

Introduction to
High Performance

Computing for
Scientists and Engineers

K10600_FM.indd 1 6/1/10 11:51:56 AM

Chapman & Hall/CRC
Computational Science Series

PETASCALE COMPUTING: ALGORITHMS AND APPLICATIONS
Edited by David A. Bader

PROCESS ALGEBRA FOR PARALLEL AND DISTRIBUTED PROCESSING
Edited by Michael Alexander and William Gardner

GRID COMPUTING: TECHNIQUES AND APPLICATIONS
Barry Wilkinson

INTRODUCTION TO CONCURRENCY IN PROGRAMMING LANGUAGES
Matthew J. Sottile, Timothy G. Mattson, and Craig E Rasmussen

INTRODUCTION TO SCHEDULING
Yves Robert and Frédéric Vivien

SCIENTIFIC DATA MANAGEMENT: CHALLENGES, TECHNOLOGY, AND DEPLOYMENT
Edited by Arie Shoshani and Doron Rotem

INTRODUCTION TO THE SIMULATION OF DYNAMICS USING SIMULINK®

Michael A. Gray

INTRODUCTION TO HIGH PERFORMANCE COMPUTING FOR SCIENTISTS
AND ENGINEERS, Georg Hager and Gerhard Wellein

PUBLISHED TITLES

SERIES EDITOR

Horst Simon
Associate Laboratory Director, Computing Sciences

Lawrence Berkeley National Laboratory

Berkeley, California, U.S.A.

AIMS AND SCOPE

This series aims to capture new developments and applications in the field of computational sci-
ence through the publication of a broad range of textbooks, reference works, and handbooks.
Books in this series will provide introductory as well as advanced material on mathematical, sta-
tistical, and computational methods and techniques, and will present researchers with the latest
theories and experimentation. The scope of the series includes, but is not limited to, titles in the
areas of scientific computing, parallel and distributed computing, high performance computing,
grid computing, cluster computing, heterogeneous computing, quantum computing, and their
applications in scientific disciplines such as astrophysics, aeronautics, biology, chemistry, climate
modeling, combustion, cosmology, earthquake prediction, imaging, materials, neuroscience, oil
exploration, and weather forecasting.

Introduction to
High Performance

Computing for
Scientists and Engineers

Georg Hager

Gerhard Wellein

K10600_FM.indd 2 6/1/10 11:51:56 AM

Chapman & Hall/CRC
Computational Science Series

PETASCALE COMPUTING: ALGORITHMS AND APPLICATIONS
Edited by David A. Bader

PROCESS ALGEBRA FOR PARALLEL AND DISTRIBUTED PROCESSING
Edited by Michael Alexander and William Gardner

GRID COMPUTING: TECHNIQUES AND APPLICATIONS
Barry Wilkinson

INTRODUCTION TO CONCURRENCY IN PROGRAMMING LANGUAGES
Matthew J. Sottile, Timothy G. Mattson, and Craig E Rasmussen

INTRODUCTION TO SCHEDULING
Yves Robert and Frédéric Vivien

SCIENTIFIC DATA MANAGEMENT: CHALLENGES, TECHNOLOGY, AND DEPLOYMENT
Edited by Arie Shoshani and Doron Rotem

INTRODUCTION TO THE SIMULATION OF DYNAMICS USING SIMULINK®

Michael A. Gray

INTRODUCTION TO HIGH PERFORMANCE COMPUTING FOR SCIENTISTS
AND ENGINEERS, Georg Hager and Gerhard Wellein

PUBLISHED TITLES

SERIES EDITOR

Horst Simon
Associate Laboratory Director, Computing Sciences

Lawrence Berkeley National Laboratory

Berkeley, California, U.S.A.

AIMS AND SCOPE

This series aims to capture new developments and applications in the field of computational sci-
ence through the publication of a broad range of textbooks, reference works, and handbooks.
Books in this series will provide introductory as well as advanced material on mathematical, sta-
tistical, and computational methods and techniques, and will present researchers with the latest
theories and experimentation. The scope of the series includes, but is not limited to, titles in the
areas of scientific computing, parallel and distributed computing, high performance computing,
grid computing, cluster computing, heterogeneous computing, quantum computing, and their
applications in scientific disciplines such as astrophysics, aeronautics, biology, chemistry, climate
modeling, combustion, cosmology, earthquake prediction, imaging, materials, neuroscience, oil
exploration, and weather forecasting.

Introduction to
High Performance

Computing for
Scientists and Engineers

Georg Hager

Gerhard Wellein

K10600_FM.indd 3 6/1/10 11:51:57 AM

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2011 by Taylor and Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number: 978-1-4398-1192-4 (Paperback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Hager, Georg.
Introduction to high performance computing for scientists and engineers / Georg

Hager and Gerhard Wellein.
p. cm. -- (Chapman & Hall/CRC computational science series ; 7)

Includes bibliographical references and index.
ISBN 978-1-4398-1192-4 (alk. paper)
1. High performance computing. I. Wellein, Gerhard. II. Title.

QA76.88.H34 2011
004’.35--dc22 2010009624

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

K10600_FM.indd 4 6/1/10 11:51:57 AM

Dedicated to Konrad Zuse (1910–1995)

He developed and built the world’s first fully automated, freely programmable
computer with binary floating-point arithmetic in 1941.

Contents

Foreword xiii

Preface xv

About the authors xxi

List of acronyms and abbreviations xxiii

1 Modern processors 1

1.1 Stored-program computer architecture 1
1.2 General-purpose cache-based microprocessor architecture 2

1.2.1 Performance metrics and benchmarks 3
1.2.2 Transistors galore: Moore’s Law 7
1.2.3 Pipelining . 9
1.2.4 Superscalarity . 13
1.2.5 SIMD . 14

1.3 Memory hierarchies . 15
1.3.1 Cache . 15
1.3.2 Cache mapping . 18
1.3.3 Prefetch . 20

1.4 Multicore processors . 23
1.5 Multithreaded processors . 26
1.6 Vector processors . 28

1.6.1 Design principles . 29
1.6.2 Maximum performance estimates 31
1.6.3 Programming for vector architectures 32

2 Basic optimization techniques for serial code 37

2.1 Scalar profiling . 37
2.1.1 Function- and line-based runtime profiling 38
2.1.2 Hardware performance counters 41
2.1.3 Manual instrumentation 45

2.2 Common sense optimizations . 45
2.2.1 Do less work! . 45
2.2.2 Avoid expensive operations! 46
2.2.3 Shrink the working set! . 47

vii

viii

2.3 Simple measures, large impact . 47
2.3.1 Elimination of common subexpressions 47
2.3.2 Avoiding branches . 48
2.3.3 Using SIMD instruction sets 49

2.4 The role of compilers . 51
2.4.1 General optimization options 52
2.4.2 Inlining . 52
2.4.3 Aliasing . 53
2.4.4 Computational accuracy 54
2.4.5 Register optimizations . 55
2.4.6 Using compiler logs . 55

2.5 C++ optimizations . 56
2.5.1 Temporaries . 56
2.5.2 Dynamic memory management 59
2.5.3 Loop kernels and iterators 60

3 Data access optimization 63

3.1 Balance analysis and lightspeed estimates 63
3.1.1 Bandwidth-based performance modeling 63
3.1.2 The STREAM benchmarks 67

3.2 Storage order . 69
3.3 Case study: The Jacobi algorithm 71
3.4 Case study: Dense matrix transpose 74
3.5 Algorithm classification and access optimizations 79

3.5.1 O(N)/O(N) . 79
3.5.2 O(N2)/O(N2) . 79
3.5.3 O(N3)/O(N2) . 84

3.6 Case study: Sparse matrix-vector multiply 86
3.6.1 Sparse matrix storage schemes 86
3.6.2 Optimizing JDS sparse MVM 89

4 Parallel computers 95

4.1 Taxonomy of parallel computing paradigms 96
4.2 Shared-memory computers . 97

4.2.1 Cache coherence . 97
4.2.2 UMA . 99
4.2.3 ccNUMA . 100

4.3 Distributed-memory computers 102
4.4 Hierarchical (hybrid) systems . 103
4.5 Networks . 104

4.5.1 Basic performance characteristics of networks 104
4.5.2 Buses . 109
4.5.3 Switched and fat-tree networks 110
4.5.4 Mesh networks . 112
4.5.5 Hybrids . 113

ix

5 Basics of parallelization 115

5.1 Why parallelize? . 115
5.2 Parallelism . 116

5.2.1 Data parallelism . 116
5.2.2 Functional parallelism . 119

5.3 Parallel scalability . 120
5.3.1 Factors that limit parallel execution 120
5.3.2 Scalability metrics . 122
5.3.3 Simple scalability laws . 123
5.3.4 Parallel efficiency . 125
5.3.5 Serial performance versus strong scalability 126
5.3.6 Refined performance models 128
5.3.7 Choosing the right scaling baseline 130
5.3.8 Case study: Can slower processors compute faster? 131
5.3.9 Load imbalance . 137

6 Shared-memory parallel programming with OpenMP 143

6.1 Short introduction to OpenMP . 143
6.1.1 Parallel execution . 144
6.1.2 Data scoping . 146
6.1.3 OpenMP worksharing for loops 147
6.1.4 Synchronization . 149
6.1.5 Reductions . 150
6.1.6 Loop scheduling . 151
6.1.7 Tasking . 153
6.1.8 Miscellaneous . 154

6.2 Case study: OpenMP-parallel Jacobi algorithm 156
6.3 Advanced OpenMP: Wavefront parallelization 158

7 Efficient OpenMP programming 165

7.1 Profiling OpenMP programs . 165
7.2 Performance pitfalls . 166

7.2.1 Ameliorating the impact of OpenMP worksharing constructs 168
7.2.2 Determining OpenMP overhead for short loops 175
7.2.3 Serialization . 177
7.2.4 False sharing . 179

7.3 Case study: Parallel sparse matrix-vector multiply 181

8 Locality optimizations on ccNUMA architectures 185

8.1 Locality of access on ccNUMA 185
8.1.1 Page placement by first touch 186
8.1.2 Access locality by other means 190

8.2 Case study: ccNUMA optimization of sparse MVM 190
8.3 Placement pitfalls . 192

8.3.1 NUMA-unfriendly OpenMP scheduling 192

x

8.3.2 File system cache . 194
8.4 ccNUMA issues with C++ . 197

8.4.1 Arrays of objects . 197
8.4.2 Standard Template Library 199

9 Distributed-memory parallel programming with MPI 203

9.1 Message passing . 203
9.2 A short introduction to MPI . 205

9.2.1 A simple example . 205
9.2.2 Messages and point-to-point communication 207
9.2.3 Collective communication 213
9.2.4 Nonblocking point-to-point communication 216
9.2.5 Virtual topologies . 220

9.3 Example: MPI parallelization of a Jacobi solver 224
9.3.1 MPI implementation . 224
9.3.2 Performance properties . 230

10 Efficient MPI programming 235

10.1 MPI performance tools . 235
10.2 Communication parameters . 239
10.3 Synchronization, serialization, contention 240

10.3.1 Implicit serialization and synchronization 240
10.3.2 Contention . 243

10.4 Reducing communication overhead 244
10.4.1 Optimal domain decomposition 244
10.4.2 Aggregating messages . 248
10.4.3 Nonblocking vs. asynchronous communication 250
10.4.4 Collective communication 253

10.5 Understanding intranode point-to-point communication 253

11 Hybrid parallelization with MPI and OpenMP 263

11.1 Basic MPI/OpenMP programming models 264
11.1.1 Vector mode implementation 264
11.1.2 Task mode implementation 265
11.1.3 Case study: Hybrid Jacobi solver 267

11.2 MPI taxonomy of thread interoperability 268
11.3 Hybrid decomposition and mapping 270
11.4 Potential benefits and drawbacks of hybrid programming 273

A Topology and affinity in multicore environments 277

A.1 Topology . 279
A.2 Thread and process placement . 280

A.2.1 External affinity control 280
A.2.2 Affinity under program control 283

A.3 Page placement beyond first touch 284

xi

B Solutions to the problems 287

Bibliography 309

Index 323

This page intentionally left blank.

Foreword

Georg Hager and Gerhard Wellein have developed a very approachable introduction
to high performance computing for scientists and engineers. Their style and descrip-
tions are easy to read and follow.

The idea that computational modeling and simulation represent a new branch of
scientific methodology, alongside theory and experimentation, was introduced about
two decades ago. It has since come to symbolize the enthusiasm and sense of im-
portance that people in our community feel for the work they are doing. Many of us
today want to hasten that growth and believe that the most progressive steps in that di-
rection require much more understanding of the vital core of computational science:
software and the mathematical models and algorithms it encodes. Of course, the
general and widespread obsession with hardware is understandable, especially given
exponential increases in processor performance, the constant evolution of processor
architectures and supercomputer designs, and the natural fascination that people have
for big, fast machines. But when it comes to advancing the cause of computational
modeling and simulation as a new part of the scientific method there is no doubt that
the complex software “ecosystem” it requires must take its place on the center stage.

At the application level science has to be captured in mathematical models, which
in turn are expressed algorithmically and ultimately encoded as software. Accord-
ingly, on typical projects the majority of the funding goes to support this translation
process that starts with scientific ideas and ends with executable software, and which
over its course requires intimate collaboration among domain scientists, computer
scientists, and applied mathematicians. This process also relies on a large infrastruc-
ture of mathematical libraries, protocols, and system software that has taken years to
build up and that must be maintained, ported, and enhanced for many years to come if
the value of the application codes that depend on it are to be preserved and extended.
The software that encapsulates all this time, energy, and thought routinely outlasts
(usually by years, sometimes by decades) the hardware it was originally designed to
run on, as well as the individuals who designed and developed it.

This book covers the basics of modern processor architecture and serial optimiza-
tion techniques that can effectively exploit the architectural features for scientific
computing. The authors provide a discussion of the critical issues in data movement
and illustrate this with examples. A number of central issues in high performance
computing are discussed at a level that is easily understandable. The use of parallel
processing in shared, nonuniform access, and distributed memories is discussed. In
addition the popular programming styles of OpenMP, MPI and mixed programming
are highlighted.

xiii

xiv

We live in an exciting time in the use of high performance computing and a pe-
riod that promises unmatched performance for those who can effectively utilize the
systems for high performance computing. This book presents a balanced treatment of
the theory, technology, architecture, and software for modern high performance com-
puters and the use of high performance computing systems. The focus on scientific
and engineering problems makes it both educational and unique. I highly recom-
mend this timely book for scientists and engineers, and I believe it will benefit many
readers and provide a fine reference.

Jack Dongarra

University of Tennessee
Knoxville, Tennessee

USA

Preface

When Konrad Zuse constructed the world’s first fully automated, freely pro-
grammable computer with binary floating-point arithmetic in 1941 [H129], he had
great visions regarding the possible use of his revolutionary device, not only in sci-
ence and engineering but in all sectors of life [H130]. Today, his dream is reality:
Computing in all its facets has radically changed the way we live and perform re-
search since Zuse’s days. Computers have become essential due to their ability to
perform calculations, visualizations, and general data processing at an incredible,
ever-increasing speed. They allow us to offload daunting routine tasks and commu-
nicate without delay.

Science and engineering have profited in a special way from this development.
It was recognized very early that computers can help tackle problems that were for-
merly too computationally challenging, or perform virtual experiments that would
be too complex, expensive, or outright dangerous to carry out in reality. Computa-

tional fluid dynamics, or CFD, is a typical example: The simulation of fluid flow in
arbitrary geometries is a standard task. No airplane, no car, no high-speed train, no
turbine bucket enters manufacturing without prior CFD analysis. This does not mean
that the days of wind tunnels and wooden mock-ups are numbered, but that com-
puter simulation supports research and engineering as a third pillar beside theory and
experiment, not only on fluid dynamics but nearly all other fields of science. In re-
cent years, pharmaceutical drug design has emerged as a thrilling new application
area for fast computers. Software enables chemists to discover reaction mechanisms
literally at the click of their mouse, simulating the complex dynamics of the large
molecules that govern the inner mechanics of life. On even smaller scales, theoreti-

cal solid state physics explores the structure of solids by modeling the interactions of
their constituents, nuclei and electrons, on the quantum level [A79], where the sheer
number of degrees of freedom rules out any analytical treatment in certain limits and
requires vast computational resources. The list goes on and on: Quantum chromody-
namics, materials science, structural mechanics, and medical image processing are
just a few further application areas.

Computer-based simulations have become ubiquitous standard tools, and are in-
dispensable for most research areas both in academia and industry. Although the
power of the PC has brought many of those computational chores to the researcher’s
desktop, there was, still is and probably will ever be this special group of people
whose requirements on storage, main memory, or raw computational speed cannot
be met by a single desktop machine. High performance parallel computers come to
their rescue.

xv

xvi

Employing high performance computing (HPC) as a research tool demands at
least a basic understanding of the hardware concepts and software issues involved.
This is already true when only using turnkey application software, but it becomes
essential if code development is required. However, in all our years of teaching and
working with scientists and engineers we have learned that such knowledge is volatile

— in the sense that it is hard to establish and maintain an adequate competence level
within the different research groups. The new PhD student is all too often left alone
with the steep learning curve of HPC, but who is to blame? After all, the goal of
research and development is to make scientific progress, for which HPC is just a
tool. It is essential, sometimes unwieldy, and always expensive, but it is still a tool.
Nevertheless, writing efficient and parallel code is the admission ticket to high per-
formance computing, which was for a long time an exquisite and small world. Tech-
nological changes have brought parallel computing first to the departmental level and
recently even to the desktop. In times of stagnating single processor capabilities and
increasing parallelism, a growing audience of scientists and engineers must be con-
cerned with performance and scalability. These are the topics we are aiming at with
this book, and the reason we wrote it was to make the knowledge about them less
volatile.

Actually, a lot of good literature exists on all aspects of computer architecture,
optimization, and HPC [S1, R34, S2, S3, S4]. Although the basic principles haven’t
changed much, a lot of it is outdated at the time of writing: We have seen the decline
of vector computers (and also of one or the other highly promising microprocessor
design), ubiquitous SIMD capabilities, the advent of multicore processors, the grow-
ing presence of ccNUMA, and the introduction of cost-effective high-performance
interconnects. Perhaps the most striking development is the absolute dominance of
x86-based commodity clusters running the Linux OS on Intel or AMD processors.
Recent publications are often focused on very specific aspects, and are unsuitable
for the student or the scientist who wants to get a fast overview and maybe later dive
into the details. Our goal is to provide a solid introduction to the architecture and pro-
gramming of high performance computers, with an emphasis on performance issues.
In our experience, users all too often have no idea what factors limit time to solution,
and whether it makes sense to think about optimization at all. Readers of this book
will get an intuitive understanding of performance limitations without much com-
puter science ballast, to a level of knowledge that enables them to understand more
specialized sources. To this end we have compiled an extensive bibliography, which
is also available online in a hyperlinked and commented version at the book’s Web
site: http://www.hpc.rrze.uni-erlangen.de/HPC4SE/.

Who this book is for

We believe that working in a scientific computing center gave us a unique view
of the requirements and attitudes of users as well as manufacturers of parallel com-
puters. Therefore, everybody who has to deal with high performance computing may

xvii

profit from this book: Students and teachers of computer science, computational en-
gineering, or any field even marginally concerned with simulation may use it as an
accompanying textbook. For scientists and engineers who must get a quick grasp of
HPC basics it can be a starting point to prepare for more advanced literature. And
finally, professional cluster builders can definitely use the knowledge we convey to
provide a better service to their customers. The reader should have some familiarity
with programming and high-level computer architecture. Even so, we must empha-
size that it is an introduction rather than an exhaustive reference; the Encyclopedia

of High Performance Computing has yet to be written.

What’s in this book, and what’s not

High performance computing as we understand it deals with the implementations

of given algorithms (also commonly referred to as “code”), and the hardware they
run on. We assume that someone who wants to use HPC resources is already aware
of the different algorithms that can be used to tackle their problem, and we make
no attempt to provide alternatives. Of course we have to pick certain examples in
order to get the point across, but it is always understood that there may be other, and
probably more adequate algorithms. The reader is then expected to use the strategies
learned from our examples.

Although we tried to keep the book concise, the temptation to cover everything is
overwhelming. However, we deliberately (almost) ignore very recent developments
like modern accelerator technologies (GPGPU, FPGA, Cell processor), mostly be-
cause they are so much in a state of flux that coverage with any claim of depth would
be almost instantly outdated. One may also argue that high performance input/out-
put should belong in an HPC book, but we think that efficient parallel I/O is an
advanced and highly system-dependent topic, which is best treated elsewhere. On
the software side we concentrate on basic sequential optimization strategies and the
dominating parallelization paradigms: shared-memory parallelization with OpenMP
and distributed-memory parallel programming with MPI. Alternatives like Unified
Parallel C (UPC), Co-Array Fortran (CAF), or other, more modern approaches still
have to prove their potential for getting at least as efficient, and thus accepted, as
MPI and OpenMP.

Most concepts are presented on a level independent of specific architectures,
although we cannot ignore the dominating presence of commodity systems. Thus,
when we show case studies and actual performance numbers, those have usually been
obtained on x86-based clusters with standard interconnects. Almost all code exam-
ples are in Fortran; we switch to C or C++ only if the peculiarities of those languages
are relevant in a certain setting. Some of the codes used for producing benchmark
results are available for download at the book’s Web site: http://www.hpc.rrze.uni-

erlangen.de/HPC4SE/.
This book is organized as follows: In Chapter 1 we introduce the architecture of

modern cache-based microprocessors and discuss their inherent performance limi-

xviii

tations. Recent developments like multicore chips and simultaneous multithreading
(SMT) receive due attention. Vector processors are briefly touched, although they
have all but vanished from the HPC market. Chapters 2 and 3 describe general opti-
mization strategies for serial code on cache-based architectures. Simple models are
used to convey the concept of “best possible” performance of loop kernels, and we
show how to raise those limits by code transformations. Actually, we believe that
performance modeling of applications on all levels of a system’s architecture is of
utmost importance, and we regard it as an indispensable guiding principle in HPC.

In Chapter 4 we turn to parallel computer architectures of the shared-memory and
the distributed-memory type, and also cover the most relevant network topologies.
Chapter 5 then covers parallel computing on a theoretical level: Starting with some
important parallel programming patterns, we turn to performance models that ex-
plain the limitations on parallel scalability. The questions why and when it can make
sense to build massively parallel systems with “slow” processors are answered along
the way. Chapter 6 gives a brief introduction to OpenMP, which is still the dominat-
ing parallelization paradigm on shared-memory systems for scientific applications.
Chapter 7 deals with some typical performance problems connected with OpenMP
and shows how to avoid or ameliorate them. Since cache-coherent nonuniform mem-
ory access (ccNUMA) systems have proliferated the commodity HPC market (a fact
that is still widely ignored even by some HPC “professionals”), we dedicate Chap-
ter 8 to ccNUMA-specific optimization techniques. Chapters 9 and 10 are concerned
with distributed-memory parallel programming with the Message Passing Interface
(MPI), and writing efficient MPI code. Finally, Chapter 11 gives an introduction to
hybrid programming with MPI and OpenMP combined. Every chapter closes with
a set of problems, which we highly recommend to all readers. The problems fre-
quently cover “odds and ends” that somehow did not fit somewhere else, or elaborate
on special topics. Solutions are provided in Appendix B.

We certainly recommend reading the book cover to cover, because there is not a
single topic that we consider “less important.” However, readers who are interested
in OpenMP and MPI alone can easily start off with Chapters 6 and 9 for the basic
information, and then dive into the corresponding optimization chapters (7, 8, and
10). The text is heavily cross-referenced, so it should be easy to collect the missing
bits and pieces from other parts of the book.

Acknowledgments

This book originated from a two-chapter contribution to a Springer “Lecture
Notes in Physics” volume, which comprised the proceedings of a 2006 summer
school on computational many-particle physics [A79]. We thank the organizers of
this workshop, notably Holger Fehske, Ralf Schneider, and Alexander Weisse, for
making us put down our HPC experience for the first time in coherent form. Al-
though we extended the material considerably, we would most probably never have
written a book without this initial seed.

xix

Over a decade of working with users, students, algorithms, codes, and tools went
into these pages. Many people have thus contributed, directly or indirectly, and some-
times unknowingly. In particular we have to thank the staff of HPC Services at Er-
langen Regional Computing Center (RRZE), especially Thomas Zeiser, Jan Treibig,
Michael Meier, Markus Wittmann, Johannes Habich, Gerald Schubert, and Holger
Stengel, for countless lively discussions leading to invaluable insights. Over the last
decade the group has continuously received financial support by the “Competence
Network for Scientific High Performance Computing in Bavaria” (KONWIHR) and
the Friedrich-Alexander University of Erlangen-Nuremberg. Both bodies shared our
vision of HPC as an indispensable tool for many scientists and engineers.

We are also indebted to Uwe Küster (HLRS Stuttgart), Matthias Müller (ZIH
Dresden), Reinhold Bader, and Matthias Brehm (both LRZ München), for a highly
efficient cooperation between our centers, which enabled many activities and col-
laborations. Special thanks goes to Darren Kerbyson (PNNL) for his encouragement
and many astute comments on our work. Last, but not least, we want to thank Rolf
Rabenseifner (HLRS) and Gabriele Jost (TACC) for their collaboration on the topic
of hybrid programming. Our Chapter 11 was inspired by this work.

Several companies, through their first-class technical support and willingness
to cooperate even on a nonprofit basis, deserve our gratitude: Intel (represented by
Andrey Semin and Herbert Cornelius), SGI (Reiner Vogelsang and Rüdiger Wolff),
NEC (Thomas Schönemeyer), Sun Microsystems (Rick Hetherington, Ram Kunda,
and Constantin Gonzalez), IBM (Klaus Gottschalk), and Cray (Wilfried Oed).

We would furthermore like to acknowledge the competent support of the CRC
staff in the production of the book and the promotional material, notably by Ari
Silver, Karen Simon, Katy Smith, and Kevin Craig. Finally, this book would not
have been possible without the encouragement we received from Horst Simon
(LBNL/NERSC) and Randi Cohen (Taylor & Francis), who convinced us to embark
on the project in the first place.

Georg Hager & Gerhard Wellein

Erlangen Regional Computing Center
University of Erlangen-Nuremberg

Germany

About the authors

Georg Hager is a theoretical physicist and holds a PhD in
computational physics from the University of Greifswald. He
has been working with high performance systems since 1995,
and is now a senior research scientist in the HPC group at Er-
langen Regional Computing Center (RRZE). Recent research
includes architecture-specific optimization for current micro-
processors, performance modeling on processor and system
levels, and the efficient use of hybrid parallel systems. His
daily work encompasses all aspects of user support in high per-
formance computing such as lectures, tutorials, training, code
parallelization, profiling and optimization, and the assessment
of novel computer architectures and tools.

Gerhard Wellein holds a PhD in solid state physics from the
University of Bayreuth and is a professor at the Department for
Computer Science at the University of Erlangen. He leads the
HPC group at Erlangen Regional Computing Center (RRZE)
and has more than ten years of experience in teaching HPC
techniques to students and scientists from computational sci-
ence and engineering programs. His research interests include
solving large sparse eigenvalue problems, novel parallelization
approaches, performance modeling, and architecture-specific
optimization.

xxi

List of acronyms and abbreviations

ASCII American standard code for information interchange
ASIC Application-specific integrated circuit
BIOS Basic input/output system
BLAS Basic linear algebra subroutines
CAF Co-array Fortran
ccNUMA Cache-coherent nonuniform memory access
CFD Computational fluid dynamics
CISC Complex instruction set computer
CL Cache line
CPI Cycles per instruction
CPU Central processing unit
CRS Compressed row storage
DDR Double data rate
DMA Direct memory access
DP Double precision
DRAM Dynamic random access memory
ED Exact diagonalization
EPIC Explicitly parallel instruction computing
Flop Floating-point operation
FMA Fused multiply-add
FP Floating point
FPGA Field-programmable gate array
FS File system
FSB Frontside bus
GCC GNU compiler collection
GE Gigabit Ethernet
GigE Gigabit Ethernet
GNU GNU is not UNIX
GPU Graphics processing unit
GUI Graphical user interface

xxiii

xxiv

HPC High performance computing
HPF High performance Fortran
HT HyperTransport
IB InfiniBand
ILP Instruction-level parallelism
IMB Intel MPI benchmarks
I/O Input/output
IP Internet protocol
JDS Jagged diagonals storage
L1D Level 1 data cache
L1I Level 1 instruction cache
L2 Level 2 cache
L3 Level 3 cache
LD Locality domain
LD Load
LIKWID Like I knew what I’m doing
LRU Least recently used
LUP Lattice site update
MC Monte Carlo
MESI Modified/Exclusive/Shared/Invalid
MI Memory interface
MIMD Multiple instruction multiple data
MIPS Million instructions per second
MMM Matrix–matrix multiplication
MPI Message passing interface
MPMD Multiple program multiple data
MPP Massively parallel processing
MVM Matrix–vector multiplication
NORMA No remote memory access
NRU Not recently used
NUMA Nonuniform memory access
OLC Outer-level cache
OS Operating system
PAPI Performance application programming interface
PC Personal computer
PCI Peripheral component interconnect
PDE Partial differential equation
PGAS Partitioned global address space

xxv

PLPA Portable Linux processor affinity
POSIX Portable operating system interface for Unix
PPP Pipeline parallel processing
PVM Parallel virtual machine
QDR Quad data rate
QPI QuickPath interconnect
RAM Random access memory
RISC Reduced instruction set computer
RHS Right hand side
RFO Read for ownership
SDR Single data rate
SIMD Single instruction multiple data
SISD Single instruction single data
SMP Symmetric multiprocessing
SMT Simultaneous multithreading
SP Single precision
SPMD Single program multiple data
SSE Streaming SIMD extensions
ST Store
STL Standard template library
SYSV Unix System V
TBB Threading building blocks
TCP Transmission control protocol
TLB Translation lookaside buffer
UMA Uniform memory access
UPC Unified parallel C

Chapter 1

Modern processors

In the “old days” of scientific supercomputing roughly between 1975 and 1995,
leading-edge high performance systems were specially designed for the HPC mar-
ket by companies like Cray, CDC, NEC, Fujitsu, or Thinking Machines. Those sys-
tems were way ahead of standard “commodity” computers in terms of performance
and price. Single-chip general-purpose microprocessors, which had been invented in
the early 1970s, were only mature enough to hit the HPC market by the end of the
1980s, and it was not until the end of the 1990s that clusters of standard workstation
or even PC-based hardware had become competitive at least in terms of theoretical
peak performance. Today the situation has changed considerably. The HPC world
is dominated by cost-effective, off-the-shelf systems with processors that were not
primarily designed for scientific computing. A few traditional supercomputer ven-
dors act in a niche market. They offer systems that are designed for high application
performance on the single CPU level as well as for highly parallel workloads. Conse-
quently, the scientist and engineer is likely to encounter such “commodity clusters”
first and only advance to more specialized hardware as requirements grow. For this
reason, this chapter will mostly focus on systems based on standard cache-based mi-
croprocessors. Vector computers support a different programming paradigm that is
in many respects closer to the requirements of scientific computation, but they have
become rare. However, since a discussion of supercomputer architecture would not
be complete without them, a general overview will be provided in Section 1.6.

1.1 Stored-program computer architecture

When we talk about computer systems at large, we always have a certain architec-
tural concept in mind. This concept was conceived by Turing in 1936, and first imple-
mented in a real machine (EDVAC) in 1949 by Eckert and Mauchly [H129, H131].
Figure 1.1 shows a block diagram for the stored-program digital computer. Its defin-
ing property, which set it apart from earlier designs, is that its instructions are num-
bers that are stored as data in memory. Instructions are read and executed by a control
unit; a separate arithmetic/logic unit is responsible for the actual computations and
manipulates data stored in memory along with the instructions. I/O facilities enable
communication with users. Control and arithmetic units together with the appropri-
ate interfaces to memory and I/O are called the Central Processing Unit (CPU). Pro-
gramming a stored-program computer amounts to modifying instructions in memory,

1

2 Introduction to High Performance Computing for Scientists and Engineers

Figure 1.1: Stored-program computer ar-
chitectural concept. The “program,” which
feeds the control unit, is stored in memory
together with any data the arithmetic unit
requires.

Memory

In
p

u
t/

O
u

tp
u

t

CPU

Control

unit

Arithmetic

logic

unit

which can in principle be done by another program; a compiler is a typical example,
because it translates the constructs of a high-level language like C or Fortran into
instructions that can be stored in memory and then executed by a computer.

This blueprint is the basis for all mainstream computer systems today, and its
inherent problems still prevail:

• Instructions and data must be continuously fed to the control and arithmetic
units, so that the speed of the memory interface poses a limitation on compute
performance. This is often called the von Neumann bottleneck. In the follow-
ing sections and chapters we will show how architectural optimizations and
programming techniques may mitigate the adverse effects of this constriction,
but it should be clear that it remains a most severe limiting factor.

• The architecture is inherently sequential, processing a single instruction with
(possibly) a single operand or a group of operands from memory. The term
SISD (Single Instruction Single Data) has been coined for this concept. How it
can be modified and extended to support parallelism in many different flavors
and how such a parallel machine can be efficiently used is also one of the main
topics of this book.

Despite these drawbacks, no other architectural concept has found similarly
widespread use in nearly 70 years of electronic digital computing.

1.2 General-purpose cache-based microprocessor architecture

Microprocessors are probably the most complicated machinery that man has ever
created; however, they all implement the stored-program digital computer concept
as described in the previous section. Understanding all inner workings of a CPU is
out of the question for the scientist, and also not required. It is helpful, though, to
get a grasp of the high-level features in order to understand potential bottlenecks.
Figure 1.2 shows a very simplified block diagram of a modern cache-based general-
purpose microprocessor. The components that actually do “work” for a running ap-
plication are the arithmetic units for floating-point (FP) and integer (INT) operations

Modern processors 3

M
e

m
o

ry
in

te
rf

a
c

e

cache

cache

mask
shift

INT
op

LD

ST

FP
mult

FP
add

M
a
in

 m
e
m

o
ry

L
2

 u
n

if
ie

d
 c

a
c

h
e

M
e

m
o

ry
 q

u
e

u
e

IN
T

/F
P

 q
u

e
u

e

IN
T

 r
e

g
.

fi
le

F
P

 r
e

g
.

fi
le

L1 data

L1 instr.

Figure 1.2: Simplified block diagram of a typical cache-based microprocessor (one core).
Other cores on the same chip or package (socket) can share resources like caches or the mem-
ory interface. The functional blocks and data paths most relevant to performance issues in
scientific computing are highlighted.

and make up for only a very small fraction of the chip area. The rest consists of ad-
ministrative logic that helps to feed those units with operands. CPU registers, which
are generally divided into floating-point and integer (or “general purpose”) varieties,
can hold operands to be accessed by instructions with no significant delay; in some
architectures, all operands for arithmetic operations must reside in registers. Typical
CPUs nowadays have between 16 and 128 user-visible registers of both kinds. Load
(LD) and store (ST) units handle instructions that transfer data to and from registers.
Instructions are sorted into several queues, waiting to be executed, probably not in
the order they were issued (see below). Finally, caches hold data and instructions to
be (re-)used soon. The major part of the chip area is usually occupied by caches.

A lot of additional logic, i.e., branch prediction, reorder buffers, data shortcuts,
transaction queues, etc., that we cannot touch upon here is built into modern pro-
cessors. Vendors provide extensive documentation about those details [V104, V105,
V106]. During the last decade, multicore processors have superseded the traditional
single-core designs. In a multicore chip, several processors (“cores”) execute code
concurrently. They can share resources like memory interfaces or caches to varying
degrees; see Section 1.4 for details.

1.2.1 Performance metrics and benchmarks

All the components of a CPU core can operate at some maximum speed called
peak performance. Whether this limit can be reached with a specific application code
depends on many factors and is one of the key topics of Chapter 3. Here we introduce
some basic performance metrics that can quantify the “speed” of a CPU. Scientific
computing tends to be quite centric to floating-point data, usually with “double preci-

4 Introduction to High Performance Computing for Scientists and Engineers

�����
�����
�����

�����
�����
�����

��
��
��
��
��

��
��
��
��
��

�������
�������
�������
�������

Registers

"DRAM gap"

Arithmetic units

L2 cache

L1 cache

C
P

U
 c

h
ip

Main memory
Figure 1.3: (Left) Simpli-
fied data-centric memory
hierarchy in a cache-based
microprocessor (direct ac-
cess paths from registers
to memory are not avail-
able on all architectures).
There is usually a separate
L1 cache for instructions.
(Right) The “DRAM gap”
denotes the large discrep-
ancy between main mem-
ory and cache bandwidths.
This model must be mapped
to the data access require-
ments of an application.

������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������

Application data

Computation

sion” (DP). The performance at which the FP units generate results for multiply and
add operations is measured in floating-point operations per second (Flops/sec). The
reason why more complicated arithmetic (divide, square root, trigonometric func-
tions) is not counted here is that those operations often share execution resources
with multiply and add units, and are executed so slowly as to not contribute signif-
icantly to overall performance in practice (see also Chapter 2). High performance
software should thus try to avoid such operations as far as possible. At the time of
writing, standard commodity microprocessors are designed to deliver at most two or
four double-precision floating-point results per clock cycle. With typical clock fre-
quencies between 2 and 3 GHz, this leads to a peak arithmetic performance between
4 and 12 GFlops/sec per core.

As mentioned above, feeding arithmetic units with operands is a complicated
task. The most important data paths from the programmer’s point of view are those
to and from the caches and main memory. The performance, or bandwidth of those
paths is quantified in GBytes/sec. The GFlops/sec and GBytes/sec metrics usu-
ally suffice for explaining most relevant performance features of microprocessors.1

Hence, as shown in Figure 1.3, the performance-aware programmer’s view of a
cache-based microprocessor is very data-centric. A “computation” or algorithm of
some kind is usually defined by manipulation of data items; a concrete implementa-
tion of the algorithm must, however, run on real hardware, with limited performance
on all data paths, especially those to main memory.

Fathoming the chief performance characteristics of a processor or system is one
of the purposes of low-level benchmarking. A low-level benchmark is a program that
tries to test some specific feature of the architecture like, e.g., peak performance or

1Please note that the “giga-” and “mega-” prefixes refer to a factor of 109 and 106, respectively, when
used in conjunction with ratios like bandwidth or arithmetic performance. Since recently, the prefixes
“mebi-,” “gibi-,” etc., are frequently used to express quantities in powers of two, i.e., 1 MiB=220 bytes.

Modern processors 5

Listing 1.1: Basic code fragment for the vector triad benchmark, including performance
measurement.

1 double precision, dimension(N) :: A,B,C,D

2 double precision :: S,E,MFLOPS

3

4 do i=1,N !initialize arrays

5 A(i) = 0.d0; B(i) = 1.d0

6 C(i) = 2.d0; D(i) = 3.d0

7 enddo

8

9 call get_walltime(S) ! get time stamp

10 do j=1,R

11 do i=1,N

12 A(i) = B(i) + C(i) * D(i) ! 3 loads, 1 store

13 enddo

14 if(A(2).lt.0) call dummy(A,B,C,D) ! prevent loop interchange

15 enddo

16 call get_walltime(E) ! get time stamp

17 MFLOPS = R*N*2.d0/((E-S)*1.d6) ! compute MFlop/sec rate

memory bandwidth. One of the prominent examples is the vector triad, introduced
by Schönauer [S5]. It comprises a nested loop, the inner level executing a multiply-
add operation on the elements of three vectors and storing the result in a fourth (see
lines 10–15 in Listing 1.1). The purpose of this benchmark is to measure the perfor-
mance of data transfers between memory and arithmetic units of a processor. On the
inner level, three load streams for arrays B, C and D and one store stream for A are
active. Depending on N, this loop might execute in a very small time, which would be
hard to measure. The outer loop thus repeats the triad R times so that execution time
becomes large enough to be accurately measurable. In practice one would choose R
according to N so that the overall execution time stays roughly constant for different
N.

The aim of the masked-out call to the dummy() subroutine is to prevent the
compiler from doing an obvious optimization: Without the call, the compiler might
discover that the inner loop does not depend at all on the outer loop index j and drop
the outer loop right away. The possible call to dummy() fools the compiler into
believing that the arrays may change between outer loop iterations. This effectively
prevents the optimization described, and the additional cost is negligible because the
condition is always false (which the compiler does not know).

The MFLOPS variable is computed to be the MFlops/sec rate for the whole loop
nest. Please note that the most sensible time measure in benchmarking is wallclock

time, also called elapsed time. Any other “time” that the system may provide, first
and foremost the much stressed CPU time, is prone to misinterpretation because there
might be contributions from I/O, context switches, other processes, etc., which CPU
time cannot encompass. This is even more true for parallel programs (see Chapter 5).
A useful C routine to get a wallclock time stamp like the one used in the triad bench-

6 Introduction to High Performance Computing for Scientists and Engineers

Listing 1.2: A C routine for measuring wallclock time, based on the gettimeofday()

POSIX function. Under the Windows OS, the GetSystemTimeAsFileTime() routine
can be used in a similar way.

1 #include <sys/time.h>

2

3 void get_walltime_(double* wcTime) {

4 struct timeval tp;

5 gettimeofday(&tp, NULL);

6 *wcTime = (double)(tp.tv_sec + tp.tv_usec/1000000.0);

7 }

8

9 void get_walltime(double* wcTime) {

10 get_walltime_(wcTime);

11 }

mark above could look like in Listing 1.2. The reason for providing the function with
and without a trailing underscore is that Fortran compilers usually append an under-
score to subroutine names. With both versions available, linking the compiled C code
to a main program in Fortran or C will always work.

Figure 1.4 shows performance graphs for the vector triad obtained on different
generations of cache-based microprocessors and a vector system. For very small
loop lengths we see poor performance no matter which type of CPU or architec-
ture is used. On standard microprocessors, performance grows with N until some
maximum is reached, followed by several sudden breakdowns. Finally, performance
stays constant for very large loops. Those characteristics will be analyzed in detail in
Section 1.3.

Vector processors (dotted line in Figure 1.4) show very contrasting features. The
low-performance region extends much farther than on cache-based microprocessors,

Figure 1.4: Serial vector
triad performance ver-
sus loop length for sev-
eral generations of In-
tel processor architec-
tures (clock speed and
year of introduction is
indicated), and the NEC
SX-8 vector processor.
Note the entirely differ-
ent performance charac-
teristics of the latter.

10
1

10
2

10
3

10
4

10
5

10
6

10
7

N

0

1000

2000

3000

4000

M
F

lo
p

s
/s

e
c

Netburst 3.2 GHz (2004)

Core 2 3.0 GHz (2006)

Core i7 2.93 GHz (2009)

NEC SX-8 2.0 GHz

Modern processors 7

but there are no breakdowns at all. We conclude that vector systems are somewhat
complementary to standard CPUs in that they meet different domains of applicability
(see Section 1.6 for details on vector architectures). It may, however, be possible to
optimize real-world code in a way that circumvents low-performance regions. See
Chapters 2 and 3 for details.

Low-level benchmarks are powerful tools to get information about the basic ca-
pabilities of a processor. However, they often cannot accurately predict the behavior
of “real” application code. In order to decide whether some CPU or architecture is
well-suited for some application (e.g., in the run-up to a procurement or before writ-
ing a proposal for a computer time grant), the only safe way is to prepare application

benchmarks. This means that an application code is used with input parameters that
reflect as closely as possible the real requirements of production runs. The decision
for or against a certain architecture should always be heavily based on application
benchmarking. Standard benchmark collections like the SPEC suite [W118] can only
be rough guidelines.

1.2.2 Transistors galore: Moore’s Law

Computer technology had been used for scientific purposes and, more specifi-
cally, for numerically demanding calculations long before the dawn of the desktop
PC. For more than thirty years scientists could rely on the fact that no matter which
technology was implemented to build computer chips, their “complexity” or general
“capability” doubled about every 24 months. This trend is commonly ascribed to
Moore’s Law. Gordon Moore, co-founder of Intel Corp., postulated in 1965 that the
number of components (transistors) on a chip that are required to hit the “sweet spot”
of minimal manufacturing cost per component would continue to increase at the indi-
cated rate [R35]. This has held true since the early 1960s despite substantial changes
in manufacturing technologies that have happened over the decades. Amazingly, the
growth in complexity has always roughly translated to an equivalent growth in com-
pute performance, although the meaning of “performance” remains debatable as a
processor is not the only component in a computer (see below for more discussion
regarding this point).

Increasing chip transistor counts and clock speeds have enabled processor de-
signers to implement many advanced techniques that lead to improved application
performance. A multitude of concepts have been developed, including the following:

1. Pipelined functional units. Of all innovations that have entered computer de-
sign, pipelining is perhaps the most important one. By subdividing complex
operations (like, e.g., floating point addition and multiplication) into simple
components that can be executed using different functional units on the CPU,
it is possible to increase instruction throughput, i.e., the number of instructions
executed per clock cycle. This is the most elementary example of instruction-

level parallelism (ILP). Optimally pipelined execution leads to a throughput of
one instruction per cycle. At the time of writing, processor designs exist that
feature pipelines with more than 30 stages. See the next section on page 9 for
details.

8 Introduction to High Performance Computing for Scientists and Engineers

2. Superscalar architecture. Superscalarity provides “direct” instruction-level
parallelism by enabling an instruction throughput of more than one per cycle.
This requires multiple, possibly identical functional units, which can operate
currently (see Section 1.2.4 for details). Modern microprocessors are up to
six-way superscalar.

3. Data parallelism through SIMD instructions. SIMD (Single Instruction Multi-

ple Data) instructions issue identical operations on a whole array of integer or
FP operands, usually in special registers. They improve arithmetic peak per-
formance without the requirement for increased superscalarity. Examples are
Intel’s “SSE” and its successors, AMD’s “3dNow!,” the “AltiVec” extensions
in Power and PowerPC processors, and the “VIS” instruction set in Sun’s Ul-
traSPARC designs. See Section 1.2.5 for details.

4. Out-of-order execution. If arguments to instructions are not available in regis-
ters “on time,” e.g., because the memory subsystem is too slow to keep up with
processor speed, out-of-order execution can avoid idle times (also called stalls)
by executing instructions that appear later in the instruction stream but have
their parameters available. This improves instruction throughput and makes it
easier for compilers to arrange machine code for optimal performance. Cur-
rent out-of-order designs can keep hundreds of instructions in flight at any
time, using a reorder buffer that stores instructions until they become eligible
for execution.

5. Larger caches. Small, fast, on-chip memories serve as temporary data storage
for holding copies of data that is to be used again “soon,” or that is close to
data that has recently been used. This is essential due to the increasing gap
between processor and memory speeds (see Section 1.3). Enlarging the cache
size does usually not hurt application performance, but there is some tradeoff
because a big cache tends to be slower than a small one.

6. Simplified instruction set. In the 1980s, a general move from the CISC to the
RISC paradigm took place. In a CISC (Complex Instruction Set Computer),
a processor executes very complex, powerful instructions, requiring a large
hardware effort for decoding but keeping programs small and compact. This
lightened the burden on programmers, and saved memory, which was a scarce
resource for a long time. A RISC (Reduced Instruction Set Computer) features
a very simple instruction set that can be executed very rapidly (few clock cycles
per instruction; in the extreme case each instruction takes only a single cycle).
With RISC, the clock rate of microprocessors could be increased in a way that
would never have been possible with CISC. Additionally, it frees up transistors
for other uses. Nowadays, most computer architectures significant for scientific
computing use RISC at the low level. Although x86-based processors execute
CISC machine code, they perform an internal on-the-fly translation into RISC
“µ-ops.”

In spite of all innovations, processor vendors have recently been facing high obsta-
cles in pushing the performance limits of monolithic, single-core CPUs to new levels.

Modern processors 9

B(1)

C(1)

B(2)

C(2)

B(3)

C(3)

B(4)

C(4)

B(N)

C(N)

B(1)

C(1)

B(2)

C(2)

B(3)

C(3)

B(4)

C(4)

B(5)

C(5)

B(N)

C(N)

B(2)

C(2)

B(3)

C(3)

B(1)

C(1)

B(N)

C(N)

Multiply
mantissas

Add
exponents

Normalize
result

Insert
sign

Separate
mant./exp.

(N−4)

A

(N−3)

A A

(N−2)

A

(N−1)
A(1) A(N)

(N−3)

A

(N−2)

A A

(N−1)
A(N)A(1) A(2)

C(N−1)

B(N−1)

B(N−2)

C(N−2)

B(N−1)

C(N−1)

...

...

...

...

...

1 2 3 4 5 N N+1 N+2 N+3 N+4...

Cycle

Wind−up

Wind−down

Figure 1.5: Timeline for a simplified floating-point multiplication pipeline that executes
A(:)=B(:)*C(:). One result is generated on each cycle after a four-cycle wind-up phase.

Moore’s Law promises a steady growth in transistor count, but more complexity does
not automatically translate into more efficiency: On the contrary, the more functional
units are crammed into a CPU, the higher the probability that the “average” code will
not be able to use them, because the number of independent instructions in a sequen-
tial instruction stream is limited. Moreover, a steady increase in clock frequencies is
required to keep the single-core performance on par with Moore’s Law. However, a
faster clock boosts power dissipation, making idling transistors even more useless.

In search for a way out of this power-performance dilemma there have been some
attempts to simplify processor designs by giving up some architectural complexity
in favor of more straightforward ideas. Using the additional transistors for larger
caches is one option, but again there is a limit beyond which a larger cache will not
pay off any more in terms of performance. Multicore processors, i.e., several CPU
cores on a single die or socket, are the solution chosen by all major manufacturers
today. Section 1.4 below will shed some light on this development.

1.2.3 Pipelining

Pipelining in microprocessors serves the same purpose as assembly lines in man-
ufacturing: Workers (functional units) do not have to know all details about the fi-
nal product but can be highly skilled and specialized for a single task. Each worker
executes the same chore over and over again on different objects, handing the half-
finished product to the next worker in line. If it takes m different steps to finish the
product, m products are continually worked on in different stages of completion. If
all tasks are carefully tuned to take the same amount of time (the “time step”), all
workers are continuously busy. At the end, one finished product per time step leaves
the assembly line.

Complex operations like loading and storing data or performing floating-point
arithmetic cannot be executed in a single cycle without excessive hardware require-

10 Introduction to High Performance Computing for Scientists and Engineers

ments. Luckily, the assembly line concept is applicable here. The most simple setup
is a “fetch–decode–execute” pipeline, in which each stage can operate indepen-
dently of the others. While an instruction is being executed, another one is being
decoded and a third one is being fetched from instruction (L1I) cache. These still
complex tasks are usually broken down even further. The benefit of elementary sub-
tasks is the potential for a higher clock rate as functional units can be kept simple.
As an example we consider floating-point multiplication, for which a possible di-
vision into five “simple” subtasks is depicted in Figure 1.5. For a vector product
A(:)=B(:)*C(:), execution begins with the first step, separation of mantissa and
exponent, on elements B(1) and C(1). The remaining four functional units are idle
at this point. The intermediate result is then handed to the second stage while the
first stage starts working on B(2) and C(2). In the second cycle, only three out of
five units are still idle. After the fourth cycle the pipeline has finished its so-called
wind-up phase. In other words, the multiply pipe has a latency (or depth) of five cy-
cles, because this is the time after which the first result is available. From then on,
all units are continuously busy, generating one result per cycle. Hence, we speak of a
throughput of one cycle. When the first pipeline stage has finished working on B(N)
and C(N), the wind-down phase starts. Four cycles later, the loop is finished and all
results have been produced.

In general, for a pipeline of depth m, executing N independent, subsequent op-
erations takes N +m−1 steps. We can thus calculate the expected speedup versus a
general-purpose unit that needs m cycles to generate a single result,

Tseq

Tpipe
=

mN

N +m−1
, (1.1)

which is proportional to m for large N. The throughput is

N

Tpipe
=

1

1+ m−1
N

, (1.2)

approaching 1 for large N (see Figure 1.6). It is evident that the deeper the pipeline
the larger the number of independent operations must be to achieve reasonable
throughput because of the overhead caused by the wind-up phase.

One can easily determine how large N must be in order to get at least p results
per cycle (0 < p ≤ 1):

p =
1

1+ m−1
Nc

=⇒ Nc =
(m−1)p

1− p
. (1.3)

For p = 0.5 we arrive at Nc = m− 1. Taking into account that present-day micro-
processors feature overall pipeline lengths between 10 and 35 stages, we can im-
mediately identify a potential performance bottleneck in codes that use short, tight
loops. In superscalar or even vector processors the situation becomes even worse as
multiple identical pipelines operate in parallel, leaving shorter loop lengths for each
pipe.

Another problem connected to pipelining arises when very complex calculations

Modern processors 11

1 10 100 1000
N

0

0.2

0.4

0.6

0.8

1

N
/T

p
ip

e

m=5

m=10

m=30

m=100

Figure 1.6: Pipeline
throughput as a function
of the number of inde-
pendent operations. m is
the pipeline depth.

like FP divide or even transcendental functions must be executed. Those operations
tend to have very long latencies (several tens of cycles for square root or divide,
often more than 100 for trigonometric functions) and are only pipelined to a small
level or not at all, so that stalling the instruction stream becomes inevitable, leading
to so-called pipeline bubbles. Avoiding such functions is thus a primary goal of code
optimization. This and other topics related to efficient pipelining will be covered in
Chapter 2.

Note that although a depth of five is not unrealistic for a floating-point multipli-
cation pipeline, executing a “real” code involves more operations like, e.g., loads,
stores, address calculations, instruction fetch and decode, etc., that must be over-
lapped with arithmetic. Each operand of an instruction must find its way from mem-
ory to a register, and each result must be written out, observing all possible inter-
dependencies. It is the job of the compiler to arrange instructions in such a way as
to make efficient use of all the different pipelines. This is most crucial for in-order
architectures, but also required on out-of-order processors due to the large latencies
for some operations.

As mentioned above, an instruction can only be executed if its operands are avail-
able. If operands are not delivered “on time” to execution units, all the complicated
pipelining mechanisms are of no use. As an example, consider a simple scaling loop:

1 do i=1,N

2 A(i) = s * A(i)

3 enddo

Seemingly simple in a high-level language, this loop transforms to quite a number of
assembly instructions for a RISC processor. In pseudocode, a naïve translation could
look like this:

1 loop: load A(i)

2 mult A(i) = A(i) * s

3 store A(i)

4 i = i + 1

12 Introduction to High Performance Computing for Scientists and Engineers

10
2

10
4

10
6

N

0

200

400

600

800

1000

M
F

lo
p

/s

A(i) = s*A(i)

A(i) = s*A(i+1)

A(i) = s*A(i-1)

10
2

10
4

10
6

N

offset = 0

offset = +1

offset = -1

Figure 1.7: Influence of constant (left) and variable (right) offsets on the performance of a
scaling loop. (AMD Opteron 2.0 GHz).

5 branch -> loop

Although the multiply operation can be pipelined, the pipeline will stall if the load
operation on A(i) does not provide the data on time. Similarly, the store operation
can only commence if the latency for mult has passed and a valid result is available.
Assuming a latency of four cycles for load, two cycles for mult and two cycles
for store, it is clear that above pseudocode formulation is extremely inefficient. It
is indeed required to interleave different loop iterations to bridge the latencies and
avoid stalls:

1 loop: load A(i+6)

2 mult A(i+2) = A(i+2) * s

3 store A(i)

4 i = i + 1

5 branch -> loop

Of course there is some wind-up and wind-down code involved that we do not show
here. We assume for simplicity that the CPU can issue all four instructions of an it-
eration in a single cycle and that the final branch and loop variable increment comes
at no cost. Interleaving of loop iterations in order to meet latency requirements is
called software pipelining. This optimization asks for intimate knowledge about pro-
cessor architecture and insight into application code on the side of compilers. Often,
heuristics are applied to arrive at “optimal” code.

It is, however, not always possible to optimally software pipeline a sequence of
instructions. In the presence of loop-carried dependencies, i.e., if a loop iteration
depends on the result of some other iteration, there are situations when neither the
compiler nor the processor hardware can prevent pipeline stalls. For instance, if the
simple scaling loop from the previous example is modified so that computing A(i)
requires A(i+offset), with offset being either a constant that is known at
compile time or a variable:

Modern processors 13

real dependency pseudodependency general version

do i=2,N

A(i)=s*A(i-1)

enddo

do i=1,N-1

A(i)=s*A(i+1)

enddo

start=max(1,1-offset)

end=min(N,N-offset)

do i=start,end

A(i)=s*A(i+offset)

enddo

As the loop is traversed from small to large indices, it makes a huge difference
whether the offset is negative or positive. In the latter case we speak of a pseudo-

dependency, because A(i+1) is always available when the pipeline needs it for
computing A(i), i.e., there is no stall. In case of a real dependency, however, the
pipelined computation of A(i) must stall until the result A(i-1) is completely
finished. This causes a massive drop in performance as can be seen on the left of
Figure 1.7. The graph shows the performance of above scaling loop in MFlops/sec
versus loop length. The drop is clearly visible only in cache because of the small
latencies and large bandwidths of on-chip caches. If the loop length is so large that
all data has to be fetched from memory, the impact of pipeline stalls is much less
significant, because those extra cycles easily overlap with the time the core has to
wait for off-chip data.

Although one might expect that it should make no difference whether the offset
is known at compile time, the right graph in Figure 1.7 shows that there is a dramatic
performance penalty for a variable offset. The compiler can obviously not optimally
software pipeline or otherwise optimize the loop in this case. This is actually a com-
mon phenomenon, not exclusively related to software pipelining; hiding information
from the compiler can have a substantial performance impact (in this particular case,
the compiler refrains from SIMD vectorization; see Section 1.2.4 and also Prob-
lems 1.2 and 2.2).

There are issues with software pipelining linked to the use of caches. See Sec-
tion 1.3.3 below for details.

1.2.4 Superscalarity

If a processor is designed to be capable of executing more than one instruction
or, more generally, producing more than one “result” per cycle, this goal is reflected
in many of its design details:

• Multiple instructions can be fetched and decoded concurrently (3–6 nowa-
days).

• Address and other integer calculations are performed in multiple integer (add,
mult, shift, mask) units (2–6). This is closely related to the previous point,
because feeding those units requires code execution.

• Multiple floating-point pipelines can run in parallel. Often there are one or two
combined multiply-add pipes that perform a=b+c*d with a throughput of one
each.

• Caches are fast enough to sustain more than one load or store operation per

14 Introduction to High Performance Computing for Scientists and Engineers

32 32 32 32

x x x x4 3 2 1

y y y y4 3 2 1

r r r r4 3 2 1

Figure 1.8: Example for SIMD: Single precision FP addition of two SIMD registers (x,y),
each having a length of 128 bits. Four SP flops are executed in a single instruction.

cycle, and the number of available execution units for loads and stores reflects
that (2–4).

Superscalarity is a special form of parallel execution, and a variant of instruction-

level parallelism (ILP). Out-of-order execution and compiler optimization must work
together in order to fully exploit superscalarity. However, even on the most advanced
architectures it is extremely hard for compiler-generated code to achieve a throughput
of more than 2–3 instructions per cycle. This is why applications with very high
demands for performance sometimes still resort to the use of assembly language.

1.2.5 SIMD

The SIMD concept became widely known with the first vector supercomputers
in the 1970s (see Section 1.6), and was the fundamental design principle for the
massively parallel Connection Machines in the 1980s and early 1990s [R36].

Many recent cache-based processors have instruction set extensions for both in-
teger and floating-point SIMD operations [V107], which are reminiscent of those
historical roots but operate on a much smaller scale. They allow the concurrent ex-
ecution of arithmetic operations on a “wide” register that can hold, e.g., two DP or
four SP floating-point words. Figure 1.8 shows an example, where two 128-bit reg-
isters hold four single-precision floating-point values each. A single instruction can
initiate four additions at once. Note that SIMD does not specify anything about the
possible concurrency of those operations; the four additions could be truly parallel,
if sufficient arithmetic units are available, or just be fed to a single pipeline. While
the latter strategy uses SIMD as a device to reduce superscalarity (and thus complex-
ity) without sacrificing peak arithmetic performance, the former option boosts peak
performance. In both cases the memory subsystem (or at least the cache) must be
able to sustain sufficient bandwidth to keep all units busy. See Section 2.3.3 for the
programming and optimization implications of SIMD instruction sets.

Modern processors 15

1.3 Memory hierarchies

Data can be stored in a computer system in many different ways. As described
above, CPUs have a set of registers, which can be accessed without delay. In ad-
dition there are one or more small but very fast caches holding copies of recently
used data items. Main memory is much slower, but also much larger than cache. Fi-
nally, data can be stored on disk and copied to main memory as needed. This a is a
complex hierarchy, and it is vital to understand how data transfer works between the
different levels in order to identify performance bottlenecks. In the following we will
concentrate on all levels from CPU to main memory (see Figure 1.3).

1.3.1 Cache

Caches are low-capacity, high-speed memories that are commonly integrated on
the CPU die. The need for caches can be easily understood by realizing that data
transfer rates to main memory are painfully slow compared to the CPU’s arithmetic
performance. While peak performance soars at several GFlops/sec per core, memory

bandwidth, i.e., the rate at which data can be transferred from memory to the CPU,
is still stuck at a couple of GBytes/sec, which is entirely insufficient to feed all arith-
metic units and keep them busy continuously (see Chapter 3 for a more thorough
analysis). To make matters worse, in order to transfer a single data item (usually
one or two DP words) from memory, an initial waiting time called latency passes
until data can actually flow. Thus, latency is often defined as the time it takes to
transfer a zero-byte message. Memory latency is usually of the order of several hun-
dred CPU cycles and is composed of different contributions from memory chips, the
chipset and the processor. Although Moore’s Law still guarantees a constant rate of
improvement in chip complexity and (hopefully) performance, advances in memory
performance show up at a much slower rate. The term DRAM gap has been coined
for the increasing “distance” between CPU and memory in terms of latency and
bandwidth [R34, R37].

Caches can alleviate the effects of the DRAM gap in many cases. Usually there
are at least two levels of cache (see Figure 1.3), called L1 and L2, respectively. L1 is
normally split into two parts, one for instructions (“I-cache,” “L1I”) and one for data
(“L1D”). Outer cache levels are normally unified, storing data as well as instructions.
In general, the “closer” a cache is to the CPU’s registers, i.e., the higher its bandwidth
and the lower its latency, the smaller it must be to keep administration overhead low.
Whenever the CPU issues a read request (“load”) for transferring a data item to a
register, first-level cache logic checks whether this item already resides in cache. If
it does, this is called a cache hit and the request can be satisfied immediately, with
low latency. In case of a cache miss, however, data must be fetched from outer cache
levels or, in the worst case, from main memory. If all cache entries are occupied, a
hardware-implemented algorithm evicts old items from cache and replaces them with
new data. The sequence of events for a cache miss on a write is more involved and

16 Introduction to High Performance Computing for Scientists and Engineers

Figure 1.9: The perfor-
mance gain from access-
ing data from cache ver-
sus the cache reuse ra-
tio, with the speed ad-
vantage of cache ver-
sus main memory being
parametrized by τ . 0.7 0.75 0.8 0.85 0.9 0.95 1

β

0

5

10

15

20

G
(τ

,β
)

τ=5

τ=10

τ=50

will be described later. Instruction caches are usually of minor importance since sci-
entific codes tend to be largely loop-based; I-cache misses are rare events compared
to D-cache misses.

Caches can only have a positive effect on performance if the data access pattern
of an application shows some locality of reference. More specifically, data items that
have been loaded into a cache are to be used again “soon enough” to not have been
evicted in the meantime. This is also called temporal locality. Using a simple model,
we will now estimate the performance gain that can be expected from a cache that
is a factor of τ faster than memory (this refers to bandwidth as well as latency; a
more refined model is possible but does not lead to additional insight). Let β be the
cache reuse ratio, i.e., the fraction of loads or stores that can be satisfied from cache
because there was a recent load or store to the same address. Access time to main
memory (again this includes latency and bandwidth) is denoted by Tm. In cache,
access time is reduced to Tc = Tm/τ . For some finite β , the average access time will
thus be Tav = βTc +(1−β)Tm, and we calculate an access performance gain of

G(τ,β) =
Tm

Tav
=

τTc

βTc +(1−β)τTc
=

τ

β + τ(1−β)
. (1.4)

As Figure 1.9 shows, a cache can only lead to a significant performance advantage if
the reuse ratio is relatively close to one.

Unfortunately, supporting temporal locality is not sufficient. Many applications
show streaming patterns where large amounts of data are loaded into the CPU, mod-
ified, and written back without the potential of reuse “in time.” For a cache that only
supports temporal locality, the reuse ratio β (see above) is zero for streaming. Each
new load is expensive as an item has to be evicted from cache and replaced by the
new one, incurring huge latency. In order to reduce the latency penalty for streaming,
caches feature a peculiar organization into cache lines. All data transfers between
caches and main memory happen on the cache line level (there may be exceptions
from that rule; see the comments on nontemporal stores on page 18 for details). The

Modern processors 17

advantage of cache lines is that the latency penalty of a cache miss occurs only on
the first miss on an item belonging to a line. The line is fetched from memory as a
whole; neighboring items can then be loaded from cache with much lower latency,
increasing the cache hit ratio γ , not to be confused with the reuse ratio β . So if the
application shows some spatial locality, i.e., if the probability of successive accesses
to neighboring items is high, the latency problem can be significantly reduced. The
downside of cache lines is that erratic data access patterns are not supported. On the
contrary, not only does each load incur a miss and subsequent latency penalty, it also
leads to the transfer of a whole cache line, polluting the memory bus with data that
will probably never be used. The effective bandwidth available to the application will
thus be very low. On the whole, however, the advantages of using cache lines pre-
vail, and very few processor manufacturers have provided means of bypassing the
mechanism.

Assuming a streaming application working on DP floating point data on a CPU
with a cache line length of Lc = 16 words, spatial locality fixes the hit ratio at γ =
(16 − 1)/16 = 0.94, a seemingly large value. Still it is clear that performance is
governed by main memory bandwidth and latency — the code is memory-bound. In
order for an application to be truly cache-bound, i.e., decouple from main memory so
that performance is not governed by memory bandwidth or latency any more, γ must
be large enough so the time it takes to process in-cache data becomes larger than the
time for reloading it. If and when this happens depends of course on the details of
the operations performed.

By now we can qualitatively interpret the performance data for cache-based ar-
chitectures on the vector triad in Figure 1.4. At very small loop lengths, the processor
pipeline is too long to be efficient. With growing N this effect becomes negligible,
and as long as all four arrays fit into the innermost cache, performance saturates at
a high value that is set by the L1 cache bandwidth and the ability of the CPU to is-
sue load and store instructions. Increasing N a little more gives rise to a sharp drop
in performance because the innermost cache is not large enough to hold all data.
Second-level cache has usually larger latency but similar bandwidth to L1 so that
the penalty is larger than expected. However, streaming data from L2 has the disad-
vantage that L1 now has to provide data for registers as well as continuously reload
and evict cache lines from/to L2, which puts a strain on the L1 cache’s bandwidth
limits. Since the ability of caches to deliver data to higher and lower hierarchy levels
concurrently is highly architecture-dependent, performance is usually hard to predict
on all but the innermost cache level and main memory. For each cache level another
performance drop is observed with rising N, until finally even the large outer cache is
too small and all data has to be streamed from main memory. The size of the different
caches is directly related to the locations of the bandwidth breakdowns. Section 3.1
will describe how to predict performance for simple loops from basic parameters like
cache or memory bandwidths and the data demands of the application.

Storing data is a little more involved than reading. In presence of caches, if data
to be written out already resides in cache, a write hit occurs. There are several pos-
sibilities for handling this case, but usually outermost caches work with a write-back

strategy: The cache line is modified in cache and written to memory as a whole when

18 Introduction to High Performance Computing for Scientists and Engineers

evicted. On a write miss, however, cache-memory consistency dictates that the cache
line in question must first be transferred from memory to cache before an entry can
be modified. This is called write allocate, and leads to the situation that a data write
stream from CPU to memory uses the bus twice: once for all the cache line alloca-
tions and once for evicting modified lines (the data transfer requirement for the triad
benchmark code is increased by 25% due to write allocates). Consequently, stream-
ing applications do not usually profit from write-back caches and there is often a wish
for avoiding write-allocate transactions. Some architectures provide this option, and
there are generally two different strategies:

• Nontemporal stores. These are special store instructions that bypass all cache
levels and write directly to memory. Cache does not get “polluted” by store
streams that do not exhibit temporal locality anyway. In order to prevent ex-
cessive latencies, there is usually a small write combine buffer, which bundles
a number of successive nontemporal stores [V104].

• Cache line zero. Special instructions “zero out” a cache line and mark it as
modified without a prior read. The data is written to memory when evicted.
In comparison to nontemporal stores, this technique uses up cache space for
the store stream. On the other hand it does not slow down store operations in
cache-bound situations. Cache line zero must be used with extreme care: All
elements of a cache line are evicted to memory, even if only a part of them
were actually modified.

Both can be applied by the compiler and hinted at by the programmer by means
of directives. In very simple cases compilers are able to apply those instructions
automatically in their optimization stages, but one must take care to not slow down
a cache-bound code by using nontemporal stores, rendering it effectively memory-
bound.

Note that the need for write allocates arises because caches and memory gener-
ally communicate in units of cache lines; it is a common misconception that write
allocates are only required to maintain consistency between caches of multiple pro-
cessor cores.

1.3.2 Cache mapping

So far we have implicitly assumed that there is no restriction on which cache line
can be associated with which memory locations. A cache design that follows this
rule is called fully associative. Unfortunately it is quite hard to build large, fast, and
fully associative caches because of large bookkeeping overhead: For each cache line
the cache logic must store its location in the CPU’s address space, and each mem-
ory access must be checked against the list of all those addresses. Furthermore, the
decision which cache line to replace next if the cache is full is made by some algo-
rithm implemented in hardware. Often there is a least recently used (LRU) strategy
that makes sure only the “oldest” items are evicted, but alternatives like NRU (not

recently used) or random replacement are possible.

Modern processors 19

����

����

����

����

��

��

��

��

��

��

��

��

��

��

��

��

����

����

����

����

����

����

����

����

��

��

��

��

C
a

c
h

e

Memory

Figure 1.10: In a direct-mapped cache, memory locations which lie a multiple of the cache
size apart are mapped to the same cache line (shaded boxes).

The most straightforward simplification of this expensive scheme consists in a
direct-mapped cache, which maps the full cache size repeatedly into memory (see
Figure 1.10). Memory locations that lie a multiple of the cache size apart are always
mapped to the same cache line, and the cache line that corresponds to some address
can be obtained very quickly by masking out the most significant bits. Moreover, an
algorithm to select which cache line to evict is pointless. No hardware and no clock
cycles need to be spent for it.

The downside of a direct-mapped cache is that it is disposed toward cache thrash-

ing, which means that cache lines are loaded into and evicted from the cache in rapid
succession. This happens when an application uses many memory locations that get
mapped to the same cache line. A simple example would be a “strided” vector triad
code for DP data, which is obtained by modifying the inner loop as follows:

1 do i=1,N,CACHE_SIZE_IN_BYTES/8

2 A(i) = B(i) + C(i) * D(i)

3 enddo

By using the cache size in units of DP words as a stride, successive loop iterations
hit the same cache line so that every memory access generates a cache miss, even
though a whole line is loaded every time. In principle there is plenty of room left in
the cache, so this kind of situation is called a conflict miss. If the stride were equal to
the line length there would still be some (albeit small) N for which the cache reuse is
100%. Here, the reuse fraction is exactly zero no matter how small N may be.

To keep administrative overhead low and still reduce the danger of conflict misses
and cache thrashing, a set-associative cache is divided into m direct-mapped caches

20 Introduction to High Performance Computing for Scientists and Engineers

����

����

����

����

����

��

��
��

��

��

��

��
��

��

��

��

��
��

��

��

����

����
����

����

����

����

����
����

����

����

��

��
��

��

��

C
a
c
h
e

Memory

Way 1
Way 2

Figure 1.11: In an m-way set-associative cache, memory locations which are located a mul-
tiple of 1

m th of the cache size apart can be mapped to either of m cache lines (here shown for
m = 2).

equal in size, so-called ways. The number of ways m is the number of different cache
lines a memory address can be mapped to (see Figure 1.11 for an example of a
two-way set-associative cache). On each memory access, the hardware merely has to
determine which way the data resides in or, in the case of a miss, to which of the m

possible cache lines it should be loaded.
For each cache level the tradeoff between low latency and prevention of thrashing

must be considered by processor designers. Innermost (L1) caches tend to be less
set-associative than outer cache levels. Nowadays, set-associativity varies between
two- and 48-way. Still, the effective cache size, i.e., the part of the cache that is
actually useful for exploiting spatial and temporal locality in an application code
could be quite small, depending on the number of data streams, their strides and
mutual offsets. See Chapter 3 for examples.

1.3.3 Prefetch

Although exploiting spatial locality by the introduction of cache lines improves
cache efficiency a lot, there is still the problem of latency on the first miss. Figure 1.12
visualizes the situation for a simple vector norm kernel:

1 do i=1,N

2 S = S + A(i)*A(i)

3 enddo

There is only one load stream in this code. Assuming a cache line length of four
elements, three loads can be satisfied from cache before another miss occurs. The
long latency leads to long phases of inactivity on the memory bus.

Modern processors 21

1

2

3

4

5

6

7

It
e

ra
ti

o
n

 #

time

LD cache miss: latency use data

use data

use data

use data

cache miss: latencyLD use data

use data

use dataLD

LD

LD

LD

LD

Figure 1.12: Timing diagram on the influence of cache misses and subsequent latency penal-
ties for a vector norm loop. The penalty occurs on each new miss.

Making the lines very long will help, but will also slow down applications with
erratic access patterns even more. As a compromise one has arrived at typical cache
line lengths between 64 and 128 bytes (8–16 DP words). This is by far not big enough
to get around latency, and streaming applications would suffer not only from insuffi-
cient bandwidth but also from low memory bus utilization. Assuming a typical com-
modity system with a memory latency of 50 ns and a bandwidth of 10 GBytes/sec,
a single 128-byte cache line transfer takes 13 ns, so 80% of the potential bus band-
width is unused. Latency has thus an even more severe impact on performance than
bandwidth.

The latency problem can be solved in many cases, however, by prefetching. Pre-
fetching supplies the cache with data ahead of the actual requirements of an applica-
tion. The compiler can do this by interleaving special instructions with the software
pipelined instruction stream that “touch” cache lines early enough to give the hard-
ware time to load them into cache asynchronously (see Figure 1.13). This assumes
there is the potential of asynchronous memory operations, a prerequisite that is to
some extent true for current architectures. As an alternative, some processors feature
a hardware prefetcher that can detect regular access patterns and tries to read ahead
application data, keeping up the continuous data stream and hence serving the same
purpose as prefetch instructions. Whichever strategy is used, it must be emphasized
that prefetching requires resources that are limited by design. The memory subsys-
tem must be able to sustain a certain number of outstanding prefetch operations,
i.e., pending prefetch requests, or else the memory pipeline will stall and latency
cannot be hidden completely. We can estimate the number of outstanding prefetches
required for hiding the latency completely: If Tℓ is the latency and B is the bandwidth,
the transfer of a whole line of length Lc (in bytes) takes a time of

T = Tℓ +
Lc

B
. (1.5)

One prefetch operation must be initiated per cache line transfer, and the number of
cache lines that can be transferred during time T is the number of prefetches P that

22 Introduction to High Performance Computing for Scientists and Engineers

1

2

3

4

5

6

7

It
e

ra
ti

o
n

 #

8

9

time

use data

use data

use data

use data

use data

use data

use data

use data

use dataLD

LD

LD

PF cache miss: latency

PF cache miss: latency

LD

LD

LD

LD

LD

LD

cache miss: latencyPF

Figure 1.13: Computation and data transfer can be overlapped much better with prefetching.
In this example, two outstanding prefetches are required to hide latency completely.

the processor must be able to sustain (see Figure 1.13):

P =
T

Lc/B
= 1+

Tℓ

Lc/B
. (1.6)

As an example, for a cache line length of 128 bytes (16 DP words), B =
10 GBytes/sec and Tℓ = 50 ns we get P≈ 5 outstanding prefetches. If this requirement
cannot be met, latency will not be hidden completely and the full memory bandwidth
will not be utilized. On the other hand, an application that executes so many floating-
point operations on the cache line data that they cannot be hidden behind the transfer
will not be limited by bandwidth and put less strain on the memory subsystem (see
Section 3.1 for appropriate performance models). In such a case, fewer outstanding
prefetches will suffice.

Applications with heavy demands on bandwidth can overstrain the prefetch
mechanism. A second processor core using a shared path to memory can sometimes
provide for the missing prefetches, yielding a slight bandwidth boost (see Section 1.4
for more information on multicore design). In general, if streaming-style main mem-
ory access is unavoidable, a good programming guideline is to try to establish long
continuous data streams.

Finally, a note of caution is in order. Figures 1.12 and 1.13 stress the role of
prefetching for hiding latency, but the effects of bandwidth limitations are ignored.
It should be clear that prefetching cannot enhance available memory bandwidth, al-
though the transfer time for a single cache line is dominated by latency.

Modern processors 23

2 4 8 16
m

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

ε f Figure 1.14: Required
relative frequency re-
duction to stay within a
given power envelope
on a given process tech-
nology, versus number
of cores on a multicore
chip (or package).

1.4 Multicore processors

In recent years it has become increasingly clear that, although Moore’s Law is
still valid and will probably be at least for the next decade, standard microproces-
sors are starting to hit the “heat barrier”: Switching and leakage power of several-
hundred-million-transistor chips are so large that cooling becomes a primary engi-
neering effort and a commercial concern. On the other hand, the necessity of an
ever-increasing clock frequency is driven by the insight that architectural advances
and growing cache sizes alone will not be sufficient to keep up the one-to-one cor-
respondence of Moore’s Law with application performance. Processor vendors are
looking for a way out of this power-performance dilemma in the form of multicore

designs.
The technical motivation behind multicore is based on the observation that, for

a given semiconductor process technology, power dissipation of modern CPUs is
proportional to the third power of clock frequency fc (actually it is linear in fc and
quadratic in supply voltage Vcc, but a decrease in fc allows for a proportional decrease
in Vcc). Lowering fc and thus Vcc can therefore dramatically reduce power dissipation.
Assuming that a single core with clock frequency fc has a performance of p and a
power dissipation of W , some relative change in performance εp = ∆p/p will emerge
for a relative clock change of ε f = ∆ fc/ fc. All other things being equal, |ε f | is an
upper limit for |εp|, which in turn will depend on the applications considered. Power
dissipation is

W +∆W = (1+ ε f)
3W . (1.7)

Reducing clock frequency opens the possibility to place more than one CPU core
on the same die (or, more generally, into the same package) while keeping the same
power envelope as before. For m “slow” cores this condition is expressed as

(1+ ε f)
3m = 1 =⇒ ε f = m−1/3 −1 . (1.8)

24 Introduction to High Performance Computing for Scientists and Engineers

P
L1D

L2

L3

P
L1D

L2

L3

Figure 1.15: Dual-core processor chip with
separate L1, L2, and L3 caches (Intel “Mon-
tecito”). Each core constitutes its own cache
group on all levels.

L1D L1D

L2

L1D

L2

L1D

PPPP

Figure 1.16: Quad-core processor chip, con-
sisting of two dual-cores. Each dual-core
has shared L2 and separate L1 caches (Intel
“Harpertown”). There are two dual-core L2
groups.

Each one of those cores has the same transistor count as the single “fast” core, but
we know that Moore’s Law gives us transistors for free. Figure 1.14 shows the re-
quired relative frequency reduction with respect to the number of cores. The overall
performance of the multicore chip,

pm = (1+ εp)pm , (1.9)

should at least match the single-core performance so that

εp >
1
m
−1 (1.10)

is a limit on the performance penalty for a relative clock frequency reduction of ε f

that should be observed for multicore to stay useful.
Of course it is not trivial to grow the CPU die by a factor of m with a given man-

ufacturing technology. Hence, the most simple way to multicore is to place separate
CPU dies in a common package. At some point advances in manufacturing tech-
nology, i.e., smaller structure lengths, will then enable the integration of more cores
on a die. Additionally, some compromises regarding the single-core performance of
a multicore chip with respect to the previous generation will be made so that the
number of transistors per core will go down as will the clock frequency. Some manu-
facturers have even adopted a more radical approach by designing new, much simpler
cores, albeit at the cost of possibly introducing new programming paradigms.

Finally, the over-optimistic assumption (1.9) that m cores show m times the per-
formance of a single core will only be valid in the rarest of cases. Nevertheless,
multicore has by now been adopted by all major processor manufacturers. In order to
avoid any misinterpretation we will always use the terms “core,” “CPU,” and “pro-
cessor” synonymously. A “socket” is the physical package in which multiple cores
(sometimes on multiple chips) are enclosed; it is usually equipped with leads or pins
so it can be used as a replaceable component. Typical desktop PCs have a single
socket, while standard servers use two to four, all sharing the same memory. See
Section 4.2 for an overview of shared-memory parallel computer architectures.

Modern processors 25

P P P P P P
L1DL1DL1D

L2

L1D

L2

L1DL1D

L2

L3

Figure 1.17: Hexa-core processor chip with
separate L1 caches, shared L2 caches for
pairs of cores and a shared L3 cache for all
cores (Intel “Dunnington”). L2 groups are
dual-cores, and the L3 group is the whole
chip.

HT/QPI

L1D

L2

P
L1D

L2

P
L1D

L2

P
L1D

L2

P

L3

Memory Interface

Figure 1.18: Quad-core processor chip with
separate L1 and L2 and a shared L3 cache
(AMD “Shanghai” and Intel “Nehalem”).
There are four single-core L2 groups, and the
L3 group is the whole chip. A built-in mem-
ory interface allows to attach memory and
other sockets directly without a chipset.

There are significant differences in how the cores on a chip or socket may be
arranged:

• The cores on one die can either have separate caches (Figure 1.15) or share
certain levels (Figures 1.16–1.18). For later reference, we will call a group of
cores that share a certain cache level a cache group. For instance, the hexa-core
chip in Figure 1.17 comprises six L1 groups (one core each), three dual-core
L2 groups, and one L3 group which encompasses the whole socket.

Sharing a cache enables communication between cores without reverting to
main memory, reducing latency and improving bandwidth by about an order
of magnitude. An adverse effect of sharing could be possible cache bandwidth
bottlenecks. The performance impact of shared and separate caches on appli-
cations is highly code- and system-dependent. Later sections will provide more
information on this issue.

• Most recent multicore designs feature an integrated memory controller to
which memory modules can be attached directly without separate logic
(“chipset”). This reduces main memory latency and allows the addition of fast
intersocket networks like HyperTransport or QuickPath (Figure 1.18).

• There may exist fast data paths between caches to enable, e.g., efficient cache
coherence communication (see Section 4.2.1 for details on cache coherence).

The first important conclusion one must draw from the multicore transition is the
absolute necessity to put those resources to efficient use by parallel programming,
instead of relying on single-core performance. As the latter will at best stagnate over
the years, getting more speed for free through Moore’s law just by waiting for the
new CPU generation does not work any more. Chapter 5 outlines the principles and
limitations of parallel programming. More details on dual- and multicore designs will
be revealed in Section 4.2, which covers shared-memory architectures. Chapters 6

26 Introduction to High Performance Computing for Scientists and Engineers

and 9 introduce the dominating parallel programming paradigms in use for technical
and scientific computing today.

Another challenge posed by multicore is the gradual reduction in main memory
bandwidth and cache size available per core. Although vendors try to compensate
these effects with larger caches, the performance of some algorithms is always bound
by main memory bandwidth, and multiple cores sharing a common memory bus
suffer from contention. Programming techniques for traffic reduction and efficient
bandwidth utilization are hence becoming paramount for enabling the benefits of
Moore’s Law for those codes as well. Chapter 3 covers some techniques that are
useful in this context.

Finally, the complex structure of shared and nonshared caches on current multi-
core chips (see Figures 1.17 and 1.18) makes communication characteristics between
different cores highly nonisotropic: If there is a shared cache, two cores can exchange
certain amounts of information much faster; e.g., they can synchronize via a variable
in cache instead of having to exchange data over the memory bus (see Sections 7.2
and 10.5 for practical consequences). At the time of writing, there are very few truly
“multicore-aware” programming techniques that explicitly exploit this most impor-
tant feature to improve performance of parallel code [O52, O53].

Therefore, depending on the communication characteristics and bandwidth de-
mands of running applications, it can be extremely important where exactly multiple
threads or processes are running in a multicore (and possibly multisocket) environ-
ment. Appendix A provides details on how affinity between hardware entities (cores,
sockets) and “programs” (processes, threads) can be established. The impact of affin-
ity on the performance characteristics of parallel programs will be encountered fre-
quently in this book, e.g., in Section 6.2, Chapters 7 and 8, and Section 10.5.

1.5 Multithreaded processors

All modern processors are heavily pipelined, which opens the possibility for high
performance if the pipelines can actually be used. As described in previous sections,
several factors can inhibit the efficient use of pipelines: Dependencies, memory la-
tencies, insufficient loop length, unfortunate instruction mix, branch misprediction
(see Section 2.3.2), etc. These lead to frequent pipeline bubbles, and a large part of
the execution resources remains idle (see Figure 1.19). Unfortunately this situation
is the rule rather than the exception. The tendency to design longer pipelines in order
to raise clock speeds and the general increase in complexity adds to the problem.
As a consequence, processors become hotter (dissipate more power) without a pro-
portional increase in average application performance, an effect that is only partially
compensated by the multicore transition.

For this reason, threading capabilities are built into many current processor de-
signs. Hyper-Threading [V108, V109] or SMT (Simultaneous Multithreading) are
frequent names for this feature. Common to all implementations is that the architec-

tural state of a CPU core is present multiple times. The architectural state comprises

Modern processors 27

L1D

cache

L1I

cache
Memory

L2 cache

Control

Registers

E
x

e
c

u
ti

o
n

 u
n

it
s

Figure 1.19: Simplified diagram of control/data flow in a (multi-)pipelined microprocessor
without SMT. White boxes in the execution units denote pipeline bubbles (stall cycles). Graph-
ics by courtesy of Intel.

all data, status and control registers, including stack and instruction pointers. Execu-
tion resources like arithmetic units, caches, queues, memory interfaces etc. are not
duplicated. Due to the multiple architectural states, the CPU appears to be composed
of several cores (sometimes called logical processors) and can thus execute multiple
instruction streams, or threads, in parallel, no matter whether they belong to the same
(parallel) program or not. The hardware must keep track of which instruction belongs
to which architectural state. All threads share the same execution resources, so it is
possible to fill bubbles in a pipeline due to stalls in one thread with instructions (or
parts thereof) from another. If there are multiple pipelines that can run in parallel (see
Section 1.2.4), and one thread leaves one or more of them in an idle state, another
thread can use them as well (see Figure 1.20).

It important to know that SMT can be implemented in different ways. A possible
distinction lies in how fine-grained the switching between threads can be performed
on a pipeline. Ideally this would happen on a cycle-by-cycle basis, but there are
designs where the pipeline has to be flushed in order to support a new thread. Of
course, this makes sense only if very long stalls must be bridged.

SMT can enhance instruction throughput (instructions executed per cycle) if
there is potential to intersperse instructions from multiple threads within or across

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��

��
��
��

���
���
���
���

��
��
��
��

���
���
���

���
���
���

���
���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��
��

���
���
���
���

��
��
��
��

���
���
���
���
��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

���
���
���
���
��
��
��
��

���
���
���

���
���
���

���
���
���
���

���
���
���

���
���
���

��
��
��

��
��
�� ��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���
���

��
��
��

��
��
�� ��

��
��
��

���
���
���
���

���
���
���

���
���
���

��
��
��

��
��
����
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

���
���
���

���
���
������
���
���
���

���
���
���
���
��
��
��
��

��
��
��

��
��
��

���
���
���
���

��
��
��
��

��
��
��
��

���������
���������
���������
���������

���������
���������
���������
���������

���������
���������
���������
���������

���������
���������
���������

���������
���������
���������

L1D

cache

L1I

cache
Memory

L2 cache

Registers

Control

E
x

e
c

u
ti

o
n

 u
n

it
s

Figure 1.20: Simplified diagram of control/data flow in a (multi-)pipelined microprocessor
with fine-grained two-way SMT. Two instruction streams (threads) share resources like caches
and pipelines but retain their respective architectural state (registers, control units). Graphics
by courtesy of Intel.

28 Introduction to High Performance Computing for Scientists and Engineers

pipelines. A promising scenario could arise if different threads use different exe-
cution resources, e.g., floating-point versus integer computations. In general, well-
optimized, floating-point centric scientific code tends not to profit much from SMT,
but there are exceptions: On some architectures, the number of outstanding memory
references scales with the number of threads so that full memory bandwidth can only
be achieved if many threads are running concurrently.

The performance of a single thread is not improved, however, and there may even
be a small performance hit for a single instruction stream if resources are hardwired
to threads with SMT enabled. Moreover, multiple threads share many resources, most
notably the caches, which could lead to an increase in capacity misses (cache misses
caused by the cache being too small) if the code is sensitive to cache size. Finally,
SMT may severely increase the cost of synchronization: If several threads on a phys-
ical core wait for some event to occur by executing tight, “spin-waiting” loops, they
strongly compete for the shared execution units. This can lead to large synchroniza-
tion latencies [132, 133, M41].

It must be stressed that operating systems and programmers should be aware of
the implications of SMT if more than one physical core is present on the system.
It is usually a good idea to run different program threads and processes on different
physical cores by default, and only utilize SMT capabilities when it is safe to do so in
terms of overall performance. In this sense, with SMT present, affinity mechanisms
are even more important than on multicore chips (see Section 1.4 and Appendix A).
Thorough benchmarking should be performed in order to check whether SMT makes
sense for the applications at hand. If it doesn’t, all but one logical processor per
physical core should be ignored by suitable choice of affinity or, if possible, SMT
should be disabled altogether.

1.6 Vector processors

Starting with the Cray 1 supercomputer, vector systems had dominated scien-
tific and technical computing for a long time until powerful RISC-based massively
parallel machines became available. At the time of writing, only two companies are
still building and marketing vector computers. They cover a niche market for high-
end technical computing with extreme demands on memory bandwidth and time to
solution.

By design, vector processors show a much better ratio of real application per-
formance to peak performance than standard microprocessors for suitable “vectoriz-
able” code [S5]. They follow the SIMD (Single Instruction Multiple Data) paradigm
which demands that a single machine instruction is automatically applied to a — pre-
sumably large — number of arguments of the same type, i.e., a vector. Most modern
cache-based microprocessors have adopted some of those ideas in the form of SIMD
instruction set extensions (see Section 2.3.3 for details). However, vector computers
have much more massive parallelism built into execution units and, more importantly,
the memory subsystem.

Modern processors 29

Scalar unit

V
e

c
to

r
re

g
is

te
rs

M
a

in
 m

e
m

o
ry

Scalar

exec.

units

C
a

c
h

e

Mask reg.

Scalar
reg.

ADD/

SHIFT

MULT

DIV/

SQRT

LOGIC

LD/ST

Figure 1.21: Block diagram of a prototypical vector processor with 4-track pipelines.

1.6.1 Design principles

Current vector processors are, quite similarly to RISC designs, register-to-register
machines: Machine instructions operate on vector registers which can hold a number
of arguments, usually between 64 and 256 (double precision). The width of a vector
register is called the vector length Lv. There is a pipeline for each arithmetic opera-
tion like addition, multiplication, divide, etc., and each pipeline can deliver a certain
number of results per cycle. For MULT and ADD pipes, this number varies between
two and 16 and one speaks of a multitrack pipeline (see Figure 1.21 for a block di-
agram of a prototypical vector processor with 4-track pipes). Other operations like
square root and divide are significantly more complex, hence the pipeline throughput
is much lower for them. A vector processor with single-track pipes can achieve a
similar peak performance per clock cycle as a superscalar cache-based microproces-
sor. In order to supply data to the vector registers, there is one or more load, store or
combined load/store pipes connecting directly to main memory. Classic vector CPUs
have no concept of cache hierarchies, although recent designs like the NEC SX-9
have introduced small on-chip memories.

For getting reasonable performance out of a vector CPU, SIMD-type instructions
must be employed. As a simple example we consider the addition, of two arrays:
A(1:N)=B(1:N)+C(1:N). On a cache-based microprocessor this would result
in a (possibly software-pipelined) loop over the elements of A, B, and C. For each
index, two loads, one addition and one store operation would have to be executed,

30 Introduction to High Performance Computing for Scientists and Engineers

together with the required integer and branch logic to perform the loop. A vector
CPU can issue a single instruction for a whole array if it is shorter than the vector
length:

1 vload V1(1:N) = B(1:N)

2 vload V2(1:N) = C(1:N)

3 vadd V3(1:N) = V1(1:N) + V2(1:N)

4 vstore A(1:N) = V3(1:N)

Here, V1, V2, and V3 denote vector registers. The distribution of vector indices
across the pipeline tracks is automatic. If the array length is larger than the vector
length, the loop must be stripmined, i.e., the original arrays are traversed in chunks
of the vector length:

1 do S = 1,N,Lv
2 E = min(N,S+Lv-1)

3 L = E-S+1

4 vload V1(1:L) = B(S:E)

5 vload V2(1:L) = C(S:E)

6 vadd V3(1:L) = V1(1:L) + V2(1:L)

7 vstore A(S:E) = V3(1:L)

8 enddo

This is done automatically by the compiler.

An operation like vector addition does not have to wait until its argument vec-
tor registers are completely filled but can commence after some initial arguments
are available. This feature is called chaining and forms an essential requirement for
different pipes (like MULT and ADD) to operate concurrently.

Obviously the vector architecture greatly reduces the required instruction issue
rate, which had however only been an advantage in the pre-RISC era where multi-
issue superscalar processors with fast instruction caches were unavailable. More im-
portantly, the speed of the load/store pipes is matched to the CPU’s core frequency,
so feeding the arithmetic pipes with data is much less of a problem. This can only
be achieved with a massively banked main memory layout because current mem-
ory chips require some cycles of recovery time, called the bank busy time, after any
access. In order to bridge this gap, current vector computers provide thousands of
memory banks, making this architecture prohibitively expensive for general-purpose
computing. In summary, a vector processor draws its performance by a combination
of massive pipeline parallelism with high-bandwidth memory access.

Writing a program so that the compiler can generate effective SIMD vector in-
structions is called vectorization. Sometimes this requires reformulation of code or
inserting source code directives in order to help the compiler identify SIMD paral-
lelism. A separate scalar unit is present on every vector processor to execute code
which cannot use the vector units for some reason (see also the following sections)
and to perform administrative tasks. Today, scalar units in vector processors are much
inferior to standard RISC or x86-based designs, so vectorization is absolutely vital
for getting good performance. If a code cannot be vectorized it does not make sense
to use a vector computer at all.

Modern processors 31

A(:) = B(:) + C(:) * D(:)

LOAD BLOAD C LOAD D

ADD

MULT

ADDADD

MULT MULT MULT

ADD

STORE A

time Figure 1.22: Pipeline
utilization timeline for
execution of the vector
triad (see Listing 1.1)
on the vector processor
shown in Figure 1.21.
Light gray boxes denote
unused arithmetic units.

1.6.2 Maximum performance estimates

The peak performance of a vector processor is given by the number of tracks for
the ADD and MULT pipelines and its clock frequency. For example, a vector CPU
running at 2 GHz and featuring four-track pipes has a peak performance of

2 (ADD+MULT)×4 (tracks)×2 (GHz)=16 GFlops/sec .

Square root, divide and other operations are not considered here as they do not con-
tribute significantly because of their strongly inferior throughput. As for memory
bandwidth, a single four-track LD/ST pipeline (see Figure 1.21) can deliver

4 (tracks)×2 (GHz)×8 (bytes)=64 GBytes/sec

for reading or writing. (These happen to be the specifications of an NEC SX-8 pro-
cessor.) In contrast to standard cache-based microprocessors, the memory interface
of vector CPUs often runs at the same frequency as the core, delivering more band-
width in relation to peak performance. Note that above calculations assume that the
vector units can actually be used — if a code is nonvectorizable, neither peak perfor-
mance nor peak memory bandwidth can be achieved, and the (severe) limitations of
the scalar unit(s) apply.

Often the performance of a given loop kernel with simple memory access patterns
can be accurately predicted. Chapter 3 will give a thorough introduction to balance
analysis, i.e., performance prediction based on architectural properties and loop code
characteristics. For vector processors, the situation is frequently simple due to the
absence of complications like caches. As an example we choose the vector triad (see
Listing 1.1), which performs three loads, one store and two flops (MULT+ADD).
As there is only a single LD/ST pipe, loads and stores and even loads to different
arrays cannot overlap each other, but they can overlap arithmetic and be chained to
arithmetic pipes. In Figure 1.22 a rhomboid stands for an operation on a vector regis-
ter, symbolizing the pipelined execution (much similar to the timeline in Figure 1.5).
First a vector register must be loaded with data from array C. As the LD/ST pipe
starts filling a vector register with data from array D, the MULT pipe can start per-
forming arithmetic on C and D. As soon as data from B is available, the ADD pipe can
compute the final result, which is then stored to memory by the LD/ST pipe again.

The performance of the whole process is obviously limited by the LD/ST
pipeline; given suitable code, the hardware would be capable of executing four times

32 Introduction to High Performance Computing for Scientists and Engineers

Figure 1.23: On a vec-
tor processor, a loop with
an if/else branch can be
vectorized using a mask
register.

y(1)*y(1)

y(2)*y(2)

y(3)*y(3)

y(4)*y(4)

y(5)*y(5)

y(6)*y(6)

y(7)*y(7)

y(8)*y(8)

FALSE

FALSE

FALSE

FALSE

TRUE

TRUE

TRUE

TRUE

s*y(2)

s*y(3)

s*y(4)

s*y(5)

s*y(6)

s*y(7)

s*y(8)

s*y(1) y(1)*y(1)

y(3)*y(3)

y(4)*y(4)

y(6)*y(6)

s*y(7)

s*y(8)

s*y(2)

s*y(5)

Vector reg. Vector reg. Mask reg. Vector reg.

as many MULTs and ADDs in the same time (light gray rhomboids), so the triad
code runs with 25% of peak performance. On the vector machine described above
this amounts to 4 GFlops/sec, which is completely in line with large-N data for the
SX-8 in Figure 1.4. Note that this limit is only reached for relatively large N, owing
to the large memory latencies on a vector system. Apart from nonvectorizable code,
short loops are the second important stumbling block which can negatively impact
performance on these architectures.

1.6.3 Programming for vector architectures

A necessary prerequisite for vectorization is the lack of true data dependencies
across the iterations of a loop. The same restrictions as for software pipelining ap-
ply (see Section 1.2.3), i.e., forward references are allowed but backward references
inhibit vectorization. To be more precise, the offset for the true dependency must
be larger than some threshold (at least the vector length, sometimes larger) so that
results from previous vector operations are available.

Branches in inner loop kernels are also a problem with vectorization because
they contradict the “single instruction” paradigm. However, there are several ways to
support branches in vectorized loops:

• Mask registers (essentially boolean registers with vector length) are provided
that allow selective execution of loop iterations. As an example we consider
the following loop:

1 do i = 1,N

2 if(y(i) .le. 0.d0) then

3 x(i) = s * y(i)

4 else

5 x(i) = y(i) * y(i)

6 endif

7 enddo

A vector of boolean values is first generated from the branch conditional using

Modern processors 33

y(1)

y(2)

y(3)

y(4)

y(5)

y(6)

y(7)

y(8)

sqrt(y(2))

sqrt(y(5))

sqrt(y(7))

sqrt(y(8))

y(2)

y(5)

y(7)

y(8)

x(1)

x(3)

x(4)

x(6)

sqrt(y(2))

sqrt(y(5))

sqrt(y(7))

sqrt(y(8))

Memory

FALSE

FALSE

FALSE

FALSE

TRUE

TRUE

TRUE

TRUE

Mask reg. Memory

FALSE

FALSE

FALSE

FALSE

TRUE

TRUE

TRUE

TRUE

Mask reg.

Vector reg.

Vector reg.

S
Q

R
T

Figure 1.24: Vectorization by the gather/scatter method. Data transfer from/to main memory
occurs only for those elements whose corresponding mask entry is true. The same mask is
used for loading and storing data.

the logic pipeline. This vector is then used to choose results from the if or else

branch (see Figure 1.23). Of course, both branches are executed for all loop
indices which may be waste of resources if expensive operations are involved.
However, the benefit of vectorization often outweighs this shortcoming.

• For a single branch (no else part), especially in cases where expensive oper-
ations like divide and square roots are involved, the gather/scatter method is
an efficient way to vectorization. In the following example the use of a mask
register like in Figure 1.23 would waste a lot of compute resources if the con-
ditional is mostly false:

1 do i = 1,N

2 if(y(i) .ge. 0.d0) then

3 x(i) = sqrt(y(i))

4 endif

5 enddo

Instead (see Figure 1.24), all needed elements of the required argument vectors
are first collected into vector registers (gather), then the vector operation is
executed on them and finally the results are stored back (scatter).

Many variations of this “trick” exist; either the compiler performs vectoriza-
tion automatically (probably supported by a source code directive) or the code

34 Introduction to High Performance Computing for Scientists and Engineers

is rewritten to use explicit temporary arrays to hold only needed vector data.
Another variant uses list vectors, integer-valued arrays which hold those in-
dices for which the condition is true. These are used to reformulate the original
loop to use indirect access.

In contrast to cache-based processors where such operations are extremely ex-
pensive due to the cache line concept, vector machines can economically per-
form gather/scatter (although stride-one access is still most efficient).

Extensive documentation about programming and tuning for vector architectures is
available from vendors [V110, V111].

Problems

For solutions see page 287 ff.

1.1 How fast is a divide? Write a benchmark code that numerically integrates the
function

f (x) =
4

1+ x2

from 0 to 1. The result should be an approximation to π , of course. You may
use a very simple rectangular integration scheme that works by summing up
areas of rectangles centered around xi with a width of ∆x and a height of f (xi):

1 double precision :: x, delta_x, sum

2 integer, parameter :: SLICES=100000000

3 sum = 0.d0 ; delta_x = 1.d0/SLICES

4 do i=0,SLICES-1

5 x = (i+0.5)*delta_x

6 sum = sum + 4.d0 / (1.d0 + x * x)

7 enddo

8 pi = sum * delta_x

Complete the fragment, check that it actually computes a good approximation
to π for suitably chosen ∆x and measure performance in MFlops/sec. Assum-
ing that the floating-point divide cannot be pipelined, can you estimate the
latency for this operation in clock cycles?

1.2 Dependencies revisited. During the discussion of pipelining in Section 1.2.3
we looked at the following code:

1 do i = ofs+1,N

2 A(i) = s*A(i-ofs)

3 enddo

Here, s is a nonzero double precision scalar, ofs is a positive integer, and A
is a double precision array of length N. What performance characteristics do

Modern processors 35

you expect for this loop with respect to ofs if N is small enough so that all
elements of A fit into the L1 cache?

1.3 Hardware prefetching. Prefetching is an essential operation for making effec-
tive use of a memory interface. Hardware prefetchers in x86 designs are usu-
ally built to fetch data up until the end of a memory page. Identify situations
in which this behavior could have a negative impact on program performance.

1.4 Dot product and prefetching. Consider the double precision dot product,

1 do i=1,N

2 s = s + A(i) * B(i)

3 enddo

for large N on an imaginary CPU. The CPU (1 ns clock cycle) can do one
load (or store), one multiplication and one addition per cycle (assume that
loop counting and branching comes at no cost). The memory bus can trans-
fer 3.2 GBytes/sec. Assume that the latency to load one cache line from main
memory is 100 CPU cycles, and that four double precision numbers fit into
one cache line. Under those conditions:

(a) What is the expected performance for this loop kernel without data pre-
fetching?

(b) Assuming that the CPU is capable of prefetching (loading cache lines
from memory in advance so that they are present when needed), what is
the required number of outstanding prefetches the CPU has to sustain in
order to make this code bandwidth-limited (instead of latency-limited)?

(c) How would this number change if the cache line were twice or four times
as long?

(d) What is the expected performance if we can assume that prefetching
hides all the latency?

Chapter 2

Basic optimization techniques for serial
code

In the age of multi-1000-processor parallel computers, writing code that runs ef-
ficiently on a single CPU has grown slightly old-fashioned in some circles. The
argument for this point of view is derived from the notion that it is easier to add
more CPUs and boasting massive parallelism instead of investing effort into serial
optimization. There is actually some plausible theory, outlined in Section 5.3.8, to
support this attitude. Nevertheless there can be no doubt that single-processor opti-
mizations are of premier importance. If a speedup of two can be achieved by some
simple code changes, the user will be satisfied with much fewer CPUs in the par-
allel case. This frees resources for other users and projects, and puts hardware that
was often acquired for considerable amounts of money to better use. If an existing
parallel code is to be optimized for speed, it must be the first goal to make the single-
processor run as fast as possible. This chapter summarizes basic tools and strategies
for serial code profiling and optimizations. More advanced topics, especially in view
of data transfer optimizations, will be covered in Chapter 3.

2.1 Scalar profiling

Gathering information about a program’s behavior, specifically its use of re-
sources, is called profiling. The most important “resource” in terms of high per-
formance computing is runtime. Hence, a common profiling strategy is to find out
how much time is spent in the different functions, and maybe even lines, of a code
in order to identify hot spots, i.e., the parts of the program that require the dominant
fraction of runtime. These hot spots are subsequently analyzed for possible optimiza-
tion opportunities. See Section 2.1.1 for an introduction to function- and line-based
profiling.

Even if hot spots have been determined, it is sometimes not clear from the start
what the actual reasons for a particular performance bottleneck are, especially if
the function or code block in question extends over many lines. In such a case one
would like to know, e.g., whether data access to main memory or pipeline stalls limit
performance. If data access is the problem, it may not be straightforward to identify
which data items accessed in a complex piece of code actually cause the most delay.
Hardware performance counters may help to resolve such issues. They are provided

37

38 Introduction to High Performance Computing for Scientists and Engineers

on all current processors and allow deep insights into the use of resources within the
chip and the system. See Section 2.1.2 for more information.

One should point out that there are indeed circumstances when nothing can be
done any more to accelerate a serial code any further. It is essential for the user
to be able to identify the point where additional optimization efforts are useless.
Section 3.1 contains guidelines for the most common cases.

2.1.1 Function- and line-based runtime profiling

In general, two technologies are used for function- and line-based profiling: Code
instrumentation and sampling. Instrumentation works by letting the compiler modify
each function call, inserting some code that logs the call, its caller (or the complete
call stack) and probably how much time it required. Of course, this technique in-
curs some significant overhead, especially if the code contains many functions with
short runtime. The instrumentation code will try to compensate for that, but there
is always some residual uncertainty. Sampling is less invasive: the program is in-
terrupted at periodic intervals, e.g., 10 milliseconds, and the program counter (and
possibly the current call stack) is recorded. Necessarily this process is statistical by
nature, but the longer the code runs, the more accurate the results will be. If the
compiler has equipped the object code with appropriate information, sampling can
deliver execution time information down to the source line and even machine code
level. Instrumentation is necessarily limited to functions or basic blocks (code with
one entry and one exit point with no calls or jumps in between) for efficiency reasons.

Function profiling

The most widely used profiling tool is gprof from the GNU binutils package.
gprof uses both instrumentation and sampling to collect a flat function profile as
well as a callgraph profile, also called a butterfly graph. In order to activate profil-
ing, the code must be compiled with an appropriate option (many modern compil-
ers can generate gprof-compliant instrumentation; for the GCC, use -pg) and run
once. This produces a non-human-readable file gmon.out, to be interpreted by the
gprof program. The flat profile contains information about execution times of all
the program’s functions and how often they were called:

1 % cumulative self self total

2 time seconds seconds calls ms/call ms/call name

3 70.45 5.14 5.14 26074562 0.00 0.00 intersect

4 26.01 7.03 1.90 4000000 0.00 0.00 shade

5 3.72 7.30 0.27 100 2.71 73.03 calc_tile

There is one line for each function. The columns can be interpreted as follows:

% time Percentage of overall program runtime used exclusively by this function,
i.e., not counting any of its callees.

cumulative seconds Cumulative sum of exclusive runtimes of all functions up to
and including this one.

Basic optimization techniques for serial code 39

self seconds Number of seconds used by this function (exclusive). By default, the
list is sorted according to this field.

calls The number of times this function was called.

self ms/call Average number of milliseconds per call that were spent in this function
(exclusive).

total ms/call Average number of milliseconds per call that were spent in this func-
tion, including its callees (inclusive).

In the example above, optimization attempts would definitely start with the
intersect() function, and shade() would also deserve a closer look. The cor-
responding exclusive percentages can hint at the maximum possible gain. If, e.g.,
shade() could be optimized to become twice as fast, the whole program would
run in roughly 7.3−0.95 = 6.35 seconds, i.e., about 15% faster.

Note that the outcome of a profiling run can depend crucially on the ability of the
compiler to perform function inlining. Inlining is an optimization technique that re-
places a function call by the body of the callee, reducing overhead (see Section 2.4.2
for a more thorough discussion). If inlining is allowed, the profiler output may be
strongly distorted when some hot spot function gets inlined and its runtime is at-
tributed to the caller. If the compiler/profiler combination has no support for correct
profiling of inlined functions, it may be required to disallow inlining altogether. Of
course, this may itself have some significant impact on program performance char-
acteristics.

A flat profile already contains a lot of information, however it does not reveal
how the runtime contribution of a certain function is composed of several different
callers, which other functions (callees) are called from it, and which contribution to
runtime they in turn incur. This data is provided by the butterfly graph, or callgraph

profile:

1 index % time self children called name

2 0.27 7.03 100/100 main [2]

3 [1] 99.9 0.27 7.03 100 calc_tile [1]

4 1.90 5.14 4000000/4000000 shade [3]

5 ---

6 <spontaneous>

7 [2] 99.9 0.00 7.30 main [2]

8 0.27 7.03 100/100 calc_tile [1]

9 ---

10 5517592 shade [3]

11 1.90 5.14 4000000/4000000 calc_tile [1]

12 [3] 96.2 1.90 5.14 4000000+5517592 shade [3]

13 5.14 0.00 26074562/26074562 intersect [4]

14 5517592 shade [3]

15 ---

16 5.14 0.00 26074562/26074562 shade [3]

17 [4] 70.2 5.14 0.00 26074562 intersect [4]

Each section of the callgraph pertains to exactly one function, which is listed to-
gether with a running index (far left). The functions listed above this line are the

40 Introduction to High Performance Computing for Scientists and Engineers

current function’s callers, whereas those listed below are its callees. Recursive calls
are accounted for (see the shade() function). These are the meanings of the various
fields:

% time The percentage of overall runtime spent in this function, including its
callees (inclusive time). This should be identical to the product of the num-
ber of calls and the time per call on the flat profile.

self For each indexed function, this is exclusive execution time (identical to flat pro-
file). For its callers (callees), it denotes the inclusive time this function (each
callee) contributed to each caller (this function).

children For each indexed function, this is inclusive minus exclusive runtime, i.e.,
the contribution of all its callees to inclusive time. Part of this time contributes
to inclusive runtime of each of the function’s callers and is denoted in the re-
spective caller rows. The callee rows in this column designate the contribution
of each callee’s callees to the function’s inclusive runtime.

called denotes the number of times the function was called (probably split into re-
cursive plus nonrecursive contributions, as shown in case of shade() above).
Which fraction of the number of calls came from each caller is shown in the
caller row, whereas the fraction of calls for each callee that was initiated from
this function can be found in the callee rows.

There are tools that can represent the butterfly profile in a graphical way, making it
possible to browse the call tree and quickly find the “critical path,” i.e., the sequence
of functions (from the root to some leaf) that shows dominant inclusive contributions
for all its elements.

Line-based profiling

Function profiling becomes useless when the program to be analyzed contains
large functions (in terms of code lines) that contribute significantly to overall run-
time:

1 % cumulative self self total

2 time seconds seconds calls s/call s/call name

3 73.21 13.47 13.47 1 13.47 18.40 MAIN__

4 6.47 14.66 1.19 21993788 0.00 0.00 mvteil_

5 6.36 15.83 1.17 51827551 0.00 0.00 ran1_

6 6.25 16.98 1.15 35996244 0.00 0.00 gzahl_

Here the MAIN function in a Fortran program requires over 73% of overall runtime
but has about 1700 lines of code. If the hot spot in such functions cannot be found by
simple common sense, tools for line-based profiling should be used. Many products,
free and commercial, exist that can perform this task to different levels of sophisti-
cation. As an example we pick the open source profiling tool OProfile [T19], which
can in some sense act as a replacement for gprof because it can do function-based
flat and butterfly profiles as well. With OProfile, the only prerequisite the binary has

Basic optimization techniques for serial code 41

to fulfill is that debug symbols must be included (usually this is accomplished by the
-g compiler option). Any special instrumentation is not required. A profiling dae-
mon must be started (usually with the rights of a super user), which subsequently
monitors the whole computer and collects data about all running binaries. The user
can later extract information about a specific binary. Among other things, this can be
an annotated source listing in which each source line is accompanied by the number
of sampling hits (first column) and the relative percentage of total program samples
(second column):

1 : DO 215 M=1,3

2 4292 0.9317 : bremsdir(M) = bremsdir(M) + FH(M)*Z12

3 1462 0.3174 : 215 CONTINUE

4 :

5 682 0.1481 : U12 = U12 + GCL12 * Upot

6 :

7 : DO 230 M=1,3

8 3348 0.7268 : F(M,I)=F(M,I)+FH(M)*Z12

9 1497 0.3250 : Fion(M)=Fion(M)+FH(M)*Z12

10 501 0.1088 :230 CONTINUE

This kind of data has to be taken with a grain of salt, though. The compiler-generated
symbol tables must be consistent so that a machine instruction’s address in memory
can be properly matched to the correct source line. Modern compilers can reorganize
code heavily if high optimization levels are enabled. Loops can be fused or split,
lines rearranged, variables optimized away, etc., so that the actual code executed
may be far from resembling the original source. Furthermore, due to the strongly
pipelined architecture of modern microprocessors it is usually impossible to attribute
a specific moment in time to a particular source line or even machine instruction.
However, looking at line-based profiling data on a loop-by-loop basis (samples inte-
grated across the loop body) is relatively safe; in case of doubt, recompilation with a
lower optimization level (and inlining disabled) may provide more insight.

Above source line profile can be easily put into a form that allows identification
of hot spots. The cumulative sum over all samples versus source line number has a
steep slope wherever many sampling hits are aggregated (see Figure 2.1).

2.1.2 Hardware performance counters

The first step in performance profiling is concerned with pinpointing the hot spots
in terms of runtime, i.e., clock ticks. But when it comes to identifying the actual
reason for a code to be slow, or if one merely wants to know by which resource it
is limited, clock ticks are insufficient. Luckily, modern processors feature a small
number of performance counters (often far less than ten), which are special on-chip
registers that get incremented each time a certain event occurs. Among the usually
several hundred events that can be monitored, there are a few that are most useful for
profiling:

• Number of bus transactions, i.e., cache line transfers. Events like “cache
misses” are commonly used instead of bus transactions, however one should

42 Introduction to High Performance Computing for Scientists and Engineers

1000 1500 2000 2500
source line #

0

5 k

10 k

15 k

20 k

s
a
m

p
le

s samples

cumulative sum (/20)

MAIN function subroutines

Figure 2.1: Sampling histogram (solid) with number of samples vs. source code line number.
Dashed line: Cumulative sum over samples. Important hot spots (about 50% of overall time)
are around line 1000 of the MAIN function, which encompasses over 1700 lines of code.

be aware that prefetching mechanisms (in hardware or software) can interfere
with the number of cache misses counted. In that respect, bus transactions are
often the safer way to account for the actual data volume transferred over the
memory bus. If the memory bandwidth used by a processor is close to the
theoretical maximum (or better, close to what standard low-level bandwidth
benchmarks like STREAM [W119, 134] can achieve; see Section 3.1), there is
no point in trying to optimize further for better bus utilization. The number can
also be used for checking the correctness of some theoretical model one may
have developed for estimating the data transfer requirements of an application
(see Section 3.1 for an example of such a model).

• Number of loads and stores. Together with bus transactions, this can give an
indication as to how efficiently cache lines are used for computation. If, e.g.,
the number of DP loads and stores per cache line is less than its length in DP
words, this may signal strided memory access. One should however take into
account how the data is used; if, for some reason, the processor pipelines are
stalled most of the time, or if many arithmetic operations on the data are per-
formed out of registers, the strided access may not actually be a performance
bottleneck.

• Number of floating-point operations. The importance of this very popular met-
ric is often overrated. As will be shown in Chapter 3, data transfer is the dom-
inant performance-limiting factor in scientific code. Even so, if the number

Basic optimization techniques for serial code 43

of floating-point operations per clock cycle is somewhere near the theoretical
maximum (either given by the CPU’s peak performance, or less if there is an
asymmetry between MULT and ADD operations), standard code optimization
is unlikely to achieve any improvement and algorithmic changes are probably
in order.

• Mispredicted branches. This counter is incremented when the CPU has pre-
dicted the outcome of a conditional branch and the prediction has proved to be
wrong. Depending on the architecture, the penalty for a mispredicted branch
can be tens of cycles (see Section 2.3.2 below). In general, scientific codes
tend to be loop-based so that branches are well predictable. However, “pointer
chasing” and computed branches increase the probability of mispredictions.

• Pipeline stalls. Dependencies between operations running in different stages
of the processor pipeline (see Section 1.2.3) can lead to cycles during which
not all stages are busy, so-called stalls or bubbles. Often bubbles cannot be
avoided, e.g., when performance is limited by memory bandwidth and the
arithmetic units spend their time waiting for data. Hence, it is quite difficult
to identify the point where there are “too many” bubbles. Stall cycle anal-
ysis is especially important on in-order architectures (like, e.g., Intel IA64)
because bubbles cannot be filled by the hardware if there are no provisions for
executing instructions that appear later in the instruction stream but have their
operands available.

• Number of instructions executed. Together with clock cycles, this can be a
guideline for judging how effectively the superscalar hardware with its mul-
tiple execution units is utilized. Experience shows that it is quite hard for
compiler-generated code to reach more than 2–3 instructions per cycle, even
in tight inner loops with good pipelining properties.

There are essentially two ways to use hardware counters in profiling. In order to get
a quick overview of the performance properties of an application, a simple tool can
measure overall counts from start to finish and probably calculate some derived met-

rics like “instructions per cycle” or “cache misses per load or store.” A typical output
of such a tool could look like this if run with some application code (these examples
were compiled from output generated by the lipfpm tool, which is delivered with
some SGI Altix systems):

1 CPU Cycles.. 8721026107

2 Retired Instructions.................................... 21036052778

3 Average number of retired instructions per cycle........ 2.398151

4 L2 Misses... 101822

5 Bus Memory Transactions................................. 54413

6 Average MB/s requested by L2............................ 2.241689

7 Average Bus Bandwidth (MB/s)............................ 1.197943

8 Retired Loads... 694058538

9 Retired Stores.. 199529719

10 Retired FP Operations................................... 7134186664

11 Average MFLOP/s... 1225.702566

44 Introduction to High Performance Computing for Scientists and Engineers

12 Full Pipe Bubbles in Main Pipe.......................... 3565110974

13 Percent stall/bubble cycles............................. 40.642963

Note that the number of performance counters is usually quite small (between 2 and
4). Using a large number of metrics like in the example above may require running
the application multiple times or, if the profiling tool supports it, multiplexing be-
tween different sets of metrics by, e.g., switching to another set in regular intervals
(like 100 ms). The latter introduces a statistical error into the data. This error should
be closely watched, especially if the counts involved are small or if the application
runs only for a very short time.

In the example above the large number of retired instructions per cycle indicates
that the hardware is well utilized. So do the (very small) required bandwidths from
the caches and main memory and the relation between retired load/store instructions
to L2 cache misses. However, there are pipeline bubbles in 40% of all CPU cycles.
It is hard to tell without some reference whether this is a large or a small value. For
comparison, this is the profile of a vector triad code (large vector length) on the same
architecture as above:

1 CPU Cycles.. 28526301346

2 Retired Instructions.................................... 15720706664

3 Average number of retired instructions per cycle........ 0.551095

4 L2 Misses... 605101189

5 Bus Memory Transactions................................. 751366092

6 Average MB/s requested by L2............................ 4058.535901

7 Average Bus Bandwidth (MB/s)............................ 5028.015243

8 Retired Loads... 3756854692

9 Retired Stores.. 2472009027

10 Retired FP Operations................................... 4800014764

11 Average MFLOP/s... 252.399428

12 Full Pipe Bubbles in Main Pipe.......................... 25550004147

13 Percent stall/bubble cycles............................. 89.566481

The bandwidth requirements, the low number of instructions per cycle, and the re-
lation between loads/stores and cache misses indicate a memory-bound situation. In
contrast to the previous case, the percentage of stalled cycles is more than doubled.
Only an elaborate stall cycle analysis, based on more detailed metrics, would be able
to reveal the origin of those bubbles.

Although it can provide vital information, collecting “global” hardware counter
data may be too simplistic in some cases. If, e.g., the application profile contains
many phases with vastly different performance properties (e.g., cache-bound vs.
memory-bound, etc.), integrated counter data may lead to false conclusions. Restrict-
ing counter increments to specific parts of code execution can help to break down
the counter profile and get more specific data. Most simple tools provide a small
library with an API that allows at least enabling and disabling the counters under
program control. An open-source tool that can do this is, e.g., contained in the LIK-
WID [T20, W120] suite. It is compatible with most current x86-based processors.

A even more advanced way to use hardware performance counters (that is, e.g.,
supported by OProfile, but also by other tools like Intel VTune [T21]) is to use sam-
pling to attribute the events they accumulate to functions or lines in the application

Basic optimization techniques for serial code 45

code, much in the same way as in line-based profiling. Instead of taking a snapshot
of the instruction pointer or call stack at regular intervals, an overflow value is de-
fined for each counter (or, more exactly, each metric). When the counter reaches this
value, an interrupt is generated and an IP or call stack sample is taken. Naturally,
samples generated for a particular metric accumulate at places where the counter
was incremented most often, allowing the same considerations as above not for the
whole program but on a function and even code line basis. It should, however, be
clear that a correct interpretation of results from counting hardware events requires a
considerable amount of experience.

2.1.3 Manual instrumentation

If the overheads subjected to the application by standard compiler-based instru-
mentation are too large, or if only certain parts of the code should be profiled in
order to get a less complex view on performance properties, manual instrumentation
may be considered. The programmer inserts calls to a a wallclock timing routine
like gettimeofday() (see Listing 1.2 for a convenient wrapper function) or, if
hardware counter information is required, a profiling library like PAPI [T22] into the
program. Some libraries also allow to start and stop the standard profiling mecha-
nisms as described in Sections 2.1.1 and 2.1.2 under program control [T20]. This
can be very interesting in C++ where standard profiles are often very cluttered due
to the use of templates and operator overloading.

The results returned by timing routines should be interpreted with some care. The
most frequent mistake with code timings occurs when the time periods to be mea-
sured are in the same order of magnitude as the timer resolution, i.e., the minimum
possible interval that can be resolved.

2.2 Common sense optimizations

Very simple code changes can often lead to a significant performance boost. The
most important “common sense” guidelines regarding the avoidance of performance
pitfalls are summarized in the following sections. Some of those hints may seem triv-
ial, but experience shows that many scientific codes can be improved by the simplest
of measures.

2.2.1 Do less work!

In all but the rarest of cases, rearranging the code such that less work than before
is being done will improve performance. A very common example is a loop that
checks a number of objects to have a certain property, but all that matters in the end
is that any object has the property at all:

46 Introduction to High Performance Computing for Scientists and Engineers

1 logical :: FLAG

2 FLAG = .false.

3 do i=1,N

4 if(complex_func(A(i)) < THRESHOLD) then

5 FLAG = .true.

6 endif

7 enddo

If complex_func() has no side effects, the only information that gets communi-
cated to the outside of the loop is the value of FLAG. In this case, depending on the
probability for the conditional to be true, much computational effort can be saved by
leaving the loop as soon as FLAG changes state:

1 logical :: FLAG

2 FLAG = .false.

3 do i=1,N

4 if(complex_func(A(i)) < THRESHOLD) then

5 FLAG = .true.

6 exit

7 endif

8 enddo

2.2.2 Avoid expensive operations!

Sometimes, implementing an algorithm is done in a thoroughly “one-to-one”
way, translating formulae to code without any reference to performance issues. While
this is actually good (performance optimization always bears the slight danger of
changing numerics, if not results), in a second step all those operations should be
eliminated that can be substituted by “cheaper” alternatives. Prominent examples for
such “strong” operations are trigonometric functions or exponentiation. Bear in mind
that an expression like x**2.0 is often not optimized by the compiler to become
x*x but left as it stands, resulting in the evaluation of an exponential and a loga-
rithm. The corresponding optimization is called strength reduction. Apart from the
simple case described above, strong operations sometimes appear with a limited set
of fixed arguments. This is an example from a simulation code for nonequilibrium
spin systems:

1 integer :: iL,iR,iU,iO,iS,iN

2 double precision :: edelz,tt

3 ... ! load spin orientations

4 edelz = iL+iR+iU+iO+iS+iN ! loop kernel

5 BF = 0.5d0*(1.d0+TANH(edelz/tt))

The last two lines are executed in a loop that accounts for nearly the whole run-
time of the application. The integer variables store spin orientations (up or down,
i.e., −1 or +1, respectively), so the edelz variable only takes integer values in the
range {−6, . . . ,+6}. The tanh() function is one of those operations that take vast
amounts of time (at least tens of cycles), even if implemented in hardware. In the case

Basic optimization techniques for serial code 47

described, however, it is easy to eliminate the tanh() call completely by tabulating

the function over the range of arguments required, assuming that tt does not change
its value so that the table does only have to be set up once:

1 double precision, dimension(-6:6) :: tanh_table

2 integer :: iL,iR,iU,iO,iS,iN

3 double precision :: tt

4 ...

5 do i=-6,6 ! do this once

6 tanh_table(i) = 0.5d0*(1.d0+TANH(dble(i)/tt))

7 enddo

8 ...

9 BF = tanh_table(iL+iR+iU+iO+iS+iN) ! loop kernel

The table look-up is performed at virtually no cost compared to the tanh() evalu-
ation since the table will be available in L1 cache at access latencies of a few CPU
cycles. Due to the small size of the table and its frequent use it will fit into L1 cache
and stay there in the course of the calculation.

2.2.3 Shrink the working set!

The working set of a code is the amount of memory it uses (i.e., actually touches)
in the course of a calculation, or at least during a significant part of overall runtime.
In general, shrinking the working set by whatever means is a good thing because it
raises the probability for cache hits. If and how this can be achieved and whether it
pays off performancewise depends heavily on the algorithm and its implementation,
of course. In the above example, the original code used standard four-byte integers to
store the spin orientations. The working set was thus much larger than the L2 cache
of any processor. By changing the array definitions to use integer(kind=1) for
the spin variables, the working set could be reduced by nearly a factor of four, and
became comparable to cache size.

Consider, however, that not all microprocessors can handle “small” types effi-
ciently. Using byte-size integers for instance could result in very ineffective code
that actually works on larger word sizes but extracts the byte-sized data by mask and
shift operations. On the other hand, if SIMD instructions can be employed, it may
become quite efficient to revert to simpler data types (see Section 2.3.3 for details).

2.3 Simple measures, large impact

2.3.1 Elimination of common subexpressions

Common subexpression elimination is an optimization that is often considered a
task for compilers. Basically one tries to save time by precalculating parts of complex
expressions and assigning them to temporary variables before a code construct starts

48 Introduction to High Performance Computing for Scientists and Engineers

that uses those parts multiple times. In case of loops, this optimization is also called
loop invariant code motion:

1 ! inefficient

2 do i=1,N

3 A(i)=A(i)+s+r*sin(x)

4 enddo

−→
tmp=s+r*sin(x)

do i=1,N

A(i)=A(i)+tmp

enddo

A lot of compute time can be saved by this optimization, especially where “strong”
operations (like sin()) are involved. Although it may happen that subexpressions
are obstructed by other code and not easily recognizable, compilers are in princi-
ple able to detect this situation. They will, however, often refrain from pulling the
subexpression out of the loop if this required employing associativity rules (see Sec-
tion 2.4.4 for more information about compiler optimizations and reordering of arith-
metic expressions). In practice, a good strategy is to help the compiler by eliminating
common subexpressions by hand.

2.3.2 Avoiding branches

“Tight” loops, i.e., loops that have few operations in them, are typical candidates
for software pipelining (see Section 1.2.3), loop unrolling, and other optimization
techniques (see below). If for some reason compiler optimization fails or is inef-
ficient, performance will suffer. This can easily happen if the loop body contains
conditional branches:

1 do j=1,N

2 do i=1,N

3 if(i.ge.j) then

4 sign=1.d0

5 else if(i.lt.j) then

6 sign=-1.d0

7 else

8 sign=0.d0

9 endif

10 C(j) = C(j) + sign * A(i,j) * B(i)

11 enddo

12 enddo

In this multiplication of a matrix with a vector, the upper and lower triangular parts
get different signs and the diagonal is ignored. The if statement serves to decide
about which factor to use. Each time a corresponding conditional branch is encoun-
tered by the processor, some branch prediction logic tries to guess the most probable
outcome of the test before the result is actually available, based on statistical meth-
ods. The instructions along the chosen path are then fetched, decoded, and generally
fed into the pipeline. If the anticipation turns out to be false (this is called a mis-

predicted branch or branch miss), the pipeline has to be flushed back to the position
of the branch, implying many lost cycles. Furthermore, the compiler refrains from
doing advanced optimizations like unrolling or SIMD vectorization (see the follow-

Basic optimization techniques for serial code 49

ing section). Fortunately, the loop nest can be transformed so that all if statements
vanish:

1 do j=1,N

2 do i=j+1,N

3 C(j) = C(j) + A(i,j) * B(i)

4 enddo

5 enddo

6 do j=1,N

7 do i=1,j-1

8 C(j) = C(j) - A(i,j) * B(i)

9 enddo

10 enddo

By using two different variants of the inner loop, the conditional has effectively been
moved outside. One should add that there is more optimization potential in this loop
nest. Please consider Chapter 3 for more information on optimizing data access.

2.3.3 Using SIMD instruction sets

Although vector processors also use SIMD instructions and the use of SIMD in
microprocessors is often termed “vectorization,” it is more similar to the multitrack
property of modern vector systems. Generally speaking, a “vectorizable” loop in this
context will run faster if more operations can be performed with a single instruction,
i.e., the size of the data type should be as small as possible. Switching from DP to SP
data could result in up to a twofold speedup (as is the case for the SIMD capabilities
of x86-type CPUs [V104, V105]), with the additional benefit that more items fit into
the cache.

Certainly, preferring SIMD instructions over scalar ones is no guarantee for a
performance improvement. If the code is strongly limited by memory bandwidth, no
SIMD technique can bridge this gap. Register-to-register operations will be greatly
accelerated, but this will only lengthen the time the registers wait for new data from
the memory subsystem.

In Figure 1.8, a single precision ADD instruction was depicted that might be used
in an array addition loop:

1 real, dimension(1:N) :: r, x, y

2 do i=1, N

3 r(i) = x(i) + y(i)

4 enddo

All iterations in this loop are independent, there is no branch in the loop body, and
the arrays are accessed with a stride of one. However, the use of SIMD requires
some rearrangement of a loop kernel like the one above to be applicable: A number
of iterations equal to the SIMD register size has to be executed as a single “chunk”
without any branches in between. This is actually a well-known optimization that
can pay off even without SIMD and is called loop unrolling (see Section 3.5 for
more details outside the SIMD context). Since the overall number of iterations is
generally not a multiple of the register size, some remainder loop is left to execute

50 Introduction to High Performance Computing for Scientists and Engineers

in scalar mode. In pseudocode, and ignoring software pipelining (see Section 1.2.3),
this could look like the following:

1 ! vectorized part

2 rest = mod(N,4)

3 do i=1,N-rest,4

4 load R1 = [x(i),x(i+1),x(i+2),x(i+3)]

5 load R2 = [y(i),y(i+1),y(i+2),y(i+3)]

6 ! "packed" addition (4 SP flops)

7 R3 = ADD(R1,R2)

8 store [r(i),r(i+1),r(i+2),r(i+3)] = R3

9 enddo

10 ! remainder loop

11 do i=N-rest+1,N

12 r(i) = x(i) + y(i)

13 enddo

R1, R2, and R3 denote 128-bit SIMD registers here. In an optimal situation all this
is carried out by the compiler automatically. Compiler directives can be used to give
hints as to where vectorization is safe and/or beneficial.

The SIMD load and store instructions suggested in this example might need some
special care. Some SIMD instruction sets distinguish between aligned and unaligned

data. For example, in the x86 (Intel/AMD) case, the “packed” SSE load and store
instructions exist in aligned and unaligned flavors [V107, O54]. If an aligned load or
store is used on a memory address that is not a multiple of 16, an exception occurs.
In cases where the compiler knows nothing about the alignment of arrays used in a
vectorized loop and cannot otherwise influence it, unaligned (or a sequence of scalar)
loads and stores must be used, incurring some performance penalty. The programmer
can force the compiler to assume optimal alignment, but this is dangerous if one
cannot make absolutely sure that the assumption is justified. On some architectures
alignment issues can be decisive; every effort must then be made to align all loads
and stores to the appropriate address boundaries.

A loop with a true dependency as discussed in Section 1.2.3 cannot be SIMD-
vectorized in this way (there is a twist to this, however; see Problem 2.2):

1 do i=2,N

2 A(i)=s*A(i-1)

3 enddo

The compiler will revert to scalar operations here, which means that only the lowest
operand in the SIMD registers is used (on x86 architectures).

Note that there are no fixed guidelines for when a loop qualifies as vectorized.
One (maybe the weakest) possible definition is that all arithmetic within the loop is
executed using the full width of SIMD registers. Even so, the load and store instruc-
tions could still be scalar; compilers tend to report such loops as “vectorized” as well.
On x86 processors with SSE support, the lower and higher 64 bits of a register can
be moved independently. The vector addition loop above could thus look as follows
in double precision:

Basic optimization techniques for serial code 51

1 rest = mod(N,2)

2 do i=1,N-rest,2

3 ! scalar loads

4 load R1.low = x(i)

5 load R1.high = x(i+1)

6 load R2.low = y(i)

7 load R2.high = y(i+1)

8 ! "packed" addition (2 DP flops)

9 R3 = ADD(R1,R2)

10 ! scalar stores

11 store r(i) = R3.low

12 store r(i+1) = R3.high

13 enddo

14 ! remainder "loop"

15 if(rest.eq.1) r(N) = x(N) + y(N)

This version will not give the best performance if the operands reside in a cache.
Although the actual arithmetic operations (line 9) are SIMD-parallel, all loads and
stores are scalar. Lacking extensive compiler reports, the only option to identify such
a failure is manual inspection of the generated assembly code. If the compiler cannot
be convinced to properly vectorize a loop even with additional command line options
or source code directives, a typical “last resort” before using assembly language al-
together is to employ compiler intrinsics. Intrinsics are constructs that resemble as-
sembly instructions so closely that they can usually be translated 1:1 by the compiler.
However, the user is relieved from the burden of keeping track of individual regis-
ters, because the compiler provides special data types that map to SIMD operands.
Intrinsics are not only useful for vectorization but can be beneficial in all cases where
high-level language constructs cannot be optimally mapped to some CPU function-
ality. Unfortunately, intrinsics are usually not compatible across compilers even on
the same architecture [V112].

Finally, it must be stressed that in contrast to real vector processors, RISC sys-
tems will not always benefit from vectorization. If a memory-bound code can be
optimized for heavy data reuse from registers or cache (see Chapter 3 for examples),
the potential gains are so huge that it may be acceptable to give up vectorizability
along the way.

2.4 The role of compilers

Most high-performance codes benefit, to varying degrees, from employing
compiler-based optimizations. Every modern compiler has command line switches
that allow a (more or less) fine-grained tuning of the available optimization options.
Sometimes it is even worthwhile trying a different compiler just to check whether
there is more performance potential. One should be aware that the compiler has the
extremely complex job of mapping source code written in a high-level language to
machine code, thereby utilizing the processor’s internal resources as well as possi-

52 Introduction to High Performance Computing for Scientists and Engineers

ble. Some of the optimizations described in this and the next chapter can be applied
by the compiler itself in simple situations. However, there is no guarantee that this
is actually the case and the programmer should at least be aware of the basic strate-
gies for automatic optimization and potential stumbling blocks that prevent the latter
from being applied. It must be understood that compilers can be surprisingly smart
and stupid at the same time. A common statement in discussions about compiler ca-
pabilities is “The compiler should be able to figure that out.” This is often enough a
false assumption.

Ref. [C91] provides a comprehensive overview on optimization capabilities of
several current C/C++ compilers, together with useful hints and guidelines for man-
ual optimization.

2.4.1 General optimization options

Every compiler offers a collection of standard optimization options (-O0,
-O1,. . .). What kinds of optimizations are employed at which level is by no means
standardized and often (but not always) documented in the manuals. However, all
compilers refrain from most optimizations at level -O0, which is hence the correct
choice for analyzing the code with a debugger. At higher levels, optimizing compilers
mix up source lines, detect and eliminate “redundant” variables, rearrange arithmetic
expressions, etc., so that any debugger has a hard time giving the user a consistent
view on code and data.

Unfortunately, some problems seem to appear only with higher optimization lev-
els. This might indicate a defect in the compiler, however it is also possible that a
typical bug like an array bounds violation (reading or writing beyond the bound-
aries of an array) is “harmless” at -O0 because data is arranged differently than at
-O3. Such bugs are notoriously hard to spot, and sometimes even the popular “printf
debugging” does not help because it interferes with the optimizer.

2.4.2 Inlining

Inlining tries to save overhead by inserting the complete code of a function or
subroutine at the place where it is called. Each function call uses up resources be-
cause arguments have to be passed, either in registers or via the stack (depending
on the number of parameters and the calling conventions used). While the scope of
the former function (local variables, etc.) must be established anyway, inlining does
remove the necessity to push arguments onto the stack and enables the compiler to
use registers as it deems necessary (and not according to some calling convention),
thereby reducing register pressure. Register pressure occurs if the CPU does not have
enough registers to hold all the required operands inside a complex computation or
loop body (see also Section 2.4.5 for more information on register usage). And fi-
nally, inlining a function allows the compiler to view a larger portion of code and
probably employ optimizations that would otherwise not be possible. The program-
mer should never rely on the compiler to optimize inlined code perfectly, though; in

Basic optimization techniques for serial code 53

performance-critical situations (like tight loop kernels), obfuscating the compiler’s
view on the “real” code is usually counterproductive.

Whether the call overhead impacts performance depends on how much time is
spent in the function body itself; naturally, frequently called small functions bear
the highest speedup potential if inlined. In many C++ codes, inlining is absolutely
essential to get good performance because overloaded operators for simple types tend
to be small functions, and temporary copies can be avoided if an inlined function
returns an object (see Section 2.5 for details on C++ optimization).

Compilers usually have various options to control the extent of automatic inlin-
ing, e.g., how large (in terms of the number of lines) a subroutine may be to become
an inlining candidate, etc. Note that the c99 and C++ inline keyword is only a hint
to the compiler. A compiler log (if available, see Section 2.4.6) should be consulted
to see whether a function was really inlined.

On the downside, inlining a function in multiple places can enlarge the object
code considerably, which may lead to problems with L1 instruction cache capacity. If
the instructions belonging to a loop cannot be fetched from L1I cache, they compete
with data transfers to and from outer-level cache or main memory, and the latency
for fetching instructions becomes larger. Thus one should be cautious about altering
the compiler’s inlining heuristics, and carefully check the effectiveness of manual
interventions.

2.4.3 Aliasing

The compiler, guided by the rules of the programming language and its inter-
pretation of the source, must make certain assumptions that may limit its ability to
generate optimal machine code. The typical example arises with pointer (or refer-
ence) formal parameters in the C (and C++) language:

1 void scale_shift(double *a, double *b, double s, int n) {

2 for(int i=1; i<n; ++i)

3 a[i] = s*b[i-1];

4 }

Assuming that the memory regions pointed to by a and b do not overlap, i.e., the
ranges [a,a+n−1] and [b,b+n−1] are disjoint, the loads and stores in the loop can
be arranged in any order. The compiler can apply any software pipelining scheme
it considers appropriate, or it could unroll the loop and group loads and stores in
blocks, as shown in the following pseudocode (we ignore the remainder loop):

1 loop:

2 load R1 = b(i+1)

3 load R2 = b(i+2)

4 R1 = MULT(s,R1)

5 R2 = MULT(s,R2)

6 store a(i) = R1

7 store a(i+1) = R2

8 i = i + 2

9 branch -> loop

54 Introduction to High Performance Computing for Scientists and Engineers

In this form, the loop could easily be SIMD-vectorized as well (see Section 2.3.3).

However, the C and C++ standards allow for arbitrary aliasing of pointers. It
must thus be assumed that the memory regions pointed to by a and b do overlap. For
instance, if a==b, the loop is identical to the “real dependency” Fortran example on
page 12; loads and stores must be executed in the same order in which they appear
in the code:

1 loop:

2 load R1 = b(i+1)

3 R1 = MULT(s,R1)

4 store a(i) = R1

5 load R2 = b(i+2)

6 R2 = MULT(s,R2)

7 store a(i+1) = R2

8 i = i + 2

9 branch -> loop

Lacking any further information, the compiler must generate machine instructions
according to this scheme. Among other things, SIMD vectorization is ruled out. The
processor hardware allows reordering of loads and stores within certain limits [V104,
V105], but this can of course never alter the program’s semantics.

Argument aliasing is forbidden by the Fortran standard, and this is one of the
main reasons why Fortran programs tend to be faster than equivalent C programs.
All C/C++ compilers have command line options to control the level of aliasing the
compiler is allowed to assume (e.g., -fno-fnalias for the Intel compiler and
-fargument-noalias for the GCC specify that no two pointer arguments for
any function ever point to the same location). If the compiler is told that argument
aliasing does not occur, it can in principle apply the same optimizations as in equiva-
lent Fortran code. Of course, the programmer should not “lie” in this case, as calling
a function with aliased arguments will then probably produce wrong results.

2.4.4 Computational accuracy

As already mentioned in Section 2.3.1, compilers sometimes refrain from rear-
ranging arithmetic expressions if this required applying associativity rules, except
with very aggressive optimizations turned on. The reason for this is the infamous
nonassociativity of FP operations [135]: (a+b)+c is, in general, not identical to
a+(b+c) if a, b, and c are finite-precision floating-point numbers. If accuracy is to
be maintained compared to nonoptimized code, associativity rules must not be used
and it is left to the programmer to decide whether it is safe to regroup expressions
by hand. Modern compilers have command line options that limit rearrangement of
arithmetic expressions even at high optimization levels.

Note also that denormals, i.e., floating-point numbers that are smaller than the
smallest representable number with a nonzero lead digit, can have a significant im-
pact on computational performance. If possible, and if the slight loss in accuracy is
tolerable, such numbers should be treated as (“flushed to”) zero by the hardware.

Basic optimization techniques for serial code 55

Listing 2.1: Compiler log for a software pipelined triad loop. “Peak” indicates the maximum
possible execution rate for the respective operation type on this architecture (MIPS R14000).

1 #<swps> 16383 estimated iterations before pipelining

2 #<swps> 4 unrollings before pipelining

3 #<swps> 20 cycles per 4 iterations

4 #<swps> 8 flops (20% of peak) (madds count as 2)

5 #<swps> 4 flops (10% of peak) (madds count as 1)

6 #<swps> 4 madds (20% of peak)

7 #<swps> 16 mem refs (80% of peak)

8 #<swps> 5 integer ops (12% of peak)

9 #<swps> 25 instructions (31% of peak)

10 #<swps> 2 short trip threshold

11 #<swps> 13 integer registers used.

12 #<swps> 17 float registers used.

2.4.5 Register optimizations

It is one of the most vital, but also most complex tasks of the compiler to care
about register usage. The compiler tries to put operands that are used “most often”
into registers and keep them there as long as possible, given that it is safe to do so.
If, e.g., a variable’s address is taken, its value might be manipulated elsewhere in
the program via the address. In this case the compiler may decide to write a variable
back to memory right after any change on it.

Inlining (see Section 2.4.2) will help with register optimizations since the opti-
mizer can probably keep values in registers that would otherwise have to be written
to memory before the function call and read back afterwards. On the downside, loop
bodies with lots of variables and many arithmetic expressions (which can easily oc-
cur after inlining) are hard for the compiler to optimize because it is likely that there
are too few registers to hold all operands at the same time. As mentioned earlier, the
number of integer and floating-point registers in any processor is strictly limited. To-
day, typical numbers range from 8 to 128, the latter being a gross exception, however.
If there is a register shortage, variables have to be spilled, i.e., written to memory, for
later use. If the code’s performance is determined by arithmetic operations, register
spill can hamper performance quite a bit. In such cases it may even be worthwhile
splitting a loop in two to reduce register pressure.

Some processors with hardware support for spilling like, e.g., Intel’s Itanium2,
feature hardware performance counter metrics, which allow direct identification of
register spill.

2.4.6 Using compiler logs

The previous sections have pointed out that the compiler is a crucial compo-
nent in writing efficient code. It is very easy to hide important information from the
compiler, forcing it to give up optimization at an early stage. In order to make the
decisions of the compiler’s “intelligence” available to the user, many compilers offer

56 Introduction to High Performance Computing for Scientists and Engineers

options to generate annotated source code listings or at least logs that describe in
some detail what optimizations were performed. Listing 2.1 shows an example for a
compiler annotation regarding a standard vector triad loop as in Listing 1.1, for the
(now outdated) MIPS R14000 processor. This CPU was four-way superscalar, with
the ability to execute one load or store, two integer, one FP add and one FP multiply
operation per cycle (the latter two in the form of a fused multiply-add [“madd”] in-
struction). Assuming that all data is available from the inner level cache, the compiler
can calculate the minimum number of cycles required to execute one loop iteration
(line 3). Percentages of Peak, i.e., the maximum possible throughput for every type
of operation, are indicated in lines 4–9.

Additionally, information about register usage and spill (lines 11 and 12), un-
rolling factors and software pipelining (line 2, see Sections 1.2.3 and 3.5), use of
SIMD instructions (see Section 2.3.3), and the compiler’s assumptions about loop
length (line 1) are valuable for judging the quality of generated machine code. Un-
fortunately, not all compilers have the ability to write such comprehensive code an-
notations and users are often left with guesswork.

Certainly there is always the option of manually inspecting the generated assem-
bly code. All compilers provide command line options to output an assembly listing
instead of a linkable object file. However, matching this listing with the original
source code and analyzing the effectiveness of the instruction sequences requires a
considerable amount of experience [O55]. After all there is a reason for people not
writing programs in assembly language all the time.

2.5 C++ optimizations

There is a host of literature dealing with how to write efficient C++ code [C92,
C93, C94, C95], and it is not our ambition to supersede it here. We also deliberately
omit standard techniques like reference counting, copy-on-write, smart pointers, etc.
In this section we will rather point out, in our experience, the most common perfor-
mance bugs and misconceptions in C++ programs, with a focus on low-level loops.

One of the ineradicable illusions about C++ is that the compiler should be able to
see through all the abstractions and obfuscations an “advanced” C++ program con-
tains. First and foremost, C++ should be seen as a language that enables complex-

ity management. The features one has grown fond of in this concept, like operator
overloading, object orientation, automatic construction/destruction, etc., are however
mostly unsuitable for efficient low-level code.

2.5.1 Temporaries

C++ fosters an “implicit” programming style where automatic mechanisms hide
complexity from the programmer. A frequent problem occurs with expressions con-
taining chains of overloaded operators. As an example, assume there is a vec3d

Basic optimization techniques for serial code 57

class, which represents a vector in three-dimensional space. Overloaded arithmetic
operators then allow expressive coding:

1 class vec3d {

2 double x,y,z;

3 friend vec3d operator*(double, const vec3d&);

4 public:

5 vec3d(double _x=0.0, double _y=0.0, double _z=0.0) : // 4 ctors

6 x(_x),y(_y),z(_z) {}

7 vec3d(const vec3d &other);

8 vec3d operator=(const vec3d &other);

9 vec3d operator+(const vec3d &other) {

10 vec3d tmp;

11 tmp.x = x + other.x;

12 tmp.y = y + other.y;

13 tmp.z = z + other.z;

14 }

15 vec3d operator*(const vec3d &other);

16 ...

17 };

18

19 vec3d operator*(double s, const vec3d& v) {

20 vec3d tmp(s*v.x,s*v,y,s*v.z);

21 }

Here we show only the implementation of the vec3d::operator+ method and
the friend function for multiplication by a scalar. Other useful functions are defined
in a similar way. Note that copy constructors and assignment are shown for reference
as prototypes, but are implicitly defined because shallow copy and assignment are
sufficient for this simple class.

The following code fragment shall serve as an instructive example of what really
goes on behind the scenes when a class is used:

1 vec3d a,b(2,2),c(3);

2 double x=1.0,y=2.0;

3

4 a = x*b + y*c;

In this example the following steps will occur (roughly) in this order:

1. Constructors for a, b, c, and d are called (the default constructor is imple-
mented via default arguments to the parameterized constructor)

2. operator*(x, b) is called

3. The vec3d constructor is called to initialize tmp in
operator*(double s, const vec3d& v) (here we have al-
ready chosen the more efficient three-parameter constructor instead of the
default constructor followed by assignment from another temporary)

4. Since tmp must be destroyed once
operator*(double, const vec3d&) returns, vec3d’s copy

58 Introduction to High Performance Computing for Scientists and Engineers

constructor is invoked to make a temporary copy of the result, to be used as
the first argument in the vector addition

5. operator*(y, c) is called

6. The vec3d constructor is called to initialize tmp in
operator*(double s, const vec3d& v)

7. Since tmp must be destroyed once
operator*(double, const vec3d&) returns, vec3d’s copy
constructor is invoked to make a temporary copy of the result, to be used as
the second argument in the vector addition

8. vec3d::operator+(const vec3d&) is called in the first temporary
object with the second as a parameter

9. vec3d’s default constructor is called to make tmp in
vec3d::operator+

10. vec3d’s copy constructor is invoked to make a temporary copy of the sum-
mation’s result

11. vec3d’s assignment operator is called in a with the temporary result as its
argument

Although the compiler may eliminate the local tmp objects by the so-called return

value optimization [C92] using the required implicit temporary directly instead of
tmp, it is striking how much code gets executed for this seemingly simple expres-
sion (a debugger can help a lot with getting more insight here). A straightforward
optimization, at the price of some readability, is to use compound computational/as-
signment operators like operator+=:

1 a = y*c;

2 a += x*b;

Two temporaries are still required here to transport the results from
operator*(double, const vec3d&) back into the main function, but
they are used in an assignment and vec3d::operator+= right away without the
need for a third temporary. The benefit is even more noticeable with longer operator
chains.

However, even if a lot of compute time is spent handling temporaries, calling
copy constructors, etc., this fact is not necessarily evident from a standard function
profile like the ones shown in Section 2.1.1. C++ compilers are, necessarily, quite
good at function inlining. Much of the implicit “magic” going on could thus be sum-
marized as, e.g., exclusive runtime of the function invoking a complex expression.
Disabling inlining, although generally advised against, might help to get more insight
in this situation, but it will distort the results considerably.

Despite aggressive inlining the compiler will most probably not generate “opti-
mal” code, which would roughly look like this:

Basic optimization techniques for serial code 59

1 a.x = x*b.x + y*c.x;

2 a.y = x*b.y + y*c.y;

3 a.z = x*b.z + y*c.z;

Expression templates [C96, C97] are an advanced programming technique that can
supposedly lift many of the performance problems incurred by temporaries, and ac-
tually produce code like this from high-level expressions.

It should nonetheless be clear that it is not the purpose of C++ inlining to produce
the optimal code, but to rectify the most severe performance penalties incurred by the
language specification. Loop kernels bound by memory or even cache bandwidth,
or arithmetic throughput, are best written either in C (or C style) or Fortran. See
Section 2.5.3 for details.

2.5.2 Dynamic memory management

Another common bottleneck in C++ codes is frequent allocation and dealloca-
tion. There was no dynamic memory involved in the simple 3D vector class example
above, so there was no problem with abundant (de)allocations. Had we chosen to use
a general vector-like class with variable size, the performance implications of tem-
poraries would have been even more severe, because construction and destruction of
each temporary would have called malloc() and free(), respectively. Since the
standard library functions are not optimized for minimal overhead, this can seriously
harm overall performance. This is why C++ programmers go to great lengths trying
to reduce the impact of allocation and deallocation [C98].

Avoiding temporaries is of course one of the key measures here (see the previ-
ous section), but two other strategies are worth noting: Lazy construction and static

construction. These two seem somewhat contrary, but both have useful applications.

Lazy construction

For C programmers who adopted C++ as a “second language” it is natural to col-
lect object declarations at the top of a function instead of moving each declaration to
the place where it is needed. The former is required by C, and there is no performance
problem with it as long as only basic data types are used. An expensive constructor
should be avoided as far as possible, however:

1 void f(double threshold, int length) {

2 std::vector<double> v(length);

3 if(rand() > threshold*RAND_MAX) {

4 v = obtain_data(length);

5 std::sort(v.begin(), v.end());

6 process_data(v);

7 }

8 }

In line 2, construction of v is done unconditionally although the probability that it
is really needed might be low (depending on threshold). A better solution is to
defer construction until this decision has been made:

60 Introduction to High Performance Computing for Scientists and Engineers

1 void f(double threshold, int length) {

2 if(rand() > threshold*RAND_MAX) {

3 std::vector<double> v(obtain_data(length));

4 std::sort(v.begin(), v.end());

5 process_data(v);

6 }

7 }

As a positive side effect we now call the copy constructor of std::vector<>
(line 3) instead of the int constructor followed by an assignment.

Static construction

Moving the construction of an object to the outside of a loop or block, or mak-
ing it static altogether, may even be faster than lazy construction if the object is
used often. In the example above, if the array length is constant and threshold

is usually close to 1, static allocation will make sure that construction overhead is
negligible since it only has to be paid once:

1 const int length=1000;

2

3 void f(double threshold) {

4 static std::vector<double> v(length);

5 if(rand() > threshold*RAND_MAX) {

6 v = obtain_data(length);

7 std::sort(v.begin(), v.end());

8 process_data(v);

9 }

10 }

The vector object is instantiated only once in line 4, and there is no subsequent al-
location overhead. With a variable length there is the chance that memory would
have to be re-allocated upon assignment, incurring the same cost as a normal con-
structor (see also Problem 2.4). In general, if assignment is faster (on average) than
(re-)allocation, static construction will be faster.

Note that special care has to be taken of static data in shared-memory parallel
programs; see Section 6.1.4 for details.

2.5.3 Loop kernels and iterators

The runtime of scientific applications tends to be dominated by loops or loop
nests, and the compiler’s ability to optimize those loops is pivotal for getting good
code performance. Operator overloading, convenient as it may be, hinders good loop
optimization. In the following example, the template function sprod<>() is re-
sponsible for carrying out a scalar product over two vectors:

1 using namespace std;

2

3 template<class T> T sprod(const vector<T> &a, const vector<T> &b) {

4 T result=T(0);

Basic optimization techniques for serial code 61

5 int s = a.size();

6 for(int i=0; i<s; ++i) // not SIMD vectorized

7 result += a[i] * b[i];

8 return result;

9 }

In line 7, const T& vector<T>::operator[] is called twice to obtain the
current entries from a and b. STL may define this operator in the following way
(adapted from the GNU ISO C++ library source):

1 const T& operator[](size_t __n) const

2 { return *(this->_M_impl._M_start + __n); }

Although this looks simple enough to be inlined efficiently, current compilers refuse
to apply SIMD vectorization to the summation loop above. A single layer of ab-
straction, in this case an overloaded index operator, can thus prevent the creation of
optimal loop code (and we are not even referring to more complex, high-level loop
transformations like those described in Chapter 3). However, using iterators for array
access, vectorization is not a problem:

1 template<class T> T sprod(const vector<T> &a, const vector<T> &b) {

2 typename vector<T>::const_iterator ia=a.begin(),ib=b.begin();

3 T result=T(0);

4 int s = a.size();

5 for(int i=0; i<s; ++i) // SIMD vectorized

6 result += ia[i] * ib[i];

7 return result;

8 }

Because vector<T>::const_iterator is const T*, the compiler sees nor-
mal C code. The use of iterators instead of methods for data access can be a powerful
optimization method in C++. If possible, low-level loops should even reside in sepa-
rate compilation units (and written in C or Fortran), and iterators be passed as point-
ers. This ensures minimal interference with the compiler’s view on the high-level
C++ code.

The std::vector<> template is a particularly rewarding case because its iter-
ators are implemented as standard (C) pointers, but it is also the most frequently used
container. More complex containers have more complex iterator classes, and those
may not be easily convertible to raw pointers. In cases where it is possible to repre-
sent data in a “segmented” structure with multiple vector<>-like components (a
matrix being the standard example), the use of segmented iterators still enables fast
low-level algorithms. See [C99, C100] for details.

62 Introduction to High Performance Computing for Scientists and Engineers

Problems

For solutions see page 288 ff.

2.1 The perils of branching. Consider this benchmark code for a stride-one triad
“with a twist”:

1 do i=1,N

2 if(C(i)<0.d0) then

3 A(i) = B(i) - C(i) * D(i)

4 else

5 A(i) = B(i) + C(i) * D(i)

6 endif

7 enddo

What performance impact do you expect from the conditional compared to the
standard vector triad if array C is initialized with (a) positive values only (b)
negative values only (c) random values between −1 and 1 for loop lengths that
fit in L1 cache, L2 cache, and memory, respectively?

2.2 SIMD despite recursion? In Section 1.2.3 we have studied the influence of
loop-carried dependencies on pipelining using the following loop kernel:

1 start=max(1,1-offset)

2 end=min(N,N-offset)

3 do i=start,end

4 A(i)=s*A(i+offset)

5 enddo

If A is an array of single precision floating-point numbers, for which values of
offset is SIMD vectorization as shown in Figure 1.8 possible?

2.3 Lazy construction on the stack. If we had used a standard C-style double ar-
ray instead of a std::vector<double> for the lazy construction example
in Section 2.5.2, would it make a difference where it was declared?

2.4 Fast assignment. In the static construction example in Section 2.5.2 we stated
that the benefit of a static std::vector<> object can only be seen with a
constant vector length, because assignment leads to re-allocation if the length
can change. Is this really true?

Chapter 3

Data access optimization

Of all possible performance-limiting factors in HPC, the most important one is data
access. As explained earlier, microprocessors tend to be inherently “unbalanced”
with respect to the relation of theoretical peak performance versus memory band-
width. Since many applications in science and engineering consist of loop-based
code that moves large amounts of data in and out of the CPU, on-chip resources tend
to be underutilized and performance is limited only by the relatively slow data paths
to memory or even disks.

Figure 3.1 shows an overview of several data paths present in modern parallel
computer systems, and typical ranges for their bandwidths and latencies. The func-
tional units, which actually perform the computational work, sit at the top of this
hierarchy. In terms of bandwidth, the slowest data paths are three to four orders of
magnitude away, and eight in terms of latency. The deeper a data transfer must reach
down through the different levels in order to obtain required operands for some cal-
culation, the harder the impact on performance. Any optimization attempt should
therefore first aim at reducing traffic over slow data paths, or, should this turn out to
be infeasible, at least make data transfer as efficient as possible.

3.1 Balance analysis and lightspeed estimates

3.1.1 Bandwidth-based performance modeling

Some programmers go to great lengths trying to improve the efficiency of code.
In order to decide whether this makes sense or if the program at hand is already
using the resources in the best possible way, one can often estimate the theoretical
performance of loop-based code that is bound by bandwidth limitations by simple
rules of thumb. The central concept to introduce here is balance. For example, the
machine balance Bm of a processor chip is the ratio of possible memory bandwidth
in GWords/sec to peak performance in GFlops/sec:

Bm =
memory bandwidth [GWords/sec]
peak performance [GFlops/sec]

=
bmax

Pmax
(3.1)

“Memory bandwidth” could also be substituted by the bandwidth to caches or even
network bandwidths, although the metric is generally most useful for codes that are
really memory-bound. Access latency is assumed to be hidden by techniques like

63

64 Introduction to High Performance Computing for Scientists and Engineers

10 11

10 10

10 9

10 8

10 7

−810

−710

−610

−910

−510

−410

−310

−210

−110

L1 cache

Main memory

L2/L3 cache

HPC networks

Gigabit Ethernet

Local hard disk

Internet

Solid state disk

BandwidthLatency

[sec] [bytes/sec]

Figure 3.1: Typical latency and bandwidth numbers for data transfer to and from different
devices in computer systems. Registers have been omitted because their “bandwidth” usually
matches the computational capabilities of the compute core, and their latency is part of the
pipelined execution.

Data access optimization 65

data path balance [W/F]

cache 0.5–1.0

machine (memory) 0.03–0.5

interconnect (high speed) 0.001–0.02

interconnect (GBit ethernet) 0.0001–0.0007

disk (or disk subsystem) 0.0001–0.01

Table 3.1: Typical balance values for operations limited by different transfer paths. In case
of network and disk connections, the peak performance of typical dual-socket compute nodes
was taken as a basis.

prefetching and software pipelining. As an example, consider a dual-core chip with
a clock frequency of 3.0 GHz that can perform at most four flops per cycle (per core)
and has a memory bandwidth of 10.6 GBytes/sec. This processor would have a ma-
chine balance of 0.055 W/F. At the time of writing, typical values of Bm lie in the
range between 0.03 W/F for standard cache-based microprocessors and 0.5 W/F for
top of the line vector processors. Due to the continuously growing DRAM gap and
the increasing core counts, machine balance for standard architectures will presum-
ably decrease further in the future. Table 3.1 shows typical balance values for several
different transfer paths.

In Figure 3.2 we have collected peak performance and memory bandwidth data
for Intel processors between 1994 and 2010. Each year the desktop processor with
the fastest clock speed was chosen as a representative. Although peak performance
did grow faster than memory bandwidth before 2005, the introduction of the first
dual-core chip (Pentium D) really widened the DRAM gap considerably. The Core
i7 design gained some ground in terms of bandwidth, but the long-term general trend
is clearly unperturbed by such exceptions.

1994 1996 1998 2000 2002 2004 2006 2008 2010

Year

10
2

10
3

10
4

10
5

M
F

lo
p
s
/s

e
c
,
M

B
y
te

s
/s

e
c Core 2 Duo 3.0

multicore

single-core

Peak bandwidth

Peak arithmetic
performance

P 200

P2 450

P3 600

P3 933

P4 1.7

P4 3.0

P4 3.4

Core 2 Quad 3.4

Core i7 3.2

Pentium D 3.6

Next gen.

Figure 3.2: Progress
of maximum arithmetic
performance (open cir-
cles) and peak theoreti-
cal memory bandwidth
(filled circles) for Intel
processors since 1994.
The fastest processor in
terms of clock frequency
is shown for each year.
(Data collected by Jan
Treibig.)

66 Introduction to High Performance Computing for Scientists and Engineers

In order to quantify the requirements of some code that runs on a machine with a
certain balance, we further define the code balance of a loop to be

Bc =
data traffic [Words]

floating point ops [Flops]
. (3.2)

“Data traffic” refers to all words transferred over the performance-limiting data path,
which makes this metric to some extent dependent on the hardware (see Section 3.3
for an example). The reciprocal of code balance is often called computational inten-

sity. We can now calculate the expected maximum fraction of peak performance of a
code with balance Bc on a machine with balance Bm:

l = min

(

1,
Bm

Bc

)

. (3.3)

We call this fraction the lightspeed of a loop. Performance in GFlops/sec is then

P = lPmax = min

(

Pmax,
bmax

Bc

)

(3.4)

If l ≃ 1, performance is not limited by bandwidth but other factors, either inside the
CPU or elsewhere. Note that this simple performance model is based on some crucial
assumptions:

• The loop code makes use of all arithmetic units (MULT and ADD) in an opti-
mal way. If this is not the case one must introduce a correction factor that re-
flects the ratio of “effective” to absolute peak performance (e.g., if only ADDs
are used in the code, effective peak performance would be half of the absolute
maximum). Similar considerations apply if less than the maximum number of
cores per chip are used.

• The loop code is based on double precision floating-point arithmetic. However,
one can easily derive similar metrics that are more appropriate for other codes
(e.g., 32-bit words per integer arithmetic instruction etc.).

• Data transfer and arithmetic overlap perfectly.

• The slowest data path determines the loop code’s performance. All faster data
paths are assumed to be infinitely fast.

• The system is in “throughput mode,” i.e., latency effects are negligible.

• It is possible to saturate the memory bandwidth that goes into the calculation
of machine balance to its full extent. Recent multicore designs tend to under-
utilize the memory interface if only a fraction of the cores use it. This makes
performance prediction more complex, since there is a separate “effective” ma-
chine balance that is not just proportional to N−1 for each core count N. See
Section 3.1.2 and Problem 3.1 below for more discussion regarding this point.

Data access optimization 67

type kernel DP words flops Bc

COPY A(:)=B(:) 2 (3) 0 N/A

SCALE A(:)=s*B(:) 2 (3) 1 2.0 (3.0)

ADD A(:)=B(:)+C(:) 3 (4) 1 3.0 (4.0)

TRIAD A(:)=B(:)+s*C(:) 3 (4) 2 1.5 (2.0)

Table 3.2: The STREAM benchmark kernels with their respective data transfer volumes (third
column) and floating-point operations (fourth column) per iteration. Numbers in brackets take
write allocates into account.

While the balance model is often useful and accurate enough to estimate the perfor-
mance of loop codes and get guidelines for optimization (especially if combined with
visualizations like the roofline diagram [M42]), we must emphasize that more ad-
vanced strategies for performance modeling do exist and refer to the literature [L76,
M43, M41].

As an example consider the standard vector triad benchmark introduced in Sec-
tion 1.3. The kernel loop,

1 do i=1,N

2 A(i) = B(i) + C(i) * D(i)

3 enddo

executes two flops per iteration, for which three loads (to elements B(i), C(i), and
D(i)) and one store operation (to A(i)) provide the required input data. The code
balance is thus Bc = (3 + 1)/2 = 2. On a CPU with machine balance Bm = 0.1, we
can then expect a lightspeed ratio of 0.05, i.e., 5% of peak.

Standard cache-based microprocessors usually have an outermost cache level
with write-back strategy. As explained in Section 1.3, a cache line write allocate
is then required after a store miss to ensure cache-memory coherence if nontemporal
stores or cache line zero is not used. Under such conditions, the store stream to array
A must be counted twice in calculating the code balance, and we would end up with
a lightspeed estimate of lwa = 0.04.

3.1.2 The STREAM benchmarks

The McCalpin STREAM benchmarks [134, W119] is a collection of four simple
synthetic kernel loops which are supposed to fathom the capabilities of a processor’s
or a system’s memory interface. Table 3.2 lists those operations with their respec-
tive code balance. Performance is usually reported as bandwidth in GBytes/sec. The
STREAM TRIAD kernel is not to be confused with the vector triad (see previous
section), which has one additional load stream.

The benchmarks exist in serial and OpenMP-parallel (see Chapter 6) variants and
are usually run with data sets large enough so that performance is safely memory-
bound. Measured bandwidth thus depends on the number of load and store streams
only, and the results for COPY and SCALE (and likewise for ADD and TRIAD)

68 Introduction to High Performance Computing for Scientists and Engineers

tend to be very similar. One must be aware that STREAM is not only defined via
the loop kernels in Table 3.2, but also by its Fortran source code (there is also a C
variant available). This is important because optimizing compilers can recognize the
STREAM source and substitute the kernels by hand-tuned machine code. Therefore,
it is safe to state that STREAM performance results reflect the true capabilities of the
hardware. They are published for many historical and contemporary systems on the
STREAM Web site [W119].

Unfortunately, STREAM as well as the vector triad often fail to reach the perfor-
mance levels predicted by balance analysis, in particular on commodity (PC-based)
hardware. The reasons for this failure are manifold and cannot be discussed here in
full detail; typical factors are:

• Maximum bandwidth is often not available in both directions (read and write)
concurrently. It may be the case, e.g., that the relation from maximum read
to maximum write bandwidth is 2:1. A write stream cannot utilize the full
bandwidth in that case.

• Protocol overhead (see, e.g., Section 4.2.1), deficiencies in chipsets, error-
correcting memory chips, and large latencies (that cannot be hidden com-
pletely by prefetching) all cut on available bandwidth.

• Data paths inside the processor chip, e.g., connections between L1 cache and
registers, can be unidirectional. If the code is not balanced between read and
write operations, some of the bandwidth in one direction is unused. This should
be taken into account when applying balance analysis for in-cache situations.

It is, however, still true that STREAM results mark a maximum for memory band-
width and no real application code with similar characteristics (number of load and
store streams) performs significantly better. Thus, the STREAM bandwidth bS rather
than the hardware’s theoretical capabilities should be used as the reference for light-
speed calculations and (3.4) be modified to read

P = min

(

Pmax,
bS

Bc

)

(3.5)

Getting a significant fraction (i.e., 80% or more) of the predicted performance based
on STREAM results for an application code is usually an indication that there is
no more potential for improving the utilization of the memory interface. It does not
mean, however, that there is no room for further optimizations. See the following
sections.

As an example we pick a system with Intel’s Xeon 5160 processor (see Figure 4.4
for the general layout). One core has a theoretical memory bandwidth of bmax =
10.66 GBytes/sec and a peak performance of Pmax = 12 GFlops/sec (4 flops per cycle
at 3.0 GHz). This leads to a machine balance of Bm = 0.111 W/F for a single core
(if both cores run memory-bound code, this is reduced by a factor of two, but we
assume for now that only one thread is running on one socket of the system).

Table 3.3 shows the STREAM results on this platform, comparing versions with

Data access optimization 69

with write allocate w/o write allocate

type reported actual bS/bmax reported bS/bmax

COPY 2698 4047 0.38 4089 0.38

SCALE 2695 4043 0.38 4106 0.39

ADD 2772 3696 0.35 3735 0.35

TRIAD 2879 3839 0.36 3786 0.36

Table 3.3: Single-thread STREAM bandwidth results in GBytes/sec for an Intel Xeon 5160
processor (see text for details), comparing versions with and without write allocate. Write
allocate was avoided by using nontemporal store instructions.

and without write allocate. The benchmark itself does not take this detail into ac-
count at all, so reported bandwidth numbers differ from actual memory traffic if
write allocates are present. The discrepancy between measured performance and the-
oretical maximum is very pronounced; it is generally not possible to get more than
40% of peak bandwidth on this platform, and efficiency is particularly low for ADD
and TRIAD, which have two load streams instead of one. If these results are used
as a reference for balance analysis of loops, COPY or SCALE should be used in
load/store-balanced cases. See Section 3.3 for an example.

3.2 Storage order

Multidimensional arrays, first and foremost matrices or matrix-like structures,
are omnipresent in scientific computing. Data access is a crucial topic here as the
mapping between the inherently one-dimensional, cache line based memory layout
of standard computers and any multidimensional data structure must be matched to
the order in which code loads and stores data so that spatial and temporal locality
can be employed. Strided access to a one-dimensional array reduces spatial locality,
leading to low utilization of the available bandwidth (see also Problem 3.1). When
dealing with multidimensional arrays, those access patterns can be generated quite
naturally:

Stride-N access

1 do i=1,N

2 do j=1,N

3 A(i,j) = i*j

4 enddo

5 enddo

Stride-1 access

for(i=0; i<N; ++i) {

for(j=0; j<N; ++j) {

a[i][j] = i*j;

}

}

These Fortran and C codes perform exactly the same task, and the second array in-
dex is the “fast” (inner loop) index both times, but the memory access patterns are

70 Introduction to High Performance Computing for Scientists and Engineers

Figure 3.3: Row major or-
der matrix storage scheme,
as used by the C program-
ming language. Matrix rows
are stored consecutively in
memory. Cache lines are as-
sumed to hold four matrix el-
ements and are indicated by
brackets.

[0][0] [0][1] [0][2] [0][3] [0][4]

[1][0] [1][1] [1][2] [1][3] [1][4]

[2][4][2][3][2][2][2][1][2][0]

[3][0] [3][1] [3][2] [3][3] [3][4]

[4][4][4][3][4][2][4][1][4][0]

quite distinct. In the Fortran example, the memory address is incremented in steps
of N*sizeof(double), whereas in the C example the stride is optimal. This is
because C implements row major order (see Figure 3.3), whereas Fortran follows the
so-called column major order (see Figure 3.4) for multidimensional arrays. Although
mathematically insignificant, the distinction must be kept in mind when optimizing
for data access: If an inner loop variable is used as an index to a multidimensional ar-
ray, it should be the index that ensures stride-one access (i.e., the first in Fortran and
the last in C). Section 3.4 will show what can be done if this is not easily possible.

Figure 3.4: Column major order matrix stor-
age scheme, as used by the Fortran program-
ming language. Matrix columns are stored
consecutively in memory. Cache lines are as-
sumed to hold four matrix elements and are
indicated by brackets.

(2,1) (2,2) (2,3) (2,4) (2,5)

(3,5)(3,4)(3,3)(3,2)(3,1)

(4,1) (4,2) (4,3) (4,4) (4,5)

(5,5)(5,4)(5,3)(5,2)(5,1)

(1,5)(1,4)(1,3)(1,2)(1,1)

Data access optimization 71

3.3 Case study: The Jacobi algorithm

The Jacobi method is prototypical for many stencil-based iterative methods in
numerical analysis and simulation. In its most straightforward form, it can be used
for solving the diffusion equation for a scalar function Φ(~r, t),

∂Φ

∂ t
= ∆Φ , (3.6)

on a rectangular lattice subject to Dirichlet boundary conditions. The differential
operators are discretized using finite differences (we restrict ourselves to two dimen-
sions with no loss of generality, but see Problem 3.4 for how 2D and 3D versions can
differ with respect to performance):

δΦ(xi,yi)

δ t
=

Φ(xi+1,yi)+Φ(xi−1,yi)−2Φ(xi,yi)

(δx)2

+
Φ(xi,yi−1)+Φ(xi,yi+1)−2Φ(xi,yi)

(δy)2 . (3.7)

In each time step, a correction δΦ to Φ at coordinate (xi,yi) is calculated by (3.7)
using the “old” values from the four next neighbor points. Of course, the updated
Φ values must be written to a second array. After all points have been updated (a
“sweep”), the algorithm is repeated. Listing 3.1 shows a possible kernel implemen-
tation on an isotropic lattice. It “solves” for the steady state but lacks a convergence
criterion, which is of no interest here. (Note that exchanging the t0 and t1 lattices
does not have to be done element by element; compared to a naïve implementation
we already gain roughly a factor of two in performance by exchanging the third array
index only.)

Many optimizations are possible for speeding up this code. We will first pre-
dict its performance using balance analysis and compare with actual measurements.
Figure 3.5 illustrates one five-point stencil update in the two-dimensional Jacobi
algorithm. Four loads and one store are required per update, but the “downstream
neighbor” phi(i+1,k,t0) is definitely used again from cache two iterations later,
so only three of the four loads count for the code balance Bc = 1.0 W/F (1.25 W/F
including write allocate). However, as Figure 3.5 shows, the row-wise traversal of the
lattice brings the stencil site with the largest k coordinate (i.e., phi(i,k+1,t0))
into the cache for the first time (we are ignoring the cache line concept for the mo-
ment). A memory transfer cannot be avoided for this value, but it will stay in the
cache for three successive row traversals if the cache is large enough to hold more
than two lattice rows. Under this condition we can assume that loading the neighbors
at rows k and k− 1 comes at no cost, and code balance is reduced to Bc = 0.5 W/F
(0.75 W/F including write allocate). If the inner lattice dimension is gradually made
larger, one, and eventually three additional loads must be satisfied from memory,
leading back to the unpleasant value of Bc = 1.0(1.25) W/F.

72 Introduction to High Performance Computing for Scientists and Engineers

Listing 3.1: Straightforward implementation of the Jacobi algorithm in two dimensions.

1 double precision, dimension(0:imax+1,0:kmax+1,0:1) :: phi

2 integer :: t0,t1

3 t0 = 0 ; t1 = 1

4 do it = 1,itmax ! choose suitable number of sweeps

5 do k = 1,kmax

6 do i = 1,imax

7 ! four flops, one store, four loads

8 phi(i,k,t1) = (phi(i+1,k,t0) + phi(i-1,k,t0)

9 + phi(i,k+1,t0) + phi(i,k-1,t0)) * 0.25

10 enddo

11 enddo

12 ! swap arrays

13 i = t0 ; t0=t1 ; t1=i

14 enddo

Figure 3.5: Stencil up-
date for the plain 2D Ja-
cobi algorithm. If at least
two successive rows can
be kept in the cache
(shaded area), only one
T0 site per update has to
be fetched from memory
(cross-hatched site).

T0

T1

���
���
���
���
���

���
���
���
���
���

i

k ��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Data access optimization 73

10
4

10
5

N
i

0

50

100

150

200

P
e

rf
o

rm
a

n
c
e

 [
M

L
U

P
s
/s

e
c
]

0

200

400

600

800

P
e

rf
o

rm
a

n
c
e

 [
M

F
lo

p
s
/s

e
c
]

B
c
=0.75

B
c
=1.25

2
 r

o
w

 l
im

it

1
 r

o
w

 l
im

it

B
c
=1.0

Figure 3.6: Perfor-
mance versus inner loop
length (lattice extension
in the i direction) for
the Jacobi algorithm
on one core of a Xeon
5160 processor (see text
for details). Horizontal
lines indicate predictions
based on STREAM
bandwidth.

Based on these balance numbers we can now calculate the code’s lightspeed on a
given architecture. In Section 3.1.2 we have presented STREAM results for an Intel
Xeon 5160 platform which we use as a reference here. In the case where the cache
is large enough to hold two successive rows, the data transfer characteristics match
those for STREAM COPY or SCALE, i.e., there is one load and one store stream
plus the obligatory write allocate. The theoretical value of Bm = 0.111 W/F has to
be modified because the Jacobi kernel only comprises one MULT versus three ADD
operations, hence we use

B+
m =

0.111
4/6

W/F ≈ 0.167W/F . (3.8)

Based on this theoretical value and assuming that write allocates cannot be avoided
we arrive at

lbest =
B+

m

Bc
=

0.167
0.75

≈ 0.222 , (3.9)

which, at a modified theoretical peak performance of P+
max = 12 · 4/6GFlops/sec =

8 GFlops/sec leads to a predicted performance of 1.78 GFlops/sec. Based on the
STREAM COPY numbers from Table 3.3, however, this value must be scaled down
by a factor of 0.38, and we arrive at an expected performance of ≈675 MFlops/sec.
For very large inner grid dimensions, the cache becomes too small to hold two, and
eventually even one grid row and code balance first rises to Bc = 1.0 W/F, and fi-
nally to Bc = 1.25 W/F. Figure 3.6 shows measured performance versus inner lattice
dimension, together with the various limits and predictions (a nonsquare lattice was
used for the large-N cases, i.e., kmax≪imax, to save memory). The model can ob-
viously describe the overall behavior well. Small-scale performance fluctuations can
have a variety of causes, e.g., associativity or memory banking effects.

The figure also introduces a performance metric that is more suitable for stencil
algorithms as it emphasizes “work done” over MFlops/sec: The number of lattice
site updates (LUPs) per second. In our case, there is a simple 1:4 correspondence be-
tween flops and LUPs, but in general the MFlops/sec metric can vary when applying

74 Introduction to High Performance Computing for Scientists and Engineers

optimizations that interfere with arithmetic, using different compilers that rearrange
terms, etc., just because the number of floating point operations per stencil update
changes. However, what the user is most interested in is how much actual work can
be done in a certain amount of time. The LUPs/sec number makes all performance
measurements comparable if the underlying physical problem is the same, no mat-
ter which optimizations have been applied. For example, some processors provide a
fused multiply-add (FMA) machine instruction which performs two flops by calcu-
lating r = a+b ·c. Under some circumstances, FMA can boost performance because
of the reduced latency per flop. Rewriting the 2D Jacobi kernel in Listing 3.1 for
FMA is straightforward:

1 do k = 1,kmax

2 do i = 1,imax

3 phi(i,k,t1) = 0.25 * phi(i+1,k,t0) + 0.25 * phi(i-1,k,t0)

4 + 0.25 * phi(i,k+1,t0) + 0.25 * phi(i,k-1,t0)

5 enddo

6 enddo

This version has seven instead of four flops; performance in MLUPs/sec will not
change for memory-bound situations (it is left to the reader to prove this using bal-
ance analysis), but the MFlops/sec numbers will.

3.4 Case study: Dense matrix transpose

For the following example we assume column major order as implemented in
Fortran. Calculating the transpose of a dense matrix, A = BT, involves strided mem-
ory access to A or B, depending on how the loops are ordered. The most unfavorable
way of doing the transpose is shown here:

1 do i=1,N

2 do j=1,N

3 A(i,j) = B(j,i)

4 enddo

5 enddo

Write access to matrix A is strided (see Figure 3.7). Due to write-allocate transac-
tions, strided writes are more expensive than strided reads. Starting from this worst
possible code we can now try to derive expected performance features. As matrix
transpose does not perform any arithmetic, we will use effective bandwidth (i.e.,
GBytes/sec available to the application) to denote performance.

Let C be the cache size and Lc the cache line size, both in DP words. Depending
on the size of the matrices we can expect three primary performance regimes:

• In case the two matrices fit into a CPU cache (2N2 . C), we expect effective
bandwidths of the order of cache speeds. Spatial locality is of importance only
between different cache levels; optimization potential is limited.

Data access optimization 75

Column

R
o

w

1 2 3 4 5 6 7

1

2

3

4

5

6

7

Figure 3.7: Cache line
traversal for vanilla
matrix transpose (strided
store stream, column
major order). If the lead-
ing matrix dimension is
a multiple of the cache
line size, each column
starts on a line boundary.

• If the matrices are too large to fit into the cache but still

NLc . C , (3.10)

the strided access to A is insignificant because all stores that cause a write miss
during a complete row traversal start a cache line write allocate. Those lines
are most probably still in the cache for the next Lc − 1 rows, alleviating the
effect of the strided write (spatial locality). Effective bandwidth should be of
the order of the processor’s maximum achievable memory bandwidth.

• If N is even larger so that NLc & C, each store to A causes a cache miss and
a subsequent write allocate. A sharp drop in performance is expected at this
point as only one out of Lc cache line entries is actually used for the store
stream and any spatial locality is suddenly lost.

The “vanilla” graph in Figure 3.8 shows that the assumptions described above are
essentially correct, although the strided write seems to be very unfavorable even
when the whole working set fits into the cache. This is probably because the L1
cache on the considered architecture (Intel Xeon/Nocona) is of write-through type,
i.e., the L2 cache is always updated on a write, regardless of whether there was an
L1 hit or miss. Hence, the write-allocate transactions between the two caches waste
a major part of the available internal bandwidth.

In the second regime described above, performance stays roughly constant up to
a point where the fraction of cache used by the store stream for N cache lines be-
comes comparable to the L2 size. Effective bandwidth is around 1.8 GBytes/sec, a
mediocre value compared to the theoretical maximum of 5.3 GBytes/sec (delivered
by two-channel memory at 333 MTransfers/sec). On most commodity architectures
the theoretical bandwidth limits can not be reached with compiler-generated code,
but well over 50% is usually attainable, so there must be a factor that further reduces
available bandwidth. This factor is the translation lookaside buffer (TLB), which

76 Introduction to High Performance Computing for Scientists and Engineers

100 1000 10000
N

0

2500

5000

7500

10000

12500

15000
B

a
n
d
w

id
th

 [
M

B
y
te

s
/s

e
c
]

vanilla
flipped

flipped, unroll=4

flipped, block=50, unroll=4

6000 8000 10000
0

200

400

N
=

8
1
9
2

N
=

2
5
6

Figure 3.8: Performance (effective bandwidth) for different implementations of the dense
matrix transpose on a modern microprocessor with 1 MByte of L2 cache. The N = 256 and
N = 8192 lines indicate the positions where the matrices fully fit into the cache and where N

cache lines fit into the cache, respectively. (Intel Xeon/Nocona 3.2 GHz.)

caches the mapping between logical and physical memory pages. The TLB can be
envisioned as an additional cache level with cache lines the size of memory pages
(the page size is often 4 kB, sometimes 16 kB and even configurable on some sys-
tems). On the architecture considered, it is only large enough to hold 64 entries,
which corresponds to 256 kBytes of memory at a 4 kB page size. This is smaller than
the whole L2 cache, so TLB effects may be observed even for in-cache situations.
Moreover, if N is larger than 512, i.e., if one matrix row exceeds the size of a page,
every single access in the strided stream causes a TLB miss. Even if the page tables
reside in the L2 cache, this penalty reduces effective bandwidth significantly because
every TLB miss leads to an additional access latency of at least 57 processor cycles
(on this particular CPU). At a core frequency of 3.2 GHz and a bus transfer rate of
666 MWords/sec, this matches the time needed to transfer more than a 64-byte cache
line!

At N & 8192, performance has finally arrived at the expected low level. The
machine under investigation has a theoretical memory bandwidth of 5.3 GBytes/sec
of which around 200 MBytes/sec actually reach the application. At an effective cache
line length of 128 bytes (two 64-byte cache lines are fetched on every miss, but
evicted separately), of which only one is used for the strided store stream, three
words per iteration are read or written in each loop iteration for the in-cache case,

Data access optimization 77

1020 1024 1028 1032
N

0

500

1000

1500

2000
B

a
n

d
w

id
th

 [
M

B
y
te

s
/s

e
c
]

vanilla

padded

Figure 3.9: Cache thrashing for an un-
favorable choice of array dimensions
(dashed): Matrix transpose performance
breaks down dramatically at a dimension
of 1024×1024. Padding by enlarging the
leading dimension by one removes thrash-
ing completely (solid).

whereas 33 words are read or written for the worst case. We thus expect a 1 : 11
performance ratio, roughly the value observed.

We must stress again that performance predictions based on architectural specifi-
cations [M41, M44] do work in many, but not in all cases, especially on commodity
systems where factors like chipsets, memory chips, interrupts, etc., are basically un-
controllable. Sometimes only a qualitative understanding of the reasons for some
peculiar performance behavior can be developed, but this is often enough to derive
the next logical optimization steps.

The first and most simple optimization for dense matrix transpose would consist
in interchanging the order of the loop nest, i.e., pulling the i loop inside. This would
render the access to matrix B strided but eliminate the strided write for A, thus saving
roughly half the bandwidth (5/11, to be exact) for very large N. The measured perfor-
mance gain (see inset in Figure 3.8, “flipped” graph), though noticeable, falls short
of this expectation. One possible reason for this could be a slightly better efficiency
of the memory interface with strided writes.

In general, the performance graphs in Figure 3.8 look quite erratic at some points.
At first sight it is unclear whether some N should lead to strong performance penalties
as compared to neighboring values. A closer look (“vanilla” graph in Figure 3.9)
reveals that powers of two in array dimensions seem to be quite unfavorable (the
benchmark program allocates new matrices with appropriate dimensions for each
new N). As mentioned in Section 1.3.2 on page 19, strided memory access leads to
thrashing when successive iterations hit the same (set of) cache line(s) because of
insufficient associativity. Figure 3.7 shows clearly that this can easily happen with
matrix transpose if the leading dimension is a power of two. On a direct-mapped
cache of size C, every C/N-th iteration hits the same cache line. At a line length of

78 Introduction to High Performance Computing for Scientists and Engineers

Figure 3.10: Cache line
traversal for padded ma-
trix transpose. Padding
may increase effective
cache size by alleviating
associativity conflicts.

Column

R
o

w

1 2 3 4 5 6 7

1

2

3

4

5

6

7

Lc words, the effective cache size is

Ceff = Lc max

(

1,
C

N

)

. (3.11)

It is the number of cache words that are actually usable due to associativity con-
straints. On an m-way set-associative cache this number is merely multiplied by m.
Considering a real-world example with C = 217 (1 MByte), Lc = 16, m = 8 and
N = 1024 one arrives at Ceff = 211 DP words, i.e., 16 kBytes. So NLc ≫ Ceff and
performance should be similar to the very large N limit described above, which is
roughly true.

A simple code modification, however, eliminates the thrashing effect: Assum-
ing that matrix A has dimensions 1024×1024, enlarging the leading dimension by
p (called padding) to get A(1024+p,1024) results in a fundamentally different
cache use pattern. After Lc/p iterations, the address belongs to another set of m

cache lines and there is no associativity conflict if Cm/N > Lc/p (see Figure 3.10).
In Figure 3.9 the striking effect of padding the leading dimension by p = 1 is shown
with the “padded” graph. Generally speaking, one should by all means stay away
from powers of two in leading array dimensions. It is clear that different dimensions
may require different paddings to get optimal results, so sometimes a rule of thumb
is applied: Try to make leading array dimensions odd multiples of 16.

Further optimization approaches that can be applied to matrix transpose will be
discussed in the following sections.

Data access optimization 79

3.5 Algorithm classification and access optimizations

The optimization potential of many loops on cache-based processors can eas-
ily be estimated just by looking at basic parameters like the scaling behavior of
data transfers and arithmetic operations versus problem size. It can then be decided
whether investing optimization effort would make sense.

3.5.1 O(N)/O(N)

If both the number of arithmetic operations and the number of data transfers
(loads/stores) are proportional to the problem size (or “loop length”) N, optimization
potential is usually very limited. Scalar products, vector additions, and sparse matrix-
vector multiplication are examples for this kind of problems. They are inevitably
memory-bound for large N, and compiler-generated code achieves good performance
because O(N)/O(N) loops tend to be quite simple and the correct software pipelining
strategy is obvious. Loop nests, however, are a different matter (see below).

But even if loops are not nested there is sometimes room for improvement. As an
example, consider the following vector additions:

1 do i=1,N

2 A(i) = B(i) + C(i)

3 enddo

4 do i=1,N

5 Z(i) = B(i) + E(i)

6 enddo

loop fusion
-

! optimized

do i=1,N

A(i) = B(i) + C(i)

! save a load for B(i)

Z(i) = B(i) + E(i)

enddo

Each of the loops on the left has no options left for optimization. The code balance
is 3/1 as there are two loads, one store, and one addition per loop (not counting write
allocates). Array B, however, is loaded again in the second loop, which is unnec-
essary: Fusing the loops into one has the effect that each element of B only has to
be loaded once, reducing code balance to 5/2. All else being equal, performance in
the memory-bound case will improve by a factor of 6/5 (if write allocates cannot be
avoided, this will be 8/7).

Loop fusion has achieved an O(N) data reuse for the two-loop constellation so
that a complete load stream could be eliminated. In simple cases like the one above,
compilers can often apply this optimization by themselves.

3.5.2 O(N2)/O(N2)

In typical two-level loop nests where each loop has a trip count of N, there are
O(N2) operations for O(N2) loads and stores. Examples are dense matrix-vector mul-
tiply, matrix transpose, matrix addition, etc. Although the situation on the inner level
is similar to the O(N)/O(N) case and the problems are generally memory-bound, the
nesting opens new opportunities. Optimization, however, is again usually limited to

80 Introduction to High Performance Computing for Scientists and Engineers

= *+

Figure 3.11: Unoptimized N ×N dense matrix vector multiply. The RHS vector is loaded N

times.

a constant factor of improvement. As an example we consider dense matrix-vector
multiply (MVM):

1 do i=1,N

2 tmp = C(i)

3 do j=1,N

4 tmp = tmp + A(j,i) * B(j)

5 enddo

6 C(i) = tmp

7 enddo

This code has a balance of 1 W/F (two loads for A and B and two flops). Array C

is indexed by the outer loop variable, so updates can go to a register (here clarified
through the use of the scalar tmp although compilers can do this transformation
automatically) and do not count as load or store streams. Matrix A is only loaded
once, but B is loaded N times, once for each outer loop iteration (see Figure 3.11).
One would like to apply the same fusion trick as above, but there are not just two
but N inner loops to fuse. The solution is loop unrolling: The outer loop is traversed
with a stride m and the inner loop is replicated m times. We thus have to deal with
the situation that the outer loop count might not be a multiple of m. This case has to
be handled by a remainder loop:

1 ! remainder loop

2 do r=1,mod(N,m)

3 do j=1,N

4 C(r) = C(r) + A(j,r) * B(j)

5 enddo

6 enddo

7 ! main loop

8 do i=r,N,m

9 do j=1,N

10 C(i) = C(i) + A(j,i) * B(j)

11 enddo

Data access optimization 81

12 do j=1,N

13 C(i+1) = C(i+1) + A(j,i+1) * B(j)

14 enddo

15 ! m times

16 ...

17 do j=1,N

18 C(i+m-1) = C(i+m-1) + A(j,i+m-1) * B(j)

19 enddo

20 enddo

The remainder loop is subject to the same optimization techniques as the original
loop, but otherwise unimportant. For this reason we will ignore remainder loops in
the following.

By just unrolling the outer loop we have not gained anything but a considerable
code bloat. However, loop fusion can now be applied easily:

1 ! remainder loop ignored

2 do i=1,N,m

3 do j=1,N

4 C(i) = C(i) + A(j,i) * B(j)

5 C(i+1) = C(i+1) + A(j,i+1) * B(j)

6 ! m times

7 ...

8 C(i+m-1) = C(i+m-1) + A(j,i+m-1) * B(j)

9 enddo

10 enddo

The combination of outer loop unrolling and fusion is often called unroll and jam. By
m-way unroll and jam we have achieved an m-fold reuse of each element of B from
register so that code balance reduces to (m+1)/2m which is clearly smaller than one
for m > 1. If m is very large, the performance gain can get close to a factor of two. In
this case array B is only loaded a few times or, ideally, just once from memory. As A
is always loaded exactly once and has size N2, the total memory traffic with m-way
unroll and jam amounts to N2(1+1/m)+N. Figure 3.12 shows the memory access
pattern for two-way unrolled dense matrix-vector multiply.

All this assumes, however, that register pressure is not too large, i.e., the CPU
has enough registers to hold all the required operands used inside the now quite
sizeable loop body. If this is not the case, the compiler must spill register data to
cache, slowing down the computation (see also Section 2.4.5). Again, compiler logs,
if available, can help identify such a situation.

Unroll and jam can be carried out automatically by some compilers at high opti-
mization levels. Be aware though that a complex loop body may obscure important
information and manual optimization could be necessary, either (as shown above) by
hand-coding or compiler directives that specify high-level transformations like un-
rolling. Directives, if available, are the preferred alternative as they are much easier
to maintain and do not lead to visible code bloat. Regrettably, compiler directives are
inherently nonportable.

The matrix transpose code from the previous section is another typical example
for an O(N2)/O(N2) problem, although in contrast to dense MVM there is no direct

82 Introduction to High Performance Computing for Scientists and Engineers

= *+

Figure 3.12: Two-way unrolled dense matrix vector multiply. The data traffic caused by
reloading the RHS vector is reduced by roughly a factor of two. The remainder loop is only a
single (outer) iteration in this example.

opportunity for saving on memory traffic; both matrices have to be read or written
exactly once. Nevertheless, by using unroll and jam on the “flipped” version a sig-
nificant performance boost of nearly 50% is observed (see dotted line in Figure 3.8):

1 do j=1,N,m

2 do i=1,N

3 A(i,j) = B(j,i)

4 A(i,j+1) = B(j+1,i)

5 ...

6 A(i,j+m-1) = B(j+m-1,i)

7 enddo

8 enddo

Naively one would not expect any effect at m = 4 because the basic analysis stays
the same: In the mid-N region the number of available cache lines is large enough
to hold up to Lc columns of the store stream. Figure 3.13 shows the situation for
m = 2. However, the fact that m words in each of the load stream’s cache lines are
now accessed in direct succession reduces the TLB misses by a factor of m, although
the TLB is still way too small to map the whole working set.

Even so, cutting down on TLB misses does not remedy the performance break-
down for large N when the cache gets too small to hold N cache lines. It would
be nice to have a strategy which reuses the remaining Lc −m words of the strided
stream’s cache lines right away so that each line may be evicted soon and would not
have to be reclaimed later. A “brute force” method is Lc-way unrolling, but this ap-
proach leads to large-stride accesses in the store stream and is not a general solution
as large unrolling factors raise register pressure in loops with arithmetic operations.
Loop blocking can achieve optimal cache line use without additional register pres-
sure. It does not save load or store operations but increases the cache hit ratio. For a

Data access optimization 83

Figure 3.13: Two-way unrolled “flipped” matrix transpose (i.e., with strided load in the origi-
nal version).

loop nest of depth d, blocking introduces up to d additional outer loop levels that cut
the original inner loops into chunks:

1 do jj=1,N,b

2 jstart=jj; jend=jj+b-1

3 do ii=1,N,b

4 istart=ii; iend=ii+b-1

5 do j=jstart,jend,m

6 do i=istart,iend

7 a(i,j) = b(j,i)

8 a(i,j+1) = b(j+1,i)

9 ...

10 a(i,j+m-1) = b(j+m-1,i)

11 enddo

12 enddo

13 enddo

14 enddo

In this example we have used two-dimensional blocking with identical blocking fac-
tors b for both loops in addition to m-way unroll and jam. This change does not alter
the loop body so the number of registers needed to hold operands stays the same.
However, the cache line access characteristics are much improved (see Figure 3.14
which shows a combination of two-way unrolling and 4×4 blocking). If the block-
ing factors are chosen appropriately, the cache lines of the strided stream will have
been used completely at the end of a block and can be evicted “soon.” Hence, we
expect the large-N performance breakdown to disappear. The dotted-dashed graph
in Figure 3.8 demonstrates that 50×50 blocking combined with four-way unrolling
alleviates all memory access problems induced by the strided stream.

Loop blocking is a very general and powerful optimization that can often not be
performed by compilers. The correct blocking factor to use should be determined
experimentally through careful benchmarking, but one may be guided by typical
cache sizes, i.e., when blocking for L1 cache the aggregated working set size of
all blocked inner loop nests should not be much larger than half the cache. Which

84 Introduction to High Performance Computing for Scientists and Engineers

Figure 3.14: 4×4 blocked and two-way unrolled “flipped” matrix transpose.

cache level to block for depends on the operations performed and there is no general
recommendation.

3.5.3 O(N3)/O(N2)

If the number of operations is larger than the number of data items by a factor
that grows with problem size, we are in the very fortunate situation to have tremen-
dous optimization potential. By the techniques described above (unroll and jam, loop
blocking) it is sometimes possible for these kinds of problems to render the imple-
mentation cache-bound. Examples for algorithms that show O(N3)/O(N2) charac-
teristics are dense matrix-matrix multiplication (MMM) and dense matrix diagonal-
ization. It is beyond the scope of this book to develop a well-optimized MMM, let
alone eigenvalue calculation, but we can demonstrate the basic principle by means
of a simpler example which is actually of the O(N2)/O(N) type:

1 do i=1,N

2 do j=1,N

3 sum = sum + foo(A(i),B(j))

4 enddo

5 enddo

The complete data set is O(N) here but O(N2) operations (calls to foo(), additions)
are performed on it. In the form shown above, array B is loaded from memory N

times, so the total memory traffic amounts to N(N +1) words. m-way unroll and jam
is possible and will immediately reduce this to N(N/m + 1), but the disadvantages
of large unroll factors have been pointed out already. Blocking the inner loop with a
blocksize of b, however,

1 do jj=1,N,b

2 jstart=jj; jend=jj+b-1

3 do i=1,N

4 do j=jstart,jend

5 sum = sum + foo(A(i),B(j))

Data access optimization 85

6 enddo

7 enddo

8 enddo

has two effects:

• Array B is now loaded only once from memory, provided that b is small enough
so that b elements fit into cache and stay there as long as they are needed.

• Array A is loaded from memory N/b times instead of once.

Although A is streamed through cache N/b times, the probability that the current
block of B will be evicted is quite low, the reason being that those cache lines are
used very frequently and thus kept by the LRU replacement algorithm. This leads to
an effective memory traffic of N(N/b+1) words. As b can be made much larger than
typical unrolling factors, blocking is the best optimization strategy here. Unroll and
jam can still be applied to enhance in-cache code balance. The basic N2 dependence
is still there, but with a prefactor that can make the difference between memory-
bound and cache-bound behavior. A code is cache-bound if main memory bandwidth
and latency are not the limiting factors for performance any more. Whether this goal
is achievable on a certain architecture depends on the cache size, cache and memory
speeds, and the algorithm, of course.

Algorithms of the O(N3)/O(N2) type are typical candidates for optimizations
that can potentially lead to performance numbers close to the theoretical maximum.
If blocking and unrolling factors are chosen appropriately, dense matrix-matrix mul-
tiply, e.g., is an operation that usually achieves over 90% of peak for N×N matrices
if N is not too small. It is provided in highly optimized versions by system vendors
as, e.g., contained in the BLAS (Basic Linear Algebra Subsystem) library. One might
ask why unrolling should be applied at all when blocking already achieves the most
important task of making the code cache-bound. The reason is that even if all the data
resides in a cache, many processor architectures do not have the capability for sus-
taining enough loads and stores per cycle to feed the arithmetic units continuously.
For instance, the current x86 processors from Intel can sustain one load and one store
operation per cycle, which makes unroll and jam mandatory if the kernel of a loop
nest uses more than one load stream, especially in cache-bound situations like the
blocked O(N2)/O(N) example above.

Although demonstrated here for educational purposes, there is no need to hand-
code and optimize standard linear algebra and matrix operations. They should always
be used from optimized libraries, if available. Nevertheless, the techniques described
can be applied in many real-world codes. An interesting example with some compli-
cations is sparse matrix-vector multiply (see Section 3.6).

86 Introduction to High Performance Computing for Scientists and Engineers

+= *

Figure 3.15: Sparse matrix-vector multiply. Dark elements visualize entries involved in up-
dating a single LHS element. Unless the sparse matrix rows have no gaps between the first and
last nonzero elements, some indirect addressing of the RHS vector is inevitable.

3.6 Case study: Sparse matrix-vector multiply

An interesting “real-world” application of the blocking and unrolling strategies
discussed in the previous sections is the multiplication of a sparse matrix with a vec-
tor. It is a key ingredient in most iterative matrix diagonalization algorithms (Lanc-
zos, Davidson, Jacobi-Davidson) and usually a performance-limiting factor. A matrix
is called sparse if the number of nonzero entries Nnz grows linearly with the num-
ber of matrix rows Nr. Of course, only the nonzeros are stored at all for efficiency
reasons. Sparse MVM (sMVM) is hence an O(Nr)/O(Nr) problem and inherently
memory-bound if Nr is reasonably large. Nevertheless, the presence of loop nests
enables some significant optimization potential. Figure 3.15 shows that sMVM gen-
erally requires some strided or even indirect addressing of the RHS vector, although
there exist matrices for which memory access patterns are much more favorable. In
the following we will keep at the general case.

3.6.1 Sparse matrix storage schemes

Several different storage schemes for sparse matrices have been developed, some
of which are suitable only for special kinds of matrices [N49]. Of course, memory
access patterns and thus performance characteristics of sMVM depend heavily on
the storage scheme used. The two most important and also general formats are CRS
(Compressed Row Storage) and JDS (Jagged Diagonals Storage). We will see that

Data access optimization 87

val

col_idx

row_ptr

−4 2 2 8 8 −5 10 −5 10 −6

1 2 1 3 2 4 5 3 3 5

1 83 5 9

−4 2

2 8

8 −5 10

−5

10 −6

1 2 3 4 5

1

2

3

4

5

Figure 3.16: CRS sparse matrix storage format.

CRS is well-suited for cache-based microprocessors while JDS supports dependency
and loop structures that are favorable on vector systems.

In CRS, an array val of length Nnz is used to store all nonzeros of the matrix,
row by row, without any gaps, so some information about which element of val
originally belonged to which row and column must be supplied. This is done by
two additional integer arrays, col_idx of length Nnz and row_ptr of length Nr.
col_idx stores the column index of each nonzero in val. row_ptr contains the
indices at which new rows start in val (see Figure 3.16). The basic code to perform
an MVM using this format is quite simple:

1 do i = 1,Nr
2 do j = row_ptr(i), row_ptr(i+1) - 1

3 C(i) = C(i) + val(j) * B(col_idx(j))

4 enddo

5 enddo

The following points should be noted:

• There is a long outer loop (length Nr).

• The inner loop may be “short” compared to typical microprocessor pipeline
lengths.

• Access to result vector C is well optimized: It is only loaded once from main
memory.

• The nonzeros in val are accessed with stride one.

• As expected, the RHS vector B is accessed indirectly. This may, however, not
be a serious performance problem depending on the exact structure of the ma-
trix. If the nonzeros are concentrated mainly around the diagonal, there will
even be considerable spatial and/or temporal locality.

• Bc = 5/4 W/F if the integer load to col_idx is counted with four bytes. We
are neglecting the possibly much larger transfer volume due to partially used
cache lines.

88 Introduction to High Performance Computing for Scientists and Engineers

val

col_idx

jd_ptr

perm

original

col index

−4 2

82

8 −5 10

−5

10 −6

10

−5

10

2

8

−5

−6

8

2

−4 8

−4

2

10

−5

−6

8

2

−5 10

8 −4 2 10 −5 −5 2 8 −6 10

2 1 1 3 3 4 2 3 5 5

45132

3 22 1 1 5 3 1 4 4

1 106

5

4

3

2

1

1 2 3 4

1

2

3

4

5

1 2 3 4 5 1 2 3 4

1

2

3

4

5

55

Figure 3.17: JDS sparse matrix
storage format. The permutation
map is also applied to the column
index array. One of the jagged di-
agonals is marked.

Some of those points will be of importance later when we demonstrate parallel
sMVM (see Section 7.3 on page 181).

JDS requires some rearrangement of the matrix entries beyond simple zero elim-
ination. First, all zeros are eliminated from the matrix rows and the nonzeros are
shifted to the left. Then the matrix rows are sorted by descending number of nonze-
ros so that the longest row is at the top and the shortest row is at the bottom. The
permutation map generated during the sorting stage is stored in array perm of length
Nr. Finally, the now established columns are stored in array val consecutively. These
columns are also called jagged diagonals as they traverse the original sparse matrix
from left top to right bottom (see Figure 3.17). For each nonzero the original col-
umn index is stored in col_idx just like in the CRS. In order to have the same
element order on the RHS and LHS vectors, the col_idx array is subject to the
above-mentioned permutation as well. Array jd_ptr holds the start indices of the
Nj jagged diagonals. A standard code for sMVM in JDS format is only slightly more
complex than with CRS:

1 do diag=1, Nj
2 diagLen = jd_ptr(diag+1) - jd_ptr(diag)

3 offset = jd_ptr(diag) - 1

4 do i=1, diagLen

5 C(i) = C(i) + val(offset+i) * B(col_idx(offset+i))

6 enddo

7 enddo

Data access optimization 89

The perm array storing the permutation map is not required here; usually, all sMVM
operations are done in permuted space. These are the notable properties of this loop:

• There is a long inner loop without dependencies, which makes JDS a much
better storage format for vector processors than CRS.

• The outer loop is short (number of jagged diagonals).

• The result vector is loaded multiple times (at least partially) from memory, so
there might be some optimization potential.

• The nonzeros in val are accessed with stride one.

• The RHS vector is accessed indirectly, just as with CRS. The same comments
as above do apply, although a favorable matrix layout would feature straight
diagonals, not compact rows. As an additional complication the matrix rows
as well as the RHS vector are permuted.

• Bc = 9/4 W/F if the integer load to col_idx is counted with four bytes.

The code balance numbers of CRS and JDS sMVM seem to be quite in favor of CRS.

3.6.2 Optimizing JDS sparse MVM

Unroll and jam should be applied to the JDS sMVM, but it usually requires the
length of the inner loop to be independent of the outer loop index. Unfortunately, the
jagged diagonals are generally not all of the same length, violating this condition.
However, an optimization technique called loop peeling can be employed which, for
m-way unrolling, cuts rectangular m× x chunks and leaves m− 1 partial diagonals
over for separate treatment (see Figure 3.18; the remainder loop is omitted as usual):

1 do diag=1,Nj,2 ! two-way unroll & jam

2 diagLen = min((jd_ptr(diag+1)-jd_ptr(diag)) ,\

3 (jd_ptr(diag+2)-jd_ptr(diag+1)))

4 offset1 = jd_ptr(diag) - 1

5 offset2 = jd_ptr(diag+1) - 1

6 do i=1, diagLen

7 C(i) = C(i)+val(offset1+i)*B(col_idx(offset1+i))

8 C(i) = C(i)+val(offset2+i)*B(col_idx(offset2+i))

9 enddo

10 ! peeled-off iterations

11 offset1 = jd_ptr(diag)

12 do i=(diagLen+1),(jd_ptr(diag+1)-jd_ptr(diag))

13 c(i) = c(i)+val(offset1+i)*b(col_idx(offset1+i))

14 enddo

15 enddo

Assuming that the peeled-off iterations account for a negligible contribution to CPU
time, m-way unroll and jam reduces code balance to

Bc =

(

1
m

+
5
4

)

W/F .

90 Introduction to High Performance Computing for Scientists and Engineers

Figure 3.18: JDS matrix traversal with
two-way unroll and jam and loop peeling.
The peeled iterations are marked.

Figure 3.19: JDS matrix traversal with
four-way loop blocking.

If m is large enough, this can get close to the CRS balance. However, as explained be-
fore large m leads to strong register pressure and is not always desirable. Generally, a
sensible combination of unrolling and blocking is employed to reduce memory traf-
fic and enhance in-cache performance at the same time. Blocking is indeed possible
for JDS sMVM as well (see Figure 3.19):

1 ! loop over blocks

2 do ib=1, Nr, b

3 block_start = ib

4 block_end = min(ib+b-1, Nr)

5 ! loop over diagonals in one block

6 do diag=1, Nj
7 diagLen = jd_ptr(diag+1)-jd_ptr(diag)

8 offset = jd_ptr(diag) - 1

9 if(diagLen .ge. block_start) then

10 ! standard JDS sMVM kernel

11 do i=block_start, min(block_end,diagLen)

12 B(i) = B(i)+val(offset+i)*B(col_idx(offset+i))

13 enddo

14 endif

15 enddo

16 enddo

With this optimization the result vector is effectively loaded only once from memory
if the block size b is not too large. The code should thus get similar performance as
the CRS version, although code balance has not been changed. As anticipated above
with dense matrix transpose, blocking does not optimize for register reuse but for
cache utilization.

Data access optimization 91

CRS JDS
vanilla

 JDS
unroll=2

 JDS
block=400

0

100

200

300

400

M
F

lo
p
s
/s

e
c

AMD Opteron

Intel Itanium2 (SGI Altix)

Intel Xeon/Core

Figure 3.20: Performance comparison of sparse MVM codes with different optimizations. A
matrix with 1.7× 107 unknowns and 20 jagged diagonals was chosen. The blocking size of
400 has proven to be optimal for a wide range of architectures.

Figure 3.20 shows a performance comparison of CRS and plain, two-way un-
rolled and blocked (b = 400) JDS sMVM on three different architectures, for a test
matrix from solid state physics (six-site one-dimensional Holstein-Hubbard model
at half filling). The CRS variant seems to be preferable for standard AMD and Intel
microprocessors, which is not surprising because it features the lowest code balance
right away without any subsequent manual optimizations and the short inner loop
length is less unfavorable on CPUs with out-of-order capabilities. The Intel Itanium2
processor with its EPIC architecture [V113], however, shows mediocre performance
for CRS and tops at the blocked JDS version. This architecture cannot cope very well
with the short loops of CRS due to the absence of out-of-order processing and the
compiler, despite detecting all instruction-level parallelism on the inner loop level,
not being able to overlap the wind-down of one row with the wind-up phase of the
next. This effect would certainly be much more pronounced if the working set did fit
into the cache [O56].

Problems

For solutions see page 289 ff.

3.1 Strided access. How do the balance and lightspeed considerations in Sec-

92 Introduction to High Performance Computing for Scientists and Engineers

tion 3.1 have to be modified if one or more arrays are accessed with nonunit
stride? What kind of performance characteristic do you expect for a stride-s
vector triad,

1 do i=1,N,s

2 A(i) = B(i) + C(i) * D(i)

3 enddo

with respect to s if N is large?

3.2 Balance fun. Calculate code balance for the following loop kernels, assuming
that all arrays have to be loaded from memory and ignoring the latency prob-
lem (appropriate loops over the counter variables i and j are always implied):

(a) Y(j) = Y(j) + A(i,j) * B(i) (matrix-vector multiply)

(b) s = s + A(i) * A(i) (vector norm)

(c) s = s + A(i) * B(i) (scalar product)

(d) s = s + A(i) * B(K(i)) (scalar product with indirect access)

All arrays are of DP floating-point type except K which stores 4-byte integers.
s is a double precision scalar. Calculate expected application performance
based on theoretical peak bandwidth and STREAM bandwidths in MFlops/sec
for those kernels on one core of a Xeon 5160 processor and on the prototypical
vector processor described in Section 1.6. The Xeon CPU has a cache line size
of 64 bytes. You may assume that N is large so that the arrays do not fit into
any cache. For case (d), give numbers for best and worst case scenarios on the
Xeon.

3.3 Performance projection. In future mainstream microarchitectures, SIMD ca-
pabilities will be greatly enhanced. One of the possible new features is that
x86 processors will be capable of executing MULT and ADD instructions on
256-bit (instead of 128-bit) registers, i.e., four DP floating-point values, con-
currently. This will effectively double the peak performance per cycle from 4
to 8 flops, given that the L1 cache bandwidth is improved by the same fac-
tor. Assuming that other parameters like memory bandwidth and clock speed
stay the same, estimate the expected performance gain for using this feature,
compared to a single current Intel “Core i7” core (effective STREAM-based
machine balance of 0.12 W/F). Assume a perfectly SIMD-vectorized applica-
tion that today spends 60% of its compute time on code that has a balance
of 0.04 W/F and the remaining 40% in code with a balance of 0.5 W/F. If the
manufacturers chose to extend SIMD capabilities even more, e.g., by intro-
ducing very large vector lengths, what is the absolute limit for the expected
performance gain in this situation?

3.4 Optimizing 3D Jacobi. Generalize the 2D Jacobi algorithm introduced in Sec-
tion 3.3 to three dimensions. Do you expect a change in performance char-

Data access optimization 93

acteristics with varying inner loop length (Figure 3.6)? Considering the opti-
mizations for dense matrix transpose (Section 3.4), can you think of a way to
eliminate some of the performance breakdowns?

3.5 Inner loop unrolling revisited. Up to now we have encountered the possibility
of unrolling inner loops only in the contexts of software pipelining and SIMD
optimizations (see Chapter 2). Can inner loop unrolling also improve code bal-
ance in some situations? What are the prospects for improving the performance
of a Jacobi solver by unrolling the inner loop?

3.6 Not unrollable? Consider the multiplication of a lower triangular matrix with
a vector:

1 do r=1,N

2 do c=1,r

3 y(r) = y(r) + a(c,r) * x(c)

4 enddo

5 enddo

Can you apply “unroll and jam” to the outer loop here (see Section 3.5.2 on
page 81) to reduce code balance? Write a four-way unrolled version of above
code. No special assumptions about Nmay be made (other than being positive),
and no matrix elements of Amay be accessed that are outside the lower triangle
(including the diagonal).

3.7 Application optimization. Which optimization strategies would you suggest for
the piece of code below? Write down a transformed version of the code which
you expect to give the best performance.

1 double precision, dimension(N,N) :: mat,s

2 double precision :: val

3 integer :: i,j

4 integer, dimension(N) :: v

5 ! ... v and s may be assumed to hold valid data

6 do i=1,N

7 do j=1,N

8 val = DBLE(MOD(v(i),256))

9 mat(i,j) = s(i,j)*(SIN(val)*SIN(val)-COS(val)*COS(val))

10 enddo

11 enddo

No assumptions about the size of N may be made. You may, however, assume
that the code is part of a subroutine which gets called very frequently. s and v
may change between calls, and all elements of v are positive.

3.8 TLB impact. The translation lookaside buffer (TLB) of even the most modern
processors is scarcely large enough to even store the mappings of all memory
pages that reside in the outer-level data cache. Why are TLBs so small? Isn’t
this a performance bottleneck by design? What are the benefits of larger pages?

Chapter 4

Parallel computers

We speak of parallel computing whenever a number of “compute elements” (cores)
solve a problem in a cooperative way. All modern supercomputer architectures de-
pend heavily on parallelism, and the number of CPUs in large-scale supercomputers
increases steadily. A common measure for supercomputer “speed” has been estab-
lished by the Top500 list [W121], which is published twice a year and ranks paral-
lel computers based on their performance in the LINPACK benchmark. LINPACK
solves a dense system of linear equations of unspecified size. It is not generally ac-
cepted as a good metric because it covers only a single architectural aspect (peak
performance). Although other, more realistic alternatives like the HPC Challenge
benchmarks [W122] have been proposed, the simplicity of LINPACK and its ease of
use through efficient open-source implementations have preserved its dominance in
the Top500 ranking for nearly two decades now. Nevertheless, the list can still serve

5
-8

9
-1

6

1
7
-3

2

3
3
-6

4

6
5
-1

2
8

1
2
9
-2

5
6

2
5
7
-5

1
2

5
1
3
-1

k

1
k-

2
k

2
k-

4
k

4
k-

8
k

8
k-

1
6
k

1
6
k-

3
2
k

3
2
k-

6
4
k

6
4
k-

1
2
8
k

1
2
8
k-

2
5
6
k

3
-4

Number of cores per system

0

50

100

150

200

250

300

N
u

m
b

e
r

o
f

s
y
s
te

m
s

November 1999

November 2004

November 2009

Figure 4.1: Number of systems versus core count in the November 1999, 2004, and 2009
Top500 lists. The average number of CPUs has grown 50-fold in ten years. Between 2004 and
2009, the advent of multicore chips resulted in a dramatic boost in typical core counts. Data
taken from [W121].

95

96 Introduction to High Performance Computing for Scientists and Engineers

as an important indicator for trends in supercomputing. The main tendency is clearly
visible from a comparison of processor number distributions in Top500 systems (see
Figure 4.1): Top of the line HPC systems do not rely on Moore’s Law alone for per-
formance but parallelism becomes more important every year. This trend has been
accelerating recently by the advent of multicore processors — apart from the occa-
sional parallel vector computer, the latest lists contain no single-core systems any
more (see also Section 1.4). We can certainly provide no complete overview on cur-
rent parallel computer technology, but recommend the regularly updated Overview

of recent supercomputers by van der Steen and Dongarra [W123].
In this chapter we will give an introduction to the fundamental variants of par-

allel computers: the shared-memory and the distributed-memory type. Both utilize
networks for communication between processors or, more generally, “computing el-
ements,” so we will outline the basic design rules and performance characteristics for
the common types of networks as well.

4.1 Taxonomy of parallel computing paradigms

A widely used taxonomy for describing the amount of concurrent control and
data streams present in a parallel architecture was proposed by Flynn [R38]. The
dominating concepts today are the SIMD and MIMD variants:

SIMD Single Instruction, Multiple Data. A single instruction stream, either on a
single processor (core) or on multiple compute elements, provides parallelism
by operating on multiple data streams concurrently. Examples are vector pro-
cessors (see Section 1.6), the SIMD capabilities of modern superscalar micro-
processors (see Section 2.3.3), and Graphics Processing Units (GPUs). Histor-
ically, the all but extinct large-scale multiprocessor SIMD parallelism was im-
plemented in Thinking Machines’ Connection Machine supercomputer [R36].

MIMD Multiple Instruction, Multiple Data. Multiple instruction streams on multi-
ple processors (cores) operate on different data items concurrently. The shared-
memory and distributed-memory parallel computers described in this chapter
are typical examples for the MIMD paradigm.

There are actually two more categories, called SISD (Single Instruction Single Data)
and MISD (Multiple Instruction Single Data), the former describing conventional,
nonparallel, single-processor execution following the original pattern of the stored-
program digital computer (see Section 1.1), while the latter is not regarded as a useful
paradigm in practice.

Strictly processor-based instruction-level parallelism as employed in superscalar,
pipelined execution (see Sections 1.2.3 and 1.2.4) is not included in this categoriza-
tion, although one may argue that it could count as MIMD. However, in what follows
we will restrict ourselves to the multiprocessor MIMD parallelism built into shared-
and distributed-memory parallel computers.

Parallel computers 97

4.2 Shared-memory computers

A shared-memory parallel computer is a system in which a number of CPUs
work on a common, shared physical address space. Although transparent to the
programmer as far as functionality is concerned, there are two varieties of shared-
memory systems that have very different performance characteristics in terms of
main memory access:

• Uniform Memory Access (UMA) systems exhibit a “flat” memory model: La-
tency and bandwidth are the same for all processors and all memory locations.
This is also called symmetric multiprocessing (SMP). At the time of writing,
single multicore processor chips (see Section 1.4) are “UMA machines.” How-
ever, “cluster on a chip” designs that assign separate memory controllers to
different groups of cores on a die are already beginning to appear.

• On cache-coherent Nonuniform Memory Access (ccNUMA) machines, mem-
ory is physically distributed but logically shared. The physical layout of such
systems is quite similar to the distributed-memory case (see Section 4.3), but
network logic makes the aggregated memory of the whole system appear as
one single address space. Due to the distributed nature, memory access per-
formance varies depending on which CPU accesses which parts of memory
(“local” vs. “remote” access).

With multiple CPUs, copies of the same cache line may reside in different caches,
probably in modified state. So for both above varieties, cache coherence protocols

must guarantee consistency between cached data and data in memory at all times.
Details about UMA, ccNUMA, and cache coherence mechanisms are provided in the
following sections. The dominating shared-memory programming model in scientific
computing, OpenMP, will be introduced in Chapter 6.

4.2.1 Cache coherence

Cache coherence mechanisms are required in all cache-based multiprocessor sys-
tems, whether they are of the UMA or the ccNUMA kind. This is because copies of
the same cache line could potentially reside in several CPU caches. If, e.g., one of
those gets modified and evicted to memory, the other caches’ contents reflect out-
dated data. Cache coherence protocols ensure a consistent view of memory under all
circumstances.

Figure 4.2 shows an example on two processors P1 and P2 with respective caches
C1 and C2. Each cache line holds two items. Two neighboring items A1 and A2 in
memory belong to the same cache line and are modified by P1 and P2, respectively.
Without cache coherence, each cache would read the line from memory, A1 would
get modified in C1, A2 would get modified in C2 and some time later both modified
copies of the cache line would have to be evicted. As all memory traffic is handled in

98 Introduction to High Performance Computing for Scientists and Engineers

�����
�����
�����
�����

����
����
����
����

C1 C2

Memory
A1 A2

A1 A2 A1 A2

P1 P2

1 5

3 7

2 4 6

1. C1 requests exclusive CL ownership

2. set CL in C2 to state I

3. CL has state E in C1 → modify A1 in C1
and set to state M

4. C2 requests exclusive CL ownership

5. evict CL from C1 and set to state I

6. load CL to C2 and set to state E

7. modify A2 in C2 and set to state M in C2

Figure 4.2: Two processors P1, P2 modify the two parts A1, A2 of the same cache line in
caches C1 and C2. The MESI coherence protocol ensures consistency between cache and
memory.

chunks of cache line size, there is no way to determine the correct values of A1 and
A2 in memory.

Under control of cache coherence logic this discrepancy can be avoided. As an
example we pick the MESI protocol, which draws its name from the four possible
states a cache line can assume:

M modified: The cache line has been modified in this cache, and it resides in no
other cache than this one. Only upon eviction will memory reflect the most
current state.

E exclusive: The cache line has been read from memory but not (yet) modified.
However, it resides in no other cache.

S shared: The cache line has been read from memory but not (yet) modified. There
may be other copies in other caches of the machine.

I invalid: The cache line does not reflect any sensible data. Under normal circum-
stances this happens if the cache line was in the shared state and another pro-
cessor has requested exclusive ownership.

The order of events is depicted in Figure 4.2. The question arises how a cache line in
state M is notified when it should be evicted because another cache needs to read the
most current data. Similarly, cache lines in state S or E must be invalidated if another
cache requests exclusive ownership. In small systems a bus snoop is used to achieve
this: Whenever notification of other caches seems in order, the originating cache
broadcasts the corresponding cache line address through the system, and all caches
“snoop” the bus and react accordingly. While simple to implement, this method has
the crucial drawback that address broadcasts pollute the system buses and reduce
available bandwidth for “useful” memory accesses. A separate network for coherence
traffic can alleviate this effect but is not always practicable.

A better alternative, usually applied in larger ccNUMA machines, is a directory-

based protocol where bus logic like chipsets or memory interfaces keep track of the

Parallel computers 99

s
o

c
k
e

tP P

Chipset

Memory

L1D

L2

L1D

L2

Figure 4.3: A UMA system with two single-
core CPUs that share a common frontside bus
(FSB).

P

s
o

c
k
e

t P

Chipset

Memory

L1D

L2 L2

L1D

P P
L1D L1D

Figure 4.4: A UMA system in which the
FSBs of two dual-core chips are connected
separately to the chipset.

location and state of each cache line in the system. This uses up some small part
of main memory or cache, but the advantage is that state changes of cache lines
are transmitted only to those caches that actually require them. This greatly reduces
coherence traffic through the system. Today even workstation chipsets implement
“snoop filters” that serve the same purpose.

Coherence traffic can severely hurt application performance if the same cache
line is modified frequently by different processors (false sharing). Section 7.2.4 will
give hints for avoiding false sharing in user code.

4.2.2 UMA

The simplest implementation of a UMA system is a dual-core processor, in which
two CPUs on one chip share a single path to memory. It is very common in high
performance computing to use more than one chip in a compute node, be they single-
core or multicore.

In Figure 4.3 two (single-core) processors, each in its own socket, communicate
and access memory over a common bus, the so-called frontside bus (FSB). All ar-
bitration protocols required to make this work are already built into the CPUs. The
chipset (often termed “northbridge”) is responsible for driving the memory modules
and connects to other parts of the node like I/O subsystems. This kind of design is
outdated and is not used any more in modern systems.

In Figure 4.4, two dual-core chips connect to the chipset, each with its own FSB.
The chipset plays an important role in enforcing cache coherence and also mediates
the connection to memory. In principle, a system like this could be designed so that
the bandwidth from chipset to memory matches the aggregated bandwidth of the
frontside buses. Each chip features a separate L1 on each core and a dual-core L2
group. The arrangement of cores, caches, and sockets make the system inherently
anisotropic, i.e., the “distance” between one core and another varies depending on
whether they are on the same socket or not. With large many-core processors com-

100 Introduction to High Performance Computing for Scientists and Engineers

Figure 4.5: A
ccNUMA system
with two locality
domains (one per
socket) and eight
cores.

coherent

link

P
L1D

L2

P
L1D

L2

P
L1D

L2

P
L1D

L2

Memory Interface

L3

MemoryMemory

P
L1D

L2

P
L1D

L2

P
L1D

L2

P
L1D

L2

Memory Interface

L3

prising multilevel cache groups, the situation gets more complex still. See Section 1.4
for more information about shared caches and the consequences of anisotropy.

The general problem of UMA systems is that bandwidth bottlenecks are bound
to occur when the number of sockets (or FSBs) is larger than a certain limit. In very
simple designs like the one in Figure 4.3, a common memory bus is used that can
only transfer data to one CPU at a time (this is also the case for all multicore chips
available today but may change in the future).

In order to maintain scalability of memory bandwidth with CPU number, non-
blocking crossbar switches can be built that establish point-to-point connections be-
tween sockets and memory modules, similar to the chipset in Figure 4.4. Due to the
very large aggregated bandwidths those become very expensive for a larger number
of sockets. At the time of writing, the largest UMA systems with scalable bandwidth
(the NEC SX-9 vector nodes) have sixteen sockets. This problem can only be solved
by giving up the UMA principle.

4.2.3 ccNUMA

In ccNUMA, a locality domain (LD) is a set of processor cores together with
locally connected memory. This memory can be accessed in the most efficient way,
i.e., without resorting to a network of any kind. Multiple LDs are linked via a coher-

ent interconnect, which allows transparent access from any processor to any other
processor’s memory. In this sense, a locality domain can be seen as a UMA “build-
ing block.” The whole system is still of the shared-memory kind, and runs a single
OS instance. Although the ccNUMA principle provides scalable bandwidth for very
large processor counts, it is also found in inexpensive small two- or four-socket nodes
frequently used for HPC clustering (see Figure 4.5). In this particular example two
locality domains, i.e., quad-core chips with separate caches and a common interface
to local memory, are linked using a high-speed connection. HyperTransport (HT)
and QuickPath (QPI) are the current technologies favored by AMD and Intel, respec-
tively, but other solutions do exist. Apart from the minor peculiarity that the sockets
can drive memory directly, making separate interface chips obsolete, the intersocket
link can mediate direct, cache-coherent memory accesses. From the programmer’s
point of view this mechanism is transparent: All the required protocols are handled
by hardware.

Figure 4.6 shows another approach to ccNUMA that is flexible enough to scale

Parallel computers 101

NL

P P P P P P P P
L1D

L2

L3 L3

L2

L1D L1D

L2

L3 L3

L2

L1D L1D

L2

L3 L3

L2

L1D L1D

L2

L3 L3

L2

L1D

Memory Memory Memory Memory

R

R

S S

S S

Figure 4.6: A ccNUMA
system (SGI Altix) with
four locality domains,
each comprising one
socket with two cores.
The LDs are connected
via a routed NUMALink
(NL) network using
routers (R).

to large machines. It is used in Intel-based SGI Altix systems with up to thousands
of cores in a single address space and a single OS instance. Each processor socket is
connected to a communication interface (S), which provides memory access as well
as connectivity to the proprietary NUMALink (NL) network. The NL network relies
on routers (R) to switch connections for nonlocal access. As with HyperTransport
and QuickPath, the NL hardware allows for transparent access to the whole address
space of the machine from all cores. Although shown here only with four sockets,
multilevel router fabrics can be built that scale up to hundreds of CPUs. It must,
however, be noted that each piece of hardware inserted into a data connection (com-
munication interfaces, routers) adds to latency, making access characteristics very
inhomogeneous across the system. Furthermore, providing wire-equivalent speed
and nonblocking bandwidth for remote memory access in large systems is extremely
expensive. For these reasons, large supercomputers and cost-effective smaller clus-
ters are always made from shared-memory building blocks (usually of the ccNUMA
type) that are connected via some network without ccNUMA capabilities. See Sec-
tions 4.3 and 4.4 for details.

In all ccNUMA designs, network connections must have bandwidth and latency
characteristics that are at least the same order of magnitude as for local memory.
Although this is the case for all contemporary systems, even a penalty factor of two
for nonlocal transfers can badly hurt application performance if access cannot be re-
stricted inside locality domains. This locality problem is the first of two obstacles
to take with high performance software on ccNUMA. It occurs even if there is only
one serial program running on a ccNUMA machine. The second problem is poten-
tial contention if two processors from different locality domains access memory in
the same locality domain, fighting for memory bandwidth. Even if the network is
nonblocking and its performance matches the bandwidth and latency of local access,
contention can occur. Both problems can be solved by carefully observing the data
access patterns of an application and restricting data access of each processor to its
own locality domain. Chapter 8 will elaborate on this topic.

In inexpensive ccNUMA systems I/O interfaces are often connected to a sin-
gle LD. Although I/O transfers are usually slow compared to memory bandwidth,
there are, e.g., high-speed network interconnects that feature multi-GB bandwidths

102 Introduction to High Performance Computing for Scientists and Engineers

Figure 4.7: Simplified
programmer’s view, or
“programming model,”
of a distributed-memory
parallel computer: Se-
parate processes run on
processors (P), commu-
nicating via interfaces
(NI) over some network.
No process can access
another process’ memo-
ry (M) directly, although
processors may reside in
shared memory.

NI NI NI NI NI

CCCCC

M M M M

Communication network

M

P P P P P

between compute nodes. If data arrives at the “wrong” locality domain, written by
an I/O driver that has positioned its buffer space disregarding any ccNUMA con-
straints, it should be copied to its optimal destination, reducing effective bandwidth
by a factor of four (three if write allocates can be avoided, see Section 1.3.1). In this
case even the most expensive interconnect hardware is wasted. In truly scalable cc-
NUMA designs this problem is circumvented by distributing I/O connections across
the whole machine and using ccNUMA-aware drivers.

4.3 Distributed-memory computers

Figure 4.7 shows a simplified block diagram of a distributed-memory parallel
computer. Each processor P is connected to exclusive local memory, i.e., no other
CPU has direct access to it. Nowadays there are actually no distributed-memory
systems any more that implement such a layout. In this respect, the sketch is to
be seen as a programming model only. For price/performance reasons all parallel
machines today, first and foremost the popular PC clusters, consist of a number of
shared-memory “compute nodes” with two or more CPUs (see the next section);
the “distributed-memory programmer’s” view does not reflect that. It is even pos-
sible (and quite common) to use distributed-memory programming on pure shared-
memory machines.

Each node comprises at least one network interface (NI) that mediates the con-
nection to a communication network. A serial process runs on each CPU that can
communicate with other processes on other CPUs by means of the network. It is
easy to envision how several processors could work together on a common problem
in a shared-memory parallel computer, but as there is no remote memory access on
distributed-memory machines, the problem has to be solved cooperatively by sending
messages back and forth between processes. Chapter 9 gives an introduction to the
dominating message passing standard, MPI. Although message passing is much more

Parallel computers 103

Network Int. Network Int. Network Int. Network Int.

Communication network

P P

Memory

P P

Memory

P P

Memory

P P

Memory

P P

Memory

P P

Memory

P P

Memory

P P

Memory

Figure 4.8: Typical hybrid system with shared-memory nodes (ccNUMA type). Two-socket
building blocks represent the price vs. performance “sweet spot” and are thus found in many
commodity clusters.

complex to use than any shared-memory programming paradigm, large-scale super-
computers are exclusively of the distributed-memory variant on a “global” level.

The distributed-memory architecture outlined here is also named No Remote

Memory Access (NORMA). Some vendors provide libraries and sometimes hardware
support for limited remote memory access functionality even on distributed-memory
machines. Since such features are strongly vendor-specific, and there is no widely
accepted standard available, a detailed coverage would be beyond the scope of this
book.

There are many options for the choice of interconnect. In the simplest case one
could use standard switched Ethernet, but a number of more advanced technologies
have emerged that can easily have ten times the performance of Gigabit Ethernet
(see Section 4.5.1 for an account of basic performance characteristics of networks).
As will be shown in Section 5.3, the layout and “speed” of the network has consid-
erable impact on application performance. The most favorable design consists of a
nonblocking “wirespeed” network that can switch N/2 connections between its N

participants without any bottlenecks. Although readily available for small systems
with tens to a few hundred nodes, nonblocking switch fabrics become vastly expen-
sive on very large installations and some compromises are usually made, i.e., there
will be a bottleneck if all nodes want to communicate concurrently. See Section 4.5
for details on network topologies.

4.4 Hierarchical (hybrid) systems

As already mentioned, large-scale parallel computers are neither of the purely
shared-memory nor of the purely distributed-memory type but a mixture of both, i.e.,
there are shared-memory building blocks connected via a fast network. This makes
the overall system design even more anisotropic than with multicore processors and

104 Introduction to High Performance Computing for Scientists and Engineers

ccNUMA nodes, because the network adds another level of communication char-
acteristics (see Figure 4.8). The concept has clear advantages in terms of price vs.
performance; it is cheaper to build a shared-memory node with two sockets instead
of two nodes with one socket each, as much of the infrastructure can be shared.
Moreover, with more cores or sockets sharing a single network connection, the cost
for networking is reduced.

Two-socket building blocks are currently the “sweet spot” for inexpensive com-

modity clusters, i.e., systems built from standard components that were not specif-
ically designed for high performance computing. Depending on which applications
are run on the system, this compromise may lead to performance limitations due to
the reduced available network bandwidth per core. Moreover, it is per se unclear how
the complex hierarchy of cores, cache groups, sockets and nodes can be utilized effi-
ciently. The only general consensus is that the optimal programming model is highly
application- and system-dependent. Options for programming hierarchical systems
are outlined in Chapter 11.

Parallel computers with hierarchical structures as described above are also called
hybrids. The concept is actually more generic and can also be used to categorize
any system with a mixture of available programming paradigms on different hard-
ware layers. Prominent examples are clusters built from nodes that contain, be-
sides the “usual” multicore processors, additional accelerator hardware, ranging
from application-specific add-on cards to GPUs (graphics processing units), FPGAs
(field-programmable gate arrays), ASICs (application specific integrated circuits),
co-processors, etc.

4.5 Networks

We will see in Section 5.3.6 that communication overhead can have significant
impact on application performance. The characteristics of the network that connects
the “execution units,” “processors,” “compute nodes,” or whatever play a dominant
role here. A large variety of network technologies and topologies are available on
the market, some proprietary and some open. This section tries to shed some light
on the topologies and performance aspects of the different types of networks used
in high performance computing. We try to keep the discussion independent of con-
crete implementations or programming models, and most considerations apply to
distributed-memory, shared-memory, and hierarchical systems alike.

4.5.1 Basic performance characteristics of networks

As mentioned before, there are various options for the choice of a network in
a parallel computer. The simplest and cheapest solution to date is Gigabit Ethernet,
which will suffice for many throughput applications but is far too slow for parallel
programs with any need for fast communication. At the time of writing, the domi-

Parallel computers 105

time

Process 0 Process 1

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

Receive

message

Receive

message

Send
message

Send
message

Figure 4.9: Timeline for a “Ping-
Pong” data exchange between
two processes. PingPong reports
the time it takes for a message of
length N bytes to travel from pro-
cess 0 to process 1 and back.

nating distributed-memory interconnect, especially in commodity clusters, is Infini-

Band.

Point-to-point connections

Whatever the underlying hardware may be, the communication characteristics
of a single point-to-point connection can usually be described by a simple model:
Assuming that the total transfer time for a message of size N [bytes] is composed of
latency and streaming parts,

T = Tℓ +
N

B
(4.1)

and B being the maximum (asymptotic) network bandwidth in MBytes/sec, the ef-
fective bandwidth is

Beff =
N

Tℓ + N
B

. (4.2)

Note that in the most general case Tℓ and B depend on the message length N. A
multicore processor chip with a shared cache as shown, e.g., in Figure 1.18, is a
typical example: Latency and bandwidth of message transfers between two cores on
the same socket certainly depend on whether the message fits into the shared cache.
We will ignore such effects for now, but they are vital to understand the finer details
of message passing optimizations, which will be covered in Chapter 10.

For the measurement of latency and effective bandwidth the PingPong bench-
mark is frequently used. The code sends a message of size N [bytes] once back and
forth between two processes running on different processors (and probably different
nodes as well; see Figure 4.9). In pseudocode this looks as follows:

1 myID = get_process_ID()

2 if(myID.eq.0) then

3 targetID = 1

4 S = get_walltime()

5 call Send_message(buffer,N,targetID)

6 call Receive_message(buffer,N,targetID)

7 E = get_walltime()

8 MBYTES = 2*N/(E-S)/1.d6 ! MBytes/sec rate

106 Introduction to High Performance Computing for Scientists and Engineers

9 TIME = (E-S)/2*1.d6 ! transfer time in microsecs

10 ! for single message

11 else

12 targetID = 0

13 call Receive_message(buffer,N,targetID)

14 call Send_message(buffer,N,targetID)

15 endif

Bandwidth in MBytes/sec is then reported for different N. In reality one would use an
appropriate messaging library like the Message Passing Interface (MPI), which will
be introduced in Chapter 9. The data shown below was obtained using the standard
“Intel MPI Benchmarks” (IMB) suite [W124].

In Figure 4.10, the model parameters in (4.2) are fitted to real data measured on
a Gigabit Ethernet network. This simple model is able to describe the gross features
well: We observe very low bandwidth for small message sizes, because latency dom-
inates the transfer time. For very large messages, latency plays no role any more and
effective bandwidth saturates. The fit parameters indicate plausible values for Gigabit
Ethernet; however, latency can certainly be measured directly by taking the N = 0
limit of transfer time (inset in Figure 4.10). Obviously, the fit cannot reproduce Tℓ

accurately. See below for details.
In contrast to bandwidth limitations, which are usually set by the physical param-

eters of data links, latency is often composed of several contributions:

• All data transmission protocols have some overhead in the form of administra-
tive data like message headers, etc.

• Some protocols (like, e.g., TCP/IP as used over Ethernet) define minimum
message sizes, so even if the application sends a single byte, a small “frame”
of N > 1 bytes is transmitted.

• Initiating a message transfer is a complicated process that involves multiple
software layers, depending on the complexity of the protocol. Each software
layer adds to latency.

• Standard PC hardware as frequently used in clusters is not optimized towards
low-latency I/O.

In fact, high-performance networks try to improve latency by reducing the influence
of all of the above. Lightweight protocols, optimized drivers, and communication
devices directly attached to processor buses are all employed by vendors to provide
low latency.

One should, however, not be overly confident of the quality of fits to the model
(4.2). After all, the message sizes vary across eight orders of magnitude, and the
effective bandwidth in the latency-dominated regime is at least three orders of mag-
nitude smaller than for large messages. Moreover, the two fit parameters Tℓ and B

are relevant on different ends of the fit region. The determination of Gigabit Ethernet
latency from PingPong data in Figure 4.10 failed for these reasons. Hence, it is a
good idea to check the applicability of the model by trying to establish “good” fits

Parallel computers 107

10
1

10
2

10
3

10
4

10
5

10
6

N [Bytes]

0

20

40

60

80

100

120
B

e
ff
 [

M
B

y
te

s
/s

e
c
]

model fit (T
l
 = 76µs,

B = 111 MBytes/sec)

measured (GE)

1 10 100
N [bytes]

42

44

46

48

L
a

te
n

c
y
 [

µ
s
]

N
1/2

Figure 4.10: Fit of the model for effective bandwidth (4.2) to data measured on a GigE net-
work. The fit cannot accurately reproduce the measured value of Tℓ (see text). N1/2 is the
message length at which half of the saturation bandwidth is reached (dashed line).

10
1

10
2

10
3

10
4

10
5

10
6

N [Bytes]

10
-1

10
0

10
1

10
2

10
3

B
e
ff
 [
M

B
y
te

s
/s

e
c
]

T
l
 = 4.14 µs, B = 827 MBytes/sec

T
l
 = 20.8 µs, B = 1320 MBytes/sec

T
l
 = 4.14 µs, B = 1320 MBytes/sec

measured (IB)

large messages

small messages

Figure 4.11: Fits of the model for effective bandwidth (4.2) to data measured on a DDR In-
finiBand network. “Good” fits for asymptotic bandwidth (dotted-dashed) and latency (dashed)
are shown separately, together with a fit function that unifies both (solid).

108 Introduction to High Performance Computing for Scientists and Engineers

on either end of the scale. Figure 4.11 shows measured PingPong data for a DDR-

InfiniBand network. Both axes have been scaled logarithmically in this case because
this makes it easier to judge the fit quality on all scales. The dotted-dashed and dashed
curves have been obtained by restricting the fit to the large- and small-message-size
regimes, respectively. The former thus yields a good estimate for B, while the latter
allows quite precise determination of Tℓ. Using the fit function (4.2) with those two
parameters combined (solid curve) reveals that the model produces mediocre results
for intermediate message sizes. There can be many reasons for such a failure; com-
mon effects are that the message-passing or network protocol layers switch between
different buffering algorithms at a certain message size (see also Section 10.2), or
that messages have to be split into smaller chunks as they become larger than some
limit.

Although the saturation bandwidth B can be quite high (there are systems where
the achievable internode network bandwidth is comparable to the local memory
bandwidth of the processor), many applications work in a region on the bandwidth
graph where latency effects still play a dominant role. To quantify this problem, the
N1/2 value is often reported. This is the message size at which Beff = B/2 (see Fig-
ure 4.10). In the model (4.2), N1/2 = BTℓ. From this point of view it makes sense
to ask whether an increase in maximum network bandwidth by a factor of β is re-
ally beneficial for all messages. At message size N, the improvement in effective
bandwidth is

Beff(βB,Tℓ)

Beff(B,Tℓ)
=

1+N/N1/2

1+N/βN1/2
, (4.3)

so that for N = N1/2 and β = 2 the gain is only 33%. In case of a reduction of latency
by a factor of β , the result is the same. Thus, it is desirable to improve on both latency
and bandwidth to make an interconnect more efficient for all applications.

Bisection bandwidth

Note that the simple PingPong algorithm described above cannot pinpoint “glo-
bal” saturation effects: If the network fabric is not completely nonblocking and all
nodes transmit or receive data at the same time, aggregated bandwidth, i.e., the sum
over all effective bandwidths for all point-to-point connections, is lower than the the-
oretical limit. This can severely throttle the performance of applications on large CPU
numbers as well as overall throughput of the machine. One helpful metric to quan-
tify the maximum aggregated communication capacity across the whole network is
its bisection bandwidth Bb. It is the sum of the bandwidths of the minimal number of
connections cut when splitting the system into two equal-sized parts (dashed line in
Figure 4.12). In hybrid/hierarchical systems, a more meaningful metric is actually the
available bandwidth per core, i.e., bisection bandwidth divided by the overall number
of compute cores. It is one additional adverse effect of the multicore transition that
bisection bandwidth per core goes down.

Parallel computers 109

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

Network

Network

Figure 4.12: The bisec-
tion bandwidth Bb is the
sum of the bandwidths of
the minimal number of
connections cut (three in
this example) when di-
viding the system into
two equal parts.

4.5.2 Buses

A bus is a shared medium that can be used by exactly one communicating device
at a time (Figure 4.13). Some appropriate hardware mechanism must be present that
detects collisions (i.e., attempts by two or more devices to transmit concurrently).
Buses are very common in computer systems. They are easy to implement, feature
lowest latency at small utilization, and ready-made hardware components are avail-
able that take care of the necessary protocols. A typical example is the PCI (Periph-
eral Component Interconnect) bus, which is used in many commodity systems to
connect I/O components. In some current multicore designs, a bus connects separate
CPU chips in a common package with main memory.

The most important drawback of a bus is that it is blocking. All devices share
a constant bandwidth, which means that the more devices are connected, the lower
the average available bandwidth per device. Moreover, it is technically involved to
design fast buses for large systems as capacitive and inductive loads limit transmis-
sion speeds. And finally, buses are susceptible to failures because a local problem
can easily influence all devices. In high performance computing the use of buses for
high-speed communication is usually limited to the processor or socket level, or to
diagnostic networks.

Figure 4.13: A bus net-
work (shared medium).
Only one device can use
the bus at any time, and
bisection bandwidth is
independent of the num-
ber of nodes.

110 Introduction to High Performance Computing for Scientists and Engineers

OUT OUT OUT OUT

IN

IN

IN

IN

Figure 4.14: A flat, fully nonblocking two-dimensional crossbar network. Each circle repre-
sents a possible connection between two devices from the “IN” and “OUT” groups, respec-
tively, and is implemented as a 2×2 switching element. The whole circuit can act as a four-port
nonblocking switch.

4.5.3 Switched and fat-tree networks

A switched network subdivides all communicating devices into groups. The de-
vices in one group are all connected to a central network entity called a switch in
a star-like manner. Switches are then connected with each other or using additional
switch layers. In such a network, the distance between two communicating devices
varies according to how many “hops” a message has to sustain before it reaches its
destination. Therefore, a multiswitch hierarchy is necessarily heterogeneous with re-
spect to latency. The maximum number of hops required to connect two arbitrary
devices is called the diameter of the network. For a bus (see Section 4.5.2), the di-
ameter is one.

A single switch can either support a fully nonblocking operation, which means
that all pairs of ports can use their full bandwidth concurrently, or it can have —
partly or completely — a bus-like design where bandwidth is limited. One possible
implementation of a fully nonblocking switch is a crossbar (see Figure 4.14). Such
building blocks can be combined and cascaded to form a fat tree switch hierarchy,
leaving a choice as to whether to keep the nonblocking property across the whole sys-
tem (see Figure 4.15) or to tailor available bandwidth by using thinner connections
towards the root of the tree (see Figure 4.16). In this case the bisection bandwidth per
compute element is less than half the leaf switch bandwidth per port, and contention
will occur even if static routing is itself not a problem. Note that the network in-
frastructure must be capable of (dynamically or statically) balancing the traffic from
all the leaves over the thinly populated higher-level connections. If this is not possi-
ble, some node-to-node connections may be faster than others even if the network is
lightly loaded. On the other hand, maximum latency between two arbitrary compute
elements usually depends on the number of switch hierarchy layers only.

Compromises of the latter kind are very common in very large systems as estab-

Parallel computers 111

leaf switches

spine switches

SW 2 SW 3

SW A SW B

SW 1 SW 4

Figure 4.15: A fully nonblocking full-bandwidth fat-tree network with two switch layers. The
switches connected to the actual compute elements are called leaf switches, whereas the upper
layers form the spines of the hierarchy.

lishing a fully nonblocking switch hierarchy across thousands of compute elements
becomes prohibitively expensive and the required hardware for switches and cabling
gets easily out of hand. Additionally, the network turns heterogeneous with respect
to available aggregated bandwidth — depending on the actual communication re-
quirements of an application it may be crucial for overall performance where exactly
the workers are located across the system: If a group of workers use a single leaf
switch, they might enjoy fully nonblocking communication regardless of the bot-
tleneck further up (see Section 4.5.4 for alternative approaches to build very large
high-performance networks that try avoid this kind of problem).

There may however still exist bottlenecks even with a fully nonblocking switch
hierarchy like the one shown in Figure 4.15. If static routing is used, i.e., if connec-
tions between compute elements are “hardwired” in the sense that there is one and
only one chosen data path (sequence of switches traversed) between any two, one
can easily encounter situations where the utilization of spine switch ports is unbal-

SW

SW SW SWSW

Figure 4.16: A fat-tree network with a bottleneck due to “1:3 oversubscription” of communi-
cation links to the spine. By using a single spine switch, the bisection bandwidth is cut in half
as compared to the layout in Figure 4.15 because only four nonblocking pairs of connections
are possible. Bisection bandwidth per compute element is even lower.

112 Introduction to High Performance Computing for Scientists and Engineers

1

3

4 8

7

6

5

2
S

W
 2

S
W

 1

S
W

 B

S
W

 4
S

W
 3

S
W

 A

Figure 4.17: Even in a fully nonblocking fat-tree switch hierarchy (network cabling shown as
solid lines), not all possible combinations of N/2 point-to-point connections allow collision-
free operation under static routing. When, starting from the collision-free connection pattern
shown with dashed lines, the connections 2↔6 and 3↔7 are changed to 2↔7 and 3↔6, re-
spectively (dotted-dashed lines), collisions occur, e.g., on the highlighted links if connections
1↔5 and 4↔8 are not re-routed at the same time.

anced, leading to collisions when the load is high (see Figure 4.17 for an example).
Many commodity switch products today use static routing tables [O57]. In contrast,
adaptive routing selects data paths depending on the network load and thus avoids
collisions. Only adaptive routing bears the potential of making full use of the avail-
able bisection bandwidth for all communication patterns.

4.5.4 Mesh networks

Fat-tree switch hierarchies have the disadvantage of limited scalability in very
large systems, mostly in terms of price vs. performance. The cost of active compo-
nents and the vast amount of cabling are prohibitive and often force compromises
like the reduction of bisection bandwidth per compute element. In order to overcome
those drawbacks and still arrive at a controllable scaling of bisection bandwidth, large
MPP machines like the IBM Blue Gene [V114, V115, V116] or the Cray XT [V117]
use mesh networks, usually in the form of multidimensional (hyper-)cubes. Each
compute element is located at a Cartesian grid intersection. Usually the connections
are wrapped around the boundaries of the hypercube to form a torus topology (see
Figure 4.18 for a 2D torus example). There are no direct connections between ele-
ments that are not next neighbors. The task of routing data through the system is usu-
ally accomplished by special ASICs (application specific integrated circuits), which

Parallel computers 113

Figure 4.18: A two-dimensional (square)
torus network. Bisection bandwidth scales
like

√
N in this case.

take care of all network traffic, bypassing the CPU whenever possible. The network
diameter is the sum of the system’s sizes in all three Cartesian directions.

Certainly, bisection bandwidth does not scale linearly when enlarging the sys-
tem in all dimensions but behaves like Bb(N) ∝ N(d−1)/d (d being the number of
dimensions), which leads to Bb(N)/N → 0 for large N. Maximum latency scales like
N1/d . Although these properties appear unfavorable at first sight, the torus topology
is an acceptable and extremely cost-effective compromise for the large class of ap-
plications that are dominated by nearest-neighbor communication. If the maximum
bandwidth per link is substantially larger than what a single compute element can
“feed” into the network (its injection bandwidth), there is enough headroom to sup-
port more demanding communication patterns as well (this is the case, for instance,
on the Cray XT line of massively parallel computers [V117]). Another advantage of
a cubic mesh is that the amount of cabling is limited, and most cables can be kept
short. As with fat-tree networks, there is some heterogeneity in bandwidth and la-
tency behavior, but if compute elements that work in parallel to solve a problem are
located close together (i.e., in a cuboidal region), these characteristics are well pre-
dictable. Moreover, there is no “arbitrary” system size at which bisection bandwidth
per node suddenly has to drop due to cost and manageability concerns.

On smaller scales, simple mesh networks are used in shared-memory systems for
ccNUMA-capable connections between locality domains. Figure 4.19 shows an ex-
ample of a four-socket server with HyperTransport interconnect. This node actually
implements a heterogeneous topology (in terms of intersocket latency) because two
HT connections are used for I/O connectivity: Any communication between the two
locality domains on the right incurs an additional hop via one of the other domains.

4.5.5 Hybrids

If a network is built as a combination of at least two of the topologies described
above, it is called hybrid. In a sense, a cluster of shared-memory nodes like in Fig-

114 Introduction to High Performance Computing for Scientists and Engineers

Figure 4.19: A four-socket ccNUMA sys-
tem with a HyperTransport-based mesh
network. Each socket has only three HT
links, so the network has to be heteroge-
neous in order to accommodate I/O con-
nections and still utilize all provided HT
ports.

I/O

I/O

HT

HT

HT

HT

HT

HT

HT

Memory

P P

Memory

P P

Memory

P P

Memory

P P

ure 4.8 implements a hybrid network even if the internode network itself is not hy-
brid. This is because intranode connections tend to be buses (in multicore chips) or
simple meshes (for ccNUMA-capable fabrics like HyperTransport or QuickPath).
On the large scale, using a cubic topology for node groups of limited size and a non-
blocking fat tree further up reduces the bisection bandwidth problems of pure cubic
meshes.

Problems

For solutions see page 295 ff.

4.1 Building fat-tree network hierarchies. In a fat-tree network hierarchy with
static routing, what are the consequences of a 2:3 oversubscription on the links
to the spine switches?

Chapter 5

Basics of parallelization

Before actually engaging in parallel programming it is vital to know about some
fundamental rules in parallelization. This pertains to the available parallelization op-
tions and, even more importantly, to performance limitations. It is one of the most
common misconceptions that the more “hardware” is put into executing a parallel
program, the faster it will run. Billions of CPU hours are wasted every year because
supercomputer users have no idea about the limitations of parallel execution.

In this chapter we will first identify and categorize the most common strategies
for parallelization, and then investigate parallelism on a theoretical level: Simple
mathematical models will be derived that allow insight into the factors that hamper
parallel performance. Although the applicability and predictive power of such mod-
els is limited, they provide unique insights that are largely independent of concrete
parallel programming paradigms. Practical programming standards for writing par-
allel programs will be introduced in the subsequent chapters.

5.1 Why parallelize?

With all the different kinds of parallel hardware that exists, from massively par-
allel supercomputers down to multicore laptops, parallelism seems to be a ubiqui-
tous phenomenon. However, many scientific users may even today not be required
to actually write parallel programs, because a single core is sufficient to fulfill their
demands. If such demands outgrow the single core’s capabilities, they can do so for
two quite distinct reasons:

• A single core may be too slow to perform the required task(s) in a “tolerable”
amount of time. The definition of “tolerable” certainly varies, but “overnight”
is often a reasonable estimate. Depending on the requirements, “over lunch”
or “duration of a PhD thesis” may also be valid.

• The memory requirements cannot be met by the amount of main memory
which is available on a single system, because larger problems (with higher
resolution, more physics, more particles, etc.) need to be solved.

The first problem is likely to occur more often in the future because of the irreversible
multicore transition. For a long time, before the advent of parallel computers, the sec-
ond problem was tackled by so-called out-of-core techniques, tailoring the algorithm

115

116 Introduction to High Performance Computing for Scientists and Engineers

so that large parts of the data set could be held on mass storage and loaded on demand
with a (hopefully) minor impact on performance. However, the chasm between peak
performance and available I/O bandwidth (and latency) is bound to grow even faster
than the DRAM gap, and it is questionable whether out-of-core can play a major role
for serial computing in the future. High-speed I/O resources in parallel computers
are today mostly available in the form of parallel file systems, which unfold their
superior performance only if used with parallel data streams from different sources.

Of course, the reason for “going parallel” may strongly influence the chosen
method of parallelization. The following section provides an overview on the latter.

5.2 Parallelism

Writing a parallel program must always start by identifying the parallelism in-
herent in the algorithm at hand. Different variants of parallelism induce different
methods of parallelization. This section can only give a coarse summary on available
parallelization methods, but it should enable the reader to consult more advanced
literature on the topic. Mattson et al. [S6] have given a comprehensive overview on
parallel programming patterns. We will restrict ourselves to methods for exploiting
parallelism using multiple cores or compute nodes. The fine-grained concurrency im-
plemented with superscalar processors and SIMD capabilities has been introduced in
Chapters 1 and 2.

5.2.1 Data parallelism

Many problems in scientific computing involve processing of large quantities of
data stored on a computer. If this manipulation can be performed in parallel, i.e., by
multiple processors working on different parts of the data, we speak of data paral-

lelism. As a matter of fact, this is the dominant parallelization concept in scientific
computing on MIMD-type computers. It also goes under the name of SPMD (Single
Program Multiple Data), as usually the same code is executed on all processors, with
independent instruction pointers. It is thus not to be confused with SIMD parallelism.

Example: Medium-grained loop parallelism

Processing of array data by loops or loop nests is a central component in most
scientific codes. A typical example are linear algebra operations on vectors or ma-
trices, as implemented in the standard BLAS library [N50]. Often the computations
performed on individual array elements are independent of each other and are hence
typical candidates for parallel execution by several processors in shared memory
(see Figure 5.1). The reason why this variant of parallel computing is often called
“medium-grained” is that the distribution of work across processors is flexible and
easily changeable down to the single data element: In contrast to what is shown in

Basics of parallelization 117

do i=1,500

 a(i)=c*b(i)

enddo

do i=501,1000

 a(i)=c*b(i)

enddo

 a(i)=c*b(i)

do i=1,1000

enddo

P2

P1

Figure 5.1: An example
for medium-grained par-
allelism: The iterations
of a loop are distributed
to two processors P1 and
P2 (in shared memory)
for concurrent execution.

Figure 5.1, one could choose an interleaved pattern where all odd-(even-)indexed
elements are processed by P1 (P2).

OpenMP, a compiler extension based on directives and a simple API, supports,
among other things, data parallelism on loops. See Chapter 6 for an introduction to
OpenMP.

Example: Coarse-grained parallelism by domain decomposition

Simulations of physical processes (like, e.g., fluid flow, mechanical stress, quan-
tum fields) often work with a simplified picture of reality in which a computational

domain, e.g., some volume of a fluid, is represented as a grid that defines discrete
positions for the physical quantities under consideration (the Jacobi algorithm as in-
troduced in Section 3.3 is an example). Such grids are not necessarily Cartesian but
are often adapted to the numerical constraints of the algorithms used. The goal of the
simulation is usually the computation of observables on this grid. A straightforward
way to distribute the work involved across workers, i.e., processors, is to assign a part
of the grid to each worker. This is called domain decomposition. As an example con-
sider a two-dimensional Jacobi solver, which updates physical variables on a n× n

grid. Domain decomposition for N workers subdivides the computational domain
into N subdomains. If, e.g., the grid is divided into strips along the y direction (index
k in Listing 3.1), each worker performs a single sweep on its local strip, updating
the array for time step T1. On a shared-memory parallel computer, all grid sites in
all domains can be updated before the processors have to synchronize at the end of
the sweep. However, on a distributed-memory system, updating the boundary sites
of one domain requires data from one or more adjacent domains. Therefore, before a
domain update, all boundary values needed for the upcoming sweep must be commu-
nicated to the relevant neighboring domains. In order to store this data, each domain
must be equipped with some extra grid points, the so-called halo or ghost layers (see
Figure 5.2). After the exchange, each domain is ready for the next sweep. The whole
parallel algorithm is completely equivalent to purely serial execution. Section 9.3
will show in detail how this algorithm can be implemented using MPI, the Message
Passing Interface.

How exactly the subdomains should be formed out of the complete grid may be a

118 Introduction to High Performance Computing for Scientists and Engineers

Figure 5.2: Using halo (“ghost”) layers
for communication across domain bound-
aries in a distributed-memory parallel Ja-
cobi solver. After the local updates in each
domain, the boundary layers (shaded) are
copied to the halo of the neighboring do-
main (hatched).

���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�Domain 1

Domain 2

difficult problem to solve, because several factors influence the optimal choice. First
and foremost, the computational effort should be equal for all domains to prevent
some workers from idling while others still update their own domains. This is called
load balancing (see Figure 5.5 and Section 5.3.9). After load imbalance has been
eliminated one should care about reducing the communication overhead. The data
volume to be communicated is proportional to the overall area of the domain cuts.
Comparing the two alternatives for 2D domain decomposition of an n×n grid to N

workers in Figure 5.3, one arrives at a communication cost of O (n(N −1)) for stripe
domains, whereas an optimal decomposition into square subdomains leads to a cost
of O

(

2n(
√

N −1)
)

. Hence, for large N the optimal decomposition has an advantage
in communication cost of O

(

2/
√

N
)

. Whether this difference is significant or not
in reality depends on the problem size and other factors, of course. Communication
must be counted as overhead that reduces a program’s performance. In practice one
should thus try to minimize boundary area as far as possible unless there are very
good reasons to do otherwise. See Section 10.4.1 for a more general discussion.

Note that the calculation of communication overhead depends crucially on the
locality of data dependencies, in the sense that communication cost grows linearly
with the distance that has to be bridged in order to calculate observables at a certain
site of the grid. For example, to get the first or second derivative of some quantity
with respect to the coordinates, only a next-neighbor relation has to be implemented
and the communication layers in Figure 5.3 have a width of one. For higher-order
derivatives this changes significantly, and if there is some long-ranged interaction
like a Coulomb potential (1/distance), the layers would encompass the complete
computational domain, making communication dominant. In such a case, domain
decomposition is usually not applicable and one has to revert to other parallelization
strategies.

Domain decomposition has the attractive property that domain boundary area
grows more slowly than volume if the problem size increases with N constant. There-

Basics of parallelization 119

Figure 5.3: Domain decomposition of a two-dimensional Jacobi solver, which requires next-
neighbor interactions. Cutting into stripes (left) is simple but incurs more communication than
optimal decomposition (right). Shaded cells participate in network communication.

fore, one can sometimes alleviate communication bottlenecks just by choosing a
larger problem size. The expected effects of scaling problem size and/or the number
of workers with optimal domain decomposition in three dimensions will be discussed
in Section 5.3 below.

The details about how the parallel Jacobi solver with domain decomposition can
be implemented in reality will be revealed in Section 9.3, after the introduction of
the Message Passing Interface (MPI).

Although the Jacobi method is quite inefficient in terms of convergence proper-
ties, it is very instructive and serves as a prototype for more advanced algorithms.
Moreover, it lends itself to a host of scalar optimization techniques, some of which
have been demonstrated in Section 3.4 in the context of matrix transposition (see also
Problem 3.4 on page 92).

5.2.2 Functional parallelism

Sometimes the solution of a “big” numerical problem can be split into more or
less disparate subtasks, which work together by data exchange and synchronization.
In this case, the subtasks execute completely different code on different data items,
which is why functional parallelism is also called MPMD (Multiple Program Mul-
tiple Data). This does not rule out, however, that each subtask could be executed in
parallel by several processors in an SPMD fashion.

Functional parallelism bears pros and cons, mainly because of performance rea-
sons. When different parts of the problem have different performance properties and
hardware requirements, bottlenecks and load imbalance can easily arise. On the other
hand, overlapping tasks that would otherwise be executed sequentially could accel-
erate execution considerably.

In the face of the increasing number of processor cores on a chip to spend on
different tasks one may speculate whether we are experiencing the dawn of func-
tional parallelism. In the following we briefly describe some important variants of
functional parallelism. See also Section 11.1.2 for another example in the context of
hybrid programming.

120 Introduction to High Performance Computing for Scientists and Engineers

Example: Master-worker scheme

Reserving one compute element for administrative tasks while all others solve
the actual problem is called the master-worker scheme. The master distributes work
and collects results. A typical example is a parallel ray tracing program: A ray tracer
computes a photorealistic image from a mathematical representation of a scene. For
each pixel to be rendered, a “ray” is sent from the imaginary observer’s eye into the
scene, hits surfaces, gets reflected, etc., picking up color components. If all compute
elements have a copy of the scene, all pixels are independent and can be computed in
parallel. Due to efficiency concerns, the picture is usually divided into “work pack-
ages” (rows or tiles). Whenever a worker has finished a package, it requests a new one
from the master, who keeps lists of finished and yet to be completed tiles. In case of
a distributed-memory system, the finished tile must also be communicated over the
network. See Refs. [A80, A81] for an implementation and a detailed performance
analysis of parallel raytracing in a master-worker setting.

A drawback of the master-worker scheme is the potential communication and
performance bottleneck that may appear with a single master when the number of
workers is large.

Example: Functional decomposition

Multiphysics simulations are prominent applications for parallelization by func-
tional decomposition. For instance, the airflow around a racing car could be simulated
using a parallel CFD (Computational Fluid Dynamics) code. On the other hand, a
parallel finite element simulation could describe the reaction of the flexible struc-
tures of the car body to the flow, according to their geometry and material properties.
Both codes have to be coupled using an appropriate communication layer.

Although multiphysics codes are gaining popularity, there is often a big load bal-
ancing problem because it is hard in practice to dynamically shift resources between
the different functional domains. See Section 5.3.9 for more information on load
imbalance.

5.3 Parallel scalability

5.3.1 Factors that limit parallel execution

As shown in Section 5.2 above, parallelism may be exploited in a multitude of
ways. Finding parallelism is not only a common problem in computing but also in
many other areas like manufacturing, traffic flow and even business processes. In a
very simplistic view, all execution units (workers, assembly lines, waiting queues,
CPUs,. . .) execute their assigned work in exactly the same amount of time. Under
such conditions, using N workers, a problem that takes a time T to be solved se-
quentially will now ideally take only T/N (see Figure 5.4). We call this a speedup of
N.

Basics of parallelization 121

time

1 2 3 4 5 6 7 8 9 10 11 12

W1

W2

W3

time

2 3 4

8765

9 10 11 12

1

Figure 5.4: Parallelizing a sequence of tasks
(top) using three workers (W1. . . W3) with
perfect speedup (left).

Whatever parallelization scheme is chosen, this perfect picture will most prob-
ably not hold in reality. Some of the reasons for this have already been mentioned
above: Not all workers might execute their tasks in the same amount of time because
the problem was not (or could not) be partitioned into pieces with equal complex-
ity. Hence, there are times when all but a few have nothing to do but wait for the
latecomers to arrive (see Figure 5.5). This load imbalance hampers performance be-
cause some resources are underutilized. Moreover there might be shared resources
like, e.g., tools that only exist once but are needed by all workers. This will effec-
tively serialize part of the concurrent execution (Figure 5.6). And finally, the parallel
workflow may require some communication between workers, adding overhead that
would not be present in the serial case (Figure 5.7). All these effects can impose
limits on speedup. How well a task can be parallelized is usually quantified by some
scalability metric. Using such metrics, one can answer questions like:

• How much faster can a given problem be solved with N workers instead of
one?

• How much more work can be done with N workers instead of one?

• What impact do the communication requirements of the parallel application
have on performance and scalability?

• What fraction of the resources is actually used productively for solving the
problem?

The following sections introduce the most important metrics and develops models
that allow us to pinpoint the influence of some of the roadblocks just mentioned.

���
���
���
���

��
��
��
��

W1

W2

W3

time

1 2 3 4

5 6 7 8

1211109

Figure 5.5: Some tasks executed by dif-
ferent workers at different speeds lead to
load imbalance. Hatched regions indicate
unused resources.

122 Introduction to High Performance Computing for Scientists and Engineers

Figure 5.6: Paralleli-
zation with a bottleneck.
Tasks 3, 7 and 11 cannot
overlap with anything
else across the dashed
“barriers.” time

W1

W2

W3

1

5

9 10

6

2 3

7

11 12

8

4

5.3.2 Scalability metrics

In order to be able to define scalability we first have to identify the basic mea-
surements on which derived performance metrics are built. In a simple model, the
overall problem size (“amount of work”) shall be s + p = 1, where s is the serial
(nonparallelizable) part and p is the perfectly parallelizable fraction. There can be
many reasons for a nonvanishing serial part:

• Algorithmic limitations. Operations that cannot be done in parallel because of,
e.g., mutual dependencies, can only be performed one after another, or even in
a certain order.

• Bottlenecks. Shared resources are common in computer systems: Execution
units in the core, shared paths to memory in multicore chips, I/O devices. Ac-
cess to a shared resource serializes execution. Even if the algorithm itself could
be performed completely in parallel, concurrency may be limited by bottle-
necks.

• Startup overhead. Starting a parallel program, regardless of the technical de-
tails, takes time. Of course, system designs try to minimize startup time, espe-
cially in massively parallel systems, but there is always a nonvanishing serial
part. If a parallel application’s overall runtime is too short, startup will have a
strong impact.

• Communication. Fully concurrent communication between different parts of
a parallel system cannot be taken for granted, as was shown in Section 4.5.
If solving a problem in parallel requires communication, some serialization
is usually unavoidable. We will see in Section 5.3.6 below how to incorpo-
rate communication into scalability metrics in a more elaborate way than just
adding a constant to the serial fraction.

Figure 5.7: Communication pro-
cesses (arrows represent messages)
limit scalability if they cannot be
overlapped with each other or with
calculation.

W3

W2

W1

time

1 2 3 4

8765

9 10 11 12

Basics of parallelization 123

First we assume a fixed problem, which is to be solved by N workers. We normalize
the single-worker (serial) runtime

T s
f = s+ p (5.1)

to one. Solving the same problem on N workers will require a runtime of

T
p

f = s+
p

N
. (5.2)

This is called strong scaling because the amount of work stays constant no matter
how many workers are used. Here the goal of parallelization is minimization of time
to solution for a given problem.

If time to solution is not the primary objective because larger problem sizes (for
which available memory is the limiting factor) are of interest, it is appropriate to
scale the problem size with some power of N so that the total amount of work is
s+ pNα , where α is a positive but otherwise free parameter. Here we use the implicit
assumption that the serial fraction s is a constant. We define the serial runtime for the
scaled (variably-sized) problem as

T s
v = s+ pNα . (5.3)

Consequently, the parallel runtime is

T p
v = s+ pNα−1 . (5.4)

The term weak scaling has been coined for this approach, although it is commonly
used only for the special case α = 1. One should add that other ways of scaling work
with N are possible, but the Nα dependency will suffice for what we want to show
further on.

We will see that different scalability metrics with different emphasis on what
“performance” really means can lead to some counterintuitive results.

5.3.3 Simple scalability laws

In a simple ansatz, application speedup can be defined as the quotient of parallel
and serial performance for fixed problem size. In the following we define “perfor-
mance” as “work over time,” unless otherwise noted. Serial performance for fixed
problem size (work) s+ p is thus

Ps
f =

s+ p

T s
f

= 1 , (5.5)

as expected. Parallel performance is in this case

P
p
f =

s+ p

T
p

f (N)
=

1

s+ 1−s
N

, (5.6)

124 Introduction to High Performance Computing for Scientists and Engineers

and application speedup (“scalability”) is

Sf =
P

p
f

Ps
f

=
1

s+ 1−s
N

“Amdahl’s Law” (5.7)

We have derived Amdahl’s Law, which was first conceived by Gene Amdahl in
1967 [M45]. It limits application speedup for N → ∞ to 1/s. This well-known func-
tion answers the question “How much faster (in terms of runtime) does my appli-
cation run when I put the same problem on N CPUs?” As one might imagine, the
answer to this question depends heavily on how the term “work” is defined. If, in
contrast to what has been done above, we define “work” as only the parallelizable
part of the calculation (for which there may be sound reasons at first sight), the results
for constant work are slightly different. Serial performance is

P
sp
f =

p

T s
f

= p , (5.8)

and parallel performance is

P
pp

f =
p

T
p

f (N)
=

1− s

s+ 1−s
N

. (5.9)

Calculation of application speedup finally yields

S
p
f =

P
pp

f

P
sp
f

=
1

s+ 1−s
N

, (5.10)

which is Amdahl’s Law again. Strikingly, P
pp

f and S
p
f (N) are not identical any more.

Although scalability does not change with this different notion of “work,” perfor-

mance does, and is a factor of p smaller.
In the case of weak scaling where workload grows with CPU count, the question

to ask is “How much more work can my program do in a given amount of time when
I put a larger problem on N CPUs?” Serial performance as defined above is again

Ps
v =

s+ p

T s
f

= 1 , (5.11)

as N = 1. Based on (5.3) and (5.4), Parallel performance (work over time) is

Pp
v =

s+ pNα

T
p

v (N)
=

s+(1− s)Nα

s+(1− s)Nα−1 = Sv , (5.12)

again identical to application speedup. In the special case α = 0 (strong scaling) we
recover Amdahl’s Law. With 0 < α < 1, we get for large CPU counts

Sv
N≫1−→ s+(1− s)Nα

s
= 1+

p

s
Nα , (5.13)

which is linear in Nα . As a result, weak scaling allows us to cross the Amdahl Barrier

Basics of parallelization 125

and get unlimited performance, even for small α . In the ideal case α = 1, (5.12)
simplifies to

Sv(α = 1) = s+(1− s)N , “Gustafson’s Law” (5.14)

and speedup is linear in N, even for small N. This is called Gustafson’s Law [M46].
Keep in mind that the terms with N or Nα in the previous formulas always bear a
prefactor that depends on the serial fraction s, thus a large serial fraction can lead to
a very small slope.

As previously demonstrated with Amdahl scaling we will now shift our focus
to the other definition of “work” that only includes the parallel fraction p. Serial
performance is

Psp
v = p (5.15)

and parallel performance is

Ppp
v =

pNα

T
p

v (N)
=

(1− s)Nα

s+(1− s)Nα−1 , (5.16)

which leads to an application speedup of

Sp
v =

P
pp
v

P
sp
v

=
Nα

s+(1− s)Nα−1 . (5.17)

Not surprisingly, speedup and performance are again not identical and differ by a
factor of p. The important fact is that, in contrast to (5.14), for α = 1 application
speedup becomes purely linear in N with a slope of one. So even though the overall
work to be done (serial and parallel part) has not changed, scalability as defined in
(5.17) makes us believe that suddenly all is well and the application scales perfectly.
If some performance metric is applied that is only relevant in the parallel part of the
program (e.g., “number of lattice site updates” instead of “CPU cycles”), this mistake
can easily go unnoticed, and CPU power is wasted (see next section).

5.3.4 Parallel efficiency

In the light of the considerations about scalability, one other point of interest is
the question how effectively a given resource, i.e., CPU computational power, can
be used in a parallel program (in the following we assume that the serial part of the
program is executed on one single worker while all others have to wait). Usually,
parallel efficiency is then defined as

ε =
performance on N CPUs

N× performance on one CPU
=

speedup
N

. (5.18)

We will only consider weak scaling, since the limit α → 0 will always recover the
Amdahl case. In the case where “work” is defined as s+ pNα , we get

ε =
Sv

N
=

sN−α +(1− s)

sN1−α +(1− s)
. (5.19)

126 Introduction to High Performance Computing for Scientists and Engineers

Figure 5.8: Weak scaling with an inap-
propriate definition of “work” that in-
cludes only the parallelizable part. Al-
though “work over time” scales perfectly
with CPU count, i.e., εp = 1, most of the
resources (hatched boxes) are unused be-
cause s ≫ p. ���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

54321CPU#

p p p p p

s

For α = 0 this yields 1/(sN +(1− s)), which is the expected ratio for the Amdahl
case and approaches zero with large N. For α = 1 we get s/N + (1− s), which is
also correct because the more CPUs are used the more CPU cycles are wasted, and,
starting from ε = s+ p = 1 for N = 1, efficiency reaches a limit of 1−s = p for large
N. Weak scaling enables us to use at least a certain fraction of CPU power, even
when the CPU count is very large. Wasted CPU time grows linearly with N, though,
but this issue is clearly visible with the definitions used.

Results change completely when our other definition of “work” (pNα) is applied.
Here,

εp =
S

p
v

N
=

Nα−1

s+(1− s)Nα−1 . (5.20)

For α = 1 we now get εp = 1, which should mean perfect efficiency. We are fooled
into believing that no cycles are wasted with weak scaling, although if s is large most
of the CPU power is unused. A simple example will exemplify this danger: Assume
that some code performs floating-point operations only within its parallelized part,
which takes about 10% of execution time in the serial case. Using weak scaling
with α = 1, one could now report MFlops/sec performance numbers vs. CPU count
(see Figure 5.8). Although all processors except one are idle 90% of their time, the
MFlops/sec rate is a factor of N higher when using N CPUs. Performance behavior
that is presented in this way should always raise suspicion.

5.3.5 Serial performance versus strong scalability

In order to check whether some performance model is appropriate for the code
at hand, one should measure scalability for some processor numbers and fix the free
model parameters by least-squares fitting. Figure 5.9 shows an example where the

Basics of parallelization 127

2 4 6 8 10 12
cores

0

1

2

3

4

5

6

7

R
e

la
ti
v
e

 p
e

rf
o

rm
a

n
c
e

Amdahl s = 0.168

Amdahl s = 0.086

Architecture 1

Architecture 2

Figure 5.9: Perfor-
mance of a benchmark
code versus the number
of processors (strong
scaling) on two different
architectures. Although
the single-thread perfor-
mance is nearly identical
on both machines, the
serial fraction s is much
smaller on architecture
2, leading to superior
strong scalability.

same code was run in a strong scaling scenario on two different parallel architectures.
The measured performance data was normalized to the single-core case on architec-
ture 1, and the serial fraction s was determined by a least-squares fit to Amdahl’s
Law (5.7).

Judging from the small performance difference on a single core it is quite surpris-
ing that architecture 2 shows such a large advantage in scalability, with only about
half the serial fraction. This behavior can be explained by the fact that the parallel
part of the calculation is purely compute-bound, whereas the serial part is limited
by memory bandwidth. Although the peak performance per core is identical on both
systems, architecture 2 has a much wider path to memory. As the number of work-
ers increases, performance ceases to be governed by computational speed and the
memory-bound serial fraction starts to dominate. Hence, the significant advantage
in scalability for architecture 2. This example shows that it is vital to not only be
aware of the existence of a nonparallelizable part but also of its specific demands on
the architecture under consideration: One should not infer the scalability behavior on
one architecture from data obtained on the other. One may also argue that parallel
computers that are targeted towards strong scaling should have a heterogeneous ar-
chitecture, with some of the hardware dedicated exclusively to executing serial code
as fast as possible. This pertains to multicore chips as well [R39, M47, M48].

In view of optimization, strong scaling has the unfortunate side effect that using
more and more processors leads to performance being governed by code that was
not subject to parallelization efforts (this is one variant of the “law of diminishing
returns”). If standard scalar optimizations like those shown in Chapters 2 and 3 can
be applied to the serial part of an application, they can thus truly improve strong
scalability, although serial performance will hardly change. The question whether
one should invest scalar optimization effort into the serial or the parallel part of an
application seems to be answered by this observation. However, one must keep in
mind that performance, and not scalability is the relevant metric; fortunately, Am-
dahl’s Law can provide an approximate guideline. Assuming that the serial part can

128 Introduction to High Performance Computing for Scientists and Engineers

be accelerated by a factor of ξ > 1, parallel performance (see (5.6)) becomes

P
s,ξ
f =

1
s
ξ

+ 1−s
N

. (5.21)

On the other hand, if only the parallel part gets optimized (by the same factor) we
get

P
p,ξ
f =

1

s+ 1−s
ξN

. (5.22)

The ratio of those two expressions determines the crossover point, i.e., the number
of workers at which optimizing the serial part pays off more:

P
s,ξ
f

P
p,ξ
f

=
ξ s+ 1−s

N

s+ξ 1−s
N

≥ 1 =⇒ N ≥ 1
s
−1 . (5.23)

This result does not depend on ξ , and it is exactly the number of workers where the
speedup is half the maximum asymptotic value predicted by Amdahl’s Law. If s≪ 1,
parallel efficiency ε = (1− s)−1/2 is already close to 0.5 at this point, and it would
not make sense to enlarge N even further anyway. Thus, one should try to optimize
the parallelizable part first, unless the code is used in a region of very bad parallel
efficiency (probably because the main reason for going parallel was lack of memory).

Note, however, that in reality it will not be possible to achieve the same speedup
ξ for both the serial and the parallel part, so the crossover point will be shifted ac-
cordingly. In the example above (see Figure 5.9) the parallel part is dominated by
matrix-matrix multiplications, which run close to peak performance anyway. Accel-
erating the sequential part is hence the only option to improve performance at a given
N.

5.3.6 Refined performance models

There are situations where Amdahl’s and Gustafson’s Laws are not appropriate
because the underlying model does not encompass components like communication,
load imbalance, parallel startup overhead, etc. As an example for possible refine-
ments we will include a basic communication model. For simplicity we presuppose
that communication cannot be overlapped with computation (see Figure 5.7), an as-
sumption that is actually true for many parallel architectures. In a parallel calculation,
communication must thus be accounted for as a correction term in parallel runtime
(5.4):

T pc
v = s+ pNα−1 + cα(N) . (5.24)

The communication overhead cα(N) must not be included into the definition of
“work” that is used to derive performance as it emerges from processes that are solely
a result of the parallelization. Parallel speedup is then

Sc
v =

s+ pNα

T
pc

v (N)
=

s+(1− s)Nα

s+(1− s)Nα−1 + cα(N)
. (5.25)

Basics of parallelization 129

There are many possibilities for the functional dependence cα(N); it may be some
simple function, or it may not be possible to write it in closed form at all. Furthermore
we assume that the amount of communication is the same for all workers. As with
processor-memory communication, the time a message transfer requires is the sum
of the latency λ for setting up the communication and a “streaming” part κ = n/B,
where n is the message size and B is the bandwidth (see Section 4.5.1 for real-world
examples). A few special cases are described below:

• α = 0, blocking network: If the communication network has a “bus-like” struc-
ture (see Section 4.5.2), i.e., only one message can be in flight at any time,
and the communication overhead per CPU is independent of N then cα(N) =
(κ +λ)N. Thus,

Sc
v =

1

s+ 1−s
N

+(κ +λ)N

N≫1−→ 1
(κ +λ)N

, (5.26)

i.e., performance is dominated by communication and even goes to zero for
large CPU numbers. This is a very common situation as it also applies to the
presence of shared resources like memory paths, I/O devices and even on-chip
arithmetic units.

• α = 0, nonblocking network, constant communication cost: If the communi-
cation network can sustain N/2 concurrent messages with no collisions (see
Section 4.5.3), and message size is independent of N, then cα(N) = κ +λ and

Sc
v =

1

s+ 1−s
N

+κ +λ

N≫1−→ 1
s+κ +λ

. (5.27)

Here the situation is quite similar to the Amdahl case and performance will
saturate at a lower value than without communication.

• α = 0, nonblocking network, domain decomposition with ghost layer commu-

nication: In this case communication overhead decreases with N for strong
scaling, e.g., like cα(N) = κN−β + λ . For any β > 0 performance at large N

will be dominated by s and the latency:

Sc
v =

1

s+ 1−s
N

+κN−β +λ

N≫1−→ 1
s+λ

. (5.28)

This arises, e.g., when domain decomposition (see page 117) is employed on
a computational domain along all three coordinate axes. In this case β = 2/3.

• α = 1, nonblocking network, domain decomposition with ghost layer commu-

nication: Finally, when the problem size grows linearly with N, one may end
up in a situation where communication per CPU stays independent of N. As
this is weak scaling, the numerator leads to linear scalability with an overall
performance penalty (prefactor):

Sc
v =

s+ pN

s+ p+κ +λ
N≫1−→ s+(1− s)N

1+κ +λ
. (5.29)

130 Introduction to High Performance Computing for Scientists and Engineers

Figure 5.10: Predict-
ed parallel scalability
for different models
at s = 0.05. In gen-
eral, κ = 0.005 and
λ = 0.001 except for the
Amdahl case, which is
shown for reference.

1 10 100 1000
N

1

2

4

8

16

S
vc

Amdahl (α=κ=λ=0)

α=0, blocking

α=0, nonblocking

α=0, 3D domain dec.,
nonblocking

α=1, 3D domain dec.,
nonblocking

Figure 5.10 illustrates the four cases at κ = 0.005, λ = 0.001, and s = 0.05, and
compares with Amdahl’s Law. Note that the simplified models we have covered in
this section are far from accurate for many applications. As an example, consider an
application that is large enough to not fit into a single processor’s cache but small
enough to fit into the aggregate caches of Nc CPUs. Performance limitations like
serial fractions, communication, etc., could then be ameliorated, or even overcom-
pensated, so that Sc

v(N) > N for some range of N. This is called superlinear speedup

and can only occur if problem size grows more slowly than N, i.e., at α < 1. See also
Section 6.2 and Problem 7.2.

One must also keep in mind that those models are valid only for N > 1 as there is
usually no communication in the serial case. A fitting procedure that tries to fix the
parameters for some specific code should thus ignore the point N = 1.

When running application codes on parallel computers, there is often the ques-
tion about the “optimal” choice for N. From the user’s perspective, N should be as
large as possible, minimizing time to solution. This would generally be a waste of re-
sources, however, because parallel efficiency is low near the performance maximum.
See Problem 5.2 for a possible cost model that aims to resolve this conflict. Note that
if the main reason for parallelization is the need for large memory, low efficiency
may be acceptable nevertheless.

5.3.7 Choosing the right scaling baseline

Today’s high performance computers are all massively parallel. In the previous
sections we have described the different ways a parallel computer can be built: There
are multicore chips, sitting in multisocket shared-memory nodes, which are again
connected by multilevel networks. Hence, a parallel system always comprises a num-
ber of hierarchy levels. Scaling a parallel code from one to many CPUs can lead to
false conclusions if the hierarchical structure is not taken into account.

Figure 5.11 shows an example for strong scaling of an application on a system
with four processors per node. Assuming that the code follows a communication

Basics of parallelization 131

0 4 8 12 16
Number of cores

1

2

3

4

S
p

e
e

d
u

p

s=0.2, k=0

Scaling data

1 2 3 4

No. of nodes

1

2

s=0.01, k=0.05

1 2 3 4

No. of cores

1

1.5

2

Figure 5.11: Speedup
versus number of CPUs
used for a hypothetical
code on a hierarchical
system with four CPUs
per node. Depending
on the chosen scaling
baseline, fits to the
model (5.26) can lead to
vastly different results.
Right inset: Scalability
across nodes. Left inset:
Scalability inside one
node.

model as in (5.26), a least-squares fitting was used to determine the serial fraction s

and the communication time per process, k = κ +λ (main panel). As there is only a
speedup of ≈ 4 at 16 cores, s = 0.2 does seem plausible, and communication appar-
ently plays no significant role. However, the quality of the fit is mediocre, especially
for small numbers of cores. Thus one may arrive at the conclusion that scalability in-
side a node is governed by factors different from serial fraction and communication,
and that (5.26) is not valid for all numbers of cores. The right inset in Figure 5.11
shows scalability data normalized to the 4-core (one-node) performance, i.e., we have
chosen a different scaling baseline. Obviously the model (5.26) is well suited for this
situation and yields completely different fitting parameters, which indicate that com-
munication plays a major role (s = 0.01, k = 0.05). The left inset in Figure 5.11
extracts the intranode behavior only; the data is typical for a memory-bound situa-
tion. On a node architecture as in Figure 4.4, using two cores on the same socket may
lead to a bandwidth bottleneck, which is evident from the small speedup when going
from one to two cores. Using the second socket as well gives a strong performance
boost, however.

In conclusion, scalability on a given parallel architecture should always be re-
ported in relation to a relevant scaling baseline. On typical compute clusters, where
shared-memory multiprocessor nodes are coupled via a high-performance intercon-
nect, this means that intranode and internode scaling behavior should be strictly
separated. This principle also applies to other hierarchy levels like in, e.g., mod-
ern multisocket multicore shared memory systems (see Section 4.2), and even to the
the complex cache group and thread structure in current multicore processors (see
Section 1.4).

5.3.8 Case study: Can slower processors compute faster?

It is often stated that, all else being equal, using a slower processor in a parallel
computer (or a less-optimized single processor code) improves scalability of applica-

132 Introduction to High Performance Computing for Scientists and Engineers

Figure 5.12: Solving the same
problem on 2N slow CPUs (left)
instead of N fast CPUs (right)
may speed up time to solution if
communication overhead per CPU
goes down with rising N. µ = 2 is
the performance ratio between fast
and slow CPU.

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����

�����
�����
����������
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����

Tslow

N=8 µ=2

Tfast

calc

N=4 µ=1

comm

tions because the adverse effects of communication overhead are reduced in relation
to “useful” computation. A “truly scalable” computer may thus be built from slow
CPUs and a reasonable network. In order to find the truth behind this concept we
will establish a performance model for “slow” computers. In this context, “slow”
shall mean that the baseline serial execution time is µ ≥ 1 instead of 1, i.e., CPU
speed is quantified as µ−1. Figure 5.12 demonstrates how “slow computing” may
work. If the same problem is solved by µN slow instead of N fast processors, overall
runtime may be shortened if communication overhead per CPU goes down as well.
How strong this effect is and whether it makes sense to build a parallel computer
based on it remains to be seen. Interesting questions to ask are:

1. Does it make sense to use µN “slow” processors instead of N standard CPUs
in order to get better overall performance?

2. What conditions must be fulfilled by communication overhead to achieve bet-
ter performance with slow processors?

3. Does the concept work in strong and weak scaling scenarios alike?

4. What is the expected performance gain?

5. Can a “slow” machine deliver more performance than a machine with standard
processors within the same power envelope?

For the last question, in the absence of communication overhead we already know the
answer because the situation is very similar to the multicore transition whose conse-
quences were described in Section 1.4. The additional inefficiencies connected with
communication might change those results significantly, however. More importantly,
the CPU cores only contribute a part of the whole system’s power consumption; a

Basics of parallelization 133

power/performance model that merely comprises the CPU components is necessar-
ily incomplete and will be of very limited use. Hence, we will concentrate on the
other questions. We already expect from Figure 5.12 that a sensible performance
model must include a realistic communication component.

Strong scaling

Assuming a fixed problem size and a generic communication model as in (5.24),
the speedup for the slow computer is

Sµ(N) =
1

s+(1− s)/N + c(N)/µ
. (5.30)

For µ > 1 and N > 1 this is clearly larger than Sµ=1(N) whenever c(N) 6= 0: A
machine with slow processors “scales better,” but only if there is communication
overhead.

Of course, scalability alone is no appropriate measure for application perfor-

mance since it relates parallel performance to serial performance on one CPU of the
same speed µ−1. We want to compare the absolute performance advantage of µN

slow CPUs over N standard processors:

As
µ(N) :=

Sµ(µN)

µSµ=1(N)
=

s+(1− s)/N + c(N)

µs+(1− s)/N + c(µN)
(5.31)

If µ > 1, this is greater than one if

c(µN)− c(N) < −s(µ −1) . (5.32)

Hence, if we assume that the condition should hold for all µ , c(N) must be a decreas-
ing function of N with a minimum slope. At s = 0 a negative slope is sufficient, i.e.,
communication overhead must decrease if N is increased. This result was expected
from the simple observation in Figure 5.12.

In order to estimate the achievable gains we look at the special case of Carte-
sian domain decomposition on a nonblocking network as in (5.28). The advantage
function is then

As
µ(N) :=

Sµ(µN)

µSµ=1(N)
=

s+(1− s)/N +λ +κN−β

µs+(1− s)/N +λ +κ(Nµ)−β
(5.33)

We can distinguish several cases here:

• κ = 0: With no communication bandwidth overhead,

As
µ(N) =

s+(1− s)/N +λ

µs+(1− s)/N +λ
N→∞−−−→ s+λ

µs+λ
, (5.34)

which is always smaller than one. In this limit there is no performance to be
gained with slow CPUs, and the pure power advantage from using many slow
processors is even partly neutralized.

134 Introduction to High Performance Computing for Scientists and Engineers

• κ 6= 0, λ = 0: To leading order in N−β (5.33) can be approximated as

As
µ(N) =

1
µs

(

s+κN−β (1−µ−β)
)

+O(N−2β)
N→∞−−−→ 1

µ
. (5.35)

Evidently, s 6= 0 and κ 6= 0 lead to opposite effects: For very large N, the serial
fraction dominates and Aµ(N) < 1. At smaller N, there may be a chance to get
As

µ(N) > 1 if s is not too large.

• s = 0: In a strong scaling scenario, this case is somewhat unrealistic. However,
it is the limit in which a machine with slow CPUs performs best: The positive
effect of the κ-dependent terms, i.e., the reduction of communication band-
width overhead with increasing N, is large, especially if the latency is low:

As
µ(N) =

N−1 +λ +κN−β

N−1 +λ +κ(Nµ)−β

N→∞,λ>0−−−−−−→ 1+ (5.36)

In the generic case κ 6= 0, λ 6= 0 and 0 < β < 1 this function approaches 1
from above as N → ∞ and has a maximum at NMA = (1−β)/βλ . Hence, the
largest possible advantage is

A
s,max
µ = As

µ(NMA) =
1+κβ β Xβ−1

1+κβ β Xβ−1µ−β
, with X =

λ

1−β
. (5.37)

This approaches µβ as λ → 0. At the time of writing, typical “scalable” HPC
systems with slow CPUs operate at 2 . µ . 4, so for optimal 3D domain
decomposition along all coordinate axes (β = 2/3) the maximum theoretical
advantage is 1.5 . As,max . 2.5.

It must be emphasized that the assumption s = 0 cannot really be upheld for strong
scaling because its influence will dominate scalability in the same way as network
latency for large N. Thus, we must conclude that the region of applicability for “slow”
machines is very narrow in strong scaling scenarios.

Even if it may seem technically feasible to take the limit of very large µ and
achieve even grater gains, it must be stressed that applications must provide sufficient
parallelism to profit from more and more processors. This does not only refer to
Amdahl’s Law, which predicts that the influence of the serial fraction s, however
small it may be initially, will dominate as N increases (as shown in (5.34) and (5.35));
in most cases there is some “granularity” inherent to the model used to implement
the numerics (e.g., number of fluid cells, number of particles, etc.), which strictly
limits the number of workers.

Strictly weak scaling

We choose Gustafson scaling (work ∝ N) and a generic communication model.
The speedup function for the slow computer is

Sµ(N) =
[s+(1− s)N]/(µ + c(N))

µ−1 =
s+(1− s)N

1+ c(N)/µ
, (5.38)

Basics of parallelization 135

which leads to the advantage function

Aw
µ (N) :=

Sµ(µN)

µSµ=1(N)
=

[s+(1− s)µN] [1+ c(N)]

[s+(1− s)N] [µ + c(µN)]
. (5.39)

Neglecting the serial part s, this is greater than one if c(N) > c(µN)/µ : Commu-
nication overhead may even increase with N, but this increase must be slower than
linear.

For a more quantitative analysis we turn again to the concrete case of Cartesian
domain decomposition, where weak scaling incurs communication overhead that is
independent of N as in (5.29). We choose λ̃ := κ +λ because the bandwidth overhead
enters as latency. The speedup function for the slow computer is

Sµ(N) =
s+(1− s)N

1+ λ̃ µ−1
, (5.40)

hence the performance advantage is

Aw
µ (N) :=

Sµ(µN)

µSµ=1(N)
=

(1+ λ̃) [s+(1− s)µN]

[(1− s)N + s] (λ̃ + µ)
. (5.41)

Again we consider special cases:

• λ̃ = 0: In the absence of communication overhead,

Aw
µ (N) =

(1− s)N + s/µ

(1− s)N + s
= 1− µ −1

µN
s+O(s2) , (5.42)

which is clearly smaller than one, as expected. The situation is very similar to
the strong scaling case (5.34).

• s = 0: With perfect parallelizability the performance advantage is always larger
than one for µ > 1, and independent of N:

Aw
µ (N) =

1+ λ̃

1+ λ̃/µ
=

µ≫λ̃−−−→ 1+ λ̃
λ̃≫1−−−→ µ

(5.43)

However, there is no significant gain to be expected for small λ̃ . Even if λ̃ = 1,
i.e., if communication overhead is comparable to the serial runtime, we only
get 1.33 . Aw . 1.6 in the typical range 2 . µ . 4.

In this scenario we have assumed that the “slow” machine with µ times more pro-
cessors works on a problem which is µ times as large — hence the term “strictly
weak scaling.” We are comparing “fast” and “slow” machines across different prob-
lem sizes, which may not be what is desirable in reality, especially because the actual
runtime grows accordingly. From this point of view the performance advantage Aw

µ ,
even if it can be greater than one, misses the important aspect of “time to solution.”
This disadvantage could be compensated if Aw

µ . µ , but this is impossible according
to (5.43).

136 Introduction to High Performance Computing for Scientists and Engineers

Modified weak scaling

In reality, one would rather scale the amount of work with N (the number of
standard CPUs) instead of µN so that the amount of memory per slow CPU can be µ
times smaller. Indeed, this is the way such “scalable” HPC systems are usually built.
The performance model thus encompasses both weak and strong scaling.

The advantage function to look at must separate the notions for “number of work-
ers” and “amount of work.” Therefore, we start with the speedup function

Smod
µ (N,W) =

[s+(1− s)W]/ [µs+ µ(1− s)W/N + c(N/W)]

[s+(1− s)]/µ

=
s+(1− s)W

s+(1− s)W/N + c(N/W)µ−1 , (5.44)

where N is the number of workers and W denotes the amount of parallel work to be
done. This expression specializes to strictly weak scaling if W = N and c(1) = λ̃ .
The term c(N/W) reflects the strong scaling component, effectively reducing com-
munication overhead when N > W . Now we can derive the advantage function for
modified weak scaling:

Amod
µ (N) :=

Smod
µ (µN,N)

µSmod
µ=1(N,N)

=
1+ c(1)

1+ s(µ −1)+ c(µ)
. (5.45)

This is independent of N, which is not surprising since we keep the problem size
constant when going from N to µN workers. The condition for a true advantage is
the same as for strong scaling at N = 1 (see (5.32)):

c(µ)− c(1) < −s(µ −1) . (5.46)

In case of Cartesian domain decomposition we have c(µ) = λ +κµ−β , hence

Amod
µ (N) =

1+λ +κ

1+ s(µ −1)+λ +κµ−β
. (5.47)

For s = 0 and to leading order in κ and λ ,

Amod
µ (N) = 1+

(

1−µ−β
)

κ −
(

1+ µ−β
)

λκ +O(λ 2,κ2) , (5.48)

which shows that communication bandwidth overhead (κ) dominates the gain. So
in contrast to the strictly weak scaling case (5.43), latency enters only in a second-
order term. Even for κ = 1, at λ = 0, β = 2/3 and 2 . µ . 4 we get 1.2 . Amod .

1.4. In general, in the limit of large bandwidth overhead and small latency, modified
weak scaling is the favorable mode of operation for parallel computers with slow
processors. The dependence on µ is quite weak, and the advantage goes to 1+ κ as
µ → ∞.

In conclusion, we have found theoretical evidence that it can really be useful to

Basics of parallelization 137

build large machines with many slow processors. Together with the expected reduc-
tion in power consumption vs. application performance, they may provide an attrac-
tive solution to the “power-performance dilemma,” and the successful line of IBM
Blue Gene supercomputers [V114, V115] shows that the concept works in practice.
However, one must keep in mind that not all applications are well suited for mas-
sive parallelism, and that compromises must be made that may impede scalability
(e.g., building fully nonblocking fat-tree networks becomes prohibitively expensive
in very large systems). The need for a “sufficiently” strong single chip prevails if all

applications are to profit from the blessings of Moore’s Law.

5.3.9 Load imbalance

Inexperienced HPC users usually try to find the reasons for bad scalability of
their parallel programs in the hardware details of the platform used and the specific
drawbacks of the chosen parallelization method: Communication overhead, synchro-
nization loss, false sharing, NUMA locality, bandwidth bottlenecks, etc. While all
these are possible reasons for bad scalability (and are covered in due detail else-
where in this book), load imbalance is often overlooked. Load imbalance occurs
when synchronization points are reached by some workers earlier than by others (see
Figure 5.5), leading to at least one worker idling while others still do useful work.
As a consequence, resources are underutilized.

The consequences of load imbalance are hard to characterize in a simple model
without further assumptions about the work distribution. Also, the actual impact on
performance is not easily judged: As Figure 5.13 shows, having a few workers that
take longer to reach the synchronization point (“laggers”) leaves the rest, i.e., the
majority of workers, idling for some time, incurring significant loss. On the other
hand, a few “speeders,” i.e., workers that finish their tasks early, may be harmless
because the accumulated waiting time is negligible (see Figure 5.14).

The possible reasons for load imbalance are diverse, and can generally be di-
vided into algorithmic issues, which should be tackled by choosing a modified or
completely different algorithm, and optimization problems, which could be solved
by code changes only. Sometimes the two are not easily distinguishable:

• The method chosen for distributing work among the workers may not be com-
patible with the structure of the problem. For example, in case of the blocked
JDS sparse matrix-vector multiply algorithm introduced in Section 3.6.2, one
could go about and assign a contiguous chunk of the loop over blocks (loop
variable ib) to each worker. Owing to the JDS storage scheme, this could (de-
pending on the actual matrix structure) cause load imbalance because the last
iterations of the ib loop work on the lower parts of the matrix, where the num-
ber of diagonals is smaller. In this situation it might be better to use a cyclic or
even dynamic distribution. This is especially easy to do with shared-memory
parallel programming; see Section 6.1.6.

• No matter what variant of parallelism is exploited (see Section 5.2), it may not
be known at compile time how much time a “chunk” of work actually takes.

138 Introduction to High Performance Computing for Scientists and Engineers

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

time

Sync point

wait

work

work

work

work

wait

wait

Figure 5.13: Load imbalance with few
(one in this case) “laggers”: A lot of re-
sources are underutilized (hatched areas).

������
������
������
������
������

������
������
������
������
������

time

Sync point

wait

work

work

work

work

Figure 5.14: Load imbalance with few
(one in this case) “speeders”: Underutiliza-
tion may be acceptable.

For example, an algorithm that requires each worker to perform a number of
iterations in order to reach some convergence limit could be inherently load
imbalanced because a different number of iterations may be needed on each
worker.

• There may be a coarse granularity to the problem, limiting the available paral-
lelism. This happens usually when the number of workers is not significantly
smaller than the number of work packages. Exploiting additional levels of par-
allelism (if they exist) can help mitigate this problem.

• Although load imbalance is most often caused by uneven work distribution
as described above, there may be other reasons. If a worker has to wait for
resources like, e.g., I/O or communication devices, the time spent with such
waiting does not count as useful work but can nevertheless lead to a delay,
which turns the worker into a “lagger” (this is not to be confused with OS jitter;
see below). Additionally, overhead of this kind is often statistical in nature,
causing erratic load imbalance behavior.

If load imbalance is identified as a major performance problem, it should be checked
whether a different strategy for work distribution could eliminate or at least reduce
it. When a completely even distribution is impossible, it may suffice to get rid of
“laggers” to substantially improve scalability. Furthermore, hiding I/O and commu-
nication costs by overlapping with useful work are also possible means to avoid load
imbalance [A82].

Basics of parallelization 139

time

�����
�����
�����

�����
�����
�����

������
������
������

������
������
������������
������
������

������
������
������������
������
������
������

(a)

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������
������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

�����
�����
�����
�����

�����
�����
�����
�����

������
������
������
������

������
������
������
������

(b)

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

(c)

Figure 5.15: If an OS-related delay (cross-hatched boxes) occurs with some given probability
per time, the impact on parallel performance may be small when the number of workers is
small (a). Increasing the number of workers (here in a weak scaling scenario) increases the
probability of the delay occurring before the next synchronization point, lengthening overall
runtime (b). Synchronizing OS activity on all operating systems in the machine eliminates
“OS jitter,” leading to improved performance (c). (Pictures adapted from [L77]).

140 Introduction to High Performance Computing for Scientists and Engineers

OS jitter

A peculiar and interesting source of load imbalance with surprising consequences
has recently been identified in large-scale parallel systems built from commodity
components [L77]. Most standard installations of distributed-memory parallel com-
puters run individual, independent operating system instances on all nodes. An oper-
ating system has many routine chores, of which running user programs is only one.
Whenever a regular task like writing to a log file, delivering performance metrics,
flushing disk caches, starting cron jobs, etc., kicks in, a running application process
may be delayed by some amount. On the next synchronization point, this “lagger”
will delay the parallel program slightly due to load imbalance, but this is usually
negligible if it happens infrequently and the number of processes is small (see Fig-
ure 5.15 (a)). Certainly, the exact delay will depend on the duration of the OS activity
and the frequency of synchronizations.

Unfortunately, the situation changes when the number of workers is massively
increased. This is because “OS noise” is of statistical nature over all workers; the
more workers there are, the larger the probability that a delay will occur between two
successive synchronization points. Load imbalance will thus start to happen more
frequently when the frequency of synchronization points in the code comes near the
average frequency of noise-caused delays, which may be described as a “resonance”
phenomenon [L77]. This is shown in Figure 5.15 (b) for a weak scaling scenario.
Note that this effect is strictly limited to massively parallel systems; in practice, it will
not show up with only tens or even hundreds of compute nodes. There are sources of
performance variability in those smaller systems, too, but they are unrelated to OS
jitter.

Apart from trying to reduce OS activity as far as possible (by, e.g., deactivating
unused daemons, polling, and logging activities, or leaving one processor per node
free for OS tasks), an effective means of reducing OS jitter is to synchronize unavoid-
able periodic activities on all workers (see Figure 5.15 (c)). This aligns the delays on
all workers at the same synchronization point, and the performance penalty is not
larger than in case (a). However, such measures are not standard procedures and re-
quire substantial changes to the operating system. Still, as the number of cores and
nodes in large-scale parallel computers continues to increase, OS noise containment
will most probably soon be a common feature.

Problems

For solutions see page 296 ff.

5.1 Overlapping communication and computation. How would the strong scaling
analysis for slow processors in Section 5.3.8 qualitatively change if communi-
cation could overlap with computation (assuming that the hardware supports
it and the algorithm is formulated accordingly)? Take into account that the
overlap may not be perfect if communication time exceeds computation time.

Basics of parallelization 141

5.2 Choosing an optimal number of workers. If the scalability characteristics of
a parallel program are such that performance saturates or even declines with
growing N, the question arises what the “optimal” number of workers is. Usu-
ally one would not want to choose the point where performance is at its max-
imum (or close to saturation), because parallel efficiency will already be low
there. What is needed is a “cost model” that discourages the use of too many
workers. Most computing centers charge for compute time in units of CPU

wallclock hours, i.e., an N-CPU job running for a time Tw will be charged as
an amount proportional to NTw. For the user, minimizing the product of wall-
time (i.e., time to solution) and cost should provide a sensible balance. Derive
a condition for the optimal number of workers Nopt, assuming strong scal-
ing with a constant communication overhead (i.e., a latency-bound situation).
What is the speedup with Nopt workers?

5.3 The impact of synchronization. Synchronizing all workers can be very time-
consuming, since it incurs costs that are usually somewhere between logarith-
mic and linear in the number of workers. What is the impact of synchronization
on strong and weak scalability?

5.4 Accelerator devices. Accelerator devices for standard compute nodes are be-
coming increasingly popular today. A common variant of this idea is to outfit
standard compute nodes (comprising, e.g., two multicore chips) with special
hardware sitting in an I/O slot. Accelerator hardware is capable of executing
certain operations orders of magnitude faster than the host system’s CPUs, but
the amount of available memory is usually much smaller than the host’s. Port-
ing an application to an accelerator involves identifying suitable code parts to
execute on the special hardware. If the speedup for the accelerated code parts
is α , how much of the original code (in terms of runtime) must be ported to get
at least 90% efficiency on the accelerator hardware? What is the significance
of the memory size restrictions?

5.5 Fooling the masses with performance data. The reader is strongly encouraged
to read David H. Bailey’s humorous article “Twelve Ways to Fool the Masses
When Giving Performance Results on Parallel Computers” [S7]. Although the
paper was written already in 1991, many of the points made are still highly
relevant.

Chapter 6

Shared-memory parallel programming
with OpenMP

In the multicore world, one-socket single-core systems have all but vanished except
for the embedded market. The price vs. performance “sweet spot” lies mostly in the
two-socket regime, with multiple cores (and possibly multiple chips) on a socket.
Parallel programming in a basic form should thus start at the shared-memory level,
although it is entirely possible to run multiple processes without a concept of shared
memory. See Chapter 9 for details on distributed-memory parallel programming.

However, shared-memory programming is not an invention of the multicore era.
Systems with multiple (single-core) processors have been around for decades, and
appropriate portable programming interfaces, most notably POSIX threads [P9], have
been developed in the 1990s. The basic principles, limitations and bottlenecks of
shared-memory parallel programming are certainly the same as with any other paral-
lel model (see Chapter 5), although there are some peculiarities which will be covered
in Chapter 7. The purpose of the current chapter is to give a nonexhaustive overview
of OpenMP, which is the dominant shared-memory programming standard today.
OpenMP bindings are defined for the C, C++, and Fortran languages as of the cur-
rent version of the standard (3.0). Some OpenMP constructs that are mainly used for
optimization will be introduced in Chapter 7.

We should add that there are specific solutions for the C++ language like, e.g.,
Intel Threading Building Blocks (TBB) [P10], which may provide better function-
ality than OpenMP in some respects. We also deliberately ignore compiler-based
automatic shared-memory parallelization because it has up to now not lived up to
expectations except for trivial cases.

6.1 Short introduction to OpenMP

Shared memory opens the possibility to have immediate access to all data from
all processors without explicit communication. Unfortunately, POSIX threads are not
a comfortable parallel programming model for most scientific software, which is typ-
ically loop-centric. For this reason, a joint effort was made by compiler vendors to
establish a standard in this field, called OpenMP [P11]. OpenMP is a set of compiler

directives that a non-OpenMP-capable compiler would just regard as comments and
ignore. Hence, a well-written parallel OpenMP program is also a valid serial program

143

144 Introduction to High Performance Computing for Scientists and Engineers

Figure 6.1: Model for OpenMP thread op-
erations: The master thread “forks” team
of threads, which work on shared memory
in a parallel region. After the parallel re-
gion, the threads are “joined,” i.e., termi-
nated or put to sleep, until the next par-
allel region starts. The number of running
threads may vary among parallel regions.

serial

region

parallel

region

team of

threads

master thread

fork

join

(this is certainly not a requirement, but it simplifies development and debugging con-
siderably). The central entity in an OpenMP program is not a process but a thread.
Threads are also called “lightweight processes” because several of them can share
a common address space and mutually access data. Spawning a thread is much less
costly than forking a new process, because threads share everything but instruction
pointer (the address of the next instruction to be executed), stack pointer and reg-
ister state. Each thread can, by means of its local stack pointer, also have “private”
variables, but since all data is accessible via the common address space, it is only a
matter of taking the address of an item to make it accessible to all other threads as
well. However, the OpenMP standard actually forbids making a private object avail-
able to other threads via its address. It will become clear later that this is actually a
good idea.

We will concentrate on the Fortran interface for OpenMP here, and point out
important differences to the C/C++ bindings as appropriate.

6.1.1 Parallel execution

In any OpenMP program, a single thread, the master thread, runs immediately
after startup. Truly parallel execution happens inside parallel regions, of which an ar-
bitrary number can exist in a program. Between two parallel regions, no thread except
the master thread executes any code. This is also called the “fork-join model” (see
Figure 6.1). Inside a parallel region, a team of threads executes instruction streams
concurrently. The number of threads in a team may vary among parallel regions.

OpenMP is a layer that adapts the raw OS thread interface to make it more us-

Shared-memory parallel programming with OpenMP 145

able with the typical structures that numerical software tends to employ. In prac-
tice, parallel regions in Fortran are initiated by !$OMP PARALLEL and ended by
!$OMP END PARALLEL directives, respectively. The !$OMP string is a so-called
sentinel, which starts an OpenMP directive (in C/C++, #pragma omp is used in-
stead). Inside a parallel region, each thread carries a unique identifier, its thread ID,
which runs from zero to the number of threads minus one, and can be obtained by
the omp_get_thread_num() API function:

1 use omp_lib ! module with API declarations

2

3 print *,’I am the master, and I am alone’

4 !$OMP PARALLEL

5 call do_work_package(omp_get_thread_num(),omp_get_num_threads())

6 !$OMP END PARALLEL

The omp_get_num_threads() function returns the number of active threads in
the current parallel region. The omp_lib module contains the API definitions (in
Fortran 77 and C/C++ there are include files mpif.h and omp.h, respectively).
Code between OMP PARALLEL and OMP END PARALLEL, including subroutine
calls, is executed by every thread. In the simplest case, the thread ID can be used
to distinguish the tasks to be performed on different threads; this is done by calling
the do_work_package() subroutine in above example with the thread ID and
the overall number of threads as parameters. Using OpenMP in this way is mostly
equivalent to the POSIX threads programming model.

An important difference between the Fortran and C/C++ OpenMP bindings must
be stressed here. In C/C++, there is no end parallel directive, because all direc-
tives apply to the following statement or structured block. The example above would
thus look like this in C++:

1 #include <omp.h>

2

3 std::cout << "I am the master, and I am alone";

4 #pragma omp parallel

5 {

6 do_work_package(omp_get_thread_num(),omp_get_num_threads());

7 }

The curly braces could actually be omitted in this particular case, but the fact that a
structured block is subject to parallel execution has consequences for data scoping
(see below).

The actual number of running threads does not have to be known at compile time.
It can be set by the environment variable prior to running the executable:

1 $ export OMP_NUM_THREADS=4

2 $./a.out

Although there are also means to set or alter the number of running threads under
program control, an OpenMP program should always be written so that it does not
assume a specific number of threads.

146 Introduction to High Performance Computing for Scientists and Engineers

Listing 6.1: “Manual” loop parallelization and variable privatization. Note that this is not the
intended mode for OpenMP.

1 integer :: bstart, bend, blen, numth, tid, i

2 integer :: N

3 double precision, dimension(N) :: a,b,c

4 ...

5 !$OMP PARALLEL PRIVATE(bstart,bend,blen,numth,tid,i)

6 numth = omp_get_num_threads()

7 tid = omp_get_thread_num()

8 blen = N/numth

9 if(tid.lt.mod(N,numth)) then

10 blen = blen + 1

11 bstart = blen * tid + 1

12 else

13 bstart = blen * tid + mod(N,numth) + 1

14 endif

15 bend = bstart + blen - 1

16 do i = bstart,bend

17 a(i) = b(i) + c(i)

18 enddo

19 !$OMP END PARALLEL

6.1.2 Data scoping

Any variables that existed before a parallel region still exist inside, and are by
default shared between all threads. True work sharing, however, makes sense only
if each thread can have its own, private variables. OpenMP supports this concept
by defining a separate stack for every thread. There are three ways to make private
variables:

1. A variable that exists before entry to a parallel construct can be privatized, i.e.,
made available as a private instance for every thread, by a PRIVATE clause to
the OMP PARALLEL directive. The private variable’s scope extends until the
end of the parallel construct.

2. The index variable of a worksharing loop (see next section) is automatically
made private.

3. Local variables in a subroutine called from a parallel region are private to each
calling thread. This pertains also to copies of actual arguments generated by
the call-by-value semantics, and to variables declared inside structured blocks
in C/C++. However, local variables carrying the SAVE attribute in Fortran (or
the static storage class in C/C++) will be shared.

Shared variables that are not modified in the parallel region do not have to be made
private.

A simple loop that adds two arrays could thus be parallelized as shown in List-
ing 6.1. The actual loop is contained in lines 16–18, and everything before that is

Shared-memory parallel programming with OpenMP 147

just for calculating the loop bounds for each thread. In line 5 the PRIVATE clause
to the PARALLEL directive privatizes all specified variables, i.e., each thread gets its
own instance of each variable on its local stack, with an undefined initial value (C++
objects will be instantiated using the default constructor). Using FIRSTPRIVATE

instead of PRIVATE would initialize the privatize instances with the contents of the
shared instance (in C++, the copy constructor is employed). After the parallel region,
the original values of the privatized variables are retained if they are not modified on
purpose. Note that there are separate clauses (THREADPRIVATE and COPYIN, re-
spectively [P11]) for privatization of global or static data (SAVE variables, common
block elements, static variables).

In C/C++, there is actually less need for using the private clause in many
cases, because the parallel directive applies to a structured block. Instead of
privatizing shared instances, one can simply declare local variables:

1 #pragma omp parallel

2 {

3 int bstart, bend, blen, numth, tid, i;

4 ... // calculate loop boundaries

5 for(i=bstart; i<=bend; ++i)

6 a[i] = b[i] + c[i];

7 }

Manual loop parallelization as shown here is certainly not the intended mode of
operation in OpenMP. The standard defines much more advanced means of distribut-
ing work among threads (see below).

6.1.3 OpenMP worksharing for loops

Being the omnipresent programming structure in scientific codes, loops are nat-
ural candidates for parallelization if individual iterations are independent. This cor-
responds to the medium-grained data parallelism described in Section 5.2.1. As an
example, consider a parallel version of a simple program for the calculation of π by
integration:

π =

1
∫

0

dx
4

1+ x2 (6.1)

Listing 6.2 shows a possible implementation. In contrast to the previous examples,
this is also valid serial code. The initial value of sum is copied to the private instances
via the FIRSTPRIVATE clause on the PARALLEL directive. Then, a DO directive
in front of a do loop starts a worksharing construct: The iterations of the loop are
distributed among the threads (which are running because we are in a parallel region).
Each thread gets its own iteration space, i.e., is assigned to a different set of i values.
How threads are mapped to iterations is implementation-dependent by default, but
can be influenced by the programmer (see Section 6.1.6 below). Although shared in
the enclosing parallel region, the loop counter i is privatized automatically. The final
END DO directive after the loop is not strictly necessary here, but may be required
in cases where the NOWAIT clause is specified; see Section 7.2.1 on page 170 for

148 Introduction to High Performance Computing for Scientists and Engineers

Listing 6.2: A simple program for numerical integration of a function in OpenMP.

1 double precision :: pi,w,sum,x

2 integer :: i,N=1000000

3

4 pi = 0.d0

5 w = 1.d0/N

6 sum = 0.d0

7 !$OMP PARALLEL PRIVATE(x) FIRSTPRIVATE(sum)

8 !$OMP DO

9 do i=1,n

10 x = w*(i-0.5d0)

11 sum = sum + 4.d0/(1.d0+x*x)

12 enddo

13 !$OMP END DO

14 !$OMP CRITICAL

15 pi= pi + w*sum

16 !$OMP END CRITICAL

17 !$OMP END PARALLEL

details. A DO directive must be followed by a do loop, and applies to this loop only.
In C/C++, the for directive serves the same purpose. Loop counters are restricted to
integers (signed or unsigned), pointers, or random access iterators.

In a parallel loop, each thread executes “its” share of the loop’s iteration space,
accumulating into its private sum variable (line 11). After the loop, and still inside
the parallel region, the partial sums must be added to get the final result (line 15),
because the private instances of sum will be gone once the region is left. There is a
problem, however: Without any countermeasures, threads would write to the result
variable pi concurrently. The result would depend on the exact order the threads
access pi, and it would most probably be wrong. This is called a race condition, and
the next section will explain what one can do to prevent it.

Loop worksharing works even if the parallel loop itself resides in a subroutine
called from the enclosing parallel region. The DO directive is then called orphaned,
because it is outside the lexical extent of a parallel region. If such a directive is
encountered while no parallel region is active, the loop will not be workshared.

Finally, if a separation of the parallel region from the workshared loop is not
required, the two directives can be combined:

1 !$OMP PARALLEL DO

2 do i=1,N

3 a(i) = b(i) + c(i) * d(i)

4 enddo

5 !$OMP END PARALLEL DO

The set of clauses allowed for this combined parallel worksharing directive is the
union of all clauses allowed on each directive separately.

Shared-memory parallel programming with OpenMP 149

6.1.4 Synchronization

Critical regions

Concurrent write access to a shared variable or, in more general terms, a shared
resource, must be avoided by all means to circumvent race conditions. Critical re-

gions solve this problem by making sure that at most one thread at a time executes
some piece of code. If a thread is executing code inside a critical region, and another
thread wants to enter, the latter must wait (block) until the former has left the region.
In the integration example (Listing 6.2), the CRITICAL and END CRITICAL di-
rectives (lines 14 and 16) bracket the update to pi so that the result is always correct.
Note that the order in which threads enter the critical region is undefined, and can
change from run to run. Consequently, the definition of a “correct result” must en-
compass the possibility that the partial sums are accumulated in a random order, and
the usual reservations regarding floating-point accuracy do apply [135]. (If strong
sequential equivalence, i.e., bitwise identical results compared to a serial code is re-
quired, OpenMP provides a possible solution with the ORDERED construct, which
we do not cover here.)

Critical regions hold the danger of deadlocks when used inappropriately. A dead-
lock arises when one or more “agents” (threads in this case) wait for resources that
will never become available, a situation that is easily generated with badly arranged
CRITICAL directives. When a thread encounters a CRITICAL directive inside a
critical region, it will block forever. Since this could happen in a deeply nested sub-
routine, deadlocks are sometimes hard to pin down.

OpenMP has a simple solution for this problem: A critical region may be given a
name that distinguishes it from others. The name is specified in parentheses after the
CRITICAL directive:

1 !$OMP PARALLEL DO PRIVATE(x)

2 do i=1,N

3 x = SIN(2*PI*x/N)

4 !$OMP CRITICAL (psum)

5 sum = sum + func(x)

6 !$OMP END CRITICAL (psum)

7 enddo

8 !$OMP END PARALLEL DO

9 ...

10 double precision func(v)

11 double precision :: v

12 !$OMP CRITICAL (prand)

13 func = v + random_func()

14 !$OMP END CRITICAL (prand)

15 END SUBROUTINE func

The update to sum in line 5 is protected by a critical region. In subroutine func()
there is another critical region because it is not allowed to call random_func()
(line 13) by more than one thread at a time; it probably contains a random seed with
a SAVE attribute. Such a function is not thread safe, i.e., its concurrent execution
would incur a race condition.

150 Introduction to High Performance Computing for Scientists and Engineers

Without the names on the two different critical regions, this code would deadlock
because a thread that has just called func(), already in a critical region, would
immediately encounter the second critical region and wait for itself indefinitely to
free the resource. With the names, the second critical region is understood to protect
a different resource than the first.

A disadvantage of named critical regions is that the names are unique identifiers.
It is not possible to have them indexed by an integer variable, for instance. There are
OpenMP API functions that support the use of locks for protecting shared resources.
The advantage of locks is that they are ordinary variables that can be arranged as
arrays or in structures. That way it is possible to protect each single element of an
array of resources individually, even if their number is not known at compile time.
See Section 7.2.3 for an example.

Barriers

If, at a certain point in the parallel execution, it is necessary to synchronize all

threads, a BARRIER can be used:

1 !$OMP BARRIER

The barrier is a synchronization point, which guarantees that all threads have reached
it before any thread goes on executing the code below it. Certainly it must be ensured
that every thread hits the barrier, or a deadlock may occur.

Barriers should be used with caution in OpenMP programs, partly because of
their potential to cause deadlocks, but also due to their performance impact (syn-
chronization is overhead). Note also that every parallel region executes an implicit
barrier at its end, which cannot be removed. There is also a default implicit barrier at
the end of worksharing loops and some other constructs to prevent race conditions.
It can be eliminated by specifying the NOWAIT clause. See Section 7.2.1 for details.

6.1.5 Reductions

The example in Listing 6.3 shows a loop code that adds some random noise to the
elements of an array a() and calculates its vector norm. The RANDOM_NUMBER()
subroutine may be assumed to be thread safe, according to the OpenMP standard.

Similar to the integration code in Listing 6.2, the loop implements a reduction

operation: Many contributions (the updated elements of a()) are accumulated into
a single variable. We have previously solved this problem with a critical region, but
OpenMP provides a more elegant alternative by supporting reductions directly via
the REDUCTION clause (end of line 5). It automatically privatizes the specified vari-
able(s) (s in this case) and initializes the private instances with a sensible starting
value. At the end of the construct, all partial results are accumulated into the shared
instance of s, using the specified operator (+ here) to get the final result.

There is a set of supported operators for OpenMP reductions (slightly different
for Fortran and C/C++), which cannot be extended. C++ overloaded operators are
not allowed. However, the most common cases (addition, subtraction, multiplication,

Shared-memory parallel programming with OpenMP 151

Listing 6.3: Example with reduction clause for adding noise to the elements of an array and
calculating its vector norm.

1 double precision :: r,s

2 double precision, dimension(N) :: a

3

4 call RANDOM_SEED()

5 !$OMP PARALLEL DO PRIVATE(r) REDUCTION(+:s)

6 do i=1,N

7 call RANDOM_NUMBER(r) ! thread safe

8 a(i) = a(i) + func(r) ! func() is thread safe

9 s = s + a(i) * a(i)

10 enddo

11 !$OMP END PARALLEL DO

12

13 print *,’Sum = ’,s

logical, etc.) are covered. If a required operator is not available, one must revert to
the “manual” method as shown in the Listing 6.2.

Note that the automatic initialization for reduction variables, though convenient,
bears the danger of producing invalid serial, i.e., non-OpenMP code. Compiling the
example above without OpenMP support will leave s uninitialized.

6.1.6 Loop scheduling

As mentioned earlier, the mapping of loop iterations to threads is configurable. It
can be controlled by the argument of a SCHEDULE clause to the loop worksharing
directive:

1 !$OMP DO SCHEDULE(STATIC)

2 do i=1,N

3 a(i) = calculate(i)

4 enddo

5 !$OMP END DO

The simplest possibility is STATIC, which divides the loop into contiguous chunks
of (roughly) equal size. Each thread then executes on exactly one chunk. If for some
reason the amount of work per loop iteration is not constant but, e.g., decreases with
loop index, this strategy is suboptimal because different threads will get vastly dif-
ferent workloads, which leads to load imbalance. One solution would be to use a
chunksize like in “STATIC,1,” dictating that chunks of size 1 should be distributed
across threads in a round-robin manner. The chunksize may not only be a constant
but any valid integer-valued expression.

There are alternatives to the static schedule for other types of workload (see Fig-
ure 6.2). Dynamic scheduling assigns a chunk of work, whose size is defined by the
chunksize, to the next thread that has finished its current chunk. This allows for a
very flexible distribution which is usually not reproduced from run to run. Threads
that get assigned “easier” chunks will end up completing more of them, and load

152 Introduction to High Performance Computing for Scientists and Engineers

���
���
���

���
���
������
���
���

���
���
������
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

STATIC STATIC,3 DYNAMIC[,1] DYNAMIC,3

T0

T1

T2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Iteration

GUIDED[,1]

Figure 6.2: Loop schedules in OpenMP. The example loop has 20 iterations and is executed
by three threads (T0, T1, T2). The default chunksize for DYNAMIC and GUIDED is one. If a
chunksize is specified, the last chunk may be shorter. Note that only the STATIC schedules
guarantee that the distribution of chunks among threads stays the same from run to run.

imbalance is greatly reduced. The downside is that dynamic scheduling generates
significant overhead if the chunks are too small in terms of execution time (see Sec-
tion 7.2.1 for an assessment of scheduling overhead). This is why it is often desirable
to use a moderately large chunksize on tight loops, which in turn leads to more load
imbalance. In cases where this is a problem, the guided schedule may help. Again,
threads request new chunks dynamically, but the chunksize is always proportional to
the remaining number of iterations divided by the number of threads. The smallest
chunksize is specified in the schedule clause (default is 1). Despite the dynamic as-
signment of chunks, scheduling overhead is kept under control. However, a word of
caution is in order regarding dynamic and guided schedules: Due to the indetermin-
istic nature of the assignment of threads to chunks, applications that are limited by
memory bandwidth may suffer from insufficient access locality on ccNUMA systems
(see Section 4.2.3 for an introduction to ccNUMA architecture and Chapter 8 for
ccNUMA-specific performance effects and optimization methods). The static sched-
ule is thus the only choice under such circumstances, if the standard worksharing

Shared-memory parallel programming with OpenMP 153

directives are used. Of course there is also the possibility of “explicit” scheduling,
using the thread ID number to assign work to threads as shown in Section 6.1.2.

For debugging and profiling purposes, OpenMP provides a facility to determine
the loop scheduling at runtime. If the scheduling clause specifies “RUNTIME,” the
loop is scheduled according to the contents of the OMP_SCHEDULE shell variable.
However, there is no way to set different schedulings for different loops that use the
SCHEDULE(RUNTIME) clause.

6.1.7 Tasking

In early versions of the standard, parallel worksharing in OpenMP was mainly
concerned with loop structures. However, not all parallel work comes in loops; a typ-
ical example is a linear list of objects (probably arranged in a std::list<> STL
container), which should be processed in parallel. Since a list is not easily address-
able by an integer index or a random-access iterator, a loop worksharing construct is
ruled out, or could only be used with considerable programming effort.

OpenMP 3.0 provides the task concept to circumvent this limitation. A task is
defined by the TASK directive, and contains code to be executed.1 When a thread
encounters a task construct, it may execute it right away or set up the appropriate
data environment and defer its execution. The task is then ready to be executed later
by any thread of the team.

As a simple example, consider a loop in which some function must be called for
each loop index with some probability:

1 integer i,N=1000000

2 type(object), dimension(N) :: p

3 double precision :: r

4 ...

5 !$OMP PARALLEL PRIVATE(r,i)

6 !$OMP SINGLE

7 do i=1,N

8 call RANDOM_NUMBER(r)

9 if(p(i)%weight > r) then

10 !$OMP TASK

11 ! i is automatically firstprivate

12 ! p() is shared

13 call do_work_with(p(i))

14 !$OMP END TASK

15 endif

16 enddo

17 !$OMP END SINGLE

18 !$OMP END PARALLEL

The actual number of calls to do_work_with() is unknown, so tasking is a nat-
ural choice here. A do loop over all elements of p() is executed in a SINGLE

region (lines 6–17). A SINGLE region will be entered by one thread only, namely
the one that reaches the SINGLE directive first. All others skip the code until the

1In OpenMP terminology, “task” is actually a more general term; the definition given here is sufficient
for our purpose.

154 Introduction to High Performance Computing for Scientists and Engineers

END SINGLE directive and wait there in an implicit barrier. With a probability de-
termined by the current object’s content, a TASK construct is entered. One task con-
sists in the call to do_work_with() (line 13) together with the appropriate data
environment, which comprises the array of types p() and the index i. Of course, the
index is unique for each task, so it should actually be subject to a FIRSTPRIVATE
clause. OpenMP specifies that variables that are private in the enclosing context are
automatically made FIRSTPRIVATE inside the task, while shared data stays shared
(except if an additional data scoping clause is present). This is exactly what we want
here, so no additional clause is required.

All the tasks generated by the thread in the SINGLE region are subject to dy-
namic execution by the thread team. Actually, the generating thread may also be
forced to suspend execution of the loop at the TASK construct (which is one exam-
ple of a task scheduling point) in order to participate in running queued tasks. This
can happen when the (implementation-dependent) internal limit of queued tasks is
reached. After some tasks have been run, the generating thread will return to the
loop. Note that there are complexities involved in task scheduling that our simple
example cannot fathom; multiple threads can generate tasks concurrently, and tasks
can be declared untied so that a different thread may take up execution at a task
scheduling point. The OpenMP standard provides excessive examples.

Task parallelism with its indeterministic execution poses the same problems for
ccNUMA access locality as dynamic or guided loop scheduling. Programming tech-
niques to ameliorate these difficulties do exist [O58], but their applicability is limited.

6.1.8 Miscellaneous

Conditional compilation

In some cases it may be useful to write different code depending on OpenMP be-
ing enabled or not. The directives themselves are no problem here because they will
be ignored gracefully. Beyond this default behavior one may want to mask out, e.g.,
calls to API functions or any code that makes no sense without OpenMP enabled.
This is supported in C/C++ by the preprocessor symbol _OPENMP, which is defined
only if OpenMP is available. In Fortran the special sentinel “!$” acts as a comment
only if OpenMP is not enabled (see Listing 6.4).

Memory consistency

In the code shown in Listing 6.4, the second API call (line 8) is located in a
SINGLE region. This is done because numthreads is global and should be written
to only by one thread. In the critical region each thread just prints a message, but a
necessary requirement for the numthreads variable to have the updated value is
that no thread leaves the SINGLE region before the update has been “promoted” to
memory. The END SINGLE directive acts as an implicit barrier, i.e., no thread can
continue executing code before all threads have reached the same point. The OpenMP
memory model ensures that barriers enforce memory consistency: Variables that have
been held in registers are written out so that cache coherence can make sure that

Shared-memory parallel programming with OpenMP 155

Listing 6.4: Fortran sentinels and conditional compilation with OpenMP combined.

1 !$ use omp_lib

2 myid=0

3 numthreads=1

4 #ifdef _OPENMP

5 !$OMP PARALLEL PRIVATE(myid)

6 myid = omp_get_thread_num()

7 !$OMP SINGLE

8 numthreads = omp_get_num_threads()

9 !$OMP END SINGLE

10 !$OMP CRITICAL

11 write(*,*) ’Parallel program - this is thread ’,myid,&

12 ’ of ’,numthreads

13 !$OMP END CRITICAL

14 !$OMP END PARALLEL

15 #else

16 write(*,*) ’Serial program’

17 #endif

all caches get updated values. This can also be initiated under program control via
the FLUSH directive, but most OpenMP worksharing and synchronization constructs
perform implicit barriers, and hence flushes, at the end.

Note that compiler optimizations can prevent modified variable contents to be
seen by other threads immediately. If in doubt, use the FLUSH directive or declare
the variable as volatile (only available in C/C++ and Fortran 2003).

Thread safety

The write statement in line 11 is serialized (i.e., protected by a critical region)
so that its output does not get clobbered when multiple threads write to the console.
As a general rule, I/O operations and general OS functionality, but also common
library functions should be serialized because they may not be thread safe. A promi-
nent example is the rand() function from the C library, as it uses a static variable
to store its hidden state (the seed).

Affinity

One should note that the OpenMP standard gives no hints as to how threads are
to be bound to the cores in a system, and there are no provisions for implementing
locality constraints. One cannot rely at all on the OS to make a good choice regarding
placement of threads, so it makes sense (especially on multicore architectures and
ccNUMA systems) to use OS-level tools, compiler support or library functions to
explicitly pin threads to cores. See Appendix A for technical details.

156 Introduction to High Performance Computing for Scientists and Engineers

Environment variables

Some aspects of OpenMP program execution can be influenced by environment
variables. OMP_NUM_THREADS and OMP_SCHEDULE have already been described
above.

Concerning thread-local variables, one must keep in mind that usually the OS
shell restricts the maximum size of all stack variables of its processes, and there may
also be a system limit on each thread’s stack size. This limit can be adjusted via
the OMP_STACKSIZE environment variable. Setting it to, e.g., “100M” will set a
stack size of 100 MB per thread (excluding the initial program thread, whose stack
size is still set by the shell). Stack overflows are a frequent source of problems with
OpenMP programs.

The OpenMP standard allows for the number of active threads to dynamically
change between parallel regions in order to adapt to available system resources (dy-
namic thread number adjustment). This feature can be switched on or off by setting
the OMP_DYNAMIC environment variable to true or false, respectively. It is un-
specified what the OpenMP runtime implements as the default.

6.2 Case study: OpenMP-parallel Jacobi algorithm

The Jacobi algorithm studied in Section 3.3 can be parallelized in a straightfor-
ward way. We add a slight modification, however: A sensible convergence criterion
shall ensure that the code actually produces a converged result. To do this we in-
troduce a new variable maxdelta, which stores the maximum absolute difference
over all lattice sites between the values before and after each sweep (see Listing 6.5).
If maxdelta drops below some threshold eps, convergence is reached.

Fortunately the OpenMP Fortran interface permits using the MAX() intrinsic
function in REDUCTION clauses, which simplifies the convergence check (lines 7
and 15 in Listing 6.5). Figure 6.3 shows performance data for one, two, and four
threads on an Intel dual-socket Xeon 5160 3.0 GHz node. In this node, the two cores
in a socket share a common 4 MB L2 cache and a frontside bus (FSB) to the chipset.
The results exemplify several key aspects of parallel programming in multicore en-
vironments:

• With increasing N there is the expected performance breakdown when the
working set (2×N2 × 8 bytes) does not fit into cache any more. This break-
down occurs at the same N for single-thread and dual-thread runs if the two
threads run in the same L2 group (filled symbols). If the threads run on dif-
ferent sockets (open symbols), this limit is a factor of

√
2 larger because the

aggregate cache size is doubled (dashed lines in Figure 6.3). The second break-
down at very large N, i.e., when two successive lattice rows exceed the L2
cache size, cannot be seen here as we use a square lattice (see Section 3.3).

• A single thread can saturate a socket’s FSB for a memory-bound situation, i.e.,

Shared-memory parallel programming with OpenMP 157

Listing 6.5: OpenMP implementation of the 2D Jacobi algorithm on an N ×N lattice, with a
convergence criterion added.

1 double precision, dimension(0:N+1,0:N+1,0:1) :: phi

2 double precision :: maxdelta,eps

3 integer :: t0,t1

4 eps = 1.d-14 ! convergence threshold

5 t0 = 0 ; t1 = 1

6 maxdelta = 2.d0*eps

7 do while(maxdelta.gt.eps)

8 maxdelta = 0.d0

9 !$OMP PARALLEL DO REDUCTION(max:maxdelta)

10 do k = 1,N

11 do i = 1,N

12 ! four flops, one store, four loads

13 phi(i,k,t1) = (phi(i+1,k,t0) + phi(i-1,k,t0)

14 + phi(i,k+1,t0) + phi(i,k-1,t0)) * 0.25

15 maxdelta = max(maxdelta,abs(phi(i,k,t1)-phi(i,k,t0)))

16 enddo

17 enddo

18 !$OMP END PARALLEL DO

19 ! swap arrays

20 i = t0 ; t0=t1 ; t1=i

21 enddo

10 100 1000
N

0

500

1000

1500

P
e

rf
o

rm
a

n
c
e

 [
M

L
U

P
s
/s

e
c
]

1 thread

2 threads, 1 socket

2 threads, 2 sockets

4 threads

8 MB L2

4 MB L2

s
o

c
k
e

t

32k L1D 32k L1D 32k L1D 32k L1D

Chipset

Memory

P P P P

4MB L2 4MB L2

Figure 6.3: Performance versus problem size of a 2D Jacobi solver on an N ×N lattice with
OpenMP parallelization at one, two, and four threads on an Intel dual-core dual-socket Xeon
5160 node at 3.0 GHz (right). For two threads, there is a choice to place them on one socket
(filled squares) or on different sockets (open squares).

158 Introduction to High Performance Computing for Scientists and Engineers

at large N. Running two threads on the same socket has no benefit whatsoever
in this limit because contention will occur on the frontside bus. Adding a sec-
ond socket gives an 80% boost, as two FSBs become available. Scalability is
not perfect because of deficiencies in the chipset and FSB architecture. Note
that bandwidth scalability behavior on all memory hierarchy levels is strongly
architecture-dependent; there are multicore chips on which it takes two or more
threads to saturate the memory interface.

• With two threads, the maximum in-cache performance is the same, no matter
whether they run on the same or on different sockets (filled vs. open squares).
This indicates that the shared L2 cache can saturate the bandwidth demands
of both cores in its group. Note, however, that three of the four loads in the
Jacobi kernel are satisfied from L1 cache (see Section 3.3 for an analysis of
bandwidth requirements). Performance prediction can be delicate under such
conditions [M41, M44].

• At N < 50, the location of threads is more important for performance than
their number, although the problem fits into the aggregate L1 caches. Using
two sockets is roughly a factor of two slower in this case. The reason is that
OpenMP overhead like the barrier synchronization at the end of the OpenMP
worksharing loop dominates execution time for small N. See Section 7.2 for
more information on this problem and how to ameliorate its consequences.

Explaining the performance characteristics of this bandwidth-limited algorithm re-
quires a good understanding of the underlying parallel hardware, including issues
specific to multicore chips. Future multicore designs will probably be more “aniso-
tropic” (see, e.g., Figure 1.17) and show a richer, multilevel cache group structure,
making it harder to understand performance features of parallel codes [M41].

6.3 Advanced OpenMP: Wavefront parallelization

Up to now we have only encountered problems where OpenMP parallelization
was more or less straightforward because the important loops comprised indepen-
dent iterations. However, in the presence of loop-carried dependencies, which also
inhibit pipelining in some cases (see Section 1.2.3), writing a simple worksharing
directive in front of a loop leads to unpredictable results. A typical example is the
Gauss–Seidel algorithm, which can be used for solving systems of linear equations
or boundary value problems, and which is also widely employed as a smoother com-
ponent in multigrid methods. Listing 6.6 shows a possible serial implementation in
three spatial dimensions. Like the Jacobi algorithm introduced in Section 3.3, this
code solves for the steady state, but there are no separate arrays for the current and
the next time step; a stencil update at (i, j,k) directly re-uses the three neighboring
sites with smaller coordinates. As those have been updated in the very same sweep

Shared-memory parallel programming with OpenMP 159

Listing 6.6: A straightforward implementation of the Gauss–Seidel algorithm in three dimen-
sions. The highlighted references cause loop-carried dependencies.

1 double precision, parameter :: osth=1/6.d0

2 do it=1,itmax ! number of iterations (sweeps)

3 ! not parallelizable right away

4 do k=1,kmax

5 do j=1,jmax

6 do i=1,imax

7 phi(i,j,k) = (phi(i-1,j,k) + phi(i+1,j,k)

8 + phi(i,j-1,k) + phi(i,j+1,k)

9 + phi(i,j,k-1) + phi(i,j,k+1)) * osth

10 enddo

11 enddo

12 enddo

13 enddo

before, the Gauss–Seidel algorithm has fundamentally different convergence proper-
ties as compared to Jacobi (Stein-Rosenberg Theorem).

Parallelization of the Jacobi algorithm is straightforward (see the previous sec-
tion) because all updates of a sweep go to a different array, but this is not the case
here. Indeed, just writing a PARALLEL DO directive in front of the k loop would
lead to race conditions and yield (wrong) results that most probably vary from run to
run.

Still it is possible to parallelize the code with OpenMP. The key idea is to find a
way of traversing the lattice that fulfills the dependency constraints imposed by the
stencil update. Figures 6.4 and 6.5 show how this can be achieved: Instead of simply
cutting the k dimension into chunks to be processed by OpenMP threads, a wavefront

travels through the lattice in k direction. The dimension along which to parallelize
is j, and each of the t threads T0. . . Tt−1 gets assigned a consecutive chunk of size
jmax/t along j. This divides the lattice into blocks of size imax× jmax/t×1. The very
first block with the lowest k coordinate can only be updated by a single thread (T0),
which forms a “wavefront” by itself (W1 in Figure 6.4). All other threads have to
wait in a barrier until this block is finished. After that, the second wavefront (W2)
can commence, this time with two threads (T0 and T1), working on two blocks in
parallel. After another barrier, W3 starts with three threads, and so forth. Wt is the
first wavefront to actually utilize all threads, ending the so-called wind-up phase.
Some time (t wavefronts) before the sweep is complete, the wind-down phase begins
and the number of working threads is decreased with each successive wavefront. The
block with the largest k and j coordinates is finally updated by a single-thread (Tt−1)
wavefront Wn again. In the end, n = kmax +t−1 wavefronts have traversed the lattice
in a “pipeline parallel” pattern. Of those, 2(t − 1) have utilized less than t threads.
The whole scheme can thus only be load balanced if kmax ≫ t.

Listing 6.7 shows a possible implementation of this algorithm. We assume here
for simplicity that jmax is a multiple of the number of threads. Variable l counts the

160 Introduction to High Performance Computing for Scientists and Engineers

T1
T2

Tt

T0

maxj /t

1
2

3

i

j

k

W
W

W

Figure 6.4: Pipeline parallel processing (PPP), a.k.a. wavefront parallelization, for the Gauss–
Seidel algorithm in 3D (wind-up phase). In order to fulfill the dependency constraints of each
stencil update, successive wavefronts (W1,W2,. . . ,Wn) must be performed consecutively, but
multiple threads can work in parallel on each individual wavefront. Up until the end of the
wind-up phase, only a subset of all t threads can participate.

T1
T2

Tt

T0

i

j

k

7W

Figure 6.5: Wavefront parallelization for the Gauss–Seidel algorithm in 3D (full pipeline
phase). All t threads participate. Wavefront W7 is shown as an example.

Shared-memory parallel programming with OpenMP 161

Listing 6.7: The wavefront-parallel Gauss–Seidel algorithm in three dimensions. Loop-carried
dependencies are still present, but threads can work in parallel.

1 !$OMP PARALLEL PRIVATE(k,j,i,jStart,jEnd,threadID)

2 threadID=OMP_GET_THREAD_NUM()

3 !$OMP SINGLE

4 numThreads=OMP_GET_NUM_THREADS()

5 !$OMP END SINGLE

6 jStart=jmax/numThreads*threadID

7 jEnd=jStart+jmax/numThreads ! jmax is amultiple of numThreads

8 do l=1,kmax+numThreads-1

9 k=l-threadID

10 if((k.ge.1).and.(k.le.kmax)) then

11 do j=jStart,jEnd ! this is the actual parallel loop

12 do i=1,iMax

13 phi(i,j,k) = (phi(i-1,j,k) + phi(i+1,j,k)

14 + phi(i,j-1,k) + phi(i,j+1,k)

15 + phi(i,j,k-1) + phi(i,j,k+1)) * osth

16 enddo

17 enddo

18 endif

19 !$OMP BARRIER

20 enddo

21 !$OMP END PARALLEL

wavefronts, and k is the current k coordinate for each thread. The OpenMP barrier
in line 19 is the point where all threads (including possible idle threads) synchronize
after a wavefront has been completed.

We have ignored possible scalar optimizations like outer loop unrolling (see the
order of site updates illustrated in the T2 block of Figure 6.4). Note that the stencil
update is unchanged from the original version, so there are still loop-carried depen-
dencies. These inhibit fully pipelined execution of the inner loop, but this may be of
minor importance if performance is bound by memory bandwidth. See Problem 6.6
for an alternative solution that enables pipelining (and thus vectorization).

Wavefront methods are of utmost importance in High Performance Computing,
for massively parallel applications [L76, L78] as well as for optimizing shared-
memory codes [O52, O59]. Wavefronts are a natural extension of the pipelining
scheme to medium- and coarse-grained parallelism. Unfortunately, mainstream pro-
gramming languages and parallelization paradigms do not as of now contain any
direct support for it. Furthermore, although dependency analysis is a major part of
the optimization stage in any modern compiler, very few current compilers are able
to perform automatic wavefront parallelization [O59].

Note that stencil algorithms (for which Gauss–Seidel and Jacobi are just two
simple examples) are core components in a lot of simulation codes and PDE solvers.
Many optimization, parallelization, and vectorization techniques have been devised
over the past decades, and there is a vast amount of literature available. More infor-
mation can be found in the references [O60, O61, O62, O63].

162 Introduction to High Performance Computing for Scientists and Engineers

Problems

For solutions see page 298 ff.

6.1 OpenMP correctness. What is wrong with this OpenMP-parallel Fortran 90
code?

1 double precision, dimension(0:360) :: a

2

3 !$OMP PARALLEL DO

4 do i=0,360

5 call f(dble(i)/360*PI, a(i))

6 enddo

7 !$OMP END PARALLEL DO

8

9 ...

10

11 subroutine f(arg, ret)

12 double precision :: arg, ret, noise=1.d-6

13 ret = SIN(arg) + noise

14 noise = -noise

15 return

16 end subroutine

6.2 π by Monte Carlo. The quarter circle in the first quadrant with origin at (0,0)
and radius 1 has an area of π/4. Look at the random number pairs in [0,1]×
[0,1]. The probability that such a point lies inside the quarter circle is π/4, so
given enough statistics we are able to calculate π using this so-called Monte

Carlo method (see Figure 6.6). Write a parallel OpenMP program that per-
forms this task. Use a suitable subroutine to get separate random number se-

Figure 6.6: Calculating π by a Monte Carlo
method (see Problem 6.2). The probability
that a random point in the unit square lies
inside the quarter circle is π/4.

y

x
1

0

1

Shared-memory parallel programming with OpenMP 163

quences for all threads. Make sure that adding more threads in a weak scaling
scenario actually improves statistics.

6.3 Disentangling critical regions. In Section 6.1.4 we demonstrated the use of
named critical regions to prevent deadlocks. Which simple modification of the
example code would have made named the names obsolete?

6.4 Synchronization perils. What is wrong with this code?

1 !$OMP PARALLEL DO SCHEDULE(STATIC) REDUCTION(+:sum)

2 do i=1,N

3 call do_some_big_stuff(i,x)

4 sum = sum + x

5 call write_result_to_file(omp_get_thread_num(),x)

6 !$OMP BARRIER

7 enddo

8 !$OMP END PARALLEL DO

6.5 Unparallelizable? (This problem appeared on the official OpenMP mailing list
in 2007.) Parallelize the loop in the following piece of code using OpenMP:

1 double precision, parameter :: up = 1.00001d0

2 double precision :: Sn

3 double precision, dimension(0:len) :: opt

4

5 Sn = 1.d0

6 do n = 0,len

7 opt(n) = Sn

8 Sn = Sn * up

9 enddo

Simply writing an OpenMP worksharing directive in front of the loop will not
work because there is a loop-carried dependency: Each iteration depends on
the result from the previous one. The parallelized code should work indepen-
dently of the OpenMP schedule used. Try to avoid — as far as possible —
expensive operations that might impact serial performance.

To solve this problem you may want to consider using the FIRSTPRIVATE
and LASTPRIVATE OpenMP clauses. LASTPRIVATE can only be applied
to a worksharing loop construct, and has the effect that the listed variables’
values are copied from the lexically last loop iteration to the global variable
when the parallel loop exits.

6.6 Gauss–Seidel pipelined. Devise a reformulation of the Gauss–Seidel sweep
(Listing 6.6) so that the inner loop does not contain loop-carried dependen-
cies any more. Hint: Choose some arbitrary site from the lattice and visualize
all other sites that can be updated at the same time, obeying the dependency
constraints. What would be the performance impact of this formulation on
cache-based processors and vector processors (see Section 1.6)?

Chapter 7

Efficient OpenMP programming

OpenMP seems to be the easiest way to write parallel programs as it features a sim-
ple, directive-based interface and incremental parallelization, meaning that the loops
of a program can be tackled one by one without major code restructuring. It turns out,
however, that getting a truly scalable OpenMP program is a significant undertaking
in all but the most trivial cases. This chapter pinpoints some of the performance prob-
lems that can arise with OpenMP shared-memory programming and how they can be
circumvented. We then turn to the OpenMP parallelization of the sparse MVM code
that has been introduced in Chapter 3.

There is a broad literature on viable optimizations for OpenMP programs [P12,
O64]. This chapter can only cover the most relevant basics, but should suffice as a
starting point.

7.1 Profiling OpenMP programs

As in serial optimization, profiling tools can often hint at the root causes for per-
formance problems also with OpenMP. In the simplest case, one could employ any
of the methods described in Section 2.1 on a per-thread basis and compare the dif-
ferent scalar profiles. This strategy has several drawbacks, the most important being
that scalar tools have no concept of specific OpenMP features. In a scalar profile,
OpenMP constructs like team forks, barriers, spin loops, locks, critical sections, and
even parts of user code that were packed into a separate function by the compiler
appear as normal functions whose purpose can only be deduced from some more or
less cryptic name.

More advanced tools allow for direct determination of load imbalance, serial frac-
tion, OpenMP loop overhead, etc. (see below for more discussion regarding those
issues). At the time of writing, very few production-grade free tools are available for
OpenMP profiling, and the introduction of tasking in the OpenMP 3.0 standard has
complicated matters for tool developers.

Figure 7.1 shows an event timeline comparison between two runs of the same
code, using Intel’s Thread Profiler for Windows [T23]. An event timeline contains
information about the behavior of the application over time. In the case of OpenMP
profiling, this pertains to typical constructs like parallel loops, barriers, locks, and
also performance issues like load imbalance or insufficient parallelism. As a simple
benchmark we choose the multiplication of a lower triangular matrix with a vector:

165

166 Introduction to High Performance Computing for Scientists and Engineers

1 do k=1,NITER

2 !$OMP PARALLEL DO SCHEDULE(RUNTIME)

3 do row=1,N

4 do col=1,row

5 C(row) = C(row) + A(col,row) * B(col)

6 enddo

7 enddo

8 !$OMP END PARALLEL DO

9 enddo

(Note that privatizing the inner loop variable is not required here because this is au-
tomatic in Fortran, but not in C/C++.) If static scheduling is used, this problem obvi-
ously suffers from severe load imbalance. The bottom panel in Figure 7.1 shows the
timeline for two threads and STATIC scheduling. The lower thread (shown in black)
is a “shepherd” thread that exists for administrative purposes and can be ignored
because it does not execute user code. Until the first parallel region is encountered,
only one thread executes. After that, each thread is shown using different colors or
shadings which encode the kind of activity it performs. Hatched areas denote “spin-
ning,” i.e., the thread waits in a loop until given more work to do or until it hits a
barrier (actually, after some time, spinning threads are often put to sleep so as to
free resources; this can be observed here just before the second barrier. This behav-
ior can usually be influenced by the user). As expected, the static schedule leads to
strong load imbalance so that more than half of the first thread’s CPU time is wasted.
With STATIC,16 scheduling (top panel), the imbalance is gone and performance is
improved by about 30%.

Thread profilers are usually capable of much more than just timeline displays.
Often, a simple overall summary denoting, e.g., the fraction of walltime spent in bar-
riers, spin loops, critical sections, or locks can reveal the nature of some performance
problem.

7.2 Performance pitfalls

Like any other parallelization method, OpenMP is prone to the standard prob-
lems of parallel programming: Serial fraction (Amdahl’s Law) and load imbalance,
both discussed in Chapter 5. Communication (in terms of data transfer) is usually not
much of an issue on shared memory as the access latencies inside a compute node are
small and bandwidths are large (see, however, Chapter 8 for problems connected to
memory access on ccNUMA architectures). The load imbalance problem can often
be solved by choosing a suitable OpenMP scheduling strategy (see Section 6.1.6).
However there are also very specific performance problems that are inherently con-
nected to shared-memory programming in general and OpenMP in particular. In this
section we will try to give some practical advice for avoiding typical OpenMP per-
formance traps.

Efficient OpenMP programming 167

F
ig

u
re

7
.1

:
(S

ee
co

lo
r

in
se

rt
af

te
r

pa
ge

26
2.

)
E

ve
nt

ti
m

el
in

e
co

m
pa

ri
so

n
of

a
th

re
ad

ed
co

de
(t

ri
an

gu
la

r
m

at
ri

x-
ve

ct
or

m
ul

ti
pl

ic
at

io
n)

w
it

h
S
T
A
T
I
C
,
1
6

(t
op

pa
ne

l)
an

d
S
T
A
T
I
C

(b
ot

to
m

pa
ne

l)
O

pe
nM

P
sc

he
du

li
ng

.

168 Introduction to High Performance Computing for Scientists and Engineers

Figure 7.2: Dual-socket dual-core Xeon 5160
node used for most benchmarks in this chapter.

s
o
c
k
e
t

32k L1D 32k L1D 32k L1D 32k L1D

Chipset

Memory

P P P P

4MB L2 4MB L2

7.2.1 Ameliorating the impact of OpenMP worksharing constructs

Whenever a parallel region is started or stopped or a parallel loop is initiated
or ended, there is some nonnegligible overhead involved. Threads must be spawned
or at least woken up from an idle state, the size of the work packages (chunks) for
each thread must be determined, in the case of tasking or dynamic/guided scheduling
schemes each thread that becomes available must be supplied with a new task to
work on, and the default barrier at the end of worksharing constructs or parallel
regions synchronizes all threads. In terms of the refined scalability models discussed
in Section 5.3.6, these contributions could be counted as “communication overhead.”
Since they tend to be linear in the number of threads, it seems that OpenMP is not
really suited for strong scaling scenarios; with N threads, the speedup is

Somp(N) =
1

s+(1− s)/N +κN +λ
, (7.1)

with λ denoting N-independent overhead. For large N this expression goes to zero,
which seems to be a definite showstopper for the OpenMP programming model. In
practice, however, all is not lost: The performance impact depends on the actual
values of κ and λ , of course. If some simple guidelines are followed, the adverse
effects of OpenMP overhead can be much reduced:

Run serial code if parallelism does not pay off

This is perhaps the most popular performance issue with OpenMP. If the work-
sharing construct does not contain enough “work” per thread because, e.g., each
iteration of a short loop executes in a short time, OpenMP overhead will lead to very
bad performance. It is then better to execute a serial version if the loop count is below
some threshold. The OpenMP IF clause helps with this:

1 !$OMP PARALLEL DO IF(N>1700)

2 do i=1,N

3 A(i) = B(i) + C(i) * D(i)

4 enddo

5 !$OMP END PARALLEL DO

Efficient OpenMP programming 169

10
1

10
2

10
3

10
4

10
5

10
6

N

0

1000

2000

3000

4000

5000
M

F
lo

p
s
/s

e
c

serial
1 thread
4 threads
4 threads, IF(N>1700)

Figure 7.3: OpenMP overhead and the benefits of the IF(N>1700) clause for the vector
triad benchmark. (Dual-socket dual-core Intel Xeon 5160 3.0 GHz system like in Figure 7.2,
Intel compiler 10.1).

Figure 7.3 shows a comparison of vector triad data in the purely serial case and
with one and four OpenMP threads, respectively, on a dual-socket Xeon 5160 node
(sketched in Figure 7.2). The presence of OpenMP causes overhead at small N even
if only a single thread is used (see below for more discussion regarding the cost
of worksharing constructs). Using the IF clause leads to an optimal combination
of threaded and serial loop versions if the threshold is chosen appropriately, and is
hence mandatory when large loop lengths cannot be guaranteed. However, at N .

1000 there is still some measurable performance hit; after all, more code must be
executed than in the purely serial case. Note that the IF clause is a (partial) cure for
the symptoms, but not the reasons for parallel loop overhead. The following sections
will elaborate on methods that can actually reduce it.

Instead of disabling parallel execution altogether, it may also be an option to
reduce the number of threads used on a particular parallel region by means of the
NUM_THREADS clause:

1 !$OMP PARALLEL DO NUM_THREADS(2)

2 do i=1,N

3 A(i) = B(i) + C(i) * D(i)

4 enddo

5 !$OMP END PARALLEL DO

Fewer threads mean less overhead, and the resulting performance may be better than
with IF, at least for some loop lengths.

170 Introduction to High Performance Computing for Scientists and Engineers

Avoid implicit barriers

Be aware that most OpenMP worksharing constructs (including OMP DO/END
DO) insert automatic barriers at the end. This is the safe default, so that all threads
have completed their share of work before anything after the construct is executed.
In cases where this is not required, a NOWAIT clause removes the implicit barrier:

1 !$OMP PARALLEL

2 !$OMP DO

3 do i=1,N

4 A(i) = func1(B(i))

5 enddo

6 !$OMP END DO NOWAIT

7 ! still in parallel region here. do more work:

8 !$OMP CRITICAL

9 CNT = CNT + 1

10 !$OMP END CRITICAL

11 !$OMP END PARALLEL

There is also an implicit barrier at the end of a parallel region that cannot be removed.
Implicit barriers add to synchronization overhead like critical regions, but they are of-
ten required to protect from race conditions. The programmer should check carefully
whether the NOWAIT clause is really safe.

Section 7.2.2 below will show how barrier overhead for the standard case of a
worksharing loop can be determined experimentally.

Try to minimize the number of parallel regions

This is often formulated as the need to parallelize loop nests on a level as far out
as possible, and it is inherently connected to the previous guidelines. Parallelizing
inner loop levels leads to increased OpenMP overhead because a team of threads is
spawned or woken up multiple times:

1 double precision :: R

2 R = 0.d0

3 do j=1,N

4 !$OMP PARALLEL DO REDUCTION(+:R)

5 do i=1,N

6 R = R + A(i,j) * B(i)

7 enddo

8 !$OMP END PARALLEL DO

9 C(j) = C(j) + R

10 enddo

In this particular example, the team of threads is restarted N times, once in each iter-
ation of the j loop. Pulling the complete parallel construct to the outer loop reduces
the number of restarts to one and has the additional benefit that the reduction
clause becomes obsolete as all threads work on disjoint parts of the result vector:

1 !$OMP PARALLEL DO

2 do j=1,N

3 do i=1,N

Efficient OpenMP programming 171

4 C(j) = C(j) + A(i,j) * B(i)

5 enddo

6 enddo

7 !$OMP END PARALLEL DO

The less often the team of threads needs to be forked or restarted, the less over-
head is incurred. This strategy may require some extra programming care because if
the team continues running between worksharing constructs, code which would oth-
erwise be executed by a single thread will be run by all threads redundantly. Consider
the following example:

1 double precision :: R,S

2 R = 0.d0

3 !$OMP PARALLEL DO REDUCTION(+:R)

4 do i=1,N

5 A(i) = DO_WORK(B(i))

6 R = R + B(i)

7 enddo

8 !$OMP END PARALLEL DO

9 S = SIN(R)

10 !$OMP PARALLEL DO

11 do i=1,N

12 A(i) = A(i) + S

13 enddo

14 !$OMP END PARALLEL DO

The SIN function call between the loops is performed by the master thread only. At
the end of the first loop, all threads synchronize and are possibly even put to sleep,
and they are started again when the second loop executes. In order to circumvent this
overhead, a continuous parallel region can be employed:

1 double precision :: R,S

2 R = 0.d0

3 !$OMP PARALLEL PRIVATE(S)

4 !$OMP DO REDUCTION(+:R)

5 do i=1,N

6 A(i) = DO_WORK(B(i))

7 R = R + B(i)

8 enddo

9 !$OMP END DO

10 S = SIN(R)

11 !$OMP DO

12 do i=1,N

13 A(i) = A(i) + S

14 enddo

15 !$OMP END DO NOWAIT

16 !$OMP END PARALLEL

Now the SIN function in line 10 is computed by all threads, and consequently S

must be privatized. It is safe to use the NOWAIT clause on the second loop in order
to reduce barrier overhead. This is not possible with the first loop as the final result
of the reduction will only be valid after synchronization.

172 Introduction to High Performance Computing for Scientists and Engineers

Avoid “trivial” load imbalance

The number of tasks, or the parallel loop trip count, should be large compared to
the number of threads. If the trip count is a small noninteger multiple of the number
of threads, some threads will end up doing significantly less work than others, leading
to load imbalance. This effect is independent of any other load balancing or overhead
issues, i.e., it occurs even if each task comprises exactly the same amount of work,
and also if OpenMP overhead is negligible.

A typical situation where it may become important is the execution of deep loop
nests on highly threaded architectures [O65] (see Section 1.5 for more information
on hardware threading). The larger the number of threads, the fewer tasks per thread
are available on the parallel (outer) loop:

1 double precision, dimension(N,N,N,M) :: A

2 !$OMP PARALLEL DO SCHEDULE(STATIC) REDUCTION(+:res)

3 do l=1,M

4 do k=1,N

5 do j=1,N

6 do i=1,N

7 res = res + A(i,j,k,l)

8 enddo ; enddo ; enddo ; enddo

9 !$OMP END PARALLEL DO

The outer loop is the natural candidate for parallelization here, causing the minimal
number of executed worksharing loops (and implicit barriers) and generating the
least overhead. However, the outer loop length M may be quite small. Under the best
possible conditions, if t is the number of threads, t −mod(M, t) threads receive a
chunk that is one iteration smaller than for the other threads. If M/t is small, load
imbalance will hurt scalability.

The COLLAPSE clause (introduced with OpenMP 3.0) can help here. For perfect

loop nests, i.e., with no code between the different do (and enddo) statements and
loop counts not depending on each other, the clause collapses a specified number of
loop levels into one. Computing the original loop indices is taken care of automati-
cally, so that the loop body can be left unchanged:

1 double precision, dimension(N,N,N,M) :: A

2 !$OMP PARALLEL DO SCHEDULE(STATIC) REDUCTION(+:res) COLLAPSE(2)

3 do l=1,M

4 do k=1,N

5 do j=1,N

6 do i=1,N

7 res = res + A(i,j,k,l)

8 enddo ; enddo ; enddo ; enddo

9 !$OMP END PARALLEL DO

Here the outer two loop levels are collapsed into one with a loop length of M×N, and
the resulting long loop will be executed by all threads in parallel. This ameliorates
the load balancing problem.

Efficient OpenMP programming 173

1 2 4 8 16 32 64
Chunksize

0

5

10

15

20

25
P

e
rf

o
rm

a
n

c
e

 [
M

It
e

ra
ti
o

n
s
/s

]

1S dynamic

1S static

1S guided

2S dynamic

2S static

2S guided 1 4 16 64
0

100

200

300

400

O
v
e

rh
e

a
d

 [
c
y
c
le

s
]

1S dynamic

2S dynamic

2S static

static baseline

Figure 7.4: Main panel: Performance of a trivial worksharing loop with a large loop count
under static (filled circles) versus dynamic (open symbols) scheduling on two cores in an L2
group (1S) or on different sockets (2S) of a dual-socket dual-core Intel Xeon 5160 3.0 GHz
system like in Figure 7.2 (Intel Compiler 10.1). Inset: Overhead in processor cycles for as-
signing a single chunk to a thread.

Avoid dynamic/guided loop scheduling or tasking unless necessary

All parallel loop scheduling options (except STATIC) and tasking constructs
require some amount of nontrivial computation or bookkeeping in order to figure out
which thread is to compute the next chunk or task. This overhead can be significant
if each task contains only a small amount of work. One can get a rough estimate for
the cost of assigning a new loop chunk to a thread with a simple benchmark test.
Figure 7.4 shows a performance comparison between static and dynamic scheduling
for a simple parallel loop with purely computational workload:

1 !$OMP PARALLEL DO SCHEDULE(RUNTIME) REDUCTION(+:s)

2 do i=1,N

3 s = s + compute(i)

4 enddo

5 !$OMP END PARALLEL DO

The compute() function performs some in-register calculations (like, e.g., tran-
scendental function evaluations) for some hundreds of cycles. It is unimportant what
it does exactly, as long as it neither interferes with the main parallel loop nor incurs
bandwidth bottlenecks on any memory level. N should be chosen large enough so that

174 Introduction to High Performance Computing for Scientists and Engineers

OpenMP loop startup overhead becomes negligible. The performance baseline with
t threads, Ps(t), is then measured with static scheduling without a chunksize, in units
of million iterations per second (see the dotted line in Figure 7.4 for two threads on
two cores of the Xeon 5160 dual-core dual-socket node depicted in Figure 7.2). This
baseline does not depend on the binding of the threads to cores (inside cache groups,
across ccNUMA domains, etc.) because each thread executes only a single chunk,
and any OpenMP overhead occurs only at the start and at the end of the worksharing
construct. At large N, the static baseline should thus be t times larger than the purely
serial performance.

Whenever a chunksize is used with any scheduling variant, assigning a new chunk
to a thread will take some time, which counts as overhead. The main panel in Fig-
ure 7.4 shows performance data for static (circles), dynamic (squares), and guided
(diamonds) scheduling when the threads run in an L2 cache group (closed sym-
bols) or on different sockets (open symbols), respectively. As expected, the over-
head is largest for small chunks, and dominant only for dynamic scheduling. Guided
scheduling performs best because larger chunks are assigned at the beginning of the
loop, and the indicated chunksize is just a lower bound (see Figure 6.2). The dif-
ference between intersocket and intra-L2 situations is only significant with dynamic
scheduling, because some common resource is required to arbitrate work distribu-
tion. If this resource can be kept in a shared cache, chunk assignment will be much
faster. It will also be faster with guided scheduling, but due to the large average

chunksize, the effect is unnoticeable.
If P(t,c) is the t-thread performance at chunksize c, the difference in per-iteration

per-thread execution times between the static baseline and the “chunked” version is
the per-iteration overhead. Per complete chunk, this is

To(t,c) =
t

c

(

1
P(t,c)

− 1
Ps(t)

)

. (7.2)

The inset in Figure 7.4 shows that the overhead in CPU cycles is roughly independent
of chunksize, at least for chunks larger than 4. Assigning a new chunk to a thread
costs over 200 cycles if both threads run inside an L2 group, and 350 cycles when
running on different sockets (these times include the 50 cycle penalty per chunk for
static scheduling). Again we encounter a situation where mutual thread placement,
or affinity, is decisive.

Please note that, although the general methodology is applicable to all shared-
memory systems, the results of this analysis depend on hardware properties and the
actual implementation of OpenMP worksharing done by the compiler. The actual
numbers may differ significantly on other platforms.

Other factors not recognized by this benchmark can impact the performance of
dynamically scheduled worksharing constructs. In memory-bound loop code, pre-
fetching may be inefficient or impossible if the chunksize is small. Moreover, due to
the indeterministic nature of memory accesses, ccNUMA locality could be hard to
maintain, which pertains to guided scheduling as well. See Section 8.3.1 for details
on this problem.

Efficient OpenMP programming 175

7.2.2 Determining OpenMP overhead for short loops

The question arises how one can estimate the possible overheads that go along
with a parallel worksharing construct. In general, the overhead consists of a constant
part and a part that depends on the number of threads. There are vast differences
from system to system as to how large it can be, but it is usually of the order of at
least hundreds if not thousands of CPU cycles. It can be determined easily by fitting
a simple performance model to data obtained from a low-level benchmark. As an
example we pick the vector triad with short vector lengths and static scheduling so
that the parallel run scales across threads if each core has its own L1 (performance
would not scale with larger vectors as shared caches or main memory usually present
bottlenecks, especially on multicore systems):

1 !$OMP PARALLEL PRIVATE(j)

2 do j=1,NITER

3 !$OMP DO SCHEDULE(static) NOWAIT ! nowait is optional (see text)

4 do i=1,N

5 A(i) = B(i) + C(i) * D(i)

6 enddo

7 !$OMP END DO

8 enddo

9 !$OMP END PARALLEL

As usual, NITER is chosen so that overall runtime can be accurately measured and
one-time startup effects (loading data into cache the first time etc.) become unimpor-
tant. The NOWAIT clause is optional and is used here only to demonstrate the impact
of the implied barrier at the end of the loop worksharing construct (see below).

The performance model assumes that overall runtime with a problem size of N

on t threads can be split into computational and setup/shutdown contributions:

T (N, t) = Tc(N, t)+Ts(t) . (7.3)

Further assuming that we have measured purely serial performance Ps(N) we can
write

Tc(N, t) =
2N

tPs(N/t)
, (7.4)

which allows an N-dependent performance behavior unconnected to OpenMP over-
head. The factor of two in the numerator accounts for the fact that performance is
measured in MFlops/sec and each loop iteration comprises two Flops. As mentioned
above, setup/shutdown time is composed of a constant latency and a component that
depends on the number of threads:

Ts(t) = Tl +Tp(t) . (7.5)

Now we can calculate parallel performance on t threads at problem size N:

P(N, t) =
2N

T (N, t)
=

2N

2N [tPs(N/t)]−1 +Ts(t)
(7.6)

176 Introduction to High Performance Computing for Scientists and Engineers

Figure 7.5 shows performance data for the small-N vector triad on a node with four
cores (two sockets), including parametric fits to the model (7.6) for the one- (circles)
and four-thread (squares) cases, and with the implied barrier removed (open symbols)
by a nowait clause. The indicated fit parameters in nanoseconds denote Ts(t), as
defined in (7.5). The values measured for Ps with the serial code version are not used
directly for fitting but approximated by

Ps(N) =
2N

2N/Pmax +T0
, (7.7)

where Pmax is the asymptotic serial triad performance and T0 summarizes all the
scalar overhead (pipeline startup, loop branch misprediction, etc.). Both parameters
are determined by fitting to measured serial performance data (dotted-dashed line in
Figure 7.5). Then, (7.7) is used in (7.6):

P(N, t) =
1

(tPmax)−1 +(T0 +Ts(t))/2N
(7.8)

Surprisingly, there is a measurable overhead for running with a single OpenMP
thread versus purely serial mode. However, as the two versions reach the same as-
ymptotic performance at N . 1000, this effect cannot be attributed to inefficient
scalar code, although OpenMP does sometimes prevent advanced loop optimizations.
The single-thread overhead originates from the inability of the compiler to generate
a separate code version for serial execution.

The barrier is negligible with a single thread, and accounts for most of the over-
head at four threads. But even without it about 190 ns (570 CPU cycles) are spent for
setting up the worksharing loop in that case (one could indeed estimate the average
memory latency from the barrier overhead, assuming that the barrier is implemented
by a memory variable which must be updated by all threads in turn). The data labeled
“restart” (diamonds) was obtained by using a combined parallel do directive,
so that the team of threads is woken up each time the inner loop gets executed:

1 do j=1,NITER

2 !$OMP PARALLEL DO SCHEDULE(static)

3 do i=1,N

4 A(i) = B(i) + C(i) * D(i)

5 enddo

6 !$OMP END PARALLEL DO

7 enddo

This makes it possible to separate the thread wakeup time from the barrier and work-
sharing overheads: There is an additional cost of nearly 460 ns (1380 cycles) for
restarting the team, which proves that it can indeed be beneficial to minimize the
number of parallel regions in an OpenMP program, as mentioned above.

Similar to the experiments performed with dynamic scheduling in the previous
section, the actual overhead incurred for small OpenMP loops depends on many fac-
tors like the compiler and runtime libraries, organization of caches, and the general
node structure. It also makes a significant difference whether the thread team resides

Efficient OpenMP programming 177

10 100 1000
N

0

1000

2000

3000

4000
P

e
rf

o
rm

a
n
c
e
 [
M

F
lo

p
s
/s

e
c
]

serial
serial fit
4 threads restart
4 threads
4 threads nowait
1 thread
1 thread nowait

880 ns

190 ns

20 ns

12 ns

1340 ns

Figure 7.5: OpenMP loop overhead Ts(t) for the small-N vector triad, determined from fitting
the model (7.6) to measured performance data. Note the large impact of the implied barrier
(removed by the nowait clause). The diamonds indicate data obtained by restarting the par-
allel region on every triad loop. (Intel Xeon 5160 3.0 GHz dual-core dual-socket node (see
Figure 7.2), Intel Compiler 10.1.)

inside a cache group or encompasses several groups [M41] (see Appendix A for in-
formation on how to use affinity mechanisms). It is a general result, however, that
implicit (and explicit) barriers are the largest contributors to OpenMP-specific paral-
lel overhead. The EPCC OpenMP microbenchmark suite [136] provides a framework
for measuring many OpenMP-related timings, including barriers, but use an approach
slightly different from the one shown here.

7.2.3 Serialization

The most straightforward way to coordinate access to shared resources is to use
critical region. Unless used with caution, these bear the potential of serializing the
code. In the following example, columns of the matrix M are updated in parallel.
Which columns get updated is determined by the col_calc() function:

1 double precision, dimension(N,N) :: M

2 integer :: c

3 ...

4 !$OMP PARALLEL DO PRIVATE(c)

5 do i=1,K

6 c = col_calc(i)

7 !$OMP CRITICAL

8 M(:,c) = M(:,c) + f(c)

178 Introduction to High Performance Computing for Scientists and Engineers

9 !$OMP END CRITICAL

10 enddo

11 !$OMP END PARALLEL DO

Function f() returns an array, which is added to column c of the matrix. Since it is
possible that a column is updated more than once, the array summation is protected
by a critical region. However, if most of the CPU time is spent in line 8, the program
is effectively serialized and there will be no gain from using more than one thread;
the program will even run slower because of the additional overhead for entering a
critical construct.

This coarse-grained way of protecting a resource (matrix M in this case) is often
called a big fat lock. One solution could be to make use of the resource’s substructure,
i.e., the property of the matrix to consist of individual columns, and protect access
to each column separately. Serialization can then only occur if two threads try to
update the same column at the same time. Unfortunately, named critical regions (see
Section 6.1.4) are of no use here as the name cannot be a variable. However, it is
possible to use a separate OpenMP lock variable for each column:

1 double precision, dimension(N,N) :: M

2 integer (kind=omp_lock_kind), dimension(N) :: locks

3 integer :: c

4 !$OMP PARALLEL

5 !$OMP DO

6 do i=1,N

7 call omp_init_lock(locks(i))

8 enddo

9 !$OMP END DO

10 ...

11 !$OMP DO PRIVATE(c)

12 do i=1,K

13 c = col_calc(i)

14 call omp_set_lock(locks(c))

15 M(:,c) = M(:,c) + f(c)

16 call omp_unset_lock(locks(c))

17 enddo

18 !$OMP END DO

19 !$OMP END PARALLEL

If the mapping of i to c, mediated by the col_calc() function, is such that not
only a few columns get updated, parallelism is greatly enhanced by this optimization
(see [A83] for a real-world example). One should be aware though that setting and
unsetting OpenMP locks incurs some overhead, as is the case for entering and leaving
a critical region. If this overhead is comparable to the cost for updating a matrix row,
the fine-grained synchronization scheme is of no use.

There is a solution to this problem if memory is not a scarce resource: One may
use thread-local copies of otherwise shared data that get “pulled together” by, e.g.,
a reduction operation at the end of a parallel region. In our example this can be
achieved most easily by doing an OpenMP reduction on M. If K is large enough, the
additional cost is negligible:

Efficient OpenMP programming 179

1 double precision, dimension(1:N,1,N) :: M

2 integer :: c

3 ...

4 !$OMP PARALLEL DO PRIVATE(c) REDUCTION(+:M)

5 do i=1,K

6 c = col_calc(i)

7 M(:,c) = M(:,c) + f(c)

8 enddo

9 !$OMP END PARALLEL DO

Note that reductions on arrays are only allowed in Fortran, and some further restric-
tions apply [P11]. In C/C++ it would be necessary to perform explicit privatization
inside the parallel region (probably using heap memory) and do the reduction manu-
ally, as shown in Listing 6.2.

In general, privatization should be given priority over synchronization when pos-
sible. This may require a careful analysis of the costs involved in the needed copying
and reduction operations.

7.2.4 False sharing

The hardware-based cache coherence mechanisms described in Section 4.2.1
make the use of caches in a shared-memory system transparent to the programmer.
In some cases, however, cache coherence traffic can throttle performance to very low
levels. This happens if the same cache line is modified continuously by a group of
threads so that the cache coherence logic is forced to evict and reload it in rapid
succession. As an example, consider a program fragment that calculates a histogram
over the values in some large integer array A that are all in the range {1, . . . ,8}:

1 integer, dimension(8) :: S

2 integer :: IND

3 S = 0

4 do i=1,N

5 IND = A(i)

6 S(IND) = S(IND) + 1

7 enddo

In a straightforward parallelization attempt one would probably go about and make
S two-dimensional, reserving space for the local histogram of each thread in order to
avoid serialization on the shared resource, array S:

1 integer, dimension(:,:), allocatable :: S

2 integer :: IND,ID,NT

3 !$OMP PARALLEL PRIVATE(ID,IND)

4 !$OMP SINGLE

5 NT = omp_get_num_threads()

6 allocate(S(0:NT,8))

7 S = 0

8 !$OMP END SINGLE

9 ID = omp_get_thread_num() + 1

10 !$OMP DO

11 do i=1,N

180 Introduction to High Performance Computing for Scientists and Engineers

12 IND = A(i)

13 S(ID,IND) = S(ID,IND) + 1

14 enddo

15 !$OMP END DO NOWAIT

16 ! calculate complete histogram

17 !$OMP CRITICAL

18 do j=1,8

19 S(0,j) = S(0,j) + S(ID,j)

20 enddo

21 !$OMP END CRITICAL

22 !$OMP END PARALLEL

The loop starting at line 18 collects the partial results of all threads. Although this is a
valid OpenMP program, it will not run faster but much more slowly when using four
threads instead of one. The reason is that the two-dimensional array S contains all the
histogram data from all threads. With four threads these are 160 bytes, corresponding
to two or three cache lines on most processors. On each histogram update to S in
line 13, the writing CPU must gain exclusive ownership of one of those cache lines;
almost every write leads to a cache miss and subsequent coherence traffic because it
is likely that the needed cache line resides in another processor’s cache, in modified
state. Compared to the serial case where S fits into the cache of a single CPU, this
will result in disastrous performance.

One should add that false sharing can be eliminated in simple cases by the stan-
dard register optimizations of the compiler. If the crucial update operation can be
performed to a register whose contents are only written out at the end of the loop, no
write misses turn up. This is not possible in the above example, however, because of
the computed second index to S in line 13.

Getting rid of false sharing by manual optimization is often a simple task once the
problem has been identified. A standard technique is array padding, i.e., insertion of
a suitable amount of space between memory locations that get updated by different
threads. In the histogram example above, allocating S in line 6 as S(0:NT*CL,8),
with CL being the cache line size in integers, will reserve an exclusive cache line
for each thread. Of course, the first index to S will have to be multiplied by CL

everywhere else in the program (transposing S will save some memory, but the main
principle stays the same).

An even more painless solution exists in the form of data privatization (see also
Section 7.2.3 above): On entry to the parallel region, each thread gets its own local
copy of the histogram array in its own stack space. It is very unlikely that those
different instances will occupy the same cache line, so false sharing is not a problem.
Moreover, the code is simplified and made equivalent to the purely serial version by
using the REDUCTION clause:

1 integer, dimension(8) :: S

2 integer :: IND

3 S=0

4 !$OMP PARALLEL DO PRIVATE(IND) REDUCTION(+:S)

5 do i=1,N

6 IND = A(i)

7 S(IND) = S(IND) + 1

Efficient OpenMP programming 181

T0

T1

T2

T3

T4

+= *

Figure 7.6: Parallelization approach for sparse MVM (five threads). All marked elements are
handled in a single iteration of the parallelized loop. The RHS vector is accessed by all threads.

8 enddo

9 !$OMP EMD PARALLEL DO

Setting S to zero is only required if the code is to be compiled without OpenMP
support, as the reduction clause automatically initializes the variables in question
with appropriate starting values.

Again, privatization in its most convenient form (reduction) is possible here be-
cause we are using Fortran (the OpenMP standard allows no reductions on arrays in
C/C++) and the elementary operation (addition) is supported for the REDUCTION
clause. However, even without the clause the required operations are easy to formu-
late explicitly (see Problem 7.1).

7.3 Case study: Parallel sparse matrix-vector multiply

As an interesting application of OpenMP to a nontrivial problem we now extend
the considerations on sparse MVM data layout and optimization by parallelizing the
CRS and JDS matrix-vector multiplication codes from Section 3.6 [A84, A82].

No matter which of the two storage formats is chosen, the general parallelization
approach is always the same: In both cases there is a parallelizable loop that calcu-
lates successive elements (or blocks of elements) of the result vector (see Figure 7.6).
For the CRS matrix format, this principle can be applied in a straightforward manner:

1 !$OMP PARALLEL DO PRIVATE(j)1

2 do i = 1,Nr

1The privatization of inner loop indices in the lexical extent of a parallel outer loop is not strictly
required in Fortran, but it is in C/C++ [P11].

182 Introduction to High Performance Computing for Scientists and Engineers

3 do j = row_ptr(i), row_ptr(i+1) - 1

4 C(i) = C(i) + val(j) * B(col_idx(j))

5 enddo

6 enddo

7 !$OMP END PARALLEL DO

Due to the long outer loop, OpenMP overhead is usually not a problem here. Depend-
ing on the concrete form of the matrix, however, some load imbalance might occur if
very short or very long matrix rows are clustered at some regions. A different kind of
OpenMP scheduling strategy like DYNAMIC or GUIDED might help in this situation.

The vanilla JDS sMVM is also parallelized easily:

1 !$OMP PARALLEL PRIVATE(diag,diagLen,offset)

2 do diag=1, Nj
3 diagLen = jd_ptr(diag+1) - jd_ptr(diag)

4 offset = jd_ptr(diag) - 1

5 !$OMP DO

6 do i=1, diagLen

7 C(i) = C(i) + val(offset+i) * B(col_idx(offset+i))

8 enddo

9 !$OMP END DO

10 enddo

11 !$OMP END PARALLEL

The parallel loop is the inner loop in this case, but there is no OpenMP overhead
problem as the loop count is large. Moreover, in contrast to the parallel CRS version,
there is no load imbalance because all inner loop iterations contain the same amount
of work. All this would look like an ideal situation were it not for the bad code
balance of vanilla JDS sMVM. However, the unrolled and blocked versions can be
equally well parallelized. For the blocked code (see Figure 3.19), the outer loop over
all blocks is a natural candidate:

1 !$OMP PARALLEL DO PRIVATE(block_start,block_end,i,diag,

2 !$OMP& diagLen,offset)

3 do ib=1,Nr,b

4 block_start = ib

5 block_end = min(ib+b-1,Nr)

6 do diag=1,Nj
7 diagLen = jd_ptr(diag+1)-jd_ptr(diag)

8 offset = jd_ptr(diag) - 1

9 if(diagLen .ge. block_start) then

10 do i=block_start, min(block_end,diagLen)

11 C(i) = C(i)+val(offset+i)*B(col_idx(offset+i))

12 enddo

13 endif

14 enddo

15 enddo

16 !$OMP END PARALLEL DO

This version has even got less OpenMP overhead because the DO directive is on
the outermost loop. Unfortunately, there is even more potential for load imbalance
because of the matrix rows being sorted for size. But as the dependence of workload

Efficient OpenMP programming 183

1 2 3 4
Sockets/Nodes

0

100

200

300

400

500

600

700

800
M

F
lo

p
s
/s

e
c

CRS - AMD Opteron

bJDS - AMD Opteron

CRS - SGI Altix
bJDS - SGI Altix
CRS - Intel Xeon/Core2
bJDS - Intel Xeon/Core2

1 2
Cores

0

200

400

600

Figure 7.7: Performance and strong scaling for straightforward OpenMP parallelization of
sparse MVM on three different architectures, comparing CRS (hatched bars) and blocked JDS
(solid bars) variants. The Intel Xeon/Core2 system is of UMA type, the other two systems
are ccNUMA. The different scaling baselines have been separated (one socket/LD in the main
frame, one core in the inset).

on loop index is roughly predictable, a static schedule with a chunksize of one can
remedy most of this effect.

Figure 7.7 shows performance and scaling behavior of the parallel CRS and
blocked JDS versions on three different architectures: Two ccNUMA systems (Op-
teron and SGI Altix, equivalent to the block diagrams in Figures 4.5 and 4.6), and
one UMA system (Xeon/Core2 node like in Figure 4.4). In all cases, the code was
run on as few locality domains or sockets as possible, i.e., first filling one LD or
socket before going to the next. The inset displays intra-LD or intrasocket scalability
with respect to the single-core scaling baseline. All systems considered are strongly
bandwidth-limited on this level. The performance gain from using a second thread
is usually far from a factor of two, as may be expected. Note, however, that this be-
havior also depends crucially on the ability of one core to utilize the local memory
interface: The relatively low single-thread CRS performance on the Altix leads to a
significant speedup of approximately 1.8 for two threads (see also Section 5.3.8).

Scalability across sockets or LDs (main frame in Figure 7.7) reveals a crucial
difference between ccNUMA and UMA systems. Only the UMA node shows the
expected speedup when the second socket gets used, due to the additional bandwidth
provided by the second frontside bus (it is a known problem of FSB-based designs
that bandwidth scalability across sockets is less than perfect, so we don’t see a fac-

184 Introduction to High Performance Computing for Scientists and Engineers

tor of two here). Although ccNUMA architectures should be able to deliver scalable
bandwidth, both code versions seem to be extremely unsuitable for ccNUMA, ex-
hibiting poor scalability or, in case of the Altix, even performance breakdowns at
larger numbers of LDs.

The reason for the failure of ccNUMA to deliver the expected bandwidth lies in
our ignorance of a necessary prerequisite for scalability that we have not honored yet:
Correct data and thread placement for access locality. See Chapter 8 for programming
techniques that can mitigate this problem, and [O66] for a more general assessment
of parallel sparse MVM optimization on modern shared-memory systems.

Problems

For solutions see page 301 ff.

7.1 Privatization gymnastics. In Section 7.2.4 we have optimized a code for paral-
lel histogram calculation by eliminating false sharing. The final code employs
a REDUCTION clause to sum up all the partial results for S(). How would the
code look like in C or C++?

7.2 Superlinear speedup. When the number of threads is increased at constant
problem size (strong scaling), making additional cache space available to the
application, there is a chance that the whole working set fits into the aggre-
gated cache of all used cores. The speedup will then be larger than what the
additional number of cores seem to allow. Can you identify this situation in
the performance data for the 2D parallel Jacobi solver (Figure 6.3)? Of course,
this result may be valid only for one special type of machine. What condition
must hold for a general cache-based machine so that there is at least a chance
to see superlinear speedup with this code?

7.3 Reductions and initial values. In some of the examples for decreasing the num-
ber of parallel regions on page 170 we have explicitly set the reduction variable
R to zero before entering the parallel region, although OpenMP initializes such
variables on its own. Why is it necessary then to do it anyway?

7.4 Optimal thread count. What is the optimal thread count to use for a memory-
bound multithreaded application on a two-socket ccNUMA system with six
cores per socket and a three-core L3 group?

Chapter 8

Locality optimizations on ccNUMA
architectures

It was mentioned already in the section on ccNUMA architecture that, for applica-
tions whose performance is bound by memory bandwidth, locality and contention
problems (see Figures 8.1 and 8.2) tend to turn up when threads/processes and their
data are not carefully placed across the locality domains of a ccNUMA system. Un-
fortunately, the current OpenMP standard (3.0) does not refer to page placement at
all and it is up to the programmer to use the tools that system builders provide. This
chapter discusses the general, i.e., mostly system-independent options for correct
data placement, and possible pitfalls that may prevent it. We will also show that page
placement is not an issue that is restricted to shared-memory parallel programming.

8.1 Locality of access on ccNUMA

Although ccNUMA architectures are ubiquitous today, the need for ccNUMA-
awareness has not yet arrived in all application areas; memory-bound code must be
designed to employ proper page placement [O67]. The placement problem has two
dimensions: First, one has to make sure that memory gets mapped into the local-
ity domains of processors that actually access them. This minimizes NUMA traffic

Memory Memory

P P P P

Figure 8.1: Locality problem on a cc-
NUMA system. Memory pages got mapped
into a locality domain that is not con-
nected to the accessing processor, leading
to NUMA traffic.

Memory Memory

P P P P

Figure 8.2: Contention problem on a cc-
NUMA system. Even if the network is very
fast, a single locality domain can usually
not saturate the bandwidth demands from
concurrent local and nonlocal accesses.

185

186 Introduction to High Performance Computing for Scientists and Engineers

Figure 8.3: A ccNUMA system (based on
dual-core AMD Opteron processors) with
four locality domains LD0 . . . LD3 and two
cores per LD, coupled via a HyperTransport
network. There are three NUMA access lev-
els (local domain, one hop, two hops).

L
D

0

L
D

1

L
D

2

L
D

3

HT

HT

HT HT

MI

Memory Memory

Memory Memory

P P P P

PPPP

across the network. In this context, “mapping” means that a page table entry is set
up, which describes the association of a physical with a virtual memory page. Con-
sequently, locality of access in ccNUMA systems is always followed on the OS page
level, with typical page sizes of (commonly) 4 kB or (more rarely) 16 kB, sometimes
larger. Hence, strict locality may be hard to implement with working sets that only
encompass a few pages, although the problem tends to be cache-bound in this case
anyway. Second, threads or processes must be pinned to those CPUs which had orig-
inally mapped their memory regions in order not to lose locality of access. In the
following we assume that appropriate affinity mechanisms have been employed (see
Appendix A).

A typical ccNUMA node with four locality domains is depicted in Figure 8.3. It
uses two HyperTransport (HT) links per socket to connect to neighboring domains,
which results in a “closed chain” topology. Memory access is hence categorized into
three levels, depending on how many HT hops (zero, one, or two) are required to
reach the desired page. The actual remote bandwidth and latency penalties can vary
significantly across different systems; vector triad measurements can at least provide
rough guidelines. See the following sections for details about how to control page
placement.

Note that even with an extremely fast NUMA interconnect whose bandwidth and
latency are comparable to local memory access, the contention problem cannot be
eliminated. No interconnect, no matter how fast, can turn ccNUMA into UMA.

8.1.1 Page placement by first touch

Fortunately, the initial mapping requirement can be fulfilled in a portable man-
ner on all current ccNUMA architectures. If configured correctly (this pertains to
firmware [“BIOS”], operating system and runtime libraries alike), they support a
first touch policy for memory pages: A page gets mapped into the locality domain
of the processor that first writes to it. Merely allocating memory is not sufficient.

Locality optimizations on ccNUMA architectures 187

It is therefore the data initialization code that deserves attention on ccNUMA (and
using calloc() in C will most probably be counterproductive). As an example
we look again at a naïve OpenMP-parallel implementation of the vector triad code
from Listing 1.1. Instead of allocating arrays on the stack, however, we now use dy-
namic (heap) memory for reasons which will be explained later (we omit the timing
functionality for brevity):

1 double precision, allocatable, dimension(:) :: A, B, C, D

2 allocate(A(N), B(N), C(N), D(N))

3 ! initialization

4 do i=1,N

5 B(i) = i; C(i) = mod(i,5); D(i) = mod(i,10)

6 enddo

7 ...

8 do j=1,R

9 !$OMP PARALLEL DO

10 do i=1,N

11 A(i) = B(i) + C(i) * D(i)

12 enddo

13 !$OMP END PARALLEL DO

14 call dummy(A,B,C,D)

15 enddo

Here we have explicitly written out the loop which initializes arrays B, C, and D with
sensible data (it is not required to initialize A because it will not be read before be-
ing written later). If this code, which is prototypical for many OpenMP applications
that have not been optimized for ccNUMA, is run across several locality domains,
it will not scale beyond the maximum performance achievable on a single LD if the
working set does not fit into cache. This is because the initialization loop is executed
by a single thread, writing to B, C, and D for the first time. Hence, all memory pages
belonging to those arrays will be mapped into a single LD. As Figure 8.4 shows, the
consequences are significant: If the working set fits into the aggregated cache, scala-
bility is good. For large arrays, however, 8-thread performance (filled circles) drops
even below the 2-thread (one LD) value (open diamonds), because all threads access
memory in LD0 via the HT network, leading to severe contention. As mentioned
above, this problem can be solved by performing array initialization in parallel. The
loop from lines 4–6 in the code above should thus be replaced by:

1 ! initialization

2 !$OMP PARALLEL DO

3 do i=1,N

4 B(i) = i; C(i) = mod(i,5); D(i) = mod(i,10)

5 enddo

6 !$OMP END PARALLEL DO

This simple modification, which is actually a no-op on UMA systems, makes a huge
difference on ccNUMA in memory-bound situations (see open circles and inset in
Figure 8.4). Of course, in the very large N limit where the working set does not
fit into a single locality domain, data will be “automatically” distributed, but not

188 Introduction to High Performance Computing for Scientists and Engineers

10
3

10
4

10
5

10
6

10
7

N

0

1000

2000

3000

4000

5000
P

e
rf

o
rm

a
n
c
e
 [
M

F
lo

p
s
/s

e
c
]

8T 4S LD0
8T 4S parallel

2T 1S local

1 2 4# LDs
0

200

400

600

800 opt. placement

LD0 placement

in
-c

a
c
h

e

Figure 8.4: Vector triad performance and scalability on a four-LD ccNUMA machine like in
Figure 8.3 (HP DL585 G5), comparing data for 8 threads with page placement in LD0 (filled
circles) with correct parallel first touch (open circles). Performance data for local access in a
single LD is shown for reference (open diamonds). Two threads per socket were used through-
out. In-cache scalability is unharmed by unsuitable page placement. For memory-bound situ-
ations, putting all data into a single LD has ruinous consequences (see inset).

in a controlled way. This effect is by no means something to rely on when data
distribution is key.

Sometimes it is not sufficient to just parallelize array initialization, for instance
if there is no loop to parallelize. In the OpenMP code on the left of Figure 8.5,
initialization of A is done in a serial region using the READ statement in line 8. The
access to A in the parallel loop will then lead to contention. The version on the right
corrects this problem by initializing A in parallel, first-touching its elements in the
same way they are accessed later. Although the READ operation is still sequential,
data will be distributed across the locality domains. Array B does not have to be
initialized but will automatically be mapped correctly.

There are some requirements that must be fulfilled for first-touch to work prop-
erly and result in good loop performance scalability:

• The OpenMP loop schedules of initialization and work loops must obviously
be identical and reproducible, i.e., the only possible choice is STATIC with a
constant chunksize, and the use of tasking is ruled out. Since the OpenMP stan-
dard does not define a default schedule, it is a good idea to specify it explicitly
on all parallel loops. All current compilers choose STATIC by default, though.
Of course, the use of a static schedule poses some limits on possible optimiza-
tions for eliminating load imbalance. The only simple option is the choice of

Locality optimizations on ccNUMA architectures 189

1 integer,parameter:: N=1000000

2 double precision :: A(N),B(N)

3

4

5

6

7 ! executed on single LD

8 READ(1000) A

9 ! contention problem

10 !$OMP PARALLEL DO

11 do i = 1, N

12 B(i) = func(A(i))

13 enddo

14 !$OMP END PARALLEL DO

-

integer,parameter:: N=1000000

double precision :: A(N),B(N)

!$OMP PARALLEL DO

do i=1,N

A(i) = 0.d0

enddo

!$OMP END PARALLEL DO

! A is mapped now

READ(1000) A

!$OMP PARALLEL DO

do i = 1, N

B(i) = func(A(i))

enddo

!$OMP END PARALLEL DO

Figure 8.5: Optimization by correct NUMA placement. Left: The READ statement is executed
by a single thread, placing A to a single locality domain. Right: Doing parallel initialization
leads to correct distribution of pages across domains.

an appropriate chunksize (as small as possible, but at least several pages of
data). See Section 8.3.1 for more information about dynamic scheduling under
ccNUMA conditions.

• For successive parallel loops with the same number of iterations and the same
number of parallel threads, each thread should get the same part of the iteration
space in both loops. The OpenMP 3.0 standard guarantees this behavior only
if both loops use the STATIC schedule with the same chunksize (or none at
all) and if they bind to the same parallel region. Although the latter condition
can usually not be satisfied, at least not for all loops in a program, current
compilers generate code which makes sure that the iteration space of loops of
the same length and OpenMP schedule is always divided in the same way, even
in different parallel regions.

• The hardware must actually be capable of scaling memory bandwidth across
locality domains. This may not always be the case, e.g., if cache coherence
traffic produces contention on the NUMA network.

Unfortunately it is not always at the programmer’s discretion how and when data
is touched first. In C/C++, global data (including objects) is initialized before the
main() function even starts. If globals cannot be avoided, properly mapped local
copies of global data may be a possible solution, code characteristics in terms of com-
munication vs. calculation permitting [O68]. A discussion of some of the problems
that emerge from the combination of OpenMP with C++ can be found in Section 8.4,
and in [C100] and [C101].

It is not specified in a portable way how a page that has been allocated and initial-
ized can lose its page table entry. In most cases it is sufficient to deallocate memory if
it resides on the heap (using DEALLOCATE in Fortran, free() in C, or delete[]
in C++). This is why we have reverted to the use of dynamic memory for the triad

190 Introduction to High Performance Computing for Scientists and Engineers

benchmarks described above. If a new memory block is allocated later on, the first
touch policy will apply as usual. Even so, some optimized implementations of run-
time libraries will not actually deallocate memory on free() but add the pages to a
“pool” to be re-allocated later with very little overhead. In case of doubt, the system
documentation should be consulted for ways to change this behavior.

Locality problems tend to show up most prominently with shared-memory par-
allel code. Independently running processes automatically employ first touch place-
ment if each process keeps its affinity to the locality domain where it had initialized
its data. See, however, Section 8.3.2 for effects that may yet impede strictly local
access.

8.1.2 Access locality by other means

Apart from plain first-touch initialization, operating systems often feature ad-
vanced tools for explicit page placement and diagnostics. These facilities are highly
nonportable by nature. Often there are command-line tools or configurable dynamic
objects that influence allocation and first-touch behavior without the need to change
source code. Typical capabilities include:

• Setting policies or preferences to restrict mapping of memory pages to spe-
cific locality domains, irrespective of where the allocating process or thread is
running.

• Setting policies for distributing the mapping of successively touched pages
across locality domains in a “round-robin” or even random fashion. If a shared-
memory parallel program has erratic access patterns (e.g., due to limitations
imposed by the need for load balancing), and a coherent first-touch mapping
cannot be employed, this may be a way to get at least a limited level of par-
allel scalability for memory-bound codes. See also Section 8.3.1 for relevant
examples.

• Diagnosing the current distribution of pages over locality domains, probably
on a per-process basis.

Apart from stand-alone tools, there is always a library with a documented API,
which provides more fine-grained control over page placement. Under the Linux
OS, the numatools package contains all the functionality described, and also al-
lows thread/process affinity control (i.e, to determine which thread/process should
run where). See Appendix A for more information.

8.2 Case study: ccNUMA optimization of sparse MVM

It is now clear that the bad scalability of OpenMP-parallelized sparse MVM
codes on ccNUMA systems (see Figure 7.7) is caused by contention due to the mem-
ory pages of the code’s working set being mapped into a single locality domain on

Locality optimizations on ccNUMA architectures 191

1 2 3 4
Sockets/Nodes

0

400

800

1200

1600

2000

M
F

lo
p
s
/s

e
c

CRS - AMD Opteron

bJDS - AMD Opteron

CRS - SGI Altix
bJDS - SGI Altix
CRS - Intel Xeon/Core2
bJDS - Intel Xeon/Core2

1 2
Cores

0

200

400

600

Figure 8.6: Performance and strong scaling for ccNUMA-optimized OpenMP parallelization
of sparse MVM on three different architectures, comparing CRS (hatched bars) and blocked
JDS (solid bars) variants. Cf. Figure 7.7 for performance without proper placement. The dif-
ferent scaling baselines have been separated (one socket/LD in the main frame, one core in the
inset).

initialization. By writing parallel initialization loops that exploit first touch mapping
policy, scaling can be improved considerably. We will restrict ourselves to CRS here
as the strategy is basically the same for JDS. Arrays C, val, col_idx, row_ptr
and B must be initialized in parallel:

1 !$OMP PARALLEL DO

2 do i=1,Nr

3 row_ptr(i) = 0 ; C(i) = 0.d0 ; B(i) = 0.d0

4 enddo

5 !$OMP END PARALLEL DO

6 ! preset row_ptr array

7 !$OMP PARALLEL DO PRIVATE(start,end,j)

8 do i=1,Nr

9 start = row_ptr(i) ; end = row_ptr(i+1)

10 do j=start,end-1

11 val(j) = 0.d0 ; col_idx(j) = 0

12 enddo

13 enddo

14 !$OMP END PARALLEL DO

The initialization of B is based on the assumption that the nonzeros of the matrix
are roughly clustered around the main diagonal. Depending on the matrix structure
it may be hard in practice to perform proper placement for the RHS vector at all.

192 Introduction to High Performance Computing for Scientists and Engineers

Figure 8.6 shows performance data for the same architectures and sMVM codes
as in Figure 7.7 but with appropriate ccNUMA placement. There is no change in
scalability for the UMA platform, which was to be expected, but also on the cc-
NUMA systems for up to two threads (see inset). The reason is of course that both
architectures feature two-processor locality domains, which are of UMA type. On
four threads and above, the locality optimizations yield dramatically improved per-
formance. Especially for the CRS version scalability is nearly perfect when going
from 2n to 2(n + 1) threads (the scaling baseline in the main panel is the locality
domain or socket, respectively). The JDS variant of the code benefits from the opti-
mizations as well, but falls behind CRS for larger thread numbers. This is because
of the permutation map for JDS, which makes it hard to place larger portions of the
RHS vector into the correct locality domains, and thus leads to increased NUMA
traffic.

8.3 Placement pitfalls

We have demonstrated that data placement is of premier importance on ccNUMA
architectures, including commonly used two-socket cluster nodes. In principle, cc-
NUMA offers superior scalability for memory-bound codes, but UMA systems are
much easier to handle and require no code optimization for locality of access. One
can expect, though, that ccNUMA designs will prevail in the commodity HPC mar-
ket, where dual-socket configurations occupy a price vs. performance “sweet spot.”
It must be emphasized, however, that the placement optimizations introduced in Sec-
tion 8.1 may not always be applicable, e.g., when dynamic scheduling is unavoidable
(see Section 8.3.1). Moreover, one may have arrived at the conclusion that placement
problems are restricted to shared-memory programming; this is entirely untrue and
Section 8.3.2 will offer some more insight.

8.3.1 NUMA-unfriendly OpenMP scheduling

As explained in Sections 6.1.3 and 6.1.7, dynamic/guided loop scheduling and
OpenMP task constructs could be preferable over static work distribution in poorly
load-balanced situations, if the additional overhead caused by frequently assigning
tasks to threads is negligible. On the other hand, any sort of dynamic scheduling
(including tasking) will necessarily lead to scalability problems if the thread team is
spread across several locality domains. After all, the assignment of tasks to threads is
unpredictable and even changes from run to run, which rules out an “optimal” page
placement strategy.

Dropping parallel first touch altogether in such a situation is no solution as per-
formance will then be limited by a single memory interface again. In order to get at
least a significant fraction of the maximum achievable bandwidth, it may be best to
distribute the working set’s memory pages round-robin across the domains and hope
for a statistically even distribution of accesses. Again, the vector triad can serve as a

Locality optimizations on ccNUMA architectures 193

1 4 16 64 256 1024 4096 16384
chunk size c [DP Words]

0

200

400

600

800

1000

P
e
rf

o
rm

a
n
c
e
 [
M

F
lo

p
s
/s

e
c
] static,c

round-robin placement

dynamic,c
round-robin placement

4 kB page limit

static best placement

static LD0 placem.

Figure 8.7: Vector triad
performance vs. loop
chunksize for static and
dynamic scheduling with
eight threads on a four-
LD ccNUMA system
(see Figure 8.3). Page
placement was done
round-robin on purpose.
Performance for best
parallel placement and
LD0 placement with
static scheduling is
shown for reference.

convenient tool to fathom the impact of random page access. We modify the initial-
ization loop by forcing static scheduling with a page-wide chunksize (assuming 4 kB
pages):

1 ! initialization

2 !$OMP PARALLEL DO SCHEDULE(STATIC,512)

3 do i=1,N

4 A(i) = 0; B(i) = i; C(i) = mod(i,5); D(i) = mod(i,10)

5 enddo

6 !$OMP END PARALLEL DO

7 ...

8 do j=1,R

9 !$OMP PARALLEL DO SCHEDULE(RUNTIME)

10 do i=1,N

11 A(i) = B(i) + C(i) * D(i)

12 enddo

13 !$OMP END PARALLEL DO

14 call dummy(A,B,C,D)

15 enddo

By setting the OMP_SCHEDULE environment variable, different loop schedulings
can be tested. Figure 8.7 shows parallel triad performance versus chunksize c for
static and dynamic scheduling, respectively, using eight threads on the four-socket
ccNUMA system from Figure8.3. At large c, where a single chunk spans several
memory pages, performance converges asymptotically to a level governed by ran-
dom access across all LDs, independent of the type of scheduling used. In this case,
75% of all pages a thread needs reside in remote domains. Although this kind of
erratic pattern bears at least a certain level of parallelism (compared with purely se-
rial initialization as shown with the dashed line), there is almost a 50% performance
penalty versus the ideal case (solid line). The situation at c = 512 deserves some
attention: With static scheduling, the access pattern of the triad loop matches the
placement policy from the initialization loop, enabling (mostly) local access in each
LD. The residual discrepancy to the best possible result can be attributed to the ar-

194 Introduction to High Performance Computing for Scientists and Engineers

Figure 8.8: File system buffer cache can
prevent locally touched pages to be placed in
the local domain, leading to nonlocal access
and contention. This is shown here for local-
ity domain 0, where FS cache uses the major
part of local memory. Some of the pages al-
located and initialized by a core in LD0 get
mapped into LD1.

L
D

0

L
D

1

P P P P

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

LD1 data

LD0 data

LD0 data

FS cache

rays not being aligned to page boundaries, which leads to some uncertainty regarding
placement. Note that operating systems and compilers often provide means to align
data structures to configurable boundaries (SIMD data type lengths, cache lines, and
memory pages being typical candidates). Care should be taken, however, to avoid
aliasing effects with strongly aligned data structures.

Although not directly related to NUMA effects, it is instructive to analyze the sit-
uation at smaller chunksizes as well. The additional overhead for dynamic scheduling
causes a significant disadvantage compared to the static variant. If c is smaller than
the cache line length (64 bytes here), each cache miss results in the transfer of a
whole cache line of which only a fraction is needed, hence the peculiar behavior at
c≤ 64. The interpretation of the breakdown at c = 16 and the gradual rise up until the
page size is left as an exercise to the reader (see problems at the end of this chapter).

In summary, if purely static scheduling (without a chunksize) is ruled out, round-
robin placement can at least exploit some parallelism. If possible, static scheduling
with an appropriate chunksize should then be chosen for the OpenMP worksharing
loops to prevent excessive scheduling overhead.

8.3.2 File system cache

Even if all precautions regarding affinity and page placement have been followed,
it is still possible that scalability of OpenMP programs, but also overall system per-
formance with independently running processes, is below expectations. Disk I/O op-
erations cause operating systems to set up buffer caches which store recently read or
written file data for efficient re-use. The size and placement of such caches is highly
system-dependent and usually configurable, but the default setting is in most cases,
although helpful for good I/O performance, less than fortunate in terms of ccNUMA
locality.

See Figure 8.8 for an example: A thread or process running in LD0 writes a large
file to disk, and the operating system reserves some space for a file system buffer
cache in the memory attached to this domain. Later on, the same or another process
in the this domain allocates and initializes memory (“LD0 data”), but not all of those

Locality optimizations on ccNUMA architectures 195

0 1000 2000 3000 4000
FS buffer cache size S before running benchmark [MBytes]

0

100

200

300

400

500

A
g

g
.

v
e

c
to

r
tr

ia
d

 p
e

rf
o

rm
a

n
c
e

 [
M

F
lo

p
s
/s

e
c
]

ccNUMA (Opteron dual-core 2 sockets)

UMA (Core2 dual-core 2 sockets)

Figure 8.9: Perfor-
mance impact of a large
file system cache on a
ccNUMA versus a UMA
system (both with two
sockets and four cores
and 4 GB of RAM) when
running four concurrent
vector triads. The buffer
cache was filled from a
single core. See text for
details. (Benchmark data
by Michael Meier.)

pages fit into LD0 together with the buffer cache. By default, many systems then
map the excess pages to another locality domain so that, even though first touch was
correctly employed from the programmer’s point of view, nonlocal access to LD0
data and contention at LD1’s memory interface occurs.

A simple experiment can demonstrate this effect. We compare a UMA system
(dual-core dual-socket Intel Xeon 5160 as in Figure 4.4) with a two-LD ccNUMA
node (dual-core dual-socket AMD Opteron as in Figure 4.5), both equipped with
4 GB of main memory. On both systems we execute the following steps in a loop:

1. Write “dirty” data to disk and invalidate all the buffer cache. This step is highly
system-dependent; usually there is a procedure that an administrator can exe-
cute1 to do this, or a vendor-supplied library offers an option for it.

2. Write a file of size S to the local disk. The maximum file size equals the amount
of memory. S should start at a very small size and be increased with every
iteration of this loop until it equals the system’s memory size.

3. Sync the cache so that there are no flush operations in the background (but
the cache is still filled). This can usually be done by the standard UNIX sync

command.

4. Run identical vector triad benchmarks on each core separately, using appropri-
ate affinity mechanisms (see Appendix A). The aggregate size of all working
sets should equal half of the node’s memory. Report overall performance in
MFlops/sec versus file size S (which equals the buffer cache size here).

The results are shown in Figure 8.9. On the UMA node, the buffer cache has certainly
no impact at all as there is no concept of locality. On the other hand, the ccNUMA
system shows a strong performance breakdown with growing file size and hits rock

1On a current Linux OS, this can be done by executing the command echo 1 >

/proc/sys/vm/drop_caches. SGI Altix systems provide the bcfree command, which serves a
similar purpose.

196 Introduction to High Performance Computing for Scientists and Engineers

bottom when one LD is completely filled with buffer cache (at around 2 GB): This
is when all the memory pages that were initialized by the triad loops in LD0 had to
be mapped to LD1. Not surprisingly, if the file gets even larger, performance starts
rising again because one locality domain is too small to hold even the buffer cache.
If the file size equals the memory size (4 GB), parallel first touch tosses cache pages
as needed and hence works as usual.

There are several lessons to be learned from this experiment. Most importantly it
demonstrates that locality issues on ccNUMA are neither restricted to OpenMP (or
generally, shared memory parallel) programs, nor is correct first touch a guarantee
for getting “perfect” scalability. The buffer cache could even be a remnant from a
previous job run by another user. Ideally there should be a way in production HPC
environments to automatically “toss” the buffer cache whenever a production job fin-
ishes in order to leave a “clean” machine for the next user. As a last resort, if there are
no user-level tools, and system administrators have not given this issue due attention,
the normal user without special permissions can always execute a “sweeper” code,
which allocates and initializes all memory:

1 double precision, allocatable, dimension(:) :: A

2 double precision :: tmp

3 integer(kind=8) :: i

4 integer(kind=8), parameter :: SIZE = SIZE_OF_MEMORY_IN_DOUBLES

5 allocate A(SIZE)

6 tmp=0.d0

7 ! touch all pages

8 !$OMP PARALLEL DO

9 do i=1, SIZE

10 A(i) = SQRT(DBLE(i)) ! dummy values

11 enddo

12 !$OMP END PARALLEL DO

13 ! actually use the result

14 !$OMP PARALLEL DO

15 do i=1,SIZE

16 tmp = tmp + A(i)*A(1)

17 enddo

18 !$OMP END PARALLEL DO

19 print *,tmp

This code could also be used as part of a user application to toss buffer cache that was
filled by I/O from the running program (this pertains to reading and writing alike).
The second loop serves the sole purpose of preventing the compiler from optimizing
away the first because it detects that A is never actually used. Parallelizing the loops
is of course optional but can speed up the whole process. Note that, depending on
the actual amount of memory and the number of “dirty” file cache blocks, this proce-
dure could take a considerable amount of time: In the worst case, nearly all of main
memory has to be written to disk.

Buffer cache and the resulting locality problems are one reason why performance
results for parallel runs on clusters of ccNUMA nodes tend to show strong fluctua-
tions. If many nodes are involved, a large buffer cache on only one of them can
hamper the performance of the whole parallel application. It is the task of system ad-

Locality optimizations on ccNUMA architectures 197

ministrators to exploit all options available for a given environment in order to lessen
the impact of buffer cache. For instance, some systems allow to configure the strat-
egy under which cache pages are kept, giving priority to local memory requirements
and tossing buffer cache as needed.

8.4 ccNUMA issues with C++

Locality of memory access as shown above can often be implemented in lan-
guages like Fortran or C once the basic memory access patterns have been identified.
Due to its object-oriented features, however, C++ is another matter entirely [C100,
C101]. In this section we want to point out the most relevant pitfalls when using
OpenMP-parallel C++ code on ccNUMA systems.

8.4.1 Arrays of objects

The most basic problem appears when allocating an array of objects of type D us-
ing the standard new[] operator. For simplicity, we choose D to be a simple wrapper
around double with all the necessary overloaded operators to make it look and be-
have like the basic type:

1 class D {

2 double d;

3 public:

4 D(double _d=0.0) throw() : d(_d) {}

5 ~D() throw() {}

6 inline D& operator=(double _d) throw() {d=_d; return *this;}

7 friend D operator+(const D&, const D&) throw();

8 friend D operator*(const D&, const D&) throw();

9 ...

10 };

Assuming correct implementation of all operators, the only difference between D

and double should be that instantiation of an object of type D leads to immediate
initialization, which is not the case for doubles, i.e., in a=new D[N], memory
allocation takes place as usual, but the default constructor gets called for each array
member. Since new knows nothing about NUMA, these calls are all done by the
thread executing new. As a consequence, all the data ends up in that thread’s local
memory. One way around this would be a default constructor that does not touch the
member, but this is not always possible or desirable.

One should thus first map the memory pages that will be used for the array data
to the correct nodes so that access becomes local for each thread, and then call the
constructors to initialize the objects. This could be accomplished by placement new,
where the number of objects to be constructed as well as the exact memory (base)
address of their instantiation is specified. Placement new does not call any construc-
tors, though. A simple way around the effort of using placement new is to overload

198 Introduction to High Performance Computing for Scientists and Engineers

D::operator new[]. This operator has the sole responsibility to allocate “raw”
memory. An overloaded version can, in addition to memory allocation, initialize the
pages in parallel for good NUMA placement (we ignore the requirement to throw
std::bad_alloc on failure):

1 void* D::operator new[](size_t n) {

2 char *p = new char[n]; // allocate

3 size_t i,j;

4 #pragma omp parallel for private(j) schedule(runtime)

5 for(i=0; i<n; i += sizeof(D))

6 for(j=0; j<sizeof(D); ++j)

7 p[i+j] = 0;

8 return p;

9 }

10

11 void D::operator delete[](void* p) throw() {

12 delete [] static_cast<char*>p;

13 }

Construction of all objects in an array at their correct positions is then done automat-
ically by the C++ runtime, using placement new. Note that the C++ runtime usually
requests a little more space than would be needed by the aggregated object sizes,
which is used for storing administrative information alongside the actual data. Since
the amount of data is small compared to NUMA-relevant array sizes, there is no
noticeable effect.

Overloading operator new[] works for simple cases like class D above.
Dynamic members are problematic, however, because their NUMA locality cannot
be easily controlled:

1 class E {

2 size_t s;

3 std::vector<double> *v;

4 public:

5 E(size_t _s=100) : s(_s), v(new std::vector<double>(s)) {}

6 ~E() { delete [] v; }

7 ...

8 };

E’s constructor initializes E::s and E::v, and these would be the only data items
subject to NUMA placement by an overloaded E::operator new[] upon con-
struction of an array of E. The memory addressed by E::v is not handled by this
mechanism; in fact, the std::vector<double> is preset upon construction in-
side STL using copies of the object double(). This happens in the C++ runtime
after E::operator new[] was executed. All the memory will be mapped into a
single locality domain.

Avoiding this situation is hardly possible with standard C++ and STL constructs
if one insists on constructing arrays of objects with new[]. The best advice is to call
object constructors explicitly in a loop and to use a vector for holding pointers only:

1 std::vector<E*> v_E(n);

2

Locality optimizations on ccNUMA architectures 199

3 #pragma omp parallel for schedule(runtime)

4 for(size_t i=0; i<v_E.size(); ++i) {

5 v_E[i] = new E(100);

6 }

Since now the class constructor is called from different threads concurrently, it must
be thread safe.

8.4.2 Standard Template Library

C-style array handling as shown in the previous section is certainly discouraged
for C++; the STL std::vector<> container is much safer and more convenient,
but has its own problems with ccNUMA page placement. Even for simple data types
like double, which have a trivial default constructor, placement is problematic
since, e.g., the allocated memory in a std::vector<>(int) object is filled with
copies of value_type() using std::uninitialized_fill(). The design
of a dedicated NUMA-aware container class would probably allow for more ad-
vanced optimizations, but STL defines a customizable abstraction layer called allo-

cators that can effectively encapsulate the low-level details of a container’s memory
management. By using this facility, correct NUMA placement can be enforced in
many cases for std::vector<> with minimal changes to an existing program
code.

STL containers have an optional template argument by which one can specify the
allocator class to use [C102, C103]. By default, this is std::allocator<T>. An
allocator class provides, among others, the methods (class namespace omitted):

1 pointer allocate(size_type, const void *=0);

2 void deallocate(pointer, size_type);

Here size_type is size_t, and pointer is T*. The allocate() method
gets called by the container’s constructor to set up memory in much the same way
as operator new[] for an array of objects. However, since all relevant supple-
mentary information is stored in additional member variables, the number of bytes
to allocate matches the space required by the container’s contents only, at least on
initial construction (see below). The second parameter to allocate() can sup-
ply additional information to the allocator, but its semantics are not standardized.
deallocate() is responsible for freeing the allocated memory again.

The simplest NUMA-aware allocator would take care that allocate() not
only allocates memory but initializes it in parallel. For reference, Listing 8.1 shows
the code of a simple NUMA-friendly allocator, using standard malloc() for al-
location. In line 19 the OpenMP API function omp_in_parallel() is used to
determine whether the allocator was called from an active parallel region. If it was,
the initialization loop is skipped. To use the template, it must be specified as the
second template argument whenever a std::vector<> object is constructed:

1 vector<double, NUMA_Allocator<double> > v(length);

200 Introduction to High Performance Computing for Scientists and Engineers

Listing 8.1: A NUMA allocator template. The implementation is somewhat simplified from
the requirements in the C++ standard.

1 template <class T> class NUMA_Allocator {

2 public:

3 typedef T* pointer;

4 typedef const T* const_pointer;

5 typedef T& reference;

6 typedef const T& const_reference;

7 typedef size_t size_type;

8 typedef T value_type;

9

10 NUMA_Allocator() { }

11 NUMA_Allocator(const NUMA_Allocator& _r) { }

12 ~NUMA_Allocator() { }

13

14 // allocate raw memory including page placement

15 pointer allocate(size_type numObjects,

16 const void *localityHint=0) {

17 size_type len = numObjects * sizeof(value_type);

18 char *p = static_cast<char*>(std::malloc(len));

19 if(!omp_in_parallel()) {

20 #pragma omp parallel for schedule(runtime) private(ofs)

21 for(size_type i=0; i<len; i+=sizeof(value_type)) {

22 for(size_type j=0; j<sizeof(value_type); ++j) {

23 p[i+j]=0;

24 }

25 }

26 return static_cast<pointer>(m);

27 }

28

29 // free raw memory

30 void deallocate(pointer ptrToMemory, size_type numObjects) {

31 std::free(ptrToMemory);

32 }

33

34 // construct object at given address

35 void construct(pointer p, const value_type& x) {

36 new(p) value_type(x);

37 }

38

39 // destroy object at given address

40 void destroy(pointer p) {

41 p-> value_type();

42 }

43

44 private:

45 void operator=(const NUMA_Allocator&) {}

46 };

Locality optimizations on ccNUMA architectures 201

What follows after memory allocation is pretty similar to the array-of-objects
case, and has the same restrictions: The allocator’s construct() method is called
For each of the objects, and uses placement new to construct each object at the
correct address (line 36). Upon destruction, each object’s destructor is called ex-
plicitly (one of the rare cases where this is necessary) via the destroy() method
in line 41. Note that container construction and destruction are not the only places
where construct() and destroy() are invoked, and that there are many things
which could destroy NUMA locality immediately. For instance, due to the concept
of container size versus capacity, calling std::vector<>::push_back() just
once on a “filled” container reallocates all memory plus a significant amount more,
and copies the original objects to their new locations. The NUMA allocator will per-
form first-touch placement, but it will do so using the container’s new capacity, not its
size. As a consequence, placement will almost certainly be suboptimal. One should
keep in mind that not all the functionality of std::vector<> is suitable to use
in a ccNUMA environment. We are not even talking about the other STL containers
(deque, list, map, set, etc.).

Incidentally, standard-compliant allocator objects of the same type must always
compare as equal [C102]:

1 template <class T>

2 inline bool operator==(const NUMA_Allocator<T>&,

3 const NUMA_Allocator<T>&) { return true; }

4 template <class T>

5 inline bool operator!=(const NUMA_Allocator<T>&,

6 const NUMA_Allocator<T>&) { return false; }

This has the important consequence that an allocator object is necessarily state-
less, ruling out some optimizations one may think of. A template specialization for
T=void must also be provided (not shown here). These and other peculiarities are
discussed in the literature. More sophisticated strategies than using plain malloc()
do of course exist.

In summary we must add that the methods shown here are useful for outfitting
existing C++ programs with some ccNUMA awareness without too much hassle.
Certainly a newly designed code should be parallelized with ccNUMA in mind from
the start.

Problems

For solutions see page 303 ff.

8.1 Dynamic scheduling and ccNUMA. When a memory-bound, OpenMP-parallel
code runs on all sockets of a ccNUMA system, one should use static scheduling
and initialize the data in parallel to make sure that memory accesses are mostly
local. We want to analyze what happens if static scheduling is not a option, e.g.,
for load balancing reasons.

202 Introduction to High Performance Computing for Scientists and Engineers

For a system with two locality domains, calculate the expected performance
impact of dynamic scheduling on a memory-bound parallel loop. Assume for
simplicity that there is exactly one thread (core) running per LD. This thread is
able to saturate the local or any remote memory bus with some performance p.
The inter-LD network should be infinitely fast, i.e., there is no penalty for non-
local transfers and no contention effects on the inter-LD link. Further assume
that all pages are homogeneously distributed throughout the system and that
dynamic scheduling is purely statistical (i.e., each thread accesses all LDs in
a random manner, with equal probability). Finally, assume that the chunksize
is large enough so that there are no bad effects from hardware prefetching or
partial cache line use.

The code’s performance with static scheduling and perfect load balance would
be 2p. What is the expected performance under dynamic scheduling (also with
perfect load balance)?

8.2 Unfortunate chunksizes. What could be possible reasons for the performance
breakdown at chunksizes between 16 and 256 for the parallel vector triad on a
four-LD ccNUMA machine (Figure 8.7)? Hint: Memory pages play a decisive
role here.

8.3 Speeding up “small” jobs. If a ccNUMA system is sparsely utilized, e.g., if
there are less threads than locality domains, and they all execute (memory-
bound) code, is the first touch policy still the best strategy for page placement?

8.4 Triangular matrix-vector multiplication. Parallelize a triangular matrix-vector
multiplication using OpenMP:

1 do r=1,N

2 do c=1,r

3 y(r) = y(r) + a(c,r) * x(c)

4 enddo

5 enddo

What is the central parallel performance issue here? How can it be solved in
general, and what special precautions are necessary on ccNUMA systems?
You may ignore the standard scalar optimizations (unrolling, blocking).

8.5 NUMA placement by overloading. In Section 8.4.1 we enforced NUMA place-
ment for arrays of objects of type D by overloading D::operator new[].
A similar thing was done in the NUMA-aware allocator class (Listing 8.1).
Why did we use a loop nest for memory initialization instead of a single loop
over i?

Chapter 9

Distributed-memory parallel programming
with MPI

Ever since parallel computers hit the HPC market, there was an intense discussion
about what should be an appropriate programming model for them. The use of ex-
plicit message passing (MP), i.e., communication between processes, is surely the
most tedious and complicated but also the most flexible parallelization method. Paral-
lel computer vendors recognized the wish for efficient message-passing facilities, and
provided proprietary, i.e., nonportable libraries up until the early 1990s. At that point
in time it was clear that a joint standardization effort was required to enable scientific
users to write parallel programs that were easily portable between platforms. The re-
sult of this effort was MPI, the Message Passing Interface. Today, the MPI standard
is supported by several free and commercial implementations [W125, W126, W127],
and has been extended several times. It contains not only communication routines,
but also facilities for efficient parallel I/O (if supported by the underlying hardware).
An MPI library is regarded as a necessary ingredient in any HPC system installation,
and numerous types of interconnect are supported.

The current MPI standard in version 2.2 (to which we always refer in this book)
defines over 500 functions, and it is beyond the scope of this book to even try to cover
them all. In this chapter we will concentrate on the important concepts of message
passing and MPI in particular, and provide some knowledge that will enable the
reader to consult more advanced textbooks [P13, P14] or the standard document
itself [W128, P15].

9.1 Message passing

Message passing is required if a parallel computer is of the distributed-memory
type, i.e., if there is no way for one processor to directly access the address space
of another. However, it can also be regarded as a programming model and used
on shared-memory or hybrid systems as well (see Chapter 4 for a categorization).
MPI, the nowadays dominating message-passing standard, conforms to the follow-
ing rules:

• The same program runs on all processes (Single Program Multiple Data, or
SPMD). This is no restriction compared to the more general MPMD (Multiple
Program Multiple Data) model as all processes taking part in a parallel calcu-

203

204 Introduction to High Performance Computing for Scientists and Engineers

lation can be distinguished by a unique identifier called rank (see below). Most
modern MPI implementations allow starting different binaries in different pro-
cesses, however. An MPMD-style message passing library is PVM, the Parallel
Virtual Machine [P16]. Since it has waned in importance in recent years, it will
not be covered here.

• The program is written in a sequential language like Fortran, C or C++. Data
exchange, i.e., sending and receiving of messages, is done via calls to an ap-
propriate library.

• All variables in a process are local to this process. There is no concept of
shared memory.

One should add that message passing is not the only possible programming paradigm
for distributed-memory machines. Specialized languages like High Performance For-
tran (HPF), Co-Array Fortran (CAF) [P17], Unified Parallel C (UPC) [P18], etc.,
have been created with support for distributed-memory parallelization built in, but
they have not developed a broad user community and it is as yet unclear whether
those approaches can match the efficiency of MPI.

In a message passing program, messages carry data between processes. Those
processes could be running on separate compute nodes, or different cores inside a
node, or even on the same processor core, time-sharing its resources. A message
can be as simple as a single item (like a DP word) or even a complicated structure,
perhaps scattered all over the address space. For a message to be transmitted in an
orderly manner, some parameters have to be fixed in advance:

• Which process is sending the message?

• Where is the data on the sending process?

• What kind of data is being sent?

• How much data is there?

• Which process is going to receive the message?

• Where should the data be left on the receiving process?

• What amount of data is the receiving process prepared to accept?

All MPI calls that actually transfer data have to specify those parameters in some
way. Note that above parameters strictly relate to point-to-point communication,
where there is always exactly one sender and one receiver. As we will see, MPI sup-
ports much more than just sending a single message between two processes; there is
a similar set of parameters for those more complex cases as well.

MPI is a very broad standard with a huge number of library routines. Fortunately,
most applications merely require less than a dozen of those.

Distributed-memory parallel programming with MPI 205

Listing 9.1: A very simple, fully functional “Hello World” MPI program in Fortran 90.

1 program mpitest

2

3 use MPI

4

5 integer :: rank, size, ierror

6

7 call MPI_Init(ierror)

8 call MPI_Comm_size(MPI_COMM_WORLD, size, ierror)

9 call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierror)

10

11 write(*,*) ’Hello World, I am ’,rank,’ of ’,size

12

13 call MPI_Finalize(ierror)

14 end

9.2 A short introduction to MPI

9.2.1 A simple example

MPI is always available as a library. In order to compile and link an MPI program,
compilers and linkers need options that specify where include files (i.e., C headers
and Fortran modules) and libraries can be found. As there is considerable variation
in those locations among installations, most MPI implementations provide compiler
wrapper scripts (often called mpicc, mpif77, etc.), which supply the required op-
tions automatically but otherwise behave like “normal” compilers. Note that the way
that MPI programs should be compiled and started is not fixed by the standard, so
please consult the system documentation by all means.

Listing 9.1 shows a simple “Hello World”-type MPI program in Fortran 90. (See
Listing 9.2 for a C version. We will mostly stick to the Fortran MPI bindings, and
only describe the differences to C where appropriate. Although there are C++ bind-
ings defined by the standard, they are of limited usefulness and will thus not be
covered here. In fact, they are deprecated as of MPI 2.2.) In line 3, the MPI mod-
ule is loaded, which provides required globals and definitions (the preprocessor is
used to read in the mpi.h header in C; there is an equivalent header file for Fortran
77 called mpif.h). All Fortran MPI calls take an INTENT(OUT) argument, here
called ierror, which transports information about the success of the MPI operation
to the user code, a value of MPI_SUCCESS meaning that there were no errors. In C,
the return code is used for that, and the ierror argument does not exist. Since fail-
ure resiliency is not built into the MPI standard today and checkpoint/restart features
are usually implemented by the user code anyway, the error code is rarely used at all
in practice.

The first statement, apart from variable declarations, in any MPI code should be

206 Introduction to High Performance Computing for Scientists and Engineers

Listing 9.2: A very simple, fully functional “Hello World” MPI program in C.

1 #include <stdio.h>

2 #include <mpi.h>

3

4 int main(int argc, char** argv) {

5 int rank, size;

6

7 MPI_Init(&argc, &argv);

8 MPI_Comm_size(MPI_COMM_WORLD, &size);

9 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

10

11 printf("Hello World, I am %d of %d\n", rank, size);

12

13 MPI_Finalize();

14 return 0;

15 }

a call to MPI_Init(). This initializes the parallel environment (line 7). If thread
parallelism of any kind is used together with MPI, calling MPI_Init() is not suf-
ficient. See Section 11 for details.

The MPI bindings for the C language follow the case-sensitive name pattern
MPI_Xxxxx..., while Fortran is case-insensitive, of course. In contrast to Fortran,
the C binding for MPI_Init() takes pointers to the main() function’s arguments
so that the library can evaluate and remove any additional command line arguments
that may have been added by the MPI startup process.

Upon initialization, MPI sets up the so-called world communicator, which is
called MPI_COMM_WORLD. A communicator defines a group of MPI processes that
can be referred to by a communicator handle. The MPI_COMM_WORLD handle de-
scribes all processes that have been started as part of the parallel program. If required,
other communicators can be defined as subsets of MPI_COMM_WORLD. Nearly all
MPI calls require a communicator as an argument.

The calls to MPI_Comm_size() and MPI_Comm_rank() in lines 8 and 9
serve to determine the number of processes (size) in the parallel program and
the unique identifier (rank) of the calling process, respectively. Note that the C
bindings require output arguments (like rank and size above) to be specified as
pointers. The ranks in a communicator, in this case MPI_COMM_WORLD, are con-
secutive, starting from zero. In line 13, the parallel program is shut down by a call
to MPI_Finalize(). Note that no MPI process except rank 0 is guaranteed to
execute any code beyond MPI_Finalize().

In order to compile and run the source code in Listing 9.1, a “common” imple-
mentation may require the following steps:

1 $ mpif90 -O3 -o hello.exe hello.F90

2 $ mpirun -np 4 ./hello.exe

This would compile the code and start it with four processes. Be aware that pro-

Distributed-memory parallel programming with MPI 207

MPI type Fortran type

MPI_CHAR CHARACTER(1)

MPI_INTEGER INTEGER

MPI_REAL REAL

MPI_DOUBLE_PRECISION DOUBLE PRECISION

MPI_COMPLEX COMPLEX

MPI_LOGICAL LOGICAL

MPI_BYTE N/A

Table 9.1: Standard MPI data types for Fortran.

cessors may have to be allocated from some resource management (batch) system
before parallel programs can be launched. How exactly MPI processes are started
is entirely up to the implementation. Ideally, the start mechanism uses the resource
manager’s infrastructure (e.g., daemons running on all nodes) to launch processes.
The same is true for process-to-core affinity; if the MPI implementation provides no
direct facilities for affinity control, the methods described in Appendix A may be
employed.

The output of this program could look as follows:

1 Hello World, I am 3 of 4

2 Hello World, I am 0 of 4

3 Hello World, I am 2 of 4

4 Hello World, I am 1 of 4

Although the stdout and stderr streams of MPI programs are usually redirected
to the terminal where the program was started, the order in which outputs from dif-
ferent ranks will arrive there is undefined if the ordering is not enforced by other
means.

9.2.2 Messages and point-to-point communication

The “Hello World” example did not contain any real communication apart from
starting and stopping processes. An MPI message is defined as an array of elements
of a particular MPI data type. Data types can either be basic types (corresponding to
the standard types that every programming language knows) or derived types, which
must be defined by appropriate MPI calls. The reason why MPI needs to know the
data types of messages is that it supports heterogeneous environments where it may
be necessary to do on-the-fly data conversions. For any message transfer to proceed,
the data types on sender and receiver sides must match. See Tables 9.1 and 9.2 for
nonexhaustive lists of available MPI data types in Fortran and C, respectively.

If there is exactly one sender and one receiver we speak of point-to-point commu-

nication. Both ends are identified uniquely by their ranks. Each point-to-point mes-
sage can carry an additional integer label, the so-called tag, which may be used to
identify the type of a message, and which must match on both ends. It may carry

208 Introduction to High Performance Computing for Scientists and Engineers

MPI type C type

MPI_CHAR signed char

MPI_INT signed int

MPI_LONG signed long

MPI_FLOAT float

MPI_DOUBLE double

MPI_BYTE N/A

Table 9.2: A selection of the standard MPI data types for C. Unsigned variants exist where
applicable.

any accompanying information, or just be set to some constant value if it is not
needed. The basic MPI function to send a message from one process to another is
MPI_Send():

1 <type> buf(*)

2 integer :: count, datatype, dest, tag, comm, ierror

3 call MPI_Send(buf, ! message buffer

4 count, ! # of items

5 datatype, ! MPI data type

6 dest, ! destination rank

7 tag, ! message tag (additional label)

8 comm, ! communicator

9 ierror) ! return value

The data type of the message buffer may vary; the MPI interfaces and prototypes
declared in modules and headers accommodate this.1 A message may be received
with the MPI_Recv() function:

1 <type> buf(*)

2 integer :: count, datatype, source, tag, comm,

3 integer :: status(MPI_STATUS_SIZE), ierror

4 call MPI_Recv(buf, ! message buffer

5 count, ! maximum # of items

6 datatype, ! MPI data type

7 source, ! source rank

8 tag, ! message tag (additional label)

9 comm, ! communicator

10 status, ! status object (MPI_Status* in C)

11 ierror) ! return value

Compared with MPI_Send(), this function has an additional output argument,
the status object. After MPI_Recv() has returned, the status object can be
used to determine parameters that have not been fixed by the call’s arguments. Pri-
marily, this pertains to the length of the message, because the count parameter is

1While this is no problem in C/C++, where the void* pointer type conveniently hides any variation
in the argument type, the Fortran MPI bindings are explicitly inconsistent with the language standard.
However, this can be tolerated in most cases. See the standard document [P15] for details.

Distributed-memory parallel programming with MPI 209

only a maximum value at the receiver side; the message may be shorter than count
elements. The MPI_Get_count() function can retrieve the real number:

1 integer :: status(MPI_STATUS_SIZE), datatype, count, ierror

2 call MPI_Get_count(status, ! status object from MPI_Recv()

3 datatype, ! MPI data type received

4 count, ! count (output argument)

5 ierror) ! return value

However, the status object also serves another purpose.The source and tag ar-
guments of MPI_Recv() may be equipped with the special constants (“wildcards”)
MPI_ANY_SOURCE and MPI_ANY_TAG, respectively. The former specifies that
the message may be sent by anyone, while the latter determines that the message tag
should not matter. After MPI_Recv() has returned, status(MPI_SOURCE) and
status(MPI_TAG) contain the sender’s rank and the message tag, respectively.
(In C, the status object is of type struct MPI_Status, and access to source
and tag information works via the “.” operator.)

Note that MPI_Send() and MPI_Recv() have blocking semantics, meaning
that the buffer can be used safely after the function returns (i.e., it can be modified
after MPI_Send() without altering any message in flight, and one can be sure that
the message has been completely received after MPI_Recv()). This is not to be
confused with synchronous behavior; see below for details.

Listing 9.3 shows an MPI program fragment for computing an integral over some
function f(x) in parallel. In contrast to the OpenMP version in Listing 6.2, the dis-
tribution of work among processes must be handled manually in MPI. Each MPI
process gets assigned a subinterval of the integration domain according to its rank
(lines 9 and 10), and some other function integrate(), which may look simi-
lar to Listing 6.2, can then perform the actual integration (line 13). After that each
process holds its own partial result, which should be added to get the final inte-
gral. This is done at rank 0, who executes a loop over all ranks from 1 to size−1
(lines 18–29), receiving the local integral from each rank in turn via MPI_Recv()
(line 19) and accumulating the result in res (line 28). Each rank apart from 0
has to call MPI_Send() to transmit the data. Hence, there are size− 1 send
and size− 1 matching receive operations. The data types on both sides are spec-
ified to be MPI_DOUBLE_PRECISION, which corresponds to the usual double
precision type in Fortran (cf. Table 9.1). The message tag is not used here, so we
set it to zero.

This simple program could be improved in several ways:

• MPI does not preserve the temporal order of messages unless they are trans-
mitted between the same sender/receiver pair (and with the same tag). Hence,
to allow the reception of partial results at rank 0 without delay due to different
execution times of the integrate() function, it may be better to use the
MPI_ANY_SOURCE wildcard instead of a definite source rank in line 23.

• Rank 0 does not call MPI_Recv() before returning from its own execution
of integrate(). If other processes finish their tasks earlier, communica-
tion cannot proceed, and it cannot be overlapped with computation. The MPI

210 Introduction to High Performance Computing for Scientists and Engineers

Listing 9.3: Program fragment for parallel integration in MPI.

1 integer, dimension(MPI_STATUS_SIZE) :: status

2 call MPI_Comm_size(MPI_COMM_WORLD, size, ierror)

3 call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierror)

4

5 ! integration limits

6 a=0.d0 ; b=2.d0 ; res=0.d0

7

8 ! limits for "me"

9 mya=a+rank*(b-a)/size

10 myb=mya+(b-a)/size

11

12 ! integrate f(x) over my own chunk - actual work

13 psum = integrate(mya,myb)

14

15 ! rank 0 collects partial results

16 if(rank.eq.0) then

17 res=psum

18 do i=1,size-1

19 call MPI_Recv(tmp, & ! receive buffer

20 1, & ! array length

21 ! data type

22 MPI_DOUBLE_PRECISION,&

23 i, & ! rank of source

24 0, & ! tag (unused here)

25 MPI_COMM_WORLD,& ! communicator

26 status,& ! status array (msg info)

27 ierror)

28 res=res+tmp

29 enddo

30 write(*,*) ’Result: ’,res

31 ! ranks != 0 send their results to rank 0

32 else

33 call MPI_Send(psum, & ! send buffer

34 1, & ! message length

35 MPI_DOUBLE_PRECISION,&

36 0, & ! rank of destination

37 0, & ! tag (unused here)

38 MPI_COMM_WORLD,ierror)

39 endif

Distributed-memory parallel programming with MPI 211

Send
Recv

Send
Recv

Send
Recv

Send
Recv

Send
Recv

Send
Recv

0 5

4

32

1

Figure 9.1: A ring shift communication pattern. If sends and receives are performed in the
order shown, a deadlock can occur because MPI_Send() may be synchronous.

standard provides nonblocking point-to-point communication facilities that al-
low multiple outstanding receives (and sends), and even let implementations
support asynchronous messages. See Section 9.2.4 for more information.

• Since the final result is needed at rank 0, this process is necessarily a commu-
nication bottleneck if the number of messages gets large. In Section 10.4.4 we
will demonstrate optimizations that can significantly reduce communication
overhead in those situations. Fortunately, nobody is required to write explicit
code for this. In fact, the global sum is an example for a reduction operation

and is well supported within MPI (see Section 9.2.3). Vendor implementations
are assumed to provide optimized versions of such global operations.

While MPI_Send() is easy to use, one should be aware that the MPI standard
allows for a considerable amount of freedom in its actual implementation. Internally
it may work completely synchronously, meaning that the call can not return to the
user code before a message transfer has at least started after a handshake with the
receiver. However, it may also copy the message to an intermediate buffer and return
right away, leaving the handshake and data transmission to another mechanism, like
a background thread. It may even change its behavior depending on any explicit
or hidden parameters. Apart from a possible performance impact, deadlocks may
occur if the possible synchronousness of MPI_Send() is not taken into account. A
typical communication pattern where this may become crucial is a “ring shift” (see
Figure 9.1). All processes form a closed ring topology, and each first sends a message
to its “left-hand” and then receives a message from its “right-hand” neighbor:

1 integer :: size, rank, left, right, ierror

2 integer, dimension(N) :: buf

3 call MPI_Comm_size(MPI_COMM_WORLD, size, ierror)

4 call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierror)

5 left = rank+1 ! left and right neighbors

6 right = rank-1

7 if(right<0) right=size-1 ! close the ring

8 if(left>=size) left=0

9 call MPI_Send(buf, N, MPI_INTEGER, left, 0, &

10 MPI_COMM_WORLD,ierror)

11 call MPI_Recv(buf,N,MPI_INTEGER,right,0, &

12 MPI_COMM_WORLD,status,ierror)

212 Introduction to High Performance Computing for Scientists and Engineers

Recv
Send

Send
Recv

Send
Recv

Recv
Send

Send
Recv

Recv
Send

0 5

4

32

1

Figure 9.2: A possible solution for the deadlock problem with the ring shift: By changing
the order of MPI_Send() and MPI_Recv() on all odd-numbered ranks, pairs of processes
can communicate without deadlocks because there is now a matching receive for every send
operation (dashed boxes).

If MPI_Send() is synchronous, all processes call it first and then wait forever un-
til a matching receive gets posted. However, it may well be that the ring shift runs
without problems if the messages are sufficiently short. In fact, most MPI implemen-
tations provide a (small) internal buffer for short messages and switch to synchronous
mode when the buffer is full or too small (the situation is actually a little more com-
plex in reality; see Sections 10.2 and 10.3 for details). This may lead to sporadic
deadlocks, which are hard to spot. If there is some suspicion that a sporadic deadlock
is triggered by MPI_Send() switching to synchronous mode, one can substitute all
occurrences of MPI_Send() by MPI_Ssend(), which has the same interface but
is synchronous by definition.

A simple solution to this deadlock problem is to interchange the MPI_Send()
and MPI_Recv() calls on, e.g., all odd-numbered processes, so that there is a
matching receive for every send executed (see Figure 9.2). Lines 9–12 in the code
above should thus be replaced by:

1 if(MOD(rank,2)/=0) then

2 call MPI_Recv(buf,N,MPI_INTEGER,right,0, & ! odd rank

3 MPI_COMM_WORLD,status,ierror)

4 call MPI_Send(buf, N, MPI_INTEGER, left, 0, &

5 MPI_COMM_WORLD,ierror)

6 else

7 call MPI_Send(buf, N, MPI_INTEGER, left, 0, & ! even rank

8 MPI_COMM_WORLD,ierror)

9 call MPI_Recv(buf,N,MPI_INTEGER,right,0, &

10 MPI_COMM_WORLD,status,ierror)

11 endif

After the messages sent by the even ranks have been transmitted, the remaining
send/receive pairs can be matched as well. This solution does not exploit the full
bandwidth of a nonblocking network, however, because only half the possible com-
munication links can be active at any time (at least if MPI_Send() is really syn-
chronous). A better alternative is the use of nonblocking communication. See Sec-
tion 9.2.4 for more information, and Problem 9.1 for some more aspects of the ring
shift pattern.

Distributed-memory parallel programming with MPI 213

Since ring shifts and similar patterns are so ubiquitous, MPI has some direct
support for them even with blocking communication. The MPI_Sendrecv() and
MPI_Sendrecv_replace() routines combine the standard send and receive in
one call, the latter using a single communication buffer in which the received mes-
sage overwrites the data sent. Both routines are guaranteed to not be subject to the
deadlock effects that occur with separate send and receive.

Finally we should add that there is also a blocking send routine that is guaranteed
to return to the user code, regardless of the state of the receiver (MPI_Bsend()).
However, the user must explicitly provide sufficient buffer space at the sender. It is
rarely employed in practice because nonblocking communication is much easier to
use (see Section 9.2.4).

9.2.3 Collective communication

The accumulation of partial results as shown above is an example for a reduc-

tion operation, performed on all processes in the communicator. Reductions have
been introduced already with OpenMP (see Section 6.1.5), where they have the same
purpose. MPI, too, has mechanisms that make reductions much simpler and in most
cases more efficient than looping over all ranks and collecting results. Since a reduc-
tion is a procedure which all ranks in a communicator participate in, it belongs to the
so-called collective, or global communication operations in MPI. Collective com-
munication, as opposed to point-to-point communication, requires that every rank
calls the same routine, so it is impossible for a point-to-point message sent via, e.g.,
MPI_Send(), to match a receive that was initiated using a collective call.

The simplest collective in MPI, and one that does not actually perform any real
data transfer, is the barrier:

1 integer :: comm, ierror

2 call MPI_Barrier(comm, ! communicator

3 ierror) ! return value

The barrier synchronizes the members of the communicator, i.e., all processes must
call it before they are allowed to return to the user code. Although frequently used
by beginners, the importance of the barrier in MPI is generally overrated, because
other MPI routines allow for implicit or explicit synchronization with finer control.
It is sometimes used, though, for debugging or profiling.

A more useful collective is the broadcast. It sends a message from one process
(the “root”) to all others in the communicator:

1 <type> buf(*)

2 integer :: count, datatype, root, comm, ierror

3 call MPI_Bcast(buffer, ! send/receive buffer

4 count, ! message length

5 datatype, ! MPI data type

6 root, ! rank of root process

7 comm, ! communicator

8 ierror) ! return value

214 Introduction to High Performance Computing for Scientists and Engineers

1
root=1

Bcast

root=10

Bcast
root=13

Bcast
root=14

Bcast
root=15

Bcast
root=12

Bcast

buffer

buffer buffer buffer bufferbuffer

Figure 9.3: An MPI broadcast: The “root” process (rank 1 in this example) sends the same
message to all others. Every rank in the communicator must call MPI_Bcast() with the
same root argument.

The concept of a “root” rank, at which some general data source or sink is located, is
common to many collective routines. Although rank 0 is a natural choice for “root,”
it is in no way different from other ranks. The buffer argument to MPI_Bcast()
is a send buffer on the root and a receive buffer on any other process (see Figure 9.3).
As already mentioned, every process in the communicator must call the routine, and
of course the root argument to all those calls must be the same. A broadcast is
needed whenever one rank has information that it must share with all others; e.g.,
there may be one process that performs some initialization phase after the program
has started, like reading parameter files or command line options. This data can then
be communicated to everyone else via MPI_Bcast().

There are a number of more advanced collective calls that are concerned with
global data distribution: MPI_Gather() collects the send buffer contents of all
processes and concatenates them in rank order into the receive buffer of the root
process. MPI_Scatter() does the reverse, distributing equal-sized chunks of the
root’s send buffer. Both exist in variants (with a “v” appended to their names) that
support arbitrary per-rank chunk sizes. MPI_Allgather() is a combination of
MPI_Gather() and MPI_Bcast(). See Table 9.3 for more examples.

Coming back to the integration example above, we had stated that there is a
more effective method to perform the global reduction. This is the MPI_Reduce()
function:

1 <type> sendbuf(*), recvbuf(*)

2 integer :: count, datatype, op, root, comm, ierror

3 call MPI_Reduce(sendbuf, ! send buffer

4 recvbuf, ! receive buffer

5 count, ! number of elements

6 datatype, ! MPI data type

7 op, ! MPI reduction operator

8 root, ! root rank

9 comm, ! communicator

10 ierror) ! return value

MPI_Reduce() combines the contents of the sendbuf array on all processes,

Distributed-memory parallel programming with MPI 215

root=1
count=4
op=MPI_SUM

Reduce

root=1
count=4
op=MPI_SUM

Reduce

root=1
count=4
op=MPI_SUM

Reduce

root=1
count=4
op=MPI_SUM

Reduce
sendbuf

recvbuf

0

2

3

sendbuf

sendbuf

sendbuf

1
+ + + +

Figure 9.4: A reduction
on an array of length
count (a sum in this
example) is performed
by MPI_Reduce().
Every process must
provide a send buffer.
The receive buffer ar-
gument is only used on
the root process. The
local copy on root can
be prevented by speci-
fying MPI_IN_PLACE

instead of a send buffer
address.

element-wise, using an operator encoded by the op argument, and stores the result in
recvbuf on root (see Figure 9.4). There are twelve predefined operators, the most
important being MPI_MAX, MPI_MIN, MPI_SUM and MPI_PROD, which imple-
ment the global maximum, minimum, sum, and product, respectively. User-defined
operators are also supported.

Now it is clear that the whole if . . .else . . .endif construct between lines
16 and 39 in Listing 9.3 (apart from printing the result in line 30) could have been
written as follows:

1 call MPI_Reduce(psum, & ! send buffer (partial result)

2 res, & ! recv buffer (final result @ root)

3 1, & ! array length

4 MPI_DOUBLE_PRECISION, &

5 MPI_SUM, & ! type of operation

6 0, & ! root (accumulate result there)

7 MPI_COMM_WORLD,ierror)

Although a receive buffer (the res variable here) must be specified on all ranks,
it is only relevant (and used) on root. Note that MPI_Reduce() in its plain form
requires separate send and receive buffers on the root process. If allowed by the
program semantics, the local accumulation on root can be simplified by setting the
sendbuf argument to the special constant MPI_IN_PLACE. recvbuf is then
used as the send buffer and gets overwritten with the global result. This can be good
for performance if count is large and the additional copy operation leads to signifi-
cant overhead. The behavior of the call on all nonroot processes is unchanged.

There are a few more global operations related to MPI_Reduce()worth noting.

216 Introduction to High Performance Computing for Scientists and Engineers

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

use bufWait()Isend(buf)Main thread

Auxiliary thread

buf)

post send operation, handshake, data transfer

do other work (not using

S
Y

N
C

time

Figure 9.5: Abstract timeline view of a nonblocking send (MPI_Isend()). Whether there is
actually an auxiliary thread is not specified by the standard; the whole data transfer may take
place during MPI_Wait() or any other MPI function.

For example, MPI_Allreduce() is a fusion of a reduction with a broadcast, and
MPI_Reduce_scatter() combines MPI_Reduce()with MPI_Scatter().

Note that collectives are not required to, but still may synchronize all processes
(the barrier is synchronizing by definition, of course). They are thus prone to similar
deadlock hazards as blocking point-to-point communication (see above). This means,
e.g., that collectives must be executed by all processes in the same order. See the MPI
standard document [P15] for examples.

In general it is a good idea to prefer collectives over point-to-point constructs
or combinations of simpler collectives that “emulate” the same semantics (see also
Figures 10.15 and 10.16 and the corresponding discussion in Section 10.4.4). Good
MPI implementations are optimized for data flow on collective communication and
(should) also have some knowledge about network topology built in.

9.2.4 Nonblocking point-to-point communication

All MPI functionalities described so far have the property that the call returns to
the user program only after the message transfer has progressed far enough so that the
send/receive buffer can be used without problems. This means that, received data has
arrived completely and sent data has left the buffer so that it can be safely modified
without inadvertently changing the message. In MPI terminology, this is called block-

ing communication. Although collective communication in MPI is always blocking
in the current MPI standard (version 2.2 at the time of writing), point-to-point com-
munication can be performed with nonblocking semantics as well. A nonblocking
point-to-point call merely initiates a message transmission and returns very quickly
to the user code. In an efficient implementation, waiting for data to arrive and the
actual data transfer occur in the background, leaving resources free for computation.
Synchronization is ruled out (see Figure 9.5 for a possible timeline of events for
the nonblocking MPI_Isend() call). In other words, nonblocking MPI is a way
in which communication may be overlapped with computation if implemented effi-
ciently. The message buffer must not be used as long as the user program has not
been notified that it is safe to do so (which can be checked by suitable MPI calls).
Nonblocking and blocking MPI calls are mutually compatible, i.e., a message sent
via a blocking send can be matched by a nonblocking receive.

Distributed-memory parallel programming with MPI 217

The most important nonblocking send is MPI_Isend():

1 <type> buf(*)

2 integer :: count, datatype, dest, tag, comm, request, ierror

3 call MPI_Isend(buf, ! message buffer

4 count, ! # of items

5 datatype, ! MPI data type

6 dest, ! destination rank

7 tag, ! message tag

8 comm, ! communicator

9 request, ! request handle (MPI_Request* in C)

10 ierror) ! return value

As opposed to the blocking send (see page 208), MPI_Isend() has an additional
output argument, the request handle. It serves as an identifier by which the pro-
gram can later refer to the “pending” communication request (in C, it is of type
struct MPI_Request). Correspondingly, MPI_Irecv() initiates a nonblock-
ing receive:

1 <type> buf(*)

2 integer :: count, datatype, source, tag, comm, request, ierror

3 call MPI_Irecv(buf, ! message buffer

4 count, ! # of items

5 datatype, ! MPI data type

6 source, ! source rank

7 tag, ! message tag

8 comm, ! communicator

9 request, ! request handle

10 ierror) ! return value

The status object known from MPI_Recv() is missing here, because it is not
needed; after all, no actual communication has taken place when the call returns to
the user code. Checking a pending communication for completion can be done via the
MPI_Test() and MPI_Wait() functions. The former only tests for completion
and returns a flag, while the latter blocks until the buffer can be used:

1 logical :: flag

2 integer :: request, status(MPI_STATUS_SIZE), ierror

3 call MPI_Test(request, ! pending request handle

4 flag, ! true if request complete (int* in C)

5 status, ! status object

6 ierror) ! return value

7 call MPI_Wait(request, ! pending request handle

8 status, ! status object

9 ierror) ! return value

The status object contains useful information only if the pending communication
is a completed receive (i.e., in the case of MPI_Test() the value of flag must be
true). In this sense, the sequence

1 call MPI_Irecv(buf, count, datatype, source, tag, comm, &

2 request, ierror)

3 call MPI_Wait(request, status, ierror)

218 Introduction to High Performance Computing for Scientists and Engineers

is completely equivalent to a standard MPI_Recv().
A potential problem with nonblocking MPI is that a compiler has no way to know

that MPI_Wait() can (and usually will) modify the contents of buf. Hence, in the
following code, the compiler may consider it legal to move the final statement in line
3 before the call to MPI_Wait():

1 call MPI_Irecv(buf, ..., request, ...)

2 call MPI_Wait(request, status, ...)

3 buf(1) = buf(1) + 1

This will certainly lead to a race condition and the contents of buf may be wrong.
The inherent connection between the MPI_Irecv() and MPI_Wait() calls, me-
diated by the request handle, is invisible to the compiler, and the fact that buf is not
contained in the argument list of MPI_Wait() is sufficient to assume that the code
modification is legal. A simple way to avoid this situation is to put the variable (or
buffer) into a COMMON block, so that potentially all subroutines may modify it. See
the MPI standard [P15] for alternatives.

Multiple requests can be pending at any time, which is another great advantage
of nonblocking communication. Sometimes a group of requests belongs together in
some respect, and one would like to check not one, but any one, any number, or all
of them for completion. This can be done with suitable calls that are parameterized
with an array of handles. As an example we choose the MPI_Waitall() routine:

1 integer :: count, requests(*)

2 integer :: statuses(MPI_STATUS_SIZE,*), ierror

3 call MPI_Waitall(count, ! number of requests

4 requests, ! request handle array

5 statuses, ! statuses array (MPI_Status* in C)

6 ierror) ! return value

This call returns only after all the pending requests have been completed. The status
objects are available in array_of_statuses(:,:).

The integration example in Listing 9.3 can make use of nonblocking communi-
cation by overlapping the local interval integration on rank 0 with receiving results
from the other ranks. Unfortunately, collectives cannot be used here because there
are no nonblocking collectives in MPI. Listing 9.4 shows a possible solution. The
reduction operation has to be done manually (lines 33–35), as in the original code.
Array sizes for the status and request arrays are not known at compile time, hence
those must be allocated dynamically, as well as separate receive buffers for all ranks
except 0 (lines 11–13). The collection of partial results is performed with a single
MPI_Waitall() in line 32. Nothing needs to be changed on the nonroot ranks;
MPI_Send() is sufficient to communicate the partial results (line 39).

Nonblocking communication provides an obvious way to overlap communica-
tion, i.e., overhead, with useful work. The possible performance advantage, however,
depends on many factors, and may even be nonexistent (see Section 10.4.3 for a
discussion). But even if there is no real overlap, multiple outstanding nonblocking
requests may improve performance because the MPI library can decide which of
them gets serviced first.

Distributed-memory parallel programming with MPI 219

Listing 9.4: Program fragment for parallel integration in MPI, using nonblocking point-to-
point communication.

1 integer, allocatable, dimension(:,:) :: statuses

2 integer, allocatable, dimension(:) :: requests

3 double precision, allocatable, dimension(:) :: tmp

4 call MPI_Comm_size(MPI_COMM_WORLD, size, ierror)

5 call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierror)

6

7 ! integration limits

8 a=0.d0 ; b=2.d0 ; res=0.d0

9

10 if(rank.eq.0) then

11 allocate(statuses(MPI_STATUS_SIZE, size-1))

12 allocate(requests(size-1))

13 allocate(tmp(size-1))

14 ! pre-post nonblocking receives

15 do i=1,size-1

16 call MPI_Irecv(tmp(i), 1, MPI_DOUBLE_PRECISION, &

17 i, 0, MPI_COMM_WORLD, &

18 requests(i), ierror)

19 enddo

20 endif

21

22 ! limits for "me"

23 mya=a+rank*(b-a)/size

24 myb=mya+(b-a)/size

25

26 ! integrate f(x) over my own chunk - actual work

27 psum = integrate(mya,myb)

28

29 ! rank 0 collects partial results

30 if(rank.eq.0) then

31 res=psum

32 call MPI_Waitall(size-1, requests, statuses, ierror)

33 do i=1,size-1

34 res=res+tmp(i)

35 enddo

36 write (*,*) ’Result: ’,res

37 ! ranks != 0 send their results to rank 0

38 else

39 call MPI_Send(psum, 1, &

40 MPI_DOUBLE_PRECISION, 0, 0, &

41 MPI_COMM_WORLD,ierror)

42 endif

220 Introduction to High Performance Computing for Scientists and Engineers

Point-to-point Collective
B

lo
ck

in
g MPI_Send()

MPI_Ssend()

MPI_Bsend()

MPI_Recv()

MPI_Barrier()

MPI_Bcast()

MPI_Scatter()/
MPI_Gather()

MPI_Reduce()

MPI_Reduce_scatter()

MPI_Allreduce()

N
o
n

b
lo

ck
in

g

MPI_Isend()

MPI_Irecv()

MPI_Wait()/MPI_Test()
MPI_Waitany()/

MPI_Testany()

MPI_Waitsome()/
MPI_Testsome()

MPI_Waitall()/
MPI_Testall()

N/A

Table 9.3: MPI’s communication modes and a nonexhaustive overview of the corresponding
subroutines.

Table 9.3 gives an overview of available communication modes in MPI, and the
most important library functions.

9.2.5 Virtual topologies

We have outlined the principles of domain decomposition as an example for data
parallelism in Section 5.2.1. Using the MPI functions covered so far, it is entirely
possible to implement domain decomposition on distributed-memory parallel com-
puters. However, setting up the process grid and keeping track of which ranks have to
exchange halo data is nontrivial. Since domain decomposition is such an important
pattern, MPI contains some functionality to support this recurring task in the form
of virtual topologies. These provide a convenient process naming scheme, which
fits the required communication pattern. Moreover, they potentially allow the MPI li-
brary to optimize communications by employing knowledge about network topology.
Although arbitrary graph topologies can be described with MPI, we restrict ourselves
to Cartesian topologies here.

As an example, assume there is a simulation that handles a big double precision
array P(1:3000,1:4000) containing 3000×4000 = 1.2×107 words. The simula-
tion runs on 3×4 = 12 processes, across which the array is distributed “naturally,” i.e.,
each process holds a chunk of size 1000×1000. Figure 9.6 shows a possible Carte-
sian topology that reflects this situation: Each process can either be identified by its
rank or its Cartesian coordinates. It has a number of neighbors, which depends on

Distributed-memory parallel programming with MPI 221

0 (0,0)

2 (0,2)

4 (1,1)

5 (1,2)

3 (1,0) 6 (2,0) 9 (3,0)

10 (3,1)7 (2,1)

11 (3,2)8 (2,2)

1 (0,1)

Figure 9.6: Two-dimen-
sional Cartesian topol-
ogy: 12 processes form
a 3×4 grid, which is pe-
riodic in the second di-
mension but not in the
first. The mapping be-
tween MPI ranks and
Cartesian coordinates is
shown.

the grid’s dimensionality. In our example, the number of dimensions is two, which
leads to at most four neighbors per process. Boundary conditions on each dimension
can be closed (cyclic) or open.

MPI can help with establishing the mapping between ranks and Cartesian coordi-
nates in the process grid. First of all, a new communicator must be defined to which
the chosen topology is “attached.” This is done via the MPI_Cart_create()

function:

1 integer :: comm_old, ndims, dims(*), comm_cart, ierror

2 logical :: periods(*), reorder

3 call MPI_Cart_create(comm_old, ! input communicator

4 ndims, ! number of dimensions

5 dims, ! # of processes in each dim.

6 periods, ! periodicity per dimension

7 reorder, ! true = allow rank reordering

8 comm_cart, ! new cartesian communicator

9 ierror) ! return value

It generates a new, “Cartesian” communicator comm_cart, which can be used later
to refer to the topology. The periods array specifies which Cartesian directions are
periodic, and the reorder parameter allows, if true, for rank reordering so that the
rank of a process in communicators comm_old and comm_cart may differ. The
MPI library may choose a different ordering by using its knowledge about network
topology and anticipating that next-neighbor communication is often dominant in
a Cartesian topology. Of course, communication between any two processes is still
allowed in the Cartesian communicator.

There is no mention of the actual problem size (3000×4000) because it is entirely
the user’s job to care for data distribution. All MPI can do is keep track of the topol-
ogy information. For the topology shown in Figure 9.6, MPI_Cart_create()
could be called as follows:

1 call MPI_Cart_create(MPI_COMM_WORLD, ! standard communicator

2 2, ! two dimensions

3 (/ 4, 3 /), ! 4x3 grid

4 (/ .false., .true. /), ! open/periodic

5 .false., ! no rank reordering

222 Introduction to High Performance Computing for Scientists and Engineers

6 comm_cart, ! Cartesian communicator

7 ierror)

If the number of MPI processes is given, finding an “optimal” extension of the grid
in each direction (as needed in the dims argument to MPI_Cart_create())
requires some arithmetic, which can be offloaded to the MPI_Dims_create()
function:

1 integer :: nnodes, ndims, dims(*), ierror

2 call MPI_Dims_create(nnodes, ! number of nodes in grid

3 ndims, ! number of Cartesian dimensions

4 dims, ! input: /=0 # nodes fixed in this dir.

5 ! ==0 # calculate # nodes

6 ! output: number of nodes each dir.

7 ierror)

The dims array is both an input and an output parameter: Each entry in dims cor-
responds to a Cartesian dimension. A zero entry denotes a dimension for which
MPI_Dims_create() should calculate the number of processes, and a nonzero
entry specifies a fixed number of processes. Under those constraints, the function
determines a balanced distribution, with all ndims extensions as close together as
possible. This is optimal in terms of communication overhead only if the overall
problem grid is cubic. If this is not the case, the user is responsible for setting appro-
priate constraints, since MPI has no way to know the grid geometry.

Two service functions are responsible for the translation between Cartesian pro-
cess coordinates and an MPI rank. MPI_Cart_coords() calculates the Cartesian
coordinates for a given rank:

1 integer :: comm_cart, rank, maxdims, coords(*), ierror

2 call MPI_Cart_coords(comm_cart, ! Cartesian communicator

3 rank, ! process rank in comm_cart

4 maxdims, ! length of coords array

5 coords, ! return Cartesian coordinates

6 ierror)

(If rank reordering was allowed when producing comm_cart, a process should al-
ways obtain its rank by calling MPI_Comm_rank(comm_cart,...) first.) The
output array coords contains the Cartesian coordinates belonging to the process of
the specified rank.

This mapping function is needed whenever one deals with domain decomposi-
tion. The first information a process will obtain from MPI is its rank in the Cartesian
communicator. MPI_Cart_coords() is then required to determine the coordi-
nates so the process can calculate, e.g., which subdomain it should work on. See
Section 9.3 below for an example.

The reverse mapping, i.e., from Cartesian coordinates to an MPI rank, is per-
formed by MPI_Cart_rank():

1 integer :: comm_cart, coords(*), rank, ierror

2 call MPI_Cart_rank(comm_cart, ! Cartesian communicator

3 coords, ! Cartesian process coordinates

Distributed-memory parallel programming with MPI 223

7 (2,1)1 (0,1)

6 (2,0)3 (1,0)0 (0,0)

2 (0,2) 5 (1,2) 8 (2,2)

4 (1,1) Figure 9.7: Example for the result of
MPI_Cart_shift() on a part of
the Cartesian topology from Figure 9.6.
Executed by rank 4 with direction=0
and disp=−1, the function returns
rank_source=7 and rank_dest=1.

4 rank, ! return process rank in comm_cart

5 ierror)

Again, the return value in rank is only valid in the comm_cart communicator if
reordering was allowed.

A regular task with domain decomposition is to find out who the next neigh-
bors of a certain process are along a certain Cartesian dimension. In principle one
could start from its Cartesian coordinates, offset one of them by one (accounting for
open or closed boundary conditions) and map the result back to an MPI rank via
MPI_Cart_rank(). The MPI_Cart_shift() function does it all in one step:

1 integer :: comm_cart, direction, disp, rank_source,

2 integer :: rank_dest, ierror

3 call MPI_Cart_shift(comm_cart, ! Cartesian communicator

4 direction, ! direction of shift (0..ndims-1)

5 disp, ! displacement

6 rank_source, ! return source rank

7 rank_dest, ! return destination rank

8 ierror)

The direction parameter specifies within which Cartesian dimension the shift
should be performed, and disp determines the distance and direction (positive or
negative). rank_source and rank_dest return the “neighboring” ranks, accord-
ing to the other arguments. Figure 9.7 shows an example for a shift along the negative
first dimension, executed on rank 4 in the topology given in Figure 9.6. The source
and destination neighbors are 7 and 1, respectively. If a neighbor does not exist be-
cause it would extend beyond the grid’s boundary in a noncyclic dimension, the rank
will be returned as the special value MPI_PROC_NULL. Using MPI_PROC_NULL
as a source or destination rank in any communication call is allowed and will effec-
tively render the call a dummy statement — no actual communication will take place.
This can simplify programming because the boundaries of the grid do not have to be
treated in a special way (see Section 9.3 for an example).

224 Introduction to High Performance Computing for Scientists and Engineers

9.3 Example: MPI parallelization of a Jacobi solver

As a nontrivial example for virtual topologies and other MPI functionalities we
use a simple Jacobi solver (see Sections 3.3 and 6.2) in three dimensions. As opposed
to parallelization with OpenMP, where inserting a couple of directives was sufficient,
MPI parallelization by domain decomposition is much more complex.

9.3.1 MPI implementation

Although the basic algorithm was described in Section 5.2.1, we require some
more detail now. An annotated flowchart is shown in Figure 9.8. The central part is
still the sweep over all subdomains (step 3); this is where the computational effort
goes. However, each subdomain is handled by a different MPI process, which poses
two difficulties:

1. The convergence criterion is based on the maximum deviation between the
current and the next time step across all grid cells. This value can be easily
obtained for each subdomain separately, but a reduction is required to get a
global maximum.

2. In order for the sweep over a subdomain to yield the correct results, appropriate
boundary conditions must be implemented. This is no problem for cells that
actually neighbor real boundaries, but for cells adjacent to a domain cut, the
boundary condition changes from sweep to sweep: It is formed by the cells
that lie right across the cut, and those are not available directly because they
are owned by another MPI process. (With OpenMP, all data is always visible
by all threads, making access across “chunk boundaries” trivial.)

The first problem can be solved directly by an MPI_Allreduce() call after every
process has obtained the maximum deviation maxdelta in its own domain (step 4
in Figure 9.8).

As for the second problem, so-called ghost or halo layers are used to store copies
of the boundary information from neighboring domains. Since only a single ghost
layer per subdomain is required per domain cut, no additional memory must be al-
located because a boundary layer is needed anyway. (We will see below, however,
that some supplementary arrays may be necessary for technical reasons.) Before a
process sweeps over its subdomain, which involves updating the T = 1 array from
the T = 0 data, the T = 0 boundary values from its neighbors are obtained via MPI
and stored in the ghost cells (step 2 in Figure 9.8). In the following we will outline
the central parts of the Fortran implementation of this algorithm. The full code can
be downloaded from the book’s Web site.2 For clarity, we will declare important
variables with each code snippet.

2http://www.hpc.rrze.uni-erlangen.de/HPC4SE/

Distributed-memory parallel programming with MPI 225

Y

N

��
�
�
�
�

��
��
�
�
�
�

��
�
�
�
�

��
��
�
�
�
�

�
�
�
�

��
�
�
�
�

�
�
�
�

��

�
�
�
�

��
�
�
�
�

�
�
�
�

��

sweep

subdomains

calculate

deviation

global max

communicate

halo layers

END

initialize grid

and boundaries

< ε ?

exchange grids

maxdelta

 MPI_MAX,...)

MPI_Allreduce(MPI_IN_PLACE,

 maxdelta,...,

1

2

3

4

5

6

Figure 9.8: Flowchart for distributed-memory parallelization of the Jacobi algorithm. Hatched
cells are ghost layers, dark cells are already updated in the T = 1 grid, and light-colored cells
denote T = 0 data. White cells are real boundaries of the overall grid, whereas black cells are
unused.

226 Introduction to High Performance Computing for Scientists and Engineers

First the required parameters are read by rank zero from standard input (line 10
in the following listing): problem size (spat_dim), possible presets for number of
processes (proc_dim), and periodicity (pbc_check), each for all dimensions.

1 logical, dimension(1:3) :: pbc_check

2 integer, dimension(1:3) :: spat_dim, proc_dim

3

4 call MPI_Comm_rank(MPI_COMM_WORLD, myid, ierr)

5 call MPI_Comm_size(MPI_COMM_WORLD, numprocs, ierr)

6

7 if(myid.eq.0) then

8 write(*,*) ’ spat_dim , proc_dim, PBC ? ’

9 do i=1,3

10 read(*,*) spat_dim(i), proc_dim(i), pbc_check(i)

11 enddo

12 endif

13

14 call MPI_Bcast(spat_dim , 3, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)

15 call MPI_Bcast(proc_dim , 3, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)

16 call MPI_Bcast(pbc_check, 3, MPI_LOGICAL, 0, MPI_COMM_WORLD, ierr)

Although many MPI implementations have options to allow the standard input of
rank zero to be seen by all processes, a portable MPI program cannot rely on this
feature, and must broadcast the data (lines 14–16). After that, the Cartesian topology
can be set up using MPI_Dims_create() and MPI_Cart_create():

1 call MPI_Dims_create(numprocs, 3, proc_dim, ierr)

2

3 if(myid.eq.0) write(*,’(a,3(i3,x))’) ’Grid: ’, &

4 (proc_dim(i),i=1,3)

5

6 l_reorder = .true.

7 call MPI_Cart_create(MPI_COMM_WORLD, 3, proc_dim, pbc_check, &

8 l_reorder, GRID_COMM_WORLD, ierr)

9

10 if(GRID_COMM_WORLD .eq. MPI_COMM_NULL) goto 999

11

12 call MPI_Comm_rank(GRID_COMM_WORLD, myid_grid, ierr)

13 call MPI_Comm_size(GRID_COMM_WORLD, nump_grid, ierr)

Since rank reordering is allowed (line 6), the process rank must be obtained again
using MPI_Comm_rank() (line 12). Moreover, the new Cartesian communicator
GRID_COMM_WORLD may be of smaller size than MPI_COMM_WORLD. The “sur-
plus” processes then receive a communicator value of MPI_COMM_NULL, and are
sent into a barrier to wait for the whole parallel program to complete (line 10).

Now that the topology has been created, the local subdomains can be set up,
including memory allocation:

1 integer, dimension(1:3) :: loca_dim, mycoord

2

3 call MPI_Cart_coords(GRID_COMM_WORLD, myid_grid, 3,

4 mycoord,ierr)

5

Distributed-memory parallel programming with MPI 227

6 do i=1,3

7 loca_dim(i) = spat_dim(i)/proc_dim(i)

8 if(mycoord(i) < mod(spat_dim(i),proc_dim(i))) then

9 local_dim(i) = loca_dim(i)+1

10 endif

11 enddo

12

13 iStart = 0 ; iEnd = loca_dim(3)+1

14 jStart = 0 ; jEnd = loca_dim(2)+1

15 kStart = 0 ; kEnd = loca_dim(1)+1

16

17 allocate(phi(iStart:iEnd, jStart:jEnd, kStart:kEnd,0:1))

Array mycoord is used to store a process’ Cartesian coordinates as acquired from
MPI_Cart_coords() in line 3. Array loca_dim holds the extensions of a pro-
cess’ subdomain in the three dimensions. These numbers are calculated in lines 6–11.
Memory allocation takes place in line 17, allowing for an additional layer in all di-
rections, which is used for fixed boundaries or halo as needed. For brevity, we are
omitting the initialization of the array and its outer grid boundaries here.

Point-to-point communication as used for the ghost layer exchange requires con-
secutive message buffers. (Actually, the use of derived MPI data types would be an
option here, but this would go beyond the scope of this introduction.) However, only
those boundary cells that are consecutive in the inner (i) dimension are also consecu-
tive in memory. Whole layers in the i- j, i-k, and j-k planes are never consecutive, so
an intermediate buffer must be used to gather boundary data to be communicated to a
neighbor’s ghost layer. Sending each consecutive chunk as a separate message is out
of the question, since this approach would flood the network with short messages,
and latency has to be paid for every request (see Chapter 10 for more information on
optimizing MPI communication).

We use two intermediate buffers per process, one for sending and one for re-
ceiving. Since the amount of halo data can be different along different Cartesian
directions, the size of the intermediate buffer must be chosen to accommodate the
largest possible halo:

1 integer, dimension(1:3) :: totmsgsize

2

3 ! j-k plane

4 totmsgsize(3) = loca_dim(1)*loca_dim(2)

5 MaxBufLen=max(MaxBufLen,totmsgsize(3))

6 ! i-k plane

7 totmsgsize(2) = loca_dim(1)*loca_dim(3)

8 MaxBufLen=max(MaxBufLen,totmsgsize(2))

9 ! i-j plane

10 totmsgsize(1) = loca_dim(2)*loca_dim(3)

11 MaxBufLen=max(MaxBufLen,totmsgsize(1))

12

13 allocate(fieldSend(1:MaxBufLen))

14 allocate(fieldRecv(1:MaxBufLen))

At the same time, the halo sizes for the three directions are stored in the integer array
totmsgsize.

228 Introduction to High Performance Computing for Scientists and Engineers

Now we can start implementing the main iteration loop, whose length is the max-
imum number of iterations (sweeps), ITERMAX:

1 t0=0 ; t1=1

2 tag = 0

3 do iter = 1, ITERMAX

4 do disp = -1, 1, 2

5 do dir = 1, 3

6

7 call MPI_Cart_shift(GRID_COMM_WORLD, (dir-1), &

8 disp, source, dest, ierr)

9

10 if(source /= MPI_PROC_NULL) then

11 call MPI_Irecv(fieldRecv(1), totmsgsize(dir), &

12 MPI_DOUBLE_PRECISION, source, &

13 tag, GRID_COMM_WORLD, req(1), ierr)

14 endif ! source exists

15

16 if(dest /= MPI_PROC_NULL) then

17 call CopySendBuf(phi(iStart, jStart, kStart, t0), &

18 iStart, iEnd, jStart, jEnd, kStart, kEnd, &

19 disp, dir, fieldSend, MaxBufLen)

20

21 call MPI_Send(fieldSend(1), totmsgsize(dir), &

22 MPI_DOUBLE_PRECISION, dest, tag, &

23 GRID_COMM_WORLD, ierr)

24 endif ! destination exists

25

26 if(source /= MPI_PROC_NULL) then

27 call MPI_Wait(req, status, ierr)

28

29 call CopyRecvBuf(phi(iStart, jStart, kStart, t0), &

30 iStart, iEnd, jStart, jEnd, kStart, kEnd, &

31 disp, dir, fieldRecv, MaxBufLen)

32 endif ! source exists

33

34 enddo ! dir

35 enddo ! disp

36

37 call Jacobi_sweep(loca_dim(1), loca_dim(2), loca_dim(3), &

38 phi(iStart, jStart, kStart, 0), t0, t1, &

39 maxdelta)

40

41 call MPI_Allreduce(MPI_IN_PLACE, maxdelta, 1, &

42 MPI_DOUBLE_PRECISION, &

43 MPI_MAX, 0, GRID_COMM_WORLD, ierr)

44 if(maxdelta<eps) exit

45 tmp=t0; t0=t1; t1=tmp

46 enddo ! iter

47

48 999 continue

Halos are exchanged in six steps, i.e., separately per positive and negative Carte-
sian direction. This is parameterized by the loop variables disp and dir. In line 7,
MPI_Cart_shift() is used to determine the communication neighbors along the

Distributed-memory parallel programming with MPI 229

��
��
��
��

��
��
��
��

����
����
����

��
��
��
��

��
��
��
��

����
����
����

�
�
�
�

�
�
�
�

��
��
��

��
��
��
��

��
��
��
��

����
����
����

R

R

R

R

R

S

S

S

S

S

R

R

R

R

R

S

S

S

S

S

CopyRecvBuf()CopySendBuf()

MPI_Send() MPI_Wait()
MPI_Irecv()/

Figure 9.9: Halo communication for the Jacobi solver (illustrated in two dimensions here)
along one of the coordinate directions. Hatched cells are ghost layers, and cells labeled “R”
(“S”) belong to the intermediate receive (send) buffer. The latter is being reused for all other
directions. Note that halos are always provided for the grid that gets read (not written) in the
upcoming sweep. Fixed boundary cells are omitted for clarity.

current direction (source and dest). If a subdomain is located at a grid boundary,
and periodic boundary conditions are not in place, the neighbor will be reported to
have rank MPI_PROC_NULL. MPI calls using this rank as source or destination will
return immediately. However, as the copying of halo data to and from the intermedi-
ate buffers should be avoided for efficiency in this case, we also mask out any MPI
calls, keeping overhead to a minimum (lines 10, 16, and 26).

The communication pattern along a direction is actually a ring shift (or a lin-
ear shift in case of open boundary conditions). The problems inherent to a ring
shift with blocking point-to-point communication were discussed in Section 9.2.2.
To avoid deadlocks, and possibly utilize the available network bandwidth to full
extent, a nonblocking receive is initiated before anything else (line 11). This data
transfer can potentially overlap with the subsequent halo copy to the intermediate
send buffer, done by the CopySendBuf() subroutine (line 17). After sending the
halo data (line 21) and waiting for completion of the previous nonblocking receive
(line 27), CopyRecvBuf() finally copies the received halo data to the boundary
layer (line 29), which completes the communication cycle in one particular direc-
tion. Figure 9.9 again illustrates this chain of events.

After the six halo shifts, the boundaries of the current grid phi(:,:,:,t0) are
up to date, and a Jacobi sweep over the local subdomain is performed, which updates
phi(:,:,:,t1) from phi(:,:,:,t0) (line 37). The corresponding subrou-
tine Jacobi_sweep() returns the maximum deviation between the previous and
the current time step for the subdomain (see Listing 6.5 for a possible implemen-
tation in 2D). A subsequent MPI_Allreduce() (line 41) calculates the global
maximum and makes it available on all processes, so that the decision whether to
leave the iteration loop because convergence has been reached (line 44) can be made
on all ranks without further communication.

230 Introduction to High Performance Computing for Scientists and Engineers

1 2 3 4 6 8 12
Number of processes/nodes

0

500

1000

1500
P

e
rf

o
rm

a
n
c
e
 [
M

L
U

P
s
/s

e
c
]

GigE model (T
l
 = 50 µs, B = 170 MB/s)

120
3
 per process, InfiniBand

120
3
 per process, GigE

linear

1 2 3 4 6 8 12

1

1.2

1.4

1.6

GigE model

P(ideal)/P(GE)

(3
,2

,2
)

(2
,2

,2
)

(3
,2

,1
)

(2
,2

,1
)

(3
,1

,1
)

(2
,1

,1
)

Figure 9.10: Main panel: Weak scaling of the MPI-parallel 3D Jacobi code with problem size
1203 per process on InfiniBand vs. Gigabit Ethernet networks. Only one process per node was
used. The domain decomposition topology (number of processes in each Cartesian direction)
is indicated. The weak scaling performance model (crosses) can reproduce the GigE data well.
Inset: Ratio between ideally scaled performance and Gigabit Ethernet performance vs. process
count. (Single-socket cluster based on Intel Xeon 3070 at 2.66 GHz, Intel MPI 3.2.)

9.3.2 Performance properties

The performance characteristics of the MPI-parallel Jacobi solver are typical for
many domain decomposition codes. We distinguish between weak and strong scaling
scenarios, as they show quite different features. All benchmarks were performed with
two different interconnect networks (Intel MPI Version 3.2 over DDR InfiniBand vs.
Gigabit Ethernet) on a commodity cluster with single-socket nodes based on Intel
Xeon 3070 processors at 2.66 GHz. A single process per node was used throughout
in order to get a simple scaling baseline and minimize intranode effects.

Weak scaling

In our performance models in Section 5.3.6 we have assumed that 3D domain
decomposition at weak scaling has constant communication overhead. This is, how-
ever, not always true because a subdomain that is located at a grid boundary may
have fewer halo faces to communicate. Fortunately, due to the inherent synchroniza-
tion between subdomains, the overall runtime of the parallel program is dominated
by the slowest process, which is the one with the largest number of halo faces if all
processes work on equally-sized subdomains. Hence, we can expect reasonably lin-
ear scaling behavior even on slow (but nonblocking) networks, once there is at least
one subdomain that is surrounded by other subdomains in all Cartesian directions.

Distributed-memory parallel programming with MPI 231

The weak scaling data for a constant subdomain size of 1203 shown in Figure 9.10
substantiates this conjecture:

Scalability on the InfiniBand network is close to perfect. For Gigabit Ethernet,
communication still costs about 40% of overall runtime at large node counts, but this
fraction gets much smaller when running on fewer nodes. In fact, the performance
graph shows a peculiar “jagged” structure, with slight breakdowns at 4 and 8 pro-
cesses. These breakdowns originate from fundamental changes in the communica-
tion characteristics, which occur when the number of subdomains in any coordinate
direction changes from one to anything greater than one. At that point, internode
communication along this axis sets in: Due to the periodic boundary conditions, ev-
ery process always communicates in all directions, but if there is only one process in a
certain direction, it exchanges halo data only with itself, using (fast) shared memory.
The inset in Figure 9.10 indicates the ratio between ideal scaling and Gigabit Eth-
ernet performance data. Clearly this ratio gets larger whenever a new direction gets
cut. This happens at the decompositions (2,1,1), (2,2,1), and (2,2,2), respectively,
belonging to node counts of 2, 4, and 8. Between these points, the ratio is roughly
constant, and since there are only three Cartesian directions, it can be expected to not
exceed a value of ≈ 1.6 even for very large node counts, assuming that the network
is nonblocking. The same behavior can be observed with the InfiniBand data, but the
effect is much less pronounced due to the much larger (×10) bandwidth and lower
(/20) latency. Note that, although we use a performance metric that is only relevant
in the parallel part of the program, the considerations from Section 5.3.3 about “fake”
weak scalability do not apply here; the single-CPU performance is on par with the
expectations from the STREAM benchmark (see Section 3.3).

The communication model described above is actually good enough for a quanti-
tative description. We start with the assumption that the basic performance character-
istics of a point-to-point message transfer can be described by a simple latency/band-
width model along the lines of Figure 4.10. However, since sending and receiving
halo data on each MPI process can overlap for each of the six coordinate direc-
tions, we must include a maximum bandwidth number for full-duplex data transfer
over a single link. The (half-duplex) PingPong benchmark is not accurate enough
to get a decent estimate for full-duplex bandwidth, even though most networks (in-
cluding Ethernet) claim to support full-duplex. The Gigabit Ethernet network used
for the Jacobi benchmark can deliver about 111 MBytes/sec for half-duplex and
170 MBytes/sec for full-duplex communication, at a latency of 50 µs.

The subdomain size is the same regardless of the number of processes, so the raw
compute time Ts for all cell updates in a Jacobi sweep is also constant. Communi-
cation time Tc, however, depends on the number and size of domain cuts that lead
to internode communication, and we are assuming that copying to/from intermediate
buffers and communication of a process with itself come at no cost. Performance on
N = NxNyNz processes for a particular overall problem size of L3N grid points (using
cubic subdomains of size L3) is thus

P(L,~N) =
L3N

Ts(L)+Tc(L,~N)
, (9.1)

232 Introduction to High Performance Computing for Scientists and Engineers

where

Tc(L,~N) =
c(L,~N)

B
+ kTℓ . (9.2)

Here, c(L,~N) is the maximum bidirectional data volume transferred over a node’s
network link, B is the full-duplex bandwidth, and k is the largest number (over all
subdomains) of coordinate directions in which the number of processes is greater
than one. c(L,~N) can be derived from the Cartesian decomposition:

c(L,~N) = L2 · k ·2 ·8 (9.3)

For L = 120 this leads to the following numbers:

N (Nz,Ny,Nx) k
c(L,~N)
[MB]

P(L,~N)
[MLUPs/sec]

NP1(L)

P(L,~N)

1 (1,1,1) 0 0.000 124 1.00

2 (2,1,1) 2 0.461 207 1.20

3 (3,1,1) 2 0.461 310 1.20

4 (2,2,1) 4 0.922 356 1.39

6 (3,2,1) 4 0.922 534 1.39

8 (2,2,2) 6 1.382 625 1.59

12 (3,2,2) 6 1.382 938 1.59

P1(L) is the measured single-processor performance for a domain of size L3. The
prediction for P(L,~N) can be seen in the third column, and the last column quantifies
the “slowdown factor” compared to perfect scaling. Both are shown for comparison
with the measured data in the main panel and inset of Figure 9.10, respectively. The
model is clearly able to describe the performance features of weak scaling well,
which is an indication that our general concept of the communication vs. computation
“workflow” was correct. Note that we have deliberately chosen a small problem size
to emphasize the role of communication, but the influence of latency is still minor.

Strong scaling

Figure 9.11 shows strong scaling performance data for periodic boundary condi-
tions on two different problem sizes (1203 vs. 4803). There is a slight penalty for the
smaller size (about 10%) even with one processor, independent of the interconnect.
For InfiniBand, the performance gap between the two problem sizes can mostly be
attributed to the different subdomain sizes. The influence of communication on scal-
ability is minor on this network for the node counts considered. On Gigabit Ethernet,
however, the smaller problem scales significantly worse because the ratio of halo
data volume (and latency overhead) to useful work becomes so large at larger node
counts that communication dominates the performance on this slow network. The
typical “jagged” pattern in the scaling curve is superimposed by the communication
volume changing whenever the number of processes changes. A simple predictive
model as with weak scaling is not sufficient here; especially with small grids, there is

Distributed-memory parallel programming with MPI 233

1 2 3 4 6 8 12
Number of processes/nodes

0

500

1000

1500

P
e

rf
o

rm
a

n
c
e

 [
M

L
U

P
s
/s

e
c
]

120
3
 ideal

120
3
 InfiniBand

120
3
 GigE

480
3
 ideal

480
3
 InfiniBand

480
3
 GigE

Figure 9.11: Strong sca-
ling of the MPI-paral-
lel 3D Jacobi code with
problem size 1203 (cir-
cles) and 4803 (squares)
on IB (filled symbols)
vs. GigE (open sym-
bols) networks. Only one
process per node was
used. (Same system and
MPI topology as in Fig-
ure 9.10.)

a strong dependence of single-process performance on the subdomain size, and intra-
node communication processes (halo exchange) become important. See Problem 9.4
and Section 10.4.1 for some more discussion.

Note that this analysis must be refined when dealing with multiple MPI processes
per node, as is customary with current parallel systems (see Section 4.4). Especially
on fast networks, intranode communication characteristics play a central role (see
Section 10.5 for details). Additionally, copying of halo data to and from intermediate
buffers within a process cannot be neglected.

Problems

For solutions see page 304 ff.

9.1 Shifts and deadlocks. Does the remedy for the deadlock problem with ring
shifts as shown in Figure 9.2 (exchanging send/receive order) also work if the
number of processes is odd?

What happens if the chain is open, i.e., if rank 0 does not communicate with
the highest-numbered rank? Does the reordering of sends and receives make a
difference in this case?

9.2 Deadlocks and nonblocking MPI. In order to avoid deadlocks, we used non-
blocking receives for halo exchange in the MPI-parallel Jacobi code (Sec-
tion 9.3.1). An MPI implementation is actually not required to support overlap-
ping of communication and computation; MPI progress, i.e., real data transfer,
might happen only if MPI library code is executed. Under such conditions, is
it still guaranteed that deadlocks cannot occur? Consult the MPI standard if in
doubt.

234 Introduction to High Performance Computing for Scientists and Engineers

9.3 Open boundary conditions. The performance model for weak scaling of the Ja-
cobi code in Section 9.3.2 assumed periodic boundary conditions. How would
the model change for open (Dirichlet-type) boundaries? Would there still be
plateaus in the inset of Figure 9.10? What would happen when going from 12
to 16 processes? What is the minimum number of processes for which the ratio
between ideal and real performance reaches its maximum?

9.4 A performance model for strong scaling of the parallel Jacobi code. As men-
tioned in Section 9.3.2, a performance model that accurately predicts the strong
scaling behavior of the MPI-parallel Jacobi code is more involved than for
weak scaling. Especially the dependence of the single-process performance
on the subdomain size is hard to predict since it depends on many factors
(pipelining effects, prefetching, spatial blocking strategy, copying to interme-
diate buffers, etc.). This was no problem for weak scaling because of the con-
stant subdomain size. Nevertheless one could try to establish a partly “phe-
nomenological” model by measuring single-process performance for all sub-
domain sizes that appear in the parallel run, and base a prediction for parallel
performance on those baselines. What else would you consider to be required
enhancements to the weak scaling model? Take into account that Ts becomes
smaller and smaller as N grows, and that halo exchange is not the only inter-
node communication that is going on.

9.5 MPI correctness. Is the following MPI program fragment correct? Assume that
only two processes are running, and that my_rank contains the rank of each
process.

1 if(my_rank.eq.0) then

2 call MPI_Bcast(buf1, count, type, 0, comm, ierr)

3 call MPI_Send(buf2, count, type, 1, tag, comm, ierr)

4 else

5 call MPI_Recv(buf2, count, type, 0, tag, comm, status, ierr)

6 call MPI_Bcast(buf1, count, type, 0, comm, ierr)

7 endif

(This example is taken from the MPI 2.2 standard document [P15].)

Chapter 10

Efficient MPI programming

Substantial optimization potential is hidden in many MPI codes. After making sure
that single-process performance is close to optimal by applying the methods de-
scribed in Chapters 2 and 3, an MPI program should always be benchmarked for
performance and scalability to unveil any problems connected to parallelization.
Some of those are not related to message passing or MPI itself but emerge from
well-known general issues such as serial execution (Amdahl’s Law), load imbalance,
unnecessary synchronization, and other effects that impact all parallel programming
models. However, there are also very specific problems connected to MPI, and many
of them are caused by implicit but unjustified assumptions about distributed-memory
parallelization, or from over-optimistic notions regarding the cost and side effects of
communication. One should always keep in mind that, while MPI was designed to
provide portable and efficient message passing functionality, the performance of a
given code is not portable across platforms.

This chapter tries to sketch the most relevant guidelines for efficient MPI pro-
gramming, which are, to varying degrees, beneficial on all platforms and MPI imple-
mentations. Such an overview is necessarily incomplete, since every algorithm has
its peculiarities. As in previous chapters on optimization, we will start by a brief in-
troduction to typical profiling tools that are able to detect parallel performance issues
in message-passing programs.

10.1 MPI performance tools

In contrast to serial programming, it is usually not possible to pinpoint the root
causes of MPI performance problems by simple manual instrumentation. Several free
and commercial tools exist for advanced MPI profiling [T24, T25, T26, T27, T28].
As a first step one usually tries to get a rough overview of how much time is spent
in the MPI library in relation to application code, which functions dominate, and
probably what communication volume is involved. This kind of data can at least show
whether communication is a problem at all. IPM [T24] is a simple and low-overhead
tool that is able to retrieve this information. Like most MPI profilers, IPM uses the
MPI profiling interface, which is part of the standard [P15]. Each MPI function is a
trivial wrapper around the actual function, whose name stars with “PMPI_.” Hence,
a preloaded library or even the user code can intercept MPI calls and collect profiling
data. In case of IPM, it is sufficient to preload a dynamic library (or link with a static

235

236 Introduction to High Performance Computing for Scientists and Engineers

Figure 10.1: (See color insert after page 262.) IPM “communication balance” of a master-
worker style parallel application. The complete runtime was about 38 seconds, which are spent
almost entirely inside MPI_Recv() on rank 0. The other ranks are very load imbalanced,
spending between 10 and 50% of their time in a barrier.

version) and run the application. Information about data volumes (per process and per
process pair), time spent in MPI calls, load imbalance, etc., is then accumulated over
the application’s runtime, and can be viewed in graphical form. Figure 10.1 shows
the “communication balance” graph of a master-worker application, as generated by
IPM. Each bar corresponds to an MPI rank and shows how much time the process
spends in the different MPI functions. It is important to compare those times to the
overall runtime of the program, because a barrier time of twenty seconds means
nothing if the program runs for hours. In this example, the runtime was 38 seconds.
Rank 0 (the master) distributes work among the workers, so it spends most of its
runtime in MPI_Recv(), waiting for results. The workers are obviously quite load
imbalanced, and between 5 and 50% of their time is wasted waiting at barriers. A
small change in parameters (reducing the size of the work packages) was able to
correct this problem, and the resulting balance graph is shown in Figure 10.2. Overall
runtime was reduced, quite expectedly, by about 25%.

Note that care must be taken when interpreting summary results that were taken
over the complete runtime of an application. Essentially the same reservations apply
as for global hardware performance counter information (see Section 2.1.2). IPM
has a small API that can collect information broken down into user-definable phases,
but sometimes more detailed data is required. A functionality that more advanced
tools support is the event timeline. An MPI program can be decomposed into very
specific events (message send/receive, collective operations, blocking wait,. . .), and
those can easily be visualized in a timeline display. Figure 10.3 is a screenshot from
“Intel Trace Analyzer” [T26], a GUI application that allows browsing and analysis of

Efficient MPI programming 237

Figure 10.2: (See color insert after page 262.) IPM function profile of the same application as
in Figure 10.1, with the load imbalance problem removed.

trace data written by an MPI program (the code must be linked to a special collector
library before running). The top panel shows a zoomed view of a timeline from a code
similar to the MPI-parallel Jacobi solver from Section 9.3.1. In this view, point-to-
point messages are depicted by black lines, and bright lines denote collectives. Each
process is broken down along the time axis into MPI (bright) and user code (dark)
parts. The runtime is clearly dominated by MPI communication in this example. Pie
charts in the lower left panel summarize, for each process, what fraction of time
is spent with user code and MPI, respectively, making a possible load imbalance
evident (the code shown is well load balanced). Finally, in the lower right panel, the
data volume exchanged between pairs of processes can be read off for every possible
combination. All this data can be displayed in more detail. For instance, all relevant
parameters and properties of each message like its duration, data volume, source and
target, etc., can be viewed separately. Graphs containing MPI contributions can be
broken down to show the separate MPI functions, and user code can be instrumented
so that different functions show up in the timeline and summary graphs.

Note that Intel Trace Analyzer is just one of many commercially and freely avail-
able MPI profiling tools. While different tools may focus on different aspects, they
all serve the purpose of making the vast amount of data which is required to represent
the performance properties of an MPI code easier to digest. Some tools put special
emphasis on large-scale systems, where looking at timelines of individual processes
is useless; they try to provide a high-level overview and generate some automatic
tuning advice from the data. This is still a field of active, ongoing research [T29].

The effective use of MPI profiling tools requires a considerable amount of expe-
rience, and there is no way a beginner can draw any use out of them without some

238 Introduction to High Performance Computing for Scientists and Engineers

Figure 10.3: (See color insert after page 262.) Intel Trace Analyzer timeline view (top), load
balance analysis (left bottom) and communication summary (right bottom) for an MPI-parallel
code running on 12 nodes. Point-to-point (collective) messages are depicted by dark (bright)
lines in the timeline view, while dark (light) boxes or pie slices denote executed application
(MPI) code.

Efficient MPI programming 239

knowledge about the basic performance pitfalls of message-passing code. Hence, this
is what the rest of this chapter will focus on.

10.2 Communication parameters

In Section 4.5.1 we have introduced some basic performance properties of net-
works, especially regarding point-to-point message transfer. Although the simple la-
tency/bandwidth model (4.2) describes the gross features of the effective bandwidth
reasonably well, a parametric fit to PingPong benchmark data cannot reproduce the
correct (measured) latency value (see Figure 4.10). The reason for this failure is that
an MPI message transfer is more complex than what our simplistic model can cover.
Most MPI implementations switch between different variants, depending on the mes-
sage size and other factors:

• For short messages, the message itself and any supplementary information
(length, sender, tag, etc., also called the message envelope) may be sent and
stored at the receiver side in some preallocated buffer space, without the re-
ceiver’s intervention. A matching receive operation may not be required, but
the message must be copied from the intermediate buffer to the receive buffer
at one point. This is also called the eager protocol. The advantage of using it
is that synchronization overhead is reduced. On the other hand, it could need a
large amount of preallocated buffer space. Flooding a process with many eager
messages may thus overflow those buffers and lead to contention or program
crashes.

• For large messages, buffering the data makes no sense. In this case the en-
velope is immediately stored at the receiver, but the actual message transfer
blocks until the user’s receive buffer is available. Extra data copies could be
avoided, improving effective bandwidth, but sender and receiver must synchro-
nize. This is called the rendezvous protocol.

Depending on the application, it could be useful to adjust the message length at
which the transition from eager to rendezvous protocol takes place, or increase the
buffer space reserved for eager data (in most MPI implementations, these are tunable
parameters).

The MPI_Issend() function could be used in cases where “eager overflow” is
a problem. It works like MPI_Isend()with slightly different semantics: If the send
buffer can be reused according to the request handle, a sender-receiver handshake has
occurred and message transfer has started. See also Problem 10.3.

240 Introduction to High Performance Computing for Scientists and Engineers

4
3

2

15

Send
Recv

Send
Recv

Send
Recv

Send
Recv

Send
Recv

0 5

4

32

1

Figure 10.4: A linear shift communication pattern. Even with synchronous point-to-point
communication, a deadlock will not occur, but all message transfers will be serialized in the
order shown.

10.3 Synchronization, serialization, contention

This section elaborates on some performance problems that are not specific to
message-passing, but may take special forms with MPI and hence deserve a detailed
discussion.

10.3.1 Implicit serialization and synchronization

“Unintended” frequent synchronization or even serialization is a common phe-
nomenon in parallel programming, and not limited to MPI. In Section 7.2.3 we have
demonstrated how careless use of OpenMP synchronization constructs can effec-
tively serialize a parallel code. Similar pitfalls exist with MPI, and they are often
caused by false assumptions about how messages are transferred.

The ring shift communication pattern, which was used in Section 9.2.2 to illus-
trate the danger of creating a deadlock with blocking, synchronous point-to-point
messages, is a good example. If the chain is open so that the ring becomes a lin-

Figure 10.5: Timeline view of the linear shift (see Fig-
ure 10.4) with blocking (but not synchronous) sends and
blocking receives, using eager delivery. Message trans-
missions can overlap, making use of a nonblocking net-
work. Eager delivery allows a send to end before the cor-
responding receive is posted.

time

Rank

4

5

3

2

0

1

Recv

Recv

Recv

Recv

Recv

Recv

Send

Send

Send

Send

Send

Efficient MPI programming 241

Rank

4

5

3

2

0

1

Recv

RecvSend

Recv

Recv

Recv

Send

Send

Send

Send

Figure 10.6: Timeline view of the
linear shift (see Figure 10.4) with
blocking synchronous sends and
blocking receives, using eager de-
livery. The message transfers (ar-
rows) might overlap perfectly, but
a send can only finish just after its
matching receive is posted.

ear shift pattern, but sends and receives are performed on the processes in the order
shown in Figure 10.4, there will be no deadlock: Process 5 posts a receive, which
matches the send on process 4. After that send has finished, process 4 can post its re-
ceive, etc. Assuming the parameters are such that MPI_Send() is not synchronous,
and “eager delivery” (see Section 10.2) can be used, a typical timeline graph, similar
to what MPI performance tools would display, is depicted in Figure 10.5. Message
transfers can overlap if the network is nonblocking, and since all send operations
terminate early (i.e., as soon as the blocking semantics is fulfilled), most of the time
is spent receiving data (note that there is no indication of where exactly the data is
— it could be anywhere on its way from sender to receiver, depending on the imple-
mentation).

There is, however, a severe performance problem with this pattern. If the message
parameters, first and foremost its length, are such that MPI_Send() is actually
executed as MPI_Ssend(), the particular semantics of synchronous send must be
observed: MPI_Ssend() does not return to the user code before a matching receive
is posted on the target. This does not mean that MPI_Ssend() blocks until the
message has been fully transmitted and arrived in the receive buffer. Hence, a send
and its matching receive may overlap just by a small amount, which provides at
least some parallel use of the network but also incurs some performance penalty (see
Figure 10.6 for a timeline graph). A necessary prerequisite for this to work is that
message delivery still follows the eager protocol: If the conditions for eager delivery
are fulfilled, the data has “left” the send buffer (in terms of blocking semantics)
already before the receive operation was posted, so it is safe even for a synchronous
send to terminate upon receiving some acknowledgment from the other side.

When the messages are transmitted according to the rendezvous protocol, the
situation gets worse. Buffering is impossible here, so sender and receiver must syn-
chronize in a way that ensures full end-to-end delivery of the data. In our example,
the five messages will be transmitted in serial, one after the other, because no pro-
cess can finish its send operation until the next process down the chain has finished
its receive. The further down the chain a process is located, the longer its own syn-

242 Introduction to High Performance Computing for Scientists and Engineers

Rank

4

5

3

2

0

1

Recv

Send Recv

Recv

Recv

Recv

Send

Send

Send

Send

Figure 10.7: Timeline view of the linear shift (see Figure 10.4) with blocking sends and block-
ing receives, using the rendezvous protocol. The messages (arrows) are transmitted in serial
because buffering is ruled out.

chronous send operation will block, and there is no potential for overlap. Figure 10.7
illustrates this with a timeline graph.

Implicit serialization should be avoided because it is not only a source of addi-
tional communication overhead but can also lead to load imbalance, as shown above.
Therefore, it is important to think about how (ring or linear) shifts, of which ghost
layer exchange is a variant, and similar patterns can be performed efficiently. The
basic alternatives have already been described in Section 9.2.2:

• Change the order of sends and receives on, e.g., all odd-numbered processes
(See Figure 10.8). Pairs of processes can then exchange messages in parallel,
using at least part of the available network capacity.

• Use nonblocking functions as shown with the parallel Jacobi solver in Sec-
tion 9.3. Nonblocking functions have the additional benefit that multiple out-
standing communications can be handled by the MPI library in a (hopefully)
optimal order. Moreover they provide at least an opportunity for truly asyn-
chronous communication, where auxiliary threads and/or hardware mecha-
nisms transfer data even while a process is executing user code. Note that
this mode of operation must be regarded as an optimization provided by the
MPI implementation; the MPI standard intentionally avoids any specifications
about asynchronous transfers.

• Use blocking point-to-point functions that are guaranteed not to deadlock, re-
gardless of message size, notably MPI_Sendrecv() (see also Problem 10.7)
or MPI_Sendrecv_replace(). Internally, these calls are often imple-
mented as combinations of nonblocking calls and MPI_Wait(), so they are
actually convenience functions.

Efficient MPI programming 243

Rank

5

4

3

2

1

0

Recv

Send Recv

Recv Send

Send Recv

Recv Send

Send

Figure 10.8: Even if sends are synchronous and the
rendezvous protocol is used, exchanging the order
of sends and receives on all odd-numbered ranks ex-
poses some parallelism in communication.

10.3.2 Contention

The simple latency/bandwidth communication model that we have used so far,
together with the refinements regarding message delivery (see Section 10.2) can ex-
plain a lot of effects, but it does not encompass contention effects. Here we want to
restrict the discussion of contention to network connections; shared resources within
a shared-memory multisocket multicore system like a compute node are ignored (see,
e.g., Sections 1.4, 4.2, and 6.2 for more information on those issues). Assuming a
typical hybrid (hierarchical) parallel computer design as discussed in Section 4.4,
network contention occurs on two levels:

• Multiple threads or processes on a node may issue communication requests to
other nodes. If bandwidth does not scale to multiple connections, the available
bandwidth per connection will go down. This is very common with commodity
systems, which often have only a single network interface available for MPI
communication (and sometimes even I/O to remote file systems). On these
machines, a single thread can usually saturate the network interface. However,
there are also parallel computers where multiple connections are required to
make full use of the available network bandwidth [O69].

• The network topology may not be fully nonblocking, i.e., the bisection band-
width (see Section 4.5.1) may be lower than the product of the number of nodes
and the single-connection bandwidth. This is common with, e.g., cubic mesh
networks or fat trees that are not fully nonblocking.

• Even if bisection bandwidth is optimal, static routing can lead to contention
for certain communication patterns (see Figure 4.17 in Section 4.5.3). In the
latter case, changing the network fabric’s routing tables (if possible) may be
an option if performance should be optimized for a single application with a
certain, well-defined communication scheme [O57].

In general, contention of some kind is hardly avoidable in current parallel systems
if message passing is used in any but the most trivial ways. An actual impact on

244 Introduction to High Performance Computing for Scientists and Engineers

application performance will of course only be visible if communication represents
a measurable part of runtime.

Note that there are communication patterns that are especially prone to causing
contention, like all-to-all message transmission where every process sends to every
other process; MPI’s MPI_Alltoall() function is a special form of this. It is to
be expected that the communication performance for all-to-all patterns on massively
parallel architectures will continue to decline in the years to come.

Any optimization that reduces communication overhead and message transfer
volume (see Section 10.4) will most probably also reduce contention. Even if there
is no way to lessen the amount of message data, it may be possible to rearrange
communication calls so that contention is minimized [A85].

10.4 Reducing communication overhead

10.4.1 Optimal domain decomposition

Domain decomposition is one of the most important implementations of data
parallelism. Most fluid dynamics and structural mechanics simulations are based
on domain decomposition and ghost layer exchange. We have demonstrated in Sec-
tion 9.3.2 that the performance properties of a halo communication can be modeled
quite accurately in simple cases, and that the division of the whole problem into
subdomains determines the communicated data volume, influencing performance in
a crucial way. We are now going to shed some light on the question what it may
cost (in terms of overhead) to choose a “wrong” decomposition, elaborating on the
considerations leading to the performance models for the parallel Jacobi solver in
Section 9.3.2.

Minimizing interdomain surface area

Figure 10.9 shows different possibilities for the decomposition of a cubic domain
of size L3 into N subdomains with strong scaling. Depending on whether the domain
cuts are performed in one, two, or all three dimensions (top to bottom), the number
of elements that must be communicated by one process with its neighbors, c(L,N),
changes its dependence on N. The best behavior, i.e., the steepest decline, is achieved
with cubic subdomains (see also Problem 10.4). We are neglecting here that the pos-
sible options for decomposition depend on the prime factors of N and the actual
shape of the overall domain (which may not be cubic). The MPI_Dims_create()
function tries, by default, to make the subdomains “as cubic as possible,” under the
assumption that the complete domain is cubic. As a result, although much easier to
implement, “slab” subdomains should not be used in general because they incur a
much larger and, more importantly, N-independent overhead as compared to pole-
shaped or cubic ones. A constant cost of communication per subdomain will greatly
harm strong scalability because performance saturates at a lower level, determined
by the message size (i.e., the slab area) instead of the latency (see Eq. 5.27).

Efficient MPI programming 245

“Slabs”

c1d(L,N) = L ·L ·w ·2
= 2wL2

“Poles”

c2d(L,N) = L · L√
N
·w · (2+2)

= 4wL2N−1/2

“Cubes”

c3d(L,N) =
L

3
√

N
· L

3
√

N
·w · (2+2+2)

= 6wL2N−2/3

Figure 10.9: 3D domain decomposition of a cubic domain of size L3 (strong scaling) and
periodic boundary conditions: Per-process communication volume c(L,N) for a single-site
data volume w (in bytes) on N processes when cutting in one (top), two (middle), or all three
(bottom) dimensions.

The negative power of N appearing in the halo volume expressions for pole- and
cube-shaped subdomains will dampen the overhead, but still the surface-to-volume
ratio will grow with N. Even worse, scaling up the number of processors at con-
stant problem size “rides the PingPong curve” down towards smaller messages and,
ultimately, into the latency-dominated regime (see Section 4.5.1). This has already
been shown implicitly in our considerations on refined performance models (Sec-
tion 5.3.6, especially Eq. 5.28) and “slow computing” (Section 5.3.8). Note that, in
the absence of overlap effects, each of the six halo communications is subject to la-
tency; if latency dominates the overhead, “optimal” 3D decomposition may even be
counterproductive because of the larger number of neighbors for each domain.

The communication volume per site (w) depends on the problem. For the simple
Jacobi algorithm from Section 9.3, w = 16 (8 bytes each in positive and negative co-
ordinate direction, using double precision floating-point numbers). If an algorithm re-
quires higher-order derivatives or if there is some long-range interaction, w is larger.
The same is true if one grid point is a more complicated data structure than just a
scalar, as is the case with, e.g., lattice-Boltzmann algorithms [A86, A87]. See also
the following sections.

246 Introduction to High Performance Computing for Scientists and Engineers

Figure 10.10: A typical
default mapping of MPI
ranks (numbers) to sub-
domains (squares) and
cluster nodes (letters) for
a two-dimensional 4 ×
8 periodic domain de-
composition. Each node
has 16 connections to
other nodes. Intranode
connections are omitted.

A

B

C

D
24 25 26 27 28 29 30 31

16 17 18 19

8 9 10 11

0 1 2 3 4 5 6 7

12 13 14 15

20 21 22 23

Mapping issues

Modern parallel computers are inevitably of the hierarchical type. They all con-
sist of shared-memory multiprocessor “nodes” coupled via some network (see Sec-
tion 4.4). The simplest way to use this kind of hardware is to run one MPI process
per core. Assuming that any point-to-point MPI communication between two cores
located on the same node is much faster (in terms of bandwidth and latency) than be-
tween cores on different nodes, it is clear that the mapping of computational subdo-
mains to cores has a large impact on communication overhead. Ideally, this mapping
should be optimized by MPI_Cart_create() if rank reordering is allowed, but
most MPI implementations have no idea about the parallel machine’s topology.

As simple example serves to illustrate this point. The physical problem is a two-
dimensional simulation on a 4×8 Cartesian process grid with periodic boundary con-
ditions. Figure 10.10 depicts a typical “default” configuration on four nodes (A . . . D)
with eight cores each (we are neglecting network topology and any possible node
substructure like cache groups, ccNUMA locality domains, etc.). Under the assump-
tion that intranode connections come at low cost, the efficiency of next-neighbor
communication (e.g., ghost layer exchange) is determined by the maximum number
of internode connection per node. The mapping in Figure 10.10 leads to 16 such
connections. The “communicating surface” of each node is larger than it needs to
be because the eight subdomains it is assigned to are lined up along one dimension.
Choosing a less oblong arrangement as shown in Figure 10.11 will immediately re-
duce the number of internode connections, to twelve in this case, and consequently
cut down network contention. Since the data volume per connection is still the same,
this is equivalent to a 25% reduction in internode communication volume. In fact, no
mapping can be found that leads to an even smaller overhead for this problem.

Up to now we have presupposed that the MPI subsystem assigns successive ranks
to the same node when possible, i.e., filling one node before using the next. Al-
though this may be a reasonable assumption on many parallel computers, it should
by no means be taken for granted. In case of a round-robin, or cyclic distribution,
where successive ranks are mapped to successive nodes, the “best” solution from
Figure 10.11 will be turned into the worst possible alternative: Figure 10.12 illus-
trates that each node now has 32 internode connections.

Efficient MPI programming 247

B

D

A

C

16

23

24

31

1 3 5

17

18

19

20

21

22

25

26

27

28

29

30

0 2 4 6 8 10 12 14

15131197

Figure 10.11: A “per-
fect” mapping of MPI
ranks and subdomains to
nodes. Each node has
12 connections to other
nodes.

Similar considerations apply to other types of parallel systems, like architectures
based on (hyper-)cubic mesh networks (see Section 4.5.4), on which next-neighbor
communication is often favored. If the Cartesian topology does not match the map-
ping of MPI ranks to nodes, the resulting long-distance connections can result in
painfully slow communication, as measured by the capabilities of the network. The
actual influence on application performance may vary, of course. Any type of map-
ping might be acceptable if the parallel program is not limited by communication at
all. However, it is good to keep in mind that the default provided by the MPI environ-
ment should not be trusted. MPI performance tools, as described in Section 10.1, can
be used to display the effective bandwidth of every single point-to-point connection,
and thus identify possible mapping issues if the numbers do not match expectations.

So far we have neglected any intranode issues, assuming that MPI communica-
tion between the cores of a node is “infinitely fast.” While it is true that intranode
latency is far smaller than what any existing network technology can provide, band-
width is an entirely different matter, and different MPI implementations vary widely
in their intranode performance. See Section 10.5 for more information. In truly hy-
brid programs, where each MPI process consists of several OpenMP threads, the
mapping problem becomes even more complex. See Section 11.3 for a detailed dis-
cussion.

1

C

D

A A C

B DB

C

D

A A C

B DB

C

D

A A C

B DB

C

D

A A C

B DB

0 8

15

16

23

24

31

1

2

3

4

5

6

7 9

10

11

12

13

14

17

18

19

20

21

22

25

26

27

28

29

30

Figure 10.12: The same
rank-to-subdomain map-
ping as in Figure 10.11,
but with ranks assigned
to nodes in a “round-
robin” way, i.e., succes-
sive ranks run on differ-
ent nodes. This leads to
32 internode connections
per node.

248 Introduction to High Performance Computing for Scientists and Engineers

10.4.2 Aggregating messages

If a parallel algorithm requires transmission of a lot of small messages between
processes, communication becomes latency-bound because each message incurs la-
tency. Hence, small messages should be aggregated into contiguous buffers and sent
in larger chunks so that the latency penalty must only be paid once, and effective
communication bandwidth is as close as possible to the saturation region of the Ping-
Pong graph (see Figure 4.10 in Section 4.5.1). Of course, this advantage pertains to
point-to-point and collective communication alike.

Aggregation will only pay off if the additional time for copying the messages to
a contiguous buffer does not outweigh the latency penalty for separate sends, i.e., if

(m−1)Tℓ >
mL

Bc
, (10.1)

where m is the number of messages, L is the message length, and Bc is the bandwidth
for memory-to-memory copies. For simplicity we assume that all messages have the
same length, and that latency for memory copies is negligible. The actual advantage
depends on the raw network bandwidth Bn as well, because the ratio of serialized and
aggregated communication times is

Ts

Ta
=

Tℓ/L+B−1
n

Tℓ/mL+B−1
c +B−1

n
. (10.2)

On a slow network, i.e., if B−1
n is large compared to the other expressions in the

numerator and denominator, this ratio will be close to one and aggregation will not
be beneficial.

A typical application of message aggregation is the use of multilayer halos with
stencil solvers: After multiple updates (sweeps) have been performed on a subdo-
main, exchange of multiple halo layers in a single message can exploit the “PingPong
ride” to reduce the impact of latency. If this approach appears feasible for optimizing
an existing code, appropriate performance models should be employed to estimate
the expected gain [O53, A88].

Message aggregation and derived datatypes

A typical case for message aggregation comes up when separate, i.e., noncontigu-
ous data items must be transferred between processes, like a row of a (Fortran) matrix
or a completely unconnected bunch of variables, possibly of different types. MPI pro-
vides so-called derived datatypes, which support this functionality. The programmer
can introduce new datatypes beyond the built-in ones (MPI_INTEGER etc.) and use
them in communication calls. There is a variety of choices for defining new types:
Array-like with gaps, indexed arrays, n-dimensional subarrays of n-dimensional ar-
rays, and even a collection of unconnected variables of different types scattered in
memory. The new type must first be defined using MPI_Type_XXXXX(), where
“XXXXX” designates one of the variants as described above. The call returns the new
type as an integer (in Fortran) or in an MPI_Datatype structure (in C/C++). In

Efficient MPI programming 249

count

oldtype

blocklength

stride

Figure 10.13: Required parameters for MPI_Type_vector. Here blocklength=2,
stride=5, and count=2.

order to use the type, it must be “committed” with MPI_Type_commit(). In case
the type is not needed any more, it can be “freed” using MPI_Type_free().

We demonstrate these facilities by defining the new type to represent one row
of a Fortran matrix. Since Fortran implements column major ordering with mul-
tidimensional arrays (see Section 3.2), a matrix row is noncontiguous in memory,
with chunks of one item separated by a constant stride. The appropriate MPI call
to use for this is MPI_Type_vector(), whose main parameters are depicted in
Figure 10.13. We use it to define a row of a double precision matrix of dimensions
XMAX×YMAX. Hence, count=YMAX, blocklength=1, stride=XMAX, and the
old type is MPI_DOUBLE_PRECISION:

1 double precision, dimension(XMAX,YMAX) :: matrix

2 integer newtype ! new type

3

4 call MPI_Type_vector(YMAX, ! count

5 1, ! blocklength

6 XMAX, ! stride

7 MPI_DOUBLE_PRECISION, ! oldtype

8 newtype, ! new type

9 ierr)

10 call MPI_Type_commit(newtype, ierr) ! make usable

11 ...

12 call MPI_Send(matrix(5,1), ! send 5th row

13 1, ! sendcount=1

14 newtype,...) ! use like any type

15 ...

16 call MPI_Type_free(newtype,ierr) ! release type

In line 12 the type is used to send the 5th row of the matrix, with a count argu-
ment of 1 to the MPI_Send() function (care must be taken when sending more
than one instance of such a type, because “gaps” at the end of a single instance are
ignored by default; consult the MPI standard for details). Datatypes for simplifying
halo exchange on Cartesian topologies can be established in a similar way.

Although derived types are convenient to use, their performance implications are
unclear, which is a good example for the rule that performance optimizations are
not portable across MPI implementations. The library could aggregate the parts of

250 Introduction to High Performance Computing for Scientists and Engineers

the new type into an internal contiguous buffer, but it could just as well send the
pieces separately. Even if aggregation takes place, one cannot be sure whether it
is done in the most efficient way; e.g., nontemporal stores could be beneficial for
large data volume, or (if multiple threads per MPI process are available) copying
could be multithreaded. In general, if communication of derived datatypes is crucial
for performance, one should not rely on the library’s efficiency but check whether
manual copying improves performance. If it does, this “performance bug” should be
reported to the provider of the MPI library.

10.4.3 Nonblocking vs. asynchronous communication

Besides the efforts towards reducing communication overhead as described in the
preceding sections, a further chance for increasing efficiency of parallel programs is
overlapping communication and computation. Nonblocking point-to-point commu-
nication seems to be the straightforward way to achieve this, and we have actually
made (limited) use of it in the MPI-parallel Jacobi solver, where we have employed
MPI_Irecv() to overlap halo receive with copying data to the send buffer and
sending it (see Section 9.3). However, there was no concurrency between stencil up-
dates (which comprise the actual “work”) and communication. A way to achieve this
would be to perform those stencil updates first that form subdomain boundaries, be-
cause they must be transmitted to the halo layers of neighboring subdomains. After
the update and copying to intermediate buffers, MPI_Isend() could be used to
send the data while the bulk stencil updates are done.

However, as mentioned earlier, one must strictly differentiate between nonblock-
ing and truly asynchronous communication. Nonblocking semantics, according to
the MPI standard, merely implies that the message buffer cannot be used after the
call has returned from the MPI library; while certainly desirable, it is entirely up to
the implementation whether data transfer, i.e., MPI progress, takes place while user
code is being executed outside MPI.

Listing 10.1 shows a simple benchmark that can be used to determine whether an
MPI library supports asynchronous communication. This code is to be executed by
exactly two processors (we have omitted initialization code, etc.). The do_work()
function executes some user code with a duration given by its parameter in seconds.
In order to rule out contention effects, the function should perform operations that do
not interfere with simultaneous memory transfers, like register-to-register arithmetic.
The data size for MPI (count) was chosen so that the message transfer takes a con-
siderable amount of time (tens of milliseconds) even on the most modern networks.
If MPI_Irecv() triggers a truly asynchronous data transfer, the measured overall
time will stay constant with increasing delay until the delay equals the message trans-
fer time. Beyond this point, there will be a linear rise in execution time. If, on the
other hand, MPI progress occurs only inside the MPI library (which means, in this
example, within MPI_Wait()), the time for data transfer and the time for executing
do_work() will always add up and there will be a linear rise of overall execution
time starting from zero delay. Figure 10.14 shows internode data (open symbols) for
some current parallel architectures and interconnects. Among those, only the Cray

Efficient MPI programming 251

Listing 10.1: Simple benchmark for evaluating the ability of the MPI library to perform asyn-
chronous point-to-point communication.

1 double precision :: delay

2 integer :: count, req

3 count = 80000000

4 delay = 0.d0

5

6 do

7 call MPI_Barrier(MPI_COMM_WORLD, ierr)

8 if(rank.eq.0) then

9 t = MPI_Wtime()

10 call MPI_Irecv(buf, count, MPI_BYTE, 1, 0, &

11 MPI_COMM_WORLD, req, ierr)

12 call do_work(delay)

13 call MPI_Wait(req, status, ierr)

14 t = MPI_Wtime() - t

15 else

16 call MPI_Send(buf, count, MPI_BYTE, 0, 0, &

17 MPI_COMM_WORLD, ierr)

18 endif

19 write(*,*) ’Overall: ’,t,’ Delay: ’,delay

20 delay = delay + 1.d-2

21 if(delay.ge.2.d0) exit

22 enddo

XT line of massively parallel systems supports asynchronous internode MPI by de-
fault (open diamonds). For the IBM Blue Gene/P system the default behavior is to use
polling for message progress, which rules out asynchronous transfer (open squares).
However, interrupt-based progress can be activated on this machine [V116], enabling
asynchronous message-passing (filled squares).

One should mention that the results could change if the do_work() function
executes memory-bound code, because the message transfer may interfere with the
CPU’s use of memory bandwidth. However, this effect can only be significant if the
network bandwidth is large enough to become comparable to the aggregate memory
bandwidth of a node, but that is not the case on today’s systems.

Although the selection of systems is by no means an exhaustive survey of current
technology, the result is representative. Within the whole spectrum from commod-
ity clusters to expensive, custom-made supercomputers, there is hardly any support
for asynchronous nonblocking transfers, although most computer systems do feature
hardware facilities like DMA engines that would allow background communication.
The situation is even worse for intranode message passing because dedicated hard-
ware for memory-to-memory copies is rare. For the Cray XT4 this is demonstrated
in Figure 10.14 (filled diamonds). Note that the pure communication time roughly
matches the time for the intranode case, although the machine’s network is not used
and MPI can employ shared-memory copying. This is because the MPI point-to-point
bandwidth for large messages is nearly identical for intranode and internode situa-

252 Introduction to High Performance Computing for Scientists and Engineers

0 0.05 0.1 0.15 0.2 0.25
Delay time [s]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
O

v
e
ra

ll
ti
m

e
 [
s
]

QDR-IB cluster, Intel MPI 3.2.2

QDR-IB cluster, OpenMPI 1.4.1, Isend

QDR-IB cluster, OpenMPI 1.4.1, Irecv

SGI Altix 3700 (NumaLink 3)

IBM Blue Gene/P (default)

IBM Blue Gene/P (interrupts)

Cray XT4

Cray XT4 intranode

Figure 10.14: Results from the MPI overlap benchmark on different architectures, intercon-
nects and MPI versions. Among those, only the MPI library on a Cray XT4 (diamonds) and
OpenMPI on an InfiniBand cluster (filled triangles) are capable of asynchronous transfers
by default, OpenMPI allowing no overlap for nonblocking receives, however. With intranode
communication, overlap is generally unavailable on the systems considered. On the IBM Blue
Gene/P system, asynchronous transfers can be enabled by activating interrupt-driven progress
(filled squares) via setting DCMF_INTERRUPTS=1.

tions, a feature that is very common among hybrid parallel systems. See Section 10.5
for a discussion.

The lesson is that one should not put too much optimization effort into utilizing
asynchronous communication by means of nonblocking point-to-point calls, because
it will only pay off in very few environments. This does not mean, however, that non-
blocking MPI is useless; it is valuable for preventing deadlocks, reducing idle times
due to synchronization overhead, and handling multiple outstanding communication
requests efficiently. An example for the latter is the utilization of full-duplex transfers
if send and receive operations are outstanding at the same time. In contrast to asyn-
chronous transfers, full-duplex communication is supported by most interconnects
and MPI implementations today.

Overlapping communication with computation is still possible even without di-
rect MPI support by dedicating a separate thread (OpenMP, or any other variant of
threading) to handling MPI calls while other threads execute user code. This is a
variant of hybrid programming, which will be discussed in Chapter 11.

Efficient MPI programming 253

Time step

t t t t t t t2 3 4 5 6 71

0

1

2

3

4

5

6

7

Rank

Figure 10.15: A global
reduction with commu-
nication overhead being
linear in the number
of processes, as imple-
mented in the integration
example (Listing 9.3).
Each arrow represents a
message to the receiver
process. Processes that
communicate during a
time step are shaded.

10.4.4 Collective communication

In Section 9.2.3 we modified the numerical integration program by replacing the
“manual” accumulation of partial results by a single call to MPI_Reduce(). Apart
from a general reduction in programming complexity, collective communication also
bears optimization potential: The way the program was originally formulated makes
communication overhead a linear function of the number of processes, because there
is severe contention at the receiver side even if nonblocking communication is used
(see Figure 10.15). A “tree-like” communication pattern, where partial results are
added up by groups of processes and propagated towards the receiving rank can
change the linear dependency to a logarithm if the network is sufficiently nonblock-
ing (see Figure 10.16). (We are treating network latency and bandwidth on the same
footing here.) Although each individual process will usually have to serialize all its
sends and receives, there is enough concurrency to make the tree pattern much more
efficient than the simple linear approach.

Collective MPI calls have appropriate algorithms built in to achieve reasonable
performance on any network [137]. In the ideal case, the MPI library even has suf-
ficient knowledge about the network topology to choose the optimal communication
pattern. This is the main reason why collectives should be preferred over simple im-
plementations of equivalent functionality using point-to-point calls. See also Prob-
lem 10.2.

10.5 Understanding intranode point-to-point communication

When figuring out the optimal distribution of threads and processes across the
cores and nodes of a system, it is often assumed that any intranode MPI communica-

254 Introduction to High Performance Computing for Scientists and Engineers

Figure 10.16: With a tree-like, hierarchical reduction pat-
tern, communication overhead is logarithmic in the num-
ber of processes because communication during each time
step is concurrent. Time step

t t2 3

7

6

4

5

3

2

1

t1

0

Rank

tion is infinitely fast (see also Section 10.4.1 above). Surprisingly, this is not true in
general, especially with regard to bandwidth. Although even a single core can today
draw a bandwidth of multiple GBytes/sec out of a chip’s memory interface, ineffi-
cient intranode communication mechanisms used by the MPI implementation can
harm performance dramatically. The simplest “bug” in this respect can arise when
the MPI library is not aware of the fact that two communicating processes run on the
same shared-memory node. In this case, relatively slow network protocols are used
instead of memory-to-memory copies. But even if the library does employ shared-
memory communication where applicable, there is a spectrum of possible strategies:

• Nontemporal stores or cache line zero (see Section 1.3.1) may be used or not,
probably depending on message and cache sizes. If a message is small and
both processes run in a cache group, using nontemporal stores is usually coun-
terproductive because it generates additional memory traffic. However, if there
is no shared cache or the message is large, the data must be written to main
memory anyway, and nontemporal stores avoid the write allocate that would
otherwise be required.

• The data transfer may be “single-copy,” meaning that a simple block copy op-
eration is sufficient to copy the message from the send buffer to the receive
buffer (implicitly implementing a synchronizing rendezvous protocol), or an
intermediate (internal) buffer may be used. The latter strategy requires addi-
tional copy operations, which can drastically diminish communication band-
width if the network is fast.

• There may be hardware support for intranode memory-to-memory transfers.
In situations where shared caches are unimportant for communication perfor-
mance, using dedicated hardware facilities can result in superior point-to-point
bandwidth [138].

Efficient MPI programming 255

HT HT

C
ro

s
s

b
a

r
in

te
rc

o
n

n
e

c
t

HTHT

Memory Memory

Memory Memory

Memory Interface Memory Interface

Memory Interface

P

Memory Interface

P P P P P P P P

PPPPPPP
L1D

L2

L1D

2MB L3

L2

L1D

L2

L1D

L2

L1D

L2

L1D

L2

L1D

L2

L1D

L2

2MB L3

L1D

L2L2

L1DL1D

L2L2

L1DL1D

L2L2

L1DL1D

L2L2

L1D

2MB L32MB L3

ASIC

ASIC

Figure 10.17: Two nodes of a Cray XT5 system. Dashed boxes denote AMD Opteron sockets,
and there are two sockets (NUMA locality domains) per node. The crossbar interconnect is
actually a 3D torus (mesh) network.

The behavior of MPI libraries with respect to above issues can sometimes be influ-
enced by tunable parameters, but the rapid evolution of multicore processor architec-
tures with complex cache hierarchies and system designs also makes it a subject of
intense development.

Again, the simple PingPong benchmark (see Section 4.5.1) from the IMB suite
can be used to fathom the properties of intranode MPI communication [O70, O71].
As an outstanding example we use a Cray XT5 system. One XT5 node comprises
two AMD Opteron chips with a 2 MB quad-core L3 group each. These nodes are con-
nected via a 3D torus network (see Figure 10.17). Due to this structure one can expect
three different levels of point-to-point communication characteristics, depending on
whether message transfer occurs inside an L3 group (intranode intrasocket), between
cores on different sockets (intranode intersocket), or between different nodes (inter-
node). (If a node had more than two ccNUMA locality domains, there would be even
more variety.) Figure 10.18 shows internode and intranode PingPong data for this
system. As expected, communication characteristics are quite different between in-
ternode and intranode situations for small and intermediate-length messages. Two
cores on the same socket can really benefit from the shared L3 cache, leading to
a peak bandwidth of over 3 GBytes/sec. Surprisingly, the characteristics for inter-
socket communication are very similar (dashed line), although there is no shared

256 Introduction to High Performance Computing for Scientists and Engineers

Figure 10.18: IMB
PingPong performance
for internode, intranode
but intersocket, and pure
intrasocket communi-
cation on a Cray XT5
system. Intersocket “va-
nilla” data was obtained
without using revolving
buffers (see text for
details).

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Message length [bytes]

0

500

1000

1500

2000

2500

3000

B
a

n
d

w
id

th
 [

M
B

y
te

s
/s

]

internode

intersocket vanilla

intersocket
revolving buffers

intrasocket

Cray XT5

cache and the large bandwidth “hump” should not be present because all data must
be exchanged via main memory. The explanation for this peculiar effect lies in the
way the standard PingPong benchmark is usually performed [A89]. In contrast to
the pseudocode shown on page 105, the real IMB PingPong code is structured as
follows:

1 call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)

2 if(rank.eq.0) then

3 targetID = 1

4 S = MPI_Wtime()

5 do i=1,ITER

6 call MPI_Send(buffer,N,MPI_BYTE,targetID,...)

7 call MPI_Recv(buffer,N,MPI_BYTE,targetID,...)

8 enddo

9 E = MPI_Wtime()

10 BWIDTH = ITER*2*N/(E-S)/1.d6 ! MBytes/sec rate

11 TIME = (E-S)/2*1.d6/ITER ! transfer time in microsecs

12 ! for single message

13 else

14 targetID = 0

15 do i=1,ITER

16 call MPI_Recv(buffer,N,MPI_BYTE,targetID,...)

17 call MPI_Send(buffer,N,MPI_BYTE,targetID,...)

18 enddo

19 endif

Most notably, to get accurate timing measurements even for small messages, the
Ping-Pong message transfer is repeated a number of times (ITER). Keeping this
peculiarity in mind, it is now possible to explain the bandwidth “hump” (see Fig-
ure 10.19): The transfer of sendb0 from process 0 to recvb1 of process 1 can be
implemented as a single-copy operation on the receiver side, i.e., process 1 executes
recvb1(1:N) = sendb0(1:N), where N is the number of bytes in the message.
If N is sufficiently small, the data from sendb0 is located in the cache of process
1 and there is no need to replace or modify these cache entries unless sendb0 gets

Efficient MPI programming 257

P0 P1

C0 C1

M0 M1

��
��
��
��
��

sendb 0
sendb 1

sendb 0
sendb 1

1recvb 0recvb

3

1

4

2

1. First ping: P1 copies sendb0 to recvb1,
which resides in its cache.

2. First pong: P0 copies sendb1 to recvb0,
which resides in its cache.

3. Second ping: P1 performs in-cache copy op-
eration on its unmodified recvb1.

4. Second pong: P0 performs in-cache copy op-
eration on its unmodified recvb0.

5. . . . Repeat steps 3 and 4, working in cache.

Figure 10.19: Chain of events for the standard MPI PingPong on shared-memory systems
when the messages fit in the cache. C0 and C1 denote the caches of processors P0 and P1,
respectively. M0 and M1 are the local memories of P0 and P1.

modified. However, the send buffers are not changed on either process in the loop
kernel. Thus, after the first iteration the send buffers are located in the caches of the
receiving processes and in-cache copy operations occur in the subsequent iterations
instead of data transfer through memory and the HyperTransport network.

There are two reasons for the performance drop at larger message sizes: First,
the L3 cache (2 MB) is to small to hold both or at least one of the local receive
buffer and the remote send buffer. Second, the IMB is performed so that the number
of repetitions is decreased with increasing message size until only one iteration —
which is the initial copy operation through the network — is done for large messages.

Real-world applications can obviously not make use of the “performance hump.”
In order to evaluate the true potential of intranode communication for codes that
should benefit from single-copy for large messages, one may add a second PingPong
operation in the inner iteration with arrays sendbi and recvbi interchanged (i.e.,
sendbi is specified as the receive buffer with the second MPI_Recv() on process
number i), the sending process i gains exclusive ownership of sendbi again. Another
alternative is the use of “revolving buffers,” where a PingPong send/receive pair uses
a small, sliding window out of a much larger memory region for send and receive
buffers, respectively. After each PingPong the window is shifted by its own size, so
that send and receive buffer locations in memory are constantly changing. If the size
of the large array is chosen to be larger than any cache, it is guaranteed that all send
buffers are actually evicted to memory at some point, even if a single message fits into
cache and the MPI library uses single-copy transfers. The IMB benchmarks allow the
use of revolving buffers by a command-line option, and the resulting performance
data (squares in Figure 10.18) shows no overshooting for in-cache message sizes.

Interestingly, intranode and internode bandwidths meet at roughly the same as-
ymptotic performance for large messages, refuting the widespread misconception
that intranode point-to-point communication is infinitely fast. This observation, al-

258 Introduction to High Performance Computing for Scientists and Engineers

Figure 10.20: Two nodes of a
Xeon 5160 dual-socket cluster
system with a DDR-InfiniBand
interconnect.

32k L1D32k L1D 32k L1D 32k L1D

32k L1D 32k L1D 32k L1D 32k L1D

Chipset

Memory

PPPP

4MB L24MB L2

Chipset

Memory

4MB L24MB L2

P P P P

in
fr

a
s

tr
u

c
tu

re
 (

D
D

R
−

IB
)

N
e

tw
o

rk

PCIe/
NIC

PCIe/
NIC

though shown here for a specific system architecture and software environment, is al-
most universal across many contemporary (hybrid) parallel systems, and especially
“commodity” clusters. However, there is a large variation in the details, and since
MPI libraries are continuously evolving, characteristics tend to change over time.
In Figures 10.21 and 10.22 we show PingPong performance data on a cluster com-
prised of dual-socket Intel Xeon 5160 nodes (see Figure 10.20), connected via DDR-
InfiniBand. The only difference between the two graphs is the version number of the
MPI library used (comparing Intel MPI 3.0 and 3.1). Details about the actual mod-
ifications to the MPI implementation are undisclosed, but the observation of large
performance variations between the two versions reveals that simple models about
intranode communication are problematic and may lead to false conclusions.

At small message sizes, MPI communication is latency-dominated. For the sys-
tems described above, the latencies measured by the IMB PingPong benchmark are
shown in Table 10.1, together with asymptotic bandwidth numbers. Clearly, latency
is much smaller when both processes run on the same node (and smaller still if they
share a cache). We must emphasize that these benchmarks can only give a rough
impression of intranode versus internode message passing issues. If multiple process
pairs communicate concurrently (which is usually the case in real-world applica-
tions), the situation gets much more complex. See Ref. [O72] for a more detailed
analysis in the context of hybrid MPI/OpenMP programming.

The most important conclusion that must be drawn from the bandwidth and la-
tency characteristics shown above is that process-core affinity can play a major role

Efficient MPI programming 259

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Message length [bytes]

0

500

1000

1500

2000

2500

3000

B
a

n
d

w
id

th
 [

M
B

y
te

s
/s

]

internode

intersocket
revolving buffers

intrasocket

DDR-IB/PCIe 8x limit

Xeon 5160
DDR-IB cluster

Figure 10.21: IMB
PingPong performance
for internode, intranode
but intersocket, and pure
intrasocket communica-
tion on a Xeon 5160
DDR-IB cluster, using
Intel MPI 3.0.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Message length [bytes]

0

500

1000

1500

2000

2500

3000

B
a

n
d

w
id

th
 [

M
B

y
te

s
/s

]

internode

intersocket
revolving buffers

intrasocket

DDR-IB/PCIe 8x limit

Xeon 5160
DDR-IB cluster

Figure 10.22: The same
benchmark as in Fig-
ure 10.21, but using Intel
MPI 3.1. Intranode be-
havior has changed sig-
nificantly.

Latency [µs] Bandwidth [MBytes/sec]

XT5 Xeon-IB XT5 Xeon-IB

Mode MPT 3.1 IMPI 3.0 IMPI 3.1 MPT 3.1 IMPI 3.0 IMPI 3.1

internode 7.40 3.13 3.24 1500 1300 1300

intersocket 0.63 0.76 0.55 1400 750 1300

intrasocket 0.49 0.40 0.31 1500 1200 1100

Table 10.1: Measured latency and asymptotic bandwidth from the IMB PingPong benchmark
on a Cray XT5 and a commodity Xeon cluster with DDR-InifiniBand interconnect.

260 Introduction to High Performance Computing for Scientists and Engineers

for application performance on the “anisotropic” multisocket multicore systems that
are popular today (similar effects, though not directly related to communication, ap-
pear in OpenMP programming, as shown in Sections 6.2 and 7.2.2). Mapping issues
as described in Section 10.4.1 are thus becoming relevant on the intranode topology
level, too; for instance, given appropriate message sizes and an MPI code that mainly
uses next-neighbor communication, neighboring MPI ranks should be placed in the
same cache group. Of course, other factors like shared data paths to memory and
NUMA constraints should be considered as well, and there is no general rule. Note
also that in strong scaling scenarios it is possible that one “rides down the PingPong
curve” towards a latency-driven regime with increasing processor count, possibly
rendering the performance assumptions useless that process/thread placement was
based on for small numbers of processes (see also Problem 10.5).

Problems

For solutions see page 306 ff.

10.1 Reductions and contention. Comparing Figures 10.15 and 10.16, can you think
of a network topology that would lead to the same performance for a reduction
operation in both cases? Assuming a fully nonblocking fat-tree network, what
could be other factors that would prevent optimal performance with hierarchi-
cal reductions?

10.2 Allreduce, optimized. We stated that MPI_Allreduce() is a combination
of MPI_Reduce() and MPI_Bcast(). While this is semantically correct,
implementing MPI_Allreduce() in this way is very inefficient. How can
it be done better?

10.3 Eager vs. rendezvous. Looking again at the overview on parallelization meth-
ods in Section 5.2, what is a typical situation where using the “eager” message
transfer protocol for MPI could have bad side effects? What are possible solu-
tions?

10.4 Is cubic always optimal? In Section 10.4.1 we have shown that communication
overhead for strong scaling due to halo exchange shows the most favorable
dependence on N, the number of workers, if the domain is cut across all three
coordinate axes. Does this strategy always lead to minimum overhead?

10.5 Riding the PingPong curve. For strong scaling and cubic domain decomposi-
tion with halo exchange as shown in Section 10.4.1, derive an expression for
the effective bandwidth Beff(N,L,w,Tℓ,B). Assume that a point-to-point mes-
sage transfer can be described by the simple latency/bandwidth model (4.2),
and that there is no overlap between communication in different directions and
between computation and communication.

Efficient MPI programming 261

10.6 Nonblocking Jacobi revisited. In Section 9.3 we used a nonblocking receive to
avoid deadlocks on halo exchange. However, exactly one nonblocking request
was outstanding per process at any time. Can the code be reorganized to use
multiple outstanding requests? Are there any disadvantages?

10.7 Send and receive combined. MPI_Sendrecv() is a combination of a stan-
dard send (MPI_Send()) and a standard receive (MPI_Recv()) in a single
call:

1 <type> sendbuf(*), recvbuf(*)

2 integer :: sendcount, sendtype, dest, sendtag,

3 recvcount, recvtype, source, recvtag,

4 comm, status(MPI_STATUS_SIZE), ierror

5 call MPI_Sendrecv(sendbuf, ! send buffer

6 sendcount, ! # of items to send

7 sendtype, ! send data type

8 dest, ! destination rank

9 sendtag, ! tag for receive

10 recvbuf, ! receive buffer

11 recvcount, ! # of items to receive

12 recvtype, ! recv data type

13 source, ! source rank

14 recvtag, ! tag for send

15 status, ! status array for recv

16 comm, ! communicator

17 ierror) ! return value

How would you implement this function so that it is guaranteed not to deadlock
if used for a ring shift communication pattern? Are there any other positive side
effects to be expected?

10.8 Load balancing and domain decomposition. In 3D (cubic) domain decompo-
sition with open (i.e., nontoroidal) boundary conditions, what are the implica-
tions of communication overhead on load balance? Assume that the MPI com-
munication properties are constant and isotropic throughout the parallel sys-
tem, and that communication cannot be overlapped with computation. Would
it make sense to enlarge the outermost subdomains in order to compensate for
their reduced surface area?

Chapter 11

Hybrid parallelization with MPI and
OpenMP

Large-scale parallel computers are nowadays exclusively of the distributed-memory
type at the overall system level but use shared-memory compute nodes as basic build-
ing blocks. Even though these hybrid architectures have been in use for more than a
decade, most parallel applications still take no notice of the hardware structure and
use pure MPI for parallelization. This is not a real surprise if one considers that the
roots of most parallel applications, solvers and methods as well as the MPI library
itself date back to times when all “big” machines were pure distributed-memory
types, such as the famous Cray T3D/T3E MPP series. Later the existing MPI ap-
plications and libraries were easy to port to shared-memory systems, and thus most
effort was spent to improve MPI scalability. Moreover, application developers con-
fided in the MPI library providers to deliver efficient MPI implementations, which
put the full capabilities of a shared-memory system to use for high-performance in-
tranode message passing (see also Section 10.5 for some of the problems connected
with intranode MPI). Pure MPI was hence implicitly assumed to be as efficient as
a well-implemented hybrid MPI/OpenMP code using MPI for internode communi-
cation and OpenMP for parallelization within the node. The experience with small-
to moderately-sized shared-memory nodes (no more than two or four processors per
node) in recent years also helped to establish a general lore that a hybrid code can
usually not outperform a pure MPI version for the same problem.

It is more than doubtful whether the attitude of running one MPI process per
core is appropriate in the era of multicore processors. The parallelism within a single
chip will steadily increase, and the shared-memory nodes will have highly parallel,
hierarchical, multicore multisocket structures. This section will shed some light on
this development and introduce basic guidelines for writing and running a good hy-
brid code on this new class of shared-memory nodes. First, expected weaknesses and
advantages of hybrid OpenMP/MPI programming will be discussed. Turning to the
“mapping problem,” we will point out that the performance of hybrid as well as pure
MPI codes depends crucially on factors not directly connected to the programming
model, but to the association of threads and processes to cores. In addition, there
are several choices as to how exactly OpenMP threads and MPI processes can in-
teract inside a node, which leaves significant room for improvement in most hybrid
applications.

263

264 Introduction to High Performance Computing for Scientists and Engineers

11.1 Basic MPI/OpenMP programming models

The basic idea of a hybrid OpenMP/MPI programming model is to allow any MPI
process to spawn a team of OpenMP threads in the same way as the master thread
does in a pure OpenMP program. Thus, inserting OpenMP compiler directives into an
existing MPI code is a straightforward way to build a first hybrid parallel program.
Following the guidelines of good OpenMP programming, compute intensive loop
constructs are the primary targets for OpenMP parallelization in a naïve hybrid code.
Before launching the MPI processes one has to specify the maximum number of
OpenMP threads per MPI process in the same way as for a pure OpenMP program.
At execution time each MPI process activates a team of threads (being the master
thread itself) whenever it encounters an OpenMP parallel region.

There is no automatic synchronization between the MPI processes for switching
from pure MPI to hybrid execution, i.e., at a given time some MPI processes may run
in completely different OpenMP parallel regions, while other processes are in a pure
MPI part of the program. Synchronization between MPI processes is still restricted
to the use of appropriate MPI calls.

We define two basic hybrid programming approaches [O69]: Vector mode and
task mode. These differ in the degree of interaction between MPI calls and OpenMP
directives. Using the parallel 3D Jacobi solver as an example, the basic idea of both
approaches will be briefly introduced in the following.

11.1.1 Vector mode implementation

In a vector mode implementation all MPI subroutines are called outside OpenMP
parallel regions, i.e., in the “serial” part of the OpenMP code. A major advantage is
the ease of programming, since an existing pure MPI code can be turned hybrid just
by adding OpenMP worksharing directives in front of the time-consuming loops and
taking care of proper NUMA placement (see Chapter 8). A pseudocode for a vector
mode implementation of a 3D Jacobi solver core is shown in Listing 11.1. This looks
very similar to pure MPI parallelization as shown in Section 9.3, and indeed there
is no interference between the MPI layer and the OpenMP directives. Programming
follows the guidelines for both paradigms independently. The vector mode strategy is
similar to programming parallel vector computers with MPI, where the inner layer of
parallelism is exploited by vectorization and multitrack pipelines. Typical examples
which may benefit from this mode are applications where the number of MPI pro-
cesses is limited by problem-specific constraints. Exploiting an additional (lower)
level of finer granularity by multithreading is then the only way to increase paral-
lelism beyond the MPI limit [O70].

Hybrid parallelization with MPI and OpenMP 265

Listing 11.1: Pseudocode for a vector mode hybrid implementation of a 3D Jacobi solver.

1 do iteration=1,MAXITER

2 ...

3 !$OMP PARALLEL DO PRIVATE(..)

4 do k = 1,N

5 ! Standard 3D Jacobi iteration here

6 ! updating all cells

7 ...

8 enddo

9 !$OMP END PARALLEL DO

10

11 ! halo exchange

12 ...

13 do dir=i,j,k

14

15 call MPI_Irecv(halo data from neighbor in -dir direction)

16 call MPI_Isend(data to neighbor in +dir direction)

17

18 call MPI_Irecv(halo data from neighbor in +dir direction)

19 call MPI_Isend(data to neighbor in -dir direction)

20 enddo

21 call MPI_Waitall()

22 enddo

11.1.2 Task mode implementation

The task mode is most general and allows any kind of MPI communication within
OpenMP parallel regions. Based on the thread safety requirements for the message
passing library, the MPI standard defines three different levels of interference be-
tween OpenMP and MPI (see Section 11.2 below). Before using task mode, the code
must check which of these levels is supported by the MPI library. Functional task de-
composition and decoupling of communication and computation are two areas where
task mode can be useful. As an example for the latter, a sketch of a task mode im-
plementation of the 3D Jacobi solver core is shown in Listing 11.2. Here the master
thread is responsible for updating the boundary cells (lines 6–9), i.e., the surface
cells of the process-local subdomain, and communicates the updated values to the
neighboring processes (lines 13–20). This can be done concurrently with the update
of all inner cells, which is performed by the remaining threads (lines 24–40). Af-
ter a complete domain update, synchronization of all OpenMP threads within each
MPI process is required, while MPI synchronization only occurs indirectly between
nearest neighbors via halo exchange.

Task mode provides a high level of flexibility but blows up code size and in-
creases coding complexity considerably. A major problem is that neither MPI nor
OpenMP has embedded mechanisms that directly support the task mode approach.
Thus, one usually ends up with an MPI-style programming on the OpenMP level as
well. The different functional tasks need to be mapped to OpenMP thread IDs (cf.
the if statement starting in line 5) and may operate in different parts of the code.

266 Introduction to High Performance Computing for Scientists and Engineers

Listing 11.2: Pseudocode for a task mode hybrid implementation of a 3D Jacobi solver.

1 !$OMP PARALLEL PRIVATE(iteration,threadID,k,j,i,...)

2 threadID = omp_get_thread_num()

3 do iteration=1,MAXITER

4 ...

5 if(threadID .eq. 0) then

6 ...

7 ! Standard 3D Jacobi iteration

8 ! updating BOUNDARY cells

9 ...

10 ! After updating BOUNDARY cells

11 ! do halo exchange

12

13 do dir=i,j,k

14 call MPI_Irecv(halo data from neighbor in -dir direction)

15 call MPI_Send(data to neighbor in +dir direction)

16 call MPI_Irecv(halo data from neighbor in +dir direction)

17 call MPI_Send(data to neighbor in -dir direction)

18 enddo

19

20 call MPI_Waitall()

21

22 else ! not thread ID 0

23

24 ! Remaining threads perform

25 ! update of INNER cells 2,...,N-1

26 ! Distribute outer loop iterations manually:

27

28 chunksize = (N-2) / (omp_get_num_threads()-1) + 1

29 my_k_start = 2 + (threadID-1)*chunksize

30 my_k_end = 2 + (threadID-1+1)*chunksize-1

31 my_k_end = min(my_k_end, (N-2))

32

33 ! INNER cell updates

34 do k = my_k_start , my_k_end

35 do j = 2, (N-1)

36 do i = 2, (N-1)

37 ...

38 enddo

39 enddo

40 enddo

41 endif ! thread ID

42 !$OMP BARRIER

43 enddo

44 !$OMP END PARALLEL

Hybrid parallelization with MPI and OpenMP 267

Hence, the convenient OpenMP worksharing parallelization directives can no longer
be used. Workload has to be distributed manually among the threads updating the
inner cells (lines 28–31). Note that so far only the simplest incarnation of the task
mode model has been presented. Depending on the thread level support of the MPI
library one may also issue MPI calls on all threads in an OpenMP parallel region,
further impeding programmability. Finally, it must be emphasized that this hybrid
approach prevents incremental hybrid parallelization, because substantial parts of an
existing MPI code need to be rewritten completely. It also severely complicates the
maintainability of a pure MPI and a hybrid version in a single code.

11.1.3 Case study: Hybrid Jacobi solver

The MPI-parallel 3D Jacobi solver developed in Section 9.3 serves as a good ex-
ample to evaluate potential benefits of hybrid programming for realistic application
scenarios. To substantiate the discussion from the previous section, we now compare
vector mode and a task mode implementations. Figure 11.1 shows performance data
in MLUPs/sec for these two hybrid versions and the pure MPI variant using two
different standard networks (Gigabit Ethernet and DDR InfiniBand). In order to min-
imize affinity and locality effects (cf. the extensive discussion in the next section),
we choose the same single-socket dual-core cluster as in the pure MPI case study in
Section 9.3.2. However, both cores per node are used throughout, which pushes the
overall performance over InfiniBand by 10–15% as compared to Figure 9.11 (for the
same large domain size of 4803). Since communication overhead is still almost neg-
ligible when using InfiniBand, the pure MPI variant scales very well. It is no surprise
that no benefit from hybrid programming shows up for the InfiniBand network and
all three variants (dashed lines) achieve the same performance level.

For communication over the GigE network the picture changes completely. Even
at low node counts the costs of data exchange substantially reduce parallel scalabil-
ity for the pure MPI version, and there is a growing performance gap between GigE
and InfiniBand. The vector mode does not help at all here, because computation and
communication are still serialized; on the contrary, performance even degrades a bit
since only one core on a node is active during MPI communication. Overlapping of
communication and computation is efficiently possible in task mode, however. Par-
allel scalability is considerably improved in this case and GigE performance comes
very close to the InfiniBand level.

This simple case study reveals the most important rule of hybrid programming:
Consider going hybrid only if pure MPI scalability is not satisfactory. It does not
make sense to work hard on a hybrid implementation and try to be faster than a
perfectly scaling MPI code.

268 Introduction to High Performance Computing for Scientists and Engineers

0 2 4 6 8 10 12 14 16
nodes

0

500

1000

1500

2000

2500
P

e
rf

o
rm

a
n

c
e

 [
M

L
U

P
s
/s

e
c
]

Perfect Scalability

Pure MPI (GigE)

Pure MPI (InfiniBand)

Vector Mode (GigE)

Vector Mode (InfiniBand)

Task Mode (GigE)

Task Mode (InfiniBand)

(2
,2

,1
)

(2
,2

,2
)

(4
,2

,2
)

(4
,3

,2
)

(4
,4

,2
)

(4
,2

,2
)

(3
,2

,2
)

(2
,2

,2
)

(2
,2

,1
)

(2
,1

,1
)

Figure 11.1: Pure MPI (circles) and hybrid (squares and diamonds) parallel performance of
a 3D Jacobi solver for strong scaling (problem size 4803) on the same single-socket dual-
core cluster as in Figure 9.10, using DDR-InfiniBand (filled symbols) vs. Gigabit Ethernet
(open symbols). The domain decomposition topology (number of processes in each Cartesian
direction) is indicated at each data point (below for hybrid and above for pure MPI). See text
for more details.

11.2 MPI taxonomy of thread interoperability

Moving from single-threaded to multithreaded execution is not an easy business
from a communication library perspective as well. A fully “thread safe” implementa-
tion of an MPI library is a difficult undertaking. Providing shared coherent message
queues or coherent internal message buffers are only two challenges to be named
here. The most flexible case and thus the worst-case scenario for the MPI library
is that MPI communication is allowed to happen on any thread at any time. Since
MPI may be implemented in environments with poor or no thread support, the MPI
standard currently (version 2.2) distinguishes four different levels of thread inter-
operability, starting with no thread support at all (“MPI_THREAD_SINGLE”) and
ending with the most general case (“MPI_THREAD_MULTIPLE”):

• MPI_THREAD_SINGLE: Only one thread will execute.

• MPI_THREAD_FUNNELED: The process may be multithreaded, but only the
main thread will make MPI calls.

Hybrid parallelization with MPI and OpenMP 269

(b) (c)(a)

M
P

I

M
P

I

M
P

I

M
P

I

M
P

I

M
P

I

M
P

I

M
P

I

M
P

I
M

P
I

M
P

I

M
P

I

M
P

I

Figure 11.2: Threading levels supported by MPI: (a) MPI_THREAD_FUNNELED, (b)
MPI_THREAD_SERIALIZED, and (c) MPI_THREAD_MULTIPLE. The plain MPI mode
MPI_THREAD_SINGLE is omitted. Typical communication patterns as permitted by the re-
spective level of thread support are depicted for a single multithreaded MPI process with a
number of OpenMP threads.

• MPI_THREAD_SERIALIZED: The process may be multithreaded, and mul-
tiple threads may make MPI calls, but only one at a time; MPI calls are not
made concurrently from two distinct threads.

• MPI_THREAD_MULTIPLE: Multiple threads may call MPI anytime, with no
restrictions.

Every hybrid code should always check for the required level of threading support
using the MPI_Init_thread() call. Figure 11.2 provides a schematic overview
of the different hybrid MPI/OpenMP modes allowed by MPI’s thread interoperabil-
ity levels. Both hybrid implementations presented above for the parallel 3D Jacobi
solver require MPI support for MPI_THREAD_FUNNELED since the master thread
is the only one issuing MPI calls. The task mode version also provides first insights
into the additional complications arising from multithreaded execution of MPI. Most
importantly, MPI does not allow explicit addressing of different threads in a process.
If there is a mandatory mapping between threads and MPI calls, the programmer has
to implement it. This can be done through the explicit use of OpenMP thread IDs and
potentially connecting them with different message tags (i.e., messages from differ-
ent threads of the same MPI process are distinguished by unique MPI message tags).

270 Introduction to High Performance Computing for Scientists and Engineers

Another issue to be aware of is that synchronous MPI calls only block the calling
thread, allowing the other threads of the same MPI process to execute, if possible.
There are several more important guidelines to consider, in particular when fully
exploiting the MPI_THREAD_MULTIPLE capabilities. A thorough reading of the
section “MPI and Threads” in the MPI standard document [P15] is mandatory when
writing multithreaded MPI code.

11.3 Hybrid decomposition and mapping

Once a hybrid OpenMP/MPI code has been implemented diligently and com-
putational resources have been allocated, two important decisions need to be made
before launching the application.

First one needs to select the number of OpenMP threads per MPI process and the
number of MPI processes per node. Of course the capabilities of the shared mem-
ory nodes at hand impose some limitations on this choice; e.g., the total number of
threads per node should not exceed the number of cores in the compute node. In
some rare cases it might also be advantageous to either run a single thread per “vir-
tual core” if the processor efficiently supports simultaneous multithreading (SMT,
see Section 1.5) or to even use less threads than available cores, e.g., if memory
bandwidth or cache size per thread is a bottleneck. Moreover, the physical problem
to be solved and the underlying hardware architecture also strongly influence the
optimal choice of hybrid decomposition.

The mapping between MPI processes and OpenMP threads to sockets and cores
within a compute node is another important decision. In this context the basic node
characteristics (number of sockets and number of cores per socket) can be used as a
first guideline, but even on rather simple two-socket compute nodes with multicore
processor chips there is a large parameter space in terms of decomposition and map-
ping choices. In Figures 11.3–11.6 a representative subset is depicted for a cluster
with two standard two-socket quad-core ccNUMA nodes. We imply that the MPI li-
brary supports the MPI_THREAD_FUNNELED level, where the master thread (t0) of
each MPI process assumes a prominent position. This is valid for the two examples
presented above and reflects the approach implemented in many hybrid applications.

One MPI process per node

Considering the shared-memory feature only, one can simply assign a single MPI
process to one node (m0,m1) and launch eight OpenMP threads (t0, . . . ,t7), i.e., one
per core (see Figure 11.3). There is a clear asymmetry between the hardware de-
sign and the hybrid decomposition, which may show up in several performance-
relevant issues. Synchronization of all threads is costly since it involves off-chip
data exchange and may become a major bottleneck when moving to multisocket
and/or hexa-/octo-core designs [M41] (see Section 7.2.2 for how to estimate syn-
chronization overhead in OpenMP). NUMA optimizations (see Chapter 8) need to

Hybrid parallelization with MPI and OpenMP 271

be considered when implementing the code; in particular, the typical locality and
contention issues can arise if the MPI process (running, e.g., in LD0) allocates sub-
stantial message buffers. In addition the master thread may generate nonlocal data
accesses when gathering data for MPI calls. Using less powerful cores, a single MPI
process per node could also be insufficient to make full use of the latest interconnect
technologies if the available internode bandwidth cannot be saturated by a single MPI
process [O69]. The ease of launching the MPI processes and pinning the threads, as
well as the reduction of the number of MPI processes to a minimum are typical ad-
vantages of this simple hybrid decomposition model.

One MPI process per socket

Assigning one multithreaded MPI process to each socket matches the node topol-
ogy perfectly (see Figure 11.4). However, correctly launching the MPI processes and
pinning the OpenMP threads in a blockwise fashion to the sockets requires due care.
MPI communication may now happen both between sockets and between nodes con-
currently, and appropriate scheduling of MPI calls should be considered in the appli-
cation to overlap intersocket and internode communication [O72]. On the other hand,
this mapping avoids ccNUMA data locality problems because each MPI process is
restricted to a single locality domain. Also the accessibility of a single shared cache
for all threads of each MPI process allows for fast thread synchronization and in-
creases the probability of cache re-use between the threads. Note that this discussion
needs to be generalized to groups of cores with a shared outer-level cache: In the first
generation of Intel quad-core chips, groups of two cores shared an L2 cache while no
L3 cache was available. For this chip architecture one should issue one MPI process
per L2 cache group, i.e., two processes per socket.

A small modification of the mapping can easily emerge in a completely different
scenario without changing the number of MPI processes per node and the number
of OpenMP threads per process: If, e.g., a round-robin distribution of threads across
sockets is chosen, one ends up in the situation shown in Figure 11.5. In each node
a single socket hosts two MPI processes, potentially allowing for very fast commu-
nication between them via the shared cache. However, the threads of different MPI
processes are interleaved on each socket, making efficient ccNUMA-aware program-
ming a challenge by itself. Moreover, a completely different workload characteristic
is assigned to the two sockets within the same node. All this is certainly close to a
worst-case scenario in terms of thread synchronization and remote data access.

Multiple MPI processes per socket

Of course one can further increase the number of MPI Processes per node and
correspondingly reduce the number of threads, ending up with two threads per MPI
process. The choice of a block-wise distribution of the threads leads to the favorable
scenario presented in Figure 11.6. While ccNUMA problems are of minor impor-
tance here, MPI communication may show up on all potential levels: intrasocket,
intersocket and internode. Thus, mapping the computational domains to the MPI
processes in a way that minimizes access to the slowest communication path is a

272 Introduction to High Performance Computing for Scientists and Engineers

t
7

m0 m0

t
4

t
5

t
6

m0 m0m0 m0

t
3

t
2

m0

t
1

m0

t
0

m1 m1

t
3

t
2

t
7

m1 m1

t
4

t
5

m1

t
1

m1

t
6

1 m1

t

m

0

Figure 11.3: Mapping a single MPI process with eight threads to each node.

m2 m2

t
3

t
2

t
3

m3 m3

t
0

t
1

m2

t
1

m2

t
2

3 m3

t

m

0

m0 m0

t
3

t
2

m0

t
1

m0

t
0

t
3

m1 m1

t
0

t
1

t
2

m1 m1

Figure 11.4: Mapping a single MPI process with four threads to each socket (L3 group or
locality domain).

m3 m3

t
2

t
0

t
3

m2 m2

t
1

t
3

m2m2

t
1

t
2

3 m3

t

m

0
t

2
t

0

m0

t
0

t
3

m0 m0

t
1

t
3

m0

t
2

t
1

m1 m1m1 m1

Figure 11.5: Mapping two MPI processes to each node and implementing a round-robin thread
distribution.

m1 m1

t
1

t
0

m0

t
1

m0

t
0

t
1

m2 m2

t
0

t
1

t
0

m3 m3 m5 m5

t
1

t
0

t
1

m6 m6

t
0

t
1

m4

t
1

m4

t
0

7 m7

t

m

0

Figure 11.6: Mapping two MPI processes with two threads each to a single socket.

Hybrid parallelization with MPI and OpenMP 273

potential optimization strategy. This decomposition approach can also be beneficial
for memory-intensive codes with limited MPI scalability. Often half of the threads
are already able to saturate the main memory bandwidth of a single socket and the
use of a multithreaded MPI process can add a bit to the performance gain from the
smaller number of MPI processes. Alternatively a functional decomposition can be
employed to explicitly hide MPI communication (see the task mode implementation
of the Jacobi solver described above). It is evident that a number of different mapping
strategies is available for this decomposition as well. However, due to the symmetry
arguments stressed several times above, the mapping in Figure 11.6 should generally
provide best performance and thus be tested first.

Unfortunately, at the time of writing most MPI implementations only provide
very poor support for defining different mapping strategies and pinning the threads
correctly to the respective cores. If there is some support, it is usually restricted
to very specific combinations of MPI and compiler. Hence, the correct launch of a
hybrid application is mostly the programmer’s responsibility, but indispensable for
a profound performance study of hybrid codes. See Section 10.4.1 and Appendix A
for further information on mapping and affinity issues.

11.4 Potential benefits and drawbacks of hybrid programming

The hybrid parallel MPI/OpenMP approach is, for reasons mentioned earlier, still
rarely implemented to its full extent in parallel applications. Thus, it is not surprising
that there is no complete theory available for whether a hybrid approach does pay
back the additional costs for code restructuring or designing a complete hybrid ap-
plication from scratch. However, several potential fundamental advantages and draw-
backs of the hybrid approach as compared to pure MPI have been identified so far.
In the following we briefly summarize the most important ones. The impact of each
topic below will most certainly depend on the specific application code or even on
the choice of input data. A careful investigation of those issues is mandatory if and

only if pure MPI scalability does not provide satisfactory parallel performance.

Improved rate of convergence

Many iterative solvers incorporate loop-carried data dependencies like, e.g., the
well-known lexicographical Gauss–Seidel scheme (see Section 6.3). Those depen-
dencies are broken at boundary cells if standard domain decomposition is used for
MPI parallelization. While the algorithm still converges to the correct steady-state so-
lution, the rate of convergence typically drops with increasing number of subdomains
(for strong scaling scenarios). Here a hybrid approach may help reduce the number
of subdomains and improve the rate of convergence. This was shown, e.g., for a CFD
application with an implicit solver in [A90]: Launching only a single MPI process
per node (computing on a single subdomain) and using OpenMP within the node
improves convergence in the parallel algorithm. This is clearly a case where parallel

274 Introduction to High Performance Computing for Scientists and Engineers

speedups or overall floating-point performance are the wrong metrics to quantify the
“hybrid dividend.” Walltime to solution is the appropriate metric instead.

Re-use of data in shared caches

Using a shared-memory programming model for threads operating on a single
shared cache greatly extends the optimization opportunities: For iterative solvers with
regular stencil dependencies like the Jacobi or Gauss–Seidel type, data loaded and
modified by a first thread can be read by another thread from cache and updated once
again before being evicted to main memory. This trick leads to an efficient and nat-
ural parallel temporal blocking, but requires a shared address space to avoid double
buffering of in-cache data and redundant data copying (as would be enforced by a
pure MPI implementation) [O52, O53, O63]. Hybrid parallelization is mandatory to
implement such alternative multicore aware strategies in large-scale parallel codes.

Exploiting additional levels of parallelism

Many computational tasks provide a problem-immanent coarse-grained paral-
lel level. One prominent example are some of the multizone NAS parallel bench-
marks, where only a rather small number of zones are available for MPI paralleliza-
tion (from a few dozens up to 256) and additional parallel levels can be exploited
by multithreaded execution of the MPI process [O70]. Potential load imbalance on
these levels can also be addressed very efficiently within OpenMP by its flexible loop
scheduling variants (e.g., “guided” or “dynamic” in OpenMP).

Overlapping MPI communication and computation

MPI offers the flexibility to overlap communication and computation by issuing
nonblocking MPI communication, doing some computations and afterwards check-
ing the MPI calls for completion. However, as described in Section 10.4.3, most MPI
libraries today do not perform truly asynchronous transfers even if nonblocking calls
are used. If MPI progress occurs only if library code is executed (which is completely
in line with the MPI standard), message-passing overhead and computations are ef-
fectively serialized. As a remedy, the programmer may use a single thread within
an MPI process to perform MPI communication asynchronously. See Section 11.1.3
above for an example.

Reducing MPI overhead

In particular for strong scaling scenarios the contribution to the overall runtime
introduced by MPI communication overhead may increase rapidly with the num-
ber of MPI processes. Again, the domain decomposition approach can serve as a
paradigm here. With increasing process count the ratio of local subdomain surface
(communication) and volume (computation) gets worse (see Section 10.4) and at the
same time the average message size is reduced. This can decrease the effective com-
munication bandwidth as well (see also Problem 10.5 about “riding the Ping-Pong
curve”). Also the overall amount of buffer space for halo layer exchange increases

Hybrid parallelization with MPI and OpenMP 275

with the number of MPI processes and may use a considerable amount of main mem-
ory at large processor counts. Reducing the number of MPI processes through hy-
brid programming may help to increase MPI message lengths and reduce the overall
memory footprint.

Multiple levels of overhead

In general, writing a truly efficient and scalable OpenMP program is entirely non-
trivial, despite the apparent simplicity of the incremental parallelization approach.
We have demonstrated some of the potential pitfalls in Chapter 7. On a more ab-
stract level, introducing a second parallelization level into a program also brings in a
new layer on which fundamental scalability limits like, e.g., Amdahl’s Law must be
considered.

Bulk-synchronous communication in vector mode

In hybrid vector mode, all MPI communication takes place outside OpenMP-
parallel regions. In other words, all data that goes into and out of a multithreaded
process is only transferred after all threads have synchronized: Communication is
bulk-synchronous on the node level, and there is not a chance that one thread still does
useful work while MPI progress takes place (except if truly asynchronous message
passing is supported; see Section 10.4.3 for more information). In contrast, several
MPI processes that share a network connection can use it at all possible times, which
often leads to a natural overlap of computation and communication, especially if
eager delivery is possible. Even if the pure MPI program is bulk-synchronous as well
(like, e.g., the MPI-parallel Jacobi solver shown in Section 9.3), little variations in
runtime between the different processes can cause at least a partial overlap.

Appendix A

Topology and affinity in multicore
environments

The need to employ appropriate affinity mechanisms has been stressed many times
in this book: Cache size considerations, bandwidth bottlenecks, OpenMP paralleliza-
tion overhead, ccNUMA locality, MPI intranode communication, and the perfor-
mance of MPI/OpenMP hybrid codes are all influenced by the way that threads and
processes are bound to the cores in a shared-memory system. In general, there are
three different aspects to consider when trying to “do it all right.”

• Topology: All systems, independent of processor architecture and operating
system, use some numbering scheme that assigns an integer (or set of integers)
to each hardware thread (if SMT is available), core and NUMA locality do-
main for identification. System tools and libraries for affinity control use these
numbers, so it is important to know about the scheme. For convenience, there
is sometimes an abstraction layer, which allows the user to specify entities like
sockets, cache groups, etc. Note that we use the term core ID for the lowest-
level organizational unit. This could be a real “physical” core, or one of several
hardware threads, depending on whether the CPU supports SMT. Sometimes
the term logical core is used for hardware threads.

• Thread affinity: After the entities to which threads or processes should be
bound have been identified, the binding (or pinning) must be enforced, either
by the program itself (using appropriate libraries or system calls) or by external
tools that can do it “from the outside.” Some operating systems are capable
of maintaining strong affinity between threads and processors, meaning that
a thread (or process) will be reluctant to leave the processor it was initially
started on. However, it might happen that system processes or interactive load
push threads off their original cores. It is not guaranteed that the previous state
will be reestablished after the disturbance. One indicator for insufficient thread
affinity are erratic performance numbers (i.e., varying from run to run).

• NUMA placement: (This is also called memory affinity.) With thread affinity
in place, the first-touch page placement policy as described in Section 8.1.1
works on must ccNUMA systems. However, sometimes there is a need for
finer control; for instance, if round-robin placement must be enforced because
load balancing demands dynamic scheduling. As with thread binding, this can
be done under program control, or via separate tools.

277

278 Introduction to High Performance Computing for Scientists and Engineers

Listing A.1: Output from likwid-topology -g on a two-socket Intel “Nehalem” system
with eight cores.
1 ---

2 CPU name: Intel Core i7 processor

3 CPU clock: 2666745374 Hz

5 ***
6 Hardware Thread Topology

7 ***
8 Sockets: 2

9 Cores per socket: 4

10 Threads per core: 2

11 ---

12 HWThread Thread Core Socket

13 0 0 0 0

14 1 0 1 0

15 2 0 2 0

16 3 0 3 0

17 4 0 0 1

18 5 0 1 1

19 6 0 2 1

20 7 0 3 1

21 8 1 0 0

22 9 1 1 0

23 10 1 2 0

24 11 1 3 0

25 12 1 0 1

26 13 1 1 1

27 14 1 2 1

28 15 1 3 1

29 ---

30 Socket 0: (0 8 1 9 2 10 3 11)

31 Socket 1: (4 12 5 13 6 14 7 15)

32 ---

34 ***
35 Cache Topology

36 ***
37 Level: 1

38 Size: 32 kB

39 Cache groups: (0 8) (1 9) (2 10) (3 11) (4 12) (5 13) (6 14) (7 15)

40 ---

41 Level: 2

42 Size: 256 kB

43 Cache groups: (0 8) (1 9) (2 10) (3 11) (4 12) (5 13) (6 14) (7 15)

44 ---

45 Level: 3

46 Size: 8 MB

47 Cache groups: (0 8 1 9 2 10 3 11) (4 12 5 13 6 14 7 15)

48 ---

50 ***
51 Graphical:

52 ***
53 Socket 0:

54 +---------------------------------+

55 | +-----+ +-----+ +-----+ +-----+ |

56 | | 0 8| | 1 9| |2 10| |3 11| |

57 | +-----+ +-----+ +-----+ +-----+ |

58 | +-----+ +-----+ +-----+ +-----+ |

59 | | 32kB| | 32kB| | 32kB| | 32kB| |

60 | +-----+ +-----+ +-----+ +-----+ |

61 | +-----+ +-----+ +-----+ +-----+ |

62 | |256kB| |256kB| |256kB| |256kB| |

63 | +-----+ +-----+ +-----+ +-----+ |

64 | +-----------------------------+ |

65 | | 8MB | |

66 | +-----------------------------+ |

67 +---------------------------------+

68 Socket 1:

69 +---------------------------------+

70 | +-----+ +-----+ +-----+ +-----+ |

71 | |4 12| |5 13| |6 14| |7 15| |

72 | +-----+ +-----+ +-----+ +-----+ |

73 | +-----+ +-----+ +-----+ +-----+ |

74 | | 32kB| | 32kB| | 32kB| | 32kB| |

75 | +-----+ +-----+ +-----+ +-----+ |

76 | +-----+ +-----+ +-----+ +-----+ |

77 | |256kB| |256kB| |256kB| |256kB| |

78 | +-----+ +-----+ +-----+ +-----+ |

79 | +-----------------------------+ |

80 | | 8MB | |

81 | +-----------------------------+ |

82 +---------------------------------+

Topology and affinity in multicore environments 279

It is a widespread misconception that the operating system should care about those
issues, and they are all but ignored by many users and even application programmers;
however, in High Performance Computing we do care about them. Unfortunately,
it is not possible to handle topology, affinity and NUMA placement in a system-
independent way. Although there have been attempts to provide tools for automatic
affinity control [T30], we believe that manual control and a good understanding of
machine topology is still required for the time being.

This chapter gives some information about available tools and libraries for x86
Linux, because Linux is the dominating OS in the HPC cluster area (the share of
Linux systems in the Top500 list [W121] has grown from zero to 89% between 1998
and 2009). We will also ignore compiler-specific affinity mechanisms, since those
are well described in the compiler documentation.

Note that the selection of tools and practices is motivated purely by our own
experience. Your mileage may vary.

A.1 Topology

By the term “multicore topology” we mean the logical layout of a multicore-
based shared-memory computer as far as cores, caches, sockets, and data paths are
concerned. In Section 1.4 we gave an overview of the possible cache group struc-
tures of multicore chips, and Section 4.2 comprises information about the options for
building shared-memory computers. How the multicore chips and NUMA domains
in a system are built from those organizational units is usually well documented.

However, it is entirely possible that the same hardware uses different mappings
of core ID numbers depending on the OS kernel and firmware (“BIOS”) versions.
So the first question is how to find out about “which core sits where” in the ma-
chine. The output of “cat /proc/cpuinfo” is of limited use, because it pro-
vides only scarce information on caches. One utility that can display all the relevant
information in a useful format is likwid-topology from the “LIKWID” HPC
toolset [T20, W120]. Listing A.1 shows output from likwid-topology with the
“-g” option (enabling ASCII art graphics output) on a quad-core dual-socket Intel
“Nehalem” node (Core i7 architecture) with SMT. The tool identifies all hardware
threads, physical cores, cache sizes, and sockets. In this particular case, we have two
sockets with four cores each and two threads per core (lines 8–10). Lines 13–28 show
the mapping of hardware threads to physical cores and sockets: Hardware thread k

(k ∈ {0 . . .7}) and k + 8 belong to the same physical core. The cache groups and
sizes can be found in lines 37–47: A single L3 cache group comprises all cores in
a socket. L1 and L2 groups are single-core. The last section starting from line 53
contains an ASCII art drawing, which summarizes all the information. Via the -c
option, likwid-topology can also provide more detailed information about the
cache organization, like associativity, cache line size, etc. (shown here for the L3
cache only):

280 Introduction to High Performance Computing for Scientists and Engineers

1 Level: 3

2 Size: 8 MB

3 Type: Unified cache

4 Associativity: 16

5 Number of sets: 8192

6 Cache line size: 64

7 Non Inclusive cache

8 Shared among 8 threads

9 Cache groups: (0 8 1 9 2 10 3 11) (4 12 5 13 6 14 7 15)

The LIKWID suite supports current Intel and AMD x86 processors. Apart from
the topology tool it also features simple utilities to read runtime-integrated hardware
counter information similar to the data shown in Section 2.1.2, and to enforce thread-
to-core affinity (see the following section for more information on the latter).

A.2 Thread and process placement

The default OS mechanisms for thread placement are unreliable, because the OS
knows nothing about a program’s performance properties. Armed with information
about hardware thread, core, cache, and socket topology, one can however proceed
to implement a thread-to-core binding that fits a parallel application’s needs. For
instance, bandwidth-bound codes may run best when all threads are spread across all
sockets of a machine as sparsely as possible. On the other hand, applications with
frequent synchronization between “neighboring” MPI processes could profit from
placing consecutive ranks close together, i.e., onto cores in the same cache groups.
In the following we will use the terms “thread” and “process” mostly synonymously,
and will point out differences where appropriate. All examples in this section assume
that the code runs on a cluster of machines like the one described in Section A.1.

A.2.1 External affinity control

If the application code cannot be changed, external tools must be used to em-
ploy affinity mechanisms. This is actually the preferred method, because code-based
affinity is nonportable and inflexible. Under the Linux OS, the simple taskset tool
(which is part of the util-linux-ng package) allows to set an affinity mask for a
process:

1 taskset [options] <mask> <command> [args]

The mask can be given as a bit pattern or (if the -c command line option is used) a
list of core IDs. In the following example we restrict the threads of an application to
core IDs 0–7:

1 $ export OMP_NUM_THREADS=8

2 $ taskset -c 0-7 ./a.out # alternative: taskset 0xFF ./a.out

Topology and affinity in multicore environments 281

This would make sure that all threads run on a set of eight different physical cores.
It does, however, not bind the threads to those cores; threads can still move inside
the defined mask. Although the OS tends to prevent multiple threads from running
on the same core, they could still change places and destroy NUMA locality. Like-
wise, if we set OMP_NUM_THREADS=4, it would be unspecified which of the eight
cores are utilized. In summary, taskset is more suited for binding single-threaded
processes, but can still be useful if a group of threads runs in a very “symmetric”
environment, like an L2 cache group.

In a production environment, a taskset-like mechanism should also be inte-
grated into the MPI starting process (i.e., mpirun or one of its variants). A simple
workaround that works with most MPI installations is to use taskset instead of
the actual MPI binary:

1 $ mpirun -npernode 8 taskset -c 0-7 ./a.out

The -npernode 8 option specifies that only eight processes per node should be
started. Every MPI process (a.out) is run under control of taskset with a 0xFF
affinity mask and thus cannot leave the set of eight distinct physical cores. However,
as in the previous example the processes are allowed to move freely inside this set.
NUMA locality will only be unharmed if the kernel does a good job of maintaining
affinity by default. Moreover, the method in this simple form works only if every
MPI process can be started with the same taskset wrapper.

Real binding of multiple (OpenMP) threads and/or (MPI) processes from out-
side the application is more complex. First of all, there is no ready-made tool avail-
able that works in all system environments. Furthermore, compilers usually gener-
ate code that starts at least one “shepherd thread” in addition to the number given
in OMP_NUM_THREADS. Shepherd threads do not execute application code and
should thus not be bound, so any external tool must have a concept about how and
when shepherd threads are started (this is compiler-dependent, of course). Luckily,
OpenMP implementations under Linux are usually based on POSIX threads, and
OpenMP threads are created using the pthread_create() function either when
the binary starts or when the first parallel region in encountered. By overloading
pthread_create() it is possible to intercept thread creation, pin the applica-
tion’s threads, and skip the shepherds in a configurable way [T31]. This works even
with MPI/OpenMP hybrid code, where additional MPI shepherd processes add to
complexity. The LIKWID tool suite [T20, W120] contains a lightweight program
called likwid-pin, which can bind the threads of a process to specific cores on a
node. In order to define which threads should not be bound (the shepherd threads), a
skip mask has to be specified:

1 likwid-pin -s <hex skip mask> -c <core list> <command> [args]

Bit b in the skip mask is associated with the (b+ 1)-th thread that is created via the
pthread_create() function. If a bit is set, the corresponding thread will not be
bound. The core list has the same syntax as with taskset. A typical usage pattern
for an OpenMP binary generated by the Intel compiler would be:

282 Introduction to High Performance Computing for Scientists and Engineers

1 $ export OMP_NUM_THREADS=4

2 $ export KMP_AFFINITY=disabled

3 $ likwid-pin -s 0x1 -c 0,1,4,5 ./stream

4 [likwid-pin] Main PID -> core 0 - OK

5 --

6 Double precision appears to have 16 digits of accuracy

7 Assuming 8 bytes per DOUBLE PRECISION word

8 --

9 Array size = 20000000

10 Offset = 32

11 The total memory requirement is 457 MB

12 You are running each test 10 times

13 --

14 The *best* time for each test is used

15 *EXCLUDING* the first and last iterations

16 [pthread wrapper] PIN_MASK: 0->1 1->4 2->5

17 [pthread wrapper] SKIP MASK: 0x1

18 [pthread wrapper 0] Notice: Using libpthread.so.0

19 threadid 1073809728 -> SKIP

20 [pthread wrapper 1] Notice: Using libpthread.so.0

21 threadid 1078008128 -> core 1 - OK

22 [pthread wrapper 2] Notice: Using libpthread.so.0

23 threadid 1082206528 -> core 4 - OK

24 [pthread wrapper 3] Notice: Using libpthread.so.0

25 threadid 1086404928 -> core 5 - OK

26 [... rest of STREAM output omitted ...]

This is the output of the well-known STREAM benchmark [W119], run with four
threads on two sockets (cores 0, 1, 4, and 5) of the Nehalem system described above.
In order to prevent the code from employing the default affinity mechanisms of the
Intel compiler, the KMP_AFFINITY shell variable has to be set to disabled be-
fore running the binary (line 2). The diagnostic output of likwid-pin is prefixed
by “[likwid-pin]” or “[pthread wrapper],” respectively. Before any ad-
ditional threads are created, the master thread is bound to the first core in the list
(line 4). At the first OpenMP parallel region, the overloaded pthread_create()
function reports about the cores to use (line 16) and the skip mask (line 17), which
specifies here that the first created thread should not be bound (this is specific to the
Intel compiler). Consequently, the wrapper library skips this thread (line 19). The
rest of the threads are then pinned according to the core list.

In an MPI/OpenMP hybrid program, additional threads may be generated by the
MPI library, and the skip mask should be changed accordingly. For Intel MPI and
the Intel compilers, running a hybrid code under control of likwid-pin works as
follows:

1 $ export OMP_NUM_THREADS=8

2 $ export KMP_AFFINITY=disabled

3 $ mpirun -pernode likwid-pin -s 0x3 -c 0-7 ./a.out

This starts one MPI process per node (due to the -pernode option) with eight
threads each, and binds the threads to cores 0–7. In contrast to a simple solution
using taskset, threads cannot move after they have been pinned. Unfortunately,

Topology and affinity in multicore environments 283

the two schemes have the same drawback: They work only if a single, multithreaded
MPI process is used per node. For more complex setups like one MPI process per
socket (see Section 11.3) the pinning method must be able to interact with the MPI
start mechanism.

A.2.2 Affinity under program control

When external affinity control is not an option, or simply if appropriate tools are
not provided by the system, binding can always be enforced by the application it-
self. Every operating system offers system calls or libraries for this. Under Linux,
PLPA [T32] is a wrapper library that abstracts sched_setaffinity() and re-
lated system calls. The following is a C example for OpenMP where each thread is
pinned to a core whose ID corresponds to an entry in a map indexed by the thread
ID:

1 #include <plpa.h>

2 ...

3 int coremap[] = {0,4,1,5,2,6,3,7};

4 #pragma omp parallel

5 {

6 plpa_cpu_set_t mask;

7 PLPA_CPU_ZERO(&mask);

8 int id = coremap[omp_get_thread_num()];

9 PLPA_CPU_SET(id,&mask);

10 PLPA_NAME(sched_setaffinity)((pid_t)0, sizeof(mask), &mask);

11 }

The mask variable is used as a bit mask to identify those CPUs the thread should be
restricted to by setting the corresponding bits to one (this is actually identical to the
mask used with taskset). The coremap[] array establishes a particular map-
ping sequence; in this example, the intention is probably to spread all threads evenly
across the eight cores in the Nehalem system described above, so that bandwidth uti-
lization is optimal. In a real application, the entries in the core map should certainly
not be hard-coded.

After this code has executed, no thread will be able to leave “its” core any more
(but it can be re-pinned later). Of course PLPA can also be used to enforce affinity
for MPI processes:

1 plpa_cpu_set_t mask;

2 PLPA_CPU_ZERO(&mask);

3 MPI_Comm_rank(MPI_COMM_WORLD,&rank);

4 int id = (rank % 4);

5 PLPA_CPU_SET(id,&mask);

6 PLPA_NAME(sched_setaffinity)((pid_t)0, sizeof(cpu_set_t), &mask);

No core map was used here for clarity. Finally, a hybrid MPI/OpenMP program could
employ PLPA like this:

1 MPI_Comm_rank(MPI_COMM_WORLD,&rank);

2 #pragma omp parallel

284 Introduction to High Performance Computing for Scientists and Engineers

3 {

4 plpa_cpu_set_t mask;

5 PLPA_CPU_ZERO(&mask);

6 int cpu = (rank % MPI_PROCESSES_PER_NODE)*omp_num_threads()

7 + omp_get_thread_num();

8 PLPA_CPU_SET(cpu,&mask);

9 PLPA_NAME(sched_setaffinity)((pid_t)0, sizeof(cpu_set_t), &mask);

10 }

We have used “raw” integer core IDs in all examples up to now. There is nothing
to be said against specifying entities like cache groups, sockets, etc., if the binding
mechanisms support them. However, this support must be complete; an affinity tool
that, e.g., knows nothing about the existence of multiple hardware threads on a phys-
ical core is next to useless. At the time of writing, lot of work is being invested into
providing easy-to-use affinity interfaces. In the midterm future, the “hwloc” package
will provide a more powerful solution than PLPA [T33].

Note that PLPA and similar interfaces are only available with C bindings. Using
them from Fortran will require calling a C wrapper function.

A.3 Page placement beyond first touch

First-touch page placement works remarkably well over a wide range of cc-
NUMA environments and operating systems, and there is usually no reason to do
anything else if static scheduling is possible. Even so, dynamic or guided schedul-
ing may become necessary for reasons of load balancing, whose impact on parallel
performance we have analyzed in Section 8.3.1 and Problem 8.1. A similar problem
arises if OpenMP tasking is employed [O58]. Under such conditions, a simple so-
lution that exploits at least some parallelism in memory access is to distribute the
memory pages evenly (“round-robin”) among the locality domains. This could be
done via first-touch placement again, but only if the initialization phase is predictable
(like a standard loop) and accessible. The latter may become an issue if initialization
occurs outside the user’s own code.

Under Linux the numactl tool allows very flexible control of page placement
on a “global” basis without changes to an application. Its scope is actually much
broader, since it can also handle the placement of SYSV shared memory and restrict
processes to a list of core IDs like taskset. Here we concentrate on the NUMA
capabilities and omit all other options:

1 numactl --hardware

This diagnostic use of numactl is very helpful to check how much memory is avail-
able in the locality domains of a system. Using it on the ccNUMA node described in
Section A.1 may yield the following result:

1 $ numactl --hardware

2 available: 2 nodes (0-1)

Topology and affinity in multicore environments 285

3 node 0 cpus: 0 1 2 3 8 9 10 11

4 node 0 size: 6133 MB

5 node 0 free: 2162 MB

6 node 1 cpus: 4 5 6 7 12 13 14 15

7 node 1 size: 6144 MB

8 node 1 free: 5935 MB

In numactl terminology, a “node” is a locality domain. While there is plenty of
memory available in LD1, only about 2 GB are left in LD0, either because there
is a program running or the memory is consumed by file system buffer cache (see
Section 8.3.2). The tool also reports which core IDs belong to each node.

As for page placement, there are several options:

1 numactl [--interleave=nodes] [--preferred=node]

2 [--membind=nodes] [--localalloc] <command> [args] ...

The --interleave option sets an interleaving policy for memory pages on the
executed command. Instead of following the first-touch principle, pages will be dis-
tributed round-robin, preferably among the list of LDs specified:

1 $ export OMP_NUM_THREADS=16 # using all HW threads

2 $ numactl --interleave=0,1 ./a.out # --interleave=all for all nodes

If there is not enough memory available in the designated LDs, other LDs will be
used. Interleaving is also useful for quick assessment of codes that are suspected to
have NUMA locality or contention problems: If the parallel application runs faster
just by starting the untouched binary with numactl --interleave, one may
want to take a look at its array initialization code.

Besides round-robin placement there are also options to map pages into one pre-
ferred node (--preferred=node) if space is available there, or to force alloca-
tion from a set of nodes via --membind=nodes. In the latter case the program
will crash if the assigned LDs are full. The --localalloc option is similar to the
latter but always implies mapping on the “current” node, i.e., the one that numactl
was started on.

In case an even finer control of placement is required, the libnuma library is
available under Linux [139]. It allows setting NUMA policies on a per-allocation
basis, after initial allocation (e.g., via malloc()) but before initialization.

Appendix B

Solutions to the problems

Solution 1.1 (page 34): How fast is a divide?

Runtime is dominated by the divide and data resides in registers, so we can
assume that the number of clock cycles for each loop iteration equals the divide
throughput (which is assumed to be identical to latency here). Take care if SIMD
operations are involved; if p divides can be performed concurrently, the benchmark
will underestimate the divide latency by a factor of p.

Current x86-based processors have divide latencies between 20 and 30 cycles at
double precision.

Solution 1.2 (page 34): Dependencies revisited.

As explained in Section 1.2.3, ofs=1 stalls the pipeline in iteration i until it-
eration i− 1 is complete. The duration of the stall is very close to the depth of the
pipeline. If ofs is increased, the stall will take fewer and fewer cycles until finally,
if ofs gets larger than the pipeline depth, the stalls vanish. Note that we neglect the
possible impact of the recursion on the compiler’s ability to vectorize the code using
SIMD instructions.

Solution 1.3 (page 35): Hardware prefetching.

Whenever a prefetched data stream from memory is significantly shorter than a
memory page, the prefetcher tends to bring in more data than needed [O62]. This
effect is ameliorated — but not eliminated — by the ability of the hardware to cancel
prefetch streams if too many prefetch requests queue up.

Note that if the stream gets very short, TLB misses will be another important
factor to consider. See Section 3.4 for details.

Solution 1.4 (page 35): Dot product and prefetching.

(a) Without prefetching, the time required to fetch two cache lines is twice the
latency (100 ns) plus twice the pure data transfer (bandwidth) contribution
(10 ns), which adds up to 220 ns. Since a cache line holds four entries, eight
flops (two multiplications and two additions per entry) can be performed on
this data. Thus, the expected performance is 8 Flops/220 ns = 36 MFlops/sec.

(b) According to Eq. (1.6), 1+100/10 = 11 outstanding prefetches are required to
hide latency. Note that this result does not depend on the number of concurrent

287

288 Introduction to High Performance Computing for Scientists and Engineers

streams only if we may assume that achievable bandwidth is independent of
this number.

(c) If the length of the cache line is increased, latency stays unchanged but it takes
longer to transfer the data, i.e., the bandwidth contribution to total transfer time
gets larger. With a 64-byte cache line, we need 1 + 100/20 = 6 outstanding
prefetches, and merely 1+100/40 ≈ 4 at 128 bytes.

(d) Transferring two cache lines without latency takes 20 ns, and eight Flops can
be performed during that time. This results in a theoretical performance of
4×108 Flops/sec, or 400 MFlops/sec.

Solution 2.1 (page 62): The perils of branching.

Depending on whether data has to be fetched from memory or not, the perfor-
mance impact of the conditional can be huge. For out-of-cache data, i.e., large N, the
code performs identically to the standard vector triad, independent of the contents of
C. If N is small, however, performance breaks down dramatically if the branch cannot
be predicted, i.e., for a random distribution of C values. If C(i) is always smaller
or greater than zero, performance is restored because the branch can be predicted
perfectly in most cases.

Note that compilers can do interesting things to such a loop, especially if SIMD
operations are involved. If you perform actual benchmarking, try to disable SIMD
functionality on compilation to get a clear picture.

Solution 2.2 (page 62): SIMD despite recursion?

The operations inside a “SIMD unit” must be independent, but they may depend
on data which is a larger distance away, either negative or positive. Although pipelin-
ing may be suboptimal for offset< 0, offsets that are multiples of 4 (positive or
negative) do not inhibit SIMD vectorization. Note that the compiler will always re-
frain from SIMD vectorization in this loop if the offset is not known at compile time.
Can you think of a way to SIMD-vectorize this code even if offset is not a multiple
of 4?

Solution 2.3 (page 62): Lazy construction on the stack.

A C-style array in a function or block is allocated on the stack. This is an op-
eration that costs close to no overhead, so it would not make a difference in terms
of performance. However, this option may not always be possible due to stack size
constraints.

Solution 2.4 (page 62): Fast assignment.

The STL std::vector<> class has the concept of capacity vs. size. If there is
a known upper limit to the vector length, assignment is possible without re-allocation:

1 const int max_length=1000;

Solutions to the problems 289

2

3 void f(double threshold, int length) {

4 static std::vector<double> v(max_length);

5 if(rand() > threshold*RAND_MAX) {

6 v = obtain_data(length); // no re-alloc required

7 std::sort(v.begin(), v.end());

8 process_data(v);

9 }

10 }

Solution 3.1 (page 91): Strided access.

If s is smaller than the length of a cache line in DP words, consecutive cache
lines are still fetched from memory. Assuming that the prefetching mechanism is
still able to hide all the latency, the memory interface is saturated but we only use
a fraction of 1/s of the transferred data volume. Hence, the bandwidth available to
the application (the actual loads and stores) will drop to 1/s, and so will the vector
triad’s performance. For s larger than a cache line, performance will stay constant
because exactly one item per cache line is used, no matter how large s is. Of course,
prefetching will cease to work at some point, and performance will drop even further
and finally be governed mainly by latency (see also Problem 1.4).

Do these considerations change if nontemporal stores are used for writing A()?

Solution 3.2 (page 92): Balance fun.

As shown in Section 3.1.2, a single Intel Xeon 5160 core has a peak performance
of 12 GFlops/sec and a theoretical machine balance of BX

m = 0.111 W/F if the second
core on the chip is idle. The STREAM TRIAD benchmark yields an effective balance
which is only 36 % of this. For the vector CPU, peak performance is 16 GFlops/sec.
Theoretical and effective machine balance are identical: BV

m = 0.5 W/F. All four ker-
nels to be considered here are read-only (Y(j) in kernel (a) can be kept in a register
since the inner loop index is i), so write-allocate transfers are not an issue. There is
no read-only STREAM benchmark, but TRIAD with its 2:1 ratio of loads to stores
is close enough, especially considering that there is not much difference in effective
bandwidth between TRIAD and, e.g., COPY on the Xeon.

We denote expected performance on the Xeon and the vector CPU with PX and
PV, respectively.

(a) Bc = 1 W/F
PX = 12 GFlops/sec ·0.36 ·BX

m/Bc = 400 MFlops/sec
PV = 16 GFlops/sec ·BV

m/Bc = 8 GFlops/sec

(b) Bc = 0.5 W/F. the expected performance levels double as compared to (a).

(c) This is identical to (a).

(d) Only counting the explicit loads from the code, code balance appears to be
Bc = 1.25 W/F. However, the effective value depends on the contents of array
K(): The given value is only correct if the entries in K(i) are consecutive. If,

290 Introduction to High Performance Computing for Scientists and Engineers

e.g., K(i) = const., only one entry of B() is loaded, and B
min,X
c = 0.75 W/F

on the cache-based CPU. A vector CPU does not have the advantage of a
cache, so it must re-load this value over and over again, and code balance
is unchanged. On the other hand, it can perform scattered loads efficiently,
so that BV

c = 1.25 W/F independent of the contents of K() (in reality there
are deviations from this ideal because, e.g., gather operations are less efficient
than consecutive streams). Hence, the vector processor should always end up
at PV = 16 GFlops/sec ·BV

m/BV
c = 6.4 GFlops/sec.

The worst situation for the cache-based CPU is a completely random K(i)

with a large co-domain, so that each load from array B() incurs a full cache
line read of which only a single entry is used before eviction. With a 64-byte
cache line, B

max,X
c = 4.75 W/F. Thus, the three cases are:

1. K(i)= const.:
B

min,X
c = 0.75 W/F, and

PX = 12 GFlops/sec ·0.36 ·BX
m/B

min,X
c = 639 MFlops/sec.

2. K(i)= i:
Bc = 1.25 W/F, and
PX = 12 GFlops/sec ·0.36 ·BX

m/BX
c = 384 MFlops/sec.

3. K(i)= random:
Bc = 4.75 W/F, and
PX = 12 GFlops/sec ·0.36 ·BX

m/B
max,X
c = 101 MFlops/sec.

This estimate is only an upper bound, since prefetching will not work.

Note that some Intel x86 processors always fetch two consecutive cache lines
on each miss (can you imagine why?), further increasing code balance in the
worst-case scenario.

Solution 3.3 (page 92): Performance projection.

We normalize the original runtime to T = Tm +Tc = 1, with Tm = 0.4 and Tc =
0.6. The two parts of the application have different characteristics. A code balance
of 0.04 W/F means that performance is not bound by memory bandwidth but other
factors inside the CPU core. The absolute runtime for this part will most probably be
cut in half if the peak performance is doubled, because the resulting machine balance
of 0.06 W/F is still larger than code balance. The other part of the application will not
change its runtime since it is clearly memory-bound at a code balance of 0.5 W/F. In
summary, overall runtime will be T = Tm +Tc/2 = 0.7.

If the SIMD vector length (and thus peak performance) is further increased, ma-
chine balance will be reduced even more. At a machine balance of 0.04 W/F, the
formerly CPU-bound part of the application will become memory-bound. From that
point, no boost in peak performance can improve its runtime any more. Overall run-
time is then Tmin = Tm +Tc/3 = 0.6.

Amdahl’s Law comes to mind, and indeed above considerations are reminiscent
of the concepts behind it. However, there is a slight complication because the CPU-

Solutions to the problems 291

Listing B.1: An implementation of the 3D Jacobi algorithm with three-way loop blocking.

1 double precision :: oos

2 double precision, dimension(0:imax+1,0:jmax+1,0:kmax+1,0:1) :: phi

3 integer :: t0,t1

4 t0 = 0 ; t1 = 1 ; oos = 1.d0/6.d0

5 ...

6 ! loop over sweeps

7 do s=1,ITER

8 ! loop nest over blocks

9 do ks=1,kmax,bz

10 do js=1,jmax,by

11 do is=1,imax,bx

12 ! sweep one block

13 do k=ks,min(kmax,ks+bz-1)

14 do j=js,min(jmax,js+by-1)

15 do i=is,min(imax,is+bx-1)

16 phi(i,j,k,t1) = oos * (&

17 phi(i-1,j,k,t0)+phi(i+1,j,k,t0)+ &

18 phi(i,j-1,k,t0)+phi(i,j+1,k,t0)+ &

19 phi(i,j,k-1,t0)+phi(i,j,k+1,t0))

20 enddo

21 enddo

22 enddo

23 enddo

24 enddo

25 enddo

26 i=t0 ; t0=t1; t1=i ! swap arrays

27 enddo

bound part of the application becomes memory-bound at some critical machine bal-
ance so that the absolute performance limit is actually reached, as opposed to Am-
dahl’s Law where it is an asymptotic value.

Solution 3.4 (page 92): Optimizing 3D Jacobi.

Compared to the 2D Jacobi case, we can expect more performance breakdowns
when increasing the problem size: If two successive k-planes fit into cache, only one
of the six loads generates a cache miss. If the cache is only large enough to hold
two successive j-lines per k-plane, three loads go to memory (one for each k-plane
involved in updating a stencil). Finally, at even larger problem sizes only a single
load can be satisfied from cache. This would only happen with ridiculously large
problems, or if the computational domain has a very oblong shape, so it will not be
observable in practice.

As in the matrix transpose example, loop blocking eliminates those breakdowns.
One sweep over the complete volume can be performed as a series of sweeps over
subvolumes of size bx×by×bz. Those can be chosen small enough so that two
successive k-layers fit easily into the outer-level cache. A possible implementation is
shown in Listing B.1. Note that we are not paying attention to optimizations like data

292 Introduction to High Performance Computing for Scientists and Engineers

alignment or nontemporal stores here.
Loop blocking in the variant shown above is also called spatial blocking. It can

eliminate all performance breakdowns after the problem is too large for the outer
level cache, i.e., it can maintain a code balance of 0.5 W/F (3 Words per 6 Flops,
including write allocates). The question remains: What is the optimal choice for the
block sizes? In principle, a block should be small enough in the i and j directions so
that at least two successive k-planes fit into the portion of the outer-level cache that
is available to a core. A “safety factor” should be included because the full cache
capacity can never be used. Note also that hardware prefetchers (especially on x86
processors) and the penalties connected with TLB misses demand that the memory
streams handled in the inner loop should not be significantly shorter than one page.

In order to decrease code balance even further one has to include the iteration
loop into the blocking scheme, performing more than one stencil update on every
item loaded to the cache. This is called temporal blocking. While it is conceptu-
ally straightforward, its optimal implementation, performance properties, and inter-
actions with multicore structures are still a field of active research [O61, O73, O74,
O75, O52, O53].

Solution 3.5 (page 93): Inner loop unrolling revisited.

Stencil codes can benefit from inner loop unrolling because onecan save loads
from cache to registers. For demonstration we consider a very simple “two-point
stencil”:

1 do i=1,n-1

2 b(i) = a(i) + s*a(i+1)

3 enddo

In each iteration, two loads and one store appear to be required to perform the update
on b(i). However, a(i+1) could be kept in a register and re-used immediately in
the next iteration (we are ignoring a possible loop remainder here):

1 do i=1,n-1,2

2 b(i) = a(i) + s*a(i+1)

3 b(i+1) = a(i+1) + s*a(i+2)

4 enddo

This saves half of the loads from array a(). However, it is an in-cache optimization
since the extra load in the version without unrolling always comes from L1 cache.
The unrolling will thus have no advantage for long, memory-bound loops. In simple
cases, compilers will employ this variant of inner loop unrolling automatically.

It is left to the reader to figure out how inner loop unrolling may be applied to the
Jacobi stencil.

Solution 3.6 (page 93): Not unrollable?

In principle, unroll and jam is only possible if the loop nest is “rectangular,” i.e.,
if the inner loop bounds do not depend on the outer loop index. This condition is

Solutions to the problems 293

row rstart

Figure B.1: Four-way unroll and jam for a
multiplication of a triangular matrix with a
vector. The arrows show how the matrix en-
tries are traversed. Shaded blocks are rect-
angular and thus are candidates for unroll
and jam. The white matrix entries must be
handled separately.

not met here, but one can cut rectangular chunks out of the triangular matrix and
handle the remainders separately, similar to loop peeling. Figure B.1 shows how it
works. For four-way unroll and jam, blocks of size 4×r (r ≥ 1) are traversed by
the unrolled loop nest (shaded entries). The remaining entries are treated by a fully
unrolled remainder loop:

1 rstart = MOD(N,4)+1

2

3 do c=1,rstart-1 ! first peeled-off triangle

4 do r=1,rstart-c

5 y(r) = y(r) + a(c,r) * x(c)

6 enddo

7 enddo

8

9 do b = rstart,N,4 ! row of block start

10 ! unrolled loop nest

11 do c = 1,b

12 y(b) = y(b) + a(c,b) * x(c)

13 y(b+1) = y(b+1) + a(c,b+1) * x(c)

14 y(b+2) = y(b+2) + a(c,b+2) * x(c)

15 y(b+3) = y(b+3) + a(c,b+3) * x(c)

16 enddo

17

18 ! remaining 6 iterations (fully unrolled)

19 y(b+1) = y(b+1) + a(b+1,b+1) * x(b+1)

20 y(b+2) = y(b+2) + a(b+1,b+2) * x(b+1)

21 y(b+3) = y(b+3) + a(b+1,b+3) * x(b+1)

22 y(b+2) = y(b+2) + a(b+2,b+2) * x(b+2)

23 y(b+3) = y(b+3) + a(b+2,b+3) * x(b+2)

24 y(b+3) = y(b+3) + a(b+3,b+3) * x(b+3)

25 enddo

294 Introduction to High Performance Computing for Scientists and Engineers

Solution 3.7 (page 93): Application optimization.

This code has the following possible performance issues:

• The inner loop is dominated by computationally expensive (“strong”) trigono-
metric functions.

• There is a rather expensive integer modulo operation (much slower than any
other integer arithmetic or logical instruction).

• Access to matrices mat and s is strided because the inner loop goes over j.
SIMD vectorization will not work.

Pulling the expensive operations out of the inner loop is the first and most simple
step (this should really be done by the compiler, though). At the same time, we can
substitute the modulo by a bit mask and the complicated trigonometric expression by
a much simpler one:

1 do i=1,N

2 val = DBLE(IAND(v(i),255))

3 val = -0.5d0*COS(2.d0*val)

4 do j=1,N

5 mat(i,j) = s(i,j) * val

6 enddo

7 enddo

Although this optimization boosts performance quite a bit, the strided access in the
inner loop is hazardous, especially when N gets large (see Section 3.4). We can’t just
interchange the loop levels, because that would move the expensive operations to the
inside again. Instead we note that the cosine is evaluated on 256 distinct values only,
so it can be tabulated:

1 double precision, dimension(0:255), save :: vtab

2 logical, save :: flag = .TRUE.

3 if(flag) then ! do this only once

4 flag = .FALSE.

5 do i=0,255

6 vtab(i) = -0.5d0*COS(2.d0*DBLE(i))

7 enddo

8 endif

9 do j=1,N

10 do i=1,N

11 mat(i,j) = s(i,j) * vtab(IAND(v(i),255))

12 enddo

13 enddo

In a memory-bound situation, i.e., for large N, this is a good solution because the
additional indirection will be cheap, and vtab() will be in the cache all the time.
Moreover, the table must be computed only once. If the problem fits into the cache,
however, SIMD vectorizability becomes important. One way to vectorize the inner
loop is to tabulate not just the 256 trigonometric function values but the whole factor
after s(i,j):

Solutions to the problems 295

1 double precision, dimension(0:255), save :: vtab

2 double precision, dimension(N) :: ftab

3 logical, save :: flag = .TRUE.

4 if(flag) then ! do this only once

5 flag = .FALSE.

6 do i=0,255

7 vtab(i) = -0.5d0*COS(2.d0*DBLE(i))

8 enddo

9 endif

10 do i=1,N ! do this on every call

11 ftab(i) = vtab(IAND(v(i),255))

12 enddo

13 do j=1,N

14 do i=1,N

15 mat(i,j) = s(i,j) * ftab(i)

16 enddo

17 enddo

Since v() may change between calls of the function, ftab() must be recomputed
every time, but the inner loop is now trivially SIMD-vectorizable.

Solution 3.8 (page 93): TLB impact.

TLB “cache lines” are memory pages, so the penalty for a miss must be compared
to the time it takes to stream one page into cache. At present, memory bandwidth
is a few GBytes/sec per core, leading to a transfer time of around 1 µs for a 4 kB
page. The penalty for a TLB miss varies widely across architectures, but it is usually
far smaller than 100 CPU cycles. At clock frequencies of around 2 GHz, one TLB
miss per page on a pure streaming code has no noticeable impact on performance. If
significantly less than a page is transferred before going to the next, this will change,
of course.

Some systems have larger memory pages, or can be configured to use them. At
best, the complete working set of an application can be mapped by the TLB, so that
the number of misses is zero. Even if this is not the case, large pages can enhance the
probability of TLB hits, because it becomes less likely that a new page is hit at any
given moment. However, switching to large pages also usually reduces the number
of available TLB entries.

Solution 4.1 (page 114): Building fat-tree network hierarchies.

Static routing assigns a fixed network route to each pair of communication part-
ners. With a 2:3 oversubscription, some connections will get less bandwidth into the
spine because it is not possible to distribute the leaves evenly among the spine con-
nections (the number of leaves on a leaf switch is not a multiple of the number of its
connections into the spine). Hence, the network gets even more unbalanced, beyond
the contention effects incurred by static routing and oversubscription alone.

296 Introduction to High Performance Computing for Scientists and Engineers

Solution 5.1 (page 140): Overlapping communication and computation.

Hiding communication behind computation is something that sounds straightfor-
ward but is usually not easy to achieve in practice; see Sections 10.4.3 and 11.1.3 for
details. Anyway, assuming that it is possible, the time for parallel execution in the
denominator of the strong scaling speedup function (5.30) becomes

max
[

(1− s)/N,
(

κN−β +λ
)

µ−1
]

. (B.1)

This describes a crossover from perfectly to partially hidden communication when

µ(1− s) = κN
1−β
c +λNc . (B.2)

As the right-hand side of this equation is strictly monotonous in Nc if 0 ≤ β ≤ 1,
the crossover will always be shifted to larger N on the slow computer (µ > 1). By
how much exactly (a factor of at least µ is certainly desirable) is given by the ratio
Nc(µ)/Nc(µ = 1), but solving for Nc is not easily possible. Fortunately, it is sufficient
to investigate the important limits λ = 0 and κ = 0. For vanishing latency,

Nc(λ = 0) =

(

µ(1− s)

κ

)1/(1−β)

, (B.3)

and
Nc(µ > 1)

Nc(µ = 1)

∣

∣

∣

∣

λ=0
= µ1/(1−β) > µ . (B.4)

In the latency-dominated limit κ = 0 we immediately get

Nc(µ > 1)

Nc(µ = 1)

∣

∣

∣

∣

κ=0
= µ . (B.5)

We have derived an additional benefit of slow computers: If communication can be
hidden behind computation, it becomes noticeable at a certain N, which is at least µ
times larger than on the standard computer.

Can you do the same analysis for weak scaling?

Solution 5.2 (page 141): Choosing an optimal number of workers.

For strong scaling and latency-dominated communication, the walltime for exe-
cution (“time to solution”) is

Tw = s+
1− s

N
+λ (B.6)

if s is the nonparallelizable fraction and λ is the latency. The cost for using N pro-
cessors for a time Tw is NTw, yielding a cost-walltime product of

V = NT 2
w = N

(

s+
1− s

N
+λ

)2

, (B.7)

Solutions to the problems 297

which is extremal if

∂V

∂N
=

1
N2 [(1+λN +(N −1)s)(s−1+N(λ + s))] = 0 . (B.8)

The only positive solution of this equation in N is

Nopt =
1− s

λ + s
. (B.9)

Interestingly, if we assume two-dimensional domain decomposition with halo ex-
change so that

Tw = s+
1− s

N
+λ +κN−1/2 , (B.10)

the result is the same as in (B.9), i.e., independent of κ . This is a special case, how-
ever; any other power of N in the communication overhead leads to substantially
different results (and a much more complex derivation).

Finally, the speedup obtained at N = Nopt is

Sopt =

(

2(s+λ)+κ

√

λ + s

1− s

)−1

. (B.11)

A comparison with the maximum speedup Smax = 1/(λ + s) yields

Smax

Sopt
= 2+

κ
√

(1− s)(λ + s)
, (B.12)

so for κ = 0 the “sweet spot” lies at half the maximum speedup, and even lower for
finite κ .

Of course, no matter what the parallel application’s communication requirements
are, if the workload is such that the time for a single serial application run is “toler-
able,” and many such runs must be conducted, the most efficient way to use a par-
allel computer is throughput mode. In throughput mode, many instances of a serial
code are run concurrently under control of a resource management system (which
is present on all production machines). This provides the best utilization of all re-
sources. For obvious reasons, such a workload is not suitable for massively parallel
machines with expensive interconnect networks.

Solution 5.3 (page 141): The impact of synchronization.

Synchronization appears at the same place as communication overhead, leading
to eventual slowdown with strong scaling. For weak scaling, linear scalability is de-
stroyed; linear sync overhead even leads to saturation.

Solution 5.4 (page 141): Accelerator devices.

Ignoring communication aspects (e.g., overhead for moving data into and out of
the accelerator), we can model the situation by assuming that the accelerated parts

298 Introduction to High Performance Computing for Scientists and Engineers

of the application execute α times faster than on the host, whereas the rest stays
unchanged. Using Amdahl’s Law, s is the host part and p = 1− s is the accelerated
part. Therefore, the asymptotic performance is governed by the host part; if, e.g., α =
100 and s = 10−2, the speedup is only 50, and we are wasting half of the accelerator’s
capability. To get a speedup of rα with 0 < r < 1, we need to solve

1

s+ 1−s
α

= rα (B.13)

for s, leading to

s =
r−1 −1
α −1

, (B.14)

which yields s ≈ 1.1× 10−3 at r = 0.9 and α = 100. The lesson is that efficient
use of accelerators requires a major part of original execution time (much more than
just 1− 1/α) to be moved to special hardware. Incidentally, Amdahl had formu-
lated his famous law in his original paper along the lines of “accelerated execu-
tion” versus “housekeeping and data management” effort on the ILLIAC IV super-
computer [R40], which implemented a massively data-parallel SIMD programming
model:

A fairly obvious conclusion which can be drawn at this point is that the effort
expended on achieving high parallel processing rates is wasted unless it is ac-
companied by achievements in sequential processing rates of very nearly the
same magnitude. [M45]

This statement fits perfectly to the situation described above. In essence, it was al-
ready derived mathematically in Section 5.3.5, albeit in a slightly different context.

One may argue that enlarging the (accelerated) problem size would mitigate the
problem, but this is debatable because of the memory size restrictions on accelerator
hardware. The larger the performance of a computational unit (core, socket, node,
accelerator), the larger its memory must be to keep the serial (or unaccelerated) part
and communication overhead under control.

Solution 6.1 (page 162): OpenMP correctness.

The variable noise in subroutine f() carries an implicit SAVE attribute, be-
cause it is initialized on declaration. Its initial value will thus only be set on the first
call, which is exactly what would be intended if the code were serial. However, call-
ing f() from a parallel region makes noise a shared variable, and there will be
a race condition. To correct this problem, either noise should be provided as an
argument to f() (similar to the seed in thread safe random number generators), or
its update should be protected via a synchronization construct.

Solution 6.2 (page 162): π by Monte Carlo.

The key ingredient is a thread safe random number generator. According to the
OpenMP standard [P11], the RANDOM_NUMBER() intrinsic subroutine in Fortran 90

Solutions to the problems 299

is supposed to be thread safe, so it could be used here. However, there are perfor-
mance implications (why?), and it is usually better to avoid built-in generators any-
way (see, e.g., [N51] for a thorough discussion), so we just assume that there is a
function ran_gen(), which essentially behaves like the rand_r() function from
POSIX: It takes a reference to an integer random seed, which is updated on each call
and stored in the calling function, separately for each thread. The function returns an
integer between 0 and 231, which is easily converted to a floating-point number in
the required range:

1 integer(kind=8) :: sum

2 integer, parameter :: ITER = 1000000000

3 integer :: seed, i

4 double precision, parameter :: rcp = 1.d0/2**31

5 double precision :: x,y,pi

6 !$OMP PARALLEL PRIVATE(x,y,seed) REDUCTION(+:sum)

7 seed = omp_get_thread_num() ! everyone gets their own seed

8 !$OMP DO

9 do i=1,ITER

10 x = ran_gen(seed)*rcp

11 y = ran_gen(seed)*rcp

12 if (x*x + y*y .le. 1.d0) sum=sum+1

13 enddo

14 !$OMP END DO

15 !$OMP END PARALLEL

16 pi = (4.d0 * sum) / ITER

In line 7, the threads’ private seeds are set to distinct values. The “hit count” for the
quarter circle in the first quadrant is obtained from a reduction operation (summation
across all threads) in sum, and used in line 16 to compute the final result for π .

Using different seeds for all threads is vital because if each thread produces the
same sequence of pseudorandom numbers, the statistical error would be the same as
if only a single thread were running.

Solution 6.3 (page 163): Disentangling critical regions.

Evaluation of func() does not have to be protected by a critical region at all (as
opposed to the update of sum). It can be done outside, and the two critical regions
will not interfere any more:

1 !$OMP PARALLEL DO PRIVATE(x)

2 do i=1,N

3 x = SIN(2*PI*DBLE(i)/N)

4 x = func(x)

5 !$OMP CRITICAL

6 sum = sum + x

7 !$OMP END CRITICAL

8 enddo

9 !$OMP END PARALLEL DO

10 ...

11 double precision FUNCTION func(v)

12 double precision :: v

13 !$OMP CRITICAL

300 Introduction to High Performance Computing for Scientists and Engineers

14 func = v + random_func()

15 !$OMP END CRITICAL

16 END SUBROUTINE func

Solution 6.4 (page 163): Synchronization perils.

A barrier must always be encountered by all threads in the team. This is not
guaranteed in a workshared loop.

Solution 6.5 (page 163): Unparallelizable?

Thanks to Jakub Jelinek from Red Hat for providing this solution. Clearly, the
loop can be parallelized right away if we realize that opt(n)=up**n, but expo-
nentiation is so expensive that we’d rather not take this route (although scalability
will be great if we take the single-thread performance of the parallel code as a base-
line [S7]). Instead we revert to the original (fast) version for calculating opt(n) if
we are sure that the previous iteration handled by this thread was at n-1 (line 12).
On the other hand, if we are at the start of a new chunk, indices were skipped and
opt(n) must be calculated by exponentiation (line 14):

1 double precision, parameter :: up = 1.00001d0

2 double precision :: Sn, origSn

3 double precision, dimension(0:len) :: opt

4 integer :: n, lastn

5

6 origSn = 1.d0

7 lastn = -2

8

9 !$OMP PARALLEL DO FIRSTPRIVATE(lastn) LASTPRIVATE(Sn)

10 do n = 0,len

11 if(lastn .eq. n-1) then ! still in same chunk?

12 Sn = Sn * up ! yes: fast version

13 else

14 Sn = origSn * up**n ! no: slow version

15 endif

16 opt(n) = Sn

17 lastn = n ! storing index

18 enddo

19 !$OMP END PARALLEL DO

20 Sn = Sn * up

The LASTPRIVATE(Sn) clause ensures that Sn has the same value as in the serial
case after the loop is finished. FIRSTPRIVATE(lastn) assigns the initial value of
lastn to its private copies when the parallel region starts. This is purely for conve-
nience, because we could have done the copying manually by splitting the combined
PARALLEL DO directive.

While the solution works for all OpenMP loop scheduling options, it will be
especially slow for static or dynamic scheduling with small chunksizes. In the special
case of “STATIC,1” it will be just as slow as using exponentiation from the start.

Solutions to the problems 301

Solution 6.6 (page 163): Gauss–Seidel pipelined.

This optimization is also called loop skewing. Starting with a particular site, all
sites that can be updated at the same time are part of a so-called hyperplane and fulfill
the condition i+ j+k = const. = 3n, with n ≥ 1. Pipelined execution is now possible
as all inner loop iterations are independent, enabling efficient use of vector pipes
(see Section 1.6). Cache-based processors, however, suffer from the erratic access
patterns generated by the hyperplane method. Cache lines once fetched for a certain
stencil update do not stay in cache long enough to exploit spatial locality. Bandwidth
utilization (as seen from the application) is thus very poor. This is why the standard
formulation of the Gauss–Seidel loop nest together with wavefront parallelization
is preferable for cache-based microprocessors, despite the performance loss from
insufficient pipelining.

Solution 7.1 (page 184): Privatization gymnastics.

In C/C++, reduction clauses cannot be applied to arrays. The reduction must
thus be done manually. A firstprivate clause helps with initializing the private
copies of s[]; in a “true” OpenMP reduction, this would be automatic as well:

1 int s[8] = {0};

2 int *ps = s;

3

4 #pragma omp parallel firstprivate(s)

5 {

6 #pragma omp for

7 for(int i=0; i<N; ++i)

8 s[a[i]]++;

9 #ifdef _OPENMP

10 #pragma omp critical

11 {

12 for(int i=0; i<8; ++i) { // reduction loop

13 ps[i] += s[i];

14 }

15 } // end critical

16 #endif

17 } // end parallel

Using conditional compilation, we skip the explicit reduction if the code is compiled
without OpenMP.

Similar measures must be taken even in Fortran if the reduction operator to be
used is not supported directly by OpenMP. Likewise, overloaded C++ operators are
not allowed in reduction clauses even on scalar types.

Solution 7.2 (page 184): Superlinear speedup.

Figure B.2 shows that the described situation occurs at a problem size around
6002: A single 4 MB L2 cache is too small to accommodate the working set, but
8 MB is sufficient. The speedup when going from one (or two) threads to four is 5.4.

When the working set fits into cache, the grid updates are so fast that typical

302 Introduction to High Performance Computing for Scientists and Engineers

100 1000
N

0

500

1000

1500

P
e
rf

o
rm

a
n
c
e
 [
M

L
U

P
s
/s

e
c
] 1 thread

2 threads
1 socket

4 threads

8 MB L2

4 MB L2

5.4x speedup

s
o

c
k
e

t

32k L1D 32k L1D 32k L1D 32k L1D

Chipset

Memory

P P P P

4MB L2 4MB L2

Figure B.2: Superlinear speedup with the 2D Jacobi solver (same data as in Figure 6.3). At
a problem size of 6002, the working set is too large to fit into one socket’s L2 cache, so
performance is close to memory-bound (filled symbols). Using two additional threads (open
diamonds), 8 MB cache become available, which is large enough to accommodate all data.
Hence, the 5.4× speedup.

OpenMP overhead, especially implicit barriers (see Section 7.2.2), might dominate
runtime if the number of threads is large. To find a criterion for this we must com-
pare the time for one sweep with a typical synchronization overhead. Looking at
the maximum two-thread in-cache performance (filled squares), we estimate that a
single sweep takes about 170 µs. As a very rough guideline we may assume that syn-
chronizing all threads in a shared-memory machine requires about 1 µs per socket if
the barrier is implemented efficiently [M41]. Hence, on standard two- or four-socket
nodes one should be able to observe superlinear scaling for this kind of problem.

Solution 7.3 (page 184): Reductions and initial values.

If the code is compiled without OpenMP support, it should still produce correct
results, which it doesn’t if R is not initialized. If we could use C(j) as a reduction
variable, this detour would not be necessary, but only named variables are allowed in
reduction clauses.

Solution 7.4 (page 184): Optimal thread count.

Parallelism adds overhead, so one should use as few threads as possible. The
optimal number is given by the scalability of main memory bandwidth versus thread
count. If two out of six threads already saturate a socket’s memory bus, running more
than four threads does not make sense. All the details about cache groups and system
architecture are much less relevant.

Note that shared caches often do not provide perfect bandwidth scaling as well,
so this reasoning may apply to in-cache computations, too [M41].

Solutions to the problems 303

Solution 8.1 (page 201): Dynamic scheduling and ccNUMA.

As usual, performance (P) is work (W) divided by time (t). We choose W = 2,
meaning that two memory pages are to be assigned to the two running threads. Each
chunk takes a duration of t = 1 to execute locally, so that P = 2p if there is no
nonlocal access. In general, four cases must be distinguished:

1. Both threads access their page locally: t = 1.

2. Both threads have to access their page remotely: Since the inter-LD network is
assumed to be infinitely fast, and there is no contention on either memory bus,
we have t = 1.

3. Both threads access their page in LD0: Contention on this memory bus leads
to t = 2.

4. Both threads access their page in LD1: Contention on this memory bus leads
to t = 2.

These four cases occur with equal probability, so the average time to stream the two
pages is tavg = (1 + 1 + 2 + 2)/4 = 1.5. Hence, P = W/tavg = 4p/3, i.e., the code
runs 33% slower than with perfect access locality.

This derivation is so simple because we deal with only two locality domains, and
the elementary work package is two pages no matter where they are mapped. Can
you generalize the analysis to an arbitrary number of locality domains?

Solution 8.2 (page 202): Unfortunate chunksizes.

There are two possible reasons for bad performance at small chunksizes:

• This is a situation in which the hardware-based prefetching mechanisms of
x86-based processors are actually counterproductive. Once activated by a num-
ber of successive cache misses (two in this case), the prefetcher starts transfer-
ring data to cache until the end of the current page is reached (or until can-
celed). If the chunksize is smaller than a page, some of this data is not needed
and will only waste bandwidth and cache capacity. The closer the chunksize
gets to the page size, the smaller this effect.

• A small chunksize will also increase the number of TLB misses. The actual
performance impact of TLB misses is strongly processor-dependent. See also
Problem 3.8.

Solution 8.3 (page 202): Speeding up “small” jobs.

If multiple streams are required, round-robin placement may yield better single-
socket performance than first touch because part of the bandwidth can be satisfied
via remote accesses. The possible benefit of this strategy depends strongly on the
hardware, though.

304 Introduction to High Performance Computing for Scientists and Engineers

Solution 8.4 (page 202): Triangular matrix-vector multiplication.

Parallelizing the inner reduction loop would be fine, but will only work with very
large problems because of OpenMP overhead and NUMA placement problems. The
outer loop, however, has different workloads for different iterations, so there is a
severe load balancing problem:

1 !$OMP PARALLEL DO SCHEDULE(RUNTIME)

2 do r=1,N ! parallel initialization

3 y(r) = 0.d0

4 x(r) = 0.d0

5 do c=1,r

6 a(c,r) =0.d0

7 enddo

8 enddo

9 !$OMP END PARALLEL DO

10 ...

11 !$OMP PARALLEL DO SCHEDULE(RUNTIME)

12 do r=1,N ! actual triangular MVM loop

13 do c=1,r

14 y(r) = y(r) + a(c,r) * x(c)

15 enddo

16 enddo

17 !$OMP END PARALLEL DO

We have added the parallel initialization loop for good page placement in ccNUMA
systems.

Standard static scheduling is certainly not a good choice here. Guided or dynamic
scheduling with an appropriate chunksize could balance the load without too much
overhead, but leads to nonlocal accesses on ccNUMA because chunks are assigned
dynamically at runtime. Hence, the only reasonable alternative is static scheduling,
and a chunksize that enables proper NUMA placement at least for matrix rows that
are not too close to the “tip” of the triangle.

What about the placement issues for x()?

Solution 8.5 (page 202): NUMA placement by overloading.

The parallel loop schedule is the crucial point. The loop schedules of the ini-
tialization and worksharing loops should be identical. Had we used a single loop, a
possible chunksize would be interpreted as a multiple of one loop iteration, which
touches a single char. A chunksize on a worksharing loop handling objects of type
D would refer to units of sizeof(D), and NUMA placement would be wrong.

Solution 9.1 (page 233): Shifts and deadlocks.

Exchanging the order of sends and receives also works with an odd number of
processes. The “leftover” process will just have to wait until its direct neighbors have
finished communicating. See Section 10.3.1 for a discussion of the “open chain”
case.

Solutions to the problems 305

Solution 9.2 (page 233): Deadlocks and nonblocking MPI.

Quoting the MPI standard (Section 3.7):

In all cases, the send start call [meaning a nonblocking send; note from the
authors] is local: it returns immediately, irrespective of the status of other pro-
cesses. If the call causes some system resource to be exhausted, then it will fail
and return an error code. Quality implementations of MPI should ensure that this
happens only in “pathological” cases. That is, an MPI implementation should be
able to support a large number of pending nonblocking operations. [P15]

This means that using nonblocking calls is a reliable way to prevent deadlocks, be-
cause the MPI standard does not allow a pair of matching send and receives on two
processes to remain permanently outstanding.

Solution 9.3 (page 234): Open boundary conditions.

For open boundary conditions there would be no plateaus up to 12 processes,
because the maximum number of faces to communicate per subdomain changes with
every new decomposition. However, we would see a plateau between 12 and 16 pro-
cesses: There is no new subdomain type (in terms of communication characteristics)
when going from (3,2,2) to (4,2,2). If there are at least three subdomains in each di-
rection, there are no fundamental changes any more and the ratio between ideal and
real performance is constant. This is the case at a minimum of 27 processes (3,3,3).

Solution 9.4 (page 234): A performance model for strong scaling of the parallel

Jacobi code.

The smallest subdomain size (at 3× 2× 2 = 12 processors) is 40× 602, taking
roughly 1 ms for a single sweep. The 50 µs latency is multiplied by k = 6 in this
case, so the aggregated latency is already nearly one third of Ts. One may expect
that the overhead for MPI_Reduce() is a small multiple of the PingPong latency
if implemented efficiently (measured value is between 50 µs and 230 µs on 1–12
nodes, and this of course depends on N as well). With these refinements, the model
is able to reproduce the strong scaling data quite well.

Solution 9.5 (page 234): MPI correctness.

The receive on process 1 matches the send on process 0, but the latter may never
get around to calling MPI_Send(). This is because collective communication rou-
tines may, but do not have to, synchronize all processes in the communicator (of
course, MPI_Barrier() synchronizes by definition). If the broadcast is synchro-
nizing, we have a classic deadlock since the receive on process 1 waits forever for its
matching send.

306 Introduction to High Performance Computing for Scientists and Engineers

t1 t2 t3 t4 t5 t6

Rank

0

1

2

3

4

5

6

7

Time step

(a) (b)
t1 t2 t3

Time step

0

1

2

3

4

5

6

7

Rank

Figure B.3: “Emulating” MPI_Allreduce() by a reduction followed by a broadcast (a)
serializes the two operations and leaves a lot of network resources idling. An optimized
“butterfly”-style pattern (b) saves a lot of time if the network is nonblocking.

Solution 10.1 (page 260): Reductions and contention.

The number of transmitted messages is the same in both cases. So if any two
transfers cannot overlap, linear and logarithmic reduction have the same perfor-
mance. A bus network (see Section 4.5.2) has this property.

Even on a fully nonblocking switched network, contention can occur if static
routing is used (see Section 4.5.3).

Solution 10.2 (page 260): Allreduce, optimized.

Doing a reduction followed by a broadcast takes the sum of their runtimes (see
Figure B.3(a)). Instead, an optimized MPI_Allreduce() operation can save a lot
of time by utilizing the available parallelism in the network (see Figure B.3(b)).

Solution 10.3 (page 260): Eager vs. rendezvous.

In a typical “master-worker” pattern (see Section 5.2.2) workers may flood the
master with eager messages if the message size is below the eager limit. Most MPI
implementations can be configured to reserve larger buffers for storing eager mes-
sages. Using MPI_Issend() could also be an alternative.

Solution 10.4 (page 260): Is cubic always optimal?

Mathematically (see Figure 10.9), “pole” decomposition is better than cubic sub-
domains for N < 11. The only whole number below 11 with at least three prime
factors is 8. If we decompose a cube into 2× 2× 2 versus 2× 4 subdomains and

Solutions to the problems 307

assume periodic boundary conditions, the latter variant has indeed a smaller domain
cut surface. However, the difference vanishes for open boundaries.

Note that we have cheated a little here: The formulae in Figure 10.9 assume
that subdomains are always cubic, and that poles always have a square base. This is
not the case for N = 8. But you may have figured out by now that this is all just a
really academic exercise; the rule that 3D decompositions incur less communication
overhead does hold in practice.

Solution 10.5 (page 260): Riding the PingPong curve.

Beff(N,L,w,Tℓ,B) =

[

TℓN
2/3

wL2 +B−1

]−1

(B.15)

As N increases, so does the influence of latency over bandwidth. This effect is partly
compensated by a large site data size w and a large linear problem size L. The latter
dependency is just another example for the general rule that larger problems lead to
better scalability (in this case because of reduced communication overhead).

Note that one should always make sure that parallel efficiency is still acceptable
if communication plays any role. The “ping-pong ride” may well be meaningless if
the application spends a significant fraction of its time communicating. One would
then not even consider increasing N even further, except for getting more memory.

Solution 10.6 (page 261): Nonblocking Jacobi revisited.

Each outstanding request requires a separate message buffer, so we need twelve
intermediate buffers if all halo communications are to be handled with nonblock-
ing MPI. Since this is a surface-versus-volume effect, the additional memory re-
quirements are usually negligible. Furthermore, MPI_Wait() must be replaced by
MPI_Waitany() or MPI_Waitsome().

Solution 10.7 (page 261): Send and receive combined.

1 call MPI_Isend(...)

2 call MPI_Irecv(...)

3 call MPI_Waitall(...)

A possible useful side effect is that the MPI library may perform full-duplex transfers
if a send and a receive operation are outstanding at the same time. Current MPI
implementations do this.

Solution 10.8 (page 261): Load balancing and domain decomposition.

If all subdomains are of equal size, inner subdomains are laggers. Although their
computational load is no different from all others, they must spend more time com-
municating, which leads to load imbalance. However, those inner domains dominate
(by number) if the number of processes is large. Boundary subdomains are speeders,

308 Introduction to High Performance Computing for Scientists and Engineers

and few speeders are tolerable (see Section 5.3.9), so this is not a problem on the
large scale. On the other hand, if there are only like 3× 3× 3 = 27 processes, one
may think about enlarging the boundary subdomains to get better load balancing if

communication overhead is a problem at all.

Bibliography

Standard works

[S1] S. Goedecker and A. Hoisie. Performance Optimization of Numerically

Intensive Codes (SIAM), 2001. ISBN 978-0898714845.

[S2] R. Gerber, A. J. C. Bik, K. Smith and X. Tian. The Software Optimization

Cookbook (Intel Press), 2nd ed., 2005. ISBN 978-0976483212.

[S3] K. Dowd and C. Severance. High Performance Computing (O’Reilly &
Associates, Inc., Sebastopol, CA, USA), 1998. ISBN 156592312X.

[S4] K. R. Wadleigh and I. L. Crawford. Software Optimization for High-Per-

formance Computing (Prentice Hall), 2000. ISBN 978-0130170088.

[S5] W. Schönauer. Scientific Supercomputing: Architecture and Use of Shared

and Distributed Memory Parallel Computers (Self-edition), 2000.
http://www.rz.uni-karlsruhe.de/~rx03/book

[S6] T. G. Mattson, B. A. Sanders and B. L. Massingill. Patterns for Parallel

Programming (Addison-Wesley), 2004. ISBN 978-0-321-22811-6.

[S7] D. H. Bailey. Highly parallel perspective: Twelve ways to fool the masses

when giving performance results on parallel computers. Supercomputing
Review 4(8), (1991) 54–55. ISSN 1048-6836.
http://crd.lbl.gov/~dhbailey/dhbpapers/twelve-ways.pdf

Parallel programming

[P8] S. Akhter and J. Roberts. Multi-Core Programming: Increasing Per-

formance through Software Multithreading (Intel Press), 2006. ISBN
0-9764832-4-6.

[P9] D. R. Butenhof. Programming with POSIX Threads (Addison-Wesley),
1997. ISBN 978-0201633924.

[P10] J. Reinders. Intel Threading Building Blocks: Outfitting C++ for Multi-Core

Processor Parallelism (O’Reilly), 2007. ISBN 978-0596514808.

[P11] The OpenMP API specification for parallel programming.
http://openmp.org/wp/openmp-specifications/

309

310 Bibliography

[P12] B. Chapman, G. Jost and R. van der Pas. Using OpenMP (MIT Press), 2007.
ISBN 978-0262533027.

[P13] W. Gropp, E. Lusk and A. Skjellum. Using MPI (MIT Press), 2nd ed., 1999.
ISBN 0-262-57132-3.

[P14] W. Gropp, E. Lusk and R. Thakur. Using MPI-2 (MIT Press), 1999. ISBN
0-262-57133-1.

[P15] MPI: A Message-Passing Interface Standard. Version 2.2, September 2009.
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf

[P16] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek and V. Sunderam.
PVM: Parallel Virtual Machine (MIT Press), 1994. ISBN 0-262-57108-0.
http://www.netlib.org/pvm3/book/pvm-book.html

[P17] R. W. Numrich and J. Reid. Co-Array Fortran for Parallel Programming.
SIGPLAN Fortran Forum 17(2), (1998) 1–31. ISSN 1061-7264.

[P18] W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick, E. Brooks and K. War-
ren. Introduction to UPC and language specification. Tech. rep., IDA Cen-
ter for Computing Sciences, Bowie, MD, 1999.
http://www.gwu.edu/~upc/publications/upctr.pdf

Tools

[T19] OProfile — A system profiler for Linux.
http://oprofile.sourceforge.net/news/

[T20] J. Treibig, G. Hager and G. Wellein. LIKWID: A lightweight performance-

oriented tool suite for x86 multicore environments. Submitted.
http://arxiv.org/abs/1004.4431

[T21] Intel VTune Performance Analyzer.
http://software.intel.com/en-us/intel-vtune

[T22] PAPI: Performance Application Programming Interface.
http://icl.cs.utk.edu/papi/

[T23] Intel Thread Profiler.
http://www.intel.com/cd/software/products/asmo-na/eng/286749.htm

[T24] D. Skinner. Performance monitoring of parallel scientific applications,
2005.
http://www.osti.gov/bridge/servlets/purl/881368-dOvpFA/881368.pdf

[T25] O. Zaki, E. Lusk, W. Gropp and D. Swider. Toward scalable performance

visualization with Jumpshot. International Journal of High Performance
Computing Applications 13(3), (1999) 277–288.

Bibliography 311

[T26] Intel Trace Analyzer and Collector.
http://software.intel.com/en-us/intel-trace-analyzer/

[T27] VAMPIR - Performance optimization for MPI.
http://www.vampir.eu

[T28] M. Geimer, F. Wolf, B. J. Wylie, E. Ábrahám, D. Becker and B. Mohr. The

SCALASCA performance toolset architecture. In: Proc. of the International

Workshop on Scalable Tools for High-End Computing (STHEC 2008) (Kos,
Greece), 51–65.

[T29] M. Gerndt, K. Fürlinger and E. Kereku. Periscope: Advanced techniques

for performance analysis. In: G. R. Joubert et al. (eds.), Parallel Comput-

ing: Current and Future Issues of High-End Computing (Proceedings of

the International Conference ParCo 2005), vol. 33 of NIC Series. ISBN
3-00-017352-8.

[T30] T. Klug, M. Ott, J. Weidendorfer, and C. Trinitis. autopin - Automated

optimization of thread-to-core pinning on multicore systems. Transactions
on High-Performance Embedded Architectures and Compilers 3(4), (2008)
1–18.

[T31] M. Meier. Pinning OpenMP threads by overloading pthread_create().
http://www.mulder.franken.de/workstuff/pthread-overload.c

[T32] Portable Linux processor affinity.
http://www.open-mpi.org/software/plpa/

[T33] Portable hardware locality (hwloc).
http://www.open-mpi.org/projects/hwloc/

Computer architecture and design

[R34] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative

Approach (Morgan Kaufmann), 4th ed., 2006. ISBN 978-0123704900.

[R35] G. E. Moore. Cramming more components onto integrated circuits. Elec-
tronics 38(8), (1965) 114–117.

[R36] W. D. Hillis. The Connection Machine (MIT Press), 1989. ISBN 978-
0262580977.

[R37] N. R. Mahapatra and B. Venkatrao. The Processor-Memory Bottleneck:

Problems and Solutions. Crossroads 5, (1999) 2. ISSN 1528-4972.

[R38] M. J. Flynn. Some computer organizations and their effectiveness. IEEE
Trans. Comput. C-21, (1972) 948.

[R39] R. Kumar, D. M. Tullsen, N. P. Jouppi and P. Ranganathan. Heterogeneous

chip multiprocessors. IEEE Computer 38(11), (2005) 32–38.

312 Bibliography

[R40] D. P. Siewiorek, C. G. Bell and A. Newell (eds.). Computer Structures:

Principles and Examples (McGraw-Hill), 2nd ed., 1982. ISBN 978-
0070573024.
http://research.microsoft.com/en-us/um/people/gbell/Computer_

Structures_Principles_and_Examples/

Performance modeling

[M41] J. Treibig, G. Hager and G. Wellein. Multi-core architectures: Complexities

of performance prediction and the impact of cache topology. In: S. Wag-
ner et al. (eds.), High Performance Computing in Science and Engineering,

Garching/Munich 2009 (Springer-Verlag, Berlin, Heidelberg). To appear.
http://arxiv.org/abs/0910.4865

[M42] S. Williams, A. Waterman and D. Patterson. Roofline: An insightful vi-

sual performance model for multicore architectures. Commun. ACM 52(4),
(2009) 65–76. ISSN 0001-0782.

[M43] P. F. Spinnato, G. van Albada and P. M. Sloot. Performance modeling of dis-

tributed hybrid architectures. IEEE Trans. Parallel Distrib. Systems 15(1),
(2004) 81–92.

[M44] J. Treibig and G. Hager. Introducing a performance model for bandwidth-

limited loop kernels. In: Proceedings of PPAM 2009, the Eighth Interna-

tional Conference on Parallel Processing and Applied Mathematics, Wro-

claw, Poland, September 13–16, 2009. To appear.
http://arxiv.org/abs/0905.0792

[M45] G. M. Amdahl. Validity of the single processor approach to achieving large

scale computing capabilities. In: AFIPS ’67 (Spring): Proceedings of the

April 18-20, 1967, Spring Joint Computer Conference (ACM, New York,
NY, USA), 483–485.

[M46] J. L. Gustafson. Reevaluating Amdahl’s law. Commun. ACM 31(5), (1988)
532–533. ISSN 0001-0782.

[M47] M. D. Hill and M. R. Marty. Amdahl’s Law in the multicore era. IEEE
Computer 41(7), (2008) 33–38.

[M48] X.-H. Sun and Y. Chen. Reevaluating Amdahl’s Law in the multicore era.
Journal of Parallel and Distributed Computing 70(2), (2010) 183–188. ISSN
0743-7315.

Bibliography 313

Numerical techniques and libraries

[N49] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Ei-
jkhout, R. Pozo, C. Romine and H. van der Vorst. Templates for the So-

lution of Linear Systems: Building Blocks for Iterative Methods (SIAM),
1993. ISBN 978-0-898713-28-2.

[N50] C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. Krogh. Basic Linear Al-

gebra Subprograms for Fortran usage. ACM Transactions on Mathematical
Software 5(3), (1979) 308–323. ISSN 0098-3500.

[N51] W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling. Numerical

Recipes in FORTRAN 77: The Art of Scientific Computing (v. 1) (Cambridge
University Press), 2nd ed., September 1992. ISBN 052143064X.
http://www.nr.com/

Optimization techniques

[O52] G. Wellein, G. Hager, T. Zeiser, M. Wittmann and H. Fehske. Efficient

temporal blocking for stencil computations by multicore-aware wavefront

parallelization. Annual International Computer Software and Applications
Conference (COMPSAC09) 1, (2009) 579–586. ISSN 0730-3157.

[O53] M. Wittmann, G. Hager and G. Wellein. Multicore-aware parallel temporal

blocking of stencil codes for shared and distributed memory. In: Workshop

on Large-Scale Parallel Processing 2010 (IPDPS2010), Atlanta, GA, April

23, 2010.
http://arxiv.org/abs/0912.4506

[O54] G. Hager, T. Zeiser, J. Treibig and G. Wellein. Optimizing performance

on modern HPC systems: Learning from simple kernel benchmarks. In:
Proceedings of 2nd Russian-German Advanced Research Workshop on

Computational Science and High Performance Computing, Stuttgart 2005

(Springer-Verlag, Berlin, Heidelberg).

[O55] A. Fog. Agner Fog’s software optmization resources.
http://www.agner.org/optimize/

[O56] G. Schubert, G. Hager and H. Fehske. Performance limitations for sparse

matrix-vector multiplications on current multicore environments. In:
S. Wagner et al. (eds.), High Performance Computing in Science and

Engineering, Garching/Munich 2009 (Springer-Verlag, Berlin, Heidelberg).
To appear.
http://arxiv.org/abs/0910.4836

[O57] D. J. Kerbyson, M. Lang and G. Johnson. Infiniband routing table optimiza-

tions for scientific applications. Parallel Processing Letters 18(4), (2008)
589–608.

314 Bibliography

[O58] M. Wittmann and G. Hager. A proof of concept for optimizing task paral-

lelism by locality queues.
http://arxiv.org/abs/0902.1884

[O59] G. Hager, F. Deserno and G. Wellein. Pseudo-vectorization and RISC op-

timization techniques for the Hitachi SR8000 architecture. In: S. Wagner
et al. (eds.), High Performance Computing in Science and Engineering Mu-

nich 2002 (Springer-Verlag, Berlin, Heidelberg), 425–442.

[O60] D. Barkai and A. Brandt. Vectorized multigrid poisson solver for the CDC

Cyber 205. Applied Mathematics and Computation 13, (1983) 217–227.

[O61] M. Kowarschik. Data Locality Optimizations for Iterative Numerical Algo-

rithms and Cellular Automata on Hierarchical Memory Architectures (SCS
Publishing House), 2004. ISBN 3-936150-39-7.

[O62] K. Datta, S. Kamil, S. Williams, L. Oliker, J. Shalf and K. Yelick. Op-

timization and performance modeling of stencil computations on modern

microprocessors. SIAM Review 51, (2009) 129–159.

[O63] J. Treibig, G. Wellein and G. Hager. Efficient multicore-aware paralleliza-

tion strategies for iterative stencil computations. Submitted.
http://arxiv.org/abs/1004.1741

[O64] M. Müller. Some simple OpenMP optimization techniques. In: OpenMP

Shared Memory Parallel Programming: International Workshop on

OpenMP Applications and Tools, WOMPAT 2001, West Lafayette, IN, USA,

July 30-31, 2001: Proceedings. 31–39.

[O65] G. Hager, T. Zeiser and G. Wellein. Data access optimizations for highly

threaded multi-core CPUs with multiple memory controllers. In: Workshop

on Large-Scale Parallel Processing 2008 (IPDPS2008), Miami, FL, April

18, 2008.
http://arxiv.org/abs/0712.2302

[O66] S. Williams, L. Oliker, R. W. Vuduc, J. Shalf, K. A. Yelick and J. Demmel.
Optimization of sparse matrix-vector multiplication on emerging multicore

platforms. Parallel Computing 35(3), (2009) 178–194.

[O67] C. Terboven, D. an Mey, D. Schmidl, H. Jin and T. Reichstein. Data and

thread affinity in OpenMP programs. In: MAW ’08: Proceedings of the 2008

workshop on Memory access on future processors (ACM, New York, NY,
USA). ISBN 978-1-60558-091-3, 377–384.

[O68] B. Chapman, F. Bregier, A. Patil and A. Prabhakar. Achieving performance

under OpenMP on ccNUMA and software distributed shared memory sys-

tems. Concurrency Comput.: Pract. Exper. 14, (2002) 713–739.

Bibliography 315

[O69] R. Rabenseifner and G. Wellein. Communication and optimization aspects

of parallel programming models on hybrid architectures. Int. J. High Per-
form. Comp. Appl. 17(1), (2003) 49–62.

[O70] R. Rabenseifner, G. Hager and G. Jost. Hybrid MPI/OpenMP parallel pro-

gramming on clusters of multi-core SMP nodes. In: D. E. Baz, F. Spies and
T. Gross (eds.), Proceedings of the 17th Euromicro International Confer-

ence on Parallel, Distributed and Network-based Processing, PDP 2009,

Weimar, Germany, 18–20 Febuary 2009 (IEEE Computer Society). ISBN
978-0-7695-3544-9, 427–436.

[O71] G. Hager, G. Jost and R. Rabenseifner. Communication characteristics and

hybrid MPI/OpenMP parallel programming on clusters of multi-core SMP

nodes. In: Proceedings of CUG09, May 4–7 2009, Atlanta, GA.
http://www.cug.org/7-archives/previous_conferences/CUG2009/

bestpaper/9B-Rabenseifner/rabenseifner-paper.pdf

[O72] H. Stengel. Parallel programming on hybrid hardware: Models and appli-

cations. Master thesis, Georg Simon Ohm University of Applied Sciences,
Nuremberg, 2010.
http://www.hpc.rrze.uni-erlangen.de/Projekte/hybrid.shtml

[O73] M. Frigo and V. Strumpen. Cache oblivious stencil computations. In: ICS

’05: Proceedings of the 19th annual international conference on Supercom-

puting (ACM, New York, NY, USA). ISBN 1-59593-167-8, 361–366.

[O74] M. Frigo and V. Strumpen. The memory behavior of cache oblivious stencil

computations. J. Supercomput. 39(2), (2007) 93–112. ISSN 0920-8542.

[O75] T. Zeiser, G. Wellein, A. Nitsure, K. Iglberger, U. Rüde and G. Hager. Intro-

ducing a parallel cache oblivious blocking approach for the lattice Boltz-

mann method. Progress in CFD 8(1–4), (2008) 179–188.

Large-scale parallelism

[L76] A. Hoisie, O. Lubeck and H. Wasserman. Performance and scalability anal-

ysis of teraflop-scale parallel architectures using multidimensional wave-

front applications. Int. J. High Perform. Comp. Appl. 14, (2000) 330.

[L77] F. Petrini, D. J. Kerbyson and S. Pakin. The case of the missing supercom-

puter performance: Achieving optimal performance on the 8,192 processors

of ASCI Q. In: SC ’03: Proceedings of the 2003 ACM/IEEE conference on

Supercomputing (IEEE Computer Society, Washington, DC, USA). ISBN
1-58113-695-1, 55.

[L78] D. J. Kerbyson and A. Hoisie. Analysis of wavefront algorithms on large-

scale two-level heterogeneous processing systems. In: Proceedings of the

Workshop on Unique Chips and Systems (UCAS2), IEEE Int. Symposium

on Performance Analysis of Systems and Software (ISPASS), Austin, TX,

2006.

316 Bibliography

Applications

[A79] H. Fehske, R. Schneider and A. Weisse (eds.). Computational Many-

Particle Physics, vol. 739 of Lecture Notes in Physics (Springer), 2008.
ISBN 978-3-540-74685-0.

[A80] A. Fava, E. Fava and M. Bertozzi. MPIPOV: A parallel implementation of

POV-Ray based on MPI. In: Proc. Euro PVM/MPI’99, vol. 1697 of Lecture

Notes in Computer Science (Springer), 426–433.

[A81] B. Freisleben, D. Hartmann and T. Kielmann. Parallel raytracing: A case

study on partitioning and scheduling on workstation clusters. In: Proc.

30th International Conference on System Sciences 1997, Hawaii (IEEE),
596–605.

[A82] G. Wellein, G. Hager, A. Basermann and H. Fehske. Fast sparse matrix-

vector multiplication for TFlops computers. In: J. Palma et al. (eds.), High

Performance Computing for Computational Science — VECPAR2002,

LNCS 2565 (Springer-Verlag, Berlin, Heidelberg). ISBN 3-540-00852-7,
287–301.

[A83] G. Hager, E. Jeckelmann, H. Fehske and G. Wellein. Parallelization

strategies for density matrix renormalization group algorithms on

shared-memory systems. J. Comput. Phys. 194(2), (2004) 795–808.

[A84] M. Kinateder, G. Wellein, A. Basermann and H. Fehske. Jacobi-Davidson

algorithm with fast matrix vector multiplication on massively parallel and

vector supercomputers. In: E. Krause and W. Jäger (eds.), High Perfor-

mance Computing in Science and Engineering ’00 (Springer-Verlag, Berlin,
Heidelberg), 188–204.

[A85] H. Fehske, A. Alvermann and G. Wellein. Quantum transport within a

background medium: Fluctuations versus correlations. In: S. Wagner et al.

(eds.), High Performance Computing in Science and Engineering, Garch-

ing/Munich 2007 (Springer-Verlag, Berlin, Heidelberg). ISBN 978-3-540-
69181-5, 649–668.

[A86] T. Pohl, F. Deserno, N. Thürey, U. Rüde, P. Lammers, G. Wellein
and T. Zeiser. Performance evaluation of parallel large-scale lattice

Boltzmann applications on three supercomputing architectures. In: SC ’04:

Proceedings of the 2004 ACM/IEEE conference on Supercomputing.
http://www.sc-conference.org/sc2004/schedule/index.php?module=

Default\&action=ShowDetail\&eventid=13\#2

[A87] C. Körner, T. Pohl, U. Rüde, N. Thürey and T. Zeiser. Parallel Lattice

Boltzmann Methods for CFD Applications. In: Numerical Solution of Par-

tial Differential Equations on Parallel Computers (Springer-Verlag, Berlin,
Heidelberg). ISBN 3-540-29076-1, 439–465.

Bibliography 317

[A88] G. Allen, T. Dramlitsch, I. Foster, N. T. Karonis, M. Ripeanu, E. Seidel
and B. Toonen. Supporting efficient execution in heterogeneous distributed

computing environments with Cactus and Globus. In: Supercomputing ’01:

Proceedings of the 2001 ACM/IEEE conference on Supercomputing (ACM,
New York, NY, USA). ISBN 1-58113-293-X, 52–52.

[A89] G. Hager, H. Stengel, T. Zeiser and G. Wellein. RZBENCH: Performance

evaluation of current HPC architectures using low-level and application

benchmarks. In: S. Wagner et al. (eds.), High Performance Computing in

Science and Engineering, Garching/Munich 2007 (Springer-Verlag, Berlin,
Heidelberg). ISBN 978-3-540-69181-5, 485–501.
http://arxiv.org/abs/0712.3389

[A90] D. Kaushik, S. Balay, D. Keyes and B. Smith. Understanding the perfor-

mance of hybrid MPI/OpenMP programming model for implicit CFD codes.
In: Parallel CFD 2009 - 21st International Conference on Parallel Compu-

tational Fluid Dynamics, Moffett Field, CA, USA, May 18–22, 2009, Pro-

ceedings. ISBN 978-0-578-02333-5, 174–177.

C++ references

[C91] A. Fog. Optimizing software in C++: An optimization guide for Windows,

Linux and Mac platforms.
http://www.agner.org/optimize/optimizing_cpp.pdf

[C92] D. Bulka and D. Mayhew. Efficient C++: Performance Programming

Techniques (Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA), 1999. ISBN 0-201-37950-3.

[C93] S. Meyers. Effective C++: 55 Specific Ways to Improve Your Programs

and Designs (3rd Edition) (Addison-Wesley Professional), 2005. ISBN
0321334876.

[C94] S. Meyers. More Effective C++: 35 New Ways to Improve Your Programs

and Designs (Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA), 1995. ISBN 020163371X.

[C95] S. Meyers. Effective STL: 50 Specific Ways to Improve Your Use of the

Standard Template Library (Addison-Wesley Longman Ltd., Essex, UK,
UK), 2001. ISBN 0-201-74962-9.

[C96] T. Veldhuizen. Expression templates. C++ Report 7(5), (1995) 26–31.
http://ubiety.uwaterloo.ca/~tveldhui/papers/Expression-Templates/

exprtmpl.html

[C97] J. Härdtlein, A. Linke and C. Pflaum. Fast expression templates. In: V. S.
Sunderam, G. D. van Albada, P. M. A. Sloot and J. Dongarra (eds.), Com-

putational Science - ICCS 2005, 5th International Conference, Atlanta, GA,

USA, May 22–25, 2005, Proceedings, Part II. 1055–1063.

318 Bibliography

[C98] A. Aue. Improving performance with custom pool allocators for STL.
C/C++ Users’s Journal , (2005) 1–13.
http://www.ddj.com/cpp/184406243

[C99] M. H. Austern. Segmented iterators and hierarchical algorithms. In:
M. Jazayeri, R. Loos and D. R. Musser (eds.), International Seminar on

Generic Programming, Dagstuhl Castle, Germany, April 27 - May 1,

1998, Selected Papers, vol. 1766 of Lecture Notes in Computer Science

(Springer). ISBN 3-540-41090-2, 80–90.

[C100] H. Stengel. C++-Programmiertechniken für High Performance Computing

auf Systemen mit nichteinheitlichem Speicherzugriff unter Verwendung von

OpenMP. Diploma thesis, Georg-Simon-Ohm University of Applied Sci-
ences Nuremberg, 2007.
http://www.hpc.rrze.uni-erlangen.de/Projekte/numa.shtml

[C101] C. Terboven and D. an Mey. OpenMP and C++. In: Proceedings of

IWOMP2006 — International Workshop on OpenMP, Reims, France, June

12–15, 2006.
http://iwomp.univ-reims.fr/cd/papers/TM06.pdf

[C102] British Standards Institute. The C++ Standard: Incorporating Technical

Corrigendum 1: BS ISO (John Wiley & Sons, New York, London, Sydney),
2nd ed., 2003. ISBN 0-470-84674-7.

[C103] M. H. Austern. What are allocators good for? C/C++ Users’s Journal,
December 2000.
http://www.ddj.com/cpp/184403759

Vendor-specific information and documentation

[V104] Intel 64 and IA-32 Architectures Optimization Reference Manual (Intel
Press), 2009.
http://developer.intel.com/design/processor/manuals/248966.pdf

[V105] Software Optimization Guide for AMD64 Processors (AMD), 2005.
http://support.amd.com/us/Processor_TechDocs/25112.PDF

[V106] Software Optimization Guide for AMD Family 10h Processors (AMD),
2009.
http://support.amd.com/us/Processor_TechDocs/40546-PUB-

Optguide_3-11_5-21-09.pdf

[V107] A. J. C. Bik. The Software Vectorization Handbook: Applying Intel Mul-

timedia Extensions for Maximum Performance (Intel Press), 2004. ISBN
978-0974364926.

[V108] Hyper-Threading technology. Intel Technology Journal 6(1), (2002) 1–66.
ISSN 1535766X.

Bibliography 319

[V109] R. Gerber and A. Binstock. Programming with Hyper-Threading Technol-

ogy (Intel Press), 2004. ISBN 0-9717861-4-3.

[V110] SUPER-UX Performance Tuning Guide (NEC Corporation), 2006.

[V111] Optimizing Applications on Cray X1 Series Systems (Cray Inc.), 2007.

[V112] Intel C++ intrinsics reference, 2007.
http://www.intel.com/cd/software/products/asmo-na/eng/347603.htm

[V113] W. A. Triebel, J. Bissell and R. Booth. Programming Itanium-Based Sys-

tems (Intel Press), 2001. ISBN 978-0970284624.

[V114] N. Adiga et al. An overview of the BlueGene/L supercomputer. In: Super-

computing ’02: Proceedings of the 2002 ACM/IEEE conference on Super-

computing (IEEE Computer Society Press, Los Alamitos, CA, USA), 1–22.

[V115] IBM Journal of Research and Development staff. Overview of the IBM Blue

Gene/P project. IBM J. Res. Dev. 52(1/2), (2008) 199–220. ISSN 0018-
8646.

[V116] C. Sosa and B. Knudson. IBM System Blue Gene Solution: Blue Gene/P

Application Development. IBM Redbooks. 2009. ISBN 978-0738433332.
http://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/

sg247287.html

[V117] Cray XT5 Supercomputer.
http://www.cray.com/Products/XT5.aspx

Web sites and online resources

[W118] Standard Performance Evaulation Corporation.
http://www.spec.org/

[W119] J. D. McCalpin. STREAM: Sustainable memory bandwidth in high perfor-

mance computers. Tech. rep., University of Virginia, Charlottesville, VA,
1991-2007. A continually updated technical report.
http://www.cs.virginia.edu/stream/

[W120] J. Treibig. Likwid: Linux tools to support programmers in developing high

performance multi-threaded programs.
http://code.google.com/p/likwid/

[W121] Top500 supercomputer sites.
http://www.top500.org

[W122] HPC Challenge Benchmark.
http://icl.cs.utk.edu/hpcc/

320 Bibliography

[W123] A. J. van der Steen and J. J. Dongarra. Overview of recent supercomputers,
2008.
http://www.euroben.nl/reports/web08/overview.html

[W124] Intel MPI benchmarks.
http://software.intel.com/en-us/articles/intel-mpi-benchmarks/

[W125] MPICH2 home page.
http://www.mcs.anl.gov/research/projects/mpich2/

[W126] OpenMPI: A high performance message passing library.
http://www.open-mpi.org/

[W127] Intel MPI library.
http://software.intel.com/en-us/intel-mpi-library/

[W128] MPI forum.
http://www.mpi-forum.org

Computer history

[H129] R. Rojas and U. Hashagen (eds.). The First Computers: History and Archi-

tectures (MIT Press, Cambridge, MA, USA), 2002. ISBN 0262681374.

[H130] K. Zuse. The Computer — My Life (Springer), 1993. ISBN 978-
3540564539.

[H131] P. E. Ceruzzi. A History of Modern Computing (MIT Press), 2nd ed., 2003.
ISBN 978-0262532037.

Miscellaneous

[132] S. E. Raasch and S. K. Reinhardt. The impact of resource partitioning on

SMT processors. In: International Conference on Parallel Architectures and

Compilation Techniques, PACT 2003 (IEEE Computer Society, Los Alami-
tos, CA, USA). ISSN 1089-795X, 15.

[133] N. Anastopoulos and N. Koziris. Facilitating efficient synchronization of

asymmetric threads on hyper-threaded processors. In: IEEE International

Symposium on Parallel and Distributed Processing (IPDPS) 2008. ISSN
1530-2075, 1–8.

[134] J. D. McCalpin. Memory bandwidth and machine balance in current high

performance computers. IEEE Computer Society Technical Committee on
Computer Architecture (TCCA) Newsletter, December 1995.
http://tab.computer.org/tcca/NEWS/DEC95/dec95_mccalpin.ps

[135] D. Monniaux. The pitfalls of verifying floating-point computations. ACM
Trans. Program. Lang. Syst. 30(3), (2008) 1–41. ISSN 0164-0925.
http://arxiv.org/abs/cs/0701192

Bibliography 321

[136] M. Bull. Measuring synchronization and scheduling overheads in OpenMP.
In: First European Workshop on OpenMP — EWOMP 99, Lund University,

Lund, Sweden, Sep 30–Oct 1, 1999.
http://www.it.lth.se/ewomp99/papers/bull.pdf

[137] R. Thakur, R. Rabenseifner and W. Gropp. Optimization of collective com-

munication operations in MPICH. Int. J. High Perform. Comp. Appl. 19(1),
(2005) 49–66.

[138] B. Goglin. High Throughput Intra-Node MPI Communication with

Open-MX. In: Proceedings of the 17th Euromicro International Conference

on Parallel, Distributed and Network-Based Processing (PDP2009) (IEEE
Computer Society Press, Weimar, Germany), 173–180.
http://hal.inria.fr/inria-00331209

[139] A. Kleen. Developer Central Open Source: numactl and libnuma.
http://oss.sgi.com/projects/libnuma/

	Contents
	Foreword
	Preface
	About the authors
	List of acronyms and abbreviations
	Chapter 1: Modern processors
	Chapter 2: Basic optimization techniques for serial code
	Chapter 3: Data access optimization
	Chapter 4: Parallel computers
	Chapter 5: Basics of parallelization
	Chapter 6: Shared-memory parallel programming with OpenMP
	Chapter 7: Efficient OpenMP programming
	Chapter 8: Locality optimizations on ccNUMAarchitectures
	Chapter 9: Distributed-memory parallel programming with MPI
	Chapter 10: Efficient MPI programming
	Chapter 11: Hybrid parallelization with MPI andOpenMP
	Appendix A: Topology and affinity in multicore environments
	Appendix B: Solutions to the problems
	Bibliography

