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Preface

“What! another book on vectors and tensors?’ The cry goes up alike from
the student searching the bookstore for a beginning text as from the savant
who learned his stuff years ago from some tome on der Ricei Calcul. “What
conceivable reason can this fellow have for inflicting another book on us?”’

First let it be said that this is a text intended for the engineering scien-
tist, for the physicist or applied mathematician perhaps, but not for the
differential geometer or pure mathematician. Second, it is an introductory
text, intended for a reader with some acquaintance with the caleulus of
partial differentiation and multiple integration but nothing more. There-
fore, being for a reader with interest in the physical warld, it sets out to
show that the calculus of tensors is the language most appropriate to the
rational examination of physical field theories. Of these theories I have
selected the theory of fluid mechanics as being of central importance and
wide appeal. The idea behind this treatment is to use the physical theory
to motivate the thorough study of the mathematical subject and, con-
versely, to show how the mathematical theory can give a truer insight into
the physical situation.

The day is quickly passing when it is necessary to make any apology
for giving engineers the “straight stuff” in mathematics. It is realised
increasingly that his knowledge of mathematics must go beyond a nodding
acquaintance with its notions and notation. Even if mathematics is to
remain merely a tool for him, he will never be its master until he has under-
stood why it is so formed and is practiced in its manipulations. I have
attempted therefore to keep the presentation both elementary and physi-
cally motivated but at the same time not to shun the more difficult ideas
or applications. Some of the topies introduced are close to the present
frontiers of research and it is hoped that the development of fluid mechanics

vii



viii Preface

that has been followed is thoroughly in accord with the best current
understanding.

In the last decade there has been a renascence of interest in rational
mechanics in the mathematical world. It has been fairly widespread and
attracted the attention of many mathematicians whose abilities are of the
first order. If one name is to be singled out, it is probably not unfair to
the others to select that of Truesdell, whose deep scholarship and extensive
writing have been of great influence. The work that has been done, and is
still proceeding, on the foundations of continuum mechanics will be the
basis for future advances in the engineering of continuous media and the
sooner the engineer becomes acquainted with it the better. He should not
be put off by a certain astringency of aside or hauteur de mathématicien
which sometimes marks the style of this work. It is not easy reading, nor
would one wish it to be, but if this introduction makes the literature appear
less formidable, one of its-chief purposes will have been fulfilled. If it whets
the reader’s appetite for more substantial fare, I shall be more than content.

Many applied mathematical texts treat only of Cartesian tensors since
these suffice for the principal applications. More purely mathematical texts
will properly regard Cartesian tensors as a special case. For certain applica-
tions of current importance, Cartesian tensors are not sufficient, and since
the understanding of tensors is intended to serve the student in fields other
than fluid mechanics, I have not hesitated to treat them generally. How-
ever, the ideas are first introduced in the Cartesian framework and then
redeveloped more generally. Though this may appear to involve duplica-
tion, it is a sound pedagogical principle* to introduce the basic ideas in
their most elementary form and to go over the ground again building on the
understanding that has been gained. This has the effect of dividing the
book into two parts and the first six chapters form a complete course in
themselves, which may be suitable at an undergraduate level. The whole
book is founded on a course of lectures given to graduate students, and,
in as much as their knowledge of matrix algebra is sometimes in need of
refreshment and to make the book more self-contained for the independent
reader, a short appendix gives the necessary background. The last chapter
may be read after Chapter 6, since it in no way requires the intervening
chapters. Indeed it is less permeated with the ideas of tensor analysis and
is a topic whose foundations are still being strengthened. The treatment
I have attempted is therefore not a very deep one, but in a book emanating
from a chemical engineering department its entire omission would have

* It is in some sort a converse of “Ockham’s razor” and might be called “Ior’s ears.”
Like its more famous predecessor it can now be stated in impeccable Latin. “ ‘Inmitte
istud in alteram auriculam,’ dixit. ‘Age! ' (From the book Winnie Ille Pu: A Latin
Version of A. A. Milne's Winnie the Pooh, translated by Alexander Lenard. Reprinted
by permission of E. P. Dutton & Co., Ine,)
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been unpardonable. To have gone further and treated of relativity and
magnetohydrodynamics would have been to enlarge the book beyond the
bounds of an introduction. The exercises, few of which are at all difficult,
are an integral part of the text. They provide practice in manipulation and
extensions of the preceding sections. Results which are to be used later
are frequently given as exercises and they are not to be regarded as less
important than the equations of the text. They are always obvious, in the
technical sense of lying right in the way, and are the type of minor hurdle
that has to be cleared in reading the literature.

I am indebted to many colleagues for helpful suggestions, but particu-
larly to L. E. Seriven for his careful criticism and timely insistence that a
vector is a vector is a vector. I am particularly grateful to J. Serrin,
whose lectures at this university first really showed me the structure of
fluid mechanics. It is good that the substance of his lectures is available
to a wider public in the Handbuch der Physik article referred to frequently
below. As usual I have received most valuable encouragement from N. R.
Amundson. I need hardly add that the book’s faults are entirely my own.

Only those who have typed such a manusecript as this will properly
appreciate the care and patience of my sister-in-law, Mrs. A. Blair, who
penetrated my scribbling and scratchings to produce a first rate typescript.
Perhaps only the wives of authors will understand that growing irasci-
bility which mine has had to tolerate and her relief at finally seeing the
thing in print.

The compositors who work on a text so burdened with affixes deserve
the gratitude of an author even if they are unknown to him: they certainly
“have mine. I would also like to thank Mr. D. Yesberg for his valuable help
in proofreading and in compiling the index.

RUTHERFORD ARIs
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Introduction

1.1. Mathematical theories and engineering science

At the turn of the century Bertrand Russell described the mathematician as
one who neither knows what he is talking about nor cares whether what he
says is true. The engineer sometimes prides himself on being the man who
can do for a reasonable cost what another would expend a fortune on, if
indeed he could do it at all. Between such extremes of abstraction and
practicality it would hardly seem possible that there should be much com-
merce. The philosopher and artisan must tread diverging paths. Yet the
trend has been quite otherwise and today the engineer is increasingly aware of
his need for mathematical insight and the mathematician proves moreand more
the stimulation of physical problems. Russell was referring to the logical
foundations of pure mathematics, to which he had made his own contribu-
tions, and constructing a paradox which would throw into relief the debate
that was then at its height. There are, of course, regions of pure mathematics
which have developed into such abstraction as to have no apparent contact
with the commonplace world. Equally, there are engineering skills that have
been developed for particular purposes with no apparent application to other
situations. The progress of the moment, at any ratein thescience of engineer-
ing, lies in the region where the two disciplines have common interests:
engineering education, worthy of the name, has always lain there.

If the mathematician has little care whether what he says is true, it is only in
the sense that his primary concern is with the inner consistency and deductive



2 Introduction §l.l

consequences of an axiomatic theory. He is content with certain undefined
quantities and his satisfaction lies in the structure into which they can be
built. Even if the engineer regards himself as dedicated to doing a job
economically he cannot rest content with its particular details and still retain a
reputation for economy. It is his understanding of the common features of
diverse problems that allows him to be economical and hence he must be
concerned with abstraction and generalization. It is the business of mathe-
matical theory to provide just such anabstraction and generalization, but it will
do it in its own fashion and use the axiomatic method. From what at first
seem rather farfetched abstractions and assumptions, it will produce a
coherent body of consequernces. In so far as these consequences correspond
to the observable behavior of the materials the engineer handles, he will have
confidence in the mathematical theory and its foundations. The theory itself
will have been used to design the critical experiments and to interpret their
results. If there is complete discordance between the valid expectations of the
theory and the results of critically performed experiments the theory may be
rejected. Some measure of disagreement may suggest modification of the
theory. Agreement within the limits of experimental error gives confidence in
the mathematical model and opens the way for further progress. Continuum
mechanics in general, and fluid mechanics in particular, provide mathematical
models of the real world in which the engineer can have a high degree of
confidence.

The idea of a continuum is an abstraction. Modern physics leads us to
believe that matter is composed of elementary particles. For many purposes
we need not look within the molecule, but this is to be regarded as an entity of
small but finite dimensions which interacts with its fellows according to
certain laws. Matter is thus not continuous but discrete and its gross proper-
ties are averages over a large number of molecules. The equations of fluid mo-
tion have been obtained from this viewpoint, but, though at first sight it seems
a much more fundamental one, it stands on the same footing as continuum
mechanics—a mathematical model worthy of a certain degree of confidence.
For many purposes it is not necessary to know much of the molecular
structure, and the continuum hypothesis is an equally satisfactory basis for a
mathematical model. In this model the material is not regarded as aggregated
at certain points within the medium, so that at most one can speak of the
probability of a molecule being at a particular point at a particular time.
Rather, we think of the material as continuously filling the region it occupies
or, more precisely, that the transformation between two regions it may occupy
at different times is a continuous transformation. With this abstraction we
can speak of the velocity at a point in a way that is inherently more satisfying
than with the molecular model. For with the latter it is necessary to take the
average velocity of molecules in the neighborhood of the point. But how
large should this neighborhood be? If it is too large its relevance to the point
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is in question; if it is too small the validity of the average is destroyed. We
might hope that there is some range of intermediate sizes for which the average
is virtually constant, but this is an unsatisfactory compromise and, in fact,
much more sophisticated averages must be invoked to link the molecular and
continuum models. In the continuum model velocity is a certain time
derivative of the transformation.

The reader may wonder why we start with such a discussion in a book
primarily devoted to vectors and tensors. It is because tensor calculus is the
natural language of continuum or field theories and we wish to motivate the
study of it by considering the basic equations of fluid mechanics. As any
language is more than its grammar, so the language of tensor analysis is more
than a mere notation. It embodies an outlook or cast of thought just as
surely as the speech of a people is redolent with their habit of mind. In this
case it is the idea that the “physical” entity is the same though its mathemati-
cal description may vary. It follows that there must be arelation between any
two mathematical descriptions if they refer to the same entity, and it is this
relation that gives the language its character.

1.2. Scalars, vectors, and tensors

There are many physical quantities with which only a single magnitude can
be associated. For example, when suitable units of mass and length have been
adopted the density of a fluid may be measured. This density, or mass per
unit volume, perhaps varies throughout the bulk of a fluid, but in the neigh-
borhood of a given point is found to be sensibly constant. We may associate
this density with the point but that is all; there is no sense of direction
associated with the density. Such quantities are called scalars and in any
system of units they are specified by a single real number. If the units in
which a scalar is expressed are changed, the real number will change but the
physical entity remains the same. Thus the density of water at 4°Cis 1 g/cm?®
or 62.427 Ib/ft®; the two different numbers 1 and 62.427 express the same
density,

There are other quantities associated with a point that have not only a
magnitude but also a direction. If a force of 1 Ib weight is said to act at a
certain point, we can still ask in what direction the force acts and it is not
fully specified until this direction is given. Such a physical quantity is a
vector. A change of units will change the numerical value of the magnitude in
precisely the same way as the real number associated with a scalar is changed,
but there is also another change that may be made. Direction has to be
specified in relation to a given frame of reference and this frame of reference
is just as arbitrary as the system of units in which the magnitude is expressed.
For example, a system of three mutually perpendicular axes might be con-
structed at a point O as follows. Take O1 to be the direction of the magnetic
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north in a horizontalplane, O2 tobe the direction duewestinthis plane, and O3
to be the direction vertically upwards. Then a direction can be fixed by giving
the cosine of the angle between it and each of the three axes in turn. If 4, /,,
and /; are these direction cosines they are not independent but /2 + /5 + I3
= 1. If Fis the magnitude of the force, the three numbers F; = /,F allow us
to reconstruct the force, for its magnitude F = (F2 + Fi + F3)'/? and the
direction cosines are given by /; = F,/F, i = 1, 2, 3. Thus the three numbers
F,, F;, F; completely specify the force and are called its components in the
system of axes we have set up. However, this system was quite arbitrary and
another system with Ol due south, O2 due east, and O3 vertically upwards
would have been just as valid. In this new system the same direction would be
given by direction cosines equal respectively to —/,, —/, and /; and so the
componentsof the force would be —Fy, — F,, and F;. Thus the components of
the physical entity, force, change with changing description of direction
though the entity itself remains the same just as the real number representing
the scalar, density, changed with changing units though the density remained
the same, We distinguish therefore between the vector as an entity and its
components which allow us to reconstruct it in a particular system of reference.
The set of components is meaningless unless the system of reference is also
prescribed just as the magnitude 62.427 is meaningless as a density until the
units are also prescribed.

If then the components of the same entity change with changing frame of
reference we need to find out how they will change so as to be sure that the
same entity is retained. In three-dimensional space a reference frame consists
of three different directions which do not all lie in the same plane. We should
also specify the units in which measurements are made in these directions for
these need not be the same. These base vectors need not be the same at
different points in space and any transformation of base vectors is valid
provided the transformed vectors do not lie in a plane. A plane is a space
with only two dimensions so that three vectors lying in a plane cannot get a
grip on three-dimensional space. Without trying to define things precisely at
this point, let us denote the three base vectors by a, b, ¢ then the components
of a vector v with respect to this frame of reference are the three numbers a,
B, and y such that

v = oa + b + ye.

If the base vectors are transformed to x, ¥, z the new components &, %, { must
satisfy
v=1{0{x+ny + {z

If then we know how the base vectors of the new system can be expressed in
terms of the old, we shall be able to see how the components should trans-
form. In ordinary three-dimensional space the system defined by three
mutually orthogonal directions with equal units of measurement is called
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Cartesian. The base vectors may be thought of as lines of unit length lying
along the three axes. The cardinal virtue of this system is that these base
vectors can be the same everywhere. In the first few chapters we will consider
Cartesian vectors, that is, vectors whose components are expressed with a
Cartesian frame of reference and the only transformation we shall consider
is from one Cartesian system to another. Later we consider more general
systems of reference in which new features arise because of the variability of
the base vectors. If the space is not Euclidean, as for example the surface of a
sphere, the variability of base vectors is inevitable.

We shall construct an algebra and calculus of vectors showing how a sum,
product, or derivative may be defined. In fact, two distinct products of two
vectors can be defined both of which have great significance. We cannot,
however, define the reciprocal of a vector in a unique way, as can be done
with a scalar. A scalar can be thought of as a vector in one dimension and
its one component gives it a grip on its one-dimensional space and the
reciprocal of a scalar a is simply 1/a. A single vector does not have sufficient
grip on the three-dimensional space to allow its reciprocal to be defined, but
we can construct an analog of thereciprocal for atriad of vectors not all in one
plane. In particular, it will be found that the reciprocal of the triad of base
vectors has great importance.

Although the quotient of two vectors cannot be defined satisfactorily,
tensors arise physically in situations that make them look rather like this.
For example, a stress is a force per unit area. We have seen that force is a
vector and so is an element of area if we remember that we have to specify
both its size and orientation, that is, the direction of its normal. If f denotes
the vector of force and A the vector of magnitude equal to the area in the
direction of its normal, the stress T might be thought of as f/A. However,
because division by a vector is undefined, it does not arise quite in this way.
Rather we find that the stress system is such that given A we can find f by
multiplying A by a new entity T which is like f/A only in the sense that
f = AT. This new mathematical entity corresponds to a physical entity,
namely, the stress system at a point. It is a quantity with which two directions
seem to be associated and not just one, as in the case of the vector, or none at
all, as with the scalar. In fact it needs nine numbers to specify it in any
reference system corresponding to the nine possible combinations of two
base vectors. Again we want to be sure that the same physical entity is
described when we change the system of reference and hence must require
that the components should transform appropriately. What we do is to lay
down the transformation rules of the components and when confronted by a
set of nine components satisfying these requirements we know they are
components of a single mathematical entity. This entity is called a fensor (or
more properly a second order tensor) and is thus a suitable representation of
the kind of physical entity with which two directions can be associated.
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As with a vector, we distinguish carefully between the tensor as an entity
and its components which must be with reference to a specified system of
reference. Some writers speak of the entity as a dyadic whose components
form a tensor, a usage soundly grounded in the history of vector analysis.
However, we have felt it sufficient to maintain the distinction where necessary
by speaking of the tensor and its components. The word tensor is quite
general and where necessary its order must be specifically mentioned, for it
will appear that a scalar is a tensor of order zero and a vector a tensor of
order one. Physical quantities are rarely associated with tensors of higher
order than the second but tensors up to the fourth order will arise. Progress
in a language is marked by those small liberties taken with strict construction,
that impart a certain style without detracting from the meaning. It is hoped
that no real ambiguity has been concealed by the free use of the word tensor,
but to emphasize this point as much as is possible at this stage we repeat: the
distinction must always be borne in mind between the tensor, as a mathe-
matical entity representing a physical entity, and the components of the
tensor which are only meaningful when the system of reference has been
specified.

1.3. Preview

In the next two chapters we shall develop first the algebra and then the cal-
culus of Cartesian vectors and tensors. The general theorems and ideas of this
are applicable in the whole of continuum mechanics as well as in electricity and
other fields. Our application of them to fluid mechanics begins with a
discussion of kinematics in Chapter 4. Chapter 5 considers the relations
between stress and strain in a fluid and allows the basic equations of fluid
motion to be discussed in the following chapter. This part of the book is
essentially complete in itself. The last chapter on reaction and flow may be
read at this point since it does not depend on more general tensor methods.

The groundwork laid in Cartesian tensors allows us to fake up the more
general calculus of tensors fairly concisely in Chapter 7 and apply these
notions to fluid flow in space in Chapter 8. The discussion of flow in a surface
given in Chapter 10 requires some understanding of the geometry of surfaces
which is given in the preceding chapter.

BIBLIOGRAPHY
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Cartesian Vectors and

Tensors: Their Algebra

Until Chapter 8 the unqualified words vector and tensor will refer to the
Cartesian vector and tensor about to be defined and if it is necessary to refer
to the more general concept of the tensor this will be specifically stated.
In this chapter we shall develop the algebra of Cartesian vectors and
tensors.

2.11. Definition of a vector

We shall define a vector by first giving an example of one and isolating the
particular feature of its behavior that characterizes it as a vector. We may
then say that a vector is anything which has this characteristic behavior. To.
establish that any quantity is a vector we shall have to show that it behaves in
this way.

In the ordinary three-dimensional space of everyday life, known technically
as Euclidean [3]-space, the position of a point may be specified by three
Cartesian coordinates. To determine these we must first establish a frame of
reference by taking any point O as the origin and drawing through it three
mutually perpendicular straight lines O1, 02, O3. These will have positive

8
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senses disposed according to Fig. 2.1 for the right-handed Cartesian coordi-
nates which we adopt as standard. The name right-handed is used since the
disposition is the same as the thumb, first, and second fingers of the right hand,
or, alternatively because a right-handed screw turned from Ol to 02 would
travel in the positive O3 direction. The coordinates of a point P are the
lengths of the projections of OP on to the three axes 01, 02, and 03. Let
these three lengths be x;, x,, and x, respectively. We call them the Cartesian

3k
Py .
f‘/ ""
e \
gt
// \1.
O )= 2
- 2
-~
P L
Fig. 2.1 Fig. 2.2

coordinates of P or the components of the position vector of P with respect
to the Cartesian frame of reference 0123.

Now suppose that the coordinate system is rigidly rotated to a new position
0123 as shown in Fig. 2.2 and the new coordinates of P are X,, X,, X;. The
rotation can be specified by giving the angles between the old and new axes.
Let /;; be the cosine of the angle between the old O axis Oi and the new one
Oj, then the new coordinates are related to the old by the formulae

X; = lhyxy + byxy + byxs,  j=1,2,3, (2.1L.1)
and conversely
X=X + IopXy + 1%y, i=1,23. (2.11.2)

The reader unfamiliar with this transformation should consult the appendix.
Another way of describing this transformation is to say that if X;, X,, X, are to
be the coordinates (or components of the position vector) in the new coordi-
nate system of the same point P as x,, Xy, X5 are in the old then they must be
related by Egs. (2.11.1) and (2.11.2).

We now introduce a very valuable abbreviation, the Cartesian summation
convention.

In any product of terms a repeated suffix is held to be summed over its
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three values, 1, 2, and 3. A suffix not repeated in any product can take any of
the values 1, 2, or 3. Thus the equations above can be written

X; = Iyx,, (2.1L.1)
x; = Iy%;, (2.11.2)

i being the repeated suffix in the first case and j in the second. The other
suffix (j in the first case and i in the second) is called the free suffix and may
take any of the values 1, 2, or 3 so that it is unnecessary to writeiorj= 1,2, 3
after the formula. The repeated or dummy suffix as it is sometimes called
may be assigned any letter; thus /;;x; and /;,x, mean the same thing and itis
sometimes convenient in manipulating these formulae to make such changes.

The position vector is our standard Cartesian vector and its components
are the coordinates of P. The directed line segment OP gives a convenient
geometrical representation of this vector. Since the position vector is to
represent the same physical point P its components x; in the frame of reference
0123 must transform into ¥, = /,,x, in the rotated frame of reference 0123,
Accordingly, we make the following definition.

Definition. A Cartesian vector, a, in three dimensions is a quantity with three
components a,, @, 4z in the frame of reference 0123, which, under
rotation of the coordinate frame to 0123, become components d,, dg, ds,
where

a, = la,. (2.11.3)

The vector a is to be regarded as an entity, just as the physical quantity it
represents is an entity. It is sometimes convenient to use the bold face a to
show this. In any particular coordinate system it has components a,, a,, ag

and it is at other times convenient to use the typical component 4,.

It is convenient here to introduce the Kronecker delta, denoted by §,;. It
is such that
[1, i=j,

0 = (2.11.9)

0, i#j,

and represents the identical transformation. If §,; occurs in any formula

with a repeated suffix all it does is to replace the dummy suffix by the other

suffix of the Kronecker delta. For example,

0:505 = 012Gy + 08y + 0,585 = a;

since only the term in which the second suffix is i is not zero.

2.12. Example of vectors

The position vector is the prototype of Cartesian vectors and much of our
terminology is drawn from it. Thus we may speak of the length or magnitude

of a vector a la| = (a,a)"2. (2.12.1)
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If |a| = 1 it is called a unit vector and its components may be thought of as
direction cosines. Thus for any vector a with components a4, the vector with
components &f|a] is a unit vector and so represents the direction of the
vector. Since there are only two arbitrary elements to a unit vector (the third
being fixed by the requirement of unit length), the specification of the magni-
tude and direction of a vector involves three quantities and is equivalent to
specifying the three components.

If the position of a point P is a function of time, we may write x; = x,(t)
and X; = X,(t) where X(t) = l;x(f). The /; connecting two coordinate
frames are of course independent of time so we may differentiate these
formulae with respect to ¢ as many times as we wish

d"x; ] d"x;

v dre
This equation shows that all the derivatives of position are vectors and in
particular the velocity (n = 1) and the acceleration (n = 2).

A force is specified by its magnitude F and the direction (n,, ny, 1) in which
it acts. Let f; = Fn, then f,, f5, f; are the components of a vector. To see this
we observe that since direction cosines are simply coordinates of a point on
the unit sphere, they transform as coordinates. The direction cosines of this

line in the frame of reference 0123 will therefore be 7,, fi,, fi; where

(2.12.2)

iy = Iyny
Hence
f; = Fi; = Flyn; = L(Fn) = Lf,
so that force is indeed a vector.

Exercise 2.12.1. If p is any scalar property per unit volume of a fluid in
motion, show how to define a flux vector f such that f; is the rate of flow
of p per unit area across a small element perpendicular to the axis 0i.

2.13. Scalar multiplication

If o 1s any scalar number the product of this scalar and the vector a is a
vector with components aq;. We see that the length or magnitude of «a is
simply « times the length of a and the direction of «a is the same as that of a.
Thus scalar multiplication really amounts to a change of length scale as its
name suggests. By multiplying both sides of (2.11.3) by the scalar « it is
evident that the vector character of a is unchanged by scalar multiplication.

2.21. Addition of vectors—Coplanar vectors

If a and b are two vectors with components a; and b, their sum is the vector
with components @; + b;. By phrasing the definition in this way we have
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really begged the question of whether the sum of two vectors is a vector.
However, this is very easily answered; for if we say that the sum of a and b is
an entity with components a; -+ b,, then, if the definition of the sum is to be
independent of rotation, it must have components &, + b, in the frame of
reference 0123. However,

a; + Bi = !:'fai + b = fif(“i + by), (2.21.1)
which shows that the sum is indeed a vector.

Geometrically we see in Fig. 2.3 that if a and b are represented by two
directed line segments OP and OQ, then their sum is represented by OR

A3
A3

Fig. 2.3 Fig. 2.4

where PR is OQ translated parallel to itself. This is sometimes known as the
parallelogram rule of addition. The geometrical representation makes it
clear that the order of addition is immaterial, so that

a+b=>b+4a (2.21.2)
This procedure can be continued for the addition of more than two
vectors, the sum of a, b.. ., Kk being the vector with components a; -+ b; +
... + k;. The order and association of vectors in addition is immaterial, for
example
(@a+b)+ec=a+(+o (2.21.3)
Subtraction may be defined by combining addition with scalar multiplica-
tion by —1. Thus,
a—b=a-+4(—1)b (2.21.4)
is evidently the vector with components @, — b;. We also see that any vector
¢ which is in the same plane as a and b can be represented in the form

¢ = aa + fb. (2.21.5)

For in Fig. 2.4 let OR represent the vector ¢ in the plane of OP and 0Q.
Draw RM parallel to OQ and RN parallel to OP and let « = OM/OP,
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p = ON[OQ. Then OM and ON represent the vectors «a and b and ¢ is
their sum. Geometrically it is clear that if OR points out of the plane of OP
and O Q then its component out of the plane cannot be represented as a com-
bination of a and b, Thus the condition for ¢ to lie in the plane of a and b is
that it can be expressed in the form (2.21.5). (An analytical demonstration of
this is given as an exercise later.) These equations written in component form
are

aa; + pb; = ¢

and if « and B are eliminated between the three equations we have the relation
a b ¢
ay by ¢3|=0 (2.21.6)
a3 by ¢

between the components of coplanar vectors.

2.22. Unit vectors

The three unit vectors that have only one nonvanishing component are of
special importance. They are
eq = (1,0,0)

ew = (0,1,0) (2.22.1)
€@ = (Uv 0: 1)'

The suffixes to the e are enclosed in parentheses to show that they do not
denote components. The j™ component of e, is denoted by e, and

€w; = Oy (2.22.2)

The components a,, 4, and g, of a are themselves scalars and the sum of the
scalar products a; is a vector. But by comparing components we see that

a = ag) + aep + aeg
= ﬂ"ﬂ{‘}. (222.3)

In the last expression we allow the summation convention to apply also to the
parenthetical index.
2.23. A basis of non-coplanar vectors

The three unit vectors are said to form a basis for the representation of any
vector. They are not the only basis, though they are the natural one. We
shall show that any three vectors a, b, and ¢ can be used as a basis provided
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they do not lie in the same plane. For let d be any other vector and suppose
that it can be expressed as

oa + b + ye =d. (2.23.1)
Then to determine the three scalars o, f, and ¥ we have three equations

aay + Bby + ye, = d;
ady + Bby + yey = dy (2.23.2)
aay -+ Bby + ye; = dy
and these can certainly be solved provided that the determinant of the
coefficients does not vanish. But this determinant is just that of (2.21.6) and
that it should not vanish is equivalent to asserting that a, b, and ¢ should not
be coplanar.
If M is any nonsingular matrix and we write the components of a, b, and ¢

as column vectors a, b, and ¢. Then d@ = Ma, b = Mb, and é = Mc, are
three non-coplanar vectors, for

4G b & a b ¢
dy by &)= |M| a, by o
da, by ¢ ag by ¢
does not vanish if [M| s 0. The vector d could be expressed in the form
a4 fb+4yc=d
so that &, b, € form a new basis for the vector space. So general a transforma-
tion as this takes us outside the scope of Cartesian vectors, which are con-
cerned with a basis of mutually orthogonal vectors and transformations not
by any nonsingular matrix M but by an orthogonal matrix L. (See Appendix,
paragraph A6.)
If e(y), &), () the three unit vectors are subjected to a rotation given by an

orthogonal matrix L whose typical element is /;;, they become three new unit
vectors e, with components /y;, /y;, /3; in the old reference.frame. Thus

e = L, (2.23.3)
where summation over bracketed index 1s assumed. Then
a=age; = de,,
and substituting for the new base vectors
a=ajl,e,.
Comparing this with the preceding equation we see that
ﬂf —_ fﬁ&i (2-23.4}

This is precisely the law of transformation of vector components.
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Exercise 2.23.1. Show how to find the vector which lies in the intersection of
the plane of a and b with the plane of ¢ and d.

Exercise 2.23.2. Let the vectors by, be a basis and form a new basis b, =

mﬂ.h{ﬂ. Shﬂw th.at if o=
= abyy = &b,
then

(&1: &2$ ia) - {ml! Koy %)M_l

where M is the matrix whose ij* element is m,;.

2.31. Scalar product—Orthogonality

The scalar product of two vectors a and b is defined as
a-b=apb, (2.13.1)

and read as “a@dot b.” Itis invariant under rotation of axes and so it is a scalar.
For let d; = I,;a,and b, = I_b, be the components in a new frame of reference.

Then a-b=ab,=lal,b,=l,ab,
= 8,ab,=ab;,=a-b, (2.31.2)

L

since /,l,; = 8,, by the orthogonality of the rotated axes [see Appendix,
Eqs. (A6.6) and (A6.7)].
If m and nm are unit vectors in the directions of a and b respectively

m-n = cos 6,

where 0 is the angle between the two directions [see Appendix, Eq. (A2.5)].
Then since a = |a| m and b = |b| n we have

a-b = |a| |b] cos 6. (2.31.3)
The scalar product
a-n=|a|cosf

is the projection of the vector a on the direction of the vector b. If the angle
between the two vectors is a right angle, 6 = #/2 and cos§ = 0. Such
vectors are said to be orthogonal and the condition for orthogonality is

a-b=0. (2.31.4)

The unit vectors of 2.22 are mutually orthogonal.
We may remark that the scalar product can be written as d,;a,b; and that
it is commutative, that is,a-b=b-.a.

Exercise 2.31.1. Show that if ¢ = aa + fb it is coplanar with a and b.

Exercise 2.31.2. If f is the flux vector of some scalar property of a fluid in
motion and n the unit normal to an element of area dS, show that f - ndS
is the flux of that property through the element of area,
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2.32. Vector product

Of the nine possible products of the components the scalar product is a
linear combination of three of them to form a scalar. The other six can be
combined in pairs to form the components of a vector. We shall define it as a
vector and show how its components can be calculated. The vector or cross
product a A b (read ““a cross b”) is the vector normal to the plane of aand b of
magnitude |a| |b] sin 6. To fix the sense of the vector product we require that
a, b and a A b should form a right-handed system. The notation a x b is also
commonly used for the vector product. We notice that |a| |b| sin 6 is the area
of the parallelogram two of whose sides are the vectors a and b, Also itis
clear that if we reverse the order of the factors the vector product must point
in the opposite direction. Therefore the vector is not commutative, but

bAa= —aAb. (2.32.1)

Consider now the vector products of the unit vectors. They are all of unit
length and mutually orthogonal so their vector products will be unit vectors,
Remembering the right-handed rule we therefore have

€ Aeg = —€i) A€y = €y
€3 A€y = —€y A€y = e, (2.32.2)
€ A€ = —€g Ay = €y

Now let us write a A b in the form
(a8q) + Gs8(s) + azes) A (byeqy + boegy -+ be(s)

and using the relations (2.32.2) to collect together the nine products we have
aAb = (ab; — asby)eq) + (a3b; — abg)es) + (ayb, — asbyles. (2.32.3)

This shows how the components of the vector product are obtained from the
products of the components of the two factors. The symbolic determinant

€1 €2 €@

is sometimes used to represent this, for expanding on the elements of the first,
row we have (2.32.3).

A very valuable notation can be introduced with the permutation symbol
€ This is defined by

0, if any two of i, j, k are the same
€;x = { 1, if ijk is an even permutation of 1, 2, 3 (2.32.4)
—1, if ijk is an odd permutation of 123
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Then
aAb = e abe, (2.32.5)

If aAb =0 the two vectors are parallel. The cross product of a vector
with itself always vanishes.

Exercise 2.32.1. Show by enumerating typical cases that
€ix€iim = 0110im — 5fm5ﬂ
Exercise 2.32.2. Show that the condition for the vectors a, b, and ¢ to be
coplanar can be written
€ribic, = 0
Exercise 2.32.3. Show that if d = «a -+ b 4 ye, where a, b, and ¢ are not

coplanar then o = €;,d,b;c,/€;;:a:b,¢;, and find similar expressions for
and y.

Exercise 2.32.4. If a and b are any vectors, show that
(aAb)-(aAb) 4 (a-b)® = |al? b2

2.33. Velocity due to rigid body rotation

A rigid body is one in which the mutual distance of any two points does not
change. Suppose such a body rotates about an axis through the origin of
coordinates with direction given by a
unit vector n. If w is the angular
velocity we can represent this rotation
by a vector

w = @, (2.33.1)
Let P be any point in the body at
position x (see Fig. 2.5). ThennAxisa
vector in the direction of PR of magni-
tude |x| sin 6. However, |x| sin 6§ = PQ
is the perpendicular distance from P
to the axis of rotation. In a very short
interval of time &t the radius PQ moves
through an angle @ &t and hence P
through a distance (PQ)w ét. It follows
that the very short distance PR is a Fig. 2.5
vector dx perpendicular to the plane
of OP and the axis of rotation and hence

dx = (om A X) 8t = (w A X) O1.

However, the limit as 6z — 0 of 6x/dt is the velocity v of the point P. Thus
the linear velocity v of the point x due to a rotation w is

V=wAX (2.33.2)
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Whenever the velocity of the point at position x can be represented as a
vector product of the position vector with a constant vector then the motion is
due to a solid body rotation. If x and y are two points with velocities v and w
due to a rigid body rotation, then also w = w A y and by subtraction

v—w=wA(x—Y) (2.33.3)

This shows that if the relative velocity of two points is related to their
relative position in this way then their motion is due to a rigid body rotation.

Exercise 2.33.1. If a force f acts at a point x show that its moments about the
three coordinate axes are the components of a vector, x A f.

Exercise 2.33.2. If a, b, and ¢ are three non-coplanar vectors forming three
edges of a tetrahedron, show that the vectors normal to each face of
magnitude equal to the area of the face are

m=}bAc), n=3}cAn), n=3}aAb), mn =3i@a—b)A(—b).

Exercise 2.33.3. 1f nis the unit outward normal at any point of the surface of
a tetrahedron and dS the element of surface area, show that {{ n 45 taken
over the whole surface is zero. Extend this result to a polyhedron and
interpret it geometrically.

Exercise 2.33.4. Show that Snell’s law of the refraction of light can be
written
My AR = u,m, AR

where u, and u, are the refractive indices of the two media either side of
the interface to which the normal at the point of incidence is n. m, and
m, are unit vectors in directions of the incident and refracted beams.
Find a vectorial expression for the law of reflection of light.

2.34. Triple scalar product

Of the possible products of three vectors a, b, and ¢ the simplest is the
scalar product of one with the vector product of the other two. This is known
as the triple scalar product

a:(bA €)= €;a,b,0,. (2.34.1)

We observe that the vanishing of this is just the condition for coplanarity of
a, b, and ¢, for this says that a is orthogonal to the normal to the plane of b
and ¢ and so in it. (Cf. Ex. 2.32.2). Physically it may be interpreted as the
volume of the parallelepiped with sides a, b, and ¢ for b A ¢ has magnitude
equal to the area of one face and direction n normal to it and a - nis the height.
Notice that an even permutation may be applied to a, b, and ¢ without
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changing the triple scalar product but that an odd permutation will change
its sign. The notation [a, b, ¢] or (abe) is sometimes used for the triple scalar
product.

2.35. Triple vector product

Another product may be formed from three vectors a A (bAc¢). This is
known as the triple vector product. Since b A ¢is a vector normal to the plane
of band ¢ and a A (b A ¢) is a vector normal to b A ¢, the triple vector product
must be in the plane of b and ¢ and so can be expressed in the form

aA(bAc)=pb+ ye
In component notation this is

€iili€imbic,, = Bb; + Ve
However, by Ex. 2.32.1,
€isk€rimdDiCm = (641 0jm — Oim O50)a;01c,,
= bfaxc;) — c,a;b;)

and hence
aA(bAc)=(a-c)b — (a-b)c. (2.35.1)
Permuting the letters in this equation we have the identity
aA(bAc)+bA(cAa)+cA(aAb)=0. (2.35.2)

There are a number of other identities and extensions to products of a
larger number of factors. Some of these are given as exercises and are
valuable practice in these elementary manipulations.

Exercise 2.35.1. Show a-(bAc) vanishes identically if two of the three
vectors are proportional to one another.

Exercise 2.35.2. 1f e is any unit vector and a an arbitrary vector show that
a=(a-ee-t+eA(ahe)

This shows that a can be resolved into a component parallel to and one
perpendicular to an arbitrary direction e.

Exercise 2.35.3. Prove that
a+c b-c

(1) (@Ab)-(cAd)= a.d b-d

(i) @Ab)A(cAd)=[c-(dAa)]b—[c-(dADb)]a
= [a-(bAd)c—[a-(bAc)d
(iii) [a-(bAC)d =[d-(bAc)a+ [a-(dAc)b + [a-(bAd)c
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Exercise 2.35.4. Show that the two lines
x=a-+ls, x = b 4 ms,

where s is a parameter and 1 and m are two unit vectors, will intersect if
a:(1Am)=>b:(1Am)and find their point of intersection.

2.36. Reciprocal base systems

We have seen (Section 2.23) that any triad of vectors can serve as a basis
provided that they are not coplanar. Suppose b, by, and b, are three
vectors (the parenthetical index applies to the vector and not to the component
but the summation convection will still apply) and

B = by, - (b, A bygy) # 0. 2.36.1)
They provide a basis and any vector a can be expressed in the form
a = apb,, (2.36.2)

where g; are the components of the vector with respect to this basis.
From the triad of base vectors, three new base vectors can be constructed
by putting

B B

This new triad has the property that the scalar product of b'”? with by, is unity
but its scalar product with by;), i # j, is zero. We may write

br‘” . b“] = 5.”. {2.36.4}

This proves the statement made earlier that no consistent definition of a
single vector can be constructed but that a reciprocal triad to a triad of non-
coplanar vectors does exist.

If the components of a with respect to the reciprocal base system are
denoted by a’ then

po —PaAbe o _baAby  yw !’i&%ﬂﬁ* . (2363)

a = ag’b'¥, (2.36.4)
However, comparing with Eq. 2.36.1 we have
ab, = a’b'”
and scalar multiplying each side by by;, gives
a’ = ab, - by, (2.36.5)

The components with respect to the reciprocal basis are thus related rather
simply to the original components.

In particular, if the base vectors are a right-handed set of orthogonal unit
vectors B = 1 and b'" = b,). Thus for a Cartesian basis the reciprocal set is
identical with the original. Therefore, for Cartesian vectors we have no need
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to make the distinction between reciprocal bases that will prove fruitful in a
more general context.

Exercise 2.36.1. Show that bV . (b® A b®) = B! and that
by = B(b'2 A b®) etc.
Notice that the formula
b, = 3Be,;; (b A b))
expresses all three of these relations.

Exercise 2.36.1. 1f the basis is a right-handed triad of orthogonal vectors not
of equal lengths, show that the reciprocal basis vectors have the same
three directions but lengths reciprocal to the original vectors.

2.41. Second order tensors

The vector or first order tensor was defined as an entity with three com-
ponents which transformed in a certain fashion under rotation of the coordi-
nate frame. We define a second order Cartesian tensor similarly as an entity
having nine components 4;, i, j = 1, 2, 3, in the Cartesian frame of reference
0123 which on rotation of the frame of reference to 0123 become

A pe = iyl (2.41.1)

By the orthogonality properties of the direction cosines /,, we have the inverse

transformation
Ay = LA . (2.41.2)

To establish that a given entity is a second order tensor we have to demon-
strate that its components transform according to Eq. (2.41.1). A valuable
means of establishing tensor character is the quotient rule which will be
discussed later in Section 2.6.

A second order tensor may be written down as a 3 X 3 matrix

Ay Ay Ay
A= Ay Ap Ay
Ay Ay Ay

and it is occasionally convenient to treat it as such. In the notation of
matrices (see Appendix, paragraphs A5 and A6) the transformations above
would be written L'AL = 4 or A = LAL'. We shall use a boldface A to
denote the tensor as such but more frequently use the typical component A,;.

If 4;; = A, the tensor is said to be symmetric and a symmetric tensor has
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only six distinct components. If 4;; = —A the tensor is called antisym-
metric and such a tensor is characterized by only three scalar quantities for
the diagonal terms A4,; are zero. The tensor whose /j" element is A, is called
the transpose A’ of A.

The analogy with a matrix allows us to define a conjugate second order
tensor. The determinant of a tensor A4 is the determinant of the matrix A4,

namely,

If this is not zero we can find the inverse matrix by dividing the cofactor of
each element by the determinant and transposing. This is called the conjugate
tensor and is as close as we come to division in tensor analysis. It will have
been evident from the very variety of the definitions of multiplication that no
definition of the quotient of vectors is possible. If we denote the elements of
the conjugate tensor by A", then from matrix theory we see that 474, = d,,.
We shall not pursue this topic here but will prove later, in a more general
context, that the conjugate is a tensor with these properties (see Section 7.24).

2.42. Examples of second order- tensors

A second order tensor we have already encountered is the Kronecker delta
0,;. Ofits nine components six vanish and the remaining three are all equal to
unity. However, it transforms as a tensor for its components in the frame
0123 are

EW = fl"pljﬂ' aﬂ' = fip!fﬂ' = aﬂ {2.42.]}

by the orthogonality relations between the direction cosines /. In fact, the
components of d;; in all coordinate systems are the same, namely, /if i = j but
zero otherwise. 0,; is called an isotropic tensor for this reason.

If a and b are two vectors the set of nine products a,b; = A,; is a second
order tensor, for

"fm = ﬁpgq = l,ad;b; = liplif(a:b;)
— !{PIN.AH. (2.42.2}

An important example of this is the momentum flux tensor for a fluid. If pis
the density and v the velocity, pv, is the i component in the direction O.
The rate at which this momentum crosses a unit area normal to Oy is pv,v;,.

We will reserve a discussion of two important second order tensors until the
next chapter. These are the rate of strain and stress tensors.

Exercise 2.42.1. Prove that for any vector a, €,,4, are the components of a
second order tensor.

Exercise 2.42.2. Show that the flux of any vector property of a flowing fluid
can be represented as a second order tensor,
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Exercise 2.42.3. If r* = x.x; and f(r) is any twice differentiable function,
show that the nine derivatives

{fu(r) _f’f.r}] XX 4 _1_ fr(r} 611

re r

are the components of a tensor.

2.43. Scalar multiplication and addition

If o is a scalar and A a second order tensor, the scalar product of « and A is
a tensor xA each of whose components is « times the corresponding com-
ponent of A.

The sum of two second order tensors is a second order tensor each of whose
components is the sum of the corresponding components of the two tensors.
Thus the ij™ component of A + B is 4;; + B,;. Notice that tensors must be
of the same order to be added; a vector cannot be added to a second order
tensor. A linear combination of tensors results from using both scalar
multiplication and addition. «A +- SB is the tensor whose ij*" component
is ad;; -+ fB;;. Subtraction may therefore be defined by putting « = 1,
g =—1

Any tensor may be represented as the sum of a symmetric part and an
antisymmetric part. For

Ay = YAy + A) + YAy — 4 (2.43.1)
and interchanging / and j in the first factor leaves it unchanged but changes
the sign of the second. Thus,

A=}A+A)+ }A—A) (2.43.2)

represents A as the sum of a symmetric tensor and antisymmetric tensor.

Exercise 2.43.1. Prove that «A4,; + BB,; are the components of a second
order tensor, if A;; and B are.

2.44. Contraction and multiplication

The operation of identifying two indices of a tensor and so summing on
them is known as contraction. A, is the only contraction of 4,;,

Aﬁ - Au + An + AH-B {2-44. l)

and this is no longer a tensor of the second order but a scalar, or tensor of
order zero. To show that it is a zero order tensor we must show that it is
invariant under rotation of axes. Now in the frame of reference 0123 the
contracted tensor is obtained by identifying the suffixes of 4,,. Thus,

l;mu = Iig".fr’iﬂ = aﬁAH = Ay (2.44.1)
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since /;,1;,, = d,; by the orthogonality of the /;;. The scalar 4,; is known as the
trace of the second order tensor. The notation tr A is sometimes used.

If A and B are two second order tensors we can form 81 numbers from the
products of the 9 components of each, 4;;By,., i, j, k, m =1, 2, 3. The full
set of these products are components of a fourth order tensor, which we have
yet to define. In the barred coordinate system the corresponding set of
products is 4, B,,; but

{JNB!'I) = Iin]quﬁ!kr[msBkm - finfja’krfms{AHBkm)- {2442}

This is clearly an analogue of Eq. (2.42.1) but now each side has four free
indices and is transformed by a product of four direction cosines. This is the
definition of a fourth order tensor which will be given formally in Section 2.6,
However the contractions of this general product are second order tensors.
These are A4;;B,;, A;;By, AiiBys, As By (The contractions A;;B;,, and4;B,,
are of course scalar products of scalars 4,; and B, with the tensors A and B.)
The suffix notation makes quite clear just which contraction is involved.
However, the notation of a scalar product is sometimes useful. In this
notation the tensor with components A;;B;, is written A - B the summation
being over adjacent suffixes. The four forms listed above are thus B - A,
A'-B, A-B', and A - B respectively.

The product 4;,a, of a vector a and tensor A is a vector whose i*" component
is Aja;. Another possible product of these two is 4;;4;. These may be
written A -a and a - A respectively.

The doubly contracted product A4,;B,; is a scalar, and this may be written
A :B.

Exercise 2.44.1. Prove directly that 4,,B,, is a second order tensor.
Exercise 2.44.2. Show that the trace of the tensor of Ex. 2.42.3 is

1d (,.zd_f).

2 dr dr

2.45. The vector of an antisymmetric tensor

There is a very important relation between a vector in three dimensions and
the antisymmetric second order tensor. Each has three independent com-
ponents, and the two may be written as follows:

W, 0 Wy —y
W= | Q= — g 0 Wy 1. (2.45;1)
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In the notation we have already developed the components of £ may be
written

Ql‘,‘f = Gifkmt' (2.45.2}
In deriving the components of w from & we notice that if we form e,;,Q,;, then
for any fixed k only the terms with i # k, j = k will appear. Thus,

€ija82i = €1038d15 + €315820; = 1 — y; = 200,
It follows that
0 = beip s (2.45.3)
By the properties of the permutation symbols the indices on these formulae
can be juggled around. For example,

ﬁ:’f = €0y = — €00
or
Wy = ifmnﬁ = ‘“;ﬁfimﬂﬁ-

The notations £2, and vec £2 are sometimes used for 2w and w respectively.

The importance of this relation lies in the identity of the cross product of w
and arbitrary vector a with the contracted product of the antisymmetric
tensor and a. For the i" component of a Aw is €;,a,0, whereas the con-

tracted product £ + a is a vector with i" component Q,a;. Thus,

aAw=2-a or wAa=2a-Q. (2.45.4)

The results of Section 2.33 may be reinterpreted in terms of an antisymmetric
tensor by saying: If the relative velocity v of any two points is equal 1o £ « x
where §2 is an antisymmetric second order tensor independent of the relative
position vector X of the two points, then the motion is due to a rigid body
rotation. The angular velocity is given by —vec Q in this case. This result is
of cardinal importance in interpreting the rate of strain tensor.

Exercise 2.45.1. Interpret the motion when the i th component of the velocity
is given by («d;; + €;;x)w;, w being a constant vector and x the position
vector.

2.5. Canonical form of a symmetric tensor

The interpretation and manipulation of tensors is often greatly simplified if
they can be thrown into a diagonal form. For example, if we are told that
after deformation a certain set of points lies on the surface 4;;x.x; = 1, we
are told a great deal about the deformation. If A;; = A,;, this surface has the
equation

Anx? _I" Aggxg + Amxg + 2/‘{23.\‘213 "I‘r 2;‘1313(3)_(.‘1 ‘—l-‘ 2A12x1x2 = 1. (2.5.1)
This is obviously a quadric surface (ellipsoid, hyperboloid, paraboloid, cone,
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or pair of planes) with symmetry about the origin, but it is difficult to say
more than this without a highly developed geometrical insight. If, however,
the tensor were A, = a3, A,; = 0 with i # j, the surface would be
2 2 2
Xy X2 X3 _
-ttt 5= (2.5.2)

2 2
a; a; as

the veriest schoolboy would know that he was dealing with an ellipsoid of
semi-axes a;, a,, and a;. Or, supposing he were only acquainted with the
equation of the ellipse, he would immediately argue that the surface is
symmetrical about all the coordinate planes and that a section by a plane
xg == constant would be the ellipse with semi-axes

2)1/2 2\1/2
o ()" e o ()]
ds ag

The ratio of these two is constant so the sections are similar ellipses and their
magnitude is proportional to {1 — (x5/a,)?}/* which decreases from 1 to 0 as
X, increases from 0 to a;. Thus by elementary reasoning a very good impres-
sion of the nature of the surface is obtained. We shall show that there always
exists a coordinate system 0123 in which the tensor A does have diagonal
form. The method follows precisely the corresponding steps in the reduction
of a matrix to canonical form, treated in Sections 1012 of the Appendix. For
this reason we will give the reduction only in the case of distinct characteristic
values and leave the translation into tensor notation of the more general case
to the reader.

If a is an arbitrary vector, A - a is a vector and for certain a may have the
same direction as a itself had. The two vectors A + a and a would thus differ
only in magnitude and we might write A - a = Aa, Writing this in component
form

Aqa; = Aa; = Aa; or (Ay— Ad,)a; =0 (2.5.3)

However, this is a set of three homogeneous equations for the unknowns a;
and so has a solution only if the determinant of the coefficients vanishes.
Thus the values of 4 must be such as to satisfy the cubic equation

det (A,; — A8,) =¥ — 20 + 220 — A3 = 0. (2.5.4)
In this equation we have, by expanding the determinant,

@=A11+A22+Am:trz4
O = AszAas — AggAgy + AgzAyy — A:HA:I.E + AIIAEE - AIEAEI
Y = det 4, (2.5.5)

and these are called the three invariants of the tensor since their values are
unchanged by rotation of the coordinate frame. Eq. (2.5.4) is called the
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characteristic equation of the tensor and the three values of 4 its characteristic
values. As with matrices the names latent roots or eigenvalues are sometimes
used.

If A satisfies the characteristic equation, the corresponding a; can be found.
However, though there are three equations in (2.5.3), the vanishing of the
determinant means that the third is linearly dependent on the first two, for
otherwise the only solution would be the trivial one a = 0. The two inde-
pendent equations can be solved to give the ratios a,/a, and a,/a, and the
magnitude of a;, a,, a; may now be fixed by requiring that

3, 2
a-a=a; +ay+a;=1.

If A, k=1,2,3, are the three characteristic values we may write the

corresponding characteristic vectors as l, =/, where the first of these

indices is the index of the component and the second to the characteristic

value of which it is the vector. We shall now prove that if 1), 45, and A,

are all distinct then Iy, 15, and l 5, are mutually orthogonal if 4 is symmetric.
For consider two latent roots with indices p and g. We have

Aylip = Aiplip and  Aylie = Aglig (2.5.6)

(N.B. There is no summation on p or g on the right side of these equations:
for this reason the suffix g on A has been put in parenthesis). Multiply the
first of these equations by [;, and the second by /;,, then

Ai.iriufin 'l[l!:l ip'ig and Aufw'rf-i = A{ulfipiia'

However, A is symmetric, so 4;; = 4;; and we may interchange the dummy
suffixes in the first equation without changing the value. Thus

:JI D’.Fl:i' "[r:]' iy :u - j'{ﬁ}‘finfw (2*5'?)

and 4, and 4, have been assumed to be distinct so the equation is only
possible if /,,/;, = 0. However, this says that 1, - 1,, = 0 and so the vectors
are orthogonal. Also by their construction I, « I;;; = | so that

Ilia = By (2.5.8)

However, this is the relation satisfied by the direction cosines /;; that specify
a rotation of the coordinate system, and this interpretation may be placed on
the characteristic vectors. Thus if the coordinate X; = /;x; the components
of the tensor A in the frame of reference O123 are

"f = ly,l; AH = iiﬂ}fm"’{q = j"[11*!I'5m:l (2*5*9)

in'iq

by (2.5.7) and (2.5.8). This merely says that A has diagonal form and its
diagonal components are 4, A), and 4.

The directions given by the normalized characteristic vectors are known as
the principal directions or axes of the tensor. It is often possible to prove a
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tensor relationship very easily when using a coordinate system whose axes are
coincident with the principal axes of one of the tensors involved. When a
relationship of this kind has been established and expressed in correct tensor
form it must hold for all coordinate systems, since the tensors involved
transform as tensors and so their relationship is unchanged. This is the great
virtue of tensor analysis. A notable example of this will be given in Chapter
4 where Serrin’s elegant treatment of stress-rate of strain relationsis presented.

Exercise 2.5.1. Show that O, ®, and ¥ are invariants under rotation of axes.

Exercise 2.5.2. Follow the case of equal characteristic values given in the
Appendix (Section A.11) translating from matrix notation into tensors.

Exercise 2.5.3. (Cayley-Hamilton Theorem) Prove that
ApAynAp; = 0dydy, — OA,; + Y.

Exercise 2.5.4. If A,; and B,, have a principal direction in common, show
that this is also a principal direction of the tensor A;,.B,; + A;;B;;.

2.61. Higher order tensors

We can now state quite tersely the general definition and laws of operation
of Cartesian tensors of any order for the reader should be familiar with their
behavior through seeing the simpler examples.

Definition. The tensor A, of order n, is a quantity defined by 3" components
which may be written A4,;. ,, provided that under rotation to a new
coordinate frame they transform according to the law

Jm. N B lislsa- - atAis, | e (2.61.1)

Symmetries. If interchange of two of the indices does not change the value of
the component the tensor is said to be symmetric with respect to these
indices. If the absolute value is unchanged but the sign reversed it is
antisymmetric with respect to the indices.

Contraction. The 3" % quantities formed by identifying two of the indices of
an n'? order tensor and invoking the summation convention are com-,
ponents of a tensor of order n — 2.

Scalar multiplication. If « is any scalar «A is the tensor with components
aAdy;  p

Addition. If A and B are tensors of the same order they may be added to give
a tensor with components 4,; ., + By; .
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Multiplication. If A;; , and B, , are tensors of order n and m respec-

tively, the set of products 4,; ,B,, _,are the components of a tensor
of order n + m. This tensor can be contracted in different ways to form
tensorsof ordersn + m—2,n+m—4,...10r0.

The laws of tensor algebra are:
aA = Ax,
x(A + B) = «A + «B,
x(A) = xA = (xA),
A+ B=B-+A,
A+B+C=(A+B)+C,
A(B + C) = AB + AC.

Since a great variety of products of two tensors are possible, nothing com-
parable to AB = BA can be asserted in general.

Exercise 2.61.1. Prove that contraction preserves the tensor character while
lowering the order by two.

Exercise 2.61.2. Prove that €, is a third order tensor.

2.62. The quotient rule

We have constantly remarked that to prove that a given set of quantities
forms the set of the components of a tensor requires that we show that they
transform according to the rule of tensor transformation. A short cut in
establishing tensorial character is the so-called quotient rule. The simple case
we shall prove is as follows: If 4;;i, j = 1, 2, 3 are nine quantities and band ¢
are vectors, b being quite independent of the 4,;, and A;b; = c;, then the 4,
are components of a tensor A. The value of this is that a relation A+b = ¢
may arise in the study of a physical situation in which it is known that b and ¢
are vectors. Then the quotient rule establishes that A is a tensor and we are
now assured that the equation holds in all coordinate frames.

To prove the rule we observe that if A really is a tensor it must satisfy two
requirements. First, the equation A - b = ¢ being a tensor equation must
transform to A - b =, that is, 4,6, = ¢,. Second, the components must
transform as tensor components, that is, 4,, = /,,/,,4,;. Let us define
A,, = é,/b, so that the first relation is satisfied, and see if these quantities
have the correct transformation property. Now b and ¢ are vectors, so

b, =l b; and ¢, = I, (2.62.1)
Hence,

‘;Mbu = ¢, = i = *'wAﬁf’:' = !ipffqdﬂsu

(A3 — lpliqAi)bg = 0. (2.62.2)

or
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However, b is independent of A so that this relation can only hold if the
expression in the brackets vanishes, that is,

Ao = lloAss (2.62.3)

This shows that 4,; transforms as a tensor. The proof can be easily adapted
to the following more general rule.

If A;, , is asetof 3" quantities and B,, ,a tensor of order m indepen-
dent of A and the k times contracted product 4,; ,B,, ,is a tensor of
order m +n — 2k, 1 < k = ¥(m + n), then 4,; , is a tensor of order n.

A special case arises if B is the product of n vectors and 4;; ,b.c; e,
can be shown to be a scalar. This again establishes that A is an n'™ order

tensor.

Exercise 2.62.1. Prove the quotient rule in detail for A;;B; = C; and
.Aﬁbifj = .

2.7. Isotropic tensors

An isotropic tensor is one whose components are unchanged by rotation of
the frame of reference. The trivial cases of this are the tensors of all orders
whose components are all zero. All

34 tensors of the zero'™ order are isotropic
and there are no first order isotropic
i tensors. We have already met the only

isotropic second order tensor, namely,
d;;, but it is of interest to prove that it

u 18 the only one.
Consider ageneralsecond order tensor
A;; and apply some particular rotations
»2 to it. The first of these is a rotation
about a line equally inclined to all three
coordinate axes, that is, with direction
cosines all equal to 372, A rotation of
Fig. 2.6 120° such as is shown in Fig. 2.6 can be
made to carry the Ol axis into the O3

position, the O2 into the O1, and the O3 into the O2. Thus,

Iy =hy =l =1
and the other /;; are zero. Hence, for example,
Ay = Ay and Ay = Ay,
However, if A is isotropic,
An= A4y and Ay = Ay
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and so
Jll = All - Aaa and /fm — Agg = Alﬁ"

Applying this to each component in turn we see that

Ay = Agg = Ay (2.7.1)

Ay = Agg = Ay = Ay = Ay = Ay (2.7.2)

Now apply a rotation through a right angle about 03, so that j, = —l; =
Iy = 1 and theother /;; are zero. Then Ay = — A, by the transformation and
A, = A;9 by the requirement of isotropy. Thus by (2.7.2) 4,3 = A, and now
A, = —Ajy and the only way these can be simultaneously true is for them

both to be zero. It follows that all the off diagonal components (i # j) are
zero and all the diagonal ones are equal. Clearly a scalar multiple of an
isotropic tensor is isotropic and so we may take A4;; = 4.

The idea of isotropy for a second
order tensor is connected with the
geometrical figure of a sphere. We
have noticed that A4,x;x; =1 is the
equation of a quadric surface. The
3 _ ellipsoid may be regarded asthe typical
quadric and clearly if its axes are
unequal a rotation of the coordinate
1 1 frame will require a different equation.
A sphere, however, is invariant as a
3 2 whole under rotation of axes and has

the equation

3

hai
]

-
!

wl

2 2 X; + xz +x3=r%

- This corresponds to the tensor A;; =
‘ d,/r?, so that isotropy is to be inter-
Fig. 2.7 preted as geometrical invariance under
rotation. (Cf. Fig. 2.7.)
Of tensors of the third order the only isotropic one is €,;;. We may see the
isotropic character of this by writing €,,, = €,;/,,/i. /i, Which is evidently the
determinant

—_—
e |

! 1p ! 1q I.‘I'.r
Enﬂr = lg, fgq Iﬂf (2.7.3}
IB!I "3'!1 I&r

Now if any of the p, g, r are the same, this is a determinant with two identical
columns and so vanishes. If p = 1, g = 2, r = 3, we know that this deter-
minant is +1 50 g3 = 1. If p, ¢, ris an even permutation of 1, 2, 3 the sign of
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the determinant is unchanged, but if it is an odd permutation, €,, = —1.
However, this is just the definition of €,, and so the components are
unchanged by rotation.

The isotropic tensors of the fourth order are of some importance and there
are three independent ones. It is clear that a product of isotropic tensors is
isotropic so that we can immediately write down two such, namely, é,,6,, and
€;;k€x00» DUt we need to work harder to find all the independent isotropic
tensors. To outline the reasoning which is necessary to be sure we have all, it
is convenient to divide the 81 components of a fourth order tensor T;,, into
classes as follows.

par

Class Character Typical member
I All suffixes the same T
IT Three suffixes the same Ty
III() Suffixes the same in pairs Ti100
(if) Tism
(iii) Tyors
IV Only two suffixes the same Thy0s

(Since the suffixes must be equal to either 1, 2, or 3, it follows that at least two
of them are the same.)

We now apply special rotations of the type shown in Fig. 2.6. These are
listed in the table opposite by giving the nonzero J;; of the transformation, and
their effect on the typical member of each class is shown. We can write the
transformation as an equality since the isotropic requirement is for the
component to be unchanged. The second line is the effect of the transforma-
tion on another member of the class needed for the conclusion. Under class
II, for example, we find Ty, = Tpge3 = —Tppp; and Tyees = Ty, and the
conclusion is that Ty = Ty = 0 and consequently all members of the
class are zero. In the tensor representation of the class we put y;,, = 1 if
i = j = p = q but zero otherwise. Then the representation of the subclasses
of class III is given by a combination of Kronecker deltas and y. For
example, d,;6,, will be 1 if i = j and p = ¢, but the definition of the class
excludes the possibility i = j = p =g so that d,,0,, — ¥.;», Tepresents it.
Suppose then we make a linear combination of these and write

Tiivg = @040, + b0,,0,, + €885 + (A — a — b — OYyyyy, (2.7.4)

This certainly has isotropic properties under the rotations A, B, and C of the
table but these are rather special since they leave a cube invariant as a whole.
If we take a rotation that does not leave the cube invariant, for example, a
rotation about 03 through an angle 6, then y,,,, is not invariant. Hence we
must put d = g + b + ¢ and the general isotropic tensor can be written as a
linear combination of the first three.
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We observe that é,,0,, is the product of two second order isotropic tensors
and that the contracted product e,;.€;,, is the difference of the other two. It
is sometimes convenient to take the general isotropic tensor to be

Tﬁﬁ - Aaﬂéw + Iu‘(ﬁiﬂﬁiq + 6iqéﬂl) + v(éfpém - 6-;#63,—,) (2.?.5)

The second term is symmetric with respect to the first and second or third and
fourth indices and the third term is antisymmetric with respect to them.

Exercise 2.7.1. Show that € is the only isotropic tensor of the third order.

Exercise 2.7.2. Show that if T,;,, is an isotropic fourth order tensor then the
symmetric tensors A;; and T, 4 ,, have the same principal axes.

Exercise 2.7.3. Show that under a suitable rotation any component of y,;,,
can be made nonzero.

2.81. Dyadics and other notations

There is no need to give a full discussion of the history of vector and tensor
notations, but it will be useful to mention some other forms that appear in the
literature and to define by comparison the usage of this book.

The notation on which we have largely depended is sometimes known as
the kernel-index method.* The tensor is represented by its typical component,
A,;, A being the kernel letter and / and j the indices. It is quite useful, but not
at all necessary, to use a lower case letter for the tensor of the first order.
This notation is entirely adequate but it is often convenient to use a single
bold-face symbol without suffixes for the tensor. We have done this more
with vectors than with second order tensors, for such expressions as a « b,
a A b, etc. are unambiguous whereas some care is needed in distinguishing
tensor products A - B, A’ - B, etc. In general it is probably easier in manipu-
lations to have the suffixes written explicitly and so avoid the danger of
mistakes that the suppression of suffixes induces. However, the physical
meaning of the final formulae is often brought out more clearly by the dyadic
notation of bold face symbols.

The name “dyad” is applied to the product of two vectors ab and is a
tensor with components a;b;. If

C=ayby) + agbe + ... + a,b, (2.81.1),

is the sum of n dyads, it is called a dyadic. The products C.cand c- C are
defined by

n
C-c= ; a()(by,) * €)

* See, for example, J. A. Schouten, Tensor Analysis for Physicists (Oxford University
Press, Oxford, 1951), p. 110.
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and
c-C= i(c - agy)b, (2.81.2)
1

The dyads formed from the three unit vectors e, give a convenient represen-
tation of the dyadic or second order tensor

A = eyd; e (2.81.3)

where A;; is the component of the tensor and the summation convention is
invoked even on the bracketed indices. Another standard form of dyadic is
composed from three vectors a, b, and ¢ in the form

A =eya+egb + ege (2.31.4)
and the transposed tensor is called the conjugate dyadic
A; = ae;) + beg, + ceg, (2.81.5)

If we replace the dyads in these forms by scalar and vector products, we have
the scalar of the dyadic

A., or A= Eu} . | —i— Em] +b =+ €ig) * C (2.81.5}
and the vector of the dyadic

The scalar of the dyadic is the same as the trace or spur of the tensor for it is
simply the contraction. For an antisymmetric dyadic (A, = —A) the vector
of the dyadic is twice the vector of the antisymmetric tensor.

In multiplication of dyadics the rule is that summation should always be on
adjacent indices. For example, the corresponding dyadic and tensor forms
are:

A-B, A,Bj;
A, B, A By
ah A& Eﬁka;fAk.m
AAa, €51 A miGy

The symbol x is more commonly used with dyadics than is A, but we retain
the latter to be consistent with the vector notation to which we have given
preference.

Exercise 2.81.1. Translate the equations of Section 2.5 into dyadic notation.
Exercise 2.81.2. Show that

a-(bAA)=(aAb)-A
Exercise 2.81.3. Prove that if A, = —A, then A,)Aa =2a.A.
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2.82. Axial vectors

The only transformation of coordinates we have considered is the rotation
of a right-handed Cartesian system. A slight extension of this would be to
allow reflections in the coordinate planes as well as rotations. In this case
a right-handed coordinate frame is transformed into a left-handed one. The
matrix L of the direction cosines /;; is still an orthogonal one but its deter-
minant is —1 instead of +1. Now certain items in our constructions have
depended on our maintaining the convention of right-handedness. Thus
a = b Ac, for example, gives a definite sense to the direction of a by the
requirement that b, ¢, a should form a right-handed system in that order. If
we transform to a left-handed system, the vector product changes sign, for

(bAC), = €prlidilincs
= —€uheobicr = —ay,
since the determinant of the /;; is —1. A vector which does this is called an
axial vector or pseudo vector. It can be thought of as a vector with given
direction and magnitude but reversible sense of direction. We do not have

much need of the distinction at this stage, but will find later that it is the
same as the distinction between an absolute tensor and one of weight 1.
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Cartesian Vectors and

Tensors: Their Calculus

3.11. Tensor functions of a time-like variable

In the last chapter we considered only the algebraic manipulations and
relationships of tensors. We now want to find out what we can say about the
behavior of tensors when they are functions of continuousvariables. Certainly
this will be necessary in applications, for if we think of an unsteady fluid
motion we realise that we shall have to consider its velocity at any point or
time. Now velocity is a vector so we shall have a vector v whose components
are functions of the coordinates x,, x,, x5 and time 7. Any variable which is
independent of the coordinates can be called time-like since in many applica-
tions it will be the time. We will consider first tensors whose components are
functions of one such variable, ¢.

Suppose A4,; = A;,() is a tensor function; then it is clear that all the
derivatives of it that exist are themselves tensors, for the /;; of the trans-
formation are independent of ¢ and we may differentiate the relation

A1) = LipligAix(1) (3.11.1)
as many times as we are able, to give
L LA = Lyl = [4,0)] (3.11.2)
dt” dt

38
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We may integrate the tensor components and preserve their character
equally well.

The most important example of this has already been cited. If x, the
position vector of a particle, is a function of time, then its first derivative is the
velocity

v(f) = X(1), v; = dx;[dt, (3.11.3)
and its acceleration is
a(t) = X(1), a, = d,[dt’ (3.11.4)

The differentiation of products of tensors proceeds according to the usual
rules of differentiation of products. In particular,

d da db
—_— .b —a | h l'—, 3-11-5
p@=gbtay (3.11.3)
and
d da db
—(aAb)=—ADb A—. 3.11.6
2 @A =rAbFan (3.11.6)

Exercise 3.11.1. Show that if a particle moves with constant speed its
acceleration is normal to its velocity.

Exercise 3.11.2. Show that the acceleration of a particle moving in the surface
of a sphere of radius r has a radial component —v*/r, where v is its speed.

Exercise 3.11.3. If a(z), b(t), and c(f) are three mutually orthogonal unit
vectors, show that their first derivatives are coplanar,

Exercise 3.11.4. Show that if the position vector of a particle, its velocity, and
its acceleration are coplanar, then all the higher derivatives are in the
same plane.

Exercise 3.11.5. Show that x A (dx/dt) = 0 is the condition that x(f) should
remain parallel to itself.

Exercise 3.11.6. If a; is the component of a vector a with respect to a system
of base vectors by, b, b3 show that

b.,, = da/da,.

3.12. Curves in space

The variable position vector x(z) describes the motion of a particle. For
a finiteinterval of #, saya < t < b, wecan plot the position as a curve in space.
If the curve does not cross itself (that is, if x(f) # x(t), a < t < t' < b)itis
called simple; if x(a) = x(b) the curve is closed. The variable # is now just a
parameter along the curve which may be thought of as the time in the motion
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of the particle only if such picturesqueness* is desired. If ¢ and ¢’ are the
parameters of two points, the chord joining them is the vector x(z") — x(f).
As t — ¢’ this vector approaches (¢’ — ) X(f) and so in the Limit it is propor-
tional to X(f). However, the limit of the chord is the tangent so that x(¢) is in
the direction of the tangent. If v =
X -X we can construct a unit tangent
vector T = X/v.

If x(¢) and x(z + dr) are two very
close points,

x(t + dt) = x(1) + dt x(¢) + 0(d1)?
and the distance between them is
ds?® = {x(t + dr)
— x(0} + {x(¢ + dr) — x(1)}
= X(?) « X(¢) dr* + 0(dr3).

The arc length from any given point
t = a is therefore

Fig. 3.1 () = ['Tx@) - x(@) P2 ar. (3.12.1)
s is the natural parameter to use on the curve, and we observe that

dx _ dxdt %
ds dtds dt
A curve for which the length can be so calculated is called rectifiable. From

this point on we will regard s as the parameter, identifying ¢ with s and letting
the dot denote differentiation with respect to s. Thus

T(s) = x(5) (3.12.3)
is the unit tangent vector. (Cf. Fig. 3.1.)

Let x(s), x(s + ds), and x(s — ds) be three nearby points on the curve. The
plane containing them must also contain the vectors

x(s + ds) — x(s) — %(s) + 0(ds)
ds
x(s 4 ds) — 2x(s) 4+ x(s — ds)
ds® -
Thus, in the limit when the points are coincident, the plane reaches a limiting

position defined by the first two derivatives x(s) and ¥(s). This limiting plane
is called the osculating plane and the curve appears to lie in this plane in the

(3.12.2)

and

X(s) + 0(ds).

* For an amusing use of this word by a pure mathematician see the preface to E. C.
Titchmarsh’s “Theory of Fourier Integrals.” Oxford: 1937,
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immediate neighborhood of the point. Now X =% so X =t and since
T-T=1

T-t=0 (3.12.4)

so that the vector 7 is at right angles to the tangent. Let

1
5= £t (3.12.5)
and v = pt (3.12.6)

Then v is a unit normal and defines the direction of the so-called principal
normal to the curve.
To interpret p, we observe that the small angle d0 between the tangents at s
and s + ds is given by
cos df = =(s) - T(s + ds)

or 1 —3d? 4 ... =774 7T-tds+3T-%ds? 4 ...
=1—}t-%)ds®+...
sincetT+t==0andsoT+% + t-1=0. Thus,
ds
= — 3.12.7
P=5 ( )

is the reciprocal of the rate of change of the angle of the tangent with arc
length, that is, the radius of curvature. Its reciprocal 1/p is the curvature.

A second normal to the curve may be taken to form a right-hand system
with T and v. This is called the unit binormal,

B=TtAv. (3.12.8)

Since@ - =1, -B =0and Bis at right angles to. However,f -7 =050
B.r= —B-t=—R+v/p=0s0 ﬁis also at right angles to T and so must be
in the direction of v. Let

Q = —v/o (3.12.9)

where 1/o is a scalar known as the torsion. Clearly, 1/o is the magnitude rate
of change of the direction of the binormal, just as 1/p was the rate of change
of the tangent.

Further, since v =8 A 7, we have

¢=Bnt+l3h’t=—-1-vh1—i—-1-|3hv
¢ P

=

Q |

B—-7 (3.12.10)

-



42 Cartesian Vectors and Tensors: Their Calculus §3.12

These three formulae,

v=—2r11g (3.12.11)

are known as the Serret-Frenet formulae.
It may be shown that if two curves have the same dependence of curvature
and torsion upon arc length, then they are the same curve apart from some

translation or rotation in space. These two functions p(s) and o(s) are the
intrinsic equations of the curve.

Exercise 3.12.1. Interpret the curve given by
X, = a cos (s cos a/a), Xo = a sin (s cos afa),
Xg == § Sin o

and find its curvature and torsion.

Exercise 3.12.2. Show that if the tangent to a curve makes a constant angle
with a fixed direction then the ratio of its curvature and torsion is
constant. Such a curve is called a helix.

Exercise 3.12.3. Prove that p%oX - (X A’X) = 1, and hence that the curve lies in
aplaneif X« (X AX) = 0.

3.13. Line integrals

If F(xy, X3, Xg), or more briefly F(x), is a function of position and C is the
arc of a simple curve x = x(f),a = t = b, we can define the integral of Falong
C as

.:I.cr F(x) dt = j : F[xy(1), x5(1), x3(1)] dt (3.13.1)

provided this second integral exists. If the curve C is composed of a number
of arcs which have to be given by different equations, then an integral like the
right-hand side of (3.13.1) must be calculated for each arc. If A and B are the
end points of the curve (given by t = @ and t = b, respectively) the integral
above is the integral along C from A4 to B. The integral in the opposite
direction from B to A is obtained by reversing the limits and therefore has the
same absolute value but the opposite sign. 1If x(a) = x(b), the curve C is
closed and the integral is sometimes written

jEG F(x) dt
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An important case, and one which we shall frequently use, occurs when the
parameter ¢ is the arc length s.

[ F ds = [CFIx@x() - ()2 ar. (3.13.2)

In general the line integral depends on F, the two end points and the path
between them. If, however, the integral around any simple closed curve
vanishes, the value of the integral from A to B is independent of the path. To
see this we take any two paths between 4 and B, say C, and C,, and denote
by C the closed curve formed by following C; from A to B and C, back from

Bto A. Now
Jor s = [[JF as]o, + [ as],,
= [[7F as] . [[2F as) . (3.13.3)
and this vanishes by hypothesis, so that the integrals along the two different
paths are equal.

If a(x;, x3, X5) is any vector function of position, a - T is the projection of a
tangent to the curve. The integral around a simple closed curve C of a - 7 is
called the circulation of a around C,

§ a-vds = [ax(s), (), xs(s)] - 7(s) ds (3.13.4)

Since dx;/ds = r; this integral is sometimes written { @, dx; or {a.dx; we
shall prefer however to write the integral with the unit tangent vector explicit.

Exercise 3.13.1. Evaluate the integral %a -t ds where C is the circle
of radius @ and center the origin lying in the plane m-x =0 and
a =w A X. T is the unit tangent to C.

Exercise 3.13.2. Show that if C is a simple closed curve in the plane 012 then
it encloses an area

§; Xt ds = —§ Xty ds = iﬂg (325 — xgty) ds;

all the integrals being taken around C.

Exercise 3.13.3. C is any simple closed curve in space and t its tangent; C;
is the projection of C on a plane 012 and C; is also a simple closed
curve. Show that the area of Cg is given by the same formulae as in the
previous question.
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3.14. Surface integrals

We shall need also to consider integrals over surfaces and should say
something about their construction and the surfaces for which they can be
constructed. A closed surface is one which lies within a bounded region of
space and has an inside and an outside. We can pass from any inside point to
another inside point by a curve which does not cross the surface and, similarly,
from any outside point to any other. However, to pass from an inside point
to an outside point the path must cross the surface. Familiar examples of
closed surfaces are the sphere and surfaces that could be deformed into a
sphere. A continuous surface which has no inside or outside, known as the
Klein bottle, is shown in Fig. 3.2d. These pathological surfaces are the
happy hunting ground of the topologist; they serve to preserve the engineer
from becoming complacent in his assumed normality. If the normal to the
surface varies continuously over a part of the surface that part is called
smooth. Some closed surfaces (see for example Fig. 3.2a) are smooth
everywhere, others are made up of a number of subregions which are smooth
(Fig. 3.2b) and are called piece-wise smooth. A closed curve on a surface
which can be continuously shrunk to a point is called reducible, as for
example the equator of a sphere which can be continuously moved to any line
of latitude until it shrinks to a pole. If all closed curves on a surface are
reducible, the surface is called simply connected. The sphere is simply
connected but the torus or anchor ring is not, for a closed curve such as is
shown in Fig. 3.2¢c is not reducible.

If a surface is not closed it normally has a space curve as its boundary, as
for example a hemisphere with the equator as boundary. It has two sides if it
is impossible to go from a point on one side to a point on the other (in
particular the point, which is just on the other side) along a continuous curve
that does not cross the boundary. The surface is sometimes called the cap of
the space curve. Again it is not necessary for a surface to have two sides; the
Mobius strip (Fig. 3.2f) is the well-known example of this. Indeed a closed
curve could be capped by either a one- or a two-sided surface for the boundary
curve of the hemisphere (Fig. 3.2e) would be distorted into the boundary of
the Mobius strip and the hemisphere would be a two-sided cap. These
sophisticated considerations need not daunt us however, for given a simple
closed curve we can imagine a soap film across it which can then be distorted
into a piece-wise smooth cap. .

Just as the line integral is a natural extension of the common integral over
an interval, so the surface integral is an extension of the double integral. The
double integral over a region R in the 012 plane of a function F(x;, X,) is
written

ij(xl, Xs) dxy dX,
R
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and is constructed as follows. The region R is divided into a large number of
small areas by a grid of lines x, = ay, @y, . .., @, X3 = by, by, ..., b,, which
cover the region (see Fig. 3.3). If we consider any typical rectangle, say
a.,<x = a, b,y < x; = b, which is wholly or partly in R, we may
select a point («,, 8,) in this and in R
and evaluate F at this point. Then the
sum over all the small areas

Z F(a,, ;) dS,,

where dS,, is the area of the part of
the rectangle which is within R, is an
approximation to the integral. We
now let M and N increase without
limit but always insist that the largest
subdivision of area dS,, must tend to
zero, then if the sum tends to a limit
that limit is the integral.

Now if S is a piece-wise smooth surface with two sides in three-dimensional
space, we can divide it up into a large number of small regions by a grid in
much the same way as with a plane region R. If we are given a function F
defined on the surface, it can be evaluated for some point of each subregion of
the surface and the sum X FdS,, computed. Then, as the subdivisions
increase in number and become finer, the limit that this may tend to is called
the double integral of F over S

ijs.

The arguments of F have been left vague here. It may be that Fis given as a
function of position in space and we therefore evaluate it at a point on the
surface, or it may be defined only on the surface itself.

The area of a curved surface is not an easy thing to define though more
mystery than is necessary is often accorded it (see J. Serrin, Amer. Math.
Mon. 68, May, 1961, p. 435 for an elegant discussion). For many common
surfaces however, we may relate the area of an element of the curved surface
dS to the area of its projection on a coordinate plane (say O12) by d4,, =
ng dS where ng is the third component of the normal. This is shown in Fig. 3.4
from which it is clear what must be done to calculate the areas of a cap. The
cap S with boundary curve I' has to have a projection on the 012 plane’
consisting of the simply connected region R with boundary C and for any
point x;, x, of R there must correspond only one point of §. If the normal to
the surface n is defined everywhere on it, and ng # 0, then

dA

ds = —
Hay
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and

J[Fds=[[~ axax (3.14.1)
s R "3

Such a cap could be called 3-elementary.

A surface might fail to be 3-elementary either by having a sharp ridge at
which n is discontinuous or by having more than one point of S correspond to
each point of R or by having a whole region where n; = 0. Except in the last

3 A

= 2

Fig. 3.4

case we can divide the surface up into parts that are 3-elementary, and
evaluate the integral as the sum of the integrals over the several parts. If
ng = 0 then the surface is either 1-elementary or 2-elementary meaning that
we can project the area on to the 023 or the O31 planes in a similar way.

Exercise 3.14.1. S is the hemisphere
X:x=a* m-x=0,

where m is a fixed unit vector. Calculate ‘” a-n dS for an arbitrary

constant vector a. )
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Exercise 3.14.2. A surface can be given parametrically by three functions
x; = g4y, up). Show that
Jg , 2

dS=(—h-—)d dus,.
! Ou, Ou, o

Deduce that area is independent of the choice of Cartesian coordinates.

3.15. Volume integrals

We shall also have occasion to integrate over the volume inside or outside
of a closed surface. If a volume is such that a line parallel to O 3 meets its
bounding surface in two and only two points (say xs = f, (X3, Xg), X3 =
f(x, x), f. = f) we may call it 3-elementary.* A sphere is the most
obvious example of this. Similar definitions apply to the terms 1- and
2-clementary. If a volume can be divided into a number of smaller volumes
each of which is 3-elementary, the volume may be called 3-composite. A
region which is 1-, 2- and 3-composite will be called a composite volume.

An integration throughout the volume V is written

[ Fexy, %3 x9) av (3.15.1)
¥V

and is, as before, the limit of a sum of the products of a very small subdivision
of the volume and the function F evaluated somewhere within it. The limit is
taken by letting the number of subdivisions increase without limit and the
size of the largest tends to zero. If the volume V is 3-elementary and its
projection on the O12 plane is a region R, then

[ff#av=ffoamax

where (3.15.2)
+ tJ 131-'
Gl xp) = |1

Jr [#1, #I:' F(xls Xgs xﬂ) de

This is shown in Fig. 3.5. The integral over a 3-composite volume may be
calculated as the sum of such parts.

The double integral may be similarly reduced. We can call a simple closed
curve C in the plane elementary if it can be traversed so that the slope of its
tangent does not decrease. A composite curve is one that can be divided into
elementary curves, as in Fig. 3.6. If R is bounded by an elementary closed

* This convenient nomenclature is taken from W. L. Ferrar, Integral Calculus, Oxford,
1958.



§3.15. Volume Integrals 49
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curve C whose projection on the Ol axis is the interval (g, b), it can be
specified by two functions g (x;) and g_(x,) as shown in Fig. 3.6c. Then

[[Gaa= [ H(x)ax,
R

where (3.15.3)
HG) = [ G, %9

Exercise 3.15.1. Evaluate
[ff M) av
»° 0x; 0x,
when V is the sphere r = a and # = x;x;.

3.16. Change of variable with multiple integrals

In Cartesian coordinates the element of volume dV is simply the volume of
a rectangular parallelepiped of sides dx;, dx,;, dx; and so

dV = ld.x]_ dxi dxa. (3. 16.1]

Suppose, however, that it is convenient to describe the position by some
other coordinates, say &;, &, £5. We may ask what volume is to be associated
with the three small changes d&,, d&,, d&;.

The change of coordinates must be given by specifying the Cartesian point
x that is to correspond to a given set &;, &, &, by

x; = x{&y, &5, &3). (3.16.2)

Then by partial differentiation the small differences corresponding to a
change d{; are

ox
dx, = —*d
Xy = 3t &

Let dx'” be the vectors with components (0x,/0&,) d&; for j =1, 2, and 3.
Then the volume element is

dv = dx® . (@x®@ A ax®)

ox ax; 0%y
l E d
€iik ~p afl 'El afa 2 3.‘;3 53
= Jd&, dé&; d&, (3.16.3)

where
a(.xl, Xg, X3) — € ax:‘ axf a_xg

ALy, b k) OE 0F, 05

is called the Jacobian of the transformation of variables.
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Exercise 3.16.1. Show that the volume element in the frame 0123 of
coordinates X; = [,;x; is dX, dX, dx,.

Exercise 3.16.2. Obtain the volume elements in cylindrical and spherical
polars by the Jacobian and check with a simple geometrical picture.

3.21. Vector fields

When the components of a vector or tensor depend on the coordinates
we speak of a vector or tensor field. The flow of a fluid is a perfect realization
of a vector field for at each point in the region of flow we have a certain
velocity vector v(x;, x,, x3). If the flow is unsteady then the velocity depends
on the time as well as position, ¥ = v(x;, x5, X3, £). When it is necessary to be
specific we shall refer to this as a time dependent vector field. It is sometimes
convenient to abbreviate these to v(x) and v(x, f), or to use the index notation
and write v(x, 1), A,(x, 1), etc.

Associated with any vector field a(x) are its trajectories, which is the name
given to the family of curves everywhere tangent to the local vector a. They
are the solutions of the simultaneous equations

dx = a(x); thatis, ax, = A Xy, Xg, Xg). (3.21.1)
ds ds

where s is a parameter along the trajectory. (It will be the arc length if a is
always a unit vector.) Though we have yet to define them, the streamlines of a
steady flow are probably sufficiently familiar to be mentioned as the realiza-
tion of these trajectories. For a time dependent vector field the trajectories
will also be time dependent since they are solutions of

dx‘-

— = a(Xxy, Xy, Xg, 1)- (3.21.2)
ds

If Cis any closed curve in the vector field and we take the trajectories through
all points of C, they describe a surface known as a vector tube of the field.

3.22. The vector operator V—gradient of a scalar

The symbol V (enunciated as ““del” or “nabla”) is used for the symbolic
vector operator whose i*" component is 8/0x,. Thus if V operates on a scalar
function of position ¢ it produces a vector Vg with components dg/dx;. We
should of course establish that Vg is indeed a vector. In the coordinate

frame 0123 the vector Vg will have components dp/d%;. However,

——— T c— f— I —— 3 |22| l
9%, ox,0%, ' ox ( )

since x; = /,;%,, so that Vg is a vector.
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In Cartesian coordinates the operation of partial differentiation with respect
to three coordinates gives the components of a tensor of the next higher order.
To show this, suppose that A4,,(x;, x,, X3) is a second order tensor field; then
the 81 quantities 9%4,,/dx, 0x,, are the components of a fourth order tensor.
For since x; = I ;%;,

0x; 0%x;
— =l — = 0. 3.22.2
oz, 7 0%, 0% (3.22.2)
If we write A,; ,,, for the second derivative 6%4,;/0x, 0x,,, then in the frame
0123
- 0°A4,, 0*
(IimliqrAi.i)

A == =
ent 9%, 0%, 0%, 0%,

_0x, 0 [ax,,, 0 (I“INA;'})]

0%, 0x, Loz, ox,,
= prIfQIhImJAt‘Lkm

which shows that the 4, ,,, are components of a fourth order tensor.

The suffix notation ,i for the partial derivative with respect to x; is a very
convenient one and will be taken over for the generalization of this operation
that must be made for non-Cartesian frames of reference. The notation
“grad” for V is often used and referred to as the gradient operator. Thus
grad ¢ = Vg is the vector which is the gradient of the scalar, and grad A
would be a tensor 4,, ;. V is also sometimes written d/dx and can be expanded

in the form V = e, 9/0x,. (3.22.3)
If ¢(x,, xp, X3) = @(x) is a scalar function of position and dx; =n; dr a
small displacement in the direction n, then
lim @(x + ndr) — ¢(x)
sr—0 dr

is the derivative in the direction n and is sometimes denoted by dg/dn. By
Taylor’s theorem,

@(x + ndr) = ¢(x) + (ndr) - Vo + 0(dr?),

30

% _vp.n. (3.22.9)

Exercise 3.22.1. If F(p) = J‘ * f(0) do is the indefinite integral of f{p), show
that VF(p) = f(p) Vp.

It will be convenient to refer to the following formulae (2)(4) later. They
are all elementary but the exercise of establishing them is valuable.

Exercise 3.22.2. V(py) = v Vo + ¢ Vy.

Exercise 3.22.3. V(Apx;x) = (A + Aydx; ey, if A is constant. (Summation
on i).
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Exercise 3.22.4. Vf(r) = (f'(r)/r)x where r* = x - x.

Exercise 3.22.5. Show that if ¢(x) = ¢ is a surface, V¢ is normal to the
surface.

Exercise 3.22.6. If A,x;x; =1 is a central quadric defined by a symmetric
tensor Ay, then A;;x; transforms the radius vector x into a vector normal
to the surface. The angle between the radius and the normal is given by

tan? 0 = (x,%,)(x;ApApmX ) — (x;44%;)
=(x-x)(x-A%.x) — (x-A-x)>

3.23. The divergence of a vector field

The symbolic scalar or dot product of a vector and the operator V is called
the divergence of the vector field. Thus for any differentiable a(x;, x,, x3),

we write 3 5
diva=V.a=gq,,=— + 0a 4 99

3.23.1
axl Ox, 0Oxg ( )

The divergence is a scalar since it is the contraction (or trace) of the second
order tensor a, ;.

Suppose that an elementary parallelepiped is set up with one corner P at
Xy, Xs, X3 and the diagonally opposite one Q at x; + dx;, x; + dx,, X3 + dxg
as shown in Fig. 3.7. The outward unit
normal to the face through Q which is 34
perpendicular to Ol is e, whereas the
outward normal to the parallel face
through P is —e(;,. On the first of -
these faces

A= a(xl + dx]v 623 '53)

where

- [
0

2
xagsagxn"l_dxﬂ o

and
X3 = Eagxa"f‘dxs: 1

whereas on the second it is a(x;, &, &3). Fig. 3.7

Thus if n denotes the outward normal

and dS is the area dx, dx; of these faces, we have a contribution from them to
the surface integral [{ a - n dS of

[al(x1 + dx;u Eg: 53) — ay(x,, Eg, 53)] dxg dxa

= [ay(xy, x5, X3) + ‘g“‘;- dxy — ay(x;, X3, X3)] dxy dxg + 0(d*)
1
— 8 dx, dxy dxg + O(a),

X1
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where 0(d*) denotes terms proportional to fourth powers of the dx. Similiar
terms with 8a,/0x,, Oag/0x; will be given by the contributions of the other
faces so that for the whole parallelepiped whose volume dV = dx, dx, dx; we

have 1 da da da
— ndS =234 222 773 d). 3.23.2
dV'”a S =t om o, T X9 (3-232)
If we let the volume shrink to zero we have
. 1
lim — j j a-ndS=V-a. (3.23.3)

If a is thought of as a flux, then [[ a - n dS is the net flux out of the volume.
A vector field whose divergence vanishes identically is called solenoidal. If the
flux field of a certain property is solenoidal there is no generation of that
property within the field, for all that flows into an infinitesimal element flows
out again,

If a is the gradient of a scalar function Vg, its divergence is called the
Laplacian of ¢

2

P T9 To (3.23.4)
ox:  ox} 0x}
A function that satisfied Laplace’s equation V2p = 0 is called a potential
function.

If A is a tensor, the notation div A is sometimes used for the vector 4, ,,
then div A’ would be A, ;; we shall generally prefer the index notation for
tensors.

Vip = div grad ¢ = @, =

Exercise 3.23.1. V - (pa) = Vo -a + ¢(V - a).

Exercise 3.23.2. V-(aAb)=(VAa)-b—a-(VAD).

Exercise 3.23.3. V*f(r) =f"(r) + 2f'(N)fr, rr=x-x

Exercise 3.23.4. {x'™a} denotes the symmetric tensor of order n + 1

[ax;xpy ... xp + X% . 0. Xy + XX . . . X+ . oL XXX ... Ay)

whereas ax("*1) is the tensor a;x;x; ... x, of order n 4+ 2. Show that
div (ax*+)) = {x™a} if diva = 0.

Exercise 3.23.5. Interpret V2p physically by thinking of it as V - (Vg).
Exercise 3.23.6. If ¢(x) = @(x;, x5, X3) 1s a potential function and r* = x + x,
show that
a azx) 2 [a (iax) ,
-pl—) — Ap| =) dA
q)(x)+rw(r“ arJ‘“ \

is also a potential function and that its normal derivative on the sphere
r = a vanishes. (Weiss, P. Proc. Camb. Phil. Soc., 40, (1944), 249.)
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3.24. The curl of a vector field

The symbolic vector or cross product of V and a vector field a is called the
curl of the vector field. It is the vector

VAa=curla= €, €141

with three components
(0 _de) (e _tw)  (be_0m)
Ox, 0Oxg O0x3 0x; Ox; 0Ox,

It is connected, as we shall see, with the rotation of the field and is sometimes
written rot a in older texts.* In dyadic
notation curl a = (grad a) .. A

Consider an elementary rectangle
in the plane normal to Ol with one
corner P at (x;, x5, x3) and the diagon- 0
ally opposite one Q at (x;, x; + dx,, 13
x3 + dx3), as shown in Fig. 3.8. We P
wish to calculate the line integral around
this elementary circuit of a - t ds, where »2
t is the tangent. Now the line through
P parallel to O3 has tangent —eg “!
and the parallel side through Q has Fig. 3.8
tangent €g,), and each is of length dx;.
Accordingly, they contribute to a-t ds an amount

[as(xy, Xz + doxg, £3) — a3(xy, X, £3)] dx

= [a3(x;, xq, &3) + aa3 dxy, — ag(x;, X, &)] dxz + 0(d°)
Xg

0x,
Similarly, from the other two sides, there is a contribution,
d
a“ﬂ dxy dxy + O(d®).
Thus writing d4 = dxzdx,, we have
1 (aa 3 3{11)
—Pastds ={— — — 3.24.3
dA fa-tds ox, %) 0@ (3.24.3)
and in the limit
lim — § a-tds = (?ﬂ — a—“_ﬂ). (3.24.4)
ad—o0d O0x, 0Oxg

* rot a is used by Toupin (Handbuch der Physik, ITI/1, Sect. 268) to denote the anti-
symmetric tensor of which curl a is the vector; this usage lends itself to generalization.
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The suffix 1 has been put on the integral sign to show that the line integral is in
a plane normal to Ol, and Eq. (3.24.4) shows that the limit is the first
component of the curl. An entirely similar treatment would give the other
two components for line integrals
around rectangles in planes perpendic-

ular to the O2 and O3 axes.
ds We can treat an infinitesimal triangle
.g-__ 0 (PQR of Fig. 3.9) in a similar way. If
P the length of PQ is dx, = ds cos 0, and
the length of PR is dxg = dssin 6, the

0 >~2 area is

34

dA = } ds® cos 0 sin 0.

Fig. 3.9 The unit tangents around the triangle

are e, (0, —cos 0, sin 0), —e3,. Thus

approximating each part of the line integral by the length of side multiplied by
a - t evaluated at its midpoint,

§ a - tds = ay(x,, Xy + $dxy, dx;) dx,
+ {—cos 0 ay(x,, xy + } dx,, x5 + Y dx3)
+ sin 0 ag(x,, x; + 3 dx,, x5 + 3 dx3)} ds
— ag(x;, Xq, X3 + } dxg) dxg
= {ag(x;, xp + 3 dx,, x4 + }dxz) — ag(x;, x5, X3 + }dxz)} dssin §
— {ay(xy, Xo + $dxg, X3 + 3 dxg) — as(xy, X3 + 3 dxy, x5)} dscosb

- (% _ ?_"_2) % ds® cos 0 sin 6 + 0(ds®).

0x, 0x3

Again, as ds, and so dA, tends to zero,

and similar forms hold for triangles in planes normal to O2 and O3.

Consider now a fourth point S at (x; 4 dx;, x5, X3) so that QRS is a plane
triangle of area d4 whose unit normal is n. Thus the areas of the triangles
POR, PRS, PSQ are

dA, =ndA, dA;=ndA, dA; = nydA

respectively. However, the line integral around QRS can be taken to be the
sum of those around PQR, PRS, PSQ since the parts PQ, PR, PS are
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traversed once in each direction and so cancel (see Fig. 3.10). Thus, if d4 is
very small,

ﬂ;gga'tds:ﬁa'tds+£ﬂ'tff3+£a-tds

oa
= € dA; —

0x;

da
= dAeun; a_t '
X
Then in the limit

: 1
lim [EI §URS a-t ds] = (curla) - n. (3.24.5)

By working a little harder (Exercise 3.24.9), it can be shown that if any
small curve in the plane with normal n shrinks on the point x, the limit of the
§ a - t ds divided by the area is the projection of curl a on the normal, n.

R n R

A vector field a for which

VAa=curla=20 (3.24.6)
is called irrotational, for evidently the circulation around any infinitesimal
curve vanishes.
Exercise 3.24.1. V- (VAaa)=0.
Exercise 3.24.2. V A (V) =0.
Exercise 3.24.3. VA (pa) = (Vp)aa 4+ ¢V Aa.
Exercise 3.24.4. VA(aab)=a(V-b) —bV-a)+ (b-V)a—(a: V)b.
Exercise 3.24.5. VA(VAa) = V(V-a) — Vi,
Exercise 3.24.6. V(a-b) =(@a-V)b+ (b-V)a+aA(VAb) +bA(VAa)
Exercise 3.24.7. aA(VAa)=4V(a-a) — (a- V)a.

Exercise 3.24.8. If v(x) is the velocity of a rigid body due to a rotation w,
show that VA Y = 2w.
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Exercise 3.24.9. If C is a infinitesimal curve about x, in a plane with normal
n, use Taylor’s theorem to approximate the line integral

§G.a-tds= §[a(xﬁ} + {(x — xp) - V}a(xg) + ... 1 tds
Hence, using Ex. 3.13.2, show that this integral is V A a(xy) + n dS.

Exercise 3.24.10. If C, is the projection on a plane normal to Oi of a simple
closed curve C and is itself simple, show that the areas C,, C;, C; are
components of the vector

b9 (xAD) ds.

3.31. Green's theorem and some of its variants

One of the most valuable transformations of tensor analysis is that of
Green* which relates a certain volume integral to an integral over the
bounding surface. We shall give two demonstrations of it. The surface
integral occurring is the integral of a - n, where n is the outward normal to the
surface. If we think of a as the flux of some physical property the integral of
a - n over the whole surface is thus the total flux out of a closed volume.
Green’s theorem says that this total flux equals the integral of V - a through-
out the enclosed volume.

Suppose V is a volume with a closed surface S and a any vector field
defined in ¥ and on S. Then if S is piece-wise smooth with outward normal
n and a continuously differentiable,

fﬂ?'“d”=gﬂ-nd& (3.31.1)

We have shown for infinitesimal volumes that
VeadV=a-ndS

and the integral on the left-hand side is by definition the limit of the sum of a
number of infinitesimal volumes into which ¥ can be divided. However, if it
is so divided, the contributions of a+n dS from the touching faces of two
adjacent elements of volume are equal in magnitude but opposite in sign
since the outward normals point in opposite directions. Thus in a summation
of a - n dS, the only terms that survive are those on the outer surface S, and
Eq. (3.31.1) follows.

Another form of Green’s theorem is the following. Let V be a composite

* This is no place to enter the difficult subject of the proper attribution of names to
theorems. This theorem was given in various forms by Lagrange (1762) Gauss (1813) and
Ostrogradsky (1831). Its best known source, however, is Green’s ‘““Essay on the application
of mathematical analysis to the theories of electricity and magnetism™ (1828). The non-
denominational name **Divergence theorem™ is also used.
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volume with piece-wise smooth boundary § and F a continuous function
whose derivatives F ; are continuous in V. Then

”f FidV= ”F"; ds. (3.31.2)
v s

Let us prove this for a volume which is 3-elementary and with i = 3; then by
joining elementary volumes it will hold for a 3-composite volume and so by
extension to a composite volume for i = 1, 2, or 3. Figure 3.5 illustrates a
3-elementary volume and by Eq. (3.15.2) we can write

oF :
—dV = | |G dx, dx
I l f 0x, .L J 1778
where (3.31.3)
G= J-h il dxg = F[xy, X, f+(xy, X3)] — F[xy, x5, f-(%y, x3)]

f- a.xs
and R is the projection of the volume V on the O12 plane. However, if we
use a suffix 4+ or — to denote the upper and lower surfaces, respectively, the

element of area in R
dxl dx2 = Mgy dS+ or —Hg . ds_ (3-3[.4}

since the elements of area are all positive but n,_ is negative. Thus, substi-
tuting in Eq. (3.31.3),

0X5

”. o dv= Iff[xl, Xz, f+(%1, X2)Ing 4+ dS 4
V

+ JJ.F[xl’ Xg, f- (%1, X) Nz dS _.

However, the right-hand side is now just the definition of the surface integral
Fng dS, so the theorem is established for a 3-elementary region. A 3-composite
volume can be divided up into a finite number of 3-elementary volumes in
each of which Eq. (3.31.2) will hold. However, on adjacent faces of the
elementary volumes the outward normals point in opposite directions so that
the contributions to the total surface integral cancel. Thus in summing over
all the elementary volumes the only contributions to the right-hand side of
Eq. (3.31.2) that survive are those from the outer surface of the composite
volume.

The theorem can be extended to a function F which is continuous in ¥ but
whose derivative F, is only piece-wise continuous. The volume V' may
increase without limit or the integrand have singularities provided that the
integrals converge. For further lightening of restrictions the reader is
referred to the book by Kellogg mentioned in the Bibliography at the end
of this chapter.
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F may be a scalar or the component of a vector or tensor. If F = a, we
have the form of Green’s theorem originally given. If F = ¢,,a,, then F; =
€4is8;,; is the k'™ component of V A a, whereas Fn, = ,na; is the k™
component of n A a. Thus

[[[orayav=[[@n a)as. (3.31.5)
If 8 = Vg we have g s

fff?nq,dV=ff?¢p-ndS=fI%%dS, (3.31.6)
4 g S

where 0p/dn denotes the derivative in the direction of the outward normal.
If a = Ve, then

] 'J: [V + Vy- Vo) dv = Lf"” :—i ds (3.31.7)
whence

Iﬂ(wﬂ?’ — ¢Viy)dV = Lf(w%f - w%:"—:) ds. (3.31.8)

Exercise 3.31.1. Use Green’s theorem to obtain the answer to Ex. 3.14.1
without integration.

Exercise 3.31.2. Show that
f”ﬂ“h a)Ab+(VAb)Aa 4+ a(V-b)+ bV -a)]dV
v

= [[ [n- (@b + ba) — (a- b)n] ds
8

Dyadic notation is used here, so n-(ab + ba) is the vector
nfab, + ba;).

Exercise 3.31.3. By taking a to be independent of x; and a; = 0, show that
if A is an area in the O12 plane bounded by a curve C, then

1, : = ¢ (@ty —
J.J’(a 1+ agp) dA = fF (aty — apty) ds
A

where t is the unit tangent vector to C.

Exercise 3.31.4. Deduce from the preceding question that

ﬁz (0111 + agty) ds = _” (@51 — ay) dA.
4
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Exercise 3.31.5. V is composed of two volumes ¥; and ¥, divided by a
surface S'. The vector a is continuousin ¥ = ¥; + V,and its derivatives
are continuous in ¥} and V, separately and the normal derivative is
continuous across S'. Show that Green’s theorem holds good for any
volume V* within V.

3.32. Stokes’ theorem

The previous theorem concerned the relation of an integral over a closed
volume and its relation to an integral over the bounding surface. Stokes’
theorem™* relates the surface integral over a cap to a line integral around the
bounding curve. The line integral appearing is that of a - t, that is, the total
circulation, and the theorem says that this is equal to the surface integral
of the normal component of curl a. We shall again give two demonstrations.

We have shown earlier in Section 3.24 and Ex. 3.24 that for an infinitesimal
triangular area the line integral

$ a-tds=(VAs)-nds. (3.32.1)

If Sis the cap of a closed curve C, we can divide its surface into a large number
of small triangles for each of which Eq. (3.32.1) is true. Then in summing the
right-hand sides we shall have the surface integral over the whole cap,
whereas on the left-hand sides contributions from adjacent sides of triangles
will cancel since they will be traversed in opposite directions. The only
remaining contributions from the line integrals will thus be those from the
bounding curve C and

§ a-tds=[[(VAs)-nds. (3.32.2)
3

The convention that the normal to the curve should be right-handed with
respect to the direction of traversing the curve C is observed throughout.

More precisely stated, Stokes’ theorem says that for any two-sided piece-
wise smooth surface S spanning the closed curve C and any continuous vector
field a whose partial derivatives are continuous, Eq. (3.32.2) holds. We shall
give another proof depending on Green’s theorem. Suppose first that the cap
S can be specified by a single function x3 = f(x;, x5) in the region R within
the closed curve C’, the projection of C on the plane 012. Consider the
terms in a;, namely,

ﬂ: a,t, ds = Lj (ngg—i; — ng g—:—:) das.

* It appears that the attribution of this theorem to Stokes is less appropriate than that
of the previous one to Green. It is actually due to Kelvin though the usage of Stokes’
name is too entrenched to be changed. See Truesdell, **Kinematics of Vorticity,” footnote,
p- 12.
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Now on S, x3 = f(x;, xg) and

a, = ay[x;, Xy, f(x1, Xx)] = g(x1, X3)

S0
0g 0Oa, 2 Oa; Of
=14 .
Ox; 0x, 0x30x,
However, nyfn; = —0of]0dx; because the direction cosines of the normal are

proportional to 9f/0x,, df/éx,, and —1, respectively. Hence,

=7 an

0x,

by Eq. (3.15.1). However, by putting a; = 0, a; = g in Ex. 3.31.3 which is a
two-dimensional form of Green's theorem,

_‘”' ag dA = § gty ds’ = ﬁc‘ al[xl, Xq, f(xy, xa)]t; ds’,

where t{ and ds’ are the component of the tangent and element of arc C’
respectively. However, t{ ds’ = t, ds so this last integral is really the line
integral around C and the theorem is established for a;. A similar proof goes
through for a, and a; and for surfaces that can be decomposed into parts
which are either 1, 2, or 3-elementary. A further discussion will be found in
Kellogg’s book.

Other forms of Stokes’ theorem may be derived by inserting various
vectors; in particular the components a; may be a set of components from a
tensor, say A4, with j, k fixed. Thus it is convenient to write

'Lf‘i:‘k”fF x,j S = £; F,t, ds. (3.32.3)

Exercise 3.32.1. Relate the results of Exercises 3.13.1 and 3.14.1 by Stokes’
theorem,

Exercise 3.32.2. Show that the vanishing of the integral of (V A a) +novera
closed surface is a consequence both of Green's and Stokes’ theorems.

Exercise 3.32.3. Show that

.L.l.(nf”f-i — a;ny) dS = Efcéf,}aitk ds.
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Exercise 3.32.4. Show that

i;, (VAa)-tds = J.J‘ [—a?; (V.a) —n .{vﬂa}] ds.

8
Exercise 3.32.5. The flux of a& through the cap S is _” 2 -n dS. Suppose
s

a = a(x;, Xy, X3, f) and S moves in space its velocity being given by a
vector field v. Consider the volume bounded by S, the position of S at
time fand S, its position at time ¢ + dt and a bounding surface of vectors
v dt for all points of the boundary C. Then applying Green’s theorem to
the volume, show that

di {:J.J.a -n dS] = lim-;—! I:J;;l‘a(x, t+ dt)»ndS — ‘L!a(x, f)+n dS]

t

-,=J.J‘ [g—:-{-(?-n}v]-ndS+§ca*{vht)ds
8

— J'l [-gﬂ—j-(?-a)vﬁ—?h(ﬂh"}] +ndS.
s ot

Exercise 3.32.6. If V and a are as in Ex. 3.31.5 save that this time it is the
tangential derivative that is continuous across S’, show that Stokes’
theorem still holds.

3.41. The classification and representation of vector fields

We have already noted two distinct types of vector field; namely, the
solenoidal, for which V - a = 0, and the irrotational, for which VA a = 0,
Such fields occur physically, and it is of interest to explore their properties a
little further. We are particularly interested in relating the three components
of a to certain scalar functions of position. For example, if a is the gradient
of a scalar function ¢, then it is certainly irrotational for VA Vg =0
identically. Thus if a problem calls for an irrotational vector field, it may be
possible to turn it into a problem that requires finding only the function ¢;
certainly an easier matter than finding all three components of a. Before this
can be done however it must be proved that all irrotational vector fields can
be represented as the gradient of a scalar function, which is slightly more
difficult than showing that the gradient of a scalar is irrotational.

To show the value of these representations let us anticipate the results of
the next few sections and show that a vector field which is both irrotational
and solenoidal is uniquely determined in a volume V if it is specified over S,
the surface of V. If a vector field is irrotational we shall show that it can
always be written as Vg, where g is determined up to an arbitrary constant.
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If a = Vo and a is solenoidal, V.a = V2p = 0; that is, ¢ is a potential
function or solution of Laplace’s equation. Now suppose it were possible for
two different functions ¢, and ¢, to satisfy V3¢ = 0 in V and take the same
values on S. Then the difference between them ¢ = @, — @, would satisfy

Complex lamellor Solenoidal Beltrami
a.Vag=0 V.o=0 ga(Tagl=0
Irrotational
Vaa=0 ]
Solenoidal Solenoidal
complex lamellar beltrami
aVag=V.a=0 ga{Vaa)=V.o0=0
Laplacian
V.g=Vag=0
Fig. 3.11

V2p = 0 in ¥ but ¢ would be identically zero on S§. Now put y = ¢ in
Eq. (3.31.7) so that

f!f[wﬁw +(Voyldv = .LI‘P% ds. (3.41.1)

However, since V2 = 0in ¥V and ¢ = 0 in S, the first term on the left-hand
side and the integral on the right are both identically zero. It follows that

[[[@erav=o. (3.41.2)
)

However, the integrand is everywhere positive and so the integral could not
vanish unless Vg itself were everywhere zero. However, this means that p is a
constant, and since it is zero on the boundary this constant must be zero
everywhere, that is, ¢, = @,.

Apart from the solenoidal and irrotational, several other types of fields.
have been named. We will give a brief description of these though we shall
not be able to go fully into the representation of them all.

The name lamellar is also applied to an irrotational vector field (VA a =0)
and it is a special case of the complex lamellar field for whicha - (V A a) = 0.
The condition for a field to be complex lamellar is evidently that it should be
orthogonal to its curl, which is less restrictive than the requirement that the
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curl should vanish. Another type is the Beltrami field for which the curl is
parallel to the original vector, that is,a A (V A a) = 0. The relations between
these types are best shown in a diagram (Fig. 3.11). Arrows coming together
at the same place denote the simultaneous possession of the character of the
type from which they come. Thus, if a field is both a complex lamellar and a
Beltrami field, it is irrotational (except possibly where a = 0), for curl a is
both orthogonal and parallel to a and so must be zero if a = 0. A field which
is both solenoidal and irrotational is sometimes called Laplacian since it is
the gradient of a potential function. If curl a is not only parallel to a but is
proportional to a with a constant that does not vary with position (that is,
V A a=ka, Vk = 0), it is called Trkalian.

Exercise 3.41.1. Show that if the curl of a Beltrami field is itself a Beltrami
field, then the field is Trkalian (Bjergum).

Exercise 3.41.2. If * = a/ |a| is the unit vector tangent to the field a, show
that

.1
(VAT) = lim—= T-tds
- (VA1) ,s-ouS§U

where S is a cap of the curve C that shrinks on the point in such a way
that the normal to S is 7. (t is the unit tangent of the curve C.)

3.42. Irrotational vector fields

We wish to show that if V A a = 0 then there exists a scalar function ¢ such

that
a=Vyp (3.42.1)

This function g is often called the potential of a by analogy with force fields
for which the force on a particle can be obtained as the gradient of the
potential energy.

Since V A a = 0 we know by Stokes’ theorem that the circulation integral
round any closed curve vanishes,

gf ,artds=0. (3.42.2)

It follows (see Section 3.13) that the line integral from a fixed point (say the
origin) to a point P, (x,, x,, X3), is independent of the path. Let

#P) = plxy, X X5) = | 8-t s, (3.42.3)

then this is a definite scalar function depending only on the position of P.
Consider a nearby point Q, (x, + dx;, X, X;), then

tp{Q)—@(P)=J§a-tds—f;a-tds=£?n-tds
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since we are at liberty to take the path OQ through P. We may also choose
the path from P to Q to be the straight line parallel to the axis O1, and then
t = e;),. Thus,

w1 +das

@(x; + dxy, xq, X3) — @(X;, Xg, X3) = _l. ay(&, Xq, x3) d&

L |
= dxlal(xl + 6 dxl: Xy xa)
where 0 < 6 < 1. In the limit as dx; — 0 we have

99

ax,
This can be repeated with PQ parallel to the other two axes and establishes
the representation (3.42.1).

Thus an irrotational vector field a can be characterized by any one of three
equivalent properties. They are:

—_— ﬂl(xl, xg, xa). (3.42.4}

(1) curla =0,
(ii) §a -t ds = 0 for any closed curve C,
(iii) a = Vg, where g is a scalar point function.

If the partial derivatives are only piece-wise continuous, the equivalence has
to be framed with slightly more care, but for continuously differentiable
vector fields it can be baldly stated. Some writers regard (ii) as the more
fundamental physical property and define irrotationality from this equation.

Since Vg is in the direction of the normal to a family of surfaces ¢(x,, x,, x3)
= constant, the irrotationality of the vector field implies that there is a
family of surfaces everywhere normal to the trajectories of the vector field.
Actually a = Vg says a little more than this for it would be sufficient that
a = AVg, with 4 not necessarily constant, for the normal to be in the direction
of a. Suppose that a 3= Vg but a function u can be found so that ua = V.
Then

VApa)=Vupaa+ uVpaa=VAVp=0, (3.42.5)

Now a - (Vu A a) is identically zero, so that forming the scalar product of &
with Eq. (3.42.5)

ua - (Vaa)=0,
Thus if u 5 0 it is necessary that
a:(Vpaa)=0 (3.42.6)

if the integrating factor u is to exist. It follows that for such a family of
surfaces to exist the vector field must be complex lamellar. Conversely it can
be shown (Ex. 3.42) that if the field is complex lamellar, an integrating factor
exists. The family of surfaces ¢ = constant is called the normal congruence of
the vector field a, and it is necessary and sufficient for a field to be complex
lamellar if it is to have a normal congruence.
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Exercise 3.42.1. If a- V A a = 0 and pu is any function of x, then

(ua) - V A (ua) = 0.

Exercise 3.42.2. If ai + a; # 0, show that the existence of an integrating
factor u, such that u(a, dx, + a, dx;) = Vg, follows from the existence of
solutions of the ordinary differential equation dx,/dx, = —a,/a,.

Exercise 3.42.3. By first taking x; to be constant, show that there exists a
function A(x,, X,, x3) and an integrating factor u, such that a-dx =
dA + B dx; where B = ua; — 0A[Ox;. Show further that

0A 0B 9B 04 _ d(4, B)
0x,0x, 0x,0%x, O(xy, Xp)

Exercise 3.42.4. The vanishing of the Jacobian 9(A4, B)[0(x;, x;) implies a
relation between A4 and B which is independent of x, and x,. By
combining the results of the three preceding exercises, show that
a - (V A a) = 0is a sufficient condition for the existence of an integrating
factor A such that ia = V.

pa s (VA pa) =

3.43. Solenoidal vector fields

A solenoidal vector field is one for which
V-a=0. (3.43.1)

By Green's theorem this is equivalent to saying that

[[a-nds=0 (3.43.2)
5

for any closed surface S. We shall now show that a can be represented as the
curl of a vector field yVy, depending on the two scalar functions p and %.
Consider the system of differential equations

_dx  __dx  __ dxs (3.43.3)
ay(xy, X9, X3)  Ag(Xy, Xg, X3)  @g(Xy, Xp, X3)

If the a, are continuously differentiable, these equations have two independent
solutions which may be written

Si(x1, X9, X3) = ¢; and  fo(xg, X5, Xg) = Cy.

Since a is tangent to either of these surfaces, it is orthogonal to both their

normals and so
a = i?ﬁ AV (3.43.9)
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for some scalar function A, Now let f3(x;, X5, X3) be a third function such that
(VAA V) Vfa#0; (3.43.5)

that is, the normal to the surfaces f3 = c3 is not in the plane of the other two
normals. Then we can take f}, f,, and f; as coordinates of the point x, and by
the rules of partial differentiation

_9 3
ax,- ox; Ei_,f'iT
Thus
vam 2 (i, 2 )
ox, Ox, ox; 0

aai o, of o
of, “% By, Ox, 0x, 3;::j|=

04 ofy o Oy
3.43.6
e ik dx; 0x, 0x, ( )

since all other terms vanish. However, if V:a = 0 comparison with Eq.
(3.43.5) shows that

a_

fs
or Ais a function of f; and f, only. Let

p=[adf,
where the integration is carried out with f, constant. Then
Vy =AVf, + ajvfa
>
and
If, therefore, we let y = f,, we have, by Eq. (3.43.4) and this last equation,
a=VypAaVy=VaA@Vy, (3.43.8)

which is the required representation. Notice that
V- (VA Vy) =0
so that the representation can also be given in the form

a=VAa, V.a=0, (3.43.9)
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where a is a vector function of position. « is not unique for we could add to
a any irrotational vector field B and, since V A = 0, we would have

VA(e +B)= VAa=a.
A concrete example will help to make this clear. Suppose

ﬁ1=0, ﬂ==mx33 ‘13:&,
r r
where r? = x;x,.
Then Eq. (3.43.3) are
dx, _ _dx; _ dx (3.43.10)
0 —xafr  xyfr

of which we immediately have two integrals
f1=x1’ f2=P={xg+x31m
Now Vf} = ey and Vf, = (Xse) + X3¢(3))/p s0
Vi A Vo = (—x3e) + Xg(3)/p.
Hence A = pfr so that

dx
—(21df, = Pe* _ 1
v=[rdh = [t = e )

a=VA[pln(x, + nNVp].

and we can write

Notice that this representation is not unique, for another pair of functions
satisfying Eq. (3.43.10) would be

h=x, fo=r= {xf + xg + xg}‘”,

and now Vf; A Vf, = (—x3ze( + xge()/r, so that a simpler pair of functions
SYy=0x,x=r

The continuously differentiable solenoidal vector field thus has three
equivalent characteristics:

(i) V-a=0,
(i) ff a+-n dS = O for any closed surface S,
(iii) a = V A a, where a is itself solenoidal.

Exercise 3.43.1. Show that f(r)w A x, where w is a constant vector and
r? = x+x, is a solenoidal vector field. Construct its representation as
VA@Vy)and VAa.

Exercise 3.43.2. Show that the strength of a vector tube in a solenoidal field
is the same for all cross-sections.
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3.44. Helmholtz’ representation

The results that have been obtained for the representation of solenoidal and
irrotational vector fields can be combined to give a representation of an
arbitrary continuously differentiable vector field. Thus for any finite,

A

Fig. 3.12

continuous vector field which vanishes at infinity we may always find three
scalar functions ¢, y, and y such that

a= Vg + VA(@pVy). (3.44.1)

Equivalently we may find a scalar function ¢ and a solenoidal vector field «
such that

a=Vp+ Vaa (3.44.2)
Thus the vector field is decomposed into an irrotational and a solenoidal part.

To prove this theorem we need a formula for the solution of Poisson’s
equation

V2 = —flx;, x5, X3). (3.44.3)
This is provided by the integral
_(((f®
w0 =[[[ 7= av. (3.44.9)

The integral is over the whole of space, for if f is only defined in a certain
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region, we may set it equal to zero outside and if it is defined everywhere we
require that it tend to zero towards infinity. Fig. 3.12 illustrates the integral ;
r is the distance between the point x and the element of integtation at E so

Pr=lx—§P=(x— 8- (x— B
Consider the gradient of ¢, the vector

”If(ﬁ) (x — E) dV,.

If we integrate V2p over some finite volume ¥ we have by Green’s theorem

J‘J;jwqadv,=£fv¢-nds,
=—£jds,jfjﬁ—fltx—a)-nd%

- —[[[1® av, Lf%ds,,

by changing the order of integration. However, (x — E)/r is a unit vector in
the direction PQ [Fig. 3.12b), so m.(x — E) dS/r® is just the solid angle
subtended at P by the element of area at Q. Now if P is outside of V, the
integral of this solid angle is zero for the contributions from the elements at
Q and Q' are equal and opposite. However, if P is within ¥, then the integral
is the total solid angle, namely, 4=. It follows that

I @__Md‘g:[l if Eisin V, (3.44.5)
s  4mr 0 if € is outside V.

Thus the last integral over the whole space of E has zero integrand outside of
V and so may be regarded as the integral over ¥ only. Then

I.'Uw‘?’d"= —flff(x)du

Since the volume V' was arbitrary this equation can only be satisfied if
V2g = —f everywhere, and we see that Eq. (3.44.4) does give the solution.

Returning now to the arbitrary vector field a we see that if it can be written
in the form Vg + V A (pVy) then we have V - a = V2p. Now this equation
may be solved by the formula we have just constructed and ¢ given by

o= Jf T2, 644

Now a — Vg is a solenoidal vector for V.(a — V@) = 0. Hence by the
methods of the preceding paragraph we can construct functions y and y or a
solenoidal vector & such that

a—Vop=VA@pVp)=VAa
which was to be proved.
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Exercise 3.44.1. By the vector form of Poisson’s equation we mean Ve = g
where each component has to satisfy Poisson’s equation. By considering
V A a show that the vector « of Eq. (3.44.2) is given by

. (VAa)dv;
=
and complete the representation in the form of Eq. (3.44.2).

3.45. Other representations

We can also represent an arbitrary vector field as the super-position of
irrotational and complex lamellar fields,

a= Vg4 »Vy. (3.45.1)

for V A ais certainly solenoidal, and so by Section 3.43 may be represented as
V A (wVy). However, VA (a — pVy) = 0,so thata — pVyis an irrotational
vector field and therefore can be represented as the gradient of a scalar ¢.
@, ¥, and y in this representation are known as Monge’s potentials. '

a-(VAa)y=(Ve+ vVy) (Ve AVy)
=V (VyAVy)
_ (e, ¥, %)
0(x1, Xg, X3)

A field for which a A (V A a) = 0 has been called a Beltrami field. This
equation means that a and curl a are parallel and so

(3.45.2)

VAaa=0Qa (3.45.3)

where Q is called the abnormality of the field. Q = 0 is the condition for the
vector field to have a normal congruence of surfaces and this is the reason for
the term. If ais represented in the form of Eq. (3.45.1) and is a Beltrami field,
then
aA(VAaa)= (Vo + V) A(VyA Vy)

= Vp{Vi - (Vo + vV} — V{Vy - (Vo + yVy)}

= (.
Now if the quantities in the brackets {} are not zero, this means that Vy and
Vy are parallel, and, therefore,

vtph ?g: VAa=0.
Thus, except where V A a = 0, we must have
Vi (Vo + V)= Vy.a =0,
V- (Vo + 9Vy)=Vyp.a=0. (3.45.4)



§3.45. Other Representations 73

It follows from the first of these that

— :‘g_}_ﬁ’ (3.45.5)
z
so that

and from the second,

v(M) : [ _Vx-Vg ] —
o ) LY e AT
A Trkalian field is one for which Q = k, a constant. Since in this case
a = (V A a)/k it follows that V - a = 0 and so a Trkalian field is a solenoidal
Beltrami field. There are, however, solenoidal Beltrami fields which are not
Trkalian. Since
VAa=ka

VA(VAa)=kVAa= k%
However, by Ex. 3.24.5and V.a =0,
Via + k%a = 0. (3.45.6)

Thus a Trkalian vector field satisfies the Helmholtz equation. Bjergum and
Godal have shown that if 4 is any solution of the wave equation

Vih 4+ k*h =0
then
a=kVhAe+ ekPh 4 (e V)Vh, (3.45.7)

where eis an arbitrary constant unit vector, is the representation of a Trkalian
vector field. The interest in these fields arises from the importance of Beltrami
motions in which a is the velocity vector. These have been extensively studied
by Truesdell and Bjergum.

Another form of decomposition with some similarity to the Helmholtz
theorem has recently been given. Any vector field can be represented as

a=xXAV)p+(xAV)Aa+ «a (3.45.8)
where « is a vector saﬁsfﬁng
xAV)+a=0,
and (XAVIAXAV)p=—(xAV)p.

The proof of this is beyond our scope here, but is to be found in the paper by
J. S. Lomont and H. E. Moses. (Communications on Pure and Applied

Mathematics, 14 (1961), pp. 69-76.)
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Exercise 3.45.1. Show that for the Beltrami field

_ _Vo-(VypAVy :
Q= . Bjorgum)
(Vo — v(V2) (Blorgum

Exercise 3.45.2. Show that if V A a = Qa, then

Q= (VA agﬁi’i h)g‘? Aa) . (Truesdell)
a

Exercise 3.45.3. Show that successive curls of a Trkalian field are Trkalian

with the same constant k.

Exercise 3.45.4. If a = Vo + yVy, show that

3.1.

3.2,

3.3.

3.4.

(a-V)a=3V(Vep + V)P + [Vy - (Vo + vV)]Vy
— [Vx - (Vo + »V)IVy.
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The Kinematics of 4
Fluid Motion

4.11. Particle paths

Kinematics is the description of motion per se. It takes no account of how
the motion is brought about or of the forces involved for these are in the
realm of dynamics. Consequently the results of kinematical studies apply to
all types.of fluid and are the ground work on which the dynamical results are
constructed.

The basic mathematical idea of a fluid motion is that it can be described by
a point transformation. At some instant we look at the fluid and remark that
a certain “‘particle” is at a position § and at a later time the same particle is at
position x. Without loss of generality, we can take the first instant to be the
time + = 0 and if the later instant is time ¢ we say that x is a function of ¢ and

the initial position &,
x=x(, 1 or x;,=x(§, &, &, 1) (4.1L.1)

Of course we have immediately violated the concepts of the kinetic theory of

fluids for in this theory the particles are the molecules and these are in random

motion. In fact we have replaced the molecular picture by that of a con-

tinuum whose velocity at any point is the average velocity of the molecules in

a suitable neighborhood of the point. As we have noted in Chapter 1, the
76
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definition of average needs some care in this context, but this idealization
which endows the elementary portions of the fluid with a permanence denied
them by molecular theory is the key to the classical treatment of fluid motion.

The initial coordinates € of a particle will be referred to as the material
coordinates of the particle and, when convenient, the particle itself may be
called the particle §. The terms convected and Lagrangian coordinates are
also used. The former is a sensible term since the material coordinate system
is convected with the fluid; the latter is both a misnomer* and, lacking
descriptive quality, is often forgotten or confused by the student. The spatial
coordinates x of the particle may be referred to as its position or place. 1t will
be assumed that the motion is continuous, single valued and that Eq. (4.11.1)
can be inverted to give the initial position or material coordinates of the
particle which is at any position x at time ¢; that is,

E=E(x,t) or & = &(x;, xp X3, 1) (4.11.2)

are also continuous and single valued. Physically this means that a continuous
arc of particles does not break up during the motion or that the particles in
the neighborhood of a given particle continue in its neighborhood during the
motion. The single valuedness of the equations means that a particle cannot
split up and occupy two places nor can two distinct particles occupy the same
place. Assumptions must also be made about the continuity of derivatives.
It is usual (see, for example, Serrin, Handbuch der Physik Bd. VIII/1, p. 129)
to assume continuity up to the third order derivatives. Exception to these
requirements may be allowed on a finite number of singular surfaces, lines or
points, as for example when a fluid divides around an obstacle. It is shown in
Appendix B that a necessary and sufficient condition for the inverse functions
to exist is that the Jacobian

g = %00 X %) (4.11.3)

a(El!r ‘52! ‘53)
should not vanish.

The transformation (4.11.1) may be looked at as the parametric equation
of a curve in space with ¢ as parameter. The curve goes through the point E,
corresponding to the parameter ¢ = 0, and these curves are called the particle
paths. Any property of the fluid may be followed along the particle path.
For example, we might be given the density in the neighborhood of a particle
as a function p(E, f), meaning that for any prescribed particle § we have the
density as a function of time, that is, the density that an observer riding on the
particle would see. (Position itself is a “property” in this general sense so
that the equations of the particle path are of this form.) This material

* The term Eulerian is also applied to the spatial coordinates x. Truesdell, in a footnote
of customary erudition (Kinematics of vorticity, p. 30), has traced the origin of this in-
correct usage.
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description of the change of some property, say #(E, 1), can be changed intoa
spatial description #(x, t) by Eq. (4.11.2),

F(x, t) = FIEX, 1), 1). (4.11.4)

Physically this says that the value of the property at position x and time ¢ is
the value appropriate to the particle which is at x at time 7. Conversely, the
material description can be derived from the spatial one by Egs. (4.11.1)

FE, 1) = F[xE, 1), 1), (4.11.5)

meaning that the value as seen by the particle at time ¢ is the value at the
position it occupies at that time,

Associated with these two descriptions are two derivatives with respect to
time. We shall denote them by

-Ba_t = (Bﬁ) = derivative with respect to time keeping x constant, (4.11.6)
1/ =
and

Ed; == (éa—) == derivative with respect to time keeping € constant.  (4.11.7)
1/ &

Thus 04 [0t is the rate of change of % as observed at a fixed point x, whereas

d% |dt is the rate of change as observed when moving with the particle. The

latter we call the material derivative.* In particular the material derivative of

the position of a particle is its velocity. Thus, putting # = x;, we have

dx, @
b, = —f = = 5l b b 1) (4.11.8)
or
_ dx
Y= 7 .

This allows us to establish a connection between the two derivatives, for

d‘—f = -B—F(E, t) = %ﬁ[x(g: t), f]

dt ot
ax‘ ot/ ¢ ot /=
_ 0% L% (4.11.9)

* It is also called the convected or convective derivative and often denoted by D/ D¢,
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1t is sometimes convenient to write this as

dF oF
— T - v » - .
=t NF (4.11.10)

Exercise 4.11.1. It is not always necessary to use the initial position as
material coordinate. Consider the equations for the particle paths in
Gerstner waves

x; = a + (e~ **[k) sin k(a + ct),
Xy = —b — (e7**/k) cos k(a + cf),

Relate the constants @ and b to the initial position and show that the
particle paths are circles. Find the velocity vector and show that

d|v| Jdt = 0.

Exercise 4.11.2. Show that the Jacobian Eq. (4.11.3) is 1 for the Gerstner
wave,

Exercise 4.11.3. Show that f(x, ) =0 is a surface of the same material
particles if and only if

of o
g, 9, o
a  ox,

Exercise 4.11.4. If f(x, ) is not a material surface but moves with a speed u
different from the stream speed v, show that

afjds
VS

where n is the normal to the surface.

(v—u)+n=

4.12. Streamlines

From the material description x(E, ¢) of the flow we have derived a vector

field
v = dx/dt = v(x,, X,, X3, 1). (4.12.1)

The flow is called steady if the velocity components are independent of time.
The trajectories of the velocity field are called streamlines; they are the

solutions of the three simultaneous equations

x_y or ‘% — 0(%y, Xg» X 1) (4.12.2)
5

ds
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where s is a parameter along the streamline. This parameter s is not to be
confused with the time, for in Eq. (4.12.2) ¢ is held fixed while the equations
are integrated, and the resulting curves are the streamlines at the instant t.
These may vary from instant to instant and in general will not coincide with

the particle paths.
To obtain the particle paths from the velocity field we have to

follow the motion of each particle. This means we have to solve the
differential equations
dx;

dt = 0%y, X3, X3, 1)

subject to x; = §;at = 0.

If the functions v; do not depend on ¢, then the parameter s along the stream-
lines may be taken to be ¢ and clearly the streamlines and particle paths will
coincide. Exercise 4.12.1 shows that streamlines and particle paths may
coincide for an unsteady motion.

The acceleration or rate of change of velocity is defined as

dv ov
— - « Vv, 4.12.3
a t Py + (v+V)v ( )

Notice that in steady flow this does not vanish but reduces to

a= (v V)v. (4.12.4)

The higher rates of change are sometimes used and defined by repeated
material differentiation; thus the (n — 1) acceleration* is

vm) = dytn—1)/dy, (4.12.5)

If Cis a closed curve in region of flow, the streamlines through every point
of C generate a surface known as a stream tube. Let S be a surface with C

as bounding curve, then
| J-\r -ndS
s
is known as the strength of the stream tube at its cross-section S.

Exercise 4.12.1. Show that the streamlines and particle paths coincide for the
flow v, = x,/(1 4 1).

* This is the notation of Rivlin and Ericksen, “Stress deformation relations for iso-
tropic materials,” J. Rat. Mech. and Anal. 4 (1955), p. 329.
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Exercise 4.12.2. Show that if v,/ |v| is independent of ¢, then streamlines and
particle paths will coincide.

Exercise 4.12.3. Find the streamlines and particle paths for

_ X
14 a;t

v;

where a; are positive constants. (There is no summation on i here.)
Describe the paths and streamlines if @, = 24, = 1, a3 = 0.

4.13. Streaklines

The name streakline is applied to the curve traced out by a plume of smoke
or dye which is continuously injected at a fixed point but does not diffuse.
Thus at time ¢ the streakline through a fixed point y is a curve going fromy to
x(y, t), the position reached by the particle which was aty at time t = 0. A
particle is on the streakline if it passed the fixed point y at some time between
0 and t. If this time were s, then the material coordinates of the particle
would be given by Eq. (4.11.2) § = §(y, s). However, at time ¢ this particle is
at x = x(&, ¢) so that the equation of the streakline at time t is given by

x = x[&(y, 9), 1], (4.13.1)

where the parameter s along it lies in the interval 0 = s =< t. If we regard the
motion as having been proceeding for all time, then the origin of time is
arbitrary and s can take negative values —o0 < s < ¢,

These concepts may be illustrated by the simple plane flow

vy = x,f(1 4+ 1), Vg = Xg, vy = 0.

Here the streamlines at time ¢ are the solutions of

E‘. — i d—x2 = xﬁi d—'xa S5 D. {4.13f2)

ds 1+1"r ds s

Thus keeping  constant the streamline through a is
x, = a,eMt) x, =a,ef, x;=a,

which is a curve in the plane x; = a4

(1+1)
I (ﬁ) (4.13.3)

as a,

The streamlines are shown for increasing ¢ in Fig. 4.1a,
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The particle paths are solutions of

dx1 X de_ Eﬁ= 4.13.4
dt 14+t a dt ' (4.13.4)

These are x, = &,(1 4 1), x, = &€, x5 = &; or the curves in the plane x; = &3
X, = &, et (4.13.5)

They are shown for several initial positions in Fig. 4.1b.

Xah X:l
6 =Xy Xy
=
(a) #>0
e *24 5§20
// 5=t
e >, » X,
(b) (e)
Fig. 4.1

For the inverse relations defining the particle at y, at times we have

]

£ = I—E—; £ =y, & =y, (4.13.6)

Hence, the streakline is given by

=y LE

=Nniy Xy = €, X3 =y, (4.13.7)

This, with some of the particle paths that contribute to it, is shown in Fig.
4.1c. (For other examples of streamlines, streaklines and particle paths see
Truesdell and Toupin, Handbuch der Physik III/1, Berlin, Springer-Verlag,
1960, pages 331-336, where further references will be found.)
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4.21. Dilatation

We have noticed in Section 3.16 that if the coordinate system is changed
from coordinates § to coordinates x, then the element of volume changes by
the formula

dv = 9CuXu Xa) e e ar _ g ay 4.21.1)
A&, &, &) 2o (

If we think of § as the material coordinates, they are Cartesian coordinates at
t = 0, so that df, d&, d&, is the volume d¥V, of an elementary parallelepiped.
Consider this elementary parallele-
piped about a given point E at the x=x (&, @
initial instant. By the motion this

parallelepiped is moved and distorted
but because the motion is continuous
it cannot break up and so at time ¢
is some neighborhood of the point
x = x(, 1). By Eq. (4.21.1), its volume ECD 7Y%
is dV = J dV, and hence

dVv . 0 > 2
J= _V = ratio of an elementary
®  material volume to f
itsinitial volume. (4.21.2) Fig. 4.2

It is called the dilatation or expansion. The assumption that the Eq. (4.11.1)
can be inverted to give Eq. (4.11.2), and vice versa, is equivalent to requiring
that neither J nor J-! vanish. Thus,

0<J< . - (421.3)

We can now ask how the dilatation changes as we follow the motion. To
answer this we calculate the material derivative dJ/dt. However,

Ox; 0x, 0x,
06, 0%, 0&
ax2 ax2 'axg
J = . 4214

o, &, &, @24
Oxg 0Oxg 00X,

| 06, 0&, 0&;

d (ax,-) 0 dx; _ oy,
— = 4.21.4
dt \o¢&, a;i dt agi ( )

Now
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for ddt is differentiation with § constant so that the order can be interchanged.
Now if we regard v, as a function of x;, x,, and x;,

ov; _ ov; 0x, n Ov; 0xy | Ov, x5 _ Ov; 0%, . (4.21.5)
0t, Ox, 0F, Ox,0f, 0x306, 0x, 0f;
In Appendix A it is shown that the derivative of the determinant is the sum of

three terms in each of which only one row is differentiated. Thus for dJ/dt we
should have the sum of three determinants of which the first would be

dv, Ov, Ou dv, Ox, Ov, Ox; Ov, 0x;
0, 0&, 0% Ox, 0%, 0Ox, 0f, 0Ox, 0&;
Ox; Oxp Oxp| | Oxg 0x, 0x,

o0&, 0, 0&L| | 0& &, 043 j'
Ox; Oxg O0xg 0x; 0x3 0x4

0&, 0%, 04 0, &, 0&;

In expanding this determinant by the first row we see that only the first term
(k = 1) of the elements in the first row survive, for with kK = 2 or 3 the co-
efficient of 9v,/0x, is a determinant with two rows the same and so vanishes.
The value of this determinant is thus (dv,/0x;)J. Considering also the other
two terms in the differentiation we see that

dJ (31:«1 ov, 31:3)
o J
it \ox, ox, | 0%,

or d(In J)/dt = diy v. 4.21.5)

We thus have an important physical meaning for the divergence of the
velocity field. It is the relative rate of change of the dilatation following a
particle path. It is evident, that for an incompressible fluid motion,

V.v=0. (4.21.6)
Exercise 4.21.1. Calculate J for (a) Gerstner waves and (b) the flow of Ex.
4.12.3 and confirm Eq. (4.21.5).

Exercise 4.21.2. Show that in steady flow d%J/d* = JV - {(V - v)v} and find a
similar expression for higher derivatives. '

4.22. Reynolds’ transport theorem

An important kinematical theorem can be derived from the so-called
Euler expansion formula, Eq. (4.21.5). Itis due to Reynolds and concerns the
rate of change not of an infinitesimal element of volume but of any volume



§4.22. Reynolds’ Transport Theorem 85

integral, Let #(x, f) be any function and ¥(f) be a closed volume moving
with the fluid, that is, consisting of the same fluid particles. Then

Fi) = [[[#x av 4.22.1)

Vit

is a function of ¢ that can be calculated. We are interested in its material
derivative dF/dt. Now the integral is over the varying volume F(t) so we
cannot take the differentiation through the integral sign. If, however, the
integration were with respect to a volume in &-space it would be possible to
interchange differentiation and integration since djdt is differentiation with
respect to time keeping E constant. However, the transformation x = x(, ),
dV = JdV, allows us to do just this, for ¥(t) has been defined as a moving
material volume and so has come from some fixed volume ¥, at time ¢ = 0.

Thus

—mﬁ"( Hdv = —Hjﬁ[x(ﬁ 0), 11 dv,

V'[l]'
dF dJ’)
= —J+F dV,
-U ~ (dt ) 4

=” {df+f(v )}J’dV

= [ff {“"F +FV- )} av. (4.22.2)
vy | 4
Since dfdt = (8/0t) + v+ V we can throw this formula into a number of
different shapes. Substituting for the material derivative and collecting
the gradient terms gives

dffff(x dv= ””ai+\? (Fv }}dv (4.22.3)

Fit) Fit)

Now applying Green’s theorem to the second integral we have

_”J‘f(" f)dvV = ”f dV+ﬂfvfnds, (4.22.4)

Vi) Vit 8it)

where S(¢) is the surface of V(). This admits of an immediate physical
picture for it says that the rate of change of the integral of & within the
moving volume is the integral of the rate of change at a point plus the net
flow of & over the surface. % can be any scalar or tensor component, so that
this is a kinematical result of wide application.
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Exercise 4.22.1, Show that if V . v = 0 the motion proceeds without change
of volume. (Such a motion is called isochoric. An incompressible fluid
cannot but be in isochoric motion, but isochoric motions of a com-
pressible fluid are also possible.)

Exercise 4.22.2. Show that in isochoric motion the strength of any stream tube
is constant,

Exercise 4.22.3. Show that the moment
JJ-J {v.x""}dv = ”‘(v -n)x" 0 ds — _U(v n)x{"*V ds
¥V Sh

V is the volume between any two sections S; and S, of a stream tube and
the motion is isochoric. (See Ex. 3.23.4 for notation and hint.) What is
the value of the moment if the stream tube should close on itself?

Exercise 4.22.4. V is composed of two volumes V] and ¥V, divided by an
internal surface Z and S is the external surface of V. V is a material
volume but as £ moves with arbitrary velocity u and across it & suffers a
discontinuity, &, and &, being its values on either side. If v is the
normal to X in the direction from V] to ¥, show that Eq. (4.22.4) may be
generalised to

—III.%"dV J'J'J' dV+J'J"9rf nds+”(.sr — Fu-vds.

(Truesdell and Toupin).

Exercise 4.22.5. The surface element dS with normal n corresponding to two
displacements dx and dy is given by n dS = dx A dy. By making these
displacements correspond to differences in material coordinates d§ and
dn that define an area element v do, show that

n, -@f-‘ds—}v do.

359
By differentiating this materially with respect to time, show that

—(n, ds) = a"’ iy, dS — g"i n, ds.

X; X

Exercise 4.22.6. Obtain a transport theorem for surface integrals in the form

%J’Ja.nds=g[j—?+n(?-v)—(n-€’)v] +n dS,

and reconcile this with Ex. 3.32.5.
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Exercise 4,22.7. Show that if

:—:‘+V(V-n)—|—?h(ah\r)=0,

the strength of any vector tube in the field a at a material cross-section
remains constant.

4.3. Conservation of mass and the equation of continuity

Although the idea of mass is not a kinematical one it is convenient to
introduce it here and to obtain the continuity equation. Let p(x, ) be the
mass per unit volume of a homogeneous fluid at position x and time t.
Then the mass of any finite volume ¥ is

m= [ [ [ptx, 1yav. (43.1)
¥V

If ¥ is a material volume, that is, if it is composed of the same particles, and
there are no sources or sinks in the medium we take it as a principle that the
mass does not change. By inserting # = p in Eq. (4.22.2) we have

%‘ =[] [j_:’ + p(V- v)} dv=0. (4.3.2)
V

Now this is true for an arbitrary volume and hence the integrand itself must
vanish everywhere. Suppose it did not vanish at some point P, but were
positive there. Then since the integrand is continuous it would have to be
positive for some neighborhood of P and we might take ¥ to be entirely
within this neighborhood, and for this ¥ the integral would not vanish. It
follows that

dp dp
od il V)=-L1V. = 4.3.3
it + p(V-v) ot +Ve(pv) =0 ( )

which is the equation of continuity.
Combining the equation of continuity with Reynolds’ transport theorem
for a function & = pF we have

inIdeV——— ”J‘L%(pFHpF(?-v}}dV

Vit Vit

=1+ G o) o

Vit)

=[] [e i 4.3.4)

since the second term vanishes by (4.3.3).
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A fluid for which the density p is constant is called incompressible. In this
case the equation of continuity becomes

Vev=0 (4.3.5)

and the motion is isochoric or the velocity field solenoidal.

Exercise 4.3.1. Show that if py(E) is the distribution of density of the fluid at
time t = 0 and V(V - v) = 0, then the distribution at time ¢ is

p(x, 1) = po[ E(x, )] exp —_E(? V) dt.
Exercise 4.3.2. Show that, for the motion of Ex, 4.12.3,
pX1XgXs = pofiéaba.

4.41. Deformation and rate of strain

Consider two nearby points P and Q with material coordinates § and
E 4 dE. At time 7 they are to be found at x(§, #) and x(§ + 4§, 1). Now

x(E + dE, 1) = x(&, 1) + 9 %, X dE, + 0(d?), (4.41.1)

where 0(d?) represents terms of order d€* and higher which will be neglected
from this point onwards. Thus the small displacement vector d§ has now
become

dx = x(§ + dE, 1) — x(§, 1)

where
0x;
0&,

It is clear from the quotient rule (since d§ is arbitrary) that the nine quantities
0x,/0&, are the components of a tensor. It may be called the displacement
gradient tensor and is basic to the theory of elasticity. For fluid motion, its
material derivative is of more direct application and we will concentrate on
this.

If v = dx/dt is the velocity, the relative velocity of two particles § and
E + d§ has components

dx; = —d¢;. (4.41.2)

ov d (ox :
dy; = —* d&, = ( ‘) dé;. 4.41.3
D, P E, k= 3 E, i ( )
However, by inverting the relation of Eq. (4.41.2), we have
a&k au,
d dx dx, 4.41.4
= ag ox, 4T ox, (441.4)
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expressing the relative velocity in terms of current relative position. Again it
is evident that the (dv,/0x,) are components of a tensor, the velocity gradient
tensor, for which we need to obtain a sound physical feeling.

We first observe that if the motion is a rigid body translation with velocity u,

x =& 4+ ut (4.41.5)

and the velocity gradient tensor vanishes identically. Secondly, the velocity
gradient tensor can be written as the sum of symmetric and antisymmetric

parts,
Efi_l(aﬁ %) 1(%_?}’_:)
ox, 2 \ox, + ox; + 2 \ox, Ox,

e+ Q. (4.41.5)

Now we have seen (Section 2.45) that a relative velocity dv; related to the
relative position dx; by an antisymmetric tensor {1y;: therefore dv; = ; dx;,

represents a rigid body rotation with angular velocity w = —vec . In this
case . 1 8
= — ey Q= = € X
Wy, = 9 Edkﬂfk 2 €isk axj (4'41 6)
or w = % curl v,

(Cf. Ex. 3.24.8.) Thus the antisymmetric part of the velocity gradient tensor
corresponds to a rigid body rotation, and, if the motion is a rigid one
(composed of a translation plus a rotation), the symmetric part of the velocity
gradient tensor will vanish. For this reason the tensor e;; is called the
deformation or rate of strain tensor and its vanishing is necessary and
sufficient for the motion to be without deformation, that is, rigid.

Exercise 4.41.1. If e;; = 0 show that
v, = E‘jtm’xh + "‘

where w; and u; are constants,

4.42. Physical interpretation of the deformation tensor

To interpret the tensor e;; we shall see how a small element is changing
during the motion. The length of the line segment from P to Q is ds, where

ox, 0x;
ds® = dx; dx, = — — dE, d¢,. 4.42.1
N Xi AX4 a{;'j a&,k &, d&, ( )
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Now P and Q are the material particles § and § -+ dE so that d¢; and d¢; do
not change during the motion. Thus

d ou,; Ox ox, ov, ov, 0x;
_d:,.a:( (0% | 0% 00 ge ge — 2 9% 0% 4e g
dt{ ) ok, 0¢, oL, 8/ 1" T @k, 8k, !

by symmetry. However,

ov; ov; 0x;
Tige, =Lt g d Mgg =d
2, 4 o, X; an T A X;
Thus

1d d ov,
7 (ds®) = (ds) =, (d9) = 3_.!:: dx; dx; = e,; dx, dx, 4.42.2)

by symmetry, or
L4 g5y = e, Pty (4.42.3)
(ds) dt ds ds
Now dx,/ds is the i"" component of a unit vector in the direction of the
segment PQ, so that this equation says that the rate of change of the length of
the segment as a fraction of its length is related to its direction through the
deformation tensor.
34 ) 0 In particular, if PQ is parallel to the
N coordinate axis 01 we have dx/ds =

P’ e, and
o T 1 4

L/40 dx, dr (dx;) = €. (4.42.4)
Thus e, is the rate of longitudinal
strain of an element parallel to the Ol
0 axis. Similar interpretations apply to
1 €y and ea,.

Fig. 4.3 Again consider two segments PQ
and PR, where R is the particle § + dE'.

If 6 is the angle between them and ds’ is the length of PR,

ds ds’ cos 0 = dx; dx|.

Differentiating with respect to time we have

{%[ds ds’ cos 0] = dv, dx, + dx, dv
Oy,

= —dx; dx; + dx; v dx;
X Xj
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since dv; = (dv,/0x,) dx;. The i and j are dummy suffixes so we may inter-
change them in the first term on the right, then performing the differentiation
we have

1 1 df
CGSH{(‘J—}E‘( )+(‘E'—)t}‘(d )}—Slﬂﬂg

ov, au-) dx; dx; dx; dx;
— i ] — 2 il Sl |
(ax'- T ox,/ ds ds' o ds' ds

Now suppose that dx’ is parallel to the axis Ol and dx to the axis 02, so that
(dx;/ds") = d;; and (dx;/ds) = é,, and 6, = =[2. Then

— 29, (4.21.5)

Thus e,, is to be interpreted as one-half the rate of decrease of the angle
between two segments originally parallel to the O1 and 02 axes respectively.
Similar interpretations are appropriate to e,3 and ey,.

The fact that the deformation tensor is linear in the velocity field has an
important consequence. Since we may superimpose two velocity fields to
form a third, it follows that the deformation tensor of this is the sum of the
deformation tensors of the fields from which it is composed. Thus a flow
with v; = 4;x,, v, = v; = 0 would have only one nonvanishing component
of the rate of strain tensor, e;; = 4;. This represents a pure strefching in the
01 direction with no deformation of an element perpendicular. Again, if
v; = Ax; (no summation on i), we have a deformation which is the super-
position of three stretchings parallel to the three axes. However, if v; = f(x,),
vy = vy = 0 so that the only nonzero component of the deformation tensor
is ¢, = 4f'(x,), the motion is one of pure shear in which elements parallel to
the coordinate axes are not stretched at all. Note however that in pure
stretching an element not parallel or perpendicular to the direction of stretch-
ing will suffer rotation. Likewise in pure shear an element not normal to or in
the plane of shear will suffer stretching.

Exercise 4.42.1. Follow through the ideas of this section for the
plane stagnation flow v, = x;, v, = —x,, v, = 0. Show that if 6
is the angle between an infinitesimal material segment and the axis
Ol, then the rate of change of log tan 6 is constant along a particle
path.

Exercise 4.42.2, Find an expression for the rate of change of the
angle between a material line segment and a fixed direction and
analyse it.
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4.43. Principal axes of deformation

The quadratic form (4.42.3) may be written
di In (ds) = e,  @43.1)
t

where 1is a unit vector in the direction PQ. From our knowledge of sym-
metric second order tensors we know that there are three mutually perpen-
dicular directions along which this expression has stationary values (see
Appendix A.12). Moreover we know from Section 2.5 and Appendix A.11
that we can find a rotation of coordinates to a frame 0123 such that the
component €,; in this frame of reference are zero if i 5= j. If dyy), dyy), dis) are
the values of &;,, &, and €34, they are roots of the cubic

det (e, — dd,) =¥ — d® + d?@ — d* = 0 (4.43.2)

(cf. Eq. 2.5.4). The three directions OI, 02, O3 are called the principal axes
of stretching or rate of strain and dy,), diy), d3, the principal rates of strain.
The three scalars ©, @,V are the invariants of the deformation tensor and the
first of them we have already encountered as the dilatation. In fact

@=€u+faz+fu=%+§£g+a—ua
ox, 0x, Oxg
© = ey9e55 — €333 1+ €3901; — ey1€13 + €116 — €136

Y = det €;5 = €;x€14€3;Cap-

We know that © is to be interpreted as the fractional rate of change of an
infinitesimal volume. Dishington (Physics of Fluids, 3, 1960, p. 482) has
given a physical interpretation to the other invariants. He finds that

. 1d%V
lim——=(V-. 20
Vl-Trth“ (V-a) +

where (V - a), is the divergence of the acceleration as measured by an observer
moving and rotating with the element.* Thus 2® is the part contributed to
the fractional acceleration of volume by the steady velocity of the surface. In
a similar way 6¥ is found to be the contribution to the limit of (d3V/df®)/V.

A picture of the deformation may be formed by considering what happens
to a small sphere of radius dr during a short interval of time ds. Suppose that
we have chosen the coordinate system so that the axes are parallel to the
principal axes of stretching at the point x. The particles on a sphere of

* This interpretation is also implicit in the formulae given by Truesdell for V + a (Kine-
matics of Vorticity, p. 79).
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radius dr and center x are X + 1 dr, where 1 is a unit vector and they have
material coordinates § + d§ where

I, dr = (%ﬁ) dt, (4.43.3)

i

In the interval from ¢ to ¢ 4~ dt the center moves from x(&, ¢) to x(&, ¢ + df).
If dy is the position of a particle that was on the surface of the sphere relative
to the new position of the center,

dy, = x{E + dE, t + dt) — x(E, t + dt)
= (g_;:)ﬂm dt, (4.43.4)
However, here 9x,/0&, is evaluated at § and # + 4, that is,
(3e). 0= G0, -0 G G
= (g—;‘ t + (% dt

Substituting this value back into Eq. (4.43.4) and using the relation (4.43.3) in
the form

dé, = (&) l;dr,
Xl ¢
we have
dy; = I, dr + 9, 98, I, dr dt
&, O0x;
= (J:., + v, dt) l,dr = Al dr (4.43.5)
0x;

Now since the coordinate axes were chosen parallel to the principal axes of
deformation e;; = 0 for i 5 j,
A =1+ e;dt, i=]J A”=1(_§f£_~§f2) =0y, P%#j.
2\ox; Ox,
The off-diagonal terms thus represent the rigid body rotation as before and
the remaining terms are purely diagonal giving, in the absence of rotation,

dy,= (1 4+ e;;dt)l;dr  (no summation).

Since 1 is a unit vector,
dy; dy;

T (1 + e, ditdr’

and this is an infinitesimal ellipsoid whose axes are coincident with the
principal axes of stretching and of lengths (1 + e, dt) dr,i = 1,2, 3. Thusin

= HM
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the complete deformation a small sphere is distorted into an ellipsoid and
rotated, as shown in Fig. 4.4.

This insight into the character of deformation is expressed by the so-called
Cauchy-Stokes decomposition theorem, which Truesdell formulates as
follows: an arbitrary instantaneous state of motion may be resolved at each

Principal axes

of defarmation \

Fig. 4.4

point into a uniform translation, a dilatation along three mutually perpendicular
axes, and a rigid rotation of these axes.

Exercise 4.43.1. Show that e;e;; = ©® — 2® and deduce that ® < 0 for an
isochoric motion.

Exercise 4.43.2. The stretching is called spherical if all the principal rates of
strain are equal. Show that in this case
2 = (30)°* = (30)°.
Exercise 4.43.3. If v, = fr)(xo]r), v = —f(r)(x,/r), v3 = 0, r*=x% + xZ, the

motion is a steady one with circular streamlines. Show that the deforma-
tion tensor is

ey = —egp = Fsin20 ey = —Fcos20
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where tan § = x,/x; and F =}{ f'(r) — f(r)/r}. Show that the principal
rates of strain are equal and opposite and find the principal axes.

4.5. Vorticity, vortex lines, and tubes

We have seen that the antisymmetric part of the rate of strain tensor
represents the local rotation, in fact vec & = } curlv. The curl of the
velocity is known as the vorticity,

w=VAV. (4.5.1)

For an irrotational flow the vorticity vanishes everywhere. The trajectories of
the vortex field are called vortex lines and the surface generated by the vortex
lines through a closed curve C is a vortex tube. Since the strength of a vector
tube of the field a at its section S has been defined as

J;J.n*nds

we see that the strength of a vortex tube equals the circulation round the
closed curve C which bounds the cross-section S, for

Lj (vh?)'nd3=§c‘r*tds (4.5.2)

by Stokes’ theorem.

The kinematics of vorticity has been elegantly and extensively treated by
Truesdell in a monograph of that title (Indiana University Press, 1954) and in
the appropriate sections of Bd. III/1 of the Handbuch der Physik. Here we
have no intention of covering or even attempting to survey the full scope of
the theory; it will be sufficient if the reader’s buoyancy is increased enough
for him to enjoy swimming in these waters. Truesdell collects four inter-
pretations of the vorticity some of which we have already encountered. First,
since the curl can be defined in terms of the circulation around an infinitesimal
curve, the component of vorticity in a given direction is the circulation
around a small circuit in a plane normal to that direction. Second, for a rigid
body rotation the angular velocity is 4 curlv. Now the principal axes are
unchanged by the deformation part of the rate of strain tensor and hence 4w is
the angular velocity of the principal axes at a point with respect to a fixed
coordinate system. Third, it may be shown that 3w, is the mean value of the
angular velocity of two line segments through the point parallel to the 02 and
O3 axes. The fourth interpretation is related to the last and identifies 4w, as
the mean value of all the rates of rotation about an axis parallel to O1 of line
segments in a plane normal to O1. The last two interpretations can of course
be generalized to relate iw - n to the mean rates of rotation of segments in a
plane with normal n.
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We observe that the strength of a vortex tube at any cross-section is the
same, for w is a solenoidal vector. One characterisation of the solenoidal
field is the vanishing of [ w - n dS over any closed surface. Take this closed
surface to be a stream tube with sections S, and S, whose boundary curves are
C; and C,. If nis the outward normal, it will be the positive normal (in the
sense of being right-handed for a given circuit of C) for one of S, and S, and
negative for the other. Since w - n vanishes identically over the surface of the
vortex tube,

gw-nd5=gw-(-—n)ds @53)

and the strength is constant.
Taking the curl of the formula (Ex. 4.5.1) for the acceleration

VAaAa=o0w/ot+ VA(WAY)
= dw/dt — (w+ V)v + w(V - v), (4.5.4)
where we have made use of Ex. 3.24.4. Thus, using the continuity equation,
d (w ldw wdp
a3 -

—lvrat+ Vv —w- + 2@y
P P

- (3-?)1- +1lvaa (4.5.5)
P P
If the acceleration is irrotational this equation may be solved. Setting

w; = pc,(0x;/0&,), where the c; are components of a new vector ¢, we have

d(w,) dciax,_l_ ov;

dt dt oé; BEi
_ axk oy au,
3-5; th 3-5;
Since J, the determinant of the coefficients of the dc,/d, is not zero, this gives
dei _
dt
or ¢ = ¢(£;, &, £5), and
w = p| c{E) —] (4.5.6)
P[ { 3E,

If w, and p, are the initial values of w and p of a particle,

(Wo)i = poci(®)

1;- = [(“:})f aesi] X. (4.5.7)

and hence
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If initially an element d§ is in a vortex line, d§ = w, do. However, under the
motion, this element becomes

ox ox Po

dX = d§;, — = (Wy); — do = = wdo,

aEf aé{ P

in other words a material element tangent to a vortex line remains tangent to
it. It follows that, if V A a = O then vortex lines are material lines. It can be
shown that this is also true under the broader condition w A (V A a) = 0.

We shall return to this subject in Chapter 6, but must now pass on to some
dynamical considerations.

Exercise 4.5.1. Show that the acceleration a is given by
a=0v/ot+ V@ |v]®) + wav.
Exercise 4.5.2. Establish the third interpretation given above.

Exercise 4.5.3. Show that the abnormality of the velocity field is the ratio of
the component of vorticity in the direction of motion to the speed.
(Abnormality is defined in Section 3.45) (Truesdell).

Exercise 4.5.4. Show that v, ,v, , = e;;e;; — $w;w; and hence that

V-a=d0O/dt+ 0% — 20 — } |w| (Truesdell)
Exercise 4.5.5. Show that the strength of a vortex tube remains constant if
z;:r-{—'i?n(w.\v):l).

(Cf. Ex. 4.22.7.)
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The object of this chapter is to show the tensorial character of stress and
exhibit some of the ways in which it may be related to strain. We have
already referred to stress as being a force per unit area and so having two
directions (those of the force and the normal to the area) associated with it.
This gives reason to suspect that stress can be represented by a tensor, but to
establish this we follow a very elegant line of reasoning laid down by Cauchy
in 1823. On the principle of the conservation of momentum we can then
establish certain properties of the stress tensor. The relation between the
stress tensor and the deformation tensor is known as the mechanical consti-
tutive equation for the material and the remainder of the chapter will treat
some elementary examples of these defining relations.

3.11. Cauchy’s stress principle and the conservation of momentum

The forces acting on an element of a continuous medium may be of two
kinds. External or body forces, such as gravitation or electromagnetic forces,
can be regarded as reaching into the medium and acting throughout the
volume. /nternal or contact forces are to be regarded as acting on an element
of volume through its bounding surface. If the element of volume has an
cxternal bounding surface, the forces there may be specified, as, for example,
when a constant pressure is applied over a free surface. If the element is
internal, the resultant force is that exerted by the material outside the surface
upon that inside. Let n be the unit outward normal at a point of the surface S

9
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and t, the force per unit area exerted there by the material outside S. Then
Cauchy’s principle asserts that t(,, is a function of the position x, the time 7,
and the orientation n of the surface element. Thus the total internal force
exerted on the volume ¥ through its bounding surface S is

L [t ds. (5.11.1)

If fis the external force per unit mass (for example if O3 is vertical, gravitation
will exert a force —ge(s) per unit mass or — pge g, per unit volume), the total

external force will be
[[fetav. (5.11.2)
8

The principle of the conservation of lincar momentum asserts that the sum of
these two forces equals the rate of change of linear momentum of the volume;

that is,
i”ﬁ"’ av=[[[otav+|[twas. (5.11.3)
V ¥V Fod

This is an integral form of the equations of motion which can be changed
when we know more about the nature of t.;,,. If we assume that all torques
arise from macroscopic forces, then not only momentum but also its moment
are expressible in terms of f and t, and

;f;fﬂnix AY) dV:fﬂﬂ(" Af) ﬂ‘V+_£_f(x Atm)dS. (5.11.4)

This is the case with many ordinary fluids, but a fluid with a strongly polar
character is capable of transmitting stress torques and being subjected to body
torques. We shall consider this briefly in Section 5.13.

From the form of these integral relations we can deduce an important
relation. Suppose Vis a volume of given shape with characteristic dimension
d. Then the volume of ¥ will be proportional to d® and the area of S to 42,
with the proportionality constants depending only on the shape. Now let V
shrink on a point but preserve its shape, then the first two integrals in Eq.
(5.11.3) will decrease as d® but the last will be as d2. It follows that

1
lim — [ [tw dS =0 (5.11.5)
. )

d=+0

or, the stresses are locally in equilibrium.

Exercise 5.11.1. Show that t_,, = —t(,,.

Exercise 5.11.2. Establish a result for the moments of the stresses as the
volume shrinks on a point.



§5.12. The Stress Tensor 101

5.12. The stress tensor

To elucidate the nature of the stress system at a point P we consider a small
tetrahedron with three of its faces parallel to the coordinate planes through P
and the fourth with normal n (see Fig. 5.1). If d4 is the area of the slant face,
the areas of the faces perpendicular to the coordinate axis Pi is d4; = n,; dA.
The outward normals to these faces are —e(;) and we may denote the stress
vector over these faces by —t(;. (t; denotes the stress vector when e, is

=81}

3 - "*“‘IdAi
f_,..-l
n gl
tinydA
~&2) P 2
1
i :'ftal"”x
—8(3)
Fig. 5.1

the outward normal.) Then applying the principle of local equilibrium to the
stress forces when the tetrahedron is very small we have

tin) dA — ty) dA; — t dAy — t, dA,
= (tn) — tawh — tghy — tgng) d4 = 0. (5.12.1)

Now let T}; denote the i component of t;, and t,, the i component of
t..) so that this equation can be written

tmi = Tyin. (5.12.2)

However, t,,, is a vector and n is a unit vector quite independent of the T, so
that by the quotient rule the T, are components of a second order tensor T.
In dyadic notation we might write

t{n} =n- T. (5.12.3}

This tells us that the system of stresses in a fluid is not so complicated as to
demand a whole table of the functions t,,(x, n) at any given instant, but that
it depends rather simply on n through the nine quantities T},(x). Moreover,
because these are components of a tensor, any equation we derive with them
will be true under any rotation of the coordinate axes,
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Inserting Eq. (5.12.2) in Eq. (5.11.3) and using Green’s theorem we have

: jjjp“;dV—II P £dV_jijﬁdV+J.JT,;H;dS
=] i [Tofi + T i1 av.

However, since V is an arbitrary volume this equation is only satisfied if

p == ofi+ Ty, (5.12.4)
or
pa = p%?;:pf-{-v-'r, (5.12.5)

where & = dv/dt is the acceleration. This is Cauchy’s equation of motion.
It holds for any continuum no matter how the stress tensor T is connected
with the rate of strain.

Exercise 5.12.1. Show that Cauchy’s equation of motion (5.12.4) can be
written

)
a (pv) = pfy + (Ty — pov),,

and interpret this physically.
Exercise 5.12.2. Show that if # is any function of position and time,

f FT,n, dS _f”[’r,ﬁ"'_, + o F (d"f )] v

(Theorem of stress means.)

5.13. The symmetry of the stress tensor

If the fluid is such that the torques within it arise only as the moments of
direct forces we shall call it nonpolar. A polar fluid is one that is capable of
transmitting stress couples and being subjected to body torques, as in poly-
atomic and certain non-Newtonian fluids. For the nonpolar fluid we can
make the assumption either that angular momentum is conserved or that the
stress tensor is symmetric. We will make the first assumption and deduce
the symmetry and then discuss the more general situation that obtains for the
polar case.
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Since vAv=0, d(xAv)/dt=xAa, applying the transport theorem
(4.3.4) to the equation for moment of momentum (5.11.4) we have

% jijp(x AV) dV=J£Ip(x Ag)dV
=le;jp(x Af)ydv+ | Sj (X At,)dS.  (5.13.1)
This last integral has as its i component
Uemx,.T,,,u, dS = [ [ [eulx,T) , av (5.13.2)
by Green’s thcorcI:. However, this int:grand is

€Xil ko + €isd i

since x; , = &,,, and this is the i'" component of x A (V - T) + T,, where T, is
the vector €;;;,T;,. Substituting back into Eq. (5.13.1) and rearranging gives

”f" Apa — pf —V.-T)dV= fffo dv. (5.13.3)
4 4

However, the left-hand side vanishes identically by Cauchy’s equation
(5.12.5), hence the right-hand side vanishes for an arbitrary volume and so

T, =0. (5.13.4)

However, the components of T, are (Tys — Tg), (Tyy — T1g), and (Tyy, —Tyy)
and the vanishing of these implies

T, =T, (5.13.5)
so that T is symmetric.

In the case of a polar fluid we must introduce a body torque per unit mass,
pg, in addition to the body force pf, and a couple stress ¢, in addition to the
normal stress t;,. Then just as t_, can be written as n+T so ¢, can be
expressed in the form n - C. The angular momentum must also be conceived
to consist of two parts, the moment of linear momentum px A v and an
intrinsic angular momentum pl. Then a balance of total angular momentum
gives

%J.,“‘P(l +XAV)= jfj(pg+x Apf) AV +£J-(ctﬂl + X A tn)) dS
v v

=”j[pg+xnpf+v-c+m(v.'r)+trx]du (5.13.6)
¥V
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This is an equation for the total angular momentum which may be written
Pdir[l+ XAV]=p8 + XApf+ V. CH+xAV:-T)+ Ty (513.7)

From the vector product of x and Cauchy’s equation we have

pxha=p£(xhv)=xhpf+xh(v-'l') (5.13.8)
and subtracting we see that
dl
pE=Pg+‘§?-C+Tx. (5.13.9)

Thus the antisymmetric part of the stress tensor contributes to the rate of
increase of the internal angular momentum. When the tensor is not sym-
metric, the external moment of momentum is not conserved in the usual sense
for if we integrate the i*" component of (5.13.8) throughout the volume V, we
have

& [[feasindv=[[feosi v+ [ [ feuus T
= J.J‘J‘Eljkx’fk dV + jlffl'-jk(xf‘rnk),ﬂ dV - J.ifj.fifijk dV
V

] Ijjiijkxjfk dV'l_ _”.E‘Hkx,-Tﬂkﬂﬂ dS — J.J‘J.IE‘.‘H:TJI: d'ﬂ’:
V 8 v
In dyadic notation this is

2 ([fpxavyav=[[[ocn pyav +[[xatw as—[[[T av (513.10
dt?y ) } )

which shows that there is a loss of external angular momentum per unit
volume of T, which shows up as a gain in internal angular momentum in Eq.
(5.13.9).

Exercise 5.13.1. Apply the result of Ex. 5.11.2 to an elementary parallelepiped
to prove the symmetry of the stress tensor.

Exercise 5.13.2. Show that the symmetry of the stress tensor is equivalent to
Cauchy’s reciprocal theorem: Each of two stresses at a point has an equal
projection on the normal to the surface on which the other acts.
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5.14. Hydrostatic pressure

If the stress system is such that an element of area always experiences a
stress normal to itself and this stress is independent of the orientation, the
stress is called hydrostatic. All fluids at rest exhibit this stress behavior. It
implies that n - T is always proportional to n and that the constant of propor-
tionality is independent of n. Let us write this constant —p, then

n;Ty = —pn,. (5.14.1)

However, this equation means that any vector is a characteristic vector of T
which must therefore be spherical. Thus

Ty = —pdy (5.14.2)

for a state of hydrostatic stress.

For a compressible fluid at rest, » may be identified with the pressure of
classical thermodynamics. On the assumption that there is local thermo-
dynamic equilibrium even when the fluid is in motion this concept of stress
may be retained. For an incompressible fluid the thermodynamic, or more
correctly thermostatic, pressure cannot be defined except as the limit of
pressure in a sequence of compressible fluids. We shall see later that it has to
be taken as an independent dynamical variable.

The stress tensor may always be written

Ty = —pdy + P,
and P is called the viscous stress tensor. The mean of the three stresses
T3y, Tae, and Ty is

3ITy=—p+1P, (5.14.2)

In the case of hydrostatic stress, where P;; vanishes, this mean stress equals
the thermostatic pressure. We shall show later that for the incompressible
Newtonian fluid this is also true, but a distinction must be made in general
between the mean stress and the pressure. A perfect fluid is one for which
P,; vanishes identically.

Exercise 5.14.1. Show that if the external force field is irrotational then the
acceleration is irrotational for a perfect fluid for which p is a function
of p.

Exercise 5.14.2. Show that an irrotational external force field is equivalent to
an assigned hydrostatic pressure.

5.15. Principal axes of stress and the notion of isotropy

The diagonal terms T;4, Ty, T35 Of the stress tensor are sometimes called the
direct stresses and the terms Tyg, Tyy, Ta1, T3, Teg, T5o the shear stresses. When
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there are no external or stress couples, the stress tensor is symmetric and we
can invoke the known properties of symmetric tensors. In particular, there
are three principal directions and referred to coordinates parallel to these, the
shear stresses vanish. The remaining direct stresses are called the principal
stresses and the axes the principal axes of stress. The mean pressure —p is one
third of the trace of the stress tensor and so is the mean of the principal
stresses. _ L

All the properties of the canonical representation of the symmetric second
order tensor can be applied to the representation of the stress tensor, and one
or two of these are given as examples at the end of this section. The essential
point to recognize is that in a coordinate system with axes parallel to the
principal axes all the stresses are direct stresses.

An isotropic fluid is such that a simple direct stress acting in it does not
produce a shearing deformation. This is an entirely reasonable view to take
for isotropy means that there is no internal sense of direction within the fluid
so that a direct stress, say

Ty # 0, Ty=0 i,j#1,

should not produce any differential motion in planes parallel to its line of
action, in this case the axis O1. Another way of expressing the absence of any
internally preferred direction is to say that the functional relation between
stress and deformation must be independent of the orientation of the coordi-
nate system. We shall show in the next section that this implies that the
principal axes of stress and deformation coincide.

Exercise 5.15.1. Show that T;; and P;; have the same principal axes.

Exercise 5.15.2. If the stress tensor is symmetric, T;,x;x; = 1 is called the
Cauchy stress quadric. Show that the normal component of the stress on
any plane is inversely proportional to the square of the distance from the
center of the quadric to its surface in the direction of the normal to the
plane.

Exercise 5.15.3. If the cone T;;x;x; = 0 is real, show that it divides the space
into two regions such that planes with normals in one suffer acompressive
stress and those with normals in the other a tension.

5.21. The Stokesian fluid

In deriving the constitutive equations of a nonelastic fluid we shall follow
closely the elegant presentation of Serrin (Handbuch der Physik VIII/1,
p. 230 et seq.). The fundamental ideas are due to Stokes so that it is appro-
priate to call a fluid satisfying his hypotheses a Stokesian fluid. Whether or
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not a given fluid has the constitutive equations we shall derive must be
established by experiment; suffice it to say that a large class of real fluids
appear to be Stokesian.

We therefore start from the following assumptions:

I. The stress tensor T,; is a continuous function of the deformation
tensor e;; and the local thermodynamic state, but independent of other
kinematical quantities.

II. The fluid is homogeneous, that is, T;; does not depend explicitly on x.
III. The fluid is isotropic, that is, there is no preferred direction.
IV. When there is no deformation (e;; = 0) the stress is hydrostatic,

(Tyy = —pdyy).

The first assumption implies that the relation between stress and rate of strain
is independent of the rigid body rotation of an element given by the anti-
symmetric kinematical tensor £,;. The thermodynamic variables, forexample,
pressure and temperature, will be carried along throughout this discussion
without specific mention except where it is necessary for emphasis. We are
concerned with a homogeneous portion of fluid so we assume in the second
place that the stress tensor depends only on position through the variation of
e;; and the thermodynamic variables with position. The third assumption is
that of isotropy and we shall first show that this implies that the principal
directions of the two tensors coincide. To express this as an equation we
write T,; = f,(e,,), then if there is no preferred direction, T}; is the same
function f; of é,, as Ty, is of e,,. Thus

Tis = fis€50)- (5.21.1)

The fourth assumption is that the tensor P, = T, + pd;; vanishes when
there is no motion. P,; is called the viscous stress tensor.

The Stokesian fluid is essentially nonelastic. We shall discuss later
(Chapter 8) the case where both viscous and elastic behavior is present.

5.22. Constitutive equations of the Stokesian fluid

If I; is the set of direction cosines of a rotation of the axes from the system
0123 to 0123, we have, since T}, and e,, are tensors,

T{I = Imt'!ﬂ;men! épﬂ = Irﬁ}aq'err (5'22'1}
Hence Eq. (5.21.1) becomes
Imi"'nif m n(em) = fii("]rm*’ s0€rs)- (5 '22-2)

Now suppose that the coordinate system has been chosen so that it coincides
with the principal axes of e;;. Then we can take e, =d,, r =1, 2, or 3 and
€s = 0,r 3 5. Then f,,, is a function of d,, d;, and d;. 1f we take the rotation
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specified by hj; = 1, ly, = Iy = —1,and [;; = 0, i # j, then the é,, = ¢, = d,
are unchanged. However, fi3 = l1/.3fms = —fis and so both are zero.
Similarly, fi, = fo; = f51 = 0 and a similar transformation with /; = [, =
—1, lg3 =1 shows that f,3 = f3, = 0. Thus in the principal coordinate
system of the deformation tensor, the stress tensor has diagonal form and it
therefore has the same principal axes. We may therefore write P;; = p,,
Py =0, i jand

Pi =in(dl! dﬂ: dﬂ) (52’2-3)

where, by the fourth assumption, the f; must vanish when the d; vanish.

We now ask what is the most general form that the f; can have. Since a
permutation of d,, d,, dy can be affected by an orthogonal transformation,
such a permutation must permute the functions f; in the same way. For
example the diagonal tensor (d,, d;, d5) is transformed to (ds, d;, d;) by
e = lhg = Ig; = 1, other I’s zero. Such a relation is given by

pi = o + pd; + yd;, (5.22.4)

where «, 8, and ¥ can be functions of the three invariants @, @, ¥ since these
are unaffected by a permutation. Moreover we do not need to assume any
higher powers than the square of d;, for these can be expressed as functions of
d,, df and the three invariants. For example,

& = 0dt — &d + ¥,
dt = Od® — bd? + ¥d
— (0 — B)d® — (0D — V)d + OF,

and so on. If the d; are all different, the three equations (5.22.4) can be
solved for «, 8, and y. If two of the d, are the same, the corresponding p; will
be the same and there will really only be two distinct equations from which «
and § may be determined to give a relation p; = « + fd;. Ifall the d, are the
same, then all the p; are the same and we have p; = «(0, ®, 1").

All cases are thus subsumed under the general formula (5.22.4) which is
written for the principal coordinate system. If we transform back to any
other system, the functions «, §, and y must be the same or the requirement of
isotropy will not be met. Thus in general

P, = ady; + Pey; + yveue (5.22.5)
or
Ty=(—p+a) ‘5;; + Be;; + yeey;. (5.22.6)

p depends only on the thermodynamic state but «, 8, and y depend as well on
the invariants of the rate of strain tensor. This gives ample scope for the
fitting of exceedingly complex relations, but the tensorial character is
prescribed by the assumptions.

If the fluid is compressible, the thermodynamic pressure is a well-defined
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quantity and we should take p equal to this. Then, by the fourth assumption,
o =0 when e; = 0. If the fluid is incompressible, the thermodynamic
pressure is not defined and pressure has to be taken as one of the fundamental
dynamical variables. We are at liberty to do this in the simplest possible way
so that without losing any generality we can absorb « into the pressure p and
write

Ty = —pbs; + ey + yeaer, (5.22.7)

which insures that T reduces to the hydrostatic form when the deformation
vanishes.

Exercise 5.22.1. Show that for an incompressible fluid with the constitutive
equation (5.22.7), the mean of the three direct stresses is
4 trace T; = —p + dyeyey;
= —p — 0.

Exercise 5.22.2. The so-called power law of non-Newtonian fluids asserts
that in certain circumstances the
shear stress is proportional to a 2}

: . =t
power of the shear strain. Give " p (re)
twodifferent constitutive equations >/
that reduce to -~

i’
Py = [f'(x)]? e
rd
in the circumstance of Fig. 5.2. o < =1
Exercise 5.22.3. A fluid flows along a Fig. 5.2

circular tube with axis parallel to
01 its velocity being v, = f(r), vy = v3 = 0, r* = xJ + x3. Show that

1 00 0 Xfr xfr
Ty;=(—p+a) 0 1 0 [+p| xfr 0O 0
0 01 xgfr 0O 0
1 0 0

+ 91 0 (xfr) (xpxg/r?)
0 (xox3/r®)  (xqfr)?

where «’, #’, and 9’ are functions of f'(r). Hence, calculate the total
drag on the coaxial cylindrical surface of radius r and unit length.

Exercise 5.22.4. Treat similarly the case of a fluid between two rotating
cylinders where the velocity is wholly circumferential.
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5.23. The Newtonian fluid

The Newtonian fluid is a linear Stokesian fluid, that is, the stress com-
ponents depend linearly on the rates of deformation. Moreover, since the
viscous stress tensor must vanish with vanishing d,, we must have

Pi - aﬁdj. (5.23.1)

However, we have observed that the assumption of isotropy implies that any
permutation of the d’s must effect the same permutation of the p’s. Writing
out these equations in full gives:

Pr = andy + aydy + ayads,
Pz = Gnd) + agdy + ayds,
Ps = @gdy + agdy + agyds.
Now permute the d,, d,, d; to ds, d,, d, and rearrange to obtain

@106y + @3dy + aydy = py
Qgady + Qgady + and; = py
Ayedy + Ggedy + agydy = p,.

The right-hand side of each equation has been obtained by making the same
permutation on the p’s. Now we compare these two sets of equations; for

example,

P = ayd, + aypdy + aygdy = aged, + apdy + ayds,
gives @y = dgp, @1y = Qg3, Gy3 = Ay Doing this for all, and for the set we
could derive by permuting d,, d,, d to d, d3, d;, we find

) = Ay = dgg
Gy = Qg = Qgy = Qg = Ay = Gy
Let the common value of the second row be A and of the first A + 2u, where
these are for the moment numbers whose physical meaning has to be obtained.
Then
pi = Md, + dy + dg) + 2ud,

= 20 + 2ud, (5.23.2)
Transforming to a general coordinate system
Py = 200 + 2pe;, (5.23.3)
or
Ty = (—p + A0)d,; + 2pe;;. (5.23.4)

We have given this proof in extenso since it is a kind of link between the
following two demonstrations. In the first of these we observe that the result
follows immediately from imposing linearity on the general relation (5.22.6)
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for this requires that y = 0, 8 be a constant, and « be proportional to © since
it must vanish with ©. Again, since P,; is to be a linear combination of
€ it can be expressed as a tensor product

P i = Aﬁmew'

Now A,;,,, must be symmetric in i and j and must be an isotropic fourth order
tensor. However, by Section 2.7 we know that the most general form of A4 is

Aiipe = Aéﬂém + ﬂ(a:‘wém + &waﬂ) + ”(&iﬂaﬂ - &fﬂafw)'
The symmetry requirement is met by putting » = 0 so that
Py = Abye,, + pley + e)
= l@&‘-’ + prﬁ.

The first demonstration is a link between the latter two in that the same kind
of arguments are used there as were used in establishing the form of the
general isotropic tensor. However, since we had already dismissed the
antisymmetric part, the argument was distinctly simpler.

5.24. Interpretation of the constants 2 and u

Consider the shear flow given by

b =f(x), vz=13=0. (5.24.1)
For this we have all the e;; zero except
ez = ey = 1 (xp). (5.24.2)
Thus
Py = Py = uf'(xg) (5.24.3)

and all the other viscous stresses are zero. This is shown in Fig. 5.2 and it is
evident that u is the proportionality constant relating the shear stress to the
velocity gradient. This is the common definition of the viscosity, or more
precisely the coefficient of shear viscosity, of a fluid.

For an incompressible fluid we have seen that the pressure is the mean of
the principal stresses since this is

iTy=—p+ A+ $)0

and © = 0. For a compressible fluid we should take the pressure p as the
thermodynamic pressure to be consistent with our ideas of equilibrium. Thus
if we call —p the mean of the principal stresses,

P—p=—@A+8)0=—-A+3wV"V

2 Y1dp
= l - )—_- 5.24-4
( +3H St ( )



12 Stress in Fluids §5.24

Since p, the thermodynamic pressure, is in principle known from the equation
of state, § — p is a measurable quantity. Equation (5.24.4) shows that it is
proportional to (d In p)/dt and the constant of proportionality is known as
the coefficient of bulk viscosity. It is difficult to measure, however, since
relatively large rates of change of p must be used and the assumption of
linearity is then dubious. Stokes assumed that p = p and on this ground
claimed that

A+3u=0 (5.24.5)

supporting this from an argument from the kinetic theory of gases. While
this assumption seems to be reasonable for monatomic gases, it is certainly not
true for polyatomic gases or liquids. However, the precise value of 4 becomes
unimportant for motions that are nearly isochoric or fluids nearly incompres-
sible. For a fuller discussion see the bibliography at the end of this chapter.
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_Equations of Motion
and Energy in 6

Cartesian Coordinates

6.11. Equations of motion of a Newtonian fluid

We now have all the material to assemble equations of fluid motion, for
to Cauchy’s equation of motion (5.12.4) we may add the constitutive Eq.
(5.23.4). We shall do this first for the Newtonian fluid and obtain the equa-
tions known as the Navier-Stokes equations.

Cauchy’s equation of motion is

du,

pa;=p— = pfi + Ty, (6.11.1)
for the symmetric stress tensor, which is related to the rate of strain tensor by
T;; = (—p + 20)d;; + 2ue,;. (6.11.2)

From the last equation we shall evidently need
o 10 (au,- Bu,)_l P, 19
P 20x, \ox;  ox,
1 1 0
==V, + =—(V-v).
2 + 23.::,-{ K
13
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Thus

dp
Ty = — "— + A+ P)_"‘ (V-v) + uV3r, (6.11.3)
which substituted in Eq. (6.1 1.1) gives
d d d
p = pfi— Lt A+ (Ven) + 4V, (6114)
dt ox; ox;

Using notation already familiar this may be written in a number of forms.
Equation (6.11.4) is the i'" component of

,_%_%_|_(,,.v),,___f_lvp+(r+v}v(v-v)+vv% (6.11.5)
p

where v = u/p, A’ = i/p. »is known as the kinematic viscosity and if Stokes’
relation is assumed A’ + » = »/3. For an incompressible fluid we have

&Ly (6.11.6)

dt P
and for an incompressible inviscid or perfect fluid the equations drop out
by setting » = 0. Using the identity

Viy =V(V:v) — VA(VAY (6.11.7)
(cf. Ex. 3.24.5) the last term is sometimes modified to give
‘;: £ — -vp LA 42V —WAW,  (6.118)
or in the incompressible case
a=f — (grad p)/p — v curl w. (6.11.9)

This brings out the connection between viscosity and vorticity for we see that
for an irrotational flow (w = 0) the viscous term drops out of Eq. (6.11.9) and
it reduces to the equation for a perfect fluid.
The equations of hydrostatics are also a very special case obtainable by
setting v = 0,
of = Vp. (6.11.10)

Exercise 6.11.1. Show that for an incompressible fluid
d
E(p\f} = pf — Vp + uV¥.

Exercise 6.11.2. If f is irrotational and p is a function of p only, show that

a=—V[Q+ Pp)— (A 4+ 29)(V-v)] —»VAw,
where

f=-VQ and P(p)= _fp dp|p-
P(p) is a strain energy.
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Exercise 6.11.3. If the flow is steady (that is, ov/9t = 0) and f and p as in the
‘previous question, show that

ViR + Q + P(p) + (' + 2)(v-Vinp)l =vAw—3»VAwW
where v = v - v.

Exercise 6.11.4. Show that for the two-dimensional flow of an incompressible
Newtonian fluid the vorticity satisfies the diffusion equation

— = yVw.
dt

Obtain an analogous equation for three-dimensional flow.

6.12. Boundary conditions

Under ordinary conditions the assumption is made that a viscous fluid
sticks to the boundary. Thus if the boundary is moving with known velocity,
the fluid velocity is specified and at a stationary boundary v = 0. The
existence of solutions of the Navier-Stokes equations is a very deep subject of
which comparatively little is known and for which some basic results are only
now being obtained.

For an inviscid fluid there may be tangential velocity at the boundary but
the normal velocity is specified. The atmosphere at high altitudes exhibits a
slip flow though it is not to be regarded as a perfect fluid. The higher terms in
the Stokesian constitutive equations may become important and there are
other effects present. The name Maxwellian fluid has been coined for a fluid
in this condition.

In many problems the stress may be specified on a known or an unknown
boundary. In the latter case we have a free boundary problem whose
solution requires us to find the form of the boundary.

Exercise 6.12.1. Show that for an incompressible irrotational flow a potential
function @ may be found such that v = V. Deduce that the flow given
by specifying the normal velocity on a closed boundary is unique.

6.13. The Reynolds number

From the Navier-Stokes equations there emerges a significant dimension-
less number known as the Reynolds number. The technique used to show this
is to render the equations dimensionless. This puts the physical principle
underlying the equations in its clearest form since they are now free of the
arbitrary choice of units. Suppose that a flow is characterized by a certain
linear dimension L, a velocity U, and a density p,. For example, if we
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consider the steady flow round an obstacle, L might be its diameter and U and
po the velocity and density far from the obstacle. We can make the variables
dimensionless by substituting

v = U, x = LE, t = Ur[L, p=apy p=mpU%

f = Ule/L (6.13.1)
Then, for example,
v; — becomes wu; ——,
ax i a&{ L
2
1 QE becomes 1 -ai yu- y and so on.
F axi g aE; L

Substituting these in Eq. (6.11.4) and for simplicity using Stokes’ relation
34 + 2» = 0, we have

du, 10n v {1 0 (auj) 0%u, }
— = . — - —_— ——— 6.13.2
i P gar TLulaae \ag) T e, (6.13.2)

If V' denotes the gradient operator in the dimensionless space variables, we
may write this
du

1
L yrm {— VIV’ - V2 ] 6.13.3
7 '-'P+ 3 (V' eu)4+ V™ ( )

where
R = UL/». (6.13.4)

R is a dimensionless number known as the Reynolds number and it is
evidently a measure of the importance of the terms due to viscosity. Thus if
R is very large it may be permissible to neglect the terms on the right-hand
side of Eqs. (6.13.3) which then reduces to the equation for a perfect fluid. It
is important to notice, however, that the nature of the equations for R very
large is fundamentally different from the case (1/R) = 0. So long as R is
finite Eqs. (6.13.3) are second order partial differential equations, but when
the right-hand side is set equal to zero we have first order equations.

If we consider a steady incompressible flow with no body forces, the
equations of motion can be written

(pviv; + poy; — 2pe;) ;=0
or (6.13.5)
[Ruu; + 7dy;) — (w5 + u; )],; =0
It follows that
R(uiu; -+ Waif) - (ui,j + u!.i)

is constant along a streamline. For this reason the Reynolds number is
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sometimes spoken of as the ratio of the viscous to the inertial stresses. How-
ever, particular flow systems must be constructed before this concept has much

meaning.

Exercise 6.13.1. An incompressible fluid fills the space between the planes
x3 = 0 and x3 = L and the upper plane is given a velocity v, = U so that
a steady flow develops. Show that the Reynolds number UL/» is related
to (a) the ratio of the power expended per unit area in moving the upper
plane to the mean flow of kinetic energy per unit area across the flow in
the fluid, (b) the ratio the shear stress on any plane x; = constant to the
flow of momentum in that plane. Find these relations.

Exercise 6.13.2. Find similar relations for steady flow through a circular tube.

Exercise 6.13.3. Show that vy, = 2ve,,, j = 2, 3 for a steady incompressible
flow that originates from a region where v; = U, v, = v3 = 0.

6.14. Dissipation of energy by viscous forces

The component of stress on a surface element with normaln in the direction
of the velocity is (v;/v)T;;n;. The rate at which this stress is doing work is this
stress component multiplied by v 4S and hence the total power for a closed

surface S is
_“viT,- h;ds.
Fol
However, by the theorem of stress means (Ex. 5.12.2) this is

j .f .[ [T0,,; + poddv,/dt) — pfiv;] dV.
v

Rearranging we have

([fo =417
atl)) 2
= [[[efwiav— [[[Twi;av + [ [vtmidS. (6.14.0)
V V &

In words this says that the rate of change of kinetic energy of a material
volume is the sum of three parts:

(i) the rate at which the body forces do work,
(ii) the rate at which the internal stresses do work,
(iii) the rate at which the surface stresses do work.

Since T; is symmetric, the second term may be written

—Te; = [p — A0)e; — 2ueye;;
= p® — 402 — 2#{@2 — 20) (6.14.2)
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where @ is the second invariant of the deformation tensor. Thus the rate at
which kinetic energy per unit volume changes due to the internal stresses to be
divided into two parts:

(i) a reversible interchange with strain energy, p®@ = —(p/p)dp/dt),
(i1) a dissipation by viscous forces,

—[4 + 24)0* — 4uD) (6.14.3)

Since @ — 2@ is always positive, this last term is always dissipative. If
Stokes’ relation is used this term is

—u[$0* — 40]; (6.14.4)

for incompressible flow it is
4D * (6.14.5)
If T is not symmetric, we may write
T=T"+T°

where

T =T + T)

T® = T — T).

For v; ; we already have a decomposition into symmetric and antisymmetric
parts so that

Tivgs = (T4 + THNey + Q) = They + T3,
since the other products vanish identically. Now

Qi =¥, ; — v;,) = —deuw;
where

W= v A ?,, and T:_'Ij = iﬂ:TKE

where T, is the k' component of T, the vector of the antisymmetric part of

T. Thus
T%QH = ""i*'i:-‘kfifwwerw

= _6151?th><1?
= —w-T,

Thus the antisymmetric part of the stress tensor does work on the vorticity
just as the symmetric part does with the deformation. We shall not pursue
these considerations any further here.

* Eq. (6.14.3) is sometimes written —u®, where @ is called the dissipation function. We
have reserved the symbol @ for the second invariant, which however is proportional to the
dissipation function for incompressible flow. I is the symbol used later for the negative
of Eq. (6.14.3).
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Exercise 6.14.1. Consider the dissipation of energy in the situations of Exs.
6.13.1 and 2.

Exercise 6.14.2. Write down the expression for the dissipation of energy in a
plane flow, vy = 0.

Exercise 6.14.3. Show that the dissipation of energy per unit volume for the

flow

e L5 2 )

2a a
o= Lain 2 /(e hL_cos%ﬁ)
2a a a a
is
472
a*|sin 2m(x, + ixp)/al®

where i2 = —1.

Exercise 6.14.4. For an incompressible Newtonian fluid moving within a
fixed stationary boundary with no body forces, show that the total rate
of dissipation of kinetic energy is

pjifwz dv.

6.2. Equations for a Stokesian fluid

For the Stokesian fluid the insertion of the constitutive equations in
Cauchy’s equation of motion will produce a much more complicated set of
equations. From Eq. (5.22.6) we have

Ty =(—p + &) ¢ + B e + Peys + 7 s€ner; + v(ew € + entrs. ).
(6.2.1)

The coefficients «, 8, and y are functions of the invariants ®, ®, and ¥ and so,
for example,

Ot B‘a Ot
o 20 0 -|- it v Y ..

It is not surprising that with equations of this appalling complexity few
solutions have been found and that for the special circumstances in which
solutions can be obtained, it is best to work more immediately with the
stresses themselves.

One point may be worth remarking in connection with the energy dissipa-
tion. For the Stokesian fluid we have

Tey = (—p + a)ey, + Pejey + venerey
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of which the first two terms are familiar. To calculate the third we observe
that e;.e,;e;; is a scalar (in fact the trace of the cube of the symmetric tensor
e;;) and so can be evaluated in any coordinate system. In particular, the
principal axes form a suitable one for here

Cix€r €51 = di + d; + di.
However,
di + dy + d3 = (d, + dy + dp)°
— 3(djd, + d3dy + d3d, + dyd3 + dyd; + dyd}) — 6dydyd,
= (d; +d; + da)a — 3(dy + dp + d3)(dyd; + dyd, + dyd,)
+ 3d,d,d,
= @ — 300 4 3¥,

which gives this term in the dissipation function in terms of the invariants of
deformation.

Exercise 6.2.1. A first step away from the Newtonian fluid would a quadratic
dependence of the form

=40 4+ 102 4+ 1"0, B=2u—+ 240, y = 4.
(Notation of Serrin, loc. cit. p. 235). Show that the dissipation term is

@y + 24 + X)O® — (129 + 4p’ — 2")OD
+ 120% + (2 + 1) — 4ud

or 4(3vY — u®) in the incompressible case.

Exercise 6.2.2. The name homogeneous N power fluid might be applied to
the case where «, f, and y are polynomials in ®, @, and ¥ of weight N,
N — 1, and N — 2, respectively. By weight we mean that each term of «
is of the form a,,0?®*Y" and p + 29 + 3r = N. Show that the
dissipation term is a polynomial of weight N + 1.

Exercise 6.2.3. Consider the dissipation of energy by viscous forces in the
situations of Exs. 5.22.3 and 4.

6.3. The energy equation

We shall attempt no sophisticated formulation of the thermodynamics of
flow since it brings out comparatively little of the peculiar virtues of tensor
analysis. However, we cannot pass by the formulation of the energy equation
entirely since up to this point we have rather more unknowns than equations.
In fact we have one continuity equation (involving the density and three
velocity components), three equations of motion (involving in addition the
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pressure and another thermodynamic variable, say the temperature) giving
four equations in six unknowns. We have also an equation of state, which in
incompressible flow asserts that p is constant reducing the number of un-
knowns to five. In the compressible case it is a relation

p=f(p, T), (6.3.1)

which increases the number of equations to five. In either case, there remains
a gap of one equation which is filled by the energy equation.

The equations of continuity and motion were derived respectively from
principles of conservation of mass and momentum. We now assert the first
law of thermodynamics in the form that the increase of total energy (we shall
consider only kinetic and internal energies) in a material volume is the sum
of the heat transferred and the work done on the volume. Let q denote the
heat flux vector, then, since n is the outward normal to the surface, —q - nis
the heat flux into the volume. Let E denote the specific internal energy, then
the balance expressed by the first law of thermodynamics is

dijj” P + E)dV = Iffpf'vdV+fI‘tnl'*d5— ffq-ndS (6.3.2)
v i y '

This may be simplified by subtracting from it the expression we already have
in Eq. (6.14.1) for the rate of change of the kinetic energy. Doing this and
using the transport theorem (4.3.4) and Green’s theorem

J‘J'J'[P% +V.q—T :(W}] dvV =0

where T : (Vv) is the dyadic notation for T;;r, ; the dissipation of energy by
internal stress and the reversible interchange with strain energy. Assuming
the continuity of the integrand

o f‘:-f — _V.q+T: (V). (63.3)
If we assume Fourier’s law for the conduction of heat
q=—kVT (6.3.4)

is related to the gradient of temperature T. For a Stokesian fluid we can
write

T: (VW)= —p(V.v)+ 7T (6.3.5)
where Y is the viscous dissipation, which for a Newtonian fluid is
Y = (A4 2u)0% — 4uD. (6.3.6)
Substituting back into Eq. (6.3.3) we have
dE

pE =V (kVT)— p(V-v) + Y. (6.3.7)
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Physically we see that the internal energy increases with the influx of heat, the
compression and the viscous dissipation.
If we write the equation in the form
L4E _pdp
dt pdt
the left-hand side can be transformed by one of the fundamental thermo-
dynamic identities. For if S is the specific entropy,
T dS = dE + pd(1/p)
= dE — (p|p® dp,

pTﬁ —V-(kYT) + T, (6.3.9)

=V-(kYT) + T, (6.3.8)

so that Eq. (6.3.8) is

giving an equation for the rate of change of entropy. Dividing through Eq.
(6.3.9) by T and integrating over a volume gives

”fp—d"——,fﬂﬂstﬂ’= fr[f{%v-(kvn +X|av
=fff[‘7' (Evr) + £ e+ I av

=ff-;%gds+ HE‘E(W}-H; av.  (6.3.10)
) i

Now the first integral is the heat transferred into the material volume divided
by the temperature at which it is transferred, that is,

The second law of thermodynamics insists that the rate of increase of
entropy should not be less than this transfer, and we see that Eq. (6.3.10) is
quite consistent with this for the second term on the right-hand side cannot be
negative. Indeed it can only be zero if kK or VT and T are zero. For a perfect
fluid with no conductivity or viscosity we see that entropy is conserved, for
Eq. (6.3.9) becomes ds

— =0. 6.3.11
” (6.3.11)

Exercise 6.3.1. 1f H is the specific enthalpy, show that

d
Pl =) + L+ .



§6.41. Résume of the Development of the Equations 123

Exercise 6.3.2. If the specific heats ¢, and ¢, and the conductivity k of the
fluid are constant and it obeys the ideal gas law p = pRT, show that

pc,,j—ITn VT — p(V - ¥) + T
and
dT d
& wver+ %2
P dt ™ dt T

Exercise 6.3.3. Without assuming Fick’s law, show that the second law of
thermodynamics will be satisfied if T’ > 0 and q - V7' < 0 and interpret
this physically.

Exercise 6.3.4. Modify the energy equation to account for internal sources of
heat.

6.41. Résumeé of the development of the equations

We have now obtained a sufficient number of equations to match the
number of unknown quantities in the flow of a fluid. This does not of course
mean that we can solve them nor even that the solutions exist, but it is
certainly a necessary beginning. It will be well to review, at this point, the
principles that have been used and the assumptions that have been made.

The foundation of the study of fluid motion lies in kinematics, the analysis
of motion and deformation without reference to the forces that are brought
into play. To this is added the concept of mass and the principle of the
conservation of mass, which leads immediately to the equation of continuity,

4P | XV -v) =0. (6.41.1)

dt
An analysis of the nature of stress allows us to set up a stress tensor, which
together with the principle of conservation of linear momentum gives the
equations of motion v

P = pf+V-.T. (6.41.2)

If the conservation of moment of momentum is assumed, it follows that the
stress tensor is symmetric, but it is equally permissable to hypothesize the
symmetry of the stress tensor and deduce the conservation of moment of
momentum. For a certain class of fluids however (here called polar fluids) the
stress tensor is not symmetric and there may be aninternalangularmomentum
as well as the external moment of momentum. These may be exchanged
subject to the conservation of the total angular momentum.

As yet nothing has been said as to the constitution of the fluid and certain
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assumptions have to be made as to its behavior. In particular we have noticed
the hypotheses of Stokes that lead to the constitutive equation

Ty;=(—p + ) 0;; + Pe; + veaes;. (6.41.3)
The coefficients in this equation are functions only of the invariants of the
deformation tensor and of the thermodynamic state. The latter may be
specified by two thermodynamic variables and the nature of the fiuid is
involved in the equation of state, of which one form is

P =f(p,T). (6.41.4)

Finally, the principle of the conservation of energy is used to give an energy
equation. In this, certain assumptions have to be made as to the energy
transfer and we have only considered the conduction of heat, giving

P —d‘f =V .kVT) — p(V-v) + T. (6.41.5)

These equations are both too general and too special. They are too general
in the sense that they have to be simplified still further before any large body
of results can emerge. They are too special in the sense that we have made
some rather restrictive assumptions on the way, excluding for example elastic
and electromagnetic effects. We shall broaden our view in a later chapter to
consider a reacting mixture, but more than this is beyond our present scope.
Rather we will consider some of the specializations of the equations and a few

results that exhibit the value of vector and tensor analysis.

6.42. Special cases of the equations

The full equations may be specialized in several ways, of which we shall
consider the following:

(i) restrictions on the type of motion,
(i) specializations of the equations of motion,
(iif) specializations of the constitutive equation or equation of state.

This classification is not the only one and the classes will be seen to overlap.
We shall give a selection of examples and of the resulting equations, but the list
is by no means exhaustive.

Under the first heading we have any of the specializations of the velocity as
a vector field. These are essentially kinematic restrictions. We have already
met several of these and the following selection is not exhaustive.

(ia) Isochoric motion. The velocity field is solenoidal

@=V.y=0, (6.42.1)
The equation of continuity now gives

dp _ o, (6.42.2)
dt
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that is, the density does not change following the motion. This does not mean
that it is uniform, though, if the fluid is incompressible so that p = constant,
the motion is isochoric. The other equations simplify in this case for we have
«, f, and y functions of only ® and ¥, in particular for a Newtonian fluid

Ty = —pdy + 2puey, (6.42.3)
The energy equation is
0 ‘;—f— —V.-(VT) + 7, (6.42.4)
and for a Newtonian fluid
T = —4ud. (6.42.5)
(ib) Irrotational motion. The velocity field is irrotational
w=VAv=0. (6.42.6)

It follows that there exists a velocity potential g(x, t) from which the velocity
can be derived as
v= Vg, (6.42.7)

and in place of the three components we seek only one scalar function. The
continuity equation becomes

j—:’ + V2 =0 (6.42.8)

so that for an isochoric motion or an incompressible fluid, ¢ is a potential
function, satisfying
Vip = 0. (6.42.9)

The Navier-Stokes equations become

ot

In the case of an irrotational body force f = — V) and when p is a function
only of p, this has an immediate first integral since every term is a gradient.
Thus, if P(c) = fdp]p,

v[@ + %(Vrp}ﬁ] —f— ivp + (2 + 2)V(V2p). (6.42.10)

LA+ QPO — (W + 2= g) (64211)
is a function of time only.

(ic) Complex lamellar motions, Beltrami motions, etc. These names can be
applied when the velocity field is of this type. Various simplifications are
possible by expressing the velocity in terms of scalar fields. We shall not
discuss them further here.

(id) Plane flow. Here the motion is restricted to two dimensions which may
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be taken to be the 012 plane. Then v; = 0 and x; does not occur in the
equations. If the fluid is incompressible,

31?1 aUE
—+—==0 6.42.12
0x; 0x, ( )
so that we may introduce a stream function (x,, x,) such that,
oy oy
W=, Ug=—"—. 6.42.13
1 9%, 2 ox, ( )

The vorticity has only a single component, that in the O3 direction, which we
may write without suffix

W= 9 _ O _ —V3y. (6.42.14)
ox, 0Ox,
For an incompressible, irrotational motion we therefore have
v1=§£=§—?—, 2=§§’_=_3_¥’ (6.42.15)
ox, 0Ox, 0x, 0x,

which are the Cauchy-Riemann relations and show that w = ¢ 4 iy is an
analytic function of z = x; + ix,. The whole resources of the theory of
functions of a complex variable are thus available and many solutions are

known.
If the fluid is compressible but the flow is steady (that is, no quantity
depends on f) the equation of continuity becomes

9 2

(pvy) + — (pvy) = 0. (6.42.16)
0x4 0x,
A stream function can again be introduced, this time in the form
o =10 10y (6.42.17)
p Ox; p 0%,

The vorticity is now given by
pw = — V3 4 (Vy - Vp)/p. (6.42.18)
For irrotational, isentropic flow with no body forces this can be developed
into an equation for p alone. The velocity of sound ¢ is defined by dp/dp and
in isentropic flow
Vp = c2Vp.

Since the fluid must be inviscid or entropy would not be conserved Eq.
(6.42.10) can be written
Vp = —pV(30?). (6.42.19)

Also we have identically
VIH(VY)’] = V(3p™%) = p®Vp + p*V(}0?)
= p(t? — cHVp (6.42.20)



§6.42. Special Cases of the Equations 127

by the last two equations. Substituting for Vp in Eq. (6.42.18) with w = 0,
and expanding

oy E:I Py  Opody Py [ (agu )2] Py
22 (u,_ 20% 2 (22} |Z¥ 0. (6.42.21
[‘" ax) ox2 * 0%, 0%, 0x,0%, e Ox,/ J 0x3 ( )

This is a partial differential equation for y, more complicated than Laplace’s
but still amenable to analysis.

(ie) Axisymmetric flows. Here the flow is a function only of a coordi-
nate along one axis, say z = Xx,, and the distance from it w = (x} + x3)'/2,
If u and v denote the velocity components in the = and z directions the
continuity equation is

w2 + 2 (puni) + 2 (pr) = 0 (642.22)
ot Ow 0z ' o
For steady flow a stream function can be introduced as in the case of plane
flow and similar but more complicated equations follow.

Under the second type of restriction where simplifications are introduced
into the equations of motion, we may mention the following:

(iia) Steady flow. Examples of this have already been given and indeed it
might have been considered as a restriction of the first class. All partial
derivatives with respect to time vanish and the material derivative

-‘-i»:v-?.
dt

In particular, the continuity equation is
Ve(pv) =0 (6.42.23)

so that the mass flux field is solenoidal.
(iib) Hydrostatics. This is the ultimate in steady flows when v itself is set

equal to zero, then

of = Vp. (6.42.24)

(iic) Creeping flow. 1t is sometimes justifiable to assume that the velocity is
so small that the square of the velocity is negligible by comparison with the
velocity itself. This linearizes the equations and allows them to be solved
more readily. For example, the Navier-Stokes equations become

%?= f— 1?;, + (A" 4 »V(V + v) + V3. (6.42.25)
! P
In particular, for a steady incompressible flow with no body forces

Vp = uV. (6.42.26)
However, since the continuity equation is V - v = 0, we have

Vip =0 (6.42.27)
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or p is a potential function. This is the starting point for Stokes’ solution of
the creeping flow about a sphere and for its various improvements.

Another specialization of this type arises in stability theory when the basic
flow is known but is perturbed by a small amount. Here it is the squares and
products of the small perturbations that are regarded as negligible.

(iid) Boundary layer flows. A circumstance that arises when large gradients
of velocity are confined to the neighborhood of a boundary has attracted

considerable attention. Here it proves

24 | possible to neglect certain terms in the
0 2 ULx,) equations of motion by comparison with
e others. The basic case of steady in-
Pf..:'"" compressible flow in two dimensions
'_"fl will be outlined. If a rigid barrier
—’ extends along the positive O1 axis the
= .1 Vvelocity components v; and v, are both

zero there. In the region distant from the
Fig. 6.1 axis the flow is v, = U(x;), v, = 0, and

the velocity distribution may be expected
to be of the form shown in Fig. 6.1, in which v, differs from U and v, from
zero only within a comparatively short distance of the plate. To express
this we suppose that L is a typical dimension along the plate and é a typical
dimension of this boundary layer and that ¥} and V; are typical velocities
of the order of magnitude of v, and v,. We then introduce dimensionless
variables
x=2 y=% , 4 % (64228

L’ 6’ v, V,
which will be of the order of unity. This in effect is a stretching upward of the
coordinates so that we can compare orders of magnitude, for now all
dimensionless quantities will be of order of magnitude one. It is assumed
that < L, but the circumstances under which this is valid will only become
apparent later. It is also assumed that the functions are reasonably smooth
and no vast variations of gradient occur.
The equation of continuity becomes

hou Vo004 (6.42.29)

which would lose its meaning if one of these terms were completely negligible
in comparison with the other. It follows that

Vy,=0 (VIE) (6.42.30)
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where the symbol O means “is of the order of.” The Navier-Stokes equations
become

V1 du VIV ou 1 0p ( Lﬂaﬂ)
- .+. _—— i —_—
L ax " o By pLax+v 0x® +r523y
and
e VL (82 )
L 3 - é ay p8y+ I? ox® +ay

In the first of these equations the [ast term on the right-hand side dominates
the Laplacian and 0%u/0x* can be neglected. Dividing through by V3/L we see
that the other terms will be of the same order of magnitude provided

p=0(pV?) and i‘—*’ =0 (). (6.42.31)
82V,

Inserting these orders of magnitude in the second equation the dominant
term is dp/dy so that p is a function of x only. Returning to the original
variables we have the equations

aul aUg
=1 22,
ox; + Ox,

dv ov 1dp 0%
o, 2 1 _1lep, %0 6.42.32
31+Haaxg pdx+?ax§ ( )

The circumstances under which these simplified equations are valid are given
by the second term of Eq. (6.42.31), which can be written

d Y
6 _ 6.42.33
2o o ). (642.33)

Since it has been assumed that d <€ L this equation shows that this will be the
case if v < VL.

Certain of the specializations of the third class have turned up already in
the previous cases. We mention here a few important cases.

(itia) Incompressible fluid. The motion of an incompressible fluid is always
isochoric and the considerations of (ia) apply. It should be remembered that
for an incompressible medium the pressure is not defined thermodynamically,
but is an independent variable of the motion.

(iiib) Perfect fluid. A perfect fluid has no viscosity so that

T;; = —pd;;

and

F‘?; — o+ —Vp (6.42.34)
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If, in addition, the fluid has zero conductivity the energy equation becomes
ds

0 6.42.35
5 ( )

and the flow is isentropic.
(iiic) Ideal gas. An ideal gas is a perfect fluid with the equation of state

p = pRT. (6.42.36)
The entropy of an ideal gas is given by

dT
S=|¢,— —RI 6.42.37
J-c., ~ np ( )

which for constant specific heats gives
p=¢&lp',  y=ce, (6.42.38)
(iiid) Piezotropic fluid and barotropic flow. When the pressure and density
are directly related, the fluid is said to be piezotropic. If the motion is such
that the density and pressure are directly related (for example, for an isen-
tropic flow Eq. (6.42.38) gives p = kp”) the motion is called barotropic. Thus
all piezotropic fluids (and this includes incompressible fluids as a special case)
flow barotropically, but other fluids may also do so. The terms piezotropic

and barotropic thus stand in the same relationship as incompressible and
isochoric. The simple relation between p and p allows us to write

1vp=vPp) =V /7 dp (6.42.39)
P P
and such relations as we have noticed above in Eq. (6.42.11) can be obtained
from the equations of motion. We shall have occasion to notice these in more
detail in the next section.

(itie) Newtonian fluids. Here the assumption of a linear relation between
stress and strain leads to the constitutive equation

The equations of motion then become the Navier-Stokes equations (6.11.5)

or (6.11.6).

Exercise 6.42.1. Show that for an incompressible, irrotational flow with
velocity potential ¢, the dissipation function for a Newtonian fluid is

T = VE(Vg)®: = }Vig?,
Exercise 6.42.2. Obtain an equation similar to Eq. (6.42.21) for the velocity

potential of a plane, irrotational, isentropic flow. Show that both can be
written

g o’p A
2 — <% 0.
0x? 1t 0x, 0x, +e =) ox3

(¢t — o))
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Exercise 6.42.3. Transform the Navier-Stokes equations in the axisymmetric
case (ie).

Exercise 6.42.4. Show that for axisymmetric flow the vorticity

__ia_w_i_[ﬁp 3’;%"]
Y= e wlowt | 222

where
1 dy 1 oy

— — e — —

pw 0z pw 0w

Exercise 6.42.5. The plane parallel flow v, = U(xy), v, = 0, p = P(x,, x,) of
an incompressible fluid satisfies the Navier-Stokes equations. It suffers
a small disturbance so that

v,=U+v, v,=1; p=P+p

Neglecting squares and products of the disturbed quantities show that
they satisfy the equations

2+ 25,

ox, 0dx,
oy ov, dU 19p' o s
—+U—4vyp—=—-— Vs,
ot 0x, % dx, p 0x, TV
vy 4 1y o0 =192 4 oy
a! axl P axg

6.51. Bernoulli theorems

Consider the steady barotropic flow of a perfect fluid with irrotational body
forces and set

f=-vQ, Pp)=]"dplp (6.51.1)
Then the equation of motion is
(v- Vv = —V(Q + P(p))
and, in virtue of the identity

(v Viv= V(3% + way,
this can be written

V(Q + P(p) + 3®) =vAw. (6.51.2)

Let H denote the function of which the gradient occurs on the left-hand side
of this equation. VH is a vector normal to the surfaces of constant H.
However, v A wis a vector perpendicular to both v and w so that these vectors
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are tangent to the surface. However, v and w are tangent to the streamlines
and vortex lines respectively so that these must lie in a surface of constant H.
It follows that H is constant along streamlines and vortex lines. The surfaces
of constant H which are crossed with this network of stream and vortex lines
are known as Lamb surfaces and are illustrated in Fig. 6.2.

If the flow is irrotational, then w = 0
and hence the energy function

H=Q + P(p) + $* (6.51.3)

is constant everywhere. Thisrepresents
a complete integral of the equations
Lamb surfoce  Of motion andisaresultof considerable
H=canstont  importance. In general, however, we
Fig. 6.2 can only state thatfor steady barotropic
flow H is constant along any stream-

line, or less importantly, along any vortex line.
Other forms of this theorem, which is known by the name of Bernoulli, can
be derived for different flows. Thus for an unsteady irrotational flow a time
dependent velocity potential ¢(x, f) may be introduced with v = Vp. Then

Vortex Stream
lines lines

?a_*i: + H=1() (6.51.4)

is a function of time only. Another form has been given for irrotational
motion of a Newtonian fluid in Eq. (6.42.11) above. It may be written

%i: + H — (X' + 29)V?p = g(0). (6.51.5)

Yet other conditions lead to theorems of this type. Serrin (Handbuch der
Physik VIII/1, p. 153) shows that a similar result obtains if the vorticity rather
than the flow is steady. Bird (Chem. Engng. Sci. 6, (1957), 123.) has obtained
what he calls the “engineering Bernoulli equation” for the flow through a
process in which work is done and friction losses are suffered.

6.52. Some further properties of barotropic flow

We have already seen some of the general properties of vorticity which
follow from the fact that the vorticity field is solenoidal. For example, that
the strength of a vortex tube is constant and that vortex lines are material lines
was noticed above. For steady barotropic flow we also have a theorem due to
Kelvin which shows that the circulation around any material closed curve is
constant. For

i§v-td5=%§v~dx=§a-dx+3£?'d‘l
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The second of these vanishes identically since it is the integral round a
closgd curve of 322 For barotropic flow of a perfect fluid a = VH so that
a-dx = dH and again the integral round a closed circuit must vanish.
Hence the circulation remains constant.

If each particle comes from a region of quiet, then a steady barotropic flow
is irrotational, since H = 0 in a quiescent region and so w A v = 0 for the
whole particle path. However, this means that w = kv where k is a scalar
variable and since V.-w =0, V. (kv) = pv- V(k/p) =0 and so k/p is
constant on streamlines. However, if w/pv is constant on a streamline for
which at infinity v = 0, then w = 0 there and since vortex lines are material
the flow must be irrotational everywhere.
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7.11. Coordinate systems and conventions

Let us return for a moment to the style of writing the Cartesian coordinates
of a point P as (x, y, z) and consider two other familiar coordinate systems.
X, y, and z are the perpendicular distances from the point P to the three
coordinate planes through the origin O. They are not the only coordinates
that can be used to fix the position of P however, for we might retain z as the
height of P above its projection Q on the Oxy plane and take any other pair
of coordinates to fix the position of Q in the plane. In particular, Q can be
fixed by its distance p from the origin and the angle ¢ that O0Q makes with a_
fixed direction, say Ox. This gives a system of coordinates (p, ¢, z) known as
cylindrical polars. They are related to the Cartesian coordinates by the

equations X = pcos &, y = psin ¢,

p=0*+ )" ¢ =tan (y/x).

An alternative description would be to take the distance of P from the
origin as one coordinate r. This puts P on a sphere of a certain radius. If as
second coordinate we take #, the angle between OP and Oz, this confines P
to a certain latitude on the sphere. On this circle of latitude the position of P*
can be fixed by taking ¢ again as a coordinate. Thus

(7.11.1)

x=rsinfcosd, y=rsinbsing, z=rcosf,
or (7.11.2)
r=02+y2+ 293 0 =tan(x®+ y)'"%z, ¢ = tan~!(y/x).
134
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This system, known as spherical polar coordinates, is another example of
curvilinear coordinates, in contrast with the rectilinear Cartesian coordinates.
These names arise from the nature of the lines along which only one coordi-
nate varies. In Cartesians these coordinate lines are straight and parallel to
the coordinate axes. In cylindrical polars the lines along which p, ¢, and z
alone vary are respectively rays through the Oz axis, circles parallel to the
Oxy plane and lines parallel to the Oz axis. In spherical polars the coordi-
nate lines are rays through the origin, circles in planes containing Oz and
circles parallel to the plane Oxy. In the second and third cases not all the
coordinate lines are straight.

Fig. 7.1

The coordinate surface are those on which only one of the coordinates is
constant. For Cartesian coordinates these are all planes but for the other
coordinate systems we have cylinders, cones, and spheres appearing as co-
ordinate surfaces. Now such curvilinear coordinate systems have great value
and we want to be able to use them and transform from one to another. More-
over, we want to represent physical entities in such a way that when changing
the coordinate system our description changes in such a way that we are sure
the entity itself has not changed. Up to this point the only transformations
we have considered have been rotations of a Cartesian frame of reference, but
from now on we need to be able to handle more general transformations.

Before describing the essential features of these transformations we will
introduce some new conventions. We shall have occasion to distinguish two
types of behavior under transformation and we associate them \Trith affixes in
the upper and lower positions. This distinction does not arise when the
transformations are only the rotation of Cartesian frames. In the future we
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shall write the coordinates with an affix in the upper position. Thus x%,
i =1, 2, 3, will stand for the coordinates of P in a certain system in place of
the x; used hitherto for Cartesian systems. Thus we might have x! = p,
x2 = ¢, x® = zin cylindrical polars. If we transform to another system a bar
will again be used to denote the transformed coordinates. For example if the
transformed system is that of spherical polars X! = r, X* = 0, ¥® = ¢, and the
equations defining the transformation are

o= [+ 3 22 =tan7! (x'x%), x2=x% (7.11.3)

The summation convention will also be modified as follows:

Summation convention: Any index repeated once in the upper position and
once in the lower position in a product of terms is called a dummy index and
held to be summed over the range of its values. In three-dimensional space
we shall use Latin letters for affixes which will therefore have the range 1, 2, 3.
Any index not repeated is called free and may take any value in its range.

In using tensors there is a very convenient check for accidental errors which
might be called the conservation of indices. Any free index which appears
must appear in the same position in each term of an equation. Thus a

formula AY = B,CP'D* + E¥F},G*

would be obviously incorrect for in the first term on the right-hand side the i
is in the wrong position and the k does not appear; the second term however
is consistent. The letter used for a dummy index can of course be changed at
will, but it cannot be the same as a free index without gross confusion. An
upper affix in a denominator counts as a lower index in the numerator and
vice versa. Thus, if we were to need a symbol for d/dx!, we would write
D; = d/dx' with its affix in the lower position.

Exercise 7.11.1. Describe the coordinate lines and surfaces of the following
coordinate systems (x, y, z are Cartesian coordinates):

(i) X = x‘x“, }, — [{(xl)a _ dz}{l _ (xz)a}]lga’ 7 = _]::l=|
(i) 2x = (x1)® — (x?)?, y = x'x%, z = x5,
(i) x = xxtxs, y = xixt{l — (P, 22 = () — (<,
(iv) x = x3[{(x1)? + d3{1 — (x»2}]",

y = [{xD? + @1 — (*PH1 — PR z = x1x2
(v) x(x! — x%) = ax3{(x1)? — 1}12

Yot — ) = af{() — 11 — (2

2(x* — x%) = a{l — (x?)P}°

7.12. Proper transformations

We wish to define the class of transformations that we shall regard as
proper or admissible. A transformation of coordinates is not of much value



§7.12. Proper Transformations 137

if we cannot get back to the original coordinates by inverting the transforma-
tion. For example, the transformation from cylindrical to spherical polars is
given above by Eq. (7.11.3), but the inverse transformation is

x! = xsin X%, x2 = x8, x® = x1 cos X% (7.12.1)

Both sets of equations are perfectly definite except at the origin where
x! = x® = x' = 0 and the value of the other coordinates is immaterial. It is
shown in Appendix B that the transformation

Vi=fdxpXe .0 X,),  i=1,...,m,

can always be inverted in the neighborhood of a point to give

xi:?’i(yl!ym'“!yﬂ)’ i=1,...,n

provided that the Jacobian
0(frs - - s fn)

s, - - -5 %)

exists and does not vanish. Translating this into our coordinate notation we

see that the transformation

xt = x'(#, x2, x%) (7.12.2)
can be inverted to give

x! = xi(x1, %2, %%) (7.12.3)

provided that the Jacobian

0x o(x!, 3% x%)

ox' ax* ox°
dx* ox' ox'
ox! 92> ox°
ox* ox® ox*
ox' ox* ox’
ox* 9x* ox®
exists and does not vanish. We have already encountered the geometrical
meaning of the Jacobian, namely, the ratio volume elements in the two
coordinate systems. Thus, to say that neither J nor its reciprocal is zero, is to

say that no infinitesimal region in one coordinate system is collapsed into a
single point in the other.

The set of proper transformations forms a group if we define the product of
two transformations as the result of applying them successively. A group has
the following properties:

J =

(1) the identity transformation / belongs to it,
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(ii) if T; and T, are two transformations of the group their product T,T;
also belongs to it,

(iii) if T is a transformation of the group then its inverse 71 also belongs to
it, (TT! = 1),

(iv) the product is associative, Ty(T,Tg) = (1, T,)T;.

The identity transformation % = x* is obviously proper and our definition of
propriety has ensured the existence of the inverse (iii). What we need to show
is that the product or successive application of two proper transformations is
still proper. Let T, be the transformation from x* to X' and T, that from x*
to %%. Then we can write symbolically X = Tyx, £ = T,X and by the product
T,T; we mean the transformation from x to X, that is, £ = T,T;x. This
product will be proper if the Jacobian |9X/dx| is not infinite or zero. However,

os' _ ast o

ox’  ox* ox’
so that the matrix [J] whose typical term is dx*/dx’ is the product of the
matrices [J,] and [J;] whose typical terms are 0£f/0x* and 0x*/0x? respectively.
However, the Jacobians.of the two transformations and their product are the
determinants of these three matrices and the determinant of the product of
two matrices is the product of their determinants (see Appendix A9). It
follows that 2% 2% || 0
0x ox% || ox
and since neither J; nor J, vanishes or is infinite, their product is neither zero
nor infinite and the transformation 7,7 is proper,

The idea of a group is a very valuable one. Its importance and the
geometry to be associated with it were first brought out by Felix Klein in 1872,
A subgroup of the group is formed by a subset of the transformations of a
group which themselves enjoy the group property. Thus the identity opera-
tion must belong to every subgroup; the inverse of any transformation and
the product of any two transformations of the subgroup must also belong to
it. For example, the group of transformations given by nonsingular constant
matrices A; is a subgroup of the general group of proper transformations,

%= Alx?, (7.12.7)

It is proper since J = det A} is not zero. Hence the inverse exists and is given
by a nonsingular constant matrix. Also, the product of any two constant
matrices is a constant matrix and thus belongs to the subgroup. This
subgroup induces all forms of Cartesian coordinates including those with
oblique axes when operating on the ordinary rectangular Cartesian coordi-
nates. It is itself a subgroup of the more general transformation

X = Alx? + b (7.12.8)

(7.12.5)

= JoJy, (7.12.6)
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which involves a shift of origin as well as distortion of axes. This last
subgroup is called the affine group. It has subgroups such as that given by
(7.12.7) with b* = 0 and known as the group of linear homogeneous trans-
formations. This in turn has subgroups of equivoluminar linear homo-
geneous transformations (for which J = 41), the group of orthogonal
homogeneous transformations (for which 4} is orthogonal and J = -+ 1), and
the group of rotations (for which A} is orthogonal and J = +1). Itis this last
subgroup which is the only group of transformations considered in constructing
Cartesian tensors.

Exercise 7.12.1. If J = |0%/0x|, show that

ox’ 0x® 0x°

2J_ = €ing€ire = .
ox? P AxT Ox®

(Here there is summation on p, ¢, r and s.)

Exercise 7.12.2. Calculate the Jacobians for the transformation from
Cartesian coordinates to those of Ex. 7.11.1, (i)~(v).

7.13. General plan of presentation

It will be useful at this point to sketch the development we shall follow. At
first we shall just be paralleling the development of Cartesian vector and
tensor analysis and making use of the maturity that the reader should now
have attained to minimize some of the more fussy details. We shall have to
distinguish at the outset two types of behavior under transformation, which
in the subgroup of rotations are identical, but until we reach differentiation
the analogy with Cartesians is very close. We shall find, however, that a new
kind of differentiation has to be introduced to preserve the tensorial character
that partial differentiation has hitherto enjoyed.

A distinction will also emerge between the curvature of the coordinate
system and the curvature of the space it is being used to describe. Thus the
cylindrical and spherical polar coordinates are curvilinear systems but they
describe the Euclidean space in which the ordinary Cartesian coordinates can
be constructed. Since the space of our gross experience is Euclidean it is
rather difficult to imagine a curved three-dimensional space. The distinction
can however be seen in two dimensions by comparing the plane and the surface
of a sphere. The latter has an intrinsic curvature which actually precludes the
setting up of a Cartesian system of coordinates. Strictly speaking, Cartesian
tensors suffice for Euclidean space and if we wanted equations in curvilinear
coordinates we could transform the equations in Cartesians to obtain them.
However, they do have certain manipulative advantages and this redundancy
gives another useful pedagogical bridge from the familiar to the abstract.
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When we come to consider flow in surfaces, then a full tensorial treatment is
quite essential as the space is not Euclidean. To prepare the way for this,
Chapter 9 is devoted to the study of surfaces in space.

7.21. Contravariant vectors

Since the coordinates are in general curved, we cannot expect any linear
transformation between the coordinates themselves. However, differentials
of the coordinates dx‘ and dx’ are connected by the laws of partial differen-
tiation and

_ _ OX'
dx = — dx’. (7.21.1)

ox’
(The affix j in 0x*/0x? is in the upper position of the denominator and so
counts as a lower affix.) The coefficients dx/0x’ are generally functions of
position, but are calculable from the equations of transformation. Consider,

for example, the transformation from Cartesians to cylindrical polars,
7= {(x1)? + (x2)}3, X% = tan—! (x%/xY), X% =x3

Here we have

dst — (x' dx' 4+ x® dx?)

O + e
J7 = (—x% dx' 4 x' dx?)
{7 + (P2

d=® = dx3,

We call this behavior under transformation the behavior of a contravariant

vector and, as before, define a contravariant vector to be anything that

behaves in this way.

More precisely, we say that a* are the components of a contravariant vector
at a certain point in the coordinate system Q123 if under a transformation of
coordinates to O123 the components of the contravariant vector become

o OF
a = P a’. (7.21.2)
Thus a vector is associated with a given point and the coefficients 9x'/dx?
must be evaluated there.
As before, we have to establish this behavior on the part of any entity we
wish to show to be a contravariant vector. If xi(¢) is the coordinate of a
moving particle with the time ¢, then

vt = — (7.21.3)
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is its velocity. In the transformed coordinates the velocity has components
' = dx'[dt, but clearly,
5 — dzt _ 9x'dx’ _ a.t'i o
d  ox’ dt  ox' '
so that velocity is a contravariant vector. Similarly, the acceleration and all
higher derivatives are contravariant vectors.

(7.21.4)

7.22. Covariant vectors

If f(x!, x%, x®) is a scalar function and we transform it to a function of the
variables x*, ¥2, %3, its derivatives transform according to the equation

af _ox’ of
— = - 7.22.1
ox  ox'ox’ ( )
We could consistently write
a, = I (7.22.2)
ox’

for the upper affix j in the denominator is equivalent to an affix in the [ower
position. Then, since f is a scalar or invariant function, @, will be the set of
quantities df/0x'. Thus Eq. (7.22.1) is

i
= L ‘s (7.22.3)

ox*
and this type of behavior under transformation is the behavior of a covariant
vector. More precisely, the quantities a; are components of a covariant vector
in the coordinate system 0123 if under transformation of 0123 they trans-
form according to Eq. (7.22.3). These two transformation formulae may be
recalled readily if the “conservation of indices” is remembered. The index iis
associated with the barred component and so must be associated with x.
Since the index on a coordinate is always in the upper position, the X* must be
in the denominator and the derivative is 0x’/d%’. Considerations of the
summation convention lead to the same reassurance.
For the rotation transformation let us write

¥ =1
and its inverse

xt =[x
Thus, 0%'/0x’ = I and 9x’[0x' = I;. However, [} and /; are both identical
with the /,; of Chapter 2 being the angle between Oj and Oi. Hence Eq.
(7.21.2) and (7.22.3) are identical and the distinction between covariance and
contravariance does not arise for Cartesian tensors.

Let y = (", % ) be the Cartesian coordinates of a point and x1, x2, x3 its
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coordinates in some other system. For fixed i, y* = y(x%, x%, x3%) is a scalar
function and so the three quantities

i

o for j=1,2,and 3

ox’
are the components of a covariant vector. For fixed j,
dy
= — 7.22.4
g{ﬂ' ax’ ( )

is a Cartesian vector. The three Cartesian vectors g, 8(s), 83 are called base
vectors in the coordinate system x’, and they are not coplanar if the trans-
formation from Cartesian coordinates is a proper one. Any Cartesian vector
can be expressed in terms of a system of base vectors. Thus

a = d'g, + a’gy) + a’gs = a'g, (7.22.5)

where the a* are the components of @ with respect to this base system. Now
for another system of coordinates X* we would have base vectors

- gy _ ox’
B = Py ax,,gm
Hence,
a=dgy = &ka't g = a'g
or
a = g%ﬁk (7.22.6)

This shows that the a* are components of a contravariant vector,

7.23. The metric tensor

The reader will already have guessed that the tensor is to be defined by an
extension of these transformation properties which is entirely analogous to
the way Cartesian tensors were developed. Before going on to the general
definition, it is convenient to consider a special tensor of fundamental
importance. We shall only be able to introduce it in an informal style and
will have to come back later to establish its nature. In Euclidean space a
Cartesian system of coordinates can always be erected. Let us denote these by
y* to distinguish them from the general curvilinear coordinates x'. The
distance between two points P and Q with coordinates y* and y* 4 dy' is ds,
where

3
= Y dy*dy~. (7.23.1)
K1
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Notice that we cannot use the summation convention here since both affixes
are at the same level. However,

dy* = aa—i’: dx’, (7.23.2)
hence, i i k
ds® = :.21 (% dx‘) (gi; dx’)
here = g;; dx' dx’ (7.23.3)
3. 9y ay*
8iy = ,El FEw (1.23.4)

g;1s called the metric tensor since it relates distance to the infinitesimal coor-
dinate increments.
For example, with the cylindrical polar coordinates

2
A= {0+ 0V B=tanL, B=)

we have ) Y
gn=1 gau=0GY%, gu=1, (7.23.5)
and all g;; = 0, i # j. For spherical polars
gu=1 gu=(0%  gg=(x'sinx?)? (7.23.6)

and the off-diagonal terms are again zero. When only the diagonal terms are
nonzero, the coordinates are called orthogonal (for reasons which will
appear later) and it is convenient to write

g = H, (1.23.7)

where the h, are called scale factors. The
name arises from the fact that if we make
an infinitesimal displacement only in the
direction -of the x’ coordinate then

ds = h; dx'  (no summation)

so that h; represents the ratio of distance Fig. 7.2
to coordinate difference. This may be
seen in the simplest case with cylindrical polars in Fig. 7.2, where h; =
hs = 1, hy = x!. Reverting to the notation p, ¢, z we see how this comes
about; for x! = p and x3 = z are true distances in space, but x* = ¢ is an
angle and the corresponding distance is p d¢ and varies with p.

Let g denote the determinant of the matrix whose typical element is g;.
Then g is not zero for it is the square of the Jacobian |dy/dx| of the trans-
formation to Cartesian coordinates. If g denotes the ij" element of the
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inverse of matrix of g,;, we have gg; = g,;,g’* = 1 if i = k but zero other-
wise. This is the definition of the Kronecker delta which we will now write
with one suffix in the upper and one in the lower position,
|1 i=
& = (7.23.8)
0 i
If the coordinates are orthogonal we observe that g* = h7%, g =0, i # .
The notation suggests associating covariance with g;; and contravariance
with g¥, and regarding g as a scalar. We must now proceed to formal
definitions and establish the tensorial character of these entities.

Exercise 7.23.1. Calculate the metric tensors of the coordinate systems given
in Ex. 7.11.1.

Exercise 7.23.2. Show that for the rotation group the metric tensor is
always d,;.

Exercise 7.23.3. Prove that if J = |0y/0x|, then g = JZ.

7.24. Absolute and relative tensor fields

An entity specified by 3™+" components 41" :im is called an absolute tensor
of order (or rank) m + n if it transforms, under transformation from
coordinate 0123 to 0123, to a set of quantities given by

E’”“T"' . ox*t o OxPm gy 11 OxIn i
a1 "dn axil axiﬂ afﬂ';_ afﬂn i1-dn

More precisely, we may call it an absolute tensor of contravariant order m and
covariant order n, but in many cases it will be sufficient to call it a tensor of
order (m 4 n). When the components are functions of the coordinates we
speak of a tensor field though it is often possible to drop the term field and for
the most part we shall do this. A tensor of order one is called a vector and one
of order zero a scalar. The word absolute will only be used when it is neces-
sary to distinguish it from a relative tensor. A relative tensor of weight w and
order (m + n) is defined as above save that on the right-hand side of Eq.
(7.24.1) there also appears the factor J* where J = |0x/0x], is the Jacobian of
the transformation.

Let us clothe this bare definition by giving some examples in addition to the
absolute covariant and contravariant vectors we have already encountered.
The Kronecker delta is a mixed (that is, partly covariant and partly contra-
variant) tensor of the second order. For we have

g 00 9P %P
“Uaxext ' Ax' ot 0%

(7.24.1)
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but the barred coordinates are independent so 9%”/0% is 1 if p = g but zero
otherwise. Thus 87 = o7 and it is in fact an isotropic tensor. To see that g;; is
a covariant tensor of the second order we have only to write down its defini-
tion in the new coordinates.
oyt oy"
k=10x" 0x°
_ 3, 9y*ox* oy* ox’
¥=1 0x' 0x” 0x’ 0x°
Coxtox! & oytayt
ox” 0% =1 0x' 0x’
ox* ox’
= “a*:; a__“_; Bije (7.24.2)
Thus g,, is also isotropic in the sense that in the barred coordinates it is again

the metric tensor.

The permutation symbol €, has already been defined and used. It takes on
the values +1 according as ijk i1s an even or odd permutation of 123 and is
zero if any of 4, j, and k are equal. Let us see how it transforms. By definition

of the determinant

,’q=

Mu

ax ax d ax
= Je .
ax a a_,. €ijk = E’,w
Thus
ox* ox’ ox*
v =J S A (7.24.3)

oxr ozt ax T
is again the permutation Sj',rmbol and is evidently a third order covariant
tensor of weight —1. If we define €* in the same way, it turns out to be a
third order contravariant tensor of weight 4+1. Now g = JZ (cf. Ex. 7.23.3)
where J, denotes the Jacobian of the transformation from Cartesians y to the
coordinates x. Similarly, & = JZand hence

a_y 2
2 - 2
p=|2 o0 L2 (1.24.4)
0 oy J: g
dx
Substituting for J in Eq. (7.24.3) we have
1 ox' ox’ ox*
ﬂfpw a > axﬂ' a_ glﬂﬁiﬁ: (?.24.5)
and it appears that
ppe eie = 8 eus (7.24.6)
13 an absolute third order covariant tensor. Similarly,
gltik — g-l.*z gtik (124'?)

is an absolute third order contravariant tensor.
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Since § = J%g, g is a relative scalar of weight 2. Now the cofactor of g, in
its matrix is
1
Gu — E Eimnffwgm 8na
Hence
]
g = & = Lmngieg o, (7.24.8)
g 2
The right-hand side is a contracted product of absolute tensors and from the

result proved below in Section 7.31it follows that g*/ is also anabsolute tensor,
in fact a second order contravariant one.

Exercise 7.24.1. Show that "¢, = 6J6F — 610%, and g™"¢,ux€npq = &i28ke —
EBia8kn
Exercise 7.24.2. Show that 8}6] = 3, e"*¢,;, = 3!

Exercise 7.24.3. Show that 0%f]ox’ 0x’ is NOT a covariant second order
tensor.

7.25. Isotropic tensors

We have observed that g,; and 8} are isotropic tensors in that their values
are defined in the same way in all coordinate systems. The first is defined as
the metric tensor in the appropriate coordinates and the second as the
Kronecker delta. It follows from its construction that the conjugate metric
tensor g* is also isotropic, and these are the only second order isotropic
tensors. Equation (7.24.5) shows that ¢, is isotropic and so likewise is 7%,

The isotropic fourth order tensors may be constructed by arguments
analogous to those used in Section 2.7. It turns out that there are again three
independent isotropic tensors of each type. The purely contravariant fourth
order tensors are

giigll, (gikgﬂ _1__gﬂgﬂ:) and (gﬂ:g:il _gﬂgjt)_ (7251)

We shall have occasion to use these in the same way as the Cartesian isotropic
tensor was used.

Exercise 7.25.1. Find the mixed types of fourth order isotropic tensor.

7.31. Tensor algebra

We may define the operations of tensor algebra with little discussion since
they are analogous to the operations already familiar. To avoid ungainly
formulas, 4%, B}, C,;, etc. will be used as illustrating typical tensors but it will
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be evident that all definitions can be applied to tensors of any order. We
shall: give them only for absolute tensors, their modification for relative
tensors being quite easy.

Scalar muf!ipﬁcarfan If A is a tensor and « a scalar, the scalar product
aA" is the tensor each of whose components is « times the correspondmg
component of AY.

Addition. If Ay and BY are two tensors of the same order in both covariant
and contravariant indices, they can be added. The components of the
sum are the sums of the corresponding components of the two tensors.
For the difference of two tensors the corresponding elements are
subtracted.

Contraction. If a contravariant index is identified with a covariant index and
the summation convention invoked, a tensor of order smaller by 2 is
obtained. For example, 4 is a contravariant vector obtained from the
mixed third order tensor Ay. It is not the only one for the first and third
indices might have been identified to give 47.

Outer product. The outer product of two tensors of orders m + nand p + ¢
is a tensor of contravariant order m 4 p and covariant order n + ¢
whose elements are the products of one element from each factor. Thus
the outer product of 4% and BE is a fourth order tensor Ci* = A"/B}
contravariant in the first three indices and covariant in the fourth.

Inner product. A contraction of an outer product is an inner product. Thus
A" and B might have second order products C* = A4¥Bf or C* =
ABE,

Symmetry. 1f for any tensor the value of a component is unchanged by
interchanging two indices, it is said to be symmetric with respect to these.
If the magnitude is unchanged but the sign alters, it is said to be anti-
symmetric with respect to them. The metric tensor g;; is an example of a
symmetric tensor.,

Associated tensors. If A, is a covariant vector, the contravariant vector
gA; = A’ is called its associated vector. This operation is known as
raising the index and its inverse is the lowering of the index by an inner
product with g,;, for example, B; = g;;B". A tensor obtained by raising
or lowering any index is said to be an associated tensor. Since g;;g™* = &
the original tensor is restored when the index is lowered again. g% has
been defined as the conjugate tensor, that is, the element of the inverse of
the matrix of g;;. If A, is a covariant second order tensor, the associated
tensor A = gi*gi 4, is not generally the conjugate tensor. The
exception to this is when A,; is a scalar multiple of g,; for

9 0g,, = og™? &) = agh (7.31.1)
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The conjugate of a second order tensor 4,; can, however, be calculated in
the same way as for g;; and exists provided that the determinant of the
A,; does not vanish.

Exercise 7.31.1. Rephrase the definitions for relative tensors.

Exercise 7.31.2. Establish that the tensor character is preserved under
addition, contraction or multiplication.

Exercise 7.31.3. Establish the tensorial character of g¥ from the previous
exercise and Eq. (7.24.8).

Exercise 7.31.4. If the coordinates are orthogonal and g;, = h% show that the
associated vector of A* has components 4; = h%4°, with no summation
on the i.

Exercise 7.31.5. Show that ¢7*A4;B, and &, A’B* are associated absolute
vectors. They are vector products of A and B.

Exercise 7.31.6. Show that any tensor can be represented as the sum of outer
products of vectors. Take as a typical case 4}.

7.32. The quotient rule

The quotient rule stands exactly as for Cartesian tensors and is most easily
exhibited in a simple case, the generalization being evident. If A(ijk) is a set
of 27 quantities, B* a contravariant vector independent of A4, and it can be
shown that the inner product

A(ijk)B* = C¥

a contravariant second order tensor, then the A(ijk) are the components of
a mixed third order tensor, A}. For

EN ax” ax C ax” a.f"
ox' ox’ T oxt ox
0x? 0x? ox*

= — 2 A(iik)B".
o o oz AUk)

However, C*¢ = A(pgr)B" and subtracting
0x” 0x° 0x*
i i | B =
[ Atvar ax' ox 03" 0

and since B is independent of A this can only be satisfied by the vanishing of
the bracket. This is the transformation law for A7. The generalizations can
be written down by invoking the conservation of indices. The essential point

A(uk)B"
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is that B should be independent of 4. It is not possible to establish the
tensorial character of g/ by invoking the quotient rule on the formula

g8 = O

7.33. Length of a vector and angle between vectors

For an infinitesimal contravariant vector with components dx’ we already
have a measure of length; namely,

ds = {g,, dx* dx’}l2. (1.33.1)

Any contravariant vector A° can be thought of as a large multiple of an
infinitesimal vector A®* = M dx’. The length of 4 may thus be taken to be
M ds = |A|, and we write

4]* = g, 4'4’.

Since g;;A4" is the associated covariant vector 4; and A’ = g¥4,, we can also

write
|A|? = g A4’ = A'A; = A; A7 = gV A A, (7.33.2)

Thus the lengths of a vector and its associate are the same. If [4| = 1, we say
A is a unit vector.

For example if x(s) is the equation of a curve and s is the arc length, then
7t = dx*[ds is a unit tangent vector to the curve. Any vector may be made a
unit vector by dividing by its length. The unit contravariant vector tangent to
the x! coordinate line is obtained by making the vector A* = 8] of unit length.
Its length is g,,6i6] = g;;, so the unit vector is
8

(&

The index 1 is not a tensorial index and so has been enclosed in parentheses.
€l and ey are similarly defined. If the coordinates are orthogonal

ey = (7.33.3)

ety = %, (no sum on j). (7.33.4)
)

The associated unit covariant vectors tangent to the coordinate lines are

e = Ealln = —‘EL’ITE or &h;  (nosum onj). (7.33.5)
(31:‘)
The angle 6 between two unit vectors A* and B' 1s
cos 0 = g, A'B’ = A'B, = g A,B,. (7.33.6)

To prove this we observe that it is a tensor formula identifying a scalar with
the twice contracted product of a tensor and two vectors. It is certainly true
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in Cartesian coordinates where g;; = 4,; and hence is true in any coordinate
system for we can transform both sides of the equation and the one is a scalar
and so stays the same. If 4 and B are not unit vectors then

. giJAiBf

cos 0 .
|A]|B]

(1.33.7)

The angle between the coordinate lines at any point is given by

Epa
{gﬂngw}lm

Thus, when g,, = 0 for p # ¢ the angle between the x? and x? coordinate
lines is a right angle. For this reason, the coordinate system is called orthog-
onal.

The projection of a vector 4* on the direction tangent to the x’ coordinate
line is | 4| cos 6 where 6 is the angle between A* and €f;,;

cos B, = g”s:,,e:q, = (nosumon porg). (7.33.8)

. i85k
|A| cos 0 = é—ﬁ% (no sum on j)
ii

g ;A"
= 248 (7.33.9)
(gﬁ)m

In an orthogonal coordinate system this is

|A| cos @ = h;4’  (no sum on j). (7.33.10)

Exercise 7.33.1. For an orthogonal coordinate system, the angle between
two unit vectors is given by

cos 6 = (hyA")(hB') + (heA%)(hyB®) + (h3A%)(hyB).
Exercise 7.33.2. Show that the length projection of A* on the direction of B’ is

EuAiBj
{gmeBQ}lm '

Exercise 7.33.3. Show that if the metric is positive definite (that is, ds® =
gy dx* dx! is always positive) then the angle between two vectors is
always real.

Exercise 7.33.4. Show that

ip, ja agm

ogY _ _
ox* '8 oxt
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7.34. Principal directions of a symmetric second order tensor

The covariant vector A4,,L’ derived from the covariant tensor A4;; and
contravariant vector L’ will have the same direction as the associated vector

Lt AyLP = AL, = Agyi. (7.34.1)
This set of three simultaneous equations has nontrivial solutions only if
|4, — Agyl =0, (7.34.2)

which is a cubic equation for 4. Its roots are the latent or characteristic
values of the tensor and the associated L are the corresponding characteristic
vectors. For a real symmetric tensor, it can be shown that the character-
istic values are all real and that characteristic vectors associated with distinct
values are orthogonal. It follows that there is a rotation of coordinates that
makes the transformed tensor A4;; diagonal. These properties are entirely
analogous to the Cartesian case.

Exercise 7.34.1. Show that the characteristic values of a tensor are invariant
under transformation.

Exercise 7.34.2. Demonstrate the orthogonality of characteristic vectors of a
symmetric tensor for distinct latent roots. Construct the transformation
to canonical form.

Exercise 7.34.3. Show that if A,; = gudY; = gaAf = g,g,4", the four
tensors 4 have the same characteristic values and associated characteris-
tic vectors.

7.35. Covariant and contravariant base vectors

In Section 7.22 we defined a set of Cartesian base vectors

o = g—zi (1.35.1)

where y is the Cartesian position vector of the point x. (i) is to be regarded as
a label on the Cartesian vector but for any given component of the vector, say
the first gg;,, the three quantities g}, gl &(s) are components of a covariant
vector. We have also shown that if a Cartesian vector is expressed in the form
a=a'g, (7.35.2)
then the coefficients a* are the components of a contravariant vector. They
may be called the contravariant components of the vector a in the given
coordinate system.
The length of a is given by

|a|* = a-a = (a’g)) - ('g;)
= g - &ya'a.
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However, if a* are the components of a contravariant vector its squared length
is g a‘a’. So that
8 * Bij) = Zin (7.35.3)

which is another way of writing Eq. 7.23.4. The basis vectors are not usually
of unit length but a basis of unit vectors tangent to the coordinate lines is
given by e, = g,/(g:;0"*. As we have seen the angle between two coordi-
nate lines is

_ B Lia) _ Epa
cos 0,, = e, * €y = S, =
(gﬂﬂgqq) (gppgﬂ)

If I" denotes the matrix whose i*" row is the set of components of g;,, the
matrix of the g;; is G = ['[". Hence, the determinant y of I is related to the

determinant g of the metric tensor by
g =% (7.35.4)

Since this does not vanish we can construct the reciprocal basis (cf. Section

2.36),

gh'l — 8 A B (?'35'5)
Y
where i, j, k is an even permutation of 1, 2, 3. The reciprocal basis is such that
g g, = &, (7.35.6)
Let the components of a with respect to this reciprocal basis be g, and
a = qg"®, (7.35.7)

Then
a gy = ﬂkg{k} ‘8 = ad = ay,
but by Eq. 7.35.2

8.8 = a8y &y = ﬂié’m
and comparing these two we see that
ﬂ, —_ ﬂfg’ﬂ. (?358)

Thus the covariant components of a are the components with respect to the
reciprocal basis and are also the components of the covariant vector associ-
ated with the vector of its contravariant components.

We notice that the matrix whose rows consist of the components of the
reciprocal base vectors is (I'')". Thus the matrix with components

g% =g - g is (T1Y(I1) = (TT")! = G-,
However, this is just the definition of the conjugate metric tensor, which is

evidently formed from the reciprocal basis in just the same way as was the
metric from the original basis;

g =g . g, (7.35.9)
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With curvilinear coordinates the system of basis vectors will depend on the
point. under consideration. It is this variability, not present in Cartesian
coordinates, that makes the construction of a tensor derivative more
complicated than a straight forward partial derivative. Light is also thrown
on the absence of distinction between covariance and contravariance in
Cartesian systems. The basis there is a set of mutually orthogonal unit
vectors, whose reciprocal is identical with itself.

7.41. The physical components of a vector in orthogonal
coordinate systems

Cartesian coordinates all have the physical dimensions of length but in
general we cannot expect this of curvilinear coordinates. For example with
cylindrical polars x! = p, x* = ¢, x* = z, the first and third have the dimen-
sions of length but the second has no dimensions. Thus the contravariant
velocity components v’ = dx'/dt would not all have the same physical
dimensions and can hardly be what we understand by the physical components
of velocity. The associated covariant vectors are in no better position for
though in this case v; = v* and v; = v? have the dimensions of velocity,

v, = h3 v = (x")%(dx¥/dr)
has the dimensions of (length)?/(time). Actually for this system
ds® = (dx')? + (x dx?) + (dxF,
so that we see that dx!, x! dx%, and dx?® all have the physical dimensions of

length and dx'/dt, x'(dx?/dt), dx*dt would therefore have the dimensions of
velocity. For a general orthogonal coordinate system

|4]* = (A")* + (B A% + (h34%)? (7.41.1)

so that the h,4* have the same physical dimensions as the magnitude of the
vector A, which is evidently given by Pythagoras’ theorem. This is the sort of

behavior we expect of a physical component.
The unit contravariant vectors tangent to the three coordinate lines are

&i ) 61’ 6;
ehy = =, Yoy = — ehey = =3
(1 hy €(2) h, (3) ha

If the contravariant vector A* is represented as a linear combination of these
base vectors

A* = A(Dely) + AQelg) + AB)e), (7.41.2)
comparing the three components on each side we see that
A(D) = hAY,  AQ2) = hyA%,  A(3) = hyA3. (7.41.3)

The A(i) are called the physical components of the contravariant vector A°
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and, as Eq. (7.41.1) shows, they all have the same physical dimensions as the

magnitude of 4.
The physical components of the covariant vector 4; can be constructed in

the same way by the representation

A; = A(Deq)s + AQ)ea); + A(3)es):- (7.40.3)
Since e(;); = &%h;, we have
A=  a=%, 43)=% (7.41.4)
hy hy hy

However, A; = hiA!, etc., so that both these sets of formulae define the same
physical components.

It is worth remarking that the conservation of indices is a great help in
keeping these formulae straight, though there is no summation involved.
Thus a parenthetic index has no tensorial significance being merely a label.
‘The lower index to h; has covariant significance since Af is an element of a
covariant second order tensor, and the upper index A! is contravariant. In
the product h;4' these cancel one another out and leave the neutrality of a
parenthetic index. The same considerations apply when we write (g,,)"2 in
place of h, if we regard the square root as reducing two affixes to one.

The physical components do not of course transform as tensors, but their
transformation law can be easily deduced. In a new coordinate system
A(i) = h;A* (no sum on i) so we have

A)) = hAi = fr~——A’ hy 0%

where there is no sum on i but a smgle summatmn on j. Consider the angle
0;; between €7, in the new coordinate system and e}, in the old. We can only
calculate this angle by bringing both unit vectors into the same coordinate
system. In the new coordinate system e}, becomes

g 0%, _10%
= A 4 €t — .

ox® h; ox’
However, this is a unit vector since

2.3 lgafa_,f‘ﬂig 1
rsE(NE () — h“ rsa ax, h§ §i P

and so 6,; is given by

- p o1 1\(1 0%
ot = sty =i} 1 )

=i
_ b ox (7.41.6)

h;ox’
Hence the transformation law for physical components can be written

A(i) = cos 0,;4()), (7.41.7)
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which is just the familiar sum of the projections of the three components on
the new direction. In Cartesian systems the physical, covariant and contra-
variant components are identical.

Exercise 7.41.1. Show that the physical components are the lengths of
projections of the vector on the tangents to the coordinate lines in
orthogonal systems.

Exercise 7.41.2. Show that the same law of transformation (7.41.5) is
obtained by starting with A(i) = A4,/h,.

Exercise 7.41.3. Show that
3
|4| |B| cos 8 = z A(DB().
f=1

7.42. Physical components of vectors in nonorthogonal
coordinate systems

For nonorthogonal coordinates the definition of the physical components
is not quite as simple but we start from the same representation as before.
The contravariant unit tangents are e}, = &;/(g;,)"* and if we set

3
= 3 AG)ly (142.1)
we have
A(j) = A%(g,)¥*  (no sum on ) (7.42.2)

which reduces to Eq. (7.41.3) for orthogonal coordinates.
For a covariant vector we first construct the associated contravariant
vector and apply Eq. (7.42.2). Thus

A(j) = (g;)%g"4;  (no sum on ). (7.42.3)

Only in the orthogonal case where g = 1/g;; and g = 0, i # j, does this
give A(j) = 4,/(g;)"*. However, the relation

z AUJEHH (7 42.4)

i=1

is preserved since e;,; = g,;/(g;)">
The transformation law of physical components is

AG) = @) = 0" 4
— (EL) e o%! — A(i)  (no sum on j). (7.42.5)
8ii Ox"
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The scalar product of two vectors can be expressed in terms of the physical
components, for it is
8ij S pr s
g:;A'B’ = —=— A(i)B(j)
i (285"
= cos ¢y, A()B()); (7.42.6)
where ¢,; is the angle between the tangents to the x* and the x’ coordinate
lines.
The quantities
e*4,B, and ¢;A'B* (7.42.7)
define a contravariant and a covariant vector respectively, the associated
vector products of 4 and B (cf. Ex. 7.31.5). Denoting these by C* and C, we
have
C(i) = (gu)lmsﬂkAiBt

L2 A B
— (&) efjkg.jp (p) 8o (Q]

g (€)' (8"
However,
€808k = E€our8""s
so that
g8 | |
C) = g -2 | a(p)BCO). (7.42.8)
E9p8aa
This is a cambersome formula but reduces in the orthogonal case to _
C(i) = €;,,A(p)B(q). (7.42.9)

Exercise 7.42.1. Show that the scalar and vector products given by Egs.
(7.42.6 and 8) transform appropriately.

7.43. Physical components of tensors

Higher order tensors usually occur in such formulae as that for stress
where #* = pin’ and we would like to associate physical components in such a
way that (i) = p(i))n(j). In orthogonal coordinates we have

p h,‘ i ;
(i) = hit' = hplyn’ = =pn())
i
so that we can write
p(ij) = h,p’;/h,. (7.43.1)
Evidently, we may treat each index exactly as the corresponding covariant or
contravariant index of the vector is treated. Thus, for example,

hih Ay

k

A(ijk) = (7.43.2)
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where none of the indices is summed. In orthogonal coordinate systems, we

need not distinguish between the physical components, the tensors p*; and
7 fi

pi. tor

o _h . h
plij) = - piy =

h:
im . n__ 't {'
h; h,g g.;npm- .Pi

h;
Notice that the diagonal elements of a mixed second order tensor are the
same as their physical components

pli)y =p} =p'  (no sum on i). (7.43.3)

In nonorthogonal systems the relation for a mixed second order tensor
leads to

i = (&) 7, (1434

£i;

by analogy with Eq. (7.43.1). To find the physical components of a pure
covariant or pure contravariant tensor we should lower or raise an index.
Thus

_ g 2 g\ 12
p(ij) = (—) 8" Pm; = (—) gimp'™ (7.43.5)

gii Ejj

where there is summation on m only. With nonorthogonal coordinate
systems a distinction must be made between the tensor formulae p’;n’ and
p/n’. Truesdell writes the physical components of p; as (ji)p so that the
product would be written n(j)(ji)p in physical form. Thus (ji)p = (g../g;;)"*p,
which for a symmetric tensor is the transpose of p(ij). In orthogonal coordi-
nate systems this distinction does not arise and we will not pursue it farther;
the reader is referred to Truesdell’s paper in the bibliography. The method
which Truesdell elicits in that paper is as follows: Starting with the tensors of
lowest order the tensor components are replaced by the physical components
as already defined, the final result showing the proper way of defining the
physical components of the higher order tensors.

7.44. An example

The discussion of physical components is sufficiently important to warrant
an example, which will be made simple to avoid heavy algebraic manipula-
tions. Consider the three coordinate systems:

Cartesian x, x% x® or x,y,2
Cylindrical polar %2, % or p, o,z

Elliptical cylinder %, %% %® or o,y 2
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They are defined and related by

Tensors §7.44

x! = x! cos X% = A& cos X2,

x? = %! sin X® = ux'sin %%,

x3 = x3

i

x3=33:=¥3

NN

= 33,

'y

o

Fig. 7.3

(A and u constants).

x! = constant is a circular cylinder
and X' = constant is an elliptical
cylinder,

14 2 24 2
(5)+ () =

A JZ
The coordinate planes X2 = constant
and X* = constant are both planes
through the x*® axis, as shown in
Fig. 7.3. The first two systems are
orthogonal but the third is not.
Since if A = g =1 the second and
third coordinates are the same we

will do the calculations for the

more general elliptical cylinder coordinates.

ox*  cos X ox' _ sin X* X' _ 0
o A ox*
08 sinx®* 9% cos X §_5c_'f=0
ox! Aust T ox? Aust ox* !
o o ~3
:i: =0, %ﬁ =0, %ﬁ—g =1,
X
1 1 1
Ex'ﬁ = A cos %, g—i = —A#!sin X%, ‘g%= 0,
by X *
2 2 2
ox® ox® ox®
— — 0’ —_— y —_— = ]..

Thus

gu = A*cos® %% 4+ u?sin? 72,
Zag = (X1)2{A? sin® % + u® cos®x?},

=1,

12 = g = (u* — AHF sin %* cos 22,
§13=§31 =§23 = g3 = 0.

For the orthogonal polars, A = u =1,
.&2 = .iﬂ,

J;i1=1.1

ha=l.
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Consider a vector f with no component in the 3-direction and let it be the
force on a particle rotating in a circle of radius r and subject to a retardation
proportional to its velocity. If we take its mass and angular velocity to be
unity, the physical components of the acceleration in cylindrical polars are

fSo,=r fo=—ar, [,=0.

In Cartesian coordinates the physical, covariant, and contravariant com-
ponents are the same and

fo=f=fi=dtwd fi=fi=fi=s—axd, f,=f'=f=0.
To get the contravariant components in the other systems we must transform
tensorially.” Thus

~1 .
= Zﬂf‘: cﬂ‘:iﬂ {A%' cos 22 + apuit sin 2} + sin & {ux'sin £ — ad%! cos 2}
x p
=f1—}-m(‘§— i)flcosiasini”
u

and similarly,

sin %% cos %2

0z %2 sin® 2 — i
]’ﬁ=_if£=_‘x(f.‘-05 4 sin )+p
ox 7 A
For the orthogonal case 4 = u =1,
A =f=73, 2= —a, fo = —a(x))2
From these we can extract the physical components in the cylindrical polar
coordinates

==
f(2) = hyf? = ﬁi = —ax"

and since ¥* = r these agree with f, and f;. The formulae using the oblique
coordinates are more cumbersome.

Exercise 7.44.1. Using the apparatus provided in this section, find f(1) and
f(2) and interpret them in the light of the geometry of the situation.

7.45. Anholonomic components of a tensor

If ef;), i =1, 2, 3, are three linearly independent contravariant vectors
(am,e{f{‘}efﬂe}’m, # 0) they can be regarded as a basis. The reciprocal basis of
covariant vectors can be constructed, a set e/ such that

(i _ &4 (i __
elyel = 01, byl = 82 (7.45.1)
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The parenthetic index is a label for the member of the triad and the other index
is the component index, but we allow summation convention to apply to both.
If A? is a mixed second order tensor, the nine quantities A%e{’e?,, i, j = 1, 2,
3, are scalars which we may denote by 4%). They are called the anholonomic
components of the tensor with respect to the given set of base vectors (J. L.
Ericksen, Tensor Fields, Section A10, p. 801, in Handbuch der Physik III/1,
Berlin, Springer 1960). In the case of a vector its anholonomic components
(for example, A”e!’) are clearly the projections on the three base vectors. In

general, the anholonomic components of a tensor A2’ are the scalars
(#d--ld) __ qog i), , . A r ., 8
Ay = A7 Jey € em) " e (7.45.2)

They are of course as many anholonomic components as tensor components.
If the coordinate system is orthogonal and the base vectors are unit vectors
tangent to the coordinate lines, they are

el{l} = (llr'hll 0: 0): e(E) = (0: 11”’2; ﬁ); 2{3} —_— (0, 0, lﬁla}
e{n = (hli 0: 0)!' EEE} == (0! kﬂ: 0)1 e{ﬁ] = (0: 0, h:])-

Then the anholonomic components with respect to this system of base vectors
of a tensor are

(i) hi*hy ;...
T ) =—*——=T1i (7.45.3)
hy - h,
where there is no summation on the indices i,...,/ We recognize these

immediately as the physical components.

7.51. Differentials of tensors

We have noticed that although df/dx® is a covariant vector for any scalar
function f the second derivative 9%/dx* dx’ does not give a covariant second
order tensor (cf. EX. 7.24.3). In this respect our curvilinear coordinate
system 1s not so convenient as the Cartesian system in which the partial
derivatives gave higher order tensors, and it is important to try and define
a derivative which preserves tensor character. To be acceptable, such a
derivative should tie in with what we already have. That is to say that in
Cartesian coordinates and when applied to a scalar, it should reduce to the
familiar partial derivative. We should also expect the derivative of a sum to
be the sum of the derivatives and the derivative of a product to be given by the
usual rule. The name covariant differentiation is applied to this operation and
the covariant derivative of a tensor A4 (the suffixes are suppressed) with
respect to x? is denoted by A4,,. A further property that we should expect
would be that the differential d4 = A(x* + dx) — A(x?) for infinitesimal
displacements dx* should be given by d4 = A4,, dx".

Our method of approach is as follows. We shall first consider what is
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meant by the parallel displacement of a vector along a curve and obtain a
condition for this. Then follows an interlude in which one of the terms in this
condition is expressed in terms of the metric tensor. This defines the
Christoffel symbols which we express in various forms. To define the
covariant derivative of a contravariant vector field we take an arbitrary
covariant parallel vector displaced along an arbitrary curve and form the
scalar product of the two. This is a scalar and its derivative with respect to a
parameter along the curve is perfectly familiar. However, by using the rule
for the derivative of a product and the condition for the second vector to be
parallel, we are immediately led to an expression with tensor character and
such that dA* = A4,} dx!. This definition is then extended to an arbitrary
tensor,

7.52. Parallel vector fields

In Cartesian coordinates y', a vector field B’ with constant components is
represented by a field of parallel vectors. If we take any curve y(¢) in the
region of definition of the field, then we can think of the field along the curve
as generated by the parallel prop-
agation of the vector along the !
curve. The constancy of the com-
ponents B' is expressed analytically

b}r H &
B _o @51 .

dy’
and their constancy along the curve

% 4B 2B'dy’
dt 9y’ di
If the second condition holds for an arbitrary curve it is equivalent to the first.
In curvilinear coordinates the constancy of components does not provide a
condition for parallelism. For example, in spherical polar coordinates
(1,0, 0) is a unit vector always pointing away from the origin. If it is prop-
agated along a curve, say the unit circle in the plane 6 = 7/2, it is obviously
not parallel to itself (see Fig. 7.4). This may be seen by looking at the
Cartesian components of the vector, which are y'/r, r* = ()*)® + (»®? + (%,
and certainly not constant.
Let x' denote the general coordinate system and A‘ be a contravariant
vector field. In Cartesian coordinates y’ we will denote the vector by B¥ so
that

=0. (7.52.2) Fig. 7.4

B = -QE A’ (7.52.3)
ox’

If x'(r) and y'(r) are the parametric equations of an arbitrary curve in the two
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coordinate systems and the vector field is parallel we must have dB'/dt = 0,
However, this condition is

dB* d oy’ dy®? dA’ d (ayv)

i A A’ _— P Ai il Bl A

dt  dt ox’ ox’ dt + dt \gx’
dy® dA’ o%y® dx*

= b A —— =0, 7.52.4
ox’ dt dx’ ax* dt ( )

If we multiply by dy?/0x‘ and sum on p, we have, by definition of the metric
tensor,

dA’+AI(3 ay? o9%y® )dxl.-:(},

s dr $10x* 9x’ ax*/ dt
or multiplying through by g
dA™ ( 3 9y® % ) , dx*
T A’ = =0. 7.52.5
dt TE :21 oxt ox’ oax* dt ( )

Exercise 7.52.1. Obtain the condition
i _ (3 00 ) 0
dt i=1 0x"” 0x%0x* dt

for the parallel propagation of a covariant vector A4,. (Hint. Differ-
entiate the scalar A;C* for arbitrary parallel C.)

7.53. Christoffel symbols
Since, by definition,

3 dv® dv®
y oy
= 2 T, 7.53.1
i :g:t ox* dx’ ( )
it should be possible to express the sum in Eq. (7.52.5) in terms of the deriva-
tives of the g;;. The summation is always from p =1 to 3 and it is not
necessary to write it in full each time. Then we have

§£ﬁ=z[ 2y By? N dy? 3P |
ox* ox'ox* dx!  ox* ox! ox*.

%=E B 32_}1" a},w ays-: aﬂyr ]
ox? Lox* ax? Ox* ~ ox* dx’ axk
a_g’_k::z B aﬂyn dy?  0y® 9%y? 7
ox* Lox! 0x? 9x*  Ox’ dx* ox*d

from which we have

ay:n aﬂyp ) 1 (ag
% (—-— —_— == £
ox' dx’ ox* 2 \ox* +

0gs 08 ﬂ:)
— = 1. 7.53.
ox? ox ( 2)
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This expression is written [jk, i] and is called the Christoffel symbol of the
first kind. The factor occurring in Eq. (7.52.5) is g*"[ jk, i] which is written as

{j d k} and is the second kind of Christoffel symbol. These symbols are not

tensors (cf. Ex. 7.53.1) but are most important functions of the metric. The
notation used here is standard and shows the nontensorial character: the
notation I'y,; and I'}, is also commonly used. The definition

i — oip — 1 u!(aguf 0g,n agﬂ:)

{j k} Lik p ot oo o)UY
may be best remembered by first writing the last term in [jk, p], which is
negative and has the suffixes in this order; namely, dg,/0x?. The other
terms are positive and are permutations of this order. (Since the metric
tensor is symmetric, the parity of the permutation does not matter.) The

Christoffel symbols {j lk} and [ jk, i] are clearly symmetric in jand k.

The condition (7.52.5) for a contravariant A’ to be a parallel field may thus
be written

dA’ l i } dx*

— Al— =0 .53.4

dt + J Ok di (1.234)
The analogous condition for a covariant A; is

d4; { j } dx*

ik S A — =0. 7.53.5

d i k"7 at ( )

Since (d/dt) = (9/dx*)(dx*/dt) and the curve was arbitrary, these conditions
might be written

94 l i ] ;
A'=0 7.53.6
™" — + k ( )
and
0A; j .
-*é;-; -— {i k}AJf = (. (7.53.7)

The Christoffel symbols can be interpreted in terms of the variation of the
base vectors. The base vector

oy
=3 7.53.8
B = 5% ( )
where y is the Cartesian coordinate of a point (cf. Eq. 7.35.3) and
Bis = B * Bui)- (7.53.9)
Hence
0gi; _ 08w . 085
3 ot B0 + 8 P
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and forming the Christoffel symbol we have

ik, 1] = g - 22, (7.53.10)
since 9g;)/0x’ = 0g;/0x". It follows that

M (i)
It [k, ilg

and since g'*) = g'™g .,

@w_{m}

Uk 2(m)- (7.53.11)
Thus if m is regarded as a contravariant index, the Christoffel symbols are the

components of the rate of change of the j™ base vector with respect to the k'
coordinate.

Exercise 7.53.1. Show that the transformation law of Christoffel symbols is

0x? 0x? ox” 0%x® 0x°
Lim, n] = 5% 527 2 Lpa. 7] t 3% oo

and

{n} axaxax{r}_l_ *x” ox"

I m|] % 9™ ox" o% 9%™ ax?

ox' 0x™ ox"
Exercise 7.53.2. Show that if the coordinate system is rectilinear (that is, all
coordinate lines are straight), then the Christoffel symbols are all zero.

Exercise 7.53.3. Show that
og"” — _{ i }gm
ox’ j k=

7.54. Christoffel symbols in orthogonal coordinates

In an orthogonal system of coordinates g, = 0 if p % g and g, is written
as hf. The Christoffel symbols are relatively srmple and involve only one
term. For example, [12, 3] vanishes identically since it is composed of
derivatives of gy,, gss, g5 Which all vanish. Similarly,

og 0g 0g ]
12 171 = [ 11 12 _ Y512
[12, 1] = + ox'  o9x!

12 4, o

2 0x® ' oxt

and

og og 33] oh
22,11 = [ 12, Uh1e Tz _ __p T
[22,1] = a2 ox % ox
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Thus we can see that
: oh;

[pg, r] = +h, 2 (7.54.1)
ox
when p = ¢ = r = i = j, with the positive sign,
or g =r=1i, p=j, with the positive sign,
or r=p=Ii,q=j, with the positive sign,
or p =g =i, r=j, with the negative sign,
and is zero if p, ¢, and r are all different.
, 1 ‘
Since {f Ik} = k_% [ jk, i] with no sum on i, we have
0 when p, g, r are all different,
1 0oh, _
, -f:a_j whenp=q=r=i=j,
{p q} =1 %% org=r=ip=j (7.54.2)

h. oh. orr=p=i,g‘=j, '
_h_;gh; whenp=g=1ir=j.
i

In Cartesian coordinates the Christoffel symbols vanish. In cylindrical
polars the only nonvanishing symbols are

[12,2] = [21,2] = X,

[22,1] = !21 2} = —x, (7.54.3)

{122}={221]:;1'1'

In spherical polars we have

[21,2] =[12,2] = ~[22,1] = X},
[31,3] = [13,3] = —[33, 1] = x"sin® x*,
[32,3] = [23,3] = —[33, 2] = (x!)? sin x* cos x%,

{212] ==, {313} = —x'sin’x% (7.54.4)
{122]={221]={1331=l331}
(2 ) camscos, [,7)-|

Exercise 7.54.1. Show that

{ i}=lalogg
iojlo2 ox!

1
1
3

—_— 2
J =t

b2
[’
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Exercise 7.54.2. Calculate the Christoffel symbols for one or more of the
coordinate systems given in Ex. 7.11.1.

7.55. Covariant differentiation

A comparison of the conditions for parallelism in Cartesian and general
coordinates (see Egs. 7.52.1 and 7.53.6) suggests that

A

may be the generalization of partial differentiation that we are looking for.
It certainly satisfies the requirements we have laid down and we could
proceed to show that it is a tensor by direct transformation. We shall,
however, proceed more slowly and use the quotient rule to establish the
tensor character.

Let A* be any contravariant vector field and x'(f) a curve within its region of
definition. If B; is an arbitrary parallel covariant vector defined along this
curve, then A'B; and its derivative dA'B,/dt are both scalars. However,

dA? dB
— (A'B,) = — B,
( i) 7 + A m
dA* j dx"
_ddy ,-r{
dt + K dt

by Eq. (7.53.5) since B; is a parallel vector. Changing the dummy suffix in the
first terms from i to j we can write this

d gy [d4’ {f},-;_fgc_"]
dr(ABi)— [dr 1 14 ” B,. (7.55.1)

Since the left-hand side is a scalar and B, an arbitrary covariant vector the
quotient rule implies that the term in the bracket is a contravariant vector.
It is called the intrinsic derivative and written

i i :
%f‘:— = dd—’: { J k]A*“;—f. (7.55.2)
Moreover
dA’ 047 dx*
dt  9x* dt
so that
6A’ 0A? dx¥
= E 1 0553
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The curve was taken to be arbitrary so dx*/dt is a contravariant vector quite
independent of the quantity in brackets. Since the left-hand side is a contra-
variant vector, the quotient rule asserts that the quantity in the brackets is a
mixed second order tensor. We write it

y o4’ [ j } :
A o —+ K A, (7.55.4)
Notice that the same rule applied to a scalar gives the conventional partial
derivative since there is no index on which to sum the second term. Also, in
Cartesian coordinates the Christoffel symbols vanish identically so that the
partial derivative is again recovered.

To find the covariant derivative of a covariant tensor we proceed in the
same way as before with an arbitrary curve and parallel contravariant vector.
We then arrive at the formula

A i
A=35- — L,‘ k]fh (7.55.5)
and
61{’ dxk
L= A, —. 7.55.6

The general rule may be easily discerned from the case of a mixed second
order tensor A; Let x*(f) be an arbitrary curve and B; and C’ arbitrary
parallel vectors. Then A}B,C = E is a scalar and

d . d .. . (dB dc’
£ (4iB,CY) = (— A‘)ﬂ,.c" A (-—‘ C'+ B )
dr( B.C) dt” ! AN O

Substituting for the derivatives

d
iE’__ { }d_
dt d
and %:%ﬁk
dt ox* dt ’
we have
ek [P -,/ )
== B.C' + A'B,C’ — AB,C? =
% Lge O T A k A VR R P T

To get B and C always with the same suffix we now interchange the dummy
suffixes i and p in the second term and j and ¢ in the third to give

dE [a,qf FRANE }] | dx
— — Al . BI-C _—
dt ox* +4 p k ok dt
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Since the left-hand side is a scalar and the vectors B;, C’, and dx*/dt are all
independent of the bracket, the quotient rule asserts that

04 i J a
Ay = o '+ A] {P k} — Aa{j K (7.55.7)
is a mixed third order tensor. It is evident therefore that

0

A;li fm.t_a i: " lﬂ + z A‘l IM".ﬂm{ '

S g q
-3 apn, o), o
=1 g
a form that is much more easily perceived than written down.
A delightfully simple and elegant example of the power of tensor methods
is the proof that the metric tensor acts as a constant with respect to covariant
differentiation,

giix = 0. (7.55.9)

This is a tensor equation asserting that a certain third order tensor equals the
zero tensor. If the equation is true in one coordinate system, it is therefore
true in all since we may transform both sides of the equation. However, it is
obvious in Cartesian coordinates and so always true. This is known as
Ricci’s lemma. The same method can also be used to show that the rules of
differentiation of sums and products hold for covariant differentiation.

The additional terms that arise in the covariant derivative are due to the
variation of the base vectors. To see this let us consider the case of a contra-
variant vector, which may be written

a = a'g.
The derivative of a with respect to x* is

d 0 .
== “a‘gm + a' %0

ox*  ox* ox*
However, by Eq. (7.53.11) this can be written as

da’ ]
é“ggm + a { d k]gm-

da da’ i
Ec_"= Fy + {j k]ﬂf]gms

by interchange of the dummy suffixes i and j. From Ex. 7.53.3 it is evident
that a covariant vector would give

e% N [% - [ j jk}ﬂf]ﬂ“’- (7.55.10)

Hence
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These expressions in the brackets are just the appropriate covariant derivative
and show that the Christoffel symbol comes in with the variability of the base
vectors.

Exercise 7.55.1. Show by direct transformation that
i aAi i k
Ay = 9x? + J k}A
is a mixed second order tensor.
Exercise 7.55.2. Show from the definition that g,;, is zero.

Exercise 7.55.3. Show that the covariant derivatives of g%, g, ¢, and ¢;;, all
vanish.

Exercise 7.55.4. Calculate the components in spherical polar coordinates of
the covariant derivatives of the three contravariant tangent vectors to the
coordinate lines of that system.

Exercise 7.55.5. Show that
¢
Q(gﬂﬂgij) + lp q}glﬂg — (.
(Hint. Use g" = 0 and the result of Ex. 7.54.1.)

Exercise 7.55.6. x(t) is a curve in space satisfying
d’x' { i }didi -
de \J k| dt di
Show that it is a straight line.

7.56. The Laplacian, divergence, and curl

The covariant derivative of a scalar @, which reduces to the partial deriva-
tive, is a covariant vector ¢ ,, the gradient of . We can raise the index to give
a contravariant form of the gradient g"¢ ; and both of these are the vector
Vo in Cartesian coordinates. If we take the covariant derivative of this
vector with respect to x’ and sum on j, this is again a scalar, the Laplacian of ¢,

Vip = glip .. (7.56.1)
Writing this in full we have

____a_ fjﬂ’) {f}ﬁta‘}"
Ve (g )Tl K o

ox? ox'
However, by Ex. 7.54.1 and switching of dummy indices
j o 1 aglm _ 1 aglm
j k *_glfﬂ Dxk g" 11’2 Ox’
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so that

1 0 op
V2 =+—-—{ 172t ——} 7.56.2

4 glfz ox? £§°8 ox’ ( )
In orthogonal coordinates this takes the form

1 d ( hyhg0 d (hsh, @ o (hyh, @
Vi — [a ( 2 aj_’) _(ﬁi) _(Ls_?:’)] 7.56.3
4 hyhghs 0! hy ox? + ox?® hy ox? + ox® hg ox® ( )

The covariant derivative with respect to x* of a contravariant vector A*
summed on i is called the divergence of the vector 4

divd4 = A (7.56.4)
If A, is a covariant vector, the suffix must first be raised to give
div 4 = g¥4, ;. (7.56.5)
By the same methods as before we can write thcse:
1 9 ; 1 ;
1% o — (g'?4") or T 5‘", (g%g"A)). (7.56.6)

These are scalars and so are identical wnth their physical components but we
can express them in terms of the physical component of 4 by using the
relation A(i) = (g,,)'?4* = (g,,)"%g" "4, both become

) _ l i “g‘)l.n'k )
divA4 = 18 3 [(gﬁ A(l)] (7.56.7)

d
hlhgha[a {AWhhs} + = {hlA(z)ha} + 55 {h th(S)}:I (7.56.8)

in orthogonal coordinates.
The expression £"* 4, ; is an absolute contravariant vector which reduces in

Cartesian coordinates to the familiar expression for the curl of the vector. We

th . ,
creforedefine A =eM,, or &g, A, (1.56.9)
To obtain the physical components of the curl we need first the physical

components of A4, ;. In an orthogonal system

A{k,j) p— L Ahi == hlh {hkA(k]} hpA(p){J pk}]

hihl:
We only need this for k 3£ j so that the: two Christoffel symbols that appear
are with p = j or p = k. However, these are

A2 e (-1

or

h; 0x* Jj kI h ox’
Then
| 13A(k) 1 oh, . 1 o { oh,
Ak, j) = ~ k Ky 1
G D= T A e — A ae ~ AW o
=imm 1 ok,

h; ox’ A h;hy 0x*
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Now &% = 1/ hyhg if i, j, k is an even permutation of 123 and the negative of
this if an odd permutation. Let ijk be fixed as an even permutation of 123then
the i physical component of curl A4 is

b b hfAk, ) — AG, K}

172%°3
= A(k, j) — A(j, k) (7.56.10)
1 0A(k) 1 9A( j)] 1 [ ahjlc . Oh ]
Ak — A(j) —}.
{h ox'  h, ox* + h by ( ) 0) ox*
The second line shows that the definition of the curl in physical components
is exactly its Cartesian definition.

iik —
hia Ak,i —

Exercise 7.56.1. Obtain the Laplacian in cylindrical and spherical polar
coordinates.

Exercise 7.56.2. If X% is an antisymmetric contravariant tensor, show that

1 9

11’2 a .f (EHEX”)

LF R
X =

Exercise 7.56.3. Find the physical components of the curl in a nonorthogonal
coordinate system.

Exercise 7.56.4. The physical Christoffel symbol may be written

(ijk) = h’hk{ ik}-

Show that the physical components of A}, are
A(ij) @ ( )
— A(i
8 AW+ h, Ox*

+ (ikp)A(pj) — A(iqX(gjk)
where summation is only on p and g.

A(ij, k) =

7.57. Green’s and Stokes’ theorems

In Cartesian coordinates we can write the theorems of Green and Stokes
replacing the partial derivatives by covariant derivatives since the two are
identical, Thus, for any contravariant vector,

[[[4i;av= [[4n,as (7.57.1)
8
where n, is the covariant outward normal. Similarly,

[[[4,,av= [[g"an;ds = [[ 4 as. (7.57.2)
¥V 8 - 8
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Since this formula is constructed in full tensorial form, it is true not only in
Cartesian coordinates (for which we have proved it above) but also in any

coordinate system.
The special forms of Green’s theorem are also valid;

[[[g"9.sav=[[pmtas =] %—f ds (1.57.3)
V 5 8

where d¢/dn is the intrinsic derivative normal to the surface.
Stokes’ theorem may be written

&%A4, n, dS - At dS. (7.57.4)
S C

Exercise 7.57.1. Show that

J‘J‘J'ﬂ’g“{}?.if dVv + _”.gﬁ'{p_;'?,j dV = thp (;—: ds.
v v s

7.6. Euclidean and other spaces

We have been dealing all through this chapter with a Euclidean space of
three dimensions. By definition this is one in which a Cartesian coordinate
system can be set up. We therefore defined the metric tensor from the
Cartesian definition of the length element and transformed it into general
coordinates. It is possible to proceed more abstractly and say that a Rie-
mannian space is one in which there exists a metric

ds® = g,; dx* dx’

where the g,, is a covariant second order tensor field. Euclidean space is then
certainly Riemannian for we know how to construct its metric tensor, but
Riemannian space is more general for it includes spaces that are not Euclidean,
An example already mentioned is the surface of a sphere, which is a two-
dimensional, non-Euclidean space. We may therefore ask what conditions
the metric has to satisfy for it to be the metric of a Euclidean space.

Now in Cartesian coordinates a suitably continuous vector field A,

certainly enjoys the property that

ox’ ax*  ox* ox’

or

A = A e (7.6.1)

However, this last formula is a valid tensor formula and so must hold in any
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coordinate system we care to transform to. Evidently Eq. (7.6.1) is a neces-
sary condition for the space to be Euclidean. Let us consider the left-hand
side in detail. It is

(A.-_,),k—?" —{I.P }A w{ 4 k}Am

ARl
15z -1

l} ff][ { q]A’
st el N LA R Lo R e J ]

* [{: p{c]{pr;‘} + {jqk}{i rq} - {f ' _,-}]A,.

Now the first two terms are symmetric in j and k and so is the second expres-
sion within the third bracket; thus

A‘-’*"A‘*F['a%f{krf} A “ 0 A

= Ry A, (7.6.2)

since by the quotient rule the bracket on the right-hand side must be a tensor.
Now by Eq. (7.6.1) the left-hand side must be zero for any A if the space is to
be Euclidean. Evidently this is equivalent to the condition

"= 0. (7.63)

This tensor is known as the Riemann-Christoffel tensor of the space and its
vanishing is a condition for the space to be Euclidean. Since the Christoffel
symbols are combinations of derivatives of the metric tensor, the Riemann-
Christoffel tensor is really a condition on the metric. It can be shown that
R";;. really has only six independent components so that there are six
conditions on the metric of a Euclidean space. The associated tensor
R ,iix = gR7i is called the curvature tensor since it embodies information
about the non-Euclidean character or curvature of the space. We shall have
no occasion to use this in three dimensions, but we shall meet it for a surface
where it will appear that it has only one independent component. Some of its
properties are given below as exercises.

In deriving the covariant derivatives we again proceeded from the idea of
parallelism in Euclidean space. We might, however, have written down the
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definition of Eq. (7.55.8) and proved it a tensor from the transformation
properties of the Christoffel symbols. This would have founded everything
on the metric tensor and would show that covariant differentiation holds in
any Riemannian space. However, it is possible to be even more abstract and
define covariant differentiation by Eq. (7.55.8) asserting only that the
Christoffel symbols are given functions of the coordinates and that they
transform like Christoffel symbols. The space so defined is called a space of
linear connection (or of affine connection if the symbols are symmetric). Just
as there are Riemannian spaces for which no Cartesian coordinates can be
found, so there are spaces of linear connection for which no metric can be
found. Such spaces are more general than Riemannian spaces, but still
retain a certain structure. In three dimensions we can be content with
Euclidean space, but for the two-dimensional surface flows we shall need
Riemannian space. Although we shall not advert to it in this book, the
space-time of relativity is a four-dimensional Riemannian space in which the
equations of continuum mechanics have an extraordinarily compact expres-
sion.

Exercise 7.6.1. Show that R';;, = 0.
Exercise 7.6.2. Show that

Rmx=a%[fhp]— [u,p]+{ }[kp, m]—{ }[JP: n].

Exercise 7.6.3. Show that
Ryie = —Rpas = —Ripp = Ripis = Ryepse
Exercise 7.6.4. Show that
Rpiie + Ry + Rpris = 0.
Exercise 7.6.5. Show that in two dimensions there is only one independent

nonvanishing component which can be taken as Ryy,. (The general
result in N dimensions is N3(N® — 1)/12.)

Exercise 7.6.6. Show that the symmetry relations of R,;; are satisfied by
EmpiEnid™ ", Where S™" is a symmetric second order tensor. Hence,
conclude that there are six independent components of the curvature
tensor in three dimensions.

Exercise 7.6.7. Show that for an orthogonal metric
o = _ [aa (131:,,) 0 (_Lah,)+Lfi_}1,.ii_hi:]
h’h hy, h,0x’/ = 9x* \h,ox*/ = h?% 9x' ox*
L[ 0% 1ohok 10k
n2heh,

s =

ox'9x’ h; dx'0x’ h;0x’ ox'

where i, j, k are all different and no summation occurs.
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The Equations of Fluid
Flow in Euclidean Space

We are now in a position to apply our understanding of general coordinate
frames and transformations to the equations of fluid motion. This can be
done quite rapidly when we have agreed on certain conventions of covariance
and contravariance. For, since we are dealing with Euclidean space, we
already have the basic equations in Cartesian tensors and have only to express
these in a form which is invariant under more general transformation.

From the outset the convention of contravariant coordinate differentials
has been used. It follows that the derivatives of position with respect to time
are also contravariant vectors in particular the velocity v* and acceleration ',
Since the normal to a surface p(x) = constant is in the direction ¢ ; = dgp/0x’,
we take the normal to an element to be a covariant vector n;, The force
vector we take to be contravariant, and, since the contracted product of the .
stress tensor and the normal to an element is the stress or force per unit area,
the stress tensor itself must be purely contravariant. We can of course
associate vectors and tensors of different variance with these by raising and
lowering an index.

8.11. Intrinsic derivatives

As before we may take the material coordinate of a particle to be its
position § at some arbitrary origin of time. The path of a particle x = x(&, ?)
176
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is a curve in space and v = dx/dt (d/dt denoting differentiation with §
constant) is its velocity. The intrinsic derivative along this curve of any
function A4 of position x has already been defined as

o4 _ g  _ A (8.11.1)

ot "t
A can be any scalar or tensor and this derivative has been shown to be a
tensor of the same order (see Section 7.55). If 4 is a function of ¢ as well as of
position, we must write

oA dA
== 8.11.2
ot ot t+4 ( )

If A is a scalar we have the same material derivative as before, but if 4 is a
tensor of order greater than zero, there will be extra terms arising. In
particular, the acceleration is given by

i

v
— + l.?'{l?ij
t "

R PNERY
8+3x’ S PR 0 (8.11.3)

In an orthogonal coordinate system the physical components of velocity

and acceleration are
v(i) = h' and a(i) = ha'. (8.11.4)
Thus

) | he o 9 o) b
a(i) = y + h, u(_;)ax’, h +hfhk L k}v(;)u(k) (nosumoni) (8.11.5)

Exercise 8.11.1. Using the relations (7.54.2), show that
_ autr) o)) [a»m o(i) Oy _ o)) %]
a(i) = +}Z o0 T h oo b el

Exercise 8.11.2. Obtain the aoceleratian in cylindrical and spherical polar
coordinates.

8.12. The transport theorem and equation of continuity

The divergence of the velocity field is the scalar v}. Since J, the Jacobian
of the transformation from material to spatial coordinates, is a scalar, the
same proof as in Section 4.21 can be used to show that

o _al _ s, (8.12.1)



178 Fluid Flow in Euclidian Space §8.12

We again have Reynolds’ transport theorem

E-HJ'F av=|[f ;‘Z—F+ vai] v

=jjj§f+m+n]av (8.12.2)

=J'J'J'?§JV+IJ'Fu‘n..dS

for any scalar or tensor F.
In particular, putting F = p, the density, we have, by the conservation of

mass,

dp i Op ;
£ 4 =L 4 (pv*),=0. 8.12.3

This is the equation of continuity and gives the corollary to the transport

theorem,
f”ﬂ”" fﬂp—dlf (8.12.4)

Exercise 8.12.1. Obtain the continuity equation in terms of the physical
components of the velocity for an orthogonal coordinate system.

Exercise 8.12.2. Show that in cylindrical polar coordinates with velocity
components v,, vy, v, the continuity equation is

dp , 10 10 g _
a:+r ( r)+ ¢(pv¢)+ (pv.)

Exercise 8.12.3. Show that in spherical polar coordinates with velocity
components v,, vy, Uy the continuity equation is

ap

+—H( pv,) + —(EmﬂPUa)'F

1 !
= 0.
P or r sin 0 96 ﬂa¢(F”*]

8.13. The equations of motion

To form the equations of motion we take an arbitrary constant parallel
field of unit vectors /; and equate the rate of change of momentum to the net
force in this direction. This is necessary since the direction in space of a given
coordinate line is changing—a contrast to the Cartesian case. Since the field
is parallel, [;; = 0.

The contravariant stress tensor 7/ can be constructed by identifying its
physical components with the corresponding components of the Cartesian
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stress tensor. Then the force on an element of area dS with normal n; is
T*n; dS. In the absence of stress couples and intrinsic angular momentum
the stress tensor is symmetric. The external body forces per unit mass are
represented by a contravariant vector f*. The total net force on an arbitrary
volume V with surface S resolved in the direction /; is.

”fpf‘h dv + ffT”nJi ds = f f f[nf‘ + THLav,  (8.13.1)
vV 8 vV

where the last integral has been transformed by Green’s theorem.
Equating this to the rate of change of linear momentum in the direction /;
we get

 [[fouar = [[Joatav= [[flor+ Tiav. @12
vV L g L

Since both the volume V and the parallel vector field /; are arbitrary, this
equation can only be satisfied if

¢ 7
a' = o + v, ="+ T, (8.13.3)
ot p
A slight extension of Ex. 7.56.2 shows that
1 ,. i
T = Tﬂ é—;(g”gT N4 T"‘{j k}. (8.13.4)

In orthogonal coordinates the physical components of this may be written
pla() —f(D} = T(J, j)

hy @ [h 1hah

hlhghaax h;h;

3 ()] o J J k}T{jk} (8.13.5)

(no sum on i).

A covariant form of the equations of motion can be obtained by lowering

the index to give T,

=Ji
p

where (8.13.6)
TE = gaT".

Exercise 8.13.1. Obtain the equations of motion in terms of physical com-
ponents in cylindrical polar coordinates.

Exercise 8.13.2. Obtain the equations of motion in terms of physical com-
ponents in spherical polar coordinates.

Exercise 8.13.3. Show that the assumption of conservation of angular
momentum is equivalent to the symmetry of the stress tensor.
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8.21. The Newtonian fluid

We will first carry through a discussion of the Newtonian fluid and arrive
at the Navier-Stokes equations before returning to a more fundamental
consideration of the constitutive equations.

If the velocities of two nearby points x* and x* + dx* are v and v/ + &/,
their relative velocity is

dv’ = v} dx". (8.21.1)
This can be written as the sum of symmetric and antisymmetric parts
vl = 8™(es; + ) (8.21.2)
where
e = }v;: + 0.9, (8.21.3)
Qi = ¥v; s — vy 5), (8.21.4)
and v; = gyt (8.21.5)

As before, the interpretation of Q,; dx’ is that it represents a rigid body
rotation of the element. The symmetric part of the rate of strain tensor is the
deformation tensor e;;, and this may be interpreted as before (see, for example,
Ex. 8.21.1, 2).

The stress tensor corresponding to a hydrostatic pressure p is —pg*. For

the stress on an element with normal n, is ¢ = —pg*n; = —pn* which is in
the direction of the normal and of magnitude —p. Again we write
T = —pgii + P (8.21.6)

where P, the viscous stress tensor, is to be related to the deformation. For
an isotropic Newtonian fluid this relation must be linear and isotropic so that

PY = GHmne (8.21.7)
where G*™" is an isotropic tensor of the fourth order. It must be symmetric
bothin i, jand m, n and so according to Section 7.25 is a linear combination of
g'g™ and (g'™g’" + g'"g’™). We therefore write this relation as follows:

P = Ag"g""emn + HE™ " + 878 e mn
or
TY = (—p -+ AeMg'’ + 2ue®. (8.21.8)
If Stokes’ hypothesis is invoked and p identified with the mean stress
—1T7, then we again have

3A4+2u=0
and
T = —(p + $ue™g"’ + 2ue". (8.21.9)
e = vf; is the dilatation so that for an incompressible fluid
TH = —pg" + 2ue". (8.21.10)

For a perfect fluid with no viscous stress
T = —pg", (8.21.11)
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Exercise 8.21.1. Show that (dg;;/6f) = 0, and deduce that
e;; dx* dx’
g dx'dx’’

Exercise 8.21.2. Show that there are generally three mutually orthogonal
directions in which the rate of strain is stationary.

d
—logds =
ot g

Exercise 8.21.3. Show that in cylindrical polar coordinates x* = r, x* = ¢,
x? = z the physical components of stress for an incompressible fluid are

T#':——p+2p(%‘a&+&)’ T"=p(%9: _|_g%')’

10v v
T;l’=_p+2auﬂ;: T;'¢= (_a_(;'{_ f)-
Exercise 8.21.4. Show that in spherical polar coordinates x* =r, x* =0,
x3 = ¢ the physical components of stress for an incompressible fluid are

T,

I
|
-
-+
¥
|

1 v,  10vy v )
r Tos = =4 -2 _2coth
or o 'u(r sin 0 d¢ + roé r °

1 dy, ov 1 odv, v
n‘__”+2“( % ) Tor= "‘(a:+rsinea_¢_'j)

00 r

1 oo 10v, , Ov, v
Tyo = —p + 2 —2 tﬁ) T. __(“_ —ﬂ)
i Pt P(r sin 69¢ + + “ " \roo o or r

Exercise 8.21.5. Obtain the additional terms in the stress components for a
compressible fluid in these two coordinate systems:

8.22. The Navier-Stokes equations

To make use of the relation between stress and strain in the equations of
motion we must first calculate 7. From Eq. (8.21.8) we have, for constant 4

and u,
T:? = (‘"P.s + le,’,'f.f)g” + Zﬂffﬁ

= (—p,; + Aep 8" + 2ug%em,;
=(—p;+ 1"5:1}3’ Y4 pg'g m(ﬂr mi + Umps)
= (—p; + (A + Wo)e"’ + ug’™,,. (8.22.1)
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Thus the Navier-Stokes equations can be written

Pﬂ'. = Pf‘ - 8‘”?,1 + @A+ P)U,i;:;g” + ﬁ.l}ﬂ”fﬂ: (8.22.2)

or in covariant form

a;=pfi —p;+ A+ P‘)”fm + pg"v; 5 (8.22.3)
The term v%; can be written grad div v and the last term is the Laplacian of v.
Thus we have

pa = pf — grad p + (A + p) grad divv + uV?v (8.22.9)

which is exactly as before.
In physical components we have

pa(i) = pf (i) — gi*8"p; + (A + w)gi*g (div v) , + ugl*V*[ g}/ %u(i)]
(8.22.5)

and we can use the divergence expression in Eq. (7.56.7) for the penultimate
term of this last equation. In orthogonal coordinates this term becomes

190 [ 1 9 I:hlhgha “
- k
( +ﬁ} hf_ ax hlhgh ax hi‘. v{)

where there is summation on k but not on i. The expression in Eq. (7.56.2)
for the Laplacian of a scalar cannot be used for the last term of Eq. (8.22.5),
since this is the Laplacian of a vector. Even in orthogonal coordinates the
form of this is too complicated to be given in generality; some simple
examples occur below.

Exercise 8.22.1. Obtain the following Navier-Stokes equations for incom-
pressible flow in cylindrical polar coordinates. (» = u/p),

R N
N

‘3’% ,a”‘+";_*"g’;‘*+ @i+”:“' ﬁgg
e
Bimn
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Exercise 8.22.2. Obtain the following equations in spherical polar coordinates

.r, 6, ¢.

ov dv, . vy Ov, vg Ov, vp+vy __ 10p
—_T + . *r + 8 @ _ -8 [ —_——
ot or r3&+rsmﬂaq& r pa
10%rv,) 1 %, 1 %, cotb dv,
+ "{r o T 7R T Psinto o | 2 20
_g@_ﬂ_ 2 3_u¢_2u,u_2cotﬂua]’
296  r’sin6déd r® ré
0, ura_::, Ug 00, Vg Bu,_l_v,u,_qicolﬂ_!___l_a_p
ot or radé rsinfdd r r pr 00
10%(rvg) . 1 0%, 1 0%,y ., cot@adv,
LN 2
"7 Tor * r2 90®  r*sin® 0 0¢® T r® 00
_2cotfdvy | 20v, v, }
r’sin0o¢ r*00 risin26)
dvg dvg | Uy Oy Vg OVy , Uy , Veppcotd  —1 dp
8!+ +raﬂ +rsmﬂaqﬁ+ + r  prsin 03¢

133(ru¢) 1 9%y 1 %, cot 8 v,
+ {r P YT +r23in263¢3 T %

2 an 2 cot 7] alﬂg Uy }

+ — — .
r® sin 0 0¢ + r®sinf d¢ rPsin®0
Exercise 8.22.3. Obtain the coefficients of (4 + u) in the Navier-Stokes
equations in these two cases.

Exercise 8.22.4. Specialize the equations in cylindrical polar coordinates to
the cases where v, and v, are the only nonvanishing components of
velocity.

8.31. Convected coordinates

Before going on to discuss more general constitutive equations let us look
again at the material or convected coordinate system. When this was intro-
duced before we did not have the full panoply of tensor analysis with which

to handle the curvilinear coordinates.
Consider, for example, the flow of a Newtonian fluid in a circular tube for

which v, = vy = 0, v, = 2U{1 — r*/a®}. The surface z = z, at time ¢t = ¢,
becomes at some later time the paraboloid

7 = zo 4 2U{1 — Pla®(t — t,). (8.31.1)
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The surfaces r = constant and ¢ = constant are not distorted by the flow as
is shown in Fig. 8.1. Let us take as spatial coordinates the cylindrical polars
already used

x! =r, x3 = ¢, x? = z,

Then the material coordinates will be
B=r, &=¢ =2z,
The two are related by
£l = x1, £2 = x2 £ = x® — 2U{1 — (x'/a)?}t, (8.31.2)

where for convenience we set t, = 0. This is a time dependent transformation
of coordinates.

Fig. 8.1

In the fixed coordinate system the metric is given by

ds® = (dxV)? + (x! dx?)? + (dx3)* = g,; dx' dX). (8.31.3)
In the convected coordinate system
ds® = y;,dE'd¢’ (8.31.4)
where
_ 0x” 0x°

yﬁ - a_E: EE_{ gﬂ'
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Thus
yn = 1 + (4UtE[a®p,
22 = (613
Va3 = 1, (8.31.5)

Y = Ya = —(4Uté'a%),

Yiz2 = Ya1 = Yoz = V32 = 0.
The metric in the convected coordinate system is time dependent. However,
we notice that the determinant y = (£')? is independent of time. Moreover,
the Jacobian of the transformation from convected to fixed coordinates,
J = 1, which accords with the fact that the motion is isochoric.

The convected coordinate system will in general be a curvilinear coordinate
system with a metric tensor that is a function of time, y,(&, ¢). The trans-
formation from fixed coordinates x to convected coordinates € is not quite
the same as the transformation between two fixed coordinate systemsx and X,
for time does not enter the latter. The convected coordinate system need not
necessarily be the material coordinate system such as has been constructed,
for any transformation to coordinates € that does not depend on time could
be made and would give an equally valid system of convected coordinates.

Exercise 8.31.1. Show that no proper transformation of convected coordi-
nates can make all the elements of y,; be independent of time.

8.32. Convective differentiation

Suppose we have a tensor «(§, f) in convected coordinates. de/dt denotes
the rate of change of «; keeping the convected coordinates constant. The
same tensor in a fixed coordinate system we denote by A2(x, f) and we wish to
calculate the components in the fixed coordinate system of dojfdr. This
derivative known as the convective derivative of A7 was first described by
Oldroyd (Proc. Roy. Soc. A200 (1950), p. 523), whn used the notation
bA[bt. We shall use the notation d,4/dt for this derivative.

To calculate d,47/dt we set down the transformation in the form

0x? o _ox* A?

or ' g
and differentiate both sides with respect to t holding § constant. Then
recalling that

(8.32.1)

d 9x* ov® dv” ox™

— =

dtoF o0& ox" ot

we have
0x” daj ‘ dv” ox™ _ ox° I:E?A" 0A4% ] dv? dx*
— — A7,
BE' dt f+o ax 8{“ 85’ +3x +3x’3$’ ¢
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Multiplying by d&’/0x" and rearranging we have
08’ 9x? du; _d.A7 _ (@g’ ax”) [aAz + 0A; t?“']

Ix" OE dt dt axr ot/ Lot oxm™
ov® (ax 5‘5') 3 (ax o0&’ )
— = A2 —
+ OE! Ox" 9E 257
or
d.A? _ 047 34”3 ?
Lellr m — A2 — — Al 8.32.2
di 3 T ax“‘ "t oxm ¢ ox™ ( )

In this form it is not clear that we have a tensor on the right-hand side.

However,

2| o o

axm"""*m“m nA*+m rA“
7

EE_ — ﬂﬂr - { q }ﬂm

ox" ’ m r
P

ox" m n

so that the last three terms on the right-hand side can be written as covariant
derivatives and we have

d,,.A” BA"
dt o

In this form the tensor character is evident.

A little thought will show that for a tensor of higher order this formula
must be modified by writing the last two terms as sums. The first is a sum of
products A% v? for each covariant index and the second a sum of products
— A7 v}, for each contravariant index. We shall not torture the typesetter by
trying to write this down in glaring generality.

The convective derivative of the velocity v* is

4 AZ 0™ + AL — A7, (8.32.3)

8.32.4
=5 (8.32.4)

This makes sense, for an observer moving with the fluid sees the velocity to
be zero but an acceleration which in spatial coordinates is dv*/o1.

Exercise 8.32.1. Show that if 47 is a relative tensor of weight W, then

dA3 _ 042

I at 1+ v™AG . + VAL — VAT + WUl AT,
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8.33. Strain and rate of strain in convected coordinates
In the convected coordinate system
ds® = y,,(E, 1) d&* d&. (8.33.1)
If ds, denote the length of the element at time ¢ = t, we may write

ds® — dsg = [y:4&, 1) — 7:4E, tp)] d€* d&’
= 2, /8, t, t,) dE* dE’, (8.33.2)

‘-'?if@: f, IIJ) = i[?‘lf(gl !) - ?ii(.gv rﬂ}]* (8333)

This tensor may be called the strain tensor since it expresses the state of strain
at time ¢ relative to that at time #,.
Its derivative is the rate of strain or deformation tensor

where

d 1d
Ei:i(g: t) = E;’?ij(gv f) = EE; ?H(fl 1. (3-33'4)

which is still expressed in convected coordinates. Differentiating Eq. (8.33.2)

(“”ﬁ (ds) = eiy(E, 1) dE d&’
or (8.33.5)

i i
4 log (ds) = _Ef_i,iiﬂf_ i
dt vis A& dE’

If e;(x, t) is the rate of strain tensor in fixed coordinates, then Eq. (8.33.4)
transforms to
1d,

€ij = Ea 8ijs

1{0 m
=3 [:'ai:“j + 0"8i5,m + Billit E:pj”:]

or
e;; = 3(v;,; + v, (8.33.6)

since g,; is independent of time and g;; ,, is always zero. We have obtained
the deformation tensor by considering the rate of strain in the convected
coordinates and it has therefore emerged without its antisymmetric associate.

The volume element is proportional to ¥'/%, the square root of the deter-
minant of the metric tensor. Now

d
- "Y1, VaVar = 2677 (€1,V20V3r + Vio€2eV3r + VisVoc€ar)
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The quantity
A=l 280
&1

iIs known as the relative dilatatiﬂn. Thus

or, in fixed coordinates,
L= o (8.33.8)

Exercise 8.33.1, Show that

d:e 3, dv;,

Exercise 8.33.2. Show that

ij

dg"” _ —2eti
dt

Exercise 8.33.3. Show that d; Ay — 8ig—= A}, = 2e,,A% .
dt t

d,
d
. dc i dn 40
Exercise 8.33.4. Show that " AP — g? pr A = —2ePAj.
t t

Exercise 8.33.5. Show thatj—"(g*”dﬁ) — gM=s :‘ A2 = 2MgVe[A?.
t

8.34. Constitutive equations

The constitutive equations should be formulated in convected coordinates
for they represent the intrinsic behavior of the materidl or its inherent
response in terms of stress and deformation. This point was first clearly
brought out by Oldroyd (loc. cit.) who stated that ““only those tensor quan-
tities need be considered which have a significance for the material element
independent of its motion as a whole in space.” This idea has now been
enlarged to the principle of material indifference and its consequences have
been more fully developed as we shall indicate in Section 8.4. For the
moment we will recover some results we already have and indicate some new
ones.

The stress tensor T" = —pg* + P becomes, in the convected coordinates,

7 = —py" + 7. p still represents the hydrostatic pressure present in this
form for all fluids at rest. It is the relation of #* to e;; that distinguishes
different fluids. A constitutive equation in general must be set up as the
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relation between 7"/, ¢;; the thermodynamic variables and material constants.
In its broadest case this would be a set of integro-differential equations which
might represent the stress as a functional of the whole past history of the
material, but in the first cases we assume that the fluid has no elastic prop-
erties and so no “memory” of the past.

For the Newtonian fluid we assume a linear isotropic relation between 7*/
and €;;. The most general form of this is

7l = 1‘}’”}'”‘:’” 4+ p(?ij'.'?.fﬂ' + ?iqyfp)t.m

= ls,',’,‘y“ + 2ue’. (8.34.1)
When this is translated into ﬁxed coordinates it becomes
= Aelg'’ + 2ue”’, (8.34.2)

which we have already used in Eq. (8.21.8).

For the Stokesian fluid just such an argument as we have used earlier in
Section 5.22 shows that the most general isotropic relation between stress and
rate of strain is

7 = ay'’ + B + plee] . (8.34.3)

Here «, #, and 9’ are functions only of the invariants of the rate of strain
tensor. This gives

" St PY = aghl 4 o'l + y'ete] (8.34.4)

which is the constitutive relation Eq. (5.22.5), we have obtained before in
Cartesian coordinates.

Up to this point there seems to have been little advantage to be had from
going into convected coordinates for the correct equations should have been
obtained in the fixed coordinate system. The importance of what Oldroyd
did comes to light when we consider a fluid with elastic as well as viscous
properties. A model of the colloid suspension suggested by Frohlich and
Sack (Proc. Roy. Soc. A185, (1946) p. 415) serves well to illustrate this, They
considered a suspension of elastic spheres in a viscous fluid and on this basis
suggested the equation

d d
(l + 2 E)wij = Z,u(l + T E)E” (8.34.5)

where 4 and 7 are two additional constants. In the fixed coordinate system

this would be
d, d,
14+ 2 ) P, =2 (l —)
( A Fu =L+ e

or

P, + A{&P,

a j+ mPtJﬂl-+Uumf+u“;PIm}

= 21""‘-'1‘1 + 21“7[3%1 + vmeﬁ.m + v?item:’ + U:';E’,-m}, (8*34*6)
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which destroys the apparent simplicity of the constitutive relation. However,
a major difficulty in making an invariant generalization such as Eq. (8.34.5)
from Cartesian coordinates is that its consequences may be rather sensitive to
the exact form of equation. It might be thought that the equation

dc) i ( dc) if
1 A=PY = 2ul1 — 8.34.7
( + dt G Tdr ¢ ( )

would be an equally valid form of the equations. However, Oldroyd shows
that the behavior of the two materials represented by Eqs. (8.34.6) and
(8.34.7) in a rotating cylinder viscometer would be totally different.*

In other forms of equations that have been suggested, integral expressions
such as

00— | 9t — el 5)ds

have been used. Oldroyd has also shown how this can be consistently
converted into fixed coordinates. We shall not discuss this here but the
result is worth quoting, namely,

t 7 q
-

ax* ox’

where y is the position of the particle with convected coordinates § at time s.

8.4. The general theory of constitutive equations

It should be evident that we have run into quite sufficient complication in
our treatment of the Newtonian fluid. Rather than continuing to plough on
into more and more obscure convolutions let us back away and consider
rather broadly the field that has to be cultivated. We should emphasize again
the distinction that has been made between the equations of motion or field
equations and the constitutive equations. Thus for the former we have
Cauchy’s equation of motion (8.13.3)

pa* = pf* + T4
This relates the motion to the body forces and stress tensor but cannot say
anything about the material itself. Itisa universallaw valid for all continuous
media. Moreover, any stress distribution is compatible with these equations
and any motion, for we may look at them as defining the body force vector f*
that brings it to the motion about. Thus no help can be obtained from this

equation in defining the internal constitution of the fluid. If we are dealing
with the situation where there is no internal angular momentum, then the

* A good discussion of the different concepts of the rates of change of tensors is given
in a paper by L. I. Sedov, Prik. Mat. i Mekh., 24 (1960) pp. 393-398.
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conservation of angular momentum requires the stress tensor to be symmetric
I‘fj — I‘jit

This is a restriction which must be satisfied by any constitutive equations valid
in this situation.

The great distinction between the field and constitutive equations is that the
latter represent the intrinsic response of the material. This response must be
seen to be the same by all observers for otherwise it would not be intrinsic to
the material. Actually, the hypothesis of Stokes that the constitutive relation
should be independent of the rigid body motion of an element is expressing
this for we have seen that the rate of strain can be represented by pure
stretching along three mutually perpendicular axes plus the rotation of these
three axes. Now if we choose to observe the fluid from a frame of reference
which is moving and rotating with these axes, all that is left is the deformation
or stretching along the three axes. Thus the stress tensor cannot depend on
the antisymmetric part of the rate of strain or T = f(e). This is the hypothesis
I of Section 5.21. It is possible therefore to assert a much more general
principle and prove that Stokes’ hypotheses are consequences of this. This is
the principle of material indifference: The response of the material is the same
for all observers. It has been used implicitly in all correct work on the consti-
tutive equations but was first isolated and explicitly stated by Noll (J. Rat.
Mech. and Anal. 4 (1955), pp. 3-81).

Truesdell (Handbuch der Physik Bd. III/1, Sect. 293) lists six other
principles that must be observed in the setting up of constitutive equations.
They are:

(1) Consistency with the general principles of balance of mass, momentum
and energy.

(it) Coordinate invariance. The constitutive equation must be framed in
tensor language to ensure that the relation is the same in all coordinate
frames.

(iif) Isotropy. A material is isotropic if any rotation 'of the material
coordinates leaves the constitutive equation invariant. It is aeolo-
tropic if invariant only under certain subgroups of the full rotation
group.

(iv) Just setting. When the constitutive equations are combined with the
equations of motion, energy, and continuity, they should be a unique
solution for physically sensible initial and boundary conditions. This
requirement has only been met in the very simplest of cases. A neces-
sary, but far from sufficient, condition is that the number of unknowns
should be equal to the number of equations.

(v) Dimensional invariance. The material constants (such as viscosity,
etc.) on which the behavior of the fluid depends must be specified in a
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way which is consistent with the classical w-theorem of dimensional
analysis.

(vi) Material indifference. This is the principle we have discussed above
which, as we have seen, is something more than the coordinate
invariance (i1).

(vii) Equipresence. In the simpler approaches to continuum mechanics
certain coupling effects are ruled out. For example, we associate
stress with rate of strain and heat flux with temperature gradient but
do not cross link them. From a general viewpoint such separations
are quite arbitrary and an independent variable present in one consti-
tutive equation should be present in all, In practice this Olympian
approach has seldom been possible and more commonly one or two
coupling effects have been brought in to explain phenomena actually
occurring. Its value and importance, however, have been brought out
by Truesdell’s analysis of the so-called Maxwellian fluid. This is a
fluid in which the stress and energy flux depend on the derivatives of
the thermodynamic variables and velocity and for which a viscosity,
thermal conductivity, and temperature, but no other material coef-
ficients, are defined. From very general considerations of invariance
it can be shown that only certain combinations of terms can
occur in the stress and energy flux tensors. This discrimination of
effects is no longer an arbitrary one but arises naturally from the
requirements of invariance.

A full understanding and exploitation of these results is currently growing.
While the mathematician chiefly rejoices in the clarity of thought that is being
attained, the engineer must always remember that the applications and results
that he needs will come from such rationality and from such alone.



The Geometry of

Surfaces in Space

9.11. Surface coordinates

We have had occasion several times to express the equation of a two-
dimensional surface in three-dimensional space in the form

x3 = f(x', x®) or F(x! x% x%) =0. 9.11.1)
For example, the sphere is given either by the equation

x3 — :I:{aﬂ — (x1)2 — (xa)a}lm

() + (D2 + (x%)2 — a® = 0.
The second representation is perhaps to be preferred as the first one is suitable
only for surfaces we have called 3-elementary or 3-composite. An alternative
and more interesting way of representing the surface is by constructing a
coordinate grid on the surface itself and expressing the position of a point in
space in terms of these surface coordinates, Thus, if in Fig. 9.1 «! is the
latitude of a point on the sphere and u? its longitude from some fixed meridian,
say x® = 0, then

or by

x! = a sin u! cos u?,
x* = a sin u! sin u?,
x3 = a cos ul,

193
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We therefore have the equation of a surface in the form

xt = x*(ul, u®). (9.11.2)
u' and u® are called surface coordinates and the lines u* = constant or u® =
constant are called coordinate lines.

The surface coordinates #! and u? are intrinsic to the surface. That is to
say, they have been set up as if by creatures living entirely within the surface

Fig. 9.1

itself and without any reference to the three-dimensional space in which the
surface is embedded. It will be important therefore to find out how much
information about the surface can be gained from this intrinsic viewpoint and
how this is supplemented when the connection between the surface and the
surrounding space is brought in. We shall find, for example, that a certain
impression of curvature can be gained from the intrinsic geometry but that
this is enlarged when the surface is viewed from without.

Greek letters will be used for the affixes of surface quantities and the
summation will apply. Thus

uu, = ulu;, + uu,

and a free Greek index may take on either of the values 1 or 2.

9.12. Transformations of surface coordinates—surface tensors

There is nothing sacrosanct about a particular system of surface coordi-
nates and we wish to express physical quantities in such a way that their
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relations are seen to be independent of the coordinate system. Suppose that
a* = @#*(u, u®) is another coordinate system; then we shall call this trans-
formation a proper transformation provided that it is continuous and can be
inverted to give u* = u*(i!, #%). This we know is equivalent to the require-
ment that the Jacobian
=] =2
j= 2T (9.12.1)
o(u’, u*)
should neither vanish nor be infinite.
The differentials of the coordinates du® become

=2 au°, (9.12.2)

which is the prototype of the contravariant surface vector. More generally
we say that the entity 4* with two components A and 42 in the u*, u* coordi-
nate system is a contravariant surface vector if in the coordinate system
@', #® its components are
= 4 (9.12.3)
ou*
Similarly, if f{u?, %) is any function defined on the surface, its partial
derivatives df/ou! and 0f]du® transform as
a_-f - a_u ﬂ . (9.12.4)
oa*  9i’ ou*
Again we define a covariant surface vector as an entity with components A4,
and A, that transform according to the rule

_ o
ou’
A surface tensor of any order is defined in a precisely similar fashion. For
example, a mixed third order tensor 4%, would obey the transformation law
oW

WO durdur o
The algebra of tensors carries over immediately to surface tensors with the

trivial adjustment that the summations only contain two terms instead of
three. In particular, the quotient rule holds for surface tensors.

A, A (9.12.5)

(9.12.6)

Exercise 9.12.1. If a particle moves in a surface, its surface coordinates being
functions of time u*(t), show that its velocity, du®/dt and higher rates of
change of position are all contravariant vectors.

Exercise 9.12.2. Show that the surface flux of any covariant vector property
can be expressed as a mixed second order tensor.
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Exercise 9.12.3. Prove the quotient rule for surface tensors.

Exercise 9.12.4. Show that e! = €2 =0, €2 = —e*® =1 are the com-
ponents of a relative contravariant second order tensor of weight 1.

9.13. The metric tensor

The same denizens of the surface who originally set up the coordinate grid
could also obtain a metric tensor if they had an infinitesimal yardstick of
length ds. Being infinitesimal it would always lie flat on the surface and by
turning it around at a point they could measure the coordinate increments
du! and du?® for which the diagonal distance was ds. They would be gratified
to find that they did not require a complete table of all their measurements at
each point, for their findings would be expressed by the formula

ds® = ay(du')? + 2a,, du® du® + age(du®)®
= a, (', u®) du® du®. (9.13.1)

Being educated they would conclude that they lived in a Riemannian space
with metric tensor a,;.

This is the intrinsic construction of the metric tensor and of course the
mathematician would simply say that the space is Riemannian if the metric
tensor exists. Since we are free to leave the surface and look at it from the
space in which it is embedded we can see why its inhabitants would discover
it to be Riemannian. Suppose y* are Cartesian coordinates in the Euclidean
space in which the surface lies and that it is given by the equations

¥ =y, ud) 9.13.2)
Then, since ds? = X (dy)? in Euclidean space,

dsﬂ — Zl(dyi)ﬂ — 2 -

where

— . 9.13.3
Tt i=10u” ou’ ( )

Evidently it is because the space is Euclidean (or more generally Riemannian,
Ex. 9.13.1) and the derivatives dy'/du™ exist that the surface is a Riemannian
space. This, however, is not an intrinsic viewpoint. From within the surface
it has to be established that Eq. (9.13.1) correlates the observations, just as
our conviction that the space of our gross experience is Euclidean rests on the
observation that ds® = Z (dy*)%.
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Since ds® is a scalar the quotient rule assures us that a,, is a symmetric
covariant second order tensor. Its determinant is

a = a0, — (a39)° (9.13.4)
and its conjugate is
at=%  ge_m_ G ;. _du (9135
a a

The Kronecker delta 65 which is 1 if @ = # but zero otherwise is related to the
metric tensor by

a*a,; = a"a,, = a*’az, = o5 . (9.13.6)
The metric tensor and its conjugate can be used to raise and lower suffixes as
before. Thus

A% = a*4,
is the contravariant vector associated with the covariant 4;.
Since €*f, where €l! = €22 =0, €12 = —e2l = |, is a relative tensor of
weight 1 (Ex. 9.12.4) and
= %, (9.13.7)
it follows that
- 4 Eaﬂ
e = ;I—E (9.13.8)

is an absolute contravariant tensor. If €,; = €*# then similarly

Eap = €apa"/* (9.13.9)
is an absolute covariant tensor.

Exercise 9.13.1. g,; is the metric tensor of the coordinate system x*, x%, x® in
a Riemannian space in which the surface x! = x(¥!, #%) is embedded.
Show that the metric tensor of the surface is related to the metric tensor
of the space by

b g OO

Exercise 9.13.2. Show that the conjugate metric tensor a*” is indeed a contra-
variant second order tensor.

Exercise 9.13.3. Show that j* = a/a.

Exercise 9.13.4. Show that £*¢,; = 6%,

Exercise 9.13.5. Show that e%efta,; = g*f,

EXxercise 9.13.6. Obtain the metric and e tensors for the sphere

yl=asinutcosu?, y*=asinusinu®, y*=acosul.
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Exercise 9.13.7. Show that
e | gtHgP — Dg*Patn _ gtlghu _ g gPl
Exercise 9.13.8. Show that

Bhﬂaﬂﬁmrﬂvﬂ = _éi‘ M

9.14. Length and direction of surface vectors

The metric tensor associates a length ds with an infinitesimal vector whose
components are du! and du®. A vector with finite components A! and 4% can
be regarded as a very large multiple of an infinitesimal vector; A* = M du”,
where M is very large. We would naturally think of the length A of the finite
vector as the same multiple of the infinitesimal length ds as its components are
of the du®. Thus

|Al*= a,4%4f = 4%4,. (9.14.1)

Any vector can be made a unit vector in the same direction by dividing by its
length; thus 4%/ |A| are components of a unit vector.

If du* and dv® are two infinitesimal vectors in the surface y' = y'(i, u?),
they correspond to two infinitesimal space vectors dy* and dz* in Cartesians.
Thus

) s
dy' = —du®, dzf == dv*,
ou* ou®
the expressions in the parentheses both being partial derivatives of the equa-
tions of the surface evaluated at the point. Now the angle between the two
infinitesimal vectors in space is 0 where

3 i i i
|dy| |dzlcos 0 =3 dy'dz' = 3 (a_y ai) du® dv*

i=1 =1 \ou® ou®
= a,, du” dv’.
Thus
cos 6 = aop du” Ao’ . (9.14.2)
{a,; du” du’a,, dv* dv*}'?
For finite vectors we have, similarly,
_ GudBT_ AB, (9.14.3)
|A| [B]  |Al|B| o
If
a,,4°B" = 0, (9.14.4)

the two vectors are said to be orthogonal, and if a,, = 0, the coordinate
system is called orthogonal. The angle between the coordinate lines is 6,5,
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where cos 03, = a;5{a;;a5,} V2. To give a sense to rotation we say that the
rotation from a vector A* to a vector B is positive if e,34*B” is positive (cf.
Ex. 9.14.2).

Exercise 9.14.1. If b, is a unit vector, show that £**b= ¢* is a unit vector
orthogonal to it.

Exercise 9.14.2. Show that the angle between any two unit vectors is given by

sin 0 = g,zb%c”.

Exercise 9.14.3. In an orthogonal coordinate system a,, = b2, a,; =0,
a 7 B, show that unit vectors tangent to the coordinate lines are (b, 0),
{03 bﬂ): (b;_l: 0]5 (0: bi-l]

Exercise 9.14.4. Find the unit vectors bisecting the angles between the
coordinate lines of a general coordinate system.

Exercise 9.14.5. The surface y® = f{)', y*) is given by a single valued
continuous function f. Show that an orthogonal surface coordinate grid
with a projection on the Q12 plane which is also orthogonal can
only be found if the surface is generated by lines parallel to a fixed line in
012 plane.

9.21. Christoffel symbols

The Christoffel symbols in three dimensions were defined as certain
combinations of the derivatives of the metric tensor. We take over these de-
finitions into two dimensions and write

1[0a,, Oa da,
[«B, v] = ] [ a:,:F + auT — auﬂ’ (9.21.1)
and
P
Lz ,6‘} = a"[af, y]. (9.21.2)

They are symmetric with respect to the indices « and 8. They will appear as
before in connection with parallelism and covariant differentiation, but it is
useful first to see the form they take in certain cases.

If the surface is given by i
2 =f0h 9,

where f'is a single valued continuous function, ' and y* can be used as the
surface coordinates. Then

Y=, P =ut Y= fu, u?). (9.21.3)
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If f, and f,5 denote 9f/0u* and 0°fJdu> du’ respectively, the metric may be
written

ds? = (L + f(du") + 2 fydu du® + (1 + FAu®)E. (9.21.4)

Thus
a=1+fi+13 (9.21.5)
and
au=_ﬂ‘ij
1+ f24f2
a? =g = ");J“ : (9.21.6)
L+fi+ 13
2o 1t/
1+ 413

To calculate the Christoffel symbols we notice

day, 0ay; day,
E’ = 2f1fu> a.a = 2f1fre> 5;1 = fuke + fifar,
Oagy 0agy da
w = fefot fifees an“ 2faf21s “é‘fi= 22 fa2
all of which can be subsumed under the formula
5‘:1,;
Bu" =fu}fﬁ +f¢fﬂr (921?)
whence,
[ﬂﬁ, ?] =fzﬂfy- (9.21.8)
Also, since a”’f, = fy/a, we have
& ] fzﬂfd
= . 21.
For the orthogonal surface coordinates
ds® = (by du*)® + (b, du®p?, (9.21.10)
we have
3a,g ab
—f — 2p —2 = B,
owr g *=F

=0, a # B.
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Accordingly,
db __, Oby
[1111]= bla::: [2212] = baa_ug
db,
[12,1] =[21,1] = —[11,2] = b, — (9.21.11)
du?
[12,2] = [21, 2] = —[22, ]]:-!72(_3‘—-:-l
u
and
e -
1 1 _blau" 1 2} 12 1 _blauz‘ 2 20 plowt’
(9.21.12)

I R T TR S PR B T A
11 pout” W1 2012 1) T paut” (2 2] pyout

Exercise 9.21.1. Show that the Christoffel symbols all vanish if and only if the
surface y® = f()*, y?) is a plane.
Exercise 9.21.2. Obtain the Christoffel symbols for the cylinder

y! = acos ul, 2 = asin v, y3=ut

Exercise 9.21.3. Obtain the Christoffel symbols for the sphere
y*=asinulcosu®, y*=asinutsinuy®, y®=acosul,

Exercise 9.21.4. Show that

and

9.22. Geodesics

A curve on the surface can be specified by giving the surface coordinates as
functions of a single parameter ¢ along it, u* = u*(f). The arc length of the
curve between two points f = aand = b is

s = L b{amﬁﬁ'(r}&’(r)}”“ dt
where 4*(f) = du*/dt. Let us use the abbreviation

U(u, u) = a,p(u?, uP)uti (9.22.1)
then .
s=|"Uu, @) at. (9.22.2)
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We now wish to find the curve between the two fixed points u*(a) and u*(b)
which has the least arc length.

To determine this curve we suppose that the curve 4*(t) does achieve the
minimum length. If v*(¢) is any continuous function which vanishes for t = a
and ¢t = b, then u* = u*(t) + ev*(t) is a distortion of the minimizing curve as
shown in Fig. 9.2. We can make this distortion as small as we please by

Fig. 9.2

making e small and setting € = 0 gives the minimum. The length of the
distorted curve is a function of € for any fixed distorting function »(?),

s(e) = j: Uy + ev, & + €b) dt.

Now if s is a minimum for € = 0, ds/de = 0 when € = 0. However,

(4]~ L+ 2amo

and this can be transformed by partially integrating the second term into

] ofg () Hae e

Of this, the first term disappears since v = 0 at both end points and the
second has to be zero for any distortion »(r). It follows that the integrand
must vanish, and U must satisfy

d BU) oU
“ =] -—==0. 22.4
(aﬂ“ du® 0 ® )
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To express this as an equation in u*(f) we return to the definition of U and
recall that it is a function of the u* only through the a;,.

Lli2 == ﬂ'uﬂﬁuﬂﬁ«

Then 3 3
20 %Y %98y g (9.22.5)
du*  ou®
and U
U— = a,u’ 9.22.6
aﬁg apl ( )
Thus
d (au) d (a,m’) ] [ 5 . Odap | ] aepi® dU
2(=)-4 = — | a i i | — &
dat\owr! ar\ U g Lot g Ut dt

Now take the parameter ¢ to be the arc length so that U = 1 and (dU/dt) = 0;
then Eq. (9.22.4) simplifies to

Lify = 0.
ou’ 2 ou*
Recalling the definition of the Chrisotffel symbol this becomes

a i + [By, «]ifi’ =0

aaﬁﬁ'ﬁ + {aauﬂ _ ! aaﬂ.}

or raising the index

o | g,
i +{ 8 yjuﬁu?—ﬁ. (9.22.7)

Fig. 9.3

This then is the equation satisfied by a geodesic when the parameter along it is
the arc length.

The geodesic as we have constructed it is only a local extremum and we
have not even checked to see that it is a minimum. Between two points on a
sphere, for example, there is the shortest arc along the great circle connecting
them, but the remainder of this great circle constitutes the longest arc
connecting them and also satisfies the geodesic equation. On a torus there is
not only the shortest path connecting A and B (see Fig. 9.3) but also the
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shortest path that goes once (4CDB) or that goes twice (AEFGHB) around
the torus and hence an infinite sequence of local minima. We have obtained a
pair of second order nonlinear differential equations which have to be inte-
grated between two end points. As an elementary example consider the
cylinder of radius a, given by
yl=acosul, Y =asinul, y*=ud

Here a,; = a?, a,, = 0, ap, = 1 so that all the Christoffel symbols vanish and
the geodesic equation becomes #* = 0 or u®* = a* + ¢%s, where a* and ¢*
are constants. However, if s is indeed the arc length

ds® = a*(c! dsy* + (c* ds)?
so that (ac')* + (¢®)* = 1 and we can write ul = a® 4 sin 6(s/a), u® = a® +
cos f 5. a! and a® can be fixed by one end point, say s = 0, and if the other
end point is b1, 5% we have to choose 6 so that

1 1
— a
tan 0 = a

ba_aa'

This gives an infinite number of geodesics corresponding to paths that wrap
themselves around the cylinder any given number of times. All these paths
are helices however for we notice that 6 is the angle that they make with
the generators, u' = constant.

Another way of getting a definite curve out of the differential equation for
the geodesic would be to specify one end point and the direction through it
that the geodesic should take; that is, we specify u* and #* at one point
instead of u® at two. A geodesic may be realized approximately as the track
of a very small two-wheeled buggy. If the wheels are fixed rigidly to a single
shaft, they must turn through the same angle and so run on paths of equal
length. Two such paths will lie on either side of a geodesic and the center
point of the shaft will approximate the geodesic if the shaft is short enough.

Exercise 9.22.1. Show that the geodesics in a plane are straight lines.

Exercise 9.22.2. A cylinder is a surface generated by the family of parallel
straight lines which pass through a closed curve. Show that the geodesics
on the cylinder are always helices as defined in Ex. 3.12.2,

Exercise 9.22.3. Show that the shortest distance between two points on a
sphere is a great circular arc.

9.23. Geodesic coordinates

It is possible to introduce a special system of coordinates in which all the
Christoffel symbols vanish at a given point. We cannot hope for more than
this, for only in a Euclidean space can a Cartesian coordinate system, in
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which the Christoffel symbols vanish everywhere, be set up. The Euclidean
two-dimensional space is a plane, so that, except for the plane, the most we
can do is to secure the vanishing of the Christoffel symbols at a point. This
system is called the geodesic coordinate system and offers locally some of the
virtues of the Cartesian system. It may be possible to establish a certain
relation more readily in geodesic coordinates and, if it is a valid tensor
relation, it consequently holds in all coordinate systems.

Let v* be the point at which the new Christoffel symbols are to vanish and
introduce the coordinates

= ___ a ___ _l_ o g r S
= (u v*) 4+ > {ﬂ ?}“(u Ay’ — o), (9.23.1)

where the Christoffel symbol is evaluated at ¥* = »*. Evidently #* = 0 at the
point »*, which we may call the pole. Differentiating we have

0l lm}
— = Yt
ou? ﬁ+.3 '}'n(u ")

and multiplying this by au‘,faﬁ‘ we have

Ou’ 9a* { }
— 83 = v 23,
aatout ~ ' + B vlooar ) (9.82)
At the pole u* = v* we therefure have
) o3
0if/ o - 23.3)
Now differentiate Eq. 9.23.2 again with respect to @’
s [ o } al ou’ . oOu’ ]
awror T B vlawawr T T s ow
and at the pole this gives
A
—] = a*a?=—{ : 23.
(auﬁ au") lﬂ }’} g B ulo (9-234)

The transformation law of the Christoffel symbols is exactly as in the
three-dimensional case (cf. Ex. 7.53.1),

A } oi’ ou’ ou? [ o%u®* oa*
= ——— . .23,
{.u o “awomon B AT oww 3u (9-23.5)
However, at the pole we have
= 81886) - =0 9.23.6
{,u Vo ﬁ e \u v ( )

so that the Christoffel symbols all vanish. Along the coordinate line 4% = 0
the value of ! in the neighborhood of the pole is simply s, the arc length. It
follows that ! = 1, u! = 0 and, since the Christoffel symbols vanish, the
coordinate lines satisfy the geodesic equation in the neighborhood of the pole;
hence the name geodesic coordinates.



206 The Geometry of Surfaces in Space §9.23

Exercise 9.23.1. Construct the geodesic coordinate system for an arbitrary
point on the sphere.

Exercise 9.23.2. Geodesic polar coordinates are constructed by taking all
the geodesics through a point as the 4 coordinate lines and their ortho-
gonal trajectories as the u® coordinate lines. Show that the metric is

ds® = (du')? + (b, du®p

where b,[/u; tends to a constant at the pole.

0.24. Parallel vectors in a surface

We, now, have to establish the proper rules for covariant differentiation
within a surface and it will be recalled that to arrive at this we considered
parallel vectors along a curve in three dimensions. In Euclidean space it was
possible to use our intuitive notions of parallelism in Cartesian coordinates to
obtain a condition for the parallel propagation of a vector along a curve. In
a nonplanar surface, however, we have no Euclidean space to make our
appeal to and must follow a different route. The condition for a vector 4 in
three dimensions to remain parallel when propagated along the curve x'(r)
was that its intrinsic derivative

8A* dA' l} i } dx*
pilp— AP —
8t dt + kI' dt

should vanish. This is a piece of experience on which we can build by first
asking whether the intrinsic derivative can be analogously defined in two
dimensions and then seeing whether the vanishing of the intrinsic derivative
gives any of the properties we expect of parallelism.

The important thing about the intrinsic derivative of a vector is that it is
again a vector, so we should first see if the analogue has the correct trans-
formation property. Let

0A* dA°

o ar {ﬁ r] dt G4

for some curve u¥ = u*(¢) in the surface. Then

8A* _dA* { ]#dﬁ"
1 A

St dt dt
I —_ — (a Aﬂ) + A_}@Aﬁ gi_j_' @.T
ou® s v out  ou dt
ou* dA* LT} a3’ ,du’ 0%t du’
= guas A U g,
ou® dt T v] ouf ou’ + ou® ouf dt
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Using the transformation of Christoffel symbols in the form

aﬁ“{ " } o {T} 9%
B v oufauln v +5‘uﬂau""
and changing the dummy indices, this can be written
o4* _ ou* [dA*+{ }Aﬂ du"]
dt  ou® Byl dt
0t dA™
T out ot
Hence the intrinsic derivative has the correct transformation properties.
If the surface is a plane so that Cartesian coordinates may be used, the

intrinsic derivative becomes the ordinary derivative, the vanishing of which
is the condition for parallel propagation. The equation

SA® dA“ { o } g du’
= AA=—— =0 9.24.3
8t + g v ar ( )

is a first order differential equatmn, so that if A* were specified at one point of
a given curve u” = u’(t), the solution of this equation would give a vector
field A%(¢) along the curve. The question is whether this retains any properties
we associate with parallel fields.

Consider, first, the square of the magnitude of the vector. It is a scalar

whose rate of change s
d|AP _
dt

(9.24.2)

( #A*A%)

daﬂ A dA?
=—L A4 + ,I:—A’“+A‘ ]
dt “ar| "4y at

PRI T
sdau _ du’
= A4 dt 0y « * das| Y)d di

=
since

aa“ﬁ = [y, 8] + [By, 2]

Hence the magnitude of a vector does not change under parallel propagation.
It may be similarly shown that the angle between two vectors does not change
in parallel propagation and that the tangent to a geodesic is always parallel
(see Ex. 9.24.1 and 2). These are all properties which obviously obtain in
Euclidean space and are as much as we can hope to retain in the curved
surface.
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We should notice that the vector obtained at a second point, by parallel
propagation from the first, generally depends on the path. For example, the
only nonvanishing Christoffel symbols for the sphere are

1
{2 2] —sin u’ cos u!

21 )21 _ 1
S N

Thus for parallel propagation

ui=0

Fig. 9.4 showing the dePendence on the path. If
A% is propagated around a great circle of
longitude «? = constant, u* = ¢, we have

dA? dA®
— =0 — 4cotu'd®=0.
dt dt + “

If A = Ay, A® = A} at the equator «' = /2, then
Al = 43, A = Alcscul.

In contrast, if A® is propagated around a circle of constant latitude, u! = 6 =
constant, ¥ = ¢, then

1 2
-di_lsnzﬂAa=0, A +CﬂtﬁAl—0
dt 2 dt

From this we have

dr =0,

so if A* = Aj when t = 0,

A' = A] cos (t cos 0) + A2 sin 0 sin (¢ cos 0)
A% = A} cos (t cos 0) — Ag csc 6 sin (¢ cos 6).

When a great circle of latitude has been completed, t = 27 and it is evident
that, in general, 4* = A43. Thus we cannot always expect a vector propagated
parallel to itself round a closed curve to be the same when it returns to the
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starting point. Figure 9.4 shows a view from the north pole of a vector with
A3 =.0 being propagated around the circle § = /4.
If Ay = a,3A* is the associated covariant vector of a parallel vector, we have

0A* d , { o } du’
= e— = —— EA Be —
0 ot dr(a o+ B v A dt

ot [ e ]
¢ d:'+ A+ B vy A dt

= g% |:d_Af { } A, dur]
dt Byl dt

by substitution from Ex. 9.21.4. Hence a parallel covariant vector satisfies

d0A; dAg { € } du’
b _ZOF A —=0. 9.24.4
St dt B v at ( )

Exercise 9.24.1. Show that the angle between two vectors A* and B* remains
constant in parallel propagation.

Exercise 9.24.2. Show that the tangent to a geodesic is parallel to itself and
deduce that a vector propagated along a geodesic makes a constant
angle with it.

Exercise 9.24.3. Why is the parallel propagation of a vector between two
points independent of the path in Euclidean [3] space?

Exercise 9.24.4. If s is the arc length along a curve in the surface, the unit
tangent is 7* = du*[/ds. Show that the intrinsic derivative dr*/ds is
perpendicular to the curve. If »* is the unit vector perpendicular to 7*
in the positive direction (that is, Emﬁ‘r“l:ﬁ = +1) and d+%/ds =——1‘Imr“, o is
called the geodesic curvature of the curve. Show that §»*/ds = —o7™

Exercise 9.24.5. Show that a geodesic has zero geodesic curvature,

Exercise 9.24.6. Find the geodesic curvature of the coordinate lines of an
orthogonal coordinate system.

9.25. Covariant surface differentiation

The method of obtaining a derivative with the proper transformation
properties of a tensor is exactly similar to the case of three dimensions treated
in Section 7.55. Given a tensor field (say A%) defined on a given region of a
surface we select an arbitrary curve [u”(f)] on the surface and two arbitrary
parallel vector fields (B, and C”) on the curve. Then £ = A3B,C” is a scalar
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and its derivative with respect to the parameter ¢ along the curve is a scalar
However, using Egs. (9.24.3 and 4),

i _ [04
dt u

| Yt
*’+l5 It By dt

we see that the expression in the brackets must be a third order surface tensor
which we write

At the pole of a geodesic coordinate system this covariant derivative reduces
to the partial derivative, just as it does everywhere in a Cartesian system.
The generalization to a tensor of any order is immediate.

The metric tensor acts as a constant with respect to covariant differentia-
tion. This may be proved by direct substitution or by the observation that
a,s, = Oat the pole of a geodesic system and so must vanish for all coordinate
systems.

Exercise 9.25.1. Show that a*, a, &*/, and &,; act as constants with respect to
covariant differentiation.

Exercise 9.25.2. Show that
— = 2a .
ou” « fB

« _ 1
A.u _— ”2 au (alf?.Au]

Exercise 9.25.3. Show that

0.26. The Gaussian or total curvature of a surface

We now turn to consider what can be said about the curvature of the surface
without viewing it from outside of itself. We want an intrinsic measure of the
departure of the surface from being a Euclidean two-dimensional space. Here
again we can build on experience for we have encountered (Section 7.6) a
tensor, the Riemann-Christoffel tensor, that vanishes identically in Euclidean
space. Let us recall the analog of Eq. 7.6.2,

A .. — A, . = R:MA‘,, (9.26.1)

a.py a.yp

where

R N R KA RN R

This certainly vanishes for a plane or for a surface in which the metric tensor
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is a constant, but we cannot expect it to vanish in general. Even when
geodesic coordinates are introduced at a point and the Christoffel symbols
vanish their partial derivatives will not necessarily vanish.
The associated tensor

R,,s, = a 3RS, (9.26.3)
is also expressible in terms of the Christoffel symbols and their derivatives
(cf. Ex. 7.6.2) and is antisymmetric with respect to the pairs of indices 4, « and
B, v (cf. Ex. 9.26.1). Thus, such components as Ry; 5, and R,,,, are zero and of
the 16 components only four survive, namely, Rjs;0 = —Ryj1s = —Ryge; =
Ry The constant

= iE E’rRh’? {926.4)
is a scalar, namely,
K = Rz (9.26.5)
a .

This quantity is called the Gaussian or total curvature of the surface. It is
an intrinsic measure calculable from the metric alone. We shall come across
an illuminating interpretation of K when we take a look at the surface from
outside, which we will now begin to do.

Exercise 9.26.1. The antisymmetry with respect to 4 and « of R,,,, is.not
quite so obvious as its antisymmetry with respect to § and y. Prove the
identity

R d%a,, Oagy  ayp yaﬂ}
Y T 5 0wt ouP | ourou’  dutow’  ou’ ou?

+ a""{[mﬂ, pllAy, v] — [AB, p][ay, v]},

from which the first antisymmetry is obvious.

Exercise 9.26.2. Show that the Gaussian curvature of a sphere of radius r is
K=r2
Exercise 9.26.3. Show that K = 0 for a cylinder.

Exercise 9.26.4. If the coordinate system is orthogonal, a;; = b%, a;,, =0,
agy = b, show that

1 [a (1 3bg) 0 (1 abl):l
K=——|— — |===1]].
b,b, LOu* \b, ou' + ou® \b, ou*
Exercise 9.26.5. In the notation of Section 9.21, show that for a surfaoe
L=, 3% = u?, 3 = f(u?, u?)
fafn—fh
(1 + 3+ f3)P
Exercise 9.26.6. Show that R, 5, = Kg;,¢5,.
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9.31. The surface in space

Up to this point we have been viewing the surface intrinsically, working
with coordinates, vectors and tensors in the surface itself. Now we wish to
link together quantities which belong to the surface and the space and indeed
form some hybrid quantities. We started from the assumption of a surface in
Euclidean space and so could set up Cartesian coordinates. The equation of
the surface is then

¥ =y, u)
where u! and u® are the surface coordinates. Actually there is no need to

assume a Cartesian coordinate system and from now on we will take a
general coordinate system x* in space and write the equations of the surface

x* = x'(ul, u?). (9.31.1)

Notice that we cannot invert these equations and write #* = u*(x!, x2, x%) for
such an equation is only meaningful if the point x is on the surface.

The partial derivatives dx*/du® are assumed to exist and will be so frequently
used as to justify a special symbol; we write

_ o

ou*
If we were to transform the space coordinates to some other system x’, the
quantity ¢} would become

N OF _o%ox _o%

© ot axTour ax’
Thus ¢} is a contravariant space vector for fixed «. Similarly, if the surface
coordinates were transformed to &%, ¢} would become

f'* _ axi _ a.xi au" . au" ,fi
“or afor o’
showing that ¢; is a covariant surface vector for any i. Thus the hybrid tensor
t forms a link between the two coordinate systems.

ti can be used to associate spatial and surface tensors. If A* is a contra-
variant surface vector, then

£ (9.31.2)

(9.31.3)

(9.31.4)

A = 1i4° (9.31.5)

is an associated space vector. Since A* is in the surface, 4* is necessarily
tangent to the surface. Similarly, if 4, is a covariant space vector,

A, = 134, (9.31.6)

is a covariant surface vector.
A tensor T} *--- £ which transforms as a space tensor with respect to the
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italic indices and as a surface tensor with respect to the Greek indices, will be
called a hybrid tensor.

Exercise 9.31.1. Prove the following example of the quotient rule. The 18
quantities A}, are related to a covariant space vector D, by the relation
A;,B*C; = D;. B*is a contravariant surface vector and C, a covariant
space vector, both being independent of A4j,. Then 4], is a hybrid
tensor, second order and mixed in space and first order covariant in
the surface.

9.32. The first fundamental form of the surface

The line element in the three-dimensional space is given by the metric
ds® = g,; dx* dx’, (9.32.1)
If this element lies in the surface, then dx* corresponds to differentials in the
surface coordinates such that
dx' = t! du”. (9.32.2)
Hence, the line element in the surface is
ds® = g, tit; du® du®
= a,p du® du”. (9.32.3)
Thus the metric tensor of the surface is linked to the metric tensor of the

space by ay = gitith, (9.32.4)
The quadratic form (9.32.3) is often called the first fundamental form of the
surface.
The relation between Eqgs. (9.31.5 and 6) is now apparent for
A, = t}A, = tig, A’ = tig i A? = a AP,
Thus the covariant surface vector associated with a covariant space vector is
the associated surface vector of the contravariant surface vector associated

with the associated contravariant space vector of the original covariant space
vector-—no less!

Exercise 9.32.1. Show that the length of the vector A’ = £, A*in space is the
same as the length of A” in the surface.

Exercise 9.32.2. If the surface is taken to be the coordinate surface x3 =0
and the x? coordinate lines are a family of curves normal to the surface,
show that g;3 = g,3 = 0. If, in addition, the lines «* and u? constant are
the intersection of the surface with the surfaces x! and x2 constant, show

that a,, = g,s, & = gath @™ = g*’, g% = l/gy,.

Exercise 9.32.3. Show that the element of area in the surface can be written
dS = a'? du! du®.
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9.33. The normal to the surface

If du* is an infinitesimal surface vector, the infinitesimal space vector
dx’ = £ du® must be tangent to the surface. Since any vector 4* can be
regarded as a very large multiple of an infinitesimal vector, it follows that
A' = 1! A* must be tangent to the surface, and may be called a tangent vector
of the surface.

The cross product of two vectors A’ and B* which are tangent to the
surface is

eipA'B* = &t t5A"BP. (9.33.1)
This is a vector of magnitude |A4| | B| sin 6 and perpendicular to the surface.
Let n;, be the covariant vector normal to the surface. By Exs. 9.14.2 and
9.32.1 we see that

|A| |B] sin 6 = g,,4*B* (9.33.2)
so that

negA B = et ABP.

This must be true for all vectors 4* and B so that

Niep = & ptaly
or

n, = }e*Pe, i1}, (9.33.3)

We notice that n,f} = 0 for y must equal either « or # and &t} ¢t5 would

be a determinant with two rows the same. Thus the covariant surface vector
A, = ' A, associated with the covariant space vector 4, is really a kind of
projection of this vector on the surface. For, if A, is written 4; + an,, where
A, is tangent to the surface,

Aa = !:Ai = f:“i:-
and the component normal to the surface has been destroyed. Sincea = n’A4,,
we can write

A, = A; — n(n'4)
for the projection of A4; on the tangent plane. The length of this projection is
gUAA, = g "A,A, — g'nin(n*4)* = (g — nin)A,A,
= ﬂ“FA‘Aﬂ

by Ex. 9.33.2. Thus the length in the surface of the covariant surface vector
associated with a covariant space vector is the length of its projection on the
tangent plane.

Exercise 9.33.1. In the special coordinate system of Ex. 9.32.2, show that
tf[ﬂ l,f=a,ti=0,f?5ac,andhence

— o — 12
n=n, =0, Ny = B33 -
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Exercise 9.33.2. Prove that
aﬂ’r:!; —_— gfj — n""f

by considering this relation first in the special coordinate system used
above.

Exercise 9.33.3. Show in two distinct ways that
g, a”tit) = 2.

Exercise 9.33.4. Show that the element of area defined by the increments du!
and du? in the two coordinates is dS = a'/2 du! du?.

9.34. Covariant differentiation of hybrid tensors

We must now ask how the covariant surface derivative of a hybrid tensor
should be taken. It will be sufficient to consider the tensor 4% and our method
of treating it will follow the same course as before. In the surface x! =
x'(u', u®) we take a curve u® = u*(#). Its equation in space is x* = x*(uX(r),
u*(7)) and

dx'  ox'du® e du®
dt  ou* di dt

On this we construct two vector fields by parallel propagation. The first is a
contravariant surface vector field B*, which accordingly satisfies the equation

aB % Appdu’

t + {ﬁ ?}B dt 0, (9.34.2)
and the second a covariant space vector C; satisfying

¢, _ {."‘ }c dx’ _ . (9.34.3)
dt i dt

Now A% B*C; is a scalar and so its derivative with respect to f is a scalar.
However, this is

d, . dA’ ‘ P l du’
L (4iBC) = 2= poC, — : e
( )= dt ! B vI"  at

By changmg the dummy suffixes this can be written (6A4%/6)B>C,, where
0A; _ dAy { B } ; du’ + ] dx*
@ la % j kl T

The quotient rule shows this to be a h}rbnd tensor of the same kind and we
call it the intrinsic derivative of A} along the curve. Using Eq. (9.34.1) we
may write it as

OAL . du® [a,-i' { ’ I } ]du
= A ¢ i ) .34,
E “a Lla? la B A+ Ay (9.34.5)

(9.34.1)

k
C, + A'B"® ‘ }c
+ i Yar

(9.34.4)
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Thus 4 ; is a hybrid tensor of one higher order in surface covariance.

The generalization of this formula is immediate. No confusion should be
caused by the two kinds of Christoffel symbols since the Greek one is con-
structed from the a,; exactly as the Italic one from the g;; and both are
evaluated on the surface. If the hybrid tensor is really invariant in one or
other of the systems, then this derivative reduces to the covariant derivative
defined before. It follows that a,, g;;, and all the tensors associated with
them act as constants under this differentiation.

9.35. The second fundamental form of the surface

Consider the covariant surface derivative of

i _afi i ik ) ¥ i
a.f T EI:E + {j k}tutg {d ﬁ}r-r (9.35.1}
T Nedar (o
ourout  \J klouour \x Blow’

This is symmetric in « and 8. However, we also have a,; = g,;t.#5, which on
differentiation gives

aaﬁ.r == '0 —_ gﬁ{t‘i_?fﬂ ‘I— I:I;.}.}-
Now by the symmetry of the #¢ ,, etc.,

ayp + apy0 — Gup,y) = Bistapty = 0. (9.35.2)

Since #], is tangent to the surface this equation implies that £ ; is normal both
to #§ and # and so normal to the surface. It is therefore proportional to n* and
SO we may write

I:'ﬂ - bdﬁni (9.35«3)
or
- ox* i |ox’ox*] -
bag = to,pn; = [————- { o —] . 9.35.4

since the product of »; and the last term of Eq. (9.35.1) vanishes identically.
If the coordinates are Cartesian coordinates y*, then
aﬂyi 1 aﬂyi ay:r ayl..

;= = &P g e e =2 9.35.5
ou® out " 2 & Pum ou® ou® ou’ ou° ( )

bﬂg ==

The quadratic form
b,p du” du? (9.35.6)

is called the second fundamental form of the surface. [t can be shown that if
two surfaces have the same first two fundamental forms, then they are
intrinsically the same; that is, they can be brought into coincidence by a
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rigid motion. 1t is clear that the identity of the first fundamental form is not
sufficient, for, if we write the equation of a cylinder as
1 Hl

u .
yl=acos—, yY=asin—, y=u’
a a

we have a; = ay = 1, a5 = 0, which is the same as the metric of the
Euclidean plane. However, the coefficients of the second fundamental form
is by; = —1/a, bjy = byy = 0, whereas that of the plane is identically zero.

Exercise 9.35.1. Show that if the surface is given by y® = f(3%, y?) in Car-
tesian coordinates, then
of

afay: ay’ -
1+ (5;1) * (5;2)}

Exercise 9.35.2. Show that for this surface

Py — [fu(l + 53 — 2fifafie + fos(1 + /)]
- [t + /1 + f3%

b'# =

where f,, = 9%f/0y* 0y”, etc.
Exercise 9.35.3. Show that in any coordinate system

| bag = §e %t tits
Exercise 9.35.4. Calculate the second fundamental form for the sphere.
Exercise 9.35.5. Show that

Eaubﬁﬁﬁﬁrbr# - - Kt&i.

9.36. The third fundamental form

The first fundamental form is connected with distance in the surface, the
second with the rate of change of the tangent. The third fundamental form
is connected with the rate of change of the normal. Since n' is a unit vector
n®_is perpendicular to it and so must lie in the tangent plane. However, if it
is tangential to the surface, then it must be expressible as a combination of
the 7}

n', = vit. (9.36.1)

However, g, tin’ = 0 so that differentiating convariantly with respect to u*

gives , » .y
g,-,—t;.‘n’ + gt:";".i = gisbgn'n’ + gi;tgvaty

== bdﬂ' + Tzﬂ?ﬁ — 0-
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Thus multiplying through a”¢ we have
v = —byga, (9.36.2)

-4

which gives the surface tensor relating the rate of change of normal to the
tangent vectors. Substituting back in Eq. 9.36.1 we have

n'y = —byga’'t], (9.36.3)

a set of equations known as Weingarten’s formulae.
The symmetric tensor

Cap = &isMalllp (9.36.4)
is used to form the third fundamental form of the surface
Cap du® du”. (9.36.5)

This form is not independent of the other two, for substituting for #’, and n’,
in Eq. (9.36.4), we have

f!ﬂ = gﬁb“a\aartibﬁpﬂpﬂ‘g == ﬂr,b,l;ahbﬁpdﬂ"
= be,ab,. (9.36.6)

9.37. The relation between the three fundamental forms—
Gauss-Codazzi equations

We have seen that the third fundamental form is related to the first two.
There is a further relation between the three forms and the two measures of
curvature, The total or Gaussian curvature K has been defined intrinsically
and we shall find it is related to the second fundamental form. The mean

curvature H is defined by
2H = a*Pb. (9.37.1)

It is clearly zero for the plane but its interpretation as a curvature must wait
until we consider curves in the surface.

Let us use Cartesian coordinates and geodesic surface.coordinates so that
the Christoffel symbols can all be made to vanish at a parficular point. The
derivatives of the Christoffel symbols in space will vanish but not those in the
surface. In this system

el L]
=FY 7 Bu® ou’ ou’ oy’ la B11°

o2l
ta,ﬂr Ia.yﬂ - [3;;# ? o aur o ﬁ f, (9.37.2)

—_ R‘ ‘i

Jafyter

by definition of the Riemann-Christoffel tensor.

Thus
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Also, since 3 ; = b,gn', we have
fapy = bag " + bogh’,

xp.oM — baghysa™te. (9.37.3)
If we form the expression on the left-hand side of Eq. 9.37.2 from this last
formula, we have

oyti = (bap,y — bay p)n* + (bybgs — bygbyya®t’  (9.37.4)
Multiplying this by n; we see that the first and last terms vanish since n,f} = 0
and

beg,y = by, (9.37.5)
This being so, and Eq. 9.37.4 true for any £ ,it can be written by lowering the
suffix
Riapy = baghay — baghsy. (9.37.6)
The first of these equations is associated with the name of Codazzi, the second
with Gauss. In particular, the only independent term of R;,;, is Ry, and

Rys1p = byybgy — byaby; = b. (9.37.7)
Hence,
K =R _ b (9.37.8)
a a
=a [baybﬁa - bﬁﬂbw]
b
= —d, ;1’
so that
Cap — 2Hb,ﬁ + Kﬂ,, = (). (9.37.9)

Exercise 9.37.1. If v is a unit vector in the surface, show that
K = 2H7b 4% — 7%bypa”’b 47
Exercise 9.37.2, Show that
b,sa*'b ,a® = 4H* — 2K.

9.38. Curves in the surface

Another way of looking at the curvature of the surface is to regard a curve
in the surface as a space curve and look at its properties. If u* = u*(s) isa
curve in the surface and s the arc length along it, then

uﬂu u# = ]. (9.3‘8-1)
and
= (9.38.2)
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is a unit tangent vector to the curve. (A dot denotes intrinsic differentiation
with respect to 5s.) The equation of the curve in space is

x' = x"(u'(s), u¥(s)) and F=X=t"=17"  (9.38.3)

We may translate the Serret-Frenet formulae, which were derived in
Section 3.12 in Cartesian coordinates, into general coordinates. Then

+1 Kyt

v = —krt 4 upt (9.38.9)
ﬁi

Here +' is the unit principal normal defined by the first of these equations and
f# is the binormal orthogonal to both the tangent and principal normal. « is
the curvature and u* the torsion. The derivation of these equations follows
precisely along the lines of Section 3.12.

Differentiating Eq. 9.38.3 and comparing with the first of the Serret-Frenet
formulae we have

I

I

Il

# = 1} i + P = bt iPnt + L = k'

Now #* is a surface vector and 3" is therefore tangential to the surface. It
follows that |
b.s du® du®

. 9.38.5
a.z du® du® ¢ )

ktﬂ] == Kﬂﬂ'i - bﬂﬁ‘“u" ==

However, xn,»* is the projection on the normal to the surface of a vector of
length « along the principal normal to the curve. We see that this projected
curvature is independent of the precise curve chosen in the surface provided it
is tangent to the direction #*. It is called the normal curvature of the surface
in the direction 7%, and Eq. 9.38.5 shows that it is the ratio of the first two
fundamental forms. Figure 9.5 shows the curve C in the surface S whose
principal normal does not coincide with the normal to the surface. Only if C
is a geodesic will the two coincide.

We may now ask in what direction the normal curvature has its maximum
and minimum values. That is, we require the stationary values of b,yr*r*
subject to a,zr*r" = 1. This is the familiar problem of finding the charac-
teristic roots and vectors of the tensor b,;. The two values of « will be
given by the quadratic

bn -_ Kﬂll bm — Kan

= 0.

byy — kay byy — Kag

* u was previously written 1/o, but here o will be reserved for the geodesic curvature.
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However, this gives b— 2aHk + ax® =0

since
Ay1boy — Gyobyy — Goybyy + anoby,
= a(a®by, + a*'by + a'hyy + a'tby,) = 2aH.
Hence, dividing through by a we have

k* — 2Hk + K= 0. (9.38.6)
It follows that if «; and k, are the greatest and least curvatures
%(ﬂ:l —I— Kz) = H, Kl“ﬂ = K. (9.38.7)

These are called the principal curvatures at the point and the corresponding

direction the directions of principal curvature. This affords a very pleasing
interpretation of the mean and total curvature.

A surface for which K = 0 is called developable since it may be rolled out on
a plane without stretching. The cylinder and cone are developable and we
can obviously introduce a Cartesian metric by taking u' to be the distance
along a generator and «* the distance along the orthogonal trajectory. All
other developable surfaces can be obtained from a space curve whose
tangents will be the generators of a surface (cf. Ex. 9.38.3).

Exercise 9.38.1. Derive Eq. 9.38.4 in the manner of Section 3.12.

Exercise 9.38.2. Show that the normal curvature of a surface in a given
direction is the curvature of the geodesic in that direction.
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Exercise 9.38.3. A surface is generated from the tangents of a curve £'(s). A
point on the surface is thus

) dEt
X =8+t — 9% |
ds

If s is the arc length along the curve and 7%, +', §* are the unit tangent
normal and binormal to the curve, show that with #' = s, ¥® = t we have

ay = Kz(ﬂz - h‘.l)z, HJ.E = 0, ﬂ'ﬂ -_— 1, bu - _‘K‘u(uz - Hl),

4
bm = bgg — _0, H = 2x(u2 — ul) 3 K= 0, ﬂ‘ = ﬁf.

(x and u are defined by Eq. 9.38.4.)

9.41. Differential operators in a surface

If @(u', u?) is a scalar function defined in the surface ¢ , = dp/ou™ is a
covariant vector or surface gradient of ¢. If A% is a contravariant surface
vector A% is a scalar which we may call the surface divergence of 4*. The
form of divergence most useful for calculation has been mentioned above
(Ex. 9.25.2 and 3), namely,

12 gy (9.41.1)

The surface divergence of a covariant vector can be obtained by first raising
the index,

1 9 .
ﬂaﬂAg,ﬁ = ﬁ a*—ui (ﬂ”gﬂ HAE)+ (9412)

If the covariant vector is the gradient of a scalar we have the surface Laplacian

1 ¢ op
af /2 af 27
@9 =55 (a a au*)' (9.41.3)
The length of the surface gradient
a*’p ¢, (9.41.3)

is also known as Beltrami’s first differential parameter of and the Laplacian as
his second. There is also Beltrami’s mixed differential parameter of ¢ and vy,
namely,

a*’p .y, (9.41.4)
By analogy with three dimensions we might define the surface curl as
~y2[0A; 0A
P4, , =a 1«’2(_2 - —1)_ 9.41.5
e ' ou? (0.41.5)
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The surface divergence and curl of a space vector can also be defined. The
surface divergence of a covariant space vector is

a*PtiA, 5 (9.41.6)
and that of a contravariant space vector
g:;a*P13A4%. (9.41.7)
The surface divergence of the normal vector is
g:;0%Ptin?, = —g,,a*bg a1t}
= —Hﬂbﬂ?a?"ﬂh
= —2H. (9.41.8)

A space vector may be represented as the sum of a normal and a tangential

part _
At = A’ + Aty
For since n,t; = 0 and g,n'tj =0,
Aln] = Aini!
ALy = aPg tiA (941.9)

Then, using Eq. (9.41.8) and Weingarten’s formula, we have, after some
manipulation, that the surface divergence of A* is

(.a — 2HA (). (9.41.10)

The surface curl of a space vector is similarly defined as
& P A%t (9.41.11)
Exercise 9.41.1. Show that a*p ¢, = g,.0'¢’, where ¢* = a*’1;p ; is the
space vector associated with the surface gradient.

Exercise9.41.2. If A; = A; — (A;n')n, is the “projection” of 4, on the tangent
plane to the surface, show that

a*t; A4, 5 = a”(L:A) 5.

Exercise 9.41.3. Show that the surface curl of »' is zero.

9.42. Green's and Stokes’ theorems in a surface

For any suitable surface S and curve C on it, we have Stokes’ theorem in
space (cf. Eq. 7.57.4),

[ [, n,ds = § 4,4 ds, (9.42.1)
S C
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where n, is the unit normal to the surface and #’ the unit tangent to the curve.
Let us now take the special coordinate system in which the surface is x® = 0
and the x® coordinate line are normal to the surface. In the surface we take
its intersections with the surfaces x! and x? constant to be the u! and u®
coordinate lines. Then

=0, ha=12 =0,
Gag = Gapp 8= 8z =0, &= gaa.
Moreover, n, = n, = 0, ny = g4, and so
E:'.il:nk — Em(g;“)lfﬂz i’a — P
g

if i =a, j=p. If we write 4, = i 4,, then,by Eq. (9.42.2), 4, = A4,, i =
a=1,2and 4;; = Az, for i=a, j=pf. Also, if vz = #t; is the unit
surface vector tangent to the curve, 73 = t,, j=f=1,2,t3 =0 and A4,t’ =
A't; = APry = Ayr®. Thus Eq. 9.42.1 becomes

(9.42.2)

[[e2a, ,ds = $ 457 as, (9.42.3)
8 c

which is an equation entirely in surface vectors. However, it is a valid tensor
equation and so holds not only in the special coordinate system described but
also in any system of surface coordinates. It evidently relates the surface
integral of the curl of the surface vector to the circulation around the bounding
curve, and may be called Stokes’ theorem for the surface.
Now let

Ap = e, B’ (9.42.4)

so that
E“ﬂAFJ = s"ﬂswﬂr‘ = 8;B), = B,

Also &,4m7 = v, the outward unit normal to the curve in the surface (cf. Ex.
9.14.1). Hence, by substitution in Eq. (9.42.3),

[[B% ds = § B, ds. (9.42.5)
C

s
This is clearly the surface form of Green’s theorem. If B* = a*’g,y, then

[[va®p 0 dS + [ [ap,.0, dS = $ypag w, ds  (9.42:6)
S 5 C
and, in particular, if y = 1,

[[a®0 .5 ds = § ¢ ds (9.42.7)
S C
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relating the surface integral of the Laplacian to the line integral of the normal
derivative,

Exercise 9.42.1. Show that if a*¢ ., = —1 and on S and ¢ »* =0 on C

[[yds =[[a®y.p,ads.
s s
Exercise 9.42.2. Show that
_‘.J‘adﬂ[wqﬂ.mﬁ _' ‘Pw,aﬂ] ds = § [T#Q?.E T ?"pa]va ds.
s C
Exercise 9.42.3. Using the decomposition A* = A,n* + Ajt:, show that
[[a®#in, 5 = § Agyr, s — 2 [ A ds.
s c 8
Exercise 9.42.4. Relate Eq. (9.42.5) to Green’s theorem in space by consider-

ing a family of closed surfaces that shrink down onto the two sides of §
within the curve C.



The Equations of
Surface Flow

10

We propose here to give some account of the equations governing fluid
motion in a surface or interface. The importance of this subject is shown by
the growing interest in the behavior of surfaces and Scriven (in the paper
listed at the end of this chapter and referred to constantly in it) gives many
references to diverse applications. Its interest here lies not only in these
applications but also in the fact that it is itself an application of the methods
and ideas we have developed for non-Euclidean space. As has been remarked
before, Cartesian tensors really suffice for three-dimensional flows; for the
space of everyday life, being Euclidean, always admits of a Cartesian frame of
reference. However, the surface is a two-dimensional non-Euclidean space
and from the outset demands a full tensorial treatment. Again, the flow in a
surface is not just flow in a two-dimensional space whose governing equations
will be immediate analogs of the three-dimensional ones. For, in contrast
with the three-dimensional space, this surface is a two-dimensional space that
can move within a space of higher dimensions, namely, the three-dimensional
space surrounding it. Moreover, it may be the region of contact of two bulk
fluids. This is again a new feature, for a bulk fluid can never be the interface
of two four-dimensional fluids. We shall sometimes be thinking intrinsically
and at others be seeing the connection of the surface with the space
around it.

226
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10.11. Velocity in a surface

Consider the surface at some arbitrary time which, for convenience, we
take to be t = 0. A system of surface coordinates #*, «* can be introduced
and particles can be labelled by these coordinates. A system of convected
coordinates can thus be set up in which a particle retains its coordinate label.
We will distinguish convected coordinates by capital Greek indices; thus
u" = constant is a material line in the surface and moving with its flow. The
element of length in the surface will be given by a metric tensor

ds® = ap, du® du®, (10.11.1)

where ap, is a function of the surface coordinates and the time.

It is not possible to set up a fixed coordinate system in a moving surface by
intrinsic considerations alone. Indeed, any other system of surface coordi-
nates would provide a reference frame and the velocity of a particle would be
velocity relative to this frame. If we look outside the surface, however, we can
say that a point is fixed in the surface if its velocity in space is wholly normal
to the surface. Let lower case Greek indices be used to denote the coordinates
thus “fixed” in the surface. Then the motion in the surface is a continuous
transformation in two-dimensional space

ur = wut, 0, o, '=12. (10.11.2)
This relation has an inverse
ul' = wl'(us, 1), o, '=1,2, (10.11.2)

which gives the convected coordinates of the particle at u*. We have a metric
tensor in the fixed coordinate system

ds® = .z du® du®, (10.11.3)
where
ou’ ot
Azp = Fwe ﬁ dras (10.11.4)

and unless the surface is stationary this also will be a function of time.
The surface velocity at a point is defined by
_dw
dt’
where the differentiation is with 4™ held constant. The acceleration at a point
is similarly defined as the material derivative of ¥*. Thus,

% (10.11.5)

A= paye (10.11.6)

dt dt
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We shall need certain identities later, of which one will be proved here and
others given as exercises. Since the space is curved, second covariant
derivatives do not commute, but

By — Vip = 0" Raagy V" = Ka*s55/ V"
If we contract on x and y and multiply by a”,

. aP(V¥, — V4, = KV* (10.11.7)
since
aPaey,6,, = 8] (10.11.8)
(cf. Ex. 9.13.8).
Thus, as soon as second derivatives appear, we are liable also to have the

Gaussian or total curvature.
Exercise 10.11.1. Recalling that e*/a,, = a*f¢;,, show that
Elﬂsaﬂa#ry.:l = u“:‘:x — a* ::r,t-
Hence, show that
aiﬂ[{am - a“ﬂ'}{ﬁﬂ = KV*— E‘ﬂﬁlﬂﬂnryr‘lﬂ .
Compare this with the three-dimensional formula
VBV — V(V-V) = —VA (VA V)

10.12. Operations with a time dependent metric

It will be of great convenience later if we notice first some formulae
connected with a time dependent metric. A dot will be used to denote the
derivative with respect to time, that is,

d,p = a—ii aqp(u’, u® 1). (10.12.1)
Since
a"ﬂah =05
we have d*fay, = —a*dy, .

Multiplying both sides by a” gives
d* = —a%a¥dy,. (10.12.2)

This shows that the raising and lowering of indices does not commute with
the differentiation.
Again, the determinant

4 = Ay Qg9 — Qypdg,

@ == dyayy + Qyydoy — dyplyy — Gyody;
= a(a'dy, + a®dy, + a'%d;, + a®dy).
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Thus
£ = a%i,, (10.12.3)
a

If we take the identity (cf. Ex. 9.13.7)
g4 ePr | gMehPl = 2q¥Bgin _ qghR _ goigPE (10.12.4)
and multiply it by d,,, we have
26**eP*a,, = 2a**a*d,, — 2a**a"d,,
or

s, = a2 4 g, (10.12.5)
a
Another form in which we shall need this identity is

eeP(d,,) , = (@) ; + 2a* (2‘) (10.12.6)

The element of area defined by an increment du! in one coordinate and du®
in another is
ds = a'* du' du®. (10.12.7)

If T' is any function of position on the surface and time, and S is a material
part of the surface,

[[ras =[[ra® au au® = [ [PAv2 au* au™,
s s b3

where X is the part of surface from which S has been convected, A4 is the
determinant of the metric tensor, and du' and du™ are increments of the
convected coordinates. Now 4 = J%g where J = |du®/0u"| is the Jacobian of
the transformation from fixed to convected coordinates, hence, we can write
the integral as

J jFJam du' du',
=
If now we take the material or convected derivative of this, we have

&{: L [ras :ft[i{ (DJa"2) du’ du'"

dal'?
=_“‘ dr Ja'? + l"' a'’? + PJ ] du® du'!
L dt dt dt

=” jl: +Ive, +T jl.i’ﬂ”2 du® du"'

= [ ' +TveL+T -zi] ds. (10.12.9)
u a
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Here we have used the fact that J = V%J. This is the analog of Reynolds’
transport theorem in the surface and we see that there is a new term arising
from the time dependence of the metric. In a fixed surface the last term will
vanish.

The equation may be manipulated in the usual way by the use of Green’s
theorem and gives

d_”I‘dS _[[ I‘-—-+(Pv=)]

=[[(Z=+TZ)dS+ ¢ I'vm,dS (10.12.10)
fsf(at Za) ﬁc

where m, is the unit surface vector normal to the bounding curve C. The
corollary to this theorem again holds. If y is any conserved scalar quantity,

that is,
d
t—ﬁ_uy ds =0,

then
: ” I'ds ~”y—-d5' (10.12.11)

Exercise 10.12.1. Show that
.. = day 0dap
T d T

10.21. Strain in the surface

The element of length in convected coordinates is

ds® = apa du" du® (10.21.1)
If we take the material or convected derivative of this, we have
d(dS) r& du du
or
r A
14 4oy~ Sradu du (10.21.2)
ds dt apa du du
where
Sp_\ = iﬂlrj. (10.21.3}

In the fixed coordinate system the rate of strain or deformation tensor Sy, has
components S, ;. In the nomenclature of Section 8.32 S, ; is the convected
derivative (d,/dt)(}a,,) and, using the equations given there, becomes

Sep = g + 3(Vep + Vo) (10.21.4)
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The deformation tensor S, is susceptible of the usual interpretations in terms
of the principal axes of stretching.
The dilation of area is

é % (dS) = i + Vi = a"sd, (10.21.5)

Exercise 10.21.1. Show that the rate of change of the angle between elements
du®, dv®, originally orthogonal to one another, is

—28ap du® dv?
{ay du® du a5 dv” dv®}H?

Exercise 10.21.2. Show that the rate of strain given by Ex. (10.21.1) has two
stationary values which are roots of the quadratic

A — (@®S A + (e*%"S,,8,,) = 0.
Exercise 10.21.3. Establish Eq. 10.21.5 (cf. Section 10.12).

10.22. Stress in the surface

The surface stress is a force per unit length of line element. If m, is the unit
normal to a line element we can show by an argument on an elementary
triangle, which is entirely analogous to the spatial argument on the tetra-
hedron, that the stress on the element is given by a tensor

Tm, =t,,. (10.22.1)

By parallel propagation along the coordinate lines we can construct an
arbitrary parallel field /; over any finite part of the surface. If C is the
bounding curve of this part of the surface S, then the total component of
stress in the direction of /j is

§ thylgds = § Tm,1, ds =[ [T, ds. (10.22.2)
¢ c S

In a state of rest we suppose that the stress is normal to the line element and
independent of its orientation. Then, if it is true for any m, that

Tm, = om® = ¢a*m,,
it follows that
T = ga*f (10.22.3)

in a state of rest. o is called the interfacial or surface tension and corresponds
to the pressure in bulk fluids. If there are no forces acting within the surface
and it is in equilibrium, then the net stress on any finite part of the surface
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must be zero. Thus, by Eq. (10.22.2) 7% = 0 and since a* = 0 this implies
that o , = O or ¢ is constant over the surface.

10.23. Constitutive relations for the surface

The arguments which have previously been adduced in constructing the
constitutive relation for the Stokesian fluid can be readily modified to the
present case. If the surface is isotropic, the difference (7% — ga*#)of the stress
from its equilibrium value must be an isotropic function of S, which vanishes
with S,;. It must therefore have the form

T* — 0a*® = Aa*® + B¥4§,, (10.23.1)

where A is a scalar and B*#** an isotropic tensor function of the invariants of
S. There is no product term in the tensor S, ; as in the three-dimensional case,
for since a tensor satisfies its own characteristic equation, a square or higher
power could always be expressed in terms of the first power and the invariants.
There are two invariants, the coefficients in the quadratic characteristic
equation, namely,

a*S,; and &%PS,,S,,. (10.23.2)

A Newtonian surface fluid is a Stokesian surface fluid in which the stress
depends only linearly on the rate of strain. Thus A must be proportional to
the first invariant and B*##a constant isotropic tensor. By precisely the same
arguments as before, the symmetric isotropic fourth order tensor is a
linear combination of a*’g** and (a*a* + a**a®®). For the Newtonian
surface fluid we can therefore write

T* = (0 + xa*$§,,)a* + E¥*S,,, (10.23.3)
where

E® = g®4gPr . q®gPt . g®hgi (10.23.4)

There is some convenience in this form since the trace a,zE*#** = 0. «and ¢
are called the coefficients of dilatational and shear surface viscosity respec-
tively. In what follows they will be assumed to be constant.

Exercise 10.23.1. Show that

aj‘uSA.“ = i + V:lj.
and

E#MS,, = .—{&w + a* f&} + {a*VE + a"' Vs — a*VA).
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10.31. Intrinsic equations of surface motion

If y is the surface density (mass per unit area) and the surface has no
interchange with its surroundings, we can obtain a continuity equation from
the principle of the conservation of mass. Thus, if the mass of any portion §
of the surface is constant,

2 [[yas=o.

Applying the transport theorem we have
H[ V= ]ds 0
and since this is true for an arhllrar}' part of the surface,

+ PV + ,,_ =0. (10.31.1)

Now let an arbitrary parallel field of covariant surface vectors /, be defined
on the surface and let /* be the external force per unit area. If we make a
balance of linear momentum in the direction of the parallel field,

£ [[yvei,as =[[yact,as =[[Fe1,as + §, 5l ds.
dt °g S .
Using Eq. (10.22.2) to reduce the last integral we have
”[?A" — F* — T*81,dS
8

and, since both S and /, are arbitrary,
yA* = F* + T%. (10.31.2)

If angular momentum is conserved
| jy AP dS _j'fs SFU S + §_ gt u? dS
Substituting on the left-hand side from Eq. (10.31.2) and using Eq. (10.22.1)

J.J.E,ETT:H‘E dsS = ij &g, T*u'm, dS
8

= [(ep,T=%u) . aS
8
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by Green’s theorem. However, since u } = &}, this gives

&5, T = 0, (10.31.3)

and hence the stress tensor is symmetric. The last term in Eq. (10.31.2) could
thus be written T%'.

10.32. Intrinsic equations for a Newtonian surface fluid

For the Newtonian surface fluid we have the constitutive equation (10.23.3)

T* = (0 + xa™S,,)a* + eE**S,,. (10.32.1)
To calculate T7{ for the equation of motion we recall the assumption that «
and e are constant. Then
TY = 0,a" + xa™(a*S,,) ; + «(E¥*S,,) ;. (10.32.2)
The first term is just the gradient of the surface tension and using Ex. 10.23.1
the second term is

Ka:'aa‘l”slm# = Ka!ﬂ(

i) + «a®V, (10.32.3)

2a/ .8

The third term requires a little more manipulation. From Ex. 10.23.1 we have
B S = m[dﬂ +a® 2—1] ﬂ'+ {a®Vhy + aPViy — a®Vi}.

The first and third terms in this last bracket can be reduced by Eq. (10.11.7)
to give

ESUS, 4 = —-{a"ﬁ + a*f 23} + {aP V%, + KV} (10.32.4)
al.p

We may now substitute from Egs. (10.32.3 and 4) into Eq. (10.32.2) and
thence into the equation of motion (10.31.2). This gives

d

yA* — F* = a%o, + "‘J”[V-ﬁﬁ + (—) ]
2a/ .p

+ E[a‘ﬁiﬂjﬂ + KV*— (@), — a“‘”(ﬁ) .pjl.

Now write k = (x + €) — ¢ and absorb the term

a a
—ea ”[V-“u + (2_)]

in the last bracket. This becomes

a’?Ve, — a*Vis 4+ KV® — (@) 5 — a** (E) ;
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Using Ex. 10.11.1 on the first two terms and Eq. (10.12.6) on the last two,
this is

2KV¢ - EaﬂﬁﬂﬂaﬂyV?lﬁ - Ezleﬁa(dﬂ.ﬂ)_ﬁ == 2K Vﬂ - Suﬂ[glhl V}l.l]._ﬂ' - Eulsﬁ"(dlp]'ﬂ.
The second term here is a curl of the surface curl of the velocity. It corre-
sponds to the term »V A (VA v) = »V A w in the Navier-Stokes equations
(Eq. 6.11.8).

The intrinsic equations of motion of a Newtonian surface fluid may be
written in unconventional but explanatory form as follows:

yA* acceleration or inertial force
== J* body force
+ a* surface tension gradient
' d : . . :
+ (x + €)a** [V_ﬂ + E-] . Viscous resistance to dilatation  (10.32.4)
a
— e[V, ;15 viscous resistance to shear
+ 2¢KV* force due to intrinsic curvature
—~ ee™e*(d;,) force due to movement of the surface.

If the surface is stationary, the terms in d and 4,, vanish. If the surface is
plane or developable (K = 0) and

yA® = F* + a%a , + (k + €)a™V%, — e[V, ;]
or
yA® = F* + a0, + ka®V%, + ea*V?,. (10.32.5)

These are clearly the Navier-Stokes equations and it is interesting to note that
no essentially new terms are involved so long as the Gaussian curvature is
zero.

10.41. The continuity of the surface and its surroundings

Up to this point we have confined attention to the surface itself. An
important application, however, is to a surface which is the interface of two
bulk fluids, for such interfaces exhibit the behavior of a two-dimensional
fluid.

If x', i =1, 2, 3, are coordinates in space, the equation of the surface at
time ¢ has the form

x' = x'(ul, u?, 1). (10.41.1)
The hybrid tensors
13
5= o (10.41.2)
ou”

will again come in to link surface and space vectors but now it must be
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remembered that they are also functions of time. The contravariant space
velocity of a fluid particle in the surface is

pi ax'_ ox' .?‘_“_ + & e (10.41.3)

dt ou’ ot

where

Bx
Tt

If Wiand W*are the velocities of the bulk fluids on either side of the surface,
their components tangential to the surface in the direction of u* are g, 7i W’
and g,;t; W/, respectively. If there is no slip at the surface, these velocities
must be equal and equal to the tangential component of U, namely, g7 U’.
Thus, the condition for no slip is

Ve = gustal(W — X') = g te(W — %). (10.41.4)

If n; is the normal to the surface pointing from the bulk fluid 8 to the bulk
fluid B on the other side, the relative velocities of the two fluids toward the
surface are (W — U, and (U* — Wn,, respectively. If 4 and p are their
densities the net rate of transport of mass to the surface is

(AW — U + p(U' — W)n,

per unit area. Thus
d . .
-~ ds = p(W*— U* U* — Wi]n, dSs,
dlfsfr g[p( )+ ),
and applying the transport theorem and the usual arguments
Vet =B+ (o= HU — pW . (104L5)

This is the cnntinuity equatian.
If there is no interchange, we recover the continuity equation (10.31.1) by
equating the normal components of the velocities

Win, = Win, = U'n; = %'n,. (10.41.6)
The last equality follows from the fact that n,f = 0. Since there is also no

ship
Ui = W= Wi, (10.41.7)

Exercise 10.41.]. Show that

Vet Zi = a"(U,t}) 5 — 2Hn'U,.
a
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10.42. Connection between surface strain and the surroundings
The intrinsic rate of strain in the surface is given by the tensor

Sep = bag + 3(Veg + V.0)- (10.42.1)

If, for simplicity, we continue with the case where there is no interchange of
material between the surface and bulk phases, then

U'=W'= W' and nW'=nx' (10.42.2)
Thus
Ves = gus[tz(W! — X)] 4
= g M'bg(W' — X%) + g, ti(Wh — x%)
= ti(W, 5 — %) (10.42.3)

since g, n'(W? — x') = 0. We also have
0 ij af
zﬂ'_' a (gf.fri'rﬁ)““ 5; Iitj + tj[ “f%'l‘ @ 3:]
where this differentiation with respect to time is with %* held constant.
Although g,; is independent of time when regarded as a function of space

variables x°, yet because the surface is moving through space it becomes a
function of time for fixed #* by Eq. (10.41.1). Thus,

0giy _ 08y m m .
_'aT axkxk k ;‘ng+ } kgl‘.m xk:

the last term following from the fact that g;;, = 0. Also,

orr 0 (ax) 0 (Ex‘) _ox*
" a\aw) " awe\ar) T aw
so that on substitution and with change of dummy affixes
= g [X 0 + 1ix7] (10.42.4)
and hence
Sep = H1iWop + Woath]. (10.42.5)
By symmetry

alﬂslp,p = alﬂ(ﬁllﬂ,p).ﬂ
== a"'“bzﬁﬂil‘ﬂ.# + tl‘l“ti“’},,,p
— (ahflm,p),ﬂ‘ (10-42.6)

This we recognize as the gradient of the surface divergence (cf. Eq. 9.41.6).*

* ] am indebted to Mr J. D. Eliassen for the elucidation of this section.
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10.43. Dynamical connection between the surface
and its surroundings

If m is the surface vector normal to the boundary C of a part of the surface
S, the surface stress acting on an element of C is T*#m; ds. This has com-
ponents in space

T'ds = t;T"mg ds.
The surface acceleration A* is a tangential component of the surface’s

acceleration A®. There is also a normal component of acceleration n;4’ so
that we may write

A’ = t;A%* 4+ n'n,A° (10.43.1)

Similarly, for the body force F*, which may have a normal component though
in the surface it is manifest only in its tangential components F?,

F' = (F% + n'n,F’. (10.43.2)

If /; is a parallel covariant vector field, a balance for the linear momentum
in this direction gives

2 [[yu,ds = [[yat,ds = [ [Fi,ds + §T, ds.
dt g 8 8 C

With the usual arguments about the arbitrariness of S and /; and an applica-
tion of Green’s theorem to the last integral we have

yA' = F' + (6;T*) ;. (10.43.3)
However,
(TP p = £, 3T + 6T = n'b, ;T + £:T%,
and substituting both this and the resolutions (10.43.1 and 2) in Eq. (10.43.3)
gives
ti{yA* — F* — T4} + n'{yn,A’ — n;F’ — b,,T**} = 0. (10.43.4)
This is a resolution of the equations into tangential and normal parts. If we

multiply through by g,;zJ, the second term disappears since g,;n'tJ = 0 and
we recover the intrinsic equations of motion in the surface

yA* = F* 4+ T%. (10.43.5)
If we multiply through by n,, the first terms disappear and we have
ynA' = nF? 4 b, T (10.43.6)

This shows very prettily how the second fundamental tensor b,; interacts
with the stress tensor to give a normal component. For a static film 4’ =0
and T%f = ¢a*?; thus,

—n,F’ = 0a*b,; = 2Ho. (10.43.7)
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There must be a difference in normal force (that is, pressure) on either side of
a film equal to 2¢ times the mean curvature if the film is to be kept stationary.
To reduce these equations further we must plunge into some rather heavy
algebra and for clarity we will give the final result immediately and then go
back to sketch the intermediate steps. The final equation may be written
d“‘ﬁ i i aff afiy Augi
y _J; = F' 4 t,a%0 5 + (« + e)tia*(a “GW; ) g
+ :t;{ZKa"’(!;W,} —_ gﬂ[eﬂp(tilﬂ}‘l]'ﬁ —_— h‘abuﬁ‘g"(ﬂj“’;—}m}
+ n{2Ho + 2H(x + €)(t]a**W,,) + 2etie®b e W, ). (10.43.7)
To see the meaning of each of these terms we notice that certain combinations
occur frequently. Thus, if L, is a surface vector, #Ja*’Ly is simply its i*" space
component. If we denote the surface gradient M ;z by grad M, it has space
components t}a*’M ;. Similarly,
a*tiW; , =divW, and &*(t’W) , = curl W,

where W, is velocity in the surface. Using the vertical form we have, for Eq.
(10.43.7),

dw?

1 —_— = inertial force

H v 7

(i) F* external force

(i) +tia*o, gradient of surface tension

iv) +(x + €)tia®®(a**t] grad (div W), dilatational force
(iv) +( Yaa®P(a* W, ) 4 d (div W), dil al fi

\4 +2¢Kt.a W, orce due to and total curvature
W) 2¢Kt.a”’ W, f d W, and 1

(vi) —etye®[(EW) 1] curl (curl W,)

vil) —2etie*b, n effect of varying normal velocity
(vil) —2etie®b,, " (n'W)),, ffect of varyi 1 veloci
(viii) +n2Ho normal force due to surface tension
ix) +n2H(x + e)(tia**W, normal force due to dilatation
(ix) +n2H( )tia*W; ) I force due to dil

(x) +n2etie? b, W, , normal force due to shear

We notice that ¢; W, is the tangential component of W, so that zia**tW; is
merely this surface velocity built back up again into a space vector.

To fill in the algebraic gap that we have left we will outline the necessary
manipulations in such a way that the reader should be able to follow the
steps and find that the details left for him to supply are quite trivial ones such
as the rearrangement of dummy indices, raising or lowering of indices, or
taking notice of a symmetry. We list first some identities which have appeared
and which will be needed denoting them by capital letters (A), ..., (K). A
capital letter enclosed in parentheses following any term of an equation intro-
duces this letter as an abbreviation for that term. If the term is itself a
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parenthesis with other terms within it these will be referred by a suffix. For
example, (£:V* + %*)(Y) means the whole bracket would be referred to as Y
and if needed #iV* would be referred to as Y, and %' as Y,; the example is
merely illustrative, the notation being useful only for more complicated
expressions.

The identities we have are:

A. 2a*Pa** — g*3gPr — g®aPt — g*AgPr | ptHePR

d .
€ = o,
a

d** = —a*a’*d,,,
28l 4 . .

. 21‘3 "(E) ¥ _I" (a"’)., - Eulﬁﬁﬁ(ﬂiﬁ)_ﬁ,
Ehblﬁg"j’b?ﬂ - “‘Ké:,
a®(V', — V'up) = KV,
a"“V}u = a“V:‘iﬁ =Ky — Eﬂﬁ&mﬂw Vi
. Bgg = gii{t:j:ﬂ + x5 tp} = {teXep + X atp)
Ve = )W, — x,),

o 0O w

“mmomm

jf'f,up = -ff,pm
i _ i vi
K. n’, = —t,a"b,,.

To get from Eq. (10.43.4) to (10.43.7) we write the stress tensor in the form

T* = ga* + (k + €)a™S,,a” + e(E¥* — q¥a™)S, (P).

Using (A) and Eq. (10.42.5), this last term (P) will contribute to 7%/p,, a term
—2eeP*b, i W, .. Hence, again using Eq. (10.42.5) for S,,, we have

by T*" = 2Ho + (x + €)2Ha*™ W, , — 2ee™ 65 W, ,.

We notice that this accounts for the terms (viii), (ix), and (x) of Eq. (10.43.7).
For the term T%’ we already have, from Eq. (10.32.4),

T:lﬂﬂ = aaﬁalﬁ + (K + E)RJ#SAF.M{Q)
+ [2KV* — eV, a8 — “eP(d,,) s J(R).

The first of these terms will clearly become (iii) of Eq. (10.43.7) when multi-
plied by 7;. Substituting for a*S;, , in (Q) from Eq. (10.42.6) it will give (iv)
of Eq. (10.43.7) when multiplied by #,. The terms (i) and (ii) carry straight
over from the original equation and so present no difficulty. The piéce de
résistance is (R) which must evidently account for the terms (v), (vi), and (vii).
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In demonstrating this we may drop the factor of € which is common to all
terms.
Now

to(R) = 2Kt,V*(L) — t;e*Pe'*V ¥ (M) — e*eP 1i(d;,) s(N).

Also by (I)
(LY = 2Ka*1;63W(L,) — 2Ka*Pi5t)% (L),
and

(M) = —t,e¥e™[t(W; — %;)] 5
= ~—te[M(L W) ] (M) + e[ (t1x)) 2] s(My).
Using (H) and ¢} ; = b,gn‘ we have

(N) = —e"eP g [t3%,,, + tix,.]
= —e P [ bign %, , + ti%; 5 + bugn’%, ; + thx; 25J(N).

However, (N,) and (N;) are both zero under the influence of &’ because of (J)
and the symmetry of &,,. Leaving (N,) for the moment,

(N9 = —eeP13t3%; 5, by (J),
= —e"eM 5[ (ti%;,0),2 — buan'%, 4)(S).
(Sp) = — e ePH (%)) 2 + e (E41] 4X))

and the last term of this vanishes by the symmetry of ¢} ; = b,;n’ while the
first term is (M,) with a negative sign and the indices # and 1 interchanged.
Thus (S,) vanishes and takes (M,) with it. By interchanging the suffixes f
and u we see that (N,) and (S,) are the same and their sum is

2(N,) = —2t.e™b e [(n'% ), — n’ %,J(T).

However, using (K) we have

Further

(Ty) = —244e%b,,ePb ,a""t}%; = 2Ktia™t}x,

by (E), and this is equal but opposite in sign to (L,). Hence, the only terms
that survive (mirabile dictu) are L, M,, and T, and since n' W, = n’x, these
are the required terms (v), (vi), and (vii) of Eq. (10.43.7).

10.51. Surface equations as boundary conditions at an interface

Surface body forces may arise from some intrinsic force or due to the drag
of the adjacent bulk fluid. An intrinsic force, such as that due to the weight
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of the surface, will be denoted by %, while the traction of the bulk phases
are 7' and J*. Thus

Fi=yFi + T~ T, (10.51.1)
If T is the stress tensor in the bulk fluid
ﬁ'-*' — T'ﬂn’ (10.51.2}

and for a Newtonian fluid this is
T = (—p + AWDn' + p(g" W), + g”"W \)n,
= —pn' + (A + 2p)Whn' — pgpane ™ " (W, + W) (10.51.3)
When these equations are substituted back into Eq. (10.43.7) they provide the
full boundary conditions at the interface of two fluids when there is no
exchange of material.
If we choose the space coordinates in such a way that the interface is x® =

constant and take the surface coordinates #* and #* the relations between the
metrics are simple. In particular, if all coordinates are orthogonal

e =00 Gy =gy

g;=0, i#j, gm=1 n=(01. U019
If the surface is stationary in space

10.52. The plane interface

Let the plane be x? = 0 in Cartesian coordinates. We will use x, y, z in
place of x!, x% x® and A4, will denote the physical component 4(1). We
assume that the density of the interface is so small that the inertial and
intrinsic body forces can be negiected. Then, since

the equations simplify enormously and give
- do 0 (BW BW) 0 (BW BW)
T —F =— = ] — T — —¥) (10.52.2
3x+(x+fax ox ay +€ay dy 0x ( )
= do d (BW BW) 0 (BW BW)
v =7y =2 = |== ') —e— |—=——%) (10.52.3
ay+(x+£)6y 0x +3_p fax ay ox ( )
T, ~T,=0 (10.25.4)
If there is no velocity or variation in the y-direction we have

W,
ox?

T, —-T, = g—”-’ + (x + ¢) (10.52.5)
X
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10.53. The cylindrical interface

If the interface is the cylinder p = R and ¢, z denote the other cylindri-
cal polar coordinates, we may take x! = ¢, x* = z, x> = p and have

gu=~R, gn=gug=1,
by = —R, by, = by = 0; (10.53.1)
K=0, H=-—IJ2R

Then, with the same assumptions,

__f.____q__x—l-e(lalﬂ aw) 2¢ W, 3.
R R \R 3 + TR % (10.53.2)
ﬁ;_fﬁ:l_@*_wsa(la_wé_'_aw) B(BW_I_S'_HE)’
R o¢ R 0¢ \R d¢ ‘oz \ oz R 0¢
(10.53.3)
5 do (1 oW, aW) € 0 (aw 1 aw)
T =T, =— — ==t =) — = — [ — = =]
y 2z Tt 95, Rog T2/ "Rog\ oz R 2
(10.53.4)

A generalization of the cylindrical interface is the developable surface. If
we introduce the metric in the form of Ex. 9.38.3, the normal component of
the equations gives

ny (T —~T°) = by, T™ = 2H{o + (W, + W2) + (W' — W2)}. (10.53.5)
There are also certain simplifications in the other two equations but they are

still too complicated to be worth giving in detail.

10.54. The spherical interface

If the interface is the sphere » = R, we may take spherical polar coordinates
x! =6, xt = ¢, x*=r=R.
Then
g1=R%  gp=R¥sin’0, gguy=1 by=—R, by,=0,
i 1 (10.54.1)

—_ T2 —_ —_—
bye = —R sin® 0, H = R’ K—RE.
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The equations for a surface of constant radius R become

5 200 2| 1 (W, sin6) oW, ]}
I, T, =—=_-= [ . ¢\ 34,
r r R R \Rsin#8 0 0é (1054.2)
5 1 do 1 0 1 [E(W sin 0) BW]}
T =~ —— 8 ¢
To=Te=poe T« tOR% \Remol o6 T 3¢

2W, 1 2 { 1 I:aw; _ (W,sin 9)] }]
+ E[R“ " Rsin 604 \Rsin6 Lag 06 » (10:343)
1 00,6 k+e€ 0 1 [B{Wﬂ sin &) n BW{I}

*=Rsir16‘§$ Rsinﬁaﬁ Rsin 6 06 d¢

2W, 12 1 [awﬁ o(Ws sin &)] }]
e 10 — , 54.4
+‘[ R* R0 \Rsin6 Lag 26 (10-544)

If the sphere is expanding or contracting, its radius being a function of
time R(t), then the metric is as given in Eq. (10.54.1) but W, = W, = R(1).
Assuming the velocity to be purely radial we have

Ty—T

T _g, =20 4R (10.54.5)
R R®

and T, = F,, T ¢ = J 4 The second term is the extra pressure needed to
overcome the resistance to dilatation.
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Equations for

Reacting Fluids

In this final chapter we shall consider the equations of motion and energy in
a system of reacting chemical species. Our treatment is somewhat brief for the
foundations of this topic in continuum mechanics are not yet thoroughly
established and the discussion adds little as an example of the application of
tensor methods. It is, however, of such importance that jts entire omission
would be unpardonable. Our treatment follows the paper by H. J. Merk
referred to in the bibliography and references for further reading will also be
found there.

The basic idea is that the various chemical species composing the system
can be regarded as interpenetrating continua. We thus imply that these
component species are entirely miscible and that there is no change of phase
during reaction. Except where explicitly required, we shall avoid the use of
tensor components and use bold face letters for vectors and tensors. Ordi-
nary Cartesian coordinates are to be understood throughout and the suffixes
will refer to the components of the system (that is, chemical species) and not
to tensor components.

11.11. The conservation of matter

In a mixture of N chemical species A; we let the suffix i denote properties
of the i*" species, i = 1, ..., N. If m, is the mass of one mole of 4, and n, its

245
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molar concentration (moles per unit volume) the mass concentration of A; is

pi:mfni. (I l.ll.l)

The velocity v; of the species 4; may be defined as if this were the only
continuum present and p,v, is the mass flux in the fixed Cartesian coordinate
system.

In constructing a mass balance we have to consider that the species is being
created or destroyed at every point. Let r; be the rate at which A4, is being
created in units of mass per unit volume per unit time. It is a little difficult to
think of a material volume of one species since this is being created and
destroyed, so that in setting up a mass balance we use a fixed control volume.
Then the rate of change of mass of A, is due to its net flux in through the
surface and its change by reaction. Thus, if V is this fixed volume with
surface S,

}%I.}[I’afdy: J.!:J.%pfdl;’= —*'Ljpﬁ,-vndS—l—J.iUridV,

where n is the outward normal. Transforming the surface integral by Green'’s
theorem and making the usual deduction from the arbitrariness of V, we have

%? £V (py) =r, (11.11.2)

The total mass per unit volume is the density p of the mixture,
p =2 p; (11.11.3)
(All summations will be understood to run from 1 to N.) We can define an
average velocity, called the mean mass velocity v, by
pv = X pv,. (11.11.4)

Moreover, in a reaction, although the mass of each species changes, the total
mass remains constant,

Zr;=0. (11.11.5)
If we add Eqgs. (11.11.2) we obtain an over-all continuity equation
dp dp
— + V- (pv) =— V.v=20 11.11.6
o TV =t eV ( )

Since there is no net creation of mass and mean velocity has been calculated
as a mass average, this is the familiar continuity equation.
The mass fraction, mass of A4; per unit mass of mixture, is given by

. (11.11.7)
P
The mean velocity is thus

v=3Zcy, (11.11.8)
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11.12. Mass fluxes

The mass flux p,v, is the mass flux of 4, with respect to the fixed coordinate
frame. Similarly, the mean mass flux pv is the total mass flux with respect to
fixed coordinates. The velocity of the species A, relative to the mean is
v; — v and so the flux of A, relative to coordinates moving with the mean

velocity is
i = p(vi — V). (11.12.1)

This is called the barycentric mass flux of 4, and will be the principal one that
we shall use, Itisnot the only mass flux that can be defined and it is important
in any discussion of multicomponent systems to specify carefully the nature of
the flux used.
We might use the molar flux n,v; with respect to fixed axes to define a mean
molar velocity
* E nivt‘ — *
vVv="""=2cY, (11.12.2)
L
where
n=2xn, (11.12.3)

is the total number of moles per unit volume and

=0 (11.12.9)
n

is the mole fraction of 4;. The molar flux of A4; with respect to coordinates

moving with mean molar velocity is then

i = nv, — v*). (11.12.5)
Since each of this fluxes is defined relative to its own mean
Lj=Zj§ =0 (11.12.6)

Other fluxes such as p(v; — v*) are defined relative to a different mean;
in this case we have a mass flux relative to the molar average velocity. Here
Z pv; — v¥) = p(v — v*).

The continuity equation may be expressed in terms of the mass concentra-
tion and barycentric flux. For

de, _ d (Pi) _doi_pidp

Pa  Par\o) "t ot

—r—pV v+ BV v+ (v—v)-Vp,
so that p
29 g (11.12.7)
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Exercise 11.12.1. If m is the mean molar weight, p/n, show that

mM; *
Ci=—iﬂi.
nt

Exercise 11,12.2. Show that for a binary mixture

m .
pr(vy — v¥) = —j,.
my

11.13. Stoichiometric and kinetic relations

Since the chemical species are being created and destroyed, there is a
definite relation between the rates r; and the reactions taking place. Suppose
that there is only one reaction and that this can be written

S ad, = 0. (11.13.1)

The numbers «; are the stoichiometric coefficients of the reaction. If the
reaction is to be regarded as going in a particular direction it is convenient to
give positive stoichiometric coefficients to the products which are formed.
The rate of formation of 4, in moles per unit volume per unit time is r,/m,, and
by the stoichiometry of the reaction this must be proportional to «,. Hence,

we can write ro=am,r, (11.13.2)

where r is the rate of the reaction. With the convention used, r is positive for
the forward reaction.
When there are M simultaneous reactions they may be written

N
> ald, =0, j=1,...,M. (11.13.3)
i=1
Then a rate of reaction r? may be defined for each reaction and
M
=1

Note that the r; are mass rates per unit volume whereas the reaction rates r, r?
are mole rates per unit volume.,
The net change in mass is zero so that

N N
dam, = ajm; = 0. (11.13.5)
i=1 i=1

Substituting Eq. (11.13.4) in Eq. (11.11.2) and dividing through by m,, we
have 3
on,

V() =Tl (11.13.6)
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Hence

on N M
AV =3 Sair. (11.13.7)
ot i=1i=1

The rates of reaction r or r/ are supposed to be obtainable from considera-
tions of chemical kinetics as functions of the composition temperature and
pressure. Thus,

r'=rcy,....,cn T, p). (11.13.8)

In many cases these expressions are not fully established. Sometimes the
reaction is regarded as being extremely rapid so that the concentrations obey
an equilibrium condition

r'(cy,....cn T, p)=0. (11.13.9)

Such equilibrium relations are often known when the reaction rate itself is
quite unknown.

Exercise 11.13.1. Show that

ock

n 3y e Ve +V-ji=rs

where, for 3 single reaction,
* . 5
r" =% — ¢ 21# r.
k=1

11.2. The conservation of momentum

It is assumed that a viscous stress tensor can be defined for the mixture so
that if p is the pressure the stress tensor is

T=—pl +P, (11.2.1)

where I is the unit tensor and P the viscous stress tensor. If the mixture is
Newtonian, we would write

P = AV - I + p{(W) + (v} (11.2.2)

The coefficients 4 and u will depend on composition, temperature, and
pressure. More general expressions could be written down for non-New-
tonian mixtures the coefficients being functions of these variables. Theoret-
ically the rates of reaction should affect the stress tensor, but this effect is
usually neglected.

The balance of linear momentum and usual reductions will give

p%‘;z_vp +3 pF,+V-P, (11.2.3)
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the familiar equations of motion. Here it must be suppcsed that each species
may be acted on by different external forces, and that F is the external force
per unit mass acting on 4;. Substitution of Eq. (11.2.2) into this last equation
gives a form of the Navier-Stokes equation.

11.31. The conservation of energy

- We consider the total energy of the fluid to be the sum of its kinetic and
internal energies and denote the specific internal energy by e. If j, is the total
heat flux vector, the usual balance by the first law of thermodynamics gives

Pﬁ(”*”ah ~V je=V () +Z pw F +V-(@-v). (113L1)

This can be manipulated in the same way as was done in Section 6.3 to give

0% Y. pVev+IjF 4T, (11.31.2)

Pt
where T = P: (Vv) is the irreversible dissipation of energy by viscous forces.
pV - v is a reversible interchange with the strain energy and X j; - F, the net
work by the external forces. The heat flux vector is the sum of the heat flux
by the diffusion of heat and the heat transported with the mass fluxes. Let A,
be the specific enthalpy of A,; then we write

Jo =q+ Zhj, (11.31.3)
The specific enthalpy of the mixture is
h = E Cihi (11.31.4)‘
and is related to the specific internal energy by
e=h-72, (11.31.5)
P
Substituting these into Eq. (11.31.2) gives

pd—h+? "(Ehj)=-V"- q+dp+EjF + T. (11.31.6)
The enthalpy of the mixture changes with temperature, pressure, and
composition. Thus,

dh dc dh,
dh 4 h) =2 ‘h X~ .
5 = g, B Gh) = i +Ze—

By Eq. (11.12.7) the ﬁrst uf these terms is
b, % =25(ri ~V-j)

'! {Z hr, —Z h(V - j)}. (11.31.7)

-]
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Here the first term is — Q/p, where Q is the rate of generation of heat per unit
volume by reaction. It is

Q=—Zhr, =—rZoamh =(—AH)r

and AH is the heat of reaction (negative for an exothermic one). For simui-

taneous reactions
Q = —Z hr,= Z ri(—AH), (11.31.8)

where (AH)’ is the heat of the j*" reaction. The second term in dh/dt is

2ol |5+ el = [oeg)S

However, enthalpy is an extensive property and

h oh,
Ph=EF1h1=EPfa(P)=E {hi‘}’EPi
Op; dp;

showing that X ¢,0h,/dp,) = 0. For ideal gases dh,/dp =0 but more
generally we may write

pEc,-aa—}:=pf—}— 1, (11.31.9)

where / is of the nature of a latent heat. Combining all these equations with
Eq. (11.31.6) and writing ¢, = Z ¢,(dh,/dT) for the specific heat at constant
pressure, we have

d . .
Pcpg_}"zli'vhi“—_ —?'q—pI%—}—Q—}—Ej‘-F¢+ T.
(11.31.10)

11.32. The diffusion of heat and matter

The heat flux q and the mass fluxes j;, have yet to be related to driving
forces. These driving forces are the gradients of temperature and chemical
potential. From the principles of irreversible thermodynamics, these fluxes
should be linear combinations of all the driving forces. The driving forces
may be written

VT
= — — 11.32.1
Xo T ( )
vT
= -—T'\? ! — h,— + F,, 11.32.2
X; T i T + Fy ( )

where u, is the chemical potential. In terms of these, the fluxes are

q = PooXo + = fosX; (11.32.3)
§i = BioXo + Z Bisx;. (11.32.4)
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The B,; are coefficients which will depend on the thermodynamic state and
*

composition. They are not independent for f;; = f;;and > B = 0. BoofT
i=1

is the thermal conductivity. The 8,, = DT are thermal diffusion coefficients.

In the remaining terms several effects may be distinguished. We will omit the

detailed manipulations, which may be found in Merk’s paper, but the final

result can be expressed as

2N
=23 mm,D, 4, — DT v_;"’ (11.32.5)
where, for an ideal gas,
d,=(Ve})+ (1 —c)VInp— < (pF,—Z pF). (11.32.6)
p

The first term in d; is the concentration gradient which, with the multi-
component diffusion coefficients D,;, gives the flux due to the material
diffusion. The second term is a pressure diffusion and the third a diffusion
brought on by the unequal external forces. The second term in Eq. (11.33.5)
is the thermal diffusion effect.

11.33. Transport in binary mixtures

By ordinary diffusion we mean the diffusion that takes place in the absence
of thermal, pressure, or forced diffusion. In binary mixtures the expression
for the flux by ordinary diffusion is relatively simple. If Dy, is the binary
diffusion coefficient of species 1 in species 2,

2
i = — = mymyDyVe}. (11.33.1)
If the subscripts are interchanged,

2

o= — Z mymy Dy Ve, . (11.33.2)
p
However, j; + j, = O and ¢} + ¢} = 1, hence
Dy =Dy =D (11.33.3)

is the common diffusion coefficient. For nonideal systems the activity a
should be used rather than the mole fraction ¢* and the diffusivity

® - D
@1In afdIn c*), 7

is held to be much less dependent on concentration.

(11.33.4)



§11.33. Transport in Binary Mixtures 253

If all effects are taken into account the flux j; = —j, for the binary case
becomes
= — n’ mImED*I:(-————a In ﬂl)?cf — bl (g _F,)
p d1Inc} npRT
+ 2Py, 4 k,Vin :r] (11.33.5)
npRT

The various elements of ordinary, forced, pressure, and thermal diffusion can
clearly be distinguished here.
pDf

kp = L1
n*mym, D*

is the so-called thermal diffusion ratio. If it is positive, component 1 moves
toward the cold region.
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Appendix A

Résumé of Three-

dimensional Coordinate
Geometry and

Matrix Theory

This appendix is designed to link on with the undergraduate preparation of
the engineer and to provide a convenient summary of the material used in the
text. It contains much that the reader may already know in another context
or notation and may serve as a refresher or an enlightener as needed. It is
convenient to intertwine the threads of gecometry and algebra though each
has a continuity of its own.

A.]l. Cartesian coordinate systems

The ordinary space of everyday life is a three-dimensional Euclidean space
and any point of it may be labeled by the device of introducing a Cartesian
frame of reference. Any point O and any line O1 through it is taken and
two other lines O2 and O3 at right angles to Ol and to each other are

254
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constructed. The point O is called the origin of coordinates and the lines 01,
02, and O3 the coordinate axes. If they have the mutual orientation shown
in Fig. A.1, the frame of reference is said to be right-handed since the order
01, 02, O3 corresponds to the orientation of the thumb, first, and second
fingers of the right hand. If the O1 and

02 axes were the same but the O3 34

axis pointed downwards, this would
give a left-handed frame. Any two
right-handed frames can be brought 7
into coincidence by bringing the origins Qof-————— —ep |
together and then rotating one of : /"”7{ HE
them, but a right-handed frame can | /0 __

only be turned into a left-handed P, @
frame by reflection of one of the 1

coordinate axes in the plane of the Fig. A.|
other two.

From any point P perpendiculars PQ,, PQ,, and PQ; can be dropped to
the three coordinate planes 023, 031, 012 so that OP is the diagonal of a
parallelepiped with sides paraliel to the coordinate axes. The lengths of the
sides of this parallelepiped are called the coordinates of the point P relative to
the given frame of reference. Thus, we write x;, x,, x; for the lengths of PQ;,
PQ,, and PQ,, respectively. Thelengths of OF,;, OP,, and OP; are also x;, x,,
x5 and these are the projections of OF on to the three coordinate axes. (To
see this observe that the line PP, lies in the plane £,Q,P0,, which is parallel to
the Oy, plane, and so is perpendicular to O;.) The coordinates of a point P
may thus be regarded as the lengths of the perpendiculars dropped from P on
to the coordinate planes or as the lengths of the projections of OP on the
coordinate axes.

If the length of OP is r, then by the theorem of Pythagoras,

r? = x} + x3 4+ xi.

Let angles POP,;, POP,, and POP; be respectively «,, oy, and a3, then
X; = rcos a; = ri, i=1,2,3, (A.1.1)
and the three numbers 4,, A,, 45 are called the direction cosines of the line OP.
Substituting Eq. (A.1.1) in the expression for r we see that
B+a+i=1 (A.1.2)

so that only two direction cosines are arbitrary.

Exercise A.1.1. Interpret geometrically the surface for whose points 4; =
constant. Show that the two surfaces 4; = constant, 4, = constant will
meet in two straight lines provided A7 + 43 < 1.
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A.2. The projection of one line on another—Orthogonality

Consider two points P and Q, as shown in Fig. A.2, neither of which is at
the origin, and let their coordinates be (x;, x,, X3) and (¥, ¥, Vs), respectively.
If r and s are the lengths of OP and OQ and 6 the angle between them, then,

by the cosine rule for the plane triangle

34 OPQ,

@ PQO? =r2 4 5% — 2rscos . (A.2.1)
However, the projections of PQ on to
the three axes are (y; — x;), (y2 — Xp),

P and (y, — x3) respectively so that by
Pythagoras’ theorem

o PQ® = (y; — xp)®
+ (¥e — %2)* + (y3 —%o)°
=03+ x4+ 0L+ v+ )
— 2(x11 + Xg¥s + Xays). (A.2.2)

Comparing these two expressions and remembering that
r?=axi+x3+x3

Fig. A.2

and L=+ +%

we see that rs cos 0 = x;y; + Xo¥p + XV (A.2.3)

If 2;, Ay, 3 are the direction cosines of OP, then dividing by r we have
scos 0 = v, + Ays + Ay, (A.2.4)

which is the length of the projection of OQ on the line OP. If u;, u,, ug are
the direction cosines of OQ (that is, y, = su,) then

cos O = Ay + Appt + A - (A23)
which gives an expression for the angle between two directions in terms of
their direction cosines.
If the angle between two directions is a right angle they are said to be orthog-
onal. In this case, cos @ = 0 and the condition for orthogonality is

Aty + Aopty + Agpy = 0. (A.2.6)

Exercise A.2.1. Show that in setting up a new coordinate system relative to
the old, by first taking any line O1’ then any line 02’ at right angles and
a third 03’ mutually orthogonal, only three numbers can be arbitrarily
specified.

Exercise A.2.2. If 20 is the angle between the two straight lines referred to in
Ex. A.l.1, show that
cos® = A 4 A3.
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A.3. The line, plane, and surface

If A(a,, a,, a5) is a fixed point and P(x;, x,, x3) any point on a straight line
through A, then

Xy —Qa; Xg— Gy X3 — Qg

Ay A 3

for the differences in coordinates (x; — a;) must always be proportional to
the direction cosines. If the common ratio in (A.3.1) is s, then
X, = a; + A;, i=1,2,3

(A.3.2) 34

and s is a parameter, namely, the

distance from the fixed point 4 to the

general point P.
In general, if x; is specified as a

(A.3.1)

function of a parameter s, the set of /N
. ..__ . —_— N 2
equations x, = f;(s) defines a curve in 0
space. Thus, for example, /
X;=4acoss, Xy=asins, xg=bs ’

shows that for all s the point P is at a Fig. A3

constant distance a = (x} 4+ x3) from

the x; axis and that as s increases the point moves around this axis with
constant angular velocity and also parallel to it with constant speed. The
curve is thus a helix drawn on a cylinder of radius a whose axis is O;.

The plane has the property that any line lying in it (for example, PN in Fig.
A.3) is perpendicular to the normal to the plane. If ON, the perpendicular
from the origin to the plane, has direction cosines (4,, 45, 43) and P is any
point (xy, Xy, X) in the plane, then, by (A.2.4), the length of ON is 2;x; +
Asxy + Ayxg. However, this is a constant, say p, so that the equation of the
plane is

Axy + Agxg + Agx3 = p. (A.3.3)

Multiplying this equation by an arbitrary constant we see that any linear
equation
a;x; + Gpxs + Agxs = b (A.3.4)

is the equation of a plane; the direction cosines of the normal are

il and p= b
(a1 + a3 + ap)'® (a1 + a3 + ap)'?

Any equation of the form

f(xg, X3, X3) = 0 (A.3.5)

A =
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represents a surface, for given x; and x,, we can, in general, solve for the
value or values of x;. For example,

RpEtado =0 (A3.6)

expresses the fact that the point P(x;, x,, x,) is at a distance r from the origin
and so is the equation of the sphere. Given x,, x, we find x; has two values
+(r2 — x¥ — x3)V2 provided that x¥ + xZ < r2. It is sometimes convenient
to represent a surface parametrically by writing

Xy = giuy, up). (A.3.7)
Such a representation is not unique for the sphere might be given by

2 a2
Xy = Uy,  Xg=1Uy  Xg= +(r* —uj — uz)"
or by

: 21
X; = Uy COS Uy,  Xop = Uy SN Uy,  Xg= +(r* — u)?

either of which will satisfy Eq. (A.3.6) identically. We can always return to
the form (A.3.5) from the parametric form by eliminating u, and u, between
the three equations (A.3.7).

If two surfaces intersect but do not coincide with one another, they
intersect in a curve. Suppose that one surface is given parametrically by
x, = g{(uy, up) and the other in the form f{x;, x5, x3) = 0, then if we substi-
tute for the x; in f, we have an equation

f(gl(uli 112), 32(”1: Us), ga(”p ug)) =0

between u; and u,. This defines u, as a function of u; so that on the inter-
section x; = g(u;, us(u;)) is a function of only one parameter; this is a curve.

Exercise A.3.1. Show that the intersection of the plane (A.3.3) with the
sphere (A.3.6) is a circle of radius (r> — p*)'/2 and that its projection on
the 12 plane is an ellipse of area wiy(r® — p?).

A.4. Row and column vectors—change of origin and scale

The set of three coordinates (x;, x,, x3) represents one entity, the point P.
It will be convenient to have a notation and develop an algebra that reflects
this unity. Let x with no suffix stand for the set of three numbers x,, x,, x3
arranged as a column

X1
x=|x | (A.4.1)
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x is known as a column vector and, though it is unfortunate that the word
vector should be used in a different sense here than in the title of the book,
confusion may be avoided if we always add the word co/umn. (The words
row and latent will have the same purpose later.)
The three elements, as they are called, might also be arranged as a row and
we write
x" =[xy, Xg, X4). (A.4.2)

x" is called a row vector and is the transpose of x, for the operation of trans-
position is to interchange rows for columns in any array.

Two row vectors or two column vectors may be added by adding the
corresponding elements, but a row vector may not be added to a column
vector for they are not arrayed in the same way. Geometrically the operation
of addition is related to the translation of the origin of a frame of reference to
a new position. If P and Q are the
points (x;, x5, X3) and (yy, Vs V3)
with respect to the frame of ref-
erence 0123 and P has coordinates
(21, 25, z,) with respect to a frame
of reference Q1°2'3, then, clearly, x; =
¥: + z;. (Figure A.4 shows this for
i =2.) If the points are represented
by column vectors, then

=2

XxX=y+4+z Oor z=x—Y,

or if by row vectors, then

Fig. A.4

r

X=y +7 or Z=x"—)".
We see that subtraction is defined in the same way as addition.

Another operation which works alike on each element is scalar multiplica-
tion. If « is an ordinary number or scalar and x a column vector, ax is the
column vector with elements ax,, ax,, axy. Similarly ax” = [ax;, ax,, oxg].
Geometrically it corresponds to a change of scale of coordinates, for if P is
(X, Xy, X3) in the original system, and if the unit length in this system is made
a units of length in a new coordinate system, then the new coordinates of P
will be ax;, ax,, and ax,.

A.5. Matrices and quadrics
The quadratic expression

axi 4 bx2 + cx? + 2fx,xs + 28x%; + 2hx;x, = 1 (A.5.1)

represents a surface since it is of the form (A.3.5). We shall see later that it is
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a quadric, that is an ellipsoid, hyperboloid, or some special form of these. We
have met an example in the sphere wherea = b =c=r?andf=g=h = 0.
The set of six numbers a, b, ¢, f, g, h represents a single entity, the quadric,
just as the set of three coordinates represented a point. We write this setina
square array

a h g

A=(h b f (A.5.2)
g [ ¢

and denote it by a capital letter. The position of the individual elements is
determined by the suffixes of the quadratic term of which it is the coefficient.
Thus a goes into the first row and first column because it is the coefficient of x3
and the f’s go into the second row and third column and the third row and
second column respectively since 2f'is the coefficient of x,x3.

We now define an operation of multiplication which can be performed on
matrices and row or column vectors. It consists in taking elements from the
rows of the first factor and multiplying by the corresponding elements of the
columns in the second factor and adding them together. Thus

ax; + hx, + gx,
Ax = | hx; + bxy + fxg (A.5.3)
X1 + fx, + ex

is a column vector. Naturally this is only possible if there are the same number
of elements in the rows of the first factor as there are in the columns of the
second, that is to say, the first factor has as many columns as the second has
rows. The product Ax" is therefore meaningless but x'4 is the row vector
which is the transpose of Eq. (A.5.3). Also we note that Eq. (A.5.2) can be
written

x'Ax =1 (A.54)

so that the notation reflects the real unity of the quadric.

A more systematic notation for the elements of a matrix A isa,; i,j =1, 2,
3, the first suffix referring to the row and the second to the column in which
the element stands. Thus

a1 d1p dgg
A=]ay a, ayl. (A.5.5)

g, dzy AQgg

3
Then the elements of the product Ax are > a,;x,, the summation being on
i=1
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adjacent indices and the remaining index showing that the product is a column
vector. Similarly, the quadratic form x"Ax is

L
2 Z X X5,

i=1j=1
The definition of matrix multiplication will be made more formal and general
in Section A.7.

Two matrices 4 and B may be added if they have the same number of rows
and columns. The elements of the sum are the sums of the corresponding
elements. A matrix 4 may be multiplied by a scalar « to give a matrix whose
elements are those of 4, each multiplied by the number «.

If a,; = a,; the matrix is said to be symmetric (the matrix A.5.2 is an
example of this) and if a;; = —a,; it is antisymmetric or skew-symmetric.
Recalling that the operation of transposition is to interchange rows and
columns we see that the J, j™ element of the transposed matrix 4’ is ay,.
Hence, a matrix is symmetric if 4" = 4 and antisymmetric if A" = —A.
In general,a matrix is neither symmetric nor antisymmetric, but it issometimes
convenient to represent it as the sum of two matrices one of which is
symmetric and the other antisymmetric. This may be done by writing

a; = ¥ay; + a;) + ¥Hay; — ay)
and so
A=¥A+ A) + K4 — 4). (A.5.6)

The matrix
I=}. 1 . (A.5.7)

is called the unit or identity matrix, since it leaves unchanged any matrix it
multiplies; thus /4 = A4, Ix = x, x'I = x'. It is the only matrix that does
this, for if two matrices I and J give Ix = x and Jx = x for all x, then by
subtraction (I — J)x = 0 a column vector all of whose elements are zero.
However, if this is true for all x, then / — J must be identically zero and
I=J.

Exercise A.5.1. Show that in matrix notation the straight line through a with
direction A is given by x = a + A5 and the plane with normal 4 by
AMx = p.

Exercise A.5.2. If x = a is any point on the quadric x’4x = 1, show that the

line x = a + As is tangent to the quadric if 1’Aa = 0. Hence, show that
the tangent plane at this point is a’'Ax = 1.

Exercise A.5.3. Show that x'4" = (Ax)'.
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A.6. Matrices and rotations of axes*®

Let us consider the transformation of the coordinate frame by an arbitrary
rigid rotation. Fig. A.5 shows the original frame 0123 in which the coordi-

nates of P are X, X;, Xz and the new frame 0123 in which they are ¥,, X, X;.

Let /; be the cosine of the angle between Oi and Oj, i, j= 1, 2, 3. Thus

Iy Iy, I5; are the direction cosines of Of in the old system and [, /5, /3, the

direction cosines of Oi in the new. By

A3 definition the new coordinate %; is the

length of the projection of OP on the axis
Oj, that is,

.fj = IHJCI ‘+' Izjx_a + !Mxﬂ-’ j —_ I, 2, 3,
(A.6.1)

Alternatively, working from the new system
to the old, x, is the projection of OP on to
Oi and so

Xy = Iﬂ'i-l + !iﬂtfﬂ ‘+‘ iﬂ.i's, = I., 2, 3‘.

Fig. A5
(A.6.2)
If we form the numbers /;; into a matrix
I11 IiI.E- IF13-
Iﬂl 132 1
and the coordinates into column vectors x and X we see at once that Eq.
(A.6.2) can be written Y= Li (A.6.3)

Recalling that the transpose L’ of L will have the element /; in the 7, j*™
position, Eq. (A.6.1) is evidently

%=1Lx (A.6.4)
Substituting from Eq. (A.6.4) into Eq. (A.6.3) we have
x = LL'x = Ix,

and since [ is the only matrix satisfying x = Ix, we must have L'L = I. By
substituting from Eq. (A.6.3) into Eq. (A.6.4)

LL=LL =1 (A.6.5)
A matrix L for which this relation holds is called orthogonal.

* An excellent discussion of the algebra of rotations is given by A. Mayer, Rotations
and their algebra, SIAM Review, 2 (1960), pp. 77-122.
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If the multiplication of the two matrices L and L’ is performed in detail, we
have various relations between the nine quantities /;;,. From the diagonal
terms we have

1?1 + 'fiaa + Eﬁ =1
or (A.6.6)
B+ 5+ 5 =1

corresponding to the fact that these sets of numbers are direction cosines and
so the sum of their squares is unity. From the off diagonal terms,
we have

1.1 Ligloo + Lial,a =0, i ,
or a‘s1 T liglpa 3tp3 #P (A6.7)
hila + loslaa + laslaa =0, j#4q,

expressing the fact that both old and new coordinates axes are mutually ortho-
gonal.

Exercise A.6.1. Show that the matrix

cosfl — sind
Z@) = | sin6 cos 6
1

represents a rotation through an angle 6 about the z-axis.

Exercise A.6.2. The derivative of the matrix Z(6) with respect to 8 is obtained
by differentiating each element separately. If this derivative is Z(6),
show that Z(6) = Z(6)Z(0).

Exercise A.6.3. Show that a rotation through an angle 6 about a line with

direction cosines 4,, 4,, 45 is given by an orthogonal matrix L = I'cos 6 +
(AX)1 — cos 8) + A sin 6 where

e T
A=| 1 . =i
—~l A

A.7. The laws of matrix algebra

With the preceding discussion to give a feel for the manipulation of
matrices with three rows and/or columns, we may now give a terse description
of the algebra of matrices in a more general form.
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Definition: An array of the mn numbers a;;, i=1,...,m,j=1,...,n,
in m rows and n columns is called a matrix 4 of order m X n with
elements a,;,

ap  dpe dyin

gﬂl 322 agy,
A=

Omi Omg --- Qpg

The element in the i*" row and j* column may be called the ij*" element
and denoted by (4),; = a;;. An m x 1 matrix is called a column vector
and a 1 X n matrix a row vector.

Scalar multiplication: If o is any number the scalar product, «A4 is the matrix
obtained by multiplying each element of 4 by «, that is, (ad); = aa;;.

Addition: Two matrices can be added if they are of the same order and
(4 + B);; = (A)y; + (B)y

Subtraction: A — B= A + (—1)B.

Transposition: The matrix A’ is obtained from 4 by interchanging rows and
columns. It is therefore an n X m matrix with elements (4"),; = ay,.

Multiplication: Two matrices A, B are conformable for multiplication in the
product AB if 4 has as many columns as B has rows. The ij*" element of
the product is

P (A1.1)

(AB),, =Z @by ;,
k

where the summation is over the common range of the suffix k. Note
that (4B)’ = B'A’.

For square matrices we have the following definitions. If

a; =0, i # ],

a; =1, i=j
A is called the identity matrix /. For all conformable matrices /B = Bl = B.
If A = A’,itis symmetric; if 4 = —A4’, it is antisymmetric. If A'A = AA' =
I, it is said to be orthogonal. If a matrix B exists such that AB = BA = |,
B is called the inverse of 4 and written A~'. (The construction of the inverse
will occupy us in the next section.)

Matrix algebra has the following laws:

A+ B=B+ A (A.7.2)
A+B+C=A4+(B+C) (A.7.3)
(AB)C = A(BC) - (A.7.9)

A(B + C)= AB + AC (A.7.5)
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In general, AB # BA for one of these need not be defined and even for square
matrices they are not generally equal. If they are equal, the two matrices are
said to commute.

Exercise A.7.1. Establish the laws (A.7.2-5) from the definitions and laws
of the algebra of real numbers.

Exercise A.7.2. Show that Z(f) and Z(¢) commute. See Ex. A.6.1 for defini-
tion,

A.8. Determinants—the inverse of a matrix

The determinant is a number calculated from all the elements of a square
matrix as follows. Ifij -« - p is a permutation of the first n integers 1, 2, .. .,
n, it is called even or odd according as the natural order can be restored by an
even or odd number of interchanges. Thus, 312 is an even permutation for it
requires two interchanges (of 1 and 3 and then of 2 and 3 or of | and 2 and
then of 1 and 3) to return it to the order 123, but 132 is odd since the single
interchange of 2 and 3 suffices.

The determinant of an n X n matrix is

det A= |A| =2 + a,a, - a,, (A.8.1)

where the summation is over all permutations 4, j,...,pof I, 2,...,n and
the sign accords with the parity of the permutation. Thus, for a 3 X 3
determinant, we have

A = ay,5505, + a10005) -+ O)30503,
- T 019051033 — Ay 09383y — Q1305003 (A.8.2)

In each term of the sum there is one element from each row and one from each
column but no two elements have their row or column in common, If
i,Jjs ..., pisrearranged into natural order 1, 2, . . ., n and the same system of
interchanges is performed on the set 1, 2, . . ., n this produces a permutation
that is said to be conjugate to the original permutation. Thus 312 requires
the interchange of the first and second numbers followed by the interchange
of the szcond and third, to restore the order 123. If we do this to 123, we
obtain first 213 and then 231 which is therefore conjugate to 312. It is clear
from the construction that conjugate permutations are of the same parity and
it follows that the determinant can also be written

A=2Z 4t aza,...,a,, (A.8.3)
and hence that
4’| = |A4]. (A.8.4)
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We may also rearrange the sum of the n! terms in Eq. (A.8.1) into n sums
of (n — 1)! terms by taking out factors from the first row. Thus

Eiﬂliﬂaj"'ﬂwi::ﬂllz_‘_tﬂw...ﬂﬂp

_alﬂz :E aﬂj # % 0 'ﬂ'ﬂp

+(—=D"a , Z + ay...a,,

In the first term j, . . ., p is a permutation of 2, 3, . . ., n and the parity of its
permutation is the same as the parity of the permutation 1,j,...,p of 1,
2,...,n. Inthesecond term j, ..., pis a permutationof 1,3, ..., nand if
it is an even permutation then 2,j,..., p will be an even permutation of
2,1,3,...,n, that is, an odd permutation of 1,2, 3,...,n. The negative
sign is therefore associated with this term and the L sign after the summation
agrees with the parity of the permutation of the indices. In fact, the coefficient
of (—1)tla,;is X + a,,...a,, where j, ..., pis apermutationof 1, 2, .. .,
i—1,i+ 1,...,nis evidently just the determinant of the (n — I)x(n — 1)
matrix obtained by striking out the first row and i*" column of 4. This is
called the cofactor of.a;; in the determinant of 4 and may be denoted by A4,;.
Thus

|A] =glﬂ1£"11is (A.8.5)
_and this is called the expansion of the determinant on the first row. A similar
argument may be made about the expansion on any row or column and

iAI = Z l':*!ﬂ:lAi-:Ir = z HF.{A:::’! I:j = 1: I (Agﬁ)
a=1 p=1 .

If we form a new matrix 4* by interchanging two rows or two columns we
just switch the parity of the permutation in each term of Eq. (A.8.1) or Eq.
(A.8.3) and so |A*| = —|A|. It follows that if two rows or two columns of 4
are the same so that their interchange leaves 4 unchanged then |4] = —|A|
= 0; the determinant vanishes and A4 is said to be singular. Also, we see
from the definition that | 4] is linear in the elements of any one row or column
so that if, for example, a@,; = by, -+ ¢,,, then |4| = |B| 4+ |C| where Band C
are matrices with b;, and c,, as their first row. It follows that we may replace
any row or column by the sum of itself and some multiple of another row or
column without changing the value of the determinant, for the determinant
added is identically zero. Thus

E afllA.ill' = 2 am’Apj = 09 i ?é j; (AS?}
g=1 p=1

a pair of formulas sometimes called expansion by alien cofactors.
The matrix constructed from A by replacing each element by its cofactor
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and transposing is called the adjugate of 4; (adj A),; = A,;, Consider now
the product A4(adj A4). Its ij'™" element will be

n
foa{adj A)g; = L ageAq,
=
which equals |4| or zero according as i = j or i % j. It follows that
Al = ad) 4
4]
for then AA™! = I. Similarly, A~24 = I. The inverse will exist except when

|A| = 0, that is, 4 is singular.
The linear equations

) (A.8.8)

Ax = b, (A.8.9)
which written out in full would read
anXy + GieXy + o oo+ @Xa = by
. oe (A.8.10)
Xy + ApeXo + ... + a,,X, = b,
can be solved if 4 is nonsingular, for multiplying through by 4!
A7'Ax = Ix = x = A7b. (A.8.11)
If A is nonsingular and b is identically zero, then the only solution is the
trivial one x = 0, but if 4 is singular, there will be a nontrivial solution x. In
the simplest case we may suppose that though [4] = 0, one of the cofactors is
not zero and without loss of generality take this to be A,,. Then the last

equation is a linear combination of the first n — 1 and tells us nothing new.
The first (n — 1) can be rewritten

Xy Xg Xp~
==+ 8=+ ...+ 8, = —a1a
x'ﬂ- xﬂ xﬂ
*1 Xg Xn-1
Ap-11— T Gp-12— T «+« T Guo1,n-1 = —a1,5-1
T xﬂ 'xﬂ.
and these have a nontrivial solution for the ratios x;/x,, i=1,...,n — 1,

We shall not stop to go into the full details of the proof but record, for later
use, the theorem. The homogeneous equations

Ax =0 (A.8.12)

have a nontrivial solution provided that |4]| = 0.

If the elements of the matrix are functions of some variable say a;; = a;/(s),
then the derivative of | 4] with respect to s is the sum of the n determinants
obtained by replacing one row (or one column) by the derivatives of its
elements. This is immediate from the definition of the determinant given in
Eq. (A.8.1) for the derivative of each term is the sum of terms each with only
one element differentiated.
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Exercise A.8.1. Show that the jj'" component of 471 is

d[In |4]]
0a; -

A.9. Partitioned matrices—Laplacian expansion—product of
determinants

It is sometimes convenient to regard the matrix as composed not of scalar
elements but of submatrices of smaller order. Such a matrix is called a
partitioned matrix. For example, the matrix 4 may be regarded as composed
of three column vectors

ayq
B — i=1,2,3
a - ah‘J# 1= 3 &y =y
) Qg
and we would write
A= [am . g a[ﬂ]]
or
dyp 4y | ﬂm—]
. All Alﬂ
a a a
A= 21 da2 23 | | ..., , (A.9.1)
.............. AEI }122
gy dgg Qgg |

where the submatrices 49 are of orders 2 x 2,2 x 1,1 x2,and I x 1.
If the partitioning of the columns of 4 is the same as that of the rows of B then
the matrices are said to be conformally partitioned for the multiplication 4B
and the product can be written down by multiplying the submatrices as if they
were elements. An example will suffice to show this. Suppose A4 is as given in
Eq. (A.9.1) and

bn . 512 ’513 " 157
B B
B—|bu bys by N
& B oa oW : ........ 321 : ng ]
_'531 . '!732 baa_ '

Then the matrices are conformally partitioned and the product is the parti-
tioned matrix

AU | 412p21 AUB2 | gl2ge2
[A21311+A22321 A21B12 4 422p22
the submatrices being of order 2 x 1,2 x 2,1 x 1, 1 x 2.

It is clearly not possible to expand the determinant of a partitioned matrix
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by treating the submatrices as elements, but there are expansions other than
on the elements of a single row or single column; such is the Laplacian
expansion. Take any m rows (m < n) ofann X n determinant which without
loss of generality can be taken as the first m. From these n!/m!(n — m)!
determinants may be concocted by taking m of the n columns. Each of these
has a cofactor, an (n — m) X (n — m) determinant composed of elements
from the last rows and the remaining columns. An appropriate sign must be
given to the product of each m x m determinants and its cofactor (see Ex.
9.1) and the sum of all these products is the determinant of the original
matrix. In a special case the result is simple for suppose that 4 and B are
square matrices which are submatrices in a partitioned matrix

A 0

cC : B

The upper right-hand submatrix is identically zero and C can be arbitrary.
Then [ D] = |A| | B] for expanding on the first m rows (m X m being the order
of A) all the determinants will vanish except that of the first m rows, that is,
|4]. Similar relations hold when the identically zero submatrix is in other
positions.

This type of expansion can be used to prove the rule for the product of
matrices. If A and B are both n X n matrices |4B| = |4| |B|. Consider the
following identity between three 2n X 2n partitioned matrices

I A] A 0] 0 AB]

0 1j{-1 Bl |-I B
The first matrix has units down the diagonal and only nonzero elements in the
upper triangle. It represents the operation of replacing each row of the second

matrix by the same row plus a linear combination of later rows and therefore
does not change the value of the determinant of the second matrix. Thus

A 0 0 AB
—1 B| |-I B
and evaluating each determinant, we have
|A| - |B| = |4B.
Exercise A.9.1. If the m X m determinant is taken from rows i, ..., i,, and
columns jj,...,j, and its cofactor from the remaining rows and

columns, show that the appropriate sign for the product is 4+ or —
according as i; + j; + iy + .. . + j, Is even or odd.

Exercise A.9.2. Show that all the terms in the definition of the determinant
are enumerated with their proper signs and hence establish the Laplacian
expansion.
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Exercise A.9.3, Let Lbeann X n orthogonal matrix and M and N two of its
submatrices of orders m x n and (n — m) X n, that is,

M
L=
N--—
Show that
. (N'N +aD
MM+t = &N +AD
( ) M1+ 2)

A.10. Latent roots and vectors of a symmetric matrix

If A is any matrix and x a column vector, then y = Ax is another column
vector. If we think of x as the coordinates of a point P and y of Q, then the
matrix A transforms the point P into the point Q. It is a homogeneous
transformation for it takes the whole line OP into the line 0Q. Itisinteresting
to inquire whether there are lines which are not changed by the transforma-
tion. If O lies on the line OP, y = Ax, where 4 is some scalar. Thus

Ax = Ax = Alx
or
(A — ADx = 0. (A.10.1)
By the theorem stated above this will only have nontrivial solutions if
|4 — AIl =0, (A.10.2)

For an n X n determinant this gives an algebraic equation of the n*" degree
|A| — A(tr,_yA) + 2%(tr,_oA) . .. (—=)"A"(trd) + (—=)"A" =0 (A.10.3)
where
rA=trnA=ay,; + ayp+ ...+ a,,

and tr A 1s the sum of all the p X p determinants that can be formed with
diagonal elements that are diagonal elements of A. Fora 3 X 3 matrix this is
a cubic giving three values of 4 and three corresponding directions that are
invariant under the transformation. These three values are called latent roots
or characteristic values of the matrix and the corresponding x are latent or
characteristic vectors. The convenient, but rather ugly, words eigenvalue and
eigenvector are also used.

If A is a symmetric matrix with real elements, its latent roots are all real.
For, if they are not, they must occur in pairs of complex conjugates. Let A be
such a root and 1 its complex con}ugate Then Ax = Ax and A% = 1%.
Multiplying the first equation by X’ and the second by x” we have

FAx = A¥x and X'A% = Ix'%
However, since A is symmetric,
xX'Ax = ¥Ax and X'x= X%,
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so that by subtraction (A — Di'x =

Since x is nontrivial 2 = 7 or 1 is real.
If A is symmetric the latent vectors associated with distinct latent roots are
orthogonal. Let x and y be the vectors associated with two distinct roots 4

and u. Then Ax=1x and Ay = py

However, multiplying the first by ' and the second by x’
yAx =Ay'x and x'Ay = ux'y.
Again, by the symmetry of A, the two left-hand sides are the same and
x'y = y’x. Hence, subtracting
(A —px'y=0
and since A #% u, x'y = 0, or the directions associated with the roots are
orthogonal.

Exercise A.10.1. Show that if L is an orthogonal matrix L'AL has the same
latent roots as A.

A.11. Canonical form of symmetric matrices and quadrics

Consider first the case of distinct latent roots 4, u, » and let the associated
column vectors be &, 5, and {. Since only the ratio of the components of &, 7,
and { can be determined from the homogeneous Egs. (A.10.1), we may fix
their magnitudes by requiring that the sum of their squares be I, that is,
EF'E=nn="{{=1. Since A, u, and » are all distinct, &, n, and { are
mutually orthogonal, that is,

Nf=0=§n=0
=[¢:in:l] (A.111)

will then be an orthogonal matrix. The matrices 4 and L are conformably
partitioned for multiplication and

The partitioned matrix

= [A§ : An: AL = [A& : pn i v (A.11.2)
Further the matnces L’ and AL are conformably partitioned and
'3 [ AEE uEm vE'L

LAL=\| #" |[A:ipn:vl]l=| W& pn'm

e | AE Wl Wt

=| - u - (A.11.2)
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on account of the orthogonality of & %, and {. This is the diagonal or
canonical form of the matrix A.

If A, u, and » are not all distinct, we must proceed more slowly. Let & be
the latent vector associated with A and suppose that it has been normalized so
that &6 = 1. Then we can construct an orthogonal matrix with & as the
first column as follows. Let y be any vector not proportional to & and let
&'y = a. Then the vector y — af is certainly orthogonal to £ for

E(y—ab) =a— al’t =0.
Normalize this vector to give
{(y) — &)y — af)}V
Again, let z be any vector not linearly dependent on £ and 7, and let
E'z=4, Mz = 9.
Then z — & — yn, is orthogonal to both £ and 7, and may be normalized to
give a column vector {;. Let

Ly =1[§:n:§]
AL, = [A§ : An, @ AL]

T

Then
and

LAL=| 0 @ 7dn : AL
L0 1 GAn C §AG
However, since 4 is symmetric A" = 4 and so LiAL, is symmetric and
E'Any = £ AL = 0. The matrix LI AL, thus has the form

RS

where B is a symmetric 2 X 2 matrix. However, the latent roots of LAL, are
the same as those of 4 so that the latent roots of B must be u and ». We can
find an orthogonal 2 X 2 matrix M that will transform B into diagonal form
(see Ex. A.11.1). Let

A 0 T
I‘;(L;ALI)IQ_—'_‘ Cereieaaaes — STEE s
0 | M'BM .y

and the orthogonal matrix L = L,L, acts as in Eq. (A.11.2).

Then
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We have seen that y = L'x represents a rotation of axes. In the new
cogrdinate system the equation of the quadric x’Ax = 1 becomes y'(L'AL)y
= 1. However, if L is chosen as above, L'AL = A, the diagonal matrix
(A.11.2), and

YAy = Ay} + uy; + vyi= L (A.11.3)

In this coordinate system the shape of the surface can be readily described (see
Fig. A.6), for it is immediately evident that the surface is symmetrical about

A X3

Fig. A.6

the coordinate planes. If 4, u, and » are all positive, then the section by any
plane parallel to a coordinate plane is an ellipse. In fact, writing

A=ar? p=az? v=ag®
we have the familiar equation for an ellipsoid
2 2 2
i Yo Ys_ (A.11.4)

a; a3 a;

with semi-axes a,, a,, a5. 1f one of the latent roots is negative, the surface is an
hyperboloid of one sheet and, if two are negative, it is an hyperboloid of two
sheets. There are various other special cases which it is not our purpose to
look into here since the ellipsoid is the case of interest for applications. The
important thing to see is that the principal axes of the ellipsoid are given by
the latent vectors and that a rotation of axes can be found which makes these
the new coordinate axes. The lengths of the principal axes are proportional
to the reciprocals of the square roots of the latent roots.
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Exercise A.11.1. B is a symmetric matrix

;]

with latent roots x4 and ». Find the latent roots and normalized vectors
in terms of «, B, and y and show how the orthogonal matrix M reduces
the matrix to canonical form.

Exercise A.11.2. Show that au® + 2fuv + yv? is never negative if u and » are
both positive.

A.12. Stationary properties

The family of surfaces x’4Ax = c is a set of similar ellipsoids increasing in
size with c if the latent roots of 4 are all positive. For points on the surface of
the unit sphere, the value of the quadratic form x’4x will vary and we are
interested in finding its stationary values. To do this we may use Lagrange’s
method of undetermined multipliers in which the problem of finding the
stationary values of x’Ax subject to x'x = 1 is replaced by that of finding the
stationary values of x’Ax — Ax'x with no restriction and later determining
the 4 so that x'x = 1. Now

S = x"Ax — Ax'x = x"(4 — Ax (A.12.1)
That is,
S = (ay — N)x; + (age — A)x; + (a3 — A)x3
+ 2893%oX5 + 2a3;X3%; + 2a59% X5, (A.12.2)
remembering that A is symmetric. Thus
1 0S
= = (ay — A)x; + @y9%y + Gy3%,
2 0x,
and so
0S/0x,
1
5 0Sjox; | =(A — AD)x. (A.12.3)
0S/0x,

However, for a stationary value these three derivatives must all be zero and
we return to the characteristic equation (A.10.1). It follows that there are
three possible values of 4, the latent roots and three corresponding vectors x.
We note also that the three values of 1 are the stationary values of x’A4x, for
with the latent vector x

x'Ax = x'(Ax) = Ax'x = A
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Geometrically this corresponds to finding the three values of ¢ for which
members of the family of ellipsoids x’4x = ¢ just touch the unit sphere. It is
clear from their symmetry that the points of contact will be the end of the
axes of the ellipsoid and the values of 4 thus correspond to the values of ¢ for
which the three axes are of unit length.

An equivalent problem is to look for the stationary values of the distance
from the center to a point on the surface of the ellipsoid x’Ax = 1. This time
we would seek the stationary values of x'x subject to x'4x =1, or, by
Lagrange’s method, the unrestricted stationary values of x'x — ux'Ax.
Arguing in the same way as before, we would have to solve the simultaneous
equations

(I — pA)x =0, (A.12.4)
which is only possible if
|l — ud| = 0. (A.12.5)

It is evident that the values of u given by this equation are the reciprocals of
the A given by |4 — AIl = 0. However, the equations (A.12.4) are really the
same as before, for they are homogeneous and therefore unchanged if we
multiply through by —A4 to give (4 — Al)x = 0. It follows that the directions
of the latent vectors will be the same. This time we notice that the stationary
values of the distance r = (x'x)'/2 are the values of u*/2 = 112 for

x'x = x'(uAx) = pux'Ax = p.
Exercise A.12.1. Find the points on the ellipsoid at which the normal passes
through the center.

Exercise A.12.2. Show that if the greatest value of x’Ax on the unit sphere is
A, then the greatest value of x'4A4x is A2. Generalize this.
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Implicit functions

and Jacobians

If y is a function of x satisfying the relation

Fx, )=y —2y—-x*=0, (B.1)
we can solve the quadratic for y and obtain
y =) =x £ x(1 + B} (B2)

The first formulation is called an implicit definition of the function y(x), but in
the second y is given as an explicit function of x. In many cases it is not
possible to give a simple explicit representation from an implicit relation
F(x, y) =0 yet we want to treat y as a function of x. What is needed,
therefore, is some assurance that y does exist as a function of x and a precise
statement of the conditions under which this will be true. Then the function
can be handled with confidence and if no explicit formulas are available,
numerical methods can be resorted to. A certain care is needed, for in the
example given above we really have two explicit functions, corresponding to
the positive and negative signs, from the one implicit relation. Accordingly,
we have to restrict attention to the vicinity of a particular point. For example,
the values x = 2, y = 8 satisfy the relation F(x, y) = 0 but only one of the

276
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explicit formulas. We could assert, however, that there exists a function
y = f(x), which satisfies
F{,‘{" y) = F{-T,f(x)) = 0

and for which f(2) = 8, even though we could not obtain the expression

f(x) = x + x(1 + x3)2,

This is useful if we want to treat x as a function of y, say g(y), for here no
explicit formula exists. At the point x = —1, y = —1 (or x =y = 0) we
run into trouble for here both formulas (B.2) are valid. We shall obtain
criteria for such points as these.

We shall prove several general theorems that are required in the text and
give some specific applications. The proof of the simplest theorem will be
given in detail, but the later ones will not be burdened with € and &’s.

Theorem 1. Let x = xy, y = y, be a pair of values satisfying F(x, y) = 0
and let F and its first derivatives be continuous in the neighborhood of this
point. Then, if 9F/dy does not vanish at x = xg, y = y,, there exists one and
only one continuous function f(x) such that

F(x,f(x)) =0 and f(xg) = yo.

Proof: If 0F/dy = F, is not zero, let us suppose for definiteness that it is
positive. Then, since F, F,, and F, are continuous we can find a box about the

point (xg, ¥o)
Ix - xﬂf = 61 !J” - ,Vo| = tﬁ,

within which F, F,, F, are all continuous and
F,>n>0.

n is some positive number that bounds F, below and within the region we can
take a number £ that bounds F, above, that is,

F, <&
Now within this region

F(x, y) = Fx, y) — F(xq, y) + F(xq, ¥) — F(xg, ¥o)s

since F(xg, yo) = 0. Then applying the first mean value theorem to each of
these differences,

F(x, y) = (x — xo)F(xo + 6(x — xo), y)
+(y — Yo F (X0 yo + 6 (y — yo))
= A(x, y)(x — xo) + B(x, YNy = yo)-
A(x, y) and B(x, y) are continuous functions and throughout the region

Alx, y) < §, B(x, y) > 7.
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Now let € be a positive number, 0 < € < d and { be the smaller of the two
numbers 6 and en/é. Then in the interval

|I - xnl "'": g,
we ask for the number of roots of y that lie between y, — e and y, + €. The
first term is less than £ in absolute value and the second term greater than

ne in absolute value when y — yy = ¢, so that the second term determines
the sign of F. Thus

F(x,yo— ¢ <0 and F(x,y,+ € >0
and there must be one root between these limits for any given x. In fact, this

root is unique for F, is positive between these limits. Let this root y be called
y = f(x). Then we have a unique solution. As

X = Xo, y"_hyﬂ=.f(xﬂ}l
so that the function is continuous. Hence we have a single continuous
function defined within a small region

|x — x| < A = Min (5, ?—?E)

(since € can take values arbitrarily close to d).

We have only gotten an element and perhaps only a small element of the
function, namely, the part within |[x — x| < A. However, we notice that
the conditions of the theorem are satisfied for any point x, within this region.
We can therefore begin again to construct the function y = f(x) from the
point x;, y; and hope to extend the region. In fact, we shall always be able to
extend the region until we reach a point where F,; = 0 and then there is no
unique solution to be found.

In the example first quoted we have x4 = 2, y, = 8

Fix,y) = y* — 2xp — &°
F,= =2y +4+5x%, F,=2y—x)
Thus in the region [x — 2| < 3 — «, |y — 8] < 3 — « about (x,, y,) we have
F, > 4a > 0, however small « > 0 may be. Let
d=3—«a« n=4a and £=5°

(which is certainly greater than F,). Thenif € = 3 — 2a < 8, {is the smaller
of =3 — a and

e _ (3 — 204
§ $

The second of these is extremely small if « is small so that by going too near
the limit at which F, = 0 we are evidently running into trouble. It were
better to start with a more modest region

Ix — 2] <1, ly—8| <1
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then F, > 8 and F, < 391. Even so { must be less than about &, since the
upper bound of F, is still large.

This theorem may be extended in a number of ways. For example, the
proof of the case where one function F(x, y, z) = 0 defines a unique function
z = f(x, y) through a given point x,, y,, Z, provided that F, does not vanish
goes through in precisely the same kind of way. A more general theorem
follows.

Theorem 2. Between the m + n variables xy, ..., X5, 1, ..., Y, there is a
system of n relations

Fixy ooy Xps Yoo y) =0, j=1...,n
If these equations are satisfied for x; = x3, y; = y§ and the F; are continuous

with continuous first partial derivatives in the neighborhood of these
values and

R
oy 0y,
OFy, ..., Fp) _
a(y 1r * *+ = » ..'*' ﬂ)
oF, O,
oy 0y,

does not vanish there, then there is one and only one set of solutions

Vs =S s Xm)
which are continuous, satisfy the relations F; =0 and for which y} =
FO0, o xD). :

Proof: If we assume the theorem true for (» — 1) equations and prove its
truth for n equations, then by induction we can rise to the general case from
n = 1. Since the Jacobian does not vanish at least one of the cofactors of its
last row must not vanish and for convenience we may take this to be

AFy ... Fad) _ ¢

0y s Yn-1)
Then since the theorem is assumed for the case (n — 1), we can solve the first

(n — 1) equations in the form
V= QX1 e ooy X3 Vo) k=1...,(n—1),
and the ¢, are continuous. Then substituting in the last equation we have
D(xps o oo s X3 Yu) = F(xp o o3 Xl Prsev o s Py Yu) = 0.
If the derivative d®/dy, does not vanish, then this can be solved to give

Yo = @alxy, - .., x,) and then substitution gives y, = f(xy,...,x,)=
@ulxyy oo x @) k=1,...,(n—1)and f, = ¢,. However,

00 _0F,0¢,, ., OFa dpy  OF,

a;i‘ ayl 3}‘,, o ayn—l ayn—l a_'l—',,
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The dg,/0dy, are calculated from

oF, 0¢, 0F, 0¢n_, , OF,
e T - = +—L=0.
0y, 0y, OYn-1 Oyn Oy,
aFﬂ—la_?f_l + e + a‘F"I'I—l aq’ﬂ-"l +aFﬂ—1 f— 0‘
ayl ayn ayu-l ayn 3}?“
However, solving these equations and substituting in 0®/dy, we have
a(Fls .4y Fﬂ)

@2 a(yls*-*!yn}
0y, O(Fy...,F.y)
a(yl! .. Syn.—l)

and since neither term on the right-hand side is zero, o®/dy, # 0. This

proves the theorem by induction.
The particular form in which this theorem is most needed is the inversion

of a functional transformation. If m = n and F; has the form

gy v ya) — X% =0,
where the g, are continuous with continuous derivatives then the theorem
takes the following form.

Theorem 3. If x; =g{y1, .. ¥a) j=1,...,n, are n continuous func-
tions of the variables y,, . . ., y, with continuous first partial derivatives, and

if the Jacobian

J:B(xl,,..,x“)
V1> - -5 V)

does not vanish, then the transformation from y to x can be uniquely inverted
to give

Vi =Jfilxy, .. .5 Xx,).

Exercise B.1. Carry out the proof of Theorem 2 in detail to show that
F(x,y,z;, u,v) =0,
G(x,y,z; u,v) =0
gives u = f(x, y, z) and v = g(x, v, 2) if
a(F‘! G) ;ﬁ 0‘

o(u, v)
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rate of, 248
Christoffel symbols:
in cylindrical polar coordinates, 165
definition of, 162
in orthogonal coordinates, 164
in spherical polar coordinates, 165
in surface coordinates, 199-201
Cofactor:
alien, 266
definition of, 266
Coleman, B.D., 133
Conservation of energy, 250
Conservation of matter, 245
Conservation of momentum, 249
Constitutive equations, 107, 124, 188
general theory of, 190
specializations of, 124
for a surface, 232
Continuity equation, 87, 123
in cylindrical polar coordinates, 178
in spherical polar coordinates, 178
Continuum, ides of, 2
Contraction, 23
Coordinate lines, 194
Coordinates:
Cartesian, 134
convected, 77, 183

cylindrical polar, 135, 143, 165, 178, 182

geodesic, 204
Lagrangian, 77
material, 77, 176
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Coordinates (Cond.):
orthogonal, 143
spatial, 77

spherical polar, 135, 165, 178, 183

surface, 193
transformations of, 194
transformation of, 9, 135
proper, 136
Coordinate systems, 134
Covariant differentiation, 166
Curtiss, C.F,, 7
Curvature:
Gaussian, 235
of a surface, 210, 221
principal, of a surface, 221
total, of a surface, 210, 221

D

Dahler, J.5,, 112
Deformation, 88
principal axes of, 92, 106
Derivative:
convected, 78, 185
covariant, 167
of hybrid tensors, 215
surface, 209
intrinsic, 166, 176
material, 78
Determinant:
definition of, 265
derivative of, 267
expansion of, 266
Laplacian, 268
product, 268
Dilatation, 83, 180, 188
material derivative of, 83-84
Diffusion:
forced, 252
of heat, 251
of matter, 251
preasure, 252
thermal, 252
Dissipation function, 118

Divergence, in orthogonal coordinates, 170

Dyad, 34

Dyadie, 34
scalar of, 35
vector of, 35

Eisenhart, L. P., 74

Index

Eliassen, J. D., 237
Energy:
conservation of, 124
dissipation of, by viscous forces, 117-118,
121-122
equation of, 120
internal, 121
kinetie, 117, 121
strain, 118, 121
Enthalpy, 122, 250
Entropy, 122
rate of change of, 122
Equation of continuity, 87, 123, 178, 236,
246
Equation of state, 121, 124
specializations of, 124
Ericksen, J. L., 160
Euclidean space, 172
Euler, L., 97
Expansion, 83

Ferrar, W. L., 74
Feshbach, H., 7, 36
Fick's law, 121
Fluid:
incompressible, 88, 105, 125, 129
isotropic, 106
Maxwellian, 115, 192
Newtonian, 110-111, 113, 121, 125, 130,
180, 189, 242
surface, 234
nonelsatic, 107
non-Newtonian, 109
perfect, 105, 129, 180
piezotropic, 130
Stokesian, 106-110, 119, 121
Flow:
axisymmetric, 127
barotropic, 130-132
boundary layer, 128-129
compressible, 126
creeping, 127
irrotational, 132
isentropic, 126, 130
plane, 125
steady, 79, 127
Forces:
body, 99
rate of doing work, 117
contact, 99
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Forces (Cont.):
external, 99
internal, 99
Fredrickson, A. G., 2563
Fréhlich, H., 189
Function:
explicit, 276
implicit, 276
Fundamental forms, relation between, 218

G

Gauss, C. F., 58
Gauss-Codazzi equations, 218
Geodesic, 201-204
curvature, 209
Gerstner wave, 79, 84
Godal, T., 73, 75
Grad, H., 112
Gradient of a scalar, 51
Green’s theorem, 58, 171
in a surface, 223
Grew, K. E., 253
Group:
affine, 139
linear homogeneous transformation, 139
orthogonal, 139
properties of, 137-138
rotation, 139
subgroup of, 138

H

Heat of reaction, 251
Hirschfelder, J. O., 7
Hydrostatics, 127

Ibbs, T. L., 253
Ideal gas, 130
Indices, conservation of, 136, 141
Integral:
line, 42
multiple, change of variable, 50
surface, 44
volume, 48
Interface:
cylindrieal, 243
plane, 242
spherical, 243
surface equations as boundary
conditions for, 241
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Interfacial tension, 231
Internal energy, 250
Isotropy, 105

Jacobian, 50, 137, 276
intrinsic derivative of, 177

Jeffreys, B. 8., 36

Jeffreys, H., 36

K

Kellogg, O. D., 59, 62, 74
Kelvin, Lord, 61

Kelvin's theorem, 132
Kinematics, 76, 123
Kinematic viscosity, 114
Klein, F., 138

Kronecker delta, 10, 144, 197

L

Lagrange, J. L., 58

Landan, L. D., 112

Laplacian, 54, 169, 222
in orthogonal coordinates, 170

Lifghitz, E. M., 112

Lightfoot, E. N., 253

Linear equations, 267
homogeneous, 267

Lomont, J. 8., 73

M
Mass:
conservation of, 87, 123
flux, 247

barycentric, 247
Material indifference, principle of, 192
Matrix:

addition, 264

adjugate of, 267
antisymmetric, 261
definition of, 260, 264
derivative of, 267

inverse of, 265
multiplication, 264
partitioned, 268

scalar multiplication of, 264
singular, 266
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Matrix (Cont.): P
symmetric, 261
eanonical form of, 271 Parallel vectors, in a surface, 206
latent root of, 270 Particle path, 76, 77, 80, 82
vector of, 270 Patterson, G. N., 6
transpose of, 264 Permutation:
Matrix algebra, laws of, 263 conjugate, 265
Mayer, A., 262 parity of, 265
Merk, H. J., 245, 253 Permutation symbol, 16, 145
Metric, time dependent, 228 Phillips, H. B., 36
Molar flux, 247 Point transformation, 76
Momentum: Poisson’s equation, 70
angular, 102 Power law, 109
internal, 104, 123 Pressure:
total, 103, 123 hydrostatic, 105
conservation of, 99 thermodynamie, 105, 108, 109
linear, 249 Principal stresses, 106
conservation of, 100, 123
moment of, 103 Q
conservation of, 123
external, 104, 123 Quadric, 259
Morse, P. M., 7, 36 Quotient rule, 29, 148
Moses, H. E., 73
Motion: R
Beltrami, 125

Cauchy’s equation of, 102, 113
complex lamellar, 125
equations of, 123
Newtonian fluid, 113
specializations of the, 124
irrotational, 125
isochoric, 86, 124
restrictions on the type of, 124

Reynolde number, 115
Reynolds’ transport theorem, 84, 178, 230
Ricci’s lemma, 168
Riemann-Christoffel tensor, 173, 210
Riemannian space, 196
Rigid body rotation, 89, 107
velocity due to, 17, 25
Rotation of axes, 262

Russell, B., 1
N
S
Navier-Stokes equations, 113-116, 125,
180-183, 235, 250 Sack, R., 189
boundary eonditions, 115 Scalar, definition of, 3
in cylindrical polar coordinates, 182 Scalar multiplication, 11, 23, 147
existence of solutions of, 115 Scale factor, 143
in spherical polar coordinates, 183 Schild, A., 175
Newell, H. E., 74 Scriven, L. E., 112, 226, 244
Noll, W, 133, 191 Second law of thermodynamics, 122
Sedov, L. 1., 190
Serret-Frenet formulae, 42, 220
O Serrin, J., 37, 46, 77, 98, 106, 112, 120, 132,
133
Oldroyd, J. G., 185, 188, 189, 190 Space:
Orthogonality, 256 Euclidean, 142

of vectors, 15 Riemannian, 172
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Space curve:
arc length, 40
binormal, 41
closed, 39
curvature, 41
osculating plane, 40
principal normal, 41
simple, 39
tangent, 40
torsion, 41
Specific heat, 251
Stewart, W. E., 253
Stoichiometrie relations, 248
Stokes, G. G., 61
Stokes’ hypothesis, 180
Stokes’ relation, 112, 114
Stokes’ theorem, 61, 171
in a surface, 223
Strain:
principal rates of, 92
rate of, 88
in convected coordinates, 187
in a surface, 230
surface, connection with surroundings,
237
Stream function, 126
Streamline, 79-81
Stream tube, 80
Streamline, 80, 82
Stress, 99
- direct, 105
local equilibrium of, 100
principal axes of, 105-106
physical components of:
in cylindrical polar coordinates, 181
in epheriecal polar coordinates, 181
rate of doing work, 117
shear, 105
in a surface, 231
tensorial character, 99-101
Summation eonvention, 136
Carvesian, 9
Surface:
closed, 44
continuity with surroundings, 235
curve in, 219
principal normal of, 220
developable, 221
differential operators in, 222
first fundamental form of, 213
mean curvature of, 218-221
normal curvature of, 220

Surface (Cont.):
normal to, 214
piece-wise smooth, 44
reducible, 44
second fundamental form of, 216
simply connected, 44
smooth, 44
third fundamental form of, 217
Surface curl, 223
Surface divergence, 223
Surface motion, intrinsic equations of,
233
Surface tension, 231, 234
Synge, J. L., 175

T
Tensor:
absolute, definition of, 144
addition, 147

anholonomic components of, 159
antisymmetric, 22

vector of, 24
associated, 147
Cartesian:

higher order, 28

second order, 21

symmetric, 21
characteristic equation of, 27
characteristic values of, 27, 151
conjugate metric, of a surface, 197
conjugate second order, 22
contraction of, 147
covariant derivative of, 168
deformation, 89

invariants of, 92

physical interpretation of, 89-91
derivative of, 38
differentials of, 160
hybrid, definition of, 212-213
informal definition of, 5
inner product of, 147
invariants of, 26
isotropic, 22, 30-34, 146

of fourth order, 180
metric, 142

of a surface, 196
order of, 144
outer product of, 147
physical components of, 156
rank of, 144
rate of strain, 89
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Tensor (Cont.):

relative, definition of, 144

second order, symmetric, principal

directions of, 151
stress, 101, 107
gsymmetry of, 102, 123
viacous, 105

surface, definition of, 194

symmetric, canonical form of, 25

symmetry of, 147

velocity gradient, 89
Torque, body, 103
Torque stress, 103
Toupin, R, 7, 82, 86, 97, 112
Transformation, inverse, 138
Transformations, group of, 138
Triple scalar product, 18
Triple vector product, 19
Truesdell, C., 7, 37, 61, 73, 74, 82, 86, 94,

95, 97, 112, 133, 157, 175, 191, 192

v
Unit Cartesian vector, 13
v

Vector:
angle between, 149
axial, 36
base, 151
reciprocal, 152
Cartesian:
basgis, 13
condition for coplanarity, 13
definition of, 8, 10
length of, 10
characteristic, 151
contravariant, definition of, 140
covariant, definition of, 141
informal definition of, 3
length of, 149
multiplication, 23
physical components of :
in nonorthogonal coordinate systems,
155

Index

Vector (Cont.):
physical components of (Cont.):
in orthogonal coordinate systems, 153
surface, direction of, 198
surface, length of, 198
unit, 11, 149
Vector field, 51
abnormality of, 72
Beltrami, 65, 72, 73
classification of, 63
eomplex lamellar, 64
curl of, 55, 169
divergence of, 53, 169
Helmholtz representation of, 70
irrotational, 57, 65-67
lamellar, 64
Laplacian, 65
parallel, 161
representation of, 63
solenoidal, 54, 67-69, 88
Trkalian, 65, 73
Vector operator 7, 51
Vector product, 16
Velocity, 39
physical components of, 177
in a surface, 227
Velocity potential, 125, 130, 132
Viscosity:
bulk, coefficient of, 112
shear, coefficient of, 111
Volume:
composite, 48
elementary, 48
Vortex lines, 95
Vortex tubes, 95
Vorticity, 95
connection between viscosity and, 114

w

Weight of a relative tensor, 144
Weingarten’s formulae, 218, 223
Weiss, P., 54

Wilson, E. B., 36
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equations. Numerous exercises. 432pp. 5% x 8%. 66014-1 Pa. $12.95

QUANTUM THEORY, David Bohm. This advanced undergraduate-level text pre-
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5% x 8. 65984-4 Pa. $13.95
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66021-4 Pa, $19.95

BOUNDARY VALUE PROBLEMS OF HEAT CONDUCTION, M. Necati
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65656-X Pa. $16.95
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INTRODUCTION TO QUANTUM MECHANICS With Applications to
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resonance phenomena. 53 illustrations. Preface. Index. 256pp. 5% x 8%.

65533-4 Pa. $10.95
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ATOMIC SPECTRA AND ATOMIC STRUCTURE, Gerhard Herzberg. One of
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APPLIED COMPLEX VARIABLES, John W. Dettman. Step-by-step coverage of
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512pp. 5% x 8Y%. 64670-X Pa. $14.95
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Bibliography. I99pp. 5% x 8%. 64830-3 Pa. $7.95

LIGHT SCATTERING BY SMALL PARTICLES, H.C. van de Hulst. Compre-
hensive treatment including full range of useful approximation methods for
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64228-3 Pa. $12.95

CONFORMAL MAPPING ON RIEMANN SURFACES, Harvey Cohn. Lucid,
insightful book presents ideal coverage of subject. 334 exercises make book perfect
for self-study. 55 figures. 352pp. 5% x 84. 64025-6 Pa. $11.95

OPTICKS, Sir Isaac Newton. Newton’s own experiments with spectroscopy, colors,
lenses, reflection, refraction, etc., in language the layman can follow. Foreword by
Albert Einstein. 532pp. 5% x 8%. 60205-2 Pa. $13.95

GENERALIZED INTEGRAL TRANSFORMATIONS, A.H. Zemanian, Graduate-

level study of recent generalizations of the Laplace, Mellin, Hankel, K. Weierstrass,

convolution and other simple transformations. Bibliography. 320pp. 5% x 8.
65375-7 Pa. $8.95
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THE ELECTROMAGNETIC FIELD, Albert Shadowitz. Comprehensive under-
graduate text covers basics of electric and magnetic fields, builds up to electromag-
netic theory. Also related topics, including relativity. Over 900 problems. 768pp.
5% x 8%. 65660-8 Pa. $19.95

FOURIER SERIES, Georgi P. Tolstov. Translated by Richard A. Silverman. A valu-
able addition to the literature on the subject, moving clearly from subject to subject
and theorem to theorem. 107 problems, answers. 336pp. 5% x 8%. 63317-9 Pa. $11.95

THEORY OF ELECTROMAGNETIC WAVE PROPAGATION, Charles Herach
Papas. Graduate-level study discusses the Maxwell field equations, radiation from
wire antennas, the Doppler effect and more. xiii + 244pp. 5% x 8%. 65678-0 Pa. $9.95

DISTRIBUTION THEORY AND TRANSFORM ANALYSIS: An Introduction to
Generalized Functions, with Applications, A.H. Zemanian. Provides basics of distri-
bution theory, describes generalized Fourier and Laplace transformations. Numerous
problems. 384pp. 5% x 8%. 65479-6 Pa. $13.95

THE PHYSICS OF WAVES, William C. Elmore and Mark A. Heald. Unique
overview of classical wave theory. Acoustics, optics, electromagnetic radiation, more.
Ideal as classroom text or for self-study. Problems. 477pp. 5% x 8%.

64926-1 Pa. $14.95

CALCULUS OF VARIATIONS WITH APPLICATIONS, George M. Ewing.
Applications-oriented introduction to variational theory develops insight and pro-
motes understanding of specialized books, research papers. Suitable for advanced

undergraduate/graduate students as primary, supplementary text. 352pp. 5% x 84.
64856-7 Pa. $9.95

A TREATISE ON ELECTRICITY AND MAGNETISM, James Clerk Maxwell.
Important foundation work of modern physics. Brings to final form Maxwell’s theo-
ry of electromagnetism and rigorously derives his general equations of field theory.
1,084pp. 5% x 8%, 60636-8, 60637-6 Pa., Two-vol. set $27.90

AN INTRODUCTION TO THE CALCULUS OF VARIATIONS, Charles Fox.
Graduate-level text covers variations of an integral, isoperimetrical problems, least

action, special relativity, approximations, more. References. 279pp. 5% x 8%.
65499-0 Pa. $8.95

HYDRODYNAMIC AND HYDROMAGNETIC STABILITY, S. Chandrasekhar.
Lucid examination of the Rayleigh-Benard problem; clear coverage of the theory of
instabilities causing convection. 704pp. 5% x 8%. 64071-X Pa. $17.95

CALCULUS OF VARIATIONS, Robert Weinstock. Basic introduction covering
isoperimetric problems, theory of elasticity, quantum mechanics, electrostatics, etc.
Exercises throughout. 326pp. 5% x 8%. 63069-2 Pa. $9.95

DYNAMICS OF FLUIDS IN POROUS MEDIA, Jacob Bear. For advanced stu-
dents of ground water hydrology, soil mechanics and physics, drainage and irrigation

engineering and more. 335 illustrations. Exercises, with answers. 784pp. 6% x 9.
65675-6 Pa. $19.95
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NUMERICAL METHODS FOR SCIENTISTS AND ENGINEERS, Richard
Hamming. Classic text stresses frequency approach in coverage of algorithms, poly-
nomial approximation, Fourier approximation, exponential approximation, other
topics. Revised and enlarged 2nd edition. 721pp. 5% x 8%. 65241-6 Pa. $16.95

THEORETICAL SOLID STATE PHYSICS, Vol. 1: Perfect Lattices in
Equilibrium; Vol. II: Non-Equilibrium and Disorder, William Jones and Norman H.
March. Monumental reference work covers fundamental theory of equilibrium
properties of perfect crystalline solids, non-equilibrium properties, defects and dis-
ordered systems. Appendices. Problems. Preface. Diagrams. Index. Bibliography.
Total of 1,301pp. 5% x 8% Two volumes. Vol. I: 65015-4 Pa. $16.95

Vol. II: 65016-2 Pa. $16.95

OPTIMIZATION THEORY WITH APPLICATIONS, Donald A. Pierre. Broad
spectrum approach to important topic. Classical theory of minima and maxima, cal-
culus of variations, simplex technique and linear programming, more. Many prob-
lems, examples. 640pp. 5% x 8%. 65205-X Pa. $1795

THE CONTINUUM: A Critical Examination of the Foundation of Analysis,
Hermann Weyl, Classic of 20th-century foundational research deals with the con-
ceptual problem posed by the continuum. 156pp. 5% x 8%. 67982-9 Pa, $8.95

ESSAYS ON THE THEORY OF NUMBERS, Richard Dedekind. Two classic
essays by great German mathematician: on the theory of irrational numbers; and on
transfinite numbers and properties of natural numbers. 115pp. 5% x 8%.

21010-3 Pa. $6.95

THE FUNCTIONS OF MATHEMATICAL PHYSICS, Harry Hochstadt.
Comprehensive treatment of orthogonal polynomials, hypergeometric functions,
Hill’s equation, much more. Bibliography. Index. 322pp. 5% x 8%. 65214-9 Pa. $12.95

NUMBER THEORY AND ITS HISTORY, Oystein Ore. Unusually clear, accessi-
ble introduction covers counting, properties of numbers, prime numbers, much
more, Bibliography. 380pp. 5% x 8%. 65620-9 Pa. $10.95

THE VARIATIONAL PRINCIPLES OF MECHANICS, Cornelius Lanczos.
Graduate level coverage of calculus of variations, equations of motion, relativistic
mechanics, more. First inexpensive paperbound edition of classic treatise. Index.
Bibliography. 418pp. 5% x 8%. 65067-7 Pa. $14.95

COMBINATORIAL TOPOLOGY, P. S. Alexandrov. Clearly written, well-orga-
nized, three-part text begins by dealing with certain classic problems without using
the formal techniques of homology theory and advances to the central concept, the
Betti groups. Numerous detailed examples. 654pp. 5% x 8. 40179-0 Pa. $18.95

THEORETICAL PHYSICS, Georg Joos, with Ira M. Freeman. Classic overview
covers essential math, mechanics, electromagnetic theory, thermodynamics, quan-
tum mechanics, nuclear physics, other topics. First paperback edition. xxiii + 885pp.
5% x 8%. 652270 Pa. $21.95
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HANDBOOK OF MATHEMATICAL FUNCTIONS WITH FORMULAS,
GRAPHS, AND MATHEMATICAL TABLES, edited by Milton Abramowitz and
~ Irene A. Stegun. Vast compendium: 29 sets of tables, some to as high as 20 places.
1,046pp. 8 x 10%. 61272-4 Pa. $29.95

MATHEMATICAL METHODS IN PHYSICS AND ENGINEERING, ]ohn W.
Dettman. Algebraically based approach to vectors, mapping, diffraction, other topics
in applied math. Also generalized functions, analytic function theory, more.
Exercises. 448pp. 5% x 8Y%. 65649-7 Pa. $12.95

A SURVEY OF NUMERICAL MATHEMATICS, David M. Young and Robert
Todd Gregory. Broad self-contained coverage of computer-oriented numerical algo-
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and partial, differential equations, much more. Exercises. Total of 1,248pp. 5% x 8%.
Two volumes. Vol. I: 65691-8 Pa. $16.95

Vol. I1: 65692-6 Pa. $16.95

TENSOR ANALYSIS FOR PHYSICISTS, J.A. Schouten. Concise exposition of the
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of the theory. Exercises. Index. Bibliography. 289pp. 5% x 8%  65582-2 Pa. $10.95

INTRODUCTION TO NUMERICAL ANALYSIS (2nd Edition), F.B. Hilde-
brand. Classic, fundamental treatment covers computation, approximation, inter-
polation, numerical differentiation and integration, other topics. 150 new problems.
669pp. 5% x 8%. 65363-3 Pa. $16.95

INVESTIGATIONS ON THE THEORY OF THE BROWNIAN MOVEMENT,
Albert Einstein. Five papers (1905-8) investigating dynamics of Brownian motion
and evolving elementary theory. Notes by R. Fiirth. 122pp. 5% x 8%.

60304-0 Pa. $5.95

CATASTROPHE THEORY FOR SCIENTISTS AND ENGINEERS, Robert
Gilmore. Advanced-level treatment describes mathematics of theory grounded in the
work of Poincaré, R. Thom, other mathematicians. Also important applications to
problems in mathematics, physics, chemistry and engineering. 1981 edition.
References. 28 tables. 397 black-and-white illustrations. xvii + 666pp. 6% x 9%.
67539-4 Pa. $17.95

AN INTRODUCTION TO STATISTICAL THERMODYNAMICS, Terrell L.
Hill. Excellent basic text offers wide-ranging coverage of quantum statistical mechan-

ics, systems of interacting molecules, quantum statistics, more. 523pp. 5% x 8%.
65242-4 Pa. $13.95

STATISTICAL PHYSICS, Gregory H. Wannier. Classic text combines thermody-
namics, statistical mechanics and kinetic theory in one unified presentation of ther-
mal physics. Problems with solutions. Bibliography. 532pp. 5% x 8.

65401-X Pa. $14.95
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ORDINARY DIFFERENTIAL EQUATIONS, Morris Tenenbaum and Harry
Pollard. Exhaustive survey of ordinary differential equations for undergraduates in
mathematics, engineering, science. Thorough analysis of theorems. Diagrams.
Bibliography. Index. 818pp. 5% x 8%. 64940-7 Pa. $19.95

STATISTICAL MECHANICS: Principles and Applications, Terrell L. Hill.
Standard text covers fundamentals of statistical mechanics, applications to fluctuation
theory, imperfect gases, distribution functions, more. 448pp. 5% x 8.

65390-0 Pa. $14.95

ORDINARY DIFFERENTIAL EQUATIONS AND STABILITY THEORY: An
Introduction, David A. Sinchez. Brief, modern treatment. Linear equation, stability
theory for autonomous and nonautonomous systems, etc. 164pp. 5% x 8%,

63828-6 Pa. $6.95

THIRTY YEARS THAT SHOOK PHYSICS: The Story of Quantum Theory,
George Gamow. Lucid, accessible introduction to influential theory of energy and
matter. Careful explanations of Dirac’s anti-particles, Bohr’s model of the atom,
much more, 12 plates. Numerous drawings. 240pp. 5% x 8%. 24895-X Pa. $7.95

THEORY OF MATRICES, Sam Perlis. Outstanding text covering rank, nonsingu-
larity and inverses in connection with the development of canonical matrices under
the relation of equivalence, and without the intervention of determinants, Includes
exercises, 237pp. 5% x 8%. 66810-X Pa. $8.95

GREAT EXPERIMENTS IN PHYSICS: Firsthand Accounts from Galileo to
Einstein, edited by Morris H. Shamos. 25 crucial discoveries: Newton’s laws of
motion, Chadwick’s study of the neutron, Hertz on electromagnetic waves, more.
Original accounts clearly annotated. 370pp. 5% x 8%. 25346-5 Pa. $11.95

INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS WITH
APPLICATIONS, E.C. Zachmanoglou and Dale W. Thoe. Essentials of partial dif-
ferential equations applied to common problems in engineering and the physical sci-
ences. Problems and answers. 416pp. 5% x 8. 65251-3 Pa. $11.95

BURNHAM'’S CELESTIAL HANDBOOK, Robert Burnham, Jr. Thorough guide
to the stars beyond our solar system. Exhaustive treatment. Alphabetical by constel-
lation: Andromeda to Cetus in Vol. 1; Chamaeleon to Orion in Vol. 2; and Pavo to
Vulpecula in Vol. 3. Hundreds of illustrations. Index in Vol. 3. 2,000pp. 6% x 9%.
23567-X, 23568-8, 23673-0 Pa., Three-vol. set $46.85

CHEMICAL MAGIC, Leonard A. Ford. Second Edition, Revised by E. Winston
Grundmeier. Over 100 unusual stunts demonstrating cold fire, dust explosions,

much more. Text explains scientific principles and stresses safety precautions.
128pp. 5% x 8. 67628-5 Pa. $5.95

AMATEUR ASTRONOMER’S HANDBOOK, J.B. Sidgwick. Timeless, compre-
hensive coverage of telescopes, mirrors, lenses, mountings, telescope drives,
micrometers, spectroscopes, more, 189 illustrations. 576pp. 5% x 8%4. (Available in
U.S. only) 24034-7 Pa. $13.95
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SPECIAL FUNCTIONS, N.N. Lebedev. Translated by Richard Silverman. Famous
Russian work treating more important special functions, with applications to specific
problems of physics and engineering. 38 figures. 308pp. 5% x 8%. 60624-4 Pa. $9.95

THE EXTRATERRESTRIAL LIFE DEBATE, 1750-1900, Michael J. Crowe. First
detailed, scholarly study in English of the many ideas that developed between 1750
and 1900 regarding the existence of intelligent extraterrestrial life. Examines ideas of
Kant, Herschel, Voltaire, Percival Lowell, many other scientists and thinkers. 16 illus-
trations. 704pp. 5% x 8%. 40675-X Pa. $19.95

INTEGRAL EQUATIONS, F.G. Tricomi. Authoritative, well-written treatinent of
extremely useful mathematical tool with wide applications. Volterra Equations,
Fredholm Equations, much more. Advanced undergraduate to graduate level.
Exercises. Bibliography. 238pp. 5% x 8%. 64828-1 Pa. $8.95

POPULAR LECTURES ON MATHEMATICAL LOGIC, Hao Wang. Noted logi-
cian’s lucid treatment of historical developments, set theory, model theory, recursion
theory and constructivism, proof theory, more. 3 appendixes. Bibliography. 1981 edi-
tion. ix + 283pp. 5% x 8%. 67632-3 Pa. $10.95

MODERN NONLINEAR EQUATIONS, Thomas L. Saaty. Emphasizes practical
solution of problems; covers seven types of equations. “. . . a welcome contribution
to the existing literature,..."—Math Reviews. 490pp. 5% x 8%. 64232-1 Pa. $13.95

FUNDAMENTALS OF ASTRODYNAMICS, Roger Bate et al. Modern approach
developed by U.S. Air Force Academy. Designed as a first course. Problems, exer-
cises. Numerous illustrations. 455pp. 5% x 8. 60061-0 Pa. $12.95

INTRODUCTION TO LINEAR ALGEBRA AND DIFFERENTIAL EQUA-
TIONS, John W. Dettman. Excellent text covers complex numbers, determinants,
orthonormal bases, Laplace transforms, much more. Exercises with solutions.
Undergraduate level. 416pp. 5% x 8%. 65191-6 Pa. $11.95

INCOMPRESSIBLE AERODYNAMICS, edited by Bryan Thwaites. Covers theo-
retical and experimental treatment of the uniform flow of air and viscous fluids past
two-dimensional aerofoils and three-dimensional wings; many other topics. 654pp.
5% x 8%. 65465-6 Pa. $16.95

INTRODUCTION TO DIFFERENCE EQUATIONS, Samuel Goldberg. Excep-
tionally clear exposition of important discipline with applications to sociology, psy-
chology, economics. Many illustrative examples; over 250 problems. 260pp. 5% x 8%.

_ 65084-7 Pa. $10.95

THREE PEARLS OF NUMBER THEORY, A. Y. Khinchin. Three compelling
puzzles require proof of a basic law governing the world of numbers. Challenges con-
cern van der Waerden’s theorem, the Landau-Schnirelinann hypothesis and Mann’s
theorem, and a solution to Waring’s problem. Solutions included. 64pp. 5% x 8%.
40026-3 Pa. $4.95

LECTURES ON CLASSICAL DIFFERENTIAL GEOMETRY, Second Edition,
Dirk J. Struik. Excellent brief introduction covers curves, theory of surfaces, funda-
mental equations, geometry on a surface, conformal mapping, other topics.
Problems. 240pp. 5% x 8%. 65609-8 Pa. $9.95
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ROTARY-WING AERODYNAMICS, W.Z. Stepniewski. Clear, concise text covers

aerodynamic phenomena of the rotor and offers guidelines for helicopter perfor-

mance evaluation. Originally prepared for NASA. 537 figures. 640pp. 6% x 9.
64647-5 Pa. $16.95

DIFFERENTIAL GEOMETRY, Heinrich W. Guggenheimer. Local differential
geometry as an application of advanced calculus and linear algebra. Curvature, trans-
formation groups, surfaces, more. Exercises. 62 figures. 378pp. 5% x 8%.

63433-7 Pa. $11.95

INTRODUCTION TO SPACE DYNAMICS, William Tyrrell Thomson. Com-
prehensive, classic introduction to space-flight engineering for advanced undergrad-
uate and graduate students. Includes vector algebra, kinematics, transformation of
coordinates, Bibliography. Index. 352pp. 5% x 8%. 65113-4 Pa. $10.95

THE THEORY OF GROUPS, Hans J. Zassenhaus. Well-written graduate-level text
acquaints reader with group-theoretic methods and demonstrates their usefulness in
mathematics. Axioms, the calculus of complexes, homomorphic mapping, p-group
theory, more. Many proofs shorter and more transparent than older ones. 276pp.
5% x 8. 409228 Pa. $12.95

ANALYTICAL MECHANICS OF GEARS, Farle Buckingham. Indispensable ref-
erence for modern gear manufacture covers conjugate gear-tooth action, gear-tooth
profiles of various gears, many other topics. 263 figures. 102 tables. 546pp. 5% x 8%.

65712-4 Pa. $16.95

SET THEORY AND LOGIC, Robert R. Stoll. Lucid introduction to unified theory
of mathematical concepts. Set theory and logic seen as tools for conceptual under-
standing of real number system. 496pp. 5% x 84. 63829-4 Pa. $14.95

A HISTORY OF MECHANICS, René Dugas. Monumental study of mechanical
principles from antiquity to quantum mechanics. Contributions of ancient Greeks,
Galileo, Leonardo, Kepler, Lagrange, many others. 671pp. 5% x 8.

65632-2 Pa. $18.95

FAMOUS PROBLEMS OF GEOMETRY AND HOW TO SOLVE THEM,
Benjamin Bold. Squaring the circle, trisecting the angle, duplicating the cube: learn
their history, why they are impossible to solve, then solve them yourself. 128pp.
5% x 8%. 24297-8 Pa. $5.95

MECHANICAL VIBRATIONS, J.P. Den Hartog. Classic textbook offers lucid
explanations and illustrative models, applying theories of vibrations to a variety of
practical industrial engineering problems. Numerous figures. 233 problems, solu-
tions. Appendix. Index. Preface. 436pp. 5% x 8%. 64785-4 Pa, $13.95

CURVATURE AND HOMOLOGY: Enlarged Edition, Samuel I. Goldberg,
Revised edition examines topology of differentiable manifolds; curvature, homology
of Riemannian manifolds; compact Lie groups; complex manifolds; curvature,
homology of Kaehler manifolds. New Preface. Four new appendixes. 416pp. 5% x 8.

40207-X Pa. $14.95

HISTORY OF STRENGTH OF MATERIALS, Stephen P. Timoshenko. Excellent
historical survey of the strength of materials with many references to the theories of
elasticity and structure. 245 figures. 452pp. 5% x 8%. 61187-6 Pa. $14.95
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GEOMETRY OF COMPLEX NUMBERS, Hans Schwerdtfeger. Illuminating,
widely praised book on analytic geometry of circles, the Moebius transformation,
and two-dimensional non-Euclidean geometries. 200pp. 5% x 8Y%. 63830-8 Pa. $8.95

MECHANICS, J.P. Den Hartog. A classic introductory text or refresher. Hundreds
of applications and design problems illuminate fundamentals of trusses, loaded
beams and cables, etc. 334 answered problems. 462pp. 5% x 8%. 60754-2 Pa. $12.95

TOPOLOGY, John G. Hocking and Gail S. Young. Superb one-year course in clas-
sical topology. Topological spaces and functions, point-set topology, much more.
Examples and problems. Bibliography. Index. 384pp. 5% x 8%, 65676-4 Pa. $11.95

STRENGTH OF MATERIALS, J.P. Den Hartog. Full, clear treatment of basic mate-
rial (tension, torsion, bending, etc.) plus advanced material on engineering methods,
applications. 350 answered problems. 323pp. 5% x 8%. 60755-0 Pa. $10.95

ELEMENTARY CONCEPTS OF TOPOLOGY, Paul Alexandroff. Elegant, intu-
itive approach to topology from set-theoretic topology to Betti groups; how concepts
of topology are useful in math and physics. 25 figures. 57pp. 5% x 8%.

60747-X Pa. $4.95

ADVANCED STRENGTH OF MATERIALS, J.P. Den Hartog. Superbly written
advanced text covers torsion, rotating disks, membrane stresses in shells, much more.
Many problems and answers. 388pp. 5% x 8. 654079 Pa. $11.95

COMPUTABILITY AND UNSOLVABILITY, Martin Davis. Classic graduate-
level introduction to theory of computability, usually referred to as theory of recur-
rent functions. New preface and appendix. 288pp. 5% x 8%. 61471-9 Pa. $8.95

GENERAL CHEMISTRY, Linus Pauling. Revised 3rd edition of classic first-year
text by Nobel laureate, Atomic and molecular structure, quantum mechanics, statis-
tical mechanics, thermodynamics correlated with descriptive chemistry. Problems.
992pp. 5% x Bl 65622-5 Pa. $19.95

AN INTRODUCTION TO MATRICES, SETS AND GROUPS FOR SCIENCE
STUDENTS, G. Stephenson. Concise, readable text introduces sets, groups, and
most importantly, matrices to undergraduate students of physics, chemistry, and
engineering. Problems. 164pp. 5% x 8%. 65077-4 Pa. $7.95

THE HISTORICAL BACKGROUND OF CHEMISTRY, Henry M. Leicester.
Evolution of ideas, not individual biography. Concentrates on formulation of a coher-
ent set of chemical laws. 260pp. 5% x 8%. 61053-5 Pa. $8.95

THE PHILOSOPHY OF MATHEMATICS: An Introductory Essay, Stephan
Komer. Surveys the views of Plato, Aristotle, Leibniz & Kant concerning proposi-
tions and theories of applied and pure mathematics. Introduction. Two appendices.
Index. 198pp. 5% x 8%. 25048-2 Pa. $8.95

THE DEVELOPMENT OF MODERN CHEMISTRY, Aaron J. Ihde. Authorita-
tive history of chemistry from ancient Greek theory to 20th-century innovation.
Covers major chemists and their discoveries. 209 illustrations. 14 tables.
Bibliographies. Indices. Appendices, 851pp. 5% x 8%. 64235-6 Pa. $18.95
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DE RE METALLICA, Georgius Agricola. The famous Hoover translation of great-
est treatise on technological chemistry, engineering, geology, mining of early mod-
ern times (1556). All 289 original woodcuts. 638pp. 6% x 11. 60006-8 Pa. $21.95

SOME THEORY OF SAMPLING, William Edwards Deming. Analysis of the
problems, theory and design of sampling techniques for social scientists, industrial
managers and others who find statistics increasingly important in their work. 61
tables, 90 figures. xvii + 602pp. 5% x 8%. 64684-X Pa. $16.95

THE VARIOUS AND INGENIOUS MACHINES OF AGOSTINO RAMELLI:
A Classic Sixteenth-Century Illustrated Treatise on Technology, Agostino Ramelli.
One of the most widely known and copied works on machinery in the 16th century.
194 detailed plates of water pumps, grain mills, cranes, more. 608pp. 9 x 12.
28180-9 Pa, $24.95

LINEAR PROGRAMMING AND ECONOMIC ANALYSIS, Robert Dorfman,
Paul A. Samuelson and Robert M. Solow, First comprehensive treatment of linear
programming in standard economic analysis. Game theory, modern welfare eco-
nomics, Leontief input-output, more. 525pp. 5% x 8%. 65491-5 Pa. $17.95

ELEMENTARY DECISION THEORY, Herman Chemoff and Lincoln E.
Moses. Clear introduction to statistics and statistical theory covers data process-
ing, probability and random variables, testing hypotheses, much more. Exercises.
364pp. 5% x 8i4. 65218-1 Pa. $10.95

THE COMPLEAT STRATEGYST: Being a Primer on the Theory of Games of
Strategy, J.D. Williams. Highly entertaining classic describes, with many illustrated
examples, how to select best strategies in conflict situations. Prefaces. Appendices.
268pp. 5% x 8. 25101-2 Pa. $8.95

CONSTRUCTIONS AND COMBINATORIAL PROBLEMS IN DESIGN OF
EXPERIMENTS, Damaraju Raghavarao. In-depth reference work examines
orthogonal Latin squares, incomplete block designs, tactical configuration, partial
geometry, much more. Abundant explanations, examples. 416pp. 5% x 8%.

65685-3 Pa. $10.95

THE ABSOLUTE DIFFERENTIAL CALCULUS (CALCULUS OF TENSORS}),
Tullio Levi-Civita. Great 20th-century mathematician’s classic work on material nec-
essary for mathematical grasp of theory of relativity. 452pp. 5% x 8%.

63401-9 Pa. $11.95

VECTOR AND TENSOR ANALYSIS WITH APPLICATIONS, A.l. Borisenko
and L.E. Tarapov. Concise introduction. Worked-out problems, solutions, exercises.
257pp. 5% x Bk, 63833-2 Pa. $9.95

THE FOUR-COLOR PROBLEM: Assaults and Conquest, Thomas L. Saaty and
Paul G. Kainen. Engrossing, comprehensive account of the century-old combinator-
ial topological problem, its history and solution. Bibliographies. Index. 110 figures.
228pp. 5% x 8%. 65092-8 Pa. $795
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CATALYSIS IN CHEMISTRY AND ENZYMOLOGY, William P. Jencks.

. Exceptionally clear coverage of mechanisms for catalysis, forces in aqueous solution,

carbonyl- and acyl-group reactions, practical kinetics, more. 864pp. 5% x 8%.
65460-5 Pa. $19.95

PROBABILITY: An Introduction, Samuel Goldberg. Excellent basic text covers set
theory, probability theory for finite sample spaces, binomial theorem, much more.
360 problems. Bibliographies. 322pp. 5% x 8%. 65252-1 Pa. $10.95

LIGHTNING, Martin A. Uman. Revised, updated edition of classic work on the
physics of lightning. Phenomena, terminology, measurement, photography, spec-
troscopy, thunder, more. Reviews recent research. Bibliography. Indices. 320pp.
5% x 8%. 64575-4 Pa. $8.95

PROBABILITY THEORY: A Concise Course, Y.A. Rozanov. Highly readable, self-
contained introduction covers combination of events, dependent events, Bernoulli
trials, etc. Translation by Richard Silverman. 148pp. 5% x 8%, 63544-9 Pa. $8.95

AN INTRODUCTION TO HAMILTONIAN OPTICS, H. A. Buchdahl. Detailed
account of the Hamiltonian treatment of aberration theory in geometrical optics.
Many classes of optical systems defined in terms of the symmetries they possess.
Problems with detailed solutions. 1970 edition. xv + 360pp. 5% x 8.

67597-1 Pa. $10.95

STATISTICS MANUAL, Edwin L. Crow, et al. Comprehensive, practical collection
of classical and modern methods prepared by U.S. Naval Ordnance Test Station.
Stress on use. Basics of statistics assumed. 288pp. 5% x 8%. 60599-X Pa. $8.95

DICTIONARY/OUTLINE OF BASIC STATISTICS, John E. Freund and Frank J.
Williams. A clear concise dictionary of over 1,000 statistical terms and an outline of
statistical formulas covering probability, nonparametric tests, much more. 208pp.
5% x 8%. 66796-0 Pa. $7.95

STATISTICAL METHOD FROM THE VIEWPOINT OF QUALITY CON-
TROL, Walter A. Shewhart. Important text explains regulation of variables, uses of
statistical control to achieve quality control in industry, agriculture, other areas.
192pp. 5% x 8. 65232-7 Pa. $8.95

METHODS OF THERMODYNAMICS, Howard Reiss. QOutstanding text focuses

on physical technique of thermodynamics, typical problem areas of understanding,
and significance and use of thermodynamic potential. 1965 edition. 238pp. 5% x 8%.
69445-3 Pa. $8.95

STATISTICAL ADJUSTMENT OF DATA, W. Edwards Deming. Introduction to
basic concepts of statistics, curve fitting, least squares solution, conditions without para-
meter, conditions containing parameters. 26 exercises worked out. 271pp. 5% x 8%.

64685-8 Pa. $9.95

TENSOR CALCULUS, J.L. Synge and A. Schild. Widely used introductory text
covers spaces and tensors, basic operations in Riemannian space, non-Riemannian
spaces, etc. 324pp. 5% x 8%. 63612-7 Pa. $11.95
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A CONCISE HISTORY OF MATHEMATICS, Dirk J. Struik. The best brief his-
tory of mathematics. Stresses origins and covers every major figure from ancient
Near East to 19th century. 41 illustrations. 195pp. 5% x 8%. 60255-9 Pa. $8.95

A SHORT ACCOUNT OF THE HISTORY OF MATHEMATICS, W.W. Rouse
Ball. One of clearest, most authoritative surveys from the Egyptians and Phoenicians
through 19th-century figures such as Grassman, Galois, Riemann. Fourth edition.
522pp. 5% x 8. 20630-0 Pa. $13.95

HISTORY OF MATHEMATICS, David E. Smith. Nontechnical survey from
ancient Greece and Orient to late 19th century; evolution of arithmetic, geometry,
trigonometry, calculating devices, algebra, the calculus, 362 illustrations. 1,355pp.
5% x 8. 20429-4, 20430-8 Pa., Two-vol. set $27.90

THE GEOMETRY OF RENE DESCARTES, René Descartes. The great work
founded analytical geometry. Original French text, Descartes’ own diagrams, togeth-
er with definitive Smith-Latham translation. 244pp. 5% x 8%. 60068-8 Pa. $8.95

GAMES, GODS & GAMBLING: A History of Probability and Statistical Ideas, F.
N. David. Episodes from the lives of Galileo, Fermat, Pascal, and others illustrate this
fascinating account of the roots of mathematics. Features thought-provoking refer-
ences to classics, archaeology, biography, poetry. 1962 edition. 304pp. 5% x 8Y%.
(USO) 40023-9 Pa. $9.95

THE HISTORY OF THE CALCULUS AND ITS CONCEPTUAL DEVELOP-
MENT, Carl B. Boyer. Origins in antiquity, medieval contributions, work of Newton,
Leibniz, rigorous formulation. Treatment is verbal. 346pp. 5% x 8%. 60509-4 Pa. $9.95

THE THIRTEEN BOOKS OF EUCLID’S ELEMENTS, translated with introduc-
tion and commentary by Sir Thomas L. Heath. Definitive edition. Textual and lin-
guistic notes, mathematical analysis. 2,500 years of critical commentary. Not
abridged. 1,4l4pp. 5% x 8% 60088-2, 60089-0, 60090-4 Pa., Three-vol. set $34.85

GAMES AND DECISIONS: Introduction and Critical Survey, R. Duncan Luce
and Howard Raiffa. Superb nontechnical introduction to game theory, primarily
applied to social sciences. Utility theory, zero-sum games, n-person games, decision-
making, much more. Bibliography. 509pp. 5% x 8'%. 65943-7 Pa. $14.95

THE HISTORICAL ROOTS OF ELEMENTARY MATHEMATICS, Lucas N.H.
Bunt, Phillip S. Jones, and Jack D. Bedient. Fundamental underpinnings of modern
arithmetic, algebra, geometry and number systems derived from ancient civiliza-
tions. 320pp. 5% x 8%, 25563-8 Pa. $9.95

CALCULUS REFRESHER FOR TECHNICAL PEOPLE, A. Albert Klaf. Covers
important aspects of integral and differential calculus via 756 questions. 566 prob-
lems, most answered. 431pp. 5% x 8%. 20370-0 Pa. $9.95
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CHALLENGING MATHEMATICAL PROBLEMS WITH ELEMENTARY
SOLUTIONS, A.M. Yaglom and .M. Yaglom. Over 170 challenging problems on
probability theory, combinatorial analysis, points and lines, topology, convex poly-
gons, many other topics. Solutions. Total of 445pp. 5% x 8%, Two-vol. set.
Vol. I: 65536-9 Pa. $8.95
Vol. II: 655377 Pa. $7.95

FIFTY CHALLENGING PROBLEMS IN PROBABILITY WITH SOLUTIONS,
Frederick Mosteller. Remarkable puzzlers, graded in difficulty, illustrate elementary
and advanced aspects of probability. Detailed solutions. 88pp. 5% x 8%.

65355-2 Pa. $4.95

EXPERIMENTS IN TOPOLOGY, Stephen Barr. Classic, lively explanation of one
of the byways of mathematics. Klein bottles, Moebius strips, projective planes, map
coloring, problem of the Koenigsberg bridges, much more, described with clarity
and wit. 43 figures. 2I0pp. 5% x 84%. 25933-1 Pa. $8.95

RELATIVITY IN ILLUSTRATIONS, Jacob T. Schwartz. Clear nontechnical treat-
ment makes relativity more accessible than ever before. Over 60 drawings illustrate
concepts more clearly than text alone. Only high school geometry needed.
Bibliography. 128pp. 6% x 9%. 25965-X Pa. $7.95

AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS, Earl
A. Coddington. A thorough and systematic first course in elementary differential
equations for undergraduates in mathematics and science, with many exercises and
problems (with answers). Index. 304pp. 5% x 8%. 65942-9 Pa. $9.95

FOURIER SERIES AND ORTHOGONAL FUNCTIONS, Harry F. Davis. An
incisive text combining theory and practical example to introduce Fourier series,
orthogonal functions and applications of the Fourier method to boundary-value
problems. 570 exercises. Answers and notes. 416pp. 5% x 8%.  65973-9 Pa. $13.95

AN INTRODUCTION TO ALGEBRAIC STRUCTURES, Joseph Landin. Superb
self-contained text covers “abstract algebra”: sets and numbers, theory of groups, the-
ory of rings, much more. Numerous well-chosen examples, exercises. 247pp. 5% x 8%.

65940-2 Pa. $8.95

STARS AND RELATIVITY, Ya. B. Zel'dovich and 1. D. Novikov. Vol. 1 of
Relativistic Astrophysics by famed Russian scientists. General relativity, properties of
matter under astrophysical conditions, stars and stellar systems, Deep physical
insights, clear presentation. 1971 edition. References. 544pp. 5% x 8%.

69424-0 Pa. $14.95

Prices subject to change without notice.
Available at your book dealer or write for free Mathematics and Science Catalog to Dept. Gl,
Dover Publications, Inc., 31 East 2nd St., Mineola, N.Y. 11501. Dover publishes more than 250
books each year on science, elementary and advanced mathematics, biology, music, art, litera-
ture, history, social sciences and other areas.
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ADVANCED CaLcuLus, David V. Widder. (66103-2) $12.95

LINEAR PROGRAMMING AND EcoNoMICc ANALYSIS, Robert Dorfman, Paul A,
Samuelson and Robert M. Solow. (65491-5) $14.95

AN INTRODUCTION TO THE CALCULUS OF VARIATIONS, Charles Fox. (65499-0)
$8.95

APPLIED ANALYSIS, Cornelius Lanczos. (65656-X) $13.95
ToroLogy, George McCarty. (65633-0) $8.95

LECTURES ON CLASSICAL DIFFERENTIAL GEOMETRY (SECOND EDITION), Dirk .
Struik. (65609-8) $8.95

CHALLENGING MATHEMATICAL PROBLEMS WITH ELEMENTARY SOLUTIONS, A.M.
Yaglom and .M. Yaglom. (65536-9, 65537-7) Two-volume set $15.90

AsyMPTOTIC EXPANSIONS OF INTEGRALS, Norman Bleistein and Richard A.
Handelsman. (65082-0) $12.95

SoME THEORY OF SAMPLING, W. Edwards Deming. (64684-X) $16.95
STATISTICAL ADSUSTMENT OF DATA, W. Edwards Deming. (64685-8) $9.95

INTRODUCTION TO LINEAR ALGEBRA AND DiFFERENTIAL EQuUATIONS, John W.
Dettman. (65191-6) $11.95

CALCULUS OF VARIATIONS WITH APPLICATIONS, George M. Ewing. (64856-7)
$9.95

INTRODUCTION TO DIFFERENCE EQuATIONS, Samuel Goldberg. (65084-7)

PROBABILITY: AN INTRODUCTION, Samuel Goldberg. (65252-1) $9.95

Group THEORY, W. R. Scott. (65377-3) $12.95

AN INTRODUCTION TO LINEAR ALGEBRA AND TeENsORS, M.A. Akivis and V.V.
Goldberg. (63545-7) $6.95

Non-Eucupean GEOMETRY, Roberto Bonola. (60027-0) $10.95

INTRODUCTION TO NONLINEAR DIFFERENTIAL AND INTEGRAL EQuATIONS, H.T.
Davis. (60971-5) $11.95

FounpATIONS OF MODERN ANALYSIS, Avner Friedman. (64062-0) $8.95

DIFFERENTIAL GEOMETRY, Heinrich W. Guggenheimer. (63433-7) $9.95

ORDINARY DIFFERENTIAL EQUATIONS, E.L. Ince. (60349-0) $13.95

Lie ALGeBRAS, Nathan Jacobson. (63832-4) $9.95

Paperbound unless otherwise indicated. Prices subject to change with-
out notice. Available at your book dealer or write for free catalogues to
Dept. 23, Dover Publications, Inc., 31 East 2nd Street, Mineola, N.Y.
11501. Please indicate field of interest. Each year Dover publishes over
200 books on fine art, music, crafts and needlework, antiques, lan-
guages, literature, children’s books, chess, cookery, nature, anthropol-
ogy, science, mathematics, and other areas.
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Vectors, Tensors, and
the Basic Equations

of Fluid Mechanics
Rutherford Aris

This excellent text develops and utilizes mathematical concepts to illuminate
physical theories. Directed primarily to engineers, physicists and applied math-
ematicians at advanced undergraduate and graduate levels, it applies the math-
ematics of Cartesian and general tensors to physical field theories and demonstrates
them chiefly in terms of the theory of fluid mechanics.

Essentially an introductory text, intended for readers with some acquaintance with
the calculus of partial differentiation and multiple integration, it first reviews the
necessary background material, then proceeds to explore the algebra and calculus
of Cartesian vectors and tensors. Subsequent chapters take up the kinematics of
fluid motion, stress in fluids, equations of motion and energy in Cartesian
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