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preface

Until recently quantum chemical ab initio calculations were re~
stricted to atoms and very small molecules, As late as in 1960 Allen
and Karo statedl: "Almost all of our ab initio experience derives
from diatomic LCAO calculations ,.." and we have found in the litera-
ture "approximetely eighty calculations, thres=fourths of which are
for diatomic molecules ... There are approximately twenty ab initio
calculations for molecules with more than two atoms, but there is a
decided dividing line between the existing diatomic and polyatomic
wave functions, Confidence in the satisfactory evaluation of the many~
-center two-electron integrals is very much less than for the diatom-
ic case”, Among the noted twenty calculations, SiH, was the largest
molecule treated, In most cases a minimal basis set was used and the
many-center two~slectron integrals were calculated in an approximate
way. Under these circumstances the ab initio calculations could hard-
ly provide useful chemical information, It is therefore no wonder
that the dominating role in the field of chemical applications was
played by semismpirical and empirical methods, The situation changed
essentially in the next decede., The problem of many~center integrals
was solved, efficient and sophisticated computer programs were devel=
oped, basis sets suitable for a given type of problem were suggested,
and, meanwhile, a considerable amount of results has been accumulated
which serve as a valuable comparative material, The progress was of
course inseparable from the development and availability of computers.
Further progress was achieved in the early seventies” by the develop=
ment of procedures that yield correlated wave functions for small mol=
ecules at a cost moderately higher than that involved in SCF calcula~-
tions,

Existing books on this subject are mostly textbooks for advanced
readers, proceedings of conferences, or edited collections of reviews
written by several authors on selected special topics. These are main-
ly profitable for readers who already have some experience with the
ab initio calculations., Our approach is different. We attempted a book
which would be a practical handbook for those who are going to start
their ab initio calculations., It is hoped that it permits answers to
be found readily to the most common questions put to us by students
and colleagues from other branches of theoretical chemistry. Ideally,
our aim was to write such a book which would have been helpful for us
in our first own ab initio calculations, Our intention is to deal sole~
ly with the problems specific for ab initio calculations. We expect




v

that the reader is familiar with the fundamentals of the molecular or=-

bital theory and that he already has some experience with semiempiri-
cal methods or at least with the Hickel and extended~Hickel methods,
We emphasize the following topics: the basis set, the correlation en=
ergy, their effects on results in actual chemical applications and the
relation between the cost and the use of ab initio calculations, The

choice of the topics treated and the coverage are of course arbitrary

and they were affected both by personal taste and the limited
adge.

The writing of this book was stimulated by the suggestion
Rudelf Zahradnik, Dr.5c, His encouragement, valuable comments
sistance of various kinds are gratefully acknowledged, We are
much obliged to Dr., Ivsn Hubal, who made us familiar with the
and methods of calculation of the correlation energy and made

knowl=

of Or,
and as=
also
theories.
availa~

ble to us all his unpublished material on this topic, Our sincere

thenks are also due to Dr, Pavel Hobza for comments on the sections
on weak interactions and solvation and Dr, Jifi Pencil for comments
on the geometry optimization methods, For typing the manuscript and
drawing the figures we wish to acknowledge our appreciation to Mrs,

RG2ena Zohové aend Mrs, Erika Tyleové.

Prague and Bratislava, June 1979

r, 8. and M,U.
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1, Introduction

For a nonspecialist the term “ab initio™ may have a too authori-
tative meaning. It might give the impression that the ab initio cal-
culations provide “accurate® and "objective" solutions of the Schro=-
dinger equation., In fact, they can be in considerable, sometimes even
in qualitative, disagreement with experimental findings. “Ab initio"
only implies that within the frame of a particular variation or per-
turbation method no approximations are adopted, though the method
jtself is a mere approximation to the solution of the Schradinger a=
quation, That means that unlike in semiempirical methods no integrals
sre neglected or approximated by simplified expressions and functions
containing empirical parameters, or even replaced by empirical param-
eters. Explicit inclusion is also made for inner shell electrons, All
integrals should be calculated with an accuracy higher than to 7-8
digits, "Ab initio" also implies that a nonrelativistic Hamiltonian
within the Born-Oppenheimer approximation is used

1 z 1 z,2
I N R
2 1A T D) R

Fij A8 "AB

Indices i, refer to electrons, indices A,B to nuclei and Z,.Zy are
nuclear charges, Hamiltonian (1,1} is expressed in “atomic units", If
not Otherwise stated, atomic units will be used throughout {see Appen-
dix A). Hence the ab initio calculations do not involve any experi-
mental data, They are therefore also referred to as “nonempirical"
calculations,

The definition of ab initio calculations given above corresponds
to the definition by Allen and Karol from 1960,As we sﬁall see in Chap=~
ter 3, it does not conform perfectly to the present practice as re~
gards the requirements noted above, Nowadays a justifiable neglect is
commonly made for almost vanishing integrals which does not affect
the computed total energy. But the term ab initio is also used for
calculations that are lacking this rigor. These are for example non-
empirical calculations using pseudopotentials or even "simplified"
and "simulated” ab initio calculations in which much cruder approxi-
mations are used.

In this book we shall mainly treat calculations obeying the tra-
ditional definition. In order to judge the possibilities of the ab



Table 1.1

Selected ground state atonmic characteristics® obtained by the

Dirac=Breit=-Pauli-Hartree~Fock method2'3

Hartree~Fock  Normal and specific  Total relativistic

Atom energy mass effects correction
He ~2,861697 0.00039 -0,0000708
Li ~7.432729 0.000583 -0, 0005504
Be ~14,57303 0.000888 -0,0021914
B -24,52906 0,00120 -0,0061116
C ~37,68866 0,00181 -0,0138302
N ~54,40098 0.00201 ~0,0270472
0 ~74,80947 0.00223 ~0,0490197
F ~99,40944 0,00259 ~0,0820816
Ne ~128,5472 0.00297 -0,1289864
Na -161,8591 0.00337 ~0.1968539
Mg -199,6145 0.00378 -0, 2899070
Al -241,8768 0,00420 ~0,4136049
Si -288,8544 0.00463 ~0,5740692
P -340,7188 0,00507 ~0,7773523
-397, 5050 0.00551 ~1.033528
cl ~458, 4822 0,00596 ~1,349099
Ar ~526,8178 0, 00609 «1,731965
K -599,1648 0.00688 ~2,196484
Fe -1262,444 0.00948 -8,539770
Co ~1381,415 0.00995 -10,03890
N4 ~1506,872 0,01044 -11,72724
Cu -1638,951 0.01092 -13.61988
Br ~2572,443 0.01329 ~30,49500
Ag ~5197,519 0,01911 -107,6317
Hg -18408,01 0.03450 -1021, 865
a8

The total atomic energy in this approximation is given by
the sum of the tabulated three contributions, Note that it
does not involve correlation energy., All entries are in re-
lative values E/E,, (see Appendix A), The configurations
correspond to a normal aufbau process and they coincide in
most cases with those proposed for the ground states from
experimental information,



initio model so defined, let us examine its inherent approximations,
The adoption of the nonrelativistic Hamiltonian (1.1) brings about
that the relativistic effects are not accounted for, Computationally,
the estimation of relativistic effects in molecules is difficult so
that almost all our knowledge is based on results for atoms (see,
however, new developments noted in Section 5,J.), From Table 1,1 it
is seen that except for several of the lightest atoms the relativ-
istic energies are much larger than the energy changes observed in
chemical reactions. Fortunately the largest contributions to the re-
lativistic energy are due to inner electronic shells, Table 1.2 shows
that the relativistic contribution is approximately constant regard-
less the number of valence shell electrons, It may therefore be as-

Table 1,2

Relativistic energies (E/Eh) of selected atoms and their ions2

ALom X" X x* X2+ x3+ X4+

C '-0,01345 ~-0,01383 -0.01408 ~-0,01409 ~0,01344 ~0,01247
-0,08034 @ -0,08208 -0,08285 ~-0,08271 -0,08524 ~0,08606
¢l -1,33798 -1,34910 -1,35005 -1,34928 -1,35351 -1,35422
8r -30,49500 ~30,49723 -~30.49179 =-30,50494 ~30,50319
1 —%79.6522 -179.6553 -179.6433 -179,6661 =-179,6604

sumed that the total atomic relativistic energy is almost independent
of the atomic electronic state and the chemical environment in mole=
cules, which implies cancellation of relativistic effects in chemical
processes. According to KoZos? the correction of the total energy of
HE for relativistic effects amounts to 11,60 cm'l whereas with the
dissociation energy it is only 0,14 cm ~. Data for H2 are presented
in Teble 1.3, This table also gives us evidence on the validity of

Table 1.3

Dissociation energy (D) of the H, molecule® (cm'l)

Born~Oppenheimer approximation 36112,2
Adiabatic approximation 36118.0
Relativistic correction to D, -0.5
Adiabatic approximation with corrections 36117,3

Experiment 36116,3-36118,3




the Born~Oppenheimer approximation., The case of the H, molecule in
the ground state is representative, This moleculs contains the light~
est nuclei and therefore represents the case for which the approxima=~
tion separating motions of nuclei from motions of electrons should be
the least substantiated, Nevertheless the result in Table 1.3 is very
satisfactory, One should keep in mind, however, that the nonadiabatic
effects may be important in the cases, in which avoided curve cross-
ing is involved or where two electronic states of different symmetry
(end/or multiplicity) are close in energy, This is particularly topi-
cal for detailed spectroscopical studies and theorstical treatments
of the dynamics of some chemical processes,

To conclude the analysis of the approximations noted, it is pos-
sible to state that, from the point of view of chemical applications,
they represent very subtle effects, The experience shows that if ab
initio calculations are in disagreement with experiment, it is in most
cases not due to the approximations noted, As will be shown in next
chapters, the crucial point in ab initio calculations is the basis
set effect and, if the calculations are at the SCF level, also the
correlation energy., The only exceptional case we shall meet in this
book concerns ionization potentials for core electrons in molecules
containing heavy atoms, Here the relativistic effects are very impor-
tant.



2, Basis Set

2,A. Fundamental Concepts and General Description

The most widely used quantum chemical methods are based on the
idea of the expansion of atomic or molecular orbitals as a linear
combination of basis functions

= ci3X1 * Cyada *oeee * Cinky (2.1)

where y& is a molecular or atomic orbital and Y are selected Slater~
-type, Gaussian or some other functions that are referred to as ba-
gis set, If Y, is a molecular orbital (MO), the expansion (2,1) is
called MO~-LCAC (linear combination of atomic orbitals), though with
gb initio calculations it has a broader meaning than implied by the

gbreviation, The expansion coefficients Ci14Cypr ee-s €y, for i =

l,eves 0 (n is the number of basis set functions) are v;?iational pa=
rameters and they are determined by the solution of the SCF problem

(see Chapter 3). It is clear that in calculations on atoms the expan~
sion (2,1) must contain at least one function for each occupisd atom=-

ic orbital, Such & basis set is called minimum basis set. For exam=

ple, for oxygen the minimum basis set is ls, 2s, 2px, 2py and 2p,,.
The LCAD approximation (2,1) may be taken as the expansion of a
function &s a series. As for any method which contains such an expan-
sion, it may be assumed that upon augmenting the expansion by some
other functions one arrives at a superior description of atomic {or
molecular) orbitals because the number of variational parameters is
increased, Examine now a basis with a doubled number of functions,
i.e. a basis set in which each atomic orbital is represented by two
functions, The result of this basis set extension is presented in
Table 2,1 for the atoms from the first to fourth rows of the periodic
system, The results for the fifth-row atoms are presented in Table
2,2, The entries in the first columns of the two tebles are total
energies of atoms given by the SCF calculations with the minimal ba=-
sis set of Slater-type orbitals (STO, see Section 2.B,). The entries

in the second columns are energies given by the calculations in which
each STO was replaced by two Slater-type functions with the exponents
so optimized to give the minimum total energy. From Tables 2,1 and
2.2, it is seen that a twofold enlargement of the basis set gave




Table 2.1

Total SCF energiess for atoms with Z = 2-36

Minimum STO DZ STO Hartree=Fock
Atom State basis set basis set limit3
He lg ~2, 8476563 -2,8616726 -2,8616799
Li %g -7,4184820 -7.4327213 ~7.4327256
Be 1g ~14, 556740 -14,572369 -14,573021
B 2p ~24, 498369 -24.527920 -24,529057
¢ 3p -37.622389 -37.686749 ~37,688612
N 4 -54, 268900 -54,397951 -54, 400924
0 3p -74,540363 -74.,804323 -74,809370
F 2p -98,942113 -99. 401309 ~99, 409300
Ne 1s -127.81218 -128,53511 -128,54705
Na 25 -161,12392 -161.84999 - -161,85891
Mg 15 -198, 86779 -199, 60701 -199.61461
Al %p ~241,15376 -241,87307 -241, 87668
51 3p -288., 08996 -288.85116 -288. 85431
4s -339,90988 -340.71595 -340,71869
3p ~396. 62762 -397,50229 ~397, 50485
c1 2p -458, 52369 ~459, 47960 -459,48187
Ar ls . ~525,76525 -526,81511 -526,81739
K %5 -598, 08987 -599,16241 -599,16446
Ca lg ~675. 63390 -676,75594 -676,75802
Sc 2p -758, 40414 -759.72637 -759,73552
Ti 3 -846, 81561 -848,38875 ~848, 40575
v 4e -940,97197 -942, 85728 ~942,88420
cr % -1041.0063 -1043,2709 -1043,3095
Mn b5 -1147.1067 ~1149,8140 -1149,8657
Fe 5p -1259, 0855 -1262,3715 1262, 4932
Co 4e -1377,3744 -1381,3205 -1381,4142
Ni 3¢ ~1502, 0487 -1506,7517 1506, 8705
Cu 23 -1632,3354 ~1638,7496 -1638, 9628
Zn Lg -1771.1509 -1777.6699 -1777.8477
Ga 2p ~1916, 5167 -1923,1110 -1923,2604
Ge 3 -2068. 5139 -2075,2284 -2075. 3501
As 43 ~2227,2649 -2239,1207 -2234,2382
Se 3p -2392,7274 -2399,7563 ~2399, 8658
Br 2p -2565,1131 ~2572,3415 -2572,4408
Kr 1 -2744,5197 -2751,9613 -2752.0546

8 The estimated limits differ somewhat

Table 1,1,

from those (Ref., 2) given in



Table

2,2

Total SCF energies5 for atoms with Z = 37=-54

Minimum STO DZ STO

Atom State basis set basis set

Rb 25 -2930, 6931 -2938,2708
sr Lg -3123,7176  -3131.4652
Y %p -3324.7806 -3331.6538
zr 3 -3531,3181 -3538, 9632
Nb e -3475,4826 -3753,5211
Mo % -3967,0398 -3975,4131
Te 6s -4196,0536 -4204,7591
Ru 5p -4432,3604 4441, 4569
Rh 4e ~4676,2637 -4685.7699
Pd 3 -4927,8059 -4937,7504
Ag 2p ~5187.0705 -5197,4836
cd s ~5454,1908 -5465,0971
In %p ~5729.0986 -5740, 1392
sn 3p ~6011,6720 -6022, 9057
sb 4g ~6302,0043 -6313,4618
Te 3p ~6600.0387 -6611,7621
1 2p ~6905. 9462 -6917,9602
Xe 1 ~7219,7923 -7232,1189

Jower total energies in all cases, The basis set, in which two func-
tions are assigned to each atomic orbital, is referred to as "dou~

ple-zeta" basis set, In our case the basis set may be called DZ STO,
For Slater~type orbitals the exponents sre usually denoted by ¥, and

pz is therefore to imply that to each atomic orbital two exponents,
i.e. two functions, are assigned, If atomic orbitals aré represented
by more than two functions, the basis set is referred to as "ex-
tended" basis set. The same classification of basis sets is also used

for molecules. The basis set for a molecule is composed from the ba~
sis sets of pertinent atoms and according to the nature of these a~
tomic basis sets it is called minimum, double-zets or extended. For
molecules, the extended basis sets usually also contain functions
which correspond to atomic orbitals with higher azimuthal guantum
nunbers than those'corresponding to atomic orbitals occupied in the
ground states of atoms. Such functions are called polarization func-

tions, Of course, polarizetion functions do not affect the total SCF
gnergy of atomic ground states. For example, polarization functions




for hydrogen are of the p, (d, ...) types, for oxygen of d, (f, ...)
types, and for iron of f, (g, «..) types. Typically, polarization
functions are used in DZ+P (double zeta plus polarization) basis sets.
For hydrogen, the DZ+P basis set may be expressed as (2slp) which
means two s-type functions, one p -type function, one p -type functior
and one p,-type function and for oxygen as (4s2pld) which means four
s=-type functions, two sets of Pyr P

y and P, functions and one complete
set of d-functions (xy, xz, yz, x2 - y2 and 3z2 - r2). In the usual
notation for moclecules, the DZ+P basis set for HZO is expressed as
(482pld/2s51lp), where the symbols standing before the slash refer to
oxygen and symbols after the slash to hydrogen., The choice of the ters
"polarization functions™ has not been very felicitous, but its use is
nowadays generally accepted, The term should reflect the fact that in-
clusion of polarization functions into the basis set permits a superi-
or description of the electron density distribution in molecules, i.e.
the "orbital polarization",

As the number of functions is increased, description of molecular
orbitals becomes better and better and the total SCF energy decreases.
In the limiting case of an infinite expansion (2,1), the set of func-
tions {X} is complete and the function ¢ is expressed "accurately”
through the expansion (2.1). Within the framework of the SCF approach,
the description of molecular orbitals cannot be further improved and
the energy cannot be lowered, This limiting value of energy is re-
ferred to as the Hartree-Fock limit, A typical dependence of the to=

tal SCF energy on the size of basis set is presented in Fig, 2,1 for
the water molecule using the STO basis sets, This dependence exhibits
some characteristic features which for sb initioc molecular calcula-
tions may be generalized as follows:

1) Passage from the minimum to DZ besis set brings about a large
decrease in energy.

ii) Further basis set extension is effective only if polarization
functions are included.

iii) For larger than DZ+P basis sets, the energy already converges
slowly to the Hartree~Fock limit,

With ab initio calculations, the dependence of the cost of SCF
calculations on the size of the basis set is considerably more prohib-
itive than it is with semiempirical calculations, With semiempirical
methods, the evaluation of the necessary integrals over basis set
functions is very fast, so that the major portion of the computer
time consumed is due to the SCF procedure itself, Rdughly speaking,
if n is the size of the basis set the computstion time goes as n~ to
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Figure 2,1

Dependence of the SCF energy of Hp0 on the size of
the STO basis set8-8, The Hartree-Fock limit is in-
dicated by the dashed line. :

n3, depending on the nature of the diagonalization procedure, The sit-
yation with ab initio calculations is different., For larger basis sets,
the most time-consuming step is the evaluation of two-electron inte-
grals, If n is the number of basis set functions, then it is necessary
to compute generally 1/8(n% + 2nd 4 3n2 4 2n) nonequivalent two-elec~
tron integrals, As the basis set is enlarged, the computer time in-
creases more rapidly by l-2 orders in comparison to semiempirical meth-
ods, In Teble 2.3 we present numbers of two-electron integrals that

are to be computed for the water molecule for several different basis




Table 2.3
Number of nonequivalent two-electron integrals for the
water molecule with different basis sets

Number of functions Number of integrals

Basis sat (n) 1/8(n%4+2n3+3n242n)
(28lp/1s) 7 4086
(482p/28) 14 5565
(483p/28) 17 11781
(584p/3¢) 23 38226
(4s3pld/2slp) 2ga 94830
(584pld/3slp) 352 198765
(5s4p2d/3slp) 412 371091

a

For prattical reasons it is usual to employ a set of
six d-functions (x2, y2, z2, xy, xz, yz), which is
equivalent to five linearly independent d-functions
and a single very diffuse s-type function,

sets, From Fig, 2,1 and Table 2.3 two opposite trends may be noticed:
8 slower energy convergence as a basis set becomes larger and a rapid
increase in the number of integrals as the number of basis set func-
tions is increased. Obviously, some compromise must be made according
to the nature of the problem studied., It is evident that for small
molecules large basis sets may be used, whereas for larger molecules
only results for small basis sets are obtainable.

In contrast to semiempirical calculations, a typical feature of
ab initio studies is that a particular chemical problem is usually
treated by making use of several different basis sets, For molecular
calculations, basis sets of various size were suggested, Especially,
the choice of amaller basis sets (minimum, DZ) is rather sbundant,
This situation may resemble the problem of empirical parameters in
semiempirical methods and the "nonempirical® nature of ab initio cale
culations may therefore appear questionable. The resemblance is, how-
ever, only apparent, The essential difference from semiempirical cal~
culations is that for large basis sets no case is known of a dramatic
disagreement between theory and experiment (provided the electron
correlation is accounted for). In general, extensions of the basis
set lead to a superior description of all properties of the system.
Unlike in semiempirical methods, it is therefore possible to test di~
rectly the quality of the epproach assumed by recalculé:ing part of
calculations with a larger basis set (and by accounting for the cor-
relation effects)., An important feature of variatiohaléab initio cal-
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culations (SCF, CI) is the circumstance that the provided energy is
an “upper bound"™ to the exact (experimental) energy,

Up to now we have assumed in this chapter the use of Slater-type
orbitals, Actually, use may be made of any type of functions which
form a complete set in Hilbert space. Since for practical reasons
the sxpansion (2.1) must be always truncated, it is preferable to
choose functions with a fast convergence. This requirement is proba=
bly best satisfied just for Slater-type functions. Nevertheless there
45 another aspect which must be taken into account, It is the rapid-
ity with which we are able to evaluate the integrals over the basis
set functions., This is‘particularly topical for many-center two-elec-
tron integrals, In this respect the use of the STO basis set is
rather cumbersome, The only widely used alternative is a set of Gaus~
sian-type functions (GTF). The properties of Gaussiénntype funcrions

are just the opposite - integrals are computed simply and, in compa-
rison to the STO basis set, rather rapidly, but the convergence is
slow.

‘5TO and GTF basis sets, which are the most important for practi=-
cal calculations, will be treated separately in the next sections.
For the sake of completeness we comment here on some other possibil-
ities.

Some time ago the one-center expansions (OCE) seemed to be prom-
isingg. In this expansion a molecular orbital is expressed by func-
tions which are all centered on one point, usually in the center of
the molecule, The computation of cne-center integrals is very fast,
but the OCE approach requires the inclusion of functions with high
azimuthal quantum numbers. The method is suited for symmetrical mole-
cules of the AHn type., However, use of OCE remained rather limited.
some other examples of less common basis set functions are elliptical

. 9-12 . .
functions and Gaussian functions of special types such as cus-

13 1s,16 Gaussian basis functions and

17,18

ped™ ", even~tempered14, Hermitian

those including interelectronic coordinates

2.8, Slater-Type Orbitals

In the original meaning of the MO-LCAQ approximation, the mole-
cular orbitals are constructed from the combinations of orbitals of
atoms constituting the molecule. For molecular orbitals so formed it
may be assumed that their quality will reflect the quality of atomic
orbitals used. But the AD description of atoms is accurate only for
the hydrogen atom and the so~called hydregen~like atoms, i.e., for



systems with one electron and the nucleus with charge Z, For cther
atoms the AO description is approximate, For this reason the hydro-
gen-like functions may appear as a good candidate for basis sets
suitable for calculations of molecules. They have the following farm

b/
27r - 2Zr
‘f/n,g,m(r.zﬁ.go) = Nn,z(:—> Lﬁle (___)E-Zr/n Yo ol o) (2.2)

n !
where N_ ) is a normalizing factor, Lifgl(x) are associated Laguerre
polynomiéls of argument x, Yﬂlm(Jhy) are spherical harmonics, r,mﬁ,%
are spherical coordinates of the electron relative to the nucleus and
n, 2, m are quantum numbers, all integral, with n>0, n = ll,Z_ﬁ;D,
ﬂgwfg_-ﬂ. Functions (2.2) form a complete set, they are normalized
and mutually orthogonal, However, for actual calculations they are im-
practical because of their rather complicated form. Slater suggesied
functions of a similar form that are still approximate for many-elec~
tron atoms but that are considerably simpler, They are called Slater-
~type orbitals (STO) and have the following formlg'20

By o g alradhep) = [z 1] TP (2g)"srl 2 Nem1gmra (2.3)
? 8! r

Here n_ denotes "effective quantum number®, exponent {, is an arbi-
trary positive number, rA,U‘,W are polar coordinates for a point
with respect to the origin A in which the function (2,3) is centered,
Apart from the first two terms that represent a normalizing factor,
the function (2,3) is closely related to hydrogen~like orbitals, For
the hydrogen ls orbital the function‘@alolo is identical wiﬁhY/O.O'O,
if we assume U = Z/n. However, it should be recalled that in contrast
to hydrogen-like orbitals STO"s are not mutually orthogonal, Another
essential difference is in the number of nodes, Hydrogen functions
have (n =/ = 1) nodes, whereas STO's are nodeless in their radial
part, Alternatively, the STO may be expressed by means of Cartesian
coordinates as follows

Ng=leimi=k i 3 k =Crp

%Z.ns.i.J.k = NZ,ns,i,J,k A XaAYAZA © (2.4)

where Xp ® (x = Ax)' etc,, Ay, Ay' AZ being Cartesian;coordinates for
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g point in which the function is centered. N is a normalizing fac~
tor. Note that any $TO may be written as a linear combination of
functions of 'the type (2.4).

According to Slaterlg, the exponents § are determined by means of
the formula

L= —5 (2.5)

where (Z =~ 8) is the effective nuclear charge and § is a constant to
account for the effect of screening part of the nuclear charge by the
other electrons, On the basis of a series of atomic calculations Sla-
ter derived empirical rules that permit ng and %, to be determ;ned for
any orbital of any atom (see standard textbooks on quantum chemistry).
Functions with parameters determined according to Slater’s rules are
called Slater orbitals and they are used in all current semiempirical
MO methods., With ab initio calculations another approach is preferred.
The n, parameters are usually fixed at the values of principal quan=~
tum numbers and the exponents 7, are optimized to give minimum SCF a=-
tomic energy, Optimum exponents given by the minimum basis set are
different from those provided by Slater’s rules, Apart from the ori=-
gin of exponents, any function of the type (2.3) is called STO, Here
no confusion can arise because with ab initio calculations the origin
of the exponents used is always specified.

As we have shown in Section 2.,A,, the extension of the minimum to
DZ basis set brings about the decrease in energy. For this extension,
of course, a new set of exponents is required, Exponent optimization
of STO basis sets, particularly extended basis sets, is not simple,
though all one-center integrals appearing in the SCF atomic problem
are expressible in closed analytical forms, It involves the optimiza-
tion of a number of nonlinear parameters, in addition to the same
number of linear parameters in egn. (2.1). Excellent mathematical a-
nalyses of the problem and the corresponding computer program were
communicated by Rcothaan and Baguszl. The program was extended by
Clementi and Raimond122.

STO exponents L, optimum for atoms, are usually used without
change (not for hydrogen) for calculations of molecules, Usually no
use is made of the coefficients standing in the expansions of indi=
vidual stomic orbitals over basis set STO"s, i.,e. usually no attempt
is made at what with Gaussian basis sets is called contraction (see
section 2.D,), This is not profitable for STO basis sets because



their flexibility would be lost?3, 1t should be realized that the
coefficients Ci# standing at individual basis set functions are dif=
ferent in AQ expansions for atoms and MO expansions for molecules.
The same holds of course also for exponents, Here, however, the opti-
mization is too difficult. Since we are forced to use for molecular
calculations exponents optimum for atoms, the following questions may

23,24 10 what degree do atomic orbitals change when molecules

be asked
are formed? What sequence, combination and extent of optimization of }
the orbital exponents 7 for molecules is necessary and useful? How
many STO symmetry basis functions are needed to adequately represent
each molecular orbital symmetry type? What kind of functions (1s, 2s,
38, 4e. 2P, +.. 3d, ...) is needed and what number of each type should
be included in the basis set? Naturally, answers to these guestions
were looked for in calculations on diatomic molecules,

Diatomic molecules are still rather simple systems suitable for
clarifying problems encountered in polyatomic molecules, Moreover, l
they give us additional information not obtainable from atomic calcu-
lations, Polarization functions represent a typical example. Since
they correspond to orbitals unoccupied in atomic ground states, their
expgnents cannot be estimated from atomic calculations, Among the
calculstions on diatomic molecules, very useful information on the
problem of basis set composition was contributed by calculations re-

24-28  con

ported by Cade, Huo, Wahl, Sales, Liu, Yoshimine and others
sider for example the results for the nitrogen molecules., Fig. 2.2

presents the dependence of the total energy and its components (ki=

Energy

Figure 2.2

Progression in the STO basis set?? for the
No molecule and the total SCF (full lins},
potential (dashed line) and kinetic (dotted
line) energies in arbitrary scales (the 0.1
(E/ER) energy range indicated at the right
top), A ~ minimum to DZ basis sets; B ~ ex=
tended sp basis sets; C - sets augmented
with d-functions; D ~ sets augmented with d

Basis set expansion —= and f functions,
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netic and potential energies) on the basis set quality, The basis set
is extended step-wise starting from the best minimal molecular orbit-
als set, the STO exponents being optimized in N, in each step, As re~
gards the total energy, the overall trends are qualitatively the same
as those for the water molecule (see Fig. 2.1) and may be assumed to
be also valid for polyatomic molecules, Rather disturbing in Fig., 2.2
is the erratic behavior of the kinetic and potential energy values,
gvidently, the components of the total energy are more sensitive to
the quality of the basis set than the total energy itself, This is
sometimes used for testing the quality of basis sets, inasmuch as for
Hartree~Fock wave functions the virial ratio -V/T becomes equal to
two,

For molaecules the optimization of exponents is very important for
small basis sets but it can never alcne absorb the deficiency due to
a lack of expansion functions, The number and secondly the kind of
STO basis set functions (i.e. s,‘p. d, ... type) are the most impor-
tant considerations, The decreasing importance of the exponent opti=-

‘mization as the basis set grows is observable from Table 2.4.

Teble 2.4
Effect of the optimization of STO exponents on the SCF energy
(E/Eh) of the HF molecule®

Initiaé Optimized Energy gain
Basis set energy energy on optimization
(281p/1s) ~89,49143 ~99.53614 0.04471
(382p/lslp) ~99,97222 ~100.03507 0.06285
(5s4p/3slp) -100,05587 ~-100,06051 0,00464
(584p2d1f/3slpld) -100,06939¢  ~.100,07030 0,00091

8 Ref, 26; exponents of p, d, f functions contributing to &

and T orbitals are optimized independently (anisotropic op-
b timization),
Energy given by the exponents optimum for atoms,
Estimated exponents for polarization functions.

Another important result of the papers by Cade, Huo, Wahl and
collaborators is the finding that it is not necessary to reoptimize
STO exponents for different internuclear distances. 1f we are not
far from the distance at which the exponents were optimized, the en=
ergy gain upon exponent reoptimization is very small,

It certainly need not be emphasized that the exponent optimiza-
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tion for molecules is a very time-consuming process, For large basis
sets the energy gain is small so that it is sufficient to estimate

or to optimize exporents of polarization functions and to employ ex~
ponents from atomic calculations for the other functions. With small
basis sets, a basis set extension is more economic than the exponent
optimization, Thus the question may asked whether the exponent opti-
mization is warranted at all. A plausible answer is that it is in
cartain cases. We note here on such a case of its possible use in
treatments of large molecules. It should be realized that in ab initio
applications to large molecules one is forced to make use of small,
say, minimum or DZ basis sets, A standard procedure would be to take
the cptimum exponents for atoms. Alternatively, one may perform the
exponent optimization for a small molecule and then to employ the ex-
ponents so optimized for a larger molecule with a similar bonding en-
vironment, The idea used hers is the assumed transferability of opti-
mized exponents for atoms in chemically similar molecular environ=
ments, The basis set optimized in this way permits us to take into
account the nature of the perturbing environment in which the atom
linds itself in & molecule. In Table 2,5 we present an example of

and H,0

, 29
such a treatment for CZHG 205

Table 2.5

Use of minimum STO basis sets with exponents optimized
29

in small molecules

Total energy (E/Eh)

Exponents CoHg (staggered) trans-H,0,
Slater exponents -78,9912 ~150,1467
Optimized for CH, -79,0980 -
Optimized for H,0 - ~150,2232
Fully optimized -79,0999 ~150,2353

With barriers to internal rotation in C,Hg
optimization noted in Table 2.5 brought about no improvement, Actual=

and H202, the exponent

ly, use of optimum exponents for HZO instead of Slater exponents re=
sulted in a worse agreement with experimental results for H,0,, Dif=-
ficulties in accounting for the barrier to internal rotation in H,0,
are not compatible with the problems of minimum basis set optimization
and they will be discussed later, We note it here just to point out
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that the energy lowering upon exponent optimization should not be
overemphasized.

For STO calculations reported in the literature a variety of ba=
gis sets was used. Optimum exponents for minimum and DZ atomic basis

sets were reported by Clementi and coworkers®'Z?

. Among larger basis
gets the "nominal basis sets” of Bagus et al.30, carefully optimized
for He~Kr, are widely used. A nominal basis set consists of two basis
functions per shell, except that three basis functions are used for
the first p-shell and four for the d-shell, For the transition-metal
atoms and their dipositive ions, Huzinaga et al. developed32 (10s6p5d)

and (7s6p5d) basis sets, respectively.

2,C, Gaussian-Type Functions

Gaussian functions are known and used in various branches of phys«
ics and chemistry, Their use for quantum chemical calculations was
first suggested by Boys31 in the following form

. 2
i3k RN

gloAdadak) = No g 5 XaYaZp (2.8)

Here v is positive parameter (orbital exponent), i, j, k are intew
gers z 0. Functions with 1 = j = k = 0 are referred to as s-type func=-
tions, functions with i = 1, j = k = 0 as P -type functions, etc, Note
that functions (2,6} do not possess principal quantum numbers.

) is a normalizing factor
Nob,l,j 'k 9

/7[)3/2 (21 - 1)11(2) = 1)11(2k = 1)::J ~1/2
(2.7)

N = N
a1,k [{2@ 22(1+j+k) a(i+j+k)

The functions (2.6) are centered in the point A with the coordinates
A Ay' AZ and A denotes the distance between a point A and a vari-
able point with coordinates x, y, z:

e (x =A% (y - Ay)2 ¢ (z - A)° (2.8)

2 2 2
ri L XA + yA + ZA (2.9)



It is customary to call the functions (2,6) Gaussian-type functions

(GTF}. In the form (2.6) the angular dependence is expressed by pow=~
ers of x, y, z coordinates and the functions are accordingly referred
to as Cartesian GTF”s, Another currently used expression is given by

-1 - r2

g(ZgIAinglzlm) = N r:g g A Yg'm("}llf’) {2,10)

where the normalizing factor is

277G

(an, - 1)1{V’EJ

on + 3/2 }1/2
N =

Zé2ng+l)/4 (2.11)

and ng and 7 are analogues of the principal quantum number and or-
bital exponent of STO’s,

In principle, since GTF's form a complete set, the exact molecu=
lar orbitals may be expressed in terms of them., Unfortunately the be=
havior of the Gaussians near the nucleus and far away is incerrect,
so many more GTF’s than STO"s are needed to approximate the exact or=
bitals to the same degree of accuracy., This point will be discussed
in the next sections, Here we note only once again that this disadvan-
tage is overweighed by the sase with which the integrals over GTF's
are computed.

As regards the use of GTF s as a basis set for molecular calcula~
tions we have seversl possibilities,

(i) As with the STO basis set, atomic orbitals are expanded in
the series over GTF’s and their exponents optimized to give the lowest
SCF atomic energy. GTF s with optimized exponents may be used directly
in calculations on molecules or, less typically, their exponents may
be reoptimized in molecules. No use is made of expansion coefficients
given by atomic calculations. Such a procedure is referred to as the
calculation with the uncontracted GTF basis set, At the present time,
the molecular calculations with uncontracted basis sets are very rare,

(ii) In contrast to (1), part of the expansion coefficients given
by the atomic SCF calculation is used in molecular calculations., These
coefficients are not subjected to variation in the SCF calculetion,
Instead we consider a fixed grouping of several pertinent GTF's as one
basis function., Such a function is called contracted and it is denoted
by CGTF, By making use of CGTF"s the number of variational parameters
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of the SCF procedure is decreased, This compensates to a certain de~
gree the requirement for a large number of GTF's in the basis set,
Compared to (i) the flexibility of the basis set is of course lower
but, as will be shown in Section 2,D,, for justifiable contractions
the loss in flexibility is rather small.

(1i1) The STO’s are expanded into the series of GTF's by means of
a least squares fit. The SCF calculations of molecules (or atoms) are
then performed with this STO basis set, in which each STO is simu-
lated by a fixed combination of several GTF’s, This approach is very
inportant and it will be treated separately in Section 2.E.

(iv) The expansion over GTF’s is made for atomic SCF orbitals.
The molecular calculations are then made with the so expressed AQ ba-
sis set, This approach is of no practical significance because it
gives us no advantage over the approach (iii).

This eection is devoted to the point (i), Early calculations in
which each atomic orbital was represented by a single Gaussian were

33,34

rather discouraging . This is comprehgnsible because exponentials,

not Gaussians, form natural solutions to the central=field problenm,

Next calculations®~37

in which expansion over several GTF’s was made
per atomic orbital established utility of the idea of using Gaussians
as basis set functions, The energy convergence to the Hartree-Fock

limit 1s presented in Table 2.6 for the hydrogen atom and the hydro-

gen molecule. It is seen that the energy convergence is rather satis-

Table 2.6
Dependence of SCF energy on the number of GTF’s for
the hydrogen atom and the hydrogen molecule

SCF energy ('E/Eh)

GTF’s per H atonm Basis set? H o H2b

2 2s 0.485813 1.09431
4 4s 0,499277 1,12655
6 6s 0,498940 1.12834
8 8s 0,49993]1 1.12851
6 5slp - 1,13269
7 5s2p - 1,13346
Hartree-Fock limit® © 0,5 1,13364

g The s sets from Ref., 38.
Refs, 39,40,
¢ Ref; 410
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factory. For example, even for two GTF's per hydrogen atom the energy
of H, is lower than the energy42 E/Eh = ~1,09082 given by the minimun
STO basis sget.

In the early stage of calculations with GTF basis sets, the ex=
43,44

. They

were constrained to be in geometric progression’ so that the ratio
between adjacent exponents was constant, In the optimization proce=~

ponents were determined by an approximate optimization

dure two parameters, the exponent of the “center Gaussian" and the
ratio of adjacent exponents, were varied, In this way the problem of
many-parameter optimization was avoided. This procedure was used sys-
tematically by Csizmadia and coworkers®> who tabulated GTF basis
sets for atoms Li-Ne, They also reviewed calculations with uncon-
tracted GTF basis sets. The experience acquired up to that time has
shown that basis sets between two and three times the size of a STO
basis set would give comparable results,

Approximate optimization of basis sets was very soon replaced by
accurate procedurss. A picnesering work in this field was made by Hu-
38'46. Huzinaga38 investigated the usefulness of

GTF’s as basis set functions for large=-scale molecular calculations

zinaga and coworkers

in two different directions, The first of them aimed to obtain approx-
imate expansion of STO"s in terms of GTF s, This approach belongs to
the category (i1ii) of our classification given above and it will be
discussed in Section 2,E, The second approach is based on SCF atomic
calculations with GTF”s and belongs therefore to the category (i) of
our classification: Huzinaga made use of the optimization program of

Roothaan and Bagussal

which was modified to accommodate Gaussian=type
basis functions instead of Slater-type basis functions, He obtained
accurate basis sets of the sizes (9s5p) and (1l0s6p) for atoms Li-Ne.
Together with the hydrogen basis sets, obtained by a fit of the ls
STO by 2-10 GTF”s, they represent an important and widely used source
of basis sets up to the present time.

Nowadays optimized GTF basis sets of various size are available
for most atoms of the periodic system., Since they represent a starting
point for developing contracted basis sets, they will be noted in

more detail in the following section for the sake of compactness,

* A revival of the idea of choosing exponents by means of geometric
progression, though in a somewhat different form, is met with even=
~tempered Gaussian basis setsl4,
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2,0, Contracted Gaussian Basis Sets

If a GTF basis set is to be used with the aim of giving better re-
sults than a minimum STC basis set for molecules composed from first=
-row atoms and hydrogen, a possible choice might be a (7s3p/3s) basis
set, For larger molecules, however, its size rapidly becomes formid-
able, For example, for benzene it would contain 114 functions and the
scF calculation would be rather cumbersome due to a high number of
respective infagrals. Moreover, in spite of a considerable effort the
result would be hardly better than that, say, given by a DZ-STO basis
set, In this section it will be shown how this handicap inherent to
GTF basis sets may be reduced by means of the basis set contraction,
This technigue was suggested almost simultaneously by several authors
47'50. Its essence will be demonstrated here by means of the example
of NHq calculation with the (7s3p/3s) basis set. The exponents assumed
for nitrogen are those optimized by Whitman and Hornback51. Their
s~set exporients and the expansion coefficients for ls and 2s atomic
orbitals are listed in Table 2.7. The exponents assumed for hydrogen

Table 2,7

Exponents and expansion coefficients of the

(7s) basis set for nitrogen51

Expansion coefficients

Exponents 1s 2s
1619.0 00,0059 ~0,0013
248,7 0,0424 -0,0096
57.75 0.1820 «~0,0422
16,36 0,4570 -0,1326
5,081 0.4412 ~0,1897
0,7797 0.0342 0.5077
0.2350 ~0,0089 0.6151

priginate from the optimization by Huzinagaaa. From the inspection of
gxpansion coefficients in Table 2.7 it follows that the first five g-
-type GTF"s with the highest exponents contribute predominantly to
the 1s atomic orbital whereas the 2s atomic orbital is formed almost
exclusively by only the two last GTF”"s, Hence it may be assumed that
the quality of the atomic orbitals will be affected very little if we

impose a restricticen on the five GTF s with the largest exponents
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that the ratio of their coefficients should be the same in the 2s as
in ls orbital. This means that we treat these five functions as a
grouping with fixed coefficients, Similarly, the two remaining GTF’s
with small exponents may be combined into a second group with the
coefficients from the 2s orbital., In this way the (7s) basis set re-

duces to a minimum basis set in the following form
Y3 = 0.0059 gy + 0,0424 g, + 0.1820 g, + 0.4570 g, + 0.4412 g,

yp = 0.5077 gg + 0.6151 g, (2.12)

where X1 stands for the ls atomic orbital and Yo for the 2s atomic or-

bital, The functionsy ; and X, are called contracted Gaussian-type
functions (CGT?), whereas the original functions, g, are referred to

as primitive Gaussians, Molecular SCF calculations are then performed
with the CGTF basis set., The contraction (2.12) may be denoted as
(12345)(67). We may make also contractions for the 2p nitrogen and ls
hydrogen orbitals, respectively, by grouping three p-type GTF's for
nitrogen and three s-type GTF“s for hydrogen, Upon doing contractions
in this way, the number of basis set functions is the same as in the
minimum STO basis set. In the usual notation a CGTF basis set is given
in brackets so that our basis set would be specified most typically
as a (7s3p/3s) primitive set contracted to [251p/ls]. Obviously, the
{7s3p/3s) basis set may also be contracted in other ways, For example,
one can arrive at the DZ basis set by the (1234)(5)(6)(7) contraction
of the nitrogen s~set, the (12)(3) contraction of the nitrogen p=-set,
and the (12)(3) contraction of the hydrogen s-set. In an equivalent
way this contraction may be expressed as (4,1,1,1; 2,1/2,1) where the
numbers of primitive GTF”s entering individual CGTF’s are indicated
in the order of their descending exponents, The effect of the contrac-
tion is presented in Table 2,8, The total energy and one~electron
properties given by the DZ basis set are seen to compare well with
those given by the uncontracted set., But with the minimal basis set,
considerable differences are obtained for some properties.

Generally, we define a contracted basis function by

Ya = Ni;;'cjigj (2.13)

where {gj} denotes the normalized primitive set andu{xi} the contrac=~
ted set, N, is a normalizing factor of the contracted function Xi’
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Table 2,8
Energy and some one~electron properties® of NH, calculated with

(783p/3s) basis set and its contractions to the DZ and minimum
basis sets

Property {7s3p/3s) [4s2p/23] [2slp/ls]
Total energy Eg.. -56,098387  -56,090590 ~55,950048
potential <l/r&> el. ~19.9362 ~19,9314 -20,0231
tor. ~18,3669 ~18,3621 ~18,4538
<1/rH> el. -5,3637 -5.3578 -5.1854
tot. ~1,0500 -1,0442 -0,8717
electric field €, (N) 0,1440 0.1985 0,2387
E, (H) 0.1112 0.1162 0.1724
E, (H) -0,0189 ~0,0183 ~0,0342
pipole moment yrs -0,8221 -0, 8269 ~0,7826
uadrupole moment® 6 0.8499 0,8206 0.6488
@ZZ ~1,6998 ~1,6412 ~1.2976

2 calculated at the experimental geometry; ryg 1-9117;5 <CHNH
106,79, All entries are in relative va{ues ?see Appendix A),
Exponents and contraction coefficients for nitrogen and
hydrogen according to Ref, 51 and Ref. 38, respectively,

b pelative to the center of mass,

contracted functions are constructed from primitives that are of the
same symmetry type (i.e. s-type GTF's, p-type GTF’s, etc.) and that
are centered on the same nucleus. Contractions of a more general type
are conceivable but they are not used,

In the case with NH3, the contraction of the (7s3p/3s) primitive
set to the minimum basis set was unequivocal. Unfortunately such a
gituation occurs rather rarely. Typically, there is someé arbitrariness
in the choice of the linear combinations. This holds particularly for
larger basis sets where some primitives contribute significantly to
both 1s and 2s orbitals of the first-row atoms. For second=row and
further atoms the situation with s~type functions is even more com-
plex, Ambiguity is alsoc encountered with p-sets,

In testing a particular contraction for molecular calculations,
the first natural step is the atomic SCF calculation48'52'53. However,
st should be kept in mind that although a good contracted basis set
sust of necessity yield a satisfactory atomic energy, this alone is
not sufficient. The basis set must also be flexible enough to allow
for the changes in the valence atomic orbitals which occur upon mole=-
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cular formation®3,

For p-set contractions of first-row atoms, the atomic calcula-
tions are completely useless. Since all p~type primitives of any
first-row atom contribute to a single set of atomic p-orbitals, the
atomic energy is independent of contraction and it therefore cannot
provide even a qualitative guidance for the contraction. The same
holds for hydrogen s~type functions., For this reason it is necessary
to test contractions of these GTF"s directly in molecular calcula-
tions. Such tests were already made in early calculations with GTF
basis sets by several authorssa”SB. These papers did bring into view
a powerful means of increasing the efficiency of calculations with
Gaussian basis functions. Though contractions assumed in these papers
were more or less tentative, the results of their testing were very
important for 'a later formulation of general principles of basis set
contractions. From the experience acquired in these papers and from
a series of the own calculatiocns on H,0 and N, with various contrac-
tions of the (9s5p/4s) basis set, Dunning59 inferred the following
rules:

A. Those members of gach group of basis functions, €.9+, S, P, 44
etc,, which are concentrated in the valence regions must be uncon-
tracted, !

B. If, within a particular group, one (or more) of the primitives
makes & substantial contribution to two (or more) atomic orbitals
with significantly different weights relative to the other functions
in the group, then this function must be left uncontracted,

From the first rule it follows that diffuse functions, i.e. with
low exponents, should be uncontracted because they are just the func-
tions most concentrated in the interatomic regions of the molecule,

In contrast, the innermost primitives with largest exponents describe
a region which upon molecule formation remains largely atomic in char-
acter. For this reason these primitives are grouped into a single con-
tracted function. The rather high number of primitives required for

the representation of inner shell functions is due to a poor behavior
of GTF’s near the nucleus. To illustrate the utility of the second

rule, consider the following example. Let 94 be a primitive s=~type

function contributing significantly to both ls and 2s atomic orbitals,
Our task is to decide whether 9y may be grouped with two other primi-
tives 95 and gk.lgf ;he ratiis o{ expansion coefficients in the ls a-
tomic orbital, ¢y /cJs and cis/cks, are markedly different from those
in the 2¢ atomic orbital, c?s/c§3 and c?s/cis, the function g4 should

be left uncontractedso'sl.
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Up to now we have assumed that each primitive function is used in
the contraction only cnce, i.e., each primitive function is only in-
volved in one particular contracted function., The contractions of
this type are referred to as segmented. In some cases it may occur
that for a given primitive set the Dunning”s rules suggest a higher
number of CGTF’s than we intended for a molecular calculation, Con-
gider for example the (9s) and (l0s) basis sets of Huzin39338 for the
first-row atoms, The former contracts satisfactorily to a [43] set,

whereas the latter requires at least 5-6 functions®® 162

. A problem of
avoiding an extension of the basis set without any loss in its quali-
ty may be bypassed in such a way that the GTF”s which contribute
gignificantly to several atomic orbitals are involved in the basis
set several times and are used for each of these atomic orbitalsﬁo'62
Raffenetti63 generalized this idea and he introduced the term general
contraction for the scheme according to which all primitive functions
may contribute to each of several contracted basis functions. If ge-
neral contractions are applied to standard integral programs, it is
mostly impossible to avoid a repeated calculation of integrals for
primitives that occur in more than one contracted function, Raffenetti
succeeded to develop a program63 which is claimed to permit a general
contraction at no expense in the integral computation time. Actually,
his approach eliminates the problems encountered in contractions of
atomic basis sets for use in molecular calculations.

To conclude this section in a practical way, we present a survey
of Gaussian basis sets most widely used in actual calculations. The
(9s5p) and (10s8p) basis sets of Huzinaga38 for the first-row atoms
were already noted. In later papers of Huzinaga and coworkers other
)64, (lls7p)65, (l3s7p)65

) 6 ) . .
other sizes® . Another important source of basis sets for first-row

basis sets were reported: (1lls6p and of some
atoms is the collection by Duijneveldt67 which covers basis sets from
(4s2p) to (13s8p). Basis sets of various size were also developed by
whitman and Hornbackgl. Uniform quality basis sets (4s2p), (Bs3p),
(6s4p) and (10s5p) were suggested by Mezey et 31.68. Among other ba=-
sis sets used for the first~row atoms we note on the (7s3p) basis sets
of Roos and Siegbahn69 and Clementi70. As regards CGTF sets, very pop~

. . [
ular are the Dunning’s contractions®®

of Huzinaga®s (9s5p/4s) sets.
For the second-row elements, basis sets of various sizes were de-
71 and (1738p)65

for the other second~row atoms, For

veloped by Huzinaga and coworkers: (14s7p) for Na and

Mg and (l4lep)71 and (17512p)65

a more complete survey of their second-row basis sets, see Huzinaga’s

66

compilation™”, Very useful basis sets of the size (12s9p) were devel-
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oped by Veillard’?, who glso tested their various centractions to
[654p]. It should however be noted that his contractions viclate the
Dunning”’s rulesSg. Improved contractions of Veillard®s sets to [Ssdﬂ

were suggested later for Si, P, 573 and 0160'73

. To complete a list
of basis sets for the second-row atoms the (10s6p) basis set of Roos
and Siegbahn69 should be noted,

For the first-row transition-metal atoms Basch and coworkers74 re
ported the (15s8pSd) basis set and its various contractions to the
minimum basis set [452pld}, For the third-row atoms up to Zn the
(l4s9p5d) basis sets are available75 that are compatible with the
Veillard’s (12s9p) sets for the second-row atoms, Their contractions
to the double-zeta basis set [834p2dj were also reported75, Two
smaller basis sets for the third-row atoms were reported by Roos and
coworkers76..The first of them, (9s5p3d), is so constructed as to be

51,68,70 whereas

compatible with a (7s3p) set for the first row atons
the second, (l2s6p4d)}, should be used in conjuction with a (8sdp) set
for the firsterow atom35l and (10s6p) set for the second~row atoms .

Recently Gaussian basis sets for heavier atoms wereg reported77'78.

2.E. Gaussian Expansion of Slater-Type Orbitals

As we have learned in Sections 2.B, and 2.C,, STO’s are well suite
for the use as basis set functions, but the evaluation of two~electron
integrals over them is time consuming, The opposite is true for GTF's.
The computation of integrals is relatively fast, but considerably
larger number of basis set functions is required. In this section we
discuss an approach which attempts to combine the merits of the two
types of basis sets., It preserves the nature of the STO basis set but
each STO is replaced by a linear combination of a small number of
GTF"s, so that the integrals are evaluated actually over Gaussians.
Such a possibility was already discussed by several authors47'79'8O
in 1960, In 1965 Huzinaga38 used the variation procedure of McWeeny
for the Gaussian expansion of ls, 2s, ,.,. up to 3p STO"s., In this ap=-
proximate expansion, a STO centered in the point A (egn.{2.3)), is
expressed in terms of K spherical GTF's (eqn. (2.10)) as follows

2y

K
'['m(erdt?) = Z: Cig(lginA:ﬂg'ﬂ,m) (2,14)

s'ns .
in]

For all members of ths expansion, a single set of A, ng,,ﬁ and m values
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is used, It is sufficient to perform the optimization for Zs = 1 in
which case we obtain a set of optimum Gaussian exponents 74+ Since
the so-called scaling relation holds

2
L, = b s (2.15)

it is possible to arrive from the 71 set, which is independent of Zs,
at exponents of GTF s for any exponent Zs. The transformation does not
refer to coefficients Cye

As shown by Huzinaga, all s-type STO"s are best expanded in terms
of 1s=GTF"s (ng = 1), p-type STO"s are best expanded in terms of 2p
GTF s (ng = 2). The adequacy of using GTF”s with lower n_ values is
very helpful to reduce complications in molecular integral calculat=-
ions.

Alternatively, instead of the variational procedure a least squares

fit of the Caussian expansion to the STO may be used46’81

82

., The two ap~-
proaéhes were compared by Klessinger =, The method of least squares

fitting became very popular owing to papers coming from Pople’s group
83-85, 1n the notation of the cited papers, STO"s for first-row atoms

have the form
S (tg.r) = ()P exp(-7r)
. (Zp0m) = (553012 ¢ exp (-1 ,r)

%(Zz.r) = <z§/ml/2 roexp(-{,r) cose (2.16)

The STO"s are approximated by a linear combination of N ls and 2p

Gaussians:

$i(Qir) = B3 Eq, o (2.17)
N

Plg(Lor) = Ekj 98,6915 015 k")
N,

@Zs(l'r) = }Eﬁ d25,kgls(y2s,k'r)
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- N
¢2p E: d2p,k92p(y2s,k'r) (2.18)
k

Here 91 and g?p are the normalized primitive Gaussians

3/4ex

91507:0) = (23/m) Y *exp(- %)

gzp(y,r) = (128y S/n?)l/d r exp(-BJrz) cos 1 (2.19)

Note that the same number of Gaussians, N, is used for each STO and
that common Gaussian exponents yn,k are shared between ns and np or-
bitals. Minimum basis sets of this type are referred to as STO-NG. We
restricted ourselves here to the derivation of basis sets for the
first-row atoms because the STO-NG basis sets for the second and high=

r
er row atoms may be obtaineng’BG

along the same lines.

It should be noted that calculations may of course be made also
with Gaussian expansions of STO’s which are free of the restrictions
imposed on the STO~NG basis sets. Nevertheless almost all our experi-
ence with Gaussian expansion originates from the results of calcula=
tions with STO-NG and related basis sets., 50 it seems to us tolerable
to restrict the discussion just to the functions of these types,

Exponents Y and coefficients d in functions (2,18) were deter=
nined>® by a least square fit for { = 1, As in the treatment by Huzi-
naga, the passage to any {, is made by means of the relation (2,15).
The factor l3/2 stands in eqn. (2.17) for the renormalization of
Gaussians after the formal change raéésr.

As N is dncreased, the convergence of STO-NG basis sets towards
the STO results is rather satisfactory. A typical example is shown in
Table 2,9, It is seen that the energy of atomization converges much

Table 2.9
Convergence of STO-NG basis sets towards full STO results for CO84

Property ST0~-3G STO-4G STO-5G STO-66 ST0
Total energy ~111,2297 ~112,0337 -112,2443 -112,3086 ~112,3436
Energy of

atomization 0.1999 0.1930 0,1924 0,1921 0.1921

Dipole moment 2,69 2,46 2,44 2.44 2,43
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faster than the total energy. This indicates that the error introduced
when the STO"s are replaced by small Gaussian expansions is very simi~-
lar in the molecule and in the separate atoms, As already noted in
preceding sections, the error is largely associated with the inade=
quate behavior of GTF’s near the nuclei, which results in a poor rep~
resentation of inner shell orbitals.

From the results it follows that STO"s expanded over GTF’s may be
treated as genuine STO"s, As regards the selection of their exponents,
we have several possibilities: to adopt the exponents  according to
slater rules, to use exponents optimum for free atoms, or to derive a
set of exponents by a direct optimization in molecules. With STO-NG
basis sets the last approach was favored. The exponents for inner
shells (K shell for first-row atoms, K and L shells for second-row a-
toms) were fixed at values corresponding to free atom values. But for
valence shell orbitals, the exponents were optimized for various
$TO~NG expansions in a series of molecules, As might be expected for
a minimum basis set, the optimum exponents were rather different from
those for free atoms, Optimum I values for a particular type of atom
were found to be almost independent of the size of the Gaussian rep-
resentation, Although the differences on going from one molecule to
another were considerably larger, a single set of standard exponents
was suggested85 which should be appropriate for an average molecular
gnvironment, The standard exponents preserve the shell structure of
the basis set, i.e. 525 = ZZp and iBs = ﬁap. This constraint reduces
considerably the flexibility of the basis set, but it leads to signif=-
icant improvement in timing of the integral evaluation (see Chapter
3). In spite of the restrictive features of STO-NG basis sets, the ac=
tual calculations proved their utility. Especially, predicted mole~
cular geometries are reasonable, which together with the economy of
calculations resulted in a widespread use of STO-NG basis sets, the
most popular among them being STO-3G. ‘

For different reasons, STO-NG basis sets give total energies infe-
rior to those given by other Gaussian basis sets with approximately
the same number of primitive Gaussians, though some other molecular
properties are reproduced well (see for example the first two rows in
Table 2,10), Two among possible reasons were already noted. The first
is a poor representation of the ls orbital. As shown by Klessingergz,
it is preferable to use more Gaussians for the ls orbital than for the
2s orbital. The second is the restriction in the exponents of 2s and
2p orbitals. The main reason may however be assigned to the fact that
STO-NG basis sets provide results converging in the limit as N— oo
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Table 2,10
Energies and dipole moments of H,0 given by dif=~
ferent small basis sets

Basis set Energy (E/Eh) Dipole moment?
570-36° ~74,9659 5.63
ST0-4G° -75,5001 6.07
[2s1p/16] 4:° 75,7317 7.34
[281p/1g] 9+ F -75,8043 8,44
(251p/1s) 9 ~75.6568 4,85
4-316" ~75.9084 8,41
[3s2p/2g)t ~76.,0080 9,07
pz~570 ~76.,0053 -
pz~coTEl 76,0093 8,95
g 1n 10730 Cm, experiment87 6,19,

c Refs, 84, 88,

d Ref, 89,

. Contracted?0 from (7s3p/3s).

¢ Exponents optimized for atoms,

Exponents and contraction coefficients opti=
mized for the molecule.

9 Minimum STO basis®2, with Slater rules expo-
p nents,

i Ref' 91-

. Dunning”s contraction®® of the (9s5p/4s) set.
J Ref. 7,

to values corresponding to a pure minimum STC basis set, As regards
the total energy, in many cases a minimum STO basis is poorer54 than
some minimum CGTF basis sets, For the water molecule, no better energy
than ~75,7055 can be obtained with the optimized STO minimum basis
set92 (see Table 2,10 in which a comparison is made for various STO
and CGTF basis sets through the DZ size).

Obviously, if bastter flexibility is to be achieved, some decon-
traction of the valence shell functions must be made. In the popular
4-31G basis setgl this was achieved by splitting the valence shell ore
bitals in the STO-4G set into two parts, the most diffuse primitive
GTF being left uncontracted, In the 4-31G basis set, each inner=-shell
orbital is represented by a single function containing four GTF’s and
instead of valence=shell g and n_ orbitals we have Ny and n_, func-
tions consisting of three Gaussians and Ny and n_, functions con-
sisting of one Gaussian, Thus, 4-31G may be called a valence double~

~zeta basis set. Unlike with the STO-NG sets, the 4-31G exponents and
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contraction coefficients were obtainedgl'%‘94 by the minimization of
atomic ground state energies. Again, the restriction Yas = ynp,and
Yg” © ynp” is assumed and a standard set of valence~shell scale fac-
tors, ' and ', is suggested for use in molecular calculations.

The next éttempts in the Pople’s group for improvements in the
basis sets were oriented to a better description of the inner=shell
95. The developed basis sets, 5~31G
and 6-31G respectively, differ from 4-31G only by the representation
of the inner shell which is now taken as a contraction of five and

1s orbitals of the first-row atoms

six Gaussians. With respect to the 4-~31G basis set, improvement of

inner-shell description leads®®

"to substantial lowering of calcu-
lated atomic and molecular total energies, but does not appear to
alter calculated relative energies or equilibrium geometries signifi-
cantly”. This conclusion gives the justification for the use of the

4-31G basis set in chemical applications,

2,F, Polarization Functions

As regards the polarization functions the following two questions
may be asked: (i) in which case the use of polarization functions is
unavoidable; (ii) how to determine the optimum exponents of polariza=-
tion functions for molecules,

The answer to the first question depends on several factors such
as the accuracy which is to be achieved, the nature of the problem
studied and the theoretical approach adopted. For example, from Figs.
2.1 and 2.2 we know that the energies cannot approach Hartree-Fock
limits without the inclusion of polarization functions. The most re=
cent study on the convergence of the SCF energy was reported by Kari
and Csizmadia > who showed different limits attainable upon stepwise
augmenting the basis set with p, d and f-type polarization functions.
Absence of polarization functions in the wave function is also re-
flected in observables other than energy. Consider for example the
dipole moment of the water molecule. The basis sets of the DZ size

give the dipole moment round 9 x 10739 ¢ which is considerably

higher than the value at the Hartree=Fock limite, 6.65 x 10"30 Cm;
the remaining difference to experiment (6,19 x 10~30 Cm) is essen=
tially due to the correlation energys. The inadequacy of the DZ and
any extended sp basis set in this case was demonstrated by Neumann
and Moskowit257, who analyzed orbital contributions to the total di=-
pole moment, It was shown®” that the lbl contribution to the dipole

moment must be zero in the DZ basis set on symmetry grounds, It be-
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comes nonzero only if polarization functions are added to the basis
set, Furthermore, the absence of any polsrization in the lbl orbital
results in a distortion of the charge distribution, This in turn has
a large effect on the shape of the 3a; orbital and its contribution
to the dipole moment, Another example for such an analysis was commu=
nicated>’ for the inversion barrier of ammonia on which we shall com-
ment in more detail in Section 5.C. For structures of certain types,
the polarization functions are also important in geometry predictions,
in spite of the fact that reliable bond lengths and bond angles are

obtained with DZ or even minimum basis set588’98_101

for most mole-
cules, Typical examples are H30+, H, 0, SH, and C1F4. Here correct
structures are predicted only if polarization functions are included

in the basis set. Thus, without polarization functions, H

0* is pre=
dictedloo'loz'

3
to be planar instead of pyramidal, H,0, to be in trans

instead of nonplanar configurationlos'104

,and SH4, SF4 and generally
105,106

AB, molecules to have C, instead of Cyy SYMmetry,

Some other information on the effect of polarization functions in
chemical applications will be provided in Chapter 5, In this section
we note the importance of polarization functions with particular first
and second row atoms viz. the importance of 2p functions for Li and
107'108, 3p functions for Na and Mg, and 3d functions for Na,
Mg and the other second-row elements. For example, in developing a
basis set for sodium of the DZ qualitylog, 3p functions should not be
omitted, According to Schaefergg, the 3s-3p near degeneracy should be
recognized and a 3p function added to the basis set, As regards 3d
functions, they appear to be more importantml'llo'lll

Be atoms

for molecules

containing second~row atoms than for molecules containing only first=-
-row atoms, However the difference is rather quantitative than quali+
tativell2, In some cases, the effect of d functions on the wave func-
tion of molecules with second row atoms is overestimated owing to the
use of a minimum sp basis satllz. Useful information on the relative

importance of d functions with first row and second row atoms was

provided by comparative studies such as e.g, on H,0 and stlll

113 . 2 ond
NH, and PH;""", Differing role of d functions was found in bonding in
last two molecules. In PH; phosphorus d orbitals are found113 to con=-
tribute directly to sigma bonding, whereas in NH3 nitrogen d orbitals
produce merely an angular effect which tends to reduce the calculated
HNH angle to a value significantly closer to the experimental angle.
It should be noted that the total energy is a rather insensitive
test of the quality of wave functions. Hence, if the importance of

polarization functions is to be judged, one-electron first-order and
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second~order properties, charge density contours, spectroscopic con=
stants and some other molecular properties should also be tested,
Examine now the determination of exponents for polarization func-
tions. Obviously, the atomic ground state calculations that are so
useful in the optimization of valence shell exponents cannot help us.
There is a possibility of performing calculations for excited states
of atoms, This approach is, however, not appropriate, The role of po-
larization functions is to polarize valence orbitals in bonds so that
the excited atomic orbitals are not very suitable for this purpose.
Chemically, more well-founded polarization functions are obtained by
direct exponent optimization in molecules, Actually, this was done for

a series of small molecules in both Slater and Gaussian basis sets.
Among the published papers, we cite24’26"28'101’114"122. Since expo-
nent optimization for each molecule is unpractical, attempts were made
for a generalization of the determined optimum exponents for their

use with other molecules. A study of this kind was reported by Roos

and Siegbahnlll who perfcrmed the d-exponent optimization for H

2O and
HS with the Gaussian double zeta basis set, The d-exponents for the
other first and second row atoms were obtained from the assumption
that the ratio rmax(Zp)/rmax(Sd) is constant for the first row atoms
and rmax(ap)/rmax(Bd) for the second row atoms, The M values are
radii of maximal charge density for respective orbitals, The constants
for the two ratios were obtained from the oxygen and sulphur exponents
ﬂ]HZO and H,S. The radial probability distribution function is given
by the product of the square of the radial part of the Gaussian func-
tion {2.10) and 2. Upon differentiating this distribution function
with respect to r, it is easily found that the radius of maximal
charge density is given for the Gaussian (2,10) by

n .
iax \(_;_29__ (2.20)
g

where ng and Cg have the same meaning as in eqgn, (2,10). For Slater
functions it holds

e (2,21)
nax
L

relationships (2.20) and (2,21) may be alsc useful for interrelation
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of exponents of ST0"s and GTF’s, provided the latter are primitives
(which with polarization functions is a very common case). For example

£
in H,5 the optimum STO exponentllo 4

34 18 1,708, The corresponding ex-
ponent for ‘the GTF with the same radius of maximal charge density is
0,49, very close to the value, 0,54, obtained by a direct optimization
lll. At least, the considerations noted in this paragraph may be use~
ful for the determination of starting values in exponent optimiza-

116
tion "

Pople and coworkers examined the effect of d-functions added to

]

the 6-31G basis set. For the resulting basis set, referred to as 6316

they suggested107’108

the following @y exponents: 0,2 for Li, 0.4 for
Be and 0.6 for B. The 6-31G* basis set was also applied to the series
of CH4, NHS‘ HZO' HF, N, and CZHZ molecules forlqgich the d-exponent
optimization was performed, Hariharan and Pople concluded that the
optimum value of d=exponents does not depend strongly on chemical en-
vironment and suggested ®y = 0.8 as the standard value for all the
atoms C, N, 0 and F, Actually, this value does not differ signifi-
cantly from the Gaussian d-exponents suggested by Dunning and Halel:
0.7 for 8; 0,75 for C; 0.80 for N; 0.85 for 0; and 0.90 for F,

As regards the hydrogen 2p Gaussian exponent, a reasonable choice
99,121 appears to be around 1.0, Optimum Slater exponent of the 2p
hydrogen functiongg'l14 ranges around 2,5, depending on the particular
molecule and the basis set. The hydrogen atom represents a special
case, If use is made of a single primitive Gaussian, there exists a
direct correspondence between STO and GTE exponents, It may be shown38
that if a Slater orbital (eqn. (2.3)) with a particular Zs and n_ is
to be approximated by a single primitive GTF, the optimum Gaussian ex-
ponent is given by

(ng = 1)1 2Mg {2 1
Jopt = (2.,22)
(2ng - 3)IIWE' 4ng + 4n (nS -1} -1

g

For the 2p function, relationship (2,22) gives ?opt = 0,04527, which
corresponds to the STO exponernt, CS = 1/n = 0.5. On applying the
scaling relation (2,15), we get for Zs = 1.0 the GTF exponent, { =
niYOpt = 0,18108 and for'(:s = 2,53, which is a typical exponentll4d for
the polarization 2p STO, we get [ = 2.53% x (2% x 0,04527) = 1.16.
Optimum exponents depend of course on a particular molecule and the
basis set on the other atoms., But for purposes of estimates of inter=~



35

relation of STO and GTF exponents, the approach just noted may be used
alongvsame lines as consideratidns based on the radii of maximal
charge density,

A thorough d~exponent optimization of Cartesian GTF s with respect
to "chemical environment" of atoms in molecules was performed by the
present authors with V, Ke115123. The exponents were optimized for the
punning’s DZ contracted Gaussian basis setsg, keeping the exponents of
hydrogen p-functions fixed at ab = 1,0, From Table 2,11 and Fig. 2.3

Table 2,11

exponents for d-type functionsl23
valence state Suggested valence Molecule treated and its
of atom state exponent optimum exponent
\c-"” 0.80 CH 0.78
/S ) 4 .
(+) ;
—Ciay 0,70 CH3 0.72
—Ci 0.85 CHy 0.84
\C=: 0.70 H,CO C.70
/ Pl
— CE== 0.85 02H2 0.86 .
(CO) (0.70)
N== 0.9% N2 0.83
PN 0.55 NH 0.57
N 0.70 NHS, 0,71
(+) ] . ,
—Noy, 1.25 NH 1.25
/N\ 0.85 NH3 0.83
\F) ;
N 1,20 NH 1.20
(=)g— 0.55 oK™ 0,57
== 1.05 H2CO 1.04
(o) (1.,11)8
0~ G, 95 HZO 0,82
(+) ) \
//OQ;, 1.20 H30 1.22

CO does not conform perfectly to any among the assumed valence
states. Its optimum oy were therefore disregarded in selecting va=
lence state exponents.
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A(E/Eh)
0.00061

0.0004 +-

0.0002 Figure 2,3

Dependence of the molecular SCF
energy on the exponent of polar-

0.0000 ization function on the nitrogen
R T atem, The energies are relative
to the bottoms of the curves,
05 10 5 1B ° bortons ¢

it is seen that the dependence of %y On the molecular structure is not
negligible. A large range of optimum oy for different systems makes a
choice of standard exponents for atoms difficult, Instead of atomic
standard exponents we therefore suggested123 standard exponents for
particular valence states of atoms which we call "valence state™ expo-
nents. From the entries of Table 2,11 we attempted to formulate the
following general rules:

proton addition - increasec&d by 0.35; H atom addition ~ use the same

exponent; electron addition to the singly occupied orbital - lower &y
by 0.30.

The effect of the use of valence state exponents was tested on ener-
gies of reaction by making a comparison with the results obtained for
for the standardll7c¢d = 0,8, From Table 2,12 it is seen that for most
reactions the effect is small, For some reactions however it is signi=-
ficant and it may bring the calculated energies of reaction closer to
Hartree~Fock values by more than 3~4 kJ/mol. Typical examples are the
reactions involving species such as N, or CO,, for which the total en-
ergy strongly depends on cy (see Fig. 2,3), It should be noted that
the optimum &y exponents depend rather little on the underlying sp ba~
sis set, provided the latter is flexible enough. Therefore, the expo-
nents given in Table 2,11 may be also used for other basis sets of
similar size.
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Table 2:12
gnergies of reactions AE (kJ/mol) and the effect of d-exponent optiw
mization

AE®
Reaction :?iizcid ad=0.8 AAEb exp(IAAEI/RT)C
NH; + NHy2 NHZ + NH, ~77.1 ~77.1 0,0 1,0
NHG + H,0 = Hy0"s NH, +90.8 +90,7  +0,1 1,0
NHg Hao*;—: NH; + H,0 -168,0  ~167,8 =~0.2 1.1
NH, + H 2 NH -362.8  -363.1 +0.3 1.1
NHg + H 2 NH -440,0  ~440,3  +0.3 1.1
Csz + 3H2;:.* 2CH4 ~-495,2 ~485,5 40,3 1,1
OH™ + NHy& H,0 + NHS +67.5 +66,8 40,7 1.3
NH, + HT 2 NH, ~ -1836.1 -1837.0  +0,9 1.4
NH, + H® &2 NHJ -835.8  ~-834,4 1.4 1.8
NHy + HY = NHZ -912.9 ~911,5 =1.4 1.8
OH™ + H & H,0 ~-1768,6 =1770,2 41,6 1.9
H,CO + 2H, & CH, + H,0 ~254,5  «256,8  +2.3 2.5
“30+ + OH™&2 2H,0 -1023,7 -1026.5 +2.8 3.1
Ny + 2H2€:~‘ 2NH2 +197.5 +184,7  +2.8 3.1
OH™ + NHZF———‘HQO + NHg -855,8 -858,7  +2.9 3,2
OH™ + NH:’;;—-‘ HyO + NH, -932,9  ~935,9 43,0 3,4
Ny + 3H, & 2NHg -171.3  -=174.7 3.4 3.9
CO + CH, = CoH, + Hy0 +232,4 +228,5 43,9 4,8
CO + 3H, & CH, + H,0 ~262,8  =266.9  +4.,1 5.2

® The total energies for H, and H are -1.131197 and -0,497637 E, Te=~
spectively.

® This is the difference between the entries in the first two columns,

® This factor means the ratio of the theoretical equilibrium con-
stants given by the two basis sets for T = 298 K,
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2,6, Off=Centered Gaussian Functions

This section is devoted to Gaussian basis functions which are not
placed on the atom centers but at different points in space. We note
on the use of the following types of basis set functions:

(1) Gaussian lobe functions

(11) Gaussien bond functions

(iii) flosting spherical Gaussian functions,
The development of the basis sets with off-centered functions aimed at
avoiding use of higher spherical harmonics (i.e. d, f, ... type func-
tions) without losing the basis set flexibility, Actually, the lobe
function and floating spherical function basis sets are constructed
only from s-type functions, Computationally, this restriction is very
advantageous.. The evaluation of integrals over s-type functions is
very fast and the corresponding computer program may be simple,

The Gaussian lobe function method was introduced by Preu85124'125

and developed for routine calculations by Whittenl26, The contraction
of Gaussian lobe function (GLF) basis sets*® is made along the same
lines as with Cartesian GTF s, As regards the primitives, the s~type
functions are expressed in the usual way, But the primitives of p, d,
f, <o, types are expressed as linear combinations of s-Gaussians (lobe
functions) placed at different points so as to retain the proper sym-

metry (see Fig. 2,4 ). Thus, a p-type function on nucleus A may be

y
SIS
o % Figure 2,4
- Representation of p_ and d__ orbitals
<Fz>t<ii> by lobe functions, © Xy

written as the difference between two lcbe functions in the form

Lo = M) {exp (-t (ry = R )2 = exp [malr, + R )P} (2.29)

where N is the normalizing factor for the p-function and (2a/m)3/4

is the normalizing factor for the lobe functions with the exponentea.
R, means a constant displacement from nucleus A along the symmetry
axis of the p orbital to be expanded, This displacement is usually de-

fined as
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R, = ca Y/ (2,24)

where C is the constant independent ona, By expanding the function
(2.23) into the Taylor series it may be shown127 that the GLF p~-func=
tion approaches the Cartesian p-function in the limit R, 0. On nu-
merical grounds R, cannot be set to 227a£ggtrary small Eggber. Typical
me and C = 0,1777, In fact,
the quality of the approximation (2,23) depends on C rather slightly

choices for p functions are C = 0,03

127 Anyway the representation of functions in Fig, 2.4 should be so
undsrstood that the lobes are heavily penetrating.

For the d and f functions, the most detailed discussion on the
representation by lecbe functions was reported by Driessler and
Ahlrichslao. The functions dxy' dxz' dyz and dx2-y2 are constructed
from four lobes as indicated in Fig. 2,4 by making use of egn. (2.24)

as with p~type functions, The representation of dzz functions is less

straightforwardlao'131

. Perhaps the most profitable approximation is
the linear combination of three lobeﬁlao. One of them is placed on the
atomic center and its exponent is scaled according to simple prescripe
ti0n130 so that the analytical (322 - r2) function is approached, The
other two are shifted by :Ro along the z direction by making use of
eqn. (2.24), In this way, a complete set of five d-functions is repre=-
sented by (4 x 4 + 3) = 19 GLF s, For the representation of the f-set,
44 GLF s are requiredl3o. Recently a detailed study on GLF’s was re-
ported by Le Rouzo and Silvil32. ,

It should be noted that in programs based on Cartesian GTF’s use
is mostly made of six d=-functions: dxy' dxz' dyz' dxz, dyg and dz2’
However, the linear combination dx2 + dy2 + d_p gives rise to a 3s
function which has the same exponent as the d-functions, This redun-
dant function may be eliminated in the SCF procedure by the basis set
transformation to symmetry-adapted functions, The effect of the 3s
function is very small at the SCF level, but as regards the correla~
tion energy it may be largera. Elimination of the 3s function is top=
ical if the importance of d functions is to be examined or if compa-
rison is to be made for calculations performed with lobe and Cartesian
Gaussian functions., This applies particularly to small sp basis sets.

The SCF calculations on the second=-row atoms with the lobe and
Cartesian sp basis sets established the essential equivalence of the
two approachesle. They also proved that exponents obtained for one
type of Gaussian functions will work equally well for the other, Since

that study128 much experience has also been acquired with molecules,
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Stated briefly, the two approaches provide practically the same re-
sultse,

Another way of using off-centered functions is represented by the
addition of bond functions to the usual basis functions centered on
the nuclei. These are usually the simple s-type GTF’s located on chen-
ical bonds and lone pair orbitals; sometimes also p-type GTF’s are
centered on the same place ifsthe s-type bond functions, Again,the

2

first idea is due to Preuss . The aim is to improve the electron

density around the chemical bonds and in electronic lone pairs upon a
moderate augmentation of the basis set. Ideally, the effect should be
the same as with the addition of a set of polarization functions, but

at a considerably lower cost. The utility of bond functions was tested

133-145 by the calculations of various physical properties of mole~

cules such as for example force Constant5134'139

, molecular geometries
140,142-144

and energy differences 143

, dipole moments™ ™, and proton poten-
tial curves in hydrogen bonded systemsl45. Use of bond functions is
topical especially with large molecules, where the addition of a com=
plete set of polarization functions is prohibitive, However, the bond
functions can hardly be expected to substitute fully the polarization
functions in applications in which the angular polarization is impor=
tant. This is the case for one~electron properties; the quadrupole
moment of the nitrogen molecule may be taken as an examplelAl. As re-
gards the practical use of bond functions there is a drawback that
general rules for selecting exponents and positions of bond functions
are still lacking, It appears that the location of bond functions at
the midpoint of bonds is a reasonable choicelaa'ldo, Relevant contri-
bution to this problem originated from the Theoretical Chemistry Labo-

ratory of Vienna Universityl35'136

persl35'138 it appears that the exponents as well as the positions of

. From the results of the cited pa-

bond Gaussian functions do not depend much on the specific molecule
but rather on the particular bond.

Another favorable finding was reported by Burtont?43

that the exm
ponents of bond functions optimized at the SCF level and with the in-
clusion of the correlation energy (by the CEPA method) are rather
close in absolute value and that bond functions are very effective in
accounting for correlation effects.

The last approach dealt with in this section is the Floating
Spherical Gaussian Orbital (FSGO) model and related methods, The orig=
inal FSGO model introduced by Frogy146-148
chemical bonds in terms of localized orbitals, in a very close cor=

respondence with chemical concepts, Each localized orbital (inner

is very simple. It treats
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gshell, bonding orbital or leone-pair orbital) is represented by means
of a floating spherical Gaussian function of the following form

2)3/4
i

py = (2/m¢ exp [—(r - Ri)z/?il (2.25)

The parameters to be varied are the orbital radius 9y and the space
coordinates of the orbital center vector Ry The orbital radius 9y is
related simply to the orbital exponent by

1
o = — (2.26)

92.

The Slater determinant for a 2n-electron system is expressed by means
of n localized orbitals of the form (2.25). Since the model has only
nonlinear parameters, instead of the usual iterative SCF method the
direct search method is used. The technical details and the descrip-
tion of the computer program may be found in the original paperl47.
with the FSGO model rather numerous calculations have been reported
50 that the virtues and shortcomings of the approach were well estab~
1ished148"150. The results obtained conform to what might be expected
for such a simple approach, Stated brieflylSO, the FSGO model is a
useful alternative to the often less sccurate semiempirical methods
or to the more time-consuming &b initio LCAO-MO procedures, A feeble
point of the FSGO approach is a poor representation of m~orbitals and
lone pairs, This is reflected, for example, in poor energy comparisons
149,150 and
in predictions of bond anglesl51 for molecules such as CH,, OH., and

2
NH, which contain lone pairs. Among possible improvements of the orig=
inal FSGO model the most natural one is the basis set extension by

between molecules with different numbers of multiple bonds

describing each electron pair by means of a linear combination of

floating spherical orbitalslS2'155,

3/4

20,
Ly ® Nizgjcﬁﬁcjﬁgg exp [—(xiﬁ(r - Rig)ﬂ (2.27)

Parameters which are now to be optimized are all exponents 0,0 Or=
i EX-

L

bital center position vectors Riel and linear coefficients Cy
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tension of the basis set leads to & considerable improvement of cal-

152,153 _ 153
and spectroscopic constants .

culated molecular geometries
This is, however, associated with a rapid increase in the number of

nonlinear parameters which have teo be optimized (Civ ays R, for each
added spherical lobe). It was therefore concludedl®3 that for prac-
tical purposes the traditional SCF MO~LCAO approach is preferable to
this general extension of the FSGO model. Obviously, if the advan=-

tages of the FSGO model are to be retained, some restrictions on the
expansion (2,27) must be imposed. In the so called "double Gaussian"

approach154'155

a bond which is critical for the problem studied is
represented by two sphericel leobes, but otherwise the wave function
is based on the original FSGO model, This approach is very effective.
For example, the simple FSGO method gives & barrier to rotation in
ethane of 23,8 ' kJ/mol, If a symmetrical pair of lobes is used to rep-
resent the C-C bonding orbital, the torsional barrier is improved156
to 12,9 kJ/mol, compared to the experimental value of 12,6 kJ/mocl, In
our opinion the echieved results alone are not so important as the
finding that the idea of FSGO permits various improvements and exten=

157,158

sions of the simple FSGO model. The most fruitful among them

is the molecular fragment model of Christoffersen and coworkerslSA’
155. In this method simple FSGO’s of the form (2,25) are used as ba-

sis functions, Their parameters Py and R, are determined via energy

minimization calculations on molecular fiagments such as e.g. CH4,
'CH3, NH3, 'NHZ, HZO and "OH that are chosen to mimic the various
anticipated bonding environments, The fragments and their associated
FSGO“s are combined appropriately to form the large molecule of inter-
est, and an usual iterative SCF calculation is carried out, in cone
trast to the original FSGO approach., Each molecular orbital p; is

given by

PN
¥y = EZ: Eji Cﬁi XQ (2,28)

A=l k=l

where 1ﬁ are either simple FSGO"s or combinations of two FSGOs for
f-type orbitals., In the latter case the two FSG0"s are placed symmet-
rically above and below the central atom, on a line perpendicular to
the plane of atoms, in analogy to Gaussian lobe functions. The sums are

taken over all fragments (P) and orbitals within a fragment (N,). Para-

Al
meters of FS5G0°s are used without modification in molecular calcula=~
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tions. This is a very advantageous feature of the molecular fragment
approach because the optimization of nonlinear parameters in the FSGO
model becomes troublesome for large molecules, Compared to current ab
initio calculations, the number of basis set functions in the molecu~
lar fragment approach is smaller than it is in a standard minimum ba=
sis set approach, In spite of their small size, the basis set in the
nolecular fragment approach are highly flexible with respect to the
bonding environment in the molecule. This flexibility originates from
the fact that FSGO basis orbitals contain all GTF components, i.e. s,
p, d, f, ... . This may be shownlsg by the expansion of a F3G0 in
terns of atomic Gaussian functions, Moreover, from the analysiﬁlso of
spatial transformation properties of FSGO basis sets it appears that
full sets of p- and d-type atomic orbital components can be included
in an FSGO basis using substantially fewer basis functions than needed
in traditional lobe~functions basis sets. Hence, in spite of the simm
plicity the molecular fragment model is a method which permits accept=
able accuracy to be achieved even with molecules as large as anthra-

cen‘e161 and pentapeptideslsz.

2,H, Comparison of Slater-Type and Contracted Gaussian Basis Sets

When comparing STO and CGTF basis sets of a particular size, it
should be taken into account that with STO basis sets the results are
only due to exponents of STO"s, whereas with the CGTF basis sets also
the effects of the number of primitives and their contractions are in-
volved, Furthermore it should be kept in mind that the total energy
is a rather insensitive test of the quality of wave functions, so that
alsc some other molecular properties should be considered, Finally, a
rigorous comparison should also include calculations going beyond the
Hartree~Fock limit, y

To start the discussion in a practical way, we comment first on
the comparison of computational times involved, Unfortunately, there
is a lack of data which give a direct evidence, To the best of our
knowledge, the only information of this kind communicated so far is
due to Hosteny and coworkers7. These authors reported the calculations
on the water molecule performed with the STO DZ and CGTF DZ basis sets
on the same computer, With the STO basis set, the computation time for
the one~ and two-electron integrals over atomic functions was ten
times longer than with the CGTF basis set! Although the ratio depends
obviocusly on the efficiencies of the respective programs, a signifim
cant difference in cost is generally to be expected. For other stages
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of the calculation (alsc for CI with singly and doubly excited
states), the times were roughly comparable,

As regards the quality of results, some comparison was already
made in Table 2,10, The entries in Table 2,10 are typical in the fol-
lowing peoints: (i) a considerable range of energy with the minimal
basis sets; (ii) rather small energy differences with the DZ basis
sets; (1ii) overestimation of dipole moments with optimized minimum
and DZ basis sets (good agreement with experiment for minimum STO ba-
sis sets is evidently fortuitous), Table 2,10 contains also the DZ
data of Hosteny and coworkers’: the total energy given by the CGTF
basis set is seen to be slightly lower than the STO energy. Table 2,13
suggests that this is a general rule rather than a special case for

Table 2,13
Comparison of total energies (E/Eh) given
by STO DZ and GGTF DZ basis sets®

coTE? STO Ref,©
N, -108.8782  ~108.8617 163
co ~112.6850  ~112.6755 56
NH, ~56,1760 -56.1717 164
H,CO ~113,8293  -113.8119 164
a

For both basis sets the exponents are op-
timum for atoms. Essentially experimental
p geometries used for all molecules,

Taken from Ref, 123; Dunning”s contrac~
tion®S of the (9s5p/4s) set.

References to STO calculations.

M0, A similar table might be also set up for minimal basis sets,
Here, however, a comparison would be of little use because of large
ranges of the total energy oﬁing to its dependence on the choice of
870 exponents, number of Gaussian primitives, their exnonents and the
way of contraction, Nevertheless also for minimal basis sets it is
possible to state that the CGTF basis sets yield typically lower ener=
gies than the STO basis sets, The CI calculations of Hosteny and co~-

workers7

with the DZ basis sets permitted also the comparison of cor=
relation energies given by the two basis sets, The valence shell cor=
relation energy was larger with the CGTF basis set, whereas the inner

shell correlation energy was better accounted for by the STO basis set.
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The fact that the minimum and DZ CGTF basis sets mostly give lower
energies than the corresponding STO basis sets, need not be overempha-
sized, In actual chemical applications the absolute magnitude of the
total energy need not be the most important criterion. For the pur-
poses of comparison, it is more important to know the trends of calcu=
lated molecular properties on going to larger basis sets. Some inform=
ation on this topic may be inferrcd from the results of calculations
on N, collected in Table 2,14, Again, it is seen that with the [4s3p]

Table 2,14

Comparison of CGTF and STO basis sets® for N

Slater Gaussian  Gaussian

(4s3p) (4s3p] [4s3p2d]
Total energy Esep ~108,8868 -108,8877 -108,9732
second moments®?® {x2> 7.7443 7.5704 7.6061
‘ (%> 24,4246 24,3304 23,5666
Quadrupole momentb @zz -1,7121 -1,7918 ~0,9923
Potential® {1/ > 21,6363 21,6367 21,6601
Electric field E,(N) ~0,1294 -0.2138 -0,0322
Electric field gradient qZZ(N) 1.2433 1.2480 1,3574

g Refs, 59, 114, All quantities in relative values, see Appendix A,

Relative to the center of mass.
Electronic contribution,

basis set the CGTF energy is lower than the STO energy. Some one-elec-
tron properties given by the two basis sets are significantly dif-
ferent. The respective differences are however much smaller than in
the case when either of the two basis sets is compared with the
[453p2d] CGTF basis set containing polarization functions. Consider
for example the quadrupole moment. The value given by the [4s3p2d] ba~
sis set is very close to the value of -0,9473 ea, obtained”® at the
65,166 of =1.1 eai.
The two basis sets of the [ASBp] size yield guadrupole moments that

Hertree-Fock limit and to the experimental value

are markedly different from these values. A more detailed analysis of
the trends upon the basis set progression is permissible for the water

molecule, for which extensive studies were performed6’8’167

. By making
use of a part of the tabular material from the cited papers and by

supplementing it for data from other paperslss'lsg, it was possible
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to set up comparative tables for the total energy (Table 2.15), one=~
~electron properties (Table 2.16), calculated geometries and force
constants (Table 2,17) at both the SCF and CI levels., From the entries
in these tables it is possible to draw several conclusions, essential-

ly in the form expressed by Rosenberg and c0worker58’167:

Table 2,15

Comparison of CGTF and STO basis sets?® for H,0

2
Basis set Energy Dipole
" moment
Primitive CGTF or STO SCF  CI=SD~FC” CI~SD®  (SCF)
1 ’(453p/25) ~76,0200 . 9,26
2 (9s5p/4s) (4s3p/2s] ~76,0108 8,95
3 (554p/3s) ~76,0238 8,99
4 (1086p/5s) [5s4p/35] -76,0207 9,05
5 (4s3pld/2slp ~76,0596 ~76,2690 -76.2873 7,16
6 (9s5p2d/4slp) [4s3pld/2slp) ~76,0495 ~76,2541 -76,2704 6,87
7 (11s7pld/6slp) [4s3pld/2slp]  ~76,0554
8 (5s4pld/3slp -76.0632 -76,2777 ~76.3163 6,85
8 (1ls7pld/6slp) [5s4pld/3slp] ~76.0520 ~76,2665 ~76,2826
10 (5s4p2d/3slp -76,0642 ~76,2990 ~76,3398 6,65
11 (lOsSpZd/4slp)[534p2d/231p] ~76,0589 ~76,2885 ~76,3232 6,87
12 (13s8p3dlf/  [Bs5p3dlf/4s2pld]~76,0659

6s2pld)
Estimated limit

4 ~-76.0675 ~76.374 -76.4382 6,10°%

+ 0,0010 * 0,006 # 0,0024

Energies in relative values E/EL, dipole moments in 10730 Cm, Cal=~
culations 1-4 from Ref. 6; 5, 8, 8, 10, 11 from Ref, 8; 7 and 12

b from Ref, 168; 9 from Ref, 169,

CI including the SCF function and all single and double excita-
tions from it, except that the lay; orbital is constrained to be
doubly occupied in all configurations (frozen core).

CI including the SCF function and all single and double excita-
g tions from it,

Ref, 8, 87
Experimental value®’,

(1) In contrast to minimum and DZ basis sets, the SCF energy given
by a larger STO basis set is always lower than that given by the CGTF
basis set of the same size (in terms of contracted groups). A plausi-
ble explanation is the role of the number of primitive Gaussians., Ac=-
tually in larger CGTF basis sets, the number of primitives is usually
less than the double of the number of STO"s. As documented by calcula~
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Table 2a16
gomparison of some one~electron properties of H,0 calculated with STO
‘and CGTF basis setsa

STO (5s4p2d/3slp) CGTF [6s4p2d/2slp)

SCF CI~5D SCF CI-SD Experiment
Dipole moment (10720 Cm)
# 6, 6549 6,4021 6,8661 6.,6443 6,1863 * 0,002
Quadrupcle moment tensor® (10"40 Cm2)

Q“ 8,419 ~8,396 ~8,326 ~8.316 -8,34 * 0,07
%W 8,736 8,706 8,633 8.616 8,77 * 0,07

-0,317 -0.310 -0,307 =0,300 -0,43 t 0,10

Diamagnetic susceptibility tensor®! ibe (10 "12 ms/mole)
ng 15,262 15,497 ~15,239 15,487 14,6 * 2,0
02 - 15 -0.954 -0,959 0,971 0,973  -1,06 * 0.0l
Toy - 13, 0,886 0,891 0,904 0,807 0,95 * 0,01
Average diamagnetic shielding at the oxygen and hydrogen nuclei
(in ppnm)
”gv (0) 416,09 416,28 416,07 416,10 ~414,6
ogv (H) 102,42  102.33 .102.39 102.31 102,4
17 . b,d .
0 quadrupole coupling tensor eqQ/h (MHz)

xx component 11,58 10,82 11,50 10,79 10,17 * 0.07
yy component -10,37 -9,71 ~-10,28 -9,58 ~8.89 * 0,03
(9,7 = Gyy)/a,,  0.791 0,779 0.788  0.775 - 0,75 * 0,01
g Relative to the centre of mass.

Only two components given; the third can be determinsd from the
zero trace condition, q g g
The average susceptibility y,, and the anisotropies Ygg =~ Yav (g =
d X,y) are given. g

Computed from the electric field gra gnt q at tha oxygen nucleus,
using the value Q = ~0.0867 x 10-20 for the 170 nuclear guad=
rupole moment,

tions 6 and 7 (in Table 2,15), the extension of the primitive set may
be important, Some effect may also be assigned to the extent of expo-
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Table 2,17

Comparison of gecmetries and force constants calculated for H?o with
STO and CGTF basis setsi®’+169

STO (5s4p2d/3slp) CGTF [5s4pld/3slp)

Property SCF C1-80% C1-60Q° SCF  CI-SD-FC?  Experiment®
r (10710 n) 0.9398 0,9527 0,9573 0,944 0,960 0.957
% (degrees) 106,08 104,93 104.58 105,3  103,8 104, 5
£ (10° n/m) 9.7934 8.8757 8.539 9,50 8,44 8. 45
f...(10° N/m)  -10.36 -9,70 -9,50 -10,00 -9,84 -9, 55
fua/r-(10° N/m) 0.8751 08135 0,801 0,816 0,752 0.76

ﬁ See footnotes in Table 2,15,
CI=-SD with the estimated contribution of quadruple excitations.
For references see Ref, 167,

nent cptimization in the two basis sets, Note that the lowest SCF en-
ergy for H,0 obtained so far was attained with the CGTF basis setha.

(i1) The two basis sets give almost the same valence-shell corre-
lation energy., Its magnitude is dependent predominantly on the number
of virtual orbitals, The inner~shell correlation energy is signifi
cantly larger with the STO basis sets,

(11i) In the calculation 10 (see Table 2,15) the SCF energy ap-
proached the Hartree-Fock limit to within 0,003 Ep - The convergence of
the correlation energy towards the exact value is considerably slower.
For the same basis set only 75% of the correlation energy is repro-
duced, the difference from the "exact" value being 0.098 € -

(iv) One-electron properties, molecular geometries and force con-
stants given by the two types of large basis sets differ rather little,
If correlation energy is accounted for, which is important in some
cases, excellent agreement of calculated physical properties with ex-
periment is found. The only significant discrepancy encountered with
the water properties concerns the deuteron quadrupcole tensor, which
implies a deficiency in the description of the wave function in the
neighbourhood of the hydrogen atomsa. In contrast, in some cases such
as ng anciva(O), the computed property values are presumably more
accurate than the experimental data, Also the statistical uncertain-
ties in the cubic and diagonal quartic force constantsle7, not pre=-
sented in Table 2,17, are considerably smaller for the theoretical
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than for the experimental values. A thorough examination of the poten-
tial energy hypersurface and spectroscopic constants of the water mol-
gcule was reported recently by Hennig et 31.170 who used a very ex-
tended CGTF basis set [7s5p2d/4s2p] at the SCF, CI-SD and CI-SDQ lev~-
els. Their data are essentially in agreement with previous results
that are presented partly in Table 2,17, _

From the results an important conclusion follows viz, that for
large basis sets the differences in actual basis sets are not reflected
significantly in the computed molecular properties, It is just this
feature which is typicsl for ab initio calculations,

To summarize the discussion, the Gaussian and Slater basis sets of
the same size and quality give comparable energies and the other mole=

cular properties.

2.1. Remarks on the Selection of the Basis Set

This section contains a few practical remarks on the compatibility
of .the basis set selected with the problem to be investigated. As late
as in 1971, the situation was characterized by Rothenberg and Schaefer
133: “the selection of basis functions for ab initio molecular calcu=
lations still seems to be more an art than a science”. Soon after this
time considerable experience with basis set selection was accumulated,
Although for a particular problem it is hardly possible tc give a sug=
gestion for an unequivocal basis set selection, a few general rules
may be formulated that facilitate the situation considerably,

First of all, when selecting a basis set for a particular problem,

some attention must be paid to what Mullikenl71

calls a “good balance"
of the basis set, A well-balanced basis set ensures that any atomic
(or molecular) property is described with the relative error which is
roughly equal for all valence orbitals, For the first-row atoms, the
problem is equivalent to finding the right balance between the number
of s= and p-type GTF s and to decide how many s~type GTF’s one should
place on a hydrogen atom in conjugation with s/p sets in molecular cal-
culations, According to van Duijneveldt67, the s/p ratio of the fol~
lowing primitive sets is too low
2/1 3/2 4/3 6/4 8/5 9/6 10/7 12/8

whereas that of the following is too high

4/1 s8/2 7/3 9/4 1l/5 12/6 13/7 15/8
If the size of the basis set for a first~row atom is (nsmp) then the
use of m or m+l s~type GTF’s on H is recommendable, Generally, the
equally balanced set for polyatomic molecules means “poor atomic set



for all atoms, medium set for all atoms, good atomic set for all the

atoms in the moleculeleg". . !
Usually, the exponents of hydrogen s-functions in molecules are

scaled by a factor of 1.2 for STO basis sets, This corresponds to the

.
multiplication of the GTF exponents by a factero6,59

of 1,44, For the
other atoms best atomic exponents are mostly taken, at least for DZ
and larger basis sets,

Polarization functions should be added only to good atomic basis
sets (DZ or better). Otherwise the polarization functions not only in-
troduce the polarization effects but also substitute the effect of
that part of the sp set which is missing in the atomic basis setlﬁs.

The general rules noted above make of course not the problem of
the basis set selection solved. In some cases the use of basis sets of
nonstandard composition is required. We comment on some of them. First,
the rules conform to neutral and positively charged species, For nega-
tively charged species the basis set extension is recommendedl2l'
171-178. For molecules of the first~row atoms this means to augment
the basis set with diffuse p~type functions, in some cases possibly
also with s-type functions on heavy atoms and hydrogen atoms, Dunning
and Hay121 recommend augmentation of the (9s5p) GTF set with the p-type
functions having the exponents: B (0,019); C {0,034); N (0.048); ©
(0,059) and F (0,074), If the usual contraction to the DZ set is em=~
ployed, the resulting basis set for the first-row atoms is of the
[493p/2s] size. The effect of the addition of diffuse p=-functions is
very large. It brings the computed electron affinitie512l and energies
of reaction containing negative ionsl79’180 closer to experiment by as
much as 40 kJ/mole, The effect of diffuse p-functions cannot bevsub-
stituted by the addition of polarization functions to standard sp ba-
sis sets, Diffuse functions are also topical with the transition met~
al compounds. As shown by Hay181 a set of d-functions optimum for the
ground state of a transition metal element should be augmented by a
single diffuse 3d function. This accounts for the fact that electronic
configurations of transition metals in their ground states and com=
pounds are different (the atomic ground states are mostly 452342
whereas in molecules the 4s3d""% and 3d" configurations are usually
met) and that 3d orbitals become more radially diffuse in the sequence
45234772, 493¢™1, 34", '

Another type of applications, in which diffuse function must be
used, are calculations on electronic spectra. With Rydberg states, the
importance of diffuse functions is obvious. By their electronic struc-~

ture the Rydberg states resemble the corresponding molecular cation
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plus a weakly bonded electron which is housed in a molecular orbital
formed predominantly by atomic orbitals with higher than valence

shell prinéipal quantum numbers, i.e. by 3s, 3p, 4s, ,.. orbitals with
the first-row atoms, For exponents of these diffuse functions use may
be made of appropriate Slater exponents which may be transformed to
Gaussian exponents as noted with polarization functions in Section 2,F.
punning and Hay121 suggested a set of single GTF”s optimized for the
Rydberg states of the first- and second-row atoms, If a higher basis
set flexibility is required, they suggested a standard split to two
diffuse functions, It should be noted that for the representation of
Rydberg states the diffuse functions need not be necessarily placed at
the atomic centers, The nature of Rydberg states permits placing them
162-185 at the center of charge of the limiting ion state or simply at
the center of the molecule, In some cases it is necessary to augment
the basis set with diffuse functions also in treatments of valence~ex«
cited states since the latter may contain a considerable admixture of
Rydberg statesles. This is topical for the regions of avoided crossing
of two states, one being a valence and the other being a Rydberg

state. Among many known examples, we point out avoided crossing of 2§t+
187 and CF188

states that were believed to be entirely valence in character on the

states in OH radicals. Nevertheless also some excited
basis of semiempirical calculations are substantially diffuse, A strike
ing example are the lowest ﬂ—»ﬁ[*singlet states in ethylene and buta-
diene. Ab initio calculations overestimate these m— 7* transitions
drastically, unless the basis set is augmented with diffuse functions,
in which case a very good agreement with experiment is achievedlag'lgo;
A special selection of the basis set is also necessary for calcu~

lations of polarizabilitieslgl'lg2

. A meaningful calculation requires
the use of a large flexible basis set containing diffuse d-functions
(and also the inclusion of correlation effects). An interesting type
of basis sets oriented to calculations of polarizabilities was pro=

posed by Sadlejlg3'194

-field-variant Gaussian basis set, i,e, a besis set explicitly de-

« In his approach use is made of an electric=-

pendent on the strength of the external electric field perturbation.
This approach permits polarizabilities to be obtainad without polariza-
tion functions, provided the basis set contains additional p-type
Geussians with rather low orbital exponents,

For some other molecular properties the wave function must be acm
curate in the proximity of nuclei. Such a property is for example the
hyperfine splitting caused by Fermi contact term which is proportional
te the total spin density at the nucleus. Among the one~electron pro=-



perties, it is the electric field gradient (and the derived deuteron

quadrupole coupling tensor) which is very sensitive with regard to the

quality of the wave function near the nucleus, espscially at the hy-

drogene.

For the sake of compactness, we embodied the knowledge about the

basis set selection in Table 2,18, This Table provides of course only

Table 2,18

Compatibility of the basis set with the problem treated

Lowest appropriate
Problem size of the basis set

Comment

Molecular geometry

Force constants

Rotational barriers

Inversion barriers

Energies of reaction

One-electron properties

Polarizability

Electronic spectra

Fine structure param~
eters

Interaction of ions and
dipoles, hydrogen bond-
ed systenms

weak intermolecular
interactions

Minimum

Dz

Mindimum

DZ+P

DL

DZ4+P

DZ+P

Large

Minimum, DZ
Minimum, DZ

Minimum

Large

Except for dihedral angles
and pyramidal structures
where use of polarization
functions is needed

Mostly reasonable agreement
with experiment

For Ho0p and some other mol-
ecules use of DZ+P sets is
required

Polarization functions are
very important

For semiquantitative energy
predictions

Accurate predictions; for
negative ions diffuse func-
tions must be added

Agreement with experiment
for minimum basis sets is
fortuitous

Two sets of polarization
functions, one with diffuse
functions (a%jns 0,1)

Diffuse functions for Ryd=-
berg states

Good representation of in=
ner shells

Appropriate for relative
stabilities and geometries;
counterpoise correction
should be tested

Diffuse polarization func-
tions in addition to common
polarization functions;
counterpoise correction
should be tested
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a rough guide. Mcre detailed information on the basis set selection
may be found with particular topics in Chapter 5 énd papers cited
there, Table 2,18 refers to SCF calculations, It should be kept in
mind that in calculations with inclusion of the correlation energy,
the choice of the basis set is governed by different rules, General-
ly, if correlation effects are to be included, use of a set smaller
than the DZ+P basis set should be avoided unless the approach at the
scF level is completely meaningless and the use of such a large basis
set is prohibitive,



3, SCF Calculations

This chapter is devoted to SCF calculations which represent the
overwhelming majority of the reported ab initio calculations. We are
not going here to treat general problems of SCF theory which are also
inherent in popular semiempirical methods such as PPP and CNDO, These
features will be intentionally suppressed. Instead, emphasis will be
laid on specific problems of the ab initie SCF approach that are not
encountered in semiempirical MO methods and on the progress achieved
in solution of these problems in last years,

As with semlempirical methods, the problem to be solved is given
by the Hartree~Fock~Roothaan (HFR) equations

};'(F(‘U - E’isyv)civ = 0 (3'1)

where Fyy are matrix elements of the Hartree~Fock operator, £y orbite-

are coefficients of the

al energies, SFV overlap integrals, and c,
195

iy
LCAO expansion (2,1), For closed-shell systems it holds

Fw = Huy + Guy (3.2)
F,U.U = H(xw + Z}?Z D)\0~ [(({L\)p\@’) - “?l‘ ((U}!)‘ﬁ):} (3'3)
6 -~ -

Generalization to open-shell systems does not represent any specific
problem of ab initio calculations and therefore it will not be treated
here. In eqgn., (3,3), H,, denotes the matrix element of the one-elec=-
tron part of Hamiltonién, Duv is the element of the density matrix

oCccC
Dyy = 2 E: ci#civ (3.4)
i
and (W Ao ) are two=-electron integrals

1
(wide) = //76@(1))(» (1) ==y (2) g (2) dryom, (3.5)
12
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In semiempirical methods of the PPP and CNDC types, the Hyuy elements
are approximated by expressions containing empirical parameters, In
gb initio treatments they are of course calculated rigorously. Since
the one-electron part of Hamiltonian {1.1) contains two terms, the
Hay elements are composed of two contributions

Hoy = Tuy + Vi (3.6)

which are due to kinetic energy and nuclear attraction operators,
Hence besides the overlap and electronic repulsion integrals, it is
also necessary to compute in ab initio caslculations the Tuy and Vigw
integrals:

1
T = = /%#(1)—2—\72(1)%(1) o7, (3.7)
| -~ Z
Viy = = / (1) ) Sy (1) dr (3.8)
¢ Yo & e '

Ab initio calculations also differ considerably from semiempirical
treatments in the second term of the ﬁav element (3.2) which contains
the summation over the electronic repulsion integrals., Most of the
latter are neglected in semiempirical treatments, whereas in ab initio
calculations they are all considered and computed accurately unless
they are vanishing or smaller than an a priori chosen threshold (see
Section 3.C.).

At the ab initio level, the total electronic energy is given by

— 1 v v 1
‘) = 1;2;% oy + ;%}_, ow%f}ﬁ#% [(@0) - — @io)]  (3.9)

Y

The total SCF energy is obtained by adding the nuclear repulsion en-
ergy

. 7.7
EeEgy v ). 22 (5.10)
ASe  Ras
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As with semiempirical methods, the system of HFR equations (3,1)
is solved iteratively, The experience acquired with semiempirical
treatments may be very profitable here because many problems are com~
mon to both semiempirical and ab initio calculations, We mean for ex-
ample convergence of the SCF procedure, guess of the starting eigen=~
vectors, convergence hastening and damping of oscillations., There are,
however, some specific problems of ab initio calculations that are not
gncountered in semiempirical calculations. The most important among
them is a problem of rapid evaluation of integrals appearing in eqgn.
(3.2), in particular, of two-electron integrals (3.5). It should be
realized that for a basis set of n functions the number of two-elec~
tron integrals is of the order n4. This is an essential difference
from semiempirical methods where the number of integrals is propor-
tional to N° (for the PPP method N is a number of atoms involved in
the m-electronic system, for CNDO it is the number of valence-shell
atomic orbitals), Even for rather large molecules, the N? integrals
may be stored in a computer core during the whole run., This is not
possible with ab initio calculations. The integrals are stored on a
magnetic tape or disk, Thus, in addition to the limiting factor of
computer time we are to face another problem, namely a problem of data
handling and data retrieval. In Chapter 2 we discussed the reduction
in the number of integrals by means of contraction of Gaussian basis
sets, This facilitates manipulation of integrals and saves computer

time. As shown by Clementi196'197

continucus gains are also due to
improvements in the numerical analysis, programming techniques and or=-
ganization, and in making more efficient use of increasing performance
and utilities of computers. In this chapter we comment on the most im=
portant procedures that save computer time in the SCF calculations.
The two consecutive steps of the SCF calculations, evaluation of inte-
grals and solution of the HFR equations (3.1), are discussed separa-
tely, The first step appears to be still more important because it 1is
the most time~consuming, However, prior to discussing the possibili-
ties of reducing computer time for evaluation of integrals, it is prof-
itable to note briefly on the way how the integrals are computed (for

more specific information, see special review947’198).

3.A. Integrals over Slater-Type Orbitals

In early days of ab initio calculaticns, the situation with regard
to developing effective machine subroutines for the rapid evaluation
of integrals over ST0"s seemed hopeful. According to Parrg,
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"a 1951 conference promised then shortlylgg; in 1958 there was an
200’201. But, in 1962, a letter
gppeared in the Communications column of the Journal of Chemical Phys=

gnnouncement concerning some of them

ics describing a new method for obtaining the worst of them, which

20?. At the present time (i.e, 1963), in fact, computer

ought to work
routines for two-center integrals involving ls, 2s, and 2p orbitals
are routinely available in several laboratories, and routines for two=
-center integrals for 3p, 3d, etc. are about to become available.
Three= and four-center integrals are much harder to come by, although
Boys is systematically producing them203".

This documents that in spite of a great effort the solution of the
problem proceeded slowly. The first effective computer programs for
routine calculations were restricted to diatomic and later also to lin-
ear polyatomic molecules., For polyatomic molecules of any geometry
several computational methods have been developed. It appears that the
most frequently used among them are the Gaussian transform method of

202,204 205,

Shavitt and Karplus and the L-function method of Barnett

206. The most recent review on this topic was reported by Saunders198
and the most widely used program appears to be POLYCAL, QCPE 161, writ-

ten by Stevenszg.

3,8, Integrals over Gaussian~Type Functions

GTF s possess an important property namely that the product of two
6TF s having different centers A and B is itself a Gaussian (apart
from a constant factor) with a center P somewhere on the line segment
AB., This property simplifies considerably the computation of integrals
because it reduces two-center integrals to one~center integrals and
four-center integrals to two-center integrals., Specifically, for s=-
-type GTF"s the following holds

2

ar - Brg -3r5
8- A'e B:Kez

P (3,11)

where K is a constant

K=e {3.12)

BBe= (A =B )%+ (A - By)2 + (AL -B)R (3.13)
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(3.14)

(3.15)

and similarly for P_ and P_. When the GTF’s are not ls orbitals, an
extra factor such as xjZl xB2 appears in their product, According to

the Saunders” notationﬁga

&1, Iy+2, D1 om ok
X, xg© = E:; f 10 2'PAx’PBx)XP
k=0
where
PAX = PX - Ax
XP BOX - PX
iajmk
El Q2 M 4
- - 0-if 8N g -3/l
Y e O il ] 1 2 2
fk(ﬂl,ﬁz,PAx,PBx) 3 Z PA, ( ) PB_ '
i=0  j=0 V3 3

(3.16)

(3.17)

(3.18)

(3.19)

where the summations expand over the indices i and j with the restric-

tion i+j=k, Analytical formulas for integrals over s-type GTF’s were
derived first by Boysal. For the purposes of the forthcoming discus-
sion it is useful to present here his formulas for the unnormalized

functions
oaf ~
372 "~ AB
o cop
(Tallg) (oc+(3) e
owp
| 200 P VIR f w2
(Lal Tlng) = <3 - A-Bz)(—-—.—-...) e %P
o+ o3 o+ 3

(3.20)

(3.21)
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o -
5 - 2P ap°

T "y
(yalVelig) = s Fo [(x+B)CP%] e c+p (3.22)
oL+

5/2

2n

(m+{5)(?+c§)‘/0¢+6+ﬁ

(XatelZcto)

B y5 -
AB” - %

. [ a+f) 3’+‘S ‘2] e LEP yws (3.23)
° q,+{3+3)+5

In this formulas, Yar L* Ycr Yp @re. respectively, GTF’s with expos
nents o, f3, Y J . The points P and Q lie on AB and CD, respective~
ly, and are given by egn. (3,15), F, is defined by

=
Fo(x) = —J[::erf(fﬁ) ) x> 0 (3.24)

° 2V x

where erf is the error function,

From the formulae it is seen that the computation of integrals is
rather simple. The most time-consuming step is the evaluation of the
Fo furiction., In modern programs the values of F are obtained by means

of tabular 1nterpolat10n198

. In the original Boy s approach the inte-
grals for higher quantum numbers were derived from basic formulas
(3.20)~(3,23) by differentiation with respect to parameters A Ay
etc. At the present time the integrals are calculated in another way
which was described by Taketa and coworkersgo.

We do not present here formulas for integrals over GTF’s with
higher azimuthal quantum numbers. These may be found in a recent pa=
per by Saunders198 where also an analysis is given for the effective

integral computation,

3.C. Computer Time Saving in Evaluation of Integrals

Discussion in this section is focussed on the computation of inte-
grals with contracted Gaussian basis sets, though many approaches
noted here are of general importance and may be applied also to STO
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basis sets. This holds especially for storing a part of the data ob-
tained in a particular run and having it available for later use in
subsequent runs, Very efficient data handling of this kind is pro=
vided for by making use of routines "merge", "more", "add" and “sub=
stract" invelved in the program IBMOL~4207. These routines may be eas-
ily introduced into other progranms, though modern programs mostly have
these facilities, To illustrate the utility of such a data handling,
consider for example .the potential curve for the motion of hydrogen in
the hydrogen bond of the water dimer. For a DZ basis set the total
number of basis functions in the dimer is 28 which means that it is
necessary to compute 82621 two-electron inteqrals (no use is assumed
of the plane of symmetry of the system), If the calculation is re-
peated for a new geometry, which differs from the original one only by
the position of the proton in the hydrogen bond, the two=electron in-
tegrals for 26 functions preserve their original value and may there=
fore be used from the original list of integrals. Their number is
61776, Hence it is sufficient to recalculate only 20845 integrals
which means approximately a three quarters time~saving. The calculation
noted is of course rather modest. In calculations on very large sysg=

tems, such as e.g. the calculation on the hydrogen bond in the systen

i . 208
cytosine~guanine

., the time-saving is considerably higher. Equally,
one can apply this procedure to basis set optimization in which the
exponent is varied for one or several functions, to cases in which the
size of the system treated is to be enlarged or reduced, and to cases
in which the calculation is to be repeated for a larger or smaller ba-
sis set, The data storing is also desirable for having the possibility
of restarting a run at any point after the interruption,

Another way of reducing the time of integral evaluation is based
on the use of symmetry, Probably the most ingenious use of molecular
symmetry, both local and that of the point group, is made in the
FOLYATOMZOS'210 program, Here prior to the proper calculation those
integrals are eliminated which are zero due to the symmetry properties
of basis set functions or which may be derived in absolute value fronm
others by means of any symmetry operation., Only so called "unique"
nonvanishing integrals are computed. Next integrals, which are related
to the unique integral by the symmetry properties of basis functions
and may differ from it only by a sign, are stored consecutively after

it. The integrals that can be derived from (uv]2e) by permutation of
indices

(WING) = (uulod) = (Duldo) = (Vulod) = (AOTY) = (AE|VA) = (BA|W) =
(GAIVL)
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are not tested on symmetry and they are neither computed nor put in
the integral list. Accordingly, they are referred to as equivalent in-
tegrals. Usually, 4z v, Az @ , (V) ¥ (AG) where (uv) = A(L~ 1)/2 +
Y. The efficiency of the use of symmetry may be demonstrated with a=
cetylene. For a DZ basis it is necessary to compute 45150 two~electron
integrals. If use is made of the D4 SYmmetry, which is the highest
synmetry of acetylene in the representation of Cartesian GTF’s, their
number reduces to 6558,

The two treatments just discussed refer to manipulation with in=
tegrals over contracted Gaussian or Slater functions, They have a com=-

mon feature - the improvement is achieved by means of program organie

zation. lLet us now pass from the data handling to the computation of

integrals itself, but restricting ourselves to contracted Gaussian ba=
sis sets. It will be shown that also here much may be gained by the
effective organization of the program. The discussion will be based on
the paper by AhlricthIl. Assume contracted GTF"s that are expressed

by linear combinations of primitive Gaussians centered in the point I

as follows
Y

xﬂz zklcigi(jjI,s,t,u) {3.25)
i

Assume next for the sake of simplicity that ¥ are of s-type, so that

s = t =u =0 and the normalized primitives in eqn. (3.25) beconme

'2oc,i 34 rx,i(r--ri 2&1 - aﬁri
= e = ( ) e (3.26)

<«
[
-
-
~—~—
L

T

T

A two-electron integral (uylho) may be written by using eqn. (3,25) as

.
(AYIAD) = Z ©3%5°% (93951 9,9¢) (3.27)
ilJrk:E

The direct calculation of (AV|AG’) over the summation (3,27) is inef=
fective because it involves redundant recalculation of many partial
terms. This may be best seen if eqn. (3.27) is rewritten in the folw
lowing ferm (compare (3.23) and take into account normalization of
primitives (3,20)):



(W) = }J ty, Z‘ tijal/?‘l:[a(ﬁ‘qz)] (3.28)
kL 0J
where
; fi‘f*;jj 752
B . 3/4, ., . \=3/2 Oyt
i1 cicjj/gigjd» = C c.(Aqﬁaj) (u& +(xj) e (3.29)
&, I + O(/J
pow — X (3.30)
oAy 0y
K, +a,lL
0 = KTx “Tpx (3.31)
X
W *+ oy
B = (g,. +q )-l (3.32)
ij 132
-1
a4 = (aﬁ + aﬁ) (3.33)

and where F = Z/ﬁfFO, FO being given by egn. (3.24), and 532 and 5@2
are defined as in egn. (3.13). From egns. (3.28)=-(3,33) it is seen
that a fast integral evaluation would be easy if the quantities ty
Py Py' P, and a4 could be kept in storage for all i and j. This

means, however, large requirements on the computer core used, Since

j’

the calculation of tiJ is the most time consuming, it is profitable

to keep in storage at least tij values, This is feasible for common
basis set with the number of primitives, say, n = 150, Another pos-
sibility is to divide tij and Ay 5 into blocks of appropriate length
and keep only those blocks which are currently needed in storage.

This principle of preserving and utilizing information common to sev-
eral integrals also permits effective computation of integrals over
p.d ... functions, although in a somewhat different way. As we learn=-
ed in Section 3,B,, the product of two primitive Gaussians can be ex-
pressed as a linear combination of primitive Gaussians centered at

the same point, Hence, if any of the two functions is of other than
$~type, then additional terms appear in the expression for the product
(see egns., (3.16) and (3.19)). These terms represent again information
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common to many integrals, Provided the same exponents are used for a
set of three p-functions Py py, P, which is the most usual case,
making use of the common information facilitates evaluation of as many
as 3* = 81 integrals and with a six~component d set as much as 6% =
1296 integrals. This idea is used very efficiently in the program2 2
gaussian 70, This program was developed for basis sets discusséd in
Ssection 2,E, that are typical of a "shell structure"., The constraint

v np,
to share a common value permits utilization of information common to

imposed on the exponents of valence~shell orbitals ns, Npys NP

a shell of basis functions; for a sp shell this concerns 4% = 256 dif-
ferent integrals over primitive functions. A more detailed information
may be found in the paper by Pople and Hehre213.

Comparison of various procedures, discussion on their merits and
drawbacks, and typical timings of current methods were reviewed by
pupuis and coworkerszld.

Consider now another way of accelerating the calculation of inte-
grals, a way of "controlled numerical approximation“, Its application
was prompted by the observatiocn that in large molecules many integrals

(uv]@) are almost vanishing197’zll'215

. Neglect of integrals smaller
than a chosen threshold manifests itself as a small error in the com-
puted SCF energy. This error may be estimated a priori. After some
numerical experimentation it is possible to acquire experience about
the magnitude of this error in its dependence on the chosen thresheld,
so that the accuracy of the SCF calculation may be defined a priori.
It should be realized that one works with a finite number of digits
anyway, so that this neglect of integrals represents by no means any
approximation but a procedure fully controlled numerically, Effective
use of this approach requires, however, a fast estimate of the magniw-
tude of (Wv|A¢) integrals, or contributions to them (gigjlgkgg) over
primitives, prior to their calculation. In order to arrive at a con~
venient integral test, let us continue in the analysis by Ahlrich9211.
For the terms B and F(x) noted above the following inequalities hold

(for the properties of the F function, see ref. 47,198):

-1

= (qij + Gip, é‘: (4quQkQ)—l/2 (3.34)

fx) S aw "M (3.35)

This permits us to estimate rigorously the contribution over primi~
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tives to the (4¥|Af) integral. By introducing the quantities

-1y

Uij = tijqij (3.36)
it follows from expressions (3.34) and (3.35)

1/2 =2 172
t5, 8 T2eB(FR%))| < (2/m)Y/ Uy U0 (3.37)

This estimate permits neglect of all contributions to the integral
(MY AB) for which uijukﬂ‘: T holds, T being a chosen threshold, 5ig~
nificant time saving is achieved with this procedure in very large
molecules or in molecular systems consisting of fragments sufficiently
separated, For such molecules the dependence of the computer time on
the basis set size is not as drastic as nA. Some typical timings are
given in the cited paperslgG'ZII,

The details of the testing procedure depend on the particular pro-
gram used, We present the utility of the method by means of the cal-
209 boLYATOM/2, The problem
treated is the H,=H, systenm calculated for different intersystem dis=

culations performed with the program

tances. A treatment of such a small system is somewhat untypical, but

it is useful for our purposes because it shows clearly how the com=

putation time is related to the intersystem (or "inter-fragment") dis-

tance, The basis set used was [453p]. For a linear structure of the
complex this basis set contained 28 contracted functions which were
constructed from 36 primitiveszls. Two thresholds were used: T = 107
and T = 107 E,» The first one ensures practically the full accuracy

11

and it can be safely applied even to weak interactions. The second one

ensures the accuracy still better than to seven decimal places. This

conforms to the experiencelgﬁ’le
smaller than 10 T, The entries in Table 3,1 indicate what time can be

saved for large molecules., From the foregoing discussion it may be

that the error in the SCF energy is

concluded that the integral time is not a simple function of the num~
ber of contracted and primitive functions only but also of a chosen
threshold, interatomic distances, exponents of primitives and the mo=
lecular symmetry,

Considerable reduction of the computer time may be also achieved
by numerically controlled procedures of another type, in which the
integrals smaller than a chosen threshold T° are calculated approx=



65

Table 301
pependence of the number of computed two-electron integrals on the
intermolecular distance in the H,-H, systenm

22
cut-off T = 10741 E, cut-off T = 1078 Ep,
a

Distance nonequivalent unique nonequivalent unique
(r/ao) integrals integrals integrals integrals
3.0 817886 41041 81260 40771
4,0 80620 40449 79118 39691
6,0 74853 37546 69458 34838
8,0 654660 32430 58088 28132
10,0 §5227 27697 47725 23933
15,0 36150 1gl32 29674 14890
20.0 24808 12455 21921 11013

® Intermolecular distance between the centers of the two H, mole-
culés; linear configuration assumed,

b Number of unique integrals, actually computed; use of symmetry

was made (center of inversiocn),

imately. The threshold is so chosen that the pertinent integrals are
small enough but not negligible. This approach is used in the "ad-
joined technique™ which was introduced by Clementilgs'lg7. It is ba-
sed on the replacement of a contracted function by a single Gaussian
function (adjoined function). If any integral (MV|A6) over contracted
functions is lower than T', it is not computed accurately but a value
is assigned to it of the integral (wW/'V'IN'C’) over adjoined functions
LN ¢ . Consider for example that each contracted function in
(uIA) contains five primitives. In that case the (uv(h¢) integral is
built up from 625 integrals over primitive functions. Obviously, a-
voiding this by the calculation of a single integral over primitives
brings about considerable time saving. The exponent of the adjoined
Gaussian is so chosen as to give maximum overlap of the adjoined func=-

tion with the contracted GTF, For a system cytosine--guanine196

,the in=
troduction of the adjoined basis set resulted in the reduction of the
integral time by a factor of 100. The method was later discussed by
Ahlrichs211 who showed that an adjoined function should in general be
constructed from two Gaussians. This is a probable reason why the ad-
joined basis sets of this type are not currently used.

Nevertheless the development of approximate calculations of small
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integrals is still in progressZI7'218. A very promising approach is
based on the concept of approximate charge densities, According to
Whitten2l7 it hay be assumed that charge densities in the integral
(Rl 1) (1) 2 (2)5(2)) will be approximated by 7, (1) gy(1) = ayyBi(1)
= é&“’ and xk ) y5(2) =< aa@§36(~) iﬁa( ), where i%u}are funcrions
containing variational parameters which are optimized together with
ayy parameters for all n/2(n+l) product densities. For example,
taking the product density approximation as QQL Y1) “‘auqu_ )%b(l)

(and analogously for 0 (2)yst2)) gives, after the parameter optimiza~
tion, the integral approximation

(LD LA R) 18(2)) 22 auwans (1) p(IIYE (2) 1a(2)) (3.38)

Here Xé,is a contracted GTF which, with respect to Yur CONtains a smal~
ler number of primitives, or it simply contains a single primitive
GTF. Even for the latter case, this approximation is entirely differ-
ent from the integral approximation using a single Gaussian which has
a maximum overlap with the contracted function; ay, factors exist, and
Gaussian exponents when optimized do not necessarily lead to maximum
overlap, With a suitable choice of Qﬁbv , the method may also be used
for a Slater basis set, in which cas; the time saving of integral eval~
uation is due to the possibility of reducing four-center integrals to
two=center 1ntegra1521'.

For the approximations treated in this section it is possible to
define rigorously and to estimate safely the error limits, so that the
SCF energy can be kept within an a priori determined accuracy range.
Consequently, the nature of the "accurate” ab initio calculation is
preserved in spite of the neglect of approximate evaluation of some in-
tegrals., In contrast, there are also approaches, which may be called
semi-ab initio methods, where the simplifications are not so rigorously

justified, These methods are, however, beyond the scope of this book.

3.D. Computer Time Saving in the SCF Procedure

As we have seen in the preceding section, considerable progress
was achieved in the integral evaluation, Less attention was paid to
hastening the SCF procedure itself, This is understandable because
for current basis sets and molecules the integral time represents
usually a dominant portion of the total time, unless some use is made
of facilities and tricks noted in the preceding section. In such a
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situation any effort for hastening the SCF procedure would not result
in a significant time saving., Nowadays this does not hold any longer,
in particular for large molecules, Therefore attempts at a better pro=
gram organization and the search for new effective procedures are
highly topical. An excellent and comprehensive review on this subject
was presented recently by Veillardzlg, Here we note briefly on possie
ble improvements in the following points: (i) choice of the initial
density matrix; (ii) construction of the Fock matrix; (iii) diagonali-
zation methods; (iv) convergence hastening, The points (i), (iii) and
(iv) do not represent problems specific for ab initic calculations,
but they should be noted for the sake of completness. A degree of suce
cess achieved in solution of problems (i) and (iv) is reflected in the
number of necessary iterations. In some cases it even decides whether
the SCF procedure converges at all, Time per cne iteration is under
control of points (ii) and (iii)., The matrix diagonalization does not
represent any serious problem because modern effective methods are
available and the time involved in the matrix diagonalization rises at
nost as n3. So most attention is paid to the construction of the Fock
matrix {(egn. (3.2)), where the fourth power dependericy on the size of
basis set is encountered,

Let us start the discussion with the points (i) and (iv). As with
semiempirical methods of the PPP and CNDO types, also with ab initio
SCF calculations one starts with a Hickel-type calculation. In prac=
tice this is made by making the matrix density in expression (3,3)
equal to zero. Thus, initial guess at a set of MO coefficients is
formed by diagonalizing the one electron part of the Fock matrix, This
approach always risks a slow convergence or, even worse, sometimes the
SCF procedure does not converge at all, the oscillations in the total
SCF energy being the most typical case., A possible way of avoiding
pocor convergence is the use of localized orbitals as starting wave

functionszzo 221

» In the cases tested by lLetcher the calculation pro-
ceeded quickly to completion without a divergence. To the same con-
clusion arrived Shipman and Christoffersen222 who used localized or-
bitals in the framework of FSG0”s, Much time may also be saved if for
the initial guess use is made of the eigen vectors of an iscelectron=-
ic system or of eigen vectors given by a smaller basis set. For examne
ple it is very typical that the system treated is first calculated
with a DZ basis set and then with a DZ+P basis set. In such a case it
is profitable to start the DZ+P calculation with the DZ eigen vectors
supplemented with zero expansion coefficients for polarization funce

tions. In calculations of interaction energies of molecules, the cone
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vergence of a supersystem calculation is considerably improved if
orthogonalized vectors of subsystems are used for starting wave func-
tions. Similarly, in optimizations of molecular geometries and expo=-
nents of basis functions, it is very efficient to start the calcula-
tion with the density matrix given by a previous run for another geo=
metry or a basis set with some different exponents.

Time saving in the SCF procedure may be alsoc achieved in other
ways than by a suitable guess of the starting wave function, Mostly,
the programs are equipped with extrapolation procedures (for a general
discussion see ref, 21} that estimate a new density matrix from three
consecutive iterations and use it in the next iteration. Sometimes the
total SCF energy oscillates in spite of all precautions. In such a
case it is recommendable to attempt a damping procedure which for the
density matrix D assumes an average from the density matrices 0y and
D, of the two successive iterations, D = aD1 + bD2, a and b being ar-
bitrary parameters with the constraint a + b = 1, The problem of se-
lecting a and b was discussed recently223,

Great difficulties with convergency are often encountered with o=
pen shell systems for which even a combination of the technigues noted
may be helplees. Such cases are called intrinsically divergent. Among
methods which are applicable to these cases we note on the level
shifting technigue suggested by Guest and Saunder8224. The method was
developed for the improvement of convergence of the Roothaan RHF pro-
cedure®® as a generalization of the level shifting technique for
closed shell systemszaa. Its essence lies in computing the Fock matrix
in the basis of the approximate Hartree-Fock orbitals from the previ=
ous iteration and adding a sufficiently large positive shift parameter
to the open=-shell diagonal elements and a larger parameter to the vir=-
tual~space diagonal elements., Properly chosen shift parameters guaran-
tee that the first order contributions to the energy are negative,

The crucial problem in the point (ii} -« the construction of the
Fock matrix - is a retrieval and effective manipulation of the inte-
grals (av|2¢). Since all nonvanishing integrals must be read in from
the tape or disk in each iteration, this manipulaticn may be very time
consuming., Programs greatly differ on this point, From the discussion
211,219,227-229 on this topic it follows that it is profitable to have
a record of integrals in a certain order which contains a sequence of
three integrals (wv26), (WAIVE), (MZIVA). This is required by an ef=
fective evaluation of the second term in egn. (3.3). This term may be
rewritten as |
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where D' is the density matrix in which the off-diagonal elements are
doubled

oce

c 1
oy = 4 L I -_55[%\,) (3.40)
1

and 5#\)’16 is zero, unless (W) = (\6), (W) = &(& - 1)/2 +¥, in
which case it is unity., The whole expression standing in (3.39) after
DL” may be taken as the element of the supermatrix P,

1 1 1
Aw )6 = [(WIM) "—I(w\lw) --;—(MM)] (1 "?é(u.v,%cf> (3.41)

The matrix elements (3,41) may be constructed if all three integrals
are available at the same time. To achieve this, it is most profitable
to compute them just in the order (Mv|A6), (aA(VE), (uSIVA). Other~
wise, they must be reordered. The matrix elements Pﬂ”ﬁXG are then
stored on a tape or disk together with the pair indices (wv), (\6),
They contribute to two G-matrix elements as follows:

4
Gy formed from contributions ﬂuv'XG' X Dyg

, (3.42)
Gy formed from contributions Quy'%ﬁ X Dy

The proper construction of the G matrix elements with respect to per=-
mutations of w , v, A, o indices in P and o is ensured by the terms
(1 - l/ZJﬁ) in the definitions of the P and D' matrices (note that
DL» = D%m and ﬁuv,%T = Pvpﬁ%G'“ Ru»ﬁGK = P)G’Ny). Only the nonequiva=
lent P and D’ elements with M2V 2 A26 are computed and stored.

Use of ﬁuv’xg terms represents an alternative way of constructing
the Fock matrix. In the traditional way, one uses directly the inte-~
grals (4vihz) listed in any arbitrary order, This case occurs with the
POLYATOM program if use is made of symmetry relationships between ba-
sis functions., As is usual (see p, 60), from eight equivalent inte=
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gral list. The permutation of indices in the construction of the Fock
matrix is then recognized in such a way that each integral contrib-
utes to one to six F matrix elements, depending on the integral type.
Thus, an integral of the type (Mg up) contributes only to one element,
whereas (MVING) integrals with four distinct indices contribute to six
elements, Any of the six F matrix elements, Fuvs Fug o Foe B o Fus s
Fid . is formed (see egn. (3.3)) from the products of integrals qul%ﬁﬁ
and the corresponding density matrix elements. Since the P terms are
formed only once before starting the SCF procedure, the disadvantage
of the traditional integral handling becomes obvious: as the number of
iterations is increased, time saving with the use of ﬁ%v'ngterms ap=
proaches the factor of three,

Finally, we comment briefly on the use of symmetry, By making use
of the symmetry point group of the molecule, the Fock matrix may be
transformed into a blocked form and the elgenvalue problem (3.1) is
then solved block by block, Transformation into a blocked form may be
performed in different ways which will be not discussed here, We note
only that the gain is not very important since the time involved in
diagonalization rises at most as n3. In some cases, however, the use
of the symmetry-blocked F matrix may eliminate convergence problems,
More significant time saving might be expected if symmetry were also
used in the construction of the F matrix elements which is ant de-
pendent process. Several au'chor‘smo"236 have paid attention to this
problem. The task lies essentially in finding an efficient use of syn-
metry properties of integrals over basis set functions. As we learned
in Section 3,C., the integral package generated by POLYATOM/2 contains
sequences of symmetry~related integrals from which only each first was
computed, Winter and coworker323l developed such a procedure that also
in the SCF procedure only the first integral from a group of symmetry=-
~related integrals is needed. This permits the integral list to be re-
duced and consequently facilitates its processing in each iteration,
The idea of this approach is based on the thecrenm that symmetry~re=
lated integrals over basis set functions make equal contributions to
symmetry-adapted integrals with totally symmetric integrand5234. The
algorithm which deletes symmetry-related integrals from the integral
list may also be applied?27 to the approach of constructing the F ma-
trix by means of P integrals (3.41). Time saving is proportional to

231

the integral list reduction which may be significant for molecules

of high symmetry. A recent detailed discussion on the use of molecular
. 236
synmetry was reported by Oupuis and King™ ",

In this chapter we have outlined the main problems of the SCF ab
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ipitio calculations, Some of them are known from semiempirical calcu=-
jations, the others are specific for ab initio calculations. Most of
the latter are related to the drawback of the n’ dependence. We have
shown some tricks by means of which consequences of this bottleneck of
gb initio calculations may be reduced and we have indicated a progress
achieved in this field in the several last years, Beyond doubt the
gethodological development will continue. Together with a continuous
&velopment and ayailability of effective computers, this gives reason
for an optimisticjoutlook for a widespread applicability of ab initio
calculations to larger molecules, Nevertheless even at the present
stage the ab initio SCF calculations may be considered to be more or

lgss routine,



4, Correlation Energy’

Until recently the notion "ab initio calculations" was mostly un-
derstood as "ab initio SCF calculations®, As a matter of fact, prior
to 1970 the calculations of correlated wave functions for polyatomic
molecules were rather exclusive, The situation changed dramatically in
the early seventies, Effective algorithms were developed that yield
highly correlated wave functions, some of them at a cost only moder-
ately higher than that required for the respective SCF run, So it is
perhaps not too optimistic to state that also the calculations with the
inclusion of (a part of) the correlation energy are becoming routine,
In this chapter we attempt to survey the present state of the art, In
Section 4,B. a 'distinction is made betwsen the problems, where the role
of the correlation energy is small and those where it is of crucial
importance. As regards the calculations beyond the Hartree~-Fock limit
there is a large variety of computational methods. We selected those
that, in our opinion, are the most suitable for practical purposes or
that yield perspectives for further development. The theoretical back-
round of the methods is intentionally suppressed., Instead, emphasis is
laid on the fundamental idea on which the theory is based, the numeri-
cal feasibility, cost, the portion of the correlation energy recovered
and reliability in chemical applications, The whole chapter is ori=-
ented to ground states,

4,A, Definition and Origin of the Correlation Energy

Within the framework of the SCF-MO approach, the probability den-
sity of finding simultaneously two electrons with different spin in a
certain space is given simply by a product of probability densities of
the individual electrons. This independence of electrons with differ-
ent spin is, however, physically unrealistic, because the l/r12 term
in the Hamiltonian imposes a certain constraint, i,e.,, & certain *cor-
relation” on the motion of all electrons in the system, Disregarding
the electron correlation brings about the energy difference between
the exact and SCF solutions which is called the correlation energy
(Fig. 4.1). Here by the exact solution we imply the lowest energy at=-
tainable with the Hamiltonian (1.1) by a method which furnishes the

* This chapter is based partly on the reviews of I. Huba& with one of
the authors237,238
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F with the minimum
basis set ‘

near Hartree-Fock
Hartree-Fock limit

a b lc
Figure 4,1
Energy scale and the correlation en=
L near complete Cl ergy.
accurate nonrelativistic a = correlation energy according to
enerqy the definition; b = correlation en=

ergy estimated in practice; ¢ - "exw~
perimental” correlation energy.

—L  experiment

“upper bound” of energy and by the SCF solution we mean the lowest ene
ergy attainable within the Hartree~Fock approximation, i.e. the Hart-
ree~Fock limit. From Fig, 4,1 it follows that the correlation energies
may‘be estimated rather than determined. As a matter of fact, apart
from a few very simple systems, neither the Hartree-Fock limits nor
the exact nonrelativistic energies are accessible by ab initio calcu=-
lations, With the former the situation is somewhat better because for
a series of small molecules very extensive calculations were reported
and the Hartree-Fock limits were estimated that are believed to be
typically within 0,002 E, or less. To approach the true nonrelativ~
istic energy is more difficult, Actually, for triatomic and larger mo-
lecules more than 80% of the correlation energy is only rarely recov-
ered, even if most ingenious methods are used and considerable compu=-
tational effort is exerted. For this reason the sc called “experimen-
tal" correlation energies (see Fig. 4,1) are sometimes used. However,
their reliability is questionable, too, The adoption of the Born-
~Oppenheimer approximation and the neglect of relativistic effects
appear to be justifiable (see Introduction), but the determined expe-
rimental correlation energies are again affected by the basis set lim-
itation and, even worse, by the uncertainties in the experimentally
determined heats of formation for many unstable species.,

As regards the magnitude, the relative value of the correlation
energy is small. Compared to the SCF energy, it amounts approximately
to 1%. In absolute value, however, the correlation energy 1is large,
Even with small molecules it is by one or more orders higher than

heats of reactions and energies of activation of chemical processes.
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Nevertheless we shall see in the following section that the situation
is not so hopeless as it might appear.

4.B. Conservation of the Correlation Energy

In the field of ab initio calculations there exists an apparent
controversy, On the one hand, neglect of the correlation energy is
demonstrated theoretically as a crude approximation of the Hartree-
~Fock treatment and on the other hand, the majority of calculations
is performed just at the level of the Hartree-Fock approximation and
mostly with meaningful results, The fact that correlation effects may
be disregarded in many cases has been recognized a long time ago, The
tendency of cancellation of correlation effects in some chemical proc-
esses have ‘been noted by several authors in the early sixt163239. The
conditions for this conservation of correlation energy may be ex=

pressed240

as follows: 1, The number of electron pairs must be con-
served. 2, Also the spatial arrangement must be approximately maine
tained for electron pairs which are nearest neighbors.

The first condition is satisfied automatically with all reactions
containing closed shell molecules only. A systematic examination for
this type of reactions was performed by Snyder and Basch241’242, The
theoretical (SCF) heats of reactions were claimed to be more accurate
than those obtained using semiempirical relations of bond energies
for reactions of strained molecules, or those not well represented by
a single valence~bond structure. However, Snyder and Basch concluded
241,242 that if a level of chemical accuracy is to be approached,
some semiquantitative prediction of the change in correlation energy
is required, Obviously, the actual conservation of correlation energy
depends on the extent to which the second condition is satisfied,
With respect to this condition the following classification>?> can be
made for reactions with closed shell molecules:

; : . 244
Homodesmotic reactions, These are reactions

in which (i) there
are equal numbers of bonds of a particular type (e.g., C{4]-C 4],
clal-c[3], cl3l~-c3], c[3]=C[3], where the numbers in brackets indi-
cate the total numbers of other atoms bonded to each carbon atom, so
that C[4]-C[4] and C([3]1=C (3] may represent CC bonds in ethane and
ethylene, respectively) and (ii) there are equal numbers of each atom-
ic type (such as C{41, c[3], etc.) with zero, one, two and three hy~

drogen atoms attached in reactants and products. The following exam=
p185244~246

may be given:
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CHCH,CH,CHy + CHoCHy ~—> 2 CHLCH,CH, (4.1)
CHaCH,C=CH  + CH,CHy —> CHiCH,CHy + CH,CE CH (4.2)
ROT + CH,0H —> CH,0" + ROH (R = alkyl) (4.3)
RCC™ + HCCH —> HCC™ + RCCH (4.4)

!

A D) X D e
5 - +

OH 0 OH
X

In homodesmotic reactions the structural elements in reactants and
products match closely so that only a small change in correlation en-
ergy is to be expected, Indeed, for processes of the type (4.1) and
(4.2) the heats of reactions given by DZ and DZ+P (often even by mini-
mum) basis sets reproduce244 experiment typically to within 4-9 k3/mol.
An ideal example of a homodesmotic process is the internal rotation

in ethane and it is therefore not surprising that the SCF calculations
give the respective rotational barrier in excellent agreement with ex-
periment,

isodesmic reactions. This concept introduced by Hehre and colla=~

borator3247

means the reactions in which there is retention of the
number of bonds of a given formal type, but with a change in their re-
lation to one another, The homodesmotic processes are actually a sub-

class of isodesmic reactions. Typical representants of isodesmic ree-

actions are so called "bond separation" reaction5247 such as for ex-
ample

CH4CHO  + CH, —> CHaCHy + H,CO ' (4.7)
CHyOCH, + H,0 —> 2 CH,OH (4.8)
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Here a degree of the conservation of spatial relation depends evident-
ly on the particular case. With simple reactions such as (4.7) and
(4.8), the error in computed heats of reacrion3244'247 is larger than
it is with homodesmotic reactions, the typical value being 4-17 k3/mol.

Anisodesmic reactions, Unfortunately most reactions of chemical

interest belong to this category of processes that are not isodesmic
and for which still larger correlation effects may be expected. As
might be noticed, homodesmotic and isodesmic reactions are mostly ar=
tificial processes of little interest to chemists. One can, however,
combine them in thermochemical cycles and to arrive in this way at

real chemical probl&m3248'249

. An example of the anisodesmic reaction
with a large change in correlation energy is provided by the dimeri-
zation 2BH3-+ BZHB‘ The SCF calculation®®Y gives for the energy of
dimerization the value of 87 kJ/mol. If the correlation energy is in-
cluded (by the CEPA method; see Section 4,7.), one arrives at the val-

250
ue

of 153 k3/mol, The number of electron pairs is preserved in this
reaction but their spatial arrangement and, which is more important,
the number of pair~pair interactions are different. On the other hand,
the reaction NHy + HCL —» NH,Cl may also be taken as an anisodesnic
process, Here, however, the two conditions for the conservation of
correlation energy are well satisfied, so it was possible to predict
gaseous NH,Cl by mere SCF calculation5251

later established experimentallyzsz.

. Existence of NHACl was

For the correlation energy to be roughly conserved, not all reac-
tion components need necessarily be closed shell species, For example,
for the process BH,~> BH + H a rather small change in correlation en-

ergy was predicted553:

the UHF calculation gives for the dissociation
energy 340.2 kJ/mole, whereas the perturbation calculation up to third
order gives 351.9 k3/mole, Although this process involves a bond fis-

sion, it does ndt involve the formation or rupture of an electron pair

)

B
N

H H

— GoB—H + H (4.9)

This also applieszs4 to a general class of A: + Be interactions lead-

ing to diatomic systems, such as for example

Na(2s) + He('s) —» NaHe (25 *) (4.10)
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and

2

He(ls) + F(?P) — ner (3T ) (4.11)

As the opposite to the examples given above, we note now processes
that involve a fission of electron-pair bonds., Here the change in cor-
relation energy is extremely large and the Hartree~Fock approximation
is inherently incapable of giving a reasonable account of heats of re-
action. A very illustrative example is provided by potential curves of
diatomic molecules. From Fig, 4,2 it is seen that for larger depara

I I [
i H F
E/Eh Hariree - C 2
7{ 2H Fock ~1-138.66
104‘ experiment
Ce
18,7,
!
A2 - L
experiment
= ~1-K9.48
420 ¥ 1 1 L 1g9.52
4 2 1 3

Figure 4,2

Potential curves for Hy and Fr (plotted from tabulated data in Ref,

255). The dissociation energies (indicated by arrows) are determined
from Hartree-Fock calculations for Hos H, Fp and F; for F, the cal=-

culated dissociation energy has an incorrect sign (see text),

tures from the equilibrium geometry the SCF approach becomes very poor,
For the infinite internuclear distance, the SCF energy lies much higher
than the double of the SCF energy for the isolated atom. It occurs in
most cases that the one-determinant Hartree-Fock function dissociates
to incorrect atomic products (giving typically one atom in its excited
state), Reasonable dissociation energy for the process R2 — 2R are

not obtained even in the case when they are evaluated directly from

the SCF energies for systems R2 and R, The most striking case is the
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F2 dissociation, for which the Hartree-Fock calculations256 favor two
F atoms with respect to Fy by 130 k3/mole, Apparently in dissociations
and potential curves involving the electronwpair bond rupture, the cor=
relation energy is of crucial importance and use must be made of some
approach which goes beyond the Hartree~Fock limit, A degree of success
of some such treatments is discussed in Section 5,D, Sometimes one can
arrive at the dissociation energy indirectly, For example, the reac=-
tion

NaCl — Na + Cl (4,12)

does not satisfy any of the two conditions for the conservation of core
relation energy. A near invariance of the correlation energy may, how=-
ever, be assumed for the ionic decomposition

NaCl —s Nat 4+ C17 (4.,13)

Since NaCl is highly ionic, the two requirements are well satisfied.
Since the correlation energies for Na, Cl, Na' and C1™ are safely

. . . 25
known, one can arrive in this way 7

at the binding energy of NaCl
with chemical accuracy.

To summarize the discussion in this section, it is fair to state
that the Hartree~Fock approximation is adequate in many cases, If a
rough conservation of the correlation energy may be expected, the
Hartree~Fock energy predictions are mostly within 20 kJ/mole or even
better. In the past the importance of corrslation effects was some=
times overestimated and the discrepancy with experiment found in a
particular problem was later attributed to the limited basis set. Very
instructive discussions on this problem were reported for the heats of

117,258 98118 ng the barri-

reaction , the inversion barrier in ammonia

.99 |
er to rotation in H202,

4,C, Empirical Calculations

Let us start a survey of computational methods by beginning with

the simplest conceivable approach243'25g

, that of assuming & constant
empirical value for each type of bond and therefore obtaining the to~
tal correlation energy by summing the bond and lone pair contributions

(similarly in the same way that estimates are made in chemistry, e.g.,
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for the heats of formation and dipcle moments), We think that this
method can hardly be refined to a state that would approach the so~
-called "chemical accuracy" because it disregards the interpair elec=
tron correlation, The data in Table 4.1 show that the interpair con-

Table 4,1

CH=Bond contributions to the correlation energy (results of
IEPA calculations120
entries expressed as E/Eh)

performed with localized orbitals; all

Type of
contribution C,oH, C,H, CoHg CH,
Intrapair g, -0,0299 -0,0301 -0,0298 ~0,0298
Intergeminal € -0,0144 -0,0154 -0,0155
Intervicinal €y -0,0012  -0,0014 ~0,0011

tributions for neighboring bonds are by no means negligible with re-
spect to intrapair contributions, In the empirical approach the inter=
pair contributions are evidently absorbed in the bond parameters and
therefore the effect of the structure cannot be well accounted for.
Empirical parameters are also involved in the EPCE-~F2¢ method of

sinanoglu and pamuk260:261
262,263

as well as the method suggested by Clementi
and coworkers . The two methods may be called semiempirical be-
cause they are based on the formulas given by the theory but adopt ap-
proximations involving empirical parameters, In the approach proposed
by Clementi and coworkers and also by Colle and Salvetti 64, the for-
mula for the correlation enerqgy is a functional which is a modified

gxpression of Wigner265

derived for the electron gas, Mathematically,
it is an integral containing powers of the electron denéity. If the

Hartree~Fock density is used, the use of the method is restricted to
cases where the Hartree~Fock function itself is a good representation
of the exact wave function. For example, for dissociation processes

the electron density based on a proper {CI) wave function must be em~
ployed. Examples of applications in which the use of the Hartree~Fock

electron density seems to be sufficient are the water dimer266 and the

complexes257 of water molecules with Li*, Na*, k¥, F” and C17 ions,
The correlation energies given by this approach are, however, only
semiguantitative and their combination with near Hartree-Fock data

cannot be expected to provide highly accurate predictions,
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The EPCE~F20 method of Sinanoglu and Pamuk?‘GO’261 is based on the
Many~Electron Theory (MET) of Sinanoglu which will be noted in Section
4.G. In its simplest form, MET predicts the correlation energy to be
8 sum of the pair correlation energies (eqn. (4.47)) which in the LCAO

approximation becomes>°0

1
Ecorr%—:z(t;E;DMD” €uv (4.14)

where the indices M oand v refer to atomic orbitals, the D terms are
diagonal elements of the density matrix and

E“V = %@Luﬂb+" qdnvm (4.15)

is the effective pair correlation enerqgy (EPCE) for the orbitals M
and ¥ for which we assume the "F2 approximation®

gﬁgv& ~ Zéuﬁv“ (4.16)

The last symbol in the designation of the method means that in con-
trast to the previous version of the method268 it is not restricted
to r-electronic systems.

Computationally, one performs first a minimum STO basis set or a
semiempirical all-valence electron calculation (say CNDO/2) for ob=-
taining electron densities, One-center E“V are constants which were
tabulated260 for H, B, C, N, O and F atoms. Two-center ng are eval~
uated over STQ0"s by an empirical formula which is a function of the
interatomic distance. Computation of the expression (4,14) is much
shorter than a standard CNDO/2 run, It is understandable that such a
simple method cannot provide highly accurate estimates of the corre=~
lation energy. Actually they are claimed261 to be within 0.5 eV,
Although this tolerance is much larger than that required in many
chemical problems, the feasibility of calculations warrants attempts
at applications. These were attempted for binding energieszsl, ion=
ization potentialszsg, excitation energieszsg, clusters of hydrogen
atons?’0 and intermolecular interaction527l’272.

The presence of the DMy,elements in the formula (4.14) reveals

that the same limitations apply tc EPCE-F26 as those noted with the
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method of Clementi and coworkers. Accordingly, the use of EPCE~F2G is
justifiable only in cases where the SCF approach itself gives a real-
istic electron density distribution, Moreover, EPCE~F2¢ being an ap-
proximation to the IEPA method (see Section 4,E.), its use should be
restricted to cases where IEPA is known to work well, The two require-
ments just noted are satisfied with weak intermolecular interaction.
Indeed, the attempts at EPCE~F20° applications in this field were en-

couraging272.

A similar idea to that involved in EPCE-~F26 was used273

for the
estimates of correlation energy in different electronic states of dia-
tomic molecules. The essence of that approach is the conversion of the
MO representation of the electronic structure of a particular elec~
tronic state to the atomic representation by means of the population
eanalysis and the assumption that the predominant correlation effects
are due to electron pairs in the same orbital., In this way, the cor=-
relation energy is again given by the products of A0 populations and
A0 correlation contributions (available in the literature). Although
the approach is rough, it may be useful for spectroscopic purposes.
Table 4,2 presents an example of the treatment of this type.

Table 4,2
. 274
Term values for the CH radical

T, (10% e

corrected for

State SCF correlation effects experimental
A 2A 22,7 23,7 23,2
B 2L~ 26,3 26,2 25,6
c *T*t a3, 32,0 31.8
o 2T 61.0 58.8 59,0

A conclusion that may be drawn on this section is that the empir-
ical methods for estimates of the correlation energy may be profit=
able in applications and that their further development is worth pur-
suing, It should be realized that for molecules that are (by their
size) of interest to chemists, they mostly represent the only feasible
approach,
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4,0, Configuration Interaction

We are not going to pay much attention to the CI method because

275m
there are numerous reviews on this topic (e.g., 75-280

}. We only
briefly note some techniques that treat the CI expansion in a more
effective way., We also note the properties of the CI wave function
which have some relation to other methods considered in this chapter,
The traditional CI treatment which is nowadays commonly referred
to as "brute force"™ CI is inpractical for routine calculations of
correlation energy because of the slow energy convergence of the CI
expansion, But for purposes of comparison with other methods it is
advantageous to consider just the traditional CI. What we need to know
is the role of the singly, doubly, triply, etc. excited configurations
in the CI expansion. We limit ourselves to the most common case - the
Slater determinant of a closed shell ground state formed from the
Hartree~Fock orbitals, In this case, the effect of singly excited con-
figurations is small, as a consequence of Brillouin‘s theorem, How=
ever, it appears that in some special applications {(other than energy
predictions) single excitations cannot be omitted in the CI expansion,
For example, singly excited states are responsible for the correct
sign of the dipole moment of 00281, The main contribution to the cor=-
relation energy, say more than 90%, comes from the doubly excited
states. For larger than diatomic molecules, it is difficult, for prac-
tical reasons, to test the effect of triple and higher excitations by
the way of direct calculations. Therefore it is only possible to do
speculative estimates on the basis of data for atoms and diatomic mol-

ecules, For example, in the case of the Be atom282

the triple excita~-
tions correspond to 0.3% of the calculated correlation energy and
quadruple excitations to 3,8%, A similar percentage was also found7
with the water molecule: the DZ STO and DZ CGTF basis sets, respect-
ively, gave 1.5 and 0.8% for the triple excitations and 3.0 and 4,3%

283

for the quadruple excitations. In N, the contribution

5 of quadruply
excited configurations is 7%. It may be assumed, therefore, that for
small polyatomic molecules it is sufficient to consider only doubly
excited configurations and also to include singly and quadruply ex=-
cited configurations when striving for highly accurate calculations.
With large molecules the situation is less clear~cut, In this respect

8 pesimistic opinion was reported by Davidson276

who assumes that for
a large molecule, a hydrocarbon chain longer than about 30 carbons,
most of the correlation energy should come from the quadruple and

higher excitations,
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In spite of the truncation of the CI expansion so as to include

biexcitations, the ordinary CI calculations are still rather involved.

275-278

There are many devices and tricks which facilitate the problem:

use of symmetry, selection of configurations by perturbation esti-

mates of their weights, efficient diagonalization algorithms, econom=

ic computer handling of large Cl-matrices2o?

285

, avoiding the explicit
construction of the CI-matrix . effective transformations of inte=
grals from A0 to MO basis, disregarding configurations that contribute
to inner shell correlation energy, truncation of the virtual orbital
space275, energy extrapolation3286 and others. These are, however, of
more or less technical nature and do not remove the inherent drawback
of the ordinary CI expansion - this being its slow convergence. A very
efficient way of obtaining a more rapidly convergent CI expansion is
based on the use of natural orbitalszea. We take note of two techniques
of this type. In the Iterative Natural Orbital method (INO-CI) devel~
oped by Bender and Davidsoneag, one prOCeed899'277 as follows: A cer-
tain number of configurations,say 50, is selected and a CI calculation
is carried out. The density matrix given by the CI wave function is
diagonalized which gives us the natural orbitals. From these the same
set of configurations is constructed and the CI calculation is repeated.
Several iterations are performed according to this scheme until the
energy reaches a minimum, An important feature of the method is that
unimportant configurations are deleted in the iteration process and
new configurations are added. The choice of singly and doubly excited
configurations may be made in an ingenious way (e.g., for HZOZQO and
Nszgl)which permits the valence~shell correlation energy to be picked
up. Some applications of the method are presented in the book by
Schaefer 9. The second method we are going to note is perhaps more e=
conomic. It is the so called Pair Natural Orbital method (PNO-CI) de-
veloped by Meyerzgz.

As in IEPA-PNO (see Section 4,E,) one calculates the pair natural
orbitals for each pair of occupied spinorbitals and constructs from them
the (lowest) doubly excited states, But in contrast to IEPA-PNO, the
PNO-CI wave functions contain the ground state and doubly excited con-
figurations which correspond to excitations from &ll pairs. This, of
course, brings about difficulties in constructing the Hamiltonian ma-
trix elements, Hi" because each pair generates its own set of PNO's,
In other words, PNO"s for the pair R, S are not orthogonal to PNO’s
for the pair T, U. Fortunately the nonorthogonality does not represent
a serious problem. Although the Cl-matrix H, . elenents®®> are somewhat

more complex than those given by Slater rules for an orthogonal set,
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they are still tractable., It should be emphasized that the same Hij
elements appear in the CEPA-PNO equations (see Section 4,I,). It is
therefore profitable to perform PNU-CI and CEPA-PNO calculations in

& single run.

Let us now comment briefly on the general properties of the CI
wave function with only singly and doubly excited configurations (re-
ferred to as CI-SD approach; it is not of importance whether it was
obtained by "brute force", INO~CI or PNO-CI treatment), As we already
know it should cover a large portion of the correlation energy., An-
other advantage is that it furnishes an upper bound to the energy be-
cause CI is a genuine variational method., A drawback of the CI-SD wave
function is the incorrect dependence on the number of particles (so
called size consistency error -~ see Section 4.M,) and its incorrect
behaviour on dissociation ({see Section 5,0.)., To illustrate the in=~
correct dependence on the number of particles we make use of the
PNO~CI data of Ahlrichs250 for the dimerization of BH;. He arrived at
the following energies of dimerizations

- 2E (BH

1]

AE = E (B,H ~115 k3/mol (4.17)

6) 3)

6E = E (ByHg) = E (2BH

i1

3) = =143 k3/mol (4.18)

In eqn. (4.17) twice the PNO-CI energy of BH, was assumed, whereas in
eqn. (4.18) the two BH, molecules were represented by a supersystem
BH3BH, at large intermolecular distance (R = 50 8,). In the first case,
the two BH, molecules are too much favored with respect to ByHge In
fact, we consider simultaneous double excitations of either 8H3 mole~
cule, the net result of which means inclusion of quadruply excited
configurations. In order to obtain a balanced description of both

sides of the reaction, it is necessary to treat it by means of eqn.
(4.18). It would be, of course, more rigorous to augment the CI-SD
wave functions by higher excitations, Elimination of the size consiste-
ency error requires the inclusion of quadruply excited states but, un=
fortunately, one can hardly do it by selecting a sméll group of quad-
ruple excitations of a certain type. Hence, the traditional CI ap~
proach appears to be of low practical value in attempts at improving
the size consistency. One can correct, however, theCCI-SD results in

an approximate way287. Several expressions were suggested that permit

to estimate the effect of those quadruple excitations that are res~
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ponsible for eliminating the incorrect dependence of the CI~SD wave
function on the number of particles, The most commonly used expression

is due to Langhoff and Davidsonzga,

s = (1 - ¢2) st (4.19)

in which AEQ means the correlation energy contribution of quadruple
excitations, ¢ is the coefficient of the SCF ground state in the CI
wave function generated by the SCF configuration and doubles, and LEy
is the contribution of the doubles. An example of the use of egn. (4.19)
is presented in Table 2,17 (column SDQ). The entries show clearly an
improved agreement with experiment attained upon applying the correc~
tion (4,19), The theoretical grounds of the formula (4.19) were dis-

cussed by Bartlett and Shavitt294. Other formulas and the discussion

280,287,295-298 L,

physical meaning of eqn, (4.18) may be conveniently demonstrated by

on this topic may be found in the cited papers

means of the perturbation theory, For the sake of compactness, how=
ever, we note this problem in Section 4,3J.

As regards the multiconfiguration SCF (MCSCF), the virtues and the
drawbacks of this method299-3ol have been described in the literature
on several occasions (see e.g., Refs 99, 302)., In our opinion, MCSCF
remains still more suited for treating near degeneracy problems such
as removals of discontinuities, cusps, humps and other artefacts in
SCF energy hypersurfaces reported by Gregory and Paddon=Row° "3 +304
rather than to large scale calculations including correlation energy.

4,E. Independent Electron Pair Approximation (IEPA)

This approximation has been known for a long time, é.g., in the

form of Sinanoglu’s Many-Electron‘TheoryJOS
306

, Nesbet”s formulation of

the second-order Bethe-~Goldstone method or the decoupled equations

within the framework of the antisymmetrized product of strongly ortho-

287

gonal geminals approximation®”’, Practical calculations with the IEPA

method, however, were first developed by Kutzelnigg®s group293'307,
In the language of configuration interaction, one uses the wave func-

tion

RS 4 RS
Yg = F + Z o an (4.20)
RS



86

where éo and‘iig, respectively, are Slater determinants for the ground
state and doubly excited configurations. Hereafter spinorbitals will
be denoted by capital letters and orbitals by lowercase letters,
Equation (4.20) means that we perform a CI calculation, separately,
for each péir of occupied spinorbitals A, B, This gives us an energy
increment €. which can be ascribed to the electron correlation in
spinorbitals A, B, Since the electron pairs are considered to be inde~
pendent, the total correlation energy is given by

corr zj €AB (4.21)
ALB

For technical details of calculations such as the use of pair natural
orbitals we refer the reader to the cited papers?93 307. Here we re=
strict ourselves to a few comments an the propertiass of the IEPA cor-
relation energy. IEPA is not a variational method and it does not

give an upper bound to the energy. Actually, the correlation energy is
overestimated, in some cases by as much as 30%. The extent of this
overestimation depends on the particular case and it is, therefore,
possible to speak about "good" and "poor" IEPA moleculeslzo. An exame
ple of the failure of IEPA is presented for the F2 dissociation in
Section 5.0, Among the advantages of IEPA, the major one is the come
putational economy., This allows one to undertake systematic studies of
the effect of correlation energy on molecular geometries and force
118'308-311, potential curveslzo'all, and van der Waals in-
teractions312'316. Another advantage of IEPA is the correct depend=-
ence?#01293 ot the correlation energy on the number of electrons, i,e.
the energy of a supersystem of n noninteracting subsystems, E(nA), is

equal to the sum of the energies of the subsystems, nE(A) (see Section
4.M.).

constants

4.F, Cluster Expansion of the Wave Function

In this section we shall discuss an approach which is neither var=
iational nor perturbational. This approach has its origin in nuclear.
phyeics and was introduced to quantum chemistry by 8inanoglu 05 It
is based on a cluster expansion of the wave function, A systematic
method for calculation of cluster expansion components of the exact

wave function was developed by 812ek317, The characteristic feature
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of this approach iszthe expansion of the wave function as a linear
combination of Slater determinants. Formally, this expansion is simi=
lar to the ordinary CI expansion, The cluster expansion, however,
gives us not only physical insight into the correlation energy but it
also shows the connections between the variational approaches (CI)
and the perturbaticnal approaches,

We shell express the exact wave function in the ferm

Y= P+ 0 (4.22)

where ‘?o is the Slater determinant for the closed shell ground state
and 7 is the correlation function, which describes the correlation of
two, three etc., electrons, We can choose the correlation function for
a N=glectron system in the form

1 B INTICO R JTICS DI Z g3k T @Ikl
i i< § i<j<k 1¢jcke L

where the indices i, j, k, ﬂ, «ve are indices of the electrons 1 to N.
The functions U(l) we call one-electron clusters, U(lj) two=electron
clusters, U(ijk)

detail the term U

three-electron clusters, etc, lLet us examine in more
(13k2) which describes the correlation of four elec-
trons, We can distinguish the simultaneous correlation of four elec=
trons (sc called linked cluster), for example, from the interaction

of two pairs of electrons (so called unlinked cluster). Although com-
monly used, the term "linked cluster” is not very fortunate because it
is in conflict with other meanings. For this reason use is sometimes
made of the term "connected cluster®, Simultaneous four electron core-
relation occurs only in situations when all four electrons are close
together., Since such "collisions" are rare in molecules we can expect
that the effect of linked four electron clusters in expansion (4,23)
305. On the other hand, the effect of unlinked
clusters may be important since these correspond to a collision of two
electrons i and j and independent and simultaneous collision of an-
other two electrons k and L. Obviously, collisions of another type are
conceivable and any cluster can therefore be described as the sum of
linked and unlinked clusters

will not be important
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(4.24)

In equations (4.24) the t operators are generating the clusters U
from the Slater determinant <?O and their effect on 4% may be viewed

as follows -

Z t(i)cpo= szi‘f’i
A R

i

Lceng o O gsams

AB * AB
1¢j ACB RCS

E NESLOE D o gRST gRST

0 ABC * ABC

1<3¢k A<BCC R4SLT

Let us define

T2 = Z t(ij)
<

}J-
<3

T, e Lo (130
ik

(4.25)

(4.26)

{4.27)

(4.28)

(4.29)

(4.30)
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and

T = Tl + T2 +* see TN (4.31)

where N means the number of electrons, By introducing egns. (4.23)-
(4.31) to eqn. (4.22), the wave function may be expressed in a very
compact form (for the references to the original papers and the theo=-

retical background see cited review9318:319)

Yee ¢ (4.32)

because expanding eT gives us

T2 T3

Hf = <l + T + ;} + ;7'+ ...)<@0 (4.33)

Let us compare this cluster expansion with the well known CI expansion
of the wave function

Yoao e Lo cRal, )0 ROgRS L (4.34)

A R ALB R4S

We see that the cluster expansion is formally the same, only instead
of the c-set of expansion coefficients we have the d-coefficients
(appearing in egns. (4.25)-(4.27)), Comparing coefficients standing

before respective configurations gives us the following relation3319
-1 R R

c,ca =4, (4.35)
-1 RS RS R .S S R

o cap = Yap * 92% = 995 (4.36)



~1 RST RST R ST

o Casc = Yasc * 9a%c " 98%ac * Ycdas
S T - ST oS
- aldhe + aldio + dRadal
- didgdg - didgdg ‘ didgdg + d),;dgdg - drdddy (4.37)

A question may now be asked why we are attempting an expansion of the
form (4,32) which is actually more complex than the ordinary CI ex=-
pansion, We shall show that this expansion can be considerably reduced
without losing much rigor. Before doing so, however, it is profitable
to examine first the relative importance of individual types of clus-
ters, We have already noted the clusters t(ijkﬂ)cb and t(ij)t(kz) 4%.
As regards the clusters t(l) @ their contributlon to the correla-
tion energy will be small when Hartree—Fock orbitals are used. It is
now also understandable that all products containing t(i) such as
t(i)t(j), t(i)t(jk) etc., will be small. The effect of linked tri-ex-
cited clusters is hardly to be assessed, The calculation which will be
discussed in Section 4.H. suggests that it is small, but the paucity
of numerical results reported in the literature precludes any generale
ization., It is only possible to state that from three-electron clus-
ters upwards the contribution to the correlation energy coming from
linked clusters decreasss rapidly. From the above discussion it is
possible to conclude that the most important clusters are Ty <P and
1/2 TZQ o’ This finding 1s equivalent to assuming T =T, in eqn. (4,32).
We shall now draw our attention to the practical use of the formal-
ism of the cluster expansion, Our goal is to solve again the equation

HIY> = EIYD (4.38)

where I'¥'> 1is the exact wave function and E is the exact energy of a
N=glectron system. Let us substitute the expansion (4.32) into egn.
(4.38) which gives us

He 12> =eellP > (4.39)

fFrom the arguments given above it appears that it is reasonable to as~



91

sume T ~T,, Equation (4.39) becomes

He'21> =Ee2|d > (4.40)
or

2 15

2
H{1+T2+Z+...} [<§0> nE{l+T2+g~;+...} ICPO> (4,41)

tet us subtract the term <Q®O(Hl @Oj> from both sides of eqn. (4.41),
This gives us

2

{H - (B iH| <I>0>} { 14T, +£2—+ } [¢,>
2
,.{E - <%, iH] q:o>}{ 147, +—Z§ + ,..}ﬁcﬁo> (4.42)

The term {E - <;¢E!Hl‘©o>} is the correlation energy of the closed
shell ground state.

In principle, the problem (4.,42) may be solved in the traditional
way. However, it is much more advantageous to use what is referred to
as a "many-body” approach, This means expressing egn., (4.42) in the
second quantization formalism, applying Wick’s theorem, constructing
pertinent Feynman-like diagrams and assigning to diagrams the final
mathematical expressions according to certain rules. The whole tech=
nique 1s nicely described in the review by Paldus and Ciiek320. It
should be emphasized that for a more general cluster expansicn con-
taining also other than T, and Tg clusters, the problem is practically
tractable only by making use of the diagrammatic approach.

A rigorous solution of the problem (4.42) leads to the CPMET equa-
tions317 {see Section 4,.H.). However, prior to discussing the CPMET
method, we note in the following section the pioneering work of Sina-
noglu,



g2

4,G, Many-Electron Theory (MET) of Sinanoglu

Sinanoglu was the first who suggested305 a practical method for
calculating the correlation energy based on the cluster expansion of
the wave function, By the approximate treatment of the problem (4,42)
he arrived for the function

Voedg oo B¢ (4,43)
i<
at tha following expression
1o
1]

in which Ei are pair correlation energies and D is related to the
normalization of ¥ . Pair correlations are determined from the so
called pair functions (in our notation thess are clusters t(ij) ?g)
which ars obtained independently for each pair of occupied spinorbit=-
als, In this simplest form, MET is equivalent to IEPA (see Section
4.E,). If the unlinked clusters are included in an approximation, Si-

nanoglu can transform the function

Y=0 .1 ¢{33) ‘PO BRGNS ¢, (4.45)
idj 1<) kaL
1,3¢k L

into the following expression

: ~ D
EAE L + Z g, i (4.46)
iy 5
1]

This equation and (4.44) differ only by normalization factors. For
N—>oo it was shown305 that (Dij/D,) -—> 1, so that it is possible to
write
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EREye + ) By (4.47)
1¢j

The most important result of the papers by Sinanoglu on MET was the
finding that in a CI treatment with quadruply excited configurations,
the linked tetra-excited part (T4) is negligible in comparison tc the
unlinked part (1/2 TS). This was clearly shown by Sinanodlu in an a-
nalysis of the CI calculation performed by Watson321 for the beryllium
atom, We present Sinanoglu’s analysis3o5 in a somewhat modified way in
order to be consistent with the definitions of ¢ and d expansion coef=
ficients (in Section 4.F,). Watson’s CI wave function contained 37
most important configurations., Among them were four quadruply excited
configurations, These are configurations 5, 7, 11 and 13 of Table 4.3.
The other configurations listed in Table 4.3 are doubly excited con=-
figurations relevant for expressing the respective unlinked clusters.
As we shall learn in the next section, the "unlinked part” of the ex~
pansion coefficient for a quadruply excited configuration may be ex-
pressed by products of expansion coefficients for doubly excited
states (eqns. (4.53) and (4,.51)). The C7 coefficient, for example, may
accordingly be approximated as

1 1
¢, & co[clc3 .2 (E cs) (Eclz)] = 0,00630 (4.48)

The coefficients Cee o0 €33 and Ci3 @re presented in Table 4,4, One
can see that the data given by the wave function (4,45) are in good
agreement with the results of the complete CI treatment and that the
effect of linked T, clusters is therefore very small,

Sinanoglu also derived the LCAC form of MET and suggested a series
of semiempirical procedures for estimating the correlation energy.
Among them the one of most general use is the so called EPCE-F26 meth-
od formulated by Sinanoglu and Pamukzso’261 (see Section 4,C.).

4.H. Coupled-Pair Many-Electron Theory (CPMET)

We present here a simple derivationoto:322

‘of CPMET equations in
a traditional way. On applying the restriction TxT,, our starting

point becomes
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Selected configurations of the CI wave function for the be=-

ryllium atom321
Configurationa Label Energy contribution CI expansion
(¢%) n of ?n, (En-En_l)/Eh coefficient, .

15225 0 -14,57299 0.9575824
15%p2 1 -0,04116 -0,2844586
25°p2, 2 -0,01769 -0,0262111
26242 3 -0,01071 -0,0232595
282d%1 4 -0,00213 -0,0059003
p%p%l 5 -0,00157 0.0070633
zs2pIpII 6 ~0,001086 ~0,0073734
p§s§ 7 -0,00100 0.0056508
15295§ 8 -0,00084 ~0,0055013
1szsp§1 9 «0,00063 -0.0047417
1s2d? 10 ~0,00040 -0,0182294
p%d%l 11 -0,00019 0.0015848
1szsp§ 12 ~0,00020 0.0065906
p§1d§ 13 -0, 00000 0.0004639
252p§ 14 -0, 00003 ~0.,0018890
152p.pyy 15 ~0,00009 0.0025567
1sp2, 16 -0.00000 -0,0003084

8 Roman numerals denote the order

Table 4,4

of virtual orbitals,

Four=-electron correlation and unlinked clusters in Be atom

Quadruply excited

Coefficient from
37~configuration

Coefficient calculated
from double excitations

configurationd wave function32l by eqns,(4,51) and (4,53)
p%p?l 0,007063 0,0071
p%s% 0.005651 0.,00630
p%d%x 0,001585 0,00161
p§1d§ 0,000464 0.000458
Energy contribution305 -0,075 eV ~0,074 eV

a

Roman numerals denote the order of virtual orbitals,
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T? ; T2
He 1P > =ee 13> (4.49)

o]

and the comparison of cluster and CI expansions represented by egns,
(4.35)-(4,37) reduces to

¢k =0 (4,50)
-1 RS _ RS

o €aB = Yam (4.51)
RST

Cage = © (4.52)
-1 RSTU _ RS TU RS, TU RS TU _ RT SU  RT SU

o Casco = Ya%co ~ Yacn * 9an%sc - Yas%co * Yacdan

- dRTdSU dRUdST - dRUdST RUdST TU RS

ap%sc * %ag®co = YacY@n * Yapsc * Yasdco

dTUdRS . dTUdRS dSUdRT dSU RT SU RT

ACYBD a0%c = “%ag%np * 9actso = 9andac

1

dSTdRU dSTdRU . dST RU

ABYCD T YaCTBD AD9BC (4.53)

We now project eqn. (4,49) into the spaces spanned by ]@o> and
doubly excited Slater determinants [‘?ig >, respectively. This gives
us

CBlne 18> « (B IHa 51y 155 «eddle2d > -

(4.54)

and
RS T2 RS Tg ;
{hpglte Tf > = Pgln(d + o+ 5‘) I8, >

.
/HRS| 2 RS RS
= e{Puple “P > = ELP (L 4 )Py =& d (4.55)
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Substituting for € in eqn, (4.55) by (4,54) we get
RS ‘ RS
{EpplH(1 + T, +-—-T Sl d> = Bl + T 1 E> o5 (4.56)

which expressed in terms of matrix elements leads to CPMET equa-
317
tions

<HESMIB> v ) ) RSBl oY

C<D T<U

1 V‘ﬁ GRS4TU _ RS, TU TU RS
- 5_‘ { agdco = Yacto * ) * (dCDdAB
c<o T(U

C,0#A,B T,U$R,S

- dapdhe + «o-)} (PhalHIaly> = LB IHI B> ofp

P ) ), I B> dTUaRS (4.57)

C«D T4U

The advantage of the many-body approach3l7 over that represented by
eqns. (4,49)~(4,57) is that it yields the CPMET eqﬁations directly in
terms over orbitals instead of expressions containing CI matrix ele-
ments. Mareover, the many-body approach is quite general and permits
arbitrary clusters to be included in the el expansion. Hence the
CPMET represents an outstanding tool for examining rigorously effects
of different clusters, uUnfortunately, up to now only a few applica=
tions of that kind have been reported323"326. We comment on the first
of them, that one due to Paldus, CiZek and Shavittazs, which aimed at
the comparison of CPMET with the full CI (FCI) calculation of Pipano
and Shavitt327 for BHi. In that study CPMET was extended to account
also fg£3T1, Tl 5 and T3 clusters, This extended ;;gsion of CPMET is
called ECPMET, Testing of ECPMET was performed with the same
basis set as the FCI calculation of Pipano and Shavitt, It was shown
that the effect of linked four electron and higher clusters (both un=
linked and linked) corresponds to 0.002% of the total Eaory 9iven

by this basis set, The effect of Ty clusters is very small (less then
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0.1% of the total computed correlation energy). The approximation
~ T, (eT =1+ Ty + 1/2 Tg) gives a correlation energy almost iden=-

tical to that obtained by CI-DQ (configuration interaction for the
ground state, doubly and quadruply excited configurations) in which
linked and unlinked contributions are lumped together, (The contribu=
tion of neglected linked clusters amounts to 0,004%.) Also the effect
of relative importance of linked (T3) and unlinked (Tsz) clusters
was tested. It was concluded that, as far as the calculation of the
correlation energy is concerned, the relative importance of linked
and unlinked terms for tri~excited clusters is just the opposite of
that found for tetra-excited clusters: the role of unlinked tri-ex-
cited clusters is negligible compared to the linked tri-excited terms.
Thus, the contribution of tri~excited clusters is predominantly due to
linked terms. The overall contribution of tri-excited clusters was
computed to be less than 0.8% of the total correlation energy.

As regards computational aspects, in CPMET we have to solve a sys=
tem of equations (4.57) which expressed in matrix elements over orbit-

als has the following general formS17,328

Z: 8y3%y * E:: bijkxjxk +c;, 20 (4.58)
N Kk

where X4 stands for the unknown d coefficients of the cluster expan~
sion that are to be determined, c; are two~electron repulsion inte=
grals, and ay; and bijk are coefficients containing matrix elements

of the Hartree~Fock and l/r12 operators, The indices run over all
distinct doubly excited configurations, The system of equations (4,58)
can we soclved iteratively,

CPMET is obviously a nonvariational method, However, the advantage
of having an upper bound to the energy is probably not so important
when the method is accurate enough to give the correlation energy with
an accuracy of a few percent,

4,1, Coupled~Electron Pair Approximation (CEPA)

cEpa292,329

represents one of the most successful approaches to
the calculation of correlation energy of molecules from the viewpoint
of accuracy and the expense of computer line. Its formulation was

prompted by a rather complex form of the CPMET equations, It was hoped
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that the rigor of CPMET might be sacrified for gaining much in the
computational effort but losing little in accuracy. The approximation
adopted in CEPA refers to the third term on the left hand side of
CPMET equations (4,57) for which it is assuned

§ RS ,TU RS ,TU TU RS
Lo }:: {(dABdCD = dacden * "') * (dCDdAB
c<D TU

C,D$A,B T,U4R,S

TU RS RS RSTU~_ ~_ RS }Zj
- Yap%ac * "')} < PaplH] Panco > A dpg Z:
C,D4A,B T<U

< dealnl ¢, ol (4,59)

Note that the terms in parentheses on the left hand side of eqn.
(4.59) contain products of d coefficients and represent the unlinked
part of the CI expansion coefficient for the quadruply excited con=
figuration iggg {compare eqn., (4.53)), Within the CEPA these ternms
are now substituted by only a single product of d”s, which may be as=
sumed to have a dominant effect (to see it numerically, substitute
for c-coefficients in eqn. (4.48) with values given in Table 4.3).

Hence, as in CPMET, the wave function is assumed in the form

T .
Vae?d (4.60)

0

but in contrast to CPMET, the unlinked T2T2 clusters are treated in
an approximate way, This gpproximation was suggested by Kelly330'331
but was first employed for practical calculations by Meyer. The effec:
of the neglected terms in eqn. (4.59) may be estimated by comparing
the results of CEPA calculations with the data giVen‘by, for example,
Ci2ek”s CPMET (see Section 4,H) or the perturbation theory through
fourth order (see Section 4,3.), in which the T,T, clusters are
treated rigorously. Here we only state qualitativelyls'322 that the
approximation (4.59) should work well if electron pairs are well sep~
arated and if also the corresponding pairs of virtual spinorbitals
are well localized.

Introducing the approximation (4,59) into the CPMET equations
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(4.57) we obtain

SNy ¢ ) L <PRSIM| TV T

C<b T

LS ) KNk e > oY

C,D$A,B TCU

ChInl > S 4 ) LB MBS NS (e

<D T<U

From ingpection of eqn. (4.54) it follows that

- <RIl DERERCIME I (4.52)

<D TKU

We can now define the pair correlation energy Ecp @8

7 <P Inl TV > (4.63)
T<U

which permits us to obtain the CEPA equations in a very compact form

PRI D> N LFoAH]PTI> gl

CD
€D TCU
RS
CATIE-D I T (4.64)

The CEPA equations (4.64) are solved iteratively., One may start with
the IEPA pair correlation energies, for example, and obtain the d
coefficients from eqn. (4,64), These can then be used to evaluate new
pair correlation énergies uging eqn. (4,63) which then can be used in
eqn. (4.64) in the next step.

The CEPA computer programs, developed by two German group5293'329

are based on the use of pair natural orbitals288 snd, therefore, it
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is appropriate to refer to their approach as the CEPA=-PNC method. The
construction of H-matrix elements over the PNO's is the same as with
PNO-CI (see Section 4,D,).

CEPA was tested systematically on a series of small moleculeslls“

120,332-334 ¢\ cellent agreement with experiment was found for mole-
cular geometries, spectroscopic constants, dipole moments, dissocia=
tion energies, ionization potentials and electron affinities. As re-
gards the potential curves, CEPA gives very good agreement with exper-
iment over a relatively large region around the equilibrium distance.
At larger distances the CEPA energy starts to deviate from the experis-
mental curve and it does not converge towards the correct dissociation
limit (for details see Section 5,D.).
CEPA is not a variational method, but the high sccuracy achieved
in the calculated properties suggests that the advantage of furnishing
an upper bound to the energy is no so important, In contrast to PNO=CI,
the approximate inclusion of unlinked clusters ensures the correct de-
pendence with respect to the number of particles. As with any theoret=
ical approach going beyond the Hartree-Fock level, the portion of the
correlation energy accounted for depends on the size of the basis set.
Polarization functions were found to be very important because they !
contribute much more to the correlation energy than to the SCF energy
118,119 (see Section 4.L,). Roughly speaking, CEPA gives about 85% of
the total correlation energy for basis sets containing two sets of l

118

polarization functions™ . To illustrate the computer time required

for CEPA calculations we present in Table 4.5 the data reported by
. 1l
Ahlrichs et al,

4,J, Perturbation Calculations

This section is devoted to a very perspective approach which is
based on the Many-Body Rayleigh~Schrodinger Perturbation Theory
(MB-RSPT). What is commonly referred to as MB=RSPT is developed by
second quantization and Wick’s theorem which are used to give the di-
agrammatic description of ordinary time-independent Rayleigh=Schro-
dinger perturbation theory, The use of the term “many-body', which
originates from nuclear physics, is justifiable because the explicit
expressions in MBPT are expressed in terms of matrix elements of spinm
orbitals or orbitals which reflect the many-electron interaction, It
is an advantage of using Feynman-like diagrams, which gives a “micro-
scopic” view to the electron interaction in atoms and molecules.

The whole theoretical background is described in several recent
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Table 4,5

CEPA calculations118 of planar NH, with 172 Gaussian lobes in
58 groups on a UNIVAC 1108

CPU time
Operationa j (in min,)
Evaluation of the integrals 73
Hartree~Fock (7. iterations) 4
Construction of operatorsb 12
Calculation of PNO (11 pairs)c 12
Construction of the diagonal CI blocks 76
Congtruction of the off-diagonal blocks

d

Evaluation of Ecepa @Md Eqg
Miscellsneous
Total 187
a

For details sege Ref, 293,

Coulomb JR, JRS and exchange KR and KRS operators.

4 The other five pairs are obtained by reflection,
CEPA~PNO and PNO-CI calculations are closely related and
they are performed in a single run,

. L
238,319,320,335 337. We restrict ourselves here to results

338

reviews
that were obtained with the Mgller-Plesset
Hamiltonian, which means that the Hartree-Fock operator was ex-

partitioning of the

tracted from the Hamiltonian as the “unperturbed" operator and the
rest of the Hamiltonian was taken as the perturbation, The formula
for the correlation energy of the closed shell ground state may be

320,339

expressed in a very compact form . We only outline here main

320.‘Let US asw-

features of what has been derived in detail elsewheare
sume that a perturbed Hamiltonian of an atomic or molecular systenm,

K, may be split as

K= K, + W (4.65)

04'
where KO is the unperturbed Hamiltonian and W is the perturbation. In
order to obtain a direct expression for the correlation energy we use
the notation K for our Hamiltonian., As will later be seen K differs
from the usual Hamiltonian by a scalar quantity, We assume that the
following equations hold for K and Ky operators
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KIY,> =€ 1Y) (4.66)

KolPy> = 2| P> (4,67)

Equation (4.67) represents actually the Hartree-Fock problem and we
assume that its complete solution is known. Our goal is to find the
solution of eqn. (4.66) under the assumption that ¢ changes into ¥
if the perturbation W is switched on. RSPT gives us

o0
By o=y + E <‘Pilw[Qi(w +u - Ei)] ”( CIDi‘;» (4,68)

n=0

where

=

T <H a-12> <
j ®; - aej ey = KQ
(3#1)

¢ (4.69)

Equation (4,68) can be solved iteratively, we can collect the terms
having the same order of perturbation and therefore can write

E, = Z eld) (4,70)
3=0

where E§j) is the j~th contribution, The terms up to the third order
have the following forms

Eio) = Pkl > (4.71)
e <8, wle> (4.72)

e« <Plwmow|d > (4.73)
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The whole problem of calculating Ey (at least up to the third order)
is now reduced to the calculation of individual terms (4.,71)-(4.74).
It is profitable to specify the operators K and Ky as follows

KeH=- {BlHlPD> (4,75)
and
Ky = Hy = <LPolHgl ‘?O> (4.76)

where H and Hyo respectively, have the usual meaning of the Hamilto-
nian and the Hartree-Fock operator

HIY> = E 1Y (4.77)
Hol Cf?j? = 8y [¢1> (4.78)

Here Ei is the exact total energy of the system, ?i are solutions of
the Hartree-Fock problem, and e, is the sum of Hartree~Fock orbital
energies over occupied spinorbitals. Then the eigenvalue in egqn.
(4.68), Es, becomes directly the correlation energy in the i~th elec=
tronic state. Since our concern is focused on the ground state, i.e.
i = 0, the index i in egn, (4.70) may be dropped and the respective
contributions to the correlation energy can be expressed as

=0 (4.79)

(1) 2o (4.80)

e(?) = (P lwowl B> (4.81)
3

eC) a < lwagnan] b (4.82)



) o L lmaguagragn| &> - <Epluagn|d, > < &l wa o w | D>

(4.83)

For the purposes of the forthcoming discussion of correlation contri-
butions through E(4), it is profitable to introduce the diagrammatical
representation, Let us start with the second and third order contribu=
tions, E(z) and E(a), for which the corresponding diagrams are pre-

sented in Figs., 4.3 and 4.4, It may be noticed that these figures con=

Figure 4,3

Second-order Hugenholtz (A) and
Goldstone (B, C) diagrams. The
second-order contribution, 5(2)'
contains also two other Goldsto~
ne diagrams that are equivalent
to diagrams 8 and C,

B C

tain two types of diagrams: Hugenholtz - type diagrams (A in Fig. 4.3)
and Goldstone - type diagrams (B and C in Fig. 4.3). The relation be-
ween Hugenheltz and Goldstone diagrams is given by

A c
~~

| + (4.84)
B D 5/‘\0

Tyt
B///L\\C

Each diagram in Figs, 4,3 and 4,4 represents a summation over in-
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Figure 4,4
Third-order Hugenholtz (A, B, C) and Goldstone (D=0) diagrams,

dices given at oriented full lines, Singly primed indices refer to or=-
bitals occupied in the gound state (hole states) and doubly primed
indices to orbitals unoccupied in the ground state (particle states).
Consistently with previous sections, capital and lowercase letters are
used as indices for spinorbitals and orbitals, respectively. Full

lines oriented from left to right are associated with singly primed
indices and they are therefore called hole lines, Full lines oriented
from right to left are associated with doubly primed indices and they
are called particle lines. The dashed lines in Goldstone diagrams,

that are called the interaction lines, represent the perturbation oper-

ator and they entail two-electron integrals according to the following
rule
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W — i kj or : or Q : leads to (ijlki) (4.85)
{

so that the indices i and k refer to lines leaving the vertex and the

indices j and | refer to lines entering the vertex, The integral is
defined as

(111kL) //pi joj 50 (2)y (2 )dt dt (4.86)

where @0 W Y and ¢ are molecular orbitals. Each pair of neigh-
boring 1nteraction lines generates also the denominator factor, gene
srated by QO in eqns, (4.81)-(4.83), RijkL’ which contains a sum of
orbital energies €41 E4s € and § - For hole lines the orbital ener-
gies are taken with the plus sign whereas for particle lines they are
taken with the minus sign:

K aoembe- K

RREES -"’? (4.87)
t
1

€+ €~ €y g

For example, for the left half of the diagram D in Fig, 4.4, the de=-
nominator factor is

R/ o+ v v = 4,88
acrt Ea, + 5‘:/ "&rl/ - Etn ( )
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and for the whole diagram D the denominator factor becomes the product
Ra’c'r”ﬂﬁa’b'r”s”‘ The sign corresponding Eo the algebraic expression
of sach Goldstone diagram is given by (=1) +h where L is the number of
closed loops and h is the number of hole lines, The sum of all pos=-
sible Goldstone diagrams for the respective order of the perturbation
expansion is then multiplied by the topological factor 1/2" where n is
the number of equivalent pairs of lines. An equivalent pair consists
of two lines which both start at the same vertex of the Hugenholtz di-
agram and both end at the same vertex. To obtain the expression in the
orbital representation, it is necessary to apply the rule for spin
summation, viz. to multiply each Goldstone diagram with the factor 21,

Prior to passing to the explicit expressions for E(Z) and E(B), it
is appropriste to make two notes on diagrams in Figs, 4.3 and 4,4: (i)
In most of the other literature, the upward and downward orientations
of lines are used, We use the orientations from left to right and from
right to left in order to preserve the form of diagrams introduced by
Paldus and Ciiekazo; (i1) In the literature use is also made of Hugen~
holtz diagrams drawn in the form of Goldstone-type diagrams but with
the meaning of vertices different from that given in egn. (4.85). Such
diagrams will appear later in this section,

Generally speaking, the diagrammatic representation of the respec-
tive order of MB-RSPT as given by eqns, (4.81)-(4.83) may be cbtained
by connecting the hole and particle lines between the vertices with
the preserved orientation of lines, It is fair to state, however, that
finding all topologically distinct diagrams is by no means easy, espe~
cially in higher orders of MB-RSPT, For additional information we re-
fer the reader to the cited literaturez38'320. Once the diagrams are
available, their expression is straightforward, For the second-order
correlation energy we obtain

2 o 14 i P ol - [
) o )0 Ry e (8 r T s [2(a b e ) - (2 st b )] (4.89)

The third-order contribution is given by

e(3) . Eia) + Eég) + Eés) {4.90)

where
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a C’ r”t” L2(al rul-b/ S”) - <al SU’ b/ r// }

Z IIII!R
rs
"b ¢
rll ”t
x [2(b"s”]c t") - (b'c’ s t)][2(a’ r|c' t") - (8 t"]e' r")]

- 3(3;’ s//‘ b’ r//) (bl C/l s"t”)(a’ tlll el )} (4‘91)

represents the contributrions from the diagram A in Fig. 4.4 (i.e, from
Goldstone diagrams D=K),

3 ; ‘
Eé)E Z ab’ 1 ”R/b’t”u (a I"”,b S,I)(r//t’lts” ”)
a'b’
rII S” t”U”

X [Z(al tl/[bl U”) - (al ul/]b/ t//)] (4'92)

originates from the diagram B8 (i,e, Goldstone diagrams L and M), and

Eé\3) = Z Ra’ b’ " ”R /d/ r//S”(a r.l/lbl sl/ (aicllbl dl)
a'b' ¢ df
rl/ SI[
x [2(c' e d's") = (d' " [ s")] (4.93)

is due to the diagram C (Goldstone diagrams N and 0),

The forms of eqns. (4.89)-(4-93) suggest that the evaluation of
the second-order contribution is simple and that even the evaluation
of the third~order contribution should not be associated with diffi-
culties (see Section 4,K,), Since these simple methods may find wide
use, it is topical to accumulate more experience about the correlation
energies so obtained. A series of papers oriented to this goal was
published for example by Bartlett, Silver and wilson (see e.g. Refs.
340-342) and by Freemen and Karplu5343, who compared the second~ and
third-order correlation energies with the estimated "experimental®
correlation energies, Testing may also be made by comparing the sec-
ond=- and third-order MB~RSPT values with the data given by other meth-
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ods, particularly with the CI-SD data obtained with the same basis

344

set, We present such a comparison for H20 treated with four dif-

ferent basis sets in Table 4.6 and for HF, Ne and BH in Table 4.7.

Table 4,6

valence shell correlation energy (E/Eh) in Han given by MB=RSPT

treatment>*4 and the INO-CI calculations®>0 including all singly

and doubly excited configurations (CI=-SD)

£(2),.(3)
Basis set’ SCF cr-so  el?) g2 (3 (rigp
[4s2p/23) -76,009294  =0,1257 ~0.1251 =0.1262 100.4
[4s2p/2s1p] ~ -76.033838  =0,1393 ~0,1388 =-0,1408 10l.1
[4s2pld/2s]  -76,036678 =-0,1839 -0.1841 -0.1892 102.9

[4s2pld/2slp] -76.048764 -0,1930 =0,1934 =0,1890 103.1

g The geometry assumed: R8H = 1.8089 ay, th = 104,520,
For details see Ref. 290,

Table 4,7
Comparison of valence shell (E/Eh) correlation energies in BH, HF
and Ne given by MB-RSPT344, CEPA and CI calculations including all

singly and doubly excited configurations (CI-SD)

(2),6)
System SCF CI-SD cepa  e?) g2 (3 c1igp
gH2 -25,105638 =0,0694° -0.0721 =0.0477 -0.0621 89,5
HEC?Y  =100.048548 =0.2171 =0,2257 =0.2263 =0.2252 . 103.7
Ne®  -128,524067 -0.2094 =0,2145 -0.2187 -0.2145 102.4

8 Rgy = 2.336 ay, [4s2p/2slp] basis set used (for details see Ref.
b 345), CI-SD and CEPA results from Ref, 345,
The full-CI value345 is -0.0727,

¢ [5s3pld/3slp] basis set used (for details see Ref. 118), PNO-CI
and CEPA~PNO results from Ref, 118,
RHF = 1.733 ag.

The entries in Tebles 4.6 and 4,7 are only valence shell correlation
energies but no restriction was imposed upon the number of used un=
occupied orbitals given by the particular basis set. From Tables 4.6
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and 4,7 it is seen that the correlation energy of ten-electron sys-
tems included in 5(2) and E(a) is about 10Q%, compared to CI-SD and
CEPA calculations with the same basis set. As expected, the E(Z) and
E(S) contributions are slightly basis set-dependent, the percentage
being larger for the latter than for the former. For the six~electron
system BH, E(Z) + E(3) gives about 90% of the CI-SD correlation energy
and the 5(3) contribution in absclute value is considerably larger
than it is with the ten-electron systems, We shall not comment on the
comparison of E(Z) + 5(3) with CI-8D from the theoretical point of
view (this will be analyzed later on) but rather we notice the fact
that the convergence of the perturbation expansion is considerably
slower for BH than for the ten-electron species. Hence, if the calcu-
lations are restricted to the second and third orders, such a dif=
fering convergence may lead to an unbalanced treatment of different
systems, We note here two expressions the use of which was suggested
for avoiding this effect of truncation of the perturbation expansion
at the third order. The first of them is the Padé”s [2/1] approximant

e[2/11 = e(®) 1 - e03) e (2)y (4.94)

Its various forms have been discussed by Wilson et al.346 (see also
Refs., 347,348), The second formula

172

({32

E, = - N (4.95)
25 25 S

is the simplest among the expressions originated from the first~order
wave function, §(l) (see e.g. Ref., 349)

Ve @, 4 ?¢(1) (4.96)

with y determined variationally. For the evaluation of E, in (4.95) it
is necessary besides E(2) and E(a) to compute also

s = <& a)

= Z:, Rg,b,r”s”(a’r”lb'éﬁ[Z(a’r”lb’s”) - (a's"lb ¢ ] (4.97)
a’ b

r// S//
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Evaluation of S requires, however, no additional computaticnal effort
because S differs. from E(z) only by the power in the denominator,

The utility of the theory up to the third order has been demon=
strated by a series of calculations of molecular geometries, dissoci-
ation energles and energy differences between the states of different

multiplicityzss, heats of reactions and equilibrium constants of gas=-
-phase reactionsleo'gso, spectroscopic constants and potential curves
351,352

. Agreement with experiment was substantially better than that
achieved by the Hartree~-Fock theory,

Higher orders of MB~RSPT

Slow convergence of the perturbation expansion with BH noted above
suggests that the higher orders may be important in some cases. For
the purposes of the forthcoming discussion on this topic, it is prof-
itable first to make a comparison of the perturbation expression with
the CI and cluster expansions and to try to assess what sort of elec=
tron correlation is compatible with the particular order of the per-
turbation expansion, Use may be made of a simple rule which permits
expression of the diagrammatic representation of a particular order of
the perturbation expansion in terms of the traditionsl CI: the diagram
represents a n-excited configuration if the section between two ver-
tices runs just across n hole lines, Hence, from Figs. 4.3 and 4.4 and
Table 4,8 it follows that the second and third orders cover only dou-

Table 4.8

Lowest order (LQ) of the perturbation
expansion of energy in which various
linked and unlinked clusters first ap-

pear323
Linked Unlinked
clusters Lo clusters Lo
T 4 T, 5
S
T2 2 -;‘ Tg 4
T3 4 TlT3 6
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bly excited configurations., Formula (4.89) implies that the second
order accounts only for pair correlation effects. Expressions {4.91)
and (4.93) cannot be split to pair contributions, which means that

the true many-body effects are first met at the third order, Although
the whole effect is due to doubly excited configurations, it is not
saturated at the third order and contributions of doubles appear still
in the fourth and higher orders. {Nevertheless, experience shows that
their second~order contribution is dominant, at least with molecules
in equilibrium geometries). In the fourth order of the perturbation
expansion several new contributions first appear: these are due to sin-
gly and triply excited configurations and certain types of quadruple
excitations, In terms of CPMET, these contributions are due to linked
clusters T, and T4 and unlinked clusters 1/2 T,75.

As we already know from the foregoing sections, the dominant part
of the correlation energy is due to doubly excited configurations, It
is therefore natural that attempts were made to develop such a proce-
dure, which would pick up the contributions of doubles from the higher

orders of MB-RSPT, A clear diagrammatic representation of these cone

tributions is possible354 if use is made of the normalized two-parti-
cle matrix elements introduced by Brueckner and Levinsonasa, Applica~
385

tion of this approach was reported by Kvasnicka and Laurinc™ ~, With=
in the frame of CPMET, the method is equivalent to Cizek’s linear ap-

317,354

proximation . The correlation energy corresponding to doubly ex=

cited configurations is given by

E, b > (4.98)

It holds

Ep = Z: Ra/b'rﬂs”[é(a'r”‘bls” - (a8’ [b )] (a'r[glb’s”)  (4.99)
a b

rJI S/I

where the matrix element (a’r”|g|b’s”) corresponds to a heavy-dot ver=

354,355 a

tex in egn. (4.98), This vertex is defined diagrammatically 8

follows
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b’ b b 5
s* 3 g u” b )
= + +
re T r t a Iy
a, a’ al r)l
(4.100)
b a
NI NS N
2}V a7 b
r s

and the matrix element expressed over spatial orbitals has the fol=-
lowing form

(a'r“iglb's") = (a r|b' s") + E: R

w

o br poe (P T/ 8" U% ) (8 €] g b7 ")

+ Z Rogrgrpuge(@ eI b d)(c r"g|d s")
c' d

+ E.[z(a'b',r”s”) + z(b’a’,s”r”)} (4,101)
2

where

Z(al b’ ;rﬂS”) = -2 Z Rbl c’ rlltll(al c'|s" tll)(cl l"”lg[bl tk)
d ot

-2 2: Rb,c,s”t”(c’t”la’r”)(c’s'(g]b't”)
Cl t” :

) Ryt o gn e (€ 7] @7 P4 (e 17| g[ D' 8")
¢t

-2 Z Ry o gnpn (87 G/ 1P £7) (' t7 [g]b' s”) (4.102)
Cl t”

Equations (4.101) and (4.102) may be solved iteratively with the
starting step (&' r’|g(b's”") = (&' r“/b's"), One may find easily that
for the zeroth and first iterations, respectively, the formula (4.99)
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leads to the second= and thirdw~order expressions of MB-R5PT, In ap-
plications to higher orders, the evaluation of (a’r”|glb’'s%) in each
iteration is evidently & time-consuming step, In the computational

scheme suggested by Bartlett, Silver and Shavitt347'356

, the time~-con=
suming step is only involved in each odd order of the perturbation ex-
pansion, We preferred, however, to present here the approach based on
eqn. (4,98) for its conceptual simplicity, For an example of applica~
tion we selected the problem of BH (presented in Table 4,7). When the

1)+ 0,007 g, €8 = <0.0027 £, and £®) = ~0.0014 are
added to the third-order energy E(3) (see Table 4.7), the sum of all

contributions through the sixth order becomes «(0,0720 Ep e Comparing

computed E

this result with the CI=SD value, we see that the treatment through
the third order gives underestimated correlation energy owing to a
slow convérgence of contributions coming from doubly excited configu=
rations,

There are also other possibilities of summing up certain types of
diagrams to infinity. This concerns so called ladder diagram3331'357

358

and ring diagrams” . The most widely applied approach is the denomi-

nator shift technique34o'359 which ie based on the Kelly’s ladder tech-

3311357, Starting from the secondseo or third order, its imple=~

nique
mentation is achieved simply by "shifting" the denominator, which
means that the denominator appearing in formulas (4.89) and (4,91)~
(4.93) contains now besides orbital energies also diagonal elements of
the type (r”r“|s”s#), (&' a|b' b } and (a’a' | "' ). It may be shoWn361
that this denominator shift leads to the same expression for the cor=-

relation energy as if the Epstein-Nesbet352'363

partitioning of the
Hamiltonian is used instead of the Mgller-Plesset one., It should be
noted that the denominator shift does not mean summing up all double
excitations to infinity (as it is, in principle, achievable in the ap-
proach discussed in the last paragraph) but only certain types of then
(nore precisely, the diagonal elements of all ladder and ring diagrams
to all orders., Applications of the denominator shift have met with the
varying degree of success, Sometimes the results are good and the use
of the denominator shift is advocated348
worse342'359 than those given by a mere third-order trestment. Appli=-
cation of the denominator shift should definitelf be avoided at the
second order, because the absence of some third-order terms leads to

unbalanced results,

, in other cases they are

Let us now examine the extension of the explicit treatment to
higher orders of the perturbation expansion, This brings about new
problems that are not involved in the second and third-order treat-
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ments. Through the third order, the classical RSPT and MB=RSPT give
the same formulation of the problem. Equivalence order by order is
also met in all higher orders, provided that all contributions of the
particular order are included. This is, however, hardly achievable
for technical reasons, so that much caution is needed in incomplete
treatments. We shall concentrate on the fourth order of the perturba-
tion expansion, In this field a remarkable progress has been achieved
recently in several laboratories~>0+325,326,335,336,364-370,

The fourth-order RSPT energy is given by the expression (4,83),
which consists of two terms. The first one, the leading (direct) term
involves:

(1) contribution from doubly excited configurations, 5(4) (Herem

D 5.
after we shall refer to the second- and third-order energy, E(z) and
E(a), as Eéz) and Eéa), respectively). This contribution may be evalw

uated by means of the relationship (4.98).
(i1) contributions from singly and triply excited configurations.
(iii) contributions from quadruply excited configurations, Subse-
quently we shall consider only the contributions (i) and (iii) which
may be assumed to represent the dominant part of the total fourth-or=
325,369 that the effect
of singly and triply excited configurations is not negligible,

der contribution, though there is some evidence

The second term in eqn. (4.83) is usually referred to as the re-
normalization term, It is a product of Eé2) with the normslization
term for the first-order wave function, S, given by eqn. (4.97). Since
both Eéz) and S depend linearly on the number of electrons (see Ref,
371), N, their product Eéz)s is N2-dependent and it therefore has to
be cancelled,

Again, it is advantageous to introduce the diagrams. The quadruple
excitation diagrams of the fourth order are presented in Fig. 4.5. To
facilitate the discussion, however, decoding of these diagrams336 is
somewhat different from that used in previous paragraphs: instead of
orbitals the summation indices refer to spinorbitals and instead of
the integral (4.86) the vertex (4,85) now has the meaning of the anti-
symmetrized integral

(IJ) KL) = (IJ|KL) = (IL|KJ) (4.103)

where (IJ|KL) conforms to the definition (4.86) but is expressed over
spinorbitals, Adoption of the definition (4,103) means that all dia-
grams disappear that are generated by the exchange according to eqn.
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Quadruple excitation diagrams which contribute to

the fourth order of MB~RSPT

(4.84). The rules given previously for the denominator, sign and the
topological factor remain unchanged., Using this scheme, the second=ore
der energy, for example, is given by the diagram B in Fig. 4.3 and its
algebraic expression becomes
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1
2 , 2
el?) = = L5 Ry grgrgn (A RVIB'SY) (4.104)
Al B
RI/ S//

After the spin summation one finds easily that this expression is
equivalent to eqgn. (4,89).

As may be noticed in Fig, 4.5, the diagrams are so labelled to
imply certain pairing of diagrams. This pairing has its origin in the
effective algebraic evaluation of diagrams. For example

1
Dl + D2 = ‘I; Z RA, B/ RY §¥ RA: B’ TllUIIRC/ D’ RYS"
A B'C'Df
R" g¥ THy

X (AI R”“ Bl S”) (C/ T”” DI U.‘/) (cl R)I” D/ S”) (Al Tl/ﬂ Blull) (4.105)

For the manipulation with denominators use was made of the identity
I/X(X + Y) + 1/Y(X + Y} = 1/XY, Among the diagrams A = E in Fig. 4.5,
the first seven ones are referred to as the connected diagrams, where=~
as the remaining two are referred to as the disconnected diagrams., As
we shall see, understanding of relations between the connected dia-
grams, disconnected diagrams and the Eéz)s term is essential for a
correct fourth-order treatment of double and quadruple excitations.

First we decode the E diagrams which gives us the following important
expression

1 —
2 ’ # ’ b4 2
El + E2 = i"'Z L_, RA/BIRIISJIRchITIIUn(AR”BS )
6 s o
f?’ S’/ T/IUH

x (¢ T10'u")? = gl?)s (4.106)

As we already know both Eéz) and S are related to double excitations,
(2)
E

p = Wwas discussed in detail in this section and $ was shown in eqn.

(4,97) to be given by the coefficients of perturbation contributions
to the first-order wave function
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1 p
l " , RIS”
1) =7 Z Ry g/ prgr (A RNB 8" )P L o (4.107)
A B
R"S”
30 that
1 2 2
S = : Z Rl gt RY g (A R"B'S")" (4.108)
AI Bl
R” S"

Equation (4,106) leads directly to the conclusion that the energy in
the fourth order of MB-RSPT is given solely by the connected diagrams
A-D, This finding is, of course, just what follows from the formula-
tion of the linked cluster theorem°°°¢372 yp MB~RSPT. It guarantees
automatically that the size-inconsistent term Eéz)s is cancelled by
means of contributions from disconnected quadruple excitation diagrams
El and E2. (Note the minus sign standing at the renormalization term
Eéz)s in eqn, (4.83).) The contributions from diagrams A-D are due to
disconnected wave function clusters of double excitations, 1/2 T2T2
(the terminolegy of MB~RSPT has not yet become unequivocal; the terms
"connected™ and "disconnected" used by Bartlett and PurvisS258 have

the same meaning as terms "linked" and "unlinked" used in Sections 4.F.
and 4,G.,).

Having analyzed the correlaticn energy contributions from diagrams
A~E, the next point of examination is the case when coincidence of in-
dices occurs for any pair of particle or hole lines, Such contributions
are denoted in the literature with the acronym EPY (exclusion princip-
le violating). In the language of creation and annihilation operators
it means that a particle or hole is created twice before it is annihi~
lated which is why the “exclusion principle violating® designation
arose. Assume, for example, that indices B’ and C' in the diagram A
are the same. Fig, 4.6 shows us that a modified linkage of the hole
lines B' and C' gives us the diagram Cl, Apart from the sign, the two
diagrams yield the same expression, which brings about the cancella-
tion of the EPV contribution. Next we may assume, for example, the e-
quality of $" and T" in the diagram Cl, Here a modified linkage of
lines leads to the diagram El, Hence, the cancellation of this EPV con=
tribution is brought about by the interplay between connected and dis-
connected diagrams. A complete analysis along these 1ines280,373 gives
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Figure 4,6
An example of the cancellation of EPV contributions

us an important conclusion viz, that the cancellation of EPV contribu-
tions within the context of diagrams A-D is incomplete. A part of
their EPV contributions is cancelled by the EPV contributions from the
diagfams El and €2 giving

(A+B+C+0)py = =(E)gpy (4.109)
so that
Z:(A through €)..,, = 0 (4.110)

The knowledge we acquired from the derivation of eqns. (4,1086) and
(4.110) is embodied in Table 4.9, It is seen that the only nonvan<
ishing terms in this approach are the NEPV contributions from con=
nected diagrams and "EPV" contributions from —EéZ)S. The non=EPV part
of the ~Eé2)8 has to be cancelled out because it brings about size-in~-
consistency. On the other hand, the "EPV" part of -Eéz)s is linearly
dependent on the number of electrons and it is preserved. Of course,
this term by no means violates the exclusion principle. It is only due
to double excitations and it has a correct physical meaning, Instead
of EPV it should be rather referred to as the *conjoint™ contribution
280’326'365. On the contrary, the disjoint term (“"NEPV") is unphysical
and it must be removed in any theory in which the effect of double ex-
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citations is rigorously included.

Table 4,9

Contributions of double and quadruple excitations in the fourth
order of M3=-RSPT, NEPY means non-EPV contributions. The boxed
entries are contributions that cancel out

Origin Type of the contribution -
Connected diagrams (A-D in Fig, 4.5) EPV NEPV
Disconnected diagrams (£ in Fig, 4,5) EPV NEPV
—EéZ)S term "EPV" "NEPV"

We may now apply relationships (4,106) and (4,109) to the two
uncancelled terms in Table 4.9, This gives us the following result

(2) -
(A through D)NEPV - (ED S)"EPV" = {A through D)NEPV (E)EPV

= (A thrOUgh D)NEPV+EPV (4,111)

which is again in accordance with the linked cluster theorem.
Separation to EPV and NEPV contributions is of great importance
for finding approximate relaticns between different methods. Listed
below are the quantities that permit us a deeper insight into the
problem. All these quantities may be taken as contributions to the
correlation energy given by MB-RSPT through fourth order.
(1) Sum of contributicns due to doubly excited configurations,

| EéZ)'(d) = EéZ) + Eéa) + EéA) (4.112)

which represents the contribution of double excitations from direct
terms., It may be compared to the energy given by {izek’s linear ap~
proximationt7 3544374 4 comet,

(2) The relationship,

e L gm0 L2 (4.113)
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may be taken as the approximation to CI covering doubly excited con=
figurations, The term -Eéz)s is inherently positive. In the CI-D ap=-
proach it brings about size inconsistency, but it ensures the upper
bound to energy336, a typical property of variational methods, Of
course, CI~D includes the effect of double excitations up to the "in-
finite" order. This coverage is, in principle, achievable in the per=
turbation treatment by means of eqn., (4.98), but it would be necessary
to augment eqn, (4.113) with additional renormalization terms for
higher orders. For example, the supplementary terms for the fifth ore
der are »Eé3)s and -ZEéZ) <:¢J2)f %(1)>> , where @(2) is the second-
-order wave function, A thorough analysis of the effect of such sup-

96

plementary terms was reported by Siegbahn2 . The problem noted in

this paragraph is general and it is inherent to any method in which
(n)
D
(3) Within the frame of MB=-RSPT through the fourth order, a rigor-
ous expression for the contribution from doubly excited configurations

becomes

higher~order terms E are involved,

o = 5 (4,114)

nEPvll

The subscript R is used here for pointing out that the second term in
eqn. (4,114) comes from the fourth-order renormalization term, Equa~
tions (4,113) and (4,114) show clearly differing meanings of the con-
cept "effect of double excitations” in CI-D and MBwRSPT,

(4) The contribution coming from quadruply excited configurations
is as follows

Eé4) = (A through D), ., (4,115)

(5) The fourth~order contribution including both doubly and quad-
ruply excited configurations is given by

eld) o gld) Eé4) - (Eéz)s)

DGR D "EPV"

= e(4) - el4) (4)
By’ + (A through D) oy eoy = Eg0 + Egg (4.1186)

(6) A complete expression for the correlation energy through
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fourth order in the considered MB~RSPT approach including doubly and
quadruply excited configurations, is given by

elod ) = g2, g ld) (4.117)

{7) For the normalized form of the wave function given by the
first order perturbation theory

Voot 4 plt)y (4.118)

we may assume that it approximates the CI wave function truncated to
double excitations

) RS £RS
Yorp = o+ Lo Lo chp i (4.119)
A>B R>S

From egn. (4.119) we obtain

2 2
My (h3)7 = 1w e (4,120)
AB RS

and the comparison of coefficients standing at doubly excited con=
figurations in egns, (4,118) and (4,119) (see also eqgns. (4.107) and
(4.108)) gives us

(4.121)

Assuming next Eéz)zz Ecyup e may write to first order in S

2 ~ (2)
(1 = cf)Egyp = Ep'S (4.122)
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Thus the E(Z)S term may be taken as an approximation to Davidson’s
formula (4 19) which corrects a posteriori the size inconsistency of

the CI=~SD wave functlon296 336

. Comparison with E(Z) (4) suggests that
it neglects the ternm '(E(Z)S)"EPV" which should be involved., A rea-
soning usually given to Davidson®s formula is that it accommodates ap=
proximately quadruply excited configurations, According to Table 4.9
this should be understood as implicit inclusion of those contributions
from quadruply excited diagrams, that furnish the cancellation of
"NEPV" contributions and also (erroneously) of "EPV" contributions
from the -Eéz)s term. Contributions corresponding to Eé4) are by no
means invclved, however,

(8) EPV contributions also permit us to find relationships between
MB=RSPT and CEPA. It may be shown that differences in several existing
variants of CEPA may be assigned just to the differing extent of in=
clusion of EPV contributions. A detailed discussion on this problem
319, Ahlrichszg8
Hurley2 . A diagrammatic treatment was presented by van der Velde
and«Robbsss. We restrict here ourselves to a brief summary:

(1) in all variants of CEPA the "(Eéz)s)"NEPV" term and NEPV COnNw
tributions from diagrams E are correctly cancelled. The “(EéZ)S)"EPV"
term is taken in an approximate way, In this respect it is possible to

speak of the implicit inclusion of quadruple excitations in CEPA,

may be found, for example, in papers by Kutzelnigg and

16

(11) double excitations are summed up to infinite order.

(1ii) NEPV contributions from the diagrams A through D are not re-
cognized so that the energy Eé4) is not involved in CEPA explicitly,

(iv) CEPA also permits inclusion of singly excited configurations.

To illustrate the quantities discussed in previous paragraphs we

present some numerical result5366’367. We note first the entries of
Table 4.10 for the water molecule, because in this case we have CI
data available that are suitable for the purposes of our discussion.
We see that among the fourth-order contributions, Eé4), Eé4), and
'(EéZ)S)"EPV"' the first two are negative and the third one is positive
but that they are roughly equivalent in absolute value, Ratios between
these three quantities may be viewed in two different ways:
(a) Double excitation terms E( ) and "(EéZ)S)”EPV" approx1mately can-
cel out so that the resulting total double-excitation contributlons,

ég) (4), is given almost solely by Eéz) + Eéj). This means that 5(4)

Q

is a dominant fourth-order contribution, Alternatively, (b) we may con-
sider an approximate cancellation of terms Eé4) and -(ED S)“EPV”' ACw
cording to egn. (4.1ll) the sum of these two terms is obtained by sum-

ming up both EPV and NEPV contributions from the diagrams A=D, This



Table 4,10

Correlation energy contribution5367 given by MB-RSPT through

tourth order for H2O with the contracted Gaussian DZ basis seta

Energy contributionb E/Eh
Escr -76.00929
Double excitation terms: Eéz) -0,12510
g3 ~0.00111
gl®) ~0. 00293
EéZ)S =0, 00504
(2Ya
(B ") wppyn ~0,00257
Quadruple excitation term Eég) -0,00081
Various quantities: EéZ)"(4) -0,12914
(2)-(4)
ECI-D ~-0,12410
(2)=-(4) 5
EDR «0,12657
EéA) -0,00338
(4) -
EDQR 0.00374
(2)~(4)
EDQR ~0,12985
(4) (2)gyC -
)77 + (Ey7'S)uyppyn 0.00586
7
CI data’: Ec1as0 -0,12615
Ec1-sotg = Ecr-sot ~0.00577
a

For details on the basis set and geometry used see Refs, 7
, and 367.
For definitions see text,

Ll g { -
The MB-RSPT analog of the difference ECI~SDTQ Ecy_spT

sum, which is referred to as Eég), represents therefore the rest con-

tribution after an incomplete cancellation of Eé4) and -(Eéz)S)"EPV..
Ordinarily, Eég) is snall®%® ang positive (the negative value in Table
4,10 is an artefact of the small basis set).

Cancellation in the sense of item (b) has an interesting conse~
quence., If Eés) turned out to be generally small, then double excita-
tion contributions would be dominant. If it were so, we might also re-

gard those procedures as rigorous that disregard in fourth order both
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quadruply excited configurations and "EPV" terms from Eéa)s. Actually,

in the perturbation treatment it would be sufficient to assume the
(2)~(4)
term Ej

CI approach, the above noted cancellation would mean numerical (a pos-

which is obtainable in a relatively simple way. In the

teriori) justification of Davidson’s correction. The last entry listed
in the family of "various quantities™ in Table 4,10, mimics the effect
of augmenting the CI wave function with the quadruply excited configu=
rations, Agreement between the fourth-order MB-RSPT and CI is remark=
able on this point. It should be realized, however, that in MB=RSPT a
part of disconnected T2T2 clusters (those from higher orders) is mis-
sing. Connected clusters are completely missing and their contributions
appear only in higher orders. In contrast, the CI-SDTQ energy contains
additional renormalization terms which should be cancelled out by
higher configurations,

Table 4,11 presents the results for Ne, HF and HZO' In contrast to
Table 4,10, where use was made of the DZ basis set, Eég) given by the
DZ+P basis set is positive in all three cases listed in Table 4,11, It
is noteworthy that in the series Ne-HF-H,O the cancellation of Eé4)
and -(ED2 S)"EPV“ terms becomes more incomplete. The same trend ﬁay be
inferred from the data reported by Krishnan and Pople365. In absolute
value, the g(4) term is small with all three systems assumed (1.7% of
Eé2)~(4) with H,0, where its percentage is the highest). As the size
of the molecule is increased, however, the magnitude of E(4) may rise
rapidly275. With the N, molecule, for example, it becomes967 ~0,01009
€+ which represents 3.2% of Eéz)"(4), though it reduces to +0,00568 E
after the cancellation with the "(EéZ)S)“EPV”
Obviously, much more numerical data are needed to assess in general

h
term,

the relative importance of quantities discussed above, Additional in-

formation may be found in pioneering papers by Bartlett, Purvis and
Shavitt294'326'364 325'365. Wilson, Silver and

Saunders368'369, and Siegbahnzgs. However, for a larger set of mole-

, Pople and coworkers

cules only the results by Bartlett and Purvis 28 permit detailed analy-
sis as it was presented above, although only with approximate
(EéZ)S)"EPV“ terms, From the data by Krishnan and Pople365 it is pos-
sible to infer Eéi), but since the EPV contributions cannot be sepa-
rated, it is not possible to arrive at Eé4) by means of our relation=-
ship (4.115). Anyway, the reported fourth-order MB-RSPT calculations
have contributed much to the understanding of the correlation problem
and they showed clearly that the following treatments of other mole-
cules are highly topical.
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Correlation energy contributions 6’ (E/Eh) given by
MB-RSPT through fourth order for lO-electron systems
with the DZ+P basis set

Energy contribution® Ne HF HZO

Escr -128,52395 ~100.04787 =76,04647
el?) -0,17755  -0.19699  -0,19884
gl3) -0,00181  -0.00204  -0,00603
554) -0,00132  -0,00256  ~0,00342
Eé?’ -0,00023  ~0,00054  =0,00090
es®) -0.00007  =0,00021  =0,00035
e{%)s -0,00438  =0.00840  ~0.01046
(Eéz)S)"EPv" -0.00256  =0,00429  =0,00530
Eég) +0,00043  40,00099  +0.00170
g{2)=(4) -0.18068  -0.20160  -0,20829
g{2)-4) -0.17570  -0.19321  -0.19783
gl2)=(4) -0,17812  ~0,19732  =0,20299
Eé4) -0,00213  -0,00330  ~0.00361
Eég% -0,00089  ~0,00158  =0,00172
Eéé%_(4) -0,18025  -0,20061  ~0,20660

a

For definitions see text,

4,K, Numerical Treatment of Perturbation Expressions

This section was intended to have a similar role in this chapter
to that in Chapter 3 of the Sections 3.C., and 3.D, devoted to prob-
lems of time saving in SCF calculations, With the calculations of cor-
relation ensrgy, however, the situation is more complex because of a
great number of different methods among which each has its own specif=
ic theoretical problems and, accordingly, it requires special tricks
for accelerating the actual calculations. Since the most widely used
methods, CI-SD and CEPA, have already been discussed in some detail in



127

previous sections, the emphasis is laid here on MB-RSPT calculations,
for which we have acquired some personal experience. o

A typical (though not always unavoidable) first step in any proce~
dure for the evaluation of correlation energy is the transformation of
integrals over AO0s (i.e. STO"s, CGTF’s and other possible basis set
functions) with the indices &,V , A, and 0 to integrals over M0O"s with
the indices i,j,k and L

(ijikL) = E:l C;gFjvckAQ&F(valxej (4,123)
oy VNG

1f the number of basis set functions is n, the number of (ij|kZ) in=-
tegrals becomes ~n?. Since the evaluation of each of the latter re~
quires the manipulation with ~n? integrals (uv|AG), the direct trans-
formation according to eqn. (4.123) is extremely ineffective, Sutcliffe
375 was probably the first who suggested ths ~n® dependent algorithm,
Esseﬁtially, the algorithm contains four steps in which partly transe
formed integrals are stepwise constructed according to the following
scheme:

(316) = Lo, (49 16) (4.124)
-

(131%0) = Ecjv(ivl%e') (4.125)
V

(13 1k6) = ) e (13126 (4.125)
A

(13 1 kD) = )y (13 ] ko) (4.127)
3

Making use of this algorithm requires of course to store the partly
transformed integrals, It is profitable to store them in blocks ac~

cording to the index i, Developmentz75'376"379

slong these lines re=~
sulted in highly effective algorithms,
For second~ and third-order calculations only integrals of certain

types are needed, Denoting the cccupied orbitals by o and virtual or=
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bitals by v, the integrals met in the second-order calculations are
only of the {(ovjov) type. For third-order calculations we also need
integrals (ocofwv), (oofoo) and (vvivv). For quadruply excited config=-
urations in the fourth~order treatments of ground states, only (oviov)
integrals are needed. All types of integrals, i.e. alsc of (colev) and
(ovlvv) types, are required, if singly and triply excited configura-
tions are included in the fourth~order treatment. Separated blocks may
be obtained directly by a suitable sequence of transformations and by
storing the partly transformed integrale on intermediate tapes or
discs. The second~order energy (4,89) is obtainable readily, if all
(ov]ov) integrals are retained in the core, the core requirement being
N, X N_ x (NV X N o+ 1)/2 (double precision) words, where N, is the
number of virtual MO"s and N, is the number of occupied MO”s assumed
in the particular run. It is more advantageous to make use of segments
of (ovjov) integrals, as they were transformed with respect to the
first index. With the indices of egn. (4.89) the number of segments is
determined by the index a”, Each segment contains integrals Aa,(r”,b’,

8"} and the second-order energy is calculated as

(2 - A / ” [ ’ l/ [z
E ) = Z Z..JRaI bl r"’s”Aa’ (r” )b ,S ) [ZAQ' (rlib ,8() - Aa/ (slxb/ :rﬁ )]
3’ bl

r/l S/I
(4,128)

From the point of view of reducing the memory reguirements, one might
expect it preferable to interchange indices so that integrals
Ar”(atsﬁb’) would be stored. From the point of view ¢f economy, how~
ever, it is profitable, if in the first step of integral transforma=-
tion, which is the most time consuming step, the index refers to oce
cupied MO"s (provided NO-Q,NV). Anyhow with respect to the integral
transformation, the time required for the evaluation of E(Z) is small.
Evaluation of the third-order energy is somewhat more complex.
Consider, for example, the contribution Eés) given by egn. (4.92). It

contains integrals of the (vv]vv) type, which by no means can be kept

380

in the memory., A procedure which we use in our program is the fol=

lowing:
{1} Read in a segment from a file containing (vV;vv) integrals,
(i1) Unpack the indices, r",t",s",u” and find the value, Vv, with any
member of the segment,
(1311) To any integral V = (r't"|s”u”) find the corresponding {oviov)
integrals from the segments Aa" evaluate and add the respec=-
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tive contribution according to the formula

3 < T
Eé ) = /[, }; Lo Ra/ B gt Ra; R uvv
Ve (v

viv) & b

x Ay (r",b,s") [2a, (£",b" ") = Ay (u”,b" ,t")] (4.129)

(iv) Return to (i) unless the treated block of (vv]vv) integrals was
the last one.

The contributions Egs) and Eés) are evaluated in a similar way, Addi-
tional simplification may be achieved by introducing the denominators

directly into the matrix elements

ARar(r”,b’,s”) = (a’r”{b's”)Ra'b’r“s” (4.130)

and similarly for Aa,(t”,b’,u”) and Aa,(u”,b’,t”), (Note that terms
(4.130) have the meaning of coefficients in the first-order wave func~
tion (4.107)). The number of operations in the third-order calcula=
tions increases as NiNs, the factor being only moderately higher than
that with SCF calculations., A similar procedure for the calculation of

correlation energy by means of MB-RSPT through third order was re=
381-383

[N =40
rithm by Pople and co-workers> o

ported by Silver and Wilson . A remarkable feature of the algo-
is that it avoids the most time=-con=-
suming step in the integral transformation - the transformation to
(vvivv) integrals, and evaluates the Eéa) terms directly from inte-
grals (uv|Ae) over basis set functions,

Consider next the fourtheorder contributions. Since the computa-
tional aspects of the evaluation of terms that are due to doubly ex-
cited configurations were discussed in some detail in the previous
section, we restrict ourselves here to quadruple excitation diagrams.
From the inspection of eqn., (4.105) it might appear that the eight-
~-fold summation makes the eveluation of diagrams D prohibitive, The
same problem is also met with the diagrams A-C, Fortunately, this bot=
tleneck may be eliminated by introducing intermediate arrays. In our

treatments we adopted the formulation by Robb®

. Essentially the same
i~ 3

technique is also used in other reported algorithm63b5'368'“84. The

idea is relatively simple. Note that the indices R" and 8" in eqn.

(4.105), for example, appear only in the first and third integral, For
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this reason it is profitable to define

G(A ,B',C',D") = ) Ry prowanRos o owen (A RY[B/S") (C'RYD/SY) (4,131)
A B RSN D RS
R//Su

o
where the number of multiplications is proportional to N‘ {(for each of

approximately N elements of the G array). Similarly, we may define

F(A 8" ,c',0') = ) Rprgr g (G T/HD7 U7) (A" T/ 87 U") (4.132)
T‘/UII

Note that both G and F may be calculated simultaneously within the

final summation which gives us the expression for Dy + D, as
l ' ! f r ’ ! 7 ’ /

0y + 0 = = ). G(A,B',C 07 )F(A,B,C7,07) (4,133)
5

The most time consuming step {approximately with NgNs operations) is
the formation of G and F, The use of intermediate sums as outlined
above permits the number of multiplications with any fourth-order dia=-

gram not to exceed the level of third-order treatments, Of course,

368a,384

after spin summations the calculations may be performed in in-

tegrals over spatial orbitals, not in integrals over spinorbitals.
The usual way of evaluating the individual EPV and NEPV fourth=

~order contributions is to compute directly the energy Eég), i.e. the

. ‘ 2)
contribution from diagrams (A through D)EPV+NEPV‘ The term -(ED ‘S)“EPV”
is either approximated by means of a simple expression with pair cor=

relation enerqu'280'326’364

or it is celculated rigorously, We have
367

shown recently’ that neither the rigorous calculation of —(E( )o)"EPV"

is very time consumlng. The E( ) term is readily determined as the dif=-
(4) (2)

ference Egr' = [~ (Ep""S)mgpy J

Finally, it is fair to note that the individual contributions Eé4)

and (E(Z)S)"EPV" are not invariant to unitary transformation among
degenerate orbitals, Only their sum, EéR)' is invariant. This does not
matter, howsver, if one uses these contributions for a critical exami-
nation of the various approaches in which some of the terms Eéz), Eé4)

and ~(ED S)“EPV“ are ignored or approximated,
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4,L, Basis Set Dependence

At the beginning of this chapter we noted that the capability of
the present computational methods is to give 80% (or more) of correla-
tion energy. This high percentage is, however, attainable only with
very large basis sets, For the water molecule, Meyar292 obtained with
the PNO~CI and CEPA calculations, respectively, the correlation enerw
gies of -0,3056 and -0,3201 Er i.e. 86 and 90% of the "experimental”
correlation energy., He used the GTF basis set (1ls7p4dlf/5slp) aug-
mented with a ls bond function in each bonding region, The largest
among the STO basis sets considered in Table 2.15 can give only 75% of
the correlation energy, though it gives lower SCF energy compared to
Meyer®s calculation, Ahlrichs and coworkersl20 tested the effect of po-
larization functions with the nitrogen molecule., They examined the
gain in SCF and correlation energies upon augmenting the basis set suc-
cessively with the first d-set, second d-set and f-set., They concluded
that the polarization functions which can safely be neglected in SCF
calculations may be very important for the correlation energy. So it
should be kept in mind that not only the number of configurations,
cluster types, or the order of the perturbatiocn expansion, but also
the basis set size is a limiting factor in accounting for the correla-
tion energy.

4.,M. Size Consistency

In Section 4.D0. we noted on the PNO~CI calculations250 for the
dimerization of BH,. It was shown there {egqns. {4.17) and (4.18)) that
different energies of dimerization are obtained if they are computed
as E(BQHG} - ZE(BH3) and E(B?HG) - E(BH3-"BH3) respectively, A more
realistic oFE is obtained in the latter case in which one substracts
the energy of a supersystenm 8H3"‘BH3 with a very large intermolecular
distance from the energy of the dimer. This is an excellent example of
what is referred to as the incorrect dependence on the number of parti-
cles,

Size inconsistency of the CIl~SD approach was analyzed in Section
4.J., where it was shown that the CI-SD energy contains the E( )S term,
which has the N2 dependence instead of the correct N dependence. For
those who prefer the traditional CI-formalism to the perturbation
treatment, we present here the demonstration reported by van der Velde

16 293

and Ahlrichs et al.”™", Consider a model system of n identical non-

interacting two-electron molecules (say H,, molecules) which is treated
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by the ordinary configuration interaction including only doubly ex-
cited configurations, First we rewrite eqgns. (4,54) and (4,55) in the
CI formalism

A - RS RS
cg LPJHIP> + ) T chg P IHIPR g > = o F (4.134)
ACB R(S
RS . - U o gTU) RS S RS
P ol HId> L cep Lbe DI o> = cpE (4.135)
cD T

Next we assume that a minimum basis set is used so that only one vire
tual orbital is available for a single molecule. Then the CI wave
function contains n doubly excited configurations, each of them having
the same enerqy (El)' expansion coefficient (cl) and the matrix ele-
ment with the ground state (Hol)‘ Assuming this and <(¢01H1¢0> = 0,
egns. (4,134) and (4,135) reduce to

corr "ol (4.136)

and

CoMar * C1F1 = C1fcgpr (4.°137)
which gives us

Lim € . = - {Hlmolt (4.138)
N-~»00

The obtained f~ dependence may appear to be in conflict with the
finding that the energy given by the CI-SD wave function contains the

(

DZ)S term, which is N® dependent (N being the number of electrons}),

1 371b

Kutzelnigg et al, showed, however, that the two seemingly differ-

ent statements are consistent. Equation (4,136) may be expressed371b

as
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Ey 1 IR

2
Ecorr ™ palve E] + 4nHC; (4.139)

and provided that

€]

n £ - (4.140)
2
4H 4

it may be expanded as a Taylor series in n

nHzl nzHgl naHSl ‘
E B - 4 bt 2 " oesw (4.141)
corr =
£ g3 Y
1 1 1

For a sufficiently small value of "Hil/El' the deviation from the core-
rect n-dependence cccurs in the term proportional to n2, in agreement
with that what we learned in Section 4,3,

From eqn. (4.138) a very important consequence follows viz., that
a CI treatment limited to singly and doubly excited configurations
cannot be applied rigorously to comparisons of molecules of different
size. The CI approach becomes size consistent only if quadruple ex-
citations are involved or if some correction such as Davidson’s ex-
pression is applied. As regards the other methods noted in this chape

ter, IEPA, MET, CPMET, CEPA, and various MB=RSPT approaches, they are
all size~consistent,



5, Applications

In applications of ab initio calculations to chemical problems,

three levels may be distinguished:
(1) Studies belonging tc this category furnish the assessment
of the reliability of the methods for a particular problem
(11} The calculations aim at confirming and supplementing the
experimental results

(iii) The calculations yield reliable predictions of datas that
are not obtainable from experiment,

We attempted to survey the knowledge acquired in studies of the
category (i) by presenting some typical examples and general trends,
These are hoped to be useful for selecting the computational approach
that would be compatible with the requirements invelved in applica=
tions of the types—(ii) and (iii),

Before discussing the applications to individual chemical prob-
lems, it should be noted that the correspondence between the calcu-
lated and experimental guantities need not be straightforward, Typi-
cally, the "observed" quantity results also from an assumed theoreti-
cal model, which need not be compatible with the assumptions involved
in the ab initio calculations, (For a detsiled analysis of the prob-
lem see Ref, 385), For example, the bond lengths are most usually de=-
termined from the dependence of the total energy on the positions of
nuclei (in the Born-Oppenheimmer approximation, see Chapter 1.). The
interatomic distance corresponding to the lowest energy is not com-
patible with the experimental bond length because the latter is not
only due to the electronic energy but it is also affected by the vi-
brational motion. Hence, a rigorous comparison requires that a cor=
rection of the observed value for this effect be performed, i.e., the
calculated equilibrium distances should be compared with the spectro=
scopic quantities r_ and not ro,e Corrections are also needed for
rigorous treatments of inversion barriers, heats of formation, ener-
gies of activation and other quantities,

Another problem of a rigorous comparison of ab initio results
with experiment is encountered with any observable which is deter=
mined by a polynomial fit to calculated points, Some molecular pro-
perties (mainly spectroscopic constants) depend on the fitting pro=~
cedure rather strongly and if an inappropriate fit is used the dis-
crepancies with experiment which are found may be erroneously as=-
signed to basis set or correlation effects,
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5,A, Molecular Geometries

The prediction of equilibrium geometries is one of the most topi~
cal tasks involved in chemical applications of the molecular orbital
theory, The accuracy achieved depends of course on the quality of the
wave function used. Some typical results are presented in Table 5.1,

Table 5.1
Typical results for molecular geometries

Correlation
ganergy Errors in predicted Representative
Basis set included by geometries references
§T0-36 - ~0.02 x 10719 0 for Ay 386-389
bonds;
~0,03 x 1070 n for AB
bonds;
~ 3-4° for bond angles
4-31G, 0Z and - ~0,01 x 10°%% n for both 386,389,390
extended with=- AH and AB bonds;
out polariza=- overestimation of bond an~
tion functions gles in structures as H,0
and NH4
DZ+P - ~ 0,01 x 1079 1y 129 100,390
bond lengths mostly
shorter than experiment
Hartree-~Fock - for some diatomics bond 24,26
lengths as much as 0.05
x 10710 1 too short
DZ+P 2nd order average error in AH bond 253,390
MB-RSPT or  lengths 0,003 x 1070 q
CI-SD
DZ+P CEPA error in bond lengths typ- 118,120,333
or larger ically < 0,005 x 10710 ¢

and mostly in quantitative
agreement with experiment

For practical purposes it is very important that even minimum basis
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sets such as e.g, STO~3G give very good molecular geometries. From
comparative studiesses‘391 it appears that ST0-3G calculations provide
molecular geometries that are more reliable than those given by popus=
lar semiempirical methods CNDO/2, INDO and MINDO/3, This is due to a
Fortuitous circumstance that basis set and correlation effects are
mostly of opposite signs. As a consequence, the minimum basis set may
sometimes provide bond lengths that match experiment surprisingly
better than bond lengths given by near Hartree-Fock calculations that

are underestimated in most cases (see Table 5.2). Our knowledge of

Table 5,2

Effect of the correlation energy on the equilibrium bond lengths®
(re in 10 m)

Molecule near Hartree~Fock PNO-CI CEPA Experiment
LiH 1.6086 1.5848 1,598 1.5¢5
BeH ‘ 1.338 1.341 1.344 1.343
BH 1.221 1.235 1.238 1,232
CH 1,104 1,118 l.122 1.120
NH 1.018 1.034 1,039 1.037
OH 0,950 0. 9656 0,971 0.971
HF 0,898 0.912 0.917 0.917
NaH 1,918 l.891 1.891 1.887
MgH 1.725 1.724 1,728 1.730
AlH 1.647 1.644 1.645 1,646
SiH 1.518 1.523 1,526 1,520
PH 1,414 1,421 1,428 1.422
SH 1,331 1.33¢% 1.344 1.341
HCl 1.266 1.273 1.278 1,278
NaLi® 3,000 2,873 2,826
N,© 2,020 2,060 2,078 2,074
F,o° : 2,525 2,606 2,666 2.68
S From Ref, 333 unless otherwise noted.
Ref, 392,
Ref, 120,

these trends derives predominantly from diatomics. Genarallyaes, eX~

tension of the basis set leads to lower o Sometimes, however, Mo
predicted even at the Hartree-Fock limit in larger than the experimen~
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tal bond length, in which case both the basis set extension and the
inclusion.of the correlation energy lead to lower Mo

In contrast to bond lengths, where good predictions are mostly
obtained with minimum and DZ basis sets, accurate predictions of bond
angles in certain structures are obtained only if polarization func-
tions are included into the basis set, Consider for example the planar
(Dsh) and pyramidal (Csv) structures of ammonia., The highest occupied
orbitals in two structures are of la; and 381 symmetry, respectively,
It may be assumed (from perturbation theory) that the energy gain upon
augmenting the basis set with d-functions is mainly due to their con=-
tributions to highest eccupied orbitals, Mence, on symmetry grounds,

d-functions centered on nitrogen can contribute significantly only to
It
2

[
symmetry, This expla:’ms&g”)3 why the inversion barrier of NH, is well

reproduced only:with basis sets containing nitrogen d-functions, With

the pyramidal structure because none among the d=functions is of a

a basis set inciuding only s and p functions, the inversion barrier is
too small and the equilibrium valence angle in the pyramidal structure
is too large. If the bottom of the energy surface is shallow as in the
case of H3O+, such a basis set may predict the planar structure to be
lower in energy than the pyramidal structur9394.

Once the basis set and the type of the wave function is decided on,
the next task is to perform an economic search for the energy minimum
on the energy hypersurface. Since the geometry optimization is a very
time consuming process, it is warranted to pay some sttention to the
optimization methods, There is a large variety of them. Garton and
Sutcliff9395 attempted to survey those of them, that proved useful or
may become useful in quantum chemistry, A common feature of modern ef-
fective methods is that they require knowledge of the energy gradient
and, profitably, also of the matrix of harmonic force constants or at
least a reasonable estimate of the latter. In the forthcoming discus-
sion, however, it should be kept in mind that the cost for the gradi-
ent evaluation is at least twice as high as the cost required for a
single standard SCF run and that the evaluation of the force constant
matrix is even more costly,

Suppose that the energy is a quadratic function of displacement
coordinates, so that we may express il as

1 ya> 4

1 al = -y N s

€= By vl by v L Apj939y = B+ bg *";q*Aq (5.1)
i 1]

Differentiation of (5.1) gives us
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where g is the energy gradient with the companents

ok
g = — (5.3)
day

and where A is the matrix of harmonic force constants which is also
referred to as the Messian matrix, At the nearest stationary point
-+ .

g = 0 and we may formally write

q, = b AL (5.4)

- >
so that for the direction vector F = g, = G, which extends from an ar-

bitrary point'a to the nearest stationary point, it holds

PR Ve Rer 1t (5.5)

Assume, for the sake of simplicity, that the nearest stationary point
is a minimum. In actual optimizations this should be established by
the test that the eigenvalues of the Hessian matrix are all positiva.
Hence, once we know'g and ‘Afl we should reach the minimum in just one
step. Actual potential surfaces are, however, not strictly harmonic
and eqn. (5.8) has to be applied in several successive steps. This is
the essence of so-cslled Raphson-Newton or least-squares type algo-
rithms. In order to avoid the calculation of A, Pulay introduced> 0
397 the force relaxation method, in which a suitable initial guess to

A, F,. is kept unchanged throughout the whole iteration process

- -]

a1y = 1) - Fo By (5.6)

The subscripts i+l and i refer to two successive iterations. The
choice of  F, does not affect the final geometry, but it only controls
the rate of convergence, If use is made of "experimental harmonic®

force constants, the optimum geometry is approached closely at the
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very first iteration397, even if a diagonal FB is assumed, It may be
anticipatedags, however, that the method would run into difficulties
with complicated {e,g., non-classical) molecules, where 36 mayvbe 8
poar approximation to the final geometry and where no realiable rules
exist to estimate the F, matrix. In such cases it is preferable to
compute the whole matrix of force constants using a small basis set or
even a semiempirical MO method and to employ F_ so determined in eqn.
(5.6} in conjuction with the gradient evaluated by means of a more
sophisticated approach.

From the above discussion it appears that efficiency of Newton~
-Raphson algorithms requires avoiding the expensive construction of A
in sach iteration, Instead, we try to replace the recalculation of A
by some simple updating, as for example in the Marquardt-lLevenberg
method395. Updating A 1s a typical feature of so called gquasi-Newton
or variable metric methods, in which only the knowledge of g is re-
gquired and the Hessian matrix is merely involved implicitly, The gen=-
eral formula for this family of methods may be expressed as

E1’(11»1) * 3(1) "O"H(i)g(i) (5-7)

Here « is a scale factor and H(i) is the estimate of Afl at the i th
iteration, Differences in the existing variants of the method are due
to different ways of updating H. The most popular algorithms are due
to Davidon, Fletcher and Powellggg, in which «is to be optimized in
each search step, and Murtagh and Sargentdou, in which a fixed o may
be chosen in a wide range. The proparty inherent to these algorithms
is that they yield for quadratic surfaces the exact minimum and exact
A matrix in N steps, N being the number of coordinates. Variable met~
ric methods were introduced to quantum chemistry by Mclver and Komor=
nicki401 and they soon became popular in semiempirical calculations,
Critical examination of the variable metric methods and the experience

F402

achieved in this field was reviewed by Panci . In the original

forms of the variable metric methods, the starting H matrix is chosen
as the unit matrix, The fact that this preset of H brings about a
rather slow convergence of the iteration process (5.7) is of little
importance in semiempirical MO calculations, where the gradient evalu-

ation is relatively easywl‘mJ

. In ab initio calculations, however,
it is costly and scme modification of the algorithm becomes necessary,
Much faster convergence is already achieved398'402 if H is preset wit

a diagonal matrix whose Hy elements are of a suitable uniform value
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or, preferably, if they are set equal to one of two different values,
depending on whether the respective coordinate i is the bond length or
bond angle. Evidently, the initial approximation to H is very impor-
tant. Payne was able to show®* that if a complete matrix of force
constants is used, one iteration according to {5,7) gives the geometry
prediction at the same accuracy level as the whole iteration process
by means of the variable metric method,

For correct judging the efficiency of individuel methods it is nec-
essary to take into consideration the way in which the gradient and
the force constant matrix are evaluated. There are two possibilities:

either use is made of a direct snalytical calculation®>’

or the energy
derivatives are obtained numerically by finite differences, The former
way is more advantageous than the latter, the points in favor being

the higher numerical accuracy attained and considerable savings in com=
puter time and human effort. Until recently, analytical direct calcu=
lations were feasible only for first derivatives of the energy of SCF
closed shell ground states. For possible extensions to second deriva-

[ gy o
40Ja, open shell configurations400b, C1 wave functionsgosc, two

J
configuration scE*0% and MC sCF wave functions*05¢

397,405

tives

we refer the reader

to the cited literature

. Up to now several programs were devel-
406-411

opsd » With the most efficient among them, the calculation of
the energy gradient requires approximately the same expense of the com-
puter time as the complete SCF run, Pulay has shown>>7 how efficient
use of the analytical calculation of the energy gradient may be made
in combination with the force relaxation method, though also the vari-
able metric methods may work, if a reasonable guess to H is made.

An appealing feature of the numerical energy differentiation is
that one may use any standard computer program and any type of the
wave function., In this approach, the geometry optimization involves
computing the total energy at many different geometrical conformations.
Among various procedures reported we note two of them which keep the
404 that
the force constant matrix and the gradient may be evaluated using
1/2 N(N+3) + 1 data points, the meaning of N being the number of geow
metry parameters to be optimized. As noted above, substituting'3 and
F so determined into eqn. (5.6) gives us (in one iteration) the geo=

required number of data points to a minimum, Payne has shown

metry at the same accuracy level as the variable metric method, In the

101

approach suggested by Collins et al, one first computes the gradi-

ent and the diagonal force constants, which are used for the construce
tion of the (diagonal) F_ matrix. This requires 2N+l data points. On
applying eqn, (5.6) a vector 3'13 determined (see egn. (5.5)). Along
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its direction a one-~dimensional search is made using a guadratic pro=-
cedure (3 more data points)., In the next iteration F6 is kept un=~
changed, so that only N additionsl points are nacessary for the recal=
culation of § and 3 more points are necessary for a further one-di-
mensional search, Actually, the approach by Collins et al.lOl may be
viewed as a modified Davidon~Fletcher~Powell procedure, In most cases
it is sufficient to perform only two iterations, which means that al=
together 3N+7 energy calculations are required. It should be empha-
sized, however, that the efficiency of the two methods depends on the
assumption that the energy is quadratic., This is satisfied in most
cases if the starting point is close to the optimum geometry,

Despite the recent progress, the gecmetry optimization of larger

nolecules is still troublesome., Pulay et al.4llb

examined the possibi-
lity of extending the calculations to larger molecules with reasonable
cost by selecting a basis set especially suitable for the gradient e=-
valuation (small number of primitives) which would be able to mimic
the results given by larger basis sets, They developed a new basis set,
denoted 4-21 (essentially (753p/3s)/[§32p/25] with the shell strucs
ture}, with which the gradient evaluation is about twice as fast as
with the 4-31G basis set. In spite of its modest size, the 4~21 basis
set proved very successful in describing molecular geometries. Another
approach tc this problem was reported by Huber412, who suggested the
use of basis sets, in which orbitals are located on N dummy nuclei in-
stead of N atomic nuclei, This means that the nuclei and orbitals are
let to float independently and that in each iteration step of the
optimization process one computes 3N displacements for the dummies (or=-
bital locations) due to the energy gradient and 3N displacement for
the nuclei due to the HellmanneFeynman forces. The method is related
to the FSGO approach and its merit is the high flexibility of the ba~
sis set. As we learned in Section 2,G,, small basis sets with floating
GTF"s may be as effective as considerably larger standard basis sets
including polarization functions, With respect to standard optimiza-
tion treatments, the profit from the higher flexibility of the basis
set overweights the additional cost due to the computation of Hell-
mann-Feynman forces and a somewhat poorer convergence of the opti-
mization process. Huber showed“12 that time saving may also be a-
chieved if Hellwann-Feynman forces are used as an approximation to

the energy gradient in the first few iterations of a standard geometry
optimization, Although this way of using Hellmann-Feynman forces may
be expected to work well only with large basis sets and for molecules

having no atoms with polarized ipner-shell electrons, the method is



142

worth of further development,

Finally, the transition states deserve a brief note. To prevent
the downhill movement along the reaction coordinate, McIver and Komore
nicki413 proposed to minimize the norm of the gradient, & = Ef. Ef,
instead of the energy itself., Ab initio calculations of this type were
reported recently by Komornicki and collaborarorsdlo, A conceptually
simple approach was suggested by Halgren and LipscombAl4 which is
based on the interpolation of internuclear distances by means of line=
ar and quadratic transits from reactants to products, This interpola=-
tion is combined with optimization without the requirement of the
gradient evaluation.

5.8, Force Constants

Although force constants belong to the so called "spectroscopic
constants", they are not genuine observables but only values inferred
from the theoretical treatment of the assumed force field, It is usual
to express the force field in the form of a power series

1 1
ViV i: Py fijqiq' + Z; 'gk‘fijkqiqjqk

J
i,] 1 i,3,k l
1
+ Z ; fljquiqjqkqu + sae (5-8)
1,3,k

where qy - 9, represent the displacement from the equilibrium geo=
metry. Hereafter we shall assume internal coordinates so that gq have
the meaning of Ar (in 10"10 n) or A+ (in radisns). The gquadratic,
cubic, quartic, etc. force constants are defined as true derivatives
of V at the equilibrium

A (5.9)
f a e 5.8
RRCLICE
33y
T — (5.10)

9909429
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%

— (5.11)

foo, = —
Lkt 99;99,9q,2q,

The "experimental™ force constants are determined in such a way that
the true observables ~ the vibration energy levels - be fitted by the
assumed potential (5.8),

The purpose of this introductory paragraph was to point out that
for meaningful comparison of ab initio treatments with experiment the
two force fields should be compatible, Ideally, one should calculate
directly the vibrational energy levels. This is feasible for diatomic
molecules either by solving the vibrational Schrodinger equation or
by making use of a Dunham analysis, for example. The latter gives us
the harmonic freguency, Wy and the anharmonicity constant, Xgr 8P

pearing in the expression

. 1 1\ 1
Glv) = a%(v +-J - xewe(v +~m> +Ayeq%<v + —J T (5.12)

2 2

to which the observed vibrational levels are fitted. A rigorous treat-
ment of this type for polyatomic molecules is difficult and it is
beyond the scope of this chapter. We shall therefore restrict ourw
selves to the harmonic approximation, though a series of accurate ab
initio calculations have already been reported on higher order force
constants of small polyatemic molecules, Hence, if the expansion (5.8)
is truncated at the quadratic constants, one can arrive at the vibra-
tional frequencies by means of Wilson FG matrix analysis, Although
with polyatomic molecules the harmonic frequencies are only rarely
available, tne comparison with experiment is still meaningful - we
shall see that deficiencies in the theoretical approach are sometinmes
much rougher than the difference betwesn the harmonic and fundsmantal
freguencies.

The actual values of force constants are determined by a poly=
nonial fit to the computed energy points. It is rather disturbing that

415 on the

the calculated force constants may be strongly dependent
number and location of the energy values employed in & curve-fitting
procedure. An instructive example was communicated by Pulay and Meyer
4163 who recalculated the stretching force constent (frr + zfrr’) for
NH; from a more reliable fit to the data points reported by Body et

al.393 They arrived at the value of 7,15 instead of 11,20 x 102 N/m,



This source of numerical inaccuracy is largely eliminated if the force

an -
method3"5'397

is used. This method involves only a single numerical
differentiation of the energy because the force constants are evaluated
from forces on the nuclei, i.e,, from the first derivatives calculated
analytically. Another problem encountered with SCF calculations is the
choice of the geometry for which the ensrgy derivatives should be cal-
culated, The choice of the calculated equilibrium geometry might ap-
pear to be the most natural, However Schwendeman417 has shown that er-
rors in the computed equilibrium geometry (with respect to experiment)
may lead to first-order errors in the force constants, According to
his suggestion it is preferable to use experimental geometries instead
of calculated optimum geometries. If Schwendeman’s procedure is fol-
lowed, tha baiis set dependence of the calculated force constants is
418

much smaller and better sgreement with experiment is achieved than
with force constants calculated at the optimum geometry. A striking
408 or NH, at the 4~31G level.
The frr and f&d constants are 8,118 x 102 N/m and\O.A57 X 10-18 Nm for
the optimum 4=~31G geometry, and 7.508 x 10% N/m and 0,748 x 10“18 Nm
for the experimental geometry, compared to experimental values of
7.052 x 10° N/n and 0,636 x 1078 nm.

Several sources cof uncertainties noted above are s probable reason

why the trends indicated in Table 5.3 for the calculated force conm=

exanple was provided by Schlegel et al,

stants are not so clear-cut as with molecular geometries, What is
meant by the “excellent agreement with experiment™ in the last line

of Table 5.3 in specified by the entries of Tables 2,17 and 5.4. We
present here Table 5.4 for two purposes, First, it represents the pre-
sent top calculations in this field and, szecond, it shows the effect
of the correlation enasrgy on the stretching vibrations,

To conclude this section in a practical way, let us comment on the
possibilities of SCF calculations with medium basis sets, It is im=
portant that coupling force constants given by medium basis sets are
accurate to about 0.1 x 102 N/m., Experimentally, the coupling force
constants are often rather uncertain, so that even a correctly pre-
dicted sign may be valuable for spectrogcopists in the construction of
force fields for polyatomic molecules, The same may also be ssid about
the cubic and diagonal quartic force constants. Hence one may arrive
at reliable force fields in a very practical way by the combination of
experimental diagonal quadratic and sb initio off-diagonal force con-
stants. Since the overestimation of calculated diagonal force constants
is systematic, it is also possible to arrive at relisble force fields
by making use of scaling factors. Pulay and Meyerl39'420 suggested
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Table 5.3
Typical results for harmonic force constants

Correlation
energy Comments on the calculated Representative
Basis set included by force constants references
§TC-3G - Genarally poor results; 387, 407, 419
stretching constants 20«30%
overestimated;
erratic behavior of the
other constants
Medium=- - Diagonal constants 5~20Y% 407, 41lb,
~sized overestimated 419-421
Near Hartree= - Slightly better than with 416
~Fock medium-sized basis sets
Large large scale Excellent agreement with ex~ 120,167, 326b,
CI, CEPA or periment 333, 422, 423
MB=RSPT

that calculated diagonal stretching constants be reduced by 10% and
diagonal bending constants by 20%, leaving the off~diagonal constants
unchanged, This correction should also absorb the effect of anharmo-

nicity. Blom and Altona424 used another approach which is suitable for

confirming assignments of uncertain frequencies. Consider for example
their treatment of the propane molecule, Five types of force constants
were assumed,

I : diagonal C-C stretching

11 : diagonal C=H stretching

I1I: diagonal bending and rocking

IV : torsion

Vv : all off-diagonal
and for each type & fixed scale factor was adopted. The scale factors
were adjusted to reproduce experimental vibrational freguencies. For
propane the following factors I-V were found at the 4-31G level:
0.884; 0.888; 0.793; 0.875 and 0,814, These values are very similar
to these determined for ethane and cyclopropane which suggests a pos-
sible transferability of scale factors among related molecules. The
results of the treatment for propane are presented in Table £.5. The
average error in the 116 fregquencies of propane and its deuterated
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Table 5.4

gEffect of the correlation energy on the stretching vibration® (u%
in cm“l)

Molecule near Hartree~Fock PNO~CI CEPA Experiment
LiH 1428,2 1408,6 1401, 5 1405, 7
BeH 2145.0 2086,7 2064.,6 2060.8
BH 2484.6 2378,0 2352, 1 2366.9
CH 3044.1 2883,5 2841.7 2858.5
NH 3546.5 3342,6 3269, 3 3282.1
OH 4054,5 3833,3 3743,6 3739, 9
HF 4478,2 4251,5 4166,3 4138.7
NaH . 1lls4.2 1172.1 1172,3 1172.2
MgH 1583.6 1515,3 1492,3 1497.0
ALH 1730.8 1703.6 1691.7 1682.6
SiH 2126.2 2061.3 2034,7 2041.8
PH 2487.6 2408,6 2365.9 2380,0
SH 2839.9 27307 2676, 4 2697.0
HC1 3141.1 3034,0 2977.2 2991,1
NaLi? 249,86 260, 1 256,8
N2° 2742 2525 2417 2359, 8
F2° 1247.4 1150 945 924

g From Ref, 333 unless otherwise noted,
c Ref., 392,
Ref. 120.

analogs is 10,5 en”l or 0.73 per cent.

5,C, Barriers to Internal Rotation and Inversion

Internal rotation and inversion are processes that satisfy very
well the two requirements for the conservation of correlation energy
noted in Section 4,B, This implies that the use of SCF calculations
should be sufficient., Indirectly, this assumption was established by
a good agreement of SCF barriers with experiment. Thare is also di=~
rect evidence provided by the correlated wave functions of Ahlrichs
and coworkers, For the barrier to rotation in ethane they obtained120
with a large basis set the SCF barier of 12.7 kJ/mole. Inclusion of
electron correlation by means of CEPA reduced the barrier to 12.4,
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Table 5.5

Observed and calculated wavenumbers for propane424
w (cm'l) w (cm'l)
observed 4-%16 Error observed 4=316 Error
with 5 {per with 5 {per
scale factors cent) scale factors cent)
2977 2989 -0.4 2968 - 2973 -0.2
(2962)8 2907 2887 2911 -0.8
2887 2913 ~0,9 1464 1462 +0,1
1476 1478 ~0.1 1378 1387 -0.56
l462 1485 ~0,2 1338 13581 ~1.0
1392 1381 +0.8 1054 1055 ~0.1
1158 1ls0 -0,2 922 919 +0.4
869 863 +0,7 2973 2979 -0, 2
369 367 +0.5 2968 2927 +1.4
2967 2963 +0.1 1472 1470 +0,2
1451 1453 ~-0,2 1la2 1210 1.5
1278 izg2 -0,3 748 762 2,0
(240) 893 268 255 +4.8
218 2186 -0,2

8 values in parentheses are uncertain and they were not used in the
adjustment of scale factors,

very close to the experimental value of 12,3 k3/mole. Nevertheless,
the SCF barrier was improved only by 0.3 kd/mole. A similar result

was obtainedlla for the inversion barrier of NH,. Electron correlation
through CEPA raised the SCF barrier of 21.8 kJ/mele to 23.4 kI/mole,
compared to the experimental value of 24,3 kJ/mole. Hence the electron
correlation may be safely disregarded. There are, however, two effects
that are considerably more important: the presence of polarization
functions in the basis set and the allowance for molecular relaxation
in each conformation, The first effect and its origin were already
noted with molecular geometries in Section 5.,A. The importance of this
effect may be seen from the reported calculations for NH.. For example,
with the 4~31G basis set, the inversion barrier is drastically under-
estimateda8 (1.7 k3/mole}. Rauk et al.97 used a considerably larger
basis set (13s8p/8s2p)/[8sbp/4s2p] but arrived at a comparably low

barrier of 5,0 k3/mcle. However, upon augmenting the basis set with
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two d-sets on nitrogen, the barrier became 21.2 kJ/mole, The history
of the development of the theoretical approach to the NH3 barrier de=~
monstrates clearly how the use of an basis set of the insufficient
size may lead to incorrect conclusions about the role of the correla=-

: . 42
tion energy. The correlation energy contribution o*c:tan.ne(fp5

for the
(4s2p/lslp) STO basis set increased the barrier by 11,8 kJ/mole. In
contrast, with the [692pld/3$lp] basis set the correlation energy

lowered42b

the barrier by 12,4 ki/mole. In the first case the nitrogen
polarization functions were lacking, in the second case the number of
p~type functions was toc low, though the basis set was rather large.

N : . . 2
Calculations with more extended basis sets establlshed97'4 / a very

good agreement at the SCF level. Direct calculat10n3118’428

on the
correlation energy with large basis sets proved that it is indeed very
small, Presence of the d-functions in the basis set is also important
for the internal rotation in H202. We comment, however, on this mole~
cule for another reason, i.e. that it represents a case in which ade-
quate results are obtained only if in addition to inclusion of d=funce
tions also the full geometry optimization is performed for each con=-
farmation429-43l. For a rigid rotation with the experimental J.C0H,

”

Roy and Ry, parameters, Dunning and winter®C arrived with the
(4s3pld/2slp] basis set at cis and trans barriers of 4251 and 94 cm'l,
respectively, If allowanca was made for molecular relaxation, the bar-
riers obtained were 2921 and 384 cm'l, in excellent agreement with exw
perimental values 2649 and 386 cn™t,

To conclude this section it is possible to state that the origin
and magnitude of errors in the calculated barriers are, at least for
simple molecules, well understood. The knowledge accumulated permits
to decide whether a rigid rotation model and a basis set without de
-functions are appropriate to a particular molecule, Valuable inform-
ation on this topic was contributed by systematic 4-31G studies on
single and double rotors in small organic molecules which were re=-

viewed by Pople432. A comprehensive review on barriers to rotation and

433

inversion was reported by Payne and Allen , which also contains al-

most complete bibliography of ab initio calculations,

5.0, Potential Curves

The applications treated in Sections 5,A,=-5.C, refer to the pore
tions of energy hypersurfaces that represent the nearest surroundings
of equilibrium geometries. Here we comment on more remote regions of
the energy hypersurfaces in which there is a tendency to the electron
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pair rupture. As we have learnsd in Chapter 4., the effect of electron
correlation is extraordinarily large in such a case. In this section

we shall inquire to what extent this effect is amenable to treatments
by the methods noted in Chapter 4, In Fig. 5.1 we present data for vars
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Figure 5.1

Potential curves of F

with different approxima=~
2
tign312o,352_

ious levels of the approach to the potential curve of Foe As we have
learned in Section 4,8,, the Hartree~Fock approximation is especially
poor in this case, bscause it does not lead to a correct dissociation
limit, d.e. to the atoms in the Hartree-=Fock ground states. In the
case of F,, the proper dissociation is achieved by adding the excited
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. i hn 2 z
configuration 17U 363 to the ground state lﬁ435§. Generally, however,
it is not sufficient to include just one configuration in the ground

state wave function. For example, to ensure a correct dissociation,

e s : 255 . X .
it is necessary to consider 55 3 excited configurations for the

’—> on(%s)
process. This type of the conventional CI wave function was denoted

by Lie and Clement1255 as the "Hartree~Fock with proper dissociation®

e

C2~—7ZC(3P) process and 9 excited configurations for the N

(HFPD). Although the HFPD functions give physically reasonable curves
in the sense that at disscciatien limits the energy is equal to the
sum of the ground state SCF energies of the respective atoms, they
still give poor dissociation energies. As seen in Fig., 5.1, CI-SD also
fails to give a reasonable dissociation energy. The failure may be
understood from the inspection of Table 5.6, It is seen that as the
internuclear distance is increased, the coefficient of the lﬂ%SGﬁ

Table 5.6

Coefficients (sz) of lﬁ4352 and 1%433; configurations
in the PNO=CI wave functiwnlao of Fs for different in-
ternuclear distances

r/ao: 2.6 3.0 3.5 4,0
(1n4355) 0,920 0,900 0.844 0,765
(1'17_‘4365) 0.0237 0,0514  0,1111  0,1906

configuration increases and the function of the ground state ln4362
loses its meaning of the leading configuration, From this it follows
that for a correct evaluation of the correlation energy it is not
sufficient to assume double excitations only with respect to the con=
figuration 17%30% but also with respect to the configuration lﬂ436ﬁ.
In the language of the traditional CI it is therefore necessary to
assume also quadruply excited states that are double excitations with
respect to the lﬂﬂsei configuration, Formulated generallygg, "a rea=-
sonable potential curve is obtained by brute force CI only if it in=
cludes all single and double excitations with respect to all con-
figurations which enter the wave function with coefficients greater
than, say, 0,3, at any internuclear separation"., We can now understand

that any method, which takes no account of quadruple excitations, must
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inevitably run inte difficulties at larger FF internuclear distances.
In Chapter 4, we learned that in no approach among those assumed in
Fig. 5.1 the effect of quadruple excitations is included completely.
CEPA includes those quadruple excitations that bring about cancella-
tion of the renormalization term involved in the CI-SD approach and it
gives, accordingly, a much better result than CI-SD, However, other
quadruple excitations that are necessary for the proper dissociation
are not included in CEPA and this is why CEPA tends to deviate from
experiment at large distances. The same problem also arises at larger
distances with the MB-RSPT through second and third orders, Here, how=
ever, an additional factor is involved, which follows from the very
nature of the perturbation expansion. As the internuclear distance is
increased, the perturbation (i.,e. the correlation energy with respect
to the one~determinant Hartree-Fock function) becomes larger and the
convergence of the perturbation expansion becomes increasingly poorer.
From this we can now understand why CEPA is far the best of the ap~
proaches used in Fig. 5.1, When speaking about the potential curve of

theAF2 molecule, a paper by Das and Wahl434

should be guoted. The re-
sults of their MC SCF OVC calculations match closely the experimental
potential curve of F, in any region. These results document the high

accuracy attainable by quantum chemical calculations, though the pare
ticular method requires much experimentation and its applicability to

problems of chemical interest is rather limited.

5.E. Thermochemistry

The most typical problem involved in chemical applications of mole~
cular orbital theories is the prediction of eguilibrium geometries and
relative energies of molecules, Its first part - geometry optimization
- was dealt with in Section 5.A. Here we concentrate on the predic-
tions of relative energies., Ideally, we would like to present a table
for energies of reaction similar to Table 5.1 for molecular geometries.
Since the trends are here not so clear-cut it is preferable to treat
basis set and correlation effects separatvely, Basis set dependence inw
dicated in Table 5,7 reflects the features of the plots of total enerw
gy versus the basis set size in Fig. 2.1 for H,0 and Fig, 2,2 for N,.
The engrgies for minimum basis sets are seen in the two figures to lie
so high above the Hartree~Fock limit that it is hardly possible to ex-
pect such a cancellation of the basis set effect which would result in
realiable predictions of energies of reaction, Predictions given by
double zeta basis sets may be taken with confidence in treatments of
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Table 5,7
Errors in calculated energies of reaction with respect to Hartree-Fock
data

Representative
Basis set Accuracy achieved references

STC~36 and other miniw unreliable predictions
mum basis sets

4=31G and DZ within ~ 180 k3/mole, poor 117, 242, 288,
results for molecules with 435
multiple bonds and strain,
mostly within 40 kJ/mole
if 2)) reaction components
are ordinary saturated mol=-

ecules
DZ+P mostly within 25-10 kJ/mole 242, 258, 435,
438
Valence-shell augmented  suited for reactions ine 121, 180
with diffuse functions + volving negative ions or
polarization functions excited states if accuracy
+6~10 kJ/mole is to be a~
chieved

semiquantitative nature, It should, however, be kept in mind that ener-
gies of structures with multiple bonds and bent and pyramidal confor=-
mations are underestimated. The problem of conformations was already
dealt with in Section 5.C., The extent of the defect of the DZ basis

set with unsaturated molecules is illustrated by several hydrogenation
reactions in Table 5.8, The DZsP energies are used there as standards

Table 5.8

.
Energies of reactionl“3 {k3/mole)
Reaction Dz DZ+P Difference
C2H2 +‘3H2 — ZCH4 -502.8 ~495,2 7.6
H2CO + 2H2 — CH4 + HZO ~-293.8 -254,5 39,4
CO + 3H2 — CH4 * H?O -~340,2 ~262.8 77.4
N2 + 3H2 — 2NH3 -246,4 -171,3 75.1

as they are already close to the Hartree~Fock data. It would be of
little use to compare the results in Table 5,8 with experiment becsuse
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except for H2 and H20 the Hartree-Fock limits and correlation energies
are uncertain, As a matter of fact, the exact nonrelativistic energies
are even moreghardly accessible than the Hartree~Fock limits and their
estimated values are largely uncertain. Accordingly, the entries in
Table 5.9 representing the correlation effects are indicatory rather

Table 8,9
Correlation edergy changes in chemical reactions

Correlation

energy change

Type of reaction Exanple (k3/mole) References

Both the number and HY + H™ = H ~2.5 241

neighborhood of e- HoO 4 HY —> i ot 6.4 169

lectron pairs con- 2 3 *

served ‘ NHy + H'—> NH, ~13 436
bond separation reac-~ ~12 (average) 437, 438
tions

Only the number of HCN + 3H,—> CH, + NH, ~17 117, 243

electron pairs con- o

served CHSLN —*CH3NC 17 370a
ZBHaw» 82H6 ~-66, 59 250, 370b
Fo o+ Hy—»2HF ~67 117, 241

Bond fission BeH — Be + H -3 333
CH~» C + H 96, 115 333, 436
FH—> F + H 146, 176 333, 436
H,0 ~>»OH + H 127, 152 253, 295,
“ 436

than conclusive. We divided the reactions into three categories. The
first one comprises processes that satisfy the two rules for the "cone
servation" of the correlation energy noted in Section 4.8, For these
reactions the correlation energy change is small so that reliable en=-
ergy predictions may be cbtained at the SCF level. For the reactions
of the second group only the first rule is satisfied: the number of
electron pairs is maintained, i.e., all reaction components are closed
shell molecules but the nearest environment of the pairs is changed.
Amcong the examples given in Table 5.9, the correlation energy change
in the reaction F, + H, — 2HF is extraordinarily high, The examples
of reactions HCN + 3H, CH4 + NH, and CHacN-» CH3NC are probably more
typical. The reactions in the third group violate both rules. Inten-
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tionally, we included also in this group the dissociation of BeH which
may appear at first sight to be a characteristic reaction of this type
Actually, this process belongs rather to the second group of our clase
sification (Section 4,B.).

We now comment briefly on the conversion of calculated enerqy dif-
ferences to observable quantities. The calculated energies of reaction,
af, correspond to energy differences between the bottoms of the poten~
tial surfaces of reaction components, To convert asE to the heat of re-
action at absolute zaro,‘AHg, it is necessary to correct the calcu-
lated energies for zerc=-point energies. This is simply done by adding
the term 1/2 th:tUi to the energy of each reaction component, where
the factor 1/2 hc is 5,098133 U.cm.mol"l. The wavenumbers of vibra=
tional modes, w, can be obtained from the calculated quadratic force
constants by mesns of the Wilson FG matrix analysis. Usually, however,
the experimental heats of reaction are known only for the rcom (or
higher) tempersture, T, and it is therefore necessary to transform AHS
to aH2 by means of the statistical thermodynamic treatment. Kosloff et
61.435 constructed very accurate partition functions for molecular
hydrogen from ab initio data and arrived at the thermodynamic funce
tions that differ from those based on spectroscopic data only in the
third decimal place. However, for chemical purposes much simpler parti«
tion functions may be used; mostly the rigid rotor and harmonic oscil-
lator approximation is quite sufficient.

5.F. Chemical Reactivity

A nonempirical approach to the chemical reactivity may of course
be made along the same lines as has been practised for years in treat~
ments by semiempirical all-valence electron methods. Typically, the
results of such treatments provide qualitative explanation of the ob=
served facts and gilve guidance for further experiments., Here we shall
deal only with what may be taken as the ultimate goal of ab initio
calculations in the field of chemical reactivity - the predictions of
absolute values of equilibrium and rate constants,

In terms of statistical thermodynamics and: the theory of absolute

440

reaction rates . the equilibrium and rate constants of gas phase

reactions

PeP
A+BexC4+D 3 Ka-—020

(5.13)
PaPg
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are expressed as

Q.0 =AHO/RT
K = G0 70
0alg
and
$ #
kT @ ~-pHT/RT
kall— g ©

h Q2

(6.14)

(6.18)

Te arrive at K and k, our task is to express the following terms ap~

pearing in egns. (5.15) and (8,16): the partition
reactants, products and of the activated complex,

*

AHO, and the tunnelling correction factor,l . For

at absolute zero, AHS, the enthalpy of activation

functions (Q) of
the heat of reaction
at absolute zero,
an ideal gas the to=-

tal partition function can be expressed within the rigid-rotor and
harmonic oscillator (RRHO) approximation as a product

Q= QtrQrothierl

(5.17)

where the individual components have the following forms

(2rnkT)3/? Ry

Q= — —
tr h3 b
1fen”IkT 1 1 k2 4/ h®
Q B o | o 4 o b e e |
ret = . p
6| pe 3 15 $efIkT 315 (BwZIkT

(5.18)

(5.19)

for linear molecules
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2
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h

(5.20)

for nonlinear molecules
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1
T— «Fwi/kT (8.21)

*vib *
3 l~e

For most molecules it is reasonable to set the electronic partition
function to the statistical weight of the ground electronic state,

We now comment in general how to arrive from ab initio calculations
at K and k. The whole procedure, outlined schematically in Fig. 5.2,

E=£{G.92, Q)
|©
optimumn ground state geometry

o @

o force
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Figure 5.2

Computational scheme for the evaluation
of partition functions and enthalpies at
absolute zero.

is divided into 1l steps. The first step involves the determination of
the ground state geometry, As we learned in Section 5,A., it is suf=~
ficient to perform this in most cases at the SCF level by making use
of a small or a medium-sized basis set. A very accurate determination
of the molecular geometry is not warranted because the errors in the
molecular geometry affect K and k (through moments of inertia and the
G matrix) rather little. The geometry optimization is followed by the
evaluation of moments of inertia (step 2) and the G-matrix elements
{step 3) according to simple formu185441”442, The next step {4), the
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evaluation of force constants, was dealt with in Section 5.8. Alsoc the
force constants may be calculated at the SCF level with a small or
medium~sized basis set. If the diagonal force constants are reduced by
standard scaling factors (see Section 5.8,), a very close agreement
with experiment may be gxpected, The errors in the computed vibra-
tional frequencies affect the estimated equilibrium constant through
the vibrational partition functions and the zero-point energies, Where=
as the former affect the equilibrium constant at lower temperatures
very little, the effect of the latter may be larger. When the matrix
of force constants is available, it is converted to vibrational fre=-
quencies by means of the FG matrix analysis442 (step 5), From the vi-
brational frequencies one arrives easily at zero=-point energies and
vibrational partition functions (steps 6 and 7)., Also the evaluation
of the other components of partition functions is straightforward
(steps B8-10). The last step to be performed is the evaluation of the
heat of reaction at absoclute zero, AHB* Since the evaluation of AHS is
mostly a crucial point for a successful estimation of the equilibriunm
constant, the molecular energies must be calculated as accurately as
possible. Theretore a large basis set should be used and electron cor=
relation should be accounted for. Fortunately, it is tolerable to per~
form this accurate but time-consuming calculation on the molecular en-
argy (step ll) only once for the geometry which is optimum for a smal-
ler basis set, It is believed that the error so introduced by using
slightly different geometries is unimportant, By correcting the comw
puted molecular energies for zero-point energies one arrives at AHS.

Probably the first study along these lines was reported by Cle=
menti and GaleSZSl, the famous prediction of the gaseous NH4Cl. In a
later paper443 of this type, the existence of the dimer (LiH)2 was
predicted, for example., If the guantitative predictions of equilibrium
constants are to be competitive to experiment, the computed heats of
reaction should be accurate to within 4 k3/mol, which implies that the
computed equilibrium constants differ from the observed ones by a fac=
tor of at most 5 at room temperature, Direct calculations of equilib=-
rium constants show that this accuracy level, referred to as the
"chemical accuracy”™, is attainablel80'350’435 with reactions involving
small molecules, '

With rate processss the situation is less clear-cut,' In principle,
ab initio calculations permit a more sophisticated approach to rate
processes than that based on the transition state thecry (TST) and
represented by egns. (5.14) and (5.18)~(5.21). Cne may calculate the
whole energy hypersurface and apply to it molecular trajectory calocu-



lations, Treatments of this type are of primary importance for the
understanding of rate processes. Nevertheless it appears that only
T5T will remain, for a long time to come, manageable for reactions

of real chemical interest. Although the underlying theoretical basis
of TST may be disputed (for a review see e.g, Ref, 444) and although
it is advocated to refer TST as to the “"approximate” or even "empiri=-
cal™ rather than "absolute" thecry of rate processes, 2 detailed a=~

nalysis showed*4®

that TST is capable of giving rate constants with
the accuracy comparable to experiment, provided that the treatment is
based on data given by highly accurate ab initio calculations. To dem=
onstrate such a treatment, we selected the example446 of the CHy +

H o~ CH3 + H, reaction, The data used for the evaluation of the rate

constant (5,18) are collected in Table 5,10, The tunnelling correction

Table 5,10
Data used for the treatment of the process CHy + H — CHy + H

2

Quantity Its value Origin |
CH bond length in CH, L s 1,093 x lo:iz m o a
Geometry of the activated complex HBCH H :ryly2 0.903 x 10~10 m

Fonl 1,376 x 10 m b

rey  1.095 x 10730 0 ¢

< HCH 114,7° c
Zero point energy for CH, 123.1 k3/mol d
Zero point energy for CHy 112.4 k3/wol e
Classical barrier height, E. 67.3 kJ/mol f
Enthalpy of activation, AHg 56,7 kJ/mol g
Imaginary wavenumber for CHy, 1400 cn™ h
Imaginary wavenumber for Eckart®s tunnelling 1285 cm'l i
b Ref, 447, . 4B
. i;ggmgggzgl-sm ab initio calculations™™°,
d .

Wavenumbers from the FG matrix analysis; force constants from 4-31G
calculations407,

Wavenumbers frgm the FG matrix analysis; force constants from 4~31G
f calculations44

Ref, 448,

From E¢ and zero-point energies,

As in the footnote e but the stretching force constants obtained

from a guadratic fit to energy values by UHF~CI ab initio calcula=-
tions44b,

Eqn. (5.22),

oun



factor was calculated according to £ckart’s approach450 to the one-di-
mensional quantum mechanical tunnelling but with the modifications ad-
vocated by dakubetz*5? for one-dimensional reactions., In our case this
means that the height of the Eckart’s barrier was set aqual to AHE and
the imaginary frequency (corresponding to the vibrationsl mode with
the negative eigenvalue and determining the width of the Eckart’s bar-

rier) was corrected as follows

#
AHG

EC

where vo is the imaginary frequency obtained directly from the vibra=-
tional FG analysis of the transition state and E. is the "classical”
energy of activation, i.e., the energy barrier given directly by ab
initio calculations, The computed rate constants are presented in Fig.
5,3, It is seen that they are in a reasonable agreement with experi-
ment, though the computational techniques used may be considered rou=
tine. If use is made of a fit*®* to experimental data, k = 65,25 x 1013
exp(=48600 J mol_l/RT), the TST prediction for the rate constant at
298 K is underestimated by a factor of about 30 wheress if the tunnele
ling correction is applied, the factor reduces to ~ 5. The remaining
discrepancy may be ascribed to the underestimated activation barrier
448, the error being 4~8 kJ/mol.

Utility of ab initio calculations in this field may be demonstrated
with the reaction H® + FH —»H'F + H, Until recently, this reasction was
believed to possess a low activation energy., A low activation barrier
was elso predicted by most semiempirical (BEBO and LEPS) treatments,
the typical values being from 4 to 30 kJ/mol., In contrast, the ab
initio calculations®99=457 predicted the activation barrier to fall in
the range 180-205 k3/mol, On the basis of experience accumulated with
gb initio calculations it was possible to claeim that the true barrier
cannot be less than, say, 165 k3/mol, In this way the ab initio calcu=
lations were able to give a realistic account of the H™ + FH = H'F + H
reaction prior to experimental confirmation?®8

5,G. Ionization Potentials

Calculations of ifonization potentials represent a valuable tool
for the interpretation of electron spectra, Unlike in semienmpirical
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Tenmperature dependence of the rate constant for
the process CHy + H ~»CHy + Hyp, The dashed and
full lines, respectively, represent the TST
treatments without and with applying Eckart’s
correction for the quantum mechanical tunnel-
ling, Experimental data are taken from Ref,452
(a), Ret, 453 ([7) and Ref. 454 (O ).

calculations, in ab initio caslculations all electrons are treated exe
plicitly so that it is not necessary to make any distinction between
the ionizations of valence shell and inner shell alectrons., For this
reagon we do not distinguish between the Photoelectron Spectroscopy
(PES) and the Electron Spectroscopy for Chemical Analysis (ESCA),
though the theoretical approach to the latter involves some specific
problems,

The simplest theoretical approach to ionization potentials is
based on the Koopmans”® theoren®® which relates the heth ionization
potential to the negative value of the Hartree-Fock orbital energy,
€j,+ Of the parent closed shell systenm

oK
Iph B - Eh (5.23)
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According to the Koopmans® theorem the photoelectron spectrum should
exhibit as many bands as there are occupled molecular orbitals,
Roughly spesking, this is actually observed in most cases so that the
orbital structure of atoms and molecules is proved in this way by a
direct expesrimental evidenceAsO. Quantitatively, however, eqn. (5,23)
does not provide a satisfactory account of the observed spectra. This
is 'due to three problems461 inherent in the use of Koopmans® theorem:
(i) A self-consistent adjustment of the orbitals of the ion is dis-
regarded, 1.e.,éll occupied orbitals are assumed to be unaltered when
going from molecule to ion, Accordingly, the energy, &R, assoclated
with this effect is called reorientation, reorganization or relaxation
energy.

(11) The change in the correlation energy, AC, on going from molscule
to ion is not accountad for,

(111) It 4is assumed that the relativistic energy is the same in both
molecule and ion,

We comment first on the last point, As we have learned in Chapter
1, the relativistic energies are large for inner shells and their vale-
ues increase with the atomic number, This trend is reflected in the
relativistic corrections. For example, for the inner=-shell ionization
potentials the relativistic corrections are 0,1 ev028 gop CH,» 0.8
ev462b for Ne, and 14 ev463 for Ar, Since the parent system is richer
by one electron than the corresponding ion, the relativistic energy
in the former is larger than it is in the latter. This means that upon
correcting the ionization potentials for relativistic effects one ar~
rives at higher values, Since the relativistic corrections are not
sccessible to direct calculations, we are forced to adopt the fol-
lowing two asssumptions. First, the relativistic effects may be ig=
nored with lonizations of outer~shell electrons and, second, the ion-
jzation potentials predicted by ab initio calculations for inner
shells may be considerebly underestimated owing to the neglect of re-
lativistic effects,

Hence disregarding the relativistic effects gives us

KRC
=

1P s g 4 AR 4 AC (5.24)

The difference IPERC - IPE is called the Koopmans® defect, The re~

organization energy, &R, is accountable for within the SCF approxima-~

tion by expressing the ionization potential as
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where E°C' 15 the total SCF energy for the parent molecule and EﬁCE

h
the total SCF energy for the respective ionized (hole) state. This

means that evaluation of each ionization potential requires an ad-
ditional SCF calculation. The procedure is referred to as the ASCF
method and 4R for any ionization potential is given by the difference
IP?R - IP&. Unlike Koopmans® theorem, the ASCF method gives us a pos-
sibility to obtain a theoretical prediction for the adiabatic ioniza-
tion potentials by performing the SCF calculations of ion at the geo-
metries optimum for its particular slectronic sfates. Computationally,
howsver, it is simpler to evaluate the vertical ionization potentials,
i.e., to use the same geometry as for the parent system, in which case
the integrals over basis set functions obtained for the paraent systenm
need not be recalculated in open shell calculations,

In the applications of the ASCF method to the ls hole states, the
SCF calculation is performed for an electron configuration with the
singly occupied ls orbital, This is not justifimble on theoretical
grounds because there may be several states of the same symmetry that
are lower in energy (for example the 2a1 hole state of methane). As a
consequence the wave function for the ls hole state obtained in this
way does not yield an upper bound to the true energy. Fortunately,
for practical purposes the error so introduced is unimportant463
to a large energy separation between the core hole state and lower
states of the same symmetry. The ASCF approach to the core electron
ionization has a remarkable featurs that it is preferable to impose
no symmetry restrictions on the molecular orbitals of symmetrical mol-
ecules, This is the case of molecules with several equivalent atoms
whose ls crbitals may be combined into delocalized core orbitals., To
be more specific, consider the case of 0,. Here the combination of the
two ls orbitals gives 1o and ldu delocalized orbitals, Elsctron ejec=
tion from either of them brings about a delocalized core hole state.
Consider now another possibility viz. the formation of a localized
hole state by ejecting the electron from one of the two 1ls orbitals.
According to calculations on 05 by Bagus and Schaefer?® the localized
hole state is favored by 12 eV over the delocalized state and the ion=
ization potential for the former is in much better agreement with ex-
periment than it is for the latter, A detailed theoretical analysis of
the problem was given recently by Cederbaum and pomcke*®% who showed
that if delocelized orbitals are used, both reorganization and core

owing
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relation effects are important and of the same order of magnitude,
when localized orbitals are used, the correlation effects asre much
smaller than the reorganization effects, Since the ASCF method ac-
counts only for the reorganization effects, better agreement with ex~
periment is obtasined with the localized orbitels.

Koopmans® theorem is also expressible as a difference between the
total energies of ion and molecule

’ S
IPE = EﬁCF (frozen} - gSCF (5.,26)

but in contrast to eqn. (5.25) the total energy of the ion is obtained
within the frozen orbital approximation, i,e,, the wave function for
the ion is assumed to be built up from the molecular orbitals of the
parent system. A direct SCF calculation on the ion gives of course a
lower energy so that the AR energy is negative (see Fig., 5.4). On the
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Figure 5.4

Schematical representation of corrections
to the Koopmans® theorem

contrary, the correlation energy correction, AC, may be expected to
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be mostly of positive sign because, compared to an ionized state, the
parent molecule is likely to have more correlation energy. Indeed, AR
and AC cancel usually to certain extent which affords the explanation
why the Koopmans® theorem sometimes works well, Generally, howsver,

the cancellation is only approximate and in some exceptional cases AC
may be even negative, sc that AR and AC are of the same sign, The im~
portance of rearrangement and correlation energies may be judged from
the entries of Table 5,11 which presents the results obtained by Meyer

Table 5,11

Ionization petentialsa of H,0 and CH

4
Hole  Koopmans”
state theorem L SCF PNO-CT Experimentb
H,)O
lbl 13,88 11,10 12,34 12,81 (12.78)
381 15,87 13,32 14,54 14,73 (14,83 * 0,11)
lb2 19,50 17.59 18,73 18.55 (18,72 1 0.22)
261 36,77 34,22 32,25 32,2
la1 559,48 529,11 539,53 539,7
CH4
lfz la.88 13,867 14,23 14.4 (14.86)
Zal 25,69 24,31 23,67 23,0 (23.2)
lal 304,86 290,76 290,70 290,7 (290,9)

8 Taken from Refs, 292, 3293 all entries in eV.
Values corrected for vibrational effects in parentheses,

92 9

" 2 32
for H20 and CH4

molecules are the best variational energies attained so far, From the

with large basis sets. The energles for thes two

differences between the entries in the first and second columns it is
seen that AR is significant particularly for inner-shell ionization
potentials, where its recognition leads to a good agreement with ex-
periment. Typically, Koopmans® theorem gives too high ionization po=
tentials whereas the ASCF approach gives too low ionization potentisls
(except for the 2a; hole states of the two molecules).

The entries of Table 5.11 demonstrate the fact that by making use
of the Koopmans® theorem we can interpret the elsctron spectra only



1865

qualitatively. In some cases the Koopmans’ defects are so large that
not even the order of the observed states is correctly reproduced.
There are many examples of such a "breskdown of the Koopmans’ theo=
rem". We selected among them the case of ferrocene. Several of its
lowest ionization potentials are presented in Table 5,12, Obviously,

Table 5,12

Ionization potentials (in eV) of ferrocene¥o®

Koopmans®

Hole state theorenm ASCF Experiment
ey 14,4 8,3 6.8

g9
alg 16.6 10,1
ey 11.7 11,1 8.8

u
®lq 11,9 11,2 9.3

5 -

82u 16.0 lq.s

Koqpmans' theorem cannot be applied to this molecule. The ASCF values
are still in a rather poor agreement with experiment (partly owing to
a small basis set used), but the order of ionization potentials is
correct, The breakdown of the Koopmans® theorem may be‘elucidated466
by a different extent of the electron reorganization invelved in elec-
tron ionizations from the respective molecular orbitals, For ligand
orbitals elu’ elg or azu, there is little rearrangement upon ioniza-
tion and the ASCF values differ very little from the corresponding
orbital energies (see Table 5.12). For a metal orbital (al or 620)
there is a marked rearrangement upon ionization: while these orbitals
include a small amount of ligand orbitals for the parent molecule,
they become nearly pure metal orbitals for tne ion. In general, the
breakdown of the Koopmans® theorem occurs very often for ionizations
from the 3d orbiral of transition metal complexes (several examples
are cited in Ref. 467).

The breakdown of the Kocpmans® theorem with the nitrogen molecule

468,469 ¢ notable because of its basis set dependence59

: with the DZ
basis set the order of orbital energies agrees with experiment where=~
as with the [463p] and larger basis sets the breakdown of Koopmans®
theorem occurs, Incorrect order of the 26@, 305 and lﬁu ionization
potentials is predicted even by the near Hartree~Fock ASCF calcula~-

tion524. This suggests that the correlation effects are extraordinar-~
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A systematic study of the effect of bond lengths in ionized sys=-
tems (and also of the external electric field) on the reorganization
energy was communicated by Clark and co-workarsd7o. The experience ac-
cumulated established the utility of the ASCF method as the first step
in improving the results given by the Xoopmans® theorem, It is evident,
however, that the correlation effects cannot be disregarded if a
highly accurate treatment is attempted. In principle, in order to in-
tlude correlation energy use may be made of any method noted in Chap-
ter 4. It depends of course on the level of sophistication of the
method used. On the one extreme, with the simple techniques such as

the EPCE~F2€ method, it is hardly possible to atrainzsg

better accu=
racy than 0,5 eV, The other extreme may be represented by the PNO~CI
data presented in Table 5,11, Standard configuration interaction is
usually not used with the aim of including correlation energy. It is
used rather for giving an sccount on the so~called satellite peaks
(vide infra) or to make allowance for orbital relaxation”’! by means
of the configuration interaction with singly excited doublet states,
if the wave function for the leading open shell configuration is con=
structed from the closed shell orbitals, The variety of approaches
used to account for both relaxation and correlation effects is very

large; PNO-CI and CEPASS# 468,

¢+ techniques based on Green’s functions
472476

, diagrammatical MB-RSPTS?‘O'AW'M8
me‘chod“g‘480

Rop7164,482

density matrices and natural functions

, the equation of motion
. 4 .
, the natural transition orbitals method 81, the ordinary

the superoparator technique476’483
484

, and the method of

. Among these methods the
Green’s function approach seems to be the most elegant and effective
one. It is based on the fact that the one~particle Green’s function,
G, gives exact ionization potential in a given basis set, Feasibility
of the calculations is due to the circumstance that G is expressible
through so called self-energy part by means of the diagrammatic ex-
pansion in terms of interasction matrix elements {the latter are actu=
ally the transformed two-electron integrals over MO"s), The expansion
of the self-energy part contains all second and third order diagrams
whereas the higher order terms are approximated by an infinite sume
mation of ring and ladder diagrams, Explicit expressions for the ion~
ization potentials in Green’s function approach may be found in Ref,
472, It is an advantage of the method that only the wave function for
the electronic ground state is required., Correlation and recrganiza-
tion effects are explicitly taken into account, though the ionization
potentials are not calculated as a difference in energy between the



167

hole state and the parent molecule, The method was applied to a vari=-
ety of both small and large molecules, As an example we selected in

Fig. 5,5 the treatment of the pyridine molecule486. It is seen from
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Fig. 5.5 that again the Koopmans”® theorem does not hold., The second
order of the perturbation expansion reproduces correctly the order of
ionization potentials, However, the values are teo low, because the
second order corrections to the Keopmans® theorem are greatly over-
estimated.This effect is a general property of many-body methods and
it was found not only with the Green’s functions technique but also
with the MB=RSPT calculations®’®. For small molecules the defect of
the second order is even larger, so that the predicted ionization po-
tentials are in some cases inferior to values given by the Koopmans®

472. For the pyridine molecule485, the second order predicts

theorem
en appreciable energy gap between 3b2 and 58y ionization potentials,
in disagreement with experiment., The same situation is met with the
7al and 182 ionization potentials, To summarize, the use of the sec-
ond order in the many~body theory is insufficient., As it 1s seen in
Fig. 5.5 for the pyridine molecule, making use of the third order re-
moves all apparent discrepancies, whereas the further improvement by
means of the renormalization brings about only a slightly better
agreement with experiment., From the practical poiﬁt of view, the cal~
culations provided an importent finding viz, that disregarding several
of the highest virtual molecular orbitals affected the results very
little. This effect is small compared to errors in the orbital ener-
gies given by the DZ basis set.

Closely related to the Green’s function method is the approach
based on MB-—RSF’T320'477'478

alent results, The computaticnal procedure in MB-RSPT is similar to

. The two methods yield essentially equive

that for the ground state correlation energy of closed shell systems
{see Chapter 4,), The number of diagrsms is somewhat larger, however,
and in addition to two~electron integrals over MO’s that are needed
in the ground state calculations up to the third order, in calcula-
tions of fonization potentials we need also integrals of the (colov)
and (ov|vv) types., The transformed molecular integrals for the ionized
system are not required. Hence, as with the Green’s function approach,
the MB~RSPT calculations are profitable that the ionization potentials
are calculated directly from the wave function of the parent system.
This is enabled by a formal cancellation of those terms that contribe
ute equally, at least up to the third order of the perturbation theo-
ry, to the correlation corrections of both the ionized state and the
parent state. The remaining terms can be represented diagrammatically.
The cancellation noted above with the many-body approaches has two
important consequences, First, no error is introduced into the result
by subtracting the energies of the two systems, The second point in
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favor, which is perhaps more important than the first one, is a lower
numerical effort. The first point refers mainly to CI calculations.
An interesting comparison referring to this problem was reported487
for the ionization potentials of ethylene computed by the Green’s
function method and the CI nethod>/ 81286 with the Langhoff and David=
son”s correction (see Chapter 4.). The results given by the two ap=-
proaches were in quite good agreement, The authors of the quoted paper
487 4150 examined the basis set effect (in particular the effect of
polarization functions) on the correlation effects in both the ground
and several ionized stat?$ of C,H,.

1t should be noted that ab initio calculations may also be applied
to fine effects observed in electron spectra such as the vibrational
structure of band5472'488“493, shake~-up and shake-off processesAGO’

. - I P = \
476,494 500, Auger processesaol 508 and multiplet (exchange) split-

tingsgg'463'506. We shall restrict here ourselves to a brief remark
on the shake-up processes, Up to now we have treated simple photoion=-
izations, i.e., ejections of a single electron, which may be charac-
terized by the so-called Koopmens® configuration and which give rise
to "main® bands in the electron spectra. A main peak may, however, be
accompanied by satellite peaks of lower intensity that are due to
more complex processes involving electron ionization and simultansous
electron transition from an occupied orbital to an unoccupied orbital.
As a net result, one electron is ejected and the second is promoted
to 8 Xirtua% orbital, For example, the configuration (lal)(Zal)Z(lbl)
(Sal)“(lbz)“(ﬁbl) for HEO is a typical shakewup configuration for the
ls ionization, Actually, the term shake-up processes is used mostly
in connection with ESCA, though the effect of simultaneous excitation
need not be associated only with inner shell ionizations. The most
straightforward theoretical approach to shake~up peaks is configura-
tion interaction, Among the excited doublet states obtained, possible
candidates for the shake-up states are those into which the Koopmans®
configuration is mixed to an appreciable extent, The squares of the
expansion coefficient standing at the Koopmans” configuration in the
¢I wave functions may be taken as relative intensities of the re-
spective shake~up peeks, This is referred to as intensity borrowing
from the main line, For valence orbitals one can usually identify the
main line, which carries most of the spectral intensity. In the innegr=
~valence shell region {(approximately above 20 eV) it may be, however,
difficult to make distinction bestween the main and satellite lines,

wWith a series of mclecules the shake-up processes were treated? 8

507-510 . : .
507-5 by the Green’s function technique. As an example we present
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the case with the N, molecule4®8, For its 265 ignization it was found
that the main part of the intensity is distributed over four lines at
37.93, 39,94, 41,24 and 41,56 eV, In addition there is an intense line
at 28,92 eV, It is therefore hardly possible to identify any among
these lines as the “"main” line corresponding to the 26_ orbital and
the remaining as satellite lines. This sharing of the 26 intensity is
essentially a correlation effect and it means the breakdown of the
one~to-one correspondence between the bands observed in the photoelec-
tron spectrum and molecular orbitals,

The satellite lines may also be treated by means of MB-RSPTZBB. A
very elegant formulation of the problem is possible by means of the

quasidegenerate MB~rSPTYY

which permits all ionization potentials and
their shake~up satellites to be treated simultaneously,

Finally, the basis set effect should be noted, We attempted to ex-
press the accumulated experience in a condensed form by means of Table

5,13,

5,H. Intermolecular Interactions

Knowledge of the behavior of atoms and molecules that participate
in interactions is of primary importance for a further progress in
many regions of physics, chemistry and biology. In this section we
give an outline of basic methods of computation of interaction ener-
gies and their applications to some selected representative systems,
Cbviously, the choice of the optimum method and the basis set depends
on the particular case, but some general guidance may still be formu-
lated. A detailed information on the theoretical background of various
approaches and their confrontation with experiment may be found both

. 4
in claasicalsl7'018 519,520 literature.

and recent
Since the pioneering work of London, it has been assumed for a

long time that the perturbation treatment is the most suited approach

to intermolecular interactions. Actually, use of perturbation methods
is appropriate only with long range forces, where the electron ex-~
change between the interacting systems A and B may be disregarded.
Consider therefore first the case in which the distance between A and
B is large, Then the wave function for a system AB may be written as

AB A~B ‘
Yo =Y Y (5.27)

where‘yg and'Yg are wave functions for systems A and B, respectively,
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Table 35,13
Basis sat effect on the calculated ionization potentials

Notes on the use and Representative
Basis set Approach accuracy achieved references
Minimum any level of not recommended 482, 511
sophistication
DZ, DZ+P, Koopmans” the~ generally within 0,2- 468, 482, 512,
extended orem 0.4 eV with respect 513
to Hartree~Fock data;
vccasionaly over 1 eV
for the DZ basis set
DZ ASCF, inner- 1«2 eV within Hartree- G514, 515
~shell IP"s ~Fock limit
[5s3p/2s] ASCF, inner- 0.2-0,4 eV within 514, 515
~shell IP's Hartree=Fock limit
[ss3pld/2s1p] ASCF, inner- ~0,1 eV within 514, 515
-shell IP's Hartree~Fock Llimit

DZ reorganization  in average 0.5 eV 469, 482, 513
. and correlation within experiment
aeffects ac-
counted for

DZ+P reorganization ~0,25 eV within ex- 482, 513
and correlation periment
effects acw
counted for

Extended reorganization compared to experiment 469, 482, 513,
and correlation wmaximum error 0,1-0,25 516
effects ace- eV, depending on the
counted for basis set size and the

particular molecule

The total Hemiltonian for the system AB becomes

HY s H o+ H o+ V (5.28)

where WA and H® are Hamiltonians for systems A and B in the form of
eqn. {l.1) and the interaction Hamiltonian, VAB, is given by

o DDA DL DD LD

icA 3»:3 FIB weh jeB ' ieA jeB Tij ocA fen b
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Here indices i,] refer to electrons, indices o, 5 to nuclei and ZoZp,
are nuclear charges. With the wave function?yga and the Hamiltonian
(5.28), the second-order perturbation theory gives the following ex-

[*4
pressionsdlg

(5,30)
AB( ABL AB. | 2
e@ . ) | gV | (5.31)
= —} P
X T i
' 0o kk

The index k in eqn, (5.31) labels singly and doubly excited configura=-

tions within the frame of systems A and B (vide infra for further

specification), and (HSE - HCE) are the respective excitation ener=

gies, E represents the Coulomb electrostatic interaction energy
{hersafter denoted as ECoul) between the nuclear and electronic charge

distributions given by wave funch‘mns‘)"”'F

' and\HB. In the orbital form
521 ¢ °

it reads as follows

1

, T
Booul = 7%/, } ; Z¢<a(l) {""_'

a(l)) ~z2 Y zm(b(l)] _,,L

b(l)) +
acA [eB 'T1p weA beB 1e

a0 (a(l)a(l) §--l~( bmbm) LT ER s

acA beB M2 HEA @es Rmﬁ

Here a and b are occupied MO"s of systems A and B, Equation {5,32) is
gasily expressible in terms of integrals over atomic basis functions
and elements of the density matrix. In egn. (5.31) two terms may be
distinguished. The first cone is due to single electron excitations of
the type (a’'—» r”) and (b'—» s”), where a’ and r”, respectively, are
occupied and virtual MO’s in the system A, and b’ and s” are occupied
and virtual MO°s in the system B. Contribution of these terms corree
sponds to the classical polarization interaction energy, E_ . Two-elec-
tron excitations (a’' -—» r”, b’ — %), i,e. simultaneous single excita=
tions of either subsystem, may be taken as contributions to the second
term. - the classical London dispersion energy, Ene If the Mgller-Ples-
set partitioning of the Hamiltonian is used, E, may be expressed in
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its simplest (orbital) form

. 1 :
) a8’ (1yr7 (1) - b’ (“)S”(2>
et L L | il ) (5.33]

a' ,r'e A b ,s%cB Ear * B Eum Egr

where €, are the respective orbital energies. As shown by Kochanski®?2

somewhat better results are obtained if the Epstein-Nesbet parti-
tioning is used. In that case the denominator in (5.33) contains be~
sides the orbital energies also the Coulomb and exchange integrals
over orbitals a' , r", b’ and s”. Computationally, evaluation of the
expression {5,33) entailes only a small additional cost over the SCF
calculations, It should be noted that E, is inherently negative, bew
cause the nominator in (5.33) is positive and the denominator is nega=-
tive., EXpression {(5.33) may be taken as an approximastion to the interw-
system correlation energy through second order. Chbviously, it disre=
gérds the correlation energy change of each subsystem owing to inter-
action, i.e. the change in the intrasystem correlation energy, which
should be taken into account at shorter distances, When dealing with
long-range interactions, it is fair to note the multipole expansion of
the interaction energy, i.e. the asymptotic expansicn in power series
of 1/r. Convergence properties of this expansion were thoroughly exam-
ined by Ahlrichs523, The multipole expansion permits expressing the
Coulomb, induction and dispersion interaction energy by means of the
observables of individual subsystems such as charges, dipole, quadrue
pole and higher moments, molecular polarizabilities, excitation ener=
gies and ionization potentials, Explicit formulas are available in the
literature, so it is not necessary to repeat them here, Only some spe-
cific expressions for the Coulomb interaction energy will be noted
below.

Consider now the interaction energies at medium and short distances,
Here the application of a standard perturbation theory is not free of
complications, The main reason for this is the fact that the unper-
turbed wave function,@/ég :ﬁféwg, is antisymmetric only with respect
to electron permutations in any subsystem but not to permutations in
the whole supersystem AB, As the intersystem distance becomes shorter,
the subsystem charge distributions begin to overlap and the intersys-
tem electron permutations have to be taken into account, This may be
easily done by assuming the antisymmetrized functionéﬂfﬁg, but this

fupction is not an eigen function of the Hamiltonian HA + HB and it is



174

therefore not suited for the perturbation treatment. More recent meth=
ods, that are applicable to perturbation treatments at medium and

short distances, are discussed for example in Refs. 524-530. A discus~
sion on this problem531

juSols ]
: s
pansion

with the connection to the asymptotic 1/r exe
was reported by Kutzelnigg and Maeder., We restrict ourselves
here to @ brief note that the introduction of the antisymmetrizer into
the wave function in the expression (5.30) gives rise to a firsteorder
exchange contribution, Eoxt which is always repulsive. On applying the
antisymmetrizer to the wave function in the second-order expression
(5.31) and taking into account the intermolecular excitations (i.e,
virtual MO"s r’ and s’ in a particular molecule need not correspond to
its occupied orbitals), two further terms are obtained in addition to
the long-range terms - the charge-transfer term (from single electron
excitations) and the second-order exchange contribution {from two-elec-
tron excitations), It is evident that rigorous calculations at small
intersystem separations should be performed through higher than the
second order of the perturbation theory, but this is hardly feasible,
We comment now on the most widely used method of calculation of
intermolecular interaction energies which is based on the supermolecule

spproach. In this approach it is necessary to calculate the energy of

AB

the supersystem, E'", and the energies of the constituting subsystenms,

EA and EB. The interaction energy is simply

AB

AE = P - (gA L EP

+ E7) (5.34)

We may inquire which components of the perturbation expansion are in=
cluded in AE. This depends on the particular method used for the calw
culation of EAB, EA and EB. At the SCF level the interaction energy
AESCF is lacking the contribution of electron correlation, which is,

as we already know, equivalent to dispersion energy at large distances.
But otherwise QEgep gives a rigorous coverage of all other components
through all orders of the perturbation expansion, Evaluation of indie
vidual contributions requires, however, a specisl a posteriori decom-
pesition of LEgnps in contrast to the perturbation trestment in which
all components are obtained directly from explicit expressions, The
decomposition521'533 of AESCF may be performed in three steps. In the
first step the sum of the electrostatic and firsteorder exchange re-
pulsion energies is obtained. This term, denoted usually as AEl =

Ecoul * Eext results from the antisymmetrized product of SCF wave func=
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tions of the two subsystems,'wés = aﬁfg‘ﬂz. Computationally, pEY is

obtained easily from the energy in the first iteration of the SCF calw
culation, if orthogonalized occupied SCF orbitals of isolated subsys=
tems are used as starting vectors and if the energies EQCF and EgCF
are subtracted, In the second step Ecoul ™aY be obtained by means of
eqn, (5.32), The difference AEl = Epo,y 9ives us Eox In the third

step the SCF calculation is allowed to reach self-consistency and from

the converged energy we obtain the second order contribution.¢§E2 w

AEQSF - AEI. The energy AE2 is also commonly called the delocalization
energy, Edel' It contains two main components: the polarization enargy
Ep and the charge=transfer energy, EET' The former may be viewed as
the interaction which causes the mixing between the occupied and va~
cant MO“s within each molecule, whereas the latter may be regarded as
the interaction which causes intermolecular delocalization by mixing
the occupied MO's of one molecule with the vacant MO’s of the other
ﬁg? vice versa. Since the Ep2 contribution may be evaluated directly
v EéT ECoul + Eex + E_ ) from
the total interaction energy. Nevertheless, EéT obtained in this way

is obtained by subtracting the term (

is not a genuine charge~transfer interaction energy Eqpe because it
also contains further contributions, viz. the exchange polarization

Eexpl' mix” The
most accurate scheme on the separation of all components of the inter=

term, and coupling interactions between components, £

action energy was developed by Morokuma and coworkers for both ground

534,535 536

and excited® states,

Physicelly meaningful is of course only the total interaction en=
ergy. Its decomposition to components is profitable, however, for the
understanding of the nature of intermolecular interactions and also
it is useful for the derivation of rules for the selection of a basis
set. As an illustration of the complete decomposition of the total ine
teraction energy, we present in Table 5,14 the data for the linear
structure of the water dimer. The entries show a high sensitivity of
the interaction energy components to the basis set used, In spite of
this fact some general conclusions may be drawn about the relative im-
portance of the energy components. Among the attraction contributions
the most important one is ECoul' followed by EéT' The total SCF interw
action energy results from a complex interplay of all contributions
from which no one can be disregarded. An interaction energy decompo-
sition like that presented in Table 5,14 may be helpful in rationale-
izing the nature of bonding in hydrogen bonds, A detailed discussion
on this topic may be found in the cited paper5538'540"542,

The entries in Table 5,14 permit us also to discuss some other
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Table 5,14

. . : - . . ) : a
Energy decomposition for (H?O)? with various Gaussian basis sets

Dipole moment Rpg

e o ~30 210 7 ‘ ;
Basis sget (ﬁO Cm] El@ m AESCF ECoul Eex Epl

STO-4G 6,42 2,78 w26.4 =32,7 40,6 -1,1 -33,2 637
4-316 8.67 2,08 =322 ~37.3 17.5 -2.1 ~10.3" 838
6=31G" 7.3 2,93 ~23,4 =31,4 18,0 ~2,1 ~7,9 538
[541/31] 7.36 3,00  -19,8 -30,5 18,7 -3,1 =~4,9 537
MF limit 6,65° ~15,4 539
a

If not otherwise noted, the entries are in kJ/mol; the dipole
p moment refers to the monomer. )

In a more detailed decomposition®3% this energy may be further
split to EcT = 8.8, Eexpl = ~1.7, and Epix = 0.2 kJ/mol.

This value (see Table 2,55) and AEgcp were obtained with dif=~
ferent basis sets.

problems, Consider first the total interaction energy. It may be no=
ticed thet with small basis sets the total interaction energy is over=-
estimated. We mean the overestimation with respect to larger basis
sets, A reliable experimental value is not availsble (for a compari-
son of theory with experiment see Ref. 169)., The overestimation is
mostly due to the so called counterpoise or superposition error>d3547,
which originates from the fact that if the subsystem A (B) is repre=
sented by a small basis set, it tends to improve the quality of its
basis set by means of the basis functions located on the other inter=
acting system B (A), This brings about an energy lowering in the sys=-
tem AB, which results in the overestimation of the interaction energy,
in particular of its E g1 COMPONEnt, The magnitude of this effect may
be easily estimated. It is sufficient to compute the SCF energy of the
system A, E?, with the basis set and at the geometry used for the su-
persystem AB but with the zero charges on nuclei that constitute the
molecule B. The energy ES for the system B is then obtained analo-
gously, The calculations’of this type are not associated with any con-
siderable additional cost, because the list of two-electron integrals
is the same as with the supersystem. Actually only the nuclear attrace
tion integrals have to be recalculated because of zero charges on nu~
clei bearing the “ghost" orbitals., The interaction energy thus becomes

AB A B AB A .
AE = Egoe = (EC + Ec) instead of AE = Esop = (ESCF + Egpp)e The dif-

: B -A B s
ference ag = (ESCF + ESCF) - (EC + Ec) represents the counterpoise
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correction. As the size of the basis set is extended, its importance
decreases. Extremely high counterpoise correction of 24 kJ/mol is

545 for the water dimer with the STO~3C basis set. In this case

found
0¢ is higher than the dimerization energy itself. Evidently, the
S§T0-3G basis set is not suited for the application to (H2O)2, though
the counterpoise correction computed in this way should merely be
taken as an upper limit to the effect of basis set extension545. With
the optimized minimum contracted Gaussian basis set A€ reduces ?® to
4,7 k3/mol, With the 4-31G basis set it becomes>*° about 4 kJ/mol and
with the [541/31} basis set it is of aboutl69 3 kJ/mol, A deeper in=-
sight into this problem is achievable by means of the perturbation ap-
proach528 which also permits treatment of the basis set effect on the

dispersion energy550,551
169,552

. Counterpoise error was alsoc examined with CI
calculations . Actually, the basis set should be tested with re-
spect to the counterpoise correction in any type of calculation of in-
termolecular interaction energies.

There is also another reason for the overestimated interaction en=
ergy in (HZO)E' With small and medium sized basis sets the dipole mo=
ment of the water molecule is overestimated, which brings about a too
high value of E. ;. This may be demonstrated by means of the multi-

pole expansion truncated to its first ternm

mult
es

»

-
)

(5.35)

NES

where R is the intermolecular distance and a4 is the dipole moment,
This view is however rather oversimplified. As suggested by the data
in Table 5.14, the relationship between ECoul and 4 is more complex.
Specifically, two closely related effects should be considered: (a)
the inclusion of further terms into the multipole expansion, and (b)
penetration of charge distribution of the two systems at short dis-
tances, For a discussion of these effects we make use of results of
our calculations® > on a somewhat uncommon system (BH),. For the BH
molecule, the DZ basis set gives a remarkably high quaérupole momern t
@zz = =13,467 x 10740 ¢p? (computed with respect to the center of
mass), The dipole moment and the octupole moment are predicted with
the same basis to be & = 6,266 x 1073 Cn and 0 = =0.439 x 107°Y cnd.

The dipcle moment is in fair agreement with the value of 5,780 x

10—50 Cm given by the extended basis set554. We now substitute the DZ

data into the multipole expansion of the electrostatic interaction en=
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ergy in the point multipole approximation, We assume two orientations.
For the linear structure the electrostatic interaction energy may be
expressed as

2 2
24 Q 40 ,
gLt T L s L g s A, (90l (5.36)
es 3 5 5 £s es es
R” R R
whereas for the perpendiéular structure it becomes
2
30 Q
ghule 7 °7 3w g, EQ? (5.37)
es 4 5 es es
2 R R’

In Figs. 5.6a and 5.7a they are compared with E 1 obtained by means

Cou

MEIE,) AlEIE,)
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6 12 7 8 9 10 MRIq,
Figure 5.6

Interaction BH-BH in the linear configuration553. a) Electrostatic
interaction energy and the first terms of its multipole expansion,
Intermolecular distance, R,and quadrupole and octupole moments re-
fer to the centers of mass, b) SCF interaction energy and itz com=
ponents,
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Figure 5.7

Interaction BH=BH in the perpendicular c0nfiguration553. a) Elec~
trostatic interaction energy and the first terms of its multipole
expansion, Intermolecular distance, R, and the quadrupcle moment re-
fer to the midgoin;s of bonds, In this case the quadrupole moment is
-19,891 x 10~40 cn?, This choice of the origin of coordinates does
not affect qualitatively any conclusion noted in the text., A de-
tailed discussion on ihe problem of selecting the coordinate center
was given by Lischka?+5, b) SCF interaction energy and its compo-
nents,

of eqn. (5.32) and Figs. 5,6b and 5.7b present the total interaction
energies AEg.. and their components, A deeper minimum on the BEgep
curves was found for the perpendicular configuration., It is located

at R = 4,2 and its depth is AEgne = =0.029198 Ep - With the linear
configuration the minimum is very shallow (AESCF = «0,00058 Eh) and

it is located at the distance as long as R=e 10 I Just the opposite
order of stabilities might be expected, if the prediction were based
sclely on the R term, This term, which may be assumed to be the dom=
inant component among the long-range forces in the interaction of two
dipoles, is vanishing with the perpendicular configuration, so that
the linear structure should be favored, The origin of this incorrect
prediction may be understood from Fig. 5.6a, Since the quadrupole mo=

ment of BH is high, the repulsive tern Egg compensates the term Egg,
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or even dominates over Eﬁg'at distances R < 7 a,- Egg is considerably

[0k i L
smaller than Egﬁ and E&g at any distance. The total electrostatic ine

8

teraction energy in the linear structure is therefore very small and
the bonding in this system resembles the van der Waals interaction,

With the perpendicular configuration, the two most important terms,
(2 g Q0
Ees and Las‘

sign, Figs. 5.6a and 5.7a may be taken as an example showing how the

are also comparable in magnitude but they are of the same

knowledge of first terms of the multipole expansion may be useful in
establishing the dependence of the interaction energy on the orienta-
tion of molecules, The fact that the treatment cannot be restricted to

the very first term of the expansion has been recognized long time ago

o

555 Anotner feature of Figs, 5,6 and 5.7, which should be commented
and gmult

Coul “es

with both (BH), configurations, It should be realized that the multis

on, i a considerable difference between the & curves

pole expansion is in fact a long-range approximation and that it di-
verges at short distances., The convergence is possible only if the
charge distributions of both subsystems do not penetrate into each

ST o
other, Owing to penetr&u'cicmb"l’5”’6

Ez:lt; the two energies approach asymptotically only at large dis-

tances. From Fig, 5.6a we can see that even if the first two terms in

' ECOUl is more attractive than

the multipole expansion indicate the convergence (i.e. Eﬁﬂ“> ES? + Egg

for linear configuration), E:glt

and Ecoul still differ considersbly.
Besides the penetration effect, this also may be assigned to an inev=
itable truncation of higher terms in the multipole expansion, It
should be noted at this point that the convergence of the multipole
series may be improved. Various approaches based on the decomposition
of the molecular charge density into smaller distributions and proces=
dure to generate high-order moments were suggested by Mezei and Camp-
bel1°%7,

A similar analysis of the long~range behavior may also be per=
formed for other components of the interaction energy. With the polar~
ization energy, it is necessary to know besides the multipole moments
also the polarizabilities of moleculss, whereas an analysis of the
dispersion energy requires an extra knowledge of polarizabilities, ex~
citation energies, or ionization potentials, depending on the approxi=-
mation used, Many among these quantities are not accessible experimen=
tally or their experimentsl values are open to large uncertainties, so0
that accurate ab initio calculations become very topical here, As an
example of a thorough analysis of the interaction energy we cite a few

selected papers: Schuster and coworkers®°° treated the systems Li*-HZO

-
and L1+~H2CO; Staemmler>°° the Li*N, system; Kutzelnigg and cowork-
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er9312 the system Liw H?, Lischka reported the calculations for He=HF

and He-HZOB‘M‘315 and for H -HF and HZ-H2031°; and Garrison and co=
workers460 for the He~H,CO system. A detailed analysis of the van der
Waals complexing of two ethylene molecules was reported by Wormer and
oworkers561 552
The methods discussed above in this section may also be applied
to very large systems, though the calculations are feasible only with
g minimum basis set. A typical example of the theoretical approach of
this kind is the study of interactions of cations with biomolecules
as it is made in the laboratory of A, and B, Pullman>83:564

tem biomolecule~cation is treated as a supermolecule and the calculaw

. The syg=

tion is repeated for many different distances and orientations of the
cation with respect to the biomolecule.This permits to find preferred
positions of the cation binding, Fig., 5.8 presents preferred positions

377
1@
HW N
O N
-4.%.7 !
4 o
C\ I / k //H
"~ A 2183 TeNT D
Y.
- N300 C
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O/ \ H -201.2 P D/ I\lJ/
\ ol
1% 1 H -192.0 N
Figure 5,8

SCF interaction energies {in k3/mol) of Nat with uracil and cytosine
given by a minimum basis set304, The preferred locations of Na+ are
denoted by circles with numbers that give the order of their prefer-
ence, :

for the Na' binding with uracil and cytosine. The results of this type
on the optimum cation locations and the order of the respective inter=~
action energies permit to draw conclusions about cation binding in
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real biological systems such as the nucleic acids. The decomposition
of the interaction energy of Ne® with uracil and cytosine showed that
Eroul 1 the dominating term and that the other two components, Eax
and Edel' tend to cancel each other at the optimum distance of Na'

from the binding site., In such a situation where the cation binding
is governed by Ecoul’ it is profitable to make use of the molecular
eglectrostatic potential map, This approach was introduced by a group

. 565 . ; R
of Italian workers . Its essence lies in the calculations of poten-

tials V(F}) generated by the molecule at the points i, The interaction
enerqgy with a point charge, Gy located at the point i is approximated
simply by a product qi(?i)V(F;). The cost associated with the con-
struction of molecular electrostatic potential maps is relatively low
because the computation of the whole supersystem is avoided. One can-
not of course maks unequivocal predictions about the preferred binding
sites for cations on the basis of electrostatic potential maps only.
This technique should be rather taken564 as a tool giving us informa-
tion about the positions that should be selected for s complete SCF
supermolecule calculation,

The versatile utility of the electrostatic potential maps for qual
itative predictions may be demonstrated by an application of another

kind that was reported by Kollmans66

. He was able, on the basis of the
quadrupole~quadrupole point charge model, to give the explanation for

why the most stable structures of C12~Cl? and F,-F, dimers are

2 2

"lL-shaped", in contrast to H,, N, and other homonuclear diatomics that
[

are T-shaped., From Fig, 5,9 it ii seen that the most positive loca-
tions of the potential for H, are along the bond axis, whereas the
most negative areas are perpendicular to this molecule, bisecting the
H-H bond, This suggests that the T-shaped structure would be predicted
to bring the most positive end of one molecule toward the most posi-
tive end of the other, With Cl, the most positive potential is along
the bond axis, The most negative potential is almost straight above a
Cl atom, but inclined at ~15% relative to the axis. This direction
corresponds almost exactly to the angle between 012 molecules in the
optimum structure of (C12)2 given by SCF calculations,

As with other applications treated in Chapter 5, the rest of this
section will be devoted to the problem of correlation energy and to
the basis set effect, Let us first try to find types of interactions
where the correlation effects are almost negligible, where the estima~
tion of the correlation energy is profitable, and where its calcula-
tion is unavoidable. For this purpose we set up Table 5,15, It col=-
lects the results for a variety of systems, cobtained mostly with large
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H H Cl
- - % .
2 M 05 12 5
17 +80
H HOa a
Figure 5,9

-
Optimum geometriesuss (at the top) for H, and Clp
and the electrostatic potentials for R = ba, (at
the bottom),

basis sets, For the simplicity we shall ignore the fact that the corw
relation energies were calculated by different methods. An immediate
observation from Table 5.15 is that in interactions of univalent ions
with a polar molecule (Li+~H20, F-~H20), the correlation contribution
represents only a very small fraction of the total interaction energy.
Correlation effects also appear to be small in interactions of the pit
cation with a nonpolar molecule. Here, however, the correlation con=
tributions depend strongly on the configuration assumed, As documented
by the results for Li+~N2, they may even differ in sign for two dif-
ferent configurations. An unusual type of the interaction is provided
by the example of the system lithium atom =~ water molecule. Also here
the effect of the correlation energy is relatively small, but the high
SCF interaction energy is somewhat surprising. A remarkable feature of

567,570,571

these calculations is the fact that they predict a novel

class of molecular complexes of which Li«H,0 may be considered the pro-
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Table 5,15

SCF and correlation contributions to interaction enerw
N .

qies” (in kJ/mol)

System 28 otal AEBgcr AEorr Ref.
Li*~H,0 ~145,11 -150.,96 +4.85 169
F7mH,0 ~109.46 ~101.34 -8,12 169
Li*mn,® ~62,11 ~56.68 ~5.43 555
Lit=No© ~6.09 ~12.75 +6,66 559
LiteH, ~24,94 -23.97 ~0.97 312
Li~H,0 ~56,7 ~51,0 -5,7 570
Hy C=Ho0 -25,31 -21,51 -3.80 169
HF ~HF ~14,08 ~14,47 +0.39 316
He~HF ~0.630 -0.171 ~0,459 314
He~H,0 -0.814 ~0,234 ~0.,380 314
Hp =HF ~2,568 ~1.494 ~1.074 315
Hy=H,0 ~4,372 ~2,429 ~1.943 315
Ne=Ne ~0,291 0,118 ~0,409 568
Hy=Ho «0,079 0.231 -0.310 569
a

The calculations were performed at near-optimum geom=
etries, for details see cited papers; AE o, are in=
ferred from the published aAF and AE data.
b, . 1 SCF

Linear configuration,
Perpendicular configuration,

tota

totype. The papers quoted demonstrate the predictive power of ab
initio calculations which, in this case, provide a challenge to cros-
sed-beam experimentalists,

The correlation energy effect may be of some importance with weak
hydrogen bonds, While it is unimportant with the system HF=HF (vide
infra), it constitutes about 15% of the total interaction energy with
Hy0-H,0. In spite of this fact, the SCF calculations provided many in-
teresting results on various hydrogen bonded systems, in both ground
S38,540-542 and excited states (see for example Refs, 536,542,572),

To some extent, the agreement of SCF interaction energies and some re~
lated quantities with experiment is due to cancellation of several ef~
fects: neglect of the correlation energy, disregarding the zero=-point
energy, or the basis set effect, A more rigorous comparison with ex-

periment will be presented in Section 5,1, for some selected systems.

With van der Waals complexes, such as for example Ho=Hs, the SCF
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approach is inherently incapsble of giving a minimum on the potential
curve518 and the inclusion of the correlation energy becomes inevit-
able. At the first step, it appears natural to include only the inter=-
system correlation energy which, as we already know, becomes asympto-
tically equivalent to the dispersion energy (egn. (5.33)) at large
distances. This means that the total interaction energy might be ap~-
proximated by the sum bEgpp + Epe This approach was tested recently by
Prissette and Kochanski®®% with the system Ne~Ne, The obtained depth
of the van der Waals minimum represented about 71% of the value de~
rived from experimental data, A direct comparison of the dispersion

9

53
gnergy with AE (ocbtained from CI-SD calculations) was perfcn’med“6

cor
with the Hy=H, sy;tem. The results showed a qualitative agreement be-
tween the two approaches. Since the calculation of the E, term is rel~
atively simple, it is also feasible with somewhat larger systems, For
example, Umeyama and MmrokumaS73 corrected in this way 8CF interaction
energies of halogen complexes, though the basis set used was lacking
polarization functions so that only a small fraction of the dispersion
gnergy was recovered. As shown by Kochanﬁki522, it is necessary in
such an approach to make use of a basis set containing polarization
functions with a very low exponent, Such functions are, however, not
suitable for calculation of the SCF interaction energy, since they
give rise to & large counterpoise error>?®, This problem is scluble in
two ways, Either the counterpoise correction is taken into account, or
two sets of polarization functions are used., In the latter case, one
set of polarization functions ensures correct SCF energies whereas the
other is present to bias ED‘ For example, the suitable QXponent$b74

for the hydrogen GTF s are 1.0 and 0.1.

From an examination of Table 5,15 it may be noticed that three val=~
yes of BEL e have a positive sign. All these three values were ob-
tained by CI calculations (Lx*nHEO) or by CEPA (Li+~N2, HF=HFY, i,e.
by methods that besides the attractive intersystem energy alsc account
for the change in the intrasystem correlation energy. Since the latter
may be positive or negative, it may in some instances compensate or
gven overweigh the intersystem contribution, Needless to say that in
such a case the dispersion energy is meaningless, Origin of the posi-

tive . sign with LE may be understood from the correlation effect on

orr 316,542

the properties of subsystems. For example, with the HF molecule
correlation energy reduces the dipole moment and increases the polar=
izability, which brings about & lower Coulomb energy and higher polar=-
ization and dispersion energies, The balance of all these changes de-

termines the magnitude and sign of the total AE

- corr? Furthermore, the
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interaction energy may be affected by the coupling of inter~ and ine
trasystem correlation effects, Since the dominant part of the change
in intrasystem electron correlation is accountable for by double ex~
citations in the frame of subsystems and the dispersion energy (the
dominant part of the intersystenm correlation energy) by simultaneous
single excitations in each subsystem, the inter-intra correlation
coupling is amenable to examination only if triply excited states are
included, The problems of the inter-intra correlation coupling were
discussed by KutzelniggSgg, Because of complexity of calculations the
numerical results are, however, still scarce (e.g., Refs, 552a,575,
576). It should be noted that calculations of this type are meaningful
only if a large saturated basis set is used. Otherwise the coupling

effect might be obscured by the counterpoise error,

Table 5,16

Basis set effect on the calculated interaction energies

Type of inter- Basis Notes on the use and the ac~ Representative

action set curacy achieved references

Ion~dipole or minimum Structures correctly estimated, 88, 578-580

hydrogen bend or DZ distances underestinated (by
~-10%). Interaction energies
overestimated (120~150% or more
of experimental energies. Ac-
curacy depends mainly on the
estimated multiple moments and
polarizabilities of particular
molecules and on the counter=-
poise correction for a given ba~
sis set)

DZ+P Mostly overestimation of inter- 537, 539, 578
action energies {(120-130% of
experimental values)

extended Essentially agreement with ex- see for then

periment Section 5,1,
van der Waals extended Only large basis sets with po~- 216, 522, 546
complexes larization functions are to be

recommended; inclusion of cor-
relation effects unavoidable

Finally, the basis set effect should be commented on. This is,
however, a rather troublesome task because comparison of results given
by different basis sets with experiment is very difficult, This is due
to the lack of systematic theoretical studies, but also due to low re-
liability of many experimental data. The comparison is particularly
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difficult if the interaction is dependent on the arientation of sube
systems, Next, the compatibility of theory with experiment is compli=
cated by zero~point energies and entropy effects®’’

attempted in Table 5,16 to cutline some trends,

. Nevertheless we

5.1, Solvation

Up to now our attention was mainly devoted to calculations of the
energy and other quantities referring to free, isolated molecules. The
computational teéhniques and their applications were demenstrated to
be profitable in the exploration of physico~chemical properties of
free molecules and their reactivity in the gas phase {thermodyneamic
functions, equilibrium and rate constants), However, the gas~-phase
processes represent only a special minor part of chemistry, Not only
processes in biological systems, but also processes in laboratory con~
ditions procesd typically in the liguid phase ~ or expressed more spe-
cifically « in the solution. It is therefore not surprising that the
effort for applications of ab initic calculations is also still in-
creasing in this very important fie1g519,581-584

From the theoretical point of view, the system we are going to in-
vestigate is constituted by a large number of solute and sclvent mole-
cules, The problem to be trested is therefore inherently of the many~
~body nature and its enalytical solution is inaccessible. Inevitably,
we are forced to adopt some simplifying view, Since we are only dealing
with ab initio calculations, we find it convenient to maks use of the
following classificetion of the existing theoretical approachess

(1) Calculations of pair intersction energies and their use in a
statistical thermodynamic treatment.

{i1) The *supermolecule” approach,
{i1i) Methods accounting for the solvent effect by means of the cone
tinvum model.

(iv) Methods combining the continuum snd supermolecule approaches.

First we make an attempt to break through the sclvation phenomena
by means of the pair interactions. The underlying theory for the twow
~body interactions was dealt with in the preceding ssction, so that
we may immedistely pass to the problem of testing the predicted inter=
ection energies. Recent progress in experimental techniques resulted
in accumulation of thermochemical data, against which the predicted ine
teraction energies may be judged, Especially, the data on the solva-

. 588
tion of menoatomic ions with a single water molecule Bﬁare well suited
for this purpose. Their use is shown in Table 5,17, where they sre



Table &,17
Theoratical and experimental heats of hydration of selected ions (in
kJ/mol)

AHS
Zero=point AHggs' AHg 298

Complex AESCF AEcorr correction (calcd,®) Calcd, Exptl.585
Li*oH,0° ~147,3 1.1 8.5 “d.,d -144.3 142
Li*-H,0° -151.0 4.9 6.6 -137.59 .14z
Na*-Hzob -100.2 1,1 6.3 «3.5 ~98,5 -100
K*ah, 00 w69.6 1.4 5.5 3.1 68,6 ~70.7
Fron,0°  -gg,2 3,1 13,3 4,7 93,7 -97.5
Frn,0° 21013 -8,1 13,3 296,19 97,5
C17-H,0° 40,5 -2.4 6.6 3.2 -46.6 ~54,8

- .
8 Recalculatad>t® from origina1267 geometries and vibrational fre=-
b quencies,

Ref, 287.
Ref, 153,

d AH8 value,

compared with the results of selected ab initic calculations performed
with very large CGTF basis sets, The overall agreement is excellent,
though it is open to some uncertainties, It should be noted that the
experimental AHggg are estimated>t> to be within 4~12 kJ/mol, With the
Li+-H20 complex, QHgge was not obtainad directly from experiment but
merely by the extrapolation587 of data for higher associates Li"-(HZO)n
with n = 2~6, Also the thesoretical treatments presented in Table 5,17
are not free of feeble points. The zerc-point and aHggawaHg cor=
rections were calculated within the rigid rotor-harmonic oscillator ap-
proximation. With the complexes of the X"~H20 type, however, the usse

of harmonic frequencies for the intersystem vibrational modes is ques~
tionable, because of considerable anharmonic behavior of the potential
surface near the minimum, Uncertainty is also associated with the cor=
relation energy contributions. Kistenmacher et a1.267 estimated them

by means of the semiempirical approach based on Wigner®s modal. As
noted in Sectien 4.C. such an approach cen provide merely semiquantie
tative predictions., The AE data obtained by Diercksen et 31‘169

corr
from CI~SD calculations are certainly more realistic, In contrast, the
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SCF energies coming from the two laboratories are highly reliable and
they are close in absclute value, The formaraSl
169

are practically at the

Hartree-Fock level, the latter were obtained with only a slightly

smaller basis set. With smaller basis sets, the differences between

the respective AE values are much larger and in such a case it is

SCF
just AESCF which is the main source of error in the estimated aH, This

may be taken as reasoning why in the treatments of that type the cor=

rections to AE are mostly disregarded and AESC is considered diw-

F
Since the correction

rectly a semiqﬁgititative estimate of AHSQG'
terms tend to cancel out (see Table 5,17), this approach is not so
crude as it might appear. As regards the effect of SE . orr alone, we
found already in Table 5,15 that it is small with this type of com-
plexes. Nevertheless it is by no means negligible when highly accu-
rate predictions are attempted: with the F"uHZD complex it represents
asbout 8% of the SCF inreracticn energy, and in the interaction OH“-HZO
it is as high588 as 15 kJ/mol and it represents about 15% of the SCF
interaction energy.

"Assume now that we are in the position to be able to calculate re-
liable pair potentials. The next task is to employ some statistical
thermodynamic model which would permit us to pass from the pair come
plexes solvent-solute and solvent=-solvent to a real liquid. A theoret-
ical analysis of this problem is beyond the scope of this book, so
that we restrict ourselves to stating that, in the conjucticn with ab
initio calculations, the most sophisticated approach appears to be the
statistical mechanics computer simulation of the finite system of N
molecules in the volume V at the temperature T, The essence of the
calculation is geometry configurational averaging of the system by

589,590

means of the Monte Carlo method . It is necessary to know the

configurational interaction energy of N particles

N N
. o (2) - (3) )
XY =) Vi) B Vet ) e (5.38)
i i<i<k

for which usually the pair-wise additivity is assumed, which means
that the expansion (5.38) is truncated at the v(z) terms, V(k) terms
in eqn. (5.38) represent the k-body contributions to the interaction
and Xy represents the configurational coordinates of the i-th parti-
cle, The probability of a given geometry configuration is proportional

to the Boltzman weighting for that configuration, The average distri~
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bution of molecules in a liquid is usually represented by radisl dis-
tribution functions, from which one may obtain by integration the
number of particles inside a shell of radius r about a given particle.
Since the number of configurations generated in the Monte Carlo simu~
lation is of the order 105-106, the configurational interaction ener-
gies must be easily expressible., This is achieved by calculating a
sufficiently large number of pair interaction energies at different
separation and orientation of ths two molecules and by fitting the obw-
tained energy surface by an analytical funcrion of a suitable form.

168 in Monte Carlo cal-

584

The use of nonempirical potentials in this way
culations was pioneered and systematically developed by Clementi
and his group. Since the applications and results obtained were ree

584

viewed recently, we note only briefly on some of them., A critical

test for this theoretical approach was provided by the treatments on

= = _X.'
1iquid water266,u39,091 594

« In the cited papers the calculated ra~
dial distribution functions were thoroughly compared with the exper-
imental ones., The agreement was fair at the Hartree-fFock level, the
discrepancies being reduced considerably if the correlation energy
was accounted for, This suggests that the interaction potentials
given by ab initio celculstions are realistic, The results obtained
with different potentials for internal energy and specific heat are

summarized in Table 5.18, To make the CI-SD data compatible with the

Table 5,18

Internal energy and specific heat of water given by the Monte
Carlo calculations with 64 molecules for 298 K and with the ex~ |
perimental density of ligquid water

U CV
Potential [kU/mol] [J/deg mnl] Ref,
Hartree~-Fock (HF) -28,9 75,3 266
HF + London dispersion term -38.5 62.8 266
HF + Wigner-~type estimate of Ecorr ~33,58 268
HF + dispersion term (perturbation
calen,) -30.1 71.1 591
HE + CI-50°%2 -28,58 75.3% 593
Experiment ~33,9 74,9

8 343 water molecules taken in the Monte Carlo calculation.

531

othar entries of Table 5,18 we present the results obtained with
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the Hartree=Fock potential corrected by the dispersion term (calcu~
lated perturbationally) for different numbers of treated water mole~
cules, For 64, 125 and 343 molecules of water per unit cell, the com=
puted internal energies were -30,1, -28,5 and =-27.6 kJ/mol, respec~
tively. The internal energy appeared to be more sensitive to the po=
tential used than the predicted structure of liquid water. A rather
large effect of the correlation energy on the internal energy is not
surprising, inasmuch as the correlation energy contribution in the
optimum configuration of the water dimer represents about 15% of the
SCF interaction energy (se¢ Table 5.15; a detailed comparison of ab
initie celculations and experiment for the watér dimer is reported in

the cited paperslsg'sgs)

v

Remarkable Monte Carlo results were obtained for the lithium

» I
596,597 with highly accurate potentials
168,598

fluoride ion pair in water

p [
539,595 and ion-water

water-water ineluding also three~body
terms, distributions were obtained for the oxygen and hydrogen atoms
of water molecules arcund the ion pair (for a fixed LiF distance
taken as a parameter), Two and three dimensional representations of
these distributions gave fascinating pictures of the structure of wa-
ter with & clear-cut first hydration shell and a loosely bound second
hydration shell, tMonte Carlo calculations also permited to determine
coordination numbers for Li*, Na*, K*, F™ and C17 iong 084,599,600
Encouraging results noted above prompted the Clementi’s group to
extend the activity to & very complex problem -~ determination of wa-
584,501«606' The

crucial problem, agein, is obtaining the pair interaction potentials,

ter’s structural organization around biomolecules

In this cese these are the biomolecule-water and water-water poten=
tials. As with simpler systems noted above, the pair potentials must
be determined from & sufficiently large number of geometry configura-

tions, For example, in the study of the interaction of water with 21

601

amino acids , altogether 1690 interaction gnergies were conputed

(51074

and in a similar study for four DNA bases altogether 368 configu-

rations were computed. The biomolecule~water interaction energies ob=

tained were fitted with an analytical expression of the following

£ 601,807
orm
b .ab ab
""""" L T Al B Cliia59.
vi2) o 2,_, viS’ . L>J (~ N N N NP N 3) (5.39)
o B 12
1<J J<J (rlj) (rij) rlj
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which contains the Lennard-Jones potential and the Coulcmbic term. A,
8 and C are fitting constants, rij is the distance between an atom i
on the solute molecule and j is an atom of the water molecule, and g
are atomic net charges {(given in this case by the Mulliken population
analysis). Beszides the computational simplicity, the selection of the
particular form (5.39) also aimed at achisving, to some extent, trans-
ferability of the analytical pair potentials to other molecules that
are chemically similar to those previously studied., for this reason
additional indices a and b were introduced to egn. (5.38)., These not
only distinguish between atoms of different Z value (for exanple a
hydrogen atom from a carbon atom) but also, within a group of atoms of
equal atomic number Z, differentiate the "electronic envirconment™ of

an atom in the molecule, Transferability of potentials was tested®?

by applying the pair potentials, obtained for 21 aminc acidsSOl,

to
phenylalanine, which was not included in the treated set. The approx-
ilmate interaction energies obtained in this way were then compared
with the results of direct calculations on the complex phenylalanine=
-water in 75 different configurations. The agreement was satisfactory,
mostly within ~4 kJ/mel, Once a library of parameters for different
“classes™ of atoms is available, the pair potentials of this type be-
come very informative for the investigation of solvation of biological
molecules, A circumstance that this approach is based on nonempirical
calculations is very important, because for biomolecules in solution it
is rather difficult to select and ofren even find a sufficient sample
of experiments of direct relevance and equal reliability to be able to
infer the empirical potential functions,

Supermolecule model, By a “"supermolecule" we imply a model con-

sisting of the solute molecule surrounded by a certain number of sol-
vent molecules, Pair complexes solute-solvent and solvent-solvent may
be considered the simplest supermolecules, Since the cost of the su-
permolecule approach becomes prohibitive as the number of solvent mole
ecules is increased, in most treatments only the first solvation shell
is assumed. Such small clusters cannot of course provide a realistic
model of a liquid but rather they give us a theoretical picture of
what is referred as to "the solvation in the gas phase", As with the
approach dealt with in the last paragraph, the ab initio calculation
on the supermolecule should be followed by a statistical thermodynamic
treatment, The use of the standard statistical thermodynamic is
straightforward, in which case the supermolecule approach becomes e~
quivalent to treatment of common chemical equilibria dealt with in Seca
tion 5,F, The calculations presented in Table 5.17 are just of this
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type. It should be noted, however, that the supermolecule approach is
justifiable only if the pair interactions are strong enough and for
relatively low temperatures., Hence, if the structure of the second
solvation shell or the structure of weakly solvating soclvent is to be
determined,for example,the Monte Carlo calculations should be prefer-
red., Nevertheless it is fair also to note the virtues of the supermol=
gcule approach, The latter permits a microscopic view into the inter-~
action, particularly the partitioning of the interaction energy (see
the preceding section), and an explicit examination of the effect of
the solute molecule on solvent molecules and vice versa, Another point
in favor of the sppermolecular approach is that besides the energy, it
also provides the wave function. As will be shown later on, this per=~
mits us to give an account of changes in many different properties of
molecules upon solvation, We first comment, however, on the problem

of many~body interactions, Since the supermolecule approach includes
them explicitly, it permits estimation of the effect of their neglect
in the approaches based on pair potentials,

It is convenient to discuss the three= and higher body interaction
energies with the clusters of water molecules because for these sys-
tems a series of ab initio calculations was reported, The first of
them, with the minimum STC-4G basis set, was reported by Del Bene and

608 41 1970, Shortly after it calculations with extended basis

595,609,610

Pople

sets followed . The cited papers were not limited tc the

calculation of the interaction energy but they also concerned the prob~
lem of the optimum geometry of (HZO)n polymers - in particular the
problem whether ring or open structures are the optimum configurations.

Nowadays, it appears to be established that with (H°O)n clusters for

BOR
ns 5 the ring structures are favoredogo. with (H,0) for example, the
Fe

30
optimum structure is close to the C, symmetry with the 0-0 bond
lengths round 2,86 x 10740

for optimum structures of (HZO)n

troublesome as n is increased. Even though the geometries of water mol-

m in an almost equilateral triangle, Search

clusters with nz 3 rapidly becomes

gecules are kept rigid, the number of intermolecular bond lengths and
possible mutual orientations of molecules is too high. One compares
therefore mostly conly the stabilities of structures selected by intui-
tion which, of course, may lead to erronsous predictions. With large
clusters one finds typically a large number of structures that are
close in energy. Some of them need not be real minima or not even sad-
dle points on the respective energy surface. Furthermore, the order of
stabilities may be considerably affected by zero-point energies, Final=

ly it must be realized that the stability is governed by free enthalpy
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= o
and not by the energy. The last circumstance is very importanta77’586:

with the water dimer, for example, the standard statistical treatment

of 4-31G data gives577‘ﬁng8 = ~26,0 kJ/mol and TAqua = =24,4 kJ/mol,
which means that the contributions to Aegqa are very close in absolute
208 is =1,7 k3/mol which is a value considera-

e ~34,4

value. The resulting AG
bly different from AHg = «24,3 kid/mol or even from AE
k3/mol.,

With larger (Hy0) clusters (for nz€) nonregular structures be-~

coeme favored over cyclic ones, The binding energy per molecule is in-

SCF

creasing with increasing cluster size; this indicates the stability of
the larger clusters against dissociation in any combination of smaller
ones, From this a very important conclusion may be drawn>2® viz, that
it does not seem to be possible to describe the energetic properties
of water as resulting from an ideal mixture of small regular clusters
as it is assumed in the "mixture"™ model of water. Moreover, the tradi-
tional quantum chemical approach to the determination of single opti=-
mum structure of a liquid is most likely not sufficiently meaningful
o84 because of a large number of configurations, almost equivalent in
energy, that must be statistically averaged anyway,

The importance of the many-body potentials in the expansion (5,38)
may be judged from Table 5.19. The entries of Table 5.19 show that

with the optimum ring structures (H?O),3 and (H,.)D)4 the nonadditivity

Table 5.19

Two and higher body intsractions in water trimer

and tetramer595

Energy [kJ/mol]

Potential Trimer Tetramer
y,(2)

) Vi 51,14 ~85,91
i<g

) vyl 4,73 ~11,05
143<k

(4) -
vijkl 0.81

Total interaction energy -56,87 -97.77




195

of pair interaction energies represents about 10% of the total inter-
sction energy and that the v(4} contribution is negligible. The mag-
nitude of V(B) depends strongly on geometry and in some cases it may
be repulsivesog. Among interesting results of the examination of v(3)

in the water trimer we note thét608’609

which confirms the concept of
cooperativity in H=bond formation., A comparable magnitude of V(a),
i,e. ~10% of the total interaction energy, was also found599 with
the complex H20—Li+nH20. In this case, however, V(3) is repulsive, so0
that the total interaction energy based on pair potentials only is
overestimated, Disregarding nonadditivity may give rise to the error
611 as high as 18% (complexes Al(H20)3+, n = 4«6}, though V(3) may be
somewhat overestimated in this case owing to the basis set used. With
the asymmetric complex Li*—Hzoquo V(3) is negative, Its valu9612
given by a 0Z+P basis set is -18,8 kJ/mol and, because Elvij = ~200,4
kJ/mol, it represents again roughly 10% of the total interaction en=-
ergy. A high value of v(3) becomes particularly striking when it is

compared with v&i%—H?O = -17,1 k3/mol given by the same basis set.,
Combiningb12 the two values gives us =35,9 kJ/mol for the strength of

the hydrogen bond, Hence, the presence of the lithium cation enhances
considerably H bonding., The same effect was also found with negative

jons, for example613

with F"~H90-H?O. From the two Li+(H20)2 com=
P 6147
than the a-

symmetric one. This might, of course, be expected because the sym=-

plexes dealt with, the symmetrical one is more stable

metric complex conforms to the formation of the first solvation shell.
The second water molecule in the asymmetric complex may be viewed as
belonging to the second solvation shell, but the formation of the lat=

ter is only initiated first in Li+(H90) » As we have learned, the V(g)

. 5
potentials in the two complexes are of opposite sign and they have a

significant effect on the bondingsgg'615

. The three-body potential may
be viewed as though 1t arises owing to the charge redistribution,
which 1s due to electrostatic polarization effects in the interaction
of the first two particles.Thorough investigation of charge redis-
tribution in the two-particle interaction may be found, for exanmple,

542,558,581

in papers by Schuster and co-workers® . However, also the ex-

change repulsion term is involved considerably in the nonadditivity
s0 that the origin of vi3) cannot be interpreted classicallyﬁog‘ﬁls,
As regards the applications of the supermolecule approach to solv-
ation of organic moleculses, one can hardly afford to assume the whole
solvation shell, But it is still possible to arrive at meaningful re-
sults even for complex biomolecules by assuming only a few solvent

molecules, In the preceding section it was shown how the binding sites
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of biomolecules may be determined. This psrmits selection and location
of the most important molecules of the first solvation shell, Such a
treatment was applied, for example, to the hydration of dimethyl=
phosphate anionﬁmn This approach cannot be expected to provide a com=
plete description of the behavior of molecules in solution, but it
should give an account of the main features of conformational changes
617 brought about by solvation,

In many cases useful information is obtained from calculations in
which only one or two solvent molecules are assumed. An example of

their application to electronic spectra is shown in Tahle 5,20, Not

Table .20

Solvent eff ¢t on electronic transitions

Solvent shift [cm"l]
Theoretical model  Approach  Transition Calcd, Exptl,8
Acetone-H,0 §T0-36 SCFCI  n —» m* 1450° 1530
Acrolein-(H,0),  4-316 EHP n-— gt 47008 24208
ACFOlBLﬂ*(F?Q) 4=316  EHP® T ¥ -ZOOOd -2280°

For references see papers cited in footnotes b snd d.
Ref, 618,

Electron~hole potential method.

Ref, 619,

Actually data for crotonaldehyde,

OO0 oo

only do they reproduce qualitatively the cbserved solvent shifts but
they also give us theoretical grounds for the observed facts (from the
analysis of interaction energies and wave functions). One may proceed
analogously in treatments on solvation phenomena observable by the
infra-red spectroscopy, such as for example changes in vibrational

modes of the solute owing to H bond formationﬁzo
169,267,621,622

and of solvent mole~
cules owing to the effect of ions
Sometimes the problem of solvation may be reduced to the investiw
gation of hydrogen~bonded systems of the type (AH~»-A)i, that repre-
sent an important entity in aqueous solutions of electrolytes, These

systems possess double~well proton potential curves, if the A-A dis-

tance is ngersa3 than about 2,4 x 10~ ~10 m. Such & hydrogen bond is

extremely polar~zables‘24 and owing to this high polarizability it inw
625,626

teracts strongly with its environment . With charged hydrogen



197

bonds, induced dipecle interactions of the hydrogen bonds with the lo~
cal electric fields from their environment are the most important. In
solution, the incidental local electric fields bring about various de=
formations of énergy curves and this variability gives rise to contine
uous absorption in infra-red spectra. Oetails may be found in the

cited literatur9524—625

. To demonstrate the application cof the superw
molecule approach to the environmental effect on hydrogen bonding, we
selected the results reported627 for the system Li+_H20_OH', These

are entered in Fig., 5.10, which shows the effects of the Li* ion and
hydration on the originally symmetrical proton potential curve for the
hydrogen bonding in H,0-OH ., It may be noticed that with the unsol-
vated system Li+-H20-OH" a double well does not appear even at as large
0-0 distance as 2,8 x 10710

the original symmetrical double-well character of the potential curve.

m but that the hydration tends to restore

“Energy curves for proton transfer are, of course, also met in many

oiher regions of chemistry, Extraordinarily important they are with
, A 208,628 . . .
biochemical systems rbet where, however, the situation may be compli-

cated by multiple hydrogen bOﬁdingzoa‘Sag, Proton transfers are in=-
volved in many chemical problems and a detailed theoretical examination
of their potential curves may contribute to a deeper understanding of
various genersl problems of the chemical reactivity. An excellent exam-
ple of the application of the supermolecule approach to the problenm

of mechanism of the proton transfer is provided by the paper of Del~
630. From a comparison of potential curves for the provon
£-0H2, NHZ-OH2~OH2, MHZ«DH2~NH,, and
O-NH2—0H2~OH2 the cited authors were able to show that the process

puech et al,
exchange in systems NHszH3, NH
"y
of proton transfer between an ammonium ion, NHE, and a water molecule
may take place only if assisted by solvation or by a concerted push-
-pull mechanism involving a third molecule, NHE** OH, —* NH,, Proton

transfer was also dramatically affected by the preaeéce Dfuwater in

the system NH -HF, Obviously, in the absence of solvent the neutral

form is much more stable. When four or more H,0 molecules are applied,
631,632

however, the ionic form becomes more stable . The same effect of

hydration is also seen in Fig, 5,10, The hydregen H(Z)' which fluctu=~
ates between G(l) and 0(2), is shifted by hydration to the atom O(l)’
which means that the ionized form Li*~H2D»UH" becomes favored.

Technical aspects of supermolecule calculation need not be noted
specifically since they are essentially the same as those menticnec in
the previous section, Hints for the basis set selection given in Table
5,16 may be supplemented with a note referring to proton petentia

curves, Small basis sets give potential curves with a single minimum
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Proton potential curves®?7 for the system Li*=H,0-0H™ (at the
top) and its hydrated models with three water molecules (H,0)g
around Li* in a tetrahedral coordination, the next two (Hp0)e
molecules being coordinated to H¢j) and O¢2y (system IH in the
middle). The subscript e in (Hp0)e means the representation of
the water molecule by the electrostatic point charge model.The
designation IH¥ (at the bottom) means & supermolecule calcula-
tion in which only water molecules attached to Li* and H(y)
ware approximated by point charges, The dashed lines connect
the minima of the curves for the assumed structures and they
show the 0(1)~0(¢p) bond shortening owing to hydration. Verti-
cal lines denote the location of H(z) at the midpoint of the
0(1)~0(2) bond, Bond lengths assumed for O(1)=~0(2) (in 10-10 m):
© 2.2; O 2.,35; ® 2.65; @ 2.8.
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even for rather large distances between heavy atoms (e.g., O~0, N=N,
0-N), for which large basis sets give633 already a double well curve.
Even when a double well nature of the potentiel curve is developed,
small basis sets give a considerably lower barrier between the two
minima, Correlation energy also reduces the barrier; it may bring
about in some cases that the barrier disappears completely588'534'635.
From a praétical point of view the supermolecule approach has a
considerable drawbasck viz, that it is very costly in terms of computer
time for large supermolecules. This prompted attempts to incorporate
in it economy~motivated simplifications., A common feature of all of
them is the assumption about the electrostatic origin of the solute-~
-~solvent interactions, which, as we lsarned in Section 8,H,, should be
plausible with polar solvents, According to the idea of Ray636 one simm
ulates the solvent molecules by means of static dipoles, for which use
is made of sxperimental velues of dipole moments, The respective field
integrals are easy to evaluate and they require very little additional
computational effort over the SCF calculation on the solute molecule
alone. Alternatively637 ong may represent the experimental dipole mo=
ment of the solvent molecule in the assumed position by a pair of
point charges a3 and q, with a proper separation and magnitude of 9y
and q,. The dipole field approximation cannot of course be expected to
give & guantitative account of solvation phenonena but merely qualita-
tive predictions of trends, The applications to the NH,-HF system
showed that the gas~phase formation of NH,F is facilitated638 if the
reactants are assumed as dimers (NH o and (HF)2 and that hydration
4~HF . Ordinari-

637
ly, a somewhat more sophisticated point charge approximation is used
615,627,632,639-642

3)
has a stabilizing effect on the ﬁydrogen bond in NH
, in which individual atoms of the solvent moleculs
are replaced by point charges, They are placed in the positions of
atoms of the molecule to be approximated and their values are selected
either on the basis of the Mulliken population analysis for a single
solvent molecule or so that the dipole moment of the solvent molecule
would be reproduced. Computsr time saving is due to the fact that
point charges contribute to the one~elsctron part of the Fock~operator
only, in exactly the same way as they would if they were atomic nu-
clei, The two-slectron integrals are identical with those for the free
solute molecule, The only components of the interaction energy that
are (approximately) accounted for in the point charge approximation
are the Coulomb energy and & part of the polarization energy referring
to the polarization of the solute molecule. Since the exchange repul-
sion energy is neglected, the distance between the solute molecule and
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the approximated solvent molecules cannot be optimized. A mutuasl ori-
entation may be optimized, however, The point charge approximation \
was tested thoroughly by Noell and MorokumasaE, Stated briefly, the
cited papers suggest that the results obtained with the point charge
approximation are in qualitative agreement with the predictions of
genuine supermolecule calculation, Quantitatively, the differences may
be rather large, however, Nevertheless, the utility of the point ,
charge model of solvation is indisputable: Noell and MorokumaGAl, for !
example, treated a model of the solvated Li' ien consisting of four,
eight and sixteen water molecules in the first, second and third sol-
vation shell, respectively,
The last twe approaches dealt with in this section are the con-~

643-648 ; .
' and closely related supermclecule~continuum model

649-652 . ! .
7°“, The essence of the continuum model is that the system solute~

~solvent is assumed as a solute molecule inbedded in a polarizable di-
electric continuum with a relative dielectric constant. Use is made of
classical theories of Born, Onsager and Kirkwood. Cbviously, the model
is macroscopic in its nature and it disregards specific interactions
such as e,g., bydrogen bonds, Its use is therefore limited to solvents
with a low dielectric constant, Microscopic effects may be accounted
for by assuming s supermolecule composed of a solute molecule and a
few solvent molecules and by applying the continuum approach to the
supermolecule so formed. This is a principle of the supermolecule~con-

. . 650,65
tinuum approach. Beveridge and SchnuelleJJU‘b’l

showed that the super-
molecule~continuum approach may be very informative for the future de~
velopment of theory of solutions. The idea of their approach is a
treatment of the solute molecule and the first solvation shell as a
supermolecule utilizing accurate quantum~-mechanical representation of
all interactions in the supermolecular assembly, application of a con-
tinuum model te the interaction of this supermolecule with the polar=-
izgble dielectric and then configurational averaging by means of Monte
Carlo calculations, For the Gibbs free energy of hydration of Li”,
Na+, Kt 651 be~

tween theory and experiment involves from 6 to 27% error, but the

, F7 and C1” ions, the present state of the agreement

theoretical approach used may certainly be refined,

In the continuum model, the solvent effect is accountable for in
two ways, Either one evaluates the solvation energy by means of ex=
plicit formulas derived in the classical theories noted above, or,
preferably, one may introduce the term for the solute-solvent inter-

644-647

action directly into the Hamiltonian . The latter approach pro-

vides not only the solvation energy but also the wave function of the



20

solvated molecule, which permits applications to observables deter-
nined by the wave function (particularly applications in the field of
various spectroscopies are straightforward). A detailed discussion of
the existing continuum models is beyond the scope of the present book.
For their survey, comparison and applications we refer the reader to

a special monograph519.

5,3, Presence and Future

This section may be considered as a sort of epilogue. We attempt
here to summarize briefly the present trends that permit deduction of
a further development in the near future, At present it is certainly
not necessary to advocate the utility of ab initio calculations, but
still it is useful to recall a tremendous progress made from the early
sixties. In the Introduction we gquoted a paper by Allen and Karml res
viewing the ab initio calculations reported in the literature up to
1960. The largest among the systems treated was the l8-electron mole-
cule SiH,. Approximately a decade later it was possible to perform an
ab initio SCF calculation for a l36-electron complex cytosine-guanine
208 Lith a basis set of 105 CGTF’s and to compute even the potential
curve for the proton motien in the hydrogen bond of this system. It
must be admitted that it was an extraordinary and unique calculation
at that time, but calculations of a comparable scale followed scon, We
note on some of them to show that the time has already come when also
large chemical systems become amenable to ab initio applications,

~

Hence, Shipman and Christoffersen reported calculations on a 144~

-electron polyglycine chain. In the same year, 1972, Clementi reported
196 . calculation of the carbazole~trinitroflucrenone complex, a sys=
tem consisting of 50 atoms and 232 electrons, with the basis set of

618 primitive GTF”s grouped to 194 CGTF”s, In 1973, Clementi and Popkie
653 reported calculations with the basis set of 118 CGTF's on the bare
rier to internal rotation in the l58=electron complex sugar-phosphate=
~sugar, ClOHlQOBP‘ A treatment of porphin with 136 CGTF s was re-~
ported by Alml5f5%%

formed by Popkie, Kaufman and Koski on morphine, nalorphinebSd
656

and recently a series of calculations was per=
pro=

:
mazine and chlorpromazine ., The latter molecule possesses 40 nuclel
and 166 electrons and the basis set contained 132 CGTF’s. Another type
of many-electron systems is represented by inorganic compounds and
grganometalic complexes, We did not pay any special attention to them,
Actually ,they are amenable to treatment by any method dealt with in

this book, though it should be realized that mostly they possess so
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many electrons that merely a minimum basis set can be applied. Never=
theless it is evident that the ab initio calculations are becoming a
very useful tool for the rationalization and predictions of properties
and reactivity of inorganic compounds, The present state in this field
was reported by veillard and Demuynck657. As an example of extremely
extensive calculations on systems of this type we note a few papers,
Bagus et al.658 reported the treatment of the ferrocene molecule per-
formed with the basis set of a somewhat better than the DZ quality
containing 188 CGTF”s, A basis set of 187 CGTF’s waes used in the cal-

» 3 65
culations performed in Ohno’s group559.6>0

. The molecule treated was
the cobalt-porphine complex containing 37 atoms and 187 electrens, The
calculations of the largest nonpolymeric molecule treated to date ware
reported by ChristoffarsenSSI. This was the ethyl chlorophyllide &
molecule which contains 340 electrons,

It is obvious that SCF calculations for such large systems became
feasible only by making use of all means noted in Chapter 3 that re-
duce the computer time. This concerns especially the integral part of
computations. Although much progress has been mede in this field, the
problem of integral evaluation is still topical. It may be expected
that a new development in this respect will be associated directly
with the appearance of new programs. The point is that the algorithm
improvement cannot be separated from computer programming, While with
the majority of scientific calculations it is sufficient to make use
of a standard level of a common programming language, very time-con-
suming ab initio calculations require to exploit the computer up to
the very lipits of its capacity, "In these situations a very careful
understanding of the underlying principles of computer architecture is
felt to be absolutely necessary, as well as a very extensive knowledge
of the particular features and the system software of the computer ace
tually to be used". This quotation is taken from a review by Diercksen

and Kraemer662

where the reader may find useful hints for computer
programming.

Next, the development of computer technology itself should be
noted. As is promised by computer manufactures, the near future should
bring s remarkable advance in the construction of computers, If this
will turn true, it may be hoped that the two principal requirements
for a widespread use of ab initio calculations will be met -~ a consid-
erably lower cost and a greater availability of effective computers.
For the present time it appears appropriate to make ugse of minicom-
puters, The advantages of minicomputers are the followingasa. As ine
dicated by the name, the minicomputers are of gmall size. Since they
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require no air conditioning, their placing in & department laboratory
is free of complications, The price of a minicomputer is relatively
low so that even a small theoretical group can afford it for its own
use. The operation of the minicomputer is easy so that no extra paid
operator is needed, Also the maintance cost is low, i.e, the costs of
service contract, electricity, cards, paper etc, The minicomputers are
sufficiently fast for making ab initio calculations and they may be
under operation without interruption for a long time, The only disad~
ventage of minicomputers is a relatively small storage capacity., This
may be overcome, howevar, at least to a certain degree, by an ingen=
ious programming, This was clearly demonstrated by Sparks664 who suc-
ceeded to adapt the Gaussian 70 program to a minicomputer with 128 K
bytes of memory. Another example we note here comes from Schaefer’s
laboratory, where a new CI-SD program was developed and designed espe~-
cially for a minicomputer665'666. The reported benchmark results®®’
for the water molecule were superior to any result given in Table 2,15.
On several occasions we mentioned in this bocok a principal bot-
tleneck of the ab initio SCF calculations = the n* problem involved in
the computation of two-electron integrals., We showed that with large
systems (with many large internuclear distances), the increase of the
number of integrals is not as prohibitive as n4. There remains, how=
ever, the problem of what to do with compact many-electron systems
such as inorganic molecules containing atoms with high atomic numbers.
Here the number of integrals may be reduced considerably by means of
pseudopotential methods. Although, strictly speaking, the methods of
this type lack rigor, they represent the only practical approach to
nolecules with heavier atoms so that one may expect their further de-
velopment and increased use in the near future., Their importance is
also enhanced by the fact that applications of semiempirical MO methw-
ods in inorganic chemistry have up to now met limited success, The use
of pseudopotential methods is by no means restricted to molecules with
heavy atoms, They also may be applied to first-row atom molecules,
though in that case the sffect is smaller, In the literature several
’versions of these methods have been reported, For their comparison,
references and a. detailed analysis we refer the reader to the paper
by Kehn and collaborators®®, A common feature of all these methods is
that they reduce the all-electron problem to & valence-electron prob=
lem only, Inner shell electrons are approximated by an effective or
nodel Hamiltonian which consists of a local potential and a set of
projection operators. The former approximates the core Coulomb and ex-
change potentials whereas the latter prevents the collapse of the va=
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lence orbitals into the core., The parameters for this potential may
be obtained from the treatments of atoms made previously. The poten=-
tial so constructed is then inserted into the one~electron part of
the Hamiltonian for valence electrons, In this way the number of two-
~electron integrals is substantislly reduced while the additional
computer time for the evaluation of new integrals with the effective
core potentials is comparable to that required for cne electron inte-

gra15668

. In actual calculations use may be made of standard basis
sets - as an example we note the incorporation of a model potential
method into the 4~31G method669

tions, the computer time saving depends, of course, on the particular

. Compared to full ab initio calcula-~

molecule treated and the basis set used. For example, with chloro-

fluoromethane367o it ranges from 3,5 to a factor of almost 10, saving
671 572 with Ge, the fac-
tor was as high as 50, With molecules containing first-row atoms only

5 !
673,674 about 50%. As regards the comparison of com=

of one order was also found with FeH', whereas

the time saving is
puted quantities (orbitsl energies, one-eglectron properties, potential
energy curves, etc,) with full ab initio results, mostly a very good

agreement within a few percent is reported, the differences being

668,675

smaller than differences due to basis set choices . However,

test calculations revealed cases where less satisfactory results are
obtained. Hence, poor valence~core separability brings about over=

estimation of the interaction energy of K™ and Ca** cations with wa=

!
ter876 (as much as 15%), In contrast, the interaction energies of Lit

676,677 77

and Na® cations with water and formaldehyde6 are underesti=-

mated because the pseudopotential approach is incapable of accounting ‘
877. Cbviously, much i
is left to be examined, for example the basis set effect or the ef=

fect of correlation energy678. In any cese, however, the experience

accumulated up to now suggests that SCF pseudopotential approaches be-

came an important methodical tool of the present MO theory, In the

for the attractive polarization of core electrons

near future, one may expect much progress in their applications, par=-
ticularly in the studies of relativistic effects, Importance of rela=
tivistic effects was noted in Section 5.6 in the connection with
inner~shell ionization potentials of systems containing heavy atonms.
Typically, the relativistic contributions to ionization energies were
estimated in the cited papers on the basis of atomic calculations,
However, attempts at a quantitative interpretation of properties of
heavy-atom inorganic molecules stimulated development of methods in
which relativistic effects would be inherently accounted for, It ap=-
pears that the complexity of the problem may be reduced just by the
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use of pseudopotential methods®’o~68%

. The results of actual calcula-
tions suggest that the relativistic effects may be important with the
physical properties of molecules containing atoms with the atomic num-
bers higher, say, than 30, Consider for example679 the bond lengths in
the series CH4, SiHA, GeH,, SnH, and PbH4. While with CH4,
GeH, they remain almost unaffected by the relativistic correction,

with SnH4 R/aO is changed from 3,41 to 3,33 and with PbH4 from 3.60 to
3.40, Relevant changes were also found with force constants, Obviously,
for better understanding of relativistic effects further calculations
on molecules are véry necessary,

SiH4 and

It is fair to make also @ note on methods in which the rigor of
ab initio SCF calculations is abandoned more drastically, In these
methods the number of integrals is reduced by adopting the approxima=
tions based on the zero differential overlap assumption and/or by
making use of mixed basis sets, which means that a part of integrals
is calculated with a smaller basis set, Unfortunately, these proce=
dures are not numerically controlled, i.e. the neglect of integrals
is not based on rigorous pretests of integrals against a particular
threshold, The SCF calculations of this type may therefore provide
energies below the Hartree-Fock limit, It is of course a matter of
taste, but we think that these methods are less promising for further
development,

In spite of a rather large size of Chapter 4, we consider it useful
to add here a few remarks on the calculations of correlation energy.
Unlike with the SCF calculations, there is a large variety of theoret=
ical approaches in this field that differ in their very essence, so
that it is by no means straightforward to attempt an outlook for the
next developments, As regards the present state, the methods most
widely used in practical applications are CI-5D and CEPA and one may
also expect their widespread use in the future. CI-SD calculations,
however, will most likely be consistently combined with the procedures
such as the Langhoff=Davidson formula283 that remove the incorrect Ne=
~electron dependence. Anyway, a continuous development in the CI meth-
od is remarkable., Besides the achievements already noted in Section
4,D., the unitary group approach of Paldu3686’687
ing. Its graphical fornulation®8®

appears very appeale
simplifies greatly the CI treat-

ment and permits including effectively higher than double excitations.

689,650

Results of preliminary applications are very promising and it
589

is believed that. for large CI problems the computation times will

be by an order in magnitude lower than those reported using state-of-

690

~the-art CI techniques. Sieghahn made use of the unitary group ap-
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proach for the generalization of the direct CI method. Direct evalua-
tion of the CI energy from molecular integrals, without the diagonal-
ization of the CI matrix, was already noted in Section 4,D, as an im=
portant tool permitting to perform extensive CI calculations. The o=

riginal method by R003285a

was developed with the aim of conforming it
to CI treatments covering singly end doubly excited states with res=-
pect to a closed shell SCF single determinant wave function, Later the
method was extended to more general casesszb'sgo'Bgz. The treatment
of integrals in this approach is completely analogous to that involved
in the third-order MB~RSPT (and also in higher orders for doubly ex~
cited configurations (see Section 4.K.)).

The present trend in calculations with correlated wave functions
is to include higher than double excitations, Feasibility of CEPA cal-
culations and their success in chemical applications belong certainly
to factors which benefited development in this direction, Explicit in=
clusion of certain contributions due to quadruple excitations, viz.
those that are due to disconnected wave function clusters of double
excitations, becomes now free of complicutions also in MB-RSPT through
fourth order., It is therefore every reason to expect that, besides
CI-SD and CEPA, MB~RSPT will soon become a method commonly used in
chemical applications, A fourth order MB-RSPT approach outlined in
Section 4.3, disregards triple excitations, which, however, are hardly
amenable to any existing effective method. Another topical problem is
a possible extension of MB-RSPT, so that it would permit convenient
treatment of the correlation problem for the multiconfiguration refer~
ence state, This is difficult with MB-RSPT, but the problem is tract-
abl1e®92 with the ordinary Rayleigh-Schrédinger perturbation thecry.
Finally, the CPMET method (see Chapter 4) should be noted. Present ef=-
fort for inclusion of higher than double excitations will certainly
result in an increased number of applications of CPMET,

From the formulation of the correlation problem given in Chapter 4
for different approaches, it follows that essentially in any method
one needs to have avallable transformed two-electron integrals over
MO“s, It has been shown that the number of operations involved in this

transformation increases as an

, 1f the size of the basis set is n.

If one recalls the problem of the "mere" n dependence in SCF calcula=-
tions and the effort for its reducing (Chapter 3), it becomes evident
that the progress in the solution of the problem of integral trans-
formation is of crucial importance for further development of MO theo-
ries, Evidently, a new approach, other than that noted in Section 4,K,,

is needed, A possible solution of the problem might be & new algorithm
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fbported by Beebe and Linderberg694 which is claimed to achieve car-
rying out the integral transformation in & small fraction (~1/5 -

1/3) of the time;required to generate the integrals over basis set
functions. The other way of time saving is to avoid, partly or com=
pletely, the explicit integral transformation. This idea was used prob-
ably for the first time din the program for CEPA calculationsegB. Simi-
larly, one may achieve higher efficiency of third-order MB-RSPT cal~
culations by incorporating a part of the integral transformation into
the expression for the energy, in which case the latter is evaluated
directly253 from two-electron integrals over AO"s. The same trick may

295,695

also be applied in the CI-SD approach, If this technique is com=

bined with the direct CI method, it is possible to avoid both the ex-
plicit integral transformation and the CI matrix constructionsgs. Ex=
plicit integral transformation is also completely avoided in Meyer’s

Self~Consistent~Electron- Pair Theory696'697

which is due to an ef-
ficient operator formalism for obtaining the necessary matrix elements,
The procedures noted in this paragraphs were developed only recently,
so that one may expect that their further development will bring vyet
more computational gain.

Advances in the development of theoretical methods and computer
construction are indispensable for the growing feasibility of ab initio
calculations, but this alone does not guarantee a future widespread use
of ab initio calculations by chemists in solving their probleas, What
is demanded by chemists is a high predictive power of theory in various
branchss of chemistry., A classical example of how the ab initio calcu-
lations should meet the needs of chemists was provided as early as in
1967 by Clementi and Gayle3251'544’698
NHS.HCI, The calculation of the potential hypersurfaces and a detailed
analysis of wave functions of both the complex and the dissociation

in their study on the complex

components showed that NH4C1 may exist in the gas phase. For the first
time, the results of ab initio calculations were used for the evalua~
tion of the equilibrium constant for a chemical reactionZSl. Predicted
equilibrium constants for the process NHB(g) + HCL(g) = NH4Cl(g) at
different temperatures suggested the experimental conditions at which
the complex NH4Cl might be obserzad, Indeed, very soon after this pree
diction NH,Cl has been detectedz‘)2 using high~temperature mass spec~
trometry. A very useful information was also cobtained from the explow-
itation of the Mulliken population analysis. From this purely theo-
retical concept about the electron distribution in molecules it was

698

cencluded that NH3.HC1 is a complex with a strong hydrogen bond

with & proton shared by adjacent heavy atoms soc that it can only
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partly be viewed as an ion pair NH;,CI". This theoretical prediction
was confirmed fully by the infrared spectrum of the complex isolated
in a nitrogen matrixegg. Among later examples of the predictive power
of ab initio calculations, the case of the energy barrier in the proc-
ess H' + FH > H'F + H is very impressive. As noted already in Section
S5.F., this reaction was believed up to recently to possess a low acti-
vation energy, the typical estimates being 4-30 kJ/mole., In contrast,
the ab initio calculations predicted455—457 an activation barrier in
the range 180-205 k3J/mole. But on the basis of experience achieved
with ab initio calculations it was possible to claim that the true
barrier cannot be less than, say, 165 kJ/mole. This stimulated ths ex=

) . .45
perimental reexamination g

from which it followed that the observed
reaction rate is compatible with the ab initio results and that in
fact thé ab initio calculations gave a realistic account of the

H* +« FH—H’F + H potential hypersurface prior to experimental con-
firmation. In general, the problems of chemical reactivity in the gas
rhase are an ideal subject for ab initio treatments, The present meth-
ods are, at least with small molecules, capable of giving predictions
of such an accuracy that they may be taken as a reliable source of in-
formation in situations where the experimental examination of the
problem is difficult or hardly feasible., More specifically, the theo=-
retical data on the energy hypersurfaces, geometries of intermediates,
energies of excited states and physicochemical molecular properties
may have a direct use in chemical kinetics, photachemistry7oo, chemis=

try of the higher atmosphere and agtrophysics701

. Considerable pro-
gress is also countinuously made in applications in which the effect
of the surrounding medium is taken into account, Let us note at least
702 and the bio~
chemical applications where even as complicated problems as e.g., the

solvation of DNASO6

two fields of extraordinary importance - catalysis

are becoming amengble to ab initio treatments.



209

Appendix A: Atomic Units

In ab initio calculations, so-called "atomic units" are used,
Their choice was not arbitrary but it was governed by practical con-
siderations, Consider for example electronic repulsion integrals that
have the dimension of energy. In order to express them in SI units,

i.e. in J or m~, it would be necessary to express the elementary
charge in C, Since the nature of ab initio calculations requires to
compute electronic integrals with the precision to eight or more sig=
nificant digits, the elementary charge should be given with the pre-
cision to at least nine significant digits, Even if the elementary
charge were known with such an accuracy, this approach would be rather
impractical. A confusion that might occur is well documented by pro-
grams for semiempirical calculations, We have found that in progranms
coming from different laboratories the conversion factors differ fre-
quently even in the fifth significant digit. To ensure perfect com~
patibility of ab initio calculations, a system of units was adopted
which avoids use of any conversion factor, Note, for example, that

the elementary charge in egn., (l.1) is assumed to be unity, Tradition=-
ally the most important ameng these “atomic units", energy and length,
are called "hartree” and "bohr", respectively,

However, general acceptance of SI units makes the use of atomic
units in publications prohibitive, This does not entail a problem if
the results are to be presented for cbservable quantities, A more com=
plicated situation arises with the presentation of dats such as e.g.
total energies and correlation energies which should serve as a com=-
parative material for further calculations., A convenient way of pre=
serving atomic units for practical needs but to avoid their meaning
of genuine units was suggested703 by the TUPAC Commission on Physico=-
chemical Symbols, Terminology and Units, It has been recommended to
give to computed quantities relative values according to the following
general scheme: usual symbol = calculated quantity/X,

For example,

Avoid: Use:

E= ~1,1336 a.u, E = ~1,1336 E, (in text)

£ = =1,1336 hartree E/Eh = ~-1,1336 (in tables)
r= 1.401 a,u, ro= 1,401 a, (in text)

r = 1,401 bohr r/a, = 1,401 {in tables)
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The following table represents a recommended treatment’ > for a se~
ries of selected quantities
Calculated physical Usual

quantity symbol X value/03+704 o¢ x
Langth, (bond length) 2,{(r) a, 5.2017706 x 1071 n
Mass m m, 9,109534 x 107°1 kg
Energy E Ey 4.3598144 x 107'8 3
Molar energy ELE Ey 2.625500 x 10° 3 mo1™t
Charge 0 e 1.6021892 x 1071° ¢
Electric dipole moment Pell ea, 8.4784 x 1079 cn
Electric quadrupole moment 8 eai 4.4866 x 10749 cn?
Electric field E Ehe"la;l 5.1423 x 1071 va~!
Electric field gradient . Ehe—la;2 9.7174 x 10°1 vn™?

s - 2 -3 ‘ 30 3

Probability density Y= (x,y,z) a 6,7483 x 10
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Appendix B: Most Common Computer Programs

The creation of a computer program for ab initio calculations is
a very hard job, This is nicely documented by the words of two among
the authors of the POLYATOM systeleO: "The evolution of POLYATOM has
been @ notable event indeed. The work spans 25 years. It involves
more than 20 persons, many of whom have never met. It was done in
four countries at more than eight institutions and on a wide variety
of computers®, From this it is obvious that anybody who is going to
start his own ab initio calculations faces a problem of precuring a
suitable program. The aim of this Appendix is to facilitate this step
by commenting briefly on the most common computer programs,

In spite of a great effort required for a development of programs,
a relatively large number of them has been reported in the literature.
We restrict here ourselves to programs that are intended for general
molecular calculations, that are used by a wide chemical community and
that -are obtainable from the Quantum Chemistry Program Exchange at the
Indiana University, Bloomington, Indiana 47401, The choice and the
characterization of programs is of course greatly affected by personal
taste and knowledge,

12 05

Gaussian 702 and Gaussian 767

Gaussian 70 is probably the most widely used program for ab initio
calculations, It meets perfectly the needs of users who prefer appli-
cations to developments of new computational methods, The program is
designed predominantly for routine SCF calculations., It is highly ef-
ficient provided that use is made of basis sets of the "shell struc~
ture" (see Section 2.E, and 3.C.). In such a case of "standard" calcu~
lations the input and output are very simple and the preparation of a
run does not require more work than with semiempirical calculations of
the CNDO and INDQ type. Once the program was adjusted to a particular
computer, its handling is also very simple. Compared to other programs
Gaussian 70 is advantageocus for performing calculations for a large
series of molecular structures. Options are available that permit au-
tomatic geometry optimization and potential energy scanning. No use is
nade of molecular symmetry, The available IBM 350/370212 and CDC CYBER
706 versions are restricted to sp basis sets, The IBM 360/370 version
is designed to run in a 226 K byte partition. Sparks has shown®%4
however, that Gaussian 70 may be modified to run on minicomputers with
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128 K bytes of memory, maintaining the dimension of 70 x 70 arrays.

The extended version705

of the program for CDC CYBER computers, Gaus~
sian 76, may also accommodate d-functions, As in Gaussian 70, certain
standard basis sets such as e.g, STO-3G, 4~31G and 6-31G* are stored

internally for easy use.

. 209
POLYATOM (Version 2)

A high percentage of ab initio calculations reported in the liter=-
ature was performed using this program. Its use is versatile and it is
amenable to any treatment noted in this book, The whole system is
written in FORTRAN 1V, The only relevant system dependent subroutines
(written in a machine language) are those for packing and unpacking
integers into and from a machine word, POLYATOM accommodates spdf
Gaussian basis sets. It is oriented towards SCF calculations but a de~

tailed documentation209

and a clarity with which the program is writ-
ten makes POLYATOM easily comprehensible and accessible to modifica=
tions and additions according to the user’s needs, Owing to its ver-
satility and flexibility POLYATOM possesses necessarily some features
that some users may dislike, We comment on some of them. An efficient
use of POLYATOM requires at least a limited knowledge of the algorithnm,
structure of the files on tapes (disk) and other programming details,
A card input is rather complicated (especially for beginners), which
makes large sequences of calculations (e.g., geometry optimization)
somewhat troublesome, Compared to modern programs, such as PHANTOM or
HONDO, POLYATOM is relatively slow. It may be concluded that rather
than to routine SCF calculations POLYATOM is more suited to special
applications and experimentation with new computational techniques.,
The program is available in versions for GE-635 and COC 6600 computers
209 and for the IBM 360 series computer3707.

IBMOL (Version 4)207

Roughly speaking this program is of the same type as POLYATOM. The
version distributed by QCPE is written for the I8M 7090 computer,

PHANTOM' 08

This is an extensively modified version of POLYATOM/2 for CDC 6000
and 7000 computers, It is a highly optimized program and therefore it
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is largely system~dependent. Some subroutines are written in a machine
language and even in FORTRAN subroutines wide use is made of facili-
ties specific for COC computers. PHANTOM is a very efficient program,
When comparing it with POLYATOM, a factor of 10 in speed is given,
though it depends evidently on the molecule treated. This speeding up
is not only due to optimized programming but also due to incorporated
new theoretical developments such as the use of symmetry in the con=-
struction of F-matrix elements (see Section 3.D,). The card input is
essentially the same as with POLYATOM,

HONDO

This is a very efficient SCF program with a very fast integral e~
valuation, For basis sets containing d functions, two~electron inte-
gral evaluation is roughly five times faster214 than it is with
PHANTOM., Molecular symmetry is utilized=>® efficiently in both inte-
gral evaluation and SCF procedure. The input with the symmetry ine
formation is very elegant, consisting only of a point group symbol and
the coordinates of three points which specify the symmetry frame. Prof-
it from using basis sets with the shell structure is fully exploited
214, though also general basis sets may be used., Both IBM and CDC vers
sions of HONDO 76 are available7og. Further development of the HONDO
system resulted in the HONDC 78 program (for CDC computers), in which
the SCF program was extended to the analytic computation of the energy
gradient409 with respect to nuclear coordinates, HONDO 78 also con=
tains procedures in which the computed gradient may be employed for
geometry optimization and force constant matrix calculation,
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off-centered Gaussians, 38-43
one-center expansion, 11
optimization of exponents, 13,
15, 16, 20, 33-36, 60
polarization functions, 7,
31-37, 50, 52

primitive, 22

pseudopotential methods, 203,
204

relations between GTF”s and
ST0"s, 1820, 26.31, 33, 34,
43-49

rules for contraction, 24
selection of, 49«53

set 4-316, 30, 31

set 6-31G%, 34

shell structure of, 29, 63
Slater~type orbitals (S70),
5-7, 11-17, 56, 57

STO=NG, 27-29

uncontracted, 18

for analytical evaluation of
ensrgy gradient, 141
for negatively charged species,

Bond functions, 38, 40
Bond separation reactions, 75
Born-Oppenheimer approximation,

50 1, 3, 4
Gausgian expansion of STO’s,
26=31 CEPA, 97-100

Gaussian~type functions (GTF), comparison with MB~RSPT, 109,
11, 17-26, 57«66 110, 123



cost of calculations, 101
relation to PNO-CI, 83, 84
Charge-trénsfar energy, 175

cr calculéfions,

Ci~SD, 84, 123, 131, 150, 151,
185, 203

comparison with MB~-RSPT, 109~
111, 121-12s

computational techniques, 83,
205, 206

doubly excited configurations,
82

energy convergence, 82, 83
INO~CI, 83

Langhoff and Davidson’s formu=
la, 85, 122, 123

PNO-CI, 83

quadruple excitations, 48, 82,
84, 85, 83, 97, 124, 125, 150
relation to cluster expansion,
89, 90, 93-95

singly excited configurations,
82

size consistency, 84, 121-123,
131~133, 149151

triply excited configurations,
82, 186

unitary group approach, 205

Cluster expansion, 86«91, 96

relation to CI, 89, 80, 93~95
relation to MB~RSPT, 11l

Ty clusters, 87-90, 96, 97,
111, 112

Tsz and T3 clusters, 87-80,
96, 97, 111

T4 clusters, 87, 89, 90, 93,
96

Computer programs, 211-213
Connected clusters, see linked
clusters
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Conservation of the correlation
energy, 74-78, 153
Contracted Gaussian~type funca
tiona (CGTF), 18, 21-26
Convergency problems (SCF), 67,
68
Correlation energy,
basis set effect, 53, 100, 131
CEPA, 97-100
conditions for conservation,
74
cost of calculations, 101
CPMET, 93-97
diagrams giving E(2)+E(3),
104-107
diagrams giving E(4) terms,
112, 113, 1186
doubly excited configurations,
g2, 112, 114
effect on force constants, 48,
86, 100, 145, 146
effect on the molecular geo-
metry, 48, 86, 100, 111, 135,
136
enmpirical estimates, 78-81
EPCE-~F28, 7981
"experimental®, 73
formulas for E(z) and 5(3),
107, 108
IEPA, 85, 86
in ionization processes, 161,
163, 1le4, 166, 171
its conservation, 74-78, 153
Langhoff and Davidson’s for=
mula, 85, 123
magnitude, 73
MB=-RSPT, 100-~126, 148, 1686,

168
origin, 72
pair-pair interactions, 79



percentage recovered, 73, 86,
100, 131
renormalization terms, 115,
121-123
quadruple excitations, 82, 84,
85, 93, 97, lls, 116, l20-128,
150, 151
Sinanodlu”s MET, 80, $2, 93
singly excited configurations,
82, 112, 11s
Tl clusters, 87-90, 96, S7,
111, 112
TlT2 and T3 clustars, 87-90,
96, 97, 111,
T, clusters, 87, 89, 90, 93,
96
triply excited configurations,
g2, 112, 115, 186
variational-perturbstion cal-
culations, 110
Wigner®s expression, 79
Coulomb energy, 172, 175, 182
Counterpoise correction, 176,
177, 185
CPMET, S3-97
extended version, 96
linear approximation, 112, 120

Delocalization energy, 175
Disconnected clusters, ses un-
linked clusters

Dispersion energy, 172, 173,
185, 190

Dissociation energies, 77, 78,
84, 100, 111, 150

Double~2zeta (DZ) basis set, 7
DZ+P basis set, 8

Electrostatic potential maps,
1s2
EPCE-F23, 79~8l

Equilibrium constants, 111, 154«
157

"Experimental” coerrelation en=-
ergy, 73

Force constants, 142-146
basis set effect, 52, 144,
lﬁé
choice of the refersnce geo=
metry, l44
effect of the corrslation en-
ergy, 48, 86, 100, 145, 148
scaling, 144, 145, 147
use in statistical-tharmody=-
namic treatments, 156-159
Force relaxation method, 138, 144
FSGO, 38, 40-43, 141

Gaussian 70, Gaussian 76, 63,
203, 211
Gaussian~type functions (GTF),
11, 17-26, 57-66
integrals over GTF’s, 57-66
Geometry optimization, 137-142
of transition states, 142
Ghost orbitals, see Counterpoise
correction '
Goldstone diagrams, 104, 105
Gradient of energy, 137-142
Green’s functions, 166-1869

Hartree~Fock limit, 8, 73

Heats of reaction, 37, 52, 74=-

78, 111, 151-154, 155-159, 188
basis set effect, 152, 157
correlation effects, 153, 188,
189

Hessian matrix, 138

Homodesmotic reactions, 74, 75

HONDG, 213

Hugenholtz diagrams, 104, 105



Hydrogen bonds, 175, 184, 198,
197

1BMOL, 60, 212

IEPA, 85, 86

Integrals, see aslso Two~elec-

tron integrals
over basis functions, 55-59,
68, 69

Intermolecular interactions,
basis set effect, 52, 175,
176, 177, 185, 186
charge-transfer energy, 175
Coulomb energy, 172, 175, 182
counterpoise correction, 176,
177, 185
decomposition of AE
176, 177-180
delocalization energy, 175
dispersion energy, 172, 173,
185, 190
effect of the correlation en-
ergy, 86, 173, 182-186, 189
entropy effects, 187, 194
exchange polarization, 175
exchange repulsion, 174, 175
(HZO)n clusters, 193, 194
hydrogen bonds, 175, 184, 196,
197
intrasystem correlation sner-
gy, 173, 185
many~body interaction terms,
193-185
multipole expansion, 173, 174,
177-180
perturbation treatment, 170~
174
polarization energy, 172, 175

SCF ’ J..'.Z_&-

gemiempirical estimate of
Ecorr? 8l, 190

supermolecule approach, 174,
is8l, 192-189

Ionization potentials, 159~170
Auger spectra, 169
basis set effect, 165, 12}
breakdown of the Koopman~s
theorem, 165, 170
correlation effects, 161, 163
164, 166, 171
Green’s functions, 166-169
Koopmans® defect, 161, 165
Koopmans® theorem, 160, 163,
164
relativistic effects, 161
reorganization energy, 161,
163-166, 171
satellite peasks, 166, 169
ASCF method, 161, 162, 164-
166
shake=up and shake-off proces
ses, 169
use of MB-RSPT, 166, 168, 170
vibrational structure of
bands, 169

Isodesmic reactions, 75, 76

Koopmans® defect, 161
Koopmans® theorem, 160, 163
breakdown of, 165, 170

Langhoff and Davidson®s formulas
85, 122, 123, 189

Linked clusters, 87

Lobe functions, 38, 39

MB~RSPT,
comparison with CEPA, 109,
110, 123
comparison with CI, 108~111,
121-126



convergence of the perturba=-
tion expansion, 110, 114, 124,
126, 181

denominator shift, 114
diagrams giving E(2)+E(3),
104-107

diagrams giving E(4) terms,
112, 113, 116

doubly excited configurations,
112-115, 120~126
Epstein-Nesbet, 114, 173

EPV contributions, 118
formulas for E(z) and E(a),
107, 108

fourth»order contributions,
115-126, 129, 130

higher orders, 111=126

ladder and ring diagrams, 114
Mgller-Plesset, 101, 114
Padé’s [2/1] approximant, 110
programming aspects, 128-130
relation to the cluster expan~
sion, 111

renormalization terms, 115,
121.123

use for ionization potentials,
166, 168, 170

MC SCF, 85, 151

Minicomputers, 202, 203

Minimum basis sget, &

Molecular geometries, 135-142
basis set effect, 32, 52, 135~
137
effect of the correlation en~
ergy, 48, 86, 100, 111, 135,
136
optimization methods, 137-142
relativistic effects, 205
transition states, 142

Optimization of exponants, 13,
1s, 16, 20, 33-36, 60
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Padé’s [2/1] approximant, 110
PHANTOM, 212
Polarization energy, 172, 175
Polarization functions, 7, 3l=
37, 50, 52
effect on inversion end rota-
tion barriers, 147, 148
effect on the dipole moment,
31, 46, 52
effect on the molecular ener-
gy, 9, 14, 46, 52, 53, 100,
131
effect on the molecular geo-
metry, 32, 52, 135, 137
importance for intesrmeclecular
interactions, 185
POLYATOM, 60, 64, 69, 70, 211,
212
POLYCAL, &7

Potential curves, 77, 78, 111,
148151

Primitive basis set, 22
Pssudopotential methods, 203,
204

Quadruple excitations, 48, 82,
84, 85, 93, 115, 116, 120~128,
180, 151

Raphson~Newton algorithms, 138
Rate constants, 154-159
Relativistic effects, 2, 3, 161,
204, 205

in ionization processes, 151

on molecular geometry, 205
Reorganization energy, 161, 163«
18, 171

SCF calculations, 54-7)
convergency problems, 67, 68
initial guess, 67, €8
of hole states, 162



pseudopotential methods, 203,
204
use of symmetry, 70
ASCF method, 161, 162, 164-166
Sinanoglu‘s MET, 80, 92, 93
Size consistency, 84, 115, 118,
121-123, 131-133, 149-151
Slater-type orbitals (STO), 5-7,
11-17
Gaussian expansion of, 26-31
integrals over ST0"s, 56, 57
STO~NG, 27«29
Solvation, see also Intsrmole=~
cular interactions
continuum model, 200
effect on electronic transi-
tions, 196
(Hzo)ﬁ clusters, 183, 194
many-body interaction tarms,
193~195
Monte Carlo calculations, 189-
182, 200
nonadditivity of pair inter=
actions, 194, 195
point charge approximaetion,
leg, 200
supsermoleculs approach, 192~
1g¢g
use of pair potentials, 187-
192
Supermolecule approach, 174, 181,
192~189

Superposition error, see Countere

poise correction

Symmetry,
its use in the integral evalu-
ation, €0
its use in the SCF procedure,
70

Transformation of integrals, 127,
129, 168, 208, 207

Transition state theory, 154-
159 |
Two~glectron integrals,
computation time, 43, 59-68
handling and storing, 60, 68,
70, 127, 176
numerically controlled approx-
imations, 63=-66
over basis functions, 55=G6,
68, 68
profit from the shell struce
ture of basis sets, 63
their number, 9, 10, 586, 80,
61, 64, 65
transformation, 127, 129, 168,
206, 207
use of symmetry, 60

Unitary group approach, 205
Unlinked clusters, 87

Upper bound of energy, 11, 73,
84

Variable metric methods, 138
Variational=perturbation calcu-

lations, 110

Wigner®s expression, 79



