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Abstract The stochastic approaches have been valuable in hydrological, geo-
physical and climatological research for representing a wide range of time series 
variability, uncertainty estimation, and generating future alternatives. Long-range 
dependence characteristics of the geophysical time series have drawn atten-
tion of scientists since Hurst phenomenon was introduced. In this study, in an 
effort to forecast sea levels, various statistical forecasting strategies will be dis-
cussed: ARMA (Mixed Autoregressive-Moving Average process), ARIMA 
(Autoregressive Integrated Moving Average process), ARFIMA (Autoregressive 
Fractionally Integrated Moving Average process), and trend line combined with 
ARFIMA (TL-ARFIMA) combination models that shall be applied to the Caspian 
sea level record, while applying regression to assimilate the GCM projections 
of sea level change to the region of Peninsular Malaysia and Malaysia’s Sabah-
Sarawak northern region of Borneo Island.

Keywords  Long-range  dependence  •  Long  memory  •  ARFIMA  models  • 
Time series analysis  •  Sea level change  •  Regression techniques

Statistical and stochastic approaches are utilized extensively in applications of 
geophysical  and  climatological  research  to  characterize  and  quantify  spatial 
and temporal variability of the parameters of interest. These approaches include 
regression  techniques  (Davis  1976; Wright 1984), analysis of variance (Box  
et al. 1978; Cochran and Cox 1957), dimensionality reduction (Tenenbaum et al. 
2000; Gamez et al. 2004), principal component analysis or Empirical Orthogonal 
Function analysis (Preisendorfer 1988; Von Storch and Zwiers, 1999; Jollife, 
2002), Principal Oscillation Pattern analysis (Hasselman 1988; Von Storch et al. 
1995; Von Storch and Zwiers, 1999), Canonical Correlation Analysis (Hotelling 
1936), fractional Gaussian noise (Mandelbrot and Van Ness 1968; Mandelbrot and 
Wallis 1969; Mandelbrot 1971; Koutsoyiannis 2002) and autoregressive fraction-
ally integrated moving average (ARFIMA) models (Granger and Joyeux 1980; 
Hosking 1981; and Geweke and Porter-Hudak 1983). The ARFIMA models are 

Chapter 1
Introduction

A. Ercan et al., Long-Range Dependence and Sea Level Forecasting,  
SpringerBriefs in Statistics, DOI: 10.1007/978-3-319-01505-7_1, © The Author(s) 2013



2 1 Introduction

generalization of autoregressive moving average (ARMA) and autoregressive 
integrated moving average (ARIMA) models. Comprehensive information on 
ARMA and ARIMA models is provided in Box and Jenkins (1976). The stochastic 
approaches have been valuable in practice for representing a wide range of hyro-
climatic time series variability, uncertainty estimation, and generating future alter-
natives (Salas et al. 1980; Beran 1994; Srikanthan and McMahon 2001; Sveinsson 
et al. 2003; and Koutsoyiannis 2011).

Long-range dependence or long memory characteristics of the geophysical time 
series have drawn attention of scientists since 1960s (Mandelbrot and Van Ness 
1968; Mandelbrot and Wallis 1968, 1969) when the so called Hurst phenomenon 
(Hurst 1951) was discussed and explained. In addition to hydrology, long mem-
ory models have been used in several fields including astronomy, economics, and 
mathematics (Beran 1994). The explanation of the presence of long memory in 
hydrologic processes was attempted by physical mechanisms such as climate non-
stationarities (Potter 1976), storage mechanisms (Klemes 1974, 1978), groundwa-
ter upwelling (Shun and Duffy 1999), and spatial aggregation (Mudelsee 2007). 
Long memory, that may be present in sea level records, may be due to the combi-
nation of all of the above mechanisms as the oceans are part of the earth’s water 
cycle which is influenced by each of these mechanisms.

Sea level change has been studied by Atmosphere–Ocean coupled Global 
Climate Models (also called General Circulation Models) (AOGCMs) (Gregory  
et al. 2001; Meehl et al. 2007a) or by analyses of the historical observations of the 
sea level by tidal gauges (Church et al. 2004; Church and White 2006; Bindoff  
et al. 2007) or by satellite altimetry (Cazenave and Nerem 2004; Bindoff et al. 
2007). Based on the analyses of the tidal gauge records, Church et al. (2004) deter-
mined a global mean sea level rise of 1.8 ± 0.3 mm/yr during the 1950–2000 period, 
and Church and White (2006) determined a mean sea level rise of 1.7 ± 0.3 mm/yr 
for the twentieth century. Considering these results and allowing for the upward 
trend in recent years by satellite altimetry observations, Bindoff et al. (2007) assessed 
the global mean sea level rise rate to be 1.8 ± 0.5 mm/yr for the 1961–2003 period, 
and 1.7 ± 0.5 mm/yr for the twentieth century.

While various authors have considered long range dependence either by means 
of stationary long memory models (for example, the fractional Gaussian noise 
model of Mandelbrot and Van Ness 1968 and Mandelbrot and Wallis 1968), or 
by nonstationary time trends (such as in Klemes 1974), the signal of Caspian Sea 
level time series seems to contain both a long term secular trend as well as long 
range dependent behavior. As shall be shown in the following chapters, even after 
removing the long term trend from Caspian Sea level time series, the residual time 
series still demonstrate long range dependent behavior. The example of Caspian 
Sea level time series demonstrates that both the long range dependence and some 
secular long term trend may exist together in geophysical phenomena.

In this study, in an effort to forecast sea levels, various statistical forecasting 
strategies will be discussed: ARMA (Mixed Autoregressive-Moving Average pro-
cess), ARIMA (Autoregressive Integrated Moving Average process), ARFIMA 
(Autoregressive Fractionally Integrated Moving Average process), and trend line 
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combined with ARFIMA (TL-ARFIMA) combination models that shall be applied 
to the Caspian sea level record, while applying regression to assimilate the GCM 
projections of sea level change to a particular region. The standard ARFIMA models 
will be applied to the annually averaged sea level observations. Finite differencing 
lengths for the ARFIMA models will be utilized due to the finite duration of the 
available observed sea level record. Sample ACFs of the residuals will be compared 
for various differencing lengths, and the one that minimizes the sample ACFs will be 
selected. Confidence intervals and the forecast updating methodology, provided for 
ARIMA models in Box and Jenkins (1976), will be modified for the ARFIMA mod-
els. The confidence intervals of the forecasts will be estimated utilizing the prob-
ability densities of the residuals without assuming a known distribution. ARFIMA 
models will also be utilized to the residuals of the linear trends; and the trend line 
and ARFIMA combination models will be referred to as TL-ARFIMA models. The 
forecasting performance of ARMA, ARIMA, ARFIMA and TL-ARFIMA models 
will be investigated by comparing against the observed Caspian Sea level.

Meanwhile, for the region of Peninsular Malaysia and Malaysia’s Sabah-
Sarawak northern region of Borneo Island, long sea level records do not exist. 
In such case the Global Climate Model (GCM) projections for the twenty-first  
century can be downscaled to the Malaysia region by means of regression tech-
niques, utilizing the short records of satellite altimeters  in  this region against  the 
GCM projections during a mutual observation period. There is substantial variabil-
ity and uncertainty in the spatial distribution of sea level change among all GCMs 
(Meehl et al. 2007a).  Climate  models  provide  credible  quantitative  estimates  of 
future climate change, particularly at continental scales and above (Randall et al. 
2007). However, due to their coarse spatial grid resolution, their description of 
the spatial variation of the sea level change at regional and smaller spatial scales 
is too coarse. Therefore, a prudent projection could use the AOGCM (Coupled 
atmospheric-oceanic GCMs) projections for the global average sea level change, 
but then distribute these projections in space over regional scales according to the 
observed patterns based on observed sea level data by means of regression. This 
approach will be demonstrated for a case study along the Peninsular Malaysia and 
Sabah-Sarawak coastlines (Ercan et al. 2013).

The rest of this monograph is organized as follows: Long-range dependence 
concept is explained, methodologies developed in the literature for the estimation 
of long-range dependence index (Hurst Number) are provided and ARFIMA mod-
els are introduced in Chap. 2. Then, the forecasting methodology, the uncertainty 
estimation in the forecasts and the updating, as new data become available, are 
provided in Chap. 3. Afterwards, the results of the ARMA, ARIMA, ARFIMA, 
and TL-ARFIMA forecasting applications to the Caspian Sea level are discussed 
in Chap. 4. In the following chapter, the global mean sea level projections from 
the AOGCM simulations are assimilated to the satellite altimeter observations 
along Peninsular Malaysia and Sabah-Sarawak coastlines (Ercan et al. 2013). 
In this chapter, statistical approaches are combined with AOGCM simulation 
results. Conclusions drawn from each case study are provided at the end of each  
case study.

1 Introduction

http://dx.doi.org/10.1007/978-3-319-01505-7_2
http://dx.doi.org/10.1007/978-3-319-01505-7_3
http://dx.doi.org/10.1007/978-3-319-01505-7_4
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Abstract In this chapter, long-range dependence concept, Hurst phenomenon 
and ARFIMA models are introduced and the earlier work on these subjects are 
reviewed. Several methodologies are introduced for the estimation of long-range 
dependence index (Hurst number or fractional difference parameter).

Keywords  Long-range dependence  •  Long memory  •  ARFIMA models  •  Hurst 
phenomenon

2.1  Long-Range Dependence

Long-range dependence or long memory has drawn the attention of scientists 
since 1960s when the so called Hurst phenomenon (Hurst 1951) was discussed 
and explained by Mandelbrot and Van Ness (1965), and Mandelbrot and Wallis 
(1968, 1969). Hurst (1951) investigated the water levels of Nile River for optimum 
dam sizing. The Hurst number, named after Harold Edwin Hurst, is an index of 
long memory. Hurst number H = 0 represents processes that have independent 
increments while 0.5 < H < 1 indicates long-range dependence.

The Hurst phenomenon has been utilized in literature extensively to asses 
variability of  climatic  and hydrologic quantities  including wind power  resources 
(Haslett and Raftery 1989), global mean temperatures (Bloomfield 1992), 
river flows (Eltahir 1996; Montanari et al. 1997; Vogel et al. 1998), poros-
ity and hydraulic conductivity in subsurface hydrology (Molz and Boman 
1993), indexes of North Atlantic Oscillation (Stephenson et al. 2000), tree-ring 
widths (Koutsoyiannis 2002), temperature anomalies in Northern Hemisphere 
(Koutsoyiannis 2003). In addition, long-range dependence is reported for sea 
levels by a power spectrum analysis (Hsui et al. 1993) and by wavelet analysis 
(Barbosa et al. 2006). According to Koutsoyiannis (2003), climate changes are 
closely  related  to  the Hurst  phenomenon, which  is  stochastically  equivalent  to  a 
simple scaling behavior of climate variability through time.

Chapter 2
Long-Range Dependence and ARFIMA 
Models

A. Ercan et al., Long-Range Dependence and Sea Level Forecasting,  
SpringerBriefs in Statistics, DOI: 10.1007/978-3-319-01505-7_2, © The Author(s) 2013



8 2 Long-Range Dependence and ARFIMA Models

A process has long memory if its autocovariances are not absolutely summable 
(Palma 2007). The slowly decaying autocorrelations and unbounded spectral density 
near zero frequency are characteristics of the long memory signals (Beran 1994). A 
stationary process Xt has long memory (Beran and Terin 1996) if, as |k| → ∞.

where r (k) = cov (Xt , Xt+k) and L1 (k) is a slowly varying function as |k| → ∞.  
In other words, L1 (ta)

/

L1 (t) → 1 as t → ∞ for any a > 0. This implies that 
the  correlations  are  not  summable  and  the  spectral  density  near  zero  frequency  is 
unbounded. Fractional Gaussian noise (Mandelbrot and Van Ness 1968 ; Mandelbrot 
and Wallis 1969 ; Mandelbrot 1971, Koutsoyiannis 2002) and ARFIMA (Granger and 
Joyeux 1980; Hosking 1981; and Geweke and Porter-Hudak 1983) models are among 
the best known long memory models.

Several methodologies are available for the estimation of long-range depend-
ence index (taken as Hurst number or fractional difference parameter which will 
be discussed in ARFIMA models section) such as the Rescaled Range Method 
(Hurst 1951;  Mandelbrot  and  Taqqu  1979; Lo 1991), Aggregated Variance 
Method, Differencing the Variance Method, Absolute Moments Method, 
Detrended Fluctuation Analysis (Peng et al. 1994), Regression Method based on 
the periodogram (Geweke and Porter-Hudak 1983) and Whittle Estimator (Whittle 
1951; Fox and Taqqu 1986; Dahlhaus 1989). Taqqu et al. (1995) analyzed the per-
formance of nine different estimators. Estimation methods for long-memory mod-
els are reviewed in detail in Beran (1994), Palma (2007), and Box et al. (2008).

Minimum water levels of Nile river, as reported in Beran (1994), are depicted 
in Fig. 3.1 Hurst (1951) estimated the Hurst Number as 0.93 for Nile river’s histor-
ical water levels. Sample ACF, periodogram, and the logarithm of the periodogram 
of minimum water levels of Nile River are depicted in Fig. 3.2 The calculated 
Hurst number and the Fig. 3.2 clearly show the long memory behavior of the his-
torical Nile river levels.

The ARFIMA models are generalization of the linear stationary ARMA and 
linear nonstationary ARIMA models. The autoregressive (AR) model of first order 
emerged as the dominant model for background climate variability for over three 
decades; however, some aspects of the climate variability are best described by the 
long memory models (Vyushin and Kushner 2009).

2.2  ARFIMA Models

According to Beran (1994), stochastic processes may be utilized to model the 
behavior of observed time series solely by the statistical approach without a 
physical interpretation of the process parameters. Long-range memory mod-
els, ARFIMA processes in particular, have been used extensively in different 
fields such as astronomy, economics, geosciences, hydrology and mathematics  

(2.1)r(k) ∼ L1(k)|k|
2H−2

, H ∈ (0.5,1)

http://dx.doi.org/10.1007/978-3-319-01505-7_3
http://dx.doi.org/10.1007/978-3-319-01505-7_3
http://dx.doi.org/10.1007/978-3-319-01505-7_3
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(Beran 1994). Early applications of the ARFIMA model were performed by 
Granger and Joyeux (1980), Hosking (1981) and Geweke and Porter-Hudak 
(1983). The process (Xt) is said to be an ARFIMA(p,d,q) process if it is a solution 
to the following difference equation:

where φ(z) = 1 −

p∑

j=1

φjz
j and θ(z) = 1 +

q∑

k=1

θkzk are the autoregressive and 

moving-average operators, and d is the fractional difference parameter.εtis the white 
noise process with E (εt) = 0 and variance σ 2

ε . B is the backward shift operator 
such that BXt = Xt-1. For any real number d > −1, the difference operator (1 − B)d 
can be defined by means of a binomial expansion (Brockwell and Davis 1987).

where Γ (·)is the gamma function,

Γ(z) = ∞ for z = 0, and Γ(z) = z
−1

Γ (1 + z) for z < 0. The process is stationary 
and invertible when φ(z) and θ(z) have all their roots outside the unit circle, have 
no common roots, and −0.5 < d < 0.5 (Crato and Ray 1996). The process has long 
memory when 0 < d < 0.5 and is nonstationary for d ≥ 0.5 (Beran 1994). When 
d = 0, the model is referred to as autoregressive moving average (ARMA) model 
of order (p,q), and is capable of modeling linear stationary processes. On the other 
hand, when d is a positive integer, the model is referred to as autoregressive inte-
grated moving average (ARIMA) process, and is capable of modeling linear non-
stationary processes (Box and Jenkins 1976).

Box and Jenkins (1976) provide the details on the forecasting, confidence band 
estimation and forecast updating for ARIMA models. In this study, as described in 
detail  in  the next chapter,  the governing equations, provided  in Box and Jenkins 
(1976), are utilized and extended for ARFIMA models that use the non-integer  
differencing parameter d.
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(2.2)φ(B)(1 − B)d
Xt = θ(B)εt

(2.3)(1 − B)d
=

∞∑

j=0

Γ(j − d)

Γ(j + 1)Γ(−d)
Bj

(2.4)Γ(z) =

∞∫

0

t
z−1

e
−t

dt for z > 0

2.2 ARFIMA Models
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Abstract In this chapter, forecasting, forecast confidence band estimation, and the 
forecast updating methodologies, provided for ARIMA models in the literature, 
are modified and presented for the ARFIMA models.

Keywords  Forecasting,  •    Confidence  band  estimation  •  Updating  •  ARFIMA 
models  •  Confidence limits

3.1  Forecasting

Forecasting and updating of ARFIMA processes are a natural extension of those of 
ARIMA models. When fractional difference parameter d is 0, Eq. (2.2) represents 
the ARMA processes and when it is integer, Eq. (2.2) represents the ARIMA pro-
cesses. Box and Jenkins (1976) provide the details on the forecasting and updating 
of classic ARIMA models. Forecasting as a conditional expectation of Xt+l is said 
to be made at origin t for a lead time l ≥ 1 when written as an infinite sum of pre-
vious observations plus a random shock;

where π weights may be obtained by equating the coefficients in

Because of the invertibility condition, the π weights must form a convergent series. 
Therefore, the forecast is dependent to an important extent only on recent past values 

(Box and Jenkins 1976). The variance of the forecast error et(l) = Xt+l − X̂t(l) is

(3.1)
[
Xt+l

]
= X̂t(l) =

∞∑

j=1

πj

[
Xt+l−j

]
+

[
εt+l

]

(3.2)φ(B)(1 − B)d
= (1 − π1B − π2B

2
− . . .)θ(B)

(3.3)var(et(l)) =



1 +

l−1�

j=1

ψ2
j



 σ 2
ε
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where σ 2
ε  is the variance of the residuals and ψ weights may be obtained by equat-

ing coefficients in

Equations. (3.1–3.4), which are valid for ARIMA models (Box and Jenkins 1976), 
are also valid for the ARFIMA models when π and ψ weights are calculated for 
the non-integer differencing parameter d from Eqs. (3.2) and (3.4), respectively.

π weights can be obtained by inserting the definitions of the differencing opera-
tor (1 − B)d, as in Eq. (2.3), and the autoregressive and moving-average operators 
φ (B) and θ (B) into Eq. (3.2);

ψ weights can be obtained similarly by rearranging Eq. (3.4) and using the defi-
nitions of differencing and the autoregressive and moving-average operators:

From  Eqs.  (3.5–3.6), one can obtain π and ψ weights if fractional difference 
parameter d is known along with the autoregressive and moving-average coeffi-
cients. For example, for ARFIMA(1, d, 0) process when the autoregressive coef-
ficient is φ1, π weights can be obtained from the series

and ψ weights can be obtained from the series

3.2  Confidence Band Estimation

From the estimation of the variance of the forecast error by Eq. (3.3), one can 
then estimate the confidence limits Fig. (3.1). Confidence limits can be calcu-
lated from

(3.4)φ(B)(1 − B)d

(
1 + ψ1B + ψ2B

2
+ . . .

)
= θ (B) . . .

(3.5)

(
1 − φ1B − φ2B2

− . . . − φpBp
) (

1 +
Γ(1 − d)

Γ(−d)Γ(2)
B +

Γ(2 − d)

Γ(−d)Γ(3)
B2

+ . . .

)

=

(
1 − π1B − π2B2

+ . . .

) (
1 + θ1B + θ2B2

+ . . . + θqBq
)

(3.6)

(

1 +
Γ(1 + d)

Γ(d)Γ(2)
B +

Γ(2 + d)

Γ(d)Γ(3)
B2

+ . . .

)(
1 + θ1B + θ2B2

+ . . . + θqBq
)

=

(
1 − φ1B − φ2B2

− . . . − φpBp
) (

1 + ψ1B + ψ2B2
+ . . .

)

(3.7)

π1 = φ1 −
Γ(1 − d)

Γ(−d)Γ(2)
and πj = φ1

Γ(j − 1 − d)

Γ(−d)Γ(j)
−

Γ(j − d)

Γ(−d)Γ(j + 1)

for j = 2, 3 . . .

(3.8)ψ0 = 1, ψj = φ1ψj−1 +
Γ(j + d)

Γ(d)Γ(j + 1)
for j = 1, 2 . . .

http://dx.doi.org/10.1007/978-3-319-01505-7_2
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The authors conjecture that the confidence intervals can be estimated more rig-
orously through calculating the standardized lower and upper bounds zp

− and 
zp
+ from the sample probability densities of the residuals. The residuals, as well 

as zp
− and zp

+,  depend on  the data  signal  and  the model parameters  in Eq.  (2.2). 
Equation  (3.10) below holds for the 95 % confidence limits, and one can write 
other confidence limits similarly.

The 2.5 and 97.5 percentiles of the residuals may be estimated to find zp
− and zp

+. 
If the residuals possess a normal distribution, then z∓

p = ∓1.96.
One can infer from Eqs. (3.4) and (3.9) that the forecast confidence interval size 

depends on the variance and probability distribution of the residuals, forecast lead 
time l, the difference parameter d, and the autoregressive and the moving average 
coefficients Fig. (3.2).

(3.9)Xt+l(∓) = X̂t(l) + z∓

p



1 +

l−1�

j=1

ψ2
j





1/ 2

σε

(3.10)P










z−

p ≤
X̂t+1 − Xt (l)

�

1 +

l−1�

j=1

ψ2
j

�1/2

σε

≤ z+

p






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3.3  Updating

Updating of a forecast is important during a statistical forecasting process. However, it 
is usually neglected in forecast applications in the literature. Box and Jenkins (1976) 
provide the methodology for forecast updating for ARIMA models. Assuming that fore-
casts at origin t are available for lead times 1, 2, …L, then as soon as Xt+l becomes 

available, the forecast error εt+1 = Xt+1 − X̂t (1) can be calculated, and one may 
update the forecasts using ψ weights (Box and Jenkins, 1976) as

for lead times 1, 2, …, L−1. Eq. (3.11) was originally developed for the ARIMA 
models, but in this study it is used for the ARFIMA models as well when the ψ 
weights are estimated from Eq. (3.6) for the non-integer differencing parameter d.
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Abstract The case of the Caspian Sea level time series demonstrates that both 
the long range dependence and some secular long term trend may exist together 
in geophysical phenomena. Even after removing the long term trend from the 
Caspian Sea level time series, the residual time series still demonstrate long 
range dependent behavior. Sample autocorrelation functions (ACFs) and peri-
odograms of the sea level data are investigated and the Hurst coefficients are 
estimated for various time intervals. Forecasting performance of linear stationary 
(autoregressive moving average, ARMA), linear nonstationary (autoregressive 
integrated moving average, ARIMA), long-range memory (autoregressive frac-
tionally integrated moving average, ARFIMA) and Trend Line-ARFIMA (TL-
ARFIMA) combination models are investigated by comparing the forecasts with 
the observed Caspian Sea levels. Forecasts and their confidence bands, estimated 
by the ARFIMA and TL-ARFIMA models, are compared with the forecasts of the 
AOGCMs reported in the literature. In this study, the forecast confidence bands 
and the forecast updating methodology, provided for ARIMA models in the lit-
erature, are modified for the ARFIMA models. Sample ACFs are utilized to esti-
mate the differencing lengths of the ARFIMA models. The confidence bands of 
the forecasts are estimated using the probability density functions of the residuals 
without assuming a known distribution.

Keywords    ARFIMA  models  •    Trend  Line-ARFIMA  (TL-ARFIMA)  mod-
els  •  Caspian Sea Level

4.1  Introduction

The Caspian Sea is the biggest inland body of water in the world. This massive 
lake is located inside the Eurasian continent where the South-Eastern Europe bor-
ders with Asia. The Caspian Sea has no connection to the world’s oceans, and its 
surface level elevation at the moment is around −27 m (27 m below the average 
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Case Study I: Caspian Sea Level
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ocean level). Its surface area is around 390,000 km2, which is about 18 % of the 
surface area of all lakes in the world (Rodionov 1994).

The Caspian Sea has been under  increased attention due  to  its unique natural 
characteristics and the important role it plays in the social, economic and eco-
logical characteristics of the surrounding countries: Azerbaijan, Iran, Kazakhstan, 
Russia and Turkmenistan (Rodionov 1994). Exploration of large oil and gas 
resources increased the importance of the region over the last decades.

The Caspian Sea level observations since 1837 are depicted in Fig. 4.1. Between 
1837 and 1931, the sea level fluctuated between −25.5 and −26.8 m. The sea 
level dropped dramatically by 1.7 m in the next nine years. In 1977, Caspian Sea 
reached its lowest recorded level, −29 m, and started to rise. The rise after 1977 
was thought to be temporary and Kara-Bogaz-Gol Strait was dammed in 1980. In 
1984, limited amount of water was allowed to flow into Kara-Bogaz-Gol Bay for 
restoration purposes in the Bay, and the dam was eliminated in 1992. In 1995, the 
Caspian Sea level reached its maximum elevation, −26.5 m, since the early twenti-
eth century with a total rise of 2.4 m since 1977. The sea level has been stable and 
fluctuating slightly around −27 m in the last decade.

Caspian Sea filters climatic noise by its large surface area and volume of water. 
Therefore, the observed variation in the Caspian Sea level may be a good indi-
cator of the change in climate (Rodionov 1994). Caspian Sea level fluctuations 
are due to a combination of many factors including climate-induced changes in 
the hydrological budget (Rodionov 1994; Elguindi and Giorgi 2006), neotectonic 
movements (Vdovykin 1990), surface-groundwater interaction (Shilo 1989), mud 
volcanism (Bobrow 1961), and anthropogenic activities such as land use change 
and change in water use in rivers draining into Caspian Sea (Rodionov 1994). 
Climate induced factors dominate the sea level fluctuations as anthropogenic activ-
ities are of secondary importance (Rodionov 1994).

Elguindi and Giorgi (2006) assessed possible Caspian Sea level changes in 
the twenty-first century using the output from seven Atmosphere-Ocean coupled 
General Circulation Models (AOGCMs) under A1b and A2 emission scenarios. 
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Fig. 4.1  Caspian Sea level (m) at Baku during years 1837–2009
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They found that the simulated sea level ranges between −20 and −45 m below 
sea level at the end of twenty-first century in both emission scenarios. Two of the 
models in A2 scenario and one in A1b scenario predict an increase in sea level. 
However, the ensemble mean of the models by the end of the twenty-first century 
is around −34 m below sea level, which is more than 5 m below the minimum 
recorded level since 1837 and is very close to the minimum observed level in the 
last 25 centuries. According to paleo-reconstructions of the Caspian Sea level 
in the last 25 centuries, the Caspian Sea level varied between −22 and −35 m 
below sea level (Golitysn 1995). Renssen et al. (2007) estimated a 4.2 m drop 
in Caspian Sea level in the twenty-first century as a result of the anthropogenic 
A1b scenario. It is claimed that loss in the twenty-first century overwhelms the 
increase in river runoff, causing the sea level drop (Elguindi and Giorgi 2006; 
Renssen et al. 2007).

In the following sections, ARMA, ARIMA, ARFIMA and TL-ARIMA fore-
casting applications to the Caspian Sea level will be discussed. Updating of a fore-
cast will be shown to be an important part of the forecasting process. Adaptation 
of the ARFIMA models to sudden observed sea level variations will be compared 
to those of ARMA and ARIMA models applied to the Caspian Sea level data.

4.2  ARMA and ARIMA Model Forecasts

First, purely statistical forecasts were performed using the observed Caspian Sea 
level data from year 1837 to years 1932, 1977, 1995 by means of linear station-
ary and non-stationary models, and their forecast performance was evaluated by 
means of the observations in the following years. The AR model of first order has 
been utilized extensively to model background climate variability for over three 
decades (Vyushin and Kushner 2009). First order AR model is utilized initially 
for the forecasting, but the AR coefficients are estimated as unity (~0.9999) by 
the  least  square  estimation during all  application periods. This  result means  that 
the chosen AR model is actually equivalent to ARIMA(0,1,0) model. Hence, next 
the ARIMA(1,1,0) model was utilized for periods 1837–1932, 1837–1977, and  
1837–1995, and the coefficients of the first order AR component of the ARIMA 
model were estimated as 0.3600, 0.4481 and 0.4862, respectively. The sample 
probability density functions of the residuals for ARMA(1,0) and ARIMA(1,1,0) 
models for the three time intervals are shown in Fig. 4.2. The means of the 
residuals are −0.010 m, −0.027 m, and −0.009 m for ARMA(1,0) models and 
−0.005 m, −0.014 m, and −0.003 m for ARIMA(1,1,0) models for the time 
intervals 1837–1932, 1837–1977,  and 1837–1995,  respectively. Using Eq.  (3.10) 
and model residuals shown in Fig. 4.2, zp

− were estimated as −1.74, −1.83, and 
−1.81 for ARMA models, and −1.70, −1.73, and −1.76 for ARIMA models for 
1837–1932, 1837–1977, and 1837–1995 periods, respectively. Similarly, zp

+ was 
estimated as 1.97, 1.90, and 2.22 for ARMA models, and 2.09, 1.84, and 2.27 for 
ARIMA models, respectively.

4.1 Introduction

http://dx.doi.org/10.1007/978-3-319-01505-7_3
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In order to check the reliability of the developed models, Box and Jenkins 
(1976) suggests portmanteau lack of fit and cumulative periodogram tests as 
model diagnostic tools. If the fitted model is appropriate, the portmanteau lack of 
fit test suggests that the statistic

for the first K autocorrelations rk from any ARIMA(p,d,q) process is approximately 
Chi square distributed with (K – p − q) degrees of freedom as χ2(K – p − q) for 
n = N − d, where N is the length of the residuals. Ljung and Box (1978) proposed a 
modified version of this statistic (modified Ljung-Box-Pierce statistic) as

On  the other hand,  the autocorrelations may not adequately  take  into account 
the periodic characteristics of the series (Box and Jenkins 1976). Bartlett (1955) 
showed that the cumulative periodogram provides an effective means for the 

(4.1)Q = n

K
∑

k=1

r2
k

(4.2)Q = n(n + 2)

K
∑

k=1

(n − k)−1r2
k

-0.4 -0.2 0 0.2 0.4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.18

0.16

0.2

Residuals

P
ro

bl
ity

  D
en

si
ty

P
ro

bl
ity

  D
en

si
ty

(a)

1837-1932

1837-1977
1837-1995

-0.4 -0.2 0 0.2 0.4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Residuals

(b)

Fig. 4.2  Sample probability density functions of the residuals for a ARMA(1,0) models for 
years 1837–1932, 1837–1977, and 1837–1995 and b ARIMA(1,1,0) models for years 1837–
1932, 1837–1977, and 1837–1995
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detection of periodic non-randomness. For a white noise series, the plot of the 
cumulative  periodogram  against  frequency  would  form  a  straight  line,  joining 
points (0,0) and (0.5,1).

Diagnostic checks as explained in Box and Jenkins (1976) were then applied 
to the residuals of the developed ARMA(1,0) and ARIMA(1,1,0) models of the 
Caspian Sea level. For the three time intervals tested, the first order AR Models 
(ARMA(1,0)) did not pass at the 5 % χ2 significance level in portmanteau lack 
of fit tests as applied to the first 20 sample autocorrelations of the residuals. Also, 
ARMA(1,0) did not pass the 5 % or 25 % Kolmogorov-Smirnov significance 

Fig. 4.3  Cumulative periodograms of residuals for a–c ARMA(1,0) model for years 1837–1932, 
1837–1977, and 1837–1995, respectively and d–f ARIMA(1,1,0) model for years 1837–1932, 
1837–1977, and 1837–1995, respectively

4.2 ARMA and ARIMA Model Forecasts
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levels (Hald 1952) in the cumulative periodogram tests. On the other hand, 
ARIMA(1,1,0) models for the three application time periods passed both the port-
manteau lack of fit and the cumulative periodogram tests. For the ARIMA models 
of the three time periods, the Q statistics (28.5, 19.4 and 16.7) and the modified 
Ljung-Box-Pierce statistics (32.4, 20.8 and 17.8) are smaller than the 5 % signif-
icance level for χ2 statistic with 19 degrees of freedom (which is 32.9). Q sta-
tistics are also smaller than χ2 with 19 degrees of freedom (i.e. 30.1) at the 5 % 
significance  level. The estimated cumulative periodograms against  the  frequency 
are illustrated in Fig. 4.3a–f for the residuals of ARMA and ARIMA models for 
the time periods 1837–1932, 1837–1977, and 1837–1995. The estimated cumu-
lative periodograms are outside the 5 % or 25 % Kolmogorov-Smirnov limits 
for ARMA(1,0) models as shown in Fig. 4.3a–c. However, they are within 5 % 
and 25 % Kolmogorov-Smirnov limits for ARIMA(1,0) models as depicted in 
Fig. 4.3d–f.

Although, ARMA models did not pass the model diagnostic checks, as dis-
cussed above, we wish to discuss the difference in the forecasts of ARMA and 
ARIMA models. The list of ARMA and ARIMA models that were applied to 
Caspian Sea  level  and  their  respective Root Mean Square Error  (RMSE) values, 
calculated in the forecast validation periods, are tabulated in Table 4.1. RMSE 
values are calculated with respect to the observed sea levels. ARMA(1,0) and 
ARIMA(1,1,0) model forecasts and 95 % confidence intervals for the Caspian 
Sea level after 1932, 1977 and 1995 are illustrated in Fig. 4.4a, b. Forecasts of 
both models after 1932, 1977 and 1995 are quite similar because the RMSE values 

Table 4.1  Summary of ARMA, ARIMA and ARFIMA models that were applied to Caspian Sea 
level Time Series

Model type Model equation Duration Updated 
years

Validation 
period

RMSE

ARMA (1 − 0.9999B)Xt = εt 1837–1932 – 1933–1964 1.69
1837–1932 1933–1934 1935–1964 1.50

ARMA (1 − 0.9999B)Xt = εt 1837–1977 – 1978–2009 1.63
1837–1977 1978–1979 1980–2009 1.36

ARMA (1 − 0.9999B)Xt = εt 1837–1995 – 1996–2009 0.43
1837–1995 1996–1998 1999–2009 0.21

ARIMA (1 − 0.36B)(1 − B)Xt = εt 1837–1932 – 1933–1964 1.69
1837–1932 1933–1934 1935–1964 1.34

ARIMA (1 − 0.4481B)(1 − B)Xt = εt 1837–1977 – 1978–2009 1.76
1837–1977 1978–1979 1980–2009 1.19

ARIMA (1 − 0.4862B)(1 − B)Xt = εt 1837–1995 – 1996–2009 0.51
1837–1995 1996–1998 1999–2009 0.35

ARFIMA (1 − 0.9999B)(1 − B)0.45
Xt = εt 1837–1977 – 1978–2009 3.09

1837–1977 1978–1979 1980–2009 1.37
ARFIMA (1 − 0.9525B)(1 − B)0.49

Xt = εt 1837–1995 – 1996–2009 1.74
1837–1995 1996–1998 1999–2009 0.32

ARFIMA (1 − 0.9773B)(1 − B)0.499
Xt = εt 1837–2009 – – –
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are 1.69 m for both models after 1932; 1.63 m for ARMA model and 1.76 m for 
ARIMA model after 1977; and 0.43 m for ARMA model and 0.51 m for ARIMA 
model after 1995. The linear trend analyses were then performed for 1837–1932, 
1837–1977, and 1837–1995 time intervals. The corresponding forecasts by 
extending the slopes of the linear trends after 1932, 1977, and 1995 are plotted in 
Fig. 4.4a. The high RMSE values for the forecasts after 1932 and 1977 confirm 
that both models are not quite capable of forecasting the sudden sea level changes 
after these years. After 1932 and 1977, neither the ARMA model nor the ARIMA 
model performed well because the Caspian Sea level deviated significantly from 
the linear trends. After 1995 both model performances improve because the sea 
level fluctuates around a linear trend. As depicted in Fig. 4.4a, b, the confidence 
intervals of the ARIMA models for forecasts after 1932, 1977 and 1995 are larger 
when compared to those of ARMA models. However, the observed values after 
1932 and 1977 are outside the confidence intervals for both models.

The resultant forecasts and the confidence bands after 1932, 1977, and 1995 of 
both models when updated by Eq. (3.11), and the data of 1933–1934, 1978–1979, 
and 1996–1998, respectively, are shown in Fig. 4.5. The updating process results 
in better forecasting during the validation period for the ARMA and ARIMA mod-
els. For ARMA models, the RMSE values for the forecasts after 1934, 1979 and 
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1998 (i.e. 1.50 m, 1.36 m, and 0.21 m, respectively) are lower than those before 
updating (i.e. 1.69 m, 1.63 m, and 0.43 m, respectively). Similarly for ARIMA 
models, the RMSE values for the forecasts after 1934, 1979 and 1998 (i.e. 1.34 m, 
1.19 m, and 0.35 m, respectively) are lower than those before updating (i.e. 
1.69 m, 1.76 m, and 0.51 m, respectively).

Although the updating resulted in smaller RMSE values, i.e. better forecast-
ing, the updating of ARMA and ARIMA models did not capture the trend of the 
observed sea levels. Between 1933 and 1941, the observed Caspian Sea level 
dropped with an average rate of 0.21 m/year. Between 1977 and 1995 it rose with 
an average rate of 0.14 m/year. The forecasted sea level rise rate between 1933 and 
1941 is 0.0026 m/year for the ARMA model and 0.0023 m for the ARIMA model. 
The updated sea level change rate between 1935 and 1941 is still 0.0026 m/year 
for the ARMA model and, with a slight improvement, −0.0074 m/year for the 
ARIMA model. Here, the negative rate represents a sea level drop. On the other 
hand, the forecasted sea level change rate between 1978 and 1995 is 0.0029  
m/year using the ARMA model and −0.0019 m using the ARIMA model. The 
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updated sea level change rate between 1980 and 1995 is still 0.0029 m/year for 
the ARMA model and, with a slight improvement, 0.0073 m/year for the ARIMA 
model. Hence, updating of the ARMA model forecasts did not improve the perfor-
mance, and updating of the ARIMA model forecasts slightly improved the fore-
cast performance for the Caspian Sea level fluctuations and their observed trends. 
Comparing the observed sea level trends against the model forecasts through 
1933–1941 and 1978–1995, both the ARMA and the ARIMA models are far from 
adjusting to these trends during these periods.

4.3  ARFIMA Model Forecasts

A series having a slowly declining Autocorrelation Function (ACF) or infinite spec-
tral  value  at  zero  frequency  are  features  of  long  memory  (Beran  1994). Sample 
ACFs, periodograms and logarithms of the periodograms of the Caspian Sea level 
during the periods 1837–1932, 1837–1941, 1877–1977, 1877–1995, and 1837–2009 
are shown in Figs. 4.6a–e, 4.7a–e, and 4.8a–e, respectively. Sample ACFs, peri-
odograms and logarithms of the periodograms, after removing the linear trends (i.e. 
for the residuals after removing the simple linear regression line for each time inter-
val) for the same above periods, are plotted in Figs. 4.6f–j, 4.7f–j, and 4.8f–j, respec-
tively. The historical sea level data signal clearly possesses long range dependence 
since 1977 (Figs. 4.6c–e, 4.7c–e, and 4.8c–e). Also, the residuals after removing the 
linear trends, still inherit the long memory property (Figs. 4.6h–j, 4.7h–j, 4.8h–j).

Forecasting and updating by ARFIMA models are similar to those of ARIMA 
models except that the fractional difference parameter d is a real number instead of 
an integer. In this study, the Hurst numbers were estimated by the Rescaled Range, 
Aggregated Variance and Absolute Moments Methods. Then the average of the 
three estimates was used to calculate the fractional difference parameter d in the 
ARFIMA models (d = H − 0.5, where H is the Hurst number). For 1837–1977, 
1837–1995, and 1837–2009 periods, d is estimated as 0.450, 0.490, 0.499, respec-
tively, showing stationary long range behavior since 0 < d < 0.5. However, the val-
ues of d through time indicate that Caspian Sea level is in a transition stage from 
stationary long range behavior to a non-stationary behavior as d = 0.5 is the limit 
of stationarity.

The forecasting application of long-range models, ARFIMA model in particu-
lar,  to physical  time series  is challenging because  forecasting  requires an expan-
sion of the infinite series as in Eq. (3.1). For a finite series, Eq. (3.1) takes the form

where L is the differencing length. In order to estimate the differencing length L 
for the Caspian Sea level data, the sample ACFs of the residuals were compared 
for various differencing lengths L for periods from 1837 to 1977, to 1995 and to 

(4.3)[Xt+l ] = X̂t (l) =

L
∑

j=1

π j

[

Xt+l− j

]

+ [εt+l ]

4.2 ARMA and ARIMA Model Forecasts
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Fig. 4.6  Sample ACFs of Caspian Sea level (m) during years 1837–1932, 1837–1941, 1877–
1977, 1877–1995, and 1837–2009 (a–e) and those after the linear trends are removed (f–j)
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2009, respectively. For illustration the sample ACFs of the residuals, together with 
two standard error limits (2/

√
N ), are depicted for various differencing lengths 

(L = 40, 60, 80 100, 120, 130, 135, 140, 145 years) for 1837–2009 period in 
Fig. 4.9. The differencing lengths that minimize the magnitude of the sample ACF 
of the residuals are estimated as 110 years for 1837–1977 period, and 140 years for 

Fig. 4.7  Periodograms of Caspian Sea level (m) during years 1837–1932, 1837–1941, 1877–
1977, 1877–1995, and 1837–2009 (a–e) and those after the linear trends are removed (f–j)

4.3 ARFIMA Model Forecasts
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1837–1995 and 1837–2009 periods. After applying fractional differencing, a first 
order AR model was fitted by the least squares estimation method to the residuals. 
The AR coefficients are estimated as 0.9999, 0.9525 and 0.9773 for 1837–1977, 
1837–1995, and 1837–2009 periods, respectively. The standardized lower bound 

Fig. 4.8  Logarithms of periodograms of Caspian Sea level (m) during years 1837–1932, 
1837–1941, 1877–1977, 1877–1995, and 1837–2009 (a–e) and those after the linear trends are 
removed (f–j)
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zp
− is estimated as −1.75, −1.53, −2.66; and the standardized upper bound zp

+ is 
estimated as 1.86, 2.23, 2.15 for ARFIMA models for 1837–1977, 1837–1995, and 
1837–2009 periods, respectively. Residuals of the ARFIMA models pass the port-
manteau lack of fit test that was applied to the first 15 sample autocorrelations, and 
the cumulative periodogram test using 5 % Kolmogorov-Smirnov limits.

The list of ARFIMA models, in addition to the ARMA and ARIMA mod-
els that were applied to Caspian Sea level time series and their respective RMSE 
values that were calculated for the forecast validation periods, are tabulated in 
Table 4.1. ARFIMA model forecasts and their 95 % confidence intervals for the 
Caspian Sea level after 1977 and 1995 are illustrated in Fig. 4.10. RMSE values 
are 3.09 m after 1977 and 1.74 m after 1995. These RMSE values are higher than 
the corresponding values for ARMA and ARIMA models. Although the forecasts 
of ARMA and ARIMA models after 1977 are better than those of the ARFIMA 
model, the confidence bands of the ARFIMA model are more realistic. The upper 
bound of the ARFIMA model forecasts after 1977 is very close to the observed 
sea level with an RMSE value of 0.12 m. Forecasts and the confidence bands after 
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Fig. 4.9  Sample ACF of residuals for differencing lengths of 40, 60, 80 100, 120, 130, 135, 140, 
145 years for the period 1837–2009
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1977 and 1995 for the ARFIMA models were updated by Eq. (3.11) using the data 
of 1978–1979, and 1996–1998, respectively. These updated forecasts and their 
confidence bands are depicted in Fig. 4.10. When the ARFIMA forecasts were 
updated by the sea level data of 1978–1979 and 1996–1998, the resultant forecasts 
and their confidence bands improved significantly. RMSE values of the updated 
ARFIMA forecasts reduce to 1.37 m after 1979, which is less than half of the 
RMSE value of the forecast after 1977; and to 0.32 m after 1998, which is approx-
imately one-sixth of the RMSE value of the forecast after 1995. After updating, 
the observed Caspian Sea levels after 1979 are within the confidence bands of 
the forecasts of the ARFIMA model, as opposed to the confidence bands of the 
forecasts after 1979 by ARMA and ARIMA models. Furthermore, updating of 
the forecasts by the ARFIMA model, as shown in Fig. 4.10, has the capability of 
updating the trends. Hence, the statistical forecasting applications to the Caspian 
Sea level data show that the ARFIMA model has better capability for adapting to 
the abrupt sea level changes than the ARMA or ARIMA models.

ARFIMA model forecasts and their 95 % confidence band for the Caspian Sea 
level after 2009 are illustrated in Fig. 4.11. The Caspian Sea level forecast by the 
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ARFIMA model in 2039 is −24.5 m; the lower and upper bounds of the 95 % confi-
dence band in 2039 are −31.8 m and −18.6 m. The Caspian Sea level varied between 
−22 and −35 m in the last 25 centuries according to the paleo-reconstructions, 
reported by Golitysn (1995). The lower and upper bounds of the 95 % confidence 
band of the ARFIMA model prediction in 2039 are 3.2 m and 3.4 m above the corre-
sponding paleo-re-constructions reported by Golitysn (1995). Meanwhile, the Caspian 
Sea level projections in 2039 by seven AOGCMs, presented in Elguindi and Giorgi 
(2006), range between −31.9 m and −21.6 m with an ensemble mean of −28.8 m for 
A1B emission scenario and between −32.4 m and −22.1 m with an ensemble mean 
of −28.1 m for A2 emission scenario. Out of the seven models, only two AOGCMs 
that use A2 emission scenario and one AOGCM that uses A1b emission scenario 
predict an increase in the sea level in the twenty-first century. The ARFIMA model 
predicts an average of 0.081 m/year rise until 2039. The confidence band, estimated 
by the ARFIMA model, is a measure of the uncertainty involved in forecasting the 
Caspian Sea level. The size of the confidence band for the ARFIMA model prediction 
in 2039 is 13.3 m, which is comparable to the level of uncertainty found by Elguindi 
and Giorgi (2006) from the application of seven AOGCMs (the difference between 
the minimum and maximum projection in 2039 is approximately 10.3 m for A1b sce-
nario and 10.4 m for A2 scenario). From this comparison of the level of uncertainty of 
the pure statistical forecasts by the ARFIMA model against the model uncertainty in 
AOGCMs, it may be inferred that AOGCMs need improvements in their representa-
tions of the physical processes that drive Caspian Sea levels.

4.4  Trend Line-ARFIMA Model Forecasts

Between 1837 and 1932, the Caspian Sea level was rather stable, with a mean 
of −26.05 m and a standard deviation of 0.27 m. The trend line of the observed 
sea level between 1837 and 1932 (extended until 2009) is shown in Fig. 4.1. The 
residuals of the observed sea level time series from this linear trend are depicted 
in Fig. 4.12. Between years 1933 and 1977, the residuals have a mean value of 
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−1.62 m, and a minimum value of −2.41 m, observed in 1977. The absolute val-
ues of the residuals decrease during the 1978–1995 period, with the mean value 
of the residuals reducing to −1.19 m. The absolute values of the residuals are less 
than 0.5 m after 1991. The sudden drop in the Caspian Sea level started in 1932, 
and the sea level recovery started by the rise in 1977. The sea level trend after 
1990s is close to the 1837–1932 trend. The sample ACF, the periodogram, and the 
logarithm of the periodogram of the Caspian Sea level for the period 1837–2009, 
after removing the 1837–1932 linear trend, are shown in Fig. 4.13. These three 
figures in Fig. 4.13 demonstrate that the residuals from the 1837–1932 linear trend 
still possess long memory. The Hurst numbers H of the original data and the resid-
uals were estimated by the average of the Hurst numbers for the three estimation 
methods, mentioned earlier. The Hurst numbers before and after the removal of 
the 1837–1932 trend for 1837–1977, 1837–1995, and 1837–2009 periods are tabu-
lated in Table 4.2. A process has long-range dependence when 0.5 < H < 1, has 
short-range dependence when 0 < H < 0.5 and the observations are uncorrelated 
when H = 0.5. From Table 4.2 it may be inferred that the estimated Hurst numbers 
indicate long memory in the Caspian Sea level series. For 1837–1977, 1837–1995, 
and 1837–2009 periods, the fractional difference parameters (d = H − 0.5) after 
removal of the 1837–1932 trend were estimated as 0.43, 0.47, 0.498, respectively, 
confirming the long memory. Furthermore, the fractional difference parameters, 
after removal of the 1837–1932 trend, are further away from the stationarity limit 
(d = 0.5) when compared to the corresponding values before the removal of the 
linear trend.

ARFIMA models were applied for the 1837–1977, 1837–1995, and 1837–2009 
periods to the Caspian Sea level residuals from the 1837–1932 trend line that was 
extended until 1977, 1995, and 2009, respectively. The models that were devel-
oped by combining the Trend Lines with ARFIMA models, are referred to as 
TL(1837–1932)-ARFIMA(p,d,q)  models.  The  model  parameters  and  the  respec-
tive RMSE values are tabulated in Table 4.3. The residuals of the combined linear 
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trend-ARFIMA (TL-ARFIMA) models pass the portmanteau lack of fit test that 
was applied to the first 15 autocorrelations, and the cumulative periodogram test 
using 5 % Kolmogorov-Smirnov limits.

TL(1837–1932)-ARFIMA(p,d,q) model forecasts and their 95 % confidence band 
for the Caspian Sea level after 1977 and 1995 are demonstrated in Fig. 4.14a, b, 
respectively. RMSE values for these forecasts are 2.52 m after 1977 and 0.46 m after 
1995, which are lower than the corresponding values of the ARFIMA-only mod-
els (3.09 m and 1.74 m, given in Table 4.1). RMSE value of the TL(1837–1932)-
ARFIMA model forecast after 1995 reduced from 1.74 m to 0.46 m because the 
extended linear trend line, which is part of the TL(1837–1932)-ARFIMA model, 
represents the observed Caspian sea level trend after 1995. When TL(1837–1932)-
ARFIMA forecasts were updated by the Caspian sea level observations during 
1978–1979 and 1996–1998 periods, RMSE values of the updated forecasts became 
0.99 m after 1979 and 0.50 m after 1998. Updating by observations improved the 
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Fig. 4.13  Sample ACF, periodogram, and the logarithm of the periodogram of Caspian Sea lev-
els for the period 1837–2009 after removing the 1837–1932 trend

Table 4.2  The Hurst numbers before and after the removal of the 1837–1932 trend for 1837–
1977, 1837–1995, and 1837–2009 periods

Duration Hurst number

Original data 1837–1932 linear trend removed

1837–1977 0.95 0.93
1837–1995 0.99 0.97
1837–2009 0.999 0.998

4.4 Trend Line-ARFIMA Model Forecasts
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model forecasts after 1977 but did not improve the forecasts after 1995. Although 
TL-ARFIMA models may produce better forecasts than ARFIMA-only models if a 
representative trend line (TL model) can be found, combining the TL model with the 
ARFIMA model may limit the updating performance of the ARFIMA model.

Finally, the forecasts of the Caspian Sea level after 2009 were investigated for 
the TL-ARFIMA models. Since the physical reasons for the return of the Caspian 
sea level time series to their long term trend is not known, the continuation of 
the 1837–1932  trend  is not guaranteed after 2009. Consequently,  the 1837–2009 
trend was combined with the ARFIMA model to develop a combination model, 
TL(1837–2009)-ARFIMA(p,d,q).  The  trend  line  of  the  observed  sea  level 
between 1837 and 2009 is shown in Fig. 4.1. The residuals of the observed sea 
level time series from this linear trend are depicted in Fig. 4.12. The mean value 
of the residuals is 0.05 m and the standard deviation is 0.66 m. TL(1837–2009)-
ARFIMA(p,d,q) model parameters are given in Table 4.3.

The forecasts and their 95 % confidence bands for the Caspian Sea level after 
2009 for TL(1837–1932)-ARFIMA and TL(1837–2009)-ARFIMA models are 
depicted in Fig. 4.15a, b, respectively. Unlike the ARFIMA-only model, which 
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Fig. 4.14  a TL(1837–1932)-ARFIMA(1,0.43,0) combination model forecast after 1977, its 
95 % confidence interval and the updated forecast by sea level data of 1978–1979; b TL(1837–
1932)-ARFIMA(1,0.47,0) forecast after 1995, its 95 % confidence interval and the updated fore-
cast by sea level data of 1996–1998

4.4 Trend Line-ARFIMA Model Forecasts
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forecasts an average sea level rise of 0.081 m/year until 2039, TL(1837–1932)-
ARFIMA and TL(1837–2009)-ARFIMA models forecast average sea level drops 
of 0.011 m/year and 0.033 m/year, respectively. The Caspian Sea level forecast by 
TL(1837–1932)-ARFIMA model for 2039 is −27.2 m with the 95 % confidence 
interval (−29.2 m, −25.6 m). The TL(1837–2009)-ARFIMA model forecast for 
2039 is −27.8 m with the 95 % confidence interval (−31.5 m, −24.9 m). The size 
of the forecast 95 % confidence interval in 2039 is the lowest for TL(1837–1932)-
ARFIMA(1,0.498,0) model and is the highest for the ARFIMA(1,0.499,0) model. 
As discussed in Sect. 3.2, the forecast confidence interval size depends on the dif-
ference parameter d, the variance and probability distribution of the residuals, the 
forecast lead time l and the autoregressive and moving average coefficient estimates.

4.5  Conclusions

Forecasting performance of the ARMA, ARIMA, ARFIMA and TL-ARFIMA 
models were investigated for the annually averaged Caspian Sea level data, which 
are available since 1837. The sample ACFs, periodograms and the estimated Hurst 
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coefficients demonstrated that the historical Caspian Sea level signal possesses 
long-range dependence. In order to check the reliability of the developed models, 
the authors utilized portmanteau lack of fit and cumulative periodogram goodness-
of-fit tests as suggested by Box and Jenkins (1976). The ARIMA, ARFIMA and 
TL-ARFIMA models passed but those of the ARMA models failed the two good-
ness-of-fit tests.

The following conclusions may be drawn from this study:
i. One of the major challenges in statistical forecasting of a chaotic signal is to 

predict when to apply what model. The chaotic behavior of signals, like that of 
Caspian Sea level time series, renders the confidence band estimation and forecast 
updating components of forecasting quite significant for the forecast performance. 
In the case of the Caspian Sea level time series the forecast confidence bands and 
the forecast updating performance of ARFIMA models were shown to be superior 
compared to those of ARMA or ARIMA models. The updating component of the 
long memory model, described in Sect. 4.3, renders the forecasting model more 
reliable, as shown in the Caspian Sea level example. The aim of this study was not 
to perform point forecasting. Ray (1993) pointed out that the explicit modeling of 
long range dependence may not be too useful for point forecasting, but it can be 
important for confidence band estimation.

ii. According to the RMSE values tabulated in Tables 4.1 and 4.3, the forecast 
performance of ARMA, ARIMA, ARFIMA, and TL-ARFIMA models depends on 
the time period to which the models are applied. This is true especially for chaotic 
signals like Caspian Sea level time series.

iii. The lower and upper bounds of the 95 % confidence band (−31.8 m, 
−18.6 m) for the ARFIMA model sea level forecast for 2039 are 3.2 m and 3.4 m 
above the corresponding Caspian Sea level limits (as reported by Golitysn 1995) 
in the last 25 centuries. 13 m Caspian Sea level variation in the last 25 centu-
ries, as reported by Golitysn (1995), is surprisingly very close to the size of the 
confidence band of the ARFIMA model prediction for 2039, which is 13.3 m. 
Considering the level of uncertainty in AOGCM forecasts, the pure statistical 
forecasts as in the case of Caspian Sea level time series reported here, may give 
valuable insights about the future sea levels without utilizing the computationally 
intense AOGCM approach.

iv. Similar to the stand-alone ARFIMA forecast (without combination with 
a long term trend) that was performed in this study, two AOGCMs that used the 
A2 emission scenario and one AOGCM that used the A1b emission scenario out 
of seven models that were studied by Elguindi and Giorgi (2006), projected an 
increase in the Caspian Sea level until 2039. The size of the confidence interval 
of the ARFIMA model sea level prediction for 2039 is 13.3 m, which is approxi-
mately 30 % larger than the difference between the minimum and maximum pro-
jections of the AOGCMs for 2039.

v. Although TL-ARFIMA (ARFIMA combined with a long term trend) mod-
els may produce better forecasts than ARFIMA-only models if a representative TL 
model could be found, combining a TL model with the ARFIMA model may limit 
the updating performance of the ARFIMA model. Furthermore, since the physical 
reasons for the return of the Caspian Sea level time series to their long term trend 

4.5 Conclusions
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is not yet known, the continuation of the 1837–1932 trend is not guaranteed after 
2009. The fact that the chaotic dipping of the Caspian Sea level has returned to its 
long term trend is a fundamental phenomenon that needs physical explanation.

vi. The Caspian Sea level forecast for 2039 is −27.2 m with the 95 % confi-
dence band (29.2 m, −25.6 m) for TL(1837–1932)-ARFIMA model. It is −27.8 m 
with the 95 % confidence band (−31.5 m, −24.9 m) for TL(1837–2009)-ARFIMA 
model. TL(1837–1932)-ARFIMA and TL(1837–2009)-ARFIMA models forecast 
sea level drops averaging 0.011 m/year and 0.033 m/year, respectively. Similarly, 
five of the seven AOGCMs for A2 and six of the seven AOGCMS for A1b emis-
sion scenarios also project drops for the Caspian Sea level, as reported by Elguindi 
and Giorgi (2006). The size of the 95 % confidence band for the sea level forecast 
of 2039 is the lowest for TL(1837–1932)-ARFIMA(1,0.498,0) model and is the 
highest for the ARFIMA(1,0.499,0) model.

vii. While in hydrology various authors have considered long range dependence 
either by means of stationary long memory models [for example, the fractional 
Gaussian noise model of Mandelbrot and Van Ness (1968) and Mandelbrot and 
Wallis (1968)], or by nonstationary time trends [such as in Klemes (1974)], the sig-
nal of the Caspian Sea level time series seems to contain both a long term secular 
trend as well as a long range dependent behavior. As shown in this study, even after 
removing the long term trend from the Caspian Sea level time series, the residual 
time series still demonstrate long range dependent behavior. The example of the 
Caspian Sea level time series demonstrates that both the long range dependence 
and some secular long term trend may exist together in geophysical phenomena.
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Abstract For the region of Peninsular Malaysia and Malaysia’s Sabah-Sarawak 
northern region of Borneo Island, long sea level records do not exist. In such case 
the Atmospheric-Oceanic Global Climate Model (AOGCM) projections for the 
21st century can be downscaled to the Malaysia region by means of regression 
techniques, utilizing the short records of satellite altimeters in this region against 
the GCM projections during a mutual observation period. In this case study on 
the assessment of sea level change along the coastlines of Peninsular Malaysia 
and Sabah-Sarawak, the spatial variation of the sea level change is estimated in 
time by assimilating the global mean sea level projections from the AOGCM 
simulations to the satellite altimeter observations along the subject coastlines. 
Details of this case study were presented in Ercan et al. (2013) at Hydrol Process, 
27(3):367–377.

Keywords  Rregression  techniques,  •    Satellite  altimeter  observations  •    GCM 
projections  •   Global mean sea level

5.1  Introduction

For the region of Peninsular Malaysia and Malaysia’s Sabah-Sarawak north-
ern region of Borneo Island, long sea level records do not exist. In such case 
the Atmospheric-Oceanic Global Climate Model (AOGCM) projections for the 
twenty-first century can be downscaled to the Malaysia region by means of regres-
sion  techniques,  utilizing  the  short  records  of  satellite  altimeters  in  this  region 
against the GCM projections during a mutual observation period. In this case 
study on the assessment of sea level change along the coastlines of Peninsular 
Malaysia and Sabah-Sarawak, the spatial variation of the sea level change is 
estimated in time by assimilating the global mean sea level projections from the 
AOGCM simulations to the satellite altimeter observations along the subject coast-
lines. Details of this case study were presented in Ercan et al. (2013).

Chapter 5
Case Study II: Sea Level Change at 
Peninsular Malaysia and Sabah-Sarawak

A. Ercan et al., Long-Range Dependence and Sea Level Forecasting,  
SpringerBriefs in Statistics, DOI: 10.1007/978-3-319-01505-7_5, © The Author(s) 2013
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Climate  models  provide  credible  quantitative  estimates  of  future  climate  change, 
particularly at continental scales and above (Randall et al. 2007). However, due to their 
coarse spatial grid resolution, their description of the spatial variation of the sea level 
change at regional and smaller spatial scales is too coarse. In analyzing Fig. 10.32 in 
Meehl et al. (2007a) for the projected geographical variation of local sea level change, 
if one compares this spatial variation with the observed spatial distributions of the sea 
level change in Figs. 5.15a and 5.16a in Bindoff et al. (2007), one may conclude that 
the projected spatial distribution of sea level change by AOGCMs does not account for 
the observed spatial distribution, especially over the Southeast Asia region. Therefore, 
a prudent projection in a region where the local ground-based observations are for a 
short time period, could use the AOGCM projections for the global average sea level 
change, but then distribute these projections in space over the Peninsular Malaysia 
and Sabah-Sarawak coastlines according to the observed patterns based on the satel-
lite altimetry data. Hence, in this study the spatial distribution of the sea level change 
along the Peninsular Malaysia and Sabah-Sarawak coastlines that was observed by sat-
ellite altimeters in time, is merged with the AOGCM projections of the global mean 
sea level change during the twenty-first century in order to better predict the spatial 
variation of the local sea level change along the coastal regions of Malaysia.

The confidence in the predictions of AOGCM simulations comes from the found-
ing of the models in accepted physical principles and from their ability t reproduce 
observed features of current climate and past climate evolution (Randall et al. 2007). 
In this study the global mean sea level estimates in monthly intervals from various 
AOGCM simulations under climate scenarios 20C3 M (the scenario representing the 
climate of the twentieth Century), and three SRES greenhouse emission scenarios 
(B1, A1B and A2) were obtained from the World Climate Research Programme’s 
(WCRP’s) Coupled Model Intercomparison Project phase 3 (CMIP3) multi-model 
dataset (Meehl et al. 2007b). The number of AOGCM simulations that were per-
formed by each model for each of the four scenarios is tabulated in Table 5.1. A total 

Table 5.1  Number of AOGCM simulations (models and applied emission scenarios) used to 
assess sea level rise around Peninsular Malaysia and Sabah-Sarawak coastlines  Ercan et al. (2013)

Model Number of simulations per scenario

20C3 M SRES B1 SRES A2 SRES A1B

CGCM3.1 (2004)a 1 1 1 1
GISS-AOM (2004)b 2 2 0 2
GISS-ER (2004)c 9 1 1 5
MIROC3.2(hires) (2004)d 1 1 0 1
MIROC3.2(medres) (2004)d 3 3 3 3
ECHO-G (1999)e 3 3 3 3
MRI-CGCM2.3.2a (2001)f 5 5 5 5

aMcFarlane et al. (1992), Flato (2005), Pacanowski et al. (1993)
bRussell et al. (1995), Russell (2005)
cSchmidt et al. (2006), Russell et al. (1995)
dK-1 Developers (2004)
eRoeckner et al. (1996), Legutke and Maier-Reimer (1999)
fShibata et al. (1999), Yukimoto et al. (2001)
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of 73 projections were analyzed for the seven AOGCMs available: 24 projections for 
the 20C3 M scenario, 16 projections for the SRES B1 scenario, 13 projections for the 
SRES A2 scenario, and 20 projections for the SRES A1B scenario. References to the 
AOGCMs used were reported in Ercan et al. (2013).

5.2  Observed Satellite Altimeter Data

In this case study, linear regression analyses were performed both for monthly 
tidal gauge and monthly satellite altimeter observations along Peninsular Malaysia 
and Sabah-Sarawak coastlines. The results of these analyses showed that slopes 
of the linear trend lines are significantly greater for the satellite altimeter obser-
vations when compared to those for the tidal gauge observations. Meanwhile, 
there is no missing data in satellite altimeter observations for any month during 
the observation period, and the uncertainties in satellite altimeter observations are 
well described. Furthermore, it was possible to correct the errors in the satellite 
observations. Therefore, the satellite altimeter data were utilized as the basis for 
assimilating the future sea level projections that are derived from the global mean 
sea level projections from the AOGCM simulations during the twenty-first century, 
to locations around Peninsular Malaysia and Sabah-Sarawak coastlines.

The combined TOPEX/Poseidon, Jason-1 and Jason-2/OSTM sea level fields in 
monthly intervals (CSIRO 2010) were used in the satellite altimeter data linear trend 
analyses. For the satellite altimeter data, the annual and semi-annual signals were 
removed; and the inverse barometer and glacial isostatic adjustment (GIA) correc-
tions were done (CSIRO 2010). In order to perform a sensitivity analysis for these 
corrections, the satellite altimeter data with and without these corrections were ana-
lyzed. The sea level rise rates that were calculated by linear regression analyses of 
the satellite altimeter data around Peninsular Malaysia coastline with and without 
the application of the three correction methods are tabulated in Table 5.2.

Around Peninsular Malaysia coastline, the sea level rise rates that were cal-
culated from the satellite altimeter data when the annual and semi-annual signals 
were removed, are less by an average of 0.29 mm/year for Peninsular Malaysia 
when compared to the rates without removing the signals. The Inverse Barometer 
is the correction for variations in the sea surface height due to atmospheric pres-
sure variations (Ponte and Gaspar 1999; Dorandeu and Le Traon 1999). Around 
Peninsular Malaysia coastline, the sea level rise rates that were calculated from 
the satellite altimeter data with the inverse barometer correction are smaller with 
an average of 0.43 mm/year for Peninsular Malaysia when compared to the rates 
without any correction. Modern measurements of the rate of sea level rise are sig-
nificantly contaminated by the influence of the ongoing process of Glacial Isostatic 
Adjustment (GIA) due to the most recent deglaciation event of the Late Quaternary 
ice-age (Peltier 2009). The GIA correction applied to Topex/Poseidon-derived 
altimetric measurements was demonstrated in Peltier (2002). Using the ICE-4G 
(VM2) model of the GIA process, described in Peltier (1994, 1996), analyses 
demonstrated that such measurements would be biased down by approximately 

5.1 Introduction
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0.3 mm/year. Table 5.2 depicts that the sea level rise rates that were calculated 
from the satellite altimeter data with GIA correction are greater with an average 
of 0.32 mm/year for Peninsular Malaysia than the rates without any correction. 
The sea level rise rates that were calculated from the satellite altimeter data, when 
all the three corrections are applied, are smaller with an average of 0.43 mm/year 
for Peninsular Malaysia than the rates without any correction. When all the three 
corrections are applied, the averages of the sea level rise rates around Peninsular 
Malaysia coastline that were calculated from the satellite altimeter data between 
January 1993 and March 2010 are 1.06 mm/year larger than the global average.

5.3  Assimilating AOGCM Simulations to Satellite 
Observations

The determination of the variation of the sea level change with respect to the spa-
tial location along the Peninsular Malaysia and Sabah-Sarawak coastlines is based 
on the linear trend analyses of the observed satellite altimetry data. Using monthly 

Table 5.2  Sea level rise rates (mm/yr) calculated by linear regression analyses of the satellite 
altimeter data around Peninsular Malaysia coastline with and without applying the correction 
methods Ercan et al. (2013)

Longitude/Latitude Case 1a Case 2b Case 3c Case 4d Case 5e

Peninsular Malaysia
100E/6 N 6.33 6.63 6.21 5.94 6.08
99E/5 N 6.47 6.82 6.53 6.11 6.45
104E/1 N 4.49 4.90 4.17 3.95 3.87
105E/2 N 4.23 4.65 3.91 3.70 3.68
104E/3 N 3.37 3.73 3.03 2.94 2.88
104E/4 N 3.22 3.59 2.87 2.79 2.73
104E/5 N 3.26 3.58 2.85 2.90 2.78
103E/6 N 4.04 4.34 3.59 3.59 3.46
103E/7 N 4.15 4.46 3.67 3.68 3.49
102E/7 N 4.94 5.23 4.49 4.46 4.29
101E/7 N 5.80 6.05 5.38 5.33 5.20
99E/6 N 5.75 6.05 5.73 5.46 5.70
99E/7 N 5.15 5.40 5.04 4.82 5.02
Average 4.71 5.03 4.42 4.28 4.28
GMSLf 2.94 3.38 2.92 2.81 3.22

aNo correction
bGIA correction was performed
csemi-annual signals were removed
dInverse barometer correction was performed
eAnnual and semi-annual signals were removed; Inverse barometer and GIA corrections were 
performed
fGlobal Mean Sea Level
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satellite altimeter data of January 1993–December 2000 and using monthly twen-
tieth century global mean sea level predictions of various AOGCMs, one can write 
the below regression equation at each satellite altimeter location i and for AOGCM 

j,  and  estimate  the  equation  coefficients  aij and bij such that 
∑

k

(

εi , j ,k

)2
 is mini-

mized for each altimeter location and AOGCM (Ercan et al. 2013).

Here yS A is the satellite observation of the sea level, yG M SL_20c3m is 20th century 
global mean sea level (GMSL) prediction, and ε is the error term. Then one can 
estimate the sea level y at satellite altimeter location i at time k using twenty-first 
century global mean sea level projections of AOGCM j for SRES B1, A1B and A2 
scenarios by (Ercan et al. 2013)

where aij and bij are linear regression coefficients estimated from Eq. (5.1) for sat-
ellite altimeter  location i and AOGCM j. After solving Eqs.    (5.2)–(5.4) for each 
satellite altimeter location i and for each AOGCM j at time k in the twenty-first 
century, means and 95 percent confidence bands of the sea level rise rates and cor-
responding sea level rise estimates could be obtained for twenty-year intervals in 
the twenty-first century using the three emission scenarios. The linear regressions 
between the observed local sea level and global mean sea level in the late twenti-
eth century, simulated by AOGCMs, are assumed to hold during the twenty-first 
century. However, the nonlinearity in AOGCM projections are reflected in the 
local sea level projections through the regression relationships that are established 
by means of the historical data.

5.4  Sea Level Change

Means and lower and upper bounds of 95 percent confidence intervals of the sea 
level change rate projections around Peninsular Malaysia and Sabah-Sarawak 
coastlines are depicted in Figs. 5.1, 5.2, 5.3, respectively using the ensem-
ble of all the three SRES scenarios and all the available AOGCMs (tabulated in 
Table 5.1). These figures show the average sea level change rates in twenty-year 
increments in the twenty-first century and the average rate during 2001–2100. 
The highest sea level rise rate occurs at 100E/6 N location with mean 5.17  
mm/yr with a confidence interval of (0.02, 23.03) mm/yr at Peninsular Malaysia 
and at 119E/4 N location with mean 10.64 mm/yr with a confidence interval of 
(0.00, 43.86) mm/yr at Sabah and Sarawak during 2001–2100. The lowest sea 

(5.1)ySA,i,j,k = ai,jyGMSL_20c3m,j,k + bi,j + εi,j,k

(5.2)ysresb1,i,j,k = ai,jyGMSL_sresb1,j,k + bi,j

(5.3)ysrea1b,i,j,k = ai,jyGMSL_srea1b,j,k + bi,j

(5.4)ysresa2,i,j,k = ai,jyGMSL_sresa2,j,k + bi,j

5.3 Assimilating AOGCM Simulations to Satellite Observations
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Fig. 5.1  Mean sea level rise rate (mm/yr) projections by means of the assimilated available AOGCM 
projections using the ensemble of SRES B1, A1B and A2 scenarios in the twenty-first century: a 
around Peninsular Malaysia coastline, b around Sabah and Sarawak coastline Ercan et al. (2013)
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Fig. 5.2  Lower bounds of 95 percent confidence interval of sea level rise rate (mm/yr) projec-
tions by means of the assimilated available AOGCM projections using the ensemble of SRES 
B1, A1B and A2 scenarios in the twenty-first century: a around Peninsular Malaysia coastline, b 
around Sabah and Sarawak coastline Ercan et al. (2013)
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level rise rate occurs at 104E/1 N location with mean 2.53 mm/yr with a confi-
dence interval of (0.04, 11.89) mm/yr at Peninsular Malaysia and at 110E/3 N 
location with mean 4.32 mm/yr with a confidence interval of (-0.02, 18.52) mm/
yr at Sabah and Sarawak during 2001-2100. In the twenty-first century, Figs. 5.1-
5.3 show clearly that the means and upper bounds of 95 percent confidence inter-
vals of sea level rise rates are increasing with time toward the future both for 
Peninsular Malaysia and for Sabah and Sarawak coastlines.
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Fig. 5.3  Upper bounds of 95 percent confidence interval of sea level rise rate (mm/yr) projec-
tions by means of the assimilated available AOGCM projections using the ensemble of SRES 
B1, A1B and A2 scenarios in the twenty-first century: a around Peninsular Malaysia coastline, b 
around Sabah and Sarawak coastline Ercan et al. (2013)

Table 5.3  Summary of mean sea level rise rate (mm/yr) predictions and 95 percent confidence 
intervals from all available AOGCM projections around Peninsular Malaysia and Sabah and 
Sarawak coastlines for the ensemble of SRES B1, A1B and A2 scenarios (LB: lower bound; UB: 
upper bound)

Time Interval

2001 2020 2021–2040 2041–2060 2061–2080 2081–2100 2001–2100

Peninsular Malaysia
LB 0.02 0.02 0.02 0.02 0.02 0.02
Mean 2.19 3.02 4.06 4.77 5.15 3.90
UB 8.92 13.24 18.67 22.15 23.54 17.73
Sabah-Sarawak
LB −0.01 −0.01 −0.01 −0.02 −0.02 −0.01
Mean 4.02 5.47 7.29 8.51 9.21 6.98
UB 14.45 21.43 30.23 35.86 38.11 28.70

5.4 Sea Level Change
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Summary of mean sea level rise rate projections in mm/yr with the correspond-
ing 95 percent confidence intervals from all available AOGCM projections around 
Peninsular Malaysia and Sabah and Sarawak coastlines for the ensemble of SRES 
B1, A1B and A2 scenarios are tabulated in Table 5.3. When all the three SRES sce-
narios for the whole coast of Peninsular Malaysia during 2001–2100 are considered, 
the mean sea level rise rate is 3.90 mm/year with the confidence interval of (0.02, 
17.73) mm/yr. On the other hand, when all the three SRES scenarios for the whole 
coast of Sabah and Sarawak during 2001–2100 are considered, the mean sea level 
rise rate is 6.98 mm/year with the confidence interval of (−0.01, 28.70) mm/yr.

The sea level rise can be estimated by multiplying the sea level rise rate esti-
mate by the duration. Means of the sea level rise projections in 2100 (since year 
2000) are depicted on the map of Peninsular Malaysia and Sabah-Sarawak in 
Fig. 5.4, where sea level rises are represented by the size of the circles.

In 2100, the highest sea level rise occurs at 100E/6 N location with mean 
0.517 m with a confidence interval of (0.002, 2.303) m at Peninsular Malaysia; 
and at 119E/4 N location with mean 1.064 m with a confidence interval of (0.000, 
4.386) m at Sabah and Sarawak. In 2100, the lowest sea level rise occurs at 
104E/1 N with mean 0.253 m with a confidence interval of (0.004, 1.189) m at 
Peninsular Malaysia; and at 110E/3 N location with mean 0.432 m with a confi-
dence interval of (−0.002, 1.852) m at Sabah and Sarawak.

5.5  Conclusions

In this case study on the assessment of sea level change along the coastlines of 
Peninsular Malaysia and Sabah-Sarawak, the spatial variation of the sea level 
change was estimated by assimilating the global mean sea level rise projections 

Fig. 5.4  Means of the sea level rise projections around Malaysia coastlines using the ensemble 
of SRES B1, A1B and A2 scenarios in 2100 Ercan et al. (2013)
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from the AOGCM simulations to the satellite altimeter observations along these 
coastlines.

The sea level around the Peninsular Malaysia coastlines is projected by means 
of the assimilated AOGCM projections to rise with a mean between 0.253 and 
0.517 m in 2100. The upper bound of the 95 percent confidence interval for 
the sea level rise around Peninsular Malaysia is between 1.189 and 2.303 m in 
2100. The highest sea level rise occurs at the north-east and north-west regions of 
Peninsular Malaysia. The sea level rise estimates that are based solely on the local 
observations by satellite altimeters around Peninsular Malaysia are between 0.273 
and 0.645 m in 2100 (assuming the observed rate continues in the twenty-first  
century). These estimates are close to the mean projections that are assimilated 
from the AOGCM projections to the Peninsular Malaysia coastal areas by means 
of the local observations, and are within the 95 percent confidence intervals of the 
mean projections.

The sea level around Sabah and Sarawak coastlines is projected by means 
of the assimilated AOGCM projections to rise with a mean between 0.432 and 
1.064 m in 2100. The upper bound of the 95 percent confidence interval for the 
sea level rise at Sabah and Sarawak is between 1.852 and 4.386 m in 2100. The 
highest sea level rise at Sabah and Sarawak is estimated to occur at north and east 
sectors of Sabah. The sea level rise estimates that are based solely on the local 
observations by satellite altimeters around Sabah and Sarawak are between 0.382 
and 0.700 m in 2100. These estimates are close to the mean projections that are 
assimilated from the AOGCM projections to Sabah and Sarawak coastal areas by 
means of the local observations, and are within the 95 percent confidence intervals 
of the mean projections.

Elevation maps of the coastal regions of the study area with high horizontal 
grid resolution and high vertical accuracy are necessary for the performance of 
realistic sea inundation analyses. The vertical accuracy should be at least in the 
order of centimeters in order to capture the spatial details of the sea level rise. 
While it is difficult to specify a specific value for the horizontal grid resolution, it 
should capture local high and low areas.
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Abstract Determining when to apply what model is a major challenge in statisti-
cal forecasting of a chaotic signal. The chaotic behavior of signals, like that of 
Caspian Sea level time series, renders the confidence band estimation and forecast 
updating components of forecasting quite significant for the forecast performance. 
In this chapter, a brief summary and conclusions are provided for the monograph 
“Long-Range Dependence and Sea Level Forecasting”.

Keywords  Llong-range  dependence  •    Sea  level  forecasting  •  Chaotic  sig-
nals  •  ARFIMA models

Determining when to apply what model is a major challenge in statistical fore-
casting of a chaotic signal. The chaotic behavior of signals, like that of Caspian 
Sea level time series, renders the confidence band estimation and forecast updat-
ing components of forecasting quite significant for the forecast performance. The 
long-range dependence concept, and the methodologies for the estimation of long-
range dependence index (Hurst Number) were presented in Chap. 2. The forecast-
ing methodology for ARFIMA models, the uncertainty estimation of forecasts and 
the updating as new data become available were provided in Chap. 3. It was shown 
that the forecast confidence interval size depends on the probability distribution of 
the residuals, forecast lead time, the difference parameter d, and the autoregressive 
and the moving average coefficients for ARFIMA models.

In Chap. 4, the forecasting performance of the ARMA, ARIMA, ARFIMA and 
TL-ARFIMA models were investigated for the annually averaged Caspian Sea 
level data, which are available since 1837. The forecast confidence bands and the 
forecast updating performance of ARFIMA models were shown to be superior 
compared to those of ARMA or ARIMA models. The updating component of the 
long memory model makes the forecasting model more reliable as shown in the 
Caspian Sea level example. Considering the level of uncertainty in AOGCM fore-
casts, the pure statistical forecasts such as for the Caspian Sea level case reported 

Chapter 6
Summary and Conclusion

A. Ercan et al., Long-Range Dependence and Sea Level Forecasting,  
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here may give valuable insights about the future sea levels without utilizing the 
computationally intense AOGCM approach.

While in hydrology various authors have considered long range dependence 
either by means of stationary long memory models [for example, the fractional 
Gaussian noise model of Mandelbrot and Van Ness (1968) and Mandelbrot and 
Wallis (1968)], or by nonstationary time trends (such as in Klemes (1974)), the 
signal of the Caspian Sea level time series seems to contain both a long term secu-
lar trend as well as long range dependent behavior. The example of the Caspian 
Sea level time series has shown that both the long range dependence and some 
secular long term trend may exist together in geophysical phenomena, and statis-
tical modeling of a time series may be performed by the combination of a trend 
component and a long memory component.

Instead of the infinitely long differencing lengths, finite differencing lengths for 
the ARFIMA models were utilized due to the finite duration of the available sea level 
record. Sample ACFs of the residuals were compared for various differencing lengths, 
and the one that minimizes the correlation structure in the sample ACFs was selected. 
Confidence intervals and the forecast updating methodology, provided for ARIMA 
models in Box and Jenkins (1976), were modified for the ARFIMA models. The con-
fidence intervals of the forecasts were estimated utilizing the probability densities of 
the residuals without assuming a known distribution. In the literature, normal distribu-
tion of the residuals is usually assumed for the estimation of the confidence intervals.

In order to check the statistical model reliability, portmanteau lack of fit and 
cumulative periodogram tests as model diagnostic tools (Box and Jenkins 1976) 
were introduced and utilized in the Caspian Sea level example case.

Sea level change has been also studied by AOGCMs (Gregory et al. 2001; 
Meehl et al. 2007a). There is substantial variability and uncertainty in the spatial 
distribution of sea level change among all GCMs (Meehl et al. 2007a). Climate 
models provide credible quantitative estimates of  future climate change, particu-
larly at continental scales and above (Randall et al. 2007). However, due to their 
coarse spatial grid resolution, their description of the spatial variation of the sea 
level change at regional and smaller spatial scales is too coarse.

In the case study of Peninsular Malaysia and Sabah-Sarawak coastlines on 
the assessment of sea level change along the coastlines of Peninsular Malaysia 
and Sabah-Sarawak, as reported in Chap. 5, the spatial variation of the sea 
level change was estimated by assimilating the global mean sea level projec-
tions from the AOGCM simulations to the satellite altimeter observations along 
the Malaysian coastlines (Ercan et al. 2013). The determination of the variation 
of the sea level change with respect to the spatial location along the Peninsular 
Malaysia and Sabah-Sarawak coastlines was based on the linear trend analyses of 
the observed satellite altimetry data. Using the observed monthly satellite altim-
eter data and using monthly twentieth century global mean sea level projections 
of various AOGCM models, a regression equation at each satellite altimeter loca-
tion for each AOGCM was written, and the corresponding regression coefficients 
were estimated. The highest sea level rise occurs at the north-east and north-west 
regions of Peninsular Malaysia and at north and east sectors of Sabah.

http://dx.doi.org/10.1007/978-3-319-01505-7_5
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In the future, sea inundation studies with fine resolution topographic maps can 
be performed based on the sea level projections of Caspian Sea and of the coast-
lines of Malaysia with priority given to urban, industrial, agricultural, touristic, 
and historical areas. Based on these projections, the impact of the sea level change 
in these regions can then be evaluated.

Statistical modeling and forecasting approaches may be investigated for other 
geophysical time series which may also exhibit a trend and a long memory compo-
nent, as was found in the historical mean sea level data of the Caspian Sea levels.
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