbols for ideal stroke and force sensors, to pro-

vide the graphs with the corresponding indications (see Figure 6.5(a)). The attribute

“ideal” refers to the fact that the force in the stroke sensor as well as the stroke of
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Fig. 6.3 Circuits representing (a) a serial arrangement of an ideal stroke generator and a spring
between two rigid walls and (b) a parallel arrangement of the same two components, with one end
fixed

Fig. 6.4 Drawings of the mechanical systems of Figure 6.3, in the same order, (a) a serial ar-
rangement of an ideal stroke generator and a spring between two rigid walls and (b) a parallel
arrangement of the same two components, with one end fixed

the force sensor is assumed to be zero. The sensors work like a voltmeter and an

ammeter, respectively and are provided with a plus mark to relate the sign of the

measured quantity to the displayed value (if, for instance, the force “flows” towards

the plus sign, the sensor outputs a positive value. In the case of Figure 6.5(a) the

stroke and force sensors are expected to provide values of opposite signs. Stroke
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and force sensors can be integrated into the symbols of ideal generators as shown in

Figures 6.5(b) and 6.5(c). In such cases the plus mark is omitted with the convention

that the measurement direction conforms with the positive direction of the force or

stroke generation as identified by the triangle in the generator symbol. If necessary,

the spring symbol can be completed by the indication of the stiffness value (see

Figure 6.8 as an example).

Fig. 6.5 Spring element with (a) stroke and force indications, (b) ideal stroke and (c) force gener-
ators with integrated sensors

Fig. 6.6 Circuits representing (a) an induced-force actuator and (b) an induced-stroke actuator
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Fig. 6.7 Symbol for an induced-stroke actuator

The induced-force actuator as described by Equation 6.3 can be obtained by ar-

ranging an ideal stroke generator and a spring in parallel, while the induced-stroke

actuator (6.4) results by a serial arrangement of an ideal stroke generator and a

spring (see Figure 6.6). Since, as mentioned before, an induced-force actuator can

always be converted into an induced-stroke actuator, we will only consider induced-

stroke actuators in the following. To render the graphic representation more com-

pact, we will mostly replace the sub-graph of Figure 6.6(b) by the symbol of Fig-

ure 6.7.

6.3.2 Free Stroke and Blocking Force

The induced stroke ui of an induced-stroke actuator can be unequivocally deter-

mined by choosing the value of the input variable α . The actual value of the actuator

stroke, however, as well as the value of the actuator force, depends on the load, i.e.

on the rest of the circuit in which the actuator is inserted. The stroke produced by the

actuator in an open-loop configuration (see Figure 6.8(a)) is denoted as free stroke
and is equal to the induced stroke: since no force is present in an open-loop circuit,

the stroke of the spring element is zero and the overall stroke is equal to the stroke

of the ideal stroke generator. If, conversely, the actuator is shorted (Figure 6.8(b)),

its stroke vanishes and its force amounts to

Fb = kui (6.8)

which is known as the actuator’s blocking force. The limit cases of free and blocked

actuator define the ranges of stroke and force which can be made available by the

actuator for the considered value of induced stroke, provided that the actuator is

interfaced with a passive mechanical system without pre-stress or pre-strain 4. In

presence of pre-stress or when other active elements are included in the host system,

forces beyond the boundaries of the interval [0,Fb] as well as strokes outside the

interval [0,Ui] are possible.

4 Since a pre-strain state can be represented by an equivalent pre-stress state (see also 6.3.6) we
will not distinguish, in the following, between the two conditions. For the sake of brevity, the term
pre-stress will mostly be used to denote any of the two states.
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Fig. 6.8 Actuator (a) in open-loop configuration and (b) in shorted configuration

6.3.3 Actuator Coupled with a Linear Elastic Structure

The graph of Figure 6.9 represents the case of an actuator interfaced with a linear

elastic structure. The actuator’s characteristic (4) is represented, in the Fu-plane,

by a straight line as shown in Figure 6.10(a). Figure 6.10(b) shows the graph of

Equation 6.7, which provides the characteristic of the linear spring. Since, however,

the forces in the two elements have different signs (according to the node rule the

sum of the actuator force and of the spring force must be zero), one of the curves

has to be mirrored with respect to the u-axis in order to be plotted on the same plane

of the other one. If the plane of the actuator force and stroke is chosen (actuator

force: F; spring force: -F), both curves are represented as in Figure 6.10(c). The

intersection point supplies the values of the actual actuator force and stroke and lies

somewhere between the free-stroke and the blocking condition. The slopes of the

curves correspond to the respective values of the stiffness. The higher the stiffness

ratio is (structure’s stiffness ks over actuator’s stiffness ka), the closer the point of

intersection will be to the blocking condition; the lower the ratio, the closer it will

come to the free-stroke condition (see Figure 6.11).

The actual values for force and stroke are computed by simultaneously solving

the equations

F + ka (u−ui) = 0 (6.9)

F = ksu (6.10)

Equation 6.9 corresponds to (6.4) and Equation 6.10 is obtained by (6.7) while tak-

ing into account the above mentioned change in sign for the force. It results:
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Fig. 6.9 Actuator coupled with a linear elastic structure

Fig. 6.10 Characteristic curves of (a) an actuator and (b) of a linear spring in the respective Fu-
planes. (c) Interaction of both curves in the same Fu-plane (F=actuator force)

Fig. 6.11 Interaction of the characteristic curves of actuator and structure (a) for ks � ka and (b)
for ks � ka
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u =
ka

ks + ka
ui (6.11)

F =
kska

ks + ka
ui (6.12)

6.3.4 Activation Boundary

The above reported considerations about free stroke, blocking force and coupling

with a linear elastic structure can be repeated for each single value of the induced

stroke, while a change in the induced stroke corresponds to a translation of the

actuator’s characteristic (see Figure 6.12(a)) in the Fu-plane. The minimum and

maximum allowed value of the induced stroke identify the activation boundary of

the actuator. In general, and without considering other restrictions, every point of the

(infinitely long) strip delimited by the activation boundary can be reached by proper

loading. If only coupling with passive structures without pre-stress is considered,

however (like in the case of Figure 6.9) the operation domain of the actuator restrict

to the regions in the first and third quadrant (Figure 6.12(b)).

Fig. 6.12 (a) Actuator characteristic curves for different values of the induced strain. (b) Activation
boundary. The shaded area represents the operation domain of the actuator when coupled with a
passive structure without pre-stress
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6.3.5 Strength Boundary

Besides the activation boundary, the actuator force and/or stroke can be limited by

strength or stability consideration . For instance, a piezoelectric stack actuator can-

not be significantly loaded in tension (see Figure 6.13 a), and a thin wire actuator

(e.g. SMA wire) is not able to produce significant positive force (compression load).

Together with the activation boundary, the strength boundary defines the operation

domain of the actuator (Figure 6.13).

Fig. 6.13 (a) Typical strength boundary of a piezoelectric stack actuator. (b) Operation domain
(shaded area) as defined by the strength and the activation boundaries

6.3.6 Stroke Work

The product of the actuator’s blocking force and his free stroke (or induced stroke)

Wn = Fbui (6.13)

has the dimension of energy and will be denoted as nominal stroke work in the

following. This quantity is related to the amount of work which can be performed by

the actuator under particular conditions. Let us now consider the case of an actuator

with an induced stroke ranging from 0 to a given value ui and which is coupled with

a passive structure without pre-stress. As already mentioned, in this case the actuator

can only operate within a triangular domain of the Fu-plane. We will also assume
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that the strength boundaries are passive, i.e. external to such triangular domain and

therefore do not affect the actuator’s operation domain. While the induced stroke is

increased from zero to ui, the point on the plane which is identified by the actuator

force and stroke will move on the characteristic curve of the host structure. The

mechanical work performed by the actuator (effective stroke work) will then be given

by the portion of the actuator’s operation domain which is below the structure’s

characteristic curve (see Figure 6.14(a)). It is evident that the area of the activation

domain
1

2
Wn = Fbui = kau2

i (6.14)

represents the maximum possible amount of work which can be performed by the

actuator (in a single activation process from zero to the given value of induced strain)

under the given conditions. If the host structure has a linear characteristic (see Fig-

ure 6.14(b)), the effective stroke work will be given by the area of a triangular re-

gion:

W =
1

2
Fu (6.15)

with F and u as the actual values of the actuator force and stroke when the induced

stroke reaches the value ui. For a given solid-state actuator and a given value of the

induced strain, the effective stroke work depends on the stiffness of the host struc-

ture. In particular, if the stiffness of the host structure vanishes, the effective stroke

work vanishes as well (the actuator works under free stroke condition, which implies

F = 0). For k2 → ∞ (blocked actuator), the stroke work is, again, zero (vanishing

actuator stroke). Between these limit cases it holds W > 0 and a maximum must

therefore exist. By inserting the expressions (6.11) and (6.12) into (6.15) we obtain

u =
1

2

ksk2
a

(ks + ka)2
u2

i (6.16)

and the maximum is identified by the condition

dW
dks

= 0 ⇒ d
dks

(
ks

(ks + ka)
2

)
⇒ (ks + ka)

2 = 2ks (ks + ka) (6.17)

which yields

ks = ka (6.18)

Hence, the actuator effective stroke work reaches its maximum value in the case in

which the stiffness of the host structure matches the actuator’s stiffness. By inserting

(6.18) into (6.11) and (6.12), respectively, we obtain

u =
ui

2
(6.19)

F = ka
ui

2
= Fb2 (6.20)
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i.e. when the condition (6.18) is verified, the actuator force produced for a given

value of the induced stroke amounts to the half of the corresponding blocking force,

and the actuator stroke is the half of the free stroke. The maximum effective stroke

work amounts to

Wmax =
1

2

Fb

2

ui

2
=

1

8
Wn (6.21)

From Figures 6.14(a) and (b) it is evident that by loading a solid-state actuator in a

nonlinear fashion its work output can be increased by up to a factor four. Lesieutre

et al. [5] studied a special device to be interfaced with a piezoceramic actuator in

order to attain this purpose. The condition (6.18) (stiffness matching condition) is

of basilar importance for the design of solid state actuators. We summarize it:

The maximum effective stroke work of a linear solid-state actuator:

• which works against the stiffness of a linear passive structure

• without pre-stress

• and with passive strength boundaries

amounts to one eighth of the nominal stroke work.

This result can also be applied in presence of active strength boundaries, if they

do not intersect the stiffness matching path (see Figure 6.14(b)). If strength bound-

ary and stiffness matching path intersect, the maximum effective stroke work is

lower. For the case represented in Figure 6.14(c), in which the strength boundary is

a simple force limit (independent of the actuator stroke):

F ≤ Flim (6.22)

the maximum effective stroke work amounts in this case to

Wmax =
1

2
Flimui

(
1− Flim

Fb

)
(6.23)

In the case in which the strength limit force is very low with respect to the block-

ing force:

Flim � Fb (6.24)

it holds

Wmax � 1

2
Flimui (6.25)

The condition (6.24) is typical for active materials with high active strain, like

Shape Memory Alloys (SMA).

The considered case of an actuator working against a linear stiffness without

pre-stress covers only a part of the conceivable application scenarios. The reader

could ask, for instance, which is the maximum work output of an actuator work-

ing against a constant load (like in the case in which the actuator is used to lift a

weight) or against a load with a constant and a stroke-proportional component (like

in the case in which a pre-stress is, indeed, present or when the actuator interfaces

with a structural system on which an external constant load acts). We will see that

under these load conditions the maximum effective work output is not defined: if
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no strength boundary is taken into account, the work output of a solid-state actuator

can be arbitrarily high5.

Fig. 6.14 (a) Mechanical work performed by the actuator while interfaced with a passive struc-
ture without pre-stress. (b) Work produced against linear structures of different stiffness; stiffness
matching condition (thick line, dark shaded area)

The graphs of the above mentioned loading configurations are reported in Fig-

ure 6.16. Please note that the cases represented in Figure 6.16(b) and (c) (pre-strain

and pre-stress) can be made equivalent by choosing a proper relationship between

the generated force, the generated stroke and the spring constant:

Fp = ksup (6.26)

Let us consider the case of Figure 6.16(a) first. Due to the node law, the actuator

force is kept constant by the force generator, independently of the induced stroke:

F = Fp (6.27)

By increasing the induced stroke from zero to the value ui, the actuator performs the

work

W = Fpui (6.28)

5 The above reported analysis of the work output of a solid-state actuator interfaced with a passive
linear structure without pre-stress is a standard content of the literature dealing with solid-state
actuation (e.g. [4]). Interestingly, in the cited contributions the other loading scenarios are – despite
of their relevance – not discussed at all.
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Fig. 6.15 Maximum effective stroke work against a linear structure without pre-stress while con-
sidering the strength boundaries: (a) Passive strength boundary, (b) active strength boundary, with-
out intersection with the stiffness matching path and (c) active strength boundary intersecting the
stiffness matching path

Fig. 6.16 Graphs of (a) an actuator working against a constant load, (b) coupled with a structure
with pre-strain and (c) coupled with a structure with pre-stress or loaded by an external constant
force

represented by the shaded area in Figure 6.17(a). In the case of Figure 6.6(b), the

loop law requires

u+up = us (6.29)

while the values of the actuator and the structure strokes are related to the force in

the circuit by the respective characteristics:
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F + ka(u−ui) = 0 (6.30)

−F + ksus = 0 (6.31)

Solving the system (6.29)–(6.31) for F and u gives

u =
ui − ks

ka
up

1+ ks
ka

; F =
ks

1+ ks
ka

(
ui +up

)
(6.32)

and the stroke work – represented by the shaded area in Figure 6.17(b) – reads

W =
∫ ui

0
F (ūi)du =

∫ ui

0
F (ūi)

du
dui

dūi =
1

1+ ks
ka

∫ ui

0
F (ūi)dūi (6.33)

W =
ksui(

1+ ks
ka

)2

(
up +

ui

2

)
(6.34)

As mentioned before, the pre-stress case (Figure 6.16(c)) is equivalent to the

above treated pre-strain case. It is evident from the graph of Figure 6.17 that under

the considered conditions no inherent limit to the actuator’s stroke work exists. The

amount of work performed by the actuator can be indefinitely increased by increas-

ing the external load (force or pre-strain).

Fig. 6.17 Mechanical work performed by the actuator (a) against a constant load and (b) against a
structure with pre-strain
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6.3.7 Hybrid Actuators

A linear solid-state actuator can be combined with passive components in such a

way that the resulting system can be treated as a new linear solid-state actuator with

modified properties. This requires:

• the new system to interface with the mechanical environment through a single

force and a single stroke as defined in Section 6.3.1;

• the passive component to be linear elastic.

We will now examine the most common hybrid configurations and derive the

characteristic of the hybrid actuator (identified by its free stroke and blocking force)

as a function of the characteristic of the original actuator as well as of the passive

component’s stiffness. Due to the system’s linearity, it will suffice to determine the

behavior of the hybrid actuator in the two characteristic loading states (open loop

and shorted). A simple serial arrangement is typically used to take into account

the finite stiffness of attachment parts as well as of mechanically passive, functional

components in stacked configurations (e.g. electrodes and insulation layers in piezo-

ceramic stack actuators). In the open-loop loading case (Figure 6.18(a)), the force

in all components is zero. It results that the solid-state actuator keeps its free stroke

in the hybrid configuration:

ûi = ui (6.35)

In the shorted case, the stroke of the original actuator and the one of the spring kh
are equal in absolute value and opposite in sign. The force in both components is

equal to the blocking force of the hybrid actuator F̂b. It holds

F̂b = khu (6.36)

F̂b = −ka(u−ui) (6.37)

Eliminating u following relationship is obtained from (6.36 ) and (6.37):

F̂b = −ka(
F̂b

kh
−ui) (6.38)

F̂b =
khka

kh + ka
ui (6.39)

and with (6.8)

F̂b =
kh

kh + ka
Fb (6.40)

which shows that the blocking force of the hybrid actuator is reduced by the fac-

tor kh/(ka +kg) with respect to the blocking force of the original actuator. In the case

of passive strength boundaries, the stroke work (nominal or effective) is reduced by

the same factor. If the strength boundaries are active and remain active after the

reduction of the blocking force, the maximum stroke work remains unchanged.
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Fig. 6.18 Hybrid actuator in simple serial arrangement, (a) open-loop and (b) shorted

A parallel arrangement (Figure 6.19) is usually employed to protect the solid-

state actuator from improper loading. In most cases it is used to apply pre-strain or

pre-stress: a typical case is represented by pre-compressed stack actuators in order

to enable a tension loading of the hybrid actuator while keeping the stack actuator

under a compression state.

In the shorted case (Figure 6.19(b)) all stroke values are zero. It follows that the

actuator keeps its blocking force in a parallel configuration:

F̂b = Fb (6.41)

Conversely, the actuator’s free stroke is reduced. From the open-loop graph (Fig-

ure 6.19(a)) it results that the forces in the original solid-state actuator and in the

spring are equal in absolute value and opposite in sign. It holds

F = khûi (6.42)

F = −ka(ûi −ui) (6.43)

Elimination of F yields

ûi =
ka

kh + ka
ui (6.44)
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which provides a reduction factor of ka/(ka + kh) for the actuator’s free stroke

and, as a consequence, for the stroke work.

Fig. 6.19 Hybrid actuator in simple parallel arrangement, (a) open-loop and (b) shorted

Another relevant hybrid arrangement is represented by the combination of a

solid-state actuator and a leverage system. Only ideal leverage systems need to be

considered, since real ones (with mechanical efficiency lower than unity) can be

represented by adding serial and/or parallel springs (see below). While combining

a solid-state actuator with an ideal leverage system, the actuator’s free stroke is in-

creased by the stroke amplification factor and the blocking force is reduced by the

same factor. The actuator’s stroke work remains unchanged.

All configurations (serial and parallel) can be combined together. A relevant case

of combined hybrid configuration is represented by solid state actuators integrated

into compliant mechanisms for stroke amplification and conversion (see Section

6.4.4). The compliant nature of the mechanism causes some losses of energy in

both loading cases, which calls for a serial and a parallel arrangement of springs

(Figure 6.20). Please take note that no additional symbol for the leverage system

was introduced in the graph; the actuator’s output quantities have been properly

adjusted instead.

6.4 Design Principles and Rules

6.4.1 Actuator Performance as a Function of Geometry

While studying the relationship between the actuator performance quantities and

its geometrical dimensions, we will refer to the case of a homogeneous body of
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Fig. 6.20 Graph of a solid-state actuator integrated into a compliant mechanism

active material which experiences a constant strain in a given spatial direction (axial
direction). Strain components in other directions can be also present, but they are

generally not used. All the examined performance properties (free stroke, blocking

force and stroke work) will be then a function of the actuator’s geometry, of material

properties (modulus of elasticity and maximum allowable stress) as well as of the

above mentioned strain (induced strain). In most cases, solid-state actuators are of

prismatic shape, with the prism’s axis corresponding to the direction of the active

strain. Then, if l is the actuator dimension in axial direction (actuator length) and A

the area of the cross-section normal to it, it can be stated:

Elimination of F yields

ui = εil (6.45)

Fb =
AE
l

ui = AEεi (6.46)

with εi as the induced strain. Equation 6.46 is obtained by (6.8) and by the expres-

sion of the axial stiffness of a prismatic bar

k =
AE
l

(6.47)

An important consequence of the laws (6.45) and (6.46) is that the nominal stroke

work (see (6.13)) for a given induced strain value is directly proportional to the
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actuator’s volume:

Wn = Fbui = AlEε2
i = V Eε2

i (6.48)

The proportionality constant

wn = Eε2
i (6.49)

will be denoted as nominal volume-specific stroke work in the following. If the maxi-

mum allowable induced strain for the used material is considered in (6.49), the nom-

inal volume-specific stroke work is a mere material constant and is called nominal
energy density for the given active material.

In this case, and for the above examined case of an actuator working against a

linear stiffness without pre-stress and with passive strength boundaries (or strength

boundaries which do not intersect the stiffness matching path) the maximum effec-

tive stroke work reads

Wmax =
1

8
Wn =

1

8
wnV (6.50)

with

Wmax =
1

8
wn =

1

8
Eε2

i (6.51)

as the effective energy density of the active material.

A special case of practical relevance is the already examined case of a strength-

related force boundary (see Figure 6.14(c)) in which the boundary results from the

allowable axial stress of the material. In this case Equations 6.23 and 6.25 read

respectively

Wmax =
1

2
σlimεi

(
1− σlim

Eεi

)
V (6.52)

Wmax � 1

2
σlimεiV (6.53)

so that the maximum effective stroke work can be, again, expressed as the product

of a material constant and the actuator’s volume.

The design relevance of the results (6.50) and (6.52)–(6.53) is given by the fact

that if the mechanical work to be produced by the actuator is known, the minimum

amount (volume) of active material needed for actuation is definite independently

of the actuator geometry.

If the actuator’s cross-section varies along the length, the above discussed re-

lationships need to be adapted. If a class of actuators is considered in which the

cross-section area varies with a given law

A = Arefγ (ξ ) (6.54)

with ξ as a dimensionless length coordinate ranging from 0 to 1, the key findings

of this section keep their validity after correction with a factor depending from the

function γ (ξ ).
Finally, some special cases of hybrid configurations should be considered here.

The first one is the case of a serial prismatic arrangement of an active and a passive
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material with overall lengths

la = η l (6.55)

lh = (1−η)l (6.56)

and with Young’s modulus Ea and Ea, respectively. The hybrid actuator has the

cross-section area A. It does not matter, in this context, whether the materials are

arranged in two separate blocks or in a larger number of alternate layers. The latter

option is the more common in practice (stacked actuators).

From (6.45) and (6.55) the actuator’s free stroke can be computed as

ui = εiη l (6.57)

which can be reported back to (6.45) by introducing the equivalent active strain

ε̂i = εiη (6.58)

The blocking force can be computed from (6.40) and (6.47) as

F̂b =
ηEhEa

(1−η)Ea +ηEh
Aεi =

EhEa

(1−η)Ea +ηEh
Aε̂i (6.59)

which leads to the equivalent modulus of elasticity or

Ê =
EhEa

(1−η)Ea +ηEh
(6.60)

The equivalent specific stroke work is then

Ê ε̂2
i =

ηEh

(1−η)Ea +ηEh
Eaε2

i (6.61)

By using the equivalent values for the elasticity modulus and the induced strain

in (6.48), (6.49), (6.51), (6.52) and (6.53) the results of this section can be directly

applied to the hybrid actuator of the described kind. In (6.52) and (6.53) the lowest

of the two limit stresses is to be used.

The second case concerns a parallel arrangement of prismatic passive and active

elements of the same length . The overall cross-section areas of the active and of the

passive elements are

Aa = ηA (6.62)

Ah = (1−η)A (6.63)

respectively. According to (6.44), (6.45) and (6.47) it reads

ûi =
ηEa

(1−η)Eh +ηEa
εil (6.64)

which leads to the induced strain
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ε̂i =
ηEa

(1−η)Eh +ηEa
εi (6.65)

while from (6.46) and (6.62) -(6.63) the equivalent modulus results

Ê = ηEa +(1−η)Eh (6.66)

The equivalent specific stroke work is in this case

Ê ε̂2
i =

η2Ea

(1−η)Eh +ηEa
Eaε2

i (6.67)

While using (6.52) and (6.53) an equivalent limit stress has to be used as well. If

the hybrid actuator produces no external force (open loop, see Figure 6.19(b)) the

force in the active element is, according to (6.42) and (6.44)

Fa1 = kh
ka

kh + ka
ui (6.68)

If the actuator is loaded by an external force F , an additional force Fa2 acts on

the active element while the passive element is loaded by a force equal to F −Fas.

Since the stroke has to remain the same in both elements, it holds

Fa2

EaAa
=

F −Fa2

EhAh
(6.69)

Fa2 =
EaAa

EaAa +EhAh
F (6.70)

By adding both forces and with (6.47) the relationship between actuator force of

the hybrid actuator and force in the active element is obtained

F =
EhAh +EaAa

EaAa
Fa −EhAhεi (6.71)

and from this the expression of the equivalent limit stress

σ̂lim =
(

Eh

Ea
(1−η)+η

)
σlim −Eh (1−η)εi (6.72)

Finally, in the case of an actuator equipped with a ideal leverage system of stroke

amplification factor λ , the expressions for stroke and force are modified as

ui = λεil (6.73)

Fb =
1

λ
AEεi (6.74)

and the corresponding equivalent material parameters are
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ε̂i = λεi (6.75)

Ê =
E
λ 2

(6.76)

6.4.2 The Stiffness-Matching Paradigm

In the last section it was stated that the mechanical work to be produced by an actua-

tor against a linear stiffness and without pre-stress determines the minimum volume

of the actuator. Its actual volume, however, can be much higher than this minimum

threshold if the actuator geometry is not properly chosen. The design criterion is

in this case the stiffness matching principle: the actuator is to be designed such to

match the stiffness of the host structure to minimize its volume for a given amount

of mechanical work. If the actuator is much weaker than the host structure, it must

be designed for a very high free stroke in order to reach the required stroke under

load. This results in a very long actuator; conversely, an actuator which would be

much stiffer than the structure would need a very large cross section area to de-

velop enough force when loaded. In both cases, the actuator works inefficiently, i.e.

a much larger amount of active material is required as compared to the stiffness

matching case. While discussing this principle in the following, we will explicitly

refer to the case of a prismatic actuator without strength limits; extensions to actu-

ators of other shapes and with active strength boundaries can be made according to

what explained in the previous section.

Figure 6.21(a) shows a given characteristic of the host structure (solid line) and a

point on it, which is to be reached by the actuator to be designed. An infinite number

of actuators (dashed lines) made of a given active material (i.e. with given values

of the maximum induced strain εi and of the Young’s modulus E) are conceivable

which, when loaded by coupling them with the structure, would provide the required

values of force and stroke (given by the coordinates of the point in the figure). All

the actuators differ in their values of the blocking force and free stroke, and con-

sequently in their length and cross-section area. From (6.30), (6.45) and (6.46) the

relationship between actuator’s length and cross-section area is obtained

A = −F
E

l
(u− εil)

(6.77)

with u and F as given values of the actuator’s stroke and force to be reached.

While taking the actuator’s length as the design variable, the volume of the actuator

can be expressed as

V = −F
E

l2

(u− εil)
(6.78)

By minimizing the volume as a function of the actuator length the value
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lopt =
2u
εi

(6.79)

is obtained, and from (6.77)

Aopt =
2F
Eεi

(6.80)

which corresponds to the stiffness matching condition (Figure 6.21(b)), in which

the actual actuator stroke amounts to half of the free stroke and the actual force to

half of the blocking force.

It is clear from the derivation of (6.79)–(6.80) that this result can be extended

also to the case in which the actuator does not work against a linear stiffness, but

is in general required to reach given values of stroke and force when loaded (see

Figure 6.21(c)). In this case the term “stiffness matching” refers to an imaginary

linear structure whose characteristic crosses the given work point.

For l → ∞ the cross-section area tends to F/E. In this limit case (horizontal

line in Figure 6.21(a)) the actuator works under blocking condition. Conversely, for

l → u/εi (free stroke condition, vertical line) the actuator cross-section area tends

to infinity. The practical relevance of these limit cases is that actuators working

near their blocking or free-stroke condition are quite ineffective and tend to be very

voluminous as compared to the optimal case.

Fig. 6.21 (a) Host structure characteristic with working point and characteristics of actuators pro-
viding the required output quantities. (b) Characteristic of the optimal actuator according to the
stiffness matching principle. (c) Extension to the case of a general load
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6.4.3 Design of Hybrid Actuators

Most actuators are built in hybrid configuration. Piezoelectric stack actuators, pre-

stressed actuators as well as actuators integrated in a compliant mechanism for

stroke amplification and/or conversion are among the most common configurations.

Design for minimum volume as introduced in the previous chapter can be ex-

tended to hybrid configurations by referring to the equivalent material parameter

introduced in Section 6.3.7. For instance, an actuator in parallel design with a given

area ratio η can be optimized according to (6.79)–(6.80) by taking into account the

expressions (6.65)–(6.66) for the Young’s modulus and the induced strain. The re-

sulting design will have the minimal overall volume among all actuators with the

given η and able to supply the assigned output quantities under load. With respect

to the use of pure active material, the optimal volume will increase, being inversely

proportional to the factor on the right end side of (6.67).

In the special case of the design of a pre-stressed actuator, the design will there-

fore include some volume (or weight) penalty due to the need of realizing a given

pre-stress. The design of the passive parallel component is ruled by strength con-

siderations: it must carry the assigned pre-stress force plus the active force (6.43)

present in the open-loop (free-stroke) state. Since the volume penalty is essentially

influenced by the stiffness of the passive element, it is advantageous to choose mate-

rials with a high ratio between strength and Young’s modulus (or equivalent spring

constructions with high strength and low stiffness).

6.4.4 Solid-state Actuator in a Compliant Frame

One of the advantages of solid-state actuations is their monolithic nature. Motion

generation does not require moveable parts. If stroke amplification or re-direction is

required, a solution which is fully consistent with this nature is the use of a compli-

ant mechanism to this purpose. In this way, the typical advantages of the monolithic

design (no wear and backlash, no need for lubrication, high scalability, low weight)

are kept at the level of the complete actuator. As a counterpart, the design process

becomes quite challenging, mainly due to the inherent complexity of the design of

the compliant frame.

In this section, we will directly refer to the so-called fish-mouth actuator [2] as a

representative example for this class of actuators. Most of the concepts and results

can be, however, applied or adapted to other cases.

Beyond the primary function of redirecting the actuator force and stroke and/or

converting its output (stroke or force amplification), the compliant frame can per-

form one or more of the following additional tasks:

• providing the actuator with an own stiffness: for most applications, especially in

the field of adaptive structures, actuators are required to provide some level of

structural stiffness, since the twofold function of the actuator as an active and a
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passive element helps saving structural weight; additionally, the actuator’s own

stiffness can contribute to increase its precision: load fluctuations which cannot

be actively compensated (e.g. due to the limited dynamics of the control system

or sensor’s resolution) are equilibrated in a passive way;

• pre-stressing the active component: some solid-state actuators can only work un-

der a compression loading state (like piezoceramic stack actuators) or under a

tension state (like shape-memory wires); pre-stress enables a bi-directional func-

tion and increases indirectly the actuator’s stiffness by fully exploiting the con-

tribution of the active material;

• restoring the activation mechanism: this is relevant for active materials which

require a (pseudoplastic) pre-strain to perform their activation task (typically

Shape-Memory Alloys).

The fish-mouth actuator uses a bundle of Shape-Memory wires as active element.

The compliant frame is a prismatic composite spring with a closed section (see

Figure 6.22). The section mean line consists of two half ellipses joined by straight

lines. The elliptical regions bend during activation and provide the mechanism with

the desired compliance. The fish-mouth actuator was conceived to realize a high

effective strain (more than 25%) by employing Shape Memory wires with 2% active

strain. The effective strain is defined as the ratio between the induced strain and the

thickness of the actuator measured in the activation direction:

εeff =
ui

h
(6.81)

or, with (6.73)

εeff = λ
l
h

εi (6.82)

where εi is the active strain of the Shape Memory Wires.

According to (6.82), the strain increase is due to two contributions: the actual

stroke amplification λ and the re-orientation of the stroke in the transversal di-

rection, which involves a further factor l/h (in the final design of the fish-mouth

actuator these factors amount to 2 and 6.75, respectively).

Similar hybrid actuator concepts were developed for piezo-stack actuators [7][6].

While analyzing the hybrid actuator, the compliant frame can be seen as a two-

degrees-of-freedom system (see Figure 6.23). The input degree of freedom concerns

the force P and stroke v produced by the active element; the output degree of free-

dom refers to the force F and stroke u of the hybrid actuator. The signs of the input

quantities are defined in coherence with the conventions of Section 6.3 with respect

to the active element (SMA wires). Expansion of the wires leads to a positive stroke

v and compression in the wires to a positive force P. The arrows in Figure 6.23

represent forces acting on the frame (note that forces acting on the frame and dis-

placements are of different signs on the output side).

In order to perform its task, the compliant frame must simultaneously fulfill sev-

eral mechanical requirements, which are partially in conflict with another:
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Fig. 6.22 The fish-mouth actuator

Fig. 6.23 The fish-mouth actuator spring as a two-degrees-of-freedom system

• Deformability. The frame has to allow the deformation which is required to trans-

fer/convert the stroke of the active component to the output degree of freedom

under free-stroke conditions. Since no force is prescribed but only displacements,

this results in a merely kinematic condition. The relevant material parameter is

the allowable strain of the passive material. If – like in the case of the fish-mouth

actuator – the compliant frame relies on bending elements and the mean line

geometry is given, the deformability condition results in an upper limit for the

thickness of the flexible parts.

• Flexibility. This property concerns the primary stiffness of the compliant frame,

i.e. the stiffness

kI =
dP
dv

∣∣∣∣
F=0

(6.83)

measured at the input interface with the output port unloaded (free-stroke condi-

tion). In the representation of Figure 6.20, the primary stiffness is proportional

to the stiffness of the spring arranged in parallel to the solid-state actuator (see

below). According to (6.44), it reduces the actuator’s free stroke and should be

therefore kept low.
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• Stiffness. The secondary stiffness of the compliant frame

kII = −dF
du

∣∣∣∣
v=0

(6.84)

is the stiffness measured at the output interface with the input port blocked (i.e.

with the stroke of the active element equal to zero). In the model of Figure 6.20,

it corresponds to the stiffness of the spring arranged in series to the solid-state

actuator (kh2). According to (6.40), it affects the actuator’s blocking force and

must be as high as possible to keep the blocking force of the hybrid actuator

close to the one of the amplified solid-state actuator.

• Strength. Loading the actuator at the output interface F > 0 creates an additional

stress state as compared to the free-stroke operation which is the object of the

deformability requirement. Ideally, the compliant frame should be designed such

that the strength boundary remains passive (i.e. no point on the activation bound-

ary should lead to a critical stress state). At least, the strength boundary should

be determined in order to avoid mechanical overload.

Beyond the mentioned mechanical requirements, the compliant frame is expected

to convert forces and strokes by given factors:

γs =
u
v

; γf =
F
P

(6.85)

Both factors are negative since the compliant mechanism also inverts the sign of

forces and strokes.

The force-deformation behavior of the compliant frame, which rules the amplifi-

cation factors and the stiffness values, is, as a rule, nonlinear due to large deforma-

tions. In order to comply with the hypotheses at the basis of the theory presented in

6.3, we will assume that the behavior of the compliant frame can be linearized about

a suitable point. In this case, the equivalent spring model Figure 6.20 can be used.

Concerning the amplification factors, it should be pointed out that a compliant

system, unlike a conventional mechanism, has a mechanical efficiency lower than

unity, which involves that the stroke conversion factor is not necessarily the recip-

rocal of the force conversion factor. Besides this, the conversion factors depend on

the loading. Due to the reciprocity property of conservative systems, however, the

stroke amplification factor for unloaded output (F = 0) is equal to the reciprocal of

the force amplification factor for blocked input (v = 0).

This can be seen by writing the force-displacement relationship of the compliant

frame as a two-degrees-of-freedom system[
P
F

]
=
[

a b
−b −c

][
v
u

]
(6.86)

where a, b and c are positive constants.

F = 0 implies
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bv = −cu ⇒ u = −b
c

v ⇒ γs|F=0 = −b
c

(6.87)

whereas v = 0 leads to

F = − c
b

P ⇒ γf|v=0 = − c
b

(6.88)

While recalling the spring model of Figure 6.20, it should be noted that the force

provided by the solid-state actuator in the graph (which is already ideally stroke-

amplified by the factor λ ) amounts to P/λ and its stroke to λv.

The parallel spring constant is kIλ 2 and the serial spring constant is equal to the

secondary stiffness kII , since in the open-loop configuration of the hybrid actuator

(Figure 6.24(a)) the parallel spring defines the relationship

P
λ

=
kI

λ 2
λv ⇒ P = kIv (6.89)

which corresponds to the definition of the primary stiffness (6.83), whereas in

the case of shorted input (Figure 6.24(b)), the ratio between output force and output

displacement is directly given by the serial stiffness

F = −kIIu (6.90)

In the open-loop case, the displacement produced by the solid-state actuator cor-

responds to the overall displacement of the hybrid actuator:

λv = u (6.91)

while in the case of shorted input the force of the solid-state actuator equates the

force of the hybrid actuator:
P
λ

= F (6.92)

This leads to the conclusion that the ideal amplification factor in the graph cor-

responds the stroke amplification factor for unloaded output γs|F=0 (and its recip-

rocal to the force amplification factor for blocked input γ f
∣∣
v=0

). This result appears

evident if one considers the fact that in both examined loading configurations the

springs in the equivalent system are not loaded and therefore cannot influence the

system’s behavior. The mechanism behaves therefore as an ideal amplification de-

vice.

For a general loading (given output force F , see Figure 6.24(c)) it holds

F =
P
λ
− kI

λ 2
λv (6.93)

and the force amplification factor is therefore

γf =
1

λ

(
1− kI

v
P

)
(6.94)
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Equation 6.94 suggests that the force amplification factor of the compliant frame

decreases for decreasing loading of the input port. If v reaches the value kI/P (which

implies F = 0 according to (6.83)) the force amplification factor drops to zero.

The stroke amplification factor is obtained for the general loading case from

u = λv− F
kII

⇒ u
v

= λ − u
v

F
ukII

⇒ γf =
u
v

=
λ

1+ F
ukII

(6.95)

Analogously to the force amplification factor, the stroke amplification factor de-

creases for increasing loading at the output port and reaches zero for u = 0.

Fig. 6.24 Graph of the hybrid solid-state actuator with (a) open-loop output, (b) shorted input and
(c) general loading

The above presented consideration help in the design process of the hybrid actua-

tor to couple the design analysis (analysis of performance as a function of the design

variables) of the solid-state actuator itself – which can be carried on according to

6.4.1 – and the one of the compliant frame.

The design of the compliant frame will consist of a kinematic analysis, a stiff-

ness analysis and a strength analysis. In the first one the amplification factors will be

analyzed as a function of the design variables, in the second one the stiffness values

and in the third one the limit loads which the compliant part can carry. Typically,

there will be requirement conflicts between the stroke-related properties (deforma-

bility and flexibility, which tend to reduce the cross section and the length of the

flexible parts) and the load-related properties (stiffness and strength, which favour

solutions with short and thick springs). Simplified analytical models are very use-

ful to manage the trade-off, at least in a preliminary design phase. More accurate
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modeling and experimental analysis can help to refine the design. In some cases it

can be appropriate to support the design procedure by means of formal optimization

algorithms, especially in the coupled design phase (compliant frame and solid-state

actuator).

Fig. 6.25 The elliptical region of the fish-mouth actuator spring

In the case of the fish-mouth actuator, the kinematics of the compliant frame is

essentially ruled by the mean line geometry of the composite spring. Several simpli-

fied analytical models were formulated and compared to another as well as to FEM

analysis results. The most accurate proved to be the so-called circle-arc model, in

which the elliptical regions of the spring were approximated by circle arcs and sup-

posed to keep a circular shape after bending [2]. This model provides the expression

of the stroke amplification ratio

γs =
1−2μ arctan

(
1
μ

)
μ − (μ2 −1)arctan

(
1
μ

) (6.96)

where

μ =
a
b

(6.97)

is the axis ratio of the spring ellipse (see Figure 6.25). The expression (6.96) can

be simplified for large aspect ratios by Taylor approximation as

γs �−3

4
λ (6.98)

which provides for λ ≥ 2 the amplification factor with an (overestimation) error

less than 7%.

The spring’s primary stiffness is essentially related to the bending stiffness of

the elliptical regions. Here simple models on the basis of the Bernoulli-Euler beam

theory supply a useful basis for the design analysis. As far as the secondary stiffness
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is concerned it could be necessary to take into account membrane deformations of

the composite spring to properly evaluate its behavior.

Finally, the strength analysis deals with a quite complex stress distribution in

the flexible region and should be therefore supported by a thorough experimental

analysis. The collapse mechanisms will be profoundly different in the free-stroke

operation and in the blocking-force operation and need to be analyzed separately

for the two loading cases. A linear superposition of the results with the aim of pre-

dicting the full strength boundary (i.e. the strength limit for an arbitrary loading

through coupling with a host structure of given stiffness) can be considered as a

preliminary basis, but it should be completed by experimental determination of the

actual strength limit for an adequate number of loading conditions.

The blocking force rupture mode is quite complex to be analyzed theoretically

in order to obtain a useful design relationship for the limit force as a function of the

design parameters. As far as the free stroke strength limit is concerned, however, the

assumption of a classical bending collapse due to a strain level beyond the allowable

limit can be taken as a criterion, resulting in an upper boundary for the laminate

thickness. According to the circle-arc model the corresponding restriction can be

written

t ≤ 2
1
R − 1

R0

εall (6.99)

with as the material’s allowable strain. The radii and are known functions of the

geometrical design variables as well as of the required actuator stroke.

While analyzing a hybrid actuator with a compliant frame for stroke and force

amplification and/or conversion, the simple relationships obtained in Section 6.4.1

for the case of a prismatic block of active material are of course no longer valid and

have to be adapted. For instance, increasing the cross-section area of the fish-mouth

actuator (normal to the direction of the output force and stroke) do not influence only

the blocking force, but has a more complex effect on all performance parameter (the

length of the active element increases and consequently the stroke at the input port;

in addition, the amplification factors as well as the stiffness values are concerned by

the resulting changes in the spring geometry).

6.4.5 The Actuator’s Own Stiffness as a Design Requirement

As mentioned before, a solid-state actuator can be required – beyond its primary

performance features like free stroke and blocking force – to supply the host struc-

ture with a given amount of stiffness. One of the advantages of solid-state actuators

is represented by their inherent stiffness which results by their strain-inducing actu-

ator principle; conventional force-generating devices like electromagnetic actuators

do not provide the host mechanical system with a stiffness contribution (see also

Section 6.4.1).

In general, three different levels of stiffness contributions can be identified while

analyzing a solid-state actuator:
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1. The mere stiffness contribution of the passive component (if this exists, i.e. for

the case of an actuator in hybrid design).

2. The stiffness contribution resulting from the passive stiffness of the active ma-

terial, supported by the one of the passive component (if available).

3. The stiffness contribution of the actuator in connection with a feedback control

system.

The third level can realize – as a matter of principle – arbitrarily high level of

stiffness (a theoretically infinite stiffness can be realized by a feedback control sys-

tem which keeps the actuator stroke at a constant value). The stiffness contribution

due to the feedback control, however, disappears when the actuator is not active and

is limited in its dynamics by the reaction time constants of the control algorithm and

hardware. The second level is always present as long as the active element keeps its

integrity. In the case of a collapse, the stiffness level drops to level one.

The contribution provided by the passive stiffness of the active material, which

is essential to level two, can be estimated by simple considerations of solid mechan-

ics, involving the element’s geometry and the material’s modulus of elasticity, as

already made in 6.4.1. However, this constitutes an approximate approach since it

neglects the feedback effects which stem from the typical multi-field nature of ac-

tive materials. Considering for instance a piezoceramic actuator, together with the

so-called inverse piezoelectric effect which is at the basis of the actuator function,

a direct piezoelectric effect is always present which rules the sensor function of the

piezoceramic element. Both effects are described by the piezoelectric equations

S = sT+dE (6.100)

D = dTT+ εE (6.101)

with:

• T as the vector including the six components of the mechanical stress.

• S as the vector of mechanical strain, correspondingly arranged.

• E as the vector including the three components of the electric field.

• D as the vector with the components of the electric displacement.

• s, d and ε as matrices of material-dependent coupling constants (elasticity, piezo-

electric and electrostatic constants, respectively).

From Equations 6.100 and 6.101 is evident that the change in mechanical stress

does not determine, alone, the mechanical strain in the component. An exact deter-

mination of the stiffness contribution of the active material can only be obtained if

the electrostatic variables are eliminated from the equations, which, in turn, requires

taking into account the properties of the electrical circuit behind the piezoelectric

element.

In the case of a Shape Memory Actuator the relevant coupling effect which is to

be considered is of thermo-mechanical nature. The stiffness of the Shape-Memory

element depends on the tangent elasticity modulus of the shape-memory material,

which is a complex function of stress and temperature in the wire as well as of the
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loading history, due to the pronounced hysteresis which characterize the behavior

of shape-memory alloys. Shape-memory constitutive model from the several ones

available in the literature (see for instance [1]) can be used in order to describe

this relationship. Such a model supplies – for a given alloy – one relationship be-

tween stress, strain and temperature. The system keeps two degrees of freedom, i.

e. nothing can be said about the infinitesimal change of stress for a given infinites-

imal change of strain if it is not defined how the temperature is allowed to change.

For this reason the tangent modulus and, as a consequence, the actuator transversal

stiffness for a given load case depends on a temperature evolution law which can,

in turn, be directly or indirectly coupled with the actuator mechanics.

For slow load fluctuations and no wire activation the isothermal condition can

be taken as temperature evolution law. For fast load fluctuations (e.g. in the case

in which the actuator stiffness is needed for dynamic purposes) an adiabatic tem-

perature evolution should be considered, which takes into account the latent heat of

the martensitic transformation and relates the temperature change with the stress or

the strain change in the wire. If the shape-memory wires are electrically activated

by Joule effect, the evolution of the electrical resistance in the wire has to be taken

into account in the temperature evolution law. Finally, if the actuator is feedback-

controlled, the control law influences significantly the actuator stiffness behavior.

In evaluating the actuator’s transversal stiffness attention must be paid to the fact

that the stiffness values can differ for loading and unloading due to the hysteretic

behavior of the shape-memory alloy.

The maximum conceivable stiffness contribution at level two for an actuator in

hybrid design is given by an active element which – due for instance to the action of

a feedback controller which keeps the stroke of the active element at a constant value

– blocks the input port. In this case the actuator provides a stiffness contribution

which is equal to the above introduced secondary stiffness. This case is not to be

confused with the above mentioned case of a controller acting on the overall actuator

stroke, which is virtually able to realize an infinite stiffness (level three).

6.4.6 Coupled Design of Actuator and Host Structure

In some cases, particularly while designing active shape-adaptable systems based on

the integration of solid-state actuators in compliant structures, the actuator design

is to be directly coupled with the design of the host structure itself. Like in the

case of a compliant frame as a part of a hybrid actuator, a shape adaptable host

structural system is subject to conflicting requirements, like providing given load-

carrying capabilities (stiffness and strength) and at the same time offering a required

amount of deformability (defined as the maximum deformation of the compliant

structure which is compatible with the allowable strain of the material) in order to

accommodate the desired shape changes. In some cases, this leads to a problem

definition which requires a given contribution of the solid-state actuator to offer

feasible solutions at all.



6.4 Design Principles and Rules 193

It is important to note here that the presence of a solid-state actuator with a given

amount of own stiffness is the key element to solve such requirement conflicts by

introducing essential additional design variables: the stiffness which can be subject

to an upper limit due to the deformability requirement is the stiffness of the host

structure, which is different from the stiffness of the complete system “seen” by the

external load, i.e. the system consisting of solid-state actuator and structure. In other

words: by increasing the size of the solid-state actuator the load-carrying capabilities

of the overall system are enhanced without any influence on the deformability of the

compliant part.

An example in which a coupled structure-actuator design is essential is reported

in the following. A shape-adaptive wind-tunnel model had to be designed and re-

alized [1]. The required geometry changes included, among others, a hinge less

trailing-edge flap. The concept which was adopted for the hinge less flap is schemat-

ically described in Figure 6.26. This design responded very well to manufacturing

and aerodynamic requirements as well as to the restrictive space constraints. Shape

memory alloy wires were chosen for actuation. A minimum swing angle was pre-

scribed for the active flap as well as the maximum allowed deviation from the target

contour under load. Destined to operate in two-dimensional flows, the wind-tunnel

model was additionally required to have constant deformation behavior in span di-

rection. This called for a prismatic geometry of the compliant system and virtually

reduced the design variables to the ones defining cross-section geometry thickness

and material of one single leaf spring. The spring length was set to the largest value

compatible with the space constraints: beyond this limit the airfoil thickness at the

spring end would have become too small to accommodate the attachment between

actuator wires and structure without causing manufacturing problems and leading to

unacceptably low values of the actuator lever arm. In the considered case, therefore,

the deformability-versus-stiffness trade-off is essentially ruled by just one design

variable, namely the spring thickness (some influence is exerted by the material

choice, but within narrow limits).

In this case, deformability and stiffness are directly conflicting qualities: ensur-

ing proper deformability means setting an upper bound to the spring thickness, while

the stiffness requirement implies a lower bound for it. It can therefore happen that

the design problem admits no solution if limited to the passive compliant system.

If the stiffness contribution of the actuator is taken into account, however, any re-

quired level of overall stiffness can be reached – without affecting deformability –

by properly choosing the cross section of the wire bundle.

This effect is exemplarily illustrated by the design domain graphs of Figure 6.27.

The graphs are traced on the h− a-plane, with h as the leaf-spring width and a as

the cross section of the actuator wire bundle per unit width in span direction. If

the actuator’s stiffness contribution is not considered (Graph a), the actuator cross

section does not come into play and the feasible design domain, identified by the

restrictions h ≤ hd and h ≥ hs, is an empty set (no feasible solutions) if hd < gs. The

contribution of the actuator material to the overall stiffness modifies the correspond-

ing restriction boundary to a curve of the kind h2 +Ba = h3
s , which always intersects

the boundary of the deformation restriction, providing a finite region of feasible de-
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Fig. 6.26 Design of a hinge less trailing-edge flap

Fig. 6.27 Design space graphs for the hinge less trailing-edge flap

signs (Graph b). A possible reduction of the feasible design domain (Graph c) can

result from the activability restriction, which requires the actuator wire bundle to

provide enough active force to bend the leaf spring by the required amount and

takes the form a/h2 ≥C > 0.

6.4.7 Simultaneous Optimization of Actuator Position and
Geometry

A large amount of contributions can be found in literature, which deal with the

optimization of the actuators’ position in active structures, most of them in dynamic

applications. In most cases, however, an interaction with the actuator design is not

considered. A usual optimization target is the claim of minimal actuator force for

a given effect on the active structure (static or dynamic response). What is often

overlooked in this context is that reducing the actuator force do not necessarily

reduces its size, and that the relationship between actuator force and stroke needs to

be taken into account. The force-related criterion is the more appropriate, the closer

the actuator behaves to an ideal force generator. If conventional electromagnetic

actuators are used, for instance, this kind of approach reveals correct.

As discussed before, a solid state actuator always behaves between an ideal force

generator and an ideal stroke generator. While operating in the neighborhood of the
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blocking condition (actuator own stiffness negligible as compared to the stiffness

of the host structure), the actuator closely resembles in its behavior an ideal force

generator. While operating near the free-stroke condition (large actuator stiffness as

compared to the structure stiffness) the behavior is similar to the one of an ideal

stroke generator. In the limit case of an ideal stroke generator, minimizing the actu-

ator force while optimizing the actuator position would lead to misleading results:

more appropriate locations could then be found in points with conventionally un-

favorable leverage conditions, in which activations requires large forces and small

strokes.

Even if – as usual – the actuators operate in quasi-blocking condition, it leads,

as before discussed, to a quite inefficient actuator design according to the stiffness

matching paradigm. In the limit case (blocking condition) the required actuator vol-

ume would approach infinity in order to provide a finite stroke.

To simultaneously optimize position and geometry of the actuators, it can there-

fore be convenient to adopt an energetical approach, which virtually de-couples the

two optimization steps. In the static case, and if the conditions for the application

of the stiffness-matching paradigm are fulfilled, the required actuator’s volume is

unequivocally determined by the mechanical energy which is to be transmitted to

the host structure. The optimization can hence be carried out stepwise:

1. search of the actuator position or positions which require a minimum of me-

chanical work to reach the desired static response; determination of the required

actuator force and stroke to perform activation in the optimal actuator point or

points.

2. optimization of the actuator geometry according to the stiffness matching

paradigm (see 6.4.2).

6.5 Extension to the Dynamic Case

6.5.1 Work Produced by a Solid-State Actuator in Cyclic Operation

In 6.3.6 the energy output of a linear solid-state actuator interacting with a linear

stiffness was analyzed. The stroke work introduced there was defined as the maxi-

mum possible amount of work which can be performed by the actuator in a single

activation process from zero to a given value of induced strain. If the reduced strain

is reported to zero, the curve on the force-stroke plane is described in the opposite

direction, energy flows from the structure to the actuator and the total amount of

work produced by the actuator over the activation cycle is zero.

By coupling the actuator with a different kind of load (e.g. a nonlinear mech-

anism or a structural element with hysteretic behavior) a positive amount of work

could be extracted by the actuator. In this case the area of the actuator’s operation

domain (see Figure 6.13(b)) represents the theoretically maximum cyclic work of
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the actuator. The actual value of the cyclic work depends on the force-displacement

characteristic of the load.

A particularly relevant kind of load in this context is a linear oscillating system.

We consider the case of a system excited by the sinusoidal force

F (t) = F0 +Fd sinωt (6.102)

with the static term F0 and the oscillating term Fd sinωt. The response of the

oscillating system will have in general the following form

u(t) = u0 +ud sin(ωt +ϕ) (6.103)

The static term of the response will be determined by the static stiffness of the

load:

u0 =
F0

ks
(6.104)

while the dynamic part of the response (without taking into account transient

effects) will be given by the dynamic stiffness of the host system at the given fre-

quency. By expressing the sinusoidal parts of excitation and response in complex

terms

Fd sinωt = Re
[
F̂deiωt] (6.105)

ud (sinωt +ϕ) = Re
[
ûdeiωt] (6.106)

the dynamic stiffness is defined by

k̂d (ω) =
F̂d

ûd
= kdeiϕ (6.107)

with

kd (ω) =
Fd

ud
(6.108)

as the modulus and ϕ (ω) as the phase of the dynamic stiffness (i.e. the phase

difference between response and excitation; please note that by definition the phase

of the excitation is zero, so the phase of the dynamic stiffness coincides with the

phase of the response). We will choose to define the phase angle in the range

−π < ϕ ≤ π (6.109)

For a given static offset F0 (and the resulting value of the static response u0), a

particular value of the dynamic stiffness (which is unequivocally determined by the

nature of the host dynamic system and the activation frequency) identifies on the

force-stroke plane a family of elliptical trajectories (see Figure 6.28). All ellipses of

the family have the centre, the axis ratio as well as the direction of the axes in com-

mon. Additionally, a sense of description is assigned to the trajectories, depending

on the phase angle. For 0 < ϕ < π the trajectories are traced counter clockwise, for
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0 < ϕ > −π clockwise. In the cases ϕ = 0 and ϕ = π the ellipses degenerate in

segments of the straight lines

F = kdu (6.110)

F = −kdu (6.111)

respectively.

Fig. 6.28 (a) Family of elliptical trajectories for an oscillating host system and (b) trajectory de-
scribed for a given oscillating induced stroke

Within a given trajectory family a particular curve can be identified by a given

value of the dynamic stroke or force amplitude (only one of them can be freely

chosen since Equation 6.108 must be fulfilled).

Now we assume that the force and stroke of the dynamically operating solid-state

actuator are related one another as in the static case, i.e. they fulfill the relationship

(6.30). This assumption is realistic if the activation frequency is far lower than the

actuator’s first resonance frequency.

By inserting (6.102) and (6.103) into (6.30) we obtain

ui = ui0 +uid sin(ωt +ψ) (6.112)

with

ui0 =
F0

ka
+u0 (6.113)

uid =

√(
Fd

ka

)2

+2ud
Fd

ka
cosϕ +u2

d (6.114)
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cosψ =
Fd
ka

+ud cosϕ
uid

sinψ =
ud sinϕ

uid
(6.115)

which shows that an oscillating induced stroke produces an actuator force and a

stroke compatible with (6.102) and (6.103). Equation 6.113 identifies together with

(6.104) the static offset of the actuator force (and stroke), while (6.108) and (6.114)

define the dynamic amplitude and hence determine which one of the elliptical tra-

jectories is described.

u0 =
ui0

1+ ks
ka

(6.116)

F0 =
ksui0

1+ ks
ka

(6.117)

ud =
uid√(

kd
ka

)2
+2

kd
ka

cosϕ +1

(6.118)

Fd =
kduid√(

kd
ka

)2
+2

kd
ka

cosϕ +1

(6.119)

According to Equation 6.112, the actuator characteristic performs a harmonic

translation on the force-stroke plane and describes a strip limited by the straight

lines

F + ka (u−ui0 −uid) = 0 (6.120)

F + ka (u−ui0 +uid) = 0 (6.121)

which are tangent to the traced elliptical trajectory (see Figure 6.28(b)).

The area of the ellipse corresponds to the work performed by the solid-state ac-

tuator during a cycle. It holds

Ω =
∫ 2π/ω

0
Fd

du
dt

dt = Fdud

∫ 2π/ω

0
sin(ωt +ϕ)dt = −Fdudπ sinϕ (6.122)

The average power is obtained by dividing the cyclic work by the period:

Π =
−Fdudπ sinϕ

2π
ω

=
−Fdudω sinϕ

2
(6.123)

6.5.2 Maximum Cycle Work and Power Output

For a given actuator, a given excitation frequency, a given phase angle and a given

amplitude of the dynamic induced stroke uid , the value of the mechanical power

transferred from the solid-state actuator to the host structure depends on the modulus
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of the host structure’s dynamic stiffness. The power output is maximum when the

product Fdud , expressed as a function of kd , reaches a maximum.

From (6.118) and (6.119) one obtains

Fdud =
kdu2

id(
kd
ka

)2
+2

kd
ka

cosϕ +1

(6.124)

The first derivative of the function (6.124) with respect to kd vanishes when

(
kd

ka

)2

+2
kd

ka
cosϕ +1 = 2kd

(
kd

k2
a

+
1

ka
cosϕ

)
(6.125)

K2
a = k2

d (6.126)

ka = kd (6.127)

Equation 6.127 is the stiffness matching condition for the dynamic case. Accord-

ing to this condition, the output cycle work of the solid-state actuator (and, as a

consequence, its output power) reaches its maximum value when the modulus of

the host structure’s stiffness matches the actuator’s stiffness.

Inserting (6.127) into (6.118)–(6.119) the dynamic force and stroke amplitudes

are obtained:

ud =
uid√

2(1+ cosϕ)
(6.128)

Fd =
kauid√

2(1+ cosϕ)
(6.129)

The corresponding cycle work and average power amount to

Ωmax = − π sinϕ
2(1+ cosϕ)

kau2
id (6.130)

Πmax = − ω sinϕ
4(1+ cosϕ)

kau2
id (6.131)

In the resonance case:

ϕ = ±π
2

(6.132)

Equations 6.128–6.131 respectively read

ud =
√

2

2
uid (6.133)

Fd =
√

2

2
kauid (6.134)
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Ωmax = ∓π
2

kau2
id (6.135)

Πmax = ∓ω
4

kau2
id (6.136)

The resonance case is particularly relevant for vibration control. When ϕ =
−π/2, positive work is made by the actuator on the structure (resonance excita-

tion), while in the case ϕ = π/2 the work is negative (resonance damping). The

amount of mechanical work which can be extracted from the oscillating system in

one vibration cycle defines the capability of the solid-state actuator to actively damp

the vibration.

In resonance and in the typical case in which the amplitude of the dynamic in-

duced stroke is half the maximum induced stroke for static activation:

uid = ui0 =
ui,stat

2
(6.137)

from (6.13), (6.19), (6.20), (6.21) and (6.135) it can be written:

|Ωmax| = π
8

Wn = πWmax (6.138)

6.5.3 Design Principles and Rules for the Dynamic Case

Due to the relationship (6.138), many results presented in 6.4 can be extended to the

considered dynamic case. The nominal and effective energy density of an active ma-

terial, for instance, allow for estimation of the minimum amount of actuator volume

if the needed cycle work (or power, for a given activation frequency) is known.

While designing an actuator for dynamic applications, the stiffness-matching

paradigm, applied to the dynamic quantities, helps reducing or even minimizing

the actuator volume by choosing a proper actuator geometry.

Finally, a simultaneous optimization of actuator position and geometry for dy-

namic applications can be carried on, analogously to the static case, in an energy-

related way. As a first step, the actuator position or positions are identified which

require minimum power to reach the desired dynamic response; subsequently, the

actuator geometry is optimized according to the stiffness matching paradigm.
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