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In its formative years, from the 1970s through the 1990s, sabermetrics was pri-

marily an amateur undertaking. Publications were aimed at a relatively small

audience of baseball fans. To be sure, this ever-growing group of aficionados

brought a lot of sophistication to baseball analysis, and were constantly looking

for statistical insights beyond the listings of the top ten batters found in popular

newspapers and magazines. But their influence on the baseball profession was

very limited. A few consultants like Craig Wright developed temporary relation-

ships with various teams, but none were able to stay long enough to create a per-

manent sabermetrician staff position. (See Rob Neyer’s November 11, 2002, arti-

cle on ESPN.com.1) All of this changed, however, in 2002 with the hiring of Bill

James by the Boston Red Sox. With that move, we have seen the admittance of

the foremost proponent of sabermetrics into the top echelon of professional base-

ball management. The art and science of careful statistical analysis, it now

seems, had made it into the big leagues.

Since the publication of the first edition of Curve Ball in 2001, we have been

overwhelmed by the positive responses from readers and critics. We’re pleased

with the reception, of course, but we don’t want to rest on our laurels. Like a

pitcher refining his repertoire, we’ve revised, expanded, and updated the book

for its publication in this paperback edition. Several readers and critics took us

Preface to the Paperback Edition
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to task for the lack of an index and a glossary. These have been added. And so has

a chapter that analyzes the conventional wisdom of three standard strategies—

stealing bases, the sacrifice bunt, and the intentional walk—in various game sit-

uations. An appendix about tabletop baseball games (formerly available only

online) has also been added to clarify the material about board game models dis-

cussed in Chapter 1. And a significant number of examples from the original text

have been updated with data through the 2002 season, including its dramatic

World Series, as well as the extraordinary performance of Barry Bonds.

We would like to extend our warm thanks to all of the readers and reviewers

who have been so appreciative of Curve Ball, and especially those who have

taken the time to make valuable suggestions on the book’s improvement.

Jim Albert

Jay Bennett

January 2003
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The public seems to have an insatiable appetite for baseball statistics. Evidence

for this assertion can be found everywhere. Baseball statistics in the form of box

scores, lists of player batting averages, and compilations of pitcher records are

published (and revised daily) in newspapers and on websites. Sportscasters on

television and radio quote them constantly. Callers to talk radio shows (many of

whom probably grudgingly endured math classes in school) cite them selectively

to make a point. Baseball encyclopedias, annuals, and yearbooks provide row

after row of numbers through which baseball fans can wade (much as Kevin

Costner waded through the corn in Field of Dreams), imbibing the game through

statistics. A true fan can disappear into these books for hours on end to emerge

freshened and enlightened. Even a film as emotional and nostalgic as Field of

Dreams featured Costner quoting the statistics of Shoeless Joe Jackson, and had

James Earl Jones presenting an oration on the meaning of baseball while

cradling a baseball encyclopedia in his arms.

The uses of statistics in baseball vary. Major League Baseball, of course, is

first and foremost a form of entertainment. Statistics on the players and teams

are used to supplement the fans’ enjoyment. Sportscasters broadcasting a game

cite the pitcher’s and batter’s statistics to heighten the suspense of the con-

frontation between the two and the possible strategies each might use to gain an

edge. And so it is that almost any situation that arises in the game presents an

opportunity for the color analyst to cite a related statistic:

xv
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1. With an excellent runner on first base, the fan is treated to

statistics on the runner’s percentage of success in stealing second

base, the pitcher’s ability to prevent the runner from attempting

the steal, or the catcher’s success in gunning down runners

attempting to steal. Often the viewer or listener will be treated to

all three.

2. When a closing reliever enters the game in the late innings to

preserve a victory, it is de rigueur for the sportscaster to inform

the listener or viewer of the number of times the pitcher has

succeeded and failed in saving the game. Also often required: data

on how good the team is at holding on to the lead.

3. The appearance of a pinch hitter immediately elicits a brief

history of the new batter’s success against the pitcher, and against

comparable pitchers, and against pitchers in this kind of

situation. . . .

The leisurely pace of a baseball game not only makes such recitations possible,

it makes them desirable to many fans of the game, an aid to increasing drama

and sustaining interest.

And it’s not only fans who have an interest in statistics. Baseball is both a

vocation for professional athletes and a leisure activity for amateurs. But in

either case, it is a highly competitive and highly measurable activity, and it is

only human nature for those who are involved to want to know exactly how well

they are doing. Baseball statistics fulfill this “yardstick” role for players, of

course, but also for a team’s management (owners, managers, and coaches, for

example). They use statistics in making strategy decisions on the field, in plan-

ning player development programs, and in putting together teams. And on the

business side of the professional game, certainly, baseball statistics provide

ammunition in salary negotiations.

Off the field, gamblers have long been interested in baseball, today making

bets to the tune of $30 million dollars annually (Total Baseball, p. 667).

Analyzing the statistics of the game to gain an edge is a necessity in wagering.

While football overtook baseball in the gambling arena (with three times the

amount wagered on baseball in recent years), baseball has provided a gaming

venue that is totally dependent on statistics—no actual play required! In the

early 1980s, a small group of baseball enthusiasts began to gather annually at a

restaurant in Manhattan (La Rotisserie Française) to draft teams for every new

baseball season. While the names of the players and their statistics were all real,
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the teams and the league itself were a complete illusion, the dream of fans who

wanted to act out the fantasy of being a major-league general manager. The

basic game was (and is) very simple. Each player drafts a team of baseball play-

ers, taking names from the 30 major-league teams. Throughout the year, the

actual statistics for the players are counted for the fantasy teams that drafted

them. At the end of the season, using a variety of scoring algorithms, the team

with the best stats is declared champion. Rotisserie Baseball (or Fantasy League

Baseball) has so expanded in popularity that next to stock market analysis, it

may be the most widespread application of statistics in the United States. The

concept has expanded to Fantasy League Football, Fantasy League Basketball,

even Fantasy League NASCAR Racing (so we are told). To us, at least, this is a

unique idea: statistics spawning an entertainment industry!

Unlike other major sports, in which interest in statistics is confined almost

exclusively to the season in which the games are being played, baseball discus-

sions appear in the media throughout the year. In a sense, the baseball off-sea-

son, with its own schedule of awards and winter meetings leading up to spring

training, has a life of its own. The merits of various awards (Cy Young, MVP, and

Rookie of the Year) and honors (election to the Hall of Fame) are debated annu-

ally in statistical terms. (Bill James wrote an entire book, The Politics of Glory,

on the subject of Hall of Fame election.) Off-season trades are evaluated with

reference to player statistics. Multiyear, multimilllion-dollar contracts are ana-

lyzed in terms of stats. Clearly, it is statistics that provide the fuel for hot-stove

leagues (which have expanded from the neighborhood tavern to talk radio). In

the dead of winter, it might be said, statistics can keep the game alive.

Given our inundation in baseball statistics, given the year-round attention

thousands devote to the topic, one may wonder what in the world we hope to add

in this publication. To put it simply, we wish to contribute a statistician’s per-

spective to this massive collection of data. This statement may give you pause.

You may ask who is collecting all this data except statisticians, and once the

data have been collected, sorted, and totaled—clearly, something that’s already

been accomplished—isn’t the statistician’s job done? Actually, for a statistician,

once the data have been compiled (whether it’s baseball data, medical data, edu-

cation data, whatever), the job has only started. It is the statistician’s aim to

understand the underlying structure in a data set and to elicit the truths hidden

within it. The inspiration and imagination needed to accomplish this requires a

kind of art from the statistician, a reason why the pro forma production of pie

charts, bar charts, and t-tests is often ineffective in statistics, and indicative of

poor statistical analysis.

INTRODUCTION xvii



At this point, we have to make a difficult and maybe boastful-sounding dis-

tinction in order to express what we mean when we talk about a statistician’s

perspective. It may seem paradoxical, but most sports statisticians are not stat-

isticians. We know that sounds like most chocolate candy is not candy, but bear

with us. We use the term “sports statisticians” to refer to those people who work

for sports teams, sports leagues, and media covering sporting events and whose

main job is to record data from the sporting event, summarize the data in totals

and averages, monitor records, and identify interesting patterns in the data that

might be used by broadcasters or by teams in bargaining with players. Although

somewhat dated now, in 1978, Arthur Friedman, a sports statistician for many

New York teams including the Mets, Rangers, Knicks, and Jets, documented the

basics of the job in The World of Sports Statistics. We guarantee that you won’t

find any references to linear regression or standard deviation in Friedman’s

description of the world he inhabits. Yet these are among the most basic tools

and terms taught in statistics courses in high school and college, and the on-the-

job tools of the professional statistician.

Sports statisticians do an excellent job of addressing the information needs of

their audience: management, athletes, broadcasters, and fans. However, this

audience is unaware of or indifferent to the fact that statistical analysis can be

performed at a higher level—and one that can be very rewarding because it can

lead to new levels of understanding. We are reminded of a story once told by Bud

Goode, a successful consultant for the NFL and a syndicated columnist on sports

statistics. While he had great success in selling his services to the NFL, Goode

found great resistance in persuading baseball management of the value of his

work. Meeting with the Los Angeles Dodgers, he told Walter Alston, their Hall of

Fame manager, that through his statistical analysis he could gain the Dodgers

half a run per game—a sizable increment. Alston described this wondrous prom-

ised result to one of his coaches, Danny Ozark, who responded, “How do you

score half a run?” Now, Ozark was never known as a deep thinker about num-

bers. “Half this game is 90 percent mental,” is only one of a full page of

Ozarkisms from Baseball’s Greatest Quotations. Still, it does give a picture of the

circumscribed horizon of many people toward more sophisticated uses of statis-

tical techniques. To paraphrase another Ozarkism, too often this audience’s lim-

its are limitless when it comes to statistics.

Because of the limited demands of fans, players, and management, sports

statisticians have not found it necessary to employ or even be trained in stan-

dard statistical applications or theories. As Goode discovered, being too sophisti-

cated about the subject can actually be a deterrent. Nonetheless, innovative sta-
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tistical research has been and continues to be done with baseball data. At first,

professional statisticians, interested in sports statistics but left unsatisfied by

the analyses in the national media, began exploring baseball data on their own.

Then, in the 1950s, out of their love for baseball and statistics and for the sheer

fun of it, professionals began to apply their skills to baseball data. Soon their

results were published in conference journals and in professional journals.

Only rarely have these works caught the attention of the media and thereby

the public. In the past, the majority of professional statistics colleagues looked

somewhat askance at these efforts, not unlike parents who chastised their chil-

dren for ignoring their studies to play baseball (in past generations, of course,

before ballplayers were multimillionaires). Recently, however, this attitude has

changed. Along with other scientific pursuits, the statistics profession has found

itself somewhat isolated from the public, to whom its methods appear arcane

and its goals at best a mystery. What better way to reconnect to the public (and

especially the nation’s youth) than through the application of statistics to

sports? In the 1990s, the American Statistical Association created a section on

Statistics in Sports, and the International Statistical Institute (ISI) created a

Sports Statistics Committee.

As described in Jay Bennett’s snapshot review of baseball statistical research

in Statistics in Sport, advanced use of statistics has not been applied exclusively

by professionals. Members of SABR, the Society of American Baseball Research

(the root of the term “sabermetrics”), also recognized deficiencies in the presen-

tation of baseball statistics. By means of its Baseball Research Journal and By

the Numbers newsletter, a dedicated coterie of members have made intriguing

analyses of baseball data. Several of these sabermetricians (Bill James, Pete

Palmer, and Craig Wright, among others) have gone on to build careers out of the

analysis of baseball statistics. The rigor and understanding of statistical theory

displayed by sabermetricians (professional or non-professional) in their publica-

tions can vary wildly, from the level of a talk-radio telephone caller to that of a

professional statistician. (Indeed, many professional statisticians, ourselves

included, are members of SABR.) But the impulse to bring more sophistication

to analysis of the data has certainly done a lot to broaden the appeal of statistics.

What differentiates the work of professional statisticians (and many saber-

metricians) from that of sports statisticians? In short, sports statisticians do not

apply statistical models to data. Their analysis generally consists of summing

numbers, finding averages, making comparisons of these computed numbers,

and perhaps inventing a new formula based on the raw data (Slugging

Percentage being an early example). At the highest level, the work of the sports
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statistician would be described by a professional statistician as exploratory data

analysis, looking for patterns in baseball statistics. For professionals, statistical

models are the key. They provide the means of getting to the truth behind the

data. By applying statistical models, professional statisticians can perform con-

firmatory data analysis, calculating the degree of confidence to which a pattern

or statement can be said to be true.

The primary goal of this book is to provide insights that can be gleaned when

statistical models are applied to Major League Baseball data. In our own

research and in the work of others, we have found that this type of investigation

sheds new light on the game, and increases our admiration for those who par-

ticipate in it, and especially those who excel. Our research has also given us an

increased appreciation for the power of advanced statistical techniques, and

thus the secondary objective of the book: to convey this appreciation for statis-

tics to the reader. The book does not just recite numbers, provide lists of players,

and recount a litany of astounding results; it also describes the logic that leads

us to conclusions that have a statistical basis. In this way, we hope that the

reader will gain a better understanding of statistics in general.

Many of you are probably more familiar with statistical models than you real-

ize. One of the more common examples is a simulation model. Tabletop baseball

board games use simple statistical models as their foundations. So, it is only fit-

ting Chapter 1 is in large part a discussion of these games, which have been

familiar to many of us since childhood. Chapter 2 moves on to a brief overview of

some common baseball statistics, but presented from a new perspective. The

chapter will introduce a number of data analysis concepts that will prove to be

useful in the remainder of the book.

In the next set of chapters, we make the crucial distinction between ability

and performance. Chapter 3 introduces the distinctions between these concepts

with respect to getting on base. These basic concepts are then extended to exam-

ine two issues much discussed among baseball fans. Chapter 4 looks at the sig-

nificance of breakdown statistics for different batting situations (e.g., facing a

righty pitcher vs. a lefty, hitting at home vs. away). These numerical darlings of

broadcasters are the bread-and-butter statistics of pre-game and post-game

shows. However, the restricted nature of the categories often leads to small sam-

ple sizes, leading us to ask whether the observed differences are truly significant

or just the product of chance. Another favorite of broadcasters is the batting

streak, which we focus on in the next chapter. Statistics are used to identify who

is hot and who is not in a given game (or week or month or season), and some

players are identified as being generally streaky hitters. They do not hit equally
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well over a season, instead tending toward hot spells and cold spells. Chapter 5

examines how we might determine whether a player is a streaky hitter, or

whether these streaks are random occurrences.

In the middle chapters, we shift gears a bit. The basic subject remains bat-

ting, but where earlier chapters stuck to traditional measures of hitting like

Batting Average, we now examine some of the alternatives that have been sug-

gested by researchers in recent years. Chapter 6 presents a thorough description

of how we can compare these measures and provides a test for the significance

of their differences. Most of these alternatives were developed from an intuitive

understanding of run production, in which the researcher starts with a “common

sense” explanation for how teams get runs. In Chapter 7, we look at some mod-

els that use the data from baseball history to develop measures of batting per-

formance. Chapter 8 starts with yet another approach, presenting a model based

not on intuition or data, but on a logical construction of the probabilities of scor-

ing runs. This “simulation model” can be used to provide support for two simpler

models, which are then compared in their capacity to measure the batting per-

formance of individual players.

As we move into the late chapters, we start to consider those elements of the

game that contribute to victory. In Chapter 9, we investigate the wisdom of some

of the time-honored strategies—the steal, the sacrifice bunt, and the intentional

walk. In Chapter 10, we look at the concept of clutch hitting—that is, getting a

hit at a critical moment, when the stakes for winning or losing a game are at

their highest. While the existence of the ability to hit in the clutch has been

much debated, a fan knows a clutch hit when he or she sees one. The question is,

can the value of a clutch hit be quantified not just with respect to run produc-

tion, but also as to how it actually contributes to winning the game?

Most of the chapters up to this point address different ways to evaluate what

players or teams have done in the past, and how this past performance relates

to ability. In Chapter 11, we examine how models can be used to make predic-

tions on the seasonal performances of players and teams, as well the future

career achievements of players. Chapter 12 makes a final statement about the

influence of chance on the ultimate goal of every team, winning a World

Championship. We always think of the World Series victor as the best team in

baseball, but you may have a new sense of the role of chance by the end of this

chapter.

It has been said that the primary difference between a successful minor-

league hitter and a successful major-league hitter is the ability to hit the curve

ball. All professional hitters (major or minor league) can hit a fastball when they

INTRODUCTION xxi



are prepared for it. But in order to advance to the top level, the player must mas-

ter the skill of hitting the curve. The same can be said of baseball statistics. The

average fan gets a great deal of information on statistics from newspapers, mag-

azines, television, radio, and web sites. But to see the truth behind the numbers,

the fan’s ability to analyze data must be raised to a higher level. He or she must

master not just the records and averages printed on the sports page, but some of

the models we describe in Curve Ball, and above all else, as we reiterate in

Chapter 13, the role of chance in the game.
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 from Tabletop Baseball GamesSIMPLE MODELS

Two boys stared out the window at the rain-swept streets. It looked like a long

afternoon with nothing to do. If this were today, the boys would have hurried to

the nearest available TV or computer to play the latest electronic game, but this

was the 1950s, when Nintendo could only have been another monster intent on

devouring Tokyo. Baseball was still the dominant sport in America, and if you

couldn’t play baseball outdoors, the next best thing was baseball indoors.

All-Star Baseball (ASB)
The closest equivalent to High Heat Baseball back then was the Cadaco board

game All-Star Baseball (ASB). The boys opened the box and started dividing up

the players into the American League and National League teams. The instantly

recognizable players were placed in the starting lineups. Mickey Mantle, Willie

Mays, Duke Snider, and Hank Aaron, all current stars, were snapped up imme-

diately. Then there were the great old-time players their fathers had eulogized—

legends like Babe Ruth and Lou Gehrig. These guys had to be included as well.

The lineups shaped up beautifully at first, but then choices started to become

difficult. Other old-time players were not so well known. And many of the cur-

rent players were familiar from baseball cards, but they were not titans, not

obvious choices like Willie, Mickey, Hank, and the Duke. The game did not come

with ready-made lineups or even tables of batting averages as current electronic

games do. How were the boys to choose the remaining players?

1



CHAPTER 12

Although they weren’t conscious of it, what they did next was an intuitive

form of data analysis. At the heart of All-Star Baseball were the disks repre-

senting the batting abilities of individual players. A rough replica of an ASB

disk, in this case for the incomparable Babe Ruth, is shown in Figure 1-1. When

the ASB version of the Babe came to bat, his disk was placed under a spinner.

With a flick of the finger, the mighty batter swung, with the result determined

by where the pointer came to rest (after reference to a chart on the giant score-

board dominating the field). Most results are clearly understood from the legend

in Figure 1-1; note, however, that GB and FB are ground-ball and fly-ball outs,

respectively.

The pie slices on the disk were in effect a visual representation of Ruth’s abil-

ity. Because they were experienced ASB players, the boys could quickly see why

the Babe was everything their fathers had claimed. The slice labeled 1 may not

look large, but compared to any other player’s 1 slice, it was enormous. Are

triples (slice 5) really that rare, or was Ruth just slow? (Of course they are rare.)

And look at those two expansive 9 slices for walks. Pitchers were fearful of

Ruth . . . with good cause.

Ruth was a player apart from all the others, and a natural choice for the

starting lineup. Choosing other players was not so easy. What about a starting

first baseman for the National League? Two candidates, Gil Hodges and Bill

Terry, looked promising. Hodges was well known to the boys, an All-Star for the
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FIGURE 1-1 Replica ASB disk for Babe Ruth.
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powerful Brooklyn Dodgers. Terry was not familiar, having retired at the con-

clusion of the 1936 season, after 14 years with the New York Giants. To settle the

question, the boys instinctively made a direct visual comparison of pie slices. Of

course the first comparison was for the slice numbered 1, the one and only slice

for home runs. Figure 1-2 presents a doughnut plot of the Hodges and Terry

disks aligned for this comparison. (A doughnut plot places one pie chart inside

another for ease of comparison.) Hodges has the definite HR edge (slice 1), but a

closer look shows that, apart from power, Terry does have some real strengths.

His slices for singles, doubles, and triples clearly dominate those of Hodges.

Terry’s walk slices are not as large as those of Hodges, but his strikeout areas

are very small. (He averaged only about 30 strikeouts per season.) More or less

intuitively, the boys saw that their choice came down to whether they needed a

batter to get on base (Terry) or one to drive in runs (Hodges).

In this brief description of All-Star Baseball, we encountered two basic sta-

tistical concepts:

• Visual presentation is a powerful tool for identifying patterns and

making hypotheses. To the boys, the ASB disks were extremely

useful visual presentations, ideal for quickly assessing players

and making lineup choices. In particular, ASB disks introduced

the boys to pie charts, a graphic representation commonly used in

statistics.
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• Data often must be converted into a more useful form before

meaningful conclusions can be derived from it. Apart from batting

averages, baseball cards of the 1950s presented only event totals

(for example, the number of home runs in a season or a career).

Total numbers of home runs are important, but how many

opportunities (plate appearances) were necessary to achieve those

totals? For the purposes of the game, this baseball card data had

been converted into a form more useful for modeling what

actually happened on the field. The use of ASB disks (in the form

of pie charts) emphasized the importance of examining player

performance in terms of proportions of opportunity rather than

mere count totals.1

Perhaps the most powerful concept presented by All-Star Baseball was its

presentation of a relatively simple but effective statistical model of outcomes.

Again, many of the aspects of this model were picked up by the boys intuitively.

They understood that the spinner was a randomizing device. The outcome of a

plate appearance was a random event affected only by the proportion of disk

space occupied by each possible result. And this was the rationale for their com-

parison of slices on the disks: the larger the slice, the greater the chance of

obtaining that result. (Of course, this did not stop the boys from doing all they

could to consciously influence the outcome: incomplete spins and soft flicks from

carefully chosen starting places prompted numerous protests and calls for “offi-

cial” rulings.)

The disks presented in Figure 1-2 were created from the career statistics for

Terry and Hodges as shown in Table 1-1. The first column for each player indi-

cates the number of at-bats (AB), hits (H), doubles (2B), triples (3B), home runs

(HR), walks (BB), and strikeouts (K) given for each player in the book Total

Baseball. The number of singles (1B) can be determined by subtracting the num-

bers of doubles, triples, and home runs from the number of hits. The sum of at-

bats and walks is used as the number of plate appearances (PA), ignoring rela-

tively rare events such as sacrifice flies. The second column for each player

presents the percentage of plate appearances in which the event occurs. The

third column for each player translates each percentage into degrees of arc. The

entire disk has 360 degrees. Thus, the arc spanned by each type of play is 360

1 ASB disks were also more complete in their information. Walks were often not presented at all

in baseball cards in the 1950s, while ASB disks provided a graphical representation of the

ability to obtain walks (and thereby a more complete picture of the ability to get on base).
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times the appropriate percentage. For example, a player who obtained 25 home

runs in 500 plate appearances was able to hit a home run in 25/500 or 5 percent

of his plate appearances. To represent this performance on an ASB disk, the HR

slice (slice 1) would span 5 percent of 360 degrees, or 18 degrees.

The only characteristic of the disks which is not determined is the split of

outs. Strikeouts are determined directly from the data as shown in Table 1-1, but

there are no data on ground-ball and fly-ball outs. Past disks appear to assume

that 60 percent of outs from batted balls are fly-ball outs (FB) while the remain-

ing 40 percent are ground-ball outs (GB). This assumption was used in the con-

struction of the replica disks in Figure 1-2 and could be used for any player from

data in a standard baseball encyclopedia or on the reverse of a baseball card.

To use a technical statistical term, All-Star Baseball models the result of each

plate appearance as an outcome from a multinomial distribution. A multinomial

distribution has a finite set of possible outcomes, each with a fixed probability of

occurrence. Each occurrence is a random result from this set, dependent only on

the probabilities. In ASB, the set of all possible occurrences are enumerated on

the playing field. Based on the individual disks, each batter has his own multi-

nomial distribution defined by his unique set of probabilities. Table 1-2 presents

the multinomial distribution represented by Bill Terry’s disk. For each outcome,

AB 6428 7030

H 2193 1921

2B 373 5.4% 19 295 3.7% 13

3B 112 1.6% 6 48 0.6% 2

HR 154 2.2% 8 370 4.6% 17

BB 537 7.7% 28 943 11.8% 43

K 449 6.4% 23 1137 14.3% 51

1B 1554 22.3% 80 1208 15.2% 55

FB 2272 32.6% 117 2383 29.9% 108

GB 1514 21.7% 78 1589 19.9% 72

PA 6965 100.0% 360 7973 100.0% 360

GIL  HODGESBILL  TERRY

Play Number Percent Degrees Number Percent Degrees

•

•

•

•

•

•

•

•

TABLE 1-1 Converting Baseball Data into All-Star Baseball Disks



CHAPTER 16

the table presents the arc (in degrees) spanned by the outcome on the disk. Some

occurrences have more than one slice on the disk (undoubtedly to discourage

creative spinning), so the probability is the sum of the arcs for each slice. The

arcs are then converted to probabilities by dividing the arc degree values by 360

(the number of degrees in a full circle). The basis for this conversion is that when

the spinner is struck, every direction or point on the disk’s circumference has an

equal chance of being the result—the point at which the spinner comes to rest.

We can collapse the list of ASB results in Table 1-2 into two important cate-

gories, each consisting of several play results:

1. On-Base: the single, double, triple, home-run, and base-on-balls

results.

2. Out: the fly-out, ground-out, and strikeout results.

DISK MULTINOMIAL BINOMIAL

Result Number Degrees Individual Total Probability Result

1B 7 40.2 .1116

1B 13 40.2 .1116 .223

2B 11 19.3 .0536 .054

3B 5 5.8 .0161 .016

HR 1 8.0 .0221 .022

BB 9 13.9 .0385

BB 9 13.9 .0385 .077 .392 On-Base

K 10 11.6 .0322

K 10 11.6 .0322 .064

GB 2 26.1 .0725

GB 6 26.1 .0725

GB 12 26.1 .0725 .217

FB 3 29.4 .0815

FB 4 29.4 .0815

FB 8 29.4 .0815

FB 14 29.4 .0815 .326 .608 Out

360 1 1 1 PA

TABLE 1-2 Conversion of Bill Terry’s Replica ASB Disk into Multinomial and Binomial

Probabilities
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If we just consider all of the results split between just these two categories, we

have reduced our multinomial distribution (a distribution over many categories)

into a binomial distribution (a distribution over exactly two categories). The

probability of occurrence for each of these two events is just the sum of the prob-

abilities for each of the results contained within the individual event categories.

For example, the probability of getting on base in a plate appearance is simply

the sum of the individual probabilities for the single, double, triple, home-run,

and base-on-balls results. Table 1-2 presents the final numerical results of this

categorical distillation for Bill Terry in ASB.

We can see this intuitively by examining a player disk. In ASB, the batter gets

on base whenever the spinner stops in a single, double, triple, home-run, or base-

on-balls slice. We could reposition all of these slices so that they are next to each

other. We would then have one segment of the disk with On-Base results and one

with Out results. The block of On-Base slices contains an arc that is the sum of

the arcs for each of the single, double, triple, home-run, or base-on-balls slices.

Thus, on any single spin, the probability of obtaining an On-Base result is the

sum of the probabilities of the individual results which compose the block.

Figure 1-3 demonstrates how Bill Terry’s disk in Figure 1-2 can be re-arranged

to create the On-Base and Out mega-slices.
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FIGURE 1-3 Realignment of Bill Terry replica ASB disk into On-Base (light) and Out

(heavy) mega-slices.
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Model Assumptions of All-Star Baseball

ASB is a very simple model of baseball. It is accessible as a game for children of

elementary school age because it simulates only the hitting ability of different

players. Let us list some of the assumptions made by the model:

• Defensive fielding ability has no effect on the outcome of a plate

appearance.

• A hitter’s ability never changes.

• The ball park has no effect on the game.

• Weather conditions have no effect on the game.

• All players have the same ability to steal and run the bases.

• All hitters have the same ability to bunt and execute the hit and run.

• The pitcher has no effect on the outcome of a plate appearance.

This last assumption had a very curious effect on managerial strategy in the

game. Versions of ASB in the 1950s included batting disks for pitchers. Because

the ability of the pitcher to get batters out was not modeled in the game, man-

agers chose pitchers purely on their ability to hit. (Don Newcombe of the

Brooklyn Dodgers, a lifetime .271 hitter, was a particular favorite of ours. If Babe

Ruth had been listed as a pitcher as well as an outfielder, there would be no

question who would pitch the entire game without relief.) Of course, since the

game came only with the best players from the past and present (1950s present,

that is), the manager could also opt for the strategy of replacing the pitcher in

every plate appearance. Why let the pitcher bat when you had second-tier stars

like Jackie Jensen or Minnie Minoso just sitting on the bench? Actually, if one

thought of the board game as an actual All-Star Game, this last strategy was the

ultimate in realism.

The inclusion of pitchers in All-Star Baseball took a bizarre turn with the

coming of the designated hitter rule. Pitcher disks were still part of the package,

but were blank except for a photograph. As a critic of the DH rule and its elimi-

nation of that wonderful rarity, a clutch hit by the pitcher, at least one of us felt

cheated by this turn of events in ASB. The pitcher’s spot was always taken by a

DH. Replacing information (the pitcher’s hitting ability) with a colorful graphic

photograph was an unfortunate sign of the times, foreshadowing the arrival of

computer sports games, which hide their models behind eye-catching graphics.

All-Star Baseball was developed in 1941 by Ethan Allen, a former player. It

lasted for decades, but now is out of print, having finally succumbed to the prob-
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lem of not being realistic enough for adults and not exciting enough for today’s

generation of children.

The APBA Model: Introducing the Pitcher
The most obvious deficiency of All-Star Baseball as a model was the absence of

any effect from pitching on outcomes at the plate. Successors to ASB provided a

wide variety of innovations to baseball simulation, but generally they can be dis-

tinguished by the various ways in which they integrated pitching into their mod-

els. In looking at some of these other games, we will focus on this aspect of their

models.

APBA Baseball, released in 1951 and still going strong, was the first tabletop

game to take the effect of pitching into account. Each player (including pitchers)

has a card simulating his batting record. Results are generated by tossing two

six-sided dice. Each card has 36 equally probable results as determined by the

toss of the dice. Basically, the system is the same as ASB, but with ASB disks

replaced by cards and the spinner replaced by two dice.2

However, APBA Baseball introduced a level of complexity not found in ASB.

Where ASB had a single table of reference to determine the play outcome, APBA

Baseball has eight charts, one for each of the eight possible on-base situations:

• Nobody on.

• Man on first.

• Men on first and second.

• Men on first and third.

• Man on second.

• Men on second and third.

• Man on third.

• Bases loaded.

Within each chart, the outcome could be altered depending on the defensive

ability of the team in the field and the ability of the pitcher. The abilities of

pitchers are represented by different grades: A&B (best), A&C, A, B, C, or D.

(APBA later upgraded its system in a “Master Game” version; it follows a simi-

lar scheme, but with expanded pitcher grades. The analysis described here

2 More information on APBA Baseball, and on the other tabletop baseball games discussed in

this chapter, can be found in the Appendix to this book.
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refers to the earlier version of the game.) Depending on the base situation, the

pitcher grade can change certain outcomes of a single into an out. Additional rat-

ings were given to pitchers for their propensity to strike out or walk batters. The

W (walk) rating could be particularly devastating; with runners on first and sec-

ond, it changed a double play into a base-on-balls. We will focus only on the

pitcher grades here.

Table 1-3 provides examples of pitchers with their APBA grades and key sta-

tistics for the season rated. At the top of the list is Joe Wood, who in 1912 had one

of the greatest pitching seasons in baseball history. In recognition of this, APBA

awarded him A&B—its highest possible pitcher rating. That year, Wood led his

Boston Red Sox to a dramatic eight-game World Series victory, with one game

ending in a tie when it was called because of darkness after 11 innings, and a

Boston victory in the final game in extra innings with Wood appearing in relief !

(Wood deserves more attention than he gets these days: after a brief but spec-

tacular pitching career, his smoking fastball deserted him, and in 1915 he con-

verted to an outfielder. He had always been a good-hitting pitcher; he had a .290

batting average to supplement his pitching in the golden year of 1912. He was

an outfielder for the 1920 World Champion Cleveland Indians, and at the end of

his career, from 1932 to 1942, was a baseball coach at Yale University.) 

Jay Hannah “Dizzy” Dean’s 1934 season was almost a match for Wood’s amaz-

ing 1912, so APBA gave Dean its second highest grade. Like Wood, he also led his

team, the St. Louis Cardinals, to a world championship, winning the final (sev-

enth) game—an 11–0 shutout of the Detroit Tigers. In a continuing parallel,

Dean also had a career of comet-like brilliance and brevity. Unfortunately, he did

not have Wood’s hitting ability as a fallback, but he did have a down-home folksy

way of expressing himself that led to a long career as a broadcaster. “I never keep

a scorecard or the batting averages. I hate statics. What I got to know I keep in

my haid.” (Voices of Baseball, p. 182).

Jim Palmer, like Dean, has continued his association with baseball through

broadcasting. His Cy Young season for the Baltimore Orioles, in 1973, brought

him an A grade from APBA. The season was so outstanding for Palmer that he

also placed second (to Reggie Jackson) in the balloting for Most Valuable Player

in the American League.

We couldn’t write a book about baseball without including one of our boyhood

heroes, Robin Roberts. In 1950, Roberts had his first of six consecutive 20-win

seasons. He pitched (and won) a complete game in extra innings against the

Brooklyn Dodgers to capture the pennant for the Phillies that year. He started
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only one game in the World Series, losing 2–1 in extra innings when he gave up

a home run to Joe DiMaggio. Roberts’s season was awarded a B grade by APBA.

The pitcher who bested Roberts in that 2–1 World Series game was Allie

Reynolds, who never had a losing record from 1947 through 1954 with the New

York Yankees. However, because he was closer to an average pitcher in 1950

than in other years, APBA rated him a Grade C pitcher.

Finally, John “Blue Moon” Odom was the weakest starting pitcher on a great

pitching staff for the 1973 World Champion Oakland A’s. Odom had several fine

seasons, but 1973 signaled the end of his career. Odom was given a D rating for

his pitching performance that year.

Table 1-3 and these brief vignettes give some feel for the pitching grades in

APBA Baseball. A&B and A&C are the highest grades, reserved only for the

greatest seasonal pitching performances in baseball history. Grade A pitchers

are definite Cy Young Award candidates and often winners. Grade B pitchers

had very good seasons, perhaps the number-2 pitcher on a very good staff or the

ace on a weaker staff. Grade C pitchers are competent average starters. Grade D

pitchers are the weakest performers.

Table 1-4 summarizes the conversion of results from the pitcher grades. The

only numbers affected by the pitcher’s grade on play charts in APBA Baseball

are results #7, #8, #9, and #10. Each cell of Table 1-4 presents the conversion of

these four results in sequence (#7, #8, #9, #10) for each pitcher grade in each

base situation. S represents a single while O represents an out. For example, for

a Grade B pitcher with a runner on second base, #7 and #9 result in a single

while #8 and #10 result in an out. This table is somewhat of a simplification; the

out results with runners on third base often result in sacrifice flies, for example.

The overall effect on batting is not easy to estimate because it changes for dif-

ferent base situations.

Grade Pitcher Season ERA Wins Losses

A&B Joe Wood 1912 1.91 34 5

A&C Dizzy Dean 1934 2.65 30 7

A Jim Palmer 1973 2.40 22 9

B Robin Roberts 1950 3.02 20 11

C Allie Reynolds 1950 3.73 16 12

D John Odom 1973 4.50 5 12

TABLE 1-3 Examples of Pitcher Grades in APBA Baseball
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We expect that pitchers with better ratings would produce more outs than

those with lower ratings. Referring again to Table 1-4, a quick sum of Os across

the rows produces 23 for A&B, 21 for A&C, 20 for A, 11 for B, 9 for C, and 0 for D.

This provides some support for the ordering of pitcher abilities found in the

table. Another test is for internal consistency within each column. An examina-

tion of the columns of the table indicates that generally they are consistent:

given any cell, the number of out results is equal to or greater than the number

of out results in the cell below it. The one exception is noted by the two cells in

boldface. With a runner on first base, an A&C pitcher is better than an A&B

pitcher. Since we expect a better pitcher to produce better results in every base

situation, this is a troubling inconsistency (corrected later in the “Master Game”

version).

To get a better feel for the effects of pitcher grades, we have to consider the

frequency of results #7 through #10 on player cards. APBA Baseball was intro-

duced with cards replicating the 1950 season, the year of the first Philadelphia

Phillies pennant in 35 years. In honor of this affectionately remembered team,

we have chosen three of these Whiz Kids to examine the pitcher effects. Table 

1-5 shows the frequency of these results for Del Ennis (a slugging left fielder not

so different from Greg Luzinski), Andy Seminick (a tough catcher, a 1950s ver-

sion of Darren Daulton), and Willie Jones (predecessor to Dick Allen, Mike

Schmidt, Scott Rolen, and David Bell at third base). We have included their nick-

names from their APBA cards, a charming feature not found in other games.

For each player, we can calculate the effect of pitching grades within each

base situation. We will use pitching grade D as our standard and calculate the

amount subtracted from each player’s Pr(On Base).3 Here are two examples of

this calculation for Del Ennis:

Pitcher

Grade Empty First Second Third

First & 

Second

First & 

Third

Second & 

Third Full

A&B SOOS OOSS SOOO OOOS SOOO OOOO OOOO SOOS

A&C SOOS OOOS SOOO OSOS SOOO SOOO OSOO SOOS

A SOOS OOSS SOOO OSOS SOOO SOOO OSOO SOOS

B SOSS SOSS SOSO SOSS SOSO OSSS SOOS SOSS

C SSOS SSOS SSOS SSOS SSOS SOSS SSOO SSOS

D SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS

TABLE 1-4 Effects of Pitcher Grade on Play Results in APBA Baseball
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• Del Ennis is batting against an A&B pitcher with runners on first

and third bases. According to Table 1-4, results #7 through #10 all

produce outs. Of the 36 results on Ennis’s card, 8 produce results

#7 through #10 (see Table 1-5 above). So, Ennis has 8/36 = .222

less chance of getting on base against an A&B pitcher than he

does against a D pitcher. That is,

Pr(On Base vs. A&B) = Pr(On Base vs. D) – .222

when runners are on first and third. Note that this is the

maximum possible effect, since the A&B pitcher has changed

every single that could possibly be affected into an out.

• Del Ennis is batting against a B pitcher with runners on second

and third bases. According to Table 1-4, results #8 and #9 produce

outs. Of the 36 results on Ennis’s card, 6 produce results #8 and

#9 (see Table 1-5 above). So, Ennis has 6/36 = .167 less chance of

getting on base versus a B pitcher as compared to a D pitcher.

That is,

Pr(On Base vs. B) = Pr(On Base vs. D) – .167

when runners are on second and third.

Table 1-6 shows the effect of each pitcher grade on Skinny’s Pr(On Base) in

each base situation. Each cell shows the result of a calculation like the ones just

described. That is, the value in each cell is the difference in Pr(On Base) between

the relevant pitching grade and a Grade D pitcher. In general, we see that a

Grade C pitcher reduces Pr(On Base) about .06, a Grade B pitcher reduces the

Player #7 #8 #9 #10

Del “Skinny” Ennis 2 4 2 0

Willie “Puddin’ Head” Jones 2 2 2 1

Andy Seminick 2 3 2 0

TABLE 1-5 Frequency of Play Results Affected by Pitcher Grade in APBA Baseball for

Three Members of the 1950 Phillies (the Whiz Kids)

3 This notation will be used throughout the book. Pr(Event) is the probability that Event takes

place. For example, here it refers to the probability of getting on base.
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probability about .11, and a Grade A pitcher reduces it about .16. A Grade A&C

pitcher shows very little improvement over an A pitcher, but a Grade A&B

pitcher demonstrates a great improvement in most base situations with a run-

ner on third base.

The boldface entries in the runner-on-first (“First”) column provides a numer-

ical value for the inconsistency described earlier and highlighted in the shaded

cells in Table 1-4. However, the use of actual values for the frequencies of the #7

through #10 results has unearthed several other inconsistencies, also identified

by boldface entries in Table 1-6. With runners on first and third, Ennis has a bet-

ter chance of getting on base versus a Grade B pitcher than against a Grade C

pitcher. However, if we move that runner on first to second base, the ability of the

Grade B pitcher improves enormously, to such a degree that he is a greater

adversary than a Grade A pitcher or even a Grade A&C pitcher.

Unlike the “Runner on First” inconsistency, which holds for all batters with a

#9 result, the last two inconsistencies are dependent on the distribution of fre-

quencies of results #7 through #10. If we use the distribution for Willie Jones,

these last two inconsistencies disappear. And then it reappears with Andy

Seminick. However, for both of these players, the maximum effect is reduced

from .22 to .19 = 7/36.

In many ways, this model is very similar to ASB’s, in that it is only hitting

that is modeled in great detail. Pitching (and through a similar mechanism,

fielding) influences only selected results. The frequency of extra-base hits was

not affected by pitcher grades. Pitchers were given a separate indicator if they

gave up more walks than average; this rating turned certain out results into

walks.

FullEmpty First Second Third

First and

Second

First and

Third

A&B .167 .167 .167 .222 .167 .222

A&C .167 .222 .167 .111 .167 .167

A .167 .167 .167 .111 .167 .167

B .111 .111 .111 .111 .111 .056

C .056 .056 .056 .056 .056 .111

D .000 .000 .000 .000 .000 .000

.167

.167

.111

.167

.056

.000

.222

.167

.111

.111

.056

.000

Second and

Third

Pitcher

Grade

TABLE 1-6 Reduction in Del Ennis’s Pr(On Base) in Different Base Situations When

Opposed by a Pitcher with Grade D or Better
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It should be noted that while the implementation of a pitcher effect was a

major development in APBA Baseball, the use of two dice in place of a spinner

was not necessarily an improvement. Dice and a spinner are equivalent ran-

domizing devices from a theoretical viewpoint (that is, apart from trying to influ-

ence the spin or using loaded dice). But they are very different in at least one

important respect. The spinner is an analog randomizing device which can

assume any value (direction) on a continuum between 0 and 360 degrees. Dice

restrict randomization to a finite set of results with a minimum probability that

can be represented. This presents certain problems.

Consider a batter with 7 triples in 500 plate appearances. The proportion of

triples is 7/500 or .014. In ASB, we can easily replicate this performance on the

disk by assigning a pie slice with an arc of 5 degrees (1.4 percent of 360 degrees).

In APBA Baseball, on the other hand, the minimum we could assign to a triple

would be one of the 36 paired results on a batting card, or 1/36 = .028. This is

almost twice the probability we wish to be represented! Since the minimum

assignment we can make is 1 of the 36 results, we are stuck with an imprecise

simulation of the batter’s ability.

This shortcoming in the APBA model may not seem terribly important until

one realizes that the probability of any event in any situation is restricted to

multiples of this minimum amount, or quantum, of 0.28. That is, in any situation

for any batter an event’s probability can only be one of the following values: .028

(1 out of 36 results), .056 (2 out of 36 results), .084 (3 out of 36 results), and so

forth. It is true that on many APBA cards certain dice rolls produce a #0 result,

which requires a second roll of the dice with the results taken from a second col-

umn on the card. While we don’t get into analyzing these cards in this book, we

do admit that they allow for a finer gradation of probabilities, especially for rel-

atively rare events. And we do acknowledge that APBA’s use of dice rather than

a spinner does avoid certain problems—like spins that end up on the line

between slices. Nonetheless, the point here is that though they may have certain

advantages over a spinner, dice are inherently less precise in representing per-

formance.

Strat-O-Matic Baseball: The Independent Model
The development of Strat-O-Matic (SOM) Baseball in 1962 provided a new vari-

ation on the pitcher’s effect. Like APBA Baseball, this game uses dice as a ran-

domizing device, and each everyday player has a separate card that simulates

his hitting ability. In an inversion of APBA Baseball, however, each pitcher has



CHAPTER 116

a card which simulates pitching ability. (A separate numerical rating is given for

each pitcher’s hitting ability.) SOM Baseball was the first game to give pitching

this level of modeling detail.

The mechanism for the game is simple. To initiate a play, three six-sided dice

(one white and two red) are rolled. The white die is used to determine the card

column for the result. Batters’ cards have columns numbered 1, 2, and 3, while

pitchers’ cards have columns 4, 5, and 6. The two red dice are summed, and the

value is used to find the resulting play within the relevant column. On occasion,

an extra randomizing device, a so-called “split deck” of cards numbered 1

through 20, is needed when multiple play results are listed for a dice roll. This is

similar to the extra column on APBA cards. (Apparently it is used to increase the

precision of the simulation.)

The important element on which to focus is the even split of results between

the batter and the pitcher. Upon closer inspection of pitcher cards, one finds that

the split is actually 50–50 between the batter and the defense (pitching and

fielding). On each pitcher’s card, 28 percent of the resulting plays require an

extra randomization (using the ever-present split deck), which references the

ability of a specified fielder to make a great play or avoid making an error.

We can summarize the ability of a batter versus a pitcher on the defensive

team as follows:

50% Batter Ability + 50% Team Defensive Ability

In the SOM model, Team Defensive Ability is 28 percent fielding and 72 percent

pitching. So the ability of a batter versus a pitcher on the defensive team is actu-

ally:

50% Batter Ability + 50% × (72% Pitcher Ability + 28% Team Fielding Ability)

or

50% Batter Ability + 36% Pitcher Ability + 14% Team Fielding Ability.

An old saying goes that pitching is 75 percent of winning in Major League

Baseball, but it’s less than half that in Strat-O-Matic Baseball.

Let’s examine some of the players we investigated in APBA Baseball.

Checking out a Del Ennis card for the 1950 season we find that 41.7 percent of

the results put Del on base. Allie Reynolds, a Grade C pitcher in APBA Baseball,

faced Ennis in the 1950 World Series. In Strat-O-Matic Baseball, Reynolds

would put a batter on base in 40.1 percent of the results he controls. Apart from

the Fielding Ability of the 1950 Yankees, Ennis has about as much chance of get-

ting on base from his own batting ability as from Reynolds’s pitching ability. On
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the other hand, Vic Raschi, a Grade B pitcher in APBA Baseball, has only a 33.7

percent chance of putting the batter on base in the results he controls. In this

case, Ennis is much better off if the white die places the result on his batting

card. The difference in pitching ability between Raschi and Reynolds can be

summarized as follows:

40.1% – 33.7% = 6.4%

That is, of the results controlled by pitchers, Raschi puts batters on base 6.4 per-

cent less than Reynolds.

However, to get the true effect, we must also account for the frequency that

the Pitcher Ability is used (36 percent of the time). So, the overall effect of using

Raschi instead of Reynolds is 36 percent of 6.4 percent, which equals 2.3 percent.

In terms of probability, Raschi subtracts .023 from the probability of getting on

base when compared to Reynolds. Note that this is less than half the effect mod-

eled between these two pitchers in APBA Baseball when facing Del Ennis.

This discussion has focused only on pitching. However, for the sake of com-

pleteness, we will make a brief foray into fielding, mainly because the SOM

model allows us to do this with little added complexity. Fielders are given rat-

ings not unlike pitching grades in APBA Baseball. The ratings range from 1 (the

best) to 4 (the worst). As noted earlier, 28 percent of the results on the pitcher’s

card require a new random result based on the rating of a particular fielder. For

example, one such result on a pitcher’s card references the Fielding Ability of the

left fielder. Another random number (derived from the split deck) is looked up on

a fielding chart under the column for the Fielding Ability of the left fielder. A left

fielder with a 1 rating cannot give a batter a hit while a left fielder with a 4 rat-

ing gives the batter a hit 30 percent of the time.

To get a feel for the range of differences in fielding, we will look at a team with

the best possible rating (1) at each position versus the worst possible fielding

team, with a rating of 4 at each position. With a 1 rating at each position, field-

ers would give up no extra hits to batters; in terms of the batting formula above,

Fielding Ability is .000. On the other hand (and it makes us cringe to think about

it), if the fielding team had a 4 rating at each position, on average the Fielding

Ability of the team would be .324. That is, when the Fielding Ability of the worst

fielding team is referenced, the batter gets a hit about 32 percent of the time.

Since fielding is referenced in 14 percent of the plate appearances, the maximum

effect from fielding is 14 percent of .323, or .045.

The interesting feature of SOM Baseball’s hitting model is that it is purely

additive. To find the probability of a batter getting on base, we need only add the
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abilities of the batter, pitcher, and fielders. Consider Del Ennis in 1950. His

Batter Ability is .417. Since this is used half the time, the batter contribution to

the probability of getting on base is .417/2 = .208. If he is facing Allie Reynolds

supported by the best possible fielding team, then his probability of getting on

base is just the sum of their contributions:

.208 + .144 + .000 = .352

Replacing Reynolds with Raschi decreases the probability:

.208 + .121 + .000 = .329

If we replace the best fielding team with the worst possible fielding team, both

probabilities increase. For Reynolds:

.208 + .144 + .045 = .397

and for Raschi:

.208 + .121 + .045 = .374

(Note that for simplicity we are ignoring that the fielding rating for the team is

influenced by the fielding ratings for Raschi and Reynolds themselves, a minor

effect.)

Figure 1-4 plots a batter’s probability of getting on base as his ability

increases. The dashed line presents this probability for All-Star Baseball; this is

a 45-degree diagonal, or a line with slope 1, since the x and y values are always

equal: the probability of the batter getting on base is identical to the batter’s

ability in getting on base as described on the ASB disk. However, in Strat-O-
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FIGURE 1-4 Plots of pitcher effects in Strat-O-Matic Baseball and All-Star Baseball.
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Matic Baseball, the pitcher and fielders, as well as the batter, influence this

probability. For this plot, we have assumed the best fielding team, which adds 0

to the probability. Two lines are shown, one for Allie Reynolds and one for Vic

Raschi, in SOM Baseball. We see that both lines have identical slopes, .5, which

is the result of the SOM batter influence described earlier. The difference in

their lines resides in their intercepts, or starting point: the point at which the

line crosses the y axis. This difference is .023, as described earlier. In fact, if we

plotted a line for any pitcher in SOM Baseball, it would have the same slope (.5)

but a different intercept. Thus, the relative skills of pitchers are represented by

shifting the line up or down.

The SOM model, in terms of consistency, is an improvement over the APBA

model. The pitcher with better ability will tend to be better in all situations. The

additivity described above guarantees this feature. On the other hand, some-

thing is lost as well: the interaction between pitcher and batter is not taken into

account. In APBA Baseball, the effect of the pitcher depended on how his char-

acteristics (defined by the pitching grade) interacted with those of the batter

(defined by his batting card). The two features worked together to produce a

result. In Strat-O-Matic Baseball, these characteristics do not interact; they are

completely independent. The batter has his ability, and the pitcher has his; a cer-

tain percentage of the time one is used and the other is ignored. The two are not

fused to produce a result.

At times this additivity can produce strange effects, particularly with respect

to the frequency of triples and home runs. In SOM Baseball, Robin Roberts’s

1950 pitching ability is expected to add about 9 home runs and 4 triples for every

1,000 batters faced. This addition is the same whether Roberts faces Joe

DiMaggio, Stan Musial, Whitey Ford, Ozzie Smith, Mark McGwire, or Randy

Johnson. All batters have an equal chance at obtaining these home runs and

triples. However, more so than other events, home runs are mostly dependent on

the power of the batter, while triples are mostly dependent on his base-running

speed.4 Other tabletop games have taken the basic Strat-O-Matic model and

added their own wrinkles to it. Pursue the Pennant adopted the SOM model and

added more detailed results plus other effects. In Ball Park Baseball, the batter

can have exceptions that overrule the result on a pitcher’s card and vice versa.

4 Advanced versions of Strat-O-Matic Baseball make gross adjustments for the HR problem by

designating some hitters as capable of obtaining HRs on the pitcher’s card while others do not.

Essentially, this introduces an interaction effect into the basic SOM model.



CHAPTER 120

Sports Illustrated Baseball: The Interactive Model
Sports Illustrated (SI) Baseball was developed in 1972 by David S. Neft, co-

author of The Sports Encyclopedia: Baseball. This tabletop game used a two-tier

or hierarchical approach to produce an interactive model for hitting in place of

SOM’s independent model. In SI Baseball, the manager of the team in the field

rolls a set of three dice to obtain a result on the pitcher’s chart. The result could

be a strikeout, a walk, a single, or “Batter Swings.” This last result, the most

common occurrence, allows the player managing the team at bat to roll the dice

to obtain a play on the batter’s chart.

Each plate appearance is a two-step process. There is a hierarchy of prece-

dence in the structure of the plate appearance. The pitcher controls the outcome

of the plate appearance until his ability is used to finalize the result or relin-

quish control to the batter. Basically, the batter must get past the pitcher before

he is able to use his batting capabilities. Given the nature of baseball, in which

the pitcher does control the game process, this model has some intuitive appeal.5

Let’s see how this model looks from a probability perspective. The probability

of the batter getting on base in the first step under the pitcher’s control is calcu-

lated as follows:

Pr(On Base in Step 1) = Pr(On Base on Pitcher Chart)

Similarly, we can calculate the probability of the batter getting on base in the

second step using his own batting capability:

Pr(On Base in Step 2) = Pr(On Base on Hitter Chart)

However, in order to obtain the overall probability of a batter getting on base we

must combine the probabilities from the two steps. The first step (attempting to

get on base via the pitcher’s chart) is always used, but the second step (attempt-

ing to get on base via the hitter’s chart) is only used when the “Batter Swings”

result is obtained on the pitcher’s chart. Thus, the probability of a batter getting

on base is:

Pr(On Base on Pitcher Chart) +

Pr(Batter Swings on Pitcher Chart) × Pr(On Base on Hitter Chart)

5 Interestingly, Kevin Hastings independently developed a modification of the Strat-O-Matic

model with interactive effects. A close examination of the model presented in his Winter 1999

Chance paper shows it to be basically equivalent to the one used in Sports Illustrated Baseball.
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The multiplication of probabilities from the Pitcher Chart and from the Hitter

Chart produce an interaction between batter and pitcher. This is different from

the Strat-O-Matic hitting model, which only adds the effects from the pitcher

and hitter.

Table 1-7 shows the pitcher effects for three pitchers from SI Baseball. The

first column presents the probability that the pitcher puts the batter on base

automatically, without any reference to the batter’s skills. The second column

presents the probability that the “Batter Swings,” requiring a reference to the

batter’s hitting skills. The third column presents (as a formula) the way these

two values are combined by the SI Baseball model to calculate the probability of

a batter getting on base given knowledge of his hitting skills. Figure 1-5 pres-

ents a plot of this formula for each pitcher. Note that the pitcher effects are all

straight lines, but with different slopes and starting points (intercepts).

One of the pitchers is our old friend Robin Roberts. The effect shown here is

taken from his career record as it was captured in SI Baseball’s set of All-Time

All-Star Teams for the sixteen original franchises. Roberts made the squad for

the Philadelphia Phillies. As the teams were selected in 1972, the Phillies are

missing many of the franchise’s finest players from the team’s golden era in the

late 70’s and early 80’s. (There’s no Mike Schmidt or Steve Carlton.) However,

it’s safe to say that Roberts, a Hall of Famer, would still make the squad if it were

picked today. Roberts was well-known for his control. This aspect of his pitching

skill is reflected in the low value for automatic walks and the low intercept of his

line.

Bobby Shantz is not well known today, but in 1952, he and Roberts may have

produced the greatest starting pitcher tandem from the same city. Roberts went

28–7 for the Phillies while Shantz went 24–7 for the Philadelphia Athletics.

Both would undoubtedly have won the Cy Young Award, but the award’s cre-

ation was still four years in the future (and wasn’t given in both leagues sepa-

rately for another 11 years). While Roberts finished second to Hank Sauer, a

Pitcher

Pr(On-Base on 

Pitcher Chart)

Pr(Batter Swings 

on Pitcher Chart) Pr(On-Base)

Robin Roberts 0.033 0.767 .033 + .767 × Pr(On-Base on Hitter Chart)

Bobby Shantz 0.057 0.905 .057 + .905 × Pr(On-Base on Hitter Chart)

Vida Blue 0.071 0.638 .071 + .638 × Pr(On-Base on Hitter Chart)

TABLE 1-7 Examples of SI Baseball Pitcher Effects
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Cubs slugger, in the National League MVP balloting, Shantz did win the

American League award, beating out another old friend, Allie Reynolds. While

Shantz never had another year like 1952, he remained in baseball for 12 more

years, primarily as a relief pitcher. He was also noted as a fielder, winning eight

consecutive Gold Gloves. (He probably would have won more, but the award was

not created until 1957, his ninth year in the major leagues.) Overall, Shantz’s

record was good enough to place him on the list of SI Baseball’s All-Time All-Star

Athletics in 1972. Like Roberts, the effect shown here represents his career

record.

Shantz and Roberts provide an interesting comparison. Unlike Roberts, for

Shantz the overall probability of the batter getting on base is greater than the

probability of his getting on base from the hitter’s chart in almost all reasonable

cases. In Figure 1-5, we see that Roberts’s performance completely dominates

Shantz’s performance; every batter has less chance of getting on base opposing

Roberts than opposing Shantz. Indeed, the better the hitter, the bigger the dif-

ference between the effects of Roberts and Shantz. We can see this by the ever-

widening gap between their lines in Figure 1-5, as hitter skill (represented by

the probability of getting on base from the hitter chart) increases. One can inter-

pret this as saying that good pitching becomes more important as the skill of the

batter faced increases. Or, good hitters feed off of poorer pitching. This is what

we mean when we say that the pitcher and batter interact.
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FIGURE 1-5 Plot of pitcher effects in SI Baseball from Table 1-7.
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The third pitcher, Vida Blue, shares some similarities with Shantz. Both had

their best years with the Athletics. Blue had a more significant career, with more

wins and major contributions to several World Championship teams, but like

Shantz he is best remembered for that one great season. In 1971, Blue went

24–8. He became the first Athletic to win the Cy Young Award and the first

Athletic (since Shantz) to win the MVP Award. The pitcher effect in the figure

represents his performance in 1971. From the plot we see that Blue had the least

control of the three. Against weaker hitters (e.g. pitchers) with probabilities of

getting on base between .1 and .2, he is better than Shantz but worse than

Roberts. However, against better hitters with on-base probabilities greater than

.3, his ability to get batters out exceeds his control problem and makes him a

more difficult adversary than Roberts.

Table 1-7 and Figure 1-5 were created without consideration of the fielding

team’s abilities. SI Baseball integrates fielding into the pitcher’s chart. Basically,

teams with better fielders decrease the Pr(Batter Swings on Pitch Chart). This

decrease ranges from .010 to .088. Even with the best fielding team behind him

and the worst behind Roberts, Roberts still dominates Shantz’s performance. We

can see this simply by subtracting .088 from Shantz’s Pr(Batter Swings on

Pitcher Chart) = .905 – .088 = .817, which is still greater than .767, Roberts’s

basic value for this probability. The issue is not so clear between Roberts and

Blue. Figure 1-6 shows the range of fielding effects on Pr(On Base) for Roberts

and Blue. The solid lines identify the pitcher effects for the worst fielding team
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FIGURE 1-6 The effects of fielding in SI Baseball.
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(high line) and the best fielding team (low line) for Roberts. The dashed lines

perform the same function for Blue. We see that, for better hitters, the fielding

team behind these pitchers can make a difference as to which is better overall.

Which Model Is Best?
It is difficult to say which system is best. We both have owned, played, and still

enjoy all of these tabletop games. Much of the model design depended on their

being played for entertainment, and not exclusively, as here, on how they stand

up to analysis. Additional complexity may add to the realism of the model but

detract from its playability. In some ways, this is in the true spirit of the con-

struction of statistical models, where added complexity is not included unless it

produces a significant improvement in its picture of reality. Unlike their com-

puter counterparts, the models used in tabletop games are exposed to the player.

Instead of locking the model inside compiled code, with no one able to review

how results are generated, the developers and publishers of these games have

left themselves bravely open to criticism.

We have reviewed these systems at the most basic level, the probability of

getting on base. Each game also goes into varying detail on the types of events

affected by the pitcher. Strat-O-Matic Baseball pitcher cards vary the distribu-

tion of types of hits depending on the pitcher’s record; thus, pitchers who give up

a lot of home runs (like Robin Roberts) are represented by cards with a greater

probability of home runs. SI Baseball does not do this. For the most part, pitch-

ers with the same “Batter Swings” probability have the same effect on all hitters,

proportionately decreasing the probability of each type of hit.

Many of these games have evolved over the years. They have integrated new

effects such as righty/lefty batting effects, ballpark effects, and performance in

critical situations (clutch effects). Strat-O-Matic Baseball has moved from a

basic version to an advanced version to a super advanced version. APBA

Baseball has created a “Master Game.” For simplicity of exposition, all analysis

here has used the most basic version of each game.

This is not a real impediment to our discussion, however, because the central

point has not been the details, but the general nature of the models, the distinc-

tion between models with no pitcher effect (All-Star Baseball), models with addi-

tive pitcher effects (Strat-O-Matic Baseball), and models with interactive

pitcher effects (APBA Baseball and SI Baseball). None of these systems is per-

fect, but then what model is? Models attempt to capture reality to an extent lim-

ited by the needs of their users and the data available to support their validity.
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Each model has its strengths and weaknesses. All-Star Baseball has the least

sophisticated model, but its simplicity allows it to be played quickly and to intro-

duce younger children to baseball rules, history, and even some important sta-

tistical concepts (fractions and pie charts). At the other end of the scale, Strat-O-

Matic Baseball puts the greatest effort into capturing the details of the

distribution of plays for batters and pitchers. However, doing this with a game

system which attempts to derive results from one roll of three dice produces a

model which at times can overestimate the probability of rare events (home runs

and triples by weaker batters). APBA Baseball and SI Baseball occupy the mid-

dle ground. They sacrifice much of the detail in pitcher effects included in SOM

Baseball, but have a more interesting interactive model between the pitcher and

batter. SI Baseball provides more detail than APBA but at a cost in terms of

playability; it almost always requires two dice rolls and chart references to

obtain a play result.

We will complete the chapter on a note of harmony. Instead of focusing on dif-

ferences, let’s examine similarities. All of these games model baseball as series

of events randomly generated from player characteristics. The games do not

model any sort of momentum effect. A pitcher that gets rocked for a home run

has the same chance of getting the next batter out; his ability is unaffected by

the previous unsettling event. Player abilities are fixed; they have good days and

bad days only as a result of the random variability in the twirl of the spinner or

the roll of the dice.

Another common feature of these games is the absolutely precise information

that tabletop game managers have about each player. As we have shown, proper

analysis of player cards and disks allows each tabletop manager to know exactly

each player’s ability to perform. In fact, this may be the least realistic aspect of

these games as models, because real managers are limited to observations and

measurements of player performance that are the product of ability and chance.

In subsequent chapters, we will discuss some of the implications of chance and

random variability and how we can explore measurements of baseball perform-

ance through the fog of chance and identify true ability and significant effects in

the play of the game.
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Baseball Data

Baseball data consist of a large number of counts and averages that are suppos-

edly helpful in evaluating players and describing the game. The baseball fan is

bombarded, inundated, overwhelmed with statistics. It may be that it is difficult

for the fan to understand the relevance of a particular baseball statistic for the

simple reason that there are so many of them competing for his or her attention.

Is it slugging percentage that’s really important, or on-base percentage?

One job of the professional statistician is to organize and summarize data

effectively. But what does “effectively” mean? First, we want to present the data

with graphs or charts that make it easy to see general patterns in the numbers.

Once we understand the basic patterns in data, we look for unusual data values

(say a Mark McGwire slugging percentage or a Greg Maddux earned-run aver-

age) that appear to deviate from the general patterns. Taken together, all these

methods of organizing and summarizing data are called data analysis.

Exploring Hitting Data
In this chapter, we introduce some basic tools of data analysis by exploring some

hitting data, starting at the very beginning. A team wins a baseball game by

scoring more runs than its opponent. How does a team score runs? Essentially it

is a two-step process. First, batters get on base by getting hits or walks, by ben-

efiting from opponents’ errors, or by being hit by a pitched ball. Second, these

runners are advanced to home by subsequent hits, walks, errors, and hit batters.

27
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The best way of advancing runners is by means of a particular type of hit—a

home run—which scores all of the players on base and the batter. Since it is

important both to get on base and to advance runners, a typical team’s lineup

will consist of several types of hitters. The first and second hitter in a team’s

lineup are supposedly good at getting on base, and the batters in the middle of

the lineup are typically powerful hitters who are good at advancing runners.

A Batch of On-Base Percentages

The standard measure for judging how good a batter is in getting on base is the

On-Base Percentage, abbreviated OBP. Basically the OBP is the fraction of plate

appearances where the batter gets on base. The Major League Baseball web site

tells one how to compute OBP: divide the total number of Hits (H) plus Bases on

Balls (BB) plus Hit by Pitch (HP) by the total number of At-Bats (AB) plus Bases

on Balls (BB) plus Hit by Pitch (HP) plus Sacrifice Flies (SF). Using mathemat-

ical notation and the above abbreviations, the formula for OBP is:

Let’s illustrate computing OBP for the 1999 Roberto Alomar. Table 2-1 displays

Alomar’s season statistics. We compute his on-base percentage in the following

equation, which tells us that Alomar gets on base roughly 42 percent of the time:

Now, is .422 a high OBP value? Is it one of the best values among American

League players? How does it compare to “typical” hitters in the American

League? We suspect that Alomar’s value is high, since by reputation he is known

as one of the best hitters in baseball. Common sense tells us he probably is very

effective in getting on base. The question is, how can we use data to confirm (or

not confirm) what common sense tells us?

= .422
182 + 99 + 7

563 + 99 + 7 + 13
OBP =

AB + BB + HP + SF

H + BB + HP
OBP =

AB H BB SH SF HP

Roberto Alomar 563 182 99 12 13 7

TABLE 2-1 1999 Season Batting Statistics for Roberto Alomar
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The Major League Baseball website lists the OBP values for all 395 American

League players who hit during the 1999 season. Looking over the list, we see

many players who had small numbers of at-bats during the season. We don’t

want to compare Alomar with everyone—it would be inappropriate, for example,

to compare him with a part-time player (say, a fielding specialist) who had only

a few at-bats. It does seem reasonable, though, to compare his OBP value with

those of AL players who played regularly during the 1999 season. We arbitrarily

decide that a player is a “regular” if he had at least 400 plate appearances dur-

ing the season. (Here the number of plate appearances is AB plus BB plus HP

plus SF.) Using this definition of “regular,” Table 2-2 shows the OBPs for the 108

regular American League players in 1999. This table of OBPs is hard to decipher.

To better view these values, we will introduce a few simple graphical methods

that statisticians find useful.

Simple Graphs

One basic method for organizing and displaying a small amount of data is a

stemplot. This graph might appear odd at first glance, but it is a quick and effec-

tive way of organizing data.

Consider Alomar’s OBP value, .422. Ignore the decimal point and break the

value into two parts, which we call a stem and a leaf—in Alomar’s case, the stem

0.330 0.353 0.379 0.427 0.267 0.352 0.358 0.356 0.325

0.422 0.335 0.360 0.310 0.351 0.353 0.343 0.372 0.414

0.336 0.369 0.304 0.339 0.307 0.312 0.353 0.329 0.426

0.404 0.280 0.366 0.418 0.309 0.311 0.391 0.355 0.315

0.365 0.333 0.377 0.422 0.280 0.405 0.349 0.305 0.33

0.387 0.361 0.328 0.331 0.338 0.341 0.420 0.328 0.358

0.330 0.346 0.373 0.378 0.414 0.361 0.339 0.366 0.39

0.331 0.335 0.354 0.324 0.438 0.447 0.362 0.393 0.397

0.400 0.307 0.346 0.384 0.340 0.405 0.341 0.344 0.343

0.337 0.365 0.287 0.405 0.413 0.363 0.442 0.371 0.435

0.334 0.302 0.308 0.358 0.315 0.327 0.363 0.347 0.315

0.307 0.358 0.336 0.384 0.393 0.357 0.357 0.387 0.354

TABLE 2-2 1999 On-Base Percentages for Regular American League Players



CHAPTER 230

is 42 and the leaf is 2. (See Figure 2-1.) To draw a stemplot we first

list all of the possible stems as a column and a vertical line to the

right of the column, as shown in Figure 2-2. Then we record the

OBP values by writing down only the leaf value on the right of the

vertical line. For example, suppose we want to record the OBP val-

ues given in Table 2-3, where the stem and leaf for each are shown.

We record .330 (or 33 | 0) by writing a 0 on the 33 stem line,

.353 (or 35 | 3) is recorded by writing a 3 next to the 35 stem line,

and .379 (37 | 9) is recorded by writing 9 on the 37 stem line.

Remember that each single digit on the right corresponds to one

OBP value. So this stemplot:

corresponds to three players with the following OBP values: .280,

.280, .287.

The stemplot in Figure 2-3 shows us the OBP values for all 108

American League regular players. It may be easier to see the pat-

tern of OBPs by rotating the stemplot display 90 degrees so that

the small OBPs are on the left. (See Figure 2-4.) This display tells

us a lot about the pattern of OBPs for all American League regu-

lars.

The first thing we notice in Figure 2-4 is the general shape of

the group of OBPs. Most of the OBP values are in the .300–.390

range, and a relatively small number of hitters had OBP values

smaller than .300 or higher than .400. So it is pretty common to

have an OBP is the middle .300s and we should

be somewhat impressed to see an OBP larger

than .400 (like Alomar’s) or depressed to see an

OBP in the .200s.

In Figure 2-5, we draw a smooth curve over

the OBP values. This smooth mound-shaped

curve is called a normal curve—it’s a popular

curve in statistics for representing a group of

measurements. When they are recorded for

28   007

2 6

2 7

2 8

2 9

3 0

3 1

3 2

3 3

3 4

3 5

3 6

3 7

3 8

3 9

4 0

4 1

4 2

4 3

4 4

STEM LEAF

4 2   2

OBP STEM LEAF

0.330 33 0

0.353 35 3

0.379 37 9

FIGURE 2-1 Breaking an OBP into a stem and a leaf.

FIGURE 2-2 List of all possible stem values from the data in Table 2-2.

TABLE 2-3 Some OBP Values with Corresponding Stem and Leaf Values
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large numbers of players, many baseball statistics—such

as batting average, slugging percentage, or earned-run

average—will result in a normal curve.

A related useful display of data is a histogram. To con-

struct this picture of data, we group the OBPs into inter-

vals of equal width, count the number of OBPs in each

interval, and then make a bar graph where the height of

the bar corresponds to the count in that interval. Suppose

in this case that we decide to group the OBPs in the inter-

vals .260–.269, .270–.279, .280–.289, and so on. Then we

get a picture of the OBPs shown in Figure 2-6.

Note that this histogram gives us the same picture of

the OBP data as we saw from the stemplot, since we are

grouping the data in the same way. The histogram is per-

haps a “prettier” display than

the stemplot in Figure 2-3, but

actually the stemplot is more

informative, since we see the

actual OBP values.

Typical Values—the Mean

and the Median

After we graph a group of base-

ball statistics as we’ve done

above, we look for a central or

typical value among all of the

data. There are two popular

ways of computing a typical

value using averages: one aver-

age is called the mean, the other

is the median.

The mean (or arithmetic aver-

age) is what you get when you

add up all of the OBPs and
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FIGURE 2-3 Stemplot of OBPs for 1999 American League regular players.

FIGURE 2-4 A stemplot that has been rotated 90 degrees.

FIGURE 2-5 Stemplot of OBP values with a smooth curve drawn on top.
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divide by the number of data values. In the case of the data from Table 2-2, the

computation of the mean would look like this:

The median is the middle value when all of the OBPs are arranged from

smallest to largest—this number divides the data into a lower half and an upper

half. The median of the data listed in Table 2-2 is .354.

Thus, the mean and median are both about .350, which tells us that a typical

AL regular player will get on base about 35 percent of the time. Since the median

is .354, we can say that half of the OBPs are smaller than .354, and half are

larger.

Measures of Spread—Quartiles and the Standard Deviation

After we find a typical (mean and median) OBP for the data in Table 2-2, we

want to say something about the spread of the OBPs. One simple way of describ-

ing the spread of a set of measurements uses the lower and upper quartiles. The

quartiles divide the data into two extreme quarters—one-quarter of the data is

smaller than the lower quartile, and another quarter of the data is greater than

the upper quartile. Here the lower quartile of OBPs is .331, the upper quartile of

OBPs is .382

So one-quarter of all the AL regulars have OBP values smaller than .331, and

one-quarter have OBPs greater than .382. This means that half of all the

American League OBPs are between .331 and .382. In Figure 2-7, we’ve redrawn

Mean OBP =  = .356
.330 + .353 + . . . + .354

108
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FIGURE 2-6 Histogram of OBPs for 1999 American League regular players.
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our stemplot, showing the approximate location of the quartiles, and illustrating

how the lower and upper quartiles divide the group of OBPs.

Another measure of spread of a group of measurements is the standard devi-

ation. This number gives the typical difference between an OBP value and its

mean.1 For our set of OBP numbers, the standard deviation is .039.

The standard deviation is useful for describing a set of measurements when

the data has a normal or mound shape. When the data looks like this:

we expect about 68 percent of the data to fall within a distance of one standard

deviation from the mean, and we expect about 95 percent of the data to fall

within two standard deviations of the mean.

To illustrate this rule, recall that the OBP numbers for the AL regulars had

an approximate normal shape. Also we computed the mean to be .356 and the

standard deviation is .039. So we expect about

68% of the OBP numbers to fall between (.356 – .039) and (.356 + .039)

and

95% of the OBP numbers to fall between [.356 – 2(.039)] and [.356 + 2(.039)]
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FIGURE 2-7 Quartiles divide the OBPs into a lower quarter, a middle half, and an upper

quarter.

1 To compute the standard deviation, we first find the difference of each data value from the

mean, and then square each difference. Then the standard deviation is calculated by computing

the sum of squared differences, dividing the sum by {the number of observations minus 1}, and

then taking the square root of the result.
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We compute these two intervals to be (.317, .395) and (.278, .434). Checking the

data, we see that 71 out of 108 (66 percent) of the OBPs fall between .317 and

.395, and 103 out of 108 (95 percent) of the OBPs fall between .278 and .434.

Interesting Values

We observe the general shape of the OBPs, looking for a typical OBP and con-

sidering the spread of the values, and then look for interesting OBP values that

stand apart from the large cluster of OBPs in the middle. Obviously, we’re inter-

ested in the largest OBPs—in 1999, Edgar Martinez had a .447 on-base per-

centage, followed closely by Manny Ramirez at .442. But we’re also interested in

unusually small values. In the redrawn stemplot of Figure 2-8, we see four small

OBPs are separated from the remainder of the data. We might wonder why

Guzman is an AL regular when he is only getting on base about 26 percent of the

time. Perhaps these players with low OBPs are regulars on the basis of their

defensive ability rather than their hitting ability.

Comparing Groups
Suppose we are interested in comparing two batches of OBPs. To do this, we first

describe a way of summarizing a single batch of data using a few key numbers,

and then describe a graph of these summary numbers, called a boxplot, which is

useful in comparing groups of data.
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FIGURE 2-8 Stemplot of OBPs with some interesting values identified.
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A Five-Number Summary

To summarize the batch of OBPs, we can use five numbers—the median, the

lower and upper quartiles, and the low and high numbers. For obvious reasons,

we call these values a five-number summary.

Low = .267, Lower Quartile = .330, Median = .354,

Upper Quartile = .383, High = .447

A Boxplot

A boxplot is a graph of a five-number summary. To construct a boxplot, we draw

a box, where the locations of the sides of the box correspond to the quartiles, and

put a line in the middle corresponding to the median. We then draw lines out

from the box to the low and high values. The boxplot of the OBPs in Figure 2-9

shows that a majority of the values fall in the mid 300s, with a range of about

.250 to about .450.

Boxplots to Compare Groups

Boxplots are typically used to compare different groups of data. To illustrate,

suppose we’re interested in comparing the OBPs for the American League regu-

lar players against the OBPs for the National League regulars. There were 105

National League players who had at least 400 plate appearances (NL pitchers

0.25 0.30 0.35 0.40 0.45 0.50

ON-BASE PERCENTAGE

LOW

LOWER

QUARTILE     

MEDIAN

UPPER

QUARTILE     

HIGH

FIGURE 2-9 Boxplot of OBPs for 1999 American League regular players.
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do bat, but are naturally excluded from this list because they don’t play in

enough games). Table 2-4 gives the five-number summary of the 105 regular NL

players’ OBPs.

In Figure 2-10, boxplots of the American League and National League OBPs

are drawn on the same scale. The distributions of OBPs for the two leagues look

remarkably similar—the AL and NL boxes have approximately the same center

and spread. Looking carefully at the two boxplots, we see that the NL OBPs are

a little higher, on average, than the AL OBPs. Looking at the medians, we see

that the NL median OBP was .362, compared to a median OBP of .354 for the

AL. So it appears that the NL players were generally a little more successful

than the AL players in getting on base in 1999.

Low

Lower

Quartile Median

Upper

Quartile High

0.292 0.336 0.362 0.383 0.458

TABLE 2-4 Five-Number Summary of the OBPs of the NL Regulars

0.25 0.30 0.35 0.40 0.45 0.50

ON-BASE PERCENTAGE

American League 

National League 

FIGURE 2-10 Parallel boxplots of OBPs for 1999 regular players from the American and

National Leagues.
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OBPs of Offensive and Defensive Players

Remember our earlier comment about the few low American League OBP values

in our dataset? We speculated that these players were in the regular lineup due

to their fielding rather than hitting ability.

Let’s check this out with our AL data. Of the 108 regular players, 60 played in

the less-important fielding positions (1B, 3B, LF, RF), and 48 played in the more

important fielding positions (C, 2B, SS, CF). (Below we will call these the “offen-

sive” and “defensive” positions, respectively.) Table 2-5 gives the five-number

summary for the OBPs for each of the two groups of players, and Figure 2-11

shows parallel boxplots of the OBPs for the two groups.

0.25 0.30 0.35 0.40 0.45

ON-BASE PERCENTAGE

 Defensive Positions

Offensive Positions 

D.Jeter

B.Williams

Low

Lower

Quartile Median

Upper

Quartile High

Offensive positions 0.280 0.340 0.358 0.386 0.447

Defensive positions 0.267 0.328 0.340 0.369 0.438

TABLE 2-5 Five-Number Summaries of the OBPs for the 1999 AL players in Offensive

and Defensive Fielding Positions

FIGURE 2-11 Parallel boxplots of the OBPs of the 1999 AL players in offensive and defen-

sive fielding positions.
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Several interesting observations can be made from Table 2-5 and Figure 2-11.

First, the offensive-position players tended to have OBPs 10 to 20 points higher

than the defensive-position players. Specifically, the median of the offensive

position players’ OBP (.358) was 18 points higher than the median of the defen-

sive position players’ (.340). This substantiates the belief that many players are

in the lineup for their fielding ability, not their hitting. There are, however,

exceptions to this pattern. Note that there are two bullets (•) to the right of the

boxplot for defensive players. Using a standard rule for determining remarkable

values,2 these OBPs were determined to be unusually high. Most fans would

consider Jeter and Williams extraordinary—both play at defensive positions and

are very effective hitters.

Relationships Between Batting Measures
We have spent a lot of time talking about a single measure of hitting perform-

ance—that is, a player’s ability to get on base. But there is a second dimension
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FIGURE 2-12 Scatterplot of OBP and SLG for 1999 American League regulars.

2 To determine these unusual values, one first computes a STEP which is equal to 1.5 times the

distance between the upper and lower quartiles. Then one computes a LOWER FENCE which

is equal to the lower quartile minus a STEP, and a UPPER FENCE which is equal to the upper

quartile plus a STEP. Any data items that are smaller than the LOWER FENCE or are greater

than the UPPER FENCE are called outliers which may deserve special attention.
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to hitting, namely a batter’s ability to advance runners already on base. The clas-

sical measure of a hitter’s advancement ability is the slugging percentage, which

is computed by dividing the total number of bases of all base hits by the number

of at-bats. If 1B, 2B, 3B, and HR stand respectively for the number of singles,

doubles, triples, and home runs of a hitter, then the slugging percentage, abbre-

viated SLG, is computed as follows:

Relating OBP and SLG

How is a player’s on-base percentage related to his slugging percentage? A basic

graph to explore the association between two variables is a scatterplot. For each

player, we have two measures—his OBP and his SLG. For example, in 1999

Roberto Alomar had an OBP of .422 and an SLG of .530.

In Figure 2-12, we plot the ordered pair (.422, .533), which is represented by

a solid square. If we plot the ordered pair (OBP, SLG) for the 107 other regular

AL players, we get the remaining points in the graph.

Looking at Figure 2-12, we see a general increasing pattern—the points drift

up as one moves from the left-hand side of the graph to the right-hand side. The

general conclusion from looking at this graph is that players who have high on-

base percentages tend to have high slugging percentages, and players who don’t

get on base frequently also have low slugging percentages. This conclusion

makes sense, since base hits have a positive effect on both a batter’s OBP and his

SLG.

Relating OBP and Isolated Power

Since a batter’s OBP and SLG seem pretty highly correlated, it would seem

desirable to develop an alternative measure of a hitter’s ability to advance run-

ners that is not confounded or confused with his ability to get on base. There is

a measure, called isolated power (IP), that is designed to do exactly that. One

computes IP by subtracting a batter’s batting average (AVG) from his slugging

percentage (SLG).

IP = SLG – AVG =
2B+ (2 × 3B)+ (3 × HR)

AB

(1 × 1B)+ (2 × 2B)+ (3 × 3B)+ (4 × HR)

AB
SLG =
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Figure 2-13 shows a scatterplot of the isolated power values against the on-

base percentages for the American League regulars. Note that we see the same

type of pattern in this graph as we saw in our first scatterplot, indicating that

players who have high OBP values tend also to have high IP values (and players

who have low OBP values also have low IP values). But the relationship between

OBP and IP appears weaker than the relationship between OBP and SLG, indi-

cating that we have partially succeeded in developing two hitting statistics that

aren’t strongly linked. In other words, IP appears to measure a player’s ability to

get extra bases and advance runners that is distinct from his ability to get on base.

This scatterplot of OBP and IP is useful in describing different types of base-

ball hitters. The players in the lower right part of the graph, such as Kenny

Lofton, Tony Fernandez, and Omar Vizquel, are hitters who are successful in

getting on base, but have relatively little power to get extra base hits. In con-

trast, the hitters in the upper left section of the plot, such as Richie Sexson and

Juan Encarnacion, have good power (indicated by high IP values), but relatively

poor ability to get on base. Obviously the most valuable hitters are the ones who

have high values of both OBP and IP. Manny Ramirez, the most extreme point

in the upper-right section of the plot, had great values of both OBP and IP in

1999, and finished tied for third in the AL MVP voting.
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FIGURE 2-13 Scatterplot of OBP and IP for 1999 American League regulars.
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What about Pitching Data?
We’ve learned some basic techniques for graphing and summarizing hitting

data. The same techniques can be used to analyze any batch of baseball data,

including the statistics used to evaluate pitchers. The Major League Baseball

website provides a number of statistics for pitchers; Table 2-6 describes these

pitching statistics.

We learn quite a bit about a pitcher by exploring these statistics. The games

pitched (GP), games started (GS), and innings pitched (IP) tell us how active the

pitcher was during the season. The wins (W), losses (L), and saves (SV), are

direct measures of the success and failure of a pitcher, since the objective of a

team is to win games. Indirect measures of success are statistics such as runs

(R), hits (H), and home runs allowed (HR), since the hits, runs, and home runs

allowed by a pitcher are positively correlated with an opponent’s success.

Pitchers are usually compared using their win/loss records and their earned run

averages (ERAs). An ERA is the average number of runs allowed by a pitcher

(not counting runs due to miscues by his teammates) for a nine-inning game. An

interesting question is whether an ERA is the best way to evaluate pitching per-

formance. (A general discussion on rating players is covered in Chapter 6.)

Statistic Description Statistic Description

P pitching arm HR home runs allowed

GP games pitched TB total bases allowed

GS games started ER earned runs

W wins ERA earned run average

L losses IP innings pitched

SV saves SO strikeouts

CG complete games BB base on balls

S shutouts BK balks

R runs HP batters hit by pitch

H hits

TABLE 2-6 1999 Statistics for Major League Pitchers
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Strikeouts and Walks

Here we’ll explore two basic pitching statistics, the number of strikeouts and the

number of walks (bases-on-balls) for the 1999 National League pitchers.

Strikeouts and walks are interesting events in baseball. When a pitcher gets a

strikeout, one gets the impression he is dominant, dictating from the mound.

However, a strikeout produces only a single out, and it is not clear that a pitcher

who throws a lot of strikeouts will be effective in not allowing runs and ulti-

mately winning games. When asked to name the ultimate strikeout pitcher, a lot

of people would think of Nolan Ryan, but his lifetime record of wins was only

about 53 percent. (Of course, one could argue that that this was due at least in

part to the poor teams on which he played.) Similarly, when a pitcher walks a

batter, one thinks that he has lost his control and given up an easy on-base. So

it doesn’t seem desirable to walk many batters, but it is not entirely clear what

impact a walk has on the opposing team scoring runs. In the remainder of this

chapter, we’ll explore strikeout and walk statistics to address the following:

• What is a typical strikeout rate (or walk rate) among pitchers?

That is, how many strikeouts (or walks) does a pitcher typically

get for nine innings?

• Are there unusually good or unusually poor pitchers relative to

striking out hitters? Likewise, are there pitchers with unusually

good control who don’t walk many batters?
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FIGURE 2-14 Histogram of number of strikeouts of 1999 National League pitchers.
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• Do starting pitchers strike out more hitters than relief pitchers? How

do starting and relief pitchers differ with respect to walking hitters?

Looking at Strikeout Totals

The MLB website gives 1999 pitching statistics for 300 NL pitchers. Figure 2-14

displays a histogram of the season strikeout totals for these 300 pitchers. This

histogram has a distinctive shape:

which we call right-skewed. Most of the strikeout totals fall close to zero, and

there are relatively few large strikeout totals. This histogram shape is very

common when our statistic is a count of something. If we graph the counts of hit-

ters’ home runs, the counts of walks given up by pitchers, the counts of errors

made by third basemen, or the counts of games won by pitchers, we will find that

the shape of the data will be right-skewed. Most of the data will be clustered at

small values, and there will be a few large numbers.

Why does the histogram in Figure 2-14 have this right-skewed shape? Of the

300 pitchers in this list, many have pitched few innings and have recorded only

a small number of strikeouts. Figure 2-15 shows a histogram of the total innings

pitched. We see three humps in the histogram—there are many pitchers in this
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group who pitched from 0–20 innings, there is another large clump of pitchers

(primarily relievers) who pitched from 50–70 innings, and a clump of pitchers

(starters) who pitch around 200 innings. So there are many part-time pitchers

with few innings pitched, and the statistics for these part-timers are clouding

the picture of the strikeout data. It seems better to look only at pitchers who

have appeared in a minimum number of innings—and we’ll arbitrarily set this

minimum at 50.

If we remove the pitchers with fewer than 50 innings pitched, we’re left with

180 pitchers. A histogram of the season strikeout totals for these NL pitchers is

shown in Figure 2-16. We see a better picture of the strikeout totals—the shape

of the data is still right-skewed, with a large number of pitchers having from

40–100 strikeouts, and a few pitchers with a large number of strikeouts. But the

data from pitchers who appeared in only a very few innings—perhaps because

they were injured, or sent back down to the minors—no longer has a significant

effect on the graph.

Defining a Strikeout Rate

The strikeout king in baseball is traditionally viewed as the pitcher with the

greatest number of strikeouts. That this is so should come as no surprise, but it

should also be pretty obvious that having the greatest number of strikeouts in a

season is not the best measure of a pitcher’s ability to strike out hitters. All you
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have to do is think of those who pitch in relief, for example. In the group of pitch-

ers who have pitched at least 50 innings, a pitcher who has taken the mound in

more innings is more likely to strike out more hitters. It seems better, then, to

take the average number of strikeouts per inning, which is the basis for a sta-

tistic called the strikeout-rate (SOR):

Figure 2-17 shows a histogram of the SOR values for our 180 NL pitchers.

The shape of this histogram, which is normal, or bell-shaped, is typical for a

derived baseball statistic—this is, a statistic that is derived as a ratio of basic

counts. We saw this same data shape in our exploration of OBPs. We would

expect to see a similar normal shape for other derived statistics—such as ERA,

BVG, or SLG—computed for players who have appeared in a reasonable number

of innings.

Here we see that a typical strikeout rate for a 1999 NL pitcher is about .7 per

inning, or about 9 × .7 = 6.3 strikeouts for every 9 innings pitched. We next look

for unusual strikeout rates, statistics that seem markedly different from the

average. In Figure 2-17, we notice 15 pitchers with strikeout rates exceeding 1,

and three pitchers exceeding a rate of 1.5. This is interesting, and deserves a

closer look. In Figure 2-18, we show these strikeout rates as a stemplot, identi-

fying the pitchers with the highest values.
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STARTERS
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Comparing Strikeout Rates of Starters and Relievers

Of the seven pitchers with the highest strikeout rates, we note that only one

(Randy Johnson) is a starter. That raises the question—do relievers typically

strike out more batters than starters? To answer this question, we divide the 180

NL pitchers into two groups, defining a “starter” as a pitcher who has started at

least ten games in the 1999 season.

A useful graph for comparing the strikeout rates of starters and relievers is

the back-to-back stemplot, shown in Figure 2-19. We put the stems in the middle;

the leaves for the starters go to the left, the leaves for the relievers to the right.

As before, we identify only those pitchers with high strikeout rates.

Another way to compare these two groups of strikeout rates is by use of box-

plots (see Figure 2-20).

We see some interesting things from the displays of stemplots and boxplots.

1. Generally, the NL relievers seem to strike out more batters per

inning than the NL starters. The median strikeout rate of the

starters was .68, compared to a rate of .85 for the relievers. In

nine innings, a typical reliever will strike out 1 more batter (7.3)

than a typical starter (6.1).

2. The spread in strikeout rates among the relievers is greater than

the spread in rates for the starters. The lower and upper quartiles
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FIGURE 2-20 Parallel boxplots of strikeout rates of 1999 NL starters and relievers.
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for the relievers is .70 and .96, compared to quartiles of .59 and

.79 for the starters.

3. The boxplot display identifies several pitchers with unusually low

or high strikeout rates. By breaking the pitchers into the two

groups, only one pitcher seems to have a strikeout rate that

clearly stands out from the rest. With apologies to Curt Schilling,

there was no starting pitcher in the NL in 1999 who had a

strikeout rate even close to Randy Johnson’s.

Association Between Strikeouts and Walks?

As we move our discussion from strikeouts to walks, it is reasonable to ask if

there is any relationship between the two statistics. Nolan Ryan is widely (and

correctly) known as a pitcher who struck out many batters but also gave up a lot

of walks. (Looking at his career statistics, we notice that Ryan had 5714 strike-

outs and 2795 walks in 5386 innings; his strikeout rate was 1.07 and his walk

rate was .52, both of which appear to be large.) Are these large strikeout and

walk rates typical of a fastball pitcher? If so, one might expect a positive associ-
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ation between walks and strikeouts. To check this out, we first compute the walk

rate for each AL pitcher, as shown in the following equation, and then construct

a scatterplot of SR against WR, as shown in Figure 2-21.

There does not seem to be much of a pattern in the graph. There is a slight drift

of the point cloud from lower left to upper right, but at best, there is a weak pos-

itive association between strikeout and walk rates.

Exploring Walk Rates

How often do pitchers walk batters? Figure 2-22 shows a stemplot of the walk

rates for the NL pitchers with at least 50 innings pitched. (We’ve ignored the

decimal point in presenting this stemplot.)

We see basically the same data shape as we saw earlier for strikeouts. The

shape of the walk rates is slightly right-skewed—the median value is .42, with

lower and upper quartiles of .35 and .51. So half of all the pitchers walk between

.35 and .51 batters per inning, which translates to between 3 and 4.5 walks per

game. There is a sizeable range in the data from .16 (Shane Reynolds) to .81

(Steve Avery).
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Comparing Walk Rates of Starters and Relievers

We conclude this chapter by addressing the question: Do starting pitchers and

relievers have different tendencies to walk batters? As before, we divide the

pitchers into starters (at least 10 starts in 1999) and relievers. Back-to-back

stemplots are shown in Figure 2-23.

Several interesting features are noticeable. Relievers appear to walk more

hitters than starters. The median number of walks per inning for relievers is .48,

compared to a median of .38 for starters. (Over nine innings, the relievers gen-

erally walk about an additional batter per inning.) Although starters generally

exhibit more control, there are three notable exceptions—J. Sanchez, J. Bere,

and S. Avery—who appear to have unusually little control. Being Phillies fans,

we’re a bit distressed that Wayne Gomes, their closer in 1999, had the worst

walk rate among all the NL relievers, but we don’t altogether lose hope: Mitch

Williams (even though he gave up the Joe Carter home run in the 1993 World

Series) had a good relief pitching year for the 1993 Phillies despite walking a lot

of batters.
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CHAPTER 3

In Chapters 1 and 2, we discussed some methods for exploring baseball statis-

tics. In Chapter 1, we focused on the relatively simple statistical models used in

some popular tabletop games. In Chapter 2, we looked at graphical and descrip-

tive methods that, while simple, are the fundamental tools and models used by

all statisticians. In particular, Chapter 2 used the example of on-base percentage

(OBP) data to describe and analyze the performance of AL hitters. With this

basic knowledge, we know what’s being said, statistically speaking, when some-

one declares, “Roberto Alomar had a .422 on-base percentage in 1999.” We know

that the value .422 is large relative to the entire distribution of OBPs. (See the

stemplot of 1999 AL OBPs in Figure 2-3 of Chapter 2.)

Now that we have explored the OBP data and made a few graphs and charts,

are we done? Are professional statisticians primarily interested in numbers and

patterns of data as they are revealed in summaries and graphs? Aren’t statisti-

cians, after all, just glorified number-crunchers or graph makers? Obviously, we

don’t think so. What the serious statistician is really interested in are the con-

clusions or inferences that one can draw from the data.

Beyond Data Analysis
Let’s contrast the intent of this baseball book with practically any other baseball

statistics book that is published each spring. Essentially baseball statistics

books fall in two categories. One type, which we will call the “numbers book,” just

51
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presents tables and tables of baseball data. This book is designed for the fan who

wants to know all of the statistics from his or her favorite player. The goal of this

type of book is just to tabulate numbers—to put numbers in tables—in a form

that’s convenient for the fan to retrieve and review.

A second type of baseball statistics book—we’ll call it the “analysis book”—

tries to go one step further. It will ask an interesting baseball question, then

present relevant data to answer it: “Who was the better lead-off hitter in 1999:

Chuck Knoblauch or Kenny Lofton?”

Since a lead-off hitter is supposed to get on base, the analysis book would

focus on OBPs, obviously the relevant data set. Knoblauch’s and Lofton’s num-

bers are highlighted in Table 3-1, which shows a small segment of a straightfor-

ward alphabetical list of regular AL players with their 1999 OBP results.

The book notes that Lofton was more successful in getting on base than

Knoblauch, as his OBP value was 12 points higher. Since the book doesn’t say

anything else, the reader is left to draw the conclusion that Lofton is better than

Knoblauch at getting on base. But does Lofton really have more ability to get on

base than Knoblauch?

This question is different from the one posed by the analysis book, which

focused on performance, or results, for 1999. We know that Lofton had a better

year—we are not disputing the calculation of his 1999 OBP value. But did

Lofton really have a greater ability to get on base than Knoblauch in 1999?

When we say ability, we are referring to the characteristics of a hitter, such as

Player

1999

OBP

D. Jeter 0.438

C. Johnson 0.340

D. Justice 0.413

C. Knoblauch 0.393

M. Lawton 0.353

D. Lewis 0.311

K. Lofton 0.405

T. Martinez 0.341

D. Martinez 0.461

E. Martinez 0.447

F. McGriff 0.405

TABLE 3-1 1999 OBPs for a Selection of AL Players
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his batting stroke, his eye for watching pitches carefully, and his patience, all of

which would contribute to his ability to reach base.

There are two possible explanations (at least) for the difference between

Knoblauch’s .393 and Lofton’s .405 . Maybe Lofton really is better at getting on

base than Knoblauch, and the 12-point difference is just a reflection of this fact.

But maybe the two players have the same abilities to get on base, or perhaps

Knoblauch has a superior ability, but by luck or chance Lofton got a better OBP

value in 1999. Which explanation is right? The professional statistician’s job is

to help distinguish differences due to real effects from differences that can be

explained by chance.

Looking for Real Effects

In the course of writing this book, we had the opportunity to pose the

Knoblauch-Lofton question to a nine-year-old baseball fan, showing him the

OBP data in Table 3-2. We pointed out that although Lofton had a higher OBP

in 1999, the difference could be due to luck—maybe Lofton was more lucky than

Knoblauch this season. But the boy, looking at the table, said that Lofton must

be better—especially since he also had a higher OBP in 1998.

He had a point, and a good point. If one player has a better on-base ability

than a second player, then one would expect the first player to get generally a
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FIGURE 3-1 Scatterplot of 1998 and 1999 OBPs for AL regular players.
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higher OBP value across seasons. The question is: how dependable is a high OBP

in one year as a predictor for a high OBP in the next?

Let’s explore the relationship between a player’s OBP in 1998 and his OBP in

1999. Table 3-2 shows the OBPs for the players who had at least 400 plate

appearances in 1999 and had at least 400 appearances in the previous year;

Figure 3-1 shows a scatterplot of the same data.

Player

1999

OBP

1998

OBP

    R. Alomar 0.422 0.347

    C. Johnson 0.340 0.289

   G. Anderson 0.336 0.325

    D. Justice 0.413 0.363

   B. Anderson 0.404 0.356

    C. Knoblauch 0.393 0.361

    B. Ausmus 0.365 0.356

    M. Lawton 0.353 0.387

    D. Bell 0.331 0.364

    D. Lewis 0.311 0.352

    A. Belle 0.400 0.399

    K. Lofton 0.405 0.371

    M. Bordick 0.334 0.328

    T. Martinez 0.341 0.355

    S. Brosius 0.307 0.371

    E. Martinez 0.447 0.429

    M. Cairo 0.335 0.307

    F. McGriff 0.405 0.371

    J. Canseco 0.369 0.318

    M. McLemore 0.363 0.369

    M. Caruso 0.280 0.331

    B. McRae 0.327 0.360

    T. Clark 0.361 0.358

    T. O’Leary 0.343 0.314

    R. Clayton 0.346 0.319

    P. O’Neill 0.353 0.372

    R. Coomer 0.307 0.295

    J. Offerman 0.391 0.403

    M. Cordova 0.365 0.314

    M. Ordonez 0.349 0.326

    D. Cruz 0.302 0.284

    R. Palmeiro 0.420 0.379

    J. Cruz 0.358 0.354

    D. Palmer 0.339 0.333

    J. Damon 0.379 0.339

    J. Posada 0.341 0.350

    R. Davis 0.304 0.305

    M. Ramirez 0.442 0.377

    C. Delgado 0.377 0.385

    J. Randa 0.363 0.323

    R. Durham 0.373 0.363

    A. Rodriguez 0.357 0.360

    D. Easley 0.346 0.332

    I. Rodriguez 0.356 0.358

    D. Erstad 0.308 0.353

    T. Salmon 0.372 0.410

  T. Fernandez 0.427 0.387

    D. Segui 0.355 0.359

    J. Flaherty 0.310 0.261

    M. Stairs 0.366 0.370

    D. Fletcher 0.339 0.328

    M. Stanley 0.393 0.364

    N. Garciaparra 0.418 0.362

    S. Stewart 0.371 0.377

    J. Giambi 0.422 0.384

    B. Surhoff 0.347 0.332

    J. Gonzalez 0.378 0.366

    M. Tejada 0.325 0.298

    T. Goodwin 0.324 0.378

    F. Thomas 0.414 0.381

    S. Green 0.384 0.334

    J. Thome 0.426 0.413

    R. Greer 0.405 0.386

    J. Valentin 0.315 0.34

    B. Grieve 0.358 0.386

    M. Vaughn 0.358 0.402

    K. Griffey 0.384 0.365

    O. Vizquel 0.397 0.358

    B. Higginson 0.351 0.355

    T. Walker 0.343 0.372

    B. Hunter 0.280 0.298

    B. Williams 0.435 0.422

    B. Huskey 0.338 0.300

    T. Zeile 0.354 0.350

    D. Jeter 0.438 0.384

TABLE 3-2 Two-Year On-Base Percentages for 1999 AL Regular Players
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Looking at the scatterplot in Figure 3-1, we see a positive relationship. This

means that players who got high OBP values in 1998 tended also to get high

OBP values in 1999. (A positive relationship also means that players who got

low OBP values in 1998 tended to get low OBP values in 1999.) The scatterplot

and the data from Table 3-2 provide evidence of year-to-year OBP consistency.

This implies that underlying the OBPs observed in each year for a player resides

a consistent OBP ability. If players all had the same ability to get on base, and

differences between season OBPs between players were only due to luck, then

there wouldn’t be any pattern in the scatterplot in Figure 3-2.

That said, though we do see a relationship in the scatterplot between 1998

and 1999 numbers, it is not a strong relationship. In fact, you can find pairs of play-

ers, such as Mike Bordick and Scott Brosius (see Table 3-3) where one player

(Brosius) had a higher OBP in 1998 and the other player (Bordick) had a higher

OBP in 1999.

Predicting OBPs

While we’re on the subject of comparing OBPs for two different years, let’s pose

another question. Suppose that you know a player’s OBP in 1998. What is the

best prediction of his OBP the next year?

This question can be answered by revisiting our scatterplot of the 1998 and

1999 OBP values in Figure 3-1. When we see a relationship in a scatterplot, it is

helpful to summarize this relationship by means of a straight line that passes

through the points. The equation of this straight line gives a simple formula that

relates a player’s 1999 OBP value with his 1998 value. In statistics, there is a

basic recipe (called least squares) which finds the equation of the line which is

the “best fit” through the points of a scatterplot. In this case, the best line has the

following formula:

OBP1999 = .0946 + .761 OBP1998

This line is drawn on the scatterplot in Figure 3-2. This best line can be used to

predict a player’s 1999 OBP if you know his 1998 OBP, and these predictions are

a bit surprising. Let’s illustrate.

1999 OBP 1998 OBP

M. Bordick 0.334 0.328

S. Brosius 0.307 0.371

TABLE 3-3 1998 and 1999 OBPs for Mike Bordick and Scott Brosius
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Kenny Lofton had a .371 OBP in 1998, when the average OBP value (among

AL regulars) was .350, so Lofton was 21 points better than average in 1998. It

would be reasonable to predict that Lofton would also be 21 points better than

average in 1999. However, the prediction using the best line formula is:

OBP1999 = .0946 + .761 OBP1998

and, in Lofton’s case, the best line prediction is:

OBP1999 = .0946 + .761 (.371) = .377

which is only 15 points better than the 1999 average value of .362.

Likewise, if you use the best-line formula to predict any other player’s 1999

OBP, you’ll discover that the 1999 prediction is closer to the 1999 average than

the 1998 OBP is to the 1998 average. What is going on?

This illustrates a general result, called “regression to the mean,” which

applies to any baseball statistic that is measured for two years in a row.

(Actually it applies to many situations besides baseball.) In this setting, it

means that a hitter’s OBP tends to be closer to the average in the second year

than it does for the first year. The phenomenon is also called the “sophomore

slump,” and certainly there is no shortage of media attention for a ballplayer

who has a relatively mediocre second season after a spectacular rookie season.
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FIGURE 3-2 Scatterplot of 1998 and 1999 OBPs for AL regular players with a “best line”

drawn on top.



INTRODUCING PROBABILITY 57

But this relatively weak second year illustrates this regression to the mean

effect—ballplayers who have extremely higher-than-average seasons one year

tend to have less extreme seasons the next.

Probability Models
By comparing the OBPs of AL regulars for two consecutive years, we now believe

that players indeed have different abilities to get on base. But how can we

describe a player’s ability to get on base? Fans use expressions like, “He’s good at

getting on base,” or “He has good bat control,” to describe a player’s hitting abil-

ity. Can we use numbers instead of words to explain a hitter’s ability?

Statisticians use numbers assigned to chance outcomes, probabilities, to draw

conclusions from data. We know that many things in life are uncertain. We don’t

know in advance the outcome of a coin toss, the value of the Dow Jones

Industrial Average at the end of next month, the winner of the 2010 World

Series, or for that matter the year in which the Phillies will win their next World

Series. But the statistician recognizes that, although many aspects of life are

uncertain, there exist general patterns amid this uncertainty, and probability is

a method for describing those general patterns.

To understand a hitter’s ability to get on base, the statistician constructs a

probability model, or a model for short. A model is a description of a random

process that could possibly generate the baseball data. (We have already

described several models in Chapter 1 that underlie tabletop baseball games.)

Let’s look at a simple example. In 1999, Roberto Alomar had 682 plate appear-

ances and got on base 288 times, for an OBP of 288/682 = .422. To investigate

how a model works, we will think of a simple random experiment that could

have produced Alomar’s data. Before we do that, though, we’ll take a quick side

trip to look at a model we’re all familiar with, to get a sense of the variability in

“chance” outcomes.

A Coin-Toss Model

Consider the simple experiment of tossing a coin. We are thinking of the usual

two-sided coin, where the chance of throwing heads is the same as the chance of

throwing tails. In coin-tossing, the chance of tossing heads is .5—we know this

since we believe that it’s equally likely to land heads or tails. The number .5 rep-

resents the true proportion of heads—this is the fraction of heads that we expect

to get if we toss the coin repeatedly. We can think of .5 as an attribute of the coin,

which comes from our belief that the coin is fair. To put it another way, we can
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say that the coin’s ability to land heads is .5. Our coin-tossing model simulates a

perfect 50-50 split between heads and tails.

What happens, though, when we turn from the model, which is a mathemat-

ical formulation, and actually start tossing a coin? Let’s contrast the proportion

of heads described by the model with the proportion of heads observed in an

actual series of tosses. Suppose we toss this fair coin 10 times and we observe 7

heads and 3 tails. The observed proportion of heads is equal to:

Since we got 70 percent heads, does that mean that the coin is not fair? No.

Or does it mean that our model is invalid? No, again. The coin is fair, and the

model is valid, but we were lucky (or unlucky) to get 7 heads in this particular

set of actual tosses. In fact, it is entirely reasonable to get 7 heads out of 10

tosses. What we have to do in this situation is distinguish between the observed

proportion in our data, which is 70 percent, and the so-called true proportion,

which remains 50 percent if the coin is fair.

Is it possible for the observed proportion of heads in 10 tosses to be equal to

the true proportion of 50 percent? Yes, certainly, one could get 5 heads in 10

tosses. But this won’t typically be the case when you have 10 tosses. In fact, it is

more likely in 10 tosses that the observed proportion will be different from the

true proportion.

Let’s consider an illustration of this idea. On a computer, we simulated the

experiment of tossing a fair coin 10 times. Repeating the experiment 100 times,

and keeping track of the number of observed heads in each of these 100 cycles,

we arrived at the outcomes summarized in Table 3-4. In Table 3-5, we used the

same data to record the distribution of outcomes according to whether a 10-toss

series resulted in 1 heads, 2 heads, 3 heads, and so on, along with a calculation

of the probability for each of these outcomes.

We see from Table 3-5 that we observed a 5-heads outcome in 30 of 100, or 30

percent, of the experiments. So the chance that we would observe exactly 50 per-

cent heads in our 10 tosses is only about .3. Saying this a different way, the

chance that the observed proportion is different from the true proportion is .7. So

while our coin-toss model is valid, there is considerable variation in the results

of our 10 tosses of our coin.

There is one situation where the observed proportion will be very close to the

true proportion. Suppose that we were able to toss the coin a very large number

of times—say, a million. In such a case, the observed proportion of heads will be

7
10

= .7, or 70%
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very close to the true proportion of 50 percent. In fact, we can state a general

rule: as we toss the coin more and more times, the observed proportion will gen-

erally get closer and closer to 50 percent.

Observed and True OBPs

Let’s turn our discussion from coins back to baseball, and look again at the bat-

ting behavior of Roberto Alomar in 1999. Recall that Alomar came to bat 682

times and got on base 288 times:

This number is his observed OBP based on 682 opportunities to bat.

Now Alomar possesses a certain ability to get on base. This ability is based on

his ability to see pitched balls, his hitting stroke, and his speed to run to first

base. We can signify Alomar’s ability to get on base this season by a number p,

which we will call his true on-base percentage, or true OBP.

288
682

= .422

6 4 6 3 5 5 7 6 5 7

6 4 5 5 4 3 5 4 6 3

5 7 5 4 5 6 5 4 6 5

4 5 6 7 6 6 3 7 3 5

3 4 3 7 4 6 8 5 3 5

7 3 4 6 4 5 6 6 7 5

6 5 4 4 5 7 2 5 5 4

4 2 5 5 4 3 5 5 5 6

6 4 5 4 5 8 3 4 1 5

4 2 6 7 7 5 8 4 4 4

TABLE 3-4 Number of Heads in 10 Tosses for 100 Experiments

Number of heads

Count

Proportion

1

1

0.01

2

3

0.03

3

11

0.11

4

23

0.23

5

30

0.3

6

18

0.18

7

11

0.11

8

3

0.03

TABLE 3-5 Probabilities for Number of Heads in 10 Tosses of a Fair Coin



CHAPTER 360

Like the coin-toss probability of 50 percent, this number represents Alomar’s

chance of getting on base in a single at-bat. Is the true OBP equal to .422 (his

observed average in 1999)? Probably not, for the same reason that the propor-

tion of heads in 10 tosses is unlikely to be equal to the coin’s true probability.

When we toss a coin, we know the true proportion is one half. Why? Well, we

know something about the composition of the coin (it has two sides, heads and

tails), and we’ve likely had some experience tossing coins, so we believe the coin

to be fair. Is it possible to know Alomar’s true OBP or his ability to get on base?

Not really. We will learn about Alomar’s ability to get on base from observing his

hitting performance for many seasons. But we don’t know his true probability of

getting on base for the 1999 season. If Alomar had millions instead of hundreds

of plate appearances during 1999, we could come up with a very close approxi-

mation of p, his true OBP, but of course this will not happen, so p, at least for

now, will remain a mystery. We can guess that his true OBP is in the .422 ball-

park (pardon the pun), but it could conceivably be .380 or .440. We don’t know

and never will know the exact value of p.

Let’s illustrate the difference between Alomar’s hitting ability and his season

performance by means of a simple simulation. Suppose Alomar is a true .380

OBP player—the chance that he gets on base in a plate appearance is 38 per-

cent. We will simulate Alomar’s hitting results for a season of 682 plate appear-

ances. Here is how the simulation might work: Imagine a spinner, pictured in

Figure 3-3, where the pointer of the spinner can land anywhere on the circle. If

the spinner is spun and the pointer falls in the On-Base region (the emphasized

area), we record an on-base event; otherwise, we record that he didn’t get on

base. (The size of the On-Base region, in this case, is 38 percent of the total area.)

If we spin the spinner 682 times, we simulate a whole season of hitting, and the

total number of pointers that fall in the On-Base region will be Alomar’s number

of times on base for the season.

On-Base

Don’t Get On-Base

FIGURE 3-3 Spinner for simulating hitting for Roberto Alomar.
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Actually we didn’t actually use a spinner. A computer is a more convenient

tool for performing this kind of simulation, particularly if you want to run the

simulation a large number of times. We did the simulation 100 times, obtaining

the number of times on base for each of 100 seasons! Assuming a true OBP of

.380, Table 3-6 shows the number of times on base that we observed. In Table

3-7, we change these on-base numbers to OBPs by dividing each by the number

of plate appearances (682). Figure 3-4 displays these 100 season OBPs using a

stemplot.

Remember that we are assuming that Alomar is truly a .380 on-base player.

Also, we’re assuming that he remains a true .380 on-base player for all of these

276 260 268 283 262 256 263 254 237 241

249 251 255 248 269 229 253 249 265 260

260 259 269 288 267 273 266 277 249 279

263 263 267 264 263 268 271 246 254 242

248 270 258 230 263 258 243 272 274 280

251 265 278 264 259 255 262 246 260 266

279 242 245 257 258 260 280 262 248 289

264 273 264 249 253 247 263 253 276 263

248 241 271 249 251 243 251 247 260 262

257 244 251 274 246 264 244 237 280 256

TABLE 3-6 Number of Times on Base for 100 Seasons Assuming Roberto Alomar Is a

True .380-OBP Player

.405

.365

.381

.386

.364

.368

.409

.387

.364

.377

.381

.368

.370

.386

.396

.389

.355

.400

.353

.358

.393

.374

.394

.391

.378

.408

.359

.387

.397

.368

.415

.364

.422

.387

.337

.387

.377

.365

.365

.402

.384

.394

.391

.386

.386

.380

.378

.371

.368

.361

.375

.336

.400

.393

.378

.374

.381

.362

.356

.387

.386

.371

.390

.397

.356

.384

.411

.386

.368

.358

.372

.365

.406

.361

.399

.361

.384

.371

.362

.348

.348

.389

.365

.372

.402

.381

.364

.405

.381

.411

.353

.381

.409

.355

.411

.390

.424

.386

.384

.375

TABLE 3-7 OBP for 100 Seasons Assuming Roberto Alomar Is a True .380-OBP Player
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100 seasons. But we see from the stemplot that there is a lot of variation in his

season batting performances. In one unlucky season, he had only a .335 OBP. At

the other extreme, in one season he was very fortunate and had a .423 OBP.

These simulated results demonstrate just how different a player’s seasonal OBP

can be from his true OBP (that is, his true probability, p). Also, it is important to

note the size of the variation: there is an 88-point differential between Alomar’s

best (.423) and worst (.335) seasons.

Learning about Batting Ability

In the previous section we assumed that we knew Alomar’s ability to get on base,

measured as the probability p, and we found plausible values for the 100 season

OBPs. As mentioned earlier, we of course don’t know Alomar’s real on-base prob-

ability. But can we get any closer to knowing p, given that we do know his 1999

seasonal OBP was .422?

We will use a simple hypothetical example to illustrate how we can learn

about a player’s hitting ability. Suppose a particular veteran skipper—we’ll call

him Casey—has been managing for thirty years. Based on his experience, Casey

classifies hitters into five distinct ability categories. The “weak” hitters get on

base only about 20 percent of the time, the “average” hitters get on base 30 per-

cent of the time, the “above-average” hitters have an on-base rate of 40 percent,

the “excellent” hitters 50 percent, and the “superstars” 60 percent. All of these

numbers represent true OBPs; if Casey rates a hitter at 30 percent, that hitter

will get on base 30 percent of the time if he is given a very large number of

chances at bat. (Note that we’re assuming a very broad range of abilities—a

player with p = .200 is pretty terrible and a player with p = .600 is better than

the best on-base men in the history of the game.)

57
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FIGURE 3-4 Stemplot of 100 simulated OBPs of a true .380 hitter.
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Now suppose Casey is asked to manage a new team, and he is unfamiliar

with the hitting abilities of the players in his dugout. Moreover, he is told by the

owner (who knows a lot about the abilities of the players on his team) that they

are equally divided between the five hitting-ability categories described above.

That is, one-fifth of the players are truly weak hitters, another fifth are average,

one-fifth are above-average, one-fifth are excellent, and one-fifth are superstars.

There are here, of course, a lot of unlikely assumptions. First, it is not believable

that an experienced manager like Casey would not immediately get to know his

players; he is, after all, an experienced baseball man. And it is even more sur-

prising that the owner knows anything about his players. And perhaps most

unlikely, talent is rarely if ever evenly divided between the five ability levels;

there are typically more average hitters than superstars. Nonetheless, these

fairly ridiculous assumptions simplify our example considerably, and will help

illustrate an important point.

Since the manager has no idea which players are good or poor in hitting, he

plans to insert them randomly into the batting lineup. Casey’s philosophy is sim-

ple. “I have no idea who the good hitting players are, so there is no harm in play-

ing them randomly. But I will learn which players are good after watching them

perform in a week’s worth of baseball games.” Here is the big question. Can the

manager really learn much about a hitter’s ability to get on base if he observes

the player in 20 plate appearances, which more or less would be the total

appearances for a player in a week? Specifically, suppose a particular hitter,

whom we’ll call Mickey, gets on base 8 times in 20 PAs for a .400 observed OBP.

What has the manager learned about Mickey’s true OBP?

We perform a simple simulation to illustrate the process of selecting a player

at random from the dugout and having the player bat for 20 PAs. (This is not real

baseball, but it is a reasonable representation for what is happening in this

example.) We start with a bowl containing five spinners, one with an OBP area

of .200, another with a OBP area of .300, and so on. (These spinners correspond

to the abilities of the players in the dugout.) We choose one spinner at random

from the bowl and then spin it 20 times, which corresponds to the 20 plate

appearances of the hitter. We then record the spinner we chose (the value of the

OBP area p) and the number of spins in the On-Base region of the spinner, which

corresponds to the number of times on base for the hitter.

We repeat this process (randomly choosing a spinner and spinning it 20

times) for a large number of simulations—1000 of them, to be exact. Since we are

interested in what we learn from 8 on base in 20 PAs, we focus on only the sim-

ulations where the spinner landed at On-Base 8 times for an observed OBP of
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.400. We recorded the true OBPs (the ps) for these players, so we can ask the

question: “What were the abilities of the players corresponding to these 8/20

spinner results?” Table 3-8 gives the results.

In our simulation, we observed the result “8 on base in 20 PAs” 97 times. Of

these 97 occurrences, the hitter was a truly weak hitter (that is, with a .200 abil-

ity) 5 times, for a probability of 5/97 = .052. Since this is a small probability, we’re

pretty sure that this batter isn’t a weak hitter.

Looking further at the table, we see that it is most likely that Mickey has a

true OBP of .500, and it is almost as likely that he is a .400-OBP man—these two

abilities have respective probabilities of .371 and .299. It is typical practice to

group a few likely abilities that collectively have a large probability. Looking at

the table, we see that these abilities:

p = .300, p = .400, and p = .500

have a total probability of:

.175 + .299 + .371 = .845

So, based on observing 8 out of 20 PAs, we are pretty confident that Mickey has

a true ability between .300 and .500. We call the interval [.3, .5] a 84.5 percent

confidence interval for the unknown ability p.

What has Casey learned about the hitting ability of Mickey based on 20 plate

appearances? Actually, very little. To say that a hitter’s true OBP is between .300

and .500 doesn’t say very much, since we observed from Chapter 1 that practi-

cally all of the OBPs of regular major league players fall between .300 and .500.

To emphasize how little is learned from 20 plate appearances, let’s modify our

example to include a more narrowly defined set of ability categories. Suppose

that the OBP abilities of the players in the dugout are in the range .300, .310,

.320, . . ., .600, and again the manager has no clue which players are good or poor,

and the dugout contains an equal number of players of each ability level. As

before, Casey selects players at random to be in the lineup, and one particular

Total

Number of Players

Proportion of Players

Ability (p) 0.2 0.3 0.4 0.5 0.6

Name Weak Below-average Above-average Excellent Superstar

5 17 29 36 10 97

0.052 0.175 0.299 0.371 0.103 1

TABLE 3-8 Abilities of Players Who Had 8 out of 20 On-Base in the Simulation

Experiment
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player gets on base 8 times out of 20 PAs. We want to find the probability that

this hitter has a .300 ability, a .310 ability, and so on.

Figure 3-5 displays a line graph of the probabilities that the hitter has each

of the possible OBP abilities. We see that the chance that the batter has a .300

ability is about .03, or 3 percent. In fact, each of the abilities between .300 and

.500 has probabilities between 3 and 5 percent. So we can’t make fine distinc-

tions in ability—say, between a hitter with p = .400 and another hitter with p =

.410—on the basis of an observed OBP of .400 for 20 PAs.

At this point, you may be thinking, “Okay, you’ve convinced me that you don’t

learn much from 20 PAs, but you must know about a player’s ability on the basis

of his season statistics. That’s a lot more plate appearances.”

To address this question, we repeat the above exercise using more data. Again

we have a dugout full of hitters with abilities in the group [.300, .310, . . ., .600],

and the manager has no clue which hitters have which abilities. A certain player

(like Alomar) then plays an entire season and gets an OBP of .430 based on 682

PAs. We did a simulation like the one described above; Table 3-9 shows the prob-

abilities of hitter ability given an OBP of .430 in 682 plate appearances.

Looking at the table results, we see that it is most likely that a hitter with an

observed OBP of .430 actually is a true .430 OBP hitter. But other ability values
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FIGURE 3-5 Probabilities of true OBPs if a batter gets on base 8 times in 20 PAs.
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close to .430 are also very possible. If we group the most likely ability values, we

see the following values:

.390, .400, .410, .420, .430, .440, .450, .450, .460

have total probability of:

.034 + .068 + .102 + .198 + .201 + .146 + .136 + .068 = .953

So this player’s true OBP value is very likely to be in the [.390, .460] range.

Estimating Batting Ability Using a Confidence Interval

A basic task of professional statisticians is to provide bounds on how well an esti-

mate (such as a season OBP) correctly identifies a parameter (in this case p, the

probability of getting on base). A common approach to this inference problem is

to calculate a confidence interval for the probability p, which we illustrated in

the previous section. Using a standard formula taught in all introductory statis-

tics classes, a 95 percent confidence interval for a probability has the following

form:

where

To illustrate, suppose we are interested in learning about Alomar’s true abil-

ity to get on base, which is measured by the on-base probability p. Our guess at

Alomar’s on-base probability is the observed season OBP value .422, which is

based on a sample size of 682 plate appearances. So the margin of error is equal to

estimate × (1 – estimate)
Margin of error = 1.96 × 

sample size

Estimate ± a margin of error

Ability (p) 0.380 0.390 0.400 0.410 0.420 0.430

0.440 0.450 0.460 0.470 0.480 0.490

Total

Number of Players 2 11 22 33 64 65

47 44 22 8 3 2 323

Proportion of Players 0.006 0.034 0.068 0.102 0.198 0.201

0.146 0.136 0.068 0.025 0.009 0.006 1

Ability (p)

Number of Players 

Proportion of Players 

TABLE 3-9 Abilities of Players Who Have a .430 OBP in 682 PAs
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So a 95-percent confidence interval for Alomar’s true ability to get on base p is

.422 ± .037

or

[.385, .459]

This means that there is an excellent chance (a 95-percent chance to be precise)

that Alomar’s on-base probability p is between .385 and .459. (This interval is

essentially the same interval that we computed in the previous section using a

different rationale.)

This confidence interval gives an idea of how well we know the true ability of

getting on base. After 682 plate appearances, we’re pretty sure that Alomar’s on-

base probability is not .350 or .500 or any other value not in the confidence inter-

val. However, values of p such as .390, .420, or .450 are all plausible, since they

do fall within the interval.

Suppose it is May 1, 1999, and Alomar has only played one month in the sea-

son. He currently has an observed OBP of .422 based on 150 plate appearances.

What have we learned about his on-base percentage p? Using the same formula,

but with a sample size of 150 plate appearances instead of 682, the 95-percent

confidence interval is as follows:

[.341, .499]

Since our confidence interval is pretty wide (about 150 points), we are pretty

unsure about Alomar’s true OBP based on one month of hitting data. Maybe he

is average at getting on base and his true OBP probability is a mediocre p = .341,

or maybe he is great in getting on base with a high OBP probability of p = .499.

Both values of Alomar’s true OBP are reasonable given only 150 plate appear-

ances.

Of course, as plate appearances accumulate over time, we learn more about

Alomar’s true on-base probability. Figure 3-6 shows how an OBP confidence

interval moves closer to the true on-base probability p as the number of plate

appearances increases. The vertical lines in the figure mark different 95-percent

confidence intervals around the observed OBP = .422 estimate for different

number of PAs. This confidence interval rapidly narrows to (.35, .5) as the num-

ber of PAs increases to 100. After this point, the lengths of the confidence inter-

vals decrease slowly. Even after 350 PAs (about half a baseball season for a

.422 × (1 – .422)
Margin of error = 1.96 × = .037

682
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player starting in every game), the confidence interval has only narrowed to

[.369, .471]. The final half-year provides little additional information; we saw

that after Alomar’s 682 PAs, the confidence interval has only narrowed to [.385,

.459]. Even after a full season, we are not very sure of a player’s true ability to

get on base. Needless to say, this lack of precision in the observed OBP as an esti-

mator of the probability of getting on base is never discussed by sportscasters or

sportswriters.

Comparing Hitters

What does this mean? Basically, that seasonal on-base percentages are highly

variable. A player with a .400 OBP for a season has a reasonable chance of hav-

ing greater batting ability than a player who had an OBP of .410 in the same

season. It is a fact that the .410 player had a better OBP than the .400 OBP

player over the course of that particular season, but the .400 batter may still be

the better batter—that is, have the higher probability of getting on base.

Let’s consider a batter who at some point in the middle of a season has a .400

OBP. There is no doubt that up to this point the batter has done well. But from
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FIGURE 3-6 Graph of 95-percent confidence intervals for an on-base probability p as the

number of plate appearances changes from 20 to 2000.
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the discussion we just had about the confidence interval for a true on-base per-

centage, we might question just how good this player really is. Is the .400 OBP a

true reflection of his ability, or is it just the result of good fortune? Clearly, again

from the earlier discussion, a lot depends on the number of plate appearances

represented by the .400 OBP. In particular, we might ask whether the batter is

truly better than other players with lower season OBPs. Let us consider three

other batters with the same number of plate appearances as the .400 batter.

Consider two batters—Joe has an observed OBP of .400 and Mike has an

observed OBP of .375 at a particular time during the season. Baseball people

will say that Joe is the better hitter simply because he is currently performing

better in getting on base. But what is the chance that Joe actually has a larger

true OBP, or larger ability to get on base than Mike? Figure 3-7 (bottom curve)

displays the probability that Joe (who is currently hitting .400) is truly better

than Mike (who is hitting .375) for a wide range of plate appearances. If both hit-

ters have only 100 plate appearances, then the probability that Joe is better is

only about 65 percent, and if the players each have 600 PAs, then the probabil-

ity Joe is better is still only 80 percent. We see that we are not confident that Joe

(who hits for .400) is better than Mike (who hits for .375) based on one season of

hitting data.

100 200 300 400 500 600 700

0.5

0.6

0.7

0.8

0.9

1.0

PLATE  APPEARANCES

P
R

(.
4

0
0

 O
B

P
  

P
L
A
Y
E

R
 B

E
T
T
E

R
)

Versus .375 OBP

Versus .350 OBP
Versus .325 OBP

FIGURE 3-7 Graph of the probability that a player with an observed OBP .400 has a better

ability than players with observed OBPs of .325, .350, and .375 as the num-

ber of plate appearances increases from 50 to 700.
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Figure 3-7 also compares our batter who hits .400 (Joe) with batters who have

hit for .325 and .350 OBPs. The middle curve is a graph of the probability that

Joe actually is superior to a guy who bats .350 based on different numbers of

PAs, and the top curve displays the probability that Joe is superior to a hitter

who bats .325. As expected, it is more likely that Joe has greater ability as the

opponent’s observed OBP decreases. Let’s say that we are confident that Joe is

better than the other batter if the probability he is better is 95 percent or higher.

(This value is indicated by a dashed line in the figure.) Looking at Figure 3-7, we

see that it takes 550–600 plate appearances (a full season of PAs) to say that the

hitter who bats .400 is better than the hitter who bats .350. It takes fewer PAs

to distinguish hitters who bat .400 and .325. From Figure 3-7, we see that we are

confident the hitter who bats .400 is better than a hitter who bats .325 after 250

PAs, or roughly half a season.

As a baseball season progresses, we will be comparing the quality of hitters

by means of statistics like the OBP. Halfway through the season, we are pretty

confident that two hitters that have season OBP values 75 points apart (like

.400 and .325) have different abilities to get on base, and that these relative abil-

ities are reflected in their numbers. After an entire season, we can make finer

distinctions between hitters, and we can say (with 95 percent confidence) that a

hitter who has a 50-point observed OBP advantage (like .400 and .350) is the

better hitter. It is hard, however, to make reliable distinctions when the margin

of difference is less than 50 points, and we’re not confident that a difference of 25

points between two hitters (like .400 and .375) is meaningful at all.

As you can see, statisticians aren’t just people who make inferences. We rec-

ognize that the statistics that we observe over a season are only measures of the

players’ performance, and we use probability models to help learn about the

players’ abilities. Suppose some hot rookie, lets call him Max Marvelous, bats

.350 next year. A typical baseball fan may conclude that Max is a great hitter. A

statistician would come to a different conclusion: Max may be a great hitter

based on this great hitting season, but we won’t be convinced that Max has great

batting ability until he maintains this great hitting performance for a number of

seasons.



It’s April 4, 1999, and we’re watching the ESPN broadcast of the opening game

of the season, between the Padres and the Rockies. As each player comes to bat,

the announcers give the viewers some insight on how the players perform in dif-

ferent situations. In this particular broadcast, we learn the following:

• Tony Gwynn is a very tough hitter with runners in scoring position.

• Vinny Castilla hits 100 points better at home than on the road.

• Todd Helton had a slow start in the previous (1998) season.

• Wally Joyner is pretty valuable to his team, since the Padres

generally don’t win when he is not in the lineup.

All of these statements rely on situational statistics—that is, they tell us, “in

this situation . . . ,” or, “under these circumstances . . . ,” this or that tends to be

true. In the last few years, we’ve found these kinds of statistics everywhere—in

newspapers, on talk radio, from the broadcast booth during the game. Another

example: a day after the ESPN broadcast, one of us, reading the newspaper (The

Findlay Courier, April 5, 1999), encountered the following headline: “Indians

Hope to Improve Their Situational Hitting.” Reading the article, it seems that

the Indians didn’t perform well in 1998 in moving a runner along with a bunt, or

getting a runner home from third with a hit. To improve on this, the team has

done more in spring training to promote situational hitting, although leadoff hit-

ter Kenny Lofton comments that failure to move a runner is sometimes just bad

luck: “The one thing the stat don’t show is how many times you hit the ball hard

71
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in those situations and having nothing to show for it. Maybe the ball was caught.

Maybe the ball went foul. I know I had that kind of luck a lot last year.” The arti-

cle then says that Lofton hit a respectable .289 with runners in scoring position

in 1998, but with runners on third and fewer than two outs, he hit .222 (4 for 18).

Is Lofton just making excuses for himself, or does he have a point?

Surveying the Situation
In this chapter, we try to understand what we learn from situational statistics,

and what we don’t. We will focus on one basic measure, a player’s batting aver-

age, and explore what can be learned by breaking it down into situational sub-

sets: What was his average with men in scoring position, or on the road, or before

the All-Star break? We’ll take our data from the book Player Profiles, published

by STATS, Inc., which contains one of the most extensive collections of situa-

tional statistics.

To start, we’ll narrow down our discussion to one player, Scott Rolen, a third

baseman for the Philadelphia Phillies. The 1998 season was Rolen’s sophomore

year in the majors, in which he attempted to show that his Rookie-of-the-Year

performance in 1997 was not a fluke. See Table 4-1 for his stats.

First, we look at Scott’s overall hitting. In 1998, he got 174 hits out of 601 at-

bats, for a batting average of 174/601 = .290. We’ll see later that this is a pretty

good average—it’s better than the batting average of a typical MLB regular

player in 1998.

The table then breaks down these batting stats by a number of different sit-

uations. The vs. Right and vs. Left rows of the table show how Scott performed

against right- and left-handed pitchers. Generally, it is believed that one hits

better against pitchers of the opposite arm: Since Scott is a right-handed batter,

one expects him to hit better against left-handed pitchers. Looking again at

Table 4-1, we’re a little surprised—Scott hit .292 against right-handers and .280

against left-handers.

Next, the table breaks down Scott’s hitting by the type of pitcher faced. Some

are classified as ground-ball pitchers, since their pitching tends to induce a lot of

ground balls; others are characterized as fly-ball pitchers. We see that Scott did

somewhat better against the fly-ball pitchers (.293) than the ground-ball (.276).

The next three situations break down the hitting data by the location of the

ball park (home and away), the time of the game (day and night), and the play-

ing surface (grass and turf, meaning artificial turf). Generally, ballplayers are

thought to play better in their home ball parks than in opponents’. There are a
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number of reasons for this—players are more familiar with the characteristics of

their own park, they are better rested since they aren’t traveling, and they are

being cheered by their fans. We see that Scott hit much better at home (.322)

than at away games (.260), which is what we would expect. There doesn’t appear

to be much of a time-of-day effect—Scott hit just a little better during day games

(.297) than during night games (.287). Also, he hit .312 on games played on arti-

ficial turf, compared with .254 on grass.

After noting that Scott hit better at home, the better average on turf should

not surprise us. Scott’s home park is Veterans Stadium in Philadelphia, which

has artificial turf. So if we combine the situations “surface” and “home/away,” we

see that there really are only three situations—home, away on turf fields, and

away on grass fields. One can figure out from the table that Scott hit .322 (92 for

1998 SEASON

  .290 601 174

AVG AB H

vs. Left .280 132 37

First Pitch .400 80 32

vs. Right .292 469 137

Ahead in Count .348 135 47

Groundball .276 170 47

Behind in Count .205 249 51

Flyball .293 116 34

Two Strikes .225 298 67

Home .322 286 92

Batting #3 .289 568 164

Away .260 315 82

Batting #4 .313 32 10

Day .297 172 51

Other 0 1 0

Night .287 429 123

March/April .271 96 26

Grass .254 232 59

May .345 113 39

Turf .312 369 115

June .295 105 31

Pre-All Star .303 333 101

July .273 99 27

Post-All Star .272 268 73

August .245 106 26

Scoring Posn .294 170 50

Sept/Oct .305 82 25

Close & Late .279 111 31

vs. AL .311 61 19

None on/out .287 115 33

vs. NL .287 540 155

AVG AB H

Season

TABLE 4-1 Scott Rolen’s Situational Statistics in 1998



CHAPTER 474

286) on home-turf, .254 (59 for 232) on away-grass, and .277 (23 for 83) on away-

turf. Generally, in analyzing situational data, one has to watch for situations or

categories that are highly related or overlap. It is hard to tell if Scott really is a

better hitter on turf since he played most of his turf games at home, in

Philadelphia.

Returning to Table 4-1, the hitting data is also divided by different periods of

the season. Scott hit .303 during the first half (before the All-Star Game) and

only .272 during the second half. The month-by-month breakdown shows he had

an especially hot May, batting .345, and a cool August, batting only .245.

The last grouping on the left-hand side of the table breaks down the hitting

data by game situation. The heading “Scoring Position” indicates the player

comes to bat with a runner at either second or third base. “Close and Late”

occurs when the game is in the seventh inning or later and the batting team is

leading by one run, is tied, or has the potential tying run on base, at bat, or on

deck. “None On/Out” means that the player comes to bat with no runners on base

and no outs. The “Scoring Position” and “Close and Late” situations represent

times in the game where it is especially important for the player to get a base

hit. In contrast, there is less pressure on a player when there are no outs and no

runners on base. Here Scott hit for about the same average in all three situations—

there is little evidence that he hits better or worse in pressure-packed situations.

The first grouping on the right-hand side of the table tells us how well Scott

hit on different pitch counts. We see from the table that in plate appearances

where Scott hit on the “First Pitch,” he hit .400. In plate appearances where he

was “Ahead in the Count” (where the number of balls exceeds the number of

strikes), he hit for an average of .348. For “Behind in the Count” situations (pitch

counts of 0–1, 0–2, 1–2, 2–2), he hit .205, and he hit for an average of .225 when

there were 2 strikes in the count.

Last, the table tells us how Scott hit when he was batting number 3 and num-

ber 4 in the Phillies lineup. He played most of his games batting third, so this

breakdown is not very interesting. Likewise, Scott’s hitting performance against

National League and American League teams is not that informative, since he

played almost all of his games against NL teams.

Looking for Real Effects

It’s pretty obvious that Player Profiles is great reading. A Phillies fan who espe-

cially likes Scott Rolen will have fun analyzing his breakdown statistics.

Although Scott appears on the surface to be a .290 hitter, it seems his batting



SITUATIONAL EFFECTS 75

average during the season varied greatly, depending on particular circumstances.

In the following situations, he appears to be an excellent (over-.300) hitter:

• in games played at home

• in games played on artificial turf (but we noted that this might be

the same as home)

• in May

He appears to be especially hot when he swings on the first pitch (.400) and

when he is ahead in the count (.348).

When we look at Player Profiles, we’ll find a wealth of intriguing numbers.

But do all of these numbers—these high and low situational batting averages—

mean anything? In other words, do the observed differences between the aver-

ages in distinct situations correspond to “real” effects?  Was Scott Rolen really a

better hitter during home games?  During the next season, should the Phillies

manager bench Scott for games played on grass because of his sub-par 1998 bat-

ting average on that surface? Should we be surprised when Scott hits for a .400

average on the first pitch?

The preface of the Player Profiles book states:

Not all .300 hitters are created equal. Last year, one hit .446 in April,
and one hit under .190 that month. One hit over .400 after the All-
Star Break and one hit under .220 for the final two months of the
season. . . . When you think about it, calling a player “a .300 hitter”
really doesn’t say very much.

In the rest of this chapter, we’ll use probability models to see if there really

are differences between .300 hitters. Remember Kenny Lofton’s comment about

his bad luck hitting with runners in scoring position? We will try to explain how

much of the variation in the situational data is due to good or bad luck.

Specifically, we’ll explain what we mean by “real” or “true” situational effects,

and see what we learn about them from the situational data for all of the regu-

lar players in the 1998 season.

Observed and True Batting Averages

Recall our discussion about a true proportion and an observed proportion in

Chapter 3: if we toss a fair coin in the air, we know that the chance of tossing

heads is .5—this number represents the true proportion of heads. But if we toss

the coin 20 times, we may get 8 heads for an observed proportion 8/20, or .4. As

we stated, in any situation involving chance, it is likely that an observed pro-

portion will be different from the true proportion.
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In a similar fashion, we can define the concepts of observed and true batting

averages. In 1998, Scott Rolen came to bat 601 times and got 174 hits, so we com-

pute his batting average as follows:

174/601 = .290

This is his observed batting average, based on 601 opportunities to get a hit.

We measure Scott’s ability to hit this season by a number p, which we call his

true batting average. Like the coin probability of 50 percent, this number repre-

sents Scott’s chance of getting a base hit in a single at-bat. It is very unlikely

that his true batting average is equal to his 1998 observed batting average of .290.

Although Scott’s true average p is unknown, we learn something about his

true average by his performance during the 1998 season. Since he hit .290 for his

601 at-bats, we would guess that his true average p is close to .290. Actually,

using the formula presented in Chapter 3, we can construct a 95 percent confi-

dence interval for the true average. It turns out to be [.254, .326]. So we are

pretty confident that Scott’s hitting ability p is between .254 and .326.

Let’s illustrate the difference between Scott’s hitting ability and his season

performance by means of a simple simulation. (A similar simulation experiment

was performed for Roberto Alomar’s on-base percentage in Chapter 3.) Suppose

Scott is really a .300 hitter, and the chance p that he gets a hit in an at-bat is 30

percent. Imagine a spinner, as illustrated in Figure 4-1, where the pointer can

land anywhere on the circle. (Since we’re assuming his hit probability is .3, the

Hit region is 30 percent of the total area.) We simulate Scott’s hitting results for

a season by spinning the spinner 601 times. The total number of pointers that

fall in the Hit region will be his number of hits for the season.

On the computer, we did this simulation 100 times, obtaining the number of

hits for each of the 100 seasons (assuming that his true batting average is .300).

Table 4-2 shows the number of hits that we observed. These hit numbers are con-

verted to batting averages by dividing each by the number of at-bats (601).

These 100-season batting averages are displayed using a stemplot in Figure 4-2.

We are assuming that Scott is truly a .300 hitter and remains a .300 hitter for

100 seasons. But the stemplot illustrates that this good hitter has a variety of

good, mediocre, and bad seasons. In two unlucky seasons, he hit only .260. At the

other extreme, in one season he was very fortunate and hit .346. These simu-

lated results again demonstrate that a player’s true batting average can be dif-

ferent from his season batting average. Also, the differences are substantial: we

see an 86-point differential between Scott’s best (.346) and worst (.260) seasons

in these simulated seasons.
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Hit

Out

FIGURE 4-1 Spinner for simulating hitting for Scott Rolen.
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a .300 Hitter
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FIGURE 4-2 Stemplot of 100-season batting averages for a true .300 hitter.
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Batting Averages of the 1998 Regulars

We focused on one hitter and noticed that there can be a significant difference

between one’s ability—that is, his true batting average—and his season batting

performance. But what if we look at the batting averages of all the players in

1998? Can we use this bigger collection of data to make some conclusion about

the true batting averages of all of these players?

In 1998, there were 246 players (in both leagues) who had at least 300 at-

bats—we’ll call these the “regular players,” since 300 is about half the number of

at-bats of a player who plays every game. In Figure 4-3, we’ve constructed a

stemplot of the observed 1998 batting averages for these 246 players.

What do we see from this stemplot? The batting averages are approximately

bell-shaped, and most of the averages are clustered in the .250–.299 range. The

median batting average, that is, the value which divides the data set into a lower

half and an upper half, is .276. The weakest hitter was John Flaherty, who had a

.207 average. Two hitters stand out at the high end—John Olerud at .353 and

Larry Walker at .363.
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FIGURE 4-3 Stemplot of batting averages of 1998 regular players.



SITUATIONAL EFFECTS 79

Two Models for Batting Averages
From this graph of the observed batting averages, what can we say about the

true batting averages of these regular ballplayers? Remember we don’t actually

know the true hitting probabilities of these 246 players. All we know is their bat-

ting performance in the 1998 season. We will suggest two models for the true hit-

ting probabilities for these players and see how well data that is simulated from

these models mimic the actual 1998 batting averages.

A .276 Spinner Model

One simple model for hitting is based on the use of a random spinner (shown in

Figure 4-4) similar to what was used for Scott Rolen. It consists of two regions

(indicated by the heavy and light sections of the circle) that we’ll call, respec-

tively, “Hit” and “Out.” The area of the Hit region corresponds to the true hitting

probability of the player. Suppose that the player is average in ability—we’ll call

him “Joe Average.” If Joe is a typical regular batter, it is reasonable (using 1998

hitting statistics) to let him have a .276 chance of getting a hit—this corresponds

to a Hit area of .276. We call this model “a .276 spinner.”

If Joe has 500 at-bats during the season, we can simulate a season of hitting

for this average player by spinning our .276 spinner 500 times. We performed

this simulation once, and the spinner landed 152 times on the Hits region, which

corresponds to 152 hits during the season. Joe’s batting average for this simu-

lated season is then, 152/500 = .304. Note that the observed batting average for

Joe is different from his true hitting probability. As we saw in the case of Scott

.276

.724

Hit

Out

FIGURE 4-4 Spinner for an average (.276) hitter.
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Rolen, that will typically be the case. On a computer we had Joe play 10 simu-

lated seasons—Table 4-3 gives the number of hits and batting average for each.

We see that there is a lot of variation in Joe Average’s season performance. In

season 6, he was “hot” and batted .310. In contrast, he “slumped” in season 9 and

batted only .236. Remember, Joe is always an average-ability hitter. Just by

chance variation, he is having good and poor batting seasons. (In contrast, a

sportswriter who observes Joe’s .236 season would probably offer numerous

explanations for his poor year.)

Do All Players Have the Same Ability?

The variability of the season batting averages for this average player raises an

interesting question. Is it possible that all players have the same ability as Joe

Average, and that the differences observed in player averages for the 1998 sea-

son are therefore just the result of random variability? This seems like a silly

question—we think players have different hitting abilities—but it might be

helpful to check this scenario.

Remember that a hitter of average ability is represented by a spinner with a

Hit area equal to .276—a so-called .276 spinner. If all 246 players in the major

leagues are all average hitters (that is, a set of Joe Average clones), then we have

a set of 246 spinners, each spinner having a Hit area of .276.

To simulate a season of hitting for all 246 players, we just spin these 246

spinners many times, recording the number of Hits and Outs. After this simu-

lated season is completed, we compute the season batting averages for all play-

ers, graph the simulated averages, and compare the results with the graph of the

actual 1998 season batting averages.

Figure 4-5 shows what happened when we did this simulation for one base-

ball season. The actual 1998 batting averages are displayed in the left boxplot,

and the simulated batting averages are displayed in the right boxplot.

SIMULATION

1 2 3 4 5 6 7 8 9

HITS 152 121 131 147 126 155 126 128 118 144

ABS 500 500 500 500 500 500 500 500 500 500

AVG 0.304 0.242 0.262 0.294 0.252 0.310 0.252 0.256 0.236 0.288

10

TABLE 4-3 Simulated Data from 10 Seasons of Hitting by Joe Average



SITUATIONAL EFFECTS 81

What do we see? Both groups of batting averages are centered about the

median value .276. But the actual 1998 batting averages are more spread out

than the simulated averages. In the simulated season, only a couple of players

hit less than .240 or more than .320. In contrast, there were a number of players

in the actual 1998 season who had averages lower than .240 or higher than .320.

This suggests that the “equal ability” model doesn’t provide a good fit to the

data.

When we repeated this simulation of baseball seasons many times, the result

was the same. The actual 1998 season batting averages always had greater

spread than the season batting averages simulated from the “Joe Average

clones” model. What do we conclude? A .276 spinner model does not work for

baseball hitting data, which means that hitters do have different abilities. A

more complicated model is needed to represent baseball hitting data. As we said

before, this is a pretty obvious conclusion—it would seem ludicrous to say that

players all have the same hitting ability—but it illustrates the basic method

we’ll use to check the suitability of other models.

A Model Using a Set of Random Spinners

From our investigation of the .276 spinner, we concluded that players have dif-

ferent hitting abilities. The next question is, how can we represent these differ-

ent abilities? When we take physical measurements of the general population
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FIGURE 4-5 Boxplots of actual 1998 batting averages and simulated seasonal averages

from one random spinner model.
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and collect data about different characteristics—such as height, arm span, foot

size, and so forth—we find that most of the measurements cluster in the middle

and attenuate (or “thin out”) at the high and low extremes. We call this data dis-

tribution “normal,” and when we put it into a graph, we get the familiar bell-

shaped curve. This normal curve is also found in data describing the abilities of

people. For example, if you give 100 people a standardized test on some subject

matter such as math, the test scores will be approximately bell-shaped.

This bell-shaped curve is also useful for describing the hitting abilities of ball

players. Suppose that the true hitting proportions of regular Major League ball

players are described by a normal curve. We’ll let the center of the curve be .276,

which is the typical season batting average for 1998. Next we have to decide on

the spread of this curve. We know that ball players have different abilities, and

the spread of this curve will tell us how different the abilities can be. We choose

a spread for the curve so that the season batting averages that are simulated

resemble the actual batting averages for the 1998 season. How we figure out this

spread is a bit complicated. But it turns out that if we let the normal curve have

a standard deviation of .021, the season batting averages are a pretty good

match to the actual 1998 data.
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FIGURE 4-6 Normal model for true hitting probabilities.
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The technical name for this model is a random-effects model, or a random-

ability model. To better understand this model, let’s describe in some detail how

one could simulate hitting of all the regular players in a baseball season.

• The first thing we do is to choose the different abilities of the 246

players who are playing the 1998 season. We choose these abilities

randomly based on the normal curve in Figure 4-6. We did this on

a computer and got the true baseball averages shown in Table 4-4.

• To see where these true batting averages come from, we’ve

graphed these 246 averages in Figure 4-7 and placed the normal-

ability curve on top. (This figure uses a dotplot, where each

batting average is represented by a dot on a number line.) We see

that most of the true averages are in the 250–300 range, which is

what we predict from the normal curve.
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253

299

284

265

236

244

260

265

268

288

264

281

261

254

283

253

283

261

283

266

274

252

326

240

293

286

281

260

261

232

255

308

281

282

281

286

289

278

261

262

275

234

312

281

281

281

303

247

274

287

273

296

279

270

265

250

303

303

315

272

273

272

299

317

270

290

290

289

258

255

267

305

225

271

TABLE 4-4 Simulated True Batting Averages for 246 Players
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FIGURE 4-7 Dotplot of the true batting averages with a normal curve placed on top.

.278 .259 .290

.226 .297 .301

.310 .223 .252

FIGURE 4-8 Spinner models for nine hitters from the random-ability model.
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• Based on the 246 true batting averages we have simulated, we

construct 246 computerized spinners. Each spinner corresponds to

a particular player, and the Hit area for his spinner will be equal

to the true batting average for that particular player. So if Scott

Rolen is assigned a .308 true average, his spinner would have a

relatively large Hit area, and Albert Belle, with a .251 true

average, would have a spinner with a smaller Hit area, and so on.

The nine spinners shown in Figure 4-8 correspond to the boldface

averages in the upper-left corner of Table 4-4.

• We then spin all of these spinners for a full season of hitting,

where each player has the same number of at-bats as he actually

had in the 1998 season.

We did this simulation for a single baseball season and computed the season

batting averages for all 246 players. How did these simulated batting averages

compare with the actual 1998 averages? Figure 4-9 compares the two sets of

averages by means of two boxplots. Looking at the boxplots, we see that they

seem to mimic the actual 1998 averages pretty well. For the actual 1998 data,

there is one extreme average at the high end, and the simulated data has one

unusually low average. In any event, this simulation confirms that the “many

random spinners” model does a pretty good job of predicting the distribution of

seasonal batting averages.
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FIGURE 4-9 Boxplots of actual 1998 batting averages and simulated seasonal averages

from the many spinners model.
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Situational Effects
What have we learned from looking at the 1998 batting averages?

• Batters appear to possess different hitting abilities.

• We can describe these different abilities by means of a group of

true hitting averages. The group of true batting averages forms a

bell-shaped curve centered on the typical value .276.

Now we’re ready for a discussion of situational effects. How do players’ bat-

ting averages change across different situations? Specifically, using the data

from Player Profiles, we will compare players’ batting averages in the following

situations:

• during home games and away games

• against pitchers of the opposite arm and the same arm

• against ground-ball pitchers and fly-ball pitchers

• during day games and night games

• on games played on grass and on turf

• on games played before and after the All-Star Game

• when the team is in scoring position, when no one is on base and

there are no outs

• when the pitcher is ahead in the count and when there are 2 strikes

First, let’s discuss what is commonly believed about the importance of several

of these situations.

Home vs. Away

It’s well known that all ball parks are not created equal. They differ in the dis-

tances from home plate to the fences, the size and shape of foul territory, the cli-

mate, and countless other particulars. And it is believed, by players and coaches

and fans, that these differences have a significant impact on hitting. We hear

that batters who regularly play in a park that is supposedly “friendly” benefit

from that park. And it is widely accepted that players hit better at their home

ball park than they do on the road. It’s more comfortable to play in one’s own

park, goes the thinking: the players get to stay in their homes and drive them-

selves to work, while the away team which has to travel on planes and buses and

stay in motels. And the home team, of course, is cheered on by local fans.1 For all

of these reasons, one expects players to have higher batting averages at home

compared to away.

1 Contrary to myth, even in our home town of Philadelphia.
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Turf vs. Grass

It is well known that balls hit on artificial turf will behave differently from those

hit on natural grass. It is believed that artificial turf will increase the number of

doubles and triples, since line drives into the outfield will move fast and more

likely evade the outfielders. Also, balls hit in the infield on artificial turf, we’re

told, will more likely reach the outfield. For these reasons, it is believed that

“turf,” as the artificial surface is called, has a positive impact on players’ batting

averages.

The Count

When a pitcher faces a batter, there are 12 possible pitch counts (0–0, 0–1, 0–2,

1–0, 1–1, 1–2, 2–0, 2–1, 2–2, 3–0, 3–1, 3–2). To an experienced fan, each count

conveys a feeling about the batter’s chances of getting a hit. For example, if the

hitter is facing an 0–2 count, it is generally believed that the pitcher has a strong

advantage and the hitter has a small chance of getting a hit. (Actually, the hit-

ter is likely to strike out after an 0–2 count.) In contrast, a batter with a 3–0

count can be very relaxed and confident and has a high probability of walking or

getting a hit. Thus it would seem that a player’s ability to get a hit would vary

greatly depending on the pitch count.

Opposite Arm vs. Same Arm

One of the fundamental managerial strategies is to have a hitter bat against a

pitcher of the opposite arm. This strategy is based on the belief that it is easier

to hit a pitch that’s coming toward you than a pitch moving away from you. As

Casey Stengel once said:

There’s not much to it. You put a right-hand hitter against a left-hand
pitcher and a left-hand hitter against a right-hand pitcher, and on
cloudy days you use a fastball pitcher.

According to this logic, one expects a player to have a better batting average

against pitchers of the opposite arm.

Models for Situational Effects
To understand which of the above situational effects are “real,” we’ll use the

same basic strategy that was used in analyzing the set of batting averages. We

will propose a few basic models for situational effects, then we will fit these basic
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models to the 1998 batting-average data. Based on this fitting, we’ll see which

models seem to predict the pattern of effects we see in the 1998 data.

To describe these models, let’s use a hypothetical situation that is not repre-

sented in Player Profiles. Suppose we break down the hitting data by the size of

the crowd—below average (whatever “average” is for that particular stadium),

and above average. We want to know if the size of the crowd has any effect on the

players’ batting averages. For ease of description, we will refer to these two sce-

narios as “small crowds” and “big crowds.”

Suppose one of our favorite players, Tony Gwynn, has 80 hits in 250 at-bats

on small-crowd days and 100 hits in 250 at-bats on big-crowd days. Given this

information, we observe the situational batting averages in Table 4-5. Looking at

the table, we might be tempted to say, “Wow!” Tony hit 80 points higher when the

attendance is high–apparently, he really loves to play in front of big crowds!

But wait a minute. We are learning that there is a lot of variation in batting

data for a single season. Maybe Tony doesn’t care if he’s hitting in front of a big

or small crowd, and there actually isn’t any real situational effect due to atten-

dance. The attendance effect of 80 points that we see in the hypothetical season

above might be due to chance variation. Tony may actually have the same true

batting average on small- and big-crowd days, but by luck he just happened to do

much better this year on big-crowd days. What we’re trying to do here is to

decide how much of the variation in situational hitting data is due to real effects

and how much of the variation is due to luck or chance variation.

For each player, let’s define two true batting averages. The first average pB is

the true batting average of the player when he plays in front of big crowds, and

the second average pS is the true average in front of small crowds. We’ll call the

true situational effect the difference between the two batting averages:

True effect = pB – pS

We want to learn about the sizes of the true effects for all of the hitters in 1998.

In the description of the models to follow, it will be convenient to write the two

batting averages as

ATTENDANCE

Small Crowd Big Crowd Difference

Batting Average 80/250 = .320 100/250 = .400 .400 – .320 = .080

TABLE 4-5 Hypothetical Situational Hitting Data for Tony Gwynn
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True batting average for small crowds: pS

True batting average for big crowds: pB = pS + EFF

Here we’re using the abbreviation EFF to stand for the True Situational Effect.

To put this another way, EFF measures how much better a player hits when

there is a good crowd in the stands.

When we talk about situational effects, there are three possible scenarios.

We’ll describe these models using our hypothetical above-average/below-average

attendance situation.

Scenario 1 (No Situational Effect)

One possibility is that there is no true effect due to attendance. A major-league

ball player has been playing in front of crowds his whole life, and maybe he is

oblivious to the size of the crowd. If this is a reasonable statement, then there is

no reason to expect the batters to hit for a different average on small-crowd and

big-crowd days.

If there is no situational effect due to attendance, what would true batting

averages look like? We would see a distribution like the one shown in Figure 4-10,

which shows the same normal curve we saw in Figure 4-6.
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FIGURE 4-10 Normal curve for batting averages when there is no situational effect due to

attendance.
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Scenario 2 (Situational Bias)

Let’s consider a different scenario. Suppose hitters actually like big crowds, and

when they see a big crowd, they get excited and try harder. And since they try

harder, they are generally more successful in hitting. If this is true, then a

player’s true batting average on big-crowd days will be higher than the player’s

true batting average on small-crowd days. Also, we assume here that the big

crowd has the same effect on all of the players. So if this effect is, say, 40 points—

that is, the average is 40 points higher for big crowds than for small crowds—

then every player will have this same effect. The statistical term for this type of

behavior is a bias.

Table 4-6 and Figure 4-11 illustrate what we mean by a bias. Suppose that

the hitting abilities of the players on small crowd days follow a normal curve

with mean .256 and standard deviation .021. In Table 4-6, we show the true bat-

ting averages for 50 representative hitters on poor-attendance days. In the top

graph of Figure 4-11, we display these true averages using a dotplot.

Next, suppose that there is a bias of 40 points. That means that every player

bats for a 40-point higher average when there is a big crowd, in which case:

EFF = .040

PLAYER TRUE AVG

A

B

C

D

E

F

G

H

I

J

K

L

M

.258

.239

.270

.206

.277

.261

.261

.281

.250

.253

.229

.221

.241

AA

BB

CC

DD

EE

FF

GG

HH

II

JJ

KK

LL

MM

.261

.230

.249

.236

.231

.235

.248

.260

.254

.278

.251

.224

.256

N .262 NN .257

O .245 OO .263

P .228 PP .266

Q .279 QQ .283

R .241 RR .244

S .256 SS .261

T .256 TT .256

U .251 UU .244

V .264 VV .301

W .250 WW .251

X .221 XX .226

Y .234 YY .293

TABLE 4-6 Fifty Representative True Batting Averages for Games with Small Crowds
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To get the true batting averages for our 50 hitters on big-crowd days, we sim-

ply add 40 points to each small-crowd batting average in Table 4-6. The result-

ing averages are shown in Table 4-7.

The bottom graph of Figure 4-11 displays the true “big crowd” averages.

Comparing the two dotplots, we see the effect of the situational bias. All of the

dots in the top graph have been shifted to the right by 40 points to get the dots

in the bottom graph. This emphasizes the fact that a situational bias means that

all players have the same batting-average improvement due to a good park

attendance.

Scenario 3 (Situational Effect Depends on Ability)

The third scenario is the most complicated description of what may be going on.

Maybe there really is a boosting effect due to the size of the crowd, but the size

of the effect depends on the player. For example, suppose that there are two play-

ers, Joe Cool and Harry Hyper, who react differently to big crowds. Joe is good in

not letting outside influences affect his hitting. His true batting average when

there are big crowds is approximately equal to his average when there is no one

in the stands. Harry, in contrast, feeds on whatever energy level is present in the

ball park. If attendance is low and no one is cheering, he is complacent, and his

batting average suffers. On the other hand, if the ball park is filled to capacity
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FIGURE 4-11 Dotplots of 50 typical “small crowd” and “big crowd” true batting averages

when there is a situational bias of 40 points due to attendance.
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and the crowd is cheering, Harry gets pumped and hits for a high batting aver-

age. Harry would have a large situational effect due to the park attendance.

In this scenario, we are saying that players actually possess different abilities

to use the situation. Harry is more successful than Joe in using the crowd to his

advantage. If Harry and Joe are both second baseman, then the manager might

prefer to use Joe on small-crowd days and Harry on high-attendance days.

Finding Good Models
We’ve described three possible scenarios for a given situation effect. We’ll nick-

name these scenarios as “no effect,” “bias,” and “ability effects.”

• No effect. There is no true situational effect. Any differences that

we observe in the season situational batting averages are solely

due to chance variation.

• Bias. There is a true situational effect, but it is the same for all

players.

• Ability effects. Players have different true situational effects.

How do statisticians find the best model for the 1998 hitting data? Actually,

we don’t want to bore you with a long explanation of the method of finding the

model. What’s more important here is an understanding what we mean by

PLAYER TRUE AVG

A .258+.040 AA .261+.040

B .239+.040 BB .230+.040

C .270+.040 CC .249+.040

D .206+.040 DD .236+.040

E .277+.040 EE .231+.040

F .261+.040 FF .235+.040

G .261+.040 GG .248+.040

H .281+.040 HH .260+.040

I .250+.040 II .254+.040

J .253+.040 JJ .278+.040

K .229+.040 KK .251+.040

L .221+.040 LL .224+.040

M .241+.040 MM .256+.040

N .262+.040 NN .257+.040

O .245+.040 OO .263+.040

P .228+.040 PP .266+.040

Q .279+.040 QQ .283+.040

R .241+.040 RR .244+.040

S .256+.040 SS .261+.040

T .256+.040 TT .256+.040

U .251+.040 UU .244+.040

V .264+.040 VV .301+.040

W .250+.040 WW .251+.040

X .221+.040 XX .226+.040

Y .234+.040 YY .293+.040

TABLE 4-7 Fifty Representative True Batting Averages for Games with Above-Average

Attendance
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“best.” We know that baseball hitting is a complicated process, and no model,

including the ones described above, will perfectly describe what is going on with

respect to situational effects. But what we do in statistics is try to find a single

simple model that seems to explain pretty well the hitting data that we observe

in Player Profiles. There are two important aspects of the model. First, we want

the model to be simple so that it is understandable. Second, the model should be

good in the sense that it makes reasonable predictions about current and future

baseball data. The “many random spinners” model for batting averages is an

example of a good statistical model. It is easy to understand, and it predicts, rea-

sonably well, the pattern of season hitting data that we observe.

What Do Observed Situational Effects Look Like 

When There Is No Effect?

Before we look at the situational data of the 1998 hitters, it will be helpful to

consider a scenario where there is no situational effect. We will simulate situa-

tional data for a season, and by looking at the observed situational batting aver-

ages, we’ll understand the great variability that is inherent in this type of data.

Let’s recall the “random spinners” model for hitting data. Here each of the

246 hitters has an associated random spinner, where the Hit region in the spin-

ner corresponds to the true batting average. We spin these spinners for an entire

season of hitting, and in this way simulate the season batting averages for the

group of players.

We introduce a new situation where we know there is no effect. Let’s suppose

that, when we do this simulation, half of the time we spin the spinner in the dark

and the other half of the time we spin in the daylight. So, for example, consider

Roberto Alomar, who has 588 at-bats in the 1998 season. For 294 of the at-bats,

we’ll spin Alomar’s spinner in the dark, and for the remaining 294 at-bats we’ll

use the spinner in the daylight. After we use the spinner for all 588 at-bats, we

will record the number of hits that Alomar gets in the dark and in the light. We

will compute Alomar’s batting average in each situation, and then we can com-

pute the observed situational effect:

Observed situational effect = AVGdark – AVGlight

When we did one simulation, Alomar got 87 hits in 294 AB in the dark for a

batting average of 87/294 = .296. In the light, he had 71 hits in 294 AB for an

average of .242. Alomar’s observed situational effect in this case is:

Observed situational effect = .296 – .242 = 0.54
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So Alomar hit for 54 more points in the dark in this simulation season. To

many people, this would represent a significant effect—Alomar must like the

dark! But of course this is not the case, since it was the spinning, and not real

hitting, that took place with the lights out.

To investigate further, we repeated this simulation for all 246 players (using

their 1998 at-bat totals) and computed situational effects for all players. In

Figure 4-12, we graphed the 246 effects using a stemplot.

In this silly example, does there exist a true situational effect? If the same

spinner is used in the dark and in the light, do you think the chance of getting

the pointer to land in the Hit region will change depending on the light in the

room? Of course not. If you spin the spinner the same way each time, the chance

of getting a Hit will remain the same regardless of the light. We know in this

case that there is no true situational effect.

Now look at the stemplot in Figure 4-12. Even though there is no dark-light

effect, some of the players have large dark-light effects for this simulated sea-

son. One player batted .358 in the dark and .241 in the light for a whopping

effect of .358 – .241 = .117. On the other side, there was one player who batted

.262 in the dark and .372 in the light—110 points greater in the light. The situ-

ational effects are bell or normal shaped, centered about the average value of 0,

which is what we would expect. But the spread of these effects is large, and prac-

tically all of the observed effects fall between –100 and +100 points. This simu-

lation demonstrates that, even when there is nothing going on, the observed sit-

uational effects can look deceptively interesting.
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FIGURE 4-12 Stemplot of seasonal situational effects when there is not a true effect.
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The Last Five Years’ Data

Although we are focusing on interpreting the 1998 situational data, Player

Profiles also gives the same situational hitting data for the previous five-year

period, from 1994 through 1998. This five-year data is very useful for under-

standing the significance of observed situational effects. Looking at the book, we

see that Butch Huskey in 1998 hit for an average of .299 against left-handed

pitchers and only .230 against right-handers—here we observe a situational

effect of 69 points (.299 – .230 = .069). Does this mean that Huskey (who is a

right-handed hitter) is a much better hitter against lefties? Maybe or maybe not.

It’s possible that Huskey has the same hitting ability against lefties and right-

ies, but by chance he just happened to do better against lefties in 1998. One way

of checking if this 69-point differential is real is to look at his performance over

the last five years. If he exhibits the same effect in the previous years, one would

have more confidence that the situational effect really exists. The data in Table

4-8, taken from Player Profiles, helps us take just such a look at Huskey’s five-

year history.

We observe a left-right average difference of .301 – .254 = .047, which is

pretty large. So we might conclude that Huskey is a much better batter against

lefties But, wait: the last five years’ data includes the year 1998. So one reason

that Huskey has a large five-year effect is that he experienced a large effect in

1998. It would be better to remove the 1998 data from the last five years, creat-

ing data for the four-year period 1994–1997, as shown in Table 4-9.

We see that in the last four years, Huskey had a .301 – .263 = .038 average

difference. This is reasonably large, so we believe that Huskey does hit for higher

average against lefties. But the 1998 difference of .069 seems to be larger than

his true advantage. We will use the last four years data to give support to our

conclusions about the true situational effects.

LAST F IVE YEARS (1994–1998)

AB H AVG

Left 389 117 0.301

Right 955 245 0.254

TABLE 4-8 Butch Huskey’s Batting Data for the Five-Year Period 1994–1998
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The “No Effect” Situations

Recall the simulation in which we spun our spinners half the time in the dark

and half the time in the light. In that situation, even when we knew that there

was no situational effect, the observed situational effects fell between –100 and

+100 batting average points. Interestingly, we see this same pattern of season

effects for all of the following situations:

• pre-All-Star Game vs. post-All-Star Game

• day games vs. night games

• grass vs. turf

In Figures 4-13, 4-14, and 4-15, we have used stemplots to graph the observed

1998 situational effects for pre/post, day/night and grass/turf for all 246 players.

We see in this actual data basically the same pattern of effects that we saw in

our light/day simulated data. For each of these three situations, the player effects

are bell-shaped around 0 and spread out between –100 and +100 points.

F IRST FOUR YEARS (1994–1997)

AB H AVG

Left 272 82 0.301

Right 703 185 0.263

TABLE 4-9 Butch Huskey’s Batting Data for the First Four-Year Period 1994–1997

9

00

98888

7777666666

5555555555555554444444444

3333333333333332222222222222

1111111111111111000000000000000000000000000

000000000000000000011111111111111111111111111

222222222222222333333333333333333

44444444444444455555555555

666666666677777

88888888

0001

–1

–1

–1

–1

–1

–0

–0

–0

–0

–0

0

0

0

0

0

1

6

3

00000

888

777777666666666

55555544444444444444

3333333333333333333332222222222222222222222

111111111111111111111110000000000000000000000

0000000000000000000111111111111111111111

22222222222222222222222333333333333

44444444555555555

666666667777

889999

0

23

–1

–1

–1

–1

–0

–0

–0

–0

–0

0

0

0

0

0

1

1

FIGURE 4-13 Stemplot of observed 1998 differences 
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To emphasize this point, Figure 4-16 displays parallel boxplots of the 1998

effects for the pre/post All-Star game, day/night, grass/turf situations together

with the hypothetical dark/light values from our situation. Note the similarity of

these four datasets, in terms of both the average value and the spread.

So we conclude that their is no general effect for these three situations.

Players don’t generally hit any better or worse in the last half of the season than

the first half of the season. There is no general hitting advantage or disadvan-

tage in playing a night game compared to a day game. And there is no general

hitting effect with regard to the type of field (grass or turf).

One way to demonstrate the lack of a general effect for these situational vari-

ables is to compare the 1998 observational effect with the last-four-years

(1994–1997) effect for all of the players. For example, consider the pre-All-

Star/post-All-Star effect. Table 4-10 shows the pre-All-Star and post-All-Star

batting averages for four of the players.

We see from Table 4-10 that Edgardo

Alfonzo hit 21 points better in the second

half of the season in 1998, but hit only 2

points better in the second half in the previ-

ous four years. Jermaine Allensworth hit 86

points better in the first half in 1998, but

hit 1 point worse in the first half in

1994–1997.
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FIGURE 4-15 Stemplot of observed 1998 differences AVG(grass) – AVG(turf).

FIGURE 4-16 Boxplots of pre/post-All-Star game, day/night, and grass/turf 1998 situational

effects. For comparison, a boxplot of the simulated dark/light effects is shown.
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Suppose that for each player we record the pre/post effect in 1998 and the

pre/post effect in 1994–1997, and then graph these values in a scatterplot, as

shown in Figure 4-17. We don’t see any increasing or decreasing pattern in the

graph, which means that there is little relationship between the players’

pre/post situational effect in 1998 and the corresponding effects in the four pre-

vious years.

Since there is no general effect for these three situations, does this mean that

there is no real situational effect for any of the individual players? No. It is pos-

sible that some players do take advantage of some situations. For example, it is

possible that some batters have a stroke that is especially well-suited for artifi-

cial turf, and so they hit for a higher true average on turf than on grass.

However, our analysis seems to indicate that this turf/grass effect, if it exists at

all, applies only to a relatively small group of players. If many players had a

turf/grass effect, then we would see it in the observed situational effects. But the

data we see is very consistent with a model where there is no turf/grass situa-

tional effect for any of the players.

The “Bias” Situations

For three other situations, namely home vs. away, ground-ball vs. fly-ball, and

same-handed vs. opposite-handed, there is evidence of a general situational

effect. Generally, one can say that:

• Hitters bat 12 points better at home games compared with away

games.

• Hitters bat 12 points better against ground-ball pitchers than fly-

ball pitchers.

• Hitters bat 15 points better against pitchers of the opposite arm

than pitchers of the same arm.

1998 1994–1997

PLAYER PRE POST PRE–POST PRE POST PRE–POST

Edgardo Alfonzo 0.267 0.288 –0.021 0.287 0.289 –0.002

Jermaine Allensworth 0.300 0.214 0.086 0.257 0.258 –0.001

Roberto Alomar 0.291 0.271 0.020 0.323 0.307 0.016

Sandy Alomar 0.261 0.196 0.065 0.315 0.271 0.044

TABLE 4-10 Batting Averages for Four Players Before and After the All-Star Game



SITUATIONAL EFFECTS 99

Let’s try to understand what this general effect means. It is well known that

it is easier to hit in some ball parks (Coors Fields, in Denver, is an example) and

relatively difficult to hit in others (Dodger Stadium comes to mind). So one

would expect that players that hit in easy-to-hit or hard-to-hit ball parks might

have different true home vs. away effects from other players who play in “aver-

age” ball parks. However, the ball-park effect is somewhat diluted, since players

don’t play all of their games in their home ball park, and all players have oppor-

tunities to hit in easy-to-hit or hard-to-hit ball parks.

What this general effect is telling us is that a home field appears to have the

same impact on all of the players who regularly play in that ball park. Likewise,

facing a ground-ball pitcher (instead of a fly-ball pitcher) has the same positive

effect on all hitters, and facing a pitcher of the opposite arm has the same bene-

ficial effect (15 points) on all hitters. Again, it should be emphasized that some

players might really take advantage of the situation relative to other players.

For example, one player might really take advantage of his home ball park and

have a true home vs. away effect. But our analysis says that there are not too

many players with unusually large or small situational effects, and the 1998

data is consistent with a model which says that the situation has the same

impact on all players.
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FIGURE 4-17 Scatterplot of 1998 situational effects and the previous four-year period situ-

ational effects for the pre/post All-Star Game situation.
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The stemplots of the observed sit-

uational effects for home/away, oppo-

site/same, and ground-ball/fly-ball are

shown in Figures 4-18, 4-19, and 4-20.The

home/away and opposite-handed/same-

handed stemplots resemble the day/night,

pre/post, and grass/turf graphs that were

shown earlier. The only difference is that

the average home/away effect is about 12

points and the average opposite-hand-

ed/same-handed effect is about 15 points.

The ground-ball/fly-ball effects are more

spread out—they range between –140 and

+250 points. There is a simple reason for

this wider spread—the number of at-bats

for these categories is small (not every

pitcher is classified as a ground-ball or fly-

ball type) and so there is more variation

in the batting averages for these cate-

gories.

Figure 4-21 shows boxplots of the 1998

effects for these three situations and con-

trasts these effects with the simulated

effects from our artificial dark/light

example. Note that the average values of

the home/away and opposite/same effects

are a little larger than the dark/light

effects, but the spreads of these three

datasets are similar.

Since these three situations are biases,

they affect all hitters the same way, and

there is no reason that a player who has a

large situational effect one season will

also have a high situational effect the next
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FIGURE 4-18 Stemplot of observed 1998 differences AVG(Home – Away Games).

FIGURE 4-19 Stemplot of observed 1998 differences AVG(opposite – same-handed).

FIGURE 4-20 Stemplot of observed 1998 differences AVG(ground-ball – fly-ball pitcher).
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season. To see this, let’s compare the same-handed/opposite-handed situational

effects for the 1998 season and the 1994–1997 seasons. Suppose that, for each

player, we record the same-handed/opposite-handed effect in 1998, and the same-

handed/opposite-handed effect in the period 1994–1997, and then plot this data

on a scatterplot, as shown in Figure 4-22. We don’t see any positive or negative

drift in the scatter of points, which tells us that there appears to be no relation-

ship between one’s ability to hit opposite-handed pitchers (relative to same-hand-

ed pitchers) in 1998 and the corresponding opposite-handed hitting ability the

previous four years.

The “Ability” Situations

Up to this point, we have shown that situational effects are essentially bias

effects. All of the above situations, such as home/away and same-handed/oppo-

site-handed appear to affect all players the same way. So for these situations,

there appear to be few “situational stars”—players who take particular advan-

tage of a given situation.

There are, however, two situations—the pitch count and the runners-on-base

situation—that we haven’t yet talked about, and as it turns out, these are prob-

ably the most interesting. For these situations, players appear to possess differ-

ent true situational effects. Among the eight types of situational effects we are

studying, it makes some sense only with these two to talk about unusually small
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FIGURE 4-21 Boxplots of home/away, same-handed/opposite-handed, and ground-ball

pitcher/fly-ball pitcher 1998 situational effects. For comparison, a boxplot of

the simulated dark/light effects is also shown.
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and unusually large individual player effects. When it comes to the pitch count

and runners-on-base situations, it appears that individual ability varies signifi-

cantly from player to player.

How did we decide that the pitch count situation, say, was different from the

earlier six? We did try to fit a model which said that pitch count was a bias situ-

ation. That is, we tried to fit a model which said that each batter loses the same

amount of hitting effectiveness when the pitch count is two strikes. But the

model didn’t fit very well in the sense that it did not predict the actual pitch

count situational data that we see in Player Profiles. Instead, the observed pitch

count situational effects we see in the book are more spread out than what one

would expect if pitch count were really a bias effect. The same thing happened

when we tried to fit a bias model to the scoring-position/none-on-out data. The

actual data we see in the book have more variation than we would expect to see

if this situation affected each hitter the same way.

Let’s analyze the pitch count data first. Figure 4-23 shows a stemplot of the

observed situational effects.

The center of these effects is at about 158 points. So players generally hit 158

points lower when the count is at two strikes (pitch counts 0–2, 1–2, 2–2, 3–2)

instead of being ahead in the count. This is a very large effect. If you are watch-
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FIGURE 4-22 Scatterplot of 1998 situational effects and the previous four-year period situ-

ational effects for the same-handed/opposite-handed situation.
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ing a game and a pitcher gets two strikes on the batter, then it’s pretty likely the

batter will be heading back to the dugout in very short order.

What is even more interesting about this data than the size of the general

effect is its range. Looking at the stemplot, some batters actually had a pitch

count effect near zero—they hit for about the same average when they were

ahead in the count or when they had two strikes. In contrast, two hitters had a

pitch count of over 300 points! These hitters either were extremely good when

they were ahead in the count or they were terrible when the pitch count got to

two strikes.

Since the situational effects depend on ability, some players are better than

others in handling different pitch counts. To find good and poor players in this

situation, let’s compare this data with the previous four years’ data. For each

player, we find the 1998 situational effect (AVG when ahead in count – AVG

when two-strikes), and also find the same situational effect for the years

1994–1997. A scatterplot of the 1998 effects and the previous four-year period

effects is shown in Figure 4-24.

What is notable about this graph is that there is a positive drift to the scatter

of points. This means that there is a relationship between a player’s 1998 effect
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and his 1994–1997 effect. Hitters who have high 1998 effects also tended to have

high effects in the previous four-year period; similarly, low-effect hitters in 1998

tended to be low in the previous period. This confirms that the pitch-count effect

is an ability-based effect, and not the result of chance. The relationship between

the 1998 effect and the 1994–1997 effect isn’t very strong—there is still a lot of

scatter in the graph. But we didn’t see this positive relationship for any other of

the six situations that we previously analyzed.

Since the pattern of pitch count effects corresponds to real effects, it makes

sense to pick out the players who are unusually high or low for both 1998 and

the 1994–1997 periods. These players correspond to points which are in the

upper right or lower left of the scatterplot. We’ve labeled some of the extreme

points in the scatterplot in Figure 4-25.

There is a strong connection between a player’s pitch-count situation effect

and his likelihood of striking out. To see this, Table 4-11 lists six players in the

lower left part of the plot who have small ahead-in-the-count/two-strike effects,

and, at the other extreme, in Table 4-12, eleven players who have large pitch-

count effects. The table gives the number of at-bats, number of strikeouts, and the

strikeout rate for the players in the last five years. Players who have small pitch
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FIGURE 4-24 Scatterplot of 1998 situational effects and the previous four-year situational

effects for the ahead-in-count/two-strikes situation.
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FIGURE 4-25 Situational effects for the ahead-in-the-count/two-strike situation with scat-

terplot of 1998 situational effects and unusual players from the previous four-

year period identified.

At-Bats Strikeouts Percent

Shane Andrews 1151 344 30

Russ Davis    1201 314 26

Tony Clark    1659 429 26

Reggie Sanders 1964 552 28

Jim Thome     2214 625 28

Kevin Young   1360 335 25

Carl Everett  1442 339 24

Ray Lankford   2442 632 26

Fred McGriff   2697 521 19

Jeff Blauser   1956 419 21

Cecil Fielder  2287 563 25

At-Bats Strikeouts Percent

Wilton Guerrero 761 117 15

Chris Stynes 672 57 8

Keith Lockhart 1263 125 10

Lance Johnson 2415 147 6

Tony Gwynn 2458 97 4

Delvi Cruz 890 110 12

TABLE 4-11 Players with Low Ahead-in-the-Count/Two-Strike Effects

TABLE 4-12 Players with High Ahead-in-the-Count/Two-Strike Effects
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count effects are relatively unlikely to strike out—their strikeout rates are in the

4–15 percent range. In contrast, the players who have high effects generally

strike out about twice as often—these rates fall between 19 and 30 percent.

Players in the two groups represent very different types of hitters. Tony Gwynn

is representative of the first group—a hitter who has tremendous bat control and

a short stroke. Jim Thome represents the second group of hitters—he has a long

batting stroke that is well suited for power but at the cost of striking out a lot. So

differences between these pitch-count effects are meaningful. They correspond to

different batting styles, and the different abilities of players to control the bat.

How Large Are the True Ability Effects?

Another thing that we learn from the scatterplot of 1998 effects and 1994–1997

effects is that the true pitch-count effects are likely smaller than what we think

based on the 1998 data. First, consider a player like Tony Gwynn. If we’re inter-

ested in his true pitch-count effect, do you think it is better to use the 1998 data,

or the data in the four-year period 1994–1997? Actually, it’s better to use the

four-year data, since it is based on a lot more at-bats. (Tony had 1997 at-bats in

the 1994–1997 period compared to 461 at-bats in 1998.) In other words, Tony’s

pitch count effect in 1994–1997 is likely closer to his true effect than the effect

that we observe in 1998.

We can learn about the relationship between the 1994–1997 effects and the

1998 effects by fitting a ”best” line to the scatterplot that was graphed below. The

equation of this best line is given by the following:

Previous Four-Year Effect = .1 + .3(Effect in 1998)

This equation tells you how to predict a player’s previous four-year effect if

you know his 1998 effect. Since the four-year effect is the best estimate of a

player’s true effect, this prediction is informative about the true effect.

Let’s illustrate how this works. Suppose a player in 1998 bats 300 points bet-

ter when he is ahead in the count as opposed to 2 strikes behind. That is, his bat-

ting average when he is ahead in the count is .3 larger. Using this equation, we

predict that his four-year batting average advantage is:

.1 + .3 (.300) = .190

So his true advantage is actually more like 190 points. Suppose, on the other

side, that a player in 1998 actually bats the same whether he is ahead in the

count or two strikes behind. That is, his 1998 observed effect is 0. Using the

equation, we predict his four-year batting average effect is:
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.1 + .3 (0) = .100

Although this person’s pitch-count effect is below average, it is more likely to be

100 points than 0 points.

The moral of this discussion is that you shouldn’t be deceived by large situa-

tional effects. Even when players appear to have different situational effects

(such as in the pitch-count situation), the true effects are generally much

smaller than the effects that we observe in a single season.

Game Situation Effects

Finally, let’s talk about the last effect, which compares a player’s batting average

with runners in scoring position vs. his batting average when the bases are

empty and there are no outs. We’ll call these the “clutch” effects, since they indi-

cate how the players perform in a clutch, a stressful situation. First, let’s look at

the stemplot of the observed clutch effects for the 1998 season. (See Figure 4-26.)

The average effect is approximately 0. That is, about half of the players hit for

a higher average when runners were in scoring position, and the other half hit

better in the none-on/out situation. But we note a great spread in these effects—

from –170 points to +220 points.

There is one simple explanation for this large range of effects. The players

take only about half of their bats in one of these two situations. So these

observed scoring position vs. none on/out effects

are based on a relatively small number of at-bats.

For this reason alone, there will naturally be

more spread in these effects.

But this one explanation is not sufficient to

account for all the variation we see in the stem-

plot. As it turns out, the variation is due to more

than chance, and there is some evidence that

players do possess different true clutch effects.

We can check this by looking at the scatterplot in

Figure 4-27, which plots the 1998 effects against

the 1994–1997 effects.

The points in this plot tend to drift slightly

upward (as you move from left to right), which
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indicates that generally players with small clutch effects in 1998 tended to have

small effects in the previous four-year period, and players who performed in the

clutch in 1998 tended to perform in the clutch in 1994–1997. The value of the

correlation between the 1998 and 1994–1997 effects is +.172, and is +.125 with

the one unusual point in the lower left section of the plot removed. The relation-

ship in this clutch-effect situation is weaker than the relationship that we saw

earlier for the pitch-count situation.

Although there is evidence that players differ in their ability to perform in

the clutch, the evidence is relatively weak, so we are reluctant to single out espe-

cially good and poor clutch hitters. Let’s say at this point that a player might

possess an ability to hit especially well or poorly in the clutch, but we don’t quite

have enough data to say who that player may be.

A Lot of Noise
When we open up Player Profiles and look at the batting averages broken down

by different situations, we see a lot of fascinating high and low numbers. One

player hits for a much higher average at home games, another player has a low

average the first half of the season, a third player possesses a very poor average

FIGURE 4-27 Scatterplot of 1998 situational effects and the previous four-year period situ-

ational effects for the scoring position/none on-out situation.
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when he’s behind in the count, and so on. These are intriguing discrepancies.

They must be trying to tell us something.

Or maybe not. What we learned is that most of what we see in Player Profiles

is, statistically speaking, mainly “noise,” or random variation. That is, it’s simi-

lar to what you get when you toss a coin. And when the situational batting aver-

age data you look at covers only a single year, it’s very noisy. Only taken over a

longer time span, such as the last five years, does it really start to tell us much.

Our basic model for batting averages is that players do indeed possess differ-

ent true batting averages, and these true batting averages are bell-shaped about

the typical value .276. That’s where the normal curve peaks. When we think of

the effect of a given situation, say home vs. away, our model suggests two bell-

shaped curves for batting averages—one for the averages for games played at

home, a second for games played away. Using this model, we placed situations

into three categories.

First are the no-effect situations, the ones where no general pattern exists.

Players seem to bat much the same before the All-Star Game as after. And they

bat the same during day and night games. And the same on grass and turf fields.

If you find a player that bats 80 points better during day games, we can proba-

bly find another who bats 80 points better at night.

Second are the bias situations, the ones where a general effect exists, but

there is little evidence that individual players take advantage or disadvantage

of a given situation. So, for example, we can say hitters generally bat 12 points

better at home, and that appears true for most players. And managers are right

to send up that right-handed pinch hitter against the lefty reliever. But beyond

a few obvious and time-honored rules of thumb (including as well the higher bat-

ting average against ground-ball pitchers), there is not much to tell.

Finally, the pitch-count and clutch situational data are ability situations,

since players seem to handle these situations differently. For example some

players seem to bat the same no matter if the pitch count is 3–0 or 0–2, and other

players bat much worse when the count goes to two strikes. There is some evi-

dence that different players perform differently under pressure situations,

although the 1998 data are not sufficient to identify players who are truly great

hitters with runners in scoring position.

After all is said and done, Kenny Lofton does have a point: When he talks

about the role of luck in hitting, his observations are pretty accurate. Over five

years you will see trends and tendencies, but in a given situation or even in a

complete single season, chance is what seems to rule.





STREAKINESS (or, The Hot Hand)

One fascinating aspect of baseball is the widely-held belief, among fans as well

as the media, that players can be “streaky.” It’s often said of a particular player

that in the last few games, or weeks, or even months, he’s had a “hot” or “cold”

hand. And it seems entire teams can go on a streak, as we found when we did an

Internet search for the words “streaky” and “hot hand”:

“Rays Streaky in Spring”
—Florida Sports Network, March 24, 1998

This article describes the Devil Rays’ tendency to play a little streaky—citing

two losing streaks of six and four games in their 1998 spring exhibition season.

The writer cautions the fan not to read too much into these losing results, and

the manager is quoted as saying that at this point in the season, he is more con-

cerned about individual performances than team results.

“Braves Have No Trouble Beating Streaky Pirates”
—Observer-Reporter (Washington, Pa.), May 19, 1999

In this article, the hitting heroics of a “slumping” Chipper Jones are described—

he went on a 9 for 50 (.180) slide before this game. The article also noted that the

Braves’ Bret Boone reached base by a hit or a walk in 20 straight games. The ref-

erence to the “streaky Pirates” in the title refers, of course, to the fact that they

have been playing unusually well in the games before the present one.

“Streaky Cal Softball Team Gets Two Splits”
—The Daily Californian (Berkeley, Cal.), May 4, 1998

111
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The writer of this piece seems to be saying that there were two completely dif-

ferent Cal softball teams on the field in two doubleheaders one weekend. In the

two victories, Cal’s hitters were described as “phenomenal,” and in the two

losses, Cal was unable to get any solid contact with the bat. The Cal catcher

describes their hitting as contagious: “If someone gets a big hit, the rest of us go

out thinking, ‘If she can hit it out, so can I.’ It’s such a mental game.” The writer

also says that the Bears have been plagued by inconsistencies at the plate all

year long.

In an ESPN.com profile of Todd Zeile, the Texas Ranger third baseman is

described as a streaky hitter. He typically starts slowly and does his best 

hitting late in the season, says the analyst for the website.

Finally, In Mike Zaidlin’s “Thinking Baseball” column on the World Wide Web

(www.thinkingbaseball.com), the author criticizes Don Zimmer’s strategy of

playing hitters who appear to have a “hot hand.” Zaidlin thinks that Yankees

management puts too much faith in the notion of a “hot hand,” because it is

based on too small a number of at-bats.

Thinking about Streakiness
What are these writers talking about when they say a team is on a hot or cold

streak, or a player has a hot or a cold hand? One thing they obviously mean is

that the team or player is going through an unusually long stretch of good (win-

ning) or bad (losing) behavior. If a hitter like Chipper Jones bats only 9 for 50, we

say that he has a cold hand because he normally hits for a much higher average,

and 50 at-bats appears to be a long time for him to go with only 9 hits. And if a

team like the Devil Rays has several long runs of uninterrupted losses, as well

as long runs of uninterrupted wins, we say the team is streaky, since it seems to

be winning or losing “clusters” of games.

Most of the articles above seemed to be talking about the streaky and hot-

hand performances that were observed during a season. But there is a second,

deeper meaning of streakiness: sometimes the word is used to describe the

nature or ability of a player or team. A player such as Todd Zeile may be called

streaky since people believe that his true batting ability is streaky. On some

days, says this theory, Zeile feels very comfortable with the bat, and he has a

high chance of getting lots of hits. Then, on other days, Zeile’s batting stroke

seems to be out of sync, and he has a much smaller chance of getting a hit.

Similarly, we might say that a team is on a hot streak when we believe that as a

group the players are performing to the best of their ability and the team has a
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high probability of winning. (We could also describe this situation by saying that

the team is “in a groove” or even “on a tear.”) At other times, the team may have

problems, such as injuries or dissension in the clubhouse, that we believe have

an adverse effect on performance, and so the team has a small probability of win-

ning. (Then the team is “slumping” or has “gone cold.”)

Fans and sportswriters frequently confuse or don’t distinguish between the

performance and ability interpretations of streakiness. When a team goes

through good spells and bad spells, clusters of winning and clusters of losing,

we are observing streaky behavior. It is natural in such situations for the fan

or sportswriter to provide some rationale for the observed streakiness: the per-

formance is explained by something in the nature of the team. For example, one

might say that a team’s tendency to go on cold streaks is due to the inexperi-

ence of the players, the inconsistency of the starting pitchers, the tactics of the

manager, and so on. But, as we will shortly see, it’s possible that the team is not

really streaky by nature, but due to chance or luck, they appear to be perform-

ing streakily.

One goal of this chapter is to clearly distinguish between a player or team’s

true streaky or hot hand ability and the streaky or hot hand performance that

we observe during a baseball season. We first will discuss some common mis-

takes that people make in interpreting baseball averages. Then we will focus on

the first-half batting performance of Todd Zeile in the 1999 season. Looking at

his hitting record, we will notice several interesting patterns that indicate that

Zeile may be a streaky hitter. Next, we will propose several models for Zeile’s hit-

ting ability. One model, which we will call Mr. Consistent, says that Zeile is the

Batter Pos AB R H RBI AVG

Knoblauch 2B 3 0 1 0 0.333

Jeter SS 3 2 3 1 1

O'Neill RF 3 0 0 0 0

Williams CF 4 0 1 1 0.25

Martinez 1B 4 0 0 0 0

Davis DH 2 1 1 1 0.5

Ledee LF 4 0 0 0 0

Brosius 3B 3 0 0 0 0

Giradi C 3 0 0 0 0

TABLE 5-1 Box Score of the New York Yankees in Their First Game of the 1999 Season
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ultimate consistent hitter—he comes to every at-bat with the same chance of

getting a hit. Then we’ll work with a very different model, called Mr. Streaky. In

this model, Zeile is either hot or cold during a single at-bat where the chance of

getting a hit when he is hot is a large number and the chance of hitting when he

is cold is small. In addition, in the Mr. Streaky model, if Zeile is hot on a partic-

ular at-bat, he is very likely to remain hot in the next at-bat.

Once we have described ways of measuring streaky performance and models

for Zeile’s true hitting behavior, we show how we can learn about Zeile’s hitting

behavior (the model) on the basis of his hitting data (the statistics). We extend

our basic method to the win/loss records of the 30 major league teams in 1998.

Some of these teams performed very streakily in 1998, and we will see which teams

actually seem to possess true streakiness based on their season performances.

Interpreting Baseball Data
Before we talk in more detail about streakiness, it will be helpful to describe

some basic difficulties that people have in interpreting baseball statistics. We

focus on interpreting a batting average, although the difficulties we describe will

apply to interpreting any baseball statistic.

Let’s suppose that your favorite player is Tino Martinez of the Yankees. The

Yankees opened the 1999 season at Oakland, and, to learn about how your

favorite player performed in his first game, you look at the published box score,

shown in Table 5-1.

We see that Tino went 0 for 4 in the game, so his current 1999 batting aver-

age (based on this single game) is 0/4 = .000. Now the typical fan is interested in

drawing some conclusion about Tino’s batting ability on the basis of this .000

average. Can the fan conclude that Tino’s in a slump? That is, can the fan con-

clude that Tino is a slow starter and his swing is a little rusty?

Here the fan is interested in making a statement about Tino’s batting ability

from this game’s hitting statistics. We can measure Tino’s batting ability in

terms of a probability p. This number is the chance that Tino gets a base hit on

a single at-bat. The fan is interested in saying something about Tino’s hitting

probability based on his 0-for-4 game performance. Of course we don’t know

Tino’s hitting probability, but we can make an educated guess at this probability

based on his hitting record in his previous nine years in the major leagues (see

Table 5-2).

We see that Tino’s seasonal batting averages generally increased over time,

hit a peak in 1997, and dipped slightly in 1998. If we make the assumption that
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Tino is a little bit past his prime as the 1999 season begins, it is reasonable to

assume that his hitting probability in the opener against Oakland is p = .280.

If one thinks of Tino as a true .280 hitter, many baseball fans will have trou-

ble predicting how Tino will hit during the season. To start off, how many hits

will Tino get in a game where he has four at-bats? Well, many Tino fans will

think that their man will go 1 for 4 in this game, since .280 is close to .250 = 1/4.

Moreover, these fans will be unpleasantly surprised if Tino goes hitless (as in the

game described above), or pleasantly surprised if he goes 2 for 4.

Actually, although it is most likely that Tino will go 1 for 4 in this game, the

probability that he gets exactly one hit is only 42 percent. So actually, it is more

likely (58 percent) that Tino will not get one hit. Moreover, there is a sizeable

probability (27 percent) that Tino will go hitless. So the above game result (0 for

4) is entirely consistent with Tino being a .280 hitter, and there is no reason to

think that he is in a slump.

Now, maybe you are not surprised by the above comments. After all, you can’t

learn much about a player’s true batting average on the basis of one game. But

suppose you watch Tino’s hitting for the first seven games of the season, as

shown in Table 5-3. For these seven games, Tino was 4 for 25, for a .160 average.

Now, for most fans, Tino appears to be a slump. Intuition tells us he is clearly not

a .280 batter for this first week in the season.

But this intuition is wrong. There is a reasonable chance that a true .280 hit-

ter will have a slump like this one. If a true .280 hitter comes to bat 25 times, as

Tino did in his first seven games, the chance that he will get 4 or fewer hits is 13

Year AB H AVG

1990 68 15 .221

1991 112 23 .205

1992 460 118 .257

1993 408 108 .265

1994 329 86 .261

1995 519 152 .293

1996 595 174 .292

1997 594 176 .296

1998 531 149 .281

TABLE 5-2 Hitting Statistics for Tino Martinez in the First Nine Years of His Major

League Career
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percent. Now 13 percent is not a high probability, but if you watch seven .280 hit-

ters bat for one week, there is a high probability that you’ll see one of them get

4 or fewer hits. So we shouldn’t be too surprised by Tino’s 4-for-25 stretch. He

may really be a .280 hitter but, by chance variability, he was unlucky during this

first week of the season.

The moral here is that one has to be very cautious in interpreting baseball

averages from a small number of at-bats. It is common for fans to believe in the

so-called law of small numbers. This law says that one will observe what one

expects, even over a small sample size. So if a player like Tony Gwynn is a .333

hitter, you think that he will get 1 out of 3 hits in every game. The law of small

numbers isn’t true. Even if Gwynn is a true .333 hitter, it is very likely you will

observe him hit for significantly lower and higher averages if your observations

are based on a small number of games.

Moving Averages—Looking at Short Intervals

It’s clear from the preceding discussion of Tino Martinez’s batting average that

one needs to be careful about drawing conclusions from very limited sets of data.

The problem is, when you are talking about streaks, you are often talking about

relatively brief bursts of activity (or clusters of inactivity)—an eight-game hit-

ting streak by a .220 hitter, or a five-game stretch where a .300 hitter can’t get

on base. To get a sense of how we might deal with the statistics of streakiness,

we’ll take a look at Todd Zeile’s hitting statistics for the first half of the 1999 sea-

son. (We are looking at only the first half of his season because that’s when this

book was written.) Table 5-4 gives the game date and the number of hits and at-

bats for each of the first 80 games that Todd played. Two particular streaks—one

hot and one cold— are in boldface.

For the 80 games shown, Todd had 84 hits in 301 at-bats, for a batting aver-

age of 84/301 = .279. Now, if we look at this table carefully, we’ll see short time

periods where Todd was unusually hot and cold. For the eight-game period from

April 15 through April 23, Todd had a tough hitting stretch where he only got 2

hits in 29 at-bats:

Date

H/AB 0/4 1/5 1/4 1/1 0/3 0/4 1/4

Apr 5 Apr 6 Apr 7 Apr 9 Apr 10 Apr 11 Apr 13

TABLE 5-3 Batting Data for Tino Martinez for the First Seven Games of the 1999 Season
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In contrast, look at the period from June 27 through July 5, when Todd was

on fire, getting 17 hits in 31 at-bats:

So, although one could reasonably call Zeile a .279 hitter, he hit for much smaller

(.069) and much larger (.548) averages over short time periods.

A moving average plot, shown in Figure 5-1, is an effective way of displaying

these short-term batting averages. This graph plots the short-term batting aver-

age of Zeile over all groups of eight adjacent games. (In the language of statis-

tics, this is called a moving average with a width of 8.) In games 1 through 8,

17
31

= .548

2
29

= .069

Date Hits/AB

Apr 5 1/4 Apr 29 1/4 1/4 1/3

Apr 6 2/3 Apr 30 1/4 0/3 1/2

Apr 7 3/4 May 1

May 2

May 3

May 5

May 6

May 7

May 8

May 9

May 10

May 11

May 13

May 14

May 15

May 16

May 17

May 18

May 19

May 21

1/4 2/5 1/3

Apr 9 1/4 0/2 2/4 0/3

Apr 10 0/2 0/4 2/4 1/4

Apr 11 2/4 1/4 1/4 0/4

Apr 12 2/4 2/4 3/4 1/4

Apr 13 0/4 0/4 0/2 1/4

Apr 14 1/3 0/4 1/4 0/4

Apr 15 0/4 3/4 1/3 1/4

Apr 16 0/2 0/4 0/4 1/6

Apr 17 0/3 1/4 0/4 2/4

Apr 18 1/5 2/5 0/4 3/4

Apr 20 0/3 0/4 0/4 1/3

Apr 21 1/4 2/4 3/3 3/5

Apr 22 0/4 1/3 1/5 4/4

Apr 23 0/4 0/3 0/3 1/4

Apr 25 2/5 1/3 0/4 2/5

Apr 27 1/3 1/4 2/5 1/3

Apr 28 2/4 1/3 1/4 2/3

May 22

May 23

May 24

May 25

May 26

May 28

May 29

May 30

May 31

Jun 1

Jun 2

Jun 4

Jun 5

Jun 6

Jun 7

Jun 8

Jun 9

Jun 11

Jun 12

Jun 13

Jun 14

Jun 16

Jun 17

Jun 18

Jun 19

Jun 20

Jun 21

Jun 22

Jun 23

Jun 24

Jun 25

Jun 26

Jun 27

Jun 28

Jun 29

Jun 30

Jul 2

Jul 3

Jul 4

Jul 5

TABLE 5-4 Todd Zeile’s Batting Statistics for the First Half of the 1999 Season
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Zeile got 11 hits in 29 at-bats for a .379 average. In Figure 5-1, this average

(.379) is plotted against the mean game number (4.5 is the mean of 1, 2, . . . , 8).

Moving one game ahead, we look next at the group of eight games numbered 2

through 9. There, Zeile had 11 hits in 28 at-bats, and the batting average (.393)

is plotted against the mean game number (5.5). We continue in this way, step-

ping ahead one game at a time, until we get to the final group of eight games,

numbered 73 though 80.

In Figure 5-1, we use dots to call out the two particularly interesting eight-

game stretches noted earlier. Also, we show Zeile’s season batting average (.279)

as a dashed horizontal line.

This graph is a good way of displaying Zeile’s pattern of hitting for the first

half of the 1999 season. We see that, after an initial hot streak, Todd had a slump

in the first part of the season, then a good hitting stretch from games 40–50, two

minor slumps from games 50–70, finishing with a hot streak at the end of the

period. Generally, it seems remarkable how much spread there is in these eight-

game batting averages. But to get a better sense, we can measure how much

streakiness we see in this plot by calculating the difference between the largest

and smallest moving average:

0 20 40 60 80
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.548
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FIGURE 5-1 Moving average plot of Zeile’s hitting data using a width of eight games.
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Largest 8-game average – smallest 8-game average

Here this difference is .548 – .069 = .479, which appears large. Zeile hit 479

points better on his best 8 games than his worst 8 games.

Runs of Good and Bad Games

Another way to describe Zeile’s hitting behavior is to look for interesting pat-

terns of good and bad games across time. Remember, Zeile’s batting average for

all 80 games is .279. We will say that Zeile’s batting for a particular game is good

is if his average on that day exceeds .279; otherwise we’ll say he had a bad hit-

ting game. So, if Todd bats 2 for 4 (.500) for a game, we’ll call it a good game and

denote it by a “+”; and if he hits 1 for 4 (.250), we’ll call it bad and denote it by a

“0”. In Figure 5-2, we have classified the 80 games.

One interesting pattern in the sequence of good and bad days is a run, a

streak of consecutive bad games (like “00000”) or good games (“++++”). The first

part of the Zeile game-hitting sequence is “0++00++”. Looking at Figure 5-3, we

see that Todd started with a run of one bad game, a run of two good games, a run

of two bad games, and a run of two good games. Two interesting runs are under-

lined in the figure. In each case, Zeile had eight consecutive bad hitting games.

It’s also interesting that Zeile followed his second eight-day hitting slump by hit-

ting well in eight out of nine games.

So one interesting pattern is a long run of good or bad hitting games. These

long runs indicate that Zeile might be a streaky hitter. Another thing that we

can compute is the total number of runs of good and bad games. Let’s suppose

that Zeile is really a streaky hitter. Then we would expect him to follow good hit-

ting days with good days and likewise bad hitting days with bad days. (“When

DATE

     5679012345678012357890 123567890134567891234568901 12456789123467890123456789 02345

0++00++0+00000000+++00 0000+00+00+0++0+0+00+++0+00 +0000+000+0+++00000000++++ +0+++

1111111112222222233 1111111122222222223111111111222222223

April May June July

HIT

FIGURE 5-2 Classification of Zeile’s games into good (+) and bad (0) hitting games.

0++00++0+00000000+++000000+00+00+0++0+0+00+++0+00+0000+000+0+++00000000+++++0+++

FIGURE 5-3 Identification of two long runs in Zeile’s hitting sequence.
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you’re hot, you’re hot, and when you’re cold, you’re cold.”) In this case, there will

generally be many runs of long length and few runs of short length, and the total

number of runs in the sequence will be small.

We’ve counted the number of runs in the Zeile sequence in Figure 5-4 by

labeling the beginning of each run with a number. We see that there are 36 runs

in this hitting sequence. Is 36 a small number of runs? Actually, at this point of

the discussion, we don’t know, but we’ll come back to this question later.

Numbers of Good and Poor Hitting Days

We can also look at Zeile’s hitting data by counting his hits per game, then cate-

gorizing each of the 80 games according to hit count. Table 5-5 shows the num-

ber of 0-hit games, the number of 1-hit games, etc. We see that Todd had seven

games in which he had either 3 or 4 hits, and 26 games (out of 80) in which he

was hitless. If these numbers seem high to the average fan, they provide evi-

dence that Zeile was a streaky hitter.

What Is Zeile’s True Hitting Ability?
So in our look at Zeile’s hitting data for the 80 games, we saw some interesting

features. Todd had some unusually small and large batting averages over short

time intervals, he had several long runs of bad hitting days, and he had some

games in which he hit especially well. At this point, the question is: Should we

be surprised by these observations? Do these data suggest that Zeile was really

a streaky hitter during the first half of 1999?

We will try to answer this question by proposing some simple models for

Zeile’s true batting ability and see what we learn about these simple models on

0++00++0+00000000+++000000+00+00+0++0+0+00+++0+00+0000+000+0+++00000000+++++0+++

12  3 4  567             8     9          11  11   111 11122 2      222  22    22     333    3            3          33

01  23   456 78901 2      345  67    89     012    3            4          56

FIGURE 5-4 Counting the number of runs in Zeile’s hitting sequence.

Number of Game Hits 0 1 2 3 4

Count 26 32 15 6 1

TABLE 5-5 Count of the Number of Games in Which Zeile Had 0, 1, 2, 3, and 4 Hits
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the basis of Zeile’s hitting record in 1999. For simplicity, we assume only two dis-

tinct models, although the basic method can be used to distinguish between a

large number of models. We will describe this statistical method in three parts.

First, we’ll assume that Zeile is really a consistent player who comes to every

at-bat with the same chance of getting a hit. Also, we will assume that his chance

of hitting on a given at-bat is not influenced by what he did on previous at-bats.

This type of player is the ultimate “Mr. Cool.” If Zeile is this type of player, we’ll

look at the kind of batting record he will achieve in an 80-game schedule.

Next, we’ll assume that Zeile really is a streaky hitter. We carefully define

what we mean by streaky. We’ll assume that the chance that he gets a hit may

change on different at-bats. We will say that, in a particular game, Zeile is either

“hot” with a large chance of getting a hit, or “cold” with a much smaller chance of

hitting. Moreover, if Zeile is hot in a given game, he is more likely to remain hot

(than become cold) for the next game. Likewise, cold at-bats are more likely to be

followed by cold at-bats. If Zeile is this type of streaky hitter, we will see how he

would perform in an 80-game season.

Finally, we will talk about how we learn about Zeile’s true hitting ability (con-

sistent or streaky) based on the patterns we saw above. Suppose, for example,

that we observe two long runs of bad hitting games. Based on these data, what

is the chance that Zeile is a consistent hitter and what is the chance that he is a

streaky hitter?

Mr. Consistent

Most people believe that Todd Zeile is a streaky hitter. But what if Zeile were not

streaky? In fact, suppose that Zeile was the ultimate non-streaky, or consistent,

hitter? What would that mean?

Out

0.72%

Hit

0.28% 

FIGURE 5-5 Spinner for a consistent hitter.



CHAPTER 5122

We use the basic spinner model to represent Zeile’s success (or failure) in a

single at-bat. (Here we are just considering official at-bats, ignoring events such

as walks and sacrifices.) We visualize a spinner with two regions designated

“Hit” and “Out. “ (See Figure 5-5.) The Hit region corresponds to the chance that

Zeile will get a hit on the single at-bat.

Suppose that the same spinner is used for every at-bat during the season.

This means that Zeile has the same chance of getting a hit over all 80 games.

This assumption probably seems far-fetched. You might think that the chance of

getting a hit will depend on a number of factors, including the pitcher, the ball

park, the game situation, and so on. You may be right. But let’s pretend for now

that the hitting probability doesn’t depend on these factors. We think of Zeile as

a hitting machine who actually has the same chance of getting a hit every time

he comes to bat. We’ll call this hitting probability p.

Another important assumption made here is the independence of hitting

results of different at-bats. Suppose that the spinner is spun and Zeile gets a hit

on his first at-bat. This successful result will have no bearing on what happens on

the next at-bat. One aspect of our spinner is that it has no memory—it doesn’t

remember how many times a Hit or Out was spun in the past. So the chance of

getting a hit on a particular at-bat will be the same number p no matter if Zeile

has done well or poorly in his previous at-bats. This property of independence is

actually the opposite of streakiness, and instead represents the hitting charac-

teristics of a player that we’ll call “Mr. Consistent.” This player is the ultimate

“cool customer,” who has the same chance of getting a hit under all possible cir-

cumstances.

How Does Mr. Consistent Perform During a Season?

Suppose that Zeile really was a consistent hitter. What would his hitting data for

the 80 games look like? We can answer this question by simulating from the

spinner model. We assume that Zeile’s chance of getting a hit on every single

plate appearance is p = .280 (close to his .279 average for the 80 games in 1999).

Then we simulate the results of all 80 games using the actual at-bat numbers of

Zeile for the first half of the 1999 season. (We actually do this simulation on the

computer, but it is equivalent to using our random spinner many times.)

Figure 5-6 displays moving average plots for Zeile’s data and hitting data for

eight other simulated players using our Mr. Consistent model. Of course, the

center plot in the figure should look familiar—it’s Zeile’s moving average plot

that we saw earlier. How do the consistent hitter graphs compare with the graph
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of Zeile? Actually, what stands out is the large spread (up and down pattern) of

the moving averages of the consistent hitters. An extreme situation is the hitting

of the consistent hitter at the lower right. Remember, this guy is a true consis-

tent hitter; he gets a hit with probability .280 on every single at-bat.

Nonetheless, he appears very streaky during this 80-game stretch. He is very

hot in the first part of the season, gets cold in the middle, then is somewhat hot,

and seems to fade near the end of the half-season. The player really is consis-

tent—our use of the spinner model guarantees that—but his hitting perform-

ance during these 80 games is very streaky. The hitting patterns of the other

seven players aren’t quite so volatile as the one in the lower right, but all of the

hitters show some streaky behavior. In other words, consistent hitters can

appear very streaky in their hitting performances.

We can describe the streakiness that we see in these graphs using the same

statistics we used to describe Zeile’s data. These statistics include:
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FIGURE 5-6 Moving average plot of hitting by Zeile and eight simulated consistent hitters

with a hitting probability of p = .280. In all graphs, moving averages are

computed using adjacent groups of eight games.
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• The difference between the largest and smallest moving averages,

using groups of eight games. (We will call this statistic MAX – MIN.)

• The number of long streaks (either good or bad), where “long

streak” is defined as eight or more consecutive games.

• The number of runs in the sequence of good and bad games.

• The number of hitless games.

• The number of games with three or more hits.

Table 5-6 gives the values of these five statistics for each of the simulated sea-

sons. To see if Zeile is different from a truly consistent hitter, we see if his sta-

tistics appear different from the statistics of the others. To make this compari-

son easier, we have computed the mean (arithmetic average) of each type of

statistic for the consistent hitters

Let’s illustrate this comparison using the statistic “Maximum moving aver-

age – Minimum moving average” shown in the first column of the table. Recall

that Zeile had a maximum moving average (using eight-game groups) of .548

and a minimum moving average of .069 for a difference as follows:

MAX – MIN = .548 – .069 = .479

M
ax – M

in

Num
ber of long

streaks (8 or longer)

Num
ber of runs

Num
ber of

0-hit gam
es

Num
ber of

3+
-hit gam

es

Zeile 0.479 2 36 26 7

Consistent 1 0.362 1 42 23 7

Consistent 2 0.361 1 41 26 7

Consistent 3 0.316 0 41 21 5

Consistent 4 0.317 0 43 21 4

Consistent 5 0.333 0 42 28 4

Consistent 6 0.295 0 34 20 6

Consistent 7 0.297 1 38 26 3

Consistent 8 0.333 1 42 25 5

Mean 0.327 0.5 40.4 23.8 5.1

p -value 0.010 0.06 0.26 0.34 0.23

TABLE 5-6 Statistical Values for Todd Zeile and Eight Simulated Consistent Hitters
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Should the value .479 surprise us? Well, in order to make a judgment on that we

have to look at the MAX – MIN values for our eight simulated consistent hitters:

.362, .361, .316, .317, .333, .295, .297, .333

The simulated players’ MAX – MIN values range between .295 and .362, with a

mean value of .327. Zeile’s value, .479, is larger than all of them. So it appears

that Zeile’s difference between his best and worst moving average is larger than

one would anticipate if Zeile really was a consistent hitter. Thus, there is some

evidence that Zeile is not a consistent hitter, although we really can’t say at this

point that he is streaky.

In a similar fashion, we can look at the other four statistics to see if Zeile’s

value is similar to the values for the consistent hitters.

• Zeile had two long streaks (of eight games or more). This statistic

appears unusually large, since none of the simulated consistent

hitters had more than one long streak.

• We observed 36 runs in Zeile’s sequence — is the number 36

unusually small for a consistent hitter? We would say yes since

only one out of the eight consistent hitters had 36 or fewer runs.

• We thought Zeile’s 26 hitless games statistic was large, but three

of the eight simulated players had 26 or more hitless games. So

the large number of hitless games doesn’t appear unusual for a

consistent hitter.

• Finally, we thought Zeile’s seven games of 3+ hits were large, but

two of the eight simulated hitters had seven or more games with

3+ hits. As with hitless games, this statistic does not definitively

set Zeile apart as a streaky player.

We can’t draw very strong conclusions from Table 5-6 since we only did the

simulation eight times. We would do better if we simulated hitting data from the

consistent model a large number of times, and then made a call on whether

Zeile’s hitting behavior fit into the Mr. Consistent model.

To check this out, we simulated data from a large number of consistent hit-

ters (1000), and for each simulated hitting season we recorded values of the five

statistics shown in Table 5-6. To see if Zeile’s hitting statistics conforms to this

model, we compute a p-value. This is the probability, assuming a consistent

model, of observing a value of the statistic at least as extreme as the Zeile value.

To illustrate, we observed a MAX – MIN value of .479 for Zeile. Using the simu-

lated hitting data, we find the following:
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p-value = Pr(MAX – MIN value is at least as large as .479) = .01

Thus, if we assume this consistent model, the chance of observing a MAX – MIN

moving average difference of .479 or greater is only .01, or 1 percent. Thus it is

safe to say that Zeile’s data appear different from hitting data generated from a

consistent model.

Likewise, we look at the p-value row of Table 5-6 to check for agreement of

Zeile and the simulated consistent hitters with respect to the other four statis-

tics. The only other p-value that appears unusually small corresponds to “long

runs.” Zeile’s two long runs are unusual for hitters who are truly consistent. The

p-values for the other three statistics are in the .23–.34 range. These statistics

(number of runs, number of hitless games, and number of 3+-hit games) for Zeile

seem to agree with the statistics for the simulated consistent hitters.

So, what have we learned? Even if a hitter is truly consistent, with the same

chance of getting a hit on every single at-bat, his batting performance across 80

games can look pretty streaky. Even so, Zeile’s hitting performance looks a bit

different from the performance of true consistent hitters. The statistics that

seem to stand out for Zeile are the great range between good and poor short-run

batting averages (MAX – MIN) and the two long runs of bad hitting games.

Mr. Streaky

In the above discussion, we gained some understanding of Zeile’s hitting per-

formance by assuming he really was consistent, then seeing how he did and did

not seem to fit into the Mr. Consistent model. But what if Zeile really was a

streaky hitter? What does it mean to be streaky? And how do streaky players

perform during a baseball season?

First, to be streaky, a hitter must have at least two possible hitting states. For

simplicity, we’ll assume that there are exactly two, which we’ll call “hot” and

“cold.” When a hitter is hot, his hitting mechanics are great, he sees the ball well,

and he has a high probability of getting a base hit. We will denote this probabil-

ity as pH. In contrast, a “cold” hitter is struggling with his hitting motion and is

not swinging well. In this cold state, the batter has a small probability pC of

obtaining a hit.

As mentioned earlier, Todd Zeile’s true batting average for 1999 is around

.280. If Zeile really is a streaky hitter, there will be a big difference between the

chance of getting a hit when he’s hot and the chance when he’s cold. We will

assume that Zeile hits 100 batting points better than average when he’s hot, and

100 points lower than average when he is cold. Accordingly, we will assume that



STREAKINESS (OR,  THE HOT HAND) 127

pH = .380 and pC = .180. The hot hitting probability is similar to the average of

Tony Gwynn in his best hitting season; the cold probability is similar to that of

a weak-hitting shortstop who’s in the Major Leagues because of his defensive

ability. (You might not agree with the numbers we’ve assigned to a hot hitting

probability and a cold hitting probability, but there should be a significant dif-

ference between the two.)

So one basic assumption about our truly streaky hitter is that in some games

he hits for a high probability and in others he hits with a small probability. A sec-

ond assumption describes how the streaky hitter moves between hitting states

for different games. A streaky hitter has the tendency to stay hot for a number

of games. If a streaky player is hot for one game, then it is likely that he’ll

remain hot for the next game (and unlikely that he’ll change to cold). In other

words, “If you’re hot, you’re hot!” Likewise, if a player is a cold hitter one game,

then he will likely stay in a cold state in the next game. We will let the letter s

(for “stay”) denote the probability of staying in the same state from one game to

the next:

p(hot in second game if hot in first) = s

p(cold in second game if cold in first) = s

To be streaky, it makes sense to let the probability s be a large value, like s =

.9, which means that the hitter is likely to remain in the same state. Figure 5-7

illustrates the probabilities of shifting between hot and cold states for successive

games. Note that if the chance of staying in the same state is .9, the chance of

switching states (from cold to hot or hot to cold) is .1.

If a player is streaky in the manner we just described, how will he hit during

a season? We learn about his season hitting by means of a simulation like the

one done for the consistent hitter. This simulation is a little more complicated to

run, however, since the probability of getting a hit can change from game to

game.

Here’s how it works. First, we visualize two spinners (shown in Figure 5-8),

one to use when the hitter is hot, and the second to use when the hitter is cold.

The spinners differ with respect to the sizes of their Hit and Out regions. For the

Hot spinner, the hitting area is pH (.380); for the Cold spinner it is pC (.180).

Suppose we want to simulate Mr. Streaky’s hitting for his first ten games: the

results of this simulation are shown in Table 5-7. To start off, we flip a coin to

decide the player’s hitting state for the first game; if the coin is heads, he’ll be

hot, and if the coin lands tails, he’ll be cold. We observe heads, which means that

Mr. Streaky is a hot hitter for this first game. We grab our Hot spinner and spin
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it for his 4 at-bats in his first game. The spinners lands in the Hit region twice,

which means that he was 2 for 4 in his first game.

Let’s move on to the second game. We use the switching probabilities to deter-

mine the state of Mr. Streaky for this game. He was hot in game 1, so he’ll

remain hot in game 2 with probability .9 and switch to cold with probability .1.

We use a random spinner, as pictured in Figure 5-9, to determine if Mr. Streaky

stays in his current hot state or switches to cold. In this particular simulation,

the result of the spinner is Stay, so Mr. Streaky will be hot in game 2.

Now that we know that the hitter is hot in game 2, we use the Hot spinner to

simulate hitting. Table 5-7 indicates that he has a tough game 2, going hitless in

three at-bats. We continue in this manner to simulate the results of the remain-

ing games. We use the switching/staying spinner to decide the state of a game,

First Game Second Game

.9

.1

Hot

Cold

Hot

Hot

Cold

Cold

.9

.1

FIGURE 5-7 Probabilities of changing states for a streaky hitter.

“Hot” Spinner “Cold” Spinner 

0.62

0.18

0.38

0.82

FIGURE 5-8 Spinners for a streaky hitter.
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and then the Hot or Cold spinner to determine the hitting results of that game.

Refer again to Table 5-7 to get the simulated hitting results for all ten games.

The results of this particular simulation are interesting. There is a clear pat-

tern in Mr. Streaky’s hitting states—he was really hot (hitting with a high prob-

ability) in the first seven games and cold (hitting with a small probability) for

the remaining three. However, it is difficult to detect this true hitting behavior

by just looking at his hitting statistics. For example, Mr. Streaky was 0 for 3 and

1 for 4 (twice) on days where he was a true hot hitter.

How Does Mr. Streaky Perform During a Season?

Earlier we looked at how truly consistent hitters would perform during an 80-

game season. How would truly streaky hitters perform in the same span of

games? First, we use the streaky model described above to simulate data for

eight hitters. Figure 5-10 shows moving average plots of the batting averages of

Todd Zeile (middle graph) and our eight simulated streaky hitters. If we com-

pare these moving averages with those of the consistent hitters of Figure 5-6, we

0.90

0.10

Switch 

Stay

FIGURE 5-9 Spinner to decide on switching or staying in current hot or cold state.

TABLE 5-7 Simulation of Mr. Streaky’s Hitting for Ten Games

Game 1 2 3 4 5 6 7 8 9 10

State Hot Hot Hot Hot Hot Hot Hot Cold Cold Cold

Hitting Probability 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.18 0.18 0.18

AB 4 3 4 4 2 4 4 4 3 4

H 2 0 1 3 1 1 1 0 1 0
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generally note more up and down behavior in the streaky graphs. That is, it

seems that hitters who are truly streaky, in the way we have defined them, will

tend to have unusually high and low batting averages over short stretches of

games. But, this is not always the case—for example, the moving average plot of

the streaky hitter in the upper center graph of Figure 5-10 looks pretty flat.

Although this player is really streaky, he had a pretty consistent hitting pattern

over the season.

Next, to measure the streakiness that we observe in these graphs, we com-

pute the same five statistics that we used earlier to describe the streakiness we

saw in Zeile’s hitting. The values of these statistics for our eight simulated

streaky hitters are given in Table 5-8.

First, let’s compare the statistics for the eight consistent hitters (Table 5-6)

with the corresponding statistics of the streaky hitters in Table 5-8. The streaky

hitters tend to have larger values of Max – Min (the difference between the

largest and smallest moving averages), a smaller number of runs, a larger num-

0.2
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7 86

54

Streaky 1 2 3

Zeile

FIGURE 5-10 Moving average plot of hitting by Zeile and eight simulated streaky hitters

with hot and cold hitting probabilities of pC = .180 and pH = .380. In all

graphs, moving averages are computed using adjacent groups of eight games.
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ber of hitless games, and a larger number of 3+-hit games. It is harder to say

that the streaky hitters tend to have a different number of long streaks based on

this small amount of simulated data.

Does Todd Zeile’s hitting data agree with the hitting data for our simulated

streaky hitters? To make this comparison, we simulate 1000 80-game seasons

using our streaky model. For each season, we compute the five streaky statistics;

the p-value row of Table 5-8 gives (for each statistic) the probability that a truly

streaky hitter obtains a statistic value as least as extreme as Zeile’s value. In

Table 5-9, we compare these p-values with the ones that we obtained earlier for

the simulated consistent hitters.

Note that for each one of the five game statistics, the p-values are larger for

the streaky model. This means that the chance of observing Zeile’s statistic (or

one that’s more extreme) is higher for the streaky model than for the consistent

model. In other words, our streaky model shows a better fit to Zeile’s data than

does the consistent model.

Mr. Consistent or Mr. Streaky?

We have described two probability models for Zeile’s hitting data and presented

some evidence that the streaky model provides a better description of Zeile’s per-

Zeile 0.479 2 36 26 7

Streaky 1 0.567 0 37 25 8

Streaky 2 0.373 0 42 41 3

Streaky 3 0.456 1 32 29 8

Streaky 4 0.418 0 33 23 6

Streaky 5 0.394 1 36 24 6

Streaky 6 0.466 0 36 35 6

Streaky 7 0.400 0 40 34 10

Streaky 8 0.339 0 47 19 8

MEAN 0.426 0.25 37.9 28.8 6.9

0.180 0.18 0.5 0.56 0.43p -value

M
ax – M

in

Num
ber of long

streaks (8 or longer)

Num
ber of runs

Num
ber of

0-hit gam
es

Num
ber of

3+
-hit gam

es

TABLE 5-8 Statistical Values for Todd Zeile and Eight Simulated Streaky Hitters
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formance. We will now be more specific. Suppose that, before looking at any data,

you believe that the Mr. Consistent and the Mr. Streaky models are equally plau-

sible descriptions of Zeile’s hitting. After seeing Zeile’s data, what do you believe

about these two models?

We will illustrate a simple way of computing the following:

Pr(Zeile is a streaky hitter)

To do this, we will use the simulated data of the consistent and streaky hitters

and one unusual statistic from Zeile’s hitting data. Zeile had seven games in the

first half of 1999 where he had three or more hits. Based on Zeile’s performance,

we consider the two following mutually exclusive events:

“Fewer than seven 3+-hit games”
and

“Seven or more 3+-hit games”

We will compute the probability that Zeile is a streaky hitter based on the

second of these: seven or more 3+-hit games.

Suppose that we have 2000 hitters like Todd Zeile, and there are two possible

models for his hitting—consistent or streaky. If we think that the chance Zeile is

a consistent hitter is the same as the chance that he is a streaky hitter, then

we’ll call 1000 of these hitters consistent and 1000 of them streaky. We put these

numbers in Table 5-10.

Earlier, we simulated 1000 hitters from the consistent model and found that

23 percent of them, or 230 hitters, had seven or more 3+-hit games. (That means

Zeile 0.479 2 36 26 7

Mean
Consistent hitters

p -value
Consistent hitters

Mean
Streaky hitters

p -value
Streaky hitters

6.9

0.18 0.18 0.5 0.56 0.43

0.426 0.25 37.9 28.8

5.1

0.01 0.06 0.26 0.34 0.23

0.327 0.5 40.4 23.8

M
ax – M

in

Num
ber of long

streaks (8 or longer)

Num
ber of runs

Num
ber of

0-hit gam
es

Num
ber of

3+
-hit gam

es

TABLE 5-9 Observed Statistics and p-Values of These Statistics for the Consistent

and Streaky Hitters
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that 1000 – 230 = 770 hitters had fewer than seven 3+-hit games.) Similarly, of

the 1000 hitters from the streaky model, 43 percent, or 430 hitters, had seven or

more 3+-hit games. (So 1000 – 430 = 570 hitters were in the other category.) We

place these values in Table 5-11.

To find the probability that Zeile is a consistent or streaky hitter based on his

data, we focus on the column headed “Seven or more 3+-hit games” in the table.

There were a total of 660 hitters in our simulation who had a large number of

3+-hit games like Zeile. Of these 660 hitters, 230 (35 percent) were consistent

hitters and 430 (65 percent) were streaky hitters. So we can say, on the basis of

Zeile’s large number of 3+-hits games, the following:

Pr(Zeile is streaky) = .65, Pr(Zeile is consistent) = .35

The probability (65 percent) that Zeile is streaky is somewhat larger than the

initial probability of 50 percent, which means that there is some support for true

streakiness in Zeile’s data. In a similar fashion, we can use another interesting

statistic, such as his large number of “long streaks,” to compute the probability

that he is streaky based on this statistic and the initial assumption that the

Less than seven

3+-hit games

Seven or more

3+-hit games Total

Consistent hitter 1000

Streaky hitter 1000

TOTAL 2000

•

• •

•

• •

TABLE 5-10 Table Classifying Hitters by Ability (Consistent or Streaky) and

Performance (Fewer than Seven or At Least Seven 3+-Hit Games)

Less than seven

3+-hit games

Seven or more

3+-hit games Total

Consistent hitter 1000

Streaky hitter 1000

TOTAL 2000

770 230

570 430

1340 660

TABLE 5-11 Table Classifying Hitters by Ability and Performance with Some Counts

Filled In
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models Mr. Streaky and Mr. Consistent are equally likely.

Table 5-12 summarizes these calculations for each one of the five “streaky

statistics.” With the exception of the MAX – MIN statistic, we see that the prob-

ability that Zeile is a streaky hitter (in the way that we have defined it) is in the

.6 to .7 range, which is higher than the initial probability of .5. The probability

that Zeile is streaky is .95 using the MAX – MIN statistic—this tells us that the

big difference between Zeile’s best and worst moving average is pretty signifi-

cant and is more typical of a hitter who is truly streaky.

Team Play
We have spent quite a bit of time analyzing the streaky behavior of a single hit-

ter, and we have found that there is some evidence that Todd Zeile is truly

streaky. But are groups of players or teams generally streaky? If we performed

the above analysis on all major league players or all teams, would we find that

many of them are streaky or possess the hot hand?

To partly answer this question, we will look at the win/loss sequences for all

30 major-league teams in 1998. For each team, we collected the game results for

all 162 games (approximately) played that season. Figure 5-11 shows this data

for the Anaheim Angels. We see they won their first two games, lost the next

three, won the next three, lost the next two, and so on.

Were the Angels streaky in 1998? To begin, when we look at the above

sequence we see some interesting patterns. Specifically, we see a large number

of wins at the end of the first half of the season (including a winning streak of

nine games), and a losing streak of six games at the beginning of the second half.

As in the analysis of Zeile’s data, one can quantify these clusters of wins and

losses by the computation of moving winning fractions. Suppose we use a width

of 12 games, which corresponds to about two weeks of games. Then we compute

Zeile 0.479 2 36 26 7

Pr(streaky) 0.95 0.75 0.66 0.62 0.65

Pr(consistent) 0.05 0.25 0.34 0.38 0.35

M
ax – M

in

Num
ber of long

streaks (8 or longer)

Num
ber of runs

Num
ber of

0-hit gam
es

Num
ber of

3+
-hit gam

es

TABLE 5-12 Values of Five Interesting Statistics for Todd Zeile and the Probabilities That

He Is a Streaky Hitter
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moving winning fractions for all groups of 12 games. To start, we look at the

Angel’s record in games 1 through 12, which is boxed in Figure 5-12. The Angels

won 6 and lost 6 in this period for a winning fraction of .500.

We next look at games 2 through 13. From Figure 5-13, we see the Angels won

5 and lost 7, for a winning fraction of .417.

Next, we look at games 3 through 14;—again we see 5 wins and 7 losses, for a

.417 winning fraction.

Suppose that we compute this winning fraction for all groups of 12 games.

Figure 5-15 graphs the winning fractions against the mean game number. This

graph dramatically shows the periods where the Angels were hot and cold during

the season. After an initial lukewarm period, the Angels were hot for a short period

(around game 20), and then cold for a period. Then the Angels had an extended

hot spell from game 50 to game 80, including a 12-game stretch where they actu-

ally had a winning fraction over .90. They followed this long hot stretch with an

extended cold spell. They conclude the season with a hot spell and a cold spell.

How can we measure the streakiness that we see in this graph of moving frac-

tions? A simple way is just to compute how far the moving fractions are from the

Games 1–81:

WWLLLWWWLLWLLWLLWLWWWWWWLWWWLLLLWLWLWLLWLLWWWWLLLLWLWWWWWWWWWLWWWLWWWWLWWWWLWLLWW

Games 82–162:

LLLLLLWLWLLWLLWLLWWLWLWLWLLLLWWLLLWWWWLWWLWLWWLWWWWWLLWLWLWLWWLWLLLWLLLLWWLLLWLLW

FIGURE 5-11 Win/loss sequence of the 1998 Anaheim Angels.

6 wins, 6 losses

WWLLLWWWLLWL LWLLWLWWWWWWLWWWLLLLWLWLWLLWLLWWWWLLLLWLWWWWWWWWWLWWWLWWWWLWWWWLWLLWW

FIGURE 5-12 Win/loss sequence with winning fraction for games 1 through 12 displayed.

W WLLLWWWLLWLL WLLWLWWWWWWLWWWLLLLWLWLWLLWLLWWWWLLLLWLWWWWWWWWWLWWWLWWWWLWWWWLWLLWW

5 wins, 7 losses

FIGURE 5-13 Win/loss sequence with winning fraction for games 2 through 13 displayed.

WW LLLWWWLLWLLW LLWLWWWWWWLWWWLLLLWLWLWLLWLLWWWWLLLLWLWWWWWWWWWLWWWLWWWWLWWWWLWLLWW

5 wins, 7 losses

FIGURE 5-14 Win/loss sequence with winning fraction for games 3 through 14 displayed.
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overall season winning percentage. The team went 85–77 in 1998, for a winning

fraction of .525, which is the location of the horizontal line in Figure 5-15. We can

measure the size of the streakiness by finding the sum:

Black = Sum[distance (moving average – .525)]

This sum essentially is the size of the black region of the graph, so we will call

this statistic “Black.” If we see a lot of black in the graph, then the team had a

pretty streaky season. For the Angels, we compute the following number:

Black = 21.7

How does the streakiness that we see in the Angels’ season performance com-

pare to that of other teams? Figures 5-16 and 5-17 display the moving fraction

graphs (using a window of 12 games) for all 30 major-league teams in 1998.

Looking at these graphs and comparing the sizes of the black areas, we see some

teams—such as Anaheim, Baltimore, and Detroit—that appear to have had

unusually streaky seasons. Each of these teams has a large chunk of black in its

plot, indicating that it had at least one major slump or hot period in its season.

Other teams—such as Atlanta, Los Angeles, and Cleveland—appear to have had

unusually consistent seasons, since their moving fraction graph stays pretty

close to a horizontal line. We can describe the amount of streakiness in each

team’s graph using the Black statistic. Table 5-13 gives values of Black for all of
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FIGURE 5-15 Moving fraction plot of the winning pattern of the 1998 Anaheim Angels.
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the teams. The values are consistent with what we saw in Figures 5-16 and 5-17:

Anaheim, Baltimore and Detroit are in the 20–27 range, while Atlanta, Los

Angeles, and Cleveland are much smaller, in the 11–16 range.

So the 30 major league teams in 1998 appear to vary quite a bit with regard to

their consistency across the season, but do these patterns mean anything? We’ve

observed that some teams performed streaky, but that doesn’t mean that those

teams actually are streaky. It is possible that they are all consistent teams, but by

luck or chance variability, their season performances happened to look streaky.
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FIGURE 5-16 Moving fraction plots of the winning patterns of National League teams in

1998.
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A Consistent Team

To see if these streaky patterns of team performance mean anything, we propose

a few simple models for team abilities and see what type of streaky behavior

during a season is predicted based on these models. The simplest model is The

Consistent Team. This team wins each game during the season with the same

probability. It doesn’t matter if this team is playing the Yankees or Mets or Devil

Rays—the team will always win with the same probability. The winning proba-

bilities of this consistent team are displayed in Figure 5-18 as .525 on game 1,

.525 on game 2, .525 on game 3, and so on. Moreover, the results of different

games are independent. The chance that our consistent team wins a particular

game is unaffected by what happens in previous games. The Consistent Team, as

we have defined it, seems pretty unbelievable–since the chance that a team wins

a baseball game clearly depends on a number of different factors—but we’ll

show that it is a useful model to consider.
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FIGURE 5-17 Moving fraction plots of the winning patterns of American League teams in

1998.
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Now that we’ve defined The Consistent Team, we can see how it performs in

a 162-game season by using simulation. Let’s illustrate how we do this simula-

tion using the Angels as an example. As mentioned earlier, the Angels had a

winning fraction of .525 in 1998. Suppose that this team was truly consistent

and it won each game with probability .525. We then can play a complete simu-

lated Angels season by using a random spinner 162 times, where the Win region

in the spinner is equal to .525. After we simulate the Angels season, we check

for streakiness using the moving fraction plot that we’ve used earlier. We see

some black area in the graph, and we measure the size of the streakiness by the

statistic Black.

We repeat this simulation for 1000 seasons, and for each we compute the sta-

tistic Black. So when we are done, we get 1000 values of the streaky statistic

Black. This simulation tells us how much streakiness we will observe in the

team performance if the team was truly consistent.

In the 1998 Angels season, we observe some streakiness and Black = 21.7. To

see if this is unusually large for a consistent team, we compare it to the values

of Black in the simulation. We compute a p-value which is the chance that the

Team Gray p-value

Baltimore 26.6 0.002 Boston 16.3 0.52

Anaheim 21.7 0.04 Chicago White Sox 16.2 0.58

Detroit 21.6 0.05 Montreal 16.1 0.52

Cincinnati 20.7 0.08 Philadelphia 16.1 0.56

Florida 20 0.07 Arizona 15.8 0.56

Pittsburgh 19.9 0.12 Atlanta 15.8 0.52

New York Yankees 18.4 0.09 Oakland 15.6 0.65

San Francisco 18.4 0.25 New York Mets 15.5 0.65

St. Louis 18 0.31 Minnesota 15.4 0.66

Tampa Bay 17 0.38 Colorado 14.9 0.74

Chicago Cubs 16.8 0.48 Kansas City 14.8 0.73

Toronto 16.7 0.47 Texas 14.6 0.77

Milwaukee 16.6 0.5 Cleveland 14.1 0.83

San Diego 16.5 0.47 Houston 13.1 0.88

Seattle 16.4 0.5 Los Angeles 11.9 0.98

TABLE 5-13 Values of the Streaky Statistic Black and the p-Value of This Statistic

Assuming a Consistent Team
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value of Black is at least as large as 21.7, assuming the consistent model. In

Table 5-13, we see the following:

p-value = Pr(Black is at least as large as 21.7) = .04

Since this probability is small, it seems that the 1998 Angels are not behaving

like a truly consistent team.

We repeat this simulation for each of the 30 teams. The p-values of the

observed values of Black are shown in Table 5-13. What is remarkable is that

most of the p-values are large, and only six of the thirty teams (shown in bold

type) have p-values under 10 percent. If all 30 teams were truly consistent

teams, then one would expect 3 out of the 30 teams to have a p-value smaller

than 10 percent, and the six observed p-values under 10 percent are not much

more than what we expect. So we can conclude that the streakiness (black mat-

ter) that we observe in the moving fraction plot generally agrees with the

observed streakiness of a truly consistent team.

A Streaky Team

We have described what it means for a team to be truly consistent. What does it

mean for team to have a streaky nature? We use a notion of streakiness here

that is different from what we used for Todd Zeile. We do this to show that there

are a number of plausible ways of representing streaky behavior. This model,

like the one used earlier, assumes that the winning probability can change
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FIGURE 5-18 Graph of the probability of winning across games for The Consistent Team.
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across the season. Also, if a team is playing well (or poorly) during a particular

game, it is more likely to play well (or poorly) in the next game.

If a team is streaky, we will assume that during the season it can be in one of

three possible states, which we will call “hot,” “cold,” and “lukewarm,” or “aver-

age.” When the team is hot, it wins with a high probability pH, when it is luke-

warm it wins with a smaller probability pav, and when it is cold it wins with the

smallest probability pC. Also we divide the 162-game season into 9 periods of 18

games and assume that during the season the team will be hot for three periods,

lukewarm for three periods, and cold for three periods. (Here 18 days is approx-

imately 3 weeks, so we’re assuming that a team will remain in the same winning

state for about three weeks.) Figure 5-19 shows how the winning probability can

change for this type of streaky team. In this graph, the cold, lukewarm, and hot

winning probabilities are assumed respectively to be .425, .525, and .625. We see

that this particular team is hot for the first 54 games, lukewarm for the next 36,

cold for the next 36, lukewarm for the next 18, and cold for the final 18.

Just as before, we use a simulation to see how a streaky team, of the type just

described, will perform during a 162-game season. We illustrate how we do this

simulation for Anaheim. In 1998, this team had a winning fraction of .525. We

assume that, when Anaheim is hot, it wins with a probability of .625—that is, .1

greater than its season winning fraction. Likewise, it wins with probability .1

lower, or .425, when it is cold. When the team is lukewarm, it wins with proba-

bility .525. We divide the season into nine periods, where the team is hot for
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FIGURE 5-19 Graph of the probability of winning across games for a streaky team.
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three periods, cold for three periods, and lukewarm for three periods. (The peri-

ods are randomly placed in the season.) After we have decided on the winning

probabilities for all games, we simulate game results (wins and losses). Based on

a moving fraction plot, we compute the statistic Black.

For each team, we perform this simulation using the streaky team model for

1000 seasons. Each time we do the simulation, we compute the streaky statistic

Black. For each of the six teams that appeared streaky, we compute a p-value.

This is the probability that the statistic Black is at least as large as the observed

value, assuming the streaky model. The results are shown in Table 5-14.

To understand what Table 5-14 is telling us, let’s focus on Anaheim. We saw

early that Anaheim had a moving fraction plot that looked streaky, and we

measure this streakiness by the value Black = 21.7. We saw that this value is a

bit unusual for a team that is truly consistent. That is, if a team went through

the season always winning with the same probability, then the chance that you

would see a Black value this large or larger is only 4 percent. Now, if the team

was really streaky (in the way we defined it), we see that the chance of seeing

this extreme value of Black is 14 percent, considerably more than 4 percent. So

Anaheim’s streaky performance is more consistent with a streaky model than a

consistent model. Also, if we thought initially that Anaheim was equally likely to

be a consistent or streaky team, then Table 5-14 says that the new probability

that Anaheim is streaky (given this data) is .78. Looking at the whole table, we

see that there is some evidence that each of the teams is truly streaky, and that

Baltimore has the strongest evidence of streakiness.

Team Gray Pr(team is streaky)

Cincinnati 20.7 0.08 0.3 0.79

Florida 20 0.07 0.23 0.77

Anaheim 21.7 0.04 0.14 0.78

Baltimore 26.6 0.002 0.016 0.89

Detroit 21.6 0.05 0.13 0.72

New York Yankees 18.4 0.09 0.37 0.8

p-value

Consistent model

p-value

Streaky model

TABLE 5-14 Values of the Streaky Statistic Black (p-Values of This Statistic Assume a

Consistent Team and a Streaky Team Model, and the Probability the Team Is

Streaky)
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Thinking about Streakiness—Again
What have we learned about streakiness? First, and maybe most important, we

understand now (we hope) that there is a difference between observed streaki-

ness and streaky ability. Every day during the baseball season, we’re confronted

with interesting observed statistics—say, that Barry Bonds is 0 for 12 in his

most recent series of at-bats. Stats like these are just indications that Barry is

having a hitting problem. But they are not, after all, much more than statistics

in isolation. We’re more interested in streaky ability, and what we learn about

this ability based on larger collections of data.

In this chapter, we’ve described several models, such as consistency and

streakiness, that tell how an individual’s (or team’s) hitting (or winning) proba-

bility changes over time. For Todd Zeile, we described two models, called Mr.

Consistent and Mr. Streaky, and showed that there is some evidence that Zeile

was exhibiting streaky behavior. We did a similar analysis for the 1998 teams,

and found some evidence that a few of them were truly streaky.

One basic thing we have learned is that it is pretty tough to interpret streak-

iness data. Even if a hitter like Zeile is really consistent—that is, he gets a hit at

each at-bat with the same probability—we can see very interesting patterns.

The problem is how to make sense of those patterns. Our old caution—about

drawing inferences from small datasets—becomes especially important if you

are trying to draw meaningful inferences from the ups and downs of a player or

team. One should, at the least, be very cautious in thinking a player is streaky

just because an announcer says he was hot last week, and this week he’s cold.

There is a related issue that fans should be aware of—namely, selection bias.

Why did we decide to look at the hitting statistics for Todd Zeile? Well, we had

heard through the media that he was a streaky player. In other words, we

selected Zeile since his hitting statistics were interesting to look it. Now consider

the opposite situation: What if we had heard from a TV broadcaster that Tony

Gwynn had gotten 4 hits in his last 12 at-bats? Would we have picked up on this

information, and done a statistical study? The answer is a clear No, since this

data is not interesting—hitting statistics like these are what we expect from

Gwynn, since his lifetime batting average is over .300. It would be interesting to

hear, say, that Tony is hitless in his last 20 at-bats, since this data would be far

from what we expect. But Tony going 4 for 12? That’s old news.

The point we’re trying to make is that we look at interesting baseball data

and ignore noninteresting data, and that fact alone makes the interesting base-

ball data appear more significant than it really is. We say that inference from
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this data is biased, or misrepresentative of reality, since the data has been

selected exactly because it appears unusual.

To properly decide if hitters or teams are generally streaky, we need to look at

a large amount of data that doesn’t suffer from selection bias. We did this in the

case of the team data—we looked at all teams that played in the 1998 season

and didn’t select the ones that had interesting win/loss patterns. What we found

is that only six of the thirty teams had streaky patterns of wins and losses that

did not conform to a consistent (constant-probability) model. Only one team

(Baltimore) was unusual with respect to streakiness. Suppose that we look for

true streakiness among 30 teams and decide that there is “significance” if the p-

value is smaller than 10 percent. Then, even if all of the teams are consistent or

non-streaky, we would expect, by chance, that 10 percent of the 30 (or 3 teams)

would show “significant” streakiness. So really there is not strong support in this

1998 season for teams displaying streakiness.

There is currently an active effort among statisticians to detect streakiness

(streaky ability) from sports data. Researchers in the area of human psychology

say that people generally are unable to understand the patterns inherent in coin

tossing, and that there is no statistical evidence for streakiness. What do we

think? On one hand, we think that true streakiness may exist based on our expe-

rience playing sports. When shooting basketball as youths, there were days

when we felt that we had the right shooting touch and could make any basket

we tried. On these days, we believed we had a true hot hand. However, as adults,

we look at this experience differently. In the statistics literature, we see that

most people have been unsuccessful in detecting true streakiness from sports

data. True streakiness is hard to detect since it is a small effect, similar to the

small situational effects described in Chapter 4. As demonstrated in this chap-

ter, we’ve shown that even truly consistent teams or players can demonstrate

very streaky patterns of wins and losses (or good and bad days), and it is diffi-

cult to find true hot-hand behavior in this big cloud of chance streaky behavior.

A baseball fan should be suspicious of any talk in the media about a player or a

team being truly streaky—the reporter is likely reacting to an interesting pat-

tern of performance, similar to the patterns one sees when a coin is flipped.
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Offensive Performance

On April 17, 1960, a trade unique in baseball history was consummated.

Cleveland outfielder Rocky Colavito was swapped even up for Detroit outfielder

Harvey Kuenn. What made this trade so remarkable was that Colavito was the

1959 American League home-run co-champion (he hit 42 of them), while Kuenn

was the 1959 American League batting champion (with a .353 average). Never

before (and never since) have two players been traded for each other just one

year after such tremendous personal accomplishments. The trade begged the

question, which type of player is more valuable, a great power hitter or a great

hitter for average?

The 1959 offensive stats for Colavito and Kuenn are shown in Table 6-1.

Colavito had a big edge in home runs, and he received more free passes to first

base. Kuenn got more hits overall, and aside from home runs, more extra-base

hits. So the situation is complicated: It really is not easy to say that one of these

players was better than the other—there are simply too many categories to com-

pare. Nonetheless, the general managers of Cleveland and Detroit must have seen

clear-cut (although opposing) advantages, or they would not have made the trade.

145

Player

Rocky Colavito

Harvey Kuenn

AB

588

561

H

151

198

2B

24

42

3B

0

7

SH

0

3

SF

3

4

SB

3

7

CS

3

2

BB

71

48

IBB

8

1

HBP

2

1

HR

42

9

TABLE 6-1 1959 Offensive Records for Rocky Colavito and Harvey Kuenn
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The Great Quest
If there is one great quest in baseball statistics, it is the search for the best for-

mula for evaluating offensive performance. Who is the more valuable player, a

Tony Gwynn type of hitter, who has a high batting average but little power? Or

a Mike Schmidt type, who displays great power but has a low batting average?

And just how valuable is speed in a player? Or the ability to draw a walk? Or . . .

The question of how to quantify offensive performance is a classic statistical

problem. Offensive statistics offer a rich but not overwhelming set of dimensions

with which to measure players. The question becomes how best to combine these

different measurements into a single number that best reflects the offensive

value of the player.

We examined the players with the top three career batting averages in each

decade. Only players with more than 5000 plate appearances were considered.1

Each player was assigned to a single decade according to the midpoint of his

career. For example, Rogers Hornsby debuted in 1915 and retired after the 1937

season. His career midpoint was 1926, so for our purposes here, he is assigned to

the 1920s. (And 1926 was, incidentally, the year Hornsby, as player-manager, led

the St. Louis Cardinals to their first World Championship.)

Table 6-2 shows for each decade the total number of players, and the number

and percentage of players who had more than 5000 career plate appearances.2 A

total of 5000 plate appearances indicates a substantial major-league career; less

than 10 new players per year (on average) achieve this milestone. The low per-

centage of 1940s players in this category is most likely caused by military serv-

ice in World War II.

Table 6-3 lists the leading players in each decade according to batting aver-

age. Scanning this list, we see only the names of very good hitters. All players

prior to 1980 are in the Hall of Fame, except Browning, Jackson, Alou, Garr, and

1 The sum of at-bats, walks, and hits by pitcher was used here for plate appearances.
2 The primary data source for this chapter was Sean Lahman’s database (now called The

Baseball Archive), available on the web at www.baseball1.com. The database—actually a set of

databases—is of inestimable value to statistical researchers. The two used here are the team

database and the player batting database. Several data items (such as Grounded Into Double

Play) are unavailable. Others are incomplete: Sacrifice Flies (complete from 1954 on), Caught

Stealing (complete from 1951 on), Sacrifice Hits (complete from 1894 on), Hit by Pitcher

(complete from 1887 on), and Stolen Bases (complete from 1886 on). Where a data item was

unavailable, its value was assumed to be zero. The analyses presented here were performed

initially with Version 2.2 of the database, which covered all seasons through 1998. The analyses

were extended to include the 1999 season when Version 3.0 of the database was made available.
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Decade Total >5000 %>5000

1880s 900 29 3.2%

1890s 789 47 6.0%

1900s 1013 39 3.8%

1910s 1557 58 3.7%

1920s 1208 54 4.5%

1930s 960 58 6.0%

1940s 1222 46 3.8%

1950s 1046 54 5.2%

1960s 1144 71 6.2%

1970s 1307 100 7.7%

1980s 1393 93 6.7%

1990s 2069 121 5.8%

TABLE 6-2 Total Players from Each Decade and Number and % with More Than 5000

Plate Appearances

Decade

1880s

1890s

1900s

1910s

1920s

1930s

1940s

1950s

1960s

1970s

1980s

1990s

Player

Pete Browning

Ed Delahanty

Willie Keeler

Ty Cobb

Rogers Hornsby

Lou Gehrig

Ted Williams

Stan Musial

Roberto Clemente

Rod Carew

Kirby Puckett

Tony Gwynn

AVG

.341

.346

.341

.366

.358

.340

.344

.331

.317

.328

.318

.338

Cap Anson

Billy Hamilton

Nap Lajoie

Joe Jackson

Babe Ruth

Al Simmons

Joe DiMaggio

Jackie Robinson

Matty Alou

Ralph Garr

Don Mattingly

Wade Boggs

.333

.344

.338

.356

.342

.334

.325

.311

.307

.306

.307

.328

Roger Connor

Dan Brouthers

Honus Wagner

Tris Speaker

Harry Heilmann

Paul Waner

Joe Medwick

Richie Ashburn

Hank Aaron

Al Oliver

Paul Molitor

Mike Piazza

.317

.342

.327

.345

.342

.333

.324

.308

.305

.303

.306

.321

TABLE 6-3 Players with Highest Career Batting Average from Each Decade3

3 This table and all other tables of player evaluations in this chapter use player records through

the 2002 season.
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Oliver. Puckett was elected recently. Molitor, Gwynn, and Boggs are destined for

the Hall, and Mike Piazza is likely to make it as well. But were they truly the

best of their period in producing runs? For example, Richie Ashburn is a per-

sonal favorite of ours, but even we doubt that he was a greater hitter than his

contemporary Mickey Mantle. And was Paul Waner a better hitter than Jimmie

Foxx? And say Hey! Where’s Willie Mays?

Over the years, many systems have been offered to ascertain the offensive

value of players. And each year, more are added to the list by sportswriters and

fans. The 1999 Big Bad Baseball Annual alone listed over 20 systems for evalu-

ating offensive performance. What’s going on here? Isn’t the tried and true

Batting Average enough?

As it turns out, the answer is No. Batting average actually has a relatively

poor correlation with runs scored. Interestingly, the best way to gauge the value

of systems for rating individual offensive players is to analyze team data. In

baseball, a single individual is rarely responsible for production of a run. Batters

get on base, then other batters advance them. The “offensive credit,” as it were,

is shared—by the runner who got on base and scored, the players who advanced

the runner, and the player who batted him in for the RBI. The fact that scoring

is a series of events involving more than a single player is one reason why the

standard counts for runs scored and runs batted in are not satisfactory evalua-

tors of individuals. Even the sum of total runs scored plus RBIs minus HRs has

not achieved widespread use.

Over the next few pages, we’ll take a look at some of the most widely used

stats for offensive performance, analyze how closely they align with runs pro-

duced, examine what they tell us, and what they don’t tell us, about the run-pro-

ducing value of noted players.

Runs Scored per Game

Let’s start our investigation by looking at the runs scored per game by teams in

1998 as presented in Table 6-4. Runs per game (R/G) ranged from the low of

3.827 by the Tampa Bay Devil Rays to the high of 5.957 by the World Champion

New York Yankees. (Coincidentally, both teams were in the Eastern Division of

the American League.) This represents quite a spread. Over the course of the

1998 season, the Yankees scored more than 50 percent more runs per game than

the Devil Rays.

Now let’s suppose you had absolutely no knowledge of baseball except for the

information in Table 6-4 (minus the team names), and that you are asked to
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guess how many runs per game a certain team scored in 1998. What would be

your best guess? You wouldn’t pick the highest or lowest value, since this would

make your possible error very large. Most likely you would pick some value in

the middle of the distribution. Perhaps you would calculate the average (or

mean) of all the values (4.794 runs per game) and use it as your best guess.

In fact, the average is the best guess (or estimate) you can make . . . without

any further information, that is. Table 6-5 shows the runs per game values, the

guess based on the average, and the difference between this guess and the actual

value. We will refer to this difference as the Error in the estimate. At the bottom

of the Error column is the average value of the errors, 0. Basically, what this

means is that if you use the average value as your guess, you will overestimate

as much as you underestimate in repeated guesses.

Another column presents the square of the error; that is, Error × Error. Doing

this has a great advantage. Now each error, whether positive or negative, has

been converted to a positive value. So, an error of –1 (overestimating by 1 run

per game) is treated the same as an error of 1 (underestimating by 1 run per

game). The average of the squared errors, or Mean Squared Error (MSE), is pre-

sented at the bottom of the column. The square root of MSE, or Root Mean

Team Runs per Game

New York Yankees 5.957

Texas Rangers 5.802

Boston Red Sox 5.407

Houston Astros 5.395

Seattle Mariners 5.335

Chicago White Sox 5.315

Cleveland Indians 5.247

San Francisco Giants 5.184

Atlanta Braves 5.099

Colorado Rockies 5.099

Chicago Cubs 5.098

Baltimore Orioles 5.043

Toronto Blue Jays 5.037

St. Louis Cardinals 5.000

Anaheim Angels 4.858

Cincinnati Reds 4.630

San Diego Padres 4.623

Minnesota Twins 4.531

Detroit Tigers 4.457

Kansas City Royals 4.435

Philadelphia Phillies 4.401

Milwaukee Brewers 4.364

New York Mets 4.358

Los Angeles Dodgers 4.130

Florida Marlins 4.117

Arizona Diamondbacks 4.105

Pittsburgh Pirates 4.012

Montreal Expos 3.975

Oakland A's 4.963 Tampa Bay Devil Rays 3.827

TABLE 6-4 Runs per Game for Major League Teams in 1998
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Team

New York Yankees

Texas Rangers

Boston Red Sox

Houston Astros

Seattle Mariners

Chicago White Sox

Cleveland Indians

San Francisco Giants

Atlanta Braves

Colorado Rockies

Chicago Cubs

Baltimore Orioles

Toronto Blue Jays

St. Louis Cardinals

Oakland A's

Anaheim Angels

Cincinnati Reds

San Diego Padres

Minnesota Twins

Detroit Tigers

Kansas City Royals

Philadelphia Phillies

Milwaukee Brewers

New York Mets

Los Angeles Dodgers

Florida Marlins

Arizona Diamondbacks

Pittsburgh Pirates

Montreal Expos

Tampa Bay Devil Rays

Average

Runs per Game

5.957

5.802

5.407

5.395

5.335

5.315

5.247

5.184

5.099

5.099

5.098

5.043

5.037

5.000

4.963

4.858

4.630

4.623

4.531

4.457

4.435

4.401

4.364

4.358

4.130

4.117

4.105

4.012

3.975

3.827

4.794

Estimate

4.794

4.794

4.794

4.794

4.794

4.794

4.794

4.794

4.794

4.794

4.794

4.794

4.794

4.794

4.794

4.794

4.794

4.794

4.794

4.794

4.794

4.794

4.794

4.794

4.794

4.794

4.794

4.794

4.794

4.794

4.794

Error

1.163

1.008

.613

.601

.541

.521

.453

.390

.305

.305

.304

.249

.243

.206

.169

.064

–.164

–.171

–.263

–.337

–.359

–.393

–.430

–.436

–.664

–.677

–.689

–.782

–.819

–.967

.000

Error × Error

1.352

1.017

.376

.361

.293

.271

.205

.152

.093

.093

.093

.062

.059

.042

.029

.004

.027

.029

.069

.114

.129

.154

.185

.190

.441

.458

.475

.611

.670

.935

.300

TABLE 6-5 Predicting Runs per Game for MLB Teams in 1998 (Prediction = Average)
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Squared Error (RMSE), an estimate of the standard deviation of the error dis-

tribution, provides a measure of how much you may expect to overestimate or

underestimate in your guesses. Approximately two-thirds of all errors are

between –RMSE and +RMSE runs per game. Here the RMSE is the square root

of .300, which equals .548 runs per game. From the Error column in Table 6-5,

we see that 20 teams (exactly two-thirds of 30 teams) have estimates with errors

between –.548 and .548.

One can show mathematically that the average guess results in the lowest

possible MSE among all other possible guesses. Let’s demonstrate this point

with an example. Suppose you had guessed 5 instead of 4.794. How would the

MSE have changed? Table 6-6 is exactly the same as Table 6-5 except that 5 has

been substituted for 4.794 as the estimate. The Error column has been calcu-

lated the same way, by subtracting the estimate from actual runs per game. The

first change we notice is that the average error is not 0 anymore. It’s –.206,

reflecting the tendency of 5 to overestimate the runs per game for a team. The

MSE value (the average of Error× Error) is .342, which is greater than the MSE

value .300 in Table 6-5, when the average 4.794 was used as the estimate. Since

RMSE is just the square root of MSE, the RMSE value is greater as well (.585

versus .548 runs per game).

Figure 6-1 shows the RMSE value for every reasonable guess of runs scored

per game. For each guess (shown on the x-axis), we followed the same procedure

as in Table 6-6 (where 5 was the guess). That is, using the guess as the estimate,

we subtracted it from each data value to obtain an error; the errors were squared

and the average value of their squares calculated. The square root of the average

gave us the RMSE for that guess. The plot shows the RMSE for each guess. The

RMSE values for our guesses of 4.794 and 5 runs per game are included in the

line. For example, our original guess was 4.794 runs per game based on the runs

scored per game averaged over all teams. The calculation in Table 6-5 gave a

RMSE of .548 runs per game if this value were used as an estimate. Figure 6-1

displays a dot on the curve where the RMSE result of this guess is plotted.

Another dot shows the RMSE value when 5 runs per game is the guessed esti-

mate. Note that this dot is higher than that for the 4.794 guess because the

RMSE for a guess of 5 runs per game is higher. In fact, the RMSE reaches its

lowest level with the 4.794 runs per game guess. Clearly, the RMSE is smallest

when the guess is based on the average runs scored per game.
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Team

New York Yankees

Texas Rangers

Boston Red Sox

Houston Astros

Seattle Mariners

Chicago White Sox

Cleveland Indians

San Francisco Giants

Atlanta Braves

Colorado Rockies

Chicago Cubs

Baltimore Orioles

Toronto Blue Jays

St. Louis Cardinals

Oakland A's

Anaheim Angels

Cincinnati Reds

San Diego Padres

Minnesota Twins

Detroit Tigers

Kansas City Royals

Philadelphia Phillies

Milwaukee Brewers

New York Mets

Los Angeles Dodgers

Florida Marlins

Arizona Diamondbacks

Pittsburgh Pirates

Montreal Expos

Tampa Bay Devil Rays

Average

Runs per Game

5.957

5.802

5.407

5.395

5.335

5.315

5.247

5.184

5.099

5.099

5.098

5.043

5.037

5.000

4.963

4.858

4.630

4.623

4.531

4.457

4.435

4.401

4.364

4.358

4.130

4.117

4.105

4.012

3.975

3.827

4.794

Estimate

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

Error

.957

.802

.407

.395

.335

.315

.247

.184

.099

.099

.098

.043

.037

.000

–.037

–.142

–.370

–.377

–.469

–.543

–.565

–.599

–.636

–.642

–.870

–.883

–.895

–.988

–1.025

–1.173

–.206

Error × Error

.915

.644

.166

.156

.112

.099

.061

.034

.010

.010

.010

.002

.001

.000

.001

.020

.137

.142

.220

.295

.319

.359

.404

.412

.758

.779

.801

.975

1.050

1.376

.342

TABLE 6-6 Predicting Runs per Game for MLB Teams in 1998 (Prediction = 5 Runs/Game)
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Batting Average and Runs Scored per Game

We have established that, without any knowledge about the teams, the best

prediction of run production is a blind guess based on the average runs scored

per game. But what if more information is available? How much can we im-

prove on our guess?

We will examine this with respect to the most popular measure of offensive

production, the Batting Average (AVG). Batting Average is the most quoted of all

baseball statistics in the print and broadcast media; it is simply the number of

hits divided by the number of at-bats. But is AVG worthy of its standing as the

number-one baseball stat for individual offensive performance? As the ratio of

two easily obtained quantities, it has the strength of simplicity. AVG also has

intuitive appeal. It seems reasonable that greater production of hits would lead

to greater production of runs. But how strong is this relationship?

Figure 6-2 plots runs scored per game vs. AVG for all teams in the 1998 sea-

son. As expected, the plot shows a strong correlation between the two measures.

Teams with high AVGs tend to have high run production, and teams with low

AVGs tend to have low run production. Still, note that the New York Yankees

had the highest run productivity without having the highest AVG. On the other

hand, the Tampa Bay Devil Rays had the lowest run productivity and yet were

far from being the worst team in AVG.
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FIGURE 6-1 Root Mean Squared Error (RMSE) values for different guesses of team runs

scored per game in 1998.
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We have drawn a line through the dot cloud. This line is special in the sense

that it has the lowest RMSE of any other possible line through the plot. The

RMSE for this line is calculated using the same technique used in Tables 6-5 and

6-6. Here the estimate based on a single average value is replaced by the value

of the line for the appropriate AVG:

Estimated Team Runs per Game = –5.592 + (39.03 × AVG)

Let’s use this AVG Line to predict the run production for the New York

Yankees. The Yankees’ 1998 AVG was .288, and so we predict the Runs per Game

to be as follows:

Estimated Team Runs per Game = –5.592 + (39.03 × .288) = 5.646

This prediction is less than the actual Yankee rate of 5.957 Runs per Game. The

Yankees scored more frequently than we might expect based on the Team

Batting Average.

Table 6-7 presents the predictions for all 1998 teams based on the Team

Batting Average as well as the calculations of the MSE for these predictions. It

has several similarities with Table 6-5. In both, the average of the estimates
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FIGURE 6-2 Runs per Game vs. Batting Average for 1998 MLB Teams. (Dots represent

actual data, line represents AVG Line.)
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Team

New York Yankees

Texas Rangers

Boston Red Sox

Houston Astros

Seattle Mariners

Chicago White Sox

Cleveland Indians

San Francisco Giants

Atlanta Braves

Colorado Rockies

Chicago Cubs

Baltimore Orioles

Toronto Blue Jays

St. Louis Cardinals

Oakland A's

Anaheim Angels

Cincinnati Reds

San Diego Padres

Minnesota Twins

Detroit Tigers

Kansas City Royals

Philadelphia Phillies

Milwaukee Brewers

New York Mets

Los Angeles Dodgers

Florida Marlins

Arizona Diamondbacks

Pittsburgh Pirates

Montreal Expos

Tampa Bay Devil Rays

Average

Runs per Game

5.957

5.802

5.407

5.395

5.335

5.315

5.247

5.184

5.099

5.099

5.098

5.043

5.037

5.000

4.963

4.858

4.630

4.623

4.531

4.457

4.435

4.401

4.364

4.358

4.130

4.117

4.105

4.012

3.975

3.827

4.794

Estimate

5.646

5.672

5.334

5.325

5.177

5.001

5.040

5.087

5.004

5.772

4.729

5.068

4.773

4.484

4.453

5.014

4.640

4.289

4.779

4.702

4.675

4.705

4.543

4.501

4.227

4.105

4.024

4.319

4.120

4.595

4.794

Error

.310

.131

.074

.070

.158

.313

.207

.097

.094

–.674

.369

–.024

.264

.516

.510

–.156

–.011

.334

–.248

–.245

–.240

–.304

–.179

–.143

–.098

.012

.081

–.307

–.144

–.768

.000

Error × Error

.096

.017

.005

.005

.025

.098

.043

.009

.009

.454

.136

.001

.070

.266

.260

.024

.000

.112

.061

.060

.058

.092

.032

.020

.010

.000

.006

.094

.021

.590

.089

TABLE 6-7 Predicting Runs per Game for MLB Teams in 1998 (Estimate = AVG Line)
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equals 4.794, which is the average runs scored per game over all teams. Also, the

average of the errors is 0 in both tables. However, the big difference is in the

MSE and RMSE values. The AVG Line produces a MSE value of .089 in Table 6-7.

After taking the square root, this translates to a RMSE value of .299 Runs per

Game, almost half the RMSE value for the blind guess estimate in Table 6-5.

This should not come as a surprise. The AVG Line is the line with the best fit

to the data. The errors in Table 6-5 were based on an estimate which ignored any

team information and estimated a single run production value of 4.794 Runs per

Game for all teams. Using the information derived from the Batting Average, we

can now estimate team run production correctly within .3 Runs per Game for

two-thirds of the teams; before, our estimates were correct within .6 Runs per

Game for two-thirds of the teams. Batting Average has thus allowed us to shrink

considerably the error in our estimates.

Figure 6-3 is the same as Figure 6-2, but with the addition of a vertical line

showing the error of using the AVG Line to predict run production for each team.

The figure gives a visual demonstration of the effectiveness of the AVG Line in

predicting team run production. The two greatest errors are for the Tampa Bay

Devil Rays and the Colorado Rockies. Both teams were expected to score more

runs on the basis of Team Batting Average.

Figure 6-4, which is similar to Figure 6-3, shows the effectiveness of predic-

tion on the basis of the overall average Runs per Game. A guess based on this

average makes no use of any additional information about the teams, so the pre-

diction is a flat line at the average value. The lengths of the error bars in Figure

6-3 are generally shorter than those in Figure 6-4, which shows why the AVG

Line is a better fit to the data and has a lower RMSE.

Up to this point, the Batting Average looks pretty good: it appears to be cor-

related with team run production. When used in the AVG Line formula, it

improves estimation of run production over blindly guessing at the runs scored

with the average. But while this is a good start, AVG really hasn’t been tested.

What if we looked at some other batting measures? Would they do any better?

Slugging Percentage and On-Base Percentage

The Slugging Percentage (SLG) is another standard measure of individual base-

ball hitting performance. Batting Average counts each hit equally, whereas SLG

weights each hit according to the number of bases attained:
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FIGURE 6-3 Runs per Game vs. Batting Average for 1998 MLB teams. (Dots represent

data, line represents AVG Line; vertical lines represent Error.)
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FIGURE 6-4 Runs per Game vs. Batting Average for 1998 MLB teams. (Dots represent

data, line represents overall average runs per game, vertical lines represent

Error.)
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To put it another way, SLG is a measure of total bases achieved divided by at-bats.

The use of the term “percentage” in Slugging Percentage is a misnomer. While

SLG is typically less than 1, we see that it is possible for it to be greater than 1,

and possibly as high as 4 if every at bat produces a home run. SLG is best under-

stood as either of the following:

• a Rate—the rate at which bases are produced per at-bat

• an Expectation—the expected or average number of bases

produced per at-bat

With its emphasis on extra-base hits, SLG improves the rankings of power

hitters over high-average “banjo” (non-power) hitters. At least, the “slugging”

part of the name is very apt. Table 6-8 presents the players with the highest

Slugging Percentage in each decade. The table has much in common with Table

6-3, which simply lists those with the highest Batting Average. But the ordering

has changed, and many new players have appeared.

• Harry Stovey replaces Cap Anson in the 1880s.

• Sam Thompson replaces Billy Hamilton in the 1890s.

• Sam Crawford replaces Wee Willie Keeler in the 1900s.

• Hack Wilson replaces Harry Heilmann in the 1920s.

• Jimmie Foxx and Hank Greenberg replace Al Simmons and Paul

Waner in the 1930s.

• Johnny Mize replaces Joe Medwick in the 1940s.

• Mickey Mantle and Ralph Kiner replace Jackie Robinson and

Richie Ashburn in the 1950s.

• Willie Mays and Frank Robinson replace Roberto Clemente and

Matty Alou in the 1960s.

• The 1970s, 1980s, and 1990s saw a complete overhaul; Carew,

Garr, and Oliver were swept away by Allen, Stargell, and

Jackson, while Schmidt, Rice, and Brett replaced Puckett,

Mattingly, and Molitor. In the 1990s, Ramirez, Bonds, and

McGwire replaced Gwynn, Boggs, and Piazza.

Table 6-8, when compared with Table 6-3, also has a large number of present

1B + (2 × 2B) + (3 × 3B) + (4 × HR)
SLG = =

AB

H + 2B + (2 × 3B) + (3 × HR)

AB
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and future Hall of Famers; only Browning, Joe Jackson, Stovey, and Allen are not

in the Hall of Fame among the pre-1980s players.

Two principles appear from the comparison of Tables 6-8 and 6-3:

• Power hitters replace singles hitters in the SLG ratings. The

players who are in both tables were power hitters who also hit 

for average.

• The differences between the two tables appear to be greater in

recent years. This suggests that in the past, power hitters were

also great hitters for average, while recent hitters are more apt 

to be good power hitters or good hitters for average, not both.

Figure 6-5 plots Team Runs per Game vs. Slugging Percentage. As in Figures

6-3 and 6-4, we have also plotted the SLG Line and the errors for each data

point. The formula for the SLG Line is as follows:

Estimated Team Runs per Game = –2.135 + (16.50 × SLG)

Another popular measure for hitting performance is the On-Base Percentage

(OBP), which we examined extensively in Chapter 2. Recall that OBP is defined

as follows:
H + BB + HBP 

OBP = 
AB + BB + HBP + SF

Decade Player SLG

1880s Roger Connor .486 Pete Browning .467 Harry Stovey .461

1890s Dan Brouthers .519 Ed Delahanty .505 Sam Thompson .505

1900s Nap Lajoie .467 Honus Wagner .466 Sam Crawford .452

1910s Joe Jackson .517 Ty Cobb .512 Tris Speaker .500

1920s Babe Ruth .690 Rogers Hornsby .577 Hack Wilson .545

1930s Lou Gehrig .632 Jimmie Foxx .609 Hank Greenberg .605

1940s Ted Williams .634 Joe DiMaggio .579 Johnny Mize .562

1950s Stan Musial .559 Mickey Mantle .557 Ralph Kiner .548

1960s Willie Mays .557 Hank Aaron .555 Frank Robinson .537

1970s Dick Allen .534 Willie Stargell .529 Reggie Jackson .490

1980s Mike Schmidt .527 Jim Rice .502 George Brett .487

1990s .599 .595 Mark McGwire .588Manny Ramirez Barry Bonds

TABLE 6-8 Batters With Highest Career Slugging Percentage from Each Decade
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Player OBPDecade

Pete Browning .403 Roger Connor .397 Cap Anson .3931880s

Billy Hamilton .455 Dan Brouthers .423 Cupid Childs .4161890s

Roy Thomas .413 Honus Wagner .391 Hughie Jennings .3901900s

Ty Cobb .433 Tris Speaker .428 Eddie Collins .4241910s

Babe Ruth .474 Rogers Hornsby .434 Max Bishop .4231920s

Lou Gehrig .447 Jimmie Foxx .428 Mickey Cochrane .4191930s

Ted Williams .482 Eddie Stanky .410 Arky Vaughan .4061940s

Mickey Mantle .421 Stan Musial .417 Jackie Robinson .4091950s

Frank Robinson .389 Willie Mays .384 Eddie Mathews .3761960s

Mike Hargrove .396 Rod Carew .393 Joe Morgan .3921970s

1980s

1990s

Keith Hernandez .384 Mike Schmidt .380 Jack Clark .379

Frank Thomas .432 Barry Bonds .428 Edgar Martinez .424

TABLE 6-9 Batters with Highest Career On-Base Percentage from Each Decade
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FIGURE 6-5 Runs per Game vs. Slugging Percentage for 1998 MLB teams. (Dots repre-

sent data, line represents SLG Line, vertical lines represent Error.)
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OBP is used as an estimate of the probability of getting on base in a plate

appearance. Table 6-9 lists, by decade, the batters with the highest career OBPs.

Again, aside from re-ordering players who appeared in the AVG and SLG lists, a

number of new players have entered the picture: Cupid Childs in the 1890s, Roy

Thomas and Hughie Jennings in the 1900s, Eddie Collins in the 1910s, Max

Bishop in the 1920s, Mickey Cochrane in the 1930s, Eddie Stanky and Arky

Vaughan in the 1940s, and Eddie Mathews in the 1960s. Mike Hargrove, Joe

Morgan, Keith Hernandez, Jack Clark, Frank Thomas, and Edgar Martinez are

new faces in the 1970s, 1980s, and 1990s.

Some of these new players are in the Hall of Fame (Jennings, Collins,

Cochrane, Vaughan, Mathews, and Morgan), and some may be worthy of consid-

eration for the Hall (Bishop, Hernandez, Thomas, and Martinez). But do we

really think that Mike Hargrove was the best offensive player of the 1970s? Or

that Eddie Stanky was the second best player of the 1940s? OBP seems to rec-

ognize some excellent players overlooked by AVG and SLG, but it also produces

some strange rankings.

Figure 6-6 plots Team Runs per Game vs. On-Base Percentage. We have also

plotted the OBP Line and the errors for each data point. The formula for the

OBP Line is:

Estimated Team Runs per Game = –7.273 + (36.03 × OBP)
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FIGURE 6-6 Runs per Game vs. On-Base Percentage for 1998 MLB teams. (Dots repre-

sent data, line represents OBP Line, vertical lines represent Error.)
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In order to compare how well AVG, SLG, and OBP predict 1998 Team Runs

per Game, we took the errors in their predictions from Figures 6-3, 6-5, and 6-6

and then sorted them. Table 6-10 presents these results. We see that AVG had

the largest single error (overestimating Tampa Bay’s Runs per Game by .768). In

fact, AVG had four estimates which were off by more

than any estimate based on OBP, which was never off

by more than .466 Runs per Game in its predictions.

SLG also had two estimates worse than any estimates

from OBP. So . . . Batting Average is not looking as

good as it initially did, and both SLG and OBP seem

to do a better job. But we cannot judge by several

extremes. We have to examine the entire distribution

of errors for AVG, SLG, and OBP.

One way to get a visual perspective on the spread

of errors for the different models is to graph side-by-

side boxplots of the distributions. We do this in Figure

6-7. If we examine the SLG boxplot, we see the entire

extent of the distribution of SLG errors in predicting

1998 Team Runs per Game. The distribution ranges

from underestimating one team’s run production by

.544 Runs per Game up to overestimating another

team’s run production by .385 Runs per Game. You

may recall from Chapter 2 that the box in the center

of the plot represents the central half of the distribu-

tion; 50 percent of the SLG errors fall within this box,

25 percent above the box, and 25 percent below it. The

line in the middle of the box represents the central

point (or median) of the entire distribution, with 50

percent above the line and 50 percent below it.

A good predictor of Runs per Game results in a

tight distribution of errors, one which limits the size

of the error in either direction. Viewing the boxplots in

Figure 6-7, the better predictor is one with a more lim-

ited range (the difference between the highest and

lowest values) and a narrower box. Visual inspection

of Figure 6-7 indicates that SLG appears to have less

AVG SLG

.516 .544

.510 .497

.369 .381

.334 .342

.313 .323

.310 .253

.264 .139

.207 .134

.158 .133

.131 .102

.097 .084

.094 .022

.081 .019

.074 –.004

.070 –.015

.012 –.019

–.011 –.030

–.024 –.036

–.098 –.089

–.143 –.121

–.144 –.136

–.156 –.194

–.179 –.216

–.240 –.238

–.245 –.240

–.248 –.244

–.304 –.261

–.307 –.364

–.674 –.381

–.768 –.385

OBP

.374

.233

.229

.213

.178

.142

.115

.092

.080

.079

.064

.061

.060

.058

.049

.034

.017

.006

–.013

–.014

–.031

–.072

–.131

–.159

–.186

–.240

–.253

–.259

–.262

–.466

TABLE 6-10 Errors in 1998 Team Runs per Game for AVG, SLG, and OBP Lines
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spread in its errors than AVG, and OBP has less spread in its errors than SLG.

The results are best summarized by looking at the Root Mean Squared Error

(RMSE) for each predictor. The RMSE values in Table 6-11 as well as their

visual counterparts, the boxplots in Figure 6-7, all indicate that OBP was the

superior measure of batting ability leading to runs in 1998. This is a somewhat

surprising result, given the explosion of home runs in that epochal year.

What about other years? Could this have been true only in 1998, or does it

hold in other years as well? We performed the same analysis for each season

since 1876, the inaugural year of the National League. In each year, we found

the AVG Line, SLG Line, and OBP Line with respect to predicting Team Runs

per Game in that season and calculated the RMSE for each of the three lines. We

then found which Line (AVG, SLG, or OBP) had the lowest RMSE (that is, the

best fit to Team Runs per Game). Figure 6-8 plots this minimal RMSE value and

indicates which measure (AVG, SLG, or OBP) generated it.

We see that the RMSE of the best fit among the three models shows great vari-

ability from season to season. In 1948, Slugging Percentage provided the best fit

(RMSE = .32 Runs per Game); thus, AVG and OBP both had RMSEs greater than

.32. SLG also provided the best fit in 1968, where RMSE is .12 Runs per Game. In
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FIGURE 6-7 Boxplots of 1998 Team Runs per Game Errors for AVG, SLG, and OBP.

Batting Average Slugging Percentage On-Base Percentage

.299 .248 .178

TABLE 6-11 Root Mean Squared Error for 1998 Team Runs per Game Estimates
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that year, scoring was very low; the reduced variability in runs scored may have

contributed to the improved capability of SLG to predict run production.

Another interesting feature of Figure 6-8 is the improved consistency in fit

over time, especially in post-1960 seasons compared to pre-1960 seasons. From

1958 on, every season had a measure with an RMSE value less than .24 Runs

per Game. On the other hand, in 35 of the first 82 seasons, the best fit had

RMSEs greater than .24. Contributing to this effect may have been the gradual

expansion of Major League Baseball from 16 teams in 1960 up to the current 30

teams. Also contributing to this effect are the short seasons (fewer than 100

games) in the early years of professional baseball, which allowed greater vari-

ability in run production from the basic hitting events.

For our purposes, the most interesting feature is the relatively few seasons in

which Batting Average had the best fit to team run production. AVG has not pro-

vided the best fit to run production since 1955. If all three measures (AVG, SLG,

and OBP) were equally capable of predicting Team Runs per Game, we would

expect AVG to have the best fit (lowest RMSE) in about one-third of the seasons.

In fact, AVG was best in only 16 of 124 seasons, while SLG and OBP split the
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FIGURE 6-8 RMSE of fit to Team Runs per Game since 1876. (Minimum RMSE from

AVG, SLG, and OBP.)
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remaining seasons almost equally (50 and 58 seasons, respectively). The proba-

bility of this happening if AVG, SLG, or OBP were equally effective measures is

less than 1 in 5 million!4

It is not clear at this point whether Slugging Percentage or On-Base

Percentage is the best predictor of run production, but it is abundantly clear that

Batting Average is the worst of the three. So the king is dead! Long live the king!

But which measure is the new king? SLG and OBP are viable candidates, but

why should we restrict ourselves to these choices alone? Can other models pro-

vide us with even greater improvements in predicting run production? And if so,

how can they be applied to our ultimate goal, evaluating individual players?

Intuitive Techniques
It was not long after the end of World War II that dissatisfaction with the basic

crop of baseball offensive performance measures (AVG, OBP, and SLG) initiated

research into alternatives. Activity started slowly in the 1950s and really accel-

erated in the 1960s. Baseball fans must have been thinking, “Hey, we’ve split the

atom! We’re sending men to the moon! There’s got to be a better way of measur-

ing ballplayers!” Whether this internalized outcry was real or not, activity

peaked in the early 1980s, not coincidentally with the creation of the Society of

American Baseball Research (SABR). Since then, development has stabilized

around several well-established measures.

By far the most popular group of techniques falls into a category we call intu-

itive. With intuitive techniques, no rigorous statistical model is used. (We’ll get

to those in Chapters 7 and 8.) Instead, the intuitive researcher relies on a vision

or paradigm for the workings of baseball, and, inspired by the standard MLB

statistics we’ve talked about earlier in this chapter, “mixes and matches” them to

more accurately reflect his or her sense of the game.

The three measures recognized by Major League Baseball discussed earlier

all had their origins as intuitive techniques. To develop the Batting Average, it

was not necessary to perform analysis of reams of data or develop probabilistic

models simulating baseball games. It arose out of a common-sense understand-

ing of baseball. To put it plainly, it makes sense. The other official MLB offensive

statistics, OBP and SLG, were developed from a similar intuitive sensibility.

Fans of the game used these official measures as a starting point. All three had

4 This value was calculated as the probability of 16 successes or fewer in 124 trials for a binomial

distribution with a probability of success in each trial equal to 1/3.
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a role to play in the intuitive class of new statistical techniques. These new devel-

opments run the gamut from simple tweaks of the standard existing measures to

major recombinations of the standard batting data. What we’ll see in the balance

of this chapter is how AVG, SLG, and OBP can be combined in ways that create

paradigms of the game that are closer to what actually happens on the field.

On-Base Plus Slugging (OPS)

Given the relative parity between On-Base Percentage and Slugging Percentage

as estimators of team run production, perhaps combining the two would prove to

be a useful predictor. This was not the genesis of a model called On-Base Plus

Slugging (OPS), but perhaps it provides a reasonably simple explanation for its

effectiveness:

OPS = OBP + SLG

Actually, OPS was developed by Pete Palmer as an easily calculated approxima-

tion to his more detailed Linear Weights model (to be covered in Chapter 7).

Table 6-12 presents the leading OPS batters in each decade. Most of these play-

ers appeared on the SLG list or the OBP list. One new player is Reggie Smith,

who struck a good balance of power and getting on-base but was not a leader in

either category separately.

Figure 6-9 plots the minimal RMSE among SLG, OBP, and OPS for each year

from 1876 through 1999. This is similar to Figure 6-8, except AVG has been elim-

inated from consideration, and OPS has taken its place. Clearly, SLG and OBP

taken together as OPS produce a far-superior model than using either individu-

ally. A typical RMSE in twentieth-century baseball is about .15 Runs per Game.

This means that using OPS, the number of runs scored by a team per game can

be predicted within about .15 Runs per Game for two-thirds of the teams.

However, OBP appears to be at least on a par with OPS in predicting runs scored

for nineteenth-century teams. (At this point, we can eliminate SLG from consid-

eration before proceeding to the next challenger.)

Total Average (TA)

Another model that has received a lot of attention is Total Average (TA), intro-

duced by sportswriter Thomas Boswell in 1981. TA is a modification of Slugging

Percentage. Where SLG is the ratio of total bases to at-bats, TA is the ratio of

total bases to total outs. The logic of substituting outs for at-bats is a powerful

one. For the most part, the number of outs per game is a constant 27. Thus, it
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Decade Player OPS

Cap Anson .8381880s Roger Connor .883 Pete Browning .869

Sam Thompson .8881890s Dan Brouthers .942 Ed Delahanty .917

Elmer Flick .8341900s Honus Wagner .857 Nap Lajoie .847

Tris Speaker .9281910s Ty Cobb .945 Joe Jackson .940

Hack Wilson .9401920s Babe Ruth 1.163 Rogers Hornsby 1.010

Hank Greenberg 1.0171930s Lou Gehrig 1.080 Jimmie Foxx 1.038

Johnny Mize .9591940s Ted Williams 1.115 Joe DiMaggio .977

Ralph Kiner .9461950s Mickey Mantle .977 Stan Musial .976

Frank Robinson .9261960s Willie Mays .941 Hank Aaron .928

Reggie Smith .8551970s Dick Allen .912 Willie Stargell .889

1980s Jack Clark .854Mike Schmidt .908 George Brett .857

1990s 1.023 Manny Ramirez 1.010 Frank ThomasBarry Bonds 1.000

TABLE 6-12 Batters with Highest Career On-Base Plus Slugging from Each Decade
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FIGURE 6-9 RMSE of fit to Team Runs per Game since 1876. (Minimum RMSE from

SLG, OBP, and OPS = OBP + SLG.)
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seems natural that the number of runs generated per game should be related to

the number of runs per out, which in turn could be related to the number of

bases generated per out. This relationship should be tighter than total bases per

at-bat since the number of at-bats is more variable over games. Boswell calcu-

lated outs by subtracting hits from at-bats and adding Caught Stealing (CS) and

Grounded Into Double Plays (GIDP). Like others before and after him, Boswell

expanded his model beyond Total Bases (TB) achieved by hitting to include other

aspects of offense such as walks (BB), Hit By Pitcher (HBP), and Stolen Bases

(SB). The formula for Total Average is as follows:

It should be noted that the concept of using a bases-to-outs ratio to rate offen-

sive performance had been introduced earlier in 1979 by Barry Codell in SABR’s

Baseball Research Journal. Codell’s Base-Out Percentage is identical to TA

except that the number of sacrifice hits (SH) and sacrifice flies (SF) are added to

both the numerator (bases) and denominator (outs). This is consistent with the

basic concept, since sacrifice hits and sacrifice flies are both outs that advance

runners. (One could argue that CS and GIDP should subtract a base as well as

adding an out.) However, TA is the more popular formulation of this concept and

the one we will analyze here. As expected, the two formulations provide very

similar results. (Because team data on Grounded Into Double Plays was not

available, GIDP was assumed to be 0 in the calculation of TA here.)

First, let’s look at the Total Average leaders in each decade, as shown in Table

6-13. Joe Morgan, a productive hitter with some power and tremendous base-

stealing ability, has moved to the second spot in the 1970s. Billy Hamilton who

stole 912 bases has moved to the top of the 1890s list. Clearly, TA’s inclusion of

SB and CS has given an edge to players whose base stealing is a significant part

of their game.

Figure 6-10 shows that OBP, OPS, and TA are equally capable from 1876 to the

mid-1890s. Then, OPS dominates into the mid-1930s. Total Average has the edge

from then up to the present day. In fact,TA has been the best estimator since 1991.

Batter’s Run Average (BRA) and Scoring Index (DX)

TA, then, has a slight edge over OPS. But perhaps a better model than OPS can

be created by combining OBP and SLG in a different way. Richard Cramer and

TB + BB + HBP + SB
TA = 

AB – H + CS + GIDP
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Decade Player TA

1880s Roger Connor .952 Pete Browning .946 Harry Stovey .924

1890s Billy Hamilton 1.191 Dan Brouthers 1.061 Ed Delahanty 1.035

1900s Honus Wagner .949 Elmer Flick .915 Fred Clarke .883

1910s Ty Cobb 1.090 Tris Speaker 1.030 Joe Jackson 1.027

1920s Babe Ruth 1.420 Rogers Hornsby 1.118 Hack Wilson 1.011

1930s Lou Gehrig 1.248 Jimmie Foxx 1.171 Hank Greenberg 1.133

1940s Ted Williams 1.374 Joe DiMaggio 1.043 Johnny Mize 1.028

1950s Mickey Mantle 1.120 Stan Musial 1.067 Ralph Kiner 1.041

1960s Willie Mays 1.027 Frank Robinson 1.008 Hank Aaron .984

1970s Dick Allen .975 Joe Morgan .947 Willie Stargell .914

1980s

1990s

.993 Jack Clark .909

1.239 Frank Thomas 1.151 Manny Ramirez 1.122

Mike Schmidt

Barry Bonds

.874George Brett

TABLE 6-13 Players with Highest Career Total Average from Each Decade
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Pete Palmer did just that when they multiplied OBP and SLG to create Batter’s

Run Average (with the infelicitous acronym BRA):

The idea here is that scoring runs is the product of getting on-base (OBP) and

advancing the runners (SLG). Figure 6-11 plots the minimal RMSE among the

OPS, TA, and BRA models. BRA appears to be less effective than TA, but more

effective than OPS. So, it seems that multiplying OPS and SLG produces a bet-

ter model than adding the two values.

Cramer and Palmer were neither the first nor the last researchers to create a

model based on this concept. Two of the most notable researchers also adopt this

principle in their models. Earnshaw Cook was a metallurgist with a great inter-

est in baseball statistics. His 1964 book Percentage Baseball was the first work

in baseball statistics to gain the attention of sportswriters and the national

media. The volume overflows with Cook’s ideas, and his enthusiasm for his sub-

ject is evident throughout. However, at times, this energy obscures the clarity of

his exposition. Perhaps Cook’s most lasting contribution was his development of

the Scoring Index (DX). His original concept of DX can be expressed this way:

1B + BB + HBP + E TB + SB
DX = ×

BFP BFP

BRA = OBP × SLG
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FIGURE 6-11 RMSE of fit to team runs per game since 1876. (Minimum RMSE from OPS,

TA, and BRA.)
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BFP is the number of times a player came to bat (Batter Faced Pitcher) and E is

the number of times the player was safe on an error. DX was developed to be lin-

early related to runs scored per BFP. He altered the formula in 1971 to this:

The biggest change in this revised expression is the substitution of Hits (H) for

singles (1B) in the first term. The formula is now very similar to BRA, with the

inclusion of base-stealing data.

Runs Created (RC)

The other sabermetric heavyweight to adopt this concept was Bill James (who in

fact invented the term “sabermetrics” in honor of SABR). The basic concept of

James’s Runs Created (RC) model is as follows:

Since SLG = TB/AB, we see that RC is approximately the same as BRA × AB. So,

RC estimates the total number of runs produced while BRA and DX estimate the

rate of run production per at-bat or plate appearance. In 1985, James got really

serious, as evidenced by his technical version of RC:

The technical RC model (dubbed TECH-1) came with 13 additional versions

(TECH-2 through TECH-14) to handle seasons in which some data was not

available. Most of the modifications to the original formula are common-sense

adjustments (e.g., subtracting runners eliminated by caught stealing and double

plays from the on-base term). Unless indicated otherwise, references to the Runs

Created model will use the TECH-1 version.

In his 1984 Baseball Abstract, James indicates that the .26 and .52 multipli-

ers were chosen empirically to improve the fit of Runs Created to total runs

scored within each league. In performing this optimization with respect to data,

James has moved beyond the realm of intuitive techniques and crossed into

data analysis. (Techniques such as these, which involve linear regression, are

covered in the next chapter, but since RC is primarily a result of intuition, we

will cover it here.)

(H + BB + HBP – CS – GIDP) (TB + .26 (BB – IBB + HBP) + .52 (SH + SF + SB))
RC = 

AB + BB + HBP + SH + SF

(H + BB) TB
RC = 

AB + BB

H + BB + HBP TB + SB – CS
DX = ×

AB + BB + HBP AB + BB + HBP
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Since RC predicts total run production, we divide it by the number of games

(to obtain RC/G) before fitting it to Runs per Game and comparing it with the

other models. Figure 6-12 plots the minimal RMSE values among the TA, BRA,

and RC/G models for team run production. RC/G is superior to BRA, as it should

be, since it is basically BRA with more data included in the calculation as well as

the optimized weights .26 and .52.5 And RC/G also seems to have an edge over TA.

How does RC/G rate players decade-by-decade? Table 6-14 lists the results of

our calculation for individual players, in which we divided RC by an estimate of

the number of “games” a player’s offensive record represents. This can be done

by estimating the total number of outs and dividing by 27. So, Runs Created per

Game for an individual player may be calculated as follows:

RC
RC / G = 

(AB – H + SH + SF + CS + GIDP) / 27
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FIGURE 6-12 RMSE of fit to team runs per game since 1876. (Minimum RMSE from TA,

BRA and RC/G.)

5 This raises the issue of whether RC/G provides enough improvement in its prediction to justify

the increased complexity of its calculation. This statistical issue is important but beyond the

scope of this book.
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This value represents the total number of runs produced by a team composed

solely of the player analyzed.7 For example, Stan Musial’s RC/G is 9.89.

According to the RC model, we expect that a team composed entirely of Stan

Musial clones in each of the nine batting slots would score an average of 9.89

Runs per Game. Obviously, Stan the Man was a very great hitter, since teams in

this period scored less than half this value, or about 4.5 Runs per Game. This list

comes very close to a typical fan’s perception of great hitters. We might not have

expected the presence of Jack Clark or Manny Ramirez, but in general the list

does not have lots of surprises.

More Analytic Models
This has not been an easy chapter, and we suspect many of you have spent con-

siderable effort following our arguments. You might even feel like you’re out of

Decade Player RC/G

1880s Pete Browning 8.61 Roger Connor 8.41 Cap Anson 7.62

1890s Billy Hamilton 10.40 Dan Brouthers 9.96 Ed Delahanty 9.50

1900s Honus Wagner 8.02 Elmer Flick 7.55 Nap Lajoie 7.51

1910s Ty Cobb 9.77 Joe Jackson 9.26 Tris Speaker 9.05

1920s Babe Ruth 13.87 Rogers Hornsby 10.56 Hack Wilson 8.75

1930s Lou Gehrig 11.84 Jimmie Foxx 10.85 Hank Greenberg 10.31

1940s Ted Williams 13.78 Joe DiMaggio 9.68 Johnny Mize 9.32

1950s Stan Musial 9.89 Mickey Mantle 9.79 Ralph Kiner 8.93

1960s Willie Mays 8.62 Frank Robinson 8.39 Hank Aaron 8.30

1970s Dick Allen 7.99 Willie Stargell 7.42 Joe Morgan 7.00

1980s

1990s

7.77

Frank Thomas 10.11

Mike Schmidt

Barry Bonds 10.41

George Brett 7.14

10.33 Manny Ramirez

Jack Clark 7.06

TABLE 6-14 Players with Highest Career Runs Created per Game from Each Decade6

6 Readers of the first edition of Curve Ball (2001) may be puzzled by the disappearance of Rickey

Henderson and Tim Raines from the top 1980s players in Tables 6-9, 6-13, and 6-14. Both

Henderson and Raines started their careers in 1979 and were still active in 2002. This places

the midpoint of their careers in the 1990s decade, not the 1980s decade. If placed in the 1980s,

Henderson and Raines would have the top two OBPs (.402 and .385, respectively), and the best

and third-best TAs (1.007 and .928, respectively), based on their career data through 2002.

Henderson would have the second-highest RC/G (7.25) if placed in the 1980s.
7 Actually, the values presented in Table 6-14 somewhat overestimate the actual RC/G since

GIDP data were not available.
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breath, having stretched a double into a triple. So we will take a moment now to

take stock of where we are and how we got here.

Up to this point, the models we have examined were constructed not from any

statistical analysis but based on a belief, view, or principle that describes, in a

common-sense way, how baseball works. The Batting Average, our starting

point, is based on the premise that scoring runs is related to how often a player

gets hits. The On-Base Percentage expanded this view to include additional

ways of getting on base, primarily through bases on balls. The Slugging

Percentage took a somewhat different view and expanded Batting Average by

weighting hits in accordance with bases obtained. Another model, Total Average,

weighted hits and included walks and hit by pitch data, with stolen bases

thrown in for good measure; TA also is a ratio of good events (bases) to bad

events (outs), as opposed to good events as a percentage or expectation with

respect to opportunity (at bats or plate appearances). Two models (On-Base Plus

Slugging and Batter’s Run Average) combine On-Base Percentage and Slugging

Percentage into a single measure through addition and multiplication, respec-

tively. Runs Created expanded on the Batter’s Run Average, employing a more

detailed accounting of events in which batters get on base and advance runners.

Note that all of these models except Runs Created work completely with inte-

ger values (simple counts and weights). They combine these counts to establish

impacts of (a) getting on-base and (b) advancing runners relative to the degree

of opportunity. For the most part, RC does this as well. But here we see the use

of non-integer weightings (.26 and .52) for events that advance runners, but not

as effectively as hits advance runners.

Figure 6-13 compares the models with respect to their annual RMSEs aver-

aged over the 46 years from 1954 through 1999. This period was chosen because

.10 .15 .20 .25 .30

AVERAGE RMSE (RUNS PER GAME)

TA OPS SLG OBP AVG

RC/G
BRA

DX

FIGURE 6-13 Average yearly RMSEs for various models (1954–1999).
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of the completeness of its data and greater relevance to baseball as it is played

today. The standard MLB models (Batting Average, Slugging Percentage, and

On-Base Percentage) stand out from the rest as having distinctly worse fits than

the newer alternative models. The Runs Created per Game model had the low-

est average RMSE (.136). However, the other models (BRA, DX, TA, and OPS)

have RMSEs not much greater than RC/G’s. Are these differences in RMSE sig-

nificant?

Table 6-15 compares each pair of models with respect to their RMSEs in

each year. For each pair of models, the percentage of years in which the model

on the row had a lower RMSE than the model in the column were counted. For

example, out of the 46 years of data used, Runs Created per Game had a lower

RMSE than Total Average in 70 percent of the data (32 of the 46 years). The

question remains whether this difference is significant. Perhaps the two mod-

els are equally capable, but chance gave RC/G the edge. If the two models have

equal capability to estimate run production, then in each year there is a 50/50

chance that one or the other will have the lower RMSE. Under this equal-capa-

bility assumption, there is only a 1.1-percent chance that one of these models

will dominate the other with a 32 to 14 edge or greater. This is a very small

chance, and so we conclude that in the years 1954–1999, RC/G is a superior

model to Total Average. In fact, since it dominates all the other models to an

even greater extent, it seems that RC/G provides the best fit to team data of the

models considered so far.

Except for TA vs BRA, TA vs. OPS, and SLG vs. OBP, all differences in model

performance are statistically significant in that the probability of getting the

Model RC/G TA BRA OPS DX SLG OBP AVG

98%

93%

98%

98%

93%

100%

96%

100%

98%
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100%
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100%
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•
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TABLE 6-15 Percentage of Years That Row Model Had Lower RMSE Than Column Model

(1954–1999)
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result is less than 5 percent.8 TA, BRA, and OPS are comparable and do very

well, considering their simplicity relative to RC/G. Cook’s DX does not perform

as well as this group, but it is a definite improvement over the MLB standard

statistics, which bring up the rear. The question remains, how much further can

we improve on these models by applying statistical analysis techniques? The

improvement in the Runs Created model gained through the use of optimization

gives us some cause for optimism. So far (except for the optimization used in the

Runs Created model), we have used statistics merely to evaluate models; now we

wish to employ statistics to construct them.

But before we continue, let’s see how our models rated Rocky Colavito and

Harvey Kuenn in 1959. Table 6-16 provides ratings for the major models consid-

ered in this chapter. Of course Kuenn, as the 1959 American League batting

champion, had a higher AVG than Colavito. Colavito’s HR power provided him

with a slight edge over Kuenn in SLG. But this is the only model in which

Colavito dominated. All of the alternatives (OPS, TA, and RC/G) rated Kuenn

distinctly higher. One has to conclude that when all aspects of offense are con-

sidered, Kuenn gave the greater offensive performance in 1959. Unfortunately,

looking forward, 1959 turned out to be a career year for Kuenn. The perform-

ances of both Kuenn and Colavito dropped for their new teams in 1960. Still, all

of the models rated Kuenn’s 1960 performance better than Colavito’s. In the sub-

sequent five years, though, Colavito had at least four seasons which topped his

1959 season, while Kuenn, who was traded to a variety of teams, never regained

his 1959 form. Ironically, Cleveland made a good trade on the basis of 1959 per-

formance, but Detroit got the better performer in the early sixties.

8 In statistics, this is called a .05 level of significance. A level of significance is a quantitative

evaluation of the strength of the data when testing a hypothesis. Here, the hypothesis is that

the two models being compared have the same capability in predicting team run production.

The level of significance specifies that we will accept this hypothesis as being true unless the

data shows that this hypothesis is extremely unlikely (has probability less than the level of

significance). The lower the level of significance, the more proof we are demanding before we

reject the hypothesis. All statistical tests are based on this premise, which is similar to our legal

tradition’s principle that a person (hypothesis) is innocent (true) until proven guilty (false).

Player

Rocky Colavito

Harvey Kuenn

BA

.257

.353

OBP

.337

.402

SP

.512

.501

OPS

.849

.903

TA

.857

.923

RC/G

6.512

8.668

TABLE 6-16 Offensive Model Ratings for Rocky Colavito and Harvey Kuenn in 1959
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CHAPTER 7

Many models developed to evaluate hitting productivity sum the bases attained,

then divide that sum by an appropriate measure of opportunity (for example, at-

bats). The simplest example is the Slugging Percentage (SLG), which is the total

bases attained by hits divided by at-bats:

One of the best models from Chapter 6, Total Average (TA), was a more compli-

cated example of this form. In this chapter, we will look at how additive-type

models like SLG and TA (which sum weighted play frequencies) can be improved

by using actual baseball data in their modification. The three data analysis tech-

niques arrive at very similar conclusions (for the most part). In the end, we will

have found estimates of the average number of runs that each play event can be

expected to produce.

Finding Weights for Plays
Looked at in a more general way, what we have been doing in several different

models is to give each event in a game a certain weight. In the example of

Slugging Percentage, we weight hits, with each type of hit having a weight equal

to the number of bases attained: 1 for singles, 2 for doubles, 3 for triples, and 4

for home runs. Each weight is a measure of the impact of the hitting event

1B + (2 × 2B) + (3 × 3B) + (4 × HR)
SLG = 

AB

177
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within the model. So, the SLG model is based on the premise that a home run

has 4 times the impact of a single, but only 2 times the impact of a double. Other

models have done similar things. Total Average uses the same weights for hits as

SLG, and adds walks, hit by pitcher, and stolen bases—each with a weight of 1.

Least Squares Linear Regression (LSLR)
If we generalize the idea of assigning weights to particular play events, and if we

don’t restrict ourselves to integer weights1 (1, 2, 3, etc.), we can use a powerful

statistical technique to optimize the assignment of weights to each play. In

Chapter 6, we used this statistical technique to find the line which minimized

the Root Mean Square Error for a model. Without delving into any detail, we

were in fact using a statistical technique called least squares linear regression.

The term itself captures the technique’s salient features. The word “linear”

refers to the line which is constructed. The phrase “least squares” reflects the

technique’s capability to minimize the sum of the squared errors (which forms

the basis of RMSE). So far we have used this technique just to gauge how well

each model estimates team run production. But the technique is more powerful

than we have let on. As many researchers have discovered, least squares linear

regression can be used to construct as well as measure models. And not just any

models. It constructs the best possible linear model with respect to RMSE.

You may recall that the definition of Total Average is as follows:

Since TB is just total bases obtained from hits, this is really equivalent to the

following:

In reality, all of the play events have weights, so let’s put them in explicitly:

In the previous chapter we found that TA was one of the better models in esti-

mating team run production. It performed well in the sense that over the course

of baseball history, the difference between its estimates and the actual run pro-

[(1 × 1B) + (2 × 2B) + (3 × 3B) + (4 × HR)] + [(1 × BB) + (1 × HBP) + (1 × SB)]
TA = 

AB – H + CS + GIDP

[1B +(2 × 2B) + (3 × 3B) + (4 × HR)] + BB + HBP + SB 
TA = 

AB – H + CS + GIDP

TB + BB + HBP + SB
TA = 

AB – H + CS + GIDP

1 As Bill James did when developing his Tech-1 version of Runs Created.
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duction was better than that of estimates based on standard offensive measures

like Batting Average. Still, the question remains whether it is possible to

improve on TA. One way to do this is to preserve the basic pattern of summing

up weighted numbers of the different events used by TA, but simply change the

weights. For example, maybe TA would provide better estimates if the weight for

HR was increased from 4 to 5 or reduced from 4 to 3.5 or reduced from 4 to 3.8,

or . . . As you can see, the possible choices are infinite. And that’s just one weight.

There are six others that can also be adjusted. Actually, the great strength of

least squares linear regression lies in its ability to guarantee finding the weights

that produce the best estimate for a given pattern such as TA.

So far, we haven’t deviated at all from the Total Average definition. But here

we’ll make a minor change. The TA denominator (AB – H + CS + GIDP) is the

total number of outs, ignoring sacrifice hits and sacrifice flies. Since each team

gets approximately the same number of outs per game over the course of a sea-

son, we can replace this with G, the number of games.2 Having made this change,

we will now call our model LSLR for Least Squares Linear Regression model:

Our goal is to find weights for singles, doubles, triples, etc., that improve on

the TA estimates. So, we have to generalize the weights to arbitrary values to

which we have given the names wevent. For example, currently, wHR has the value

4, but we will find a new value for wHR which minimizes the error in estimates.

In addition, since there is little (if any) difference between walks and hit by

pitcher we will use the same weight wBB for both events. So, for now, until we

find those values, we now have:

Finally, we will divide each event by the number of games:

LSLR =  + W2B ×1B

G

2B

G
+ W3B × 3B

G
+ WHR × HR

G
+ WBB ×

BB + HBP

G
W1B ×

SB

G
WSB ×

+

(W1B × 1B) + (W2B × 2B) + (W3B × 3B) + (WHR × HR) + [WBB × (BB + HBP)] + (WSB × SB)
LSLR = 

G

(1 × 1B) + (2 × 2B) + (3 × 3B) + (4 × HR) + (1 × BB) + (1 × HBP) + (1 × SB)
LSLR = 

G

2 Since theoretically each team has 27 outs in each game, the number of games G is

approximately equal to (AB – H + CS + GIDP)/27. For our purposes, the division by 27 is not

needed; 27 is a scaling factor which is constant for all teams.
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This form works best for least squares linear regression. Notice that we now

have the model expressed simply as a sum of weighted quantities; here the

quantities are frequencies of different events per game.

We will not go into any details about how the best weights are calculated.

Descriptions of regression algorithms can be found in a standard statistics text-

book. The results of the calculation are shown in Table 7-1 with respect to team

data from the 1954–1999 seasons. The weights found for LSLR are very differ-

ent in scale from the TA weights. This is because the regression techniques scale

the weights using the same scale as the values being estimated. So, the LSLR

weights are in terms of runs. For example, the regression estimates that each

triple is worth, on average, 1.18 runs. When comparing the TA and LSLR

weights, the important thing to focus on is the relative value of the weights

within each model.

In the Total Average model, stolen bases, walks, hit by pitcher, and singles all

have the same weights. The LSLR model finds a big difference in the values of

these events. Stolen bases have a weight less than half that of walks and hit by

pitcher, and less than a third that of singles. We may quibble about the exact val-

ues of each of these events, but it seems reasonable that singles should have a

greater value than walks and hit by pitcher, which in turn should have a greater

value than stolen bases. Singles, walks, and hit by pitcher all put the batter on

first base, but a single usually advances all runners, while walks and hit by

pitcher only advance runners who are forced. Moreover, singles can advance run-

ners two bases, while walks and hit by pitcher are limited to a one-base advance

at most. Comparisons between walks or hit by pitcher and stolen bases are less

clear-cut. The argument rests on the relative merits of getting on base as

opposed to advancing while on base. In most situations, getting on base produces

greater run potential than a single runner advancing one base. Besides, walks

and HBPs often advance runners in addition to creating another base runner

with the opportunity to score.

With respect to hits, LSLR places less weight on extra-base hits than TA does.

The LSLR weight for home runs is less than 3 times that of singles (compared to

Weight

TA

LSLR

wSB

1

.16

wBB

1

.36

w1B

1

.52

w2B

2

.67

w3B

3

1.18

4

wHR

1.50

RMSE

.159

.142

TABLE 7-1 Weights in Total Average and in Linear Least Square Regression Model Fit to

1954–1999 Team Runs per Game
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4 times in TA). The LSLR weight for triples is approximately 2 times that of sin-

gles (compared to 3 times in TA), and the LSLR weight for doubles is roughly 1.3

times that of singles (compared to 2 times in TA). It appears that LSLR finds

additional value in getting on base beyond the number of bases attained. This is

similar to the position taken by OPS, which adds On-Base Percentage to

Slugging Percentage, thereby creating an overall effect similar to that found in

the LSLR weights for hits.

On the whole, the LSLR weights make sense. But how well do they estimate

team run production? As expected, the RMSE for LSLR is less than that of TA.

After all, regression techniques are guaranteed to find the weights that mini-

mize RMSE. Remember that TA and LSLR are virtually identical in form;

their only difference is in the values given to the weights for the various

events. What makes linear regression so powerful is that it requires no knowl-

edge at all about baseball. In order to create Total Average, Thomas Boswell

utilized his insight into baseball as an experienced sportswriter to distill what

he thought were the essential elements of run productivity. And his model per-

formed quite well. But linear regression was able to construct an even better

model without the researcher having any understanding at all about baseball.

We could give the team baseball data to a Greek statistician who has never

seen a baseball game, who doesn’t know what a strike, single, or out is, and

that statistician would be able to develop the weights for this model as capa-

bly as the most knowledgeable sabermetrician can.3

The property of the LSLR model producing the lowest possible RMSE is guar-

anteed only for the set of data with which it was derived. This means that the

LSLR model in Table 7-1 is the best linear model only for the 1954 through 1999

seasons. Employing the same graphical technique from Chapter 6, Figure 7-1

plots the lower RMSE (from TA or LSLR) when estimating team runs in each

separate season. In the period 1954–1999, we find that LSLR had a lower RMSE

than TA in 35 of the 46 seasons. So, although LSLR was better overall in that

period (as guaranteed by the least squares fit), there were individual years (as

recently as 1996) where TA had the better fit.

More important is finding out how well LSLR estimates run productivity in

the years before 1954. This is important because it provides a way to validate the

LSLR weights independently—with a set of data different from the data used to

develop the model. As it turns out, LSLR has a lower RMSE than TA in 57 out of

3 Of course, interpreting the results of the regression would be quite challenging for a Greek

statistician (or any statistician) who was not familiar with baseball.
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the 78 seasons from 1876–1953. Its fit compared to that of TA in this earlier

span of seasons is almost as good as it was in 1954–1999 (better in 73 percent vs.

76 percent of the years). Given the more reasonable nature of its weights and the

improved fit over all of baseball history, we must conclude that LSLR is superior

to TA as a model for team run production.

We can make an even stronger statement about LSLR. It is not only better

than Total Average, but it is better than any other possible additive model that

uses the same data in a linear fashion (by summing the weighted frequencies of

plays). In fact, LSLR is superior to the whole family of additive models, including:

• Batting Average and On-Base Percentage, where each on-base

event has the same weight;

• Slugging Percentage, where each hit is weighted by the number of

bases; and

• OPS, where each walk and hit by pitch has a weight near 1, and

each hit has a weight near 1 plus the number of bases attained

(e.g., a double has a weight near 1 + 2 = 3).

We can’t yet say, however, that LSLR as a model provides a better fit than all

weighted models. The Batter’s Run Average (BRA), Scoring Index (DX), and Runs
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Created (RC) models, which are based on multiplying OBP and SLG, do not

belong to the additive class. Let’s look at the basic Runs Created model:

If we expand H and TB into the individual play counts, we have:

This multiplicative form is different from that of LSLR, so it is possible that

regression applied to this version of the RC model could have a better RMSE

than .142 runs per game. As it turns out, for the period from 1954–1999, Runs

Created per Game (RC/G),4 the best model we have examined in this class, has

an RMSE of .146 runs per game. Figure 7-2 plots the RMSE for the model with

the lower RMSE when estimating team runs in each separate season. (LSLR has

the lower RMSE in 27 out of the most recent 46 seasons.) Using only the results

from 1876–1953 as a test of model superiority, LSLR has a lower RMSE in 43 of

the first 78 seasons in baseball history. This is not strong enough proof that

LSLR is superior to RC/G, but the result does indicate that LSLR is at least as

good as RC/G in estimating team run productivity.

These results are both good and bad news. Good in the sense that we have

found the best model, but bad in the sense that we now know that we cannot do

any better than an RMSE of about 0.14 runs per game using an additive type

model. Remember that two-thirds of the observed team runs per game fall

within one RMSE of the values predicted by the LSLR model. So, out of all the

team predictions in the last 46 years of MLB history, LSLR is correct within .14

runs per game for two-thirds of all estimates. Looking back at team runs per

game in the 1998 season, we see that changing a team’s run productivity by .14

runs per game could move the team up or down as many as 6 places in Table 6-4.

This accuracy cannot be topped by any other linear model with this data. While

it is possible that a model of some other form could produce better estimates, the

RC = 
(1B + 2B + 3B + HR + BB) [1B +( 2 × 2B) + (3 × 3B) + (4 × HR)]

AB + BB

RC = 
(H + BB) TB

AB + BB

4 Since RC (as well as the BRA and DX models) can be described as a weighted sum of cross

product terms, it is possible to use linear regression techniques to find better weights for hits,

walks, and stolen bases in those models as well. Using the RC Tech-1 model form, we found that

the 1954–1999 RMSE could be reduced to about .140 runs per game using better weights.

Interestingly, the weights for walks, hit by pitcher, and stolen bases were not far different from

the .26 and .52 values in the RC Tech-1 model. This is an independent verification of the

effectiveness of James’s empirical development of these weights.
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ones we have examined (BRA, DX, and RC) do not provide any improvement. If

we add LSLR to the dotplot in Figure 6-13, we find (not surprisingly) that LSLR

has the lowest average RMSE of all models considered so far. (See Figure 7-3.)

Adding Caught Stealing to the LSLR Model

There is one way that we can improve the LSLR model’s fit: by using addi-

tional information. One piece of information that we have not used is the num-

ber of times runners have been caught stealing (CS). Since we have this data

.10 .15 .20 .25 .30

AVERAGE RMSE (RUNS PER GAME)
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FIGURE 7-3 Average yearly RMSEs for various models (1954–1999).
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for 1954–1999, it is easy to modify the LSLR model to use this information. All

we have to do is add the appropriate CS per game rate multiplied by a new

weight, wCS:

Using regression techniques on data from 1954–1999, we obtain the results

in Table 7-2 for LSLR with CS. (For comparison, we have also included the ear-

lier results for LSLR without CS.) Since being caught stealing has a detrimental

effect on scoring runs, unlike the other weights, CS has a negative weight. And

in absolute terms, it has the smallest of all weights. While we find that including

CS has indeed decreased RMSE, it has done so by a disappointingly small

amount, from .1423 to .1421. Why is this so?

One way to investigate this almost negligible impact is to delve deeper into

the relationships among the play event quantities—that is, how the frequency of

one event type is related to the frequency of another. Figure 7-4 plots caught

stealing per game (CS/G) vs. stolen bases per game (SB/G) for each team in the

years 1954–1999. An increasing trend is evident in the graph. The five teams

with the highest stolen-base rate per game are noted in the graph. Three of these

teams (the 1976 Oakland A’s, the 1977 Pittsburgh Pirates, and the 1992

Milwaukee Brewers) are also among the teams with the highest rate of being

caught stealing. This should not be surprising to most baseball fans. Teams that

are fast try to take advantage of their skills and attempt to steal more bases; so

the frequency of stolen bases is high, but the number of times they get caught

stealing is also high. Slower teams do not steal as often, so their number of suc-

cesses and number of failures are both low.

SB

G
WSB ×

CS

G
+ WCS ×

1B
LSLR = W1B × + W2B ×

G

2B

G
+ W3B × 3B

G
+ WHR × HR

G
+ WBB × BB + HBP

G
+

With CS

Without CS

Weight (Runs)

.19

.16

wSB

.35

.36

wBB

.52

.52

w1B

.66

.67

w2B

1.17

1.18

w3B

1.49

1.50

wHR

.1421

.1423

RMSE

–.11

•

wCS

TABLE 7-2 Least Squares Linear Regression Model (With and Without Caught Stealing)

Fit to 1954–1999 Team Runs per Game
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Such strong correlations make the linear regression weights difficult to

interpret. Sometimes the factors are so closely correlated with each other that it

is impossible to separate the effects of one from the other. Imagine if the corre-

lation between two factors was even stronger, so strong that the points formed a

shape closer to a line. In this case, it would be impossible to determine which fac-

tor caused the effect being estimated. Laboratories that conduct research requir-

ing statistical analysis strive to design their experiments to eliminate dependen-

cies between the factors being analyzed. And they often have the luxury of

controlling their environment in order to preserve the independence of the fac-

tors.5 However, when data is recorded in an uncontrolled environment (such as

a season of baseball games), it is rare that the quantities collected are com-

pletely independent of one another.
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FIGURE 7-4 Team CS/G vs. SB/G (caught stealing per game vs. stolen bases per game)

from 1954–1999.

5 For example, suppose a new drug is being tested for its effectiveness. If we gave the new drug

only to male subjects and a placebo only to female subjects, the two factors, medication and

gender, would be completely dependent. Whatever differences we find in subject response, we

would not be able to tell whether it was from the new drug or the difference in gender. So, to

preserve independence of these factors, we can set up the experiment so that half of each

gender gets the new drug and half the placebo. We have the capability to control the factors so

that the effects of gender and medication can be separated.
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The addition of caught stealing in the LSLR model reduces RMSE very little

because most of its information at a team level is already captured by the num-

ber of stolen bases. When CS is not included in the LSLR model, we see that the

SB weight drops from .19 to .16. Basically, since SB already carries most of the

information about caught stealing, it also assumes the negative effects of caught

stealing once CS is removed from the model. So we see that when two quantities

used in the model are strongly related, the inclusion of one affects the weight of

the other. When both are present—as SB and CS were in our original regression

model—the two actually compete with each other for dominance of the total

weight that they actually share. In conclusion, since the addition of CS provided

little improvement in fit, and since it is closely related to SB, which is already in

the LSLR model, there is no reason to add it to the LSLR model. But we now

understand that the .16 weight for stolen bases encompasses the effects from

unsuccessful steal attempts as well as from successful ones.6

Adding Sacrifice Flies to the LSLR Model

Maybe we’ll have more success with a different piece of information. Let’s try

sacrifice flies (SF). Just as we did for caught stealing, we just add the appropri-

ate SF per game rate multiplied by a new weight wSF:

Table 7-3 shows the weights and RMSE with sacrifice flies included in the

regression model. This time we do see some larger changes. RMSE has dropped

from .142 to .138. The SF weight itself is large, greater than all plays except

triples and home runs. In fact, the weights for all play events except home runs

have decreased with the addition of sacrifice flies to the model.

1B
LSLR = W1B × + W2B ×

G

2B

G
+ W3B × 3B

G
+ WHR × HR

G
+ WBB ×

BB + HBP

G

SB

G
+ WSB × SF

G
+ WSF ×

6 You may have noticed slight changes in the weights of other play frequencies when caught

stealing was added. This is because CS and the other play events are interrelated. We examined

the relationship between stolen bases and caught stealing because it was the most extreme, but

there are other quantities which are correlated with one another. The frequency of home runs in

particular has strong correlations with other play frequencies. This is especially true of doubles

and walks/HBPs. Apparently, teams with more home runs also tend to have more doubles and

also reach first on walks and hit batsmen more frequently. However, none is as strongly related

as CS to SB, so the effects of these other relationships are relatively small.
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The number of sacrifice flies per game is correlated with other play events.

The strongest correlation is between sacrifice flies and doubles. Figure 7-5 plots

sacrifice flies per game vs. doubles per game for teams from 1954–1999. There

does appear to be a slight upward trend. Still, none of the leading teams in dou-

bles is also a leader in sacrifice flies, and similarly none of the leading teams in

sacrifice flies is also a leader in doubles. The cloud of points seems more shape-

less than the pattern seen in CS/G vs. SB/G. So, SF/G is not correlated with any

other play event rate as strongly as CS/G was with SB/G.

While RMSE has dropped much more than it did with CS, the SF weight

seems inordinately high. It is difficult to believe that a play in which the batter
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Without SF

With SF

.16

.14

.52

.49

.67

.61

•

.73

1.18

1.14

1.50

1.50

.36

.33

.1423

.1381

Weight (Runs) wSB wBBw1B w2B w3B wHR RMSEwSF

TABLE 7-3 Least Squares Linear Regression Model (With and Without Sacrifice Flies)

Fit to 1954–1999 Team Runs per Game
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is out could be more valuable than a walk, much less a double. This leads us to

believe that there is some added information carried by SF that is not contained

in the other play events. In regression, the quantities used in the formula may

possess more meaning than the analyst originally surmises, and this is why

some statisticians refer to these quantities as “carriers.” These quantities may

carry more information than their literal name implies. For example, perhaps

the number of SFs embodies some unknown intangible quality of the team

beyond the tendency to hit sacrifice flies.

The definition of sacrifice fly could give us some perspective. Recall that a sac-

rifice fly always drives in a run. This is part of its definition. And it is not sur-

prising that a play which always results in a run would be highly correlated with

run productivity. But is there some hidden meaning or interpretation of SF

data? One question, for example, is whether the SF weight captures the value of

the situation in which the sacrifice fly tends to occur (a runner on third base

with fewer than two outs). Is it possible that this situation, even more than the

play itself, ties SF closely to run production?

So we have arrived at a quandary. It is possible to reduce the error in our esti-

mate, but this improvement is obtained by using a weight for sacrifice flies that

is suspect. Perhaps further enlightenment will come from taking a more detailed

view of individual plays and their influence in scoring runs.

The Lindsey-Palmer Models
Sabermetrics has many notable contributors; Bill James and Pete Palmer are

perhaps the best known. And then there is George Lindsey, a Canadian defense

consultant who has a great love for baseball. Like many of us who pursued

research in this area much later, he was dissatisfied with the state of baseball

statistics in the late 1950s. He saw no reason why the quantitative techniques

he applied in his day-to-day job could not be used to gain a better understanding

of the game. His research papers on baseball, published in the early 1960s, were

among the first to appear in scientific journals.

George Lindsey’s Analysis

Lindsey’s research focused on run production, its effect on winning the game,

and the use of this knowledge to determine the effectiveness of various strate-

gies (bunting and stealing, for example). In an age when baseball data was not

nearly as available as it is today (remember the first modern baseball encyclo-
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pedia was not published until 1969), Lindsey employed the services of his father

to gather play-by-play data for 27,027 situations in 373 games broadcast during

the 1959 and 1960 seasons.

His analysis of this play-by-play data produced probability distributions of

runs scored in all base-out situations. (One man on, no out; one man on, two out;

and so forth through to bases loaded, two out.) Figure 7-6 shows some of his

results for the most extreme situations. We can see that the least variable situ-

ation is represented by the pie chart in the lower right of the figure—two outs

and no runners on base—where the probability of scoring any runs is less than

No Outs, Bases Full
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26.0%

21.0%

35.0%

No Outs, Bases Empty

74.7%

13.6%

6.8%
4.9%
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93.3%

1.8%
4.2%

0.7%
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67.1%

9.2%

10.2%

13.5%

0 Runs

1 Run
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>2 Runs

FIGURE 7-6 Probability of scoring runs in selected extreme situations (Lindsey, 1963).
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7 percent. At the other extreme (no outs and bases loaded), the team at bat has

an 82 percent chance of scoring runs. While this probability is high, it may not

be as high as we expect; scoring runs even in this most advantageous of all situ-

ations is not a sure thing. Still, there is twice as great a chance that a big inning

(three or more runs) will result than that the team will not score at all. We also

compare two other extreme and opposite situations: bases empty with no outs

vs. bases loaded with two outs. In this pairing, we find that each situation has

close to the same probability that no runs will score (75 percent vs. 67 percent).

But bases loaded with two outs is the more volatile situation, primarily because

the chance of scoring three or more runs is almost three times greater than in

the bases empty with no outs situation.

These results are interesting by themselves, but Lindsey was only getting

started. Table 7-4 shows the 4 probability distributions from Figure 7-6 as well

as all of the other 20 base-out situations. Taken together, the two columns “Bases

Occupied” and “Outs” identify all 24 possible base-out situations within an

inning. The “% of Situations” column gives some feeling for how often each situ-

ation occurs. The most common situation is none on and no outs; this is expected,

since every inning starts this way. In general, the situations become increasingly

rare as the number of base runners, and how far they have advanced, increases.

The middle columns present the probabilities of scoring different numbers of

runs in each situation. The column on the far right gives the expected number of

runs scored in each situation. These values were calculated by Lindsey from the

complete set of run-scoring probabilities, which are presented here for only the

most common run totals.7 As expected, bases loaded with no outs has the great-

est expected value (2.22 runs) while no base runners with two outs has the low-

est expected value (.102 runs). Further scrutiny of the table shows that a greater

7 Lindsey calculated this by multiplying the runs scored by the probability that they would be

scored and then summing these products for all possible runs scored from 0 to ∞. Of course,

there is a practical limit to the number of runs scored in an inning, the record being 18, Chicago

White Stockings (NL) (vs. Detroit Wolverines), seventh inning, September 6, 1883 (The Book of

Baseball Records, Seymour Siwoff [ed.], New York: Elias Sports Bureau, 1999). For example, a

team is expected on average to score .102 runs when they have no base runners and two outs.

This value was calculated as follows:

.933 × 0 runs + .042 × 1 run + .018 × 2 runs + .007 × 3 runs =

.042 runs + .036 runs + .021 runs = .099 runs

The reason for this slight underestimation of Lindsey’s value of .102 runs is that we assumed

that the number of runs associated with the probability of scoring 3 or more runs was exactly 3.

Lindsey did not publish the separate probabilities of scoring 3 runs, 4 runs, 5 runs, etc., which

would have allowed us to reproduce his value exactly.
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number of base runners does not always compensate for an increase in outs. Only

1.64 runs are expected to be scored with the bases loaded and one out, while no

outs with runners on first and third or second and third are expected to produce

1.94 and 1.96 runs, respectively. The possibility of a double play ending the

inning with no runs scored is responsible for much of this effect.

PROBABIL ITY OF  

SCORING RUNS

None

1

2

3

1,2

1,3

2,3

Full

Bases

Occupied

1

2

0

1

2

0

2

1

1

0

2

0

1

2

0

1

2

0

1

2

0

1

2

0

Outs

17.3%

13.7%

6.4%

7.6%

7.8%

1.1%

2.4%

2.9%

0.2%

0.7%

1.2%

1.4%

2.6%

3.3%

0.4%

1.1%

1.6%

0.3%

0.7%

0.8%

0.3%

0.8%

1.0%

24.3%

% of 

Situations

.855

.933

.604

.734

.886

.381

.610

.788

.120

.307

.738

.395

.571

.791

.130

.367

.717

.180

.270

.668

.180

.303

.671

.747

0 Runs

.085

.042

.166

.124

.045

.344

.224

.158

.640

.529

.208

.220

.163

.100

.410

.400

.167

.250

.240

.095

.260

.242

.092

.136

1 Run

.039

.018

.127

.092

.048

.129

.104

.038

.110

.104

.030

.131

.119

.061

.180

.105

.045

.260

.280

.170

.210

.172

.102

.068

2 Runs

.021

.007

.103

.050

.021

.146

.062

.016

.130

.060

.024

.254

.147

.048

.280

.128

.071

.310

.210

.067

.350

.283

.135

.049

>2 Runs Runs

.243

.102

.813

.498

.219

1.194

.671

.297

1.390

.980

.355

1.471

.939

.403

1.940

1.115

.532

1.960

1.560

.687

2.220

1.642

.823

.461

SITUATION EXPECTATION

TABLE 7-4 Distribution of Runs Scored in Remainder of Inning (Lindsey, 1963)
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Having set up the data as shown in Table 7-4, Lindsey realized that he

could use it to estimate the value of each hit in terms of runs. The easiest hit

to analyze is the home run, as shown in Table 7-5. At first glance, this table is

None

1

2

3

1,2

1,3

2,3

Full

IN IT IAL  STATE FINAL STATE CHANGE

17.3%

13.7%

6.4%

7.6%

7.8%

1.1%

2.4%

2.9%

0.2%

0.7%

1.2%

1.4%

2.6%

3.3%

0.4%

1.1%

1.6%

0.3%

0.7%

0.8%

0.3%

0.8%

1.0%

24.3%

1

2

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

0

.243

.102

.461

.243

.102

.461

.243

.102

.461

.243

.102

.461

.243

.102

.461

.243

.102

.461

.243

.102

.461

.243

.102

.461

Bases

Occupied

1

2

0

1

2

0

2

1

1

0

2

0

1

2

0

1

2

0

1

2

0

1

2

0

Outs

% of 

Situations

.243

.102

.813

.498

.219

1.194

.671

.297

1.390

.980

.355

1.471

.939

.403

1.940

1.115

.532

1.960

1.560

.687

2.220

1.642

.823

.461

Expected

Runs

None

None

None

None

None

None

None

None

None

None

None

None

None

None

None

None

None

None

None

None

None

None

None

None

Bases

Occupied Outs

Expected

Runs Runs

1

1

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

4

4

4

1

1.243

1.102

2.461

2.243

2.102

2.461

2.243

2.102

2.461

2.243

2.102

3.461

3.243

3.102

3.461

3.243

3.102

3.461

3.243

3.102

4.461

4.243

4.102

1.461

Total

Runs Runs

1

1

1.648

1.745

1.883

1.267

1.572

1.805

1.071

1.263

1.747

1.990

2.304

2.699

1.521

2.128

2.570

1.501

1.683

2.415

2.241

2.601

3.279

1

TABLE 7-5 The Run Values of Home Runs



CHAPTER 7194

somewhat daunting, but it is more easily understood once broken down into

its three major components: (1) the Initial State, (2) the Final State, and (3)

the Change in State.

1. The Initial State. The first four columns are carried over from

Table 7-4. They describe the initial state when the batter comes to

the plate (identified by the bases occupied and the number of

outs), the percentage of time that the state occurs, and the

average number of runs scored in the inning after a plate

appearance under these circumstances.

2. The Final State. The next five columns describe the final state,

the game situation after the batter’s plate appearance. Since we

are analyzing the effect of a home run, the outs do not change

from the initial state, and the bases are empty in all cases. The

third final state column presents the expected number of runs

from the final base-out state. These values were found by looking

up Expected Runs in Table 7-4 for the base-out situation that

exists in the final state. Since bases are always empty after a

home run, this has to be one of three values: .461, .243, or .102

runs, depending on the number of outs—0, 1, or 2, respectively.

The fourth column is the number of runners who scored on this

play. For a home run, this is just the number of base runners in

the initial state plus 1.

So, we have two run components: the number of runs that scored

on the play and the expected number that may still score in the

future, based on the number of outs and the runners left on base

after the play. The total value of the final state in terms of runs

(displayed in the fifth final state column) is the sum of these two

components.

3. The Change in State. The third part of Table 7-5 is the change

between the two states. Since we are performing this analysis in

terms of runs, we interpret this change to mean the difference in

run value between the initial state and the final state. The run

value of the initial state is the expected number of runs given in

the fourth initial state column. The run value of the final state is

the total number of runs given in the fifth final state column.

The change in runs is calculated as follows:
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Change = total runs (final state) –

expected runs (initial state)

This change is the run value of the play (HR in this case) in the

particular situation defined by the initial state.

Let’s see how we can apply Tables 7-4 and 7-5 to one of the greatest moments

in baseball history (the #24 all-time moment as picked by The Sporting News in

1999). In 1986, the California Angels were one out away from their first trip to

the World Series. They led the Boston Red Sox 5–4 in the top of the ninth inning,

and Dave Henderson was Boston’s last chance. The Bosox had a runner on first

and two outs. According to Table 7-4, the Red Sox had less than a 5-percent chance

of tying the game and about a 7-percent chance of going ahead. Overall, the Red

Sox could only be expected to score an average of .219 runs in this situation.

However, Henderson connected for a two-run homer and gave the Red Sox the

lead. The final base-out state was two outs with no runners on base. Since the

Red Sox still had another out, they had a chance to score more runs. According

to Lindsey’s data, they could only expect to score .102 more runs on average in

the remainder of the inning. Since they already scored two runs from the home

run, the expected run value of this final state is 2 + .102 = 2.102. Subtracting the

expected run value of the initial state from that of the final state, we obtain:

Change = total runs (final state) – expected runs (initial state)

= 2.102 – .219 = 1.883

To put it another way, before Henderson’s HR, the Red Sox had 4 runs with

the expectation of scoring .219 more runs. After the HR, the Red Sox had 6 runs

with the expectation of scoring .102 more runs. So, the value of the HR in terms

of runs is 6.102 – 4.219 = 1.883 runs.8 Although Henderson’s HR produced two

RBIs, its run value was actually less than 2. This is because the initial state with

a runner on first base had a run value (.219 runs) greater than the final state

(.102 runs), in which the bases were empty after the HR. In fact, looking down

the Change in Runs column of Table 7-5, we see that this is true for all HRs.

According to Lindsey’s model, the RBI statistic overstates the true value of any

home run except one hit with the bases empty. In essence, a home run converts all

potential runs into actual runs, leaving the bases depleted of all run potential.

Another interesting observation in scanning down the Change in Runs col-

8 The Red Sox did not score more runs that inning, but they did go on to win the game and the

AL Championship Series only to be thwarted themselves by ill-luck at the hands of the New

York Mets (or the hands of Bill Buckner) in the 1986 World Series.
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umn of Table 7-5 is that the value of HRs increases with the number of outs. For

example, Henderson’s two-out HR with a runner on first base had greater value

(1.883 runs) than if he had hit it with one out (1.745 runs) or no outs (1.648

runs). This makes sense. As outs increase, the opportunities for putting runners

on-base and advancing them to score decreases. Lindsey’s model provides quan-

titative support for our intuitive feel for the game.

To proceed with the analysis, we assume that HR frequency is independent of

the situation; that is, a home run is equally likely to occur in any base-out situ-

ation. This is a big assumption, but one that is standard in most baseball mod-

els. Under this assumption, we can construct a distribution of HR values based

on the initial state and Change in Runs column of Table 7-5.

We have done just this in Table 7-6, where the rows representing the initial

states are sorted by run value (“Change in Runs”). Each row also includes the

number of occurrences observed for each kind of situation (“# of Situations”) fol-

lowed by its percentage (“% of Situations”) as compared to the total number of

situations observed. We see that the greatest value of a home run is 3.279 runs

(bases loaded, two outs), less than the 4 RBIs credited to a grand slam. This max-

imum value is found in only 283/27,027 = 1 percent of all HRs. The smallest

value is 1 run (bases empty with 0, 1, or 2 outs). This value is also the mode of

the distribution (the most common value). It occurs in 14,935 out of the 27,027

situations used to create Table 7-5; so, 55 percent (a majority) of HRs have a

value of 1 run.

Note that a home run with no outs and a runner on third does not have much

greater value than one with the bases empty. This makes sense, since it is

expected that this runner should be able to score anyway, with 3 outs available

to the offense; the HR contributes a minimal amount to scoring this runner. In

fact, the lower HR values are dominated by situations with 0 or 1 out and run-

ners in scoring position. The higher HR values are dominated by situations with

multiple runners and two outs; these are high-risk situations where there is

much to gain but little opportunity to do so.

The “Cum % of Situations” column in Table 7-6 tracks the percent of situa-

tions with HR values less than or equal to that of the current row. A visual per-

spective of the HR value distribution can be obtained by plotting this column as

the cumulative probability of HR value. Such a plot (Figure 7-7) shows us how

the probability grows as larger and larger HR values are accumulated, starting

from 0 runs. The line in the plot indicates the probability that a HR has a value

less than or equal to a given number of runs (indicated on the x-axis). We see

that the probability is 0 until 1 run is reached, since it is impossible for any
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home run to be worth less than 1 run. At 1 run, the cumulative distribution

jumps up to 55 percent; as mentioned earlier, there is a 55-percent chance that a

home run is worth exactly 1 run. The plot keeps increasing as HRs with greater

and greater value are included. It does not rise steeply at first. There is still only

about a 57-percent chance for a HR to have value less than 1.5 runs, not much of

an increase over the 55 percent of HRs with value less than or equal to 1 run. So,

there is only a 57 percent – 55 percent = 2-percent chance that a HR is worth

between 1 and 1.5 runs. Between 1.5 and 2 runs, the plot rises quickly; there is

about an 88-percent chance that a HR has a value less than or equal to 2 runs.This

Bases

Occupied

Outs # of 

Situations

% of 

Situations

Cum. % of 

Situations

Change

in Runs

None 0 6561 24.3% 24% 1

None 1 4664 17.3% 42% 1

None 2 3710 13.7% 55% 1

3 67 0.2% 56% 1.071

3 202 0.7% 56% 1.263

2 294 1.1% 57% 1.267

2, 3 0 73 0.3% 58% 1.501

1, 3 0 119 0.4% 58% 1.521

2 657 2.4% 60% 1.572

1 1728 6.4% 67% 1.648

2, 3 1 176 0.7% 68% 1.683

1 2063 7.6% 75% 1.745

3 327 1.2% 76% 1.747

2 779 2.9% 79% 1.805

1 2119 7.8% 87% 1.883

1, 2 0 367 1.4% 88% 1.990

1, 3 1 305 1.1% 90% 2.128

Full 0 92 0.3% 90% 2.241

1, 2 1 700 2.6% 92% 2.304

2, 3 2 211 0.8% 93% 2.415

1, 3 2 419 1.6% 95% 2.570

Full 1 215 0.8% 96% 2.601

1, 2 2 896 3.3% 99% 2.699

Full 2 283 1.0% 100% 3.279

0

1

0

1

0

1

2

2

2

TABLE 7-6 Distribution of Run Values for Home Runs
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shows us that there is a good chance (88 percent – 57 percent = 31 percent) that a

HR is worth between 1.5 and 2 runs. From here, the graph rises steadily until it

reaches 100 percent at the maximum HR value of 3.279; since this is the maxi-

mum, 100 percent of HR values are less than or equal to it and 12 percent (100 per-

cent – 88 percent) are worth between 2 and 3.3 runs.

Using Table 7-6 (or Table 7-5), we can calculate the average value of a home

run. This is done by simply multiplying its value in each situation by the per-

centage of times the situation occurs, then summing over all situations:

Average HR Value = (.243 × 1) + (.173 × 1) + (.137 × 1) + (.002 × 1.071) + . . .

+ (.008 × 2.601) + (.033 × 2.699) + (.01 × 3.279) = 1.42 runs

What does this value represent? Certainly we have seen that in Lindsey’s

model, some HRs are worth less than 1.42 runs while others are worth more. But

on average, for a large sample of situations, Lindsey found that in 1959–1960, a

good estimate of the value of a home run was 1.42 runs.

The next question, naturally, is what about the average run values for other

plays? Lindsey performed calculations following the same procedure for singles,

doubles, and triples. For now, we will just summarize our own numbers, based on

Lindsey’s calculations, in Table 7-7.9 On average, the difference between the most

and least valuable hits is less than one run. More intriguing are the run value
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FIGURE 7-7 Cumulative distribution of run values for home runs.
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ratios which indicate that a HR is on average about three times as productive as

a single. For the sake of comparison, the rightmost column presents the relative

values of these hits in terms of bases. We see that a base interpretation of value

appears to overestimate the run value of extra-base hits. Besides the home run,

a triple is worth less than three times the runs of a single, and a double is worth

less than twice the runs of a single.

Lindsey’s analysis provides some insight into why the Slugging Percentage

(SLG) provides a relatively poor estimate of team run production. As discussed

in the previous chapter, SLG is just total bases divided by at-bats, where total

bases uses the 1:2:3:4 ratios for singles, doubles, triples, and home runs. Perhaps

a modified version of SLG which uses the average run values for hits to deter-

mine average runs per at bat (instead of SLG’s average bases per at bat) would

be an improvement.

Lindsey calculated run productivity using the following formula, where each

hit is weighted by its average run value from Table 7-7:

When Lindsey’s estimate of average runs per at-bat is used to estimate team runs

per game in the years 1876–1999, its RMSE is lower than SLG’s RMSE in 108 out

of the 124 years. So, simply modifying the 1:2:3:4 weights to .454:.818:1.066:1.419

provides a significant improvement in estimating team runs.

Average runs per at bat =
(.454 × 1B) + (.818 × 2B) + (1.066 × 3B) + (1.419 × HR)

AB

Average Run Value

Ratio of Run Value to 

Run Value of Single Base Value 

Single 0.454 Runs 1 1 Base

Double 0.818 Runs 1.80 2 Bases

Triple 1.066 Runs 2.35 3 Bases

Home Run 1.419 Runs 3.13 4 Bases

TABLE 7-7 Average Values of Hits with Respect to Runs and Bases

9 Although we used his procedures for calculation, the results in Table 7-7 are slightly different

from Lindsey’s 1963 run values: single (.41), double (.82), triple (1.06), and home run (1.42).
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Palmer Enters the Picture

Pete Palmer has been a consultant for the official statisticians of the American

League, chairman of SABR’s statistical analysis committee, and an editor of

baseball encyclopedias including the current standard, Total Baseball. From the

mid-1960s into the early 1980s, Palmer conducted his own research on evaluat-

ing offensive performance building upon the foundation established by Lindsey.

Palmer moved this work forward on two fronts:

1. He expanded the model beyond hits to include walks, hit by

pitcher, steals, caught stealing, and outs. For each of these plays,

he calculated the average number of runs added or (in the case of

caught stealing and outs, subtracted) by the play.

2. He developed a computer simulation to model run production

through baseball history. The simulation allowed him to replace

Lindsey’s data in Table 7-4 (taken from a relatively small set of

games from only two years) with separate tables of run production

in all base-out initial states for different periods of time.

Surprisingly, as shown in Figure 7-8, Palmer found little

variability in the average run values of different plays across the

decades of baseball in the twentieth century. (The one exception is

outs, which we will address shortly.)

Based on these results, Palmer settled on the following estimate of runs

scored, which he called the Linear Weights formula:

LWTS = (.46 × 1B) + (.80 × 2B) + (1.02 × 3B) + (1.40 × HR) +

[.33 × (BB + HBP)] + (.30 × SB) + (–.60 × CS) + [–.25 × (AB – H)]

A comparison of the Linear Weights model with Lindsey’s model shows very

little difference in the average runs for the various hits. Because neither a walk

nor a hit by pitcher has the advancement capability of a hit, they have less run

value than a single.

One major feature of Palmer’s model that is not part of Lindsey’s is Palmer’s

inclusion of outs from plate appearances (as estimated by AB – H) and outs from

being caught stealing. These plays, which have negative run values, make it pos-

sible for LWTS to have a value below zero if not enough positive plays (hits and

walks) are accumulated to offset the expected runs lost from outs. So, LWTS does

not estimate the total number of runs produced. Instead, it estimates the num-

ber of runs produced above the average expected for the number of play events.

For example, let’s consider the offensive records of two New York shortstops
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in 1999. The Mets’ Rey Ordonez was defensively brilliant, but offensively chal-

lenged. Derek Jeter of the Yankees, though maybe not quite as good defensively,

was a thoroughly superior offensive player. Table 7-8 presents their offensive

statistics for 1999 as well as their Linear Weights ratings. According to Palmer’s

model, Jeter contributed many more runs (almost 74 more) than expected by an

average player in a season while Ordonez contributed about 8 less than the

average player.

As we saw in Figure 7-8, the run value of an out has fluctuated throughout

baseball history. Palmer uses the run value of an out to adjust Linear Weights rat-

ings for the average productivity of players. So, the run value of an out is larger in

years when run production is high (–.30 from 1921–1940) and smaller in periods

–0.4

–0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Caught
Stealing

Out Stolen
Base

Walk/
HBP

Single Double Triple Home
Run

1901–1920

1921–1940

1941–1960

1961–1977

1. 2. 3. 4.

–0.6

1.

2.

3.

4.

FIGURE 7-8 Average run values for different plays in different periods of baseball history

(Palmer Simulation).

Player CS

Derek Jeter

SB

19

Rey Ordonez

AB

627

520

H

219

134

1B

149

107

2B

37

24

3B

9

2

HR

24

1

BB

91

49

HBP

12

1

LWTS

73.81

–8.14

8

48

TABLE 7-8 Run Production by Derek Jeter and Rey Ordonez in 1999 as Estimated 

by LWTS
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of low run production (–.24 from 1901–1920). This makes sense, since each out

decreases the opportunity to score more runs, and thus is more damaging in eras

when you expect to score a lot than in eras when runs are harder to come by.

Whether or not you believe in the juiced ball, it is indisputable that 1999 was

a year with high run production throughout the major leagues. So, the run value

of an out was closer to –.30 runs than to Palmer’s standard value of –.25. Using

–.30 instead of –.25, then, we obtain LWTS ratings of –27.44 and +53.41 runs for

Ordonez and Jeter respectively. So, after adjusting for run production during the

year, we find that Jeter was actually closer to the average 1999 player, while

Ordonez was even farther from average than originally thought.10 In essence,

the Linear Weights formula as given above with a –.25 run value for outs esti-

mates runs above average, where “average” represents an historical standard,

not average with respect to a particular year such as 1999.

Palmer’s modifications to Lindsey’s ideas do improve estimates of team runs

scored. LWTS, like Runs Created, provides a cumulative (actually, net) estimate

of runs produced. So, as with RC, we must divide it by games before correlating

it with team run production data. We found that the RMSE for LWTS/G is less

than that of Lindsey’s model in 45 of the last 46 years of baseball history. Since

the weights for hits are only slightly different, the improvement in fit is due

mainly to the inclusion of walks, hit by pitcher, and stolen bases in the model.

Comparing the LSLR and Lindsey-Palmer Models
Practically speaking, the regression model LSLR and the Lindsey-Palmer model

are basically the same. Both models assign average run values to each play. The

difference lies in the techniques used to find those values or weights. The LSLR

model weights were found using the standard statistical techniques of linear

regression based on team data from 1954–1999. Lindsey and Palmer found their

weights empirically—by analyzing the changes in large numbers of actual base-

ball game situations, and the results produced by each play type.

Despite the different paths taken by each model, LSLR and the Lindsey-

Palmer models arrive at very similar weights. Using the Palmer version of

LWTS, Table 7-9 compares the models. The weights for singles and walks are

10 Using the formula with a –.3 run value for outs, Chipper Jones of the Atlanta Braves had the

highest 1999 LWTS rating of 72.20 runs above average while Mike Caruso of the Chicago

White Sox had the lowest LWTS rating –47.73 runs below average. Of Caruso’s 132 hits in 529

at bats, only 17 were for extra bases. Ordonez had the sixth lowest LWTS rating in 1999, while

Jeter had the seventh highest.
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close matches. The LSLR model gives less weight to doubles and greater weight

to triples and home runs. The difference in the doubles weight is especially large.

There are several possible reasons for this. One is that the base-running

assumptions used to generate the changes in base situations for the LWTS

model are too liberal. However, a calculation of the Lindsey weight, assuming

just a 2-base advance, only reduces the double weight to .76 runs. Another pos-

sibility is that the LSLR weight for home runs has been increased at the expense

of the double weight because of the correlation between HRs and doubles. A

third possibility is that the weights reflect additional information carried by the

frequencies of plays. The LWTS weights reflect only the value of the play itself,

since they are constructed by calculating the change in run production produced

by each play. The linear regression technique used to develop the LSLR weights

only discovers overall tendencies in run production as the number of play events

changes. This may be good or bad. It’s bad in the sense that we are not sure

exactly what each measure represents within the LSLR model. It’s good in the

sense that the LSLR model may capture aspects of baseball within the data that

are not measured explicitly.

This is related to the question about sacrifice flies that initiated our investi-

gation of the Lindsey-Palmer approach. What is the true value of a sacrifice fly

in terms of runs? Notice that we do not have a LWTS weight for sacrifice flies in

Table 7-9. However, we can use Lindsey’s data in Table 7-4 to calculate one.

We do this in the same way that we evaluated the value of a home run in

Table 7-5. In fact, it is easier. A home run can occur in all 24 base-out situations,

but a sacrifice fly can only occur in 8 base-out situations, those with less than

two outs and a runner on third base.11 A sacrifice fly guarantees that a run will

score and at least one out will occur. We have assumed that only one out occurs

Weight (Runs)

LWTS

LSLR with SF

wSB

.30

.14

w1B

.46

.49

w2B

.80

.61

wSF

.73

w3B

1.02

1.14

wHR

1.40

1.50

wBB

.33

.33

•

TABLE 7-9 Model Weights for LSLR (with Sacrifice Flies) and LWTS

11 A runner on third base is not required for a sacrifice fly. A batter can be awarded a sacrifice fly

for scoring a runner from any base. For example, on April 3, 2001, the Phillies’ Brian L. Hunter

scored the game-winning run from second base on a long fly out by Doug Glanville, who was

awarded a sacrifice fly. However, such sacrifice flies with no runner on third base are so rare

that our calculation is unaffected by ignoring them.
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and only the runner on third advances. So, our calculation, shown in Table 7-10,

is much less complex than the HR calculation.

Looking at the “Change in Runs” column, we see that a sacrifice fly produces

an increase in expected runs only with one out and a runner on third, or runners

on first and third. In the worst case, a sacrifice fly with no outs and runners on

first and third loses almost half a run on average. Weighting each change in runs

by the relative frequency of the situation, we find that the average value of a sac-

rifice fly in runs is about –.12. This is far different from the result of .73 runs

found by the regression techniques for the LSLR model. We conclude that the

LSLR weight for sacrifice flies probably captures the high expected runs value

of the state in which it occurs. Note that the expected runs for the initial state in

Table 7-10 range from a minimum of .98 runs to a maximum of 2.22. This is high

relative to the expected runs for all 24 initial states.

It appears, then, that we have found a case where linear regression may not

provide a useful weight for evaluating player performance. Even though the

inclusion of SF with a .73 run weight reduces the RMSE, it is not advisable to

include the weight in the LSLR model. The lesson here is that while reducing

error (RMSE) is the major objective, it should not be done at the expense of cre-

ating a model that does not have some common sense built into it as well. The

results of regression analysis should not be accepted without questioning model

3

2, 3

1, 3

Full

IN IT IAL  STATE FINAL STATE CHANGE

2

1

2

1

2

1

2

1

.102

.498

.219

.671

.297

.939

.403

.243

Bases

Occupied

1

0

1

0

1

0

1

0

Outs

202

119

305

73

176

92

215

67

# of 

Situations

0.980

1.940

1.115

1.960

1.560

2.220

1.642

1.39

Expected

Runs

None

1

1

2

2

1, 2

1, 2

None

Bases

Occupied Outs

Expected

Runs Runs

1

1

1

1

1

1

1

1

1.102

1.498

1.219

1.671

1.297

1.939

1.403

1.243

Total

Runs Runs

.122

–.442

.104

–.289

–.263

–.281

–.239

–.147

TABLE 7-10 The Run Values of a Sacrifice Fly
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assumptions, the data used for the analysis, and ultimately the reasonableness

of the answers.

One characteristic that both techniques have in common is their reliance on

data for the development of the model. Regression techniques require a set of

data describing the value to be estimated and the quantities used in the estima-

tion. In our case with LSLR, the data set contained runs scored and the number

of various play events per team per season from 1954–1999. For Lindsey, the

data set was detailed play-by-play results from games in the 1959–1960 seasons.

For Palmer, the data sets were the frequencies of various plays in each year,

which were used to drive his computer simulation.

Is it possible to break our dependence on data to develop a run production

model? In some ways, the intuitive models examined in Chapter 6 did this. None

of those models was developed using data. Each was inspired by a theory about

what contributed to run production. However, here we have something different

in mind. We would like to use principles of probability to build a model based on

how the game is played.





THE CURVATURE of Baseball

One feature that makes baseball lend itself to statistical analysis is the discrete

nature of the game. Every inning unfolds play by well-defined play, and at the

conclusion of each play, the inning must be in 1 of 25 well-defined states. We can

break down these states into 8 distinct base situations:

None on.

Runner on first.

Runners on first and second.

Runners on first and third.

Runners on first, second, and third (bases loaded).

Runner on second.

Runners on second and third.

Runner on third.

We can also break down the states into 3 distinct out situations (0, 1, and 2 outs).

We combine these 3 out and 8 on-base possibilities to get 24 states (3 × 8 = 24),

then add 1 for the final state of the inning (3 outs), giving us a total of 25. Every

situation before and after a play in baseball must fit into one, and only one, of

these 25 unambiguous and clearly distinguished states.

Compare this with other sports. In football, we could consider one team’s pos-

session as equivalent to a team’s inning at bat. How many possible states are

there at the end of each play in a single possession? With some simplification,

there are 100 different positions on the field, one for each yard mark. Then there

207
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are 4 different downs. And then there are 10 different yards to go (for first

down). If we multiply these values, we obtain a large number

The number 4000 may seem large, but it is a lower bound—that is, it’s extremely

understated. The number of yards to go for a first down may be greater than 10,

and both this value and the field position value (the line of scrimmage) are actu-

ally continuous. In other words, the ball is rarely placed exactly at a yardline

mark, so neither of these values has to be an integer. Any fractional value for

yards to go, or any line of scrimmage between yard markers, would also have to

be considered, thus making the number of possible states virtually infinite.

So there are at least 160 (or 4000/25) possible states in football for every com-

parable base-out state in baseball. And football is relatively discrete compared to

other major sports, like basketball, hockey, and soccer, which have a continuous

flow in both time and space. The number of possible situations these other sports

present is literally infinite, and in the course of each game or match, there are

very few moments where the action is paused in an easily defined and numeri-

cally described state.

The DLSI Simulation Model
Several researchers besides Lindsey and Palmer have taken advantage of base-

ball’s relatively simple, static, and discrete structure to create probabilistic mod-

els of run production. Among the earliest was the Scoring Index model developed

by D. A. D’Esopo and B. Lefkowitz in a 1960 SRI internal report. Their work was

not available publicly until it was published in the groundbreaking collection of

papers Optimal Strategies in Sports in 1977.1 In the interim, essentially the

same model was developed independently by Thomas M. Cover and Carroll W.

Keilers, who used it to create a batting statistic called the Offensive Earned Run

Average (OERA).

At its heart, the D’Esopo-Lefkowitz Scoring Index (DLSI) model starts with

the basic premise of the BRA, DX, and RC/G models: scoring runs is the prod-

uct of two related types of events, getting on base and advancing runners.

Field positions × downs × yards to go = possible states 

100 × 4 × 10 = 4000

1 This is an excellent work, now out of print but probably still obtainable in many college

libraries. The techniques presented by many papers in the collection are as relevant today as

when they were published more than two decades ago.
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However, their model puts a different spin on this premise, separating run 

production into two processes:

1. Getting on base: An event that describes getting on base a

particular number of times in an inning.

2. Advancing around the bases: An event that describes scoring a

given number of runs when a particular number of players get on

base in an inning.

For ease of computation and explanation, we’ll make some basic assumptions

here about the types of events that occur in a plate appearance and how runners

advance on the bases. The variant of the DLSI model we use assumes that the

only possible events in a plate appearance are BB/HBP, 1B, 2B, 3B, HR, and out.

All outs are effectively strikeouts (i.e., single outs leaving runners in place).

A single scores runners on second and third bases, but only advances a runner

on first to second base. A double advances all runners two bases. Although you

might quibble with this choice of rules, we will see that this model gives results

pretty similar to real baseball.

The Probability of Scoring Two Runs

Using the DLSI model, suppose that we are interested in the following event:

{exactly 2 runs score in an inning}

We need to think of all of the possible ways for runners to reach base so that 2

runs can be scored. We will explain shortly that 2 runs can score when 2, 3, 4, or 5

runners reach base in the inning. So if for now we take that as a given, we can

break down the event {exactly 2 runs score in an inning} into the following events:

{2 players reach base in an inning, and exactly 2 runs score}

or

{3 players reach base in an inning, and exactly 2 runs score}

or

{4 players reach base in an inning, and exactly 2 runs score}

or

{5 players reach base in an inning, and exactly 2 runs score}

The tree diagram in Figure 8-1 illustrates the two steps of this process: (1) play-

ers reach base, and (2) players score 2 runs.

To compute the probability of scoring 2 runs in an inning, we first assign prob-

abilities to the branches of the tree diagram. At the first set of branches, we com-
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pute the probabilities that 2 players reach base, 3 reach base, 4 reach base, and 5

reach base. We will call these probabilities Pr(2 reach base), Pr(3 reach base), and

so forth. Then, at the second set of branches, we find the probability of scoring 2

runs if 2 players reach base, which we will denote Pr(2 runs | 2 on base), the prob-

ability of scoring 2 runs if 3 reach base Pr(2 runs | 3 on base), and so forth. We

place these probabilities on the branches of the tree diagram in Figure 8-2.

After all of the probabilities of the branches have been assigned, we find the

probability of scoring 2 runs by multiplying probabilities along each branch of

the tree, then summing the products:

Let’s back up and explain some of our logic. In order to score 2 runs, at least

2 players have to reach base. After all, if no players get to first base, how can any

runs score? And if only 1 player reaches first base, the player may or may not

score, but at most 1 run will score. In general, if we want to find the probability

of scoring R runs (where R = 2 in this setting), we only have to look at innings in

which at least R players get on base.

Next, we see that to find the probability of 2 runs scoring we don’t have to

look at innings where 6 or more batters get on base. Why is this? Let’s look at the

case where 6 players reach first base on walks. Assuming that no players are

caught stealing, hit into double plays, or are thrown out at a base, 3 runs will

score in this inning; the first 3 walks will load the bases and each of the next 3

Pr(2 runs) = Pr(2 reach base) × Pr(2 runs | 2 reach base) +

Pr(3 reach base) × Pr(2 runs | 3 reach base) +

Pr(4 reach base) × Pr(2 runs | 4 reach base) +

Pr(5 reach base) × Pr(2 runs | 5 reach base)

2 REACH

   BASE

3 REACH

   BASE

4 REACH

   BASE

5 REACH

   BASE

2 RUNS

   SCORE

2 RUNS

   SCORE

2 RUNS

   SCORE

2 RUNS

   SCORE

FIGURE 8-1 Tree diagram for scoring exactly 2 runs in an inning.
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will force in a run. Because of our assumptions about outs, the order in which

outs are interspersed with the walks does not matter—3 runs will still score in

this inning. And this is the most conservative estimate! The walk (or hit by

pitcher) is the least productive of on-base events. If we substitute any type of hit

(single, double, triple, or home run) for one of the walks, more than 3 runs are

liable to score. So, we can say that if 6 players reach base in an inning, at least 3

runs will score. Consequently, if we wish to compute the probability of scoring

exactly 2 runs, we don’t have to consider any innings in which 6 or more players

get on base.2 In general, if we want to find the probability of scoring R runs, we

can ignore innings in which at least R + 4 players get on base.

This is why in finding the probability of scoring a specific number of runs R

in an inning, we have only to look at four cases: innings in which R, R + 1, R + 2,

and R + 3 players get on base.

The Probability of Scoring No Runs

So what is the probability of scoring R runs in each of these cases? Let’s exam-

ine the simplest case, where R = 0 (no runs score in the inning).

We first focus on computing probabilities at the second set of branches of the tree;

that is, the probability of scoring 0 runs given different number of players on base.The

first value we need is the probability of scoring 0 runs when 0 players get on base. An

easy question: the probability is 1 because if no players reach base, no runs can score:

2 REACH BASE

3 REACH BASE

4 REACH BASE

5 REACH BASE

2 RUNS SCORE

2 RUNS SCORE

2 RUNS SCORE

2 RUNS SCORE

Pr(2 Reach Base)

Pr(3 Reach Base)

Pr(4 Reach Base)
Pr(5 Reach Base)

Pr(2 RUNS | 2 ON BASE)

Pr(2 RUNS | 3 ON BASE)

Pr(2 RUNS | 4 ON BASE)

Pr(2 RUNS | 5 ON BASE)

FIGURE 8-2 Tree diagram for scoring exactly 2 runs in an inning

(expanded with probabilities of scoring for different numbers of players

reaching base).

2 Note that the model does not consider the case where a batter reaches first base on a fielder’s

choice as an on-base event.
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How about the probability of scoring 0 runs when 1 player gets on base?

Assuming no stolen bases (a basic assumption of the model), there is only one

way that a run can be scored with one on-base event; that is, if the event is a

home run. So, the probability of no runs scored (when 1 player gets on base)

equals 1 minus the fraction of on-base events that are home runs. The fraction of

on-base events that are home runs, denoted by f4, is defined as follows:

So,

While we are at it, let’s define proportions for all on-base events that are

walks / hits by pitcher, singles, doubles, and triples:3

Only two more cases to go, but they are the most difficult ones. Let’s consider

the probability of scoring 0 runs when 2 players get on base:

• When the first player to get on base gets a walk or hit by pitcher,

the following sequences do not score a run: BB–BB, BB–1B,

BB–2B.4 The probability of these sequences is f0 (f0 + f1 + f2).

• Similarly, when the first player to get on base gets a single, the

following sequences do not score a run: 1B–BB, 1B–1B, 1B–2B.

The probability of these sequences is f1 (f0 + f1 + f2).

3B
Fraction of triples f3 = 

BB + HBP + 1B + 2B + 3B + HR

2B
Fraction of doubles f2 = 

BB + HBP + 1B + 2B + 3B + HR

1B
Fraction of singles f1 = 

BB + HBP + 1B + 2B + 3B + HR

BB + HBP
Fraction of walks / hit by pitcher f0 = 

BB + HBP + 1B + 2B + 3B + HR

Pr(0 runs | 1 reaches base) = 1 – f4

HR
f4 = 

BB + HBP + 1B + 2B + 3B + HR

Pr(0 runs | 0 reach base) = 1  

3 We use the notation fn where n indicates the number of bases for the hit involved and n = 0 for

a walk or hit by pitcher
4 To simplify, we will use BB to symbolize a walk or hit by pitcher. Both have the same effect.
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• When the first player to get on base gets a double or triple, only

two sequences do not score a run: 2B–BB, 3B–BB. The probability

of these sequences is (f2 + f3) f0.

To summarize, if 2 players get on base, the probability of not scoring any runs is:

We are down to the last case, the probability of scoring no runs when 3 play-

ers get on base. We can calculate this value by enumerating all the sequences as

we did above. It turns out when you do this (consider this an at-home exercise),

the non-scoring sequences are the ones above for 2 players on base with a walk

or HBP appended at the end (e.g., BB–2B becomes BB–2B–BB). So, the proba-

bility of scoring 0 runs if three players get on base is just Pr(0 runs | 2 reach

base) times the fraction of on-base events that are walks / HBP:

The probability of scoring no runs (similar to the tree diagram for scoring 2

runs in Figure 8-2) is the weighted sum of these probabilities: Pr(0 runs | 0

reach base), Pr(0 runs | 1 reaches base), Pr(0 runs | 2 reach base), and Pr(0 runs

| 3 reach base). The weights are just the probabilities of putting the respective

players on base: Pr(0 reach base), Pr(1 reaches base), Pr(2 reach base), and Pr(3

reach base). So,

In order to complete this calculation, all we need is a formula for the proba-

bility that a given number of players get on base. (These will be the probabilities

at the first set of branches in our tree diagram.) Fortunately, this is a well-under-

stood statistical process and can be calculated quite simply as follows:5

Pr(0 runs) = Pr(0 reach base) × Pr(0 runs | 0 reach base) +

Pr(1 reaches base) × Pr(0 runs | 1 reaches base) +

Pr(2 reach base) × Pr(0 runs | 2 reach base) +

Pr(3 reach base) × Pr(0 runs | 3 reach base)

Pr(0 runs | 3 reach base) = Pr(0 runs | 2 reach base) × f0

Pr(0 runs | 2 reach base) =  f0 ( f0 + f1 + f2) + f1 ( f0 + f1 + f2) + ( f2 + f3) f0

= ( f0 + f1) ( f1 + f2) + ( 1 – f4) f0

5 Many will recognize this as a negative binomial distribution for the number of players who get

on base before 3 outs occur. The simplified model assumes that all outs occur from batters, not

runners. A batter is either out or safe on base.
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where B is the number of players who get on base and p is the probability that a

batter gets on base in a plate appearance. So, the probabilities we need are

Clearly, a reasonable estimate for p to use in calculations is our old friend the

team on-base percentage.6 Based on our probability formula for B, we can esti-

mate the average number of players to reach base in an inning (B) as follows:7

Through some clever insight into the sequence of hits and walks that produce

runs, D’Esopo and Lefkowitz found that the average number of runners left on

base in their model is

Pr(0 runs | 2 reach base) × [1 – Pr(0 reach base) – Pr(1 reaches base)] + 

Pr(0 runs | 3 reach base) ×[1 – Pr(0 reach base) – 

L = Pr(0 runs | 1 reaches base) × [1 – Pr(0 reach base)] + 

Pr(1 reaches base) – Pr(2 reach base)]

Average reaching base in an inning: B = 
3p

1 – p

Pr(0 reach base) = = (1 – p)3
(0 + 2) (0 + 1) p0 (1 – p)3

2

Pr(2 reach base) = = 6p
2 (1 – p)3

(2 + 2) (2 + 1) p2 (1 – p)3

2

Pr(3 reach base) = = 10p
3 (1 – p)3

(3 + 2) (3 + 1) p3 (1 – p)3

2

Pr(1 reaches base) = = 3p (1 – p)3
(1 + 2) (1 + 1) p1 (1 – p)3

2

Pr(B reach base) = 
(B + 2) (B + 1) pB (1 – p)3

2

6 D’Esopo and Lefkowitz used a slightly more involved estimate for p. Their estimate was also

based on OBP, but it added errors and subtracted double plays from the numerator. In addition,

it added sacrifice flies to the denominator.
7 A bar over a symbol is often used to denote the average value, as in the average number of base

runners in an inning here.
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The amazing thing about this model is that these formulas used to calculate

the probability of not scoring provide you with all the tools you need to estimate

the average number of runs scored per inning. The basic principle behind this

result is the Law of Batter Conservation:

Every batter is either out, scores, or is left on base.

Since the model assumes that only batters are out and that runners either

score or are left on base, the average number of runs scored in an inning (R) is

just the average number of players who get on base (B) minus the average number

of runners left on base (L) in an inning. D’Esopo and Lefkowitz called their esti-

mate of the average number of runs scored per inning the Scoring Index, which

(as mentioned earlier) we abbreviate as DLSI.

A DLSI Example

Maybe we can get a better handle on this simulation model if we perform a sam-

ple calculation. The year 1959 was one of the most interesting in baseball his-

tory. It was the only year in the decade from 1955 through 1964 that the Yankees

were not in the World Series. The Dodgers, in only their second year in Los

Angeles, took advantage of the Yankees’ absence to win the series with a team

generally regarded as one of the weakest of all World Champions. The greatest

part of the challenge for the Dodgers was to defeat the powerful Milwaukee

Braves in a single National League playoff game after the conclusion of the reg-

ular 154-game season.8 For our purposes, 1959 marks the beginning of serious

baseball run production models by Lindsey, D’Esopo, and Lefkowitz, so in their

honor we’ll use the 1959 National League for our example. We start with Table

8-1, which provides totals for the National League in 1959.

Run production can be characterized by the probability p of getting on base

estimated by the following:

8 See the essay on manager Fred Haney and the 1959 Milwaukee Braves in The Bill James

Guide to Baseball Managers for a wonderful description of how such a great team as the Braves

of this period could have been upset in their quest for a third consecutive National League title.

Innings

11,047

AB

42,330

BB

3974

HBP

232

1B

7744

2B

1788

3B

324

HR

1159

TABLE 8-1 1959 National League Data
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and by the proportions of on-base events (walks, singles, etc.):

These are the basic elements used by the model. Batters got on base about

32.7 percent of the time, and of the times that they got on base, 27.6 percent

were via a walk or hit by pitch, 50.9 percent via a single, 11.7 percent via a dou-

ble, 2.1 percent via a triple, and 7.6 percent via a home run.

The most complicated part is the three-step procedure used to calculate the

average number of runners left on base per inning:

1. We calculate the probability of not scoring when 1, 2, or 3 runners

reach base:

Pr(0 runs | 1 reaches base) = 1 – f4 = 1 – .076 = .924

Pr(0 runs | 2 reach base) = ( f0 + f1) ( f1 + f2) + ( 1 – f4)f0

= (.276 + .509) (.509 + .117) + .924 (.276)

 = .747

Pr(0 runs | 3 reach base) = Pr(0 runs | 2 reach base) f0

= .747 × .276 

= .206

BB + HBP
f0 = = = .27633

BB + HBP + 1B + 2B + 3B + HR

4206

15,221

1B
f1 = = = .50877

BB + HBP + 1B + 2B + 3B + HR

7744

15,221

2B
f2 = = = .11747

BB + HBP + 1B + 2B + 3B + HR

1788

15,221

3B
f3 = = = .02129

BB + HBP + 1B + 2B + 3B + HR

324

15,221

HR
f4 = = = .07614

BB + HBP + 1B + 2B + 3B + HR

1159

15,221

BB + HBP + 1B + 2B + 3B + HR
p = 

AB + BB + HBP

= = .32708
3974 + 232 + 7744 + 1788 + 324 + 1159

42330 + 3974 + 232
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As we might expect, the probability of not scoring at all drops

from 92 percent to 75 percent to 21 percent as more runners reach

base.

2. We calculate the probabilities that 0 batters reach base, exactly 1

batter reaches base, and exactly 2 batters reach base:

3. We then use these values to calculate the average number of run-

ners left on base per inning:

or

The last step is easy. Using p, we can immediately calculate the average number

of runners reaching base per inning:

The average number of runs scored per inning is just the average reaching

base minus the average left on base. Therefore:

is the estimated average number of runs scored per inning by National League

teams in 1959.

Notice that in the course of this calculation, the simulation model required

the computation of other values, such as the average number of runners left on

base, various probabilities of putting runners on base, and probabilities of scor-

ing with runners on base. This makes the calculation somewhat longer than

DLSI = R = B – L = 1.458 – .979 = .479 runs per inning

B = = = 1.458
3p

1 – p

3 × .32708

1 – .32708

(.206 × [1 – .305 – .299 – .196]) = .979

L = (.924 × [1 – .305]) + (.747 × [1 – .305 – .299]) +

L = Pr(0 runs | 1 reaches base) × [1 – Pr(0 reach base)] + Pr(0 runs | 2 reach base) ×

[1 – Pr(0 reach base) – Pr(1 reaches base)] + Pr(0 runs | 3 reach base) ×

[1 – Pr(0 reach base) – Pr(1 reaches base) – Pr(2 reach base)]

Pr(0 reach base) = (1 – p)3 = (1 – .327)3 = .305

Pr(1 reaches base) = 3p (1 – p)3 = 3 × .327 (1 – .327)3 = .299

Pr(2 reach base) = 6p
2 (1 – p)3 = 6 × .3272 (1 – .327)3 = .196
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other models, but it does provide the benefit of an added richness to our under-

standing of the game. Using these results in some additional calculations, we

can compute the distribution of runs scored per inning, that is, the probability of

scoring. For example, recall that the probability of not scoring in an inning is cal-

culated as follows:

We have already calculated most of these values. The only extra value we need

to calculate is:

Substituting these values, we obtain:

So, we might expect that no runs were scored in about 75 percent of the innings

played by National League teams in 1959.

D’Esopo and Lefkowitz used such a calculation as a test of their model. They

calculated a distribution of runs scored per inning with their model and com-

pared the result against Lindsey’s data and against similar data they collected

from 100 games in the 1959 National League baseball season. Table 8-2 shows

the data they collected as well as predictions based on our version of their model.

The agreement is quite good, considering the relatively simple assumptions of

the simulation model (no stealing, no bunting, no advancement on outs).

Table 8-2 also shows the average number of runs scored per inning in the

data together with the model prediction. In fact, a total of 5462 runs were scored

in the 1959 National League season over 11,047 innings, for an average of .494

runs per inning. The simulation model prediction is somewhat lower than the

averages from the data.

Lessons from the Simulation

You might at this point ask, if you haven’t asked already, what makes this a sim-

ulation model? After all, the calculation is similar to that for the other models we

have covered (for example, Total Average or Runs Created), except DLSI is more

Pr(0 runs) = (.305 × 1) + (.299 × .924) + (.196 × .747) + (.107 × .206) = .750

Pr(3 reach base) = 10p
3 (1 – p)3 = 10 × .3273 (1 – .327)3 = .107

Pr(0 runs) = Pr(0 reach base) × Pr(0 runs | 0 reach base) +

Pr(1 reaches base) × Pr(0 runs | 1 reaches base) +

Pr(2 reach base) × Pr(0 runs | 2 reach base) +

Pr(3 reach base) × Pr(0 runs | 3 reach base)
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complicated. And you might comment that you thought a baseball simulation was

a computer program that played many games over and over to produce results

that replicated actual game play. While computer programs are the most common

form of simulation today, you should recall that APBA, Strat-O-Matic, and Sports

Illustrated—the board games we discussed in Chapter 1—are simulations too.

These games do not require a computer, although if you want to simulate many

entire seasons, you would have to use a computer version.

The D’Esopo-Lefkowitz model differs from these board games only in the rela-

tive simplicity of its rules and its assumption of a single average level of per-

formance for all hitters. (What distinguishes the D’Esopo-Lefkowitz model from

the other models reviewed is its genesis from the rules of baseball applied in a

probabilistic way.) But we could use the rules they define as well as any assump-

tions we wish for the probability of getting on base and on-base profiles to actu-

ally play games of baseball either as a board game or as a computer program.

We could, for example, construct a game very similar to All-Star Baseball.

The game would be a much simpler one, consisting of a single disk. The disk

would have six slices: walk, single, double, triple, home run, and out. All batters

would use this disk. If the game were to simulate play during the 1959 National

League baseball season, the sizes of the slices would be determined by the data

we just discussed. Recall that the probability of getting on base was p = .32708.

So, according to the rules established by the assumptions of D’Esopo and

Lefkowitz, the probability of getting an out is 1 – p = .67292. The out slice would

Runs Scored Lindsey D'Esopo and 

Lefkowitz

DLSI Model

0

1

2

3

4

5

6 or more

Average Runs

73.0%

14.6%

7.0%

2.9%

1.4%

0.7%

0.4%

0.488

74.4%

12.9%

6.8%

2.9%

2.1%

0.7%

0.3%

0.489

75.0%

12.6%

6.7%

3.2%

1.5%

0.6%

0.5%

0.479

DATA

TABLE 8-2 Runs Scored Per Inning in 1959 National League Season (DLSI Model

Results Compared with Data)
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span an arc of .67292 × 360 = 242 degrees. The remaining 118 degrees would be

divided into five slices for walks and the various hits in accordance with the val-

ues f0, f1, f2, f3, and f4. For example, the home run slice would be:

If we played this game using the rules for runner advancement assumed by

D’Esopo and Lefkowitz for the equivalent of many seasons of virtual play (com-

pleting all innings until three outs are recorded), we would obtain results for the

runs scored per inning which would exactly match those estimated using the

equations described. The simplicity of the model’s rules and player ability

assumptions allows us to circumvent the whole process of replaying every plate

appearance in every game. The results of playing out the simulation can be

obtained simply through calculation, using a few formulas. This is the strength

of the D’Esopo-Lefkowitz model.

The weakness of the model also lies in its assumptions. The same simplicity

which allows us to capture the information from thousands of seasons of replays

with only a few calculations also means that some richness of detail—from the

running game, “small ball” advancement from outs, and variation from different

player abilities—has not been included. The D’Esopo-Lefkowitz model simulates

baseball with very broad strokes. Nonetheless, as indicated by its distribution of

runs per inning in Table 8-2, the simulation produces quite reasonable results

despite the simplicity of its rules. The model tends to underestimate Team Runs

Scored per Inning, perhaps because of its lack of a more sophisticated set of rules

describing the advancement of runners on outs.9 These could be incorporated

into the more general version of the model developed by Cover and Keilers.

Now that we have some familiarity with the mechanics of calculating runs

per inning with the model, let’s examine some aspects more closely. The model

says that there are two key elements in run production:

• The variable p, which states the probability of getting on base (and

avoiding being out).

• The parameters f0, f1, f2, f3, and f4, which we will refer to

collectively as the on-base profile. This profile describes the

distribution of all on-base events considered in the model (walk,

f4 × 118 = .07614 × 118 = 9 degrees

9 Using RMSE tests such as those in Chapter 6, we find DLSI to be one of the best models tested.

It has smaller RMSEs than the basic Runs Created formula (which uses a comparable set of

data), but larger RMSEs than Runs Created Tech-1, which has the advantage of using more

data (e.g., stolen bases, caught stealing, sacrifice flies).
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hit by pitcher, single, double, triple, and home run), and it always

sums to 1.

How much can these elements vary from team to team and from year to year?

Considering the modern era of baseball, from 1901 through 1999, a typical value

for p is .33, close to the 1959 National League average. The 1908 Brooklyn

Dodgers had the lowest p, with .266 batters reaching base per opportunity. Lest

you think that such a low probability of getting on base is a phenomenon only of

the deadball era, consider that this value was challenged by the New York Mets

in 1965 (with p = .278). The 1950 Boston Red Sox had the highest (p = .385),

almost 50 percent higher than the minimum value. Not surprisingly, the quin-

tessential on-base batter, Ted Williams, was on this team, although he played lit-

tle more than half of the season. And a team as recent as the 1994 New York

Yankees had an exceptionally high value (p = .377), albeit in a strike-shortened

season. So there is, from team to team and season to season, considerable varia-

tion in this measure of performance.

Table 8-3 shows the range of values for each component of the on-base profile

statistic. The table shows a great deal of diversity within each component. For

example, the majority of on-base events for some teams were singles (as high as

69 percent for the 1902 St. Louis Cardinals), while others had less than half (as

low as 39 percent for the 1999 Oakland A’s). However, since the components for

each team must add up to 1, they are not independent of each other; you can’t

increase one component without decreasing at least one of the others. What we

are interested in finding is a realistic combination of components which pro-

duces the most extreme (low and high) results in run production.

To understand how the on-base profile affects run production, we assume

that the typical on-base probability p is .33. We calculated the run production of

each team from 1901–1999 using its own unique on-base profile, but using the

Maximum

 
Average

Minimum

BB+HBP

.378

1949 AL Phi.

.277

.174

1921 NL Phi.

1B

.685

1902 NL St.L.

.527

.391

1999 AL Oak.

2B

.177

1997 NL Mon.

.119

.072

1902 NL Phi.

3B

.069

1903 AL Bos.

.026

.005

1998 AL Balt.

HR

f0 f1 f2 f3 f4

.118

1961 AL NY

.051

.002

1908 AL Chi.

TABLE 8-3 Range of Team On-Base Profile Values (1901–1999)
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same on-base probability (p = .33) for all teams. We then found the teams with

the highest (1947 New York Giants)10 and the lowest (1908 Chicago White

Sox)11 run production. Since the on-base probability was held constant, the only

difference in run production was their on-base profiles. The bar charts in Figure

8-3 compare the on-base profiles of these two teams. Remember, these are not

the teams with the highest and lowest run production overall, but the teams

that had the best and worst on-base profiles if the probability of getting on base

is kept at .33 for all teams.

Only 10 percent of the 1908 White Sox on-base events were extra-base hits

(not walks or singles), while almost 25 percent of the 1947 Giants on-base events

were extra-base hits. As we would expect, the 1947 Giants have a more produc-

tive on-base profile than the 1908 White Sox because of the shift of walks and

singles to extra-base hits. In fact, when we compare the values in these on-base

profiles to the ranges of the individual components in Table 8-3, we see that the

profiles are not at all extreme, except in home runs, where the 1947 Giants have

one of the highest fractions, while the 1908 White Sox have the lowest.
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BB+HBP 1B 2B 3B HR

26.3% 31.8% 48.8% 56.8% 11.2% 8.8% 2.4% 2.5% 11.3% 0.2%

FIGURE 8-3 The best and worst team on-base profiles (1901–1999).

10 The top on-base profiles included such recent teams as the 1994 Cleveland Indians and the

1997 Seattle Mariners, as well as the legendary 1961 New York Yankees, with Maris and

Mantle (which had the highest fraction of home runs, f4 = 11.8 percent). Apparently, one factor

that separates the 1947 Giants from these other high on-base profile teams is their higher

fraction of triples, possibly a result of the unusually deep center field of the Giants’ home park,

the Polo Grounds. The 1990s included some teams with low production on-base profiles; the

two lowest were the Los Angeles Dodgers and the Boston Red Sox, both from 1992.
11 Not only did these White Sox play during the deadball era, but their home field, South Side

Park, was “the poorest hitting field in major league history” according to Michael Schell in

Baseball’s All-Time Best Hitters.
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How does the predicted run production change for our simulation model as

either the on-base profile or the probability of getting on base changes? Let’s see

how the predicted run production will change if we take each of our two extreme

on-base profiles, keep them fixed, and change p, the probability of getting on base.

Figure 8-4 plots the predicted runs per inning in this scenario. The upper line in

this chart shows the predicted runs per inning for the 1947 Giants on-base pro-

file, while the lower line shows the predicted runs per inning for the 1908 White

Sox on-base profile. The bullets identify the predicted runs per inning for each

team for the actual historical on-base probability p of each team.

The 1947 Giants had an on-base probability near the historical team average,

but the 1908 White Sox had an on-base probability way below average. Following

the 1908 White Sox line upwards, we see that a team with a poor on-base profile

could be as productive as the 1947 Giants if they could compensate for their lack

of power with an increase in on-base probability near the historical maximum of

.385. Since these are the best and worst on-base profiles, and since the plot

encompasses the highest and lowest team p-values from 1901–1999, the pre-

dicted run production for all teams in the twentieth century lie in the area

bounded by these two lines.

Looking at the 1947 Giants profile, we see that run production does not

increase linearly with the probability of getting on base; that is, the line curves
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FIGURE 8-4 DLSI for best and worst on-base profiles as the probability of getting on base

changes. (Bullets [•] indicate DLSI for team’s actual value of p.)
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upward so that run production increases faster as p increases. The 1908 White

Sox profile shows a similar (though slightly less pronounced) effect. The vertical

distance between the two lines shows the effect of different on-base profiles; that

is the effect of varying the distribution of different types of hits. Increasing p

increases run production, and improving the on-base profile increases run pro-

duction, but they improve it in different ways.

DLSI and Runs per Play

Predicted run production for the 1959 National League falls somewhere in the

middle of the extremes shown by the Giants and White Sox. Taking another look

at the 1959 National League data, what would happen if we added one more

walk? That is, keeping everything else the same, how would run production

change if the total number of walks were 3975 instead of 3974? Redoing (with

greater precision) the calculation described earlier, with this very slight varia-

tion, we find that run production would be .4784369 runs per inning, or .0000336

runs per inning higher than with the historical data (.4784033). In 1959, the

National League played 11,047 innings. Multiplying this change by the total

number of innings gives us the total change in runs

Doesn’t this seem familiar? It looks very close to the run value for a walk or

hit by pitcher in the Lindsey, Palmer, and regression models described in

Chapter 7. Perhaps the result will continue to match if we do the same thing for

singles, doubles, triples, home runs, and outs. Table 8-4 shows the variant data,

the predicted change in runs per inning, and the total increase in runs from the

play (by multiplying the increase and the number of innings).

Figure 8-5 compares the changes in run production with run values for the

same events in the Palmer model. The values are very similar. The biggest dif-

ference is in the run value for home runs, which is given more value by the sim-

ulation model than by the 1959 NL data. Perhaps this is a reflection of the sim-

ulation’s assumptions about runner advancement. If the simulation does not

allow runners to advance on outs, it may give added weight to home runs, which

needless to say are very good at advancing runners. Another possibility is that

the increased value of home runs stems from the assumption that runners are

never thrown out on the bases. If a walk is followed by a home run, the runner

will always score; in Palmer’s model, he might be erased on a double play or

caught stealing. Similarly, the value of a double is certainly reduced by the

.0000336 × 11047  = .37
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assumption that doubles never drive in runners from first.12 Still, the agree-

ment in run values is very good, considering the simplicity of the simulation’s

assumptions.

The changes in run production predicted by the simulation as we add an addi-

tional event to the data is one way of measuring run value per event. Another

way of doing this is to calculate the slope of the on-base profiles in graphs like

the one in Figure 8-4. However, as we observed in Figure 8-4, these on-base pro-

file lines are curved upwards; that is, their slopes increase as the probability of

RUN CHANGE

Play

Walk/HBP

Single

Double

Triple

Home Run

Out

AB

42,330

42,331

42,331

42,331

42,331

42,331

BB/HBP

4207

4206

4206

4206

4206

4206

1B

7744

7745

7744

7744

7744

7744

2B

1788

1788

1789

1788

1788

1788

3B

324

324

324

325

324

324

HR

1159

1159

1159

1159

1160

1159

Per

inning

.0000336

.0000476

.0000662

.0000895

.0001434

-.0000263

Per

play

.37

.53

.73

.99

1.58

-.29

“WHAT IF”  1959 NATIONAL LEAGUE DATA

12 These last two observations—on home runs and doubles—were suggested by David Grabiner

in personal correspondence.

TABLE 8-4 Change in Run Production in 1959 National League Season When Increasing

Each Play Count by 1 (Indicated in Boldface)
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OutTripleSingle

FIGURE 8-5 Run values for plays in the 1959 National League season: DLSI values

vs. Palmer’s Linear Weights values.
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getting on base increases. Does this mean that plays may have different run val-

ues depending on a team’s ability to get runners on base?

Let’s test this with an example. In 1999, the Cleveland Indians scored more

runs than any other team (1009)13 while the Minnesota Twins scored the fewest

(686). According to the simulation model, would an extra hit have had more

value to the Indians than it would to the Twins? Table 8-5 gives the 1999 season

data for these two teams.14 The major differences between them appears to

reside in their abilities to draw walks and hit home runs.

What run values do we get if we add 1 event to each play type, as we did in

Table 8-4 for the 1959 National League? Figure 8-6 displays the results. As we

expected, each walk and hit has more run value for the better offensive team, the

Cleveland Indians. Even each out is more damaging to the Indians than to the

Twins. This is because each out is one less opportunity to score runs, and since the

Indians are more productive, the out has a greater negative effect on runs scored.

As we suspected from our observation of the curves in Figure 8-4, the run values

of plays appear to vary depending on the run productivity of the team. In particu-

lar, the linear models of run production (Lindsey, Palmer, regression, and even

Total Average) appear to be special cases of this more general simulation model.

Essentially, they provide good estimates of run values for average or typical per-

formances, but do not account for changes in run value for more extreme cases.

Does this mean that they are not useful in evaluating offensive performance

of players? Not necessarily, as we shall see.

Where Do We Stand?
After reviewing many models, we find that they really divide into two groups:

additive and product models.

Team

Cleveland

Minnesota

Innings

1458

1449

AB

5634

5495

BB

743

500

HBP

55

49

1B

1079

1030

2B

309

285

3B

32

30

HR

209

105

TABLE 8-5 1999 Data for the Cleveland Indians and the Minnesota Twins

13 The fifth highest total in this century and the highest since the Boston Red Sox posted 1027

runs in 1950.
14 The number of innings was estimated by multiplying the number of games by 9.
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Additive Models

These are the models in which each play is given a value. The values for all plays

which occur are summed. In order to account for differences in opportunity, the

sum is divided by a representative total for the number of chances to bat. The

models often differ in the set of plays considered.

For Batting Average, hits are the only plays considered. Each hit has the

same value, 1. These values are summed, one for each hit, and then divided by

the number of at-bats, the quantity that represents opportunity. Slugging

Percentage is the same as Batting Average, except that each hit is given a dif-

ferent value, the number of bases attained. On-Base Percentage is also the same

as Batting Average, except it includes more plays, walks and hit by pitcher; it

also expands the number of opportunities considered from just at-bats to

(almost) all plate appearances.

Total Average, also an additive model, combined elements of the Slugging

Percentage and the On-Base Percentage. Each hit was given a value equal to the

number of bases, as in Slugging Percentage, and walks/HBPs were each given

the value 1. Total Average also extended the plays included by giving each stolen

base the value of 1. A notable innovation in Total Average was using the number

of outs (not at-bats or plate appearances) as the dividing measure of opportunity.

Total Average provided a significant improvement over the three MLB-recog-

nized measures of offensive prowess (AVG, SLG, OBP) in its ability to estimate

annual team run production per game.
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FIGURE 8-6 Run values of different plays as estimated by the DLSI model for the 1999

Cleveland Indians and Minnesota Twins.
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Lindsey and Palmer basically used the same framework as in Total Average,

but used estimates of the average number of runs each play produced as the play

values. They developed these values from play-by-play analysis of actual

(Lindsey) and simulated (Palmer) games. This gave their values a more solid log-

ical foundation than the other additive models.

Finally, several researchers used least squares linear regression on annual

team offensive data to derive play values comparable to those of Lindsey and

Palmer. The play values derived from regression provided the best fit (as meas-

ured by RMSE) to annual team run production per game. However, in some

cases (as we observed, for example, with the high value attributed to sacrifice

flies), the values obtained from regression may have captured other attributes

inappropriate for the evaluation of individual players.

Product Models

We have examined two types of product models. One, the BRA model, multi-

plies On-Base Percentage and Slugging Percentage. This is a departure from

the additive model approach, where the weights from different events are sim-

ply added. Here, after weighting the events, the result of getting on base is

multiplied by the weighted counts of events. Cook’s Scoring Index also used

this principle, as did James in his Runs Created model, which produced the

best fit to team data in this group.

The second product model type is the DLSI simulation developed by D’Esopo

and Lefkowitz (and generalized by Cover and Keilers). Here the rules of baseball

were used to develop formulas which estimated the expected runs scored per

inning if millions of simulated games of a simple form of baseball were played.

The model says that the average number of runs per inning is the average num-

ber of runners to reach base minus the average left on base:

The average number to reach base should look familiar:

Remember that a good estimate for p is the On-Base Percentage, the fraction of

plate appearances in which the team gets on base. Since not getting on base

means that you were out, then 1 – p is the fraction of plate appearances in which

the team gets out. So, B is a ratio of on-base events to out events. This ratio has

B = 
3p

1 – p

DLSI = R = B – L
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elements of to On-Base Percentage (ratio of on-base events to plate appearances)

and Total Average (the ratio of bases to outs).

Another interesting feature of the DLSI model is the assumption that each

player to reach base is a potential run, and the team’s inability to advance the run-

ner subtracts from this value to find the number that actually score. At this point

it diverges from Total Average, which takes the basic ability to get on base and

then adds extra bases from hits. Another way to perform this subtraction is

through multiplication by a value less than 1. This is what you do every day when

you get a discount at a store. You pay less than the retail price, but instead of get-

ting some amount off the retail price, you pay a fraction of the retail price, where

the fraction is a number less than 1. So, DLSI could also be calculated as follows:

In this case, the fraction is the percentage of runners that score. So we see that

the D’Esopo-Lefkowitz model can be viewed as another product model, a variant

of BRA, where B assumes the role of On-Base Percentage and the discounting

fraction assumes the role of the Slugging Percentage.

In order to summarize how well each model’s estimates are correlated with

run production, we took our most complete set of team data (1954–1999) and

found the best line (and its associated RMSE) for each model for all the 46 years

of data as a whole (instead of within each year, as was done in Chapter 6). The

models are listed in Table 8-6—according to RMSE from low to high, so that the 

models at the top were correlated best with run production. We have identified

each model as an additive or product model. To give some perspective, the high-

est team run production in this era was 6.228 runs per game (the 1999

Cleveland Indians), the lowest was 2.858 (the 1968 Chicago White Sox), and the

average was 4.323. The standard deviation is 0.563 runs per game. Remember

that the standard deviation is the RMSE for the simplest of models, picking the

average (4.323) as the estimate for all teams in all years.

We notice right off the bat that the MLB sanctioned models (AVG, OBP, and

SLG) provide the worst correlation with run production. Still, as poor as AVG,

SLG, and OBP are as estimators, they do reduce the RMSE substantially, from

.563 down to the .3 to .2 runs per game range. Major improvements are found

by adding OBP and SLG to obtain OPS, or by multiplying them to obtain BRA.

From this point on, improvements in estimation are much less dramatic, no

more than a reduction of RMSE from .16 to .14 runs per game. OPS and BRA

have definite advantages in the simplicity of their calculation (especially if

SLG and OBP are already at hand), but the four additive and product models

DLSI = R = B × fraction
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at the top of the list have the edge when it comes to fit (lower RMSE). DLSI

and LWTS/G have additional credibility because of their construction through

a logical analysis of the effect of plays within games. The regression model has

the best fit, but this is really a fait accompli, since the model was designed

from this same data.

Player Evaluations in the Best Models
Despite the differences in these models, they demonstrate a remarkable simi-

larity in their relative evaluations of players. Let’s look at the 740 players with

more than 5000 plate appearances through the 1999 season. Figure 8-7 plots the

evaluation of these players by the Runs Created model vs. the Linear Weights

model. Each point represents the evaluation of a player’s hitting career using

the two models. Several players with extraordinarily high evaluations (Ruth,

Williams, Gehrig, Hamilton, and Thomas) are noted. We see that both models

place these players at extremely high levels. The other players form a very tight

band; when LWTS/G rates a player highly, RC/G does so as well.

The line shown in Figure 8-7 is the best line fit of the player evaluations by

the two models. If we examine the variation of RC/G player evaluations about

this line, we find that the differences between the RC/G evaluation and the line

have a standard deviation of .17 runs per game. This means that using LWTS/G,

we can predict the RC/G measure to within .17 runs per game for two-thirds of

the players and within .34 runs per game for 95 percent of the players. Given

Model Abbreviation Type
RMSE

(Runs/Game)

Regression (without SF) AdditiveLSLR

Runs Created (Tech-1) ProductRC/G

Linear Weights AdditiveLWTS/G

D’Esopo-Lefkowitz Scoring Index ProductDLSI

Batter’s Run Average ProductBRA

Total Average AdditiveTA

Runs Created (Basic) ProductRC/G

On-Base plus Slugging AdditiveOPS

Slugging Percentage AdditiveSLG

On-Base Percentage AdditiveOBP

Batting Average AVG Additive

.1423

.1459

.1489

.1526

.1565

.1591

.1595

.1595

.2175

.2529

.3169

TABLE 8-6 RMSEs for Various Models of Team Run Production per Game (1954–1999)
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that RC/G player evaluations can range from 2 to 14 runs per game, this is very

good agreement.

There is some indication that LWTS places greater value on speed than RC

does. We have identified three players whose RC/G evaluations are low given

their LWTS/G evaluations: Billy Hamilton, Barry Bonds, and Rickey Henderson,

all exceptionally good runners. Other players with similar LWTS/G ratings have

higher RC/G ratings.15

One way to examine this in more detail is to create a residual plot, which

shows the difference between the actual value and a predicted value. Here, the

residual is the difference between the actual RC/G player evaluation and the

RC/G evaluation predicted from LWTS/G (represented by the line in Figure 8-7).

Figure 8-8 presents the residual plot for the best line in Figure 8-7.

As an example, consider Lou Gehrig. The RC/G evaluation of Gehrig’s run

production is 11.84 runs per game. The LWTS/G evaluation of Gehrig’s run pro-
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FIGURE 8-7 Career player run production estimated by the Runs Created and Linear

Weights models.

15 According to The Hidden Game of Baseball, Palmer’s simulation produced lower SB values,

closer to .20 runs. He raised the value to .30 runs since he was persuaded that stolen bases

were more apt to occur in close games than they were to occur randomly as assumed in his

simulation. This rationale for increasing the SB value is weak, whether a game is close or not

does not enter into run production. It is possible that stolen bases occur more frequently in

base-out situations (such as runner on first base and two outs) when the extra base has more

value. Within the context of Palmer’s model, this rationale for increasing SB value makes more

sense than the “close game” argument he gave in The Hidden Game of Baseball.
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duction is 5.661 runs per game above average. The best line in Figure 8-7 says

that RC/G and LWTS/G are so closely related that a good estimate of a player’s

RC/G can be found from LWTS/G using the following formula:

For Gehrig, this means that:

The residual for this estimate is simply the difference between the actual RC/G

evaluation (11.84) and the RC/G estimate predicted by LWTS/G (11.15) or .69 runs

per game. As we can see from Figure 8-8, this is a very large residual compared to

most others, which lie between –.4 and +.4 runs per game. So, even though RC/G

and LWTS/G both agree that Gehrig had one of the best offensive records of all

players, there is some disagreement over the degree to which it was better.

What the residual plot allows us to do is to investigate the departures from

the best line in Figure 8-7 in greater detail. We have noted some other players

with large negative residuals—including Hamilton, Bonds, and Henderson, who

have large departures from the line. Now the residual plot allows us to see other

players whose RC/G values are below the best line in Figure 8-7, and several are

likely to be familiar to contemporary fans: Vince Coleman, Eric Davis, Joe

Morgan, Tim Raines, and Dave Lopes were all speedy players. The plot provides

RC/G estimate = 4.41 + 1.1914 × 5.661 = 11.15

RC/G estimate = 4.41 + 1.1914 × LWTS/G
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LWTS/G.
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further evidence that LWTS and RC appear to differ over the value of speed (e.g.,

stolen bases) in producing runs.

The residual plot has an added interesting feature. Looking back at Figure 8-7,

we might have noticed some slight curvature in the relationship between RC/G

and LWTS/G. If the relationship were straight we would expect the best line to

shoot right through the cloud of points, with some points below the line and oth-

ers above it in all areas of the plot. However, points on the extreme left end of

Figure 8-7 and those at the extreme right end (e.g., Ruth, Williams, Gehrig) tend

to be above the best line. Does this tell us the relationship is not a straight line,

but curves instead? The residual plot in Figure 8-8 confirms this. The line in that

plot indicates a smooth fit that balances points above and below. This line indi-

cates the true curved nature of the relationship, and makes it easier to see by

accentuating the curvature. (Still, looking closely at Figure 8-7, one can see the

curvature there as well.)

What is the reason for this curvature? Both models fit team run production

data very well and seem to agree very well in the general player evaluations. But

disagreement between the models tends to increase as we depart—in either

direction—from the average players. And this seems to be especially true for the

Olympian players such as Gehrig.

Player Evaluations on an Average Team
Perhaps the reason for the discrepancy between the results predicted by the

RC/G and LWTS/G models lies not with the models themselves but with how

they are applied to evaluate players. The LWTS model, when applied to player

data, rates the player on how many more runs are created by the player than by

an average player. In Figure 8-7, we see that it is possible for a player’s LWTS

rating to be negative. That is, the player produces fewer runs than the average

player. Of course, in Figure 8-7, we were looking only at players who had sub-

stantial major league careers, so the great majority had to be productive offen-

sively. Players with negative ratings (such as the infielders Mark Belanger,

Ozzie Guillen, Larry Bowa, Don Kessinger, and Bobby Richardson, as well as the

catchers Jim Hegan and Bob Boone) must have had very valuable defensive

skills in order to compensate for their lack of run production.

All product models (such as RC) take a different approach. They evaluate the

player not relatively (with respect to an average player) but absolutely—in isola-

tion, not within any standard context. The player is evaluated in accordance

with how well a team composed exclusively of that player would produce runs.
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Therefore, product models always produce a positive result for their evaluation

of players. They estimate the cumulative number of runs produced, while LWTS

estimates a differential between this player and the average player. The advan-

tage to the RC method is that it is not necessary to find or define a standard

against which to evaluate each player.

Unfortunately, there is a down side to product models as well. They tend to be

unrealistic for players at either end of the offensive production spectrum. Let’s

look at a very extreme example in recent memory, Mark McGwire in 1998. Not

only did McGwire hit home runs at a record pace in 1998, but when he wasn’t

trotting around the bases he very frequently walked to first base. McGwire had

162 walks (which outnumbered his 152 hits); next highest in walks was Barry

Bonds, with 130. The reason, of course, for walking McGwire is to avoid his

power and leave it to the next man in the lineup to knock in the runs.

But what if the next batter in the lineup is . . . Mark McGwire? The walk then

becomes an extraordinarily effective force in producing runs. There is really no

rationale for pitching carefully and giving the previous batter (Mark McGwire)

a walk just so you can face the next batter (Mark McGwire) with an additional

runner on base. This is just the situation created when the product models are

used to estimate the cumulative number of runs produced by a lineup consisting

of one player. The method evaluates players in a context which is outside the

realm of possibility (imagine a team of McGwire clones!) and so exaggerates the

effectiveness of players at the extreme ends of offensive productivity.

Figure 8-9 is a plot similar to that in Figure 8-7 except that the players eval-

uated are those from the 1998 season with 100 or more at bats. The figure dis-

plays the same curvature as seen in Figure 8-7. The residual plot in Figure 8-10

(constructed from Figure 8-9 just as the residual plot in Figure 8-8 was con-

structed from Figure 8-7) emphasizes this curvature. Mark McGwire and Larry

Walker stand apart from all other players in both figures. The curvature is a

result of the players being evaluated by RC/G with respect to teams composed

only of that player in isolation. Is it possible to use RC/G to evaluate a player in

the more appropriate context of an average team?

Let’s see what happens if we analyze these players using RC/G with a differ-

ent method. We will do this analysis within the context of an average team in

1998. Table 8-7 summarizes the steps in the calculation of the data used. The

second column of Table 8-7 shows the average statistics for a team in 1998.

These values were obtained simply by dividing the Major League totals by 30,

which is the number of MLB teams. The last line of the table is the number of

outs estimated from the data, calculated as follows:
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Using this formula, we estimate that the 1998 Average Team had 4241.3 outs in

the season:

Now what would happen if we replaced an average player on this team with

the 1998 version of Mark McGwire (something every GM dreams of). Since the

number of outs a team has in a season should be relatively fixed, we will do this

by preserving the number of outs the average team had in the 1998 season. The

third column lists McGwire’s impressive 1998 offensive data. Using the same

formula, we estimate that McGwire required 361 outs to achieve his totals:

We will now replace one average player on the 1998 Average Team with Mark

McGwire. To do this, we will first calculate what the 1998 Average Team’s data

would look like if we subtracted one average player with the same number of

outs as McGwire had in 1998. So, removing this one average player reduces the

Average Team’s data by a percentage equal to McGwire’s outs divided by the

Average Team’s outs, or:

The fourth column of Table 8-7 shows the data for the 1998 Average Team with

one less average player. Each value is simply 100 percent – 8.5 percent = 91.5

percent of the 1998 Average Team values in the second column of the table.

Now, in order to see what the 1998 Average Team would have been like with

Big Mac replacing one of its average players, all we have to do is add Mac’s data

in column 3 to the reduced team data in column 4. The resulting data are shown

in the fifth column of Table 8-7. Notice that the number of outs is exactly the

same as that for the 1998 Average Team in the second column of Table 8-7.

Out of curiosity, we might want to see how much this team differs from the

1998 Average Team. These results are displayed in the sixth column. They were

calculated by subtracting the second column from the fifth column. The Average

Team with Mac would have had about 35 more at-bats and 26 more hits. This is

because McGwire had a better-than-average chance of getting a hit, so an equal

number of outs produces more hits and thus more at-bats. With Mac, the Average

Team would have had a whopping 56 more home runs and 115 more walks,

361 / 4241.3 = 8.5%

McGwire outs = 509 – 152 + 0 + 0 + 4 = 361

Average team outs = 5570.6 – 1482.97 + 50.13 + 56.83 + 46.73 = 4241.3

Outs = AB – H + CS + SH + SF
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approximately 33 percent and 20 percent increases, respectively. Incredibly, the

number of intentional walks would increase by about 70 percent.

We are now ready for the final steps. First, we apply the RC formula to the

data for the 1998 Average Team without one average player (fourth column of

Table 8-7):

Doing this, we find that this team is expected to generate a total of 770.44 runs

using 3880.3 outs. The next step is to apply the RC formula again, this time to the

data for the 1998 Average Team with McGwire (fifth column of Table 8-7). We find

that this team is expected to generate a total of 950.48 runs using 4241.3 outs.

So we conclude that when his performance is considered within the context of

an average team in the 1998 season, McGwire would add 950.48 – 770.44 = 180.04

runs using 361 outs, the difference between the runs the team would be expected

to score with and without him. Since 361 outs is equivalent to 361/27 = 13.37

games, McGwire’s contribution is 180.04/13.37 = 13.47 runs per game. This is

1.36 runs per game less than the 14.83 value estimated by James’s standard

RC = 
(H + BB + HBP – CS – GIDP) [TB + .26 (BB – IBB + HBP) + .52 (SH + SF + SB)]

AB + BB + HBP + SH + SF

Play

Avg. Team

With Mac

Avg. Team With Mac

Minus Avg. Team Avg. Team McGwire

Team Without

1 Avg. Player

AB

H

2B

3B

HR

BB

HBP

IBB

SB

CS

SH

SF

Outs

RUNS CREATED

5096.5

1356.7

266.5

27.4

154.4

501.6

48.4

32.5

100.1

45.9

52.0

42.8

3880.3

770.44

5605.5

1508.7

287.5

27.4

224.4

663.6

54.4

60.5

101.1

45.9

52.0

46.8

4241.3

950.48

34.9

25.8

–3.8

–2.6

55.6

115.3

1.5

25.0

–8.3

–4.3

–4.8

0.0

0

180.04

509

152

21

0

70

162

6

28

1

0

0

4

361

•

5570.6

1483.0

291.3

30.0

168.8

548.2

52.9

35.6

109.5

50.1

56.8

46.7

4241.3

•

TABLE 8-7 Offensive Data for Average 1998 Team If Mark McGwire Replaced an

Average Player
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method for evaluating individual players.16 So, placing McGwire within a real-

istic team context reduces his RC/G estimate by almost 10 percent.

To what extent are other players affected by making a similar adjustment?

Figure 8-11 plots the change in Runs Created per Game for each player vs. the

original Runs Created per Game estimate. What has happened is that the ad-

justed RC evaluation method has reduced the RC/G estimates for the best and

worst players while providing little or no effect on those more typical players in

the center of the spectrum.

What are the implications of this adjustment relative to the comparability of

the RC and LWTS evaluations of players? Figure 8-12 replicates our analysis

from Figure 8-9, except that that Figure 8-12 uses the adjusted RC player eval-

uation method instead of James’s standard method. A new best line is plotted,

and it now appears to go straight through the points, with no bend in points

above the line at the extreme ends. This is confirmed when we examine the

adjusted RC/G residuals in Figure 8-13. Not only is the plot flat, with no evident

curvature, but the spread of the points has been reduced as well.

This analysis indicates that much of the difference between the Linear

Weights and Runs Created models lies not only in the models themselves, but
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16 Apparently, James has developed a similar method for adjusting his Runs Created evaluation

for individual players. We have not seen the method, but the description in the 1999 Big Bad

Baseball Book indicates that it follows principles similar to those presented here, except that

at-bats rather than outs are used as the basis for player replacement.
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how they are used to evaluate players. Also we see that each model has its advan-

tages. If we wish to evaluate players, the Linear Weights model is simpler than

the Runs Created model. However, the Runs Created model has greater flexibil-

ity in its ability to analyze run production beyond the context of an average team.

And yet even with these differences, there is a strong correlation between:

1. each model with team runs scored; and

2. the two models themselves.

Thus, in evaluating players, a fan can’t go too far wrong using either of these

models for evaluating players.

Sorting Out Strengths and Weaknesses
Let’s review what we have learned about evaluating players:

1. The batting performance of players should be measured with

respect to the number of runs they contribute to team offense.

2. If these player evaluations are normalized with respect to the

number of opportunities the player had to produce offensively, the

number of outs is a better measure than at-bats or plate

appearances for this purpose. Number of outs can be converted to

equivalent games by dividing by 27 (a theoretical standard).

3. The standard measures used by Major League Baseball and the

media were the worst evaluators of offensive performance among

those reviewed.

4. A model’s correlation with runs produced by teams in a season is

an important measure to establish its capability to estimate run

production. However, to blindly use one model over another just

because its correlation is higher (or its predictive error is lower) is

not wise. The model should be checked to insure that its structure

is a logical representation of our understanding of baseball.

5. A simulation model (the DLSI model) emulates the most basic

elements of baseball play in such a way that run production can

be reasonably modeled without the need to actually play out the

simulation using random number generators.

6. Models can be described as either additive or product. Product

models are a better reflection of the curved nature of run production,

but additive models are simpler to use in evaluating players.
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7. The best of the additive models (Linear Weights) and product

models (Runs Created) are related to logical constructs derived

from actual baseball play. Linear Weights are constructed from

data analyses and simulation, while Runs Created is related to

the basic equations of the D’Esopo-Lefkowitz model. These two

models are strongly correlated in their player evaluations,

especially after the Runs Created model is applied in the context

of an Average Team.

There are many issues we have left unresolved. Much of this book places

great emphasis on the difference between observed performance (e.g., a player’s

batting average in a season) and ability (e.g., the underlying probability of get-

ting a hit). These past three chapters have focused on reducing the standard

multidimensional array of observed player offensive data into a single value that

is strongly correlated with runs scored. We have not discussed the relation of

this value to some underlying parameter for a player’s ability to generate runs.

Actually, it is not too difficult to calculate confidence intervals for such a param-

eter for many of these measures.

We have also skirted the issue of adjusting player evaluations for different

playing conditions. This issue as it relates to comparing players from different

eras is a cottage industry in itself, with many worthy publications that address

the topic. Interested readers may wish to examine books such as Michael Schell’s

Baseball’s All-Time Best Hitters to see how this question has been addressed.

However, if we rank players within each decade as we did for many measures

in Chapter 6, we are in essence making a gross adjustment for the nature of the

game in each decade. Given the capabilities demonstrated by the Runs Created

model, the list of outstanding hitters in Table 6-14 is a very reasonable compila-

tion of the 36 greatest career performances in generating runs. As great as these

players were, many were dogged by the question of whether they produced in

clutch situations. (As followers of the Phillies, we well remember fellow

Philadelphians’ doubts about Mike Schmidt in this regard—that is, until he led

the Phillies to a World Championship in 1980.) In Chapter 10, we will examine

the clutch hitting issue and put some of the work in Chapter 7 to use in attempt-

ing to quantify contributions to winning.





OF BASEBALL STRATEGY

MAKING SENSE

9

Our primary goal in the last three chapters was to measure offensive perform-

ance. In the process of doing this, we compared a number of classical and mod-

ern measures of hitting performance. Also, we introduced some statistical tools

that are helpful in evaluating other baseball issues. In this chapter, we’ll show

how these same tools are helpful in making sense of three popular Major League

strategies.

What’s Wrong with Baseball?
In his November 23, 2002, ESPN.com column, entitled “Things Wrong with

Baseball,” Peter Gammons listed 25 “traditional things” that bother many peo-

ple who care about the game. We admit to being bothered by some of them our-

selves. For example, one of the 25 items was listed as “Players who slide into first

base.” It reminded us, of course, of a favorite player, Roberto Alomar, who slides

into first instead of running through the base. Whenever we see this, we always

think: Isn’t it obvious that you can reach first base quicker by running through

the bag? Then there’s the item about “the best-of-five Division Series.” To put it

bluntly, we don’t like that either. We think an important playoff series, in order

to be meaningful, needs to be best of seven—we’ll talk about the whole issue of

playoff series, and in particular the World Series, in Chapter 12.

But our real reason for bringing up the Gammons list of irritating things

about baseball is to point out that three traditional and well-established base-
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ball tactics—the sacrifice bunt, the intentional walk, and stealing—seem to get

under the skin of a lot of fans. Here are the relevant items from the list (with our

emphasis added):

1. Major League teams that bunt before the seventh inning.

2. National League managers who intentionally walk the eighth

hitter.

3. One National League GM insists, “We need stricter

consequences for an intentional walk.”

4. Meaningless steals of third base.

Note that the first item refers to bunting—in the Big Leagues, mainly

done as a sacrifice move, in order to advance a runner. The second and third

items of course bring to mind the awesome Barry Bonds, who was given far

more than his share of free passes to first in the 2002 season. (In the third

item, the unnamed general manager is suggesting that the pitching team

“pay” for the intentional pass by having all base-runners advance, even when

they are not forced.) Lastly, the fourth item addresses the issue of stealing

bases—under what circumstances does it pay off? (We devote most of our dis-

cussion in this chapter to stealing second base, but we do address steals of

third.)

Our intent here is to critically examine these time-honored baseball strate-

gies. George Lindsey, in his famous 1963 paper, was one of the first people to look

at baseball strategy from a statistical perspective. Using data collected from the

1959 and 1960 seasons, Lindsey found situations where attempted steals, sacri-

fice bunts, and intentional walks were good strategies. Our technique here is to

introduce some of the calculations used in Lindsey’s analysis, and provide some

insight about the value of the strategies.

Lindsey’s Run Potential Table
To get started, let’s recall Lindsey’s analysis of play-by-play data described in

Chapter 7. Using records compiled by his father, Lindsey found the distribution

of runs scored for each of the 24 possible bases-outs situations. (See Table 7-4,

where the bases occupied and number of outs, taken together, define 24 distinct

situations.) We can summarize the run distributions by the expected runs or run

potential table shown in Table 9-1—the entries in the table represent the

expected or average number of runs scored in the remainder of the inning in

each of the 24 situations. We see from the table that at the beginning of an
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inning, with no runners on and no outs, a team will score on average .461 runs

in the remainder of the inning. As the inning progresses, batters will get on base

or create outs. Each change in the bases occupied or the number of outs will

change the team’s potential to score runs. The best offensive situation, as one

would expect, is bases loaded with no outs —a team will score on average 2.220

runs in the balance of the inning. In contrast, it is tough to score runs when

there are no runners on and there are 2 outs—in this situation, a team will score

on average only .102 runs in the remainder of the inning.

Old vs. New Data

Although it is nice to recognize Lindsey’s contribution from a historical point of

view, it is reasonable to ask how valuable is a table based on data collected over

40 years ago. Or, to put it another way, does Lindsay’s analysis have any bearing

on baseball strategy in 2002? To answer these questions, Table 9-2 presents the

run potential numbers from play-by-play data for the entire 2002 baseball sea-

son. (These data appeared in an article by Derek Zumsteg, a Baseball Prospectus
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OUTS

None 1 2 3 1, 2 1, 3 2, 3 Full

0 0.461 0.813 1.194 1.390 1.471 1.940 1.960 2.220

1 0.243 0.498 0.671 0.980 0.939 1.115 1.560 1.642

2 0.102 0.219 0.297 0.355 0.403 0.532 0.687 0.823

BASES OCCUPIED

TABLE 9-1 Run Potential Table (Expected Number of Runs Scored in Remainder of

Inning), Using Data from the 1959 and 1960 Seasons (Lindsey, 1963)

None 1 2 3 1, 2 1, 3 2, 3 Full

0

1

2

0.511

0.272

0.101

0.896

0.536

0.227

1.142

0.682

0.322

1.405

0.944

0.363

1.511

0.936

0.450

1.838

1.185

0.524

1.956

1.358

0.633

2.332

1.510

0.776

OUTS BASES OCCUPIED

TABLE 9-2 Run Potential Table (Expected Number of Runs Scored in Remainder of

Inning), Using 2002 Season Data



writer, in an ESPN.com article on October 18, 2002.) Comparing Table 9-1 and

Table 9-2, we see some small differences, but the values in the two tables are

remarkably similar, and as we move from one situation to another, we see the

same general patterns. To be consistent with the work of Chapter 7, we will use

Lindsey’s run production table in our stolen base and sacrifice bunt analyses,

with the understanding that similar conclusions would be reached if we used the

2002 table. (For our discussion of the third strategy—the intentional walk—we’ll

focus on Barry Bonds, so the data used will be from 2002.)

A Second Important Table
The run potential matrix is particularly useful in the early to middle innings of a

game when the team is trying to score as many runs as possible. In these innings,

it is reasonable to choose strategies that maximize the average runs scored.

However, in the late innings, the score of a game may be close and a team may

be primarily interested in scoring just enough runs in an inning in order to tie

or win the game. For example, if a team is losing 2–1 in the eighth inning, the

objective is to score at least 1 run to tie or take the lead—a manager is less inter-

ested in scoring as many runs as possible. In these situations, it is helpful to con-

sider the probability of scoring at least 1 run in all possible situations. Using

Lindsey’s distributions of runs scored in Table 7-4, Table 9-3 gives this probabil-

ity of scoring table in the same format as the run potential table.

With the run potential table and probability of scoring table in hand, we can

assess some of these traditional strategies as they are routinely used in the

Major Leagues.
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None 1 2 3 1, 2 1, 3 2, 3 Full

0

1

2

0.253

0.145

0.067

0.396

0.266

0.114

0.619

0.390

0.212

0.880

0.693

0.262

0.870

0.633

0.283

0.820

0.730

0.332

0.820

0.697

0.329

OUTS BASES OCCUPIED

0.605

0.429

0.209

TABLE 9-3 Probability of Scoring Table, Using Data from the 1959 and 1960 Seasons

(Lindsey, 1963)



Stealing Second Base
One of the most exciting plays in baseball is the stolen base. Especially during

World Series and other high-stakes post-season games, television broadcasters

will go to great length to dramatize the situation that unfolds when a speedy

runner reaches first base. With multiple cameras trained on them, the runner

takes a lead, and the pitcher attempts (or feints) to pick him off. The situation is

much like a chess game. The pitcher may decide to pitch out (throw a pitch out-

side the strike zone), with the hope that the runner will attempt to steal and the

catcher will have a good opportunity to throw the runner out at second base. The

runner may also repeatedly fake a steal attempt, trying to distract the pitcher

from the batter he’s facing. The second baseman and shortstop are also on their

toes, ready to move if the runner tries to steal second. If the runner breaks

towards second, the hitter may swing at the pitch to distract the catcher and

help the runner reach second base safely. In other words, there’s a whole lot

going on.

But is stealing second base a productive winning strategy for a team? Or is it

one of those plays that’s run more to just spice up the game—say, by glorifying a

particular fast runner? To work toward an answer, we can take a look at the base

stealing data from the 2002 season. Figure 9-1 shows a dotplot of the season’s

stolen bases totals for all 30 teams, broken down by league. (A dotplot is a graph

on which each data value is represented by a big dot on the number line.) It is

interesting to note the wide spread in the numbers—Florida (the rightmost dot

in the NL) stole 177 and, in contrast, Oakland (leftmost dot in the AL) stole only

46.
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What could explain the wide variation? Maybe teams that can’t score lots of

runs with thin bats feel they need to steal bases to be competitive, while teams

that can score many runs with walks and extra-base hits don’t need to steal

bases. To see if there is a relationship between runs scored and the number of

stolen bases, we constructed the scatterplot shown in Figure 9-2.

There isn’t any well-defined pattern in the scatterplot, which means that over

a whole season, there doesn’t appear to be any general relationship between the

number of runs a team scores and the number of bases it steals. It is interesting

to note, though, that the worst-scoring team, Detroit, was also pretty poor at

stealing bases. One could speculate that the Tigers didn’t steal very much

because the team didn’t have players who were good at stealing. Or perhaps it

was the fact that the managers (yes, they had more than one manager in 2002)

didn’t think that the stolen base was an effective strategy for scoring runs.

One likely explanation for the wide variation in stealing between teams is

that some managers believe that stealing is an effective strategy, and other

managers don’t. In addition, some teams have (and recruit and train) players

capable of stealing, and other teams don’t. Nonetheless, the question remains . . .
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To Steal or Not to Steal

Here we focus on the issue of stealing as an effective strategy. Consider a typical

game situation: A runner on first with no outs. Should the runner steal second?

Looking at Table 9-1, we see that when the runner is standing at first base

with no outs, then the run potential is .813. So, on average, the team will score

about four–fifths of a run in the remainder of the inning. This is the run poten-

tial for the runner currently on first base, and it includes the impact on that run-

ner of base hits, outs, stealing, and other subsequent events.

What happens, though, if the runner attempts to steal second? Suppose he is

successful—then the new situation is “runner on second with no outs” and the

new run potential (looking at Table 9-1) is 1.194. So the team has gained 1.194

– .813 = .381 runs with this successful steal.

At the other extreme, suppose that the baserunner attempts a steal and is

thrown out at second. The new situation, in this worst-case scenario, is “no run-

ners with 1 out,” which has a run potential of .243. Comparing this with the ini-

tial (“pre-steal”) run potential of .813 runs, we see that the cost of this unsuc-

cessful steal attempt is .813 – .243 = .570 runs.

Actually, neither of the two situations described above, taken singly, presents

the complete picture. A good baserunner will generally be successful in stealing

second, but occasionally he will be thrown out. In an attempt to model this fact,

we can describe a base runner’s ability to steal using a number p, the probabil-

ity that he will steal successfully. It then follows that 1 – p is the probability he

will be thrown out at second base.

Figure 9-3 shows the two possibilities (stealing successfully or being thrown

out), the probabilities of the two outcomes, and the run potential of the final sit-

uation.
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FIGURE 9-3 Two outcomes and run potentials of the “attempted steal” strategy.



If the runner attempts many steals, then 100 × p percent of the time, he’ll be

successful and 100 × (1 – p) percent of the time, he’ll fail. The expected or

average run potential of this base runner will be:

RUN POTENTIAL = [p × (run potential if he succeeds)] +

[(1 – p) × (run potential if he fails)]

= [p × (1.194)] + [(1 – p) × (0.243)]

Figure 9-4 graphs this RUN POTENTIAL for different values of the stealing

probability p. This is the diagonal line in the figure. The horizontal line repre-

sents the run potential for the team (.813) if the base runner does not attempt to

steal.

Attempting to steal will be a good strategy when the diagonal line is above

the horizontal line in Figure 9-4. This will happen when p, the stealing proba-

bility, is above .60. When p is smaller than .60, the stealing strategy will cost the

team some runs.

What are typical values of p, the probability of stealing second base success-

fully? Figure 9-5 shows a dotplot of the probabilities of successful steals for the

30 teams in the 2002 season. Although there is a lot of variation in these num-

bers, it seems that 70 percent is a typical value. Looking at Figure 9-4, we see
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that the gain in the “attempted steal” strategy is approximately .1 when p =

.70. So, from an expected runs perspective, it makes sense to steal (with a run-

ner on first and no outs) if a player has an average stealing probability.

A Different Criterion

The analysis of stealing as a strategy that we’ve presented so far may be criti-

cized by some people because we assume a team is attempting a steal because it

wishes to maximize the number of runs scored. But maybe the team is attempt-

ing to steal to improve the chances of scoring at least 1 run. This is clearly the

objective late in a game with the score tied or one team down by just 1 run. Does

a steal attempt make more sense if scoring at least 1 run is the purpose?

To check this out, we repeat the above calculations using the probability of

scoring data presented in Table 9-3.

With a runner on first and no outs . . .

• The probability the team will score at least 1 run is .396.

• If the runner attempts to steal and is successful with 

probability p, the chance the team will score at least 1 run is 

[p × (.619)] + [(1 – p) × (.145)]

Attempting to steal second base is a good strategy when the probability of

scoring using this strategy exceeds the probability of scoring when the runner

stands on first. In math-talk, this is:

[p × (.619)] + [(1 – p) × (.145)] > .396

In Figure 9-6, we graph the probability of scoring under the two possible

strategies.

Note from Figure 9-6 that it is beneficial to try to steal second base (from the

viewpoint of scoring at least 1 run) when the stealing probability is larger than

.53. For a slow runner with stealing probability of .55, note that it is not benefi-

cial to try to steal second base if the goal is to maximize the number of runs

MAKING SENSE OF BASEBALL STRATEGY 251

STEALING PROPORTION

0.56 0.60 0.64 0.68 0.72 0.76 0.80

FIGURE 9-5 Successful stealing proportions for the Major League teams in the 2002 season.



scored. However, if the goal is to maximize the chance of scoring, it is advanta-

geous to try to steal. This illustrates an important point. The best strategy in

baseball will depend on what a team considers important in the given situation.

In the early innings, it makes sense to choose a strategy that will help a team

score multiple runs—here they want to choose a strategy to maximize runs. Late

in a close game, by contrast, a team may be interested in scoring just a single

run—here, they would like to choose a strategy that maximizes the probability

of simply scoring.

Stealing in Other Situations

In our discussion, we have only talked about the situation where there is a run-

ner on first with no outs. What about other bases-outs situations?

In Table 9-4, we summarize all of the calculations for a single runner on first

or second base and 0, 1, or 2 outs. We assume we have a good stealer, one whose

success probability is .75. We compare the two strategies (stay on the base or

attempt a steal) by using both criteria (expected runs and probability of scoring)

for each of the six possible situations. The important results can be found in the
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“GAIN” column—a GAIN is the increase in run potential (or probability of scor-

ing) for the attempted steal strategy, so it measures the benefit of a steal attempt.

This table gives us general indications of when it is smart and dumb to steal

a base. From both a run potential and probability of scoring perspective, it

makes sense to try stealing when there is a runner on first with 0 or 1 out. On

the other hand, it is better to stay on base when there is a runner on second with

2 outs. However, in one situation, with a runner on second and no outs, things

get interesting. If a team wishes to maximize the run potential, it is advanta-

geous to hold the runner in this situation. But if simply scoring is the main goal,

it makes sense to steal. (This reminds us of a lyric from the Kenny Rogers song

The Gambler—”You got to know when to hold ‘em . . .”)

The Sacrifice Bunt
The sacrifice bunt is another popular baseball strategy with lots of adherents as

well as some detractors. Here’s the basic situation: A team has a runner on first

with 0 or 1 out. A relatively weak hitter is at the plate. The batter is instructed

to bunt (usually by the third-base coach) with the purpose of advancing the run-

ner from first to second. The hitter is sacrificing his at-bat, with the goal of

advancing the runner and making it more likely that his team will score.

Moreover, by attempting to sacrifice with a laid-down bunt, the weak batter is

making it less likely that he will hit into a double play.
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1.194

0.671
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1.103

0.760

0.266

0.143

0.107

0.004

–0.091

0.089

–0.031

0.396

0.266

0.114

0.619

0.390

0.212

0.500

0.309

0.159

0.696

0.537

0.197

0.104

0.043

0.045

0.077

0.147

–0.015

RUN POTENTIAL PROBABIL ITY OF  SCORING 

Runners
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NUMBER

OF OUTS
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Attempt to 
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Gain in 

stealing

Stay on 

base strategy
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steal strategy
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0
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0

1

2

TABLE 9-4 Run Potentials and Probabilities of Scoring for the “Stay on Base” and

“Attempted Steal” Strategies for a Good Stealer (p = 0.750) for Six

Different Bases-Outs Situations



How often is this strategy currently used in baseball? Table 9-5 gives the

players who had at least 10 sacrifice hits (SH) in the 2002 season. We indicate in

the table if the player was a pitcher or nonpitcher.

We see that half of these players are pitchers. This makes sense, of course,

because pitchers are generally weak hitters. However, a number of nonpitchers

had a significant share of the sacrifice hits. Should we be puzzled by this?

To get some more insight, in Figure 9-7 we plot the number of team sacrifice

hits and compare the two leagues.

Note that the teams in the NL sacrifice a lot more than the teams in the AL.

This is expected, since the American League uses the designated hitter, and it is

extremely rare that an AL pitcher gets to bat. So it seems that the sacrifice bunt
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TABLE 9-5 Players with at Least 10 Sacrifice Hits in the 2002 Baseball Season
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FIGURE 9-7 Number of sacrifice hits by all Major League teams in the 2002 season.



is used often with weak hitters like pitchers, but we note that this strategy is

still popular among some nonpitchers like Jack Wilson and David Eckstein.

Sacrifice Bunts in the 2001 World Series

Consider the case of Arizona’s Craig Counsell in the fourth game of the 2001

World Series. This Series, between the Diamondbacks and the New York

Yankees is considered one of the most exciting in Major League history. In Game

4, there was no shortage of drama and surprise.

In the top of the first inning, the leadoff hitter for Arizona, Tony Womack, sin-

gled to center. Then Craig Counsell, the second batter, was instructed to hit a

sacrifice bunt. The bunt was effective—Counsell was thrown out at first and

Womack advanced to second, but the inning finished without Womack scoring.

In the top of the third, the same situation developed: Womack opened the inning

by getting to first base (in this case, on a walk), and Counsell moved him to sec-

ond by sacrifice-bunting. (Again, Womack didn’t score.) In the top of the fifth,

Womack started the inning with a double. Counsell again laid down a sacrifice

bunt, moving Womack to third. The next hitter, Luis Gonzalez, hit a fly ball, but

Womack was thrown out at home plate, ending the inning.

It appears that the Arizona manager, Bob Brenly, liked to play the sacrifice

bunt in this series. Counsell was instructed to sacrifice his at-bat three times in

order to advance the runner one additional base. But in three sacrifice-bunting

attempts, the Diamondbacks came up empty. Does this mean, then, that the sac-

rifice bunt is a dumb play?

Managers Do and Don’t Like to Sacrifice

Before we try to answer this, let’s look at the use of the sacrifice bunt in a few

recent seasons. Table 9-6 presents statistics for all 30 Major League managers in

2000 (from the Major League Handbook 2001, by Stats, Inc.). For each team, the

table gives the number of sacrifice bunt attempts, the percentage of time the

strategy was successful (in terms of advancing a runner), and the most popular

inning for this strategy.

We see significant variation in the use of the sacrifice bunt from manager to

manager. Alou, Baylor, Bell, Cox, and La Russa seem to like to sacrifice, while

Torre, Hargrove, and Kelly seem not to favor it. The success rates for all teams

seem close to the median value of 81 percent. It is interesting that there is con-

siderable variation in the popular inning for the sacrifice bunt—many managers
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League

American 45 75.6 1

American Garner 58 79.3 9

American 36 80.6 8

American Howe 40 77.5 6

American 37 75.7 3

American 59 84.7 1

American J. Manuel 75 86.7 7

American Muser 72 87.5 7

American Oates 66 83.3 8

American Pinella 73 87.7 5

American 73 79.5 7

American Scioscia 63 84.1 7

American Torre 22 81.8 3

American Williams 49 89.8 7

National Alou 103 83.5 3

National Baker 86 90.7 3

National 115 84.3 3

National Bell 100 83.0 4

National 52 76.9 2

National Boles 61 78.7 3

National Cox 109 80.7 2

National Dierker 77 79.2 4

National Francona 89 84.3 3

National Johnson 80 81.3 2

National La Russa 107 79.4 2

National Lamont 78 76.9 3

National 78 78.2 3

National McKeon 82 76.8 3

National Showalter 89 75.3 3

National Valentine 84 85.7 2

Manager Attempts Success rate Favorite inning

Fregosi

Hargrove

Kelly

C. Manual

Rothsfield

Baylor

Bochy

Lopes

TABLE 9-6 Sacrifice Bunt Statistics for All Major League Baseball Managers in 2000



prefer the third inning, where the bottom of the order is frequently coming to

bat, but other managers seem to prefer sacrificing in the later innings.

Should Curt Schilling Sacrifice?

Clearly, one of the key factors in deciding whether to sacrifice is the strength or

weakness of the batter. Let’s first consider the situation where a weak batter,

like Curt Schilling, comes to bat with a runner on first with no outs. Is it a good

strategy for him to sacrifice?

If a team is thinking about sacrificing, then it seems that the objective is to

score a single run. So we focus on maximizing the probability of scoring at least

1 run. There are two possible options for Schilling—either he can attempt to sac-

rifice, or he can hit away.

If he attempts to sacrifice, he’ll either be successful in advancing the run or

he won’t. Let’s assume Schilling is a pretty good bunter and he’ll successfully

sacrifice with probability .8. (That value is roughly the average success rate

among the 2000 teams.) Table 9-7 shows how one can compute the probability of

scoring in this scenario. If he succeeds, there will be a runner on second with 1

out and (from our probability table) the chance of scoring in that situation is

.390. If he fails, the runner will remain on first with 1 out, and the chance of scor-

ing is .266. Combining these two possibilities, we see that the probability of scor-

ing if he attempts to sacrifice is as follows:

[.8 × .390] + [.2 × .266] = .365

Suppose instead that Schilling decides (or more likely is told) to hit way. In

the last five seasons (1998 through 2002), he has had 341 plate appearances,

with 279 outs, 40 singles, 5 doubles, 1 triple, no home runs, and 16 walks. Using
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Outcome Runners Outs

0.8 2 0.390

0.2 1 0.266

NEW SITUATION

Probability of scoring = 0.365

Probability of scoring 

runs in that situationProbability

Sacrifice successful

Sacrifice fails

1

1

TABLE 9-7 Computation of the Probability of Scoring if Curt Schilling Attempts a

Sacrifice Bunt with Runner on First and No Outs



these data, we can approximate the probabilities of the different events when he

hits away, and these numbers are shown in Table 9-8. Each event will result in a

new bases-outs situation. Using our probability table, we can find the likelihood

of scoring in that situation. (We assume that a single will advance a runner to

second, and a double will score the runner.)

As before, we find the probability of scoring by multiplying the event proba-

bilities by the corresponding probabilities of scoring, then summing the prod-

ucts. We arrive at the probability of scoring, if Schilling hits away, of .335. So

what, then, should Schilling do? We compare the probabilities of scoring in the

two scenarios:

• Option 1: Schilling attempts to sacrifice: Probability of scoring = .365

• Option 2: Schilling hits away: Probability of scoring = .335

The answer is clear. Since the probability of scoring is significantly higher if

he sacrifices, that is the right strategy.

How About Craig Counsell?

Again, the choice of whether to bunt or hot out depends on the batter. When

Craig Counsell comes to bat, we’re looking at a very different hit-away profile. If

we use his data in the 1999–2002 span, we see that he will get out with proba-

bility .651, single with probability .188, and so on. If Craig Counsell hits away

when there is a runner on first with no outs, then the probability of scoring is
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Outcome Runners Outs

NEW SITUATION

Probability of scoring 

runs in that situationProbability

Out 0.818 0.266

0.117 1,2 0

0

0

0

0.605

Double 0.015

0.003

Home run 0.000 none

Walk 0.047 1,2 0 0.605

Single

Triple

2

3

1

1.000

1.000

1.000

1

Probability of scoring = 0.335

TABLE 9-8 Computation of the Probability of Scoring if Curt Schilling Attempts to Hit

Away with a Runner on First and No Outs



.406. (The calculations are summarized in Table 9-9.) This probability is signifi-

cantly higher than the probability of scoring when attempting to sacrifice (.365),

so Craig really should not sacrifice. (Bob Brenly, are you listening?)

The moral here is that only weak hitters should sacrifice if the goal is to max-

imize the chance of scoring in an inning, but two comments should be made

about this analysis before we go on. First, we ignored the chance of hitting into

a double play. (Remember that one reason for sacrificing was to avoid the double

play.) We could easily include the possibility of hitting into a double play if we

had reliable data regarding the number of sacrifice bunt attempts and hit-away

attempts that result in double plays. The inclusion of the double-play possibility

would reduce the value of hitting away and make the sacrifice bunt attempt a

little more attractive, but it wouldn’t change the strategy decisions for Schilling.

In the case of Counsell, we can show that the sacrifice bunt would be the better

strategy if the probability of hitting into a double play when hitting away is

greater than .207.

The second comment is that the sacrifice bunt is a more effective strategy in

situations when a single run has a significant effect on the probability that the

team wins a game. In Chapter 10, we will link the runs scored during an inning

with the probability that the team wins the game, and it may be best to judge the

usefulness of a sacrifice bunt using the probability of winning measure dis-

cussed in that chapter.
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Outcome Runners Outs

NEW SITUATION

Probability of scoring 

runs in that situationProbability

Out 0.266

1,2 0

0

0

0

0.605

Double

Home run none

Walk 1,2 0 0.605

Single

Triple

2

3

1

1

1.000

1.000

10.651

0.188

0.042

0.005

0.007

0.108

Probability of scoring = 0.406

.000

TABLE 9-9 Computation of the Probability of Scoring if Craig Counsell Attempts to Hit

Away with Runner on First and No Outs



The Intentional Walk
In the 2002 World Series, the most talked-about strategy was not the sacrifice

bunt but the intentional walk. This is the third strategy we’ll discuss in this

chapter. Barry Bonds walked 14 times in the 2002 Series, including 6 intentional

walks. Many articles in the sports pages talked about the wisdom or desirability

of the intentional walk strategy. Without doubt, many fans were disappointed

seeing one of the greatest hitters of all time, at his peak, getting walks. The fans’

reaction was understandable—they were denied the opportunity to see a boom-

ing Bonds home run.

To help us get a handle on the magnitude of the intentional walk phenome-

non as it relates to Bonds, Table 9-10 lists the leaders in intentional walks for

the 2002 season. Bonds received a record 68 intentional walks and the runner-

up, Vladimir Guerrero, received only 32—less than half of Bonds’s total. Mark

McGwire, in his record-setting 1998 season, received only 28 intentional walks,

and Ted Williams, in his great 1957 season, when he hit for a .388 batting aver-

age, received only 33 intentional passes. (It should be noted, however, that inten-

tional walks were only recorded starting with the 1955 season, so we don’t have

intentional walk statistics for all of Williams’s seasons, or for earlier sluggers

such as Babe Ruth.)

But is there any measurable way to prove it was good baseball strategy to

walk him? The evidence seems overwhelming—it must have made sense to walk
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TABLE 9-10 Leaders in Intentional Walks for the 2002 Season



Bonds. Giving him an intentional pass incurs a cost. With an extra base runner,

the batting team will have a higher potential to score runs. The pitching team

must think that the cost of intentionally walking Bonds is smaller than the cost

of having him swing away. Logic dictates this kind of cost-benefit analysis.

Compare the Costs

Let’s assume that a team is interested in limiting the number of runs scored by

its opponent in an inning, so they would like to minimize the expected number

of runs scored. Here we will use the run potential table based on play-by-play

data for the 2002 season (Table 9-2), since it best represents the run-scoring abil-

ity for an average team in 2002. Using this run potential table, we have an objec-

tive way of comparing the cost of the two possible strategies, walking Bonds and

pitching to Bonds. Let’s illustrate this comparison for one situation: 1 out with

runners on first and second.

Suppose we walk Barry. When he walks, the bases are now loaded with 1 out.

The run potential of the beginning situation (runners 1,2; 1 out) is .936 runs

(look at Table 9-2), and the run potential of the new situation (bases loaded; 1

out) is 1.510 runs. The cost of this walking strategy is 1.510 – .936 = .574 runs,

which is about half a run. This is a high cost.

But the team thinks that this cost is lower than the cost of pitching to Bonds.

If we decide to pitch to Bonds, we have to consider what Bonds can do at a sin-

gle at-bat.

If he gets to bat and swings, the possible outcomes, along with their probabil-

ities, are as follows:

Single .1737

Double .0769

Home run .1141

Get Out .6303

Triple .0050

These probabilities are derived from 2002 season data—in 403 plate appear-

ances, Bonds had 70 singles, 31 doubles, 46 home runs, 254 outs, and 2 triples. To

find the cost of having Bonds swing away, we first find the cost of each possible

batting outcome. If Bonds singles, for example, we compute the value of this play

by looking at the difference in run potentials in the before and after states and

adding the number of runs scored on the play. This computation is called the

GAIN in Table 9-11. After we do this for each possible batting play, we multiply
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the gains by the corresponding probabilities of the batting events, and add the

products to get the cost.

In this particular case (runners on first and second with 1 out), we find that

the cost of pitching to Bonds is .278 runs.

Which is a better strategy in this case? The cost of an intentional walk was .574

runs and the cost of pitching to Bonds was .278 runs. The difference in costs is:

Cost of intentional walk – Cost of swinging Bonds = .574 – .278 = .296

So actually, it is better in this case to pitch to Bonds and have him swing. To put

it another way, we gain, on average, about .3 runs by pitching to Bonds instead of

walking him. (And the GAIN is even higher if double plays are considered.)

We repeated this type of calculation for all 24 bases-outs situations and com-

puted the difference in costs between the intentional walk and pitch to Bonds
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Outcome Runners Outs

NEW SITUATION

Probability

Out

Double

Home run

Single

Triple

Gain

0.630 1, 2 0.936 0.450 0 –0.486

0.174 1, 2 0.936 0.936 1 1.000

0.077 0.936 0.682 2 1.746

0.005 0.936 0.944 2 2.008

0.114 None 1 0.936 0.272 3 2.336

Cost = 0.278

2

3

2

1

1

1

Run potential

of starting state

Run potential

of final state

Runs scored

on play

TABLE 9-11 Computation of Cost of Having Barry Bonds Hit Away with Runners on First

and Second with 1 Out

None 1, 2 1, 3 2, 3 Full

0 0.30 0.45 0.29 0.65 0.45 0.49 0.31 0.99

1 0.18 0.23 0.07 0.30 0.29 0.25 0.08 0.80

2 0.04 0.02 –0.11 –0.02 –0.04 –0.02 –0.16 0.69

1 2 3

OUTS BASES OCCUPIED

TABLE 9-12 Differences in Costs Between the Intentional Walk and Pitch-to-Bonds

Strategies: A Positive Value Indicates That the Intentional Walk Strategy

Costs More Than the Pitch-to-Bonds Strategy



strategies. These differences are shown in Table 9-12—remember that a positive

value means that the intentional walk strategy is more costly.

Some of the values in this table are close to zero and may not be significant.

For example, a difference of .04 run may reflect only chance variation, and not a

real difference between the two strategies. Figure 9-8 displays a dotplot of the

group of differences in cost.

Suppose we say that a difference of .1 run or more is “significant.” Then we

can draw some general conclusions about the walking Bonds strategy shown in

Table 9-13.

What does this table tell us?

• In most situations, it is better to pitch to Bonds than to

intentionally walk him.

• The only times when one gains by walking Bonds is when there

are 2 outs, runners are on base, and first base is open.

• In four situations (the three bases loaded situations, and runner

on third with no outs), the cost of walking Bonds is the greatest.
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Walk Pitch???

–0.2 0 0.2 0.4 0.6 0.8 1.0

DIFFERENCE

FIGURE 9-8 Dotplot of the differences in costs (intentional walk vs. pitch-to-Bonds) 

for the 24 situations, with regions of “significant” differences indicated.

None 1, 2 1, 3 2, 3 Full

0

1

2

1 2 3

Pitch Pitch Pitch Pitch Pitch Pitch Pitch Pitch

Pitch Pitch ??? Pitch Pitch Pitch ??? Pitch

??? ??? Walk ??? ??? ??? Walk Pitch

OUTS BASES OCCUPIED

TABLE 9-13 The Best Decision, PITCH to Bonds, WALK Bonds, or “???” (Too Close to

Call) for Each of the 24 Bases-Outs Situations



The cost in these situations is substantial—between .6 and 1.0

runs.

• In some situations, mostly with 2 outs, there is no significant

difference in the costs of the two strategies.

Some Caveats

The intentional walk strategy was recently discussed in the ESPN.com article by

Derek Zumsteg. Using the run potential table, Zumsteg comes to the same con-

clusion we have—it’s generally better to pitch to Bonds than intentionally walk

him. But Zumsteg mentions a number of factors that could alter this strategy.

Let’s discuss these factors, since they relate to our discussion of situational

effects in Chapter 4.

Our work is based on the run potential table that gives the mean number of

runs scored for an average team against an average pitcher in a given bases-outs

situation. Of course, not all teams have the same ability to produce runs—the

run potential values for the 2002 Oakland Athletics, say, is a lot higher than the

corresponding run potential values for the 2002 Florida Marlins. Similarly, it

will be harder to produce runs against good pitchers than against poor pitchers.

Also, teams playing the 2002 Giants are very aware that the San Francisco play-

ers have varying abilities to produce runs. The run-producing abilities of Barry

Bonds and Jeff Kent are significantly higher than the abilities of Benito

Santiago and David Bell, for example. Wouldn’t it make some sense to walk

Bonds to pitch to the weaker hitter Santiago, who follows Bonds in the order?

Also, since Santiago is a relatively slow runner and is likely to hit ground balls

(as opposed to fly balls), wouldn’t it make more sense to pitch to Santiago, since

he is more likely to hit into a double play? Also, couldn’t you make the “walk

Bonds, pitch to Santiago” even better by using a pitcher who tends to induce

ground balls instead of fly balls? And doesn’t the choice of strategy depend on

the inning and the score of the game?

The first comment is that the cost of intentionally walking a batter is large.

So although the choice of pitcher, the ability of the following hitter, and the game

situation may change the cost of intentionally walking Bonds, these adjustments

will generally be small relative to the cost of walking Bonds. In situations where

it is hard to choose between walking and pitching to Bonds (like the 2-outs situ-

ations), these other considerations may lead to one strategy or the other. The sec-

ond comment is that a team should be wary about adjusting their strategy

according to the situation until they know that the situation corresponds to a
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“true” effect. Recall our discussion about situational effects for hitting in

Chapter 4. In a single season, we see many extremely high and low situational

hitting effects (say, home vs. away batting averages), and these extreme values

are just chance variation. To really understand the true run potential effect

according to a given situation, say the use of a ground-ball pitcher, one has to

look at data for many players over many seasons (as we did in Chapter 4). It

would be interesting to see how the run potential tables can change for different

offensive and defensive teams and how the variability in run potentials can lead

to alternative strategies. But until such a study is done, it seems best to put most

of one’s faith in the “average” run potential table (Table 9-2) and regard the par-

ticular situations as having a minor role in the proper choice of strategy. Bonds,

after all, is obviously a colossal threat to an opposing pitcher, but that doesn’t

mean one should always give him a free pass to first.
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CLUTCH PLAY

MEASURING

10

“At its most critical moments, baseball chooses its heroes and goats with the ran-

domness of a carnival barker’s rickety spinning wheel. Where she stops nobody

knows.” So wrote Tom Verducci in his Sports Illustrated article describing the

sporting event he would most like to have witnessed.1 The event was Cookie

Lavagetto’s double in the fourth game of the 1947 World Series. The hit, with two

outs in the bottom of the ninth inning, not only won the game for Lavagetto’s

Dodgers over the Yankees, to tie the series—it also spoiled Yankee Bill Bevens’s

bid to pitch the first no-hit game in World Series history.

Out of the 25 greatest moments in baseball history (as selected in the October

18, 1999, issue of The Sporting News), 10 (or 40 percent)2 involve clutch hits.

Here are those 10 great clutch moments, in order as they appeared in the list:

#1: Bobby Thomson’s home run to win the 1951 National League pennant playoff for

the New York Giants.

#2: Bill Mazeroski’s home run to win the 1960 World Series for the Pittsburgh

Pirates.

#4: Carlton Fisk’s home run to guarantee a Game 7 for the Boston Red Sox in the

1975 World Series.

267

1 Sports Illustrated, November 29,1999, p. 80.
2 #10 on The Sporting News list was St. Louis Cardinal Enos Slaughter’s dash from first to score

the series-winning run in the 1946 World Series. The percentage would rise to 44 percent if we

include the hit by Harry Walker that initiated the play.
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#6: Kirk Gibson’s two-out, ninth-inning home run, which turned defeat into victory

for the Los Angeles Dodgers in Game 1 of the 1988 World Series.

#14: Bucky Dent’s home run to win the 1978 American League East pennant playoff

for the New York Yankees.

#16: Joe Carter’s home run to win the 1993 World Series for the Toronto Blue Jays.

#21: Chris Chambliss’s home run to win the 1976 American League pennant for the

New York Yankees.

#22: George Brett’s home run to win Game 3 of the 1980 American League

Championship Series for the Kansas City Royals.

#24: Dave Henderson’s two-out, ninth-inning home run in Game 5 of the 1986

American League Championship to keep the Boston Red Sox alive.

#25: Cookie Lavagetto’s double (described above).

Another 3 events (12 percent3) are moments in which hitters were unsuccessful

in clutch situations:

#9: Vic Wertz’s long drive to center field, caught by Willie Mays, in the eighth inning

of a tied Game 1 of the 1954 World Series.

#13: Willie McCovey’s line drive into the final out of the 1962 World Series, with the

series-winning runs in scoring position.

#18: Yogi Berra’s bid for an extra-base hit with two runners on which was caught by

Sandy Amoros in the sixth inning of Game 7 of the 1955 World Series.

Most baseball fans are familiar with at least some of these moments. While we

all may have favorites that were not included and may disagree with the rank-

ings, by and large, these are indeed great moments in the history of the sport.4

But what exactly is it that makes them so?

All thirteen occurred in important games. Eight occurred in World Series

games. Of the remaining five, a league championship was at stake in four and a

3 Two other moments involved plays in which the hitter was unsuccessful, but an error by a

fielder produced a positive result for the team at bat. The Sporting News’ #8 was Bill Buckner’s

error in Game 6 of the 1986 World Series; and #23 was Catcher Mickey Owen’s dropped third

strike, which would have been the final out of Game 4 in the 1941 World Series.
4 We are partial to events involved in deciding a pennant race, including two on the final day of

the 1950 National League season. Phillie Richie Ashburn threw out Cal Abrams’s potential

winning run in the bottom of the ninth inning to preserve the tie game between the two

pennant contenders, Philadelphia and Brooklyn. In extra innings, Dick Sisler’s home run won

the pennant for the Phillies. (Not so incidentally, the climax of dramatizations like The

Natural, Damn Yankees, and Major League is a game that decides the pennant, not the World

Series.)
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division championship in another. Of course, it isn’t just the game that makes

these moments special—it is the situation within the game. Eight of these

moments were the final play of a game in which victory was decided. Four of

them (the Thomson, Gibson, Carter, and Lavagetto events) turned defeat into

victory; three (Mazeroski, Fisk, and Chambliss) provided the winning edge in a

tie game; and one (McCovey) was the last failed attempt to attain victory.

Of course, few games have the inherent drama of a pennant clincher or the

seventh game of the World Series. But throughout the season, even in inconse-

quential games between two also-ran teams, spectators are gripped by dramatic

situations in which the game hangs in the balance, where one play, even just one

ball or strike, may be the difference between victory and defeat. In trying to

define which of these should be called a “clutch situation” (an admittedly vague

term), we’ve come up with these criteria:

• The score is close. The fan must feel that whatever happens in the

next play will provide a decisive edge in the score and thereby

determine the outcome of the game.

• The situation is late in the game. In the early innings, there is

always the feeling that there will be time to come back. But as the

game proceeds and the shadows lengthen (in those increasingly

rare games played outdoors and in the daytime), each play gains

in importance, especially when the score is close.

• Runners are on base. It is possible (as we will see later) for

situations with no runners on to be important, but the drama

increases when runners reach base and the probability of scoring

increases.

• Two outs is more dramatic than one out, which is more dramatic

than no outs. As outs increase, the number of opportunities to

score in the inning decreases, placing greater value on the

opportunities remaining.

Clutch Hits
If we pick a player and say that he hits in the clutch, what exactly do we mean?

Do we mean that he hits better when runners are on base? When the score is

close? When runners are on and there are two outs?

To gain some perspective, we will examine how well Major League Baseball

players as a group have hit in various situations. From 1985 through 1993, the
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Elias Sports Bureau published the annual Elias Baseball Analyst. The books

provided hitting data for each league in the following game situations:

• Entire season—all game situations.

• Leading off an inning.

• Runners on—at least one runner on base.

• Runners in scoring position—at least one runner on second or

third base.

• Runners on and two outs.

• Runners in scoring position and two outs.

• Late Inning Pressure (LIP)—a situation in the seventh inning or

later with the score tied or with the batter’s team trailing by one,

two, or three runs (or four runs and the bases loaded). The

definition (and name) of this situation was the creation of the

Elias Sports Bureau, who wanted to capture those circumstances

in which the game was close and there was a decreasing

opportunity to change the outcome. LIP has become standard

enough to be listed in The Dickson Baseball Dictionary.

• Leading off an inning in a LIP situation.

• Runners on in a LIP situation.

• Runners in scoring position in a LIP situation.

Situation AB H AVG

All 464,057 121,269 .261

Leading Off 111,756 28,856 .258

Runners On 201,183 54,029 .269

Runners/Scoring Position 114,773 30,144 .263

Runners On/2 Out 84,996 21,208 .250

Scoring Position/2 Out 54,476 13,187 .242

Late Inning Pressure (LIP) 66,824 16,901 .253

LIP Leading Off 16,745 4,156 .248

LIP Runners On 28,447 7,373 .259

LIP Runners/Scoring Position 16,165 4,048 .250

TABLE 10-1 Batting Averages in Various Game Situations, American League, 1984,

1986–88, 1990, 1992
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Table 10-1 provides American League total at-bats, hits, and overall batting

averages for the years 1984, 1986–88, 1990, and 1992. (We restricted the com-

parison to the American League to exclude the batting of pitchers and so pre-

serve consistency in the types of hitters analyzed.)

Before comparing averages in the different situations shown in Table 10-1,

we must understand that many of these situations are not independent of one

another. Let’s consider “Runners On” and “Scoring Position.” When a runner is in

scoring position, there are always runners on base. This may be obvious, but it is

important to understanding the data in Table 10-1. Every at-bat tabulated in the

Runners in Scoring Position row of Table 10-1 is also included in the totals for

the Runners On row; one situation is a subset of the other. So, the two rows can-

not be compared directly. The Runners in Scoring Position row must be sub-

tracted from the Runners On row to create Runners Not in Scoring Position. The

AVG in this situation can then be compared to the Runners in Scoring Position

AVG to determine the effect of having runners in scoring position as opposed to

having a runner only on first base.

Figure 10-1 shows the dependencies between the situations in Table 10-1.

Each line connects one situation to another situation (at a higher level in the

hierarchy) of which it is a subset. For example, Scoring Position is connected to

Runners On, which is at a higher level. In a general sense, the lower the situa-

tion is in Figure 10-1, the more we regard it as a clutch situation.

Each line in Figure 10-1 represents a possible comparison of situations:

• Leading Off an Inning versus Not Leading Off an Inning (Overall

or in LIP).

All Situations

Leading Off

LIP

Runners On

Leading Off in LIP Runners On in LIP Scoring Position

Scoring Position in LIP

Runners On/2 Outs

Scoring Position/2 Outs

FIGURE 10-1 Schematic depiction of situational subsets (each line connects a subset at a

lower level to a superset at a higher level).
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AB H AVG

Leading Off 111,756 28,856 .2582 16,745 4156 .2482

Not Leading Off 352,301 92,413 .2623 50,079 12,745 .2545

Difference –.0041 –.0063

LATE INNING PRESSUREOVERALL

• •

AB H AVG

• •

TABLE 10-2 Leading Off an Inning vs. Not Leading Off, American League, 1984,

1986–88, 1990, 1992

Scoring Position 114,773 30,144 .2626 16,165 4048 .2504

Bases Empty 262,874 67,240 .2558 38,377 9528 .2483

Difference .0069 .0021• •

AB H AVG

LATE INNING PRESSUREOVERALL

AB H AVG

• •

TABLE 10-3 Runners in Scoring Position vs. Bases Empty, American League, 1984,

1986–88, 1990, 1992

Scoring Position 114,773 30,144 .2626 16,165 4048 .2504

54,476 13,187 .2421

First Base Only 86,410 23,885 .2764 12,282 3325 .2707

30,520 8021 .2628

Difference –.0138 –.0203

–.0207

TWO OUTS

• •

AB H AVG AB H AVG

AB H AVG

LATE INNING PRESSUREOVERALL

• •

• •

Scoring Position

First Base Only

Difference

TABLE 10-4 Runner in Scoring Position vs. Runner on First Base Only, American League,

1984, 1986–88, 1990, 1992
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• Runners in Scoring Position versus Bases Empty (Overall or in

LIP).

• Runners in Scoring Position versus Runner on First Base Only

(Overall, With Two Outs, or in LIP).

• Two Outs versus None/One Out (With Runners On or With

Runners in Scoring Position).

• LIP versus No LIP (Overall, When Leading Off, or With Runners

in Scoring Position).

Let’s look at each comparison separately, as presented in Tables 10-2 through 10-6.

Leading Off an Inning vs. Not Leading Off

Hitters appear to bat about .004 points less when leading off than when not

leading off. The difference is not appreciably changed in Late Inning Pressure

situations.

Runners in Scoring Position vs. Bases Empty

Batters hit better with runners in scoring position than when bases are empty,

showing an increase in AVG of .007. However, the effect is not significant in LIP

situations. This effect may be a reflection of pitching skill, which produces the

scoring situation. Since less capable pitchers are likely to put runners in scoring

position more often than better pitchers do, the increase in AVG may result from

the greater chance that the pitcher in scoring-position situations is on average

worse than one encountered in bases-empty situations. It also seems reasonable

that the effect would be less in LIP situations, when the manager is more likely

to replace the less effective pitcher with a more capable reliever.

Runner in Scoring Position vs. Runner on First Base Only

In this scenario we are considering only situations where runners are on base.

What we are examining is how batters perform when a runner is on first base

only compared with all situations with a runner in scoring position. We see large

effects here: overall, batting average is reduced by .014. In LIP situations and

with two outs, batting averages are even lower, reduced by about .020 with run-

ners in scoring position, as compared to when a lone runner is on first base. This

difference may result in part from the first baseman playing near the base in

order to hold the runner on first, leaving a hole between second and first. The

batter is more likely to have this hole when there is a runner on first base only;



CHAPTER 10274

Two Outs 84,996 21,208 .2495 30,520 8021 .2628

54,476 13,187 .2421

0 or 1 Out 116,187 32,821 .2825 55,890 15,864 .2838

60,297 16,957 .2812

Difference –.0330 –.0210

–.0392

SCORING POSIT ION

FIRST BASE ONLYRUNNERS ON

AB H AVG AB H AVG

• • • •

AB H AVG

Two Outs

0 or 1 Out

Difference • •

SCORING POSIT ION

AB H AVG AB H AVG

• • • •

AB H AVG

• •

LIP 66,824 16,901 .2529 16,745 4156 .2482

16,165 4048 .2504

No LIP 397,233 104,368 .2627 95,011 24,700 .2600

98,608 26,096 .2646

Difference –.0098 –.0118

–.0142

LEADING OFFOVERALL

LIP

No LIP

Difference

TABLE 10-5 Two Outs vs. None/One Out, American League, 1984, 1986–88, 1990,

1992

TABLE 10-6 Late Inning Pressure vs. No Late Inning Pressure, American League, 

1984, 1986–88, 1990, 1992
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if there are runners in scoring position, the first baseman is less likely to play

near the first base bag.

Two Outs vs. None/One Out

With a runner on base, batters have a harder time getting a hit when there are

two outs as compared to when there are one or no outs. When there is only a run-

ner on first base, batting averages drop about .021 when there are two outs.

There is an even larger drop-off, .039, when a runner is in scoring position. A

possible reason for this difference may be that better hitters are not given much

opportunity to hit with runners in scoring position and two outs; they are walked

instead.5 Overall, the decrease is about .033.

Late Inning Pressure vs. No Late Inning Pressure

Batting averages drop in Late Inning Pressure situations. In general, the LIP

effect is a drop of about .010 in AVG. While it may appear that the effect varies

from AVG drops of .010 to .014 (for runners in scoring position), this difference is

not significant.

So we see that the game situation can have an effect on how well a batter hits.

This is likely due to the pitcher, who may draw from his reserve of strength to

make a special effort to bear down as the occasion demands. The effect can also

be the result of managerial pitching strategy: in clutch situations, he may call on

relief pitchers, who in general have more success, at least in the short run, in

getting batters out.

A Player in a Short Series

What happens if we look at the performance of an individual player in a short

series? Let’s pick one of the players from the 25 greatest moments. The most

recent is Joe Carter, whose home run in the 1993 World Series is remembered by

many fans.6 The question is, do we recall how well Carter did in his 28 total plate

appearances in the series? He had 3 sacrifice flies, no walks, no sacrifice hits,

5 Data from The 1993 Elias Baseball Analyst provides some evidence substantiating this

conjecture. In the American League in 1992, with two outs, a walk was almost twice as likely to

occur in a plate appearance with runners in scoring position than with a runner on first base

only.
6 Some with more pleasure than others. One of us told his son (also a Phillies fan) that he should

be prepared to see this event in replay for the rest of his life. Coincidentally, he was the same

age (14) his father was when the Phillies collapsed in the 1964 National League pennant race.
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and was not hit by a pitcher, so his total number of at-bats was 25. His 7 hits

(including 1 double and 2 home runs) gave him a .280 AVG and a .560 SLG. Since

he had no walks, and sacrifice flies are included among opportunities for getting

on base, Carter’s on-base percentage (7/28 = .250) was actually lower than his

batting average. Carter scored 6 runs and had 8 RBI.

Table 10-7 provides a situational summary of Carter’s plate appearances in

the 1993 World Series along the lines of those in the Elias Baseball Analyst.

Carter led off a relatively large number of times, in about one-sixth of Toronto’s

innings. He performed poorly in this situation. He did very well with runners on

base, and especially with runners in scoring position. However, he was not able

to come through with runners on when there were two outs. In Late Inning

Pressure situations, he was only successful in one at-bat. Of course, this was his

legendary home run, which produced an impressive slugging percentage in his

limited number of LIP situations.

So how are we to judge Joe Carter as a clutch hitter in the 1993 World Series?

He was a poor lead-off hitter in many at-bats (for the simple reason that he did

not often get on base—the leadoff man’s main job). On the other hand, he hit well

with runners on, but not with two outs. And of course, he came through big

under Late Inning Pressure, but only once. By what criterion can we gauge his

clutch performance when there are so many metrics to choose from? One solu-

tion is to reduce these multiple criteria into a single metric that “weights” his

AB H 2B 3B HR SF AVG SLG OBP

Leading Off 9 2 1 0 0 0 .222 .333 .222

Runners On 11 3 0 0 2 3 .273 .818 .214

Scoring Position 5 2 0 0 1 3 .400 1.000 .250

Runners On/2 Out 2 0 0 0 0 0 .000 .000 .000

Scoring Position/2 Out 0 0 0 0 0 0 .000 .000 .000

LIP 5 1 0 0 1 0 .200 .800 .200

LIP Leading Off 3 0 0 0 0 0 .000 .000 .000

LIP Runners On 2 1 0 0 1 0 .500 2.000 .500

LIP Scoring Position 2 1 0 0 1 0 .500 2.000 .500

Overall 25 7 1 0 2 3 .280 .560 .250

TABLE 10-7 Summary of Joe Carter’s Plate Appearances by Game Situation in the 1993

World Series
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performance in different situations. None of the models we have considered so

far in earlier chapters perform this kind of weighting. They all consider each

event generically, without regard to the situation in which it occurred.

Is it possible to integrate a clutch effect (the effect of game situation) into

player evaluation? Actually, George Lindsey’s data on run production allows us

to do this relatively easily.

Situation Evaluation of Run Production
Recall from Chapter 7 that Lindsey developed a table (Table 7-4) of expected

runs produced in each situation (outs and runners on base) within an inning of

a game. We used this table to estimate the value of each type of hit in terms of

runs. These values (presented in Table 7-7) are the average or expected number

of runs for each hit after the frequencies of all game situations have been con-

sidered. But different players may come to bat in these situations with frequen-

cies different from the typical values in Table 7-4.

If we knew the situation for each plate appearance for a player, we could cal-

culate the expected number of runs produced for the player’s specific opportuni-

ties, instead of using the generic frequencies in Lindsey’s calculation. In this way

we would capture the batter’s specific level of opportunity as well as his response

to it (the results of his plate appearances).

Of course, this requires much more data than the summaries of at-bats, hits,

home runs, etc. We need to know, for every plate appearance, the situation when

the player came to bat and the situation after he came to bat. Data on each plate

appearance is becoming more accessible as the years go by, but it is still rela-

tively difficult to find in electronic form.7 (Of course, they are available in writ-

ten form in the official scoresheets, but the sheer volume of these records make

them difficult to use except in very limited quantities.)

Joe Carter’s batting performance in the 1993 World Series provides us with a

reasonable amount of data and allows us to include a top-25 moment as well.

Table 10-8 lists each plate appearance in chronological order in the series. The

first column identifies the result of Carter’s at-bat in standard terms. Most of the

abbreviations should be readily identifiable, with the exception of FO and GO,

which indicate outs caught on the fly and on the ground, respectively. The second

column indicates the game in the series. The third column lists the innings, with

7 See the Retrosheet Web Page at www.retrosheet.org for advances on this front.
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1B 1 2H(L) 2 0 0 0 2 0 1 0

SF 1 3H 3 2 3 1 3 3 0 2

GO 1 6H(L) 4 4 0 0 4 4 0 1

K 1 7H 4 8 2 1 4 8 2 2

FO 2 1H 0 0 1 2 0 0 0 3

HR 2 4H 5 0 1 0 5 2 0 0

FO 2 6H(L) 5 2 0 0 5 2 0 1

K 2 8H 6 3 2 0 6 3 2 1

SF 3 1V 2 0 3 0 3 0 0 1

1B 3 3V 4 0 0 2 4 0 1 2

FO 3 5V 4 0 0 2 4 0 0 3

K 3 7V 6 1 13 0 6 1 13 1

GO 3 9V 8 2 1 0 8 2 1 1

1B 4 1V 0 0 12 1 0 0 123 1

FO 4 3V(L) 3 6 0 0 3 6 0 1

FO 4 4V(L) 7 6 0 0 7 6 0 1

FO 4 6V 8 12 1 0 8 12 1 1

1B 4 8V 9 14 0 1 9 14 1 1

2B 4 9V(L) 15 14 0 0 15 14 2 0

FO 5 1V 0 0 1 2 0 0 0 3

K 5 4V 0 2 1 1 0 2 1 2

GO 5 7V(L) 0 2 0 0 0 2 0 1

FO 5 9V(L) 0 2 0 0 0 2 0 1

SF 6 1H 0 1 3 1 0 2 0 2

GO 6 3H 0 3 0 1 0 3 0 2

FO 6 5H 1 5 0 1 1 5 0 2

FO 6 8H(L) 6 5 0 0 6 5 0 1

HR 6 9H 6 5 12 1 6 8 0 3

AFTER PLAYBEFORE PLAY

Game Inning VRuns HRuns Bases Outs VRuns HRuns Bases OutsPlay

TABLE 10-8 Joe Carter’s Plate Appearances in the 1993 World Series (Squares Mark On-

Base Events, Triangles Mark Plays That Scored Runs)
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V and H identifying the visitor and home half of each; an L in parentheses is

appended to the inning if Carter was the leadoff batter. The next two sets of four

columns each describe the state of the game before and after the play; the state

is described by the score (visiting-team runs are VRuns, home-team runs

HRuns), the bases occupied, and the number of outs. Note that for Carter’s

Game-6 home run we have listed the number of outs after the play as three; this

is done since Carter’s HR ended the game, consequently ending the possibility of

scoring any more runs. Plate appearances in which Carter got on base are

marked by squares, and those in which he drove in a run are marked by trian-

gles. We see that Carter got a hit in every game except Game 5, when Curt

Schilling shut down Toronto completely. We also see that Carter produced runs

only with the long ball—either a home run or a sacrifice fly.

Now we will reduce Table 10-8 to its essentials for our calculation. Table 10-9

shows the situation (outs and runners on base) before Carter’s plate appearance,

the situation after Carter’s plate appearance, and the number of runs scored on

the play. The three Expected Runs columns show the number of runs Toronto

would be expected to score in the Before situation, the number expected to score

after the play (including the runs which actually scored), and the Change (the

difference between the Before and After situations in terms of runs).

As an example, consider Carter’s first RBI of the series, in the second row of

Table 10-9. As Carter came to bat, Toronto had a runner on third base with 1 out.

According to Lindsey’s data in Table 7-4, a team on average would score .980

runs in this situation. This is the value of the Before situation in terms of runs.

After Carter’s sacrifice fly, Toronto had bases empty and 2 outs. According to

Lindsey’s data in Table 7-4, a team on average would score .102 runs in this sit-

uation. Since the SF scored the runner from third, the expected number of runs

scored after the play is 1 + .102 = 1.102. So here a SF was worth 1.102 – .980 =

.122 runs, the change in expected runs between the Before and After situations.

A special case for this calculation occurs in the bottom half of the ninth and

any subsequent innings. The expected values for runs scored in Table 7-4 are

predicated on the team having 3 outs to complete the inning. However, in the

bottom of the ninth, the game ends as soon as the home team scores enough runs

to win the game, thus limiting the run-production capability of the home team.

For example, consider the situation in Joe Carter’s final at-bat. If this were an

inning in the middle of the game, Table 7-4 indicates that the Blue Jays would

be expected to score .939 runs. This expectation is derived from the probabilities

of scoring different numbers of runs. Toronto has a 57.1-percent chance of scor-

ing no runs, a 16.3-percent chance of scoring exactly 1 run, an 11.9-percent
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Bases Outs Runs Bases Outs Play Before After Change

Schilling 0 0 0 1 0 1B .461 .813 .352

Schilling 3 1 1 0 2 SF .980 1.102 .122

Schilling 0 0 0 0 1 GO .461 .243 –.218

Andersen 2 1 0 2 2 K .671 .297 –.374

Mulholland 1 2 0 0 3 FO .219 –.219

Mulholland 1 0 2 0 0 HR .813 2.461 1.648

Mulholland 0 0 0 0 1 FO .461 .243 –.218

Mason 2 0 0 2 1 K 1.194 .671 –.523

Jackson 3 0 1 0 1 SF 1.390 1.243 –.147

Jackson 0 2 0 1 2 1B .102 .219 .117

Jackson 0 2 0 0 3 FO .102 –.102

Rivera 13 0 0 13 1 K 1.940 1.115 –.825

Andersen 1 0 0 1 1 GO .813 .498 –.315

Greene 12 1 0 123 1 1B .939 1.642 .703

Greene 0 0 0 0 1 FO .461 .243 –.218

Mason 0 0 0 0 1 FO .461 .243 –.218

West 1 0 0 1 1 FO .813 .498 –.315

Andersen 0 1 0 1 1 1B .243 .498 .255

Thigpen 0 0 0 2 0 2B .461 1.194 .733

Schilling 1 2 0 0 3 FO .219 0 –.219

Schilling 1 1 0 1 2 K .498 .219 –.279

Schilling 0 0 0 0 1 GO .461 .243 –.218

Schilling 0 0 0 0 1 FO .461 .243 –.218

Mulholland 3 1 1 0 2 SF .980 1.102 .122

Mulholland 0 1 0 0 2 GO .243 .102 –.141

Mulholland 0 1 0 0 2 FO .243 .102 –.141

Mason 0 0 0 0 1 FO .461 .243 –.218

Williams 12 1 3 0 3 HR .695 3.000 2.305

Sum of Change = 1.231

AFTER PLAYBEFORE PLAY EXPECTED RUNS

0

0

Pitcher

TABLE 10-9 Change in Expected Runs for Joe Carter Plate Appearances in the 1993

World Series (Squares Mark On-Base Events, Triangles Mark Plays That

Scored Runs)
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chance of scoring exactly 2 runs, and a 14.7-percent chance of scoring 3 or more

runs. However, Carter’s situation occurred in the ninth inning, with his team

trailing by a single run. So, as soon as Toronto scores two runs, the inning ends

and there are no more opportunities to score additional runs. This has the effect

of truncating the distribution of runs to no more than 2, the number needed to

win the game. This means that all of the situations in which more than 2 runs

could have scored in a full inning are reduced to occurrences of 2 runs. So, in this

score-inning situation, the probability of scoring two runs is 26.6 percent, the

sum of the probability of scoring two runs (11.9 percent) and the probability of

scoring 3 or more runs (14.7 percent). The expected number of runs scored with

runners on first and second with 1 out (when trailing by 1 run in the bottom of

the ninth inning) can now be estimated as follows:

(0 × .571) + (1 × .163) + (2 × .266) = .695 runs

This result is .244 runs less than in other innings because of the limitation of not

being permitted to score more runs than the number needed to win.8

Performing these calculations for every play, we find the value of each plate

appearance for Carter in terms of runs. This is similar to the calculation we did

in Chapter 7 to determine the average value of each type of hit in terms of runs.

There we generated a different After situation for each possible Before situation,

then calculated the Change in expected runs. Here we are taking an actual

record of plate-appearance results and finding their values in terms of expected

runs produced. If we total the run values in the Change column of Table 10-9, we

find that the net result of Carter’s batting in the 1993 World Series was +1.231

runs. This means that Carter produced 1.231 more runs (.205 more runs per

game) than an average batter would be expected to produce in the same set of

Before situations.

What we have done is integrate clutch effects into the estimate of run pro-

duction for a specific batting performance. We have replaced the various cate-

gories of clutch situations of Table 10-7 with a single value of run production

weighted by the situation in which each event occurred.

8 This is an underestimate of the actual value because of baseball’s ruling that all runs that score

on a game-winning home run are counted. There is a chance of scoring 3, 4, or 5 more runs

when trailing by 1 run in the bottom of the ninth inning. (Carter’s HR, which resulted in 3 runs

scored, is an example of this.) However, since these scores can only be achieved with a final HR,

they are much less probable than in normal circumstances. For simplicity (and the lack of

data), we use the lower value here.



CHAPTER 10282

Bases Outs Runs Bases Outs Play Before After Change

Schilling 0 0 0 1 0 1B .461 .813 .352

Schilling 3 1 1 0 2 SF .980 1.102 .122

Schilling 0 0 0 0 1 GO .461 .243 –.218

Andersen 2 1 0 2 2 K .671 .297 –.374

Mulholland 1 2 0 0 3 FO .219 0 –.219

Mulholland 1 0 2 0 0 HR .813 2.461 1.648

Mulholland 0 0 0 0 1 FO .461 .243 –.218

Mason 2 0 0 2 1 K 1.194 .671 –.523

Jackson 3 0 1 0 1 SF 1.390 1.243 –.147

Jackson 0 2 0 1 2 1B .102 .219 .117

Jackson 0 2 0 0 3 FO .102 0 –.102

Rivera 13 0 0 13 1 K 1.940 1.115 –.825

Andersen 1 0 0 1 1 GO .813 .498 –.315

Greene

Greene

Mason 0 0 0 0 1 FO .461 .243 –.218

West 1 0 0 1 1 FO .813 .498 –.315

Andersen 0 1 0 1 1 1B .243 .498 .255

Thigpen 0 0 0 2 0 2B .461 1.194 .733

Schilling 1 2 0 0 3 FO .219 0 –.219

Schilling 1 1 0 1 2 K .498 .219 –.279

Schilling 0 0 0 0 1 GO .461 .243 –.218

Schilling

Mulholland 3 1 1 0 2 SF .980 1.102 .122

Mulholland 0 1 0 0 2 GO .243 .102 –.141

Mulholland 0 1 0 0 2 FO .243 .102 –.141

Mason 0 0 0 0 1 FO .461 .243 –.218

Williams

Sum of Change = –.902

12 1 0 12 2 FO .695 .318 –.377

0 0 1 0 0 HR .461 1.461 1.000

12 1 0 12 2 FO .939 .403 –.536

0 0 0 1 0 1B .461 .813 .352

AFTER PLAYBEFORE PLAY EXPECTED RUNS

Pitcher

TABLE 10-10 Change in Expected Runs for Joe Carter Plate Appearances in the “Parallel

Universe,” or “Twilight Zone” Version of the 1993 World Series (Squares

Mark On-Base Events, Triangles Mark Plays That Scored Runs)
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To see that we have actually accomplished this, let’s examine an alternate- or

parallel-universe batting performance for Joe Carter. The alternate performance

in Table 10-10 is one that Phillies’ fans wish had actually occurred. Focus your

attention on the boldfaced rows. Everything in Table 10-10 is the same as in

Table 10-9 except for these four rows, in which we have swapped the play results.

Suppose we swap the results of Carter’s first two at-bats in Game 4. So,

instead of singling with runners on first and second with 1 out in the first

inning, Carter flies out without advancing the runners, and in the third inning

he leads off with a single instead of flying out. In Table 10-10, we see that the run

value of the fly out is now –.536 runs (instead of –.218 runs, as originally), while

the single is now worth .352 runs (compared to .703 runs in reality). So, the swap

produces a net change:

[–.536 – (–.218)] + (.352 – .703) = –.669 runs

While we are making changes, let’s swap that depressing (to us Phillies fans)

HR in the ninth inning of Game 6 with Carter’s fly out in his last at-bat in Game

5. Carter’s second HR is now worth only 1 run (compared to 2.305 runs in real-

ity) and the fly out in his final at bat in Game 6 is worth –.377 runs (compared

to –.218 runs in its original spot).9 So, the swap produces a net change as follows:

[–.377 – (–.218)] + (1 – 2.305) = –1.464 runs

What we have done is preserve the count of individual batting events. In

Table 10-10, Carter still has the same number of singles, doubles, triples, home

runs, and outs as in Table 10-9. He still has the same batting average, on-base

percentage, and slugging percentage. All we have done is change the situation in

which they occurred. When we did this, the run values of the swapped events

changed. If we total the run values in the Change column of Table 10-10, we see

that Carter’s performance in this alternate universe is now worth –.902 runs, a

worse-than-average performance. We have substantially degraded Carter’s run

production merely by changing when the events occurred, rather than the num-

ber of each type of event. This example demonstrates that this measure success-

fully integrates a clutch effect (the when of batting results) into an evaluation of

player performance.

9 The expected runs scored with 2 outs and runners on first and second (trailing by 1 run in the

bottom of the ninth inning) was determined in a manner similar to that for the same situation

with 1 out. Using probabilities from Table 7-4, the value is calculated as:

(0 × .791) + (1 × .1) + [2 × (.061 + .048)] = .318
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A New Criterion for Performance
We’ve been able to integrate certain aspects of situational hitting into player

evaluation. We have used the base and out aspects but (with the exception of sit-

uations in the bottom half of the ninth and extra innings) ignored the factors

which contribute to defining Late Inning Pressure—the inning and the score. To

do this, we have to move from run production, which has been our major crite-

rion for evaluating players, to a more general level.

The ultimate goal of any baseball team is not to score runs. Scoring runs is

only the means to a higher goal, winning games. Teams can amass large run

totals and still lose. Just look at the same 1993 World Series in which Carter

played. In Game 4, the Phillies scored 14 runs and still lost to Toronto. And there

is a classic example of the same phenomenon: Table 10-11 shows the scores for

the seven games of the 1960 World Series, which the Yankees lost to the Pitts-

burgh Pirates.

The Yankees scored more runs in the first three games than Pittsburgh would

score in the entire series. Overall, the Yankees scored more than twice as many

runs as Pittsburgh. Despite this, the seventh game and the series were won by a

Pirates homer that drove in only one run. There is no doubt that producing more

runs increases your chances of winning. But a hit (even a single) at the right

time can be more important to winning than a grand slam.

In 1970, a small book called Player Win Averages: A Computer Guide to

Winning Baseball Players, by the brothers Eldon G. and Harlan D. Mills, devel-

oped a new metric for clutch play. The truly revelatory aspect of their system was

that it focused on measuring not the events that lead to victory (the number of

Game Pittsburgh New York

1 6 4

2 3 16

3 0 10

4 3 2

5 5 2

6 0 12

7 10 9

Total 27 55

TABLE 10-11 1960 World Series Scores
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hits, walks, stolen bases, RBIs, etc.), but victory itself. But how can you measure

a player’s contribution to victory? According to the Mills brothers, you have to

arrive at some sense of the degree to which the player contributes to the proba-

bility of winning a game.

They called this measure the Player Win Average (PWA). It was defined as a

ratio of Win Points to the sum of Win Points and Loss Points:

PWA = Win Points/(Win Points + Loss Points)

The points were based on how much the player added to or subtracted from

the probability of his team winning. If a player increased the probability of his

team winning by D, the player was awarded:10

Win Points = 2000 × D

On the other hand, if a player decreased the probability of his team winning by

D, the player was given:

Loss Points = 2000 × D

Every play in a baseball game increases the probability of winning for one

team or the other. Win and Loss Points were awarded on each play to an offen-

sive player and a defensive player. A batter who got a hit was awarded Win

Points based on how much the hit improved his team’s probability of winning

the game; the pitcher who gave up the hit was given an equal number of Loss

Points. Naturally, the situation is reversed for an out, where a defensive player

(typically the pitcher) is awarded the Win Points and the batter the Loss Points.

Consider this example, which the Mills brothers reckoned to be the biggest

offensive play of the 1969 World Series, in which the Miracle Mets defeated the

heavily favored Baltimore Orioles. Al Weis, the Mets’ second baseman, came to

the plate in the top of the ninth inning of Game 2 with the score tied. The Mets

had runners on first and third with 2 outs, clearly a Late Inning Pressure situa-

tion. The probability of a Met victory was .510. Weis singled, placing runners at

first and second as well as knocking in the go-ahead (and eventual game-win-

ning) run. His hit raised the probability of a Met victory to .849, an increase of

D = .339. Weis was therefore credited with the following Win Points:

Win Points = 2000 × .339 = 678

Orioles pitcher Dave McNally was given an equal number of Loss Points.

10 Since PWA is calculated as a ratio of points, it is not necessary to multiply the change in

probability D by 2000 to get the same PWA value. Most likely the Mills brothers only used this

conversion to make the Win and Loss Points easier to read.
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In addition to analyzing the 1969 World Series, the Mills brothers used every

play in the 1969 season to assign a PWA rating to every player. Each play in

which a player was the primary offensive or defensive participant was analyzed.

The Win Points and Loss Points from these plays were summed over the season,

then substituted in the PWA formula. The highest PWA ratings for batters with

enough plate appearances (502) to qualify for a batting championship were

achieved by Willie McCovey (.677) in the National League and Frank Robinson

(.615) in the American League.11 McCovey was selected by the sportswriters as

National League MVP, but the American League MVP Award went to Harmon

Killebrew, who had a .608 PWA.

When Win Points equal Loss Points, PWA equals .500, which is the rating for

an average player. Clearly, McCovey, Robinson, and Killebrew were all way

above average; their Win Points were all at least 50 percent greater than their

Loss Points. But how low can PWA reasonably get? Bob Barton, a catcher with

San Francisco, had a PWA of .255, lowest among players with 100 or more at-

bats. Among full-time players, Hal Lanier, a shortstop also with the Giants, had

a PWA of .348 in 495 at-bats, with almost twice as many Loss Points as Win

Points. (The Giants appear to have had the best—McCovey—and worst PWA

players in 1969.)

A unique capability of PWA is to measure defensive as well as offensive per-

formance. In most plays, the pitcher is the defensive player who receives Win or

Loss Points. The Mills brothers tabulated PWAs for pitchers in the exact same

manner as for batters. The highest PWAs for starting pitchers were .612 for

Larry Dierker of the Houston Astros (National League) and .585 for Denny

McLain of the Detroit Tigers and Jim Palmer of the Baltimore Orioles (American

League). The highest-rated relief pitchers were Tug McGraw (.651) of the New

York Mets and Ken Tatum (.643) of the California Angels. McLain shared the

1969 Cy Young Award with Mike Cuellar (Baltimore Orioles, .569 PWA).

Dierker, however, received no Cy Young votes, losing to Tom Seaver (New York

Mets, .609 PWA).

Because both offensive and defensive players are measured according to the

same metric, it is possible to use PWA to compare the value of pitchers and bat-

ters. McCovey is a clear standout when all players are considered, but the Mills’s

11 Mike Epstein of the Washington Senators finished ahead of Robinson with a .641 PWA, but

had only 500 plate appearances. Epstein was the Mills brothers selection as the “Most

Winning” player in the American League in 1969.
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analysis indicates that a good case could have been made for Tatum over

Killebrew as the most valuable player in the American League in 1969.

PWA also has the capability to include fielding in its evaluation of players. If

a fielder made an error, the fielder was substituted for the pitcher in receiving

Loss Points for the play. For example, in the bottom of the third inning of Game

1 in the 1969 World Series, Don Buford grounded a ball off Tom Seaver to second

baseman Al Weis, who fumbled it, allowing Buford to reach first safely. Before

the play, the Orioles led 1–0 and had no runners and one out in the bottom of the

third inning. After the play, they had a runner on first, still with only one out. In

the Mills’s analysis, the play was split into two parts:

• Win Points to Seaver. Because Weis was charged with an error, the

implication from the official scorer was that Buford would have

been out if Weis had executed properly. So an intermediate result

is created assuming that Weis had made the play. The result

would have left the Orioles with two outs and no runners on base.

Baltimore’s probability of winning decreased from .658 to .644 for

a change of D = .014. Seaver was awarded Win Points =

2000 × .014 = 28, and Buford was given 28 Loss Points.

• Loss Points to Weis. However, Weis’s error reversed this

intermediate result and placed a runner on first base with one

out. This increased Baltimore’s probability of winning from .644 to

.679 for a change of D = .035. Buford was awarded Win Points =

2000 × .035 = 70, and Weis was given 70 Loss Points.

So the final result of the play was that Buford received 70 Win Points and 28

Loss Points, Seaver received 28 Win Points, and Weis received 70 Loss Points.

An unfortunate aspect of the Mills’s book is that, apart from several exam-

ples, the authors do not provide detail about how they applied fielding in their

analysis of the 1969 season. Although not explicitly stated, it is likely that field-

ing was included in the overall player ratings. So the PWA ratings cited are

probably a reflection of fielding (and running) as well as batting performance.

The Mills brothers provided a play-by-play analysis of the 1969 World Series.

An interesting result was that the true MVP of the series was not the sports-

writers’ choice, Donn Clendenon, but journeyman infielder Al Weis. Oddly, the

authors based this selection not on PWA but on Net Points, the difference

between Win Points and Loss Points. In many ways, this metric seems a more

reasonable measure than PWA. Weis had 1277 Net Points, almost three times

that of Clendenon (450 Net Points). In fact, three teammates, pitchers Koosman
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(783), Seaver (564), and Gentry (475), also had more Net Points than Clendenon.

The second highest Net Point total was achieved by a member of the losing team,

starting pitcher Mike Cuellar (998).

The Mills brothers used PWA to identify “Hidden Heroes,” players who

achieved above-average PWAs despite having low batting averages (less than

.250). In the authors’ view, these players were true clutch performers, those who

rose above their normal ability when the game was on the line. Thirty years

later, most of the players are not familiar, but one player does jump out. Hall-of-

Famer Joe Morgan batted .236 in 1969, but he had a .521 PWA. Still, it is not

clear that this PWA rating is a result of clutch performance. Morgan may have

only had a .236 AVG, but he drew 110 walks, so his on-base percentage was quite

respectable.

The Mills’s goal in creating PWA was to evaluate clutch performance.

Actually, PWA does not rate clutch performance; instead, it integrates or weights

clutch performance with the frequency of different events. A good analogy is

slugging percentage, which does not explicitly measure a player’s power;

instead, it integrates power (using the number of bases as weights) with batting

average into the evaluation of a player’s hitting performance. PWA does the

same thing, except its weights are based on the game situation as well as the

result of the play. Indeed, this is an even greater achievement than their origi-

nal intention. Instead of rating one facet of a player’s game, they established a

structure for evaluating all aspects (including the player’s clutch performance)

into a single quantitative value.

Even so, as carefully thought out as their concept was, the Mills’s work left

some room for improvement. We have alluded to some areas already. In develop-

ing PWA, it is evident that the authors were intent on developing an average

that could replace the batting average, which still reigned supreme and virtually

unchallenged as the king of batting statistics in 1970. This is evident in the

Mills’s comparison of AVG with their statistic PWA for “Hidden Heroes.”

Late in the book, it seems that the Mills brothers discovered that Net Points

might be more useful in rating players according to contribution to winning.

What are the advantages of Net Points?

• Simplicity. Net Points is easier to calculate than PWA. Just

subtract Loss Points from Win Points, and you’re done.

• Intelligibility. Dividing Net Points by 2000 gives the number of

wins the player contributed above an average player. For example,

4000 Net Points is equivalent to two wins above average.
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• Consistency. Consider Players A and B in Table 10-12. Both have

the same Net Points, but different PWA ratings. Player A has a

better PWA rating because the total number of points accumu-

lated is less than that of Player B. There are two major ways

Player A could have achieved this. One possibility is that he

earned his points in less critical situations than Player B. In this

way, each event would have less value—either positive or nega-

tive. It is not clear that this should entitle Player A to a higher

rating than Player B. In fact, if PWA is truly supposed to evaluate

clutch performance, it could be argued that Player B should be

rated higher than Player A, since his results were achieved in

more critical circumstances.

Another possibility is that Player A achieved his results in fewer

plays (or games) than Player B. This presents some rationale for

rating Player A higher than Player B. But then consider two more

players, C and D, in Table 10-13. Player D has accumulated twice

as many points as Player C, yet their PWA ratings are the same.

So, dividing by total points does not give a consistent inter-

pretation of player value in PWA.

In general, it is not clear what dividing by total points repre-

sents in evaluating player performance. On the other hand, Net

Points provides a consistent interpretation of player contribution.

• Sustained Contribution. Apparently, the Mills’s intent was to

construct PWA as a ratio of accumulated achievement (Win

Points) divided by accumulated opportunity (total points) as a

Player Win Points Loss Points Net Points PWA

A 2000 1000 1000 .667

B 3000 2000 1000 .600

Player Win Points Loss Points Net Points PWA

C 1000 1000 0 .500

D 2000 2000 0  .500

TABLE 10-12 Example of Players with the Same Net Points and Different PWA Ratings

TABLE 10-13 Example of Players with the Same Net Points and the Same PWA Ratings
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parallel to batting average (which does the same thing in terms of

hits and at-bats). However, in the Mills’s system, when a player

comes to bat, the possibility exists of getting Loss Points or Win

Points. So in each play, the player can be rewarded or penalized.

Net Points provides a measure of the accumulated net contri-

bution to victory. For this reason, there is no need to resort to a

ratio such as PWA. This can’t be done with hits in batting average

or bases in slugging percentage. Hits and bases can only be

accumulated; we can’t subtract hits or bases from a player.

The title page of Player Win Averages contains the phrase “1970 Edition.”

Apparently, the authors intended to publish an annual analysis of each baseball

season using PWA. Unfortunately, there was no 1971 edition. By the late 1970s,

the 1970 (and only) edition of Player Win Averages was out of print, and remains

so to this day. Other publications and papers have alluded to the book and the

PWA concept. A common criticism is provided by Palmer and Thorn in their book

The Hidden Game of Baseball. “The major flaw in the Mills brothers’ system is

that the Player Win Average weights a few events very heavily, many others

quite lightly . . .” (p. 176).12 The impression is that PWA gives too much weight

to a handful of critical events that drown out the effects of standard plays in

evaluating baseball performance. Experience with a variant of PWA (to be

described presently) in evaluating World Series performance over several years

has provided evidence counter to this view.

Besides such criticism, another more practical reason lies at the heart of the

lack of interest in Player Win Averages at the time. The Mills brothers provided

no description of how to calculate the probability of victory at different stages of

a baseball game. Using computer simulation, the brothers developed a table of

probabilities that was not revealed to readers. Only the win probabilities of

selected situations that arose in the 1969 World Series could be gleaned from the

book. Without this table, it was impossible to calculate Win and Loss Points;

without Win and Loss Points, PWA could not be calculated. So without the table

of win probabilities, no one could use the technique. The need to capture play-by-

play data is a large impediment to PWA’s practicality, but the lack of win proba-

12 Despite this perception, their succeeding volume (with Bob Carroll), The Hidden Game of

Football, proposed Win Probability, which utilized basic principles similar to those of PWA. Win

Probability was the probability of a football team winning the game based on field position,

score, and time remaining. Win Probability points were credited to or subtracted from the

offense and defense according to the change in Win Probability for different events. Sadly,

Player Win Averages was not cited in the book.
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bilities made its calculation impossible for anyone but the Mills broth-

ers . . . until 1984.

The Calculation of Win Probabilities
Following the Phillies first and only World Championship, in 1980, John Flueck

and one of us (Jay Bennett) wanted to see if Mike Schmidt was really the Most

Valuable Player in the series. PWA seemed an ideal metric for determining this,

but the effort was stymied because of the lack of the table of win probabilities.

However, recent research in run production models led to Lindsey’s data. We

have already described some of this data, the distribution of runs scored after a

given situation within an inning. Using data on the distribution of runs scored

in each inning and assuming independence, Lindsey calculated the expected

probability of winning given the score at the end of an inning, as shown in Table

10-14.13

H–V 1 2 3 4 5 6 7 8 9

–6 .061 .054 .039 .029 .020 .012 .005 .0005 0

–5 .095 .087 .067 .053 .038 .025 .013 .004 0

–4 .142 .133 .109 .091 .070 .050 .029 .011 0

–3 .207 .196 .171 .150 .122 .093 .060 .025 0

–2 .290 .280 .257 .236 .207 .168 .122 .063 0

–1 .389 .383 .368 .353 .331 .295 .244 .153 0

0 .500

1 .611 .617 .632 .647 .669 .705 .756 .847 1

2 .710 .720 .743 .764 .793 .832 .878 .937 1

3 .793 .804 .829 .850 .878 .907 .940 .975 1

4 .858 .867 .891 .909 .930 .950 .971 .989 1

5 .905 .913 .933 .947 .962 .975 .987 .996 1

6 .939 .946 .961 .971 .980 .988 .995 .9995 1

Inning

.500 .500 .500 .500 .500 .500 .500 .5

TABLE 10-14 Probability of Home Team Victory Given the Score Difference (Home Team

Minus Visiting Team) at the End of Each Inning

13 Table 10-14 presents a slight revision of Table 7 in G. R. Lindsey, “The Progress of the Score

During a Baseball Game,” American Statistical Association Journal, September 1961, 703–728.
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Plotting these probabilities in Figure 10-2, we can see some quantitative sup-

port for the critical nature of Late Inning Pressure. Each line in Figure 10-2 rep-

resents a score differential for the home team over the visiting team. Looking at

the lines in which the home team has the lead, each line curves upward as the

game progresses. The smaller the lead, the more extreme the curvature. (The

value of an extra run increases as the lead becomes smaller, and this value

becomes even greater in late innings.) The difference between being ahead by 1

run or behind by 1 run after the first inning is about .2 in win probability, but

about .7 in win probability after eight innings.

So, Table 10-14 and Figure 10-2 capture the score and inning aspects of win-

ning, while Table 7-4 captures the base and out aspects of scoring runs. Putting

them together, we can derive a reasonable replication of the win probabilities

used by the Mills brothers. The calculation to do this is somewhat like that for

expected run production described earlier.

Suppose we wish to calculate the probability of winning when the home team

trails by 1 run with runners on first and second and 1 out in the bottom of the

ninth inning. This is the situation that Joe Carter faced as he approached the

plate in the ninth inning of Game 6 in the 1993 World Series. Lindsey’s data in
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FIGURE 10-2 Probability of home-team victory given the home-team lead (home team

minus visiting team) at the end of each inning.
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Table 7-4 tells us the probability of scoring different numbers of runs in the

remainder of the inning:

• Toronto scores no more runs. In this case (first and second base

occupied, with 1 out), there is a .571 chance that Toronto will

score no more runs in the remainder of the inning; if this happens,

Toronto loses the game. The probability of a Toronto victory is 0

(as shown in Table 10-14).

• Toronto scores 1 more run. Table 7-4 also tells us that there is a

.163 chance that Toronto will score exactly 1 more run in this

inning. In this case, the game is tied and goes into extra innings.

Toronto would then have an even chance (.5 probability) of

winning (as shown in the ninth inning column of Table 10-14).

• Toronto scores two more runs. Table 7-4 tells us that there is a

.119 chance that Toronto will score exactly 2 more runs in this

inning. In this case, Toronto wins and its probability of victory is 1

(as shown in the ninth-inning column of Table 10-14).

• Toronto scores 3 or more runs. Table 7-4 tells us that there is a

.147 chance that Toronto will score 3 or more runs in this inning.

Again, Toronto wins and its probability of victory is 1.

Table 10-15 summarizes the calculation. Each line of the table represents the

possibility of scoring a specific number of runs in this inning given the situation

(1 out and runners on first and second). The line then goes on to analyze the con-

sequences of scoring those runs given the inning and the score. In the last col-

umn, we multiply the probability that the home team scores the runs times the

TABLE 10-15 Calculation of the Probability of Home-Team Victory When the Team Trails by

1 Run in the Bottom of the Ninth Inning with 1 Out and Runners on First

and Second Bases

Runs Pr(Runs) Home Lead

Pr(Win

Given Runs)

Pr(Runs) ×
Pr(Win Given Runs)

0 .571 –1 0 0

1 .163 0 .5

2 .119 1 1

3 or more .147 2 or more 1 .1470

Pr (Win) = .347

RESULT OF  SCORINGSCORING IN INNING

0

.0815

.1190

.1470

Pr(Win) = .3475
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probability that they win if they do. Summing the results in the last column

gives the final result of the probability of winning given all that could possibly

occur in the remainder of the inning. In this case, the probability of Toronto win-

ning as Carter stepped to the plate was almost .35.

Let’s look at a more general calculation, where the inning results are not win,

lose, or tie the game, but where the Pr(Win Given Runs) values (other than tie)

are different from 0 and 1. In The Sporting News #18 greatest moment, Sandy

Amoros of the Brooklyn Dodgers made his game-saving catch in the bottom of

the sixth inning with his Dodgers ahead of the Yankees 2–0 in Game 7 of the

1955 World Series. Yogi Berra had come to the plate with runners on first and

second, no outs. Table 10-16 summarizes the calculation of the Yankee probabil-

ity of winning at the moment Berra came to bat. The Pr(Run) probabilities in the

second column are taken from Table 7-4 for runners on first and second and no

outs. The Pr(Win Given Runs) probabilities in the fourth column are taken from

Table 10-14 for the sixth inning and the appropriate lead. The probability of a

Yankee win was .3758, slightly better than the situation Toronto was in when

Carter came to bat.14 Comparing the situations, both teams had identical bases

occupied. While New York trailed by more runs than Toronto, the Yankees had

fewer outs in the inning and were not in their last at-bat, all of which more than

14 This calculation is actually a slight underestimate of the true value, which is closer to .397. In

order to achieve this more accurate estimate, assumptions about the probability of scoring 3, 4,

5, 6, etc., runs must be made to replace the single “3 or more” value given by Lindsey. The

calculation then follows the same pattern outlined here. The calculation of the Carter situation

is exact because the probability of a Toronto win is 1 as long as 2 or more runs score.

TABLE 10-16 Calculation of the Probability of Home-Team Victory When the Team Trails by

2 Runs in the Bottom of the Sixth Inning with No Outs and Runners on First

and Second Bases

Runs Pr(Runs) Home Lead

Pr(Win

Given Runs)

0

.1470

Pr (Win) = .3475

RESULT OF  SCORINGSCORING IN INNING

0 .395 –2 .168 .0664

1 .220 –1 .295 .0649

2 .131 0 .500 .0655

3 or more .254 1 or more .705 .1791

Pr(Win) = .3758

Pr(Runs) ×
Pr(Win Given Runs)
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counterbalanced their disadvantage in the score relative to the Blue Jays. All of

these factors are accounted for in the calculation of the probability of winning.

We also see that there is more spread in the Pr(Win Given Runs) for Carter’s

situation (from 0 to 1) than for Berra’s situation (from .168 to .705). This indi-

cates greater instability in Carter’s situation; that is, the possible change in vic-

tory from scoring 0 or 3 runs in the inning has a greater effect in Carter’s situa-

tion than in Berra’s, and this indicates that the degree of clutch is more intense

in Carter’s than in Berra’s.

Applying this system to Lindsey’s data, Bennett and Flueck were able to cal-

culate their own table of win probabilities. Figure 10-3 is an application of these

win probabilities to Game 6 of the 1993 World Series. The line tracks the proba-

bility of Toronto victory as it changed after each play. The effects of plays in

which Joe Carter batted are emphasized with heavy lines. The end of each

inning is indicated on the x-axis, giving the score at the end of the inning

(Toronto– Philadelphia). A diamond symbol on the line indicates the result of the

last play of the visitors’ (Phillies’) half of the inning.
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FIGURE 10-3 Win probabilities for Toronto after each play in Game 6 of the 1993 World

Series. Effects of plate appearances by Joe Carter are emphasized with heavy

lines. The scores at the end of each inning are marked on the x-axis.

Diamonds identify result of last play in visitors’ (Phillies’) at-bat.
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We see that Toronto’s probability of winning rose from the start as they pre-

vented the Phillies from scoring in the first inning. This trend continued as the

Blue Jays scored three times in the first inning. Carter’s sacrifice fly was part of

this effort; it provided a small boost in the probability by knocking in the second

run of the inning. There was no scoring in the next two innings. Toronto’s proba-

bility of winning rose slightly as they preserved their lead. The fourth inning

saw a small dip in Toronto’s probability of victory as the Phillies scored a run. By

matching Philadelphia with a run of their own, Toronto restored their three-run

lead and inched their probability of winning to an even higher level. The Phillies

had an opportunity to score some runs in the fifth inning (bases loaded and 2

outs), but failed when Dave Hollins grounded into the third out. The low point in

the inning for Toronto occurred just after John Kruk walked to load the bases.

Note how win probability is able to account for establishing a scoring threat

even if it eventually fails. Hollins’s big out is shown by the rise (ending with the

diamond symbol) in Toronto’s victory probability from this low point in the fifth

inning. Toronto responded to this scare with another run, to inch ahead their

lead and chances of winning.

The sixth inning was uneventful, but in the seventh the Phillies turned the

tables on Toronto, scoring five runs to take the lead. The plot of Toronto’s proba-

bility of winning looks like the Dow Jones Industrial Average in free-fall.

Toronto did not score in its half of the seventh, pushing its probability of winning

even further down. When the Phillies did not score in the top of the eighth

inning, Toronto had a chance to tie or get the lead. Joe Carter had Toronto’s first

crack at the Phillies, but flied out in a critical at-bat that decreased Toronto’s

chances even further. After Carter, the plot rises (and the plot thickens) in the

eighth inning as a result of a threat with bases loaded and two outs. Like Hollins

on the opposing team, Pat Borders made the third out, producing a net gain in

the probability of the Phillies winning in the inning since their one-run lead was

preserved. In the ninth inning, the Phillies went down quickly. Toronto came out

storming in the ninth, quickly putting runners on base. The triumphant (or cat-

aclysmic, depending on your view) impact of Carter’s home run is evident in the

steep rise in the final markings of the plot.

Player Game Percentage (PGP)
In addition to the calculation of win probability, Bennett and Flueck made other

modifications. They adopted the Net Points viewpoint instead of the PWA ratio



concept. Instead of using Win Points and Loss Points, their measure used the

change in probability directly expressed as a percentage. Half of the change was

attributed to the offensive player’s performance, and the other half to the defen-

sive player’s performance. This simplification allowed the direct computation of

wins above average without the need for dividing by 2000 (as in the Mills system).

Consider Joe Carter’s home run in the 1993 World Series finale. As described

in Table 10-15, the probability of a Toronto victory was .3475 when Carter came

to bat. His home run won the game, so the probability of a Toronto win was

exactly 1 after his at-bat. The change in Toronto’s win probability was 1 – .3475 =

.6525, or 65.25 percent. Half of this change (32.63 percent) was awarded to

Carter, and the negative half of the change (–32.63 percent) was given to Mitch

Williams, the hapless Phillies reliever who delivered the ill-fated pitch.

For the most part, Bennett and Flueck adopted the procedures used by the

Mills brothers in identifying the major offensive and defensive contributors in

each play, following the examples provided by the Mills’s analysis of the 1969

World Series. There were departures, however. One of these was the method

used to evaluate errors. Earlier in this chapter, we looked at the Mills brothers’

analysis of Weis’s error in Game 1 of the 1969 World Series. Basically, the analy-

sis broke the play up into two parts: a ground-out giving Win Points to the

pitcher Seaver, and the error giving Loss Points to Weis. However, the batter

ended up getting 28 Loss Points on the ground ball to Seaver and 70 Win Points

on Weis’s error, for a net gain of 42 points, more than the 28 Win Points given to

Seaver. It did not seem right for the batter to get any positive recognition for this

play, much less greater recognition than the pitcher.

The solution adopted by Bennett and Flueck was not to give any positive

credit to the batter in this play and award the entire negative change from the

error to the fielder. So, using the example above, the first part of the play is the

same (except for the change from the Points framework); the change was D =

.014, or 1.4 percent, so Seaver gets D/2 = 0.7 percent, and Buford gets –0.7 per-

cent. However, Weis’s error produced a negative change (from his team’s per-

spective) of D = .035, so he is debited the entire change, –3.5 percent. In this way,

only the pitcher receives any positive recognition from the play.

PGP (and PWA) have very powerful capabilities to quantify defensive contri-

butions to winning. However, while the mechanics of the probability calculations

are objective, identifying the players and whether their defensive contributions

were outstanding enough for special recognition remain subjective judgments.

This is less of a problem for errors, since MLB has assigned official scorers the

task of identifying misplays in the field. But how do we identify great plays by

MEASURING CLUTCH PLAY 297
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D Play Game Inning Lead Bases Outs Pr(Win)% Lead Bases Outs Pr(Win)%

3.80 1B 1 2H(L) –2 0 0 32.91 –2 1 0 36.71

2.07 SF 1 3H –1 3 1 49.16 0 0 2 51.23

–3.22 GO 1 6H(L) 0 0 0 57.16 0 0 1 53.94

–.22 K 1 7H 4 2 1 98.41 4 2 2 98.19

–2.15 FO 2 1H 0 1 2 52.15 0 0 3 50.00

9.68 HR 2 4H –5 1 0 10.10 –3 0 0 19.78

–2.49 FO 2 6H(L) –3 0 0 14.33 –3 0 1 11.84

–6.67 K 2 8H –3 2 0 15.43 –3 2 1 8.76

–.31 SF 3 1V 2 3 0 76.89 3 0 1 76.58

.44 1B 3 3V 4 0 2 85.92 4 1 2 86.36

–.37 FO 3 5V 4 0 2 89.81 4 0 3 89.44

–.62 K 3 7V 5 13 0 98.77 5 13 1 98.15

–.04 GO 3 9V 6 1 0 99.75 6 1 1 99.71

6.64 1B 4 1V 0 12 1 54.67 0 123 1 61.31

–2.40 FO 4 3V(L) –3 0 0 19.60 –3 0 1 17.20

–2.23 FO 4 4V(L) 1 0 0 63.20 1 0 1 60.97

–2.34 FO 4 6V –4 1 0 9.69 –4 1 1 7.35

.61 1B 4 8V –5 0 1 .89 –5 1 1 1.50

4.78 2B 4 9V(L) 1 0 0 84.70 1 2 0 89.48

–2.20 FO 5 1V 0 1 2 47.69 0 0 3 45.49

–3.23 K 5 4V –2 1 1 26.29 –2 1 2 23.06

–3.38 GO 5 7V(L) –2 0 0 16.80 –2 0 1 13.42

–3.01 FO 5 9V(L) –2 0 0 6.30 –2 0 1 3.29

1.45 SF 6 1H 1 3 1 69.38 2 0 2 70.83

–.69 GO 6 3H 3 0 1 83.94 3 0 2 83.25

–.32 FO 6 5H 4 0 1 93.58 4 0 2 93.26

–6.03 FO 6 8H(L) –1 0 0 28.67 –1 0 1 22.64

65.25 HR 6 9H –1 12 1 34.75 2 0 3 100.00

BEFORE PLAY AFTER PLAY

TABLE 10-17 Player Game Percentage Evaluation of Joe Carter’s Performance in the 1993

World Series in Chronological Order (Squares Mark On-Base Events, Triangles

Mark Plays That Scored Runs)
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fielders? And once recognized, how do we reward the fielder? Willie Mays’s

renowned catch in the 1954 World Series, for example, was unquestionably a

great fielding play. One possibility is just to give the defensive credit for the out

to the fielder instead of the pitcher, as might be done in the case of Mays’s catch,

but is this enough credit for an extraordinary play? Probably not. So, the other

possibility is to analyze it as an error in reverse. Split the play into two parts, the

first being a hit off the pitcher and the second being the out credited to the

fielder. PGP has used both methods at times for evaluating fielding plays, but

there is much room for improvement in this aspect of its use.

While Bennett and Flueck’s measure was derived from the same concepts as

PWA, there were enough differences (especially the use of their own table of win

probabilities) that they gave their measure its own name, Player Game

Percentage (PGP).

Let’s see how well PGP rated Carter’s 1993 World Series performance. Table

10-17 is the same as Table 10-8 except that it also presents the probability of a

Toronto victory before and after each play (as a percentage). The first column (D)

gives the change in these probabilities, subtracting the Before probability from

the After probability. Carter’s net contribution over the course of the series can

be found by summing the values in the D column and dividing by 2 (since the

change is split in half between offense and defense). This calculation produces

the following net contribution:

52.80/2 = 26.40

This is roughly equivalent to a quarter of a win over the course of the six

games.15 Carter’s PGP rating is then found by dividing his net contribution by

the number of games:

This means that Carter’s play in the 1993 World Series was good enough to raise

a team’s winning percentage by .044. So, a play of this caliber over the course of

a season could raise a .500 team to a .544 team.

We can summarize Carter’s play game-by-game by just adding up his contribu-

tions in each game individually. Figure 10-4 displays these values in the bars. The

line shows Carter’s PGP for the series as it progresses; each value is the sum of the

PGP =
Net contribution

Number of games
= = 4.4

26.4

6

15 Before his final home run, Carter actually had a negative net contribution (–12.45/2 = –6.225).

A negative value does not mean that he prevented a victory but rather that his performance

was below average up to that point.
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Game PGPs divided by the number of games to that point in the series. We see that

Carter’s PGP fluttered about the average (0) level until the big boost in Game 6.

Looking at Table 10-17, we see that Carter got off to a good start in Game 1,

with major contributions early in the game. His sacrifice fly tied the game, which

Toronto would eventually win. Game 2 saw the best (almost) and worst of Carter’s

play. His home run chipped into the early Phillies lead, and was Carter’s second

biggest play of the series. On the other hand, he struck out late in the game, put-

ting the brakes on a possible big inning to get Toronto back in the game; this was

his worst at-bat in the series. Despite the HR, his contribution was negative in this

game. His contributions in Game 3 were relatively minor (positively and nega-

tively) in a Toronto victory that was assured early in the game.

Game 4 was a wild affair that Toronto won 15–14. Carter played a positive

role in Toronto’s victory. His first single set the stage for a big Toronto first

inning. His second single started the rally that eventually brought Toronto from

way behind into the lead, but it gave Carter very little credit (+.3). When the sin-

gle was hit, the likelihood of a Toronto comeback was very remote, a probability

of winning less than .01 before the single and less than .02 after it. Toronto had

to score 5 runs just to tie and thus reach a 50-percent chance of winning. The

view that Carter’s single was a big hit is hindsight; PGP (and PWA) evaluate a

play at the moment of its resolution, not after the fact. The credit for the Toronto

rally went to the hits made by Rickey Henderson and especially Devon White,
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who delivered when the game was more in doubt, later that inning. Ironically,

Carter got more credit for his double in the ninth inning, setting up a potential

insurance run (which did not score). PGP and PWA operate on probabilities, but

sometimes the remote possibilities do occur.

Game 5 was Carter’s worst game, as it was for the rest of Toronto’s players.

Phillie starting pitcher Curt Schilling took charge and pitched a shutout. Game

6 started off well for Carter as his sacrifice fly helped Toronto to an early lead.

But unlike Game 4, when his team, trailing by a lone run, needed a runner, he

flied out to lead off the eighth inning; this was his second greatest negative at-

bat of the series, although his final at-bat more than made up for it.

The analysis of Carter’s at-bats within the context of the game using proba-

bility of victory lets us see the ebb and flow of player production. It quantifies

our intuitive feel for the great dramatic plays such as Carter’s home run to win

the final game and the series. Unlike most statistical summaries of player per-

formance, a PGP/PWA analysis tells a revealing story.

Suppose we sort Table 10-17 not chronologically but according to play type, as

shown in Table 10-18. What does this tell us about the value of different plays?

Of course, we must keep in mind that this is a very small (and unrepresentative)

sample of situations in which these plays could occur. Still, we see that the eval-

uation of these plays follows our intuition of their values. The average value of

Carter’s home runs (average D = 37.5) is higher than that of any other play type.

The average value of a single (average D = 2.9) is less than that of the double

(D = 4.8) and greater than that of the sacrifice fly (average D = 1.1). All outs

(except SFs) have negative values.

However, taking a closer look beyond the averages, we notice exceptions to

these generalities. One single which energized a big opening in Game 4 had

greater value than Carter’s lone double. Two sacrifice flies had more value than

some singles; both SFs occurred with one out and the score close. On the other

hand, one SF which occurred with no outs had a negative value; apparently, an

SF with no outs reduces the possibility of a big inning, while an SF with one out

in a close game guarantees the scoring of a run when less opportunity exists.

Also note that Carter’s leadoff outs tended to be more damaging than other outs.

In fact, the average value of Carter’s leadoff outs was –3.3, and –1.7 for all other

outs, excluding SFs. This provides some quantitative support for the leadoff spot

being a critical element of each inning.16

16 In general, given the same score and inning, leadoff outs are more costly than outs in bases-

empty situations with 1 or 2 outs already achieved, but less costly than outs in most situations

with runners on base.
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D Play Game Inning Lead Bases Outs Pr(Win)% Lead Bases Outs Pr(Win)%

BEFORE PLAY AFTER PLAY
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TABLE 10-18 Player Game Percentage Evaluation of Joe Carter’s Performance (Sorted by

Play Type) in the 1993 World Series (Squares Mark On-Base Events,

Triangles Mark Plays That Scored Runs)
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World Series Most Valuable Players
Continuing the tradition established in Player Win Averages, the first applica-

tion of PGP was to evaluate players in the 1980 World Series. Since then, PGP

has been used to analyze each World Series since 1987. Just as the Mills broth-

ers identified the erroneous selection of Donn Clendenon as the 1969 World

Series MVP over Al Weis, it has been interesting to see how often the sports-

writers’ MVP selection matched the PGP selection.

Despite his spectacular home run, Carter did not have the highest PGP rat-

ing in the 1993 World Series. That honor belonged to Paul Molitor (6.8 PGP), who

was the sportswriters’ pick as the Series Most Valuable Player. The two honors

do not always coincide. Table 10-19 presents the official MVP selected by the

sportswriters and the unofficial MVP selected by PGP. Indeed, at times, PGP has

selected a player from the losing team! These players (Aikens, Pena, Jones, and

Year Winner Loser Player PGP Player PGP

1980 Philadelphia Kansas City Mike Schmidt, 3b 4.6 Willie Aikens, 1b 8.0

1987 Minnesota St. Louis Frank Viola, p .8 Tony Pena, c 2.8

1988 Los Angeles Oakland Orel Hershiser, p 5.4 Kirk Gibson, ph 8.7

1989 Oakland San Francisco Dave Stewart, p –.8 Mike Moore, p 6.2

1990 Cincinnati Oakland Jose Rijo, p 8.5 Jose Rijo, p 8.5

1991 Minnesota Atlanta Jack Morris, p 7.6 Jack Morris, p 7.6

1992 Toronto Atlanta Pat Borders, c –.6 Ed Sprague, ph–1b 5.5

1993 Toronto Philadelphia Paul Molitor, dh–1b 6.8 Paul Molitor, dh–1b 6.8

1995 Atlanta Cleveland Tom Glavine, p 5.1 Tom Glavine, p 5.1

1996 Yankees Atlanta John Wetteland, p 3.6 Chipper Jones, 3b 3.7

1997 Florida Cleveland Livan Hernandez, p –.9 Gary Sheffield, of 3.2

1998 Yankees San Diego Scott Brosius, 3b 7.0 Tony Gwynn, of 8.1

1999 Yankees Atlanta Mariano Rivera, p 3.6 Chuck Knoblauch, 2b 4.8

TEAMS SPORTSWRITERS’  MVP HIGHEST PGP

2000 Yankees Mets Derek Jeter, ss 3.8 Mariano Rivera, p 5.7

2001 Arizona Yankees

2002 Anaheim San Francisco

Randy Johnson, p

Curt Schilling, p

4.5

1.0

Troy Glaus, 3b 4.4

Randy Johnson, p

Troy Glaus, 3b

4.5

4.4

TABLE 10-19 Most Valuable Players in Recent World Series (Players in Boldface Were on

the Losing Team)
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Gwynn) deserved a better fate. Some MVPs actually had subpar performances,

as indicated by their negative PGP ratings.

In 2001, the sportswriters felt that Arizona pitchers Randy Johnson and Curt

Schilling deserved to share the award. Yet according to a PGP analysis, Johnson

clearly gave the superior performance. The MVP award would have been more

properly shared in 2002. Looking at the 2002 World Series game by game, it may

not be clear who the MVP of the Series was. Troy Glaus, the Series MVP as cho-

sen by the sportswriters, ended up with a slight edge over teammate Tim Salmon

(4.4 vs. 4.3 PGP). Glaus performed more consistently from game to game, but

Salmon had a spectacular Game 2. In this case, PGP agreed with the sports-

writers’ selection, but the difference between the players was so small that a

shared award was probably more appropriate. Later in this chapter, we will pres-

ent a detailed examination of the 2002 World Series from the PGP perspective.

With two exceptions, the PGP ratings presented for pitchers here did not

include their appearances at bat. PGP rates players with respect to average per-

formance. Pitchers are at a severe disadvantage compared to an average hitter,

and their ratings generally suffer accordingly. Since pitchers are not expected to

hit, their hitting skills are considered a bonus rather than an expectation. This

is especially relevant in recent World Series play, in which some games have

pitchers batting and others do not because of the designated hitter rule. The

exceptions are Orel Hershiser and Mike Moore. Hershiser’s 3 for 3 in the 1988

World Series raised his 4.9 PGP rating from pitching alone to an overall PGP

rating of 5.4. Mike Moore’s two-out double early in Game 4 of the 1989 World

Series, which knocked in 2 runs, was more valuable than his pitching perform-

ance (which was excellent in its own right). His batting performance raised his

overall PGP rating to 6.2 from his pitching PGP rating of 4.2. It would be igno-

ble to ignore these valuable (unexpected) contributions when highlighting great

performances in the World Series.

The sportswriters selected a pitcher as MVP in 10 out of 16 World Series exam-

ined, while PGP selected a pitcher only 6 times. From the PGP viewpoint, the

media are not properly appreciative of the relatively rare but powerful contribu-

tions made by offense to team victory. Nowhere is this more evident than in the

evaluation of the 1988 World Series. Kirk Gibson came to bat only once in the

series, but in that one at-bat he turned defeat into victory, raising the probabil-

ity of victory from about .13 to 1. Orel Hershiser pitched very well in two starts,

as indicated by his high PGP rating. However, in both games, the Dodger offense

produced early leads (5–0 after three innings in Game 2, and 2–0 before

Hershiser threw his first pitch in Game 5). Hershiser’s contribution was mainly
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to preserve a lead already given to him. Pitching cannot win a game alone, as

Gibson’s home run did. From the perspective of winning games, Gibson’s lone

but seismic contribution (#6 among the game’s greatest moments in the opinion

of The Sporting News) was greater than Hershiser’s accomplished (but not criti-

cal) performance.

Critics of the PWA/PGP system might say “Aha! We told you that too much

weight is given to the big hit!” If that is so, how do they explain that Tony

Gwynn’s performance in the 1998 World Series (on a team that lost in four

straight!) is rated higher by PGP than the performance of Scott Brosius. After

all, Brosius had the biggest hit of the series, a home run in Game 3 that brought

the Yankees from behind into the lead late in the game. And it was his second

home run of the night. (His first, only an inning earlier, started the Yankee come-

back.) Figure 10-5 shows PGP ratings for Brosius and Gwynn in each game of

the 1998 World Series. We see that Game 3 was definitely the highlight of Bro-

sius’s series; he also had a great performance in Game 2, but Games 1 and 4

were below average. Gwynn, on the other hand, had no dramatic game-winning

moment (how could he, when the Padres were swept in the series?), but he had

consistently good performances; his PGP rating was positive in every game of the

series. Apparently, PGP is capable of rewarding consistently good play that con-

tributes to a team’s chances of winning—even if the victory afforded by the

opportunity presented is not realized. This view is further buttressed by Molitor
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FIGURE 10-5 PGP ratings of Tony Gwynn and Scott Brosius in the 1998 World Series.
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being rated higher than Carter in the 1993 World Series despite Carter’s game-

winning HR.

Comparing PGP ratings in Table 10-19, one might get the impression that

since Kirk Gibson had the highest PGP rating, his performance must be rated

the best of all players in recent World Series. However, when comparing per-

formances in different series, it is better to use Net Contribution.

Remember that with each play a player’s Net Contribution can go down as

well as up, so playing in more games is not necessarily an advantage. Listing the

best players from each series according to Net Contribution moves Jack Morris’s

pitching performance in the 1991 World Series (climaxed by his heroic 11-inning

shutout victory in Game 7) to the top of the heap in Table 10-20. Willie Aikens’s

name would undoubtedly be better remembered if his Kansas City Royals had

prevailed over the Phillies in 1980. His high Net Contribution indicates that his

22 total bases in 20 at-bats (for an amazing 1.100 slugging percentage!) made

Net contribution = PGP × number of games

Year Player PGP Games Net Contribution

1991 Jack Morris, p 7.6 7 53.2

1980 Willie Aikens, 1b 8.0 6 48.0

1988 Kirk Gibson, ph 8.7 5 43.5

1993 Paul Molitor, dh-1b 6.8 6 40.8

1990 Jose Rijo, p 8.5 4 34.0

1992 Ed Sprague, ph-1b 5.5 6 33.0

1998 Tony Gwynn, of 8.1 4 32.4

1995 Tom Glavine, p 5.1 6 30.6

1989 Mike Moore, p 6.2 4 24.8

1997 Gary Sheffield, of 3.2 7 22.4

1996 Chipper Jones, 3b 3.7 6 22.2

1987 Tony Pena, c 2.8 7 19.6

1999 Chuck Knoblauch, 2b 4.8 4 19.2

2000 Mariano Rivera, p 5.7 5 28.5

2001 7

2002

Randy Johnson, p 4.5 31.5

Troy Glaus, 3b 4.4 30.87

TABLE 10-20 Net Contributions of Highest PGP-Rated Players in Recent World Series
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contributions to victory that the rest of the team (primarily the pitching staff)

could not preserve.

A common question that comes up in reference to World Series play is

whether PGP can be adapted to evaluate players with respect to the probability

of winning the series as opposed to winning individual games. This is certainly

possible, although we refrain from using the system in this way. The basic unit

of play in baseball is the game. Each player is focused on that objective.

Evaluating players on that basis provides a uniformity and consistency of the

application throughout the season or at any level in the playoffs.

It should be made clear that PGP and PWA as defined here are not measures

of ability but of observed performance. In order to draw inferences about ability,

they must be modeled using principles similar to those outlined in other chap-

ters of this book.

The  2002 World Series
To get a detailed view of how Player Game Percentage (PGP) can be used to eval-

uate performance and may be used to find the Most Valuable Player (MVP), let’s

use it to analyze the 2002 World Series. This Series pitted the San Francisco

Giants against the Anaheim Angels. The story line spun around the first-time

appearances of a team and an individual in the World Series. In their 42-year

history, the Angels had never before appeared in the Fall Classic. They had, how-

ever, sustained several near misses, most notably coming within one strike of a

World Series appearance in 1986. The 2002 Angels were one of the surprise

teams of the American League (the Minnesota Twins being the other), having

finished with a poor 75–87 record in 2001. Their opponents, the San Francisco

Giants, were led by Barry Bonds, who had arguably put together two of the

greatest consecutive batting years in MLB history. Like the Angels, Bonds him-

self had come close to getting into a World Series several times before but had

been consistently denied. Both the Angels and the Giants were wild-card playoff

teams; this was the first time that wild-card teams had faced each other in the

World Series.

A few facts worth considering: The Angels won their first World Championship,

and their third baseman Troy Glaus was named MVP of the Series.The Series went

seven games; the Angels had to take the final two games to win the trophy. Much of

the interest in the Series centered around strategies of pitching to Barry Bonds.

Throughout the playoffs, teams had given Bonds little opportunity to hit and had

walked him instead of risking one of his famously gargantuan home runs. Had the
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Giants held their lead in Game 6, Bonds might have been the first player to walk

away (literally) with the Series MVP award.

But what can statistics tell us about this end-of-season drama? For one thing,

PGP gives us the chance to see objectively whether players’ performances lived

up to our subjective impressions of them. Figures 10-6 and 10-7 show the PGP

ratings in each game of the 2002 World Series for each Angels and Giants player.

The figures also show the PGP/Game rating for each player (the sum of the indi-

vidual game ratings divided by 7). Note that the PGP rating includes all facets

of play (e.g., fielding, running) as well as hitting. For pitchers, the PGP rating is

based on pitching and fielding. Batting by pitchers is generally not included for

reasons explained earlier in the chapter.

The PGP rating scheme supports the conclusion that Glaus was indeed the

MVP of the Series (with a PGP/Game of 4.4). However, the margin of victory was

a narrow one over teammate Tim Salmon (PGP/Game of 4.3). The relatively short

length of the gray band spanning Glaus’s individual PGP game results in Figure

10-6 indicates that his performance was more consistent from game to game,

while Salmon’s value resided mainly in his Game 2 performance. Similarly, on

the Giants, Barry Bonds (PGP/Game of 3.4) was narrowly ahead of J. T. Snow

(PGP/Game of 3.3). Bonds also showed more consistency than Snow; this is not

surprising because Bonds was given many intentional passes, which should

reduce the variability in the results of his plate appearances. Giants starting

pitcher Russ Ortiz had the curious distinction of giving the best (Game 6) and

worst (Game 2) performances by a pitcher in an individual game of the Series.

Figure 10-8 shows the PGP/Game rating for Glaus, Salmon, Bonds, and Snow

at the conclusion of each game of the Series. Each of these players was the Series

MVP-to-date at some point during the seven games. Snow was the Game 1 MVP

and, at that point, also the Series MVP. He was succeeded by Salmon in Game 2.

Salmon, in turn, held the lead until Game 5, when Bonds overtook him. Then

Glaus took the lead in Game 6 and managed to hold on in a tight finish with

Salmon, who had a strong Game 7.

Figures 10-9 through 10-15 are similar to Figure 10-3. Each figure plots the

probability of an Anaheim victory (POV) as it changed play-by-play in a Series

game. The vertical lines separate the innings of the game, and the score at the

end of each inning (Visitors–Home) is provided below the graph; diamonds sep-

arate the bottom and top halves of the innings. Each play during which Troy

Glaus was awarded a contribution to his PGP rating is denoted, and the change

in POV produced by the play is marked by a bold line. Since all graphs are

aligned with respect to the probability of an Anaheim victory, an upward slope
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FIGURE 10-6 PGP ratings of the Anaheim Angels in the 2002 World Series.



CHAPTER 10310

Game 5

Game 6

5

6

Game 1

Game 2

1

2

Game 3

Game 4

3

4

Game 7

PGP/Game

7

–30 –25 –20 –15 –10 –5 0 5 10 15 20 25 30 35 40

Barry Bonds, LF

J.T. Snow, 1B

Shawon Dunston, DH

Robb Nen, P

David Bell, 3B

Chad Zerbe, P

Rich Aurilia, SS

Kirk Rueter, P

Jason Schmidt, P

Kenny Lofton, CF

Ramon Martinez, PH

Scott Eyre, P

Reggie Sanders, RF

Pedro Feliz, DH

Felix Rodriguez, P

Tsuyoshi Shinjo, RF

Tim Worrell, P

Jay Witasick, P

Tom Goodwin, RF

Aaron Fultz, P

Jeff Kent, 2B

Russ Ortiz, P

Benito Santiago, C

Livan Hernandez, P

PGP

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

4

4

4

4

4

4

4

4

4

4

4

4

4

4

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

FIGURE 10-7 PGP ratings of the San Francisco Giants in the 2002 World Series.
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signifies a positive contribution to Anaheim while a downward slope signifies a

negative contribution. The figures provide a visual history of the course of each

game and the influence Glaus had on its outcome.

Game 1

No one scored in the first inning. In fact, no batters reached first base. The

Giants were the visiting team so Anaheim’s probability of victory inched up a lit-

tle as each batter was retired in the top of the inning and then inched back to 50

percent as each of its batters went down in turn.

In the top of the second inning, the graph shows two sharp downward lines to

the 31-percent level as a result of two solo home runs from Barry Bonds and

Reggie Sanders. In the bottom of the second, Troy Glaus came to bat for the first

time in the Series and hit a solo home run that raised the POV to 41 percent.

The 2–1 score remained unchanged through the fifth inning. Over this period,

the POV dropped from 38 percent to 33 percent. However, Anaheim had oppor-

tunities in each inning to tie the score. These threats are shown in the graph by
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FIGURE 10-8 PGP/Game ratings of 2002 World Series MVP leaders after each game.
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the jagged lines that jut up toward the 50-percent level. Adam Kennedy started

off the third inning with a double that actually raised the POV above 50 percent.

In the fourth inning, Garret Anderson’s leadoff single and Scott Spiezio’s 2-out

double each brought the POV up near 50 percent. In the fifth inning, back-to-

back 1-out singles by David Eckstein and Darin Erstad again lifted the POV to

the 50-percent level. Nevertheless, all of these runners were stranded. In his sec-

ond at-bat, Glaus was one of the batters incapable of advancing Anderson in the

fourth inning.

J. T. Snow’s 2-out 2-run homer in the top of the sixth inning increased the

Giants lead to 3 runs and dropped the POV to 14 percent. This play—the biggest

of the game—was instrumental in making Snow the MVP of Game 1 according

to PGP. Anaheim did not give up. Glaus’s leadoff HR increased the POV to 24

percent, and Adam Kennedy’s RBI single pushed it back up to 34 percent. The

Angels got no closer than that. Glaus’s strikeout leading off the eighth inning is

representative of the Angels’ futility in the last three innings. Nevertheless,

Glaus had a good game overall and along with Adam Kennedy the most valuable

performance on the Angels team.
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Game 2

Game 2 was owned by Tim Salmon, who according to PGP measures had the

most valuable single game performance in the Series. The Angels came out on

fire. After stopping the Giants in the top of the first, they put 5 runs on the

board, raising the POV to 91 percent. The biggest hit of the game was Darin

Erstad’s double, which batted in the first run. Salmon followed with a single and

eventually scored in the rally. Glaus flied out during this inning.

The Giants responded immediately with 4 runs, bringing them within 1 run

of the Angels and dropping the POV to 66 percent. The rally was ignited by two

crucial, back-to-back plays: Reggie Sanders’s 3-run HR and David Bell’s solo HR.

Tim Salmon’s 2-run HR in the bottom of the second gave the Angels a cushion,

jacking the POV up to 82 percent. Troy Glaus followed with a double and

advanced to third on a passed ball. Since his double came with 2 outs and the

Angels already had a substantial lead, it advanced the Angels’ POV only a small

amount. In any case, he did not score.

Over the next two innings, the Angels mounted no threats to score, but the

Giants did. Jeff Kent led off the top of the third inning with a HR that dropped

the POV to 72 percent. When Barry Bonds followed with a walk, the Giants had

the potential for another big inning, and the POV dropped again to 69 percent.

But David Bell hit into a double play that killed the rally, and the POV rose back

up to 77 percent. Leading off the fourth inning, Reggie Sanders smacked a sin-

gle and stole second base, reducing the POV to 66 percent. Again the Giants

failed to exploit the scoring opportunity.

In the fifth inning, the Giants finally broke through. Rich Aurilia led off with

a double. With 1 out, the Angels opted to give an intentional pass to Barry

Bonds, dropping the POV to 70 percent. This time the strategy did not work as

Benito Santiago singled to load the bases. J. T. Snow responded with a single in

his critical at-bat; this tied the game and dropped the POV to 41 percent. For the

first time in Game 2, the Giants had a better chance of winning than the Angels,

even though at this moment the game was tied—POV takes the bases-outs situ-

ation into account (runners on first and third with 1 out) as well as the score.

When Reggie Sanders struck out, it appeared that the damage could be con-

trolled, and the POV rose to 49 percent. But David Bell and Shawon Dunston

batted back-to-back singles that produced two more runs, and the POV plum-

meted to 27 percent by the end of the Giants’ fifth inning. A game that started as

a rout by the Angels had changed dramatically, as exemplified by the swing in

POV in Figure 10-10.
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As they did in Game 1, the Angels fought back. Glaus led off with a single and

advanced to third when Kenny Lofton muffed Brad Fullmer’s subsequent single.

Quickly the POV rose back to 47 percent. Here again we see how the POV takes

into account the bases-outs situation (runners on first and third with no outs) as

well as the score (Angels trailing by 2 runs). Unfortunately, the Angels could

only generate 1 run from this situation, and the POV sank back to 33 percent by

the end of the inning. Scott Spiezio swatted a sacrifice fly that scored Glaus but

did not advance Fullmer. This play dropped the POV to 41 percent. This is one

example when an SF is not a positive contribution to the team. With no outs, the

runner on third has a great likelihood of scoring at some point in the inning.

Giving up an out to get Glaus home without advancing Fullmer diminished the

Angels’ chance of scoring the runs needed to catch the Giants. The risk of not

advancing Fullmer was played out when Bengie Molina grounded into a double

play to end the inning.

Initially, events did not bode well for the Angels in the sixth inning when

their first two batters grounded out. However, the Angels were able to tie the

game when Garret Anderson batted home Darin Erstad, who had doubled. In-

between Anderson’s and Erstad’s at-bats, Tim Salmon had walked; although he 
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was thrown out at third for the final out, his attempt at advancing had aided

Erstad in scoring the tying run. After six eventful innings, the game was tied

and the POV was right where it started: at 50 percent.

In the bottom of the eighth inning, lightning struck the Giants out of a clear

sky. With 2 outs and a runner on first, it appeared as if the game would enter the

ninth inning in a tie. Then, Tim Salmon belted a homer that gave the Angels a

2-run lead. With only one more inning to play, it vaulted the POV to 94 percent.

Troy Percival gave up a 2-out solo HR to Barry Bonds, but the play left the

Giants a run short in the end. Here, we have a case where a home run makes vir-

tually no dent in the probability of winning.

Given the final score, 11–10, it is no surprise that Giants pitcher Russ Ortiz

had the worst single game of any starter in the Series. On the other hand, Angels

middle reliever Francisco Rodriguez, who held the Giants scoreless in the sixth,

seventh, and eighth innings, had the best single game performance by an Angels

pitcher in the Series.

Game 3

In Game 3, the Series shifted to San Francisco. The Giants managed to manu-

facture a run in the top of the first inning. Through the efforts of Kenny Lofton

and Jeff Kent, the Giants had runners on first and second with just 1 out. Again,

the Angels decided to walk Bonds and load the bases. This decision reduced the

POV to 34 percent. The pressure was on Benito Santiago to deliver a hit.

Santiago hit a grounder that scored Lofton and advanced the other runners.

This dropped the POV only slightly, to 33 percent. Now the pressure was on J. T.

Snow to deliver a 2-out hit with two runners in scoring position. His failure to do

so raised the POV to 39 percent. Since this equals the POV when Bonds came to

bat, the decision to walk Bonds in this case appears to have had a neutral effect

here.

In the second inning, neither team scored. Although the Angels mounted a 2-

out threat, it was stymied when Bengie Molina was intentionally walked to get

to the pitcher, Ramon Ortiz, who obliged the Giants by striking out.

The Angels produced an exciting third inning. Before the first out was made,

David Bell’s error had put Tim Salmon on and allowed David Eckstein (leadoff

walk) to score the tying run, raising the POV to 61 percent. With 1 out, Troy

Glaus knocked in the go-ahead run scored by Darin Erstad who had followed

Eckstein with a double. Scott Spiezio tripled home Salmon and Glaus to raise
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the POV to 84 percent. In the end, the Angels were unable to plate Spiezio, which

dropped the POV to 78 percent.

The Angels struck again in the fourth inning when they produced four more

runs through a sequence of walks, singles, and stolen bases. The POV reached 97

percent and only dipped slightly below this level for the remainder of the game.

In the sixth inning, home runs by Rich Aurilia and Barry Bonds could only

reduce the POV to 93 percent. The Angels tacked on two more runs, but since the

game’s course had already been decided in the early innings, they had little

effect on the result.

Spiezio’s third inning triple was the biggest play of the game and made him

the Game 3 MVP. Troy Glaus, too, had a good game and provided a key single in

the third inning.

Game 4

As in Game 3, the Angels built an early lead, but in Game 4, they were unable to hold

it. However, it first appeared as if the Giants would be the team off to a fast start.

The Giants started off well in the first inning. Leadoff singles by Lofton and

Aurilia had dropped the POV to 32 percent. When Kent struck out, the POV rose

to 39 percent. Again the Angels decided to intentionally walk Barry Bonds to

0%

25%

50%

75%

100%

SCORE

P
R

O
B

A
B

IL
IT

Y
 O

F
 A

N
A

H
E

IM
 V

IC
T
O

R
Y

0–1 10–410–49–49–48–48–14–10–1

FO

1B

BB

FO FO
1B

Inning 1 2 3 4 5 6 7 8 9

FIGURE 10-11 Game 3 win probabilities for Anaheim in the 2002 World Series.



MEASURING CLUTCH PLAY 317

load the bases. The tactic succeeded when Santiago bounced into a double play

to end the Giants’ chances of scoring.

In the second inning, consecutive singles by Gil, Molina, and Lackey (the

pitcher!) loaded the bases and pushed the POV to 62 percent. Unfortunately, the

Angels were only able to score 1 run on a sacrifice fly by Eckstein and settled for

POV at 57 percent at the end of their at-bat.

In the top of the third inning, the Angels struck again. Salmon led off with a

single and Glaus hit a 1-out HR. The Angels had a 3-run lead and the POV rose

to 80 percent. However, in the bottom of the inning, Lofton and Aurilia led off

with a single and a double. When Kent lined out, the POV still had been reduced

to 67 percent. With first base open, Bonds was again given an intentional pass.

In an uncanny repeat of the first inning, Santiago hit into an inning-ending dou-

ble play, raising the POV to 83 percent.

In the bottom of the fifth inning, Rueter (the other starting pitcher!), Lofton,

and Aurilia led off with singles that scored 1 run and reduced the POV to 53 per-

cent. Even though the Angels still led by 2 runs, the bases-outs situation made

the game almost even at this point. A sacrifice fly by Kent scored another run

but was not a positive contribution as the POV rose to 59 percent. However, an

error by Tim Salmon on the play had allowed Aurilia to advance into scoring

position at second base. So, the POV stood at 56 percent as Bonds came to the
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plate again with first base open. And again he was given the intentional walk.

This time, though, Santiago singled to tie the game, and the POV dropped to 38

percent. The Giants were not able to capitalize on the first and second 1-out

opportunity, and the POV rose to 50 percent at the end of the inning.

Spiezio led off the sixth inning with a single but was left stranded when Gil

struck out and Molina hit into a double play. In the bottom of the inning, Tom

Goodwin walked and stole second base, but was stranded also.

No one reached base until the bottom of the eighth inning when Snow opened

with a single and advanced into scoring position on a passed ball. After Sanders

popped out, David Bell delivered a single, giving the Giants’ their first lead of

the game and dropping the POV to 12 percent. In the ninth inning, reliever Robb

Nen escaped potential trouble from Adam Kennedy’s single when Brad Fullmer

hit into a game-ending double play.

David Bell’s game-winning hit was the biggest play of the game, but Rich

Aurilia was the Game 4 MVP for providing scoring opportunities early in the

game and sparking the Giants big rally in the fifth inning. For the Angels, Glaus,

Adam Kennedy, and reliever Ben Weber made positive contributions, but were

unable to turn the tables on the Giants.

Game 5

The Giants got off to a fast start and never let up. They scored 3 runs in the first

inning and dropped the POV to 21 percent. It never rose higher than 29 percent

after that. The inning included a double by Barry Bonds that scored the first run

of the game. Bonds came home with the third run on David Bell’s 2-out bases-

loaded walk.

The assault continued in the second inning. Lofton and Kent singled and dou-

bled to put runners on second and third with 1 out. Barry Bonds was again given

the open base. Santiago came through with a single that scored 2 runs and

dropped the POV to 5 percent. Bonds scored the third run in the inning on

Sanders’s sacrifice fly.

The Angels attempted a comeback. They scored 3 runs in the fifth inning to

raise the POV to 10 percent. The biggest hit was Troy Glaus’s 2-out double that

scored the third run. After the Giants went down in order in the bottom of the

fifth inning, the Angels started the sixth inning with great promise. Molina and

Gil led off with a single and double, and the POV rose to 29 percent. However,

Eckstein, Erstad, and Salmon went down in order to drop the POV to 14 percent.

Jeff Kent’s 2-run homer in the bottom of the sixth inning dropped the POV back
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down to 5 percent. It precipitated a long, slow, steady decline to 0 percent as the

Giants doubled their runs scored in the final three innings. Although a lot of

scoring was done in this period, these plays (including a fielding error by Glaus)

had little effect on the outcome of the game.

No matter what they did (walk Bonds or let him hit), the Angels’ strategy

backfired in Game 5, when Bonds had his most valuable game of the Series.

Even more valuable was the performance of Jeff Kent who also had his best

game of the Series.

Game 6

The Series moved back to Anaheim and Game 6 started as a pitcher’s duel

between the Giants’ Russ Ortiz and the Angels’ Kevin Appier. No one scored, and

few runners reached first in the first four innings. The only player to reach sec-

ond base was Jeff Kent who was forced to second when Barry Bonds was inten-

tionally walked with 2 outs in the first inning. This unconventional strategy

worked as Santiago fouled out.

In the top of the fifth inning, the Giants drew first blood when Shawon

Dunston’s 2-run homer dropped the POV to 25 percent. Kenny Lofton then man-
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ufactured his own run by doubling, stealing third, and scoring on a wild pitch to

drop the POV to 17 percent. In the top of the sixth inning, Bonds’s leadoff homer

dropped the POV to 7 percent. In the top of the seventh inning, Kent plated

Lofton with a single. The Giants led 5–0, the Angels had only 9 outs left, and the

POV had dropped to 3 percent. The Giants seemed to be assured of a World

Championship.

That’s when it all started to unravel. Fittingly, the first hit of the Angels’ rally

was a single by Troy Glaus. When Brad Fullmer followed with another single,

Giants manager Dusty Baker decided to relieve starter Russ Ortiz with Felix

Rodriguez. Ortiz left the game having given the best performance by a starting

pitcher in the Series; ironically, he would not win this game. Scott Spiezio hit a

homer that brought the Angels within 2 runs. The POV rose to 16 percent, and

the Angels suddenly had a pulse.

In the top of the eighth, Darin Erstad greeted the Giants new reliever Todd

Worrell with a leadoff home run that brought the Angels within 1 run and

increased the POV to 29 percent. Salmon and Anderson followed with 2 singles.

An error by Barry Bonds allowed the pinch runner, Chone Figgins, and Anderson

to advance to second and third on Anderson’s single. Although the Angels still

trailed by a run, with no outs and two runners in scoring position, the POV had
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risen in favor of the Angels to 67 percent. Troy Glaus then delivered the biggest

hit of the game: a double that scored both runners. With the Angels up 1 run, a

runner on second, and no outs, the Angels had a good opportunity to tack on an

insurance run, and the POV stood at 92 percent. However, they were not able to

score Glaus, so the POV dropped to 85 percent by the end of the inning.

Nevertheless, the Angels’ closer Troy Percival got all three Giant batters out in

the ninth inning, and the Angels had made a triumphant comeback.

Troy Glaus was the Angels’ MVP for the game. Surprisingly, the Giants start-

ing pitcher Russ Ortiz gave an even better performance.

Game 7

Initially, it appeared that the Angels would strike first in Game 7. However, with

runners on first and second with 1 out, David Eckstein was doubled off second

when Anderson lined out in the first inning. This allowed the Giants to put the

first run on the board in the top of the second inning on a sacrifice fly by Reggie

Sanders. The Angels tied the game in the bottom half on a 2-out double by

Molina that scored Spiezio from first base.

In the third inning, the Angels used 2 singles and 1 hit batsman off Giants

starter Livan Hernandez to load the bases with no outs and raise the POV to 72

percent. Garret Anderson belted a bases-clearing double that raised the POV to

88 percent. Troy Glaus was intentionally walked, but the Angels were unable to

produce more runs and the POV dropped to 83 percent.

The Angels never scored again in the game, but they didn’t need to because

the Giants never scored either despite several rally attempts. In the fourth

inning, Bonds and Santiago both singled with 1 out to drop the POV to 78 per-

cent, but they were not able to score. In the sixth inning, Santiago and Snow

were stranded on second and third. In the ninth inning, Goodwin and Bell were

stranded at first and second.

There was no single outstanding player in Game 7. Garret Anderson and Angel

starter John Lackey both had good games. Even J. T. Snow on the losing Giants

had a good game. But the edge as MVP went to Angels’ catcher Bengie Molina who

knocked in the Angels first run. Ironically, Troy Glaus, who was named the Series

MVP at the conclusion, did not put a ball in play at all in Game 7.

Examining the flow of the game with respect to probability gives us a sense of

how each player contributed to the outcome of the game. The descriptions here

emphasized not only the key scoring plays, which are typically noted, but also the
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threats that did not result in a score. The prevention of scoring at these moments

had as much impact on the Series as the scoring plays we all remember.

Looking to the Future
This investigation started with ways to measure clutch play. But we may have

accomplished much more. Instead of isolating clutch play and examining player

capabilities with respect to that one facet alone, we have found a system that

integrates clutch play into an overall evaluation of player performance: One

which can be used to compare starting pitchers with relief pitchers, pitchers

with hitters. One which recognizes the importance of a good bench in winning

games. One which is able to evaluate stolen bases within the context of a game.

With the increasing availability of play-by-play records, evaluating players

on the basis of probability of winning using metrics like PWA and PGP may be

the wave of the future.
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Part of what makes baseball an exciting sport, at least to us, is its unpre-

dictability. During the preseason, experienced and knowledgeable sportswriters

make a number of predictions regarding the best and worst teams, the best and

worst hitters and pitchers. But it is pretty common for the season to play out in

a way very different from what is predicted. Teams often perform much worse or

better than expected, and players many times achieve much more (or less) than

expected. Many fans can remember teams like the Whiz Kids (the 1950

Philadelphia Phillies) and the Miracle Mets (the 1969 New York team), who had

amazingly successful seasons despite virtually unanimous preseason predic-

tions of mediocrity. Likewise, it is easy to think of young players who surprised

everyone with great seasons. (Remember Mark Fidrych of the Tigers and, more

recently, Sean Casey of the Reds?) So it is clear that there is a lot of uncertainty

in any preseason prediction. In this chapter, we will describe some statistical

methods that can be used in prediction and make some comments about the

accuracy of these predictions. We will first talk about prediction of individual

game outcomes, then discuss prediction of home-run numbers for two recently

famous and fantastically successful sluggers, Sammy Sosa and Mark McGwire.

Predicting Game Results
Let’s first focus on the basic problem of predicting game results. Suppose team

A, say Anaheim, plays team B, say Boston, in a single game at team A’s home

park. Can we, with any degree of certainty, answer the question, “Who will win?”

323
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Guessing

The simplest way of predicting the outcome of a baseball game (or anything else)

is to make a blind guess. Suppose we knew nothing about baseball and we

thought that the teams all had roughly the same ability. Also, since we’re igno-

rant about baseball, we are not aware of any advantage (to either team) of play-

ing in team A’s ball park. So we make our prediction by flipping a coin. If the coin

lands heads, we’ll predict A to win the game; if the coin is tails, we’ll pick team B.

Suppose that we use this “guess method” in predicting many baseball games.

How good are these predictions? Well, since the result of the coin flip has noth-

ing at all to do with the outcome of the baseball game, we can expect to be right

about half of the time. In other words, our success rate using the guess method

would be 50 percent.

Picking the Home Team

We can certainly improve on mere guessing, since we do know something about

baseball. For example, we know that there is some advantage for a team playing

in their home ball park. So it would be reasonable to always predict that the

home team would win. How good is this prediction? In 1999, 52.1 percent of all

games were won by the home team. So our success rate if we predict the home

team is 52.1 percent.

In other words, our predictions are slightly better if we pick the home team

than if we simply guess, but the improvement is pretty small—only 2.1 percent.

The home-field advantage in baseball is much smaller than the home-court

effect in basketball or the home-field advantage in football. (In recent profes-

sional football games, the home team wins approximately 58 percent of the time,

and in professional basketball the home team wins 66 percent.)

A “Team Strengths” Prediction Model

We can do better than merely choosing the home team. We know that teams have

different abilities, and we should be able to use this knowledge to make a more

accurate prediction. We will describe one simple statistical method, similar to the

least-squares method of fitting a line to a scatterplot (as discussed in Chapter 5),

and use it to make a prediction based on the relative strengths of the teams.

First, we will code the game results, with team A as the home team and team

B the visitor. If the home team (A) wins, we will record the result as +1; if the vis-

itor (B) wins, we’ll record a –1. So all of the game results for the season are

recorded as a sequence of +1s and –1s.
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Next, we need to construct a prediction formula that takes into account the

teams’ strengths and the home-field advantage. We’ll denote the strength of

team A as SA and the strength of team B as SB, and let H denote the home-field

advantage. A simple prediction formula says:

Prediction = SA – SB + H

If we knew the strengths of the two teams and the home-field effect, then we can

compute Prediction. For example, if Anaheim had a strength of .3 and Boston

had a strength of .4 and the home field advantage is .2, then our prediction

would be:

Prediction = .3 – .4 + .2 = .1

We can then use the value of Prediction to make our game prediction as fol-

lows:

• If Prediction is positive, then Team A will win.

• If Prediction is negative, then Team B will win.

In our example, since Prediction is .1 (a positive number), we would predict

Anaheim to win the ball game.

The only problem with this method is that we don’t know either the team

strengths or the home-field advantage. To use this prediction method, we have to

estimate these numbers, using data from the season. We use a popular estima-

tion method called least-squares to do this.

Suppose we collect the results for a large number of games. For each game we

record the game outcome (+1 if the home team wins, –1 if the visiting team wins)

and the names of the two teams that played. There are 30 teams—we don’t know

the strengths of the teams which we represent by S1, . . . , S30, and we don’t know

the value of the home-field advantage H. Using the least-squares method, we

find values of the team strengths and the home-field advantage which makes

the sum of [Outcome – (Shome – Saway + H)]2 as small as possible, where Shome is

the strength of the home team and Saway is the strength of the visitor.

Predicting 1999 Game Results

Let’s illustrate this method for predicting the results of the games in the 1999

regular season. At the beginning of the season, we can’t make any predictions,

since we don’t know the team strengths. We could use the results from the 1998

season to learn about the team abilities, but there is a lot of movement of play-

ers between teams in the off-season, and it is not clear how relevant the 1998

game results will be in predicting 1999 results.
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So we will initially use the game results for the first two months of the sea-

son in 1999 to estimate the team strengths. From these game results, we use the

least-squares method to obtain values of the team strengths and the home-field

advantage. These least-squares estimates are displayed in Table 11-1.

Now we can use the least-squares method to predict the results of the games

on June 1. Table 11-2 gives the predictions, the game results, and whether we

were right or wrong in our prediction for this particular day.

Let’s illustrate this prediction process for one game, the Atlanta-Colorado

game played on June 1, 1999. We see from Table 11-1 that Atlanta has a strength

of .44 and Colorado has a strength of .16, and the home effect is estimated to be

.01. So for this game, the value of Prediction is calculated as follows:

Prediction = .44 – .16 + .01 = .29

This means that we predict Atlanta will win. From Table 11-2, we see that the

home team (Atlanta) won this game, so we were right on this prediction.

For the next day (June 2), we repeat the process. Using the 1999 data for all

of the games prior to June 2, we estimate the team strengths and the home

advantage. We use the formula to predict the June 2 games and keep track of our

correct and incorrect predictions. The next day we update our estimates of the

team strengths and H using the new set of results through June 2, then using

these values in the new formula to predict the June 3 results, and so on. How did

Team Strength

Anaheim 0 Detroit –0.07 Oakland 0.13

Arizona 0.41 Florida –0.11 Philadelphia 0.19

Atlanta 0.44 Houston

0.42

Pittsburgh 0.26

Baltimore –0.17 Kansas City

0

San Diego 0.03

Boston 0.32 Los Angeles 0.29 San Francisco 0.29

Chi Cubs 0.36 Milwaukee 0.13 Seattle 0.08

Chi White Sox 0.04 Minnesota –0.16 St Louis 0.25

Cincinnati 0.30 Montreal 0 Tampa Bay –0.02

Cleveland 0.40 NY Mets 0.24 Texas 0.23

Colorado 0.16 NY Yankees 0.24 Toronto –0.02

Home Field Advantage 0.01

TABLE 11-1 Team Strengths and Home-Field Advantage Estimated Using Game Results

of First Two Months of the 1999 Season



PREDICTION 327

we do? In predicting 1616 games during the 1999 season, the formula gave cor-

rect predictions for 924 games. In other words:

How Good Were Our Predictions?

One thing that is a bit surprising is the low value of the success rate. If we

guessed at the winners, we would have a success rate of 50 percent. By using

information about the team strengths and the home effect, we’ve raised this suc-

cess rate to only 57.2 percent. People have tried this same method for predicting

games in professional basketball and football and achieved better results. Using

the same least-squares method as the one described above, one can get a 63 per-

cent success rate for predicting professional football games and a 69 percent suc-

cess rate for professional basketball. This tells us that the results of baseball

games are pretty uncertain relative to football and basketball.

How could we improve our predictions? Is there other information about the

game that one could incorporate, making for a better prediction formula? One

924
1616

= 57.2%Success rate using the prediction formula =

Home Team Visiting Team Prediction Who Won Game? Right or Wrong?

Anaheim Minnesota 0.17 Home team Right

Atlanta Colorado 0.29 Home team Right

Boston Detroit 0.40 Home team Right

Chicago Cubs San Diego 0.33 Away team Wrong

Florida St. Louis –0.35 Away team Right

Milwaukee Houston –0.28 Away team Right

Montreal Arizona –0.40 Home team Wrong

NY Mets Cincinnati –0.05 Away team Right

NY Yankees Cleveland –0.14 Home team Wrong

Oakland Tampa Bay 0.16 Home team Right

Philadelphia San Francisco –0.08 Away team Right

Pittsburgh Los Angeles –0.02 Home team Wrong

Seattle Baltimore 0.26 Away team Wrong

Texas Kansas City 0.25 Home team Right

Toronto Chicago White Sox –0.04 Away team Right

TABLE 11-2 Predictions and Game Results for All Games Played on June 1, 1999
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obvious piece of information to add would be the quality of the starting pitchers

of the two teams. Starting pitchers like Randy Johnson, Greg Maddux, and

Pedro Martinez have the potential to dominate a game, and so it would seem

that knowledge of the starters should help our predictions.

To investigate this conjecture, we look at the ten best pitchers in each of the

National and American Leagues on the basis of ERA, and check the success of

our method in predicting the games started by these star pitchers during the

months June through September. For each pitcher, Table 11-3 displays the num-

ber of games correctly predicted. Also, the table divides the incorrectly predicted

games into two groups—the games where the team was predicted to win but

lost, and the games where the team was predicted to lose but won. Note from the

Pitcher

Number of 

Predictions

Correct

Predictions

Predicted to

Win, but Lost

Predicted to

Lose, but Won

17 12 2 3

19 9 7 3

18 9 6 3

21 12 7 2

20 11 5 4

20 12 3 5

20 12 4 4

23 13 4 6

21 9 6 6

21 17 1 3

23 13 6 4

21 15 3 3

21 18 2 1

23 11 8 4

19 9 4 6

19 9 2 8

13 8 3 2

22 15 4 3

25 15 5 5

22 17 3 2

408 246 85 77

P. Martinez

D. Cone

M. Mussina

B. Radke

J. Rosado

J. Moyer

B. Colon

M. Sirotka

F. Garcia

O. Hernandez

R. Johnson

K. Millwood

M. Hampton

K. Brown

J. Smoltz

T. Ritchie

C. Schilling

G. Maddux

J. Lima

O. Daal

Totals

TABLE 11-3 Outcomes of 1999 Predictions in Games Started by the Twenty Best Pitchers
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“Totals” row that our method gave correct predictions in 246 out of 408 games,

for a success rate of 60 percent. (This is a little better than our success rate for

all games.) Now if the knowledge of the pitcher improved our predictions, we

would expect to see more errors where the team won with star pitchers although

predicted to lose. Actually, in Table 11-3 we see just the opposite pattern—in 85

games the teams lost games they were predicted to win, and in 77 games the

teams won games they were predicted to lose.

Generally, we were unsuccessful in developing a more useful prediction for-

mula that incorporated the starting pitchers. That doesn’t mean that the start-

ing pitchers are not important in determining the game results. Instead, what it

most likely means is that the strength of the starting pitchers is already part of

the team strengths used in our earlier prediction formula. For example, Pedro

Martinez is a great pitcher who helps Boston win some games, but his ability is

built into Boston’s team strength, which we used in our predictions.

Predicting the Number of McGwire and Sosa Home Runs
Let’s shift gears from predicting game results to predicting individual player

accomplishments. The 1998 baseball season will forever be remembered as one

of the most memorable, largely due to the achievements of Mark McGwire and

Sammy Sosa. Before 1998, there were two notable achievements in home-run

hitting for a single season—Babe Ruth’s 60 home runs in 1927 and Roger

Maris’s 61 in 1961. McGwire’s 70 and Sosa’s 66 home runs both shattered

Maris’s record. Moreover, the two players achieved these marks in dramatic

fashion, with McGwire hitting 2 home runs on the final day of the season.

It’s no surprise that in the summer of 1998, McGwire and Sosa were the cen-

ter of media attention, and that every home run hit by either player, especially

during August and September, added to the excitement. During the season,

everyone wondered: would Mac or Sosa break Maris’s home run record, which

had stood for 37 years? And if the record was broken, how many home runs

would these two sluggers eventually hit?

As we write the first version of this chapter in September 1999, with the 1998

season a fond memory, it’s not that interesting to talk about predicting 1998

results. So we’ll focus instead on one current prediction problem, where the out-

come is still not known. It is September 8, 1999, and Sammy Sosa has hit 58

home runs in 535 at-bats. He has 23 games left with 90 at-bats (approximately).

Will Sammy break 60? Will he break 70? Will Sammy hit more than McGwire,

who currently has hit 54 home runs, with roughly 60 remaining 1999 at-bats?
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A Simple Prediction Method

First, let’s discuss one simple way of predicting the number of Sosa home runs.

This method is probably used by most of the sports sites in the World Wide

Web—usatoday.com, espn.com, sportsline.com, and cnnsi.com.

First we compute Sosa’s rate of hitting home runs in 1999. He has already hit

58 home runs in 535 at-bats, so his 1999 rate is:

1999 Home-run rate = 58/535 = .108, or 10.8%

Suppose he keeps hitting home runs at the same 10.8 percent rate. So if he has

90 more at-bats, we expect him to hit:

90 (.108) = 9.7, or approximately 10

additional home runs. Since Sosa has already hit 58 home runs, we then predict

that his 1999 total will be

1999 Home-run rate = 58 + 10 = 68

So we predict that Sosa will hit a couple of home runs short of the record number 70.

What’s Wrong with This Prediction?

There are some problems with this method of prediction. First, although we pre-

dict that Sosa will hit 68 home runs, we really have little idea how likely it is

that he will hit 68 home runs. People who see a prediction that says, “Sosa will

hit 68 home runs,” will expect that this will happen, and be surprised if Sosa

actually hits 66 or 67 or 70 home runs. What we’ll learn in this chapter is that

there is a lot of uncertainty in prediction. Although a prediction like “68 home

runs” may be the most likely possibility based on our knowledge, there is a

greater probability that Sosa will not hit 68 home runs.

Another problem with this prediction is that it is based on a particular set of

assumptions, and often fans forget about these assumptions when they see the

answer. Here the prediction that Sosa will hit 68 home runs makes the impor-

tant assumption that Sosa will continue to hit home runs at the same rate as he

did in the months April through August. Is this reasonable? Is Sosa really a hit-

ter who hits home runs at a 10-percent rate throughout the season? Or maybe

Sosa had an unusually good streak of home-run hitting that stretched through

the 1998 season and into the first five months of 1999, and really he isn’t as good

as this 1998 and 1999 data would indicate.

The point here is that if you gather a group of baseball fans in September

1999, each fan will have his own opinion about the home-run prowess of
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McGwire and Sosa during the remainder of the 1999 season. One fan might

believe that Sosa is really in a groove (with respect to home-run hitting) this

year and will continue to stay in this groove for the remainder of the season.

Another fan might think that Sosa has been hitting over his head this season

and will cool down. And another fan’s opinion about Sosa’s home-run hitting

might be based on the teams and pitchers and ball parks where he will play the

23 remaining 1999 games. Fans will have divergent opinions about the abilities

of McGwire and Sosa, and these opinions will result in different predictions

about the 1999 home-run totals of these two players.

Can we do anything to reduce some of this uncertainty? In the next section of

this chapter, we narrow our focus and describe a simple statistical method for

predicting results—for example, the number of home runs by one player in a

season, the number of strikeouts by a pitcher, the number of RBIs for a team,

and so on. First, we take a look at one player’s true home-run rate by means of a

probability table. Second, we develop a probability table for the result we are

interested in. The probabilities in this table tell us which result is most likely to

happen, and reveal that many results besides the most likely one are possible.

At the end, we derive a range of possible values, so instead of having to say, “Sosa

will hit 68 home runs,” we can make a statement like “there is a 90-percent

chance that Sosa will hit between 64 and 72 home runs.”

A Spinner Model for Home-Run Hitting

Let’s first describe a simple probability model for Sosa’s home-run hitting for the

remainder of the 1999 season. When Sammy comes to bat, we can put the results

into three categories:

1. He gets a walk, gets hit by a pitch, or gets a sacrifice—none of

which is counted as an official at-bat.

2. He has an official at-bat (a hit or an out) but doesn’t hit a home run.

3. He hits a home run.

If we ignore the plate appearances that don’t result in an official at-bat, then

there are two outcomes—home run or not a home run. Suppose that every time

Sammy has an at-bat, he spins a spinner. The spinner has two areas labeled

Home Run and Not a Home Run, and the area of the home run region is p. He

spins the spinner to bat, and a home run is the result if the spinner lands in the

Home Run region.
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Note that the chance that Sammy hits a home run on an official at-bat is p for

each at-bat. We’re assuming that the home-run probability is the same in Wrigley

Field, away from Wrigley Field, against Randy Johnson, and against Chad Ogea.

Actually, we don’t believe that this is true: Sammy’s got to have a higher proba-

bility of hitting a home run against Ogea than Johnson. Still, this model works

pretty well in representing the variation of home run-data that we see.

So this model assumes that Sammy’s chances of hitting a home run are the

same regardless of the pitcher he is facing. And there is a second big assumption

here: the chance of Sammy hitting a home run in, say, the twentieth at-bat is not

affected at all by his performance in the previous 19 at-bats. We’re assuming

that he can’t have true hot or cold streaks in his hitting. (For a more extensive

discussion of this point, see Chapter 5.)

How Many At-Bats?

We don’t know for sure how many at-bats Sammy will have in the final 23

games, but we note that he has played in every single Cubs game this season. So

it is reasonable to assume that he will play in each one of the remaining 23. Also,

in his first 138 games, Sammy averaged 3.9 at-bats. If he continues to get at-bats

at this rate, we would expect him to have:

23 (3.9) = 89.7, or about 90 at-bats

So, in our spinner model, we will assume that Sammy will get 90 opportunities

to spin the spinner and get home runs.

What If We Knew Sosa’s True Home-Run Rate?

To complete our spinner model, we have to know the chance that Sammy will hit a

home run on a single at-bat—this is the size of the Home Run area in the spinner.

Let’s first assume, hypothetically, that Sammy is a true 10-percent home-run

hitter. That is, the chance that he hits a home run on an official at-bat is .1. In our

spinner model, the area of the Home Run region would be .1, and Sammy could

play the remainder of the 1999 season by spinning this particular spinner 90

times (corresponding to the 90 at-bats). How many home runs would Sammy hit?

Well, a reasonable guess would be 9. Since the chance of hitting a home run is

10 percent, one would expect him to hit 90 (.10) = 9 home runs in the remainder

of the season. But the actual number of home runs he will hit is random or

uncertain, and although 9 home runs is pretty likely, there is a good chance that

he will hit fewer or more than 9.
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There is a well-known formula called the binomial that is used for computing

such a probability. We will take a close look at it to see if we can determine the

probability that Sammy will hit a specific number of home runs for our spinner

model with 90 at-bats (spins) and a home-run probability (spinner area) of .1.

Binomial Probabilities

Suppose you have a random experiment that consists of a sequence of trials. On

each trial, only one of two things can happen, which we call a success (labeled S)

or a failure (F). Assume that the chance of an S on a single trial is p, and that the

chance of getting a getting a S or F on a particular trial is not affected by what

happens on previous trials. If there are N trials, then the probability of seeing

exactly x successes in the experiment is given by the following formula:

In this formula, the symbol

called “N over x,” is the number of ways of choosing x items from a larger group

of N items. In the example above, the number of trials is N = 90, a success is “hit-

ting a home run,” the probability p = .1, and we are interested in the probability

N
x

Pr(x successes in N trials) = px (1 – p)N – xN
x

Home Runs Probability

0 0 11 0.101

1 0.001 12 0.074

2 0.004 13 0.049

3 0.012 14 0.030

4 0.030 15 0.017

5 0.057 16 0.009

6 0.089 17 0.004

7 0.119 18 0.002

8 0.137 19 0.001

9 0.139 20 0

10 0.125

TABLE 11-4 Binomial Probabilities for Number of Home Runs Hit in 90 At-Bats with a

Home-Run Probability of .1
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of hitting a particular number of home runs. Table 11-4 displays some of these

binomial probabilities.

Looking at Table 11-4, we see that the most likely number of home runs

Sammy will hit in the final part of the 1999 season is 9. But the probability that

Sammy will hit exactly this number is only about 14 percent. That’s a small

probability. Looking further at the table, we see that the probabilities that

Sammy hits 7, 8, 9, 10, and 11 home runs are all above 10 percent. The message

here is that even if we know Sammy’s hitting probability, we aren’t too sure

about what can happen in Sammy’s next 90 at-bats.

What If We Don’t Know Sosa’s True Home-Run Rate?

But we can’t use the results of Table 11-4 to predict the number of home runs

Sosa will hit. Why? Well, we don’t know for sure the value of Sammy’s hitting

probability, and it is not reasonable to assume that it is exactly equal to .1.

To get some idea what Sosa’s home-run probability in 1999 might be, Table 

11-5 shows Sosa’s at-bat and home-run data for the previous ten years in the

Major Leagues. (For this discussion, we are basing our judgments on Sosa’s accom-

plishments prior to 1999. Later we’ll talk about how to change this judgment after

seeing the home-run data for the 1999 partial season.) For each year, we have com-

puted Sosa’s home-run rate and put those numbers in the last column.

Let’s focus on Sosa’s home run rates:

Year Team AB HR HR Rate

1989 Texas-ChiW 183 4 0.022

1990 ChiW 532 15 0.028

1991 ChiW 316 10 0.032

1992 ChiC 262 8 0.031

1993 ChiC 598 33 0.055

1994 ChiC 426 25 0.059

1995 ChiC 564 36 0.064

1996 ChiC 498 40 0.080

1997 ChiC 642 36 0.056

1998 ChiC 643 66 0.103

TABLE 11-5 Number of At-Bats and Home Runs for Sosa in His Major League Seasons

Prior to 1999
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.022, .028, .032, .031, .055, .059, .064, .080, .056, .103

Figure 11-1 plots these values as a function of the season. We see an interest-

ing pattern here. For Sosa’s first four years, he hit home runs at roughly a 3-

percent clip. Over the next five years, he hit home runs at rates between 6 and 8

percent. And in 1998, his rate was over 10 percent!

Based on Sosa’s career home-run statistics, we have to make some judgment

about the value of his home-run probability for the 1999 season. From his stats,

it appears that Sammy has matured considerably as a home-run hitter, and the

statistics for the last few years are probably the ones that are most representa-

tive of his current ability. But we also have to realize that the home run rates in

Figure 11-1 are really not hitting probabilities, but observed home run rates.

Maybe Sammy was not a real 10 percent home-run hitter in 1998, but was lucky

and had a good year.

After some reflection, we realize that we’re pretty uncertain about Sammy’s

home-run probability for 1999. Based on his 1998 season, we believe that he has

the potential to be a “great” home-run hitter where his home-run probability is

10 percent or higher. (We consider 10 percent a useful reference point, since it

corresponds to the observed home-run percentage of Babe Ruth in his prime.) In

addition, based on the pattern of home-run hitting shown in Figure 11-1, he

appears to be fully matured, or at least close to fully mature, as a home-run hit-

ter. However, we can’t forget the relatively small home-run rates that he
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FIGURE 11-1 Sosa’s home run rates for the first ten years in the Major Leagues.
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achieved just a few years ago. Based on these beliefs, we constructed the bar

chart in Figure 11-2 to graphically represent his 1999 home-run probability.

Remember again that these beliefs are based only on Sammy’s accomplishments

for the ten-year period 1989–1998; for the moment, we’re ignoring the 1999 data.

Looking at the probability graph, we see that the values of .09 and .10 are

each assigned the largest probabilities. This means we think it’s most likely that

Sosa will have a 9 or 10 percent home-run probability in 1999. However, as the

figure indicates, we’re not sure that his home-run probability is 9 to 10 percent,

and we think it is possible that his probability can be as small as 5 percent or as

large as 13 percent. Actually, our beliefs about Sosa’s chance of hitting a home

run are pretty vague. Before the 1999 season begins, we’re not sure if he will con-

tinue to hit home runs at his 1998 rate, or revert back to his pattern of hitting

home runs in the earlier seasons.1

Revising Our Beliefs about Sosa’s Home-Run Probability

We’ve discussed how to construct a probability table that reflects our beliefs

about Sosa’s home-run probability in 1999. Now we watch Sosa’s batting per-

formance in the first five months of the season, and we observe 58 home runs in

535 at-bats. This is a pretty impressive performance, and we’re more confident

that Sammy’s home-run probability in 1999 is high. So we want to revise the
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FIGURE 11-2 Graph of probabilities for Sosa’s true home-run rate.

1 As this book is going to press, at the beginning of the 2003 season, we have seen Sosa’s home

run statistics for the 2002 season, and we are more certain that he is a hitter with a 8- to 12-

percent home-run probability.
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probabilities we displayed in Figure 11-2 in light of this new batting data.

Fortunately, there is a simple formula, called Bayes’ Rule, that tells one how to

change one’s probabilities when given new data.

We’ll use Bayes’ Rule to update the probabilities. We are interested in learn-

ing about a batter’s home-run probability p, and our initial beliefs about p are

represented by means of a prior probability distribution. After we observe

some data, then our new, or posterior, probability distribution for p is given by

this formula:

Pr(p given Data) = Pr(p) Pr(Data given p) / c

where c is the probability of observing Data based on our initial opinion. The

value of c ensures that the probabilities add up to 1.

In our setting, our Data is “58 HR in 535 AB.” To find the new probability that

Sosa’s hitting probability is 10 percent, we compute the product:

Pr(p = .1 given 58 HR in 535 AB) = Pr(p = .1) Pr(58 HR in 535 AB given p = .1)

= (.2353) (.0451)

= .01062

In the formula, Pr(p = .1) is our initial probability that Sosa is a 10 percent hit-

ter and Pr(58 HR in 535 AB given p = .1) is the binomial probability that Sosa

gets 58 home runs in 535 if he really is a 10-percent home-run hitter.

In Table 11-6, the product [Pr(p) Pr(Data given p)] is found for each of the pos-

sible home-run probabilities for Sosa. In this table, each of the entries in the

Product column is divided by c, the sum of the products, to get the new (poste-

rior) probabilities in the last column.

The probabilities in the last column of Table 11-6, Pr(p given Data), reflect our

beliefs about Sosa’s home-run probabilities after seeing his 1999 data. Remember

that, before seeing Sosa perform in 1999, we thought he was a 9- or 10-percent

home-run hitter—with a small chance of being either a 5- to 6-percent or an

(unimaginably great) 13-percent home-run hitter. After seeing Sammy’s perform-

ance in the first five months of 1999, we see that the values of p in the set {.09, .10,

.11, .12} have most of the probability, which means we’re pretty confident that

Sammy’s home-run probability is in the 9- to 12-percent range.

One Prediction

We are finally ready to predict the number of home runs Sosa will hit in the

remainder of the 1999 season. Recall that if we really knew Sosa’s 1999 home-



CHAPTER 11338

run probability p, then we could compute the probability that he would hit a par-

ticular number of home runs using a binomial formula. We don’t know the value

of the home-run probability p, but our beliefs about this probability are

described by the probabilities shown in Table 11-6.

The probability that Sosa hits a given number of home runs, say 10, is given

by the formula:

Pr(10 HR) = sum of [Pr(HR prob. is p) × Pr(10 HR if the HR prob. is p)]

for all possible values.

We use Table 11-7 to illustrate how we compute the probability that Sosa

hits 10 additional home runs in the 1999 season. The first column lists the pos-

sible values of the hitting probability, the second column lists the corresponding

probabilities from Table 11-6. The third column lists the probability that Sosa

gets 10 home runs for each probability value. To get the probability of 10 home

runs, we multiply, for each row, the values in the second and third columns—

and the products are placed in the fourth column. The sum of the products is

the probability of interest.

Suppose that we repeat this calculation for all possible home-run numbers.

Table 11-8 displays the following probability table for the number of additional

home runs Sammy will hit in 1999.

From this probability table, we can make the following predictions. Remember,

Sosa has already hit 58 home runs, and this table tells us how many additional

home runs he will hit in his future 90 at-bats. On September 8, 1999:

p Pr(p) Pr(Data given p) Product Pr(p given Data)

0.05 0.0490 0 0 0

0.06 0.0490 0 0 0

0.07 0.0490 0.0003 0.00001 0.0005

0.08 0.0980 0.0039 0.00038 0.0136

0.09 0.2353 0.0195 0.00458 0.1647

0.10 0.2353 0.0451 0.01062 0.3816

0.11 0.1373 0.0550 0.00755 0.2714

0.12 0.0980 0.0390 0.00383 0.1375

0.13 0.0490 0.0174 0.00085 0.0306

1 0.02782 1

TABLE 11-6 Bayes’ Rule Computations to Obtain Updated Beliefs about Sosa’s New

Home-Run Probabilities p
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• It is most likely that Sosa will hit 9 more HRs (for a total of 67),

but the chance of this happening is only about 13 percent.

• There is a high probability (.9025) that Sosa will hit between 5

and 14 additional home runs (for 1999 totals between 63 and 72).

It would be a bit surprising if Sammy hit fewer than 5 or more

than 14 home runs in the remainder of the season.

p Pr(HR prob is p)

Pr(10 HR if the

HR prob is p)

Product

0.05 0 0.0092 0

0.06 0 0.0245 0

0.07 0.0005 0.0486 0

0.08 0.0136 0.0779 0.0011

0.09 0.1647 0.1055 0.0174

0.10 0.3816 0.1250 0.0477

0.11 0.2714 0.1326 0.0360

0.12 0.1375 0.1282 0.0176

0.13 0.0306 0.1144 0.0035

0.1233Pr = 

TABLE 11-7 Illustration of the Computation of the Probability that Sosa Hits Ten

Additional Home Runs

Home Runs Probability

0 0 11 0.105

1 0.001 12 0.082

2 0.004 13 0.060

3 0.011 14 0.040

4 0.027 15 0.025

5 0.050 16 0.014

6 0.080 17 0.008

7 0.106 18 0.004

8 0.125 19 0.002

9 0.131 20 0.001

10 0.123 21 0

TABLE 11-8 Probability Table for the Number of Home Runs Sosa Will Hit in the

Remainder of 1999
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• The chance, at this point in the season, that Sammy will break the

record is the chance that he will hit 13 or more home runs, which is:

Pr(Sosa hits 71 or more) = .154

Many Predictions

We have focused on predicting Sosa’s home-run totals at a particular point of

time during the 1999 season. But there is nothing special about September 8—

this prediction procedure can be used at any point in time during the season.

Our beliefs about Sammy’s hitting probability are based on our knowledge about

Sammy prior to 1999 and any home-run data we’ve observed in 1999 up to that

particular point in time.

Figure 11-3 shows our predictions for Sosa’s 1999 home-run total. After each

game that Sosa played in that season, a vertical line shows the limits of a 90-

percent prediction interval for the 1999 home-run total. Before the season

began (at Game 0), our prediction interval is seen from the graph to be (33, 81).

This interval seems pretty wide, but we had little clue in early April how many

0 50 100 150

30

40

50

60

70

80

GAME

N
U

M
B

E
R

 O
F
 H

O
M

E
 R

U
N

S

SAMMY SOSA

25

FIGURE 11-3 90-percent prediction intervals for Sosa’s 1999 home-run total after each

game played in the 1999 season.
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home runs Sosa would hit. We were not sure what Sosa’s true home-run rate

(the value of p) would be in the 1999 season, and he hadn’t yet hit any home

runs in 1999. As the season proceeds and Sammy is hitting home runs, we see

from the graph that the length of the prediction interval shortens consider-

ably—and eventually, near the end of the season, we are pretty sure about the

final total. (Obviously, when Sosa finishes the season, we know exactly how

many home runs he hits in 1999.)

In this season, many fans were wondering if Sosa would break the season

home-run record of 70. In Figure 11-3, a horizontal line has been drawn at 71

home runs, which represents a new record. Note that for much of the season,

our 90 percent prediction interval covers 71, which indicates that Sosa had a

significant probability of breaking the record. This point is reinforced in

Figure 11-4, which graphs the predictive probability that Sosa will break the

home-run record after each game of the 1999 season. (The dots at the bottom

of the graph show when Sosa hit his home runs.) Note that whenever Sosa hit

one or more home runs during a game, the probability that he breaks the

record jumps up. This increase in the probability has two explanations. First,

since he has hit home runs, he is closer to the record of 71. Also, the fact that
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FIGURE 11-4 Graph of predictive probability that Sosa will break the home-run record of

70 for each game of the 1999 season. The dots along the horizontal axis

show the games in which Sosa hit his home runs.



CHAPTER 11342

he has hit home runs increases the likelihood that his home-run hitting prob-

ability (p) is large.

Finally note that the number of home runs that Sosa actually hit in the 1999

season, 63, is included in most all of the prediction intervals that we constructed

that season. Although Sosa slumped a little at the end of the season, his final

total of 63 was consistent with the predictions that we made using our model.

Let’s compare Sosa with Mark McGwire. The same method we applied above

can also be used to predict McGwire’s 1999 home-run total. One difference in the

analysis of McGwire is that our initial beliefs (before the season started) about

Mark’s 1999 true home-run probability, p, are notably different from our beliefs

about Sosa’s. Figure 11-5 shows the probabilities we used. There is a lot more

evidence from past seasons that McGwire hits home runs at a high rate, so we

place a high probability on the likelihood that he will hit home runs at a 10- to

13-percent clip. Another difference in our predictions is that we assume that

McGwire averages only 3.2 official at-bats per game. (McGwire generally walks

more than Sosa, resulting in fewer official at-bats.)

Figure 11-6 shows our 90-percent prediction intervals for Mark McGwire.

The pattern in these predictions is very different from the pattern in Sosa’s

graph (Figure 11-3). Before the season started, we predicted that McGwire

would hit 60 home runs with a prediction interval of (41, 81). McGwire started

the season slowly, so the predictions dropped off substantially. In fact, for most

of the season, we predicted that Mark’s 1999 home-run total would be in the mid

50s, and he had essentially no chance of breaking his 1998 record of 70. But
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FIGURE 11-5 Graph of probabilities for McGwire’s true home-run rate.
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McGwire’s home-run hitting picked up toward the end of the season, with a final

flurry that gave him the 1999 crown. Nonetheless, during most of the season, it

was Sosa who had the greater chance of setting a new record.

Predicting Career Statistics
The previous discussion focused on predicting the number of home runs at some

time during a season. But Sammy Sosa is currently only 34 years old, and he will

likely play in the major leagues for a good number of years. How many home

runs will he hit in his career? Will he break the 600 and 700 career home-run

marks? And what’s the chance he will eventually break Bonds’s season home-

run record of 73?

This is a more difficult prediction problem, since there are more unknowns.

Earlier we concentrated on learning about Sosa’s home-run probability p only

during the 1999 season. Now we have to think about Sosa’s home-run probabili-

ties for each of the remaining seasons of his career. We don’t know how many

years Sosa has left in his baseball career. And, even if we knew that he would
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play for, say, eight additional seasons, we don’t know exactly how many at-bats

he will have.

Nonetheless, in this section we will describe one statistical model for predict-

ing Sosa’s career home runs. We will first talk about a model for Sosa’s home-run

probabilities. Next, we’ll discuss the number of opportunities (years and at-bats)

that Sosa may have to hit home runs, then use this model to make our predictions.

Sosa’s Home-Run Probabilities

In our earlier discussion, we estimated Sosa’s 1999 home-run probability p using

two types of information: our beliefs about his home-run probability prior to

1999, and his hitting data during the 1999 season. How can we learn about

Sosa’s home-run probabilities in the years 2003 and beyond, when we haven’t

yet observed any data for these years?

Obviously we can’t look into the future, but it is reasonable to believe that

Sosa’s pattern of hitting home runs over his career will be similar to the hitting

0

0.05

0.1

0

0.05

0.1

20 30 40
0

0.05

0.1

AGE

H
R

 R
A
T
E

20 30 40 20 30 40

Aaron Ruth       Mays       

Robinson   Killebrew  Jackson    

Schmidt    Mantle     Foxx

FIGURE 11-7 Observed home-run rates and smooth fitted curves for the career perform-

ances for nine great home-run hitters.
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pattern of other sluggers in history. Figure 11-7 plots the home-run hitting rates

(HR divided by AB) against the player’s age for the nine greatest career home-

run hitters in baseball history. Smooth curves are drawn over each of the graphs

to show the basic patterns in the rates. Looking at the graphs, we note that there

are significant differences between these ten great players in terms of their

home run rates. But we notice a general pattern, as shown in Figure 11-8.

Generally, the curve shows us, a home-run hitter improves (matures) in his

first few years, reaching a peak near the age of 30. After that peak, the home-run

hitter tends to decline. Although this pattern seems to hold for most players,

there are differences in the peak age and the degree of maturation and decline

between players. For example, Hank Aaron peaked relatively late, then declined

relatively slowly. In contrast, Mickey Mantle peaked at an earlier age but

showed dramatic declines later in his career.

Using Sosa’s home-run data through the 2002 season and the career statis-

tics of the 50 greatest home-run hitters, we can learn about Sosa’s home-run

probabilities for the remainder of his career. We assume that Sosa’s home-run

probabilities for his career will follow the basic shape, and assume that his

career pattern of home-run probabilities will be similar to the pattern of the

other 50 home-run hitters.

We don’t know exactly what Sosa’s “true” home-run rates will be, but we can

generate sets of home-run rates, as shown in Figure 11-9, that we think are rea-

sonable based on our model. The dark solid line represents our best guess at

what Sosa’s home-run probabilities will look like over the years. We think that

he will peak at age 34 (in the year 2003) at a value close to .1, then the proba-

bility will decrease to a value of .08 when Sosa is 40 years old. But this figure

shows that, even though we have a best guess at his home-run probabilities, it is

possible that they will deviate a bit from this best guess. Specifically, it is possi-

ble that Sosa will peak at a later age and show faster or slower rates of decline.

How Long and How Many At-Bats?

Now that we have a handle on Sosa’s home-run probabilities, we have to next

decide how many years Sosa has in his career. We really don’t know much about

FIGURE 11-8 Pattern of home-run rates for great home-run hitters.
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this. Sosa appears to be a well-conditioned athlete and likely has many produc-

tive years ahead of him. But many things, like injuries, could have an impact on

the length of his career. We will first assume that Sosa could play until the ripe

old age of 40, but since this is an important assumption, we will present predic-

tions assuming that Sosa does retire at an earlier age.

Given his past playing performance, it is reasonable to think that Sosa will con-

tinue to play regularly and have a large number of at-bats for a number of years.

However, for most players, the number of batting opportunities (at-bats) does

decrease by 5 to 10 percent as the player approaches the twilight of his career. So

we assume that Sosa’s at-bats in the coming years will look something like this:

Sosa’s Age

(Years)

Expected

At-Bats

34, 35, 36 560

37, 38, 39 530

40, 41, 42 500

20 25 30 35 40

0

0.02

0.04

0.06

0.08

0.10

0.12

AGE

(P
)

Past Future
0.14

FIGURE 11-9 Plausible graphs of Sosa’s home-run hitting probabilities based on the model.
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Of course, a lot could happen in Sosa’s career that will cause him to have fewer

at-bats during particular years, but these values seem consistent with the pat-

tern of at-bats for other home-run sluggers in history.

Making the Predictions

Now we’re ready to make our predictions. What we do is perform a large number

of simulations for the remainder of Sosa’s career using the probability model we

have constructed.We first simulate a set of home run probabilities from the model

described earlier. Each of these probabilities defines a random spinner where the

area of the Home Run region of the spinner corresponds to the probability. In the

particular simulation illustrated in Figure 11-10, Sosa’s home-run probability at

age 34 is 10 percent, his home-run probability at ages 35–36 is 9 percent, his prob-

ability at age 37 is 8 percent, and so on. Then we use the random spinners to sim-

ulate home-run results using the at-bat numbers given above.

Table 11-9 summarizes the results of doing our simulation for a total of 1000

Sosa careers. Since the results depend heavily on how long Sosa remains active

in the major leagues, we give results assuming that Sosa plays until particular

ages. In each case, the table gives a “best guess” at Sosa’s number of career home

runs, and the chances that he will break the home-run milestones of 600, 700,

Age = 35 Age = 36 

Age = 39 Age = 38 

Age = 41 

Age = 34 

Age = 40 

Age = 37 

5%

9%10% 9%

6%8% 7%

5%

FIGURE 11-10 Set of random spinners corresponding to a particular simulation of Sosa’s

home-run probabilities.
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and 755. Finally, we give the chance that Sosa will sometime break the single-

season home-run record of 73.

Several interesting things can be learned from Table 11-9. First, the number

of career home runs depends basically on how long Sosa will remain an active

player. Hank Aaron, with 755, currently owns the career home-run total. Sosa

has an excellent chance of breaking 700 career home runs only if he stays active

until at least 40. Also, note that Sosa’s chance of breaking Bonds’s season home-

run mark is relatively small. Why? Well, we are assuming that Sosa is currently

at or near his peak, and his home-run ability will start decreasing-meaning it

will be less likely that he will break the mark later in his career.

Then again, Sammy is looking good, looking healthy, looking over pitches

with that sparkle in his eye, so we would not bet against him. Nobody’s going to

make tons of money following the prediction rules described in this chapter. But

hopefully we are now more aware of the great amount of uncertainty in predic-

tion. Predictions like “Sosa will hit 60 home runs this year” have a lot of vague-

ness connected with them, and anyone who tells you that he or she can make

more accurate predictions than the ones described here is misinformed, or lying.

Plays Until Age 34 36 38 40

Best Guess at Career HR 554 662 757 840

Pr(600+) 0.00 0.99 1.00 1.00

Pr(700+) 0.00 0.07 0.90 0.99

Pr(755+) 0.00 0.00 0.49 0.89

Pr(74+season) 0.02 0.11 0.19 0.27

TABLE 11-9 Results of Simulation of Sosa’s Career Using Our Probability Model



Team Win?

12

Major League Baseball is currently a competition between 30 teams, 16 in the

National League and 14 in the American. Each league is divided into three divi-

sions—East, Central, and West. Each team plays a 162-game schedule during

the regular season, playing most of its games against teams in its own league.

We say “most” because beginning with the 1997 season, MLB has experimented

with inter-league play, where each team from the National League plays approx-

imately 15 games against selected opponents from the American League.

At the end of the regular 162-game season, the four best teams from each

league continue playing games in a “post-season,” with the goal to win the cham-

pionship. The teams with the highest winning percentage in each of the three

divisions compete together with a “wild-card” team, which has the best winning

percentage among all teams who are not division winners. The eight teams go

through a three-tier playoff system to decide the championship of baseball. First,

the four teams in each league compete in two playoffs—each pair of teams plays

a “best of 5” competition to decide the final two teams of each league. Next, each

pair of teams in each league play a “best of 7” competition to decide the winner of

each league. Last, the winners of the American and National Leagues pennants

play a “best of 7” competition called the World Series to decide the champion.

349



CHAPTER 12350

The Big Question
The winner of the World Series is declared the “best team in baseball” and is

immortalized as one of the premier teams in the history of the game. Each of the

players on the championship team receives a special World Series ring, and

there are substantial bonuses paid to each player, the manager, and the coaches

for their achievement. However, after all of the games have been played and the

winner declared, a natural question to ask is: “Did the best team actually win

the championship?” In 1997, the Florida Marlins defeated the Cleveland Indians

to win the World Series. This particular contest was very close—the series was

not decided until the last extra inning of the seventh game. Many Cleveland

Indians fans thought the Indians should have won the series, focusing on several

pivotal plays during the series that greatly influenced the outcome. If a pitcher

had not made one particular poor pitch, the Cleveland fans felt, or if a player had

executed cleanly instead of misplayed in one particular defensive mishap, the

Indians would have won the championship. These fans may feel that the Indians

were indeed the better team, but, due to some unfortunate circumstances or bad

luck, their team lost the series.

Ability and Performance
What does it mean to be the “best team” in baseball? Since the Marlins won the

World Series, most people would refer to the Marlins as the best team in 1997.

After all, they did win the championship. They were “best” in the sense that they

performed the best in the series of playoffs following the regular season. But

that’s not what we’re talking about. What we mean is, “Did the team with the

greatest ability win the World Series?” Did the team with the best players, that

is, the most talented players, win the championship? Here we are again making

the important distinction between ability and performance. The Indians may

have had a more talented team in 1997, but they may not have performed to the

best of their abilities. Alternatively, the Marlins may have had less overall abil-

ity than the Indians, but they could have performed particularly well during the

7-game series to win the championship. In other words, chance could have

played a major role in the World Series.

Looking over the recent history of Major League Baseball, we see teams that

performed in a relatively average fashion during the regular season but some-

how won the World Series. A good recent illustration of this phenomenon is the

Minnesota Twins in 1987. The Twins that year finished with a season record of
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85 wins and 77 losses, winning just 52 percent of their games. The team scored

786 runs during the season and allowed 806, so it is surprising that they even

had a winning season. Their team batting average was a lackluster .261, which

was lower than the American League average of .265, and their slugging aver-

age of .430 was only slightly higher than the league average of .425. You may be

thinking that they must have had good pitching. Well, their team ERA was a

weak 4.63, which was higher (worse) than the league ERA of 4.46.

This array of less-than-stellar stats may lead you to ask, “Did they do any-

thing well?” The answer is yes, the Twins had the fewest number of fielding

errors in the major leagues. More importantly, they played well in their home

ball park. Their record during the regular season was 56–25 (a winning percent-

age of .691) at the Metrodome and 29–52 (a winning percentage of .358) on the

road. The Twins continued this pattern of winning during the post season—they

won all six games played at the Metrodome during the American League

Championship and World Series. Nonetheless, although the Twins won the

World Series in 1987, it would be difficult to argue, on the basis of their team sta-

tistics, that they were the best team in baseball that particular year.

Similarly, if one looks at team statistics, one can question if the Florida

Marlins, the winner of the 1997 World Series, was the best team ten years later.

Let’s compare the Marlins with the Atlanta Braves, a team that played in the

same National League division. Table 12-1 lists a number of statistics for the

two teams that year. We see that Atlanta had a higher winning percentage,

scored more runs, allowed fewer runs (“OR” stands for Opponents’ Runs), had a

higher team batting average and slugging percentage, and had a lower earned-

run average. When Florida defeated Atlanta in the National League Champion-

ship that season, a number of explanations were offered, and some argued seri-

ously that Florida was the better team. But based on the regular season

statistics, it should be pretty clear that Atlanta was the superior team and was

more deserving than Florida of a World Series championship.

Note that we observe a baseball team’s performance throughout a season, but

we never know for sure, even after the last game of the year, exactly how tal-

Wins Losses Win % R OR AVG SLG ERA

Florida Marlins 92 70 0.568 740 669 0.259 0.395 3.83

Atlanta Braves 101 61 0.623 791 581 0.270 0.426 3.18

TABLE 12-1 Team Statistics for Atlanta and Florida for the 1997 Baseball Season
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ented the team is. The Marlins were better than the Indians in the sense that

they performed better during the World Series. An Indians’ fan may argue that

the Indians were a better team than the Marlins—he’s saying that the Indians

had more ability. This statement can’t be refuted by a Marlins fan, since he or

she really doesn’t know which team had more talent.

Describing a Team’s Ability

Since a team’s ability or talent is an abstract quantity that is unknown, it is

helpful to use a number to describe it. We will denote the talent of a team by the

letter t. If t is equal to 0, then we can think of the team as having average talent.

A negative value, say t = –.4, will correspond to a team with below-average abil-

ity, and a positive value (like t = +1.2) will correspond to a team whose talent is

in the upper half of all major-league teams (see Figure 12-1). If a team’s talent is

a positive number, then we expect the team to win more than half of its games,

although we will see that the team may not win more than half of its games dur-

ing a 162-game season.

Each team in the major leagues can be assigned a number t that corresponds

to its talent. Since there are currently 30 major-league teams, there exist 30

numbers t1, . . . , t30 that correspond to their abilities. The problem is that we

never know exactly the values of these talents; in fact, we could know them to a

reasonable degree of certainty only if the teams were able to play millions of

games during the season. Clearly that’s impossible, since a baseball season is

scheduled over a six-month period, so we view these abilities as unknown hypo-

thetical quantities.

Describing a Team’s Performance

So are we stuck? Since we will never know the abilities of these major-league

teams, can we go no further? No. We get information about the teams’ abilities

by observing their performances during a 162-game season. Each team gets an

opportunity to play all the teams in its respective league, and they win and lose

0

NEGATIVE VALUE OF t POSITIVE VALUE OF t

BELOW-AVERAGE TALENT ABOVE-AVERAGE TALENT

FIGURE 12-1 Interpreting the talent (t) of a team.
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games. At the end of the 162-game season, we observe winning fractions for all

the teams. We’ll use the letter p to denote a team’s proportion of wins for the sea-

son. So, for example, if the Baltimore Orioles win 90 and lose 72 games during

the season, the value of p for Baltimore is 90/(90+72) = .56. We observe these

winning fractions for all 30 major-league teams and denote them p1, . . . , p30.

These numbers are simply the winning percentages reported in the team stand-

ings after the last day of the regular season. (We should apologize for the change

in notation—p represented an ability in earlier chapters.)

The primary goal of this chapter is to show how the baseball teams’ abili-

ties, as measured by the talent numbers, are linked to their season perform-

ances, which are described by the observed winning fractions. We’ll first look

at baseball teams’ winning percentages since the beginning of professional

baseball (1871). This investigation will show that baseball teams appear to be

similar in their performances over time. Then we’ll look at a few simple mod-

els which relate the teams’ abilities to their season performances. Once we

have found a simple model which seems to describe baseball competition rea-

sonably well, we’ll use the model to relate teams’ abilities with their season

performances. To whet your appetite, we’ll address the following questions

(among others):

1. How does baseball competition in 1997 relate to competition

during the 1920s? Were teams more similar in ability back then?

2. How does a team with average ability perform during the regular

season? Can this average team ever win the World Series? On the

other hand, can this average team finish last in their division?

3. Suppose a team like the Marlins wins the World Series and is

declared the best team in baseball. What’s the chance that the

Marlins were indeed a team with great ability? What’s the chance

that the Marlins were an average team? What’s the chance that

there was a team in the major leagues that year with greater

ability than the Marlins?

Team Performance: 1871 to the Present
How have baseball teams performed in the past? From the first days of profes-

sional baseball in 1871, records have been kept of the winning percentages for all

teams. Figure 12-2 plots all of the team winning percentages against the season

year. There are a number of interesting features that one can see from this graph.
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• There was a large spread in the winning fractions in the early

years of baseball—from 1871 to the late 1800s. Some teams won

10 percent or fewer of their games, and other teams won over 80

percent of theirs.

• Generally, as we look from left to right in the graph (earlier to

later years), we see that the spread in the winning fractions

appears to get smaller. One way to notice this change is to focus

on the teams winning between 60 and 70 percent of their games.

There have always been teams that have performed this well,

from 1871 to the present. However, it seems that the number of

teams in this category is decreasing relative to the number of

average teams, which by our definition win between 40 and 60

percent of their games. This same comment is true for weak teams

that win only 30 to 40 percent of their games. The fraction of teams

that perform this poorly has appeared to decrease over time.

• Reinforcing the previous comment, note that the winning

percentages in the early years, say 1880–1900, appear to be

uniformly spread out from 30 to 70 percent. In contrast,

practically all of the winning percentages in the last few years

have been located in the 40- to 60-percent range. Sure,
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FIGURE 12-2 Scatterplot of team winning percentages and season year.



DID THE BEST TEAM WIN? 355

occasionally there are poor or weak teams that win 30 percent

and 70 percent of the time, respectively, in recent years. But such

occurrences are pretty rare, and the trend seems to be toward

more “average” performance.

Explanations for the Winning Percentages

What are possible explanations for the patterns we note in Figure 12-2? Have

there been some changes to the structure of baseball competition that might

account for them?

Let’s first look at the number of games played in a season for all of these

teams. Figure 12-3 plots the number of games played for all teams as a function

of year. From this graph, we see that in the early years of baseball, seasons were

relatively short. In the beginning, seasons were only 20 games long, but by 1900

there were 154 games in a season. From the turn of the last century to 1960, the

number of games played averaged about 150. In 1961 (the historic year when

Roger Maris hit 61 home runs), the number of games increased to 162, which is

the length of the current season.

This graph partially helps to explain the spreads in winning percentages that

we saw in Figure 12-2. In the early years, the large spread in winning percent-

ages is partly due to the fact that the seasons were short. Because of the varying
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FIGURE 12-3 Number of games played by professional teams plotted against year.
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season lengths in the pre-1900 years, it is harder to compare the winning per-

centages in these early years with the present day. A team with a winning per-

centage of 80 percent in 1880 wasn’t necessarily better than the great teams of

the 1990s. This 120-year-old winning rate of 80 percent may reflect the basic

truth (from statistics) that it is easier to win 80 percent of only 60 games than

80 percent of 162 games. Because of the varying season lengths in these early

years of baseball, we will focus our analysis on the teams in recent years, where

the seasons were generally from 150 to 162 games long.

So one change in baseball competition over the years is in the length of the

season. What about the number of professional teams in baseball? Figure 12-4

plots the number of teams against the year. We see that in the early years there

were many changes in the basic competitive structure of the sport. In some years

there were fewer than 10 teams in the major leagues, and in one year there were

over 30 professional teams. But starting with 1900, the number of teams stabi-

lized. In fact, in the 60 years from 1901–1960, there were generally 16 teams—8

in the National League and 8 in the American.1 Then, starting in 1961, profes-

sional baseball embarked on its modern expansion. Two new teams were added

in 1961, two in 1962, four in 1969, two in 1977, and two in 1993. This expansion

may have had an impact on the winning percentages observed in Figure 12-2. As
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FIGURE 12-4 Plot of number of professional baseball teams and year.

1 A third major league, the Federal League, with 8 teams, existed briefly in 1914–1915.
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one adds new teams to baseball, one can speculate that the pool of available

ballplayers is spread out over all of the teams, which might make the teams

more similar in ability. This similarity in ability is reflected in the small spread

in the winning percentages in the last 20 years.

A Normal Curve Model
Let’s focus on the group of winning percentages during the 12 years 1986–1997,

excluding the years 1994 and 1995. (A baseball strike in 1994 and 1995 resulted

in canceled games and significantly shortened seasons.) For the remaining 10

seasons, the number of games for all teams was pretty constant (from 160 to 162).

Figure 12-5 displays a histogram of all of the teams’ winning percentages for

this modern ten-year period. We see that that the curve of winning percentages

is bell-shaped, with most teams winning between 45 and 55 percent of their

games. The distribution is symmetric about the value of .5, which corresponds to

an average team that is winning half of its games. It seems pretty uncommon

during these years to have percentages smaller than 40 or larger than 60. Since

winning over 60 percent of the games is a relatively rare event, the few that

reach or exceed that number can be viewed as outstanding.

Since the distribution of winning percentages is mound-shaped, one can

model this distribution by using a smooth curve—the so-called normal curve fre-

quently used in statistics. As discussed in an earlier chapter, a normal curve is

bell-shaped and is described by two numbers, a mean M and a standard devia-
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FIGURE 12-5 Histogram of winning percentages for ten recent years.
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tion S. For a normal curve, the mean M is the middle or most common value of

the curve. Here a good choice for the mean is M = .5, which corresponds to the

winning fraction for an average team. The standard deviation S is a positive

number that reflects the spread of this curve. One can choose a value of S by

computing the standard deviation of the winning fractions of the modern teams.

Here the standard deviation turns out to be .0626. So a normal curve with mean

M = .5 and standard deviation S = .0626 appears to be a reasonable match to this

set of winning percentages. To check this out, Figure 12-6 shows the histogram

of winning percentages with the normal curve drawn on top. It seems to be a

good fit.

This normal curve provides a convenient description of the performances of

modern baseball teams during a 162-game season. If the data follow a bell-

shaped curve, then roughly 68 percent of the winning fractions will fall within 1

standard deviation of the mean, and 95 percent will fall within 2 standard devi-

ations of the mean. If we apply these rules in this setting, we find the following:

• 68 percent of the winning fractions will fall between [.5 – .0626]

and [.5 + .0626], or .44 and .56.

• 95 percent of the winning fractions will fall between

[.5 – 2(.0626)] and [.5 + 2(.0626)], or .37 and .63.

These statements help us to understand the season performances of teams.

For a team to win only 35 percent of their games during a season is a bit un-

usual, since only 5 percent of all winning percentages are smaller than 37 or
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FIGURE 12-6 Histogram of winning percentages for ten recent years with a normal curve

placed on top.
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larger than 64. Also, these statements reinforce the parity of baseball. About

two-thirds of all teams have winning percentages between 44 and 56. One can

interpret this statement as saying that most teams have season performances

that are close to average.

Team Performances over Time (Revisited)
Season performances of all baseball teams are generally bell-shaped, as illus-

trated in Table 12-6, and the standard deviation gives a useful measure of the

similarity of the teams. Let’s return to Figure 12-2, which plotted all of the win-

ning fractions against the season year. We now have a measure, the standard

deviation, that can be used to describe the spread of performances for each year.

Figure 12-7 graphs the standard deviations of the season winning fractions

against the season number. We focus only on the seasons since 1900, since that

is the point from which the lengths of the seasons are pretty constant. There is

a lot of scatter in the graph shown in Figure 12-7. The standard deviation can be

influenced heavily by a few extreme values, which would correspond to teams

with unusually good or poor seasons. But there is also a clear pattern in this

graph, which is visible in the smooth curve through the points as shown in
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Figure 12-7. This smooth curve is found for a given year, say 1980, by computing

the average of the ten years that are close to that year (1975–1984).

Remember, the standard deviation measures the disparity of the group of

winning fractions. In the early 1900s, teams had a greater disparity in perform-

ances (winning percentages), which is reflected in large standard deviations.

The team performances became more similar until about 1920, when they

seemed to get more divergent. From the 1950s to the present day, the standard

deviations of the winning fractions have been decreasing again, which means

that the teams are becoming more alike in their season performances. To rein-

force this point, Figure 12-8 shows boxplots of the winning fractions for teams

from different time periods. The leftmost boxplot displays the fractions for the

teams from 1900–1920, the next boxplot shows the fractions for the 1921–1940

teams, and so on. The associated standard deviation for each group of winning

fractions is shown at the top of the figure. We see that the boxplot with the

smallest spread corresponds to the 1981–1997 values, which results in the

smallest standard deviation value.

One important finding in this analysis is that the current major-league teams

appear to be more similar in ability than teams in any time in baseball history.

This conclusion will have a significant effect on our exploration into the rela-

tionship between teams’ abilities and their season performances.
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FIGURE 12-8 Boxplots of season winning proportions for teams of different eras. The stan-

dard deviation of each group of proportions is indicated above each boxplot.
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A Mediocrity Model for Abilities
Let’s return to our basic question. What is the relationship between the abilities

of the current major-league teams and the performances of these teams during

the 162-game season? We looked at the season performances, that is the winning

percentages, of baseball teams and noted that modern teams appear to be rela-

tively similar in their abilities.

In general, a model relates parameters or characteristics to observations.

Here, the model is a description of the relationship between teams’ abilities and

their performances. Remember that we describe teams’ abilities in terms of their

talent numbers t1, . . . , t30 and their performances using the season winning frac-

tions p1, . . . , p30. A model describes how the ts are linked to the ps.

Given the current parity of baseball teams and the movement of a large num-

ber of free-agents between teams, it might be reasonable to think that all base-

ball teams have roughly the same talent. If that is true, then all teams would

have an average ability, and the talent number for each team would be 0. If this

“mediocrity model” is true, then the observed differences in season winning per-

centages are solely due to good and bad luck. If you believe this model, then any

team in 1997 had the same chance of winning the baseball championship. The

Marlins just had the best luck, and that’s why they won.

If this model is correct, then it would be easy to simulate a baseball season.

Suppose any two teams play, say the Phillies and the Marlins. Since they are of

equal abilities, then the probability the Phillies win the game is .5—this would

be true for any other pair of teams. A complete season could be simulated by a

sequence of coin flips, where each coin flip corresponds to the outcome of a 

single game.

Suppose that we do this simulation many times and keep track of the season

winning fractions p for all teams. One team playing a season is analogous to flip-

ping a fair coin 162 times and keeping track of the fraction of heads. Since we

expect each team to win 50 percent of its games, a standard formula in statistics

tells us that the season winning fractions for many teams will be normal shaped

with mean .5 and standard deviation calculated as follows:

To see if this is a reasonable model, we compared the above distribution of win-

ning fractions to the actual winning fractions that we observed for the recent ten-

year period. Recall that the standard deviation of this distribution of actual team

.5 (.5) / 162 = .0393
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performances was estimated to be .0626. This standard deviation (.0626) is much

larger than the standard deviation that would be predicted if the mediocrity

model was true (.0393). Since this model doesn’t explain the variation in winning

percentages between teams, we reject it. Modern baseball teams do appear to

have different abilities. This might seem to be a pretty obvious statement, but it

illustrates how we state a model and how we can check if the model is a reason-

able description of baseball competition. Even when a conclusion seems intu-

itively obvious, it is important to validate it with data before proceeding.

A Normal Model for Abilities
So baseball teams have different abilities. Remember, we describe a team’s abil-

ity by a number t which we call the team’s talent. There are 30 talent numbers

that we write as the symbols t1, . . . , t30. We saw in the previous section that it is

inappropriate to assume that all of these talents are equal to 0. A model will tell

us how these 30 team abilities can be different.

Recall that the performances of teams across different seasons are well

described by a normal curve. Most teams have a winning fraction p that is in the

neighborhood of .5, and a relatively small number of teams have poor or great

winning fractions. It is reasonable to think that teams’ abilities are also

described by a normal bell-shaped curve. If a fan thinks about the quality of the

current group of 30 baseball teams, then he or she will likely view most teams as

“close to average” and think that there are only a few teams that are blessed

with superior players and only a small number of teams that are rebuilding with

young players. So we suppose that the team talents t1, . . . , t30 have a normal pat-

tern. We center this normal curve about the value 0, since we are assuming that

an “average” team has a talent t = 0. Figure 12-9 displays this normal curve

model for team abilities.

This normal model for the talents is centered about the mean value 0, which

corresponds to an average team. The standard deviation of this curve tells us

about the spread of team abilities. We know teams have different abilities, but

can we figure out how different? In other words, how can we find the standard

deviation of this normal curve? We choose a standard deviation so that the win-

ning season percentages predicted from this normal ability model match the

pattern of baseball winning season percentages that we saw in Figure 12-5. (We

will shortly describe how the talent numbers determine who wins and loses indi-

vidual baseball games.) How we actually find this standard deviation is a bit com-

plicated. But it turns out that if we let the ability distribution have a standard
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deviation of .19, then the season performances (the p) that are predicted from this

model match very well the observed season performances in Figure 12-5.

Recall that the standard deviation of the season proportions from recent

years was .066. This variation in the teams’ winning proportions is due to two

factors. First, teams have different abilities, and the variation in these abilities

is measured by the standard deviation of the normal curve of the team talents.

But this variation in team abilities doesn’t explain all of the variation in season

winning proportions. The second factor is chance variability, which is analogous

to the variation that we see in the number of heads when we toss 20 coins

repeatedly. Teams perform well or poorly during a season due to different abili-

ties, but also due to luck.

Weak, Average, and Strong Teams

Now that we have a good model for describing team abilities, we can use the

model to group teams into meaningful categories. How does one define an “excel-

lent” team? There are many ways to think of excellent teams, but we’ll define

them in a simple and somewhat arbitrary way. These are the teams that are in

the top 10 percent with respect to team ability. Likewise a “bad” team is one that

is in the bottom 10 percent of all the team talents. We’ll define an “average” team

that is in the middle 30 percent of the distribution. That leaves two final cate-
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FIGURE 12-9 Normal curve model for team abilities.
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gories, “poor” and “good.” Figure 12-9 shows where the different types of teams

fall in the distribution of team abilities. Table 12-2 gives the cutoffs for the dif-

ferent type of teams.

So an “excellent” team, one that is among the top 10 percent, has a talent

number larger than +.24. A “good” team is one that has an ability between .07

and .24. “Average,” “poor,” and “bad” teams are defined in a similar way.

A Model for Playing a Season

We’re discussing how to model baseball competition, and we have focused on

how to model team abilities. But the model isn’t complete. Given the team tal-

ents, we have to model the actual competition between teams in a 162-game

regular season.

Bradley and Terry thought of a simple way of modeling a competition

between a set of players or teams. For simplicity, suppose that there are four

teams in the competition, which we’ll call A, B, C, and D. We assign talents to the

teams as given in Table 12-3. Under our normal model for talents, teams A and

D have average ability, team B has below-average ability, and team C has the

most talent.

We convert these talents to positive numbers, called strengths, by taking the

exponential of each value. For example, we convert the talent number t = 0 to the

strength number as follows:

s = e0 = 1

Category

Percentiles of 

Ability Distribution Team Talent

Bad 0–10 less than –.24

Poor 10–35 –.24 to –.07

Average 35–65 –.07 to .07

Good 65–90 .07 to .24

Excellent 90–100 larger than .24

TABLE 12-2 Five Categories of Ability of Baseball Teams

Team A B C D

Talent (t ) 0 –0.1 0.4 0

TABLE 12-3 Talent Numbers Assigned to Four Teams
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Then we convert the talent value t = –.1 to

s = e–.1 = .9

(Note that e is a special mathematical number that is approximately equal to

2.78. So when we write e–.1 we are taking the number 2.78 to the –.1 power. ) If

we do this exponential operation to all the talent numbers, we get the strengths

as shown in Table 12-4.

We use the strength values to compute the probability that one team will

defeat another team in a single game. Suppose two teams, say A and B, play one

game. The chance that team A defeats team B is given by the following formula:

Here, team A has strength 1, B has strength .9, so the probability that A wins the

game is as follows:

We can use the strength numbers to find the probability that any team

defeats any other team. So the probability that team C (with strength 1.5)

defeats D (with strength 1) is:

What if two teams have equal strengths? Note that teams A and D both have

strengths of 1. The chance that A defeats D is:

which makes sense.

Simulating a Season

We now have a complete description of a model for modern baseball competition.

Teams have different abilities, and we describe these abilities by means of a nor-

mal curve. Once we know the talent numbers for all of the teams, we can com-

1
1 + 1

= .5

1.5
1.5 + 1

= .6

1
1 + .9

Pr(team A defeats team B) =

strength of team A

strength of team A + strength of team B
Pr(team A defeats team B) =

Team A B C D

Strength (s ) 1 0.9 1.5 1

TABLE 12-4 Strength Numbers for Four Teams
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pute strength numbers for the teams, and these strength numbers are used, in

the Bradley-Terry model, to compute the probability that one team will defeat

another team in a single game.

Using this competition model, we can use random numbers to simulate a

baseball season. We first choose abilities for the teams at random from the nor-

mal curve ability distribution. We then can play all of the games of the baseball

season using probabilities given by the Bradley-Terry formula and a random

spinner. To show how this simulation works, we’ll step through a single simula-

tion of the American League baseball season.

Simulating an American League Season

Let’s focus on a hypothetical American League baseball season. The American

League currently consists of 14 teams, arranged in the East, Central, and West

divisions.

The first step in this simulation is to assign random abilities to these teams. Our

model for the team talents is a normal curve with a mean 0 and standard deviation

.19.We randomly select 14 numbers from this normal distribution and assign them

to the teams. Table 12-5 lists the teams and their randomly assigned abilities.

The particular assignment of abilities to teams might look strange to the

baseball fan, since they don’t correspond to the current strengths of the teams.

For example, Kansas City has a higher talent then Cleveland, which would seem

very surprising to the 1999 fan. We could have assigned abilities based on our

knowledge of the strengths and weaknesses of the individual teams. But what is

important here is the spread of the talent numbers assigned. The spread of

assigned team talents mimics the spread of abilities in modern-day baseball

competition.

Team Talent Team Talent Team Talent

Tampa Bay –0.288 Detroit –0.128 Anaheim 0.140

Toronto –0.223 Kansas City –0.010 Texas –0.010

Baltimore 0.030 Cleveland –0.073 Oakland 0.095

Boston 0.086 Chicago 0.077 Seattle –0.094

New York 0.039 Minnesota –0.139

EAST DIVISION CENTRAL DIVISION WEST DIVISION

TABLE 12-5 Randomly Assigned Talent Numbers for the American League Teams
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Also note that, since the talent numbers are given, we now know who should

win each division title. Boston, Chicago and Anaheim have the largest abilities

in their respective divisions, so they should win their divisions. Also, since

Anaheim has the largest assigned talent, this team should be the American

League representative in the World Series.

Given these ability numbers, we compute strength numbers for all of the

teams. For example, see from the Table 12-5 that Tampa Bay and Toronto had

respective talent numbers of –.288 and –.223. So their respective strength

numbers are:

s = e–.288 = .75, s = e–.233 = .80

These numbers are listed in Table 12-6.

Now we can proceed with the simulation of the baseball season. We’ll use a

baseball schedule close to the actual schedule used in Major League Baseball. In

this schedule, each team will play each of the other teams in its division 14 times

and play each team in the other two divisions 12 times. A slight adjustment is

made to the schedule so that every team plays a total of 162 games.

Team Team Team

Tampa Bay Detroit Anaheim

Toronto Kansas City Texas

Baltimore Cleveland Oakland

Boston Chicago Seattle

New York Minnesota

EAST DIVISION CENTRAL DIVISION WEST DIVISION

Strength

0.75 0.88 1.15

0.80 0.99 0.99

1.03 0.93 1.10

1.09 1.08 0.91

1.04 0.87

StrengthStrength

TABLE 12-6 Randomly Assigned Strength Numbers for the American League Teams

57%

43%

New York
wins

Toronto
Wins 

FIGURE 12-10 Spinner for simulating the result of a single baseball game.
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It’s now opening day in our simulated season, and New York is playing

Toronto. The strength numbers for these two teams are respectively 1.04 and

.80, and so the probability that New York wins this game is 1.04/(1.04 + .80) =

.565. The probability that Toronto wins this game is 1 – .565 = .435. We can play

this game using a random spinner. In Figure 12-10, we have drawn a circle

where the areas of the two regions correspond to the probabilities that New York

and Toronto win. Imagine spinning an arrow which is equally likely to land any-

where around the circle. If the arrow lands in the New York region, New York

wins the game; otherwise, Toronto wins. Note from the figure that the spinner

lands in the Toronto region, so Toronto wins this particular game.

Other games are simulated in this same manner. Figure 12-11 shows the sim-

ulation for four other opening-day games. For each game, we construct a spinner

divided into two regions, where the areas of the regions correspond to the prob-

abilities that each team wins the game. (We compute the probabilities from the

two teams’ strength numbers.) Then we spin the spinner, and the location of the

51%

49%

Boston Vs. Baltimore

52%

48%

Cleveland Vs. Minnesota

45%

55%

Detroit Vs. Chicago

54%

46%

Anaheim Vs. Texas

Boston

Baltimore

Cleveland

Minnesota

Detroit

Chicago Anaheim

Texas 

FIGURE 12-11 Random spinners for playing four games on opening day.
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arrow tells us who won the game. We see that the winners of these games on this

day were Boston, Minnesota, Chicago and Anaheim.

We continue this process until we have played a complete 162-game season

for these fourteen American League teams. All of the games are played using

win probabilities based on the team abilities that were assigned at the begin-

ning of the season. How did our teams do this season? The final standings of the

teams are shown in Table 12-7.

The results of the simulated season may surprise you. Let’s focus on the

American League West. Looking at the abilities of the four teams, Anaheim and

Oakland had above-average abilities (with positive talent values), Texas had

average ability (talent close to 0), and Seattle had an ability in the below-aver-

age range (negative talent). Although Anaheim and Oakland had similar abili-

ties, Anaheim won the division title very easily—they finished with a 7-game

lead over second-place Texas. Anaheim and Texas played much better than their

abilities, while Oakland and Seattle played worse then their abilities. So we see

significant differences between the teams’ abilities and performances for this

particular season.

Team W L p

Boston 88 74 0.543 Detroit 90 72 0.556

Anaheim 101 61 0.624

New York 84 78 0.518 Chicago 84 78 0.518

Texas 94 68 0.580

Baltimore 77 85 0.475 Cleveland 82 80 0.506

Oakland 80 82 0.494

Toronto 66 96 0.407 Kansas City 78 84 0.482

Seattle 73 89 0.451

Tampa Bay 63 99 0.389 Minnesota 74 88 0.457

Team W L p

Team W L p

EAST DIVISION CENTRAL DIVISION

WEST DIVISION

TABLE 12-7 Results of One Simulated Baseball Season
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To see how the abilities for all 14 teams are related to their season perform-

ances, Figure 12-12 displays a scatterplot of the values of the talents t and the

season win fractions p. We see a positive drift in the plot, which indicates that

there is a moderate positive relationship between teams’ abilities and perform-

ances. We have placed a best fitting line on the scatterplot. Points above the line

correspond to teams that played better in the season than expected, and points

below the line correspond to “disappointing” team performances. In particular,

we have labeled points corresponding to Anaheim, Texas, and Detroit, who had

better-than-expected years. We have also labeled one point under the line that

corresponds to Tampa Bay, which had a disappointing season. This graph illus-

trates that the relative standing of the teams’ abilities will generally be differ-

ent from the relative standing of the teams’ performances during a 162-game

season. To illustrate this, note from the graph that Texas had the second-best

record during the season, but there were a number of teams that had greater

ability than Texas. But when the entire league as a whole is examined via the

trend line, a reasonable relationship does exist between ability and performance.

Simulating Many American League Seasons

Above we simulated one baseball season between teams of the American League

and found that the results were a bit surprising. Some teams with similar abili-

ties had very different season performances, and the winners of the divisions

were not necessarily the ones with the greatest abilities. But this one simulated

season may have been a fluke. Perhaps we’re members of the army of Yankee-

haters and just happened to pull out one particular simulation where the

Yankees had a particularly bad season.
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FIGURE 12-12 Abilities and simulated season performances for 14 American League teams.



DID THE BEST TEAM WIN? 371

To get a better understanding of the pattern of the relationship between team

abilities and team performances, we can repeat this baseball simulation a large

number of times. Remember, this simulation is a two-step process: first we gener-

ate a set of team talents (ts) from the normal curve ability model, then we play out

a season of games using the Bradley-Terry model and a set of random spinners.

We repeat the American League season simulation a total of 1000 times. For

each team and for each season, we keep track of two quantities: the team’s abil-

ity given by its talent number t, and the team’s winning percentage p for the

162-game season. Figure 12-13 displays a scatterplot of the team abilities

against the team performances for all 14 teams playing 1000 seasons. There are

several interesting features in this plot. First, there is a moderate positive rela-

tionship between the teams’ abilities and the teams’ performances. Teams with

higher abilities tend to win a higher proportion of games during a season. But

there is also a lot of scatter in this plot. This means that season performances of

teams can be very different from their abilities.

To illustrate this last point, look at all of the teams with average abilities—

that is, talent numbers close to 0. (This is the vertical line in Figure 12-13 pass-

ing through the value 0 on the team ability scale.) Figure 12-14 shows a boxplot

of the season winning fractions of the truly average teams whose talent number

is close to 0. We see from this boxplot that these teams had season winning frac-
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FIGURE 12-13 Scatterplot of abilities and simulated season performances for American

League teams in 1000 seasons.
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tions falling between .4 and .6. So it’s possible for a team to have average talent

(t = 0) and have very bad (p = .4) or very successful (p = .6) seasons.

Performances and Abilities of Different Types of Teams

Recall our categorization of teams of different abilities. The top 10 percent of the

teams on the talent scale are considered “excellent,” the teams between the per-

centiles 10 and 35 in talent are considered “good,” the teams between the per-

centiles 35 and 65 are considered “average,” and so on. Another way of thinking

about a team’s ability is how it performs in the long run. Suppose that the team

plays a very long sequence of games against random opponents that is much

longer than the 162 games that a team plays during a major-league season.

Long-run Winning 

Proportion (P)

Bad 0 – 10 less than –.24 .000 – .442

Poor 10 – 35 –.24 to –.07 .442 – .483

Average 35 – 65 –.07 to .07 .483 – .517

Good 65 – 90 .07 to .24 .517 – .558

Excellent 90 – 100 larger than .24 .558 – 1.000

Category

Percentiles of Ability 

Distribution Team Talent

TABLE 12-8 Five Categories of Ability of Teams with Associated Team Talents and Long-

run Winning Fractions
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FIGURE 12-14 Boxplot of simulated season performances for American League teams of

average ability where the talent number is close to 0.
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Then we define a long-run winning proportion P as the fraction of games that a

team wins. For example, consider a team with a P = .6. This team will, in the very

long run, win about 60 percent of its games. We’ll see that this team can win

fewer than 60 percent or more than 60 percent of the games during a 162-game

season. But if this team were able to play thousands or even millions of games,

the fraction or proportion of games won would be close to 60 percent. This team

has above-average ability since its long-run winning fraction is over 50 percent.

If one knows the talent number t of a team, one can compute its long-run win-

ning proportion P. Table 12-8 shows the long-run winning fractions of teams of

different ability levels.

Suppose that we use the categorization of Table 12-8 to describe season per-

formances. So an “excellent” season performance corresponds to a team that

wins at least 55.8 percent of their games, which corresponds to a season record

of 91–71 or better. A “good” performance means that a team wins between 51.7

percent and 55.8 percent of its games—in a 162-game season, this type of team

will win have a record ranging from 84–78 to 90–72. Table 12-9 lists the five

types of teams and what kind of seasons they will have.

Let’s return to our simulation of 1000 American League seasons. For each

team and each season, we can classify its ability depending on its talent number

t. In addition, after the team has played its season, we can classify its season

based on the proportion of wins p. Since there are 14 teams in the American

League, each playing 1000 seasons, there are a total of 14 × 1000 = 14,000 team

seasons. Table 12-10 classifies the performances and abilities for these teams by

means of a two-way table. The rows of the table correspond to different team

abilities, and the columns correspond to different team performances. Each table

entry represents the number of teams having a specific ability and performance

level. To help understand this table, note that the count in the third row

(Average Ability) and first column (Bad Performance) is 371. So there were 371

Winning Proportion (p) Number of Games Won

Bad .000 – .442 71 or fewer

Poor .442 – .483 72 to 78

Average .483 – .517 79 to 83

Good .517 – .558 84 to 90

Excellent .558 – 1.000 91 or more

Category

TABLE 12-9 Five Categories of Performance of Teams in a 162-Game Season
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teams of average ability that had bad seasons. Looking across the same row,

there were 1146 teams of average ability that had poor seasons, 1112 teams of

average ability that had an average season, and so forth.

This two-way table is useful for seeing how teams of different abilities perform

during a 162-game season. Suppose that we convert the table to row percentages

by dividing each count by the total count of the corresponding row. The resulting

table is shown in Table 12-11. Look at the first row—these numbers represent

percentages of the teams with bad abilities. Of these bad teams, 73.8 percent had

bad seasons, 21.7 percent had poor seasons, and 4.1 percent had average seasons.

Also note that there are zeros in the Good and Excellent columns; these indicate

that it was rare for these bad teams to have either good or excellent seasons (see

Bad Poor Average Good Excellent

Bad

Poor

Average

Good

Excellent

73.8 21.7 4.1 0.4 0.0

31.3 37.6 20.3 9.6 1.2

9.2 28.4 27.5 26.3 8.7

1.3 10.3 19.8 39.5 29.1

0.0 1.1 5.8 22.8 70.4

PERFORMANCE

Ability

TABLE 12-11 Performances of Simulated Teams of Different Ability Levels. Each Number

Represents a Percentage of the Row

Bad Poor Average Good Excellent Total

Bad 1015 299 56 6 0 1376

Poor 1090 1312 706 334 43 3485

Average 371 1146 1112 1063 350 4042

Good 47 374 716 1431 1054 3622

Excellent 0 16 85 336 1038 1475

Total 2523 3147 2675 3170 2485 14000

PERFORMANCE

Ability

TABLE 12-10 Abilities (Rows) and Performance (Columns) of American League Teams in

1000 Simulated Seasons
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Table 12-10). So teams with very weak abilities tend to play badly during a sea-

son. What about the poor teams? The possible performances of these teams is

pretty spread out—31 percent of their performances fall into the category “bad,”

38 percent “poor,” 20 percent “average,” and 10 percent “good.” So it is possible

(but not probable) that a poor team will have a good season. The performances of

the teams with average abilities are the most spread out. These teams are

equally likely to have poor, average, or good seasons. Also, these average teams

have a plausible (9 percent) chance of having bad or excellent seasons.

The data in Table 12-10 can be used in a different manner. When we observe

the results of a single baseball season, we’re interested in what is learned about

the team’s ability. For example, suppose our team has a “good” season, that is,

they win between 84 and 90 games. What can we say about the team’s ability?

We can answer these type of questions by converting the table of counts to col-

umn percentages—that is, we divide each count by the total in the correspon-

ding column. Table 12-12 gives us insight into the abilities of the teams that

have different types of seasons. To illustrate, look at the first column of the table,

which corresponds to teams that had bad seasons. Of these teams, 40 percent

were actually teams whose ability was categorized as “bad,” 43 percent were

“poor,” 15 percent were “average,” and 2 percent were “good.” So it is likely that

this team was a bad or poor team. What if our team has an average season? Does

it mean that this team was average in ability? Looking at the third column of the

table, corresponding to average, we see that there is a 42-percent chance that

this team was actually average, and a 26-percent chance that the team was poor,

the same 26-percent chance that the team was good, and relatively small

chances that the team was bad or excellent in ability.

Bad Poor Average Good Excellent

Bad

Poor

Average

Good

Excellent

40.2 9.5 2.1 0.2 0.0

43.2 41.7 26.4 10.5 1.7

14.7 36.4 41.6 33.5 14.1

1.9 11.9 26.8 45.1 42.4

0.0 0.5 3.2 10.6 41.8

PERFORMANCE

Ability

TABLE 12-12 Performances of Simulated Teams of Different Performance Levels—

Each Number Represents a Percentage of the Column
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Simulating an Entire Season

Up to this point we’ve focused on what happens in an American League 162-

game season with 14 teams, relating the teams’ abilities with their season per-

formances by use of a simulation experiment. But, as all baseball fans know,

baseball really gets exciting when the regular season ends and the playoffs

begin. At this point, a select group of teams get to continue in a series of playoffs,

with the ultimate goal of winning the World Series.

We can extend the simulation we did earlier in this chapter to include all

playoffs. As in the earlier simulation, we begin by simulating a set of abilities for

all teams in the major leagues, including both the American and National

Leagues. Then each team plays a complete 162-game season. At the end of the

regular season, the division winners and wild card teams are found. Then the

simulation can be used to play all of the post-regular-season series, concluding

with the “best-of-7” World Series.

In investigating the “extended season,” we simulated a total of 1000 complete

baseball seasons. For each team and each season, its randomly generated ability

and its season performance (wins and losses) were recorded. Also we recorded if

the team achieved any of the following distinctions:

• The team won its respective division.

• The team was a wild card team for its league.

• The team won its pennant (was the winner of its league) and

appeared in the World Series.

• The team won the World Series and was champion of baseball.

Table 12-13 summarizes what happened in these 1000 simulated baseball

seasons. This table gives the number of teams of each ability level that reached

Bad

Poor

Average

Good

Excellent

Wild Card

Team Won Pennant

Won World

Series Won NothingAbility Won Division Total

15 1 0 0 2960 2976

278 110 53 17 7194 7582

1140 483 268 116 6977 8600

2592 953 839 397 4266 7811

1975 453 840 470 603 3031

PLAYOFF PERFORMANCE

TABLE 12-13 Playoff Performances of Simulated Teams of Different Ability Levels
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various plateaus. Looking at the first row of the table, we see that there were a

total of 2976 bad teams in all of the simulations. Of these 2976 teams with bad

ability, only 15 teams won a division, and one team was a wild card team. None

of these teams ever won a pennant or a World Series. So it is virtually impossi-

ble for a bad team to win a World Series. The performance of the teams of aver-

age ability is more interesting. Of the 8600 teams of average ability in the simu-

lation, 1140 (13 percent) won their divisions, 483 (6 percent) were wild card

teams, 839 (3 percent) won their pennants, and 116 (1 percent) won the World

Series. So it’s possible, but not likely, that these average teams will achieve suc-

cess in a season. What about the success of the excellent teams that represent

the top 10 percent of all teams? Of the 3031 teams of this type, 1975 (65 percent)

Bad

Poor

Average

Good

Excellent

Wild Card

Team Won Pennant

Won World

Series Won NothingAbility Won Division

0.01 0.00 0.00 0.00 0.99

0.04 0.01 0.01 0.00 0.95

0.13 0.06 0.03 0.01 0.81

0.33 0.12 0.11 0.05 0.55

0.65 0.15 0.28 0.16 0.20

The Best 0.76 0.13 0.35 0.21 0.11

PROBABIL ITY THE TEAM.. .

TABLE 12-14 The Probability a Team of Different Ability Levels Reaches Different 

Playoff Levels
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FIGURE 12-15 Graph of probabilities of reaching different plateaus for teams of different

ability levels.
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won their division, 453 (15 percent) were wild card teams, 840 (28 percent) won

their pennants, and 470 (16 percent) won the World Series. These top teams will

achieve success, but perhaps not at the high rate that one would expect. Table

12-14 shows these teams’ chances of reaching these plateaus for teams of all

ability levels. Figure 12-15 displays these probabilities using line graphs.

Again let’s turn this logic around. Suppose a team wins the World Series—is

it reasonable to call this team the “best team in baseball”? In our simulation,

there were 1000 World Series winners. Looking at the fourth column of Table

12-13, we see that 470 (47 percent) of these teams had excellent ability, 397 (40

percent) were good, 116 (12 percent) were average, and 17 (2 percent) were poor.

So the answer to our question is no. The chance that a great team, a team of

excellent ability, won the World Series is under 50 percent. It is likely that one

or the other of the two (a good or excellent team) wins this contest, and it is pos-

sible (but not likely) for an average and even a poor team to accomplish this feat.

By looking at the Won Division and Won Pennant columns of Table 12-13, we can

check into the abilities of teams that won the division and won the pennant,

respectively.

Let’s answer one final question. The title we gave this chapter was, “Did the

Best Team Win?” In other words, is it likely that the best team—that is, the team

with the greatest ability among all 30—will win the World Series? Using the

simulation, this question is easy to answer. For each simulated season, after we

simulate the talents (the ts) for all teams, we find the particular team with the

largest talent. We then record if this team won the World Series that year. The

results of the success of the best team in these 1000 seasons is presented in the

last row of Table 12-14. For the 1000 seasons, the best team—the team with the

highest value of t—won the World Series 213 times. So the chance that the best

team wins the World Series is about 21 percent. We also find that this best team

wins a division title with a probability of 76 percent, is a wild card team with a

probability of 13 percent, and wins the pennant with a probability of 35 percent.

So this best team will very likely get into the baseball playoffs, but it has a mod-

est chance of actually winning the World Series. To put it another way: the cream

won’t generally rise to the top.

Chance

The point of this chapter is to relate the abilities of major-league teams with

their performances during a baseball season. We measure a team’s ability by a
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talent number t. Teams possess different talents, that is, different abilities, and

we model the distribution of abilities of all teams by a bell-shaped curve. By

choosing a reasonable value for the spread (the standard deviation) of this curve,

the observed season winning fractions (p), predicted using the model for differ-

ent teams, will match the actual winning percentages that we observe for major-

league teams over the last 20 years. Our model for baseball competition consists

of this normal curve model for the teams’ abilities and a simple coin-tossing

model (the Bradley-Terry model) for describing the results of games between

teams of different abilities. It is important to stress that the model seems rea-

sonable in that it appears to predict well the observed season results for the 30

major-league teams.

By using the model, we simulated a large number of baseball seasons. In

each simulation, we select at random a set of team talents and then use these

talents to play a 162-game baseball season and the playoffs. We use the simu-

lation results to connect the team abilities (that we don’t know in real life) and

their season performances. What we learned is that teams with high abilities

tend to perform better than teams of low abilities. But it is pretty common for

good teams to have average or worse seasons—likewise, mediocre teams can

have good seasons. Probably the most surprising result, from a typical fan’s per-

spective, is the range of abilities found in teams that win the World Series. Over

half of the World Series winners are in the “good,” “average,” or “bad” ability cat-

egories. So we shouldn’t be too surprised when a team like the Florida Marlins

in 1997 wins the World Series over a clearly superior team like the Atlanta

Braves. Also, this study should be encouraging to a Philadelphia Phillies fan—

even if the team doesn’t possess great talent (as is usually the case!), the

Phillies have a reasonable chance for a good season, even to the point of win-

ning the fall classic.

In other words, we’ve shown that chance variability has a lot to do with

teams’ performances during a season. When a team reaches a certain pinnacle

such as the World Series, sportswriters and fans will offer a thousand explana-

tions why this team performed so well. Any good performance has to have a

cause—perhaps a few ballplayers got “hot” or performed at a higher level than

expected, or perhaps a few players on the opposing team experienced slumps.

Maybe the umpires made a number of questionable calls which influenced the

outcome. Many things can happen during a game that cannot be explained eas-

ily and yet influence the final result. These “things” include good or bad pitches,

the locations of balls hit in the infield and outfield, good and bad defensive or
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base-running plays, the weather conditions, and so on. We can lump all of these

events into a broad category called “chance occurrences.” But lumping them

together and giving them this name does not diminish their importance:

Whether we like it or not, chance events have a big effect on the patterns of

wins and losses that we observe.



(A Brief Afterword)

Baseball is a fascinating game for the statistical analyst. On the surface, it

appears so simple and limited. But the more closely one studies the game, the

more, it seems, there is to know. For us it is like driving toward the horizon, then

at the top of that last hill finding a valley on the other side, with more hills and

another horizon.

The chapters in this book have examined some aspects of baseball statistics

that we’ve found particularly interesting over the years. We make no claim that

this is the last word on these issues, nor do we make any claims for complete-

ness. As we write, there are thousands of fans taking fresh new looks at baseball

and the usefulness of its statistical underpinnings. Undoubtedly, refinements

and advances will be made. Our book is not, for example, a complete guide to

sabermetrics. Many issues of interest to sabermetricians and their disciples are

not covered, or are examined superficially.

This book is best approached as a loosely connected collection of quantitative

essays on baseball statistics. Each essay examines a topic in baseball in the way

a professional statistician might approach the issue in any other field (health,

business, technology) using the data at hand. In some cases, the work presented

was original research performed by us, the authors, while in other cases the

essay described work performed by others whose efforts we have found particu-

larly enlightening. Hopefully, we have brought to your notice some older

research that has not received the attention it deserves, and provided a new per-

spective on work with which you’re already familiar.

381
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But there is a common thread that runs through the chapters, and it can be

summarized as the role of chance in baseball. A Major League Baseball season

(and indeed a single batter’s swing or the whole history of the sport) is a process

that is at the mercy of chance. Chance affects all baseball events, from the out-

comes of individual at-bats to the awarding of World Championships. While

chance occurrences may seem to defy description and analysis, to make expla-

nation and prediction impossible, we believe chance can be mastered—or at

least tamed. This is the role of statistics as it is applied in business and indus-

try. Statistics involves not just enumerating and summarizing data, but

attempting to extract the underlying truth that is obscured by the fog of chance.

If there is one lesson the reader should take from this book, it is that baseball

data are like observations in experiments. They are the best measures we have,

but they are not exact with respect to the underlying process. The result of each

at-bat is the culmination of many factors, but even if all are held constant, the

difference in the batter’s reflexes or reactions for one tiny fraction of a second, or

one tiny fraction of an inch one way or the other, may make the difference

between a strikeout and a home run. We cannot (and would not wish to) alter

these elements of chance in the game. But when we analyze baseball data, we

should attempt to take them into account.

Several chapters in this book have presented ways in which we can gauge the

influence of chance on baseball. We always assume that the winner of the World

Series is the best team in baseball, but in Chapter 12 we found that the role of

chance in the game gives an inferior team a significant shot at winning the

series. By inferior, we mean that the championship team’s abilities are not as

good as those of some other teams. It may have had great performances that

year, but those performances were better than expected.

The trick is to find the signal in the noise. At times, this can be difficult.

Chapter 4 examined ways of detecting situational effects in batting data. Base-

ball announcers present figures on batting averages in the day, at night, on turf,

on grass, against left-handers, against right-handers, at home or away, and so

forth. These figures are presented as facts. And they are factual observations of

what has occurred. But generally they are not valid statements about how these

situations affect ability. Chapter 4 demonstrated how certain effects were large

enough to be beyond the realm of chance, while others were indistinguishable

from chance.

Similarly, baseball announcers are quick to highlight notable batting streaks

and discuss certain hitters as being hot or cold. But how much of this is due to

chance as opposed to the possibility that a batter really has an ability which
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fluctuates depending on recent success? Chapter 5 examined one player (Todd

Zeile) noted for his streakiness. While evidence was found to support the possi-

bility that Zeile truly had a streaky kind of ability, it was still difficult to rule out

chance as the primary cause. Generally, while some players may exhibit some

streaky batting behavior, one should be pretty doubtful of labeling someone a

streaky hitter. Chance is a very powerful force in creating streaks.

In Chapters 6 and 7, we examined different ways of measuring player contri-

butions to run production. The primary metric used to determine how well these

measures worked was Root Mean Squared Error (RMSE) as it related to team

run production. RMSE is a measure of how much chance remains in a predic-

tion. The RMSEs for standard measures such as Batting Average were relatively

large, leaving chance a major element in the prediction of runs produced. Newer

measures such as Runs Created and Linear Weights had much lower RMSEs;

their predictions greatly reduced the element of chance in predictions of run pro-

duction. The capability of a measure to control or limit chance is a major factor

in making the measure a useful statistical tool.

Simulation models attempt to incorporate the element of chance. In Chapter

8, we described a very basic simulation model that used the rules of probability

to model the chance elements in games. The model was found to match closely

the variability of runs scored in an inning. The structure and behavior of the

model provided some theoretical support for the Runs Created model, which was

developed totally (almost) from intuition. An interesting feature of this simula-

tion was its construction from formulas of probability that made it possible to

produce predictions without the need for great numbers of computer replays.

Chapter 7 developed the notion of average runs per play, and this concept is

applied in two different directions in Chapters 9 and 10. In Chapter 9, we saw

that a manager can learn about good and bad baseball strategies using the table

of average runs for different bases-outs situations. Chapter 10 found a use for

chance as a measure in itself. Where most measures for player value focus on

run production or run prevention, two related measures of player contributions

were described based on how much a player increases or decreases his team’s

chance of winning. These measures provide the next step in the evolution of

baseball metrics, going beyond counts of individual events to measures of run

production and on to measuring the ultimate goal, winning.

While chance is a major element of baseball (and everything else), it is not

powerful enough to make baseball data arbitrary. We just have to be a bit more

wise in our analysis of the data to understand the degree of chance’s control and

how we may allow for its influence in our understanding. A direct blunt analyt-
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ical approach (using simple averages) will often be satisfactory, but it can also

prove to be deceptive.

Or, to put the same bit of advice in baseball terms, look for the fast ball, but

watch out for the curve.



Baseball Games

APPENDIX

TABLETOPTABLETOP

This appendix provides background that is helpful to understanding the mate-

rial in Chapter 1 of this book. In particular, this appendix describes the All-Star

Baseball, APBA, Strat-O-Matic, and Sports Illustrated tabletop baseball games

for readers who are unfamiliar with these games.

Tabletop baseball games have a history about as long as professional baseball

itself. Most of the early games were “generic” in nature, with each batter coming

to the plate having the same chance of getting a hit. The games made no attempt

to reflect the different skills of players, much less replicate the performances of

actual professional players. It was not until well into the twentieth century that

the games took on a statistical perspective.

The first game that attempted to simulate the play of Major League Baseball

was Clifford Van Beek’s National Pastime, produced in 1931. Since then, table-

top games of ever-increasing sophistication and accuracy have attempted closer

and closer simulations of the “real thing.”

The tabletop baseball games discussed in Chapter 1 have been among the

most widely played. However, the games were selected as much for the different

ways that the batter-pitcher interaction is modeled as for their popularity. As

broad as these games have been in their appeal, tabletop baseball gamers are

notorious for their parochialism in regard to their favorite games, so some read-

ers may be unfamiliar with and even highly skeptical of the statistical under-

pinnings of one or more of these games. Nonetheless, we feel all of them are
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interesting from a statistician’s point of view, so this appendix provides a more

lengthy and detailed description of each.

All-Star Baseball
All-Star Baseball is the oldest game considered in Chapter 1. It was developed

in 1941 by Ethan Allen, a professional ball player, but it is currently out of print.

However, a photograph of an All-Star Baseball disc (and a discussion of their col-

lectibility) can be found at:

www.beckett.com/vintage/news/index.asp?a=2636&s=27

In All-Star Baseball, the manager of each team is provided with a set of cir-

cular player disks that make up the team’s roster. Each disk provides the

player’s name, defensive position, and batting ability. Figure 1-1 in Chapter 1

shows an illustration of a typical All-Star Baseball disk. There, the disk is like a

pie chart, and each slice is identified with a particular play. The sizes of the var-

ious slices represent the batting ability of the player. For example, in Figure 1-1,

the amazing home run ability of Babe Ruth is reflected in the relatively large

home run pie slice (the slice numbered “1”).

When a player comes to bat, his disk is placed on a spinner, and the manager

spins. When the spinner stops, it points to a numerically coded play result. To

find the result, the manager looks the number up on a chart that indicates the

play (e.g. single, walk, or strikeout).

All-Star Baseball is the simplest model of the tabletop games considered

because the pitcher does not influence the outcome.

APBA Baseball
APBA (American Professional Baseball Association) Baseball is the oldest table-

top simulation baseball game still published today. The game was introduced in

1951 by its designer J. Richard Seitz. A brief biography of Seitz can be found at:

www.apbastadium.com/stadium/hall_of_fame/seitz.html

APBA Baseball has undergone several subsequent revisions. The system

described here and analyzed in Chapter 1 is the basic version of the game. The

Master version provides more detail, but is built on the same basic concepts.

Each team has a set of 20 cards that make up the roster. Managers (players of

the game) have the option to preserve the teams historically as presented in the

rosters or to draft players in new fictitious teams. Each card gives the player’s

name, defensive positions, and, if applicable, a letter rating his pitching ability.
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The batting ability is represented by a table on each card. Table A-1 is an exam-

ple of an APBA player card.

When a player comes to bat, the manager rolls two six-sided dice, a large die

and a small die. The large die provides the first play number and the small die

the second number. So, if the small die result is 1 and the large die result is 5,

the result is 51. The manager looks up 51 on the batter’s card and finds the play

number listed immediately to the right of the dice number. If this play number

had been #0 (produced by dice results of 11 and 66 in Table A-1), the manager

would roll the two dice again and use the third column (not the second column)

to find the play number. Play results from #1 to #11 are generally hits while

other results (except #14 for walks) are generally outs. Using the example card

in Table A-1, we see that a dice result of 51 produces a play result of #9. As we

shall see shortly, the play resolution of a #9 result depends on the opposing

pitcher’s rating.

Initially, the APBA game seems quite similar to the All-Star Baseball game,

aside from the use of dice instead of a spinner. However, there are several impor-

tant differences between the two. First, All-Star Baseball uses a single chart for

interpreting play numbers; APBA Baseball uses eight different charts, one for

each base situation: bases empty, runner on first base, runner on second base,

runners on first and second bases, runner on third base, runners on first and

11 0–1 31 14–2 51 9–1

12 25–6 32 26–6 52 27–6

13 14–6 33 7–1 53 19–6

14 30–6 34 31–6 54 32–6

15 10–1 35 14–2 55 9–1

16 39–6 36 33–6 56 34–6

21 30–6 41 24–6 61 24–6

22 8–1 42 13–2 62 13–2

23 31–6 43 29–6 63 32–6

24 13–6 44 8–1 64 22–6

25 10–1 45 14–6 65 35–6

26 12–6 46 13–6 66 0–1

PLAYER NAME POSIT IONS

TABLE A-1 Example of an APBA-Type Player Card
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third bases, runners on second and third bases, and bases loaded. Second, unlike

All-Star Baseball, ABPA play results are determined, in part, by the skill of the

pitcher involved. Each of the eight ABPA charts is divided into columns which

provide possible variations in the play result depending on the rating of the

opposing pitcher. The six possible ratings of pitchers run from best to worst:

A&B, A&C, A, B, C, and D (as described in greater detail in Chapter 1). In our

example, if the bases are empty, the play result #9 produces a single against

pitchers with a B or D rating and an out against all other pitchers.

Strat-O-Matic Baseball
Strat-O-Matic Baseball, designed by Hal Richman, was introduced in 1962. An

interview with Richman can be read at:

www.sportplanet.com/features/interviews/som/

Strat-O-Matic Baseball was the first tabletop baseball game to capture pitch-

ing performance at the same level of detail as batting performance. Its basic

pitcher/batter model lies at the heart of several subsequent tabletop baseball

games, including Pursue the Pennant and Ball Park Baseball. Strat-O-Matic

Baseball has a devoted following and survives to this day in both tabletop and

computer forms. Like other tabletop baseball games, it has evolved into

1 2 3

2–foulout 2–lineout 2–flyout

3–popout 3–walk 3–groundout

4–lineout 4–groundout 4–homerun

5–groundout 5–walk 5–homerun

6–groundout 6–strikeout 6–homerun

7–single 7–flyout 7–single

8–single 8–groundout 8–double

9–groundout 9–flyout 9–single

10–popout 10–groundout 10–single

11–popout 11–groundout 11–groundout

12–popout 12–flyout 12–triple

PLAYER NAME POSIT IONS

TABLE A-2 Example of a Strat-O-Matic-Type Batter Card



Advanced and Super-Advanced versions that are built on the same operating

principles, while providing even more detailed simulations of baseball. The sys-

tem described here and analyzed in Chapter 1 is the basic version of the game.

Each team has a set of 20 cards that make up the roster. Each card provides

the player’s name and defensive positions. If the player is a pitcher, the card is

divided into three columns labeled 4, 5, and 6; each column presents play results

describing the pitcher’s ability in terms of the frequencies of these play results.

Position player cards’ have a similar layout of three columns that are labeled 1,

2, and 3. Each column presents play results describing the player’s ability at bat.

Tables A-2 and A-3 are examples of a batter’s card and a pitcher’s card.

When a player comes to bat, the manager rolls one white six-sided die and

two red six-sided dice. The white die determines the column used to find the play

result: Column 1, 2, or 3 on the batter’s card or Column 4, 5, or 6 on the pitcher’s

card. The two red dice are summed to produce a number between 2 and 12 which

indicates the row in the appropriate column. For example, if the white die

showed 4, and the two red dice showed 5 and 1, the result of the play would be a

lineout found next to the 6 (=5+1) under column 4 on the pitcher’s card in Table

A-3. However, if the red dice were the same but a 3 was on the white die, the

result would be a home run, found next to the 6 (=5+1) under column 3 on the

batter’s card in Table A-2.

TABLETOP BASEBALL GAMES 389

4 5 6

2–home run 2–home run 2–flyout

3–first baseman x 3–shortstop x 3–right fielder x

4–center fielder x 4–single 4–popout

5–popout 5–flyout 5–single

6–lineout 6–flyout 6–single

7–strikeout 7–second baseman x 7–walk

8–flyout 8–shortstop x 8–popout

9–flyout 9–groundout 9–lineout

10–third baseman x 10–catcher x 10–double

11–pitcher x 11–strikeout 11–left fielder x

12–groundout 12–walk 12–triple

PLAYER NAME PITCHER

TABLE A-3 Example of a Strat-O-Matic-Type Pitcher Card
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Several results on the pitcher’s card have an x next to the name of a fielding

position. This means that the result of the play depends on the fielding rating of

the defensive player at the position. A number from 1 to 20 is selected randomly

by the batter and referenced against a defensive play chart which has different

columns for each fielding rating. The better the fielding rating, the less of a

chance of giving up a hit or an error. Thirty permutations of the three dice can

produce an x result on the pitcher’s card in Table A-2. Since three six-sided dice

can produce 6 × 6 × 6 = 216 permutations, fielding influences 30/216 = 14 percent

of all batting results.

Sports Illustrated Baseball
Sports Illustrated Baseball was introduced in 1971. The game was designed by

David S. Neft, who was a co-author of The Sports Encyclopedia: Baseball. It is

likely that this game was an outgrowth of his work on the encyclopedia (or vice

versa). In the late seventies, the Avalon Hill Game Company purchased the

Sports Illustrated game line and published a modified version under the title

Superstar Baseball.

In this game, each manager is provided with a chart describing his/her team’s

roster of 25 players, both batters and pitchers. A reproduction of a portion of the

all-time all-star Philadelphia Phillies chart can be seen at:

www.innova.net/~randycox/SSBATcht.htm

Each player’s card lists 30 possible dice results numbered from 10 to 39. The

dice used for Sports Illustrated Baseball are three six-sided dice, one black and

two white, that are special to the game. When rolled, the black die is used to find

the 10’s digit and the two white dice are summed to obtain the 1’s digit. In each

plate appearance, the pitcher rolls first. The resulting number is checked

against his pitching chart and can result in an out, a walk, hit batsman, a single,

or the Batter Swings.

The first four results listed above end a plate appearance. A team’s fielding is

represented on the pitcher’s chart in the Defense results section. The play

results from 10 to 15 are directly affected by the fielding skills of the team as a

whole. The greater the fielding skill, the more Outs that occur in the 10–15

range. For example, a team with a fielding rating of 30 would produce an Out

when the pitcher rolls 11 or 12, while a team with a fielding rating of 50 would

produce an Out when the pitcher rolls 11, 12, or 13. If the Defense result is not

an Out based on the team’s fielding rating, the Batter Swings. The worst defense
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will produce an Out when 10 is rolled while the best defense will produce an Out

when 11, 12, 14, or 15 is rolled.

Table A-4 shows the chart of a Hall of Fame caliber pitcher. The dice for the

game will produce an Out result for this pitcher 26 percent of the time and a

walk about 6 percent of the time. Depending on the quality of the team’s defense,

an Out will occur an extra 1 percent to 9 percent of the time. So, a “Batter

Swings” play can result from 59 percent to 67 percent of the dice rolls depending

on the fielding rating of the defensive team.

When the fifth result, “Batter Swings,” occurs, the batter rolls the dice and

looks up the play result on one of two charts. One chart is used when facing

right-handed pitchers, and the other is used against left-handed pitchers. Table

A-5 provides an example of a batting chart for a Hall of Fame caliber hitter. In

10 Defense 20 Batter Swings 30 Batter Swings

11 Defense 21 Batter Swings 31 Batter Swings

12 Defense 22 Batter Swings 32 Batter Swings

13 Defense 23 Out 33 Batter Swings

14 Defense 24 Batter Swings 34 Out

15 Defense 25 Walk 35 Out

16 Out 26 Batter Swings 36 Batter Swings

17 Out 27 Batter Swings 37 Batter Swings

18 Batter Swings 28 Out 38 Batter Swings

19 Batter Swings 29 Batter Swings 39 Batter Swings

TABLE A-4 Example of a Sports Illustrated-Type Pitcher Chart

10 Double 20 Home Run 30 Flyout

11 Single 21 Single 31 Flyout

12 Triple 22 Single 32 Single

13 Strikeout 23 Strikeout 33 Flyout

14 Double Play 24 Home Run 34 Flyout

15 Double 25 Single 35 Flyout

16 Double 26 Groundout 36 Groundout

17 Error 27 Groundout 37 Double Play

18 Strikeout 28 Strikeout 38 Double Play

19 Double 29 Strikeout 39 Strikeout

TABLE A-5 Example of a Sports Illustrated-Type Batting Chart
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general, dice rolls in the 20s and 30s are twice and three times as likely respec-

tively as dice rolls in the 10s.

The evolution of tabletop baseball board games is almost as fascinating as the

history of baseball itself. Readers who would like more detail on this subject can

find a brief history of these games in Diamonds in the Rough: The Untold His-

tory of Baseball, by Joel Zoss and John Bowman. A book dedicated entirely to

this subject is Baseball Games: Home Versions of the National Pastime, 1860s–

1960s, by Mark Cooper and Douglas Congdon-Martin.



Glossary

Ability (Chapter 3): The intrinsic skill of a player to hit or pitch, or the skill of a team to win

games. Ability values are determined by a player’s or a team’s performance over a large

number of games.

Ability effect (Chapter 4): This is the difference in performance in different situations

(such as home vs. away) that depends directly on a player’s or team’s ability.

Additive model for hitting (Chapter 8): A measure of hitting performance created by sum-

ming the contributions of different batting play events, such as singles, doubles, triples,

home runs, walks, and outs.

Additive probability model (Chapter 1): A model for probabilities created by summing the

contributions of the batter and the pitcher in the Strat-O-Matic tabletop baseball game.

Bayes’ Rule (Chapter 11): A mathematical formula useful in updating probabilities in

order to tie in new data or information.

Bias effect (Chapter 4): This is the difference in performance in different situations (such

as home vs. away) that depends solely on the situation. It is the same for each player and

each team.

Biased inference (Chapter 5): Inaccurate conclusions drawn from data that was not

selected randomly. For example, our conclusions about the true streakiness of Todd Zeile

were biased because we selected a player who had the reputation of being streaky.

Binomial distribution (Chapters 1 and 4): A probability distribution for trials with only two

possible results. The observed number of heads when a coin is flipped a given number of

times is an example of binomial distribution.

Boxplot (Chapter 2): A graph of the low, lower quartile, median, upper quartile, and high

values of a collection of data.

Bradley-Terry model for team competition (Chapter 12): A probability model for determin-

ing the chance that one team will defeat another team, given that the teams have differ-

ent abilities.

Chance variation (Chapter 3): Variation in baseball data that is not attributable to a “real”

cause, but to natural “luck” variation only. It is similar to the variation in the patterns of

coin tossing. Differences between two players’ batting performances in a week of baseball

is primarily due to luck variation, while differences between two players’ career batting

records reflects “real” differences in the players’ abilities.

Coin-toss model (Chapter 3): A probability model that works like the repeated flipping of

a coin. It can be used to explain the pattern of sequences of successes and failures of play-

ers and teams.

Conditional probability (Chapter 12): The probability of a certain outcome given some

knowledge of prior outcomes. We found, for example, the probability of that a team might

truly be the best team given the knowledge that it won the World Series.
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Confidence interval (Chapter 3): An interval of values that we believe contains the

unknown batting ability with a high probability. For example, if a 90 percent confidence

interval for a true batting average is (.23, .35), the chance that the player’s true batting

average falls between .23 and .35 is 90 percent.

Consistent model (Chapter 5): A probability model used for a player or team whose proba-

bility of a hit (win) is the same for each plate appearance (game) during a season.

Contingency table (Chapter 12): When a player or a team can be classified with respect to

two categorical variables, this table is used to give the number of individuals in each com-

bination of levels of the two variables. Table 12-12, for example, is a contingency table. It

classifies teams by their true ability and their performance in a season.

Correlation coefficient (Chapter 4): A measure of association between two variables. In

Figure 4-27, for example, the correlation value of +.172 indicates there is positive associa-

tion between the 1998 situational effect and the previous four-year situational effect.

Cumulative distribution function (Chapter 7): A function that indicates the probability of a

given value and all smaller values.

Dotplot (Chapter 9): A simple graph used to display numerical data, with each data item

represented by a dot on a number line.

Doughnut plot (Chapter 1): A graph used to compare two pie charts.

Error in estimate (Chapter 6): The difference between the actual data value and the value

predicted from a model.

Expected runs (Chapter 7): The average number of runs that are likely to be scored in an

inning of baseball based on a team’s previous performance.

Expected value (Chapter 7): An average value drawn from a probability distribution. Table

7-4, for example, gives the expected values of runs scored in all possible situations of run-

ners on base and the number of outs.

Five-number summary (Chapter 2): The low, lower quartile, median, upper quartile, and

high values of a collection of data.

Histogram (Chapter 2): A graph of a batch of numerical data, such as the graph of player

OBPs (on-base percentages) in Figure 2-6.

Inference (Chapter 3): Drawing conclusions about abilities of players or teams on the basis

of collected data.

Interaction probability model (Chapter 1): A probability model for baseball hitting used

when the effect of a hitter depends on the pitcher. The Sports Illustrated Baseball game

uses this model.

Least squares (Chapter 6): A method of fitting a “best” line to a scatterplot.

Margin of error (Chapter 3): The error of an estimate of ability used in constructing a con-

fidence interval.

Mean (Chapter 2): The arithmetic average of a group of numerical data.

Mean Squared Error, MSE (Chapter 6): A measure of the soundness of a statistical model

to predict data, such as the ability of a model to predict runs per game in Chapter 6.

Median (Chapter 2): The middle value of a group of numerical data that is arranged in

ascending order.



GLOSSARY 395

Moving average (Chapter 5): In a plot of batting averages over time, a moving average is a

batting average for a group of games within a given window of time. By plotting the mov-

ing averages over time, one sees short-term patterns in batting performance.

Multinomial distribution (Chapter 1): A probability distribution for an experiment with

repeated trials in which there are more than two possible outcomes for each trial, such as the

probability distribution of the spinner outcome of an All Star Baseball disk in Table 1-2.

Nonlinear relationship (Chapter 8): A pattern in a scatterplot that does not follow a straight

line, such as the pattern in the scatterplot in Figure 8-10.

Normal curve (Chapter 2): A bell-shaped curve used to represent a collection of numerical

data, such as the presentation of on-base percentages (OBPs) in Figure 2-7.

Observed effects (Chapter 4): This is the observed difference in performance in different

situations (such as home vs. away). See also Ability effect and Bias effect.

Observed proportion (Chapter 3): This is a fraction, such as the number of hits divided by

the number of at-bats, based on certain hitting data.

Percentile (Chapter 12): A value that bounds particular percentages of data. For example,

the 90th percentile is the value that is greater than 90 percent of the data.

Pie chart (Chapter 1): A circular graph of a batch of numerical data that fall in different

categories, visually represented as wedges of a pie.

Predictive probability (Chapter 11): The probability that tells us how likely it is that a par-

ticular event will happen in the future.

Prior distribution (Chapter 11): A distribution of probabilities that reflects one’s predic-

tions about the ability of a player or team before any data is observed.

Probability of victory, POV (Chapter 10): The probability that a team wins a game, calcu-

lated at a particular instance during a game.

Product model for hitting (Chapter 8): A measure of hitting performance created by multi-

plying the contributions of different batting play events, such as singles, doubles, triples,

home runs, walks, and outs.

p-value (Chapter 5): The chance of observing the data result or a more extreme value given

a particular statistical model. Table 5-8, for example, computes the chance that a consis-

tent hitter has at least as many long streaks as Todd Zeile.

Quartile (Chapter 2): A value that contains 25 percent of a batch of numerical data. One

quarter of the data falls below the lower quartile, and one quarter of the data falls above

the upper quartile.

Random-effects model (Chapter 4): A probability model for assessing players that

assumes the abilities of the players follow a normal probability curve, such as the distri-

bution of true batting averages in Figure 4-7.

Regression to the mean (Chapter 3): A statistical phenomenon where players with extreme

performances in one season tend to perform closer to the average the following season.

This phenomenon was illustrated by looking at players’ on-base percentages in two con-

secutive seasons (see Figure 3-2).

Residual (Chapter 6):When fitting a line to a scatterplot, the residual is the difference between

the actual response and the predicted response, as illustrated in Figures 6-3 and 6-4.
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Rule of total probabilities (Chapter 8): A rule used to calculate the probability of an event

from conditional probabilities.

Run potential table (Chapter 9): A table that computes the average number of runs scored

in the remainder of an inning for each possible situation of runners on base and the num-

ber of outs.

Runs of good and bad games (Chapter 5): Sequences of days with consistent good or bad

performance that are useful in determining if a player or team has a hot hand.

Scatterplot (Chapter 2): A dot graph of two variables that is used to determine the rela-

tionship between these variables.

Skewness (Chapter 2): Data with nonsymmetrical shape that either trails off toward large

values or toward small values. The distribution of pitcher-strikeout totals in Figure 2-14,

for example, is right-skewed.

Spinner model (Chapter 3): A probability model represented by a spinner divided into

areas that correspond to probabilities of different events.

Standard deviation (Chapter 2): The spread of a data set that represents a typical distance

of the data from the mean.

Statistical significance (Chapter 7): An observed statistic is said to be statistically signifi-

cant if the value is larger than one would expect from chance variation.

Stemplot (Chapter 2): A histogram-style tabulation of data developed by mathematician

John Tukey, such as the graph of on-base percentages in Figure 2-3.

Streaky model (Chapter 5): A probability model used for a player or team whose probabil-

ity of a hit (win) for each plate appearance (game) can change during a season, and if the

player or team has a high hitting (winning) probability one game, he (or the team) is more

likely to have a high hitting (winning) probability the next game.

Talent of a team (Chapter 12): Number used to represent the ability of a team to win

games.

Tree diagram (Chapter 8): A method of listing all outcomes of a random experiment. For

example, Figure 8-1 is a tree diagram that represents the possible ways of scoring two runs

in an inning.

True proportion (Chapter 3): The probability of a hit that is to be distinguished from the

observed proportion of hits. In a season of baseball, the batting average is the observed pro-

portion of hits, but the true batting average or true ability to hit is unknown.
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