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Preface

This book was originally intended as a sequal to my book Finite Elements and Solution
Procedures for Structural Analysis, Vol I - Linear Analysis, Pineridge Press, Swansea,
1986. However, as the writing progressed, it became clear that the range of contents
was becoming much wider and that it would be more appropriate to start a totally
new book. Indeed, in the later stages of writing, it became clear that this book should
itself be divided into two volumes; the present one on ‘essentials’ and a future one on
‘advanced topics’. The latter is now largely drafted so there should be no further
changes in plan!

Some years buack, 1 discussed the idea of writing a book on non-linear finite elements
with a colleague who was much better qualified than T to write such a book. He
argued that it was too formidable a task and asked relevant but esoteric questions
such as ‘What framework would one use for non-conservative systems?’ Perhaps
foolishly, I ignored his warnings, but 1 am, nonctheless, very aware of the daunting
task of writing a ‘definitive work’ on non-linear analysis and have not even attempted
such a project.

Instead, the books are attempts to bring together some concepts behind the various
strands of work on non-linear finite elements with which I have been involved. This
involvement has been on both the engineering and research sides with an emphasis
on the production of practical solutions. Consequently, the book has an engineering
rather than a mathematical bias and the developments are closely wedded to computer
applications. Indeed, many of the ideus are illustrated with a simple non-linear finite
element computer program for which Fortran listings, data and solutions are included
{floppy disks with the Fortran source and data files are obtainable from the publisher
by use of the enclosed card). Because some readers will not wish to get actively
involved in computer programming, these computer programs and subroutines are
also represented by flowcharts so that the logic can be followed without the finer detail.

Before describing the contents of the books, one should ask *“Why further books
on non-lincar finite elements and for whom are they aimed?” An answer to the first
question is that, although there arc many good books on linear finite elements, there
are relatively few which concentrate on non-linear analysis (other books are discussed
in Section 1.1). A further recason is provided by the rapidly increasing computer power
and increasingly user-friendly computer packages that have brought the potential
advantages of non-lincar analysis to many engineers. One such advantage is the
ability to make important savings in comparison with linear elastic analysis by
allowing, for example. for plastic redistribution. Another is the ability to directly

xi



xii PREFACE

simulate the collapse behaviour of a structure, thereby reducing (but not eliminating)
the heavy cost of physical experiments.

While these advantages are there for the taking, in comparison with lincar analysis,
there is an cven greater danger of the ‘black-box syndrome’. To avoid the potential
dangers, an engincer using, for example, a non-lincar {inite element computer program
to compute the collapse strength of a thin-plated steel structure should be aware
of thc main subject areas associated with the response. These include structural
mechanics, plasticity and stability theory. In addition, he should be aware of how
such topics are handled in a computer program and what are the potential limitations.
Textbooks are, of course, available on most of these topics and the potential user of
a non-linear finite element computer program should study such books. However,
specialist texts do not often cover their topics with a specific view to their potential
use in a numerical computer program. It is this emphasis that the present books
hope to bring to areas such as plasticity and stability theory.

Potential users of non-linear finite element programs can be found in the aircraft,
automobile, offshore and power industries as well as in general manufacturing, and
it is hoped that engineers in such industries will be interested in these books. In
addition, it should be relevant to ecngineering research workers and software
developers. The present volume is aimed to cover the area between work appropriate
to final-year undergraduates, and more advanced work, involving some of the latest
research. The second volume will concentrate further on the latter.

It has already been indicated that the intention 1s to adopt an engineering approach
and, to this end, the book starts with three chapters on truss clements. This might
seem excessive! However, these simple elements can be used, as in Chapter I, to
introduce the main ideas of geometric non-linearity and, as in Chapter 2, to provide
a framework for a non-lincar finite element computer program that displays most of
the main fcatures of more sophisticated programs. In Chapter 3, these same truss
elements have been used to introduce the idea of ‘different strain measures’ and also
concepts such as ‘total Lagrangian’, ‘up-dated Lagrangian’ and ‘corotational’
procedures. Chapters 4 and 5 extend these ideas to continua, which Chapter 4 being
devoted to ‘continuum mechanics’ and Chapter 5 to the finite element discretisation.

I originally intended to avoid all use of tensor notation but, as work progressed,
realised that this was almost impossible. Hence {rom Chapter 4 onwards some use
is made of tensor notation but often in conjunction with an alternative ‘matrix and
vector’ form.

Chapter 6 is devoted to ‘plasticity’ with an emphasis on J,, metal plasticity (von
Mises) and ‘isotropic hardening’. New concepts such as the ‘consistent tangent’ are
fully covered. Chapter 7 is concerned with beams and rods in a two-dimensional
framework. It starts with a shallow-arch formulation and leads on to ‘deep-
formulations’ using a number of different methods including a degenerate-continuum
approach with the total Lagrangian procedure and various ‘corotational’
formulations. Chapter 8 extends some of these ideas {the shallow and degenerate-
continuum, total Lagrangian formulations) to shells.

Finally, Chapter 9 discusses some of the more advanced solution procedures for
non-linecar analysis such as ‘line searches’, quasi-Newton and acceleration techniques,
arc-length methods, automatic increments and re-starts. These techniques are
introduce into the simple computer program developed in Chapters 2 and 3 and are
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then applied to a range of problems using truss elements to illustrate such responses
as limit points, bifurcations, ‘snap-throughs’ and ‘snap-backs’.

It is intended that Volume 2 should continue straight on from Volume 1 with, for
example, Chapter 10 being devoted to ‘more continuum mechanics’. Among the
subjects to be covered in this volume are the following: hyper-elasticity, rubber, large
strains with and without plasticity. kinematic hardening, yield criteria with volume
effects, large rotations, three-dimensional beams and rods. more on shells. stability
theory and more on solution procedures.

REFERENCES

At the end of each chapter, we will include a section giving the references for that
chapter. Within the text, the reference will be cited using, for example, [B3] which
refers to the third reference with the first author having a name starting with the
letter *B”. If, in a subsequent chapter, the same paper is referred to again, it would
be referred to using, for example, [B3.4] which means that it can be found in the
References at the end of Chapter 4.

NOTATION

We will here give the main notation used in the book. Near the end of each chapter
(just prior to the References) we will give the notation specific to that particular
chapter.

General note on matrix/vector and/or tensor notation

For much of the work in this book, we will adopt basic matrix and vector notation
where a matrix or vector will be written in bold. It should be obvious, from the
context, which is a matrix and which is a vector.

In Chapters 4 -6 and 8, tensor notation will also be used sometimes although,
throughout the book, all work will be referred to rectangular cartesian coordinate
systems (so that there arc no differences between the co- and contravariant compo-
nents of a tensor). Chapter 4 gives references to basic work on tensors.

A vector is a [irst-order tensor and a matrix is a second-order tensor. If we use
the direct tensor (or dyadic) notation. we can use the same convention as for matrices
and vectors and use bold symbols. In some instances, we will adopt the suffix notation
whereby we use suffixes to refer to the components of the tensor (or matrix or vector).
For clarity, we will sometimes use a suffix on the (bold) tensor to indicate its order.
These concepts are explained in more detail in Chapter 4, with the aid of examples.

Scalars

E = Young’s modulus
e =error
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= yicld function
= out-of-balance force or gradient of potential energy
= shear modulus
= 2nd moment of area
= det(F)
= bulk modulus
, = tangent stiffness
= thickness
v.w = displacements corresponding to coordinates x.y. -
= volume: dV = increment of volume: also
= virtual work
= internal virtual work
= external virtual work
,¥.2 = rectangular coordinates
v = shear strain
= strain
shear modulus
- = load-level parameter
v = Poisson’s ratio
Z,n.<0 = non-dimensional (natural) coordinates
a = stress

SEE T RTSTO%

oo

L -
(LI

T = shear stress

¢ = total potential energy
7 = curvature
Subscripts

2 =second order
4 =fourth order

cr = ‘critical’ (in relation to buckling)
e =external

ef = external (fixed)

g =global

1 = internal

n =new

o =old

t = tangential

v = virtual

Superscripts and special symbols

rate or time-derivative
transpose
= contractton (sec cquation (4.6))
® = tensor product (sce equation {4.31))
tr = trace (= sum of diagonal elements)

T
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Vectors

b = strain;nodal-displacement vector
= displacements
e, = unit base vectors
g = out-of-balance forces (or gradient of total potential energy)
h = shape functions
nodal (generalised) displacement variables
= nodal {generalised) force variables corresponding to p
strain (also, sometimes, a teusor -see below)
stress (also, sometimes. 4 tensor  sce below)

i

i

il

a o=
[

Matrices or tensors

(A subscript 2 is sometimes added for a second-order tensor (matrix} with a subscript 4 for a
fourth-order tensor.)

1 = Unit second-order tensor (or identity matrix)

B = strain/nodal-displacement matrix

C = constitutive matrices or tensors (with stress,/strain moduli)
D = diagonal matrix in LDL'

H =shape function matrix

I =identity matrix or sometimes fourth-order unit tensor

K =tangent stiffness matrix

K,, = initial stress or geometric stiffness matrix

K, = linear stiffness matrix

L. = lower triangular matrix in LDL' factorisation

d;; =Kroneckerdelta (=1.i= ji =0, i# j)
€ =strain

Special symbols with vectors or tensors

4 = small change (often iterative or virtual) so that dp = iterative change in p or iterative nodal
‘displacements’. dp, = virtual change in p

A =large change (often incremental -from last converged equilibrium state) so that
Ap = incremental change in p or incremental nodal “displacements’



1 General introduction, brief
history and introduction
to geometric non-linearity

1.1 GENERAL INTRODUCTION AND A BRIEF HISTORY

At the end of the present chapter (Section 1.5), we include a list of books either fully
devoted to non-linear finite elements or clse containing significant sections on the
subject. Of these books, probably the only one intended as an introduction is the
book edited by Hinton and commissioned by the Non-linear Working Group of
NAFEMS (The National Agency of Finite Elements). The present book is aimed to
start as an introduction but to move on to provide the level of detail that will generally
not be found in the latter book.

Later in this section, we will give a brief history of the early work on non-linear
finite elements with a selection of early references being provided at the end of the
chapter. References to more recent work will be given at the end of the appropriate
chapters.

Following the brief history, we introduce the basic concepts of non-linear finite
element analysis. One could introduce these concepts either via material non-linearity
(say, using springs with non-linear properties) or via gcometric non-linearity. I have
decided to opt for the latter. Hence, in this chapter, we will move lrom a simple truss
system with one degree of frecedom to a system with two degrees of freedom. To
simplify the equations, the ‘shallowness assumption’ is adopted. These two simple
systems atlow the introduction of the basic concepts such as the out-of-balance force
vector and the tangent stiffness matrix. They also allow the introduction of the basic
solution procedures such as the incremental approach and iterative techniques based
on the Newton Raphson method. These procedures are introduced firstly via the
equations of equilibrium and compatibility and later via virtual work. The latter
will provide the basis for most of the work on non-linear finite clements.

1.1.1 A brief history

The earliest paper on non-linear finite elements appears to be that by Turner et al.
[ T2} which dates from 1960 and, significantly, stems from the aircraft industry. The

1



2 INTRODUCTION TO GEOMETRIC NON-LINEARITY

present review will cover material published within the next twelve years (up to and
including 1972).

Most of the other carly work on geometric non-lincarity related primarily to the
linear buckling problem and was undertaken by amongst others [H3. K 1], Gallagher
et al. [G1,G2]. For genuine geometric non-linearity, "incremental’ procedures were
originally adopted (by Turner et al. [T2] and Argyris [A2, A3]) using the ‘geometric
stiffness matrix’ in conjunction with an up-dating of coordinates and. possibly, an
initial displacement matrix [D1,M1,M3]. A similar approach was adopted with
material non-linearity [Z2,M6]. In particular, for plasticity, the structural tangent
stiffness matrix (relating increment of load to increments of displacement) incorporated
a tangential modular matrix [P1,M4,Y1,Z1.Z2] which related the increments of
stress to the increments of strain.

Unfortunately, the incremental (or forward-Euler) approach can lead to an
unquantifiable build-up of error and. to counter this problem. Newton -Raphson
iteration was used by. amongst others, Mallet and Marcal [M1] and Oden [O1].
Direct ecnergy search [S2M2] methods were also adopted. A modified
Newton Ruaphson procedure was also recommended by Oden [O2]. Haisler ¢t al.
[H1] and Zicnkiewicz [Z2]. In contrast to the full Newton Raphson method, the
stiffness matrix would not be continuously updated. A spectal form using the very
initial, elastic stiffness matrix was referred to as the ‘initial stress’ method [Z1] and
much used with material non-lincarity. Acceleration procedures were also considered
[N2]. The concept of combining incremental (predictor) and iterative (corrector)
methods was introduced by Brebbia and Connor [B2] and Murray and Wilson
[M8,M9] who thereby adopted a form of ‘continuation method'.

Early work on non-linear material analysis of plates and shells used simplified
mcthods with sudden plastification [AIBl]. Armen et al. [A4] traced the
clasto-plastic interface while layered or numerically integrated procedures were
adopted by, amongst others, Marcal et al. [M5, M7] and Whang [W1] combined
material and geometric non-lincarity for plates initially involved *perfect elasto-plastic
buckling’ [T1,H2]. One of the carliest fully combinations employed an approximate
approach and was due to Murray and Wilson [M10]. A more rigorous ‘layered
approach’ was applied to plates and shells by Marcul [M3,M5], Gerdeen ¢t al. [G3]
and Striklin et al. [S4]. Various procedures were used for integrating through the
depth from a ‘centroidal approuach’ with fixed thickness layers [ P2] to trapezoidal
[M7] and Simpson’s rule [ S4]. To increase accuracy, ‘sub-increments’ were introduced
for plasticity by Nayak and Zienkiewicz [N1]. Early work involving "limit points’
and ‘snap-through’ was due to Sharifi and Popov [S3] and Sabir and Lock [S1].

1.2 A SIMPLE EXAMPLE FOR GEOMETRIC
NON-LINEARITY WITH ONE DEGREE OF FREEDOM

Figure 1.1{a) shows a bar of arca 4 and Young’s modulus E that is subject to a load

W so that it moves a distance w. From vertical equilibrium,

N(iIz+w) N+ w)
o

W= Nsinll= (L.1)
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w

TE

Imtial configurabon

1 \\ =

Initial configuration

Spring stiffness, K,

Figure 1.1 Simple problem with one degree of freedom: (a) bar a lone (b) bar with spring.

where N 1s the axial force in the bar and it has been assumed that 0 15 small. By
Pythagoras’s thcorem, the strain in the bar is

) iz +w)? + 1) (22412

(ZZ +T2]1_2
T 4+w 2N 1:2 2y-12
(- CF) OG-
1/z4+w)\? 1/2\?
:<1+ ( _“> )(1— (_) 1 (1.4)
2 ! 2\
o\ w 1/ w)\? N\ w 1/w\?
= _N _)1+-{ -] = + . (1.5)
1/\ 1 2\ / AN AW
Although (1.5) is approximate, it can be used to illustrate non-linecar solution
procedures that are valid in relation to a ‘shallow truss theory™. From (1.5), the force

in the bar is given by
wesa(()0)40))
N=EAs=FEA + (1.6)
I/\1 AN

~| t
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and, from (1.1), the relationship between the load W and the displacement, w is given by

EA
W="""(z"w+ 3zn? + iu?). (1.7)

13
This relationship is plotted in Figure 1.2(a). If the bar is loaded with increasing — W,
at point A (Figure 1.2(a)), it will suddenly snap to the new cquilibrium state at point
C. Dynamic effects would be involved so that there would be some oscillation about
the latter point.

Standard finite element procedures would allow the non-linear equilibrium path
to be traced until a point A’ just before point A, but at this stage the iterations would
probably fail (although in some cascs it may be possible to move directly to point
C—see Chapter 9). Methods for overcoming this problem will be discussed in
Chapter 9. For the present, we will consider the basic techniques that can be used
for the equilibrium curve, OA’.

For non-linear analysis, the tangent stiffness matrix takes over the role of the
stiffness matrix 1n linear analysis but now relates small changés in load to small
changes in displacement. For the present example, this matrix degenerates to a scalar
dW,/dw and, from (1.1), this quantity is given by

_dW  (z+w)dN N

K, + (1.8)

dw { dw !
. z N\ N

=FA< +“> ¥ (1.9)
1\ I
EA(z\> EA{2:w+w?\ N

_ <>+ (2“+“>+ . (1.10)
1\ I & I

Equation (1.6) can be substituted into (1.10) so that K, becomes a direct function
of the initial geometry and the displacement w. However, there arc advantages in
maintaining the form of (1.10) (or (1.9)), which is consistent with standard finite
element formulations. If we forget that there is only one variable and refer to the
constitucnt terms in (1.10) as ‘'matrices’, then conventional finite element terminology
would describe the first term as the linear stiffness matrix because it is only a function
of the initial geometry. The second term would be called the ‘initial-displacement’ or
‘initial-slope matrix’ while the last term would be called the ‘geometric’ or ‘initial-stress
matrix’. The ‘initial-displacement’ terms may be removed from the tangent stiffness
matrix by introducing an ‘updated coordinate system’ so that "=z + w. In these
circumstances, cquation (1.9) will only contain a ‘linear’ term involving z’ as well as
the ‘initial stress’ term.

The most obvious solution strategy for obtaining the load-deflection response
OA’ of Figure 1.2(a)is to adopt *displacement control’ and, with the aid of (1.7) (or (1.6}
and (1.1)), directly obtain W for a given w. Clearly this strategy will have no difficulty
with the ‘local limit point’ at A (Figure 1.2(a)) and would tracc the complete
equilibrium path OABCD. For systems with many degrees of freedom, displacement
control is not so trivial. The method will be discussed further in Section 2.2.5. For
the present we will consider load control so that the problem involves the computation
of w for a given W.
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Before discussing a few basic solution strategies, some dimensions and properties
will be given for the example of Figure 1.1(b) so that these solution strategies can be
illustrated with numbers. The spring in Figure 1.1(b) has been added so that, if the
stiffness Ky is large enough, the limit point A of Figure 1.2(a) can be removed and
the response modified to that shown in Figure 1.2(b). The response of the bar is then
governed by

EA
W= o (22w 3zw? + Ind) + Kgw (1.11)

which replaces equation (1.7). For the numerical examples, the following dimensions
and properties have been chosen:

EA=5x10"N, z=25mm, [/=2500mm, Kg=135N/mm, AW= —T7N
(1.12)

where AW is the incremental load. For brevity, the ‘units’ have been omitted from
the following computations.

1.2.1 An incremental solution

An incremental (or Euler) solution scheme involves (Figures 1.2(a) and 1.3) repeated
application of

dw\ !
AW=( ) AW=KI_1AW. (1.13)
dw
Iy
Ay T T T T Al
|
|
AW
|
> |
g |
T )
3 I |
|
an] [/ |
| |
|
Awg | Aw, ,
A/ W, W,

[ ]

Displacement, w

Figure 1.3 Incremental solution scheme.
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For the first step, w, and N, are set to zero so that, from (1.10);

EA/ )\
Ko=" <1> 4 Kg=13.35 (1.14)

and hence
PAW

EA=" 4 Ko = —7/3.35= —2.0896 {1.15)
AZT + Kl

[ D ;
w, =Aw, =K, 'AW=

where AW (—7) is the applied incremental load. From (1.6}, the corresponding axial

force is given by
i . AT 1w \?
N,=EA + = —400.45. (1.16)
[ l RANN

90(

80 %
70 F ?

. f

501

Load. W

Incremental salution ~a

ol /O/
5/3/ ¥ Exact solution
301
4

3
201

0 It i 1 A 1 1
0 10 20 30 40 50 60

Deflection. w

Figure 1.4 Incremental solution for bar-spring problem (K. = 1.35).
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The second increment of load i1s now applied using (see (1.10))

EA[(z\* EA N
K (w)= | <1> + (22w, + wi) + I'+KS:2.8695 (1.17)
to give
Aw, =K, 'AW = —7/2.8695 = —2.4394 (1.18)
so that
w,=w, +Aw, = —2.0896 — 2.4394 = —4.5290 (1.19)

and N, is computed from

- . " 2
N2=EA{<“)(“2)+ '<“2> }: —823.76. (1.20)
TANDARW

Inevitably (Figures 1.3 and 1.4), the solution will drift from the true equilibrium curve.
The lack of equilibrium is easily demonstrated by substituting the displacement w,
of (1.15) and the force N, of (1.16) into the equilibrium relationship of (1.1). Once
allowance is made for the spring stiffness Ky, this provides

Shw W=\ AW AWI[ 1
wo= N EEY ke a4 8 1+(1 0 P ( )
! 264\ :) EA EA\2

(1.21)
= —3.6698 — 2.8210 = —6.4908 (1.22)
which is only approximately equal to the applied load AW (—7).

1.2.2 An iterative solution (the Newton-Raphson method)

A second solution strategy uses the well-known Newton—Raphson iterative technique

to solve (1.7) to obtain w for a given load W. To this end, (1.7) can be re-written as
EA

g= 2 (2w 43w+ L) - W=0. (1.23)

The iterative procedure is obtained from a truncated Taylor expansion

Y0 s (12 (1.24)
Yo =4, ow ow)” .
Yn=4 dw 2 du?

where terms such as dg,/dw imply dg/dw computed at position ‘o’. Hence, given an
initial estimate w, for which g,w,} 50, a better approximation is obtained by
neglecting the bracketed and higher-order terms in (1.24) and setting g, =0. As a

result (Figure 1.5)
g dg,\ !
()WO = - go(“'n) (125)
dw

and a new estimate for w is
W, =W, + dw,. (1.26)
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p dw,

Load. w Aw, 5 /
-~ — e

|
|
|
l . 4
Wo Wi Displacement, w

Figure 1.5 The Newton-Raphson method.

Substitution of (1.25) into (1.24) with the bracketed term included shows that g, is
proportional to ¢Z. Hence the iterative procedure possess ‘quadratic convergence’.
Following (1.26), the iterative process continues with

. dg, !
ow, = — g(w)). (1.27)
dw

In contrast to the previous incremental solutions, the dws in (1.24)-(1.27) are iterative
changes at the same fixed load level (Figure 1.5).

Equations (1.25) and (1.27) requirc the derivative, dg/dw, of the residual or
out-of-balance force, ¢g. But (1.23) was derived from (1.7) which, in turn, came from
(1.1} so that an alternative expression for ¢, based on (1.1), is

_ Nz +w)

1.28
| (1.28)

where W is the fixed external loading. Consequently:

dg (+w)dN N

+ K 1.29
dw [ dw | ' ( )

which coincides with (1.8) so that dg/dw is the tangent stiffness term previously derived
in {1.8).

However, although dg/dw will be referred to as K, and, indeed, involves the same
formulae ((1.8)-(1.10)), there is an important distinction between (1.8), which is a
genuine tangent 1o the equilibrium path (W — w), and dg/dw, which is to be used with
an iterative procedure such as the Newton -Raphson technique. In the latter instance,
K, =dg/dw does not necessarily relate to an equilibrium state since ¢ relates to some
trial w and is not zero until convergence has been achieved. Consequently, for
equilibrium states relating to a stable point on the equilibrium path, such as points
on the solid parts of the curve on Figure 1.6, K, =dW/dw will always be positive
although K, =dg/dw, as used in an iterative procedure, may possibly be zero or
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Load, — W

First trial soln.

Fixed load level dw
/ / K, = — = positive
— R - . . dw
71
B/\'
T '
dg o
K.= = =pos. K= "~ =ne
= = negative
dw dw R
N Deflection. —w
X

Figure 1.6 Posilive and negative tangent stiffnesses.

negative. This is illustrated for the Newton-Raphson method in Figure 1.6. Once
the problems are extended beyond one variable, the statement ‘K, will always be
positive” becomes "K, will always be positive definite’ while 'K, may possibly be zcro
or negative’ becomes ‘K, may possibly be singular or indefinite’.

1.2.3 Combined incremental/iterative solutions
(full or modified Newton—Raphson or the initial-stress method)

The iterative technique on its own can only provide a single ‘point solution’. In
practice, we will often prefer to trace the complete load/deflection response (cquilibrium
path). To this end, it is useful to combine the incremental and iterative solution
procedures. The ‘tangential incremental solution’ can then be used as a ‘predictor’
which provides the starting solution, w,, for the iterative procedure. A good starting
point can significantly improve the convergence of iterative procedures. Indeed it can
lead to convergence where otherwise divergence would occur.

Figure 1.7 illustrates the combination of an incremental predictor with Newton
Raphson iterations for a one-dimensional problem. A numerical example will now
be given which relates to the dimensions and properties of (1.12) and starts from the
converged. ‘exact’, equilibrium point for W= — 7 (point | in Figure 1.4). This point
is given by

w, = —22683, N, = —433.08. (1.30)

As a consequence of the inclusion of the linear spring, the out-of-balance force term,
g, is given by

g = Wi(bar) + W(spring) — W, = ¢g(1.28) + K.w. (1.31)
The term ¢(1.28) in (1.31) refers to equation (1.28). (Equation (1.23) could be used
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4 lterations
Predictor
Load, W¥ —
' 9o
AW |
Predictor l
lterations
L ——
4
AW
A

Displacement, w

Figure 1.7 A combination of incremental predictors with Newton-—-Raphson iterations

instead.) At the starting point, (1.30), the tangent stiffness is given by
dyg
Kl:d (1.9) + K, = 14803 + 1.35 (1.32)
W

so that the incremental (tangential predictor-solution) would give
w=w, +Aw, =w, + K 'AW =w —7/2.8306 = — 47415 (1.33)
with (from (1.6))
N = —858.37. (1.34)
Equation (1.31) now provides the out-of-balance force, g, as
g=g(1.28) + K.w = —6.9557 + 14.0 — 6.4010 = 0.6432 (1.35)
while the tangent stifiness is given by

d
Kl=d"’(1.9)+1<$:o.97+1.35=2.32 (1.36)
11%

and the first iterative solution is, from (1.25)

dw = —0.6432/2.320= — 0.2773 (1.37)
so that the total deflection is
w= —47415-0.2773 = — 50188 (1.38)
with (from (1.6)}):
N = —903.0. (1.39)

In order to apply a further iteration (1.31) gives
g=¢(1.28)+ Kw= —72172+ 140 - 6.7754 = — 0.0074 (1.40)
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and, from (1.27) and (1.40),

d -1
dw=—K 'g= (dq> g= —0.0074/2.2664 = — 0.0032 (1.41)
W
and the total deflection is
w= — 50188 — 0.0032 = — 5.0220. (1.42)

To four decimal places, this solution is exact and the next tterative change (which
is probably affected by numerical round-off) is —0.28 x 10~ °. From (1.33), the initial
error is

e =4.7415—-50220= —0.2805 (1.43)
while from (1.38)
e, =50188 — 5.0220 = — 0.0032 (1.44)
and the next error is ¢; = — 0.28 x 107 °. Hence
e, e
,=0.04 ~ 5= 0.027 (1.45)
e; e

o

which illustrates the ‘quadratic convergence’ of the Newton Raphson method.

An obvious modification to this solution procedure involves the retention of the
original (factorised) tangent stiffness. If the resulting ‘modified Newton—-Raphson’ (or
mN -R) iterations [O2,H1,Z2] are combined with an incremental procedure, the
technique takes the form iliustrated in Figure 1.8. Alternatively, one may only update
K, periodically [H1, Z2]. For example, the so-called K (or KT1) method would involve
an update after one iteration [Z2].

Assuming the starting point of (1.30), the tangential solution would involve
(1.32)-(1.34) as before. The resulting out-of-balance force vector would be given by
(1.35) but (1.36) would no longer be computed to form K,. Instead, the K, of (1.32)

A
Load, W Predictor lterations
— — ————
g |
Q 2
aw] 8 2 [
a =
l @
) 258
AW

Displacement, w

Figure 1.8 A combination of incremental predictars with modified Newton—-Raphson iterations
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Load, W

AW

AW

Displacement, w

Figure 1.9 The ‘initial stress method' combined with an incremental solution.

would be re-used so that
ow = —0.6432/2.8303 = — 0.2273, w= —4.9688. (1.46)
Thereafter
g=—0.1210, dw = —0.1210/2.8303 = — 0.04273, w= —5.0115 (1.47)
g = —0.0239, ow = —0.0239/2.8303 = — 0.00844, w= —5.0200 (1.48)

etc. In contrast to (1.45),

‘120190~ “2=0.198 ~ 3 = 0.190 (1.49)
€o € €2
which indicates the slower ‘linear convergence’ of the modified Newton-Raphson
method. However, in contrast to the full N- R method, the modified technique requires
less work at each iteration. In particular, the tangent stiffness matrix, K,, is neither
re-formed nor re-factorised.
The ‘initial stress’ method of solution [Z1] (no relation to the ‘initial-stress matrix’)
takes the procedure one stage further and only uses the stiffness matrix from the very
first incremental solution. The technique is illustrated in Figure 1.9.

1.3 A SIMPLE EXAMPLE WITH TWO VARIABLES

Figure 1.10 shows a system with two variables 4 and w which will be collectively
referred to as

pT = (u, w). (1.50)

For this system, the strain of (1.5} is replaced by

u Z\/w 1/ w\?2
82“"1+<1>(1’>+2<1)' (>0
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é_{l"

w

4

U, ~N L
] 77%7- \Spring stiffness, K,

a ;
’ﬁf%_. u Inthal configuration

Figure 1.10 Simple problem with two degrees of freedom.

(The term (u/1)? can be considered as negligible.) Resolving horizontally,
U.,+Ncosll=~U,+N=0 (1.52)

while, resolving vertically,

N(z ;
W= Nsinf+Kawa [“L“)qu. (1.53)

These equations can be re-written as

ea-a= () () () =()-()=(0) o

where g is an ‘out-of-balance force vector’, q; an internal force vector and q. the
external force vector. The axial force, N, in (1.54) is simply given by

N = EA¢ (equation (1.51)). (1.55)

In order to produce an incremental solution procedure, the internal force, g;
corresponding to the displacement, p, can be expanded by means of a truncated
Taylor serics, so that

g(p+ Ap)=qip + P Ap. (1.56)

Assuming perfect equilibrium at both the initial configuration p and the final
configuration, p + Ap, equation (1.56) gives
Cq;

p

q(p+Ap) —qip)=q.p+ Ap) —qp=Agq. = “Ap=KAp (1.57)

or, in relation to the two variables u and w,

(AU°>=K.(A“> (1.58)
AW, Aw

where from (1.51), (1.54) and (1.55),

(_?_qil 0q;y cu; U
K = ‘py Cpy _ u  Cw :EAI: 1 -p :|+|:0 0 :l
' aq, 04q., W, oW, [l —B B*+KJEA 0 N/

py Op, ucw

i1y
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with
f= ) (1.60)

The final matrix in (1.59) is the ‘initial-stress matrix’. Clearly. the incremental
procedure of Section 1.2.1 can be applied to this two-dimensional system using the
general form

Ap=K, 'Aq. (1.61)

Alternatively, the tangent stiffness matrix of (1.59) can also be related to the
Newton - Raphson iterative procedure and can be derived from a truncated Taylor
serics as in (1.24). For two dimensions this gives

gy Cgy
( cp, O o g .
gn:(-"1> :(Jl> - ““ «pz ('pl>=g)+~g‘)P:go+Kz()p (1.62)
da/n Yr/lo iy Y, op, cp
cpy 0py

where K, is again given by (1.59). The Newton-Raphson solution procedurc now
involves

o

-~ -1
ap=— (ig) g.= — K/ 'g. (1.63)

p

We will firstly solve the “perfect’ system, for which = (Figure 1.10) is zero. The
applied load, W, will also be set to zero. In these circumstances, (1.58) and (1.59) give

EA
| 0
3 A
AU ( “). (1.64)
0 N Aw
0 K, .+
l
The solution 1s
{
Au= AU, Aw=0 (1.65)
AE
so that
{
u= U, w=0. (1.66}
AFE

These solutions remain valid while (K, + N/I) is positive and the matrix K, is “positive
definite’. However, when

N=N_,=—-IK, (1.67)
the load U reaches a ‘critical value’,

. AE
N.,=IK, = u

Ucr = - er [ cr (168)

at which K, becomes singular, Au and Aw are indeterminate and the system ‘buckles’.
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This example illustrates one particular use of the ‘initial-stress matrix’. In general,
for a perfect system (when the pre-buckled path is linear or ‘effectively linear’), we
can write

K =K, + /K, (1.69)

where K, is the standard ‘linear stiffness matrix’ and K,, is the initial-stress matrix
when computed for a ‘unit membrane stress field’ (in the present case, N =1). The
term 4 in (1.69) is the load factor that amplifies this initial stress field. As a consequence
of (1.69), the buckling criterion becomes

det(K,+ iK,,) =0 (1.70)
which is an eigenvalue problem. Numerical solutions for the imperfect system (with
z (Figure 1.10) # 0) will be given in Chapter 2. For the present, we will derive a set
of ‘exact solutions’.

1.3.1 ‘Exact’ solutions

The governing equations (1.54) have solutions

w:<_ v ): (1.71)
v,-U
or
(1-U/U.)
as well as
U
o T Bt ) (1.73)
uCI' UCT
where
U EA 2 EA(z\?
- R (Z _ (1.74)
u,-U U, \! IK A\ !
and the ‘buckling load’, U,,. and equivalent displacement, u_,, have been defined in
(1.68).

Equations (1.72) and (1.74) have been plotted in Figure 1.11 where the *perfect solu-
tions’ relate to the system of Figure 1.10 with z set to zero. The non-dimensionalising
factor, z,, in Figure 1.10(a) is the initial offset, z, for the imperfect system and any
non-zero value for the perfect system. In plotting equation (1.73) in Figure 1.11(a),
the factor § of (1.74) has been set to 0.5 (i.e. as if using (1.12) but with K = 4).

The perfect solutions are stable up to point A from which the path AC (or A'C
in Figure 1.11(a}) 1s the post-buckling path. If the offset, z, in Figure 1.10 is non-zero,
either the imperfect path EF or the equivalent path E'F" in Figure 1.11(a) will be
followed, depending on the sign of z. At the same time, the ‘load/shortening relation-
ship’ will follow OD in Figure 1.11(b). While these paths are fairly obvious, the
solutions GH (or G'H’) in Figure 1.11(a) and GH in Figure 1.11(b) are less obvious
and could not be reached by a simple monotonic loading. Nonetheless they do
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deflection; {b) shortening deflection.
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represent equilibrium states and their presence can cause difficulties with the numerical
solution procedures. This will be demonstrated in Chapter 2 where it will be shown
that it is even possible to accidentally converage on the ‘spurious upper equilibrium
states’.

Before leaving this section, we should note the inverted commas surrounding the
word ‘exact’ in the title of this section. The solutions are exact solutions to the
governing equations (1.54). However, the ltter were derived on the assumption of a
small angle 0 in Figure 1.10. Clearly, this assumption will be violated as the deflection
ratios in Figure .11 increase, even if it is valid when w is small.

1.3.2 The use of virtual work

In Section 1.2, the governing equations were derived directly from equilibrium. With
a view to later work with the finite element method, we will now derive the out-6f-
balance force vector, g using virtual work instead. To this end, with the help of
differentiation, the change in (1.51) can be expressed as

5 du N (z + w) <(5w> . I:] ((5w>2 s
de = — _ .
! I ] N1 ), (1.75)

For really small virtual changes, the last, higher-order, square-bracketed term in

(1.75) is negligible and
du, z+w) /[ ow,
oe, = — l;l+( T‘)(‘Y‘) (1.76)

where the subscript v means ‘virtual’.
The virtual work undertaken by the internal and external forces can now be
expressed as

V= fa(iz;v dVv + K. wow, — U du, — W ow, = Nlde, + Kwow, — U du, — W, dw,.
(1.77)
Substituting from (1.76) into (1.77) gives
V=g'dp, (1.78)

where dp] = (du,, dw,) and the vector g is of the form previously derived directly from
equilibrium in (1.54). The principle of virtual work specifies that V should be zero
for any arbitrary smali virtual displacements, dp,. Hence (1.78) leads directly to the
equilibrium equations of (1.54). Clearly, the tangent stiffness matrix, K,, can be
obtained, as before, by differentiating g. With a view to future developments, we will
also relate the latter to the variation of the virtual work. In general, (1.78) can be
expressed as

V= fa"ésvdV—ch()'p‘ =(q; — q.)" op, = g"5p, (1.79)
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from which

L dg
5V = 5pTog = opT ;ﬁ 5p = opTK,dp. (1.80)

1.3.3 An energy basis

The previous developments can be related to the total potential energy. For the
current problem, the latter is given by

o - j%r:szawxswz —qp (181)

1 ! 1(w\2 ]
b= Kw+- EAI[—“+<Z><W>+(”-”-) —Uu—Ww.  (182)
2 2 RANTANTARAY

If the loads U, and W, are held fixed, and the displacements u and w are subjected
to small changes. du and dw (collectively dp), the energy moves from ¢, to ¢, where

or

¢n=¢o+(2ﬁ)ap=¢o+gnsp 183
or
ou=ories T () 0)0(0) 020 () -(h) (o)
LN )T Neew) ew) T\ Low

(1.84)

The principle of stationary potential energy dictates that, for equilibrium, the change
of energy, ¢, — ¢,, should be zero for arbitrary dp (du and dw). Hence equation (1.84)
leads directly to the equilibrium equations of (1.54) (with N from (1.55)). Equation
(1.83) shows that the ‘out-of-balance force vector’ g, 1s the gradient of the potential
energy. Hence the symbol g. The matrix K, = 0g/ép is the second differential of ¢
and is known in the ‘mathematical-programming literature’ (see Chapter 9) as the
Jacobian of g or the Hessian of ¢.

1.4 SPECIAL NOTATION

A = area of bar

e = error
K, = spring stiflness

N = axial force in bar

u = axial displacement at end of bar

U = force corresponding to u

w = vertical displacement at end of bar
W = force corresponding to w

z = initial vertical offset of bar
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! = initial length of bar

J = geometric factor (equation (1.60))
¢ = axial strain in bar

0 = final angular inclination of bar
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2 A shallow truss element
with Fortran computer
program

In Sections 1.2.1-3, we obtained numerical solutions for the simple bar/spring problem
with one degree of freedom that is illustrated in Figure 1.1. We also proposed, in
Figure 1.10, a simple example with two degrees of freedom. However, no numerical
solutions were obtained for the latter problem. Once the number of variables is
increased beyond one, it becomes tedious to obtain numerical solutions manually,
and a simple computer program is more appropriate.

Such a program will be of more use if its is written in a ‘finite element context’,
so that different boundary conditions can be applied. So far, only indirect reference
has been made to the finite element method. In this chapter, we will use the ‘shallow
truss theory' of Section 1.2 to derive the finite element equations for a shallow truss
element. We will then provide a set of Fortran subroutines which allows this element
to be incorporated in a simple non-linear finite element program. Flowcharts are
given for an ‘incremental formulation’, a ‘Newton—Raphson iterative procedure’ and,
finally, a combined ‘incremental/iterative technique’ that uses either the full or
modified Newton-Raphson methods. Fortran programs, which incorporate the earlier
subroutines, are then constructed around these flowcharts. Finally, the computer
program is used to analyse a range of problems.

2.1 A SHALLOW TRUSS ELEMENT

We will now use the ‘shallow truss theory’ of Chapter | to derive the finite element
cquations for the shallow truss of Figure 2.1. The derivation will be closely related
to the virtual work procedure of Section 1.3.2. Short-cuts could be used in the
derivation but we will follow fairly conventional finite element procedures so that
this example provides an introduction to the more complex finite element formulations
that will follow. The element (Figure 2.1) has four degrees of freedom u, = p,, u, = p,,
w, = p; and w, = p,. Both the geometry and the displacements are defined with the
aid of simple linear shape functions involving the non-dimensional coordinate, &, so

23
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E=1

Figure 2.1 A shallow truss element.

. T _=\T
X:I(] é) (Xl)’ Z=l(1 c’) (Zl)’ (21)
2\1+&/ \x; 2\1+¢&/ \z,
N\T N\T /vy
2\1+¢) \u, 2\1+¢&) \w,

Following from (1.51), the strain in the bar is

, 1 2
g=§“+(d5_><‘1&)+_ (d.‘_v), (2.3)
dx dx/ \dx 2\ dx

that

From (2.1),
dx
c=(x;—x,)2=1/2 24)
d¢
while from (2.2),
du dudé
- = — =(Uy — 1: I 2'5
dx  d¢dx (uy —uy)/ U,/ (2.5)
where the shorthand u,, has been used for u, — u,. In a similar fashion,
dw dz
— = I = L 2.6
dx Wi/ dx Z3,/ (2.6)

Hence, from (2.3),

Uy, 22 Wa 1wy :
=2y 4| - 2.7
T ( ! )< ! ) 2( 1 ) @7
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and the axial force in the bar is
N = EA¢ (equation (2.7)). (2.8)

From (2.3), a change of strain, A¢, corresponding to displacement changes Au and

Aw is given by
. \ N 2
Ap = dAu N <d- N dw) dAw . 1 (dAw 29)
dx dx dx/ dx 2\ dx

where the final (higher-order) term in (2.9) becomes negligible as Aw gets very small.
Using (2.5) and (2.6):

Az;:Al;21+[lz (22,+w21)Aw21+zll'2 Awl,. (2.10)
If a set of virtual nodal displacements’,
Opy = (Buy1, U 5, OW, (. oW, ) (2.11)
are applied, the resulting strain is, from (2.9),
de, = ; Sy, + llz(z21 + wy,)0w,,; =b'dp, (2.12)
where
bT=;(—1,1,~ﬁ,B) (2.13)
with
p=" J; Wa, (2.14)

Inderiving (2.12) from (2.10), the quadratic terms involving dw?, | have been considered
negligible.
The virtual work equation can (see (1.77)) be expressed as

V= jaé::vdV—quV:O (2.15)
where g, are the external nodal forces corresponding to the nodal displacements, dp,.

Because ¢, can be expressed, via (2.12), in terms of Jp,, equation (2.15) can be
re-written as

V=(5pfg=(5pf(qi—qc)=5pf<fade—qe>=O (2.16)
where q; is the internal force vector, given by

qi:jade:Nlb. @17)

*This ordering would not be the most convenient for element assembly, but the ordering could easily be
altered prior to such assembly.
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For equilibrium, (2.16) should be satisfied for any virtual displacements. dp,. Hence
g=¢q—¢q. =0 (2.18)

where g is the out-of-balance force vector.
From (1.80), K, = ég/¢p and a truncated Taylor expansion of g, about an ‘old’
configuration, g, gives

cg ‘
g,,=g0+b§()p=g‘,+K,Op. (2.19)

Hence, from equations (2.17)-(2.19),
g g dN ép

K,=-°= "= +IN_". (2.20)
op Cp dp Jp
From (2.8) and (2.12):
N dN§
AN _dNGe _ et (2.21)
dp dedp
Hence,
cb
K, = EAIbb" + IN (2.22)
cp
or
1 -1 g =B 00 0 0
_EA |1 - B N{OO 0 o0
K=+ g —p g —pltTiloo 1 - (223
-8 B =g B 00 —1 1

This is the matrix equivalent of (1.9) with the second matrix being the ‘initial stress’
matrix. Equation (1.9) can be recovered by setting

Uy =w, =z, =u,=0, Wy =W and Z,=1z. (2.24)

2.2 A SET OF FORTRAN SUBROUTINES

We will now provide a set of Fortran subroutines to enable the solution of the simple
bar-spring problems of Chapter 1 and others to be discussed in Section 2.6 and
Chapters 3 and 9. In its most general form, the adopted bar—spring system is that
shown in Figure 2.2, with the bar element of Figure 2.1 being surrounded by up to
four linear ‘earthed springs’ and one horizontal linear spring, connecting variables 1
and 5. For many of the problems the linear spring K5 will be omitted; however, the
potential to include this spring allows the solution of the complete range of NAFEMS
bar--spring problems [C1, D1] which include both ‘snap-throughs’ and ‘snap-backs’
(Chapter 9). In relation to Figure 2.2, for the shallow truss elements, there is assumed
to be no effective difference between x,, and L.

The following subroutines are not designed for maximum computer efficiency but
rather to illustrate the basic concepts. To a considerable extent, the subroutines are
self-explanatory. However, a brief synopsis will be given above each routine. The
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(b)

Figure 2.2 Bar-spring system. (a) Bar element with springs. (b) variables.

computer programs of Sections 2.3-5 will incorporate these subroutines to produce
programs for the analysis of shallow trusses. These computer programs are also
designed to incorporate the deep-truss elements of Chapter 3 and hence the present
subroutines will include some ‘dummy variables’ that will only be used for the deep

trusses.

2.21

Subroutine ELEMENT

This subroutine forms the internal force vector Fl(4) (using equation (2.17)) and/or
the element tangent stiffness matrix AKT(4,4) (using equation (2.23)) for the shallow
truss element. Only the upper triangle is formed but the full 4 x 4 structure is used.

OO0 OCOOOO00O0O0 O

SUBROUTINE ELEMENT (FILAKT AN.X.ZP.EARAALIWRITIWRIMOD,
IDUM ADUM1 ADUM2)
ARGUMENTS IN LINE ABOVE AND ARRAY X NOT USED FOR SHALLOW TRUSS

FOR SHALLOW TRUSS ELEMENT
IMOD =1 COMPUTES INT. LD. VECT. FI
IMOD =2 COMPUTES TAN. STIFF. AKT
IMOD =3 COMPUTES BOTH

AN=INPUT TOTAL FORCE IN BAR

Z=iINPUT=Z COORD VECTOR

P=INPUT=TOTAL DISP. VECTOR

AL=INPUT=LENGTH OF ELEMENT

EA=INPUT=YOUNGS MOD AND ARA (INPUT)=AREA OF ELEMENT

IF IWRIT.NE.O WRITES OUT FI AND/OR AKT ON CHANNEL IWR

IMPLICIT DOUBLE PRECISION (A—H.0—-2)
DIMENSION AKT(4.4),FI(4),Z(2),P(4).X(2)
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OO0

1000

1001
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EA=E*ARA
EAL =EA/AL
Z221=2(2)—2(1)

W21 = P(4) — P(3)
BET = (Z21+W21)/AL

F (IMOD.NE.2) THEN
COMPUTES INT. FORCE VECT. (SEE {2.17))

FI( y=—1.D0
FI(2)= —1.D0
FI3)= —BET
FI(4) = BET

DO1I1=14

FI(1) = AN*FI(1)

IF (IWRIT.NE.O) THEN
WRITE (IWR,1000) (FI(I).1=1.4)

FORMAT(/,1X;'INT. FORCE VECT. FOR TRUSS EL 1S"/,1X,4G13.5)

ENDIF
ENDIF

F (IMOD.NE.1) THEN

COMPUTES TAN STIFF. MATRIX (UPPER TRIANGLE) (SEE (2.23))

AKT(1,1)=1.D0
AKT(1,2)= —1.D0
AKT(13)=BET
AKT(1.4)= —BET
AKT(2.2) =1.D0
AKT(2.3)= —BET
AKT(2.4)=BET
AKT(3.3)=BET*BET
AKT(3.4)= —AKT(33)
AKT(4,4)=BET*BET
DO 121=14

DO 12 J=14
AKT(LJ) =EAL*AKT(1J)

NOW ADD GEOM. OR INIT STRESS MATRIX (SEE (2.23))

ANL = AN/AL

AKT(3.3) = AKT(3,3) + ANL

AKT(3.4) = AKT(3.4) — ANL

AKT(4.4) = AKT(4.4) + ANL

IF (IWRIT.NE.O) THEN

WRIT (IWR,1001)

FORMAT(/,1X, ‘TAN. STIFF. MATRIX FOR TRUSS EL. IS'/)
DO 141=14

14 WRITE (IWR.67) (AKT(1J).J = 1.4)

67

FORMAT (1X,7G13.5)
ENDIF

ENDIF

RETURN
END
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2.2.2 Subroutine INPUT

This subroutine inputs the data for the geometry, properties, boundary conditions
and loading (for sample data see Section 2.6.1.1). The first variable, NV, defines the
number of variables (4 or 5). If NV is four the spring K., of Figure 2.2 is omitted.
The subroutine also inputs EA, and AL, the length of the bar. An initial force in the
bar (usually zero), N, is also input. For consistency with some of the work in
Chapter 3 which includes large strains, the variable EA is subdivided into E and A
(the variable ARA although for the current work this subdivision is unnecessary.

The subroutine requires the z coordinates of nodes 1 and 2 (Figures 2.1 and 2.2).
In addition, a fixed external load (or displacement) vector, q.= QFI(NV) and a
boundary condition counter, IBC(NV) are input. The constituent terms of these
vectors relate to the four or five degrees of freedom (Figure 2.2).

Considering firstly standard load control, QF{(l) will contain a load (possibly zero)
if the variable, |, is free. It will be zero if the variable, I, is constrained to zero.
Simultaneously, 1BC(l) will be set to zero if the variable is free or to unity if the
variable is constrained to zero. To apply displacement control, QFK}) is set to the
magnitude of the fixed prescribed displacement (to be incremented), while IBC(l) is
set to — 1 (see Section 2.2.5 and the example in Section 2.6.4.4).

The routine inputs the number of linear ‘earthed springs’ (NDSP—up to four)
followed by the degree-of-freedom numbers (IDSP(l), |=1,NDSP) and the equivalent
spring stiffnesses (AKSP(l).t=1,NDSP). Finally, if NV is five, the subroutine inputs the
stiffness of spring K,s (AK15) which connects variables 1 and 5 (Figure 2.2).

SUBROUTINE INPUT (E. ARA AL QFIX.Z ANIT IBC,IRE.IWR,AK14S,1D14S,

1 NDSP NV,AK15,
2 ADUM1,IDUM)
C ARGUMENTS IN LINE ABOVE AND ARRAY X NOT USED FOR SHALLOW TRUSS
C
C READS INPUT FOR TRUSS ELEMENT
C
IMPLICIT DOUBLE PRECISION (A—H.O-2)
DIMENSION X(2).2(2),QF(NV),IBC(NV} AK145(4).ID145(4)
C
READ (IRE.") NV.EA AL ANIT
E=EA
ARA=1.D0

WRITE (IWR, 1000) NV,.EA AL ANIT
1000 FORMAT(/.1XNV=NO. OF VARBLS.=",15./,1X,
1 'EA="G13.5/1X,
2  'AL=FEL. LENGTH='G1351X,
3 ANIT=INIT. FORCE =",G13.5)
IF (NV.NE.4.AND.NV.NE.5) STOP ‘INPUT 1000’
READ (IRE.*) Z(1),2(2)
WRITE (IWR,1001) 2(1).Z(2)
1001 FORMAT(/,1X.'Z CO-ORD OF NODE 1="G13.5,1X,
1 'Z CO-ORD OF NODE 2="G13.5)
READ (IRE,") (QFI(I}.l=1,NV)
WRITE (IWR,1002) (QFI(I).|=1,NV)
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1002 FORMAT(/,1X, ‘FIXED LOAD OR DISP. VECTOR QFl="/,1X 5G13.5)
WRITE (IWR, 1008)
1008 FORMAT(/,1X, ‘IF IBC(I)—SEE BELOW — =0, VARIABLE =A LOAD'/,1X,
2 |F IBC()—SEE BELOW—= —1, VARIABLE = A DISP.)
READ (IRE,") (IBC(I),|=1,NV)
WRITE (IWR.1003) (IBC(I).) = 1,NV)
1003 FORMAT(/,1X/BOUND. COND. COUNTER, IBC'./.1X,
1 =0, FREE: =1, REST. TO ZERO.= —1 REST. TO NON-ZERO'/,1X,
2 515
READ (IRE,") NDSP
IF (NDSP.NE.0) THEN
READ (IRE.,*) (ID14S(l).|=1,NDSP)
READ (IRE,*) (AK14S(l),| = 1 NDSP)
DO 40 |=1NDSP
WRITE (IWR.1004) AK14S(}), ID14S(1)
1004 FORMAT(/,1X. 'LINEAR SPRING OF STIFFNESS',G13.5/,1X,
1 'ADDED AT VAR. NO. ".15)
40 CONTINUE
ENDIF

IF (NV.EQ.5) THEN
READ (IRE.*) AK15
WRITE (IWR,1005) AK15

1005 FORMAT(/,1X, ‘LINEAR SPRING BETWEEN VARBLS. 1 and 5 OF STIFF ',
1 G13.5)
ENDIF

RETURN
END

2.2.3 Subroutine FORCE

This subroutine computes the axial force N in the bar using equations (2.7) and (2.8).

SUBROUTINE FORCE(AN,ANIT.E ARA AL.X,Z P IWRIT IWR,
1 IDUM, ADUM1ADUM2 ADUM3)
ARGUMENTS IN LINE ABOVE AND ARRAY X NOT USED FOR SHALLOW TRUSS

COMPUTES INTERNAL. FORCE IN AN SHALLOW TRUSS ELEMENT
USING (2.7) AND (2.8)

IMPLICIT DOUBLE PRECISION (A—H. P-7)

DIMENSION Z(2),P(4),X(2)

OO0

EA=E"ARA
EAL =EA/AL

U21=P(2) - P(1)

W21=P(4)—P(3)

221=2(2)—2Z(1)

AN=U21 + (Z21*W21/AL) +0.5D0*(W21*W21*AL)
AN=EAL*AN +ANIT

IF (IWRIT.NE.O) WRITE (IWR,1000) AN
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FORMAT(/1X'AXIAL FORCE AN= ".G13.5)
RETURN
END

2.2.4 Subroutine ELSTRUC

This subroutine puts the element stiffness matrix AKTE(4,4) into the structure stiffness
matrix AKTS(NV.NV) (with NV=4 or 5), adds in the ‘earthed springs’ (if NDSP > 0)
and, if NV=35, the linear spring between variables 1 and 5. Depending on the input
mode parameter, IMOD, the subroutine may alternatively, or also, apply similar
operations to the internal forces Fl.

OO0 0O0O00

40

SUBROUTINE ELASTRUC(AKTE AKTS, NV, AK15,D14S,AK14S NDSP FI PT,
IMOD,IWRIT IWR)

FOR IMOD=2 OR 3

PUTS EL-STIFF MATRIX AKTE(4,4) INTO STRUCT. STIFF AKTS{NV.NV)
IF NV=5. ALSO ADDS IN LINEAR SPRING AK15 BETWEEN VARBLS. 1&5
ALSO ADDS IN NDSP EARTHED LINEAR SPRINGS FOR VARBLS. 1-4
USING PROPERTIES IN AK14S(4) AND DEGS. OF F. IN IDSPS(4)
THROUGHOUT ONLY WORKS WITH UPPER TRIANGLE

FOR IMOD=10OR 3

MODIFIES INTERNAL FORCE VECT.. FI, TO INCLUDE EFFECTS FROM
VARIOUS LINEAR SPRINGS USING TOTAL DISPS., PT.

IMPLICIT DOUBLE PRECISION (A-H.0-Z)
DIMENSION AKTE(4.4) AKTS(NV.NV)ID14S(4). AK14S(4)
DIMENSION FI{NV.)PT(NV)

IF (IMOD.NE.2) THEN

MODIFY FORCES

IF (INDSP.NE.O) THEN

FOR EARTHED SPRINGS

DO 40 1=1.NDSP

IDS =1D145(!)

FIIDS) = F(IDS) + AK14S(1)*PT(IDS)
CONTINUE

ENDIF

IF (NV.EQ.5) THEN
MODIFY FOR SPRING BETWEEN VARBLS. 1 AND §
Fi(1}=FI(1) + AK15*(PT(1) — PT(5))

FI(5) = AK15*(—PT(1) + PT(5))

ENDIF

IF (IWRIT.NE.O) WRITE (IWR,1002) FI

1002 FORMAT({/1X;'STR. INT. FORCE VECT IS/.1X,5G13.4)

ENDIF
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IF (IMOD.NE.1) THEN
c WORK ON STIFFNESS MATRIX; CLEAR STRUCT. STIFFNESS MATRIX
DO 10 I=1NV
DO 11 J=1NV
11 AKTS(1.J)=0.D0
10 CONTINUE

C INSERT EL. STIFFNESS MATRIX
DO201=14
DO 21 J=i4
21 AKTS(1,J) = AKTE(1J)
20 CONTINUE

C SPRING BETWEEN VARBLS. 1&5
IF (NV.EQ.5) THEN
AKTS(1.1) =AKTS(1.1) + AK15
AKTS(1,5) =AKTS(1.5) ~AK15
AKTS(5,5) = AKTS(5.5) + AK15
ENDIF

C EARTHED SPRINGS FOR VARBLS. 1-4.
IF (NDSP.NE.O) THEN
DO 30 I=1.NDSP
IDS =1014S(N)
AKTS(IDS,IDS) = AKTS(IDS.IDS) + AK145(1)
30 CONTINUE
ENDIF

IF (IWRIT.NE.O) THEN
WRITE (IWR.10071)
1001 FORMAT({/,1X, ‘FULL STRUCT. TAN. STIFF. 15"./)
DO 50 I=1NV
50 WRITE (IWR.67) (AKTS(1LJ).J=1.NV})
67 FORMAT(1X,7G13.5)

ENDIF
C
ENDIF
C
RETURN
END

2.2.5 Subroutine BCON and details on displacement control
The tangent stiffness equations can be assumed to be of the form

q=(qf>:Kp=|:K” Kff’](“‘) (2.25)
qp Kpf Kpp pp

where subscript f means ‘free’ and subscript p means ‘prescribed’. (In practice, the
ordering need not be of the form of (2.25).) Considering, firstly the case where the
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displacements p_, are constrained to zero, subroutine BCON effectively alters (2.25) to

become
q:<qf):Kp=[K” 0}("‘)- (2.26a)
0 0 11\p,

This is achieved in subroutine BCON by setting the leading diagonal term of
K = AKT(J.J) to unity if the boundary condition counter IBC(J) is unity (see Section
2.2.2). In addition, the remainder of the Jth row and column are set to zcro. Hence
a ‘dummy equation’ i1s introduced (similar, in concept, to the second row of (2.26a)).
(It is assumed that no loads are applied at constrained nodes.)

If the displacements, p,, are to be constrained to non-zero values, instead of (2.26a),
(2.25} is conceptually altered to

q= (qr - Kfppp) =Kp= |:K” 0](“) (2.26b)
Py U Po

These modifications are applied within subroutine BCON although, as previously
discussed, the variables arc not necessarily partitioned into the ordering of
p' = (p{.p,) In practice, the procedure of (2.26b) will cover the procedure of (2.26a)
where p, = 0 and there is no need to distinguished between ‘restrained variables’ (with
P, = 0) and ‘prescribed variables’ (with p, # 0). Hence the samc procedure is applied
whether the boundary condition counter, IBC(J) is 1 or — 1. The distinction is
introduced for clarity in the input and for use with some of the more advanced
solution procedures of Chapter 9.

SUBROUTINE BCON(AK.IBC N.F,IWRIT IWR)

C APPLIES B. CONDS. TO MATRIX AK AS WELL AS
o ALTERING ‘LOAD VECTOR'. F FOR PRESC. DISPS.
c BY SETTING DIAG = 1. AND ROW AND COL TO ZERO IN REST.
C USES COUNTER IBC WHICH IS 0 IF FREE, 1 IF REST. TO ZERO,
C —1 IF REST. TO NON-ZERO VALUE
C ON ENTRY F HAS LOADS FOR FREE VARIABLES AND DISPS. FOR
c REST. (POSSIBLY ZERQ) VARIABLES.
c ON EXIT THE LATTER ARE UNCHANGED BUT LOADS ARE ALTERED
C

IMPLICT DOUBLE PRECISION (A-H, O-2)

DIMENSIONS IBC(N)

DIMENSION AK(N.N).F(N)
C

IPRS =0

DO 10 I=1N

I1=1BC())

{F (ILT.0) IPRS =1

IF (ILNE.O) AK(Ll) =1.D0

IF (LEQN) GO TO 10

DO20J=1+1N

JJ = IBC)

IF (ILEQ.0.AND.JJ.EQ.0) GO TO 20
c ABOVE BOTH FREE, BELOW BOTH REST.

IF (ILNE.O.AND.JJ.NE.O) GO TO 25
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C BELOW | REST OR PRESC.
IF (ILNE.O) THEN
F(Jy=F({J) —AK{LI)'F({)

C BELOW J REST OR PRESC
ELSE
F() = F(l) — AK(1LJ)*F()
ENDIF

25 AK(lJ)=0.D0
20 CONTINUE
10 CONTINUE

IF (IWRIT.NE.O) THEN
WRITE (IWR,1000)
1000 FORMAT(/.1X. 'STIFF. MAT. AFTER B. CONDS. IS'/)
DO 30I=1N
30 WRITE (IWR. 67) (AK(1LJ).J=1.N)
IF (IPRS.EQ.1) WRITE (IWR,1001) F
1001 FORMAT(/.1X. '"MODIFIED LOAD VECTOR AFTER B CONDS. IS "/ 1X5G13.4)
67 FORMAT(1X.7G12.5)
ENDIF

RETURN
END

2.2.6 Subroutine CROUT

Conceptually, subroutine CROUT applies the Crout factorisation [C2] to the tangent
stiffness matrix, K,. Here, L is a lower triangular matrix with unit terms on the leading
diagonal and D is a diagonal matrix containing the ‘pivots’. In practice, the routine
is entered with AK(NN) containing the upper triangle of K, and exits with AK{NN)
containing L' while a vector D(N) exists with the diagonal pivots.

SUBROUTINE CROUT(AK.D.NIWRIT IWR)

C
C INPUTS AK(N.N); QUTPUTS UPPER TRIANGLE IN AK AND DIAG
C PIVOTS IN D(N)
C
IMPLICIT DOUBLE PRECISION (A-H.0-2)
DIMENSION AK{N.N),D{N)
C
D) =AK(1.1)
DO 1J=2N
DO21=14-1
A=AK(lJ)
IF (LEQ.1) GO TO 2
DO3L=1.1-1
3 A=A AK(LJ)PAK(LD
2 AK(ILJ)=A
DO41=14-1

4 AK(lLJ) = AK(LJ)AK(L
DOSL=1J-1
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5 AK(JJ) =AK(JJ} —AK(L J)AK(L ) AK(LJ)
1 D))y =AK(J)

iF (IWRIT.NE.O) THEN
WRITE (IWR,1000)
1000 FORMAT({/,1X, 'FACTORISED MATRIX I1S'./)
DO 101=1N
10 WRITE (IWR,67) (AK(lJ)J=1N)
67 FORMAT(1X,7G12.5)
WRITE (IWR,1001)
1001 FORMAT(/,1X. 'DIAG. PIVOTS ARE'/)
WRITE (IWR67) (D(I)1=1.N)
ENDIF

RETURN
END

2.2.7 Subroutine SOLVCR

This subroutine applies forward and backward substitution on the vector Q using
the previously obtained LDLT factors (in AK and D-see Section 2.2.6). Hence Q enters
as a load vector and exits as a displacement vector so that the routine obtains:

q=Kq (2.28)
SUBRQUTINE SOLVCR(AK.D QN IWRIT IWR)

c
c APPLIES FORWARD AND BACK CROUT SUBS ON Q
C
IMPLICIT DOUBLE PRECISION (A~H.0-2)
DIMENSION AK(N.N},D(N},Q(N)
C
C FORWARD SUBS.
DO 1 J=2N
DO2L=1J—1
2 Q) = QU) — AK(L.J)*Q(L)
1 CONTINUE
IF (IWRIT.NE.O) THEN
WRITE (IWR.1000) (Q(1).|=1,N)
1000 FORMAT(/.1X, DISPINCS AFTER FORWARD SUBS. ARE' /.
1 1X,7G12.5)
ENDIF
c
c BACK SUBS.
DO 3 (=1N
3 Q(l) = QI)/D()
c
DO 4 JJ=2N
J=N+2-JJ

DOS5L=1J—1
5 Q(L) = Q(L) — AK(L.J)?Q(J)
4 CONTINUE
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IF (IWRIT.NE.O) THEN
WRITE (IWR,1001) (Q(1),1=1,N)
1001 FORMAT(/,1X,'DISP INCS. AFTER BACKWARD SUBS. ARE"/.
1 1X,7G12.5)
ENDIF

RETURN
END

2.3 A FLOWCHART AND COMPUTER PROGRAM FOR
AN INCREMENTAL (EULER) SOLUTION

A computer program for an incremental solution can be generated by extending the
concepts of Sections 1.2.1 and 1.3. In particular, solutions will be obtained for a load

Call INPUT obtain the geometry, properties, fixed loading, q.; the boundary
conditions counter, IBC and spring stiffness parameters

Read in A4 and the number of increments, NINC
p=0.N=N,i=0

Begin loop through the increments, INC = 1,NINC

!
Aq = Adg
Call ELEMENT which gives K, = fn.(N,z,EA,Lp) for the truss el.
Call ELSTRUC which puts the el. stiff. matrix into the struct.
stiff. matrix and modifies for earthed (and other) linear springs

Call BCON which applies the boundary conditions.
Call CROUT which computes K, = LDLT.
Call SOLVCR which computes Ap = K 'Aq
using the previously computed LDLT factors

p=pt+tApi=1+A%
Call FORCE which computes N = fn.(EA,lz,p)

Figure 2.3 Flowchart for an incremental solution (program NONLTA).
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vector
q. = AQ.¢ (2.29)

where q.¢ is a fixed external load vector that is input in subroutine INPUT and 4 is
the load-level parameter. For the present, we will work with fixed increments so that,
in addition to q., the program inputs the load-increment factor, A/

A flowchart for the incremental solution is given in Figure 2.3 and a computer
program (NONLTA) follows.

2.3.1 Program NONLTA

PROGRAM NONLTA

C
C PERFORMS NON-LIN. INCREMENTAL SOLN. FOR TRUSS
o NV =NO. OF VARIABLES (4 OR 5)
o QFI=FIXED LOAD VECTOR
C IBC =B. COND. COUNTER (0= FREE, 1=FIXED)
C Z=C COORDS OF NODES
C QINC =INC LOAD VECTOR
C PT=TOTAL DISP. VECTOR
C AKTS=STRUCT. TAN. STIFF. MATRIX
C AKTE = ELEMENT TAN. STIFF. MATRIX
C FI (NOT USED HERE) = INTERNAL FORGCES
C D =DIAGONAL PIVOTS FROM LDL (TRAN) FACTORISATION
C ID14S=VAR. NOS. (1 —4) AT WHICH LIN EARTHED SPRINGS
C AK14S =EQUIV. LINEAR SPRING STIFFNESSES
C AK15=LINEAR SPRING STIFF BETWEEN VARBLS. 1 and 5 (IF NV=5)
C
IMPLICIT DOUBLE PRECISION (A—=H,0-2)
DIMENSION QF1(5),IBC(5).2(2).QINC(5) PT(5).AKTE(4,4)
DIMENSION FI(5),D(5) AK14S(4),10145(4), AKTS(25) X(?)
C ARRAY X ABOVE NOT USED FOR SHALLOW TRUSS
c
(RE=5
WR=6
OPEN (UNIT=5FILE=" ")
OPEN (UNIT=6FILE=" ")
C
CALL INPUT(E.ARA.AL.QFI.X.Z ANIT.IBC,IRE,IWR,AK14S,1D14S NDSP,
1 NV, AK15,
2 POISS.ITYEL)
C ARGUMENTS IN LINE ABOVE NOT USED FOR SHALLOW TRUSS
C BELOW RELEVANT TO DEEP TRUSS BUT LEAVE FOR SHALLOW TRUSS
ALN=AL
ARN = ARA
C

READ (IRE,") FACILNINC,IWRIT
WRITE (IWR,1000) FACI, NINCIWRIT
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1000 FORMAT(/,1X, 'INCREMENTAL LOAD FACTOR="G13.5/,1X,
1 ‘NO. OF INC. (NINC)= "15//1X,

2 'WRITE CONTROL (IWRIT)= *15./,3X,
3 ‘0=LIMITED : 1=FULL"
c
AN =ANIT
FACT =0.D0
DO 5 I=1,NV
5 PT())=0.00
c
C
DO 100 INC =1,NINC
FACT =FACT +FACI
WRITE (IWR,1001) INC,FACT
1001 FORMAT(//,1X/INC= '15'LD. FACTOR= ',G13.5)
DO 10 I=1,NV
10 QINC()y=FACI*QFI(})
c
C BELOW FORMS EL. TAN. STIFF MATRIX AKT
CALL ELEMENT (FILAKTE,AN,X.Z,PT.E.ARA AL IWRIT,WR.2,
1 ITYEL,ALN,ARN)
c ARGUMENTS IN LINE ABOVE NOT USED FOR SHALLOW TRUSS
c
CALL ELSTRUC(AKTE,AKTS,NV,AK15,1D145,AK14S,NDSP,FI,PT,
1 2 IWRITIWR)
C ABOVE PUTS EL.STIFF AKTE IN STRUC STIFF AKTS AND
C ADDS EFFECTS OF VARIOUS LINEAR SPRINGS
C
CALL BCON(AKTS,IBC.NV.QINCWRITIWR)
C ABOVE APPLIES B. CONDITIONS
CALL CROUT{AKTS,D,NV,IWRIT,IWR)
C ABOVE FORMS LDL(TRAN) FACTORISATION INTO AKT AND D
CALL SOLVCR(AKTS.D,QINC,NV,IWRIT,IWR)
C ABOVE SOLVES EQNS. AND GETS INC. DISPS IN QIN
C
DO 20 I=1,NV
20 PT(l)=PT() + QINC(I)
C ABOVE UPDATES TOTAL DISPS.
C
WRITE (6,1002) (PT(I). =1,NV)
1002 FORMAT(/,1X, ‘TOTAL DISPS. ARE'/,1X,5G13.5)
c
c BELOW FORMS TOTAL FORCE IN BAR
CALL FORCE(AN,ANIT E.ARAAL X.Z.PTIWRIT IWR,
1 ITYEL.ARN.ALN,POISS)
C ABOVE ARGUMENTS NOT USED FOR SHALLOW TRUSS
100 CONTINUE
C

STOP ‘NONLTA'
END
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24 A FLOWCHART AND COMPUTER PROGRAM FOR AN
ITERATIVE SOLUTION USING THE NEWTON-RAPHSON
METHOD

A computer program for an iterative solution can be generated by extending the
concepts of Sections 1.2.2 and 1.3. Because an iterative procedure is being adopted,
a convergence criterion must be introduced. A detailed discussion on convergence
criteria will be given in Section 9.5.4. In the meantime, we will adopt a simple ‘force
criterion’ whereby,

el =(g"g' 2 <plq.l load control (a)

. (2.30)
gl < glrl displacement control (b)

where g is the out-of-balance force vector and q, is the current total external load
vector while r is the reaction vector (with non-zero values where the displacements
are constrained). The introduction of the r terms in (2.30) allows the procedure to
work when displacement control is adopted and the external load vector, q. is zero.
{In very rare circumstances, under displacement control, | r| may be zero; hence the
alternative convergence criterion included in subroutine ITER (Section 2.4.2) and its
flowchart (Figure 2.4, Section 2.4.2).) Typical values for f lie between 0.001 and 0.01
although a tighter tolerance might be required for displacement control because r
will generally have terms for each component so that, with the same f, (2.30b) will
be less severe than (2.30a).

The reactions, r, are simply computed as being equal to the internal forces, q; (sec
(2.17)), at the constrained variables. In practice, in subroutine ITER (see Section 2.4.2),
r is set to q; for all variables. Hence, for the early iterations, r wili include the out-
of-balance forces at the free variables but, as the solution procedure converges, these
terms will tend to zero.

For the master segment of the computer program (NONLTB - see below), we simply
read in, as before, the geometric data and properties as well as the fixed external
load vector. q,;, via subroutine INPUT. In addition, we input a starting ‘trial vector’,
p. = PT(NV) (possibly zero). and the required convergence tolerance, f (see (2.30)).
Finally, the program calls a subroutine ITER (see Section 2.4.2) which performs the
Newton-Raphson iterations until convergence is achicved. A flowchart for this
subroutine is given in Figure 2.4, The subroutine is designed to operate with the
general incremental/iterative strategy of the next section. Hence it allows either full
or modified N R iterations. However, only the former may be used with the program
NONLTB.

241 Program NONLTB
PROGRAM NONLTB

C PERFORMS NEWTON-RAPHSON ITERATION FROM STARTING PREDICTOR. PT
C NV =NQ. OF VARIABLES (4 OR 5)
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IBC=B. COND. COUNTER (0=FREE, 1 =FIXED)

Z=7 COORDS OF NODES

PT=TOTAL DISP. VECTOR

ID14S =VAR. NOS. (1-4) AT WHICH LINEAR EARTHED SPRINGS
AK14S=EQUIV. LINEAR SPRING STIFFNESSES

QFI=TOTAL LOAD VECTOR

AKTS=STRUCT. STIFF. MATRIX

AK15=LIN SPRING STIFF. BETWEEN VARBLS. 1 AND 5 (IF NV =5)
FI=INTERNAL FORCE VECTOR

GM =0UT-OF-BALANCE FORCE VECTOR

REAC =REACTIONS

X=X COORDS

ARGUMENTS IN COMMON/DAT2/ AND ARRAY X NOT USED FOR SHALLOW TRUSS

IMPLICIT DOUBLE PRECISION (A-H.0-7)

COMMON /DAT/ X(2).2(2).E.ARA AL ID14S(4) AK14S(4) NDSP ANIT AK15
COMMON /DAT2/ ARN.POISS ALN.ITYEL

DIMENSION QFI(5).1BC(5),PT(5) AKTS(25).D(5).GM(5).FI(5)

DIMENSION REAC(5)

IRE=5
WR=6
OPEN (UNIT=5FILE="")
OPEN (UNIT=6FIl.LE=" ")

CALL INPUT(E, ARA AL QFIX.ZANIT IBC.IREIWR,AK14S D145 NDSP,
1 NV AK15

POISS.ITYEL)
ARGUMENTS IN LINE ABOVE NOT USED FOR SHALLOW TRUSS
BELOW RELEVANT TO DEEP TRUSS BUT LEAVE FOR SHALLOW TRUSS
ALN=AL
ARN=ARA

~N

READ (IRE") (PT(I)I=1NV)
WRITE (IWR.2000) (PT(1).1=1.NV)

FORMAT(/,1X.2STARTING PREDICTOR DISPS ARE /,1X.6G12.5)
READ (IRE*) BETOK IWRIT

WRITE (IWR.2001) BETOK IWRIT

FORMAT(/1X,'CONV. TOL FACTOR, BETOK= "G125./.1X,
2 ‘DIAGNOSTIC WRITE CONTROL(IWRIT) = ".15./.3X
3 ‘0=NO : 1=YES)

SET TO NEWTON-RAPHSON ITERATIONS

ITERTY =1

CALL ITER(PT.AN.BETOK,QFLIBC.IWRIT IWR AKTS,D.ITERTY NV,
1 GM.FILREAC)

WRITE (IWR,1004), (PT(LI=1,NV)
FORMAT({/ 1X'FINAL TOTAL DISPLACEMENTS ARE'/.1X,5G12.5)
WRITE (IWR.1006) (REAC()1=1.NV)
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1006 FORMAT(/ 1X'FINAL REACTIONS ARE’/1X 5G12.5)
WRITE (IWR.1005) AN

1005 FORMAT(/,1X, 'AXIAL FORCE IN BAR IS '.G12.5)
STP '‘NONLTB’
END

2.4.2 Flowchart and computer listing for subroutine ITER

Set max. number of iterations, NITMAX.
Begin iterative loop, ITE=1, NITMAX

Call FORCE which computes N = fn(EA,lzp).
Call ELEMENT and compute the internal force vector, g, for the truss.
If full N R iterations, also compute K,

Call ELSTRUC which modifies q; for the effects of the linear springs and,
if full N-R, puts the element stiffness matrix into the struct. stiff. matrix and
modifies for the effects of linear springs
compute the out-of-balance force vector, —g =q, — q;,
and creates reaction vector, r = q;,
except at earthed springs where r;= — K_;p;

lq.ll — 1d.cont.? Yes
Convergence check: 1 g8ll< f —

max ([ r([.0.001) — disp. cont?
No

N S
o Full N -R?
Yes

Call BCON which applies the boundary conditions.
Call CROUT which computes K, = LDL?

P!

Call SOLVCR which computes ép= — K~
using the previously computed LDL" fdctors

p=p+dp

"

Figure 2.4 Flowchart for subroutine ITER which performs equilibrium iterations and can be used
with program NONLTB (N-R iteration) or NONLTC (combined incremental/iterative) solution
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SUBROUTINE ITER(PT. AN,BETOK QEX IBC,IWRIT IWR AKTS D.ITERY NV,
1 GM,FILREAC)

INPUTS PREDICTOR DISPS. PT(NV) AND EXT. FORCE VECTOR QEX(NV)

ALSO BETOK=CONV. TOL, IBC=B. CON COUNTER

ITERATES TO EQUILIBRIUM: OUTPUTS NEW PT AND FORCE IN BAR AN

IF ITERTY {INPUT)=1 USES FULL N-R, =2 USES MOD N-R

IN LATTER CASE, AKTS AND D INPUT AS CROUT FACTORS (D=PIVOTS)
LOCAL ARRAY IS AKTE=EL. STIFF. MATRIX

ARGUMENTS IN COMMON/DAT2/ AND ARRAY X NOT USED FOR SHALLOW TRUSS

OOO0O00O00000

IMPLICIT DOUBLE PRECISION (A-H.0-2)

COMMON /DAT/ X(2),Z(2),E.ARA ALID145(4) AK145(4), NDSP ANIT AK15
COMMON /DAT2/ ARN,POISS ALNITYEL

DIMENSION PT(NV),QEX(NV},IBC(NV),REAC(NV)

DIMENSION FI{NV),GM(NV) AKTS(NV.NV),D(NV) AKTE(4.4)

SMALL=0.1D—2
NITMAX = 16

IMOD = 1

IF (TERTY.EQ.1) IMOD = 3

DO 100 ITE =1 NITMAX

IF (IWRIT.EQ.1) WRITE (IWR,1005) ITE
1005 FORMAT(/IXITERATIVE LOOP WITH ITE="5)
C BELOW CALCS FORCE IN BAR (AN}
CALL FORCE(AN,ANIT.E ARAALX.ZPTIWRIT IWR,
1 ITYEL,ARN,ALN,POISS)
ABOVE ARGUMENTS NOT USED FOR SHALLOW-TRUSS

C

C

c ABOVE CALCS FORCE IN BAR, AN: BELOW TAN STIFF AKT

C (IF NR) AND INT. FORCE VECT. FI

CALL ELEMENT(FIAKTE.AN X.Z.PT.E.ARA.ALIWRITIWRIMOD.
ITYEL,ALN ARN)

ABOVE ARGUMENTS NOT USED FOR SHALLOW TRUSS

—_

BELOW PUTS EL. STIFF. MAT., AKTE, IN STR. STIFF., AKTS AND

ADDS IN EFFECTS OF VARIOUS LINEAR SPRINGS (IF NR)

ALSO MODIFIES INT. FORCE VECT. FI FOR SPRING EFFECTS

CALL ELSTRUC(AKTE AKTS NV AK151D145 AK145,NDSP.FILPT,
IMOD,IWRIT.IWR)

SCOO0OOO0

iy

BELOW FORMS GM = QUT-OF-BALANCE FORCE VECTOR
AND REACTION VECTOR

DO 10 I=1NV

GM(l) =0.00

REAC(I) = FI(l)

IF (IBC(I).EQ.0) THEN

GM(I) = QEX(l) — FI(1)

ENDIF

OO0
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10 CONTINUE
67 FORMAT(6G13.5)
47 FORMAT(515)

OVERWRITE SPRING REACTION TERMS
IF (NDSP.NE.O) THEN
DO 50 |=1,NDSP

50 REAC(ID14S(})) = — AK14S(I)*PT(1D14S(1))
ENDIF

BELOW CHECKS CONVERGENCE
FNORM =0.D0
GNORM =0.D0
RNORM =0.D0
IDSP =0
DO 20 I=1NV
IF (IBC(1).EQ.0) FNORM = FNORM + QEX(I)*QEX(})
IF (IBC(I).EQ.—1) IDSP =1
RNORM =RNORM + REAC(I)*"REAC(]}
20 GNORM = GNORM + GM(I)*GM(l)
FNORM =DSQRT(FNORM)
GNORM =DSQRT(GNORM)
RNORM = DSQRT(RNORM)
BAS = MAX(FNORM SMALL)
BELOW DISP. CONTROL
IF (IDSP.EQ.1) BAS = MAX{RNCRM,SMALL)
BET = GNORM/BAS
ITEM=ITE -1
WRITE (IWR,1001) ITEM,BET
1001 FORMAT/1X'ITERN. NO.= 15" CONV. FAC.= 'G13.5)
IF (IWRIT.EQ.1) WRITE (IWR,1003) (GM{))= 1NV}
1003 FORMAT(/,1X;OUT-OF-BAL. FORCE VECTOR= "/,1X,4G13.5)
IF (BET.LE.BETOK) GO TO 200

IF (ITERTY.EQ.1) THEN

CALL BCON(AKTS.IBC.NV.GM.IWRIT IWR})

ABOVE APPLIES B. CONDITIONS

CALL CROUT(AKTS,D,NV,IWRIT IWR)

ABOVE FORMS LDL(TRAN) FACTORISATION INTO AKTS AND D
ENDIF

CALL SOLVCR(AKTS.D,GM, NV, IWRIT,IWR)
ABOVE KETS ITER. DISP. CHANGE IN GM

DO 30 I=1,NV
IF (IBC(1).EQ.0) THEN
PT() = PT(l) + GM())
ELSE
PT(l) = QEX(I)
ENDIF
30 CONTINUE
ABOVE UPDATES DISPS.
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IF (IWRIT.EQ.1) WRITE (IWR,1004) (PT(l).I=1,NV)
1004 FORMAT(/1X; TOTAL DISPS ARE'/,1X6G13.5)

100 CONTINUE

WRITE (IWR,1002)
1002 FORMAT(/,1X,'FAILED TO CONVERGE"*"")
STOP “ITER 100"

200 CONTINUE
RETURN
END

25 A FLOWCHART AND COMPUTER PROGRAM FOR
AN INCREMENTAL/ITERATIVE SOLUTION PROCEDURE
USING FULL OR MODIFIED NEWTON-RAPHSON
ITERATIONS

A computer program for a combined incremental/iterative solution can be generated
by extending the concepts of Sections 1.2.3 and 1.3, The master program NONLTC
(see below) is very similar to the incremental program NONLTA (see Section 2.3 and
Figure 2.3) because it involves the generation of an incremental predictor prior to
the application, via subroutine ITER (see Section 2.4 and Figure 2.3), of equilibrium
iterations. The latter may be full or modified Newton-Raphson depending on a
parameter, ITERTY, that is input in program NONLTC.

Figure 2.5 gives a flowchart for this program. Immediately after the beginning of
the main incremental loop, the flowchart contains

Aq=Aiq (— ) (2.31)

The term in brackets is omitted (and a comment statement included in program
NONLTCQC) if a ‘pure incremental predictor’ is adopted. Generally, it is better to include
the bracketed — g term because this ensures that the out-of-balance forces from the
previous increment are included at the start of the current increment. Hence

AQ= Ao ler — it 4 = A10) (2.32)

Clearly, if a very tight convergence tolerance is adopted, there will be no difference
between the two formulations. If a very coarse convergence tolerance is adopted, no
real iterations will be performed in subroutine ITER and a ‘self-correcting incremental
formulation’ will be produced [H1.1]. However, the term ‘self-correcting’ is too strong
for, although the procedure does make some allowance for the out-of-balance forces
from the previous increment, it does not ensure a genuine ‘equilibrium solution’. The
reader may like to try this out by applying a coarse convergence tolerance (high
f=BETOK as input to program NONLTC) to the single-variable problem of Figure 1.1.
The ‘pure incremental’ solution to this problem was obtained in Section 1.2.1 and is
given in Figure 1.4. It will be found that a ‘self-correcting incremental formulation’
will only marginally improve the solution.
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Call INPUT obtain the geometry, properties, fixed loading, q.;.
the boundary conditions counter, IBC and spring stiffness parameters

Read in A4 and the number of increments, NINC
p=0.N=Nyi=0

Begin loop through the increments, INC = [,NINC

|

!
=i+ A4
Qe = 4Qers Aq=Aiqes(—g)
Call ELEMENT which gives K, = fn.(N,z.EA,Lp) for the truss el.
Call ELSTRUC which puts the el. stiff. matrix into the struct.
stiff. matrix and modifies for carthed (and other) linear springs

Call BCON which applies the boundary conditions.
Call CROUT which computes K, = LDL".
Call SOLVCR which computes Ap=K, 'Aq

p=p+Ap
Call ITER which iterates to equilibrium

Figure 2.5 Flowcharl for a combined incremental/iterative solution procedure using either full or
modified Newton--Raphson iterations.

2.5.1 Program NONLTC

PROGRAM NONLTC

PERFORMS NON-LIN. INCREMENTAL/ITERATIVE SOLN. FOR TRUSS
NV == NO. OF VARIABLES(4 OR 5)

QFI=FIXED LOAD VECTOR

IBC=B. COND. COUNTER (0=FREE, 1=FIXED)

Z=7 COORDS O NODES

QING =INC. LOAD VECTOR

PT=TOTAL DISP. VECTOR

QEX=TOTAL (EXTERNAL} LOAD VECTOR

OO0 O0O0
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AKTS =STR. TAN. STIFF. MATRIX

AKTE=ELE. TAN. STIFF. MATRIX

Fi=INTERNAL FORCES

D =DIAGONAL PIVOTS FROM LDL(TRAN) FACTORISATION
ID14S =VAR. NOS. (1-4) AT WHICH LINEAR EARTHED SPRINGS
AK14S=EQUIV. LINEAR SPRING STIFFNESS

AK15=LIN SPRING STIFF. BETWEEN VARBS. 1 AND 5 (IF NV=5)
GM =0UT-OF-BALANCE FORCES

REAC =REACTIONS

X=X COORDS

ARGUMENTS IN COMMON/DAT2/ AND ARRAY X NOT USED FOR SHALLOW TRUSS

IMPLICIT DOUBLE PRECISION (A~H,0-27)

COMMON /DAT/ X(2).Z(2).E ARA AL,ID14S(4) AK14S(4) NDSP ANIT AK15
COMMON /DAT2/ ARN,POISS.ALN.ITYEL

DIMENSION QFI(5).IBC(5),QINC(5),PT(5).AKTE(4.4)

DIMENSION FI(5),D(5),QEX(5),GM(5).AKTS(25),REAC(5)

IRE=5
IWR=6
OPEN (UNIT=5FILE="")
OPEN (UNIT=86,FILE="")

CALL INPUT(E ARAAL QFIX.ZANITIBCIREIWR AK14S1D14S,NDSP,

NV, AK15,

POISS,ITYEL)
ARGUMENTS IN LINE ABOVE NOT USED FOR SHALLOW TRUSS
BELOW RELEVANT TO DEEP TRUSS BUT LEAVE FOR SHALLOW TRUSS
ALN=AL
ARN=ARA

nN =

READ (IRE,") FACININC IWRIT
WRITE (IWR,1000) FACININC,IWRIT
1000 FORMAT(/ 1XINCREMENTAL LOAD FACTOR="G134./1X,

1 ‘NO. OF INCS. (NINC}= "I5/.1X,
2 ‘WRITE CONTROL (IWRIT)= ',15/13X,
3 ‘0=LIMITED; 1=FULL"

READ (IRE.")BETOK,ITERTY
WRITE (IWR,1003) BETOK,ITERTY
1003 FORMAT{/,1X,;CONV. TOL FACTOR, BETOK ='G135./,
1 1X,'ITERATIVE SOLN. TYPE, ITERTY ="/5./.
2 5X,'=1, FULL N-R; =2, MOD. N-R")
AN=ANIT
FACT=0.D0
DO 5 1=1NV
GM(l) =0.D0
5 PT(l)=0.D0

DO 100 INC=1,NINC
FACT=FACT + FACI
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FACI IS INC LOAD FACTOR, FACT IS TOTAL
WRITE (IWR, 1001) INC,FACT

1001 FORMAT(//.1X/INC= "5, 'LD. FACTOR="G125)
DO 10 I=1NV
QEX(1) = FACT*QF (1)
QINC(l) = FACIFQFI(I)
USE BELOW COMMENT LINE INSTEAD OF ABOVE TO INCLUDE
ALLOWANCE FOR PREVIOUS O.B. FORCES
QINC(l) = FACIQFI(I) + GM(1)
10 CONTINUE
BELOW FORMS EL. TAN. STIFF MATRIX AKTE
CALL ELEMENT (FIAKTEAN.X.Z PT.E.AARAAL IWRIT IWR.2,
1 ITYEL.ALN,ARN)
ARGUMENTS IN LINE ABOVE NOT USED FOR SHALLOW TRUSS
BELOW PUTS EL. STIFF. AKTE IN STRUCT. STIFF. AKTS
AND ADDS EFFECT OF VARIOUS LINEAR SPRINGS
CALL ELSTRUC (AKTE.AKTS NV AK151D14S,AK14S NDSP.FIPT.
1 2IWRIT IWR)
CALL BCON(AKTS.IBC,NV,QINC,IWRIT.IWR)
ABOVE APPLIES B. CONDITIONS
CALL CROUT(AKTS,D.NV.IWRIT,IWR)
ABOVE FORMS LDL(TRAN) FACTORISATION INTO AKTS AND D
BELOW CHECKS FOR NEGATIVE PIVOTS
NEG =0
DO 30 I=1.NV
IF (D(1).LT.0.D0) NEG =NEG + 1
30 CONTINUE
IF (NEG.GT.0) WRITE (IWR.1007) NEG
1007 FORMAT(/,1X'*** WARNING NO. OF NEG. PIVOTS =" 15)
CALL SOLVCR(AKTS.D.QINC,NV.IWRIT,IWR)
ABOVE SOLVES EQNS. AND GETS INC. DISPS IN QIN
DO 20 I=1.NV
IF (IBC(1).£Q.0) THEN
PT(l)=PT(l) + QINC())
ELSE
PT(l) = QEX(l)
ENDIF
20 CONTINUE
ABOVE UPDATES TOTAL DISPS.
WRITE (IWR.1002) (PT(1).1=1,NV)
1002 FORMAT(/,1X, TOTAL DISPS. AFTER TAN. SOLN ARE'/.1X.7G13.5)

BELOW ITERATES TO EQUILIBRIUM
CALL ITER{PT AN BETOK QEX IBCIWRIT IWRAKTSD,ITERTY,NV,
1 GM.FILREAC)
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C
WRITE (IWR,1004) (PT(1),|=1,NV)
1004 FORMAT(/.1X'FINAL TOTAL DISPLACEMENT ARE’/.1X,6G12.5)
WRITE (IWR,1006) (REAC(I),|=1,NV)
1006 FORMAT(/1X,'FINAL REACTIONS ARE'/1X,5G12.5)
WRITE (IWR,1005) AN
1005 FORMAT({/, 1X'AXIAL FORCE IN BAR IS, G12.5)
C
100 CONTINUE
C

STOP 'NONLTC’
END

2.6 PROBLEMS FOR ANALYSIS

In this section, we will give the data for and describe the results from a number of
bar-spring problems that can be solved with the aid of the previous computer
programs. In a few instances, we will also give truncated versions of the output. In
addition to the present problems, the reader can, of course, devise those of his own.
The present problems are all based on the dimensions and properties of (1.12),
so that

EA=5x107,1=2500. (2.33)

2.6.1 Single variable with spring

The following data relates to the single-variable problem of Section 1.2 (see 1.12))
and Figure 1.1 with z =z,, =25 and K, = K, = 1.35. The expected response is that
shown in Figure 1.4. For this problem, the variables 1, 2 and 3 (Figures 2.1 and 2.2)
are constrained to zero and a spring (of magnitude 1.35) is provided at variable 4.
A negative loading is incremented at variable 4.

26.1.1 Incremental solution using program NONLTA

The following data leads to 12 increments of a pure incremental solution which
should illustrate the drift from equilibrium shown in Figure {.4 and detailed for 2
increments in Section 1.2.1.

4 50000000. 2500. 0. ; data as in (2.33); solution as in Section 1.1.1
0. 25 ; z=1z,, =25

0. 0. 0. —7.; vert. load at variable 4 (node 2)

1 10 ; only free at variable 4

.35 ; earthed spring of 1.35 at variable 4

1
1
4
1
1. 12 1 ; Ai=1, 12 incs., write control on
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26.1.2 lterative solution using program NONLTB

With a starting value of zero, program NONLTB takes five Newton -Raphson
iterations to obtain an equilibrium solution of w, =p, = —28.39 for a load of
gy = —35.

4 50000000. 2500. 0. ; data as in (2.33) and Figure 1.1

0.25 ==z, =25

0. 0. 0. —35 : load of —35 at vanable 4 (vertical at node 2)
1 110 ;only free at variable 4

1

4

1.35 ; earthed spring of 1.35 at variable 4

0.0 0.0 0.0 0.0 : starting vector for N-R iteration
0.001 1 : conv. tol, beta; write control on

26.1.3 Incrementalliterative solution using program NONLTC

With a fixed loading of g.(4) = — 7, four increments with A% =2 (leading to a final
loading of — 28) are applied. Using full Newton- Raphson (data as below), the number
of iterations for the four increments are 2.2,4,2 while with modified Newton-Raphson
iterations (data as below apart from changing the last variable from unity to zero),
the first three increments require 5,9,4 iterations respectively and the fourth fails to
converge.

4 50000000. 2500. 0. ; data as in (2.33) and Figure 1.1

0. 25 (z=1z2,,=25

0. 0. 0. —7.0 :load of —7 at variable 4 (vertical at node 2)
1 110 : only variable 4 is free

1

4
.35 : earthed spring of .35 at variable 4
2.4 0: 4incs. of Az=1.0 cach

0.001 1 ; Conv. tol., beta, of 0.001; full N-R

2.6.2 Single variable; no spring

When the spring is removed, the ‘exact’ (the inverted commas are required because
the solution is only exact within the context of shallow-truss theory) solution is
governed by (1.11) with K, = 0. In particular, the response is that shown in Figure 1.2(a)
with W = EA(z/1)* = 50 as the non-dimensionalising factor. The following data relates
to the use of program NONLTC to obtain a load-controlled solution with increments
of 0.1 W.

4 50000000. 2500.0. ; data as in (2.33) and Figure 1.1(a), response 1.2(a)
0. 25 5 c=2z,, =25
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0. 0. 0. —50.0 ; load of —50 (W) at variable 4 (vertical at node 2)
1 1 1 0; only variable 4 is free

0 : no springs

0.1 3 0 3incs. of A2 =0.1 each, write control off

0.001 1 ; Conv. tol. beta, of 0.001; full N-R;

Using full N-R (as in the data above), the required number of iterations were
2,39.1. The 39 iterations' were required to jump over the limit points from a
non-dimensional load (see Figure 1.2(a)) of W =0.1 to one of W =0.2. When the
iterative procedure was changed to modificd Newton-Raphson (by changing the 1
to a zero in the last data line above) 5, iterations were required for the first increment,
and for the second, which encompasses the limit points, no convergence was obtained
within 100 iterations.

In contrast to the previous difficulties, no problems are encountered when
displacement control is used to analyse this problem. The following data relates to
the application of seven increments of Aw, = Aw = 0.3z, which allows the complete
response in Figure 1.2(a) to be traced. For this problem, the displacement controlled
solution is, in fact, trivial with not only no iterations but also no real equation solving.

4 50000000. 2500. 0. ; data as in (2.33) and Figure 1.1(a), response 1.2(a)
0.25 ;z=12,,=25.

0. 0. 0. —25.0 ; disp. of —25 (—z) at variable 4 (vertical at node 2)

1 1 1 -1 variable 4 has presc. disp., restrained

0 ; no springs

0.3 7 0 7 incs. of AA=0.3 each, write control off

0.001 1 ; Conv. tol. beta, of 0.001; full N -R

2.6.3 Perfect buckling with two variables

The following data relates to the two-variable problem of Section 1.3 and Figure 1.1
with the data as in (2.33) with a spring stiffness, K, = K,, =4 and z = z,, = 0 so that
the truss element is flat. In these circumstances, the critical buckling load is given
(see (1.68)) by

U,, =IK,=2500 x 4 = 10% (2.34)

This load is applied to the incremental/iterative program NONLTC as g¢(4) with
increments of A4 = 0.4 using the following data:

4 50000000. 2500. 0. ; data as in (2.33) with K, =K, =4
0.0 0.0 z=z,, =0 (perfect)

10000. 0.0 0.0 0.0 ; horizontal LHS buckling load (at ¢,)

0 110 : only LHS horiz. (p,) and RHS vert (p,) disps. free
1

4

400 ; carthed spring of 4.0 at RHS vertical variable (no. 4)

*To obtain these 39 iterations. NITMAX in subroutine ITER must be increased to, say, 101.
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04 51 5incs. with AA=0.4 ( x crit. buckl. 1d.), write contrl. on
0.001 1 ; Conv. tol., § of 0.001, full N-R

As anticipated, no iterations are required because the system remains flat and no
out-of-balance forces are generated. Increment 3 takes the solution beyond the
buckling load to U = 12U, and this can be detected by the negative pivot in the
LDL factorisation at the start of increment 4. The procedure then continues to climb
the unstable equilibrium path (Figure 1.11). In fact, for this somewhat trivial problem,
the negative pivots are obvious from the original tangent stiffness matrices which are
of diagonal form, i.e. increment 2 (4 = 0.8) leads to

u =u=04, N=—EA f{‘: — 8000, (2.35)
and, from (1.64), the tangent stiffness matrix at the start of increment 3 is
2000. 0.
K = |: ] (2.36)
0. 08
while, at the end of increment 3 (4= 1.2),
u = u=06, N:—EA?:—lzooo. (2.37)
and the tangent stiffness matrix at the start of increment 4 is
2000. 0.
K = [ ] (2.38)
0. —-0.8

It might be thought that the solutions would not continue to climb the unstable
path if iterations are actually applied because these iterations will force the solution
off the unstable path. The reader can easily amend the program to ensure one iteration
at each increment even if the solution has converged. He or she will find that this
has no effect and the unstable path is stiil followed.

2.6.4 imperfect ‘buckling’ with two variables

As discussed in Section 1.3, the bifurcation in the previous problem can be removed
by introducing an ‘imperfection’. In particular, we will set z=1z,, =25 so that, in
relation to the exact solutions of Section 1.2.1, f§ of (1.74)=0.5 and the possible
equilibrium paths are shown in Figure 1.11.

2641 Pure incremental solution using program NONLTA

The following data leads to the application of five increments, each with AU/U , = 0.3,
using a pure incremental solution procedure.

4 50000000. 2500. 0. ; data as in (2.33) with K, =K, =4
0. 250 ; z=1z, =125,
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10000. 0.0 0.0 0.0 ; horizontal LHS critical buckling load (at g,)
0 1 10 only LHS horiz. (p,) and RHS vert (p,) disp. free

1

4

4.00 ; earthed spring of 4.0 at RHS. vertical variable (no. 4)

0.3 5 0 ; 5incs. with AA = 0.3 ( x crit. buckl. Id.), write contr, off

The resulting solutions are shown as squares in Figure 2.6. The drift from equilibrium
can be clearly seen.

26.4.2 Anincrementalliterative solution using program NONLTC
with small increments

The following data leads to the circles on Figure 2.6 which effectively lie on the exact
curves (see Section 1.3.1).

4 50000000. 2500. 0. ; data as in (2.33) with K, =K , =4

0. 250 ; z=2,, =25

10000. 0.0 0.0 0.0 ; horizontal LHS critical buckling load (at g,)
0 11 0 ; only LHS horiz. (p,) and RHS vert (p,) disps. free

1

4

4.00 ; earthed spring of 4.0 at RHS vertical (no. 4)

0.3 3 1 ; 3incs. with A2 =0.3 ( x crit. buckl. Id.), write contr. on
0.001 1 ; Conv. tol, beta of 0.001, full N-R

The required number of iterations (using the full N-R method) was 2,3,5.

A truncated form of the output for the first increment of this problem is given
below. The truncation has mainly involved only giving the response for the two active
variables, ¢, =p, =u, and a,=p, =w, (Figures 2.1 and 2.2). Even without the
computer program, the reader should be able to follow these results in conjunction
with the theory of Sections 1.3 or 2.1 so as to understand the basis of the Newton -
Raphson method for a two-variable geometrically non-linear problem. When studying
these results, the spring stiffness (4.0) must be added for K ,, and the equivalent term of
4.0w, must be added in to the out-of-balance force vector':

INC= 1 LD. FACTOR= .30000
TAN. STIFF. MATRIX IS
20000. —200.00
.00000 6.0000
DISP INCS. ARE
22500 7.5000
TOTAL DISPS. AFTER TAN. SOLN ARE
22500 7.5000
TOTAL DISPS. AFTER TAN. SOLN ARE
22500 7.5000

“Only the upper triangle of the printed tangent stiffness matrix is correct.
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BEGIN ITERATIVE LOOP WITH ITE= 1

AXIAL FORCE AN= —27750
OUT-OF-BAL. FORCE VECTOR=
225,00 60750 ; CONV. FAC.=.75027E-01
TAN. STIFF. MATRIX IS
20000. —260.00
00000 6.2700
DISP INCS. ARE
51734E-01 31142
TOTAL DISPS ARE
27673 10614
BEGIN ITERATIVE LOOP WITH [TE= 2
AXIAL FORCE AN=  —2961.2
OUT-OF-BAL. FORCE VECTOR=
38.793 —.27235; CONV. FAC.=.12931E-01
TAN. STIFF. MAT. IS
20000 — 28491
00000 6.8743
DISP INCS. ARE
33577E-02 99547E-01
TOTAL DISPS ARE
28009 10.714
BEGIN ITERATIVE LOOP WITH ITE= 3
AXIAL FORCE AN=  —3000.0
OUT-OF-BAL. FORCE VECTOR=
39639E-01 97842E-03; CONV. FAC. = 13217E-04
FINAL TOTAL DISPLACEMENTS ARE
28009 10714
FINAL REACTIONS ARE
3000.0 — 42855

AXIAL FORCE IN BAR IS —30000

Although the iterations are terminated within the iterative loop with ITE = 3, we have
classified this increment as requiring two iterations. For, although the tangent stiffness
matrix has been reformed for ITE = 3, it has not been used to solve for a new set of
iterative displacements, because having computed the out-of-balance forces, the
convergence factor has been found to be less than the required tolerance
(p =0.001 —see (2.30)).

26.4.3 An incrementalliterative solution using program NONLTC
with large increments

To some degree, we have been assisted in obtaining the previous solutions by knowing
the answer! In particular, this knowledge helped guide our choice of initial increment,
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As an early illustration of the possible pitfalls of non-linear analysis, we will now
re-solve this problem using increment of A4 = U/U,, = 1.2. The results, which relate
to the following data, are shown as the triangles in Figure 2.6.

4 50000000. 2500. Q. ; data as in (2.23) with K, =K ,=4

0. 250 ; z=1=z,, =25

10000. 0.0 0.0 0.0 : horizontal LHS critical buckling load (at 4,)
0110 ; only LHS horiz. (p,) and RHS vert (p,) disps. free

]

4

4.00 ; earthed spring of 4.0 at RHS vertical variable (no. 4)

1.2 2 0 ; 3 1ncs. with AZ =12 ( x crit. buckl. 1d.), write contr. on
0.0001 1 ; Conv. tol, beta of 0.001, full N-R

It will be seen that we have converged on to and stayed on the wrong equilibrium
path! Luckily, there are warning signs. In particular, on factorising the stiffness matrix
following convergence to point 1, the LDL! factorisation indicates one negative pivot.
The tangent stiffness is not positive definite because, as in the simpler example of
Section 2.6.2, we have *passed’ a bifurcation point {more strictly, we have crossed a
stable equilibrium line). The situation can be more confusing because negative pivots
can also be caused by passing limit points (see Chapter 9). The number of full
Newton-Raphson iterations to obtain the triangles in Figure 2.6 were 6 and 5.

26.4.4 An incrementalliterative solution using program NONLTC
with displacement control

Instead of applying load control, we can apply displacement control at variable 1
(Figures 2.1 and 2.2). The critical buckling displacement, u,, is then

I
U= U, =05 (2.39)
AE

Applying increments of A7 = 3.0 = Au/u,, to this problem requires the following data
which gives the solutions depicted by the inverted triangles in Figure 2.6. The results
effectively lie on the exact equilibrium curves:

4 50000000. 2500. 0. ; data as in (2.33) with K, =K, =4

0. 250 ; z=2z,, =25

0.5 0.0 0.0 0.0 ; horizontal LHS critical buckling displacement (at p)

—1 1 1 0 : only RHS vert (p,) disps. frec, LHS horiz. disp. (p,) prescribed
1

4

4.00 ; earthed spring of 4.0 at RHS vertical variable (no. 4)

30 3 1 : 3 incs. with Az = 3.0 ( x crit. buckl. disp.), write contr. on
0.00001 1 ; Conv. tol, beta of 0.00001, full N-R

The required number of iterations (using the full Newton-Raphson method) for the
three increments were 3,3,2.
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2.7 SPECIAL NOTATION

A = area of bar
K, = spring stiffness
N = axial force in bar
r = reaction vector
u = axial (x-direction) displacement in bar (function of x)
u,, u, = nodal displacements for bar in x-direction
Uy, =, — u, (similar convention for w,, and z,,)
U,, U, = nodal forces corresponding to u, u,
w = vertical (z direction) displacement in bar
w,, w, = nodal displacements for bar in z-direction
W,, W, = nodal forces corresponding to w,,w,
z =1nitial vertical offset of bar
z,,z, = nodal values of z
! =initial length of bar
# = geometric factor (equation (2. 14)) or convergence tolerance factor (equation
(2.30))
¢ = axial strain in bar

Subscripts

f="free
p = prescribed
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3 Truss elements and
solutions for different
strain measures

The developments of Chapters 1 and 2 have all been based on the ‘shallow-truss
strain relationships’ of (1.51) and (2.3). In the present chapter, we will consider a
number of alternative ‘strain measures’ that remain valid when the truss element is deep.
In Sections 3.3 &, the new strain measures are used to derive finite element equations
for a truss element. The detail is provided, not because of the intrinsic importance
of truss elements, but rather because they provide a simple means of introducing
some of the concepts that will later be used for continua or beams and shells. These
concepts include ‘total Lagrangian’ and ‘updated Lagrangian® techniques,
‘corotational formulations’, as well as ‘equivalent constitutive laws’.

In Section 3.9, we provide three Fortran subroutines which will allow the computer
program of Chapter 2 to be applied to deep truss elements using the various strain
measures. Section 3.10 gives a range of problems for which data and, in some instances,
results are given.

3.1 A SIMPLE EXAMPLE WITH
ONE DEGREE OF FREEDOM

Before turning to finite elements, the aiternative strain measures will be introduced
in relation to the simple example of Section 1.2, which is reproduced (with slightly
different notation) in Figure 3.1. For each strain measure, the starting point will be
the virtual work relationship of Sections 1.3.2 and 2.1. For the example of Figure 3.1,
this relationship is given by

V,,:‘[adc‘an—q(Swv (3.1
or

V,= Jrfﬁf:vdVqudwv (3.2)

57
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49
<o
w
e <

Area A, Initial contiguration

Figure 3.1 Simple problem with one degree of freedom

where (3.1) is related to the final configuration with volume, V, and (3.2) is related
to the initial configuration with volume, V. (The clash of symbols with V representing
both the virtual work and the volume should cause no difficulties because the form
of use should be obvious from the context.) The relationships in Sections 3.1.1 and
3.1.2 will be derived from the latter equation.

3.1.1 A rotated engineering strain

The strain measure
gp=".° (3.3)

measures the strain along the rotating bar so that the direction of ¢, is continuously
changing. From Figure 3.1,

L=(z+w)P?+x)"?=(Z>+ )2 =(Z* -2+ )2 (3.4)
Hence, from (3.3} and (3.4),

n

(SCE = - =

ol, (z+w), Zow
dw= .
s Ll L,

(3.5)
Substitution from (3.5) (with a virtual d¢,) into (3.2) and integration over the original
volume of the element leads to

_0gAZ opAfz +w)
I A A

where the subscript E means ‘Engineering’. Assuming a fixed *E-value’, the relationship
between the load, g, and the deflection, w, is given by

de (3.6)

_EAz+w((z + yv)z +xH)2—-1)

e L((z +w)?+ xH)1?

(3.7)
Both here and frequently, during future work, we will talk of ‘rotated’ strain or stress.
Such measures can be assumed to relate to a coordinate system that continuously
rotates with the bar. Alternatively they can be thought of as the stresses or strains
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in the bar once the latter has been rigidly rotated back to its original position. Further
work on these concepts will follow in Chapters 4 and 7.

3.1.2 Green’s strain

Starting with (3.3), we can write

L= (=1, +1, e
g =" z( - )( _.)= —ne (3.8)
L, L+ 1) 15(2 + &)
so that, if ¢, is small, we can write
242
o= e 39
£ 2 (3.9

where & 1s known as Green'’s strain. It is related to the rotated engineering strain
of (3.3) via

£ = epll + Teg). (3.10)
From (3.4) and (3.9),
. ! . (z+w). Zow

Hence from (3.2) (using the virtual form of (3.11))

_0GAZL  0gA(z+w)

= 1
4 / 1 (3.12)

[s] o

When generalised to a continuum (Chapter 4), the stress o; is referred to as the
second Piola ‘Kirchhoff stress. Using a fixed ‘E-value’, from (3.12),

EA(z +w)2zw+w?) EAZQ2Zw — w?)
go=-° " = ST (3.13)
20 20
It will be noted that equation (3.13) is of a simpler form than (3.7). When the strains
are small, [, ~ [, and from (3.8) and (3.9), the two strain measures coincide. In addition,
the equilibrium relationships of (3.6) and (3.12) coincide. Hence, for small strains, the
two load/deflection relationships of (3.7) and (3.13) coincide.

3.1.3 A rotated log-strain

For large strains, the adopted strain measure is often taken as the log-strain, which
is basically of an incremental form, so that

.ol

ot = 1 (3.14)
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where [ is in the ‘current configuration’. Hence

b 1
g = J de = loge<[") (3.15)
{o [\ .

which can be related to the previous strain measures ((3.3) and (3.9)) via

¢ = log (1 + eg) = T log (1 + 2¢¢). (3.16)

The kinematics of a small movement, dw, in Figure 3.1, ensure that

VA
dl, = -1—(5w. (3.17)
Instead of using (3.2), it is now appropriate to adopt (3.1), which relates to the final
configuration. However, for the present, we will assume no volume change, so that
there is no difference between (3.1) and (3.2). In these circumstances, (3.14) and (3.17)
can be substituted into (3.1) (or (3.2)) to give

o AN Z o Al (z+ w)
gL = Lll 7t 2 . (3.18)
If a fixed E-value is assumed, the relationship between the load, g, and the deflection,
w, is given by

(3.19)

EA,(z + w)l, ((z +w)? 4+ x2>
gL = o B}

2z + w)? + x? 13

For small strains, the log-strain solutions coincide with the previous solutions
involving rotated engineering strain (Section 3.1.1yand Green’s strain (Section 3.1.2).

3.1.4 A rotated log-strain formulation allowing for volume change

It has been indicated that the log-strain formulation could be used for large strains.
Hence for this formulation, we could include the effects of the changing volume. In
these circumstances, we need to consider strain changes at right angles to the axis
of the bar of magnitude — vée. Hence

A+dA=A(l —vde)®> =~ A(1 — 2vde) (3.20)
so that
An 4 4 I I d]
= —2v o= —2v (3.21)
Ao A lo 1, l
and
lo (A"> 2vl (l" (3.22)
A 5 )= —2viogy - .
g A g L
or

1 2y
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so that:

12v
Vn = Anln = A"[ZV\T—-Vl (324)
and the formulation of Section 3.1.3, which assumed V, = V_ is only strictly valid for

v =0.5. Substitution from (3.14), (3.17) and (3.24) into (3.1) gives
Az o AI2Z

qu | e (3.25)

n

in place of (3.18). If a fixed E-value is assumed, (3.25) leads to the load/deflection
relationship

(3.26)

Az + w2 ((z +w)? + x2>
qL= lo L

2(z + w)? + x0T 2

Solutions relating to a constant area can, from (3.23), be obtained by setting v =0 or
to the previous solution for a constant volume (Section 3.1.3), by setting v = 1.

3.1.5 Comparing the solutions
Resolving vertically in Figure 3.1 gives:
g= " - (3.27)

where ‘g’ is the ‘true stress’ in the bar. (In a continuum context, the “true’ stress is
often referred to as the Cauchy stress see Chapter 4.) Equation (3.27) can be
compared to equations (3.6), (3.12), (3.18) and (3.25) for the same load values, ¢ (i.e.
removing the subscripts on ¢). Comparing the first form of (3.25) (with A, rather
than A,) with (3.27) shows that

6. ='c (3.28)

and hence the ‘log-stress’, g, is the ‘true stress’.
If (3.6) is compared with (3.27),

. An
O'E:‘O' (Ao> (329)
while comparison of (3.12) with (3.27) gives
QAI’IIO l()
G6;="0 AL - IHGE' (3.30)

Figure 3.2 plots the solutions to (3.7), (3.13) and (3.19) for the bar of Figure 3.1 with
a fixed E value and the properties

x = 2500, A, = 100, E =5 x10% z = 2500. (3.31)

The solution with the rotated engineering strain is only a little more flexible than
that obtained with the log-strain. However, Green’s strain leads to a significantly
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Figure 3.2 LLoad/deflection relationships for deep truss.

more flexible response. All three solutions coincide in the early stages where the
strains are small. If the rise, z, in Figure 3.1 were made small enough, the strains
would remain small for the complete load/deflection response and all three solutions
would coincide for the complete response. In the latter circumstances, while the angle
# in Figure 1.1 remained small, the solutions would coincide with those of Section 1.1
and Figure 1.2(a).

3.2 SOLUTIONS FOR A BAR UNDER UNIAXIAL
TENSION OR COMPRESSION

The previous example (Figure 3.1) considered a rotating bar. Before proceeding to
the full finite element formulations for a truss, it is instructive to consider the trivial
example of a bar subject to a uniaxial load as in Figure 3.3. If we replace dw, by du,,
the virtual work equations (3.1) and (3.2) still apply. This substitution will be assumed
in the following. Using the engineering strain of (3.3), the virtual work relationship
(3.2) can then be used to produce

qp = A0 (3.32)
3 Ay An
3 £ 1::/:3—”:
lo R

Figure 3.3 Bar under uniaxial load.
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and, assuming (throughout) a fixed E-value,

i = A El“ — EA (3.33)

o o
o

where £ is the engineering strain. Using (3.2), in conjunction with the Green’s strain
of (3.9), gives

Al
d; = ) 0 (3.34)
] uN/u 1fu\? ) ST
4o = AEl 1 + Y + Ny = AE(1 + &)+ 187 (3.33)
while, for the log-strain, (3.1) and (3.24) can be used to produce
[ 2y

4y = AJL:A0<I‘)> oL (3.36)

EA, ~
qgo=__- _,.log.(l +¢). (3.37)

(1 +8)*

In terms of the ‘true stress’, ‘o’, the equilibrium relationship is
4=A, 0 (3.38)

so that, from equilibrium, (3.27) -(3.29) again apply. The load/deflection relationships
(3.33), (3.35) and (3.37) are plotted in Figure 3.4 for a bar with

I,=2500, A =100, E=5x 10" (3.39)

Figure 3.4 demonstrates the potential unsuitability of Green's strain for work with
large strains (unless appropriate modifications are made to the o--¢ relationships). In
particular, in compression, the formulation (see (2.35)) gives zero stress at £ = — |
and — 2 and artificial imit points at §= — 1 + 1/\/3. In contrast, the solution obtained
with the engineering strain does not differ significantly (Figure 3.4} from that obtained
with the log-strain provided the strains are only ‘moderately large’.

It should be emphasised that the relationships in Figures 3.2 and 3.4 were obtained
by assuming a constant E-value. The same load/deflection relationship could be
obtained for each of the strain measures if the secant E-values were made functions
of the strains, so that from (3.33), (3.35) and (3.37),

(148 +48) _ . log(1+4)

: . 3.40
£ M e (3:40)

Ee=Eg

We will return to this trivial example in Volume 2 when considering large strains in
a more general environment.

3.2.1 Almansi’s strain

Before leaving this example we will introduce Almansi’s strain, which is often quoted
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in the literature (if less often used). This strain is given by

bl (3.41)
Ea = J.
Ao
and is often quoted as being conjugate to the ‘truc’ (or Cauchy - see Chapter 5) stress.
The author finds this statement a little confusing for reasons that will be illustrated
here.
From (3.41), the variation of ¢, can be obtained as

3 (3.42)

where ¢ is the engineering strain (see (3.33)). Introducing equation (3.42) into the
virtual work relationship of (3.2) gives
1
=ad,A4, (3.43
a=08% 1 iy :
which, when compared with the equilibrium-based ‘true stress’ relationship of (3.38),
shows that

S N
(TA:()'(I+E)2=0'[2. (3.44)

Hence the use of the Almansi strain does not lead to the relationship o, = '¢’. Rather,
as already demonstrated in Sections 3.1.3 and 3.1.5, the true stress is work conjugate
to the log strain with variation od¢ =4I/l (sec Section 4.6 for the continbum
equivalent).

It has already been noted that there is no effective difference between any of the
previous strain measures when the strains are small. This finding also relates to the
Almansi strain. In these circumstances, 1t may be useful, for computational con-
venience, to use the Almansi strain (see Section 3.3.6).

3.3 A TRUSS ELEMENT BASED ON GREEN’S STRAIN

In devising the governing equations for the various truss clements, we will not
necessarily adopt the most computationally efficicnt formulation. Instcad. we intend
to introduce the concepts in forms that can be readily extended to continua, beams
and shells. Hence, we will adopt standard finite clement procedures using shape
functions etc., although such procedures are not strictly necessary for these simpie
elements. Detail will be given for two-dimensional ‘planar truss elements’. but it will
be shown in Section 3.7 that the procedures and formulae are casily extendible to
three-dimensional “space truss elements’.

3.3.1 Geometry and the strain—displacement relationships

Figure 3.5 shows a truss element P,Q, in its original configuration with a non-
dimensional coordinate, ¢, being used to define the position of a point A, lying
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drg Q

Aq

¢ ’
\ dr,
\Y,‘/) Bo /Bn
A,

LA

» x(u)

Figure 3.5 Deformation of general truss element

between P, and Q,. As the truss experiences deformation, points A, and the adjacent
B, move to A, and B, respectively. During this process, the position vector, r,, of
point A, moves to the position vector, r,, of A, where:

r,=r,+u (3.45)
and, in two dimensions,
r'={xzl, o' =luwl (3.46)
Equivalent nodal coordinates will be written as
X, =X =X, +p=Xx+p (3.47)

where the initial coordinates x (or x,, but the subscript o will ofiten be omitted) are

X' =(x,.X5,2,.7,) (3.48)
and the nodal displacements are (see Figure 3.6)
pl= (U, Uy, owsy). (3.49)

{Note the non-standard ordering of the components of p and see the footnote on
page 25.)

In Figures 3.5 and 3.6, we have introduced the non-dimensional coordinate, ¢, for
use with standard finite element shape functions. However, we will initially avoid the
usc of such shape functions which are not strictly necessary for these simple elements.

By Pythagoras’ theorem, the initial length of the element is given by

I2=4al =(x], + =3} =x],x;, (3.50)
where
Xy = Xp = Xy, In =I5 (3.51)
and
X3, = (X205 220): (3.52)

In (3.50), we have. for compatibility with later developments using shape functions
(Section 3.3.4), introduced the original ‘fength parameter’, x,. which is half the original
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—» x(U)

Figure 3.6 Geometry and modes for general truss element

length, [,. For the current length, I, the equivalent of (3.50) is
2=a0) = (xy; + 1y, )’ + (220 +w2)? = (Xa1 4+ p2i) (X210 +p21) (3.53)

where in a similar manner to (3.52), pL = (U5, Wy, ). Using (3.9), (3.50) and (3.53),
Green’s strain is given by

_ 1,2, —__1§ _ (le___+ pg_}_)T(x_z_l +_P21)f XLle

=
2 T
22 2%;, Xz

1 :
:4az(x;1p21 +2P21P21 ) (3.54)

o

Equation (3.54) can be re-expressed as

1
e=blp+

2aZpTAp (3.55)
where ’
1 1
b{=‘-1-0£2(—x2,,.>c21,—22,,::2,)=40(2c()|()T (3.56)
and o Q
I symmetric
1—-1 1
A =4 0 0 | . (3.57)
00 -1 1

From (3.54)-(3.57), the incremental Green strain (caused by Ap) is given by
]

Be=, 0+ P21) Ap2, + 3AP3,Ap:y)

. 1 1
=(b, +b,(p))'Ap ) ,Ap"AAp=b(p)'Ap+ , SAp'AAp (3.58)
lo ao



68 TRUSS ELEMENTS AND SOLUTIONS

where (compare (3.56))

1 1
bz(p)T: (~uzy iy, — Wy, Wyy) =

I
42 6P = (AP (3.59)

2
4x;

Comparing (3.58) with a Taylor series expansion for Ag,
‘e T 1 b
Ag Ap + Ap Ap b(p)'Ap + Ap Ap (3.60)
p 2 cpA 2
we can see that (1/a2)A is the second partial derivative of £ with respect to the dis-
placements, p or the first partial derivative of b with respect to p.
For a small virtual displacement, with op, instead of Ap, the last term in (3.58)
becomes negligible and

. L < :
de, = 3p, = (b, +b,(p)'dp, = b(p)'op,. (3.61)

3.3.2 Equilibrium and the internal force vector

The principle of virtual work (Sections 1.3.2, 2.1 and 3.1) can now be used to provide
internal nodal forces, q;, that arc in a weighted average sense [C2.2], in equili-
brium with a set of stresses, a, that relate to total displacements, p. To this end, using
(3.61),

2.oplgi=) focésv dv,=Y 5pffoobd V, (3.62)

where 3, involves a 'summation’ over the elements. For the following developments,
we will drop this summation sign and hence will only directly deal with force vectors
or stiffness matrices at the element level. The ‘merging process’ to the structural level
is identical to that adopted for linear analysis [C2.2].

The strain—displacement vector b in (3.62) is given by (3.61) (with (3.56) and (3.59))
while the subscript G on ¢ follows the work of Section 3.1.5, where it was shown
that we must take note of the rype of stress. The stress o, is the stress that is work
conjugate to the Green strain (later -Chapter 4-—to be called the second Piola-
Kirchhoff stress).

Equation (3.62) must stand for arbitrary dp, and hence using (3.61), (3.56) and
(3.59),

oA
q= j“(,de =20,A,06b = 20,4,06(b; + b,(p)) = 2y *le(x) + c(p)) = gy +q;.
(3.63)

(¢}

Using (3.62), the procedure for computing the internal forces, q;, from a set of nodal
displacements, p, is as follows:

(1) compute the strain from (3.54) or (3.55):
{(2) compute the stress, o; (here, constant over the element), assuming a linear material
response from o, = E¢;
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(3) compute the internal forces, g;, from (3.63) with b, and b, being defined in (3.56)
and (3.59).

3.3.3 The tangent stitffness matrix

From (2.20) and (3.63)

rg iq, ho, P
K= 8= %y b 7 4 204, o (3.64)
cp ap ap é
Using (3.64) and the non-virtual form of (3.61),
AG ¢ ot -
796 _ ECC Z Efb, +by(p))T = Eb(p)". (3.65)
cp ap
From (3.64) and (3.65), the first term of (3.64) can be written as
20,4076 = 2Ex, A b = K,, + K., (3.66)
cp
where
. r_EA T
K, =2EA,a,b bl = 8—73c(x)c(x) (3.67)
aO
KIZ = ZEAao[bl b; + bzbjl + bzbz] = KlZu + K;’Za + Kle' (368)

Equation (3.67) provides the standard linear stiffness matrix while (3.68) gives the
‘initial displacement (or slope) matrix’ (compare (1.10)). The ‘geometric’ or ‘initial-
stress matrix’ (Section 1.2) comes from the second term in (3.64). Noting that, of the
constituents of b (see (3.58)), only b, is a function of p, from (3.64) and (3.59),

1 symmetric

¢b b 24,05 Ao | —1 1
Km=2:on0(: 06 =224, ‘0= GA="0¢
cp p %y 24, 00 1
00 -1 1
(3.69)
Equations (3.67) and (3.68) can be expanded to give
X3, )
symmetric
EA | —x3 x3 EA,
Ki=_,| * B , = o yete’ (3.70)
8, X21221 T X122 2 8a]
— X212 XpiZa —Z3 2
X2ilay X2 Uy XnWa1  —X2Wa
EA, 1 —X2U; XajlUyy T X2 Wy X21W2)
Koz = 2EA,2,b,bY = e : (3.71)
8] Iy T Iy Z3Way T I Way

BRIl Zy Uy T InWy Z21Way
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2
Uy, )
symmetric

EA | —ul, 3,
Kao=¢ 5 s (3.72)

8o, UpyWayp  —Up Wy Wi

— Uy Wy Uy Wy — W3 W3
with the final tangent stiffness matrix being given by

Kx = K” =+ Kt?. + Ktrr = K“ + KlZa + Ksza + Kle + Kla‘ (373)

The internal force vector, q;, tangent stiffness matrix, K,, and strain/displacement
relationships that have just been derived can be incorporated into a computer program
using a very similar procedure to that adopted for a shallow-truss theory in Chapter 2.
{This is discussed further in Section 3.9.) The technique is known as ‘total Lagrangian’
because all measures are related back to the initial configuration. While the detail
has been given in relation to a two-dimensional analysis, the concepts are equally
valid in three dimensions--see Section 3.7.

3.3.4 Using shape functions

While shape functions are unnecessary for the current elements, with a view to more
complex elements, it is useful to apply them. To this end, in relation to Figure 3.5,
we define the incremental vector, dr, along A B, as

dr
dr,= °d¢ 3.74
" ¢ (3.74)

where r, was given in (3.46). In a similar fashion, the new incremental vector is, with
the aid of (3.45),

d(rq + u) dé

dr,= 3.75
r de (3.75)
where u has been defined in (3.46). Hence the length of dr, is
drldr, _drfdu du"dul\'/?
drn=1]drnll=(- N A ) dé=a,d 3.76
ac de TP acde T aear) T (3.76)

where for the current simple elements, 2« is the final length of the bar. In a similar
fashion, the length of dr, is

dr; dr,

1,2
dr,=dr i = "2} dé=a,d .
r, = [dr,l| (dg’di) E=o0,d¢ (3.77)

where, again for the current element, 2, is the original length of the bar.
From (3.9), the Green’s strain can be expressed as
_dri—dr?

2dr?

o

(3.78)
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Substitution from (3.76) and (3.77) into (3.78) gives

~_ldrldu 1 du'du

= + (3.79)
o2 dg de " 202 dE d¢

and an increment, Ag relating to a displacement increment Au, can be expressed as

_ ldr]dAu 1du"dAu | dAu'dAu

As = + + .
a2dé d¢ a2 dE d& 297 dE de

(3.80)

For the displacement-based finite element method, shape functions are used to
relate both the geometry and the displacements to nodal values so that, in relation
to Figure 3.6, simple linear expansions give

X,
r0=<x>=[—;(l —&) 1+ 0 o } X :[hf 0:]x=Hx.
z 0 0 =& fa+8]]= 0" h
(3.81)
In a similar fashion, the displacements, u, can be expressed as
T
U U
u=( >=[H] | =[Hlp (3.82)
W Wl
W,

where the vector, p, contains the nodal displacements as given in (3.49). Differentiation

of (3.81) gives
d } o000 h! 0
dr;‘=ro;=[é (2) 1 1}:[0; h.r]x:fo (3.83)
= 7 2 N

=u: = H:p (384)
so that, from (3.79),
|- 1 . | S
e=| _rlH p+< pTH§H§p)=blrp+ . p'Ap (3.85)
a2 0" 2o : 222

where the explicit form of b, has already been given in (3.56) and of the matrix A in
(3.57). From (3.80) (or (3.85))

| - | ! \
Aa:( 7r‘IrH=>Ap+( 2u{H:>Ap+( ZAp1HIH:Ap>
a a 27 .

.
=biAp+biAp+ Ap'AAp (3.86)
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where the explicit form of b,(p) has been given in (3.59). The virtual strain then
follows as in (3.61) and one can proceed, as in Section 3.3.1, to apply virtual work
as in (3.62) to obtain the internal force vector g; as in (3.63). Using the shape function
approach, in performing the integrals in (3.63), one would apply

fd V,= JAodro = onal,dé =24,2,. (3.87)

The derivation of the tangent stiffness matrix follows as in (3.64) but to maintain
the shape function approach, onc would write

o *a. g o
K,:{g:{'q'=fb(?"dV(,+j(baGdVo (3.88)

cp Op p (“Vp

which coincides with (3.64) and leads, as before, to (3.73).

3.3.5 Alternative expressions involving updated coordinates

The updated coordinates, X', can be expressed as
X =Xx+p or r.=r,+u (3.89)

where the first expression relates to nodal variables (Figure 3.6) while the second
relates to a general point (see Figure 3.5). Using these updated coordinates, the strain
increment of (3.58) can be re-expressed as

. { 1 - 1
Ae=b(x)'Ap+ _ ,Ap"AAp=_ c(x)'Ap+ _ ,Ap"AAp (3.90)
292 4o’ 222

where ¢(x’) follows the same form as the ¢(x) and ¢(p) vectors defined in (3.56) and
(3.59). In place of (3.61), the virtual strain can be expressed as

de, = b,(x)'p,. (391)

Using (3.91), an alternative expression to (3.63) can easily be derived for the internal
forces, q;, whereby

*-"'21

A6 Ao X’
qi:faﬁbl(x’)dVoz2A06(ja0b1(x')= 276 o(x) = 7076 Ml =q,. (3.92)

24, 20, | =25,

=y

In comparison with (3.63), there is now no ¢, term.
Again using updated coordinates, K, ((3.67) and (3.70)) as well as K, ((3.68), (3.71)
and (3.72)) can be combined to give

Kl’l = J’EAObl(x/)bl(x’)Td Vo = EAPC(XI)C(XI)T (393)

3
8]



TRUSS ELEMENT BASED ON GREEN'S STRAIN 73

or
2
x5 .
EA 2 2 symmetric
T LA, 21 Xa1 ,
K11+K12a+](123+K12h' 8 3 , , , , 2 ZKH (394)
%, Xa1% T X 8g <21
R - L2 2
—XZn X31821 231 f2

while the geometric stiffness matrix of (3.69) is unalitered. Consequently, if an updated
coordinate system is adopted, both the internal force vector (3.92) and the tangent
stiffness matrix (3.94) involve the standard linear terms although these are related to
the new coordinates. However, the ‘linear’ tangent stiffness matrix must always be
supplemented by the ‘geometric’ or ‘initial stress’ matrix.

The introduction of updated coordinates can simply be considered as an alternative
way of expressing the *Green-strain system’ which avoids the b,(p) terms and hence
ommits q;; (3.63) and K,,, (3.71) and K,,,, (3.72).

3.3.6 An updated Lagrangian formulation

The procedure in Section 3.3.5 is simply an alternative way of writing the previous
total Lagrangian formulation, but it is very closely related to a so-called updated
Lagrangian formulation. Using such a technique, after the coordinates had been
updated using (3.89), the datum would be re-set so that the new configuration would
become the old configuration (o). Before proceeding to the next increment or iteration,
the second Piola- Kirchhoff stresses (4; in the notation of Section 3.1), which related
to the old configuration, must be converted to ‘true stresses’ relating to the new
configuration so that, from (3.30),

¢ Ao[n
aqa = a
A,l

n‘o

[P}

. — Aoln
G=0

= 0 395
Anxo ¢ ( )

at which stage. with respect to the new configuration, the displacements p are zero
and we must use 2, and A4,. With these differences, we may use the standard total
Lagrangian formulae of Sections 3.3.2 and 3.3.3. Hence, from (3.63) (with p=0), the
internal force vector is given by

Al

. 3.96
5 e(x) (3.96)

q = f‘a‘b,(x')dvn
Substituting from (3.95) into (3.92) leads to (3.96) so that the updated Lagrangian
procedure leads to an identical internal force vector to that obtained with the standard
total Lagrangian formulation. In a similar fashion, the tangent stiffness matrix would,
from (3.73) with p=10, be given by
EA, 24"
K,=_ Jex)ex)" + 7 A (3.97)
b

n n

The second term in (3.97) gives the geometric stiffness matrix which, with ‘¢” from
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(3.95) coincides with (3.69). However, the first term only corresponds with (3.94) if

E'a, EA,
L (3.98)

where both of the E-values in (3.98) are tangential, but E’ is appropriate to the
updated Lagrangian formulation while E relates to the total Lagrangian procedure.
From the considerations of Section 3.2, we should not be surprised that different
E-values are required if different formulations are to give the same answers. However,
as before, for small strains, there is no need either to introduce the tangent E trans-
formations of (3.98) or the stress measure transformations of (3.95). Both the previous
{Section 3.3.5) use of updated coordinates in a total Lagrangian framework and the
present updated Lagrangian formulation avoid the b,(p) terms and hence omit g,
(3.73) and K, (3.71) and K,,, (3.72).

We have so far introduced an updated Lagrangian formulation whereby all
measures are related to the current updated configuration. However, the Green-strain
measure of (3.55) is related to the initial configuration. Using (3.59) and (3.89), this
expression can be re-stated in terms of the current coordinates so that

) 1
e=b,(x)"p+bypp+ 252 P'Ap

1 . 1
TAp = 4 ,etx) ' p— .-

:b NVTp —
HX)p aZ 2z

I .
2P ,0'Ap. (399)

Equation {3.99) corresponds to a re-expression of (3.79) as

ldr,+w'du 1 du'du 1drlda ! da'du (3.100)
&= = - = - . 3
al  dE dE¢ 292 dEdE o2 dEdE 207 dE dS

Neither (3.99) nor (3.100) is fully related to the current configuration because of the
terms z,. However, we can generalise the expression in (3.41) for the Almansi strain
to obtain a strain measure involving x,. In comparison to (3.78), the Almansi strain
involves

2 4.2 2_ 2
I:A:dr“ dr %% (3.101)

2dr2 2%2

n

Substituting from (3.76) and (3.77) into (3.101) gives

- 1 d(rofu)Tdu_ I du"du 1 drIdu_ 1 du'du
AT a2 dE dE 222 dedE 2 dEdE 2a2 dE dE

n

(3.102)

which is identical to (3.100) apart from having «,s rather than z_s in the denominator.
A similar relationship would follow (via (3.53) and (3.50)) for the Almansi form of
(3.99) for which «,s would appear in the denominator. As shown in Section 3.2, we
can expect the same answers from the two measures provided the strains (but not
necessarily the rotations) are small.

Further discussion on the total and updated Lagrangian formulations will be given
in a continuum context in Chapters 5. Before moving to alternative strain measures,
we should emphasise that the updating system that has been discussed here and in
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Section 3.3.5 involves updated but unrotated coordinates. We will later discuss
rotated coordinates.

3.4 AN ALTERNATIVE FORMULATION USING
A ROTATED ENGINEERING STRAIN

The previous derivation (Section 3.3) was based on the use of Green’s strain.
Sections 3.1 and 3.2 considered a number of alternative strain measures and we will
now consider the rotated engineering strain. A natural derivation would involve a
rotated coordinate system. This will be described in Section 3.6 but we will firstly
maintain a fixed cartesian coordinate system. Throughout this section, the subscript
E for engincering is implied but, for brevity. omitted both on the stresses and the

strains.
Extending the definition of (3.3), the rotated engineering strain, which relates to

the direction of the rotating bar, is given by
dr,—dr, a,—2,
e= = =0 (3.103)
dr .
where «, is given by (3.50) or (3.77) and =z, by (3.53) or (3.76). With the aid of (3.57),
%, from (3.53) can be re-expressed by

O

22 =(x + p)TA(x + p) = x TAX. (3.104)
From (3.103) and (3.104),
et 1 oal 1 I
b="=" "= " Ax= © ) (3.105)
Cp o, Op A0, 4y 0,

where we have used the relationship,
c(x') =4Ax' (3.106)

(see (3.59) for an identical relationship between ¢(p) and 4Ap). Hence, from the principle
of virtual work,

de’ A LA
q; = Ja ¢ dV,=2A42,0b= e e(x)=4 "(—Ic(x’) (3.107)
ap 2o 2a

n

/=(“> (3.108)
a"

Equation (3.107) can be compared with the Green’s strain solution of (3.92).
In order to obtain the tangent stiffness matrix, (3.107) is differentiated so that

[\]

where

iq A do’  cA,de(x') oA %
K== Ao )17 4 TA0C0) 0y (3.109)
ap 2, ap 2«, Op  2a] p

where the first two terms have parallels in (3.64). From (3.1095),

‘o ‘e

R L= c(x)T = Eb" (3.110)
op cp o 4o,
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so that the first term from (3.109} is given by
EA 2

EA - 3 .
=8ai;’oc(x’)c(x’)'= 8;3 e(x')e(x)" (3.111

0

tl

which differs by the 4% term from the matrix K}, of (3.93).
From (3.106),
‘1' ’
e _ya (3.112)
ap

so that the second term from (3.109) gives

204 204 4
K, = " "ea="0""
x

(3.113)
o

n (4]

which differs by a factor Z from the ‘initial-stress matrix’, K, of (3.69). Finally, with
the aid of (3.105), the last term in (3.109) can be expressed as
gA WA

K,,=— 80:? e(x)e(x)T = 8> c(x’)e(x)'. (3.114)

o

If 2 (3.108) is assumed to be unity, the present formulation gives identical equations
to the Green's strain formulation of Section 3.3, apart from the K,,, matrix of (3.114)
which has no counterpart in the Green’s strain formulation.

In applying a formulation based on a rotated engineering strain, equation (3.103)
1s an inaccurate way of computing the strain because it involves the small difference
between two relatively large numbers. It is computationally better to relate the
engineering strain of (3.103) to the Green strain of (3.54), so that
2z

ep= "= 7 g5(3.54). (3.115)
*o+ o

n o

3.5 AN ALTERNATIVE FORMULATION USING
A ROTATED LOG-STRAIN

In Section 3.1.3, we introduced a rotated log-strain and showed in Section 3.1.5 that
the corresponding stress is the ‘true stress’. In relation to the current truss elements,

the log-strain of (3.15) is
e= 1ogc<°‘"). (3.116)
al)

In (3.116) and throughout this section, a subscript, L, for log is implied on all the
stress and strain terms. With the aid of (3.104), (3.116) can be differentiated to give

A

de 1 céw, L Ce
= = A
‘p x,7p  7p
where Z is given by (3.108) and (d&/cp)(3.105) is the relationship in (3.105) for the
engincering strain,

(3.105) (3.117)

s
O
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Hence, applying the principle of virtual work in relation to the current configur-
ation,

fet iA ) A
qizfo” dl/n:/- -"ac(x’):/h”z" L‘Uc(x'). (3.118)
p 24, 2

(\ 0

In deriving the last expression in (3.118), it has been assumed, from {3.24), that

xo 2w .
"=< > =2 (3.119)
A x

By including this relationship, we include both the solution for no volume change
{with v = 0.5) and volume change (v # 0.5).

Differentiation of (3.118) follows the lines previously adopted in Section 3.4 and
leads to

EA_i3%2 . EA G} .
K,= ° cx)etxy' = " e(x)e(x)T 3.120
‘" x? (x'}e(x’) 80 (x')e(x) ( )
204,412 204 i
K, =" A=""""xaA (3.121)
x() 10
14+ 2v)gA3* 2 . 142v)gAd 43
K2 = _ ‘8)0‘ © e(x)ex)' = _¢ ;)g " exex)T. (3.122)
10 9(0

3.6 AN ALTERNATIVE COROTATIONAL
FORMULATION USING ENGINEERING STRAIN

In all of the previous developments, the coordinate axes x,z (and y) have remained
fixed in direction even if, as in Sections 3.3.5 and 3.3.6, we have updated the co-
ordinates. We will now apply a ‘corotational’ formulation and will show that it gives
the same results as those previously obtained in Section 3.4. The procedure adopts
a sct of corotational axes (x,, z, - - Figure 3.7) which rotate with the element. In these
circumstances, the engineering strain is given by

1] Tu,
1 1 U, . 1
12=21 0 w- :b? pl:2:x clrp,_ (3.123)
o 1 o
0 w,

In the above equation and throughout this section a subscript E for engineering will
be implied but omitted on all strain and stress measures. Equation (3.123) is obvious
but it could be derived by relating the shape-function approaches of the previous
sections to the local coordinate system. Following from (3.123), the principle of virtual
work gives

qy = j,:; clqu = AOUCP (3124)

“%o



78 TRUSS ELEMENTS AND SOLUTIONS
We can now apply standard transformation procedures [C2.2], to give
q=T"q,=A4,6T"¢ (3.125)

where the transformation matrix, T, relates the local displacements, p; to the ‘global’
cartesian displacements, p, so that

¢ 0 s 0 X5, 0 2y 0
0 ¢ 0 N 1 0 X’ 0 =z
=T — _ 21 21 ]
P P -5 0 ¢ 0 P 20, | — 27, 0 x3, 0 p
0 -5 0 ¢ 0 -z, 0 Xxj,
(3.126)

The terms ¢ and s in {3.126) are cos 0 and sin 6 respectively, where f is illustrated in
Figure 3.7. If TT is multiplied by ¢, from (3.123), it can be shown that
1

T'e, = ), ) (3.127)
o

where ¢(x') is given in (3.92). Hence substitution into (3.125) gives
A0

4= c(x’) (3.128)
2

n

which coincides with (3.107), which was obtained with the aid of ‘fixed coordinates’.

We could now proceed to differentiate (3.128) to obtain the tangent stiffness matrix
given by the components (3.111), (3.113) and (3.114). However, we will instead adopt
the spirit of the corotational approach and firstly differentiate (3.124) to obtain a
‘local tangent stiffness matrix’. From (3.123) and (3.124) this gives

EAc

Oy _ d¢ _EA,
L T EAL =
ch apl 2a0

In order to relate this local stiffness matrix to the fixed cartesian coordinate system,

K,= el (3.129)

dz(w)

® x(u)
Figure 3.7 Local (rotating) and global coordinate systems.
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(3.125) can be differentiated to give

5 =T Y op, + 6T q = T'K,Top + 6T"q, = K, 3p (3.130)
p
where use has been made of (3.126). Substitution from (3.127) into the first of the two
stiffness terms in (3.130) gives

EA
—e(x)e(x")! (3.131)

e
8o,

Ky

which coincides with (3.111).
In order to deal with the second stiffness term in (3.130), the T matrix in (3.126)
can be differentiated so that
-5 0 —¢ 0
0 —s 0 —c¢

TT=| ]9 (3.132)

0 ¢ 0 —s

From Figure 3.8, a unit vector normal to the rotating element is given by

n= l<*z“> (3.133)
2u, XYy,

which is orthogonal to the truss vector, x},,. The infinitesimal relative displacement
vector (Figure 3.8) can be expressed as

opa. =(6u“). (3.134)

owy,

Resolving this vector in the direction n gives a scalar length:

da=nTdp =nT<‘5”21>: ! (“zilyk(‘s““). (3.139)
o Owy, 22\ x5, oWy,

» X

Figure 3.8 Small movement from new configuration.
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Consequently, the angle d0 (Figure 3.8) is given by

’?I T
221
AT/ @ 1 —z! 1 X
50 = da _ 1 ( 121 iHZI — , ,21 Ap= Z'ZTOP~ (3136)
20, 42\ x), Cw,y, /) 4l x5, 4ao?
_X,21

Hence, using (3.124) and (3.132), the second stiffness term in (3.130) is given by

-5, 0 — X%, 0
Ao 0 -z 0 — X
dq=° , 21 , 21 e, 2op (3.137)
a 80‘3 X21 0 — 23 0 :
0w, 0 -3,
with ¢, from (3.123). Alternatively
3 symmetric
Ao . Ac | —Z% 5 X .
oq=- °3zzT()p=-- N ?l ) ,21 ) 2 op=K,op.
8, 8, | —x5,2%, TR T X321
. A p . 3.138
Iy X TEInXa — x5 x5 ( )

It can easily be shown that the matrix K, in (3.138) coincides with the sum of K,
and K,,, from (3.113) and (3.114). Hence, identical solutions are produced by the two
formulations using (a) a fixed cartesian system and (b) a rotating (corotational)
coordinate system. A similar correspondence can be shown for the log-strain
formulation.

3.7 SPACE TRUSS ELEMENTS

The detailed workings of the previous sections have related to the ‘planar truss
element’ of Figure 3.6 and 3.7. However, the theory is readily extendible to the ‘space
truss element’ of Figure 3.9. In these circumstances, the vectors r and u of (3.46) become

=2, u =(@ow (3.139)
while the nodal vectors x and p of (3.48) and (3.49) become
X' = (X1, X2, Vs V2r 210 22) P =y us by, Ty Wy, W) (3.140)

Allowing for these new definitions, most of the formulae in Section 3.3.1 remain valid,
although the matrix A of (3.57) becomes

1

symmetric
-1 1
1 0 0 1
A=4 00 —1 1 (3.141)
00 0 0 1
| 00 0 0 -1 l_
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y 7
b Z(w)

(a) (o)

Figure 3.9 Space-truss element: (a) initial coordinates: (b) updated {x', y. Z') and corotated (x. y,. z,)
coordinates.

For the Green’s strain formulation, (3.63) remains valid for the internal force vector
while (3.94) and (3.69) (but with A from (3.141)) still apply for the tangent stiffness
matrix. However, in (3.94), the vector ¢(x’} of (3.92) must be extended to

e(x') = (= X5, Xy =¥ Vo — 25 7h) (3.142)
or
c(x/)'l' = 21n(fel(1)* el(l)a -e1(2)~el(2)~ _el(S)* e1(3)) (3143}

The alternative form of (3.142) given in (3.143) employs the local unit base vector
e, (Figure 3.9} and will be used in later developments. In the latter equation, e, (1),
for example, is the component of the unit vector e, in the x (or 1) direction. With
the extended definitions of (3.141) and (3.142), the formulae in Sections 3.4 and 3.5
remain valid for space truss elements.

For the corotated formulation of Section 3.6, the three-dimensional equivalent of
the transformation matrix TT given in (3.126) is best cxpressed in terms of the three
‘local unit base vectors’ e,, e,, e; shown in Figure 3.9 (although it will be shown later
that, for truss elements, there is no need to explicitly compute e, and e;). Hence, in
place of {3.125) and (3.126),

(e() 0 e(1) 0 e 0 |[-1]
(

q;=T'q,=A,0 (3.144)

=)
o
2
=]
o
LS
.
-/
)
-]
w
B
R N A

0 e (3) 0 e,(3) 0 e;(3) {| O ]

Clearly, only the first two columns (involving e, — Figure 3.9) in the T" matrix of
(3.144) are required both in the above and in the three-dimensional equivalent of the
first stiffness term in (3.130). The three-dimensional equivalent of the second stiffness



82 TRUSS ELEMENTS AND SOLUTIONS

term in (3.130) involves

M—de ()] -1 0 0
de, (1) 1 0 0
. i —de,(2) 0 -1 (3
dq, =0T q, = A, ! =A b
ql qnl a 001(2) o7 O [ 0 €,
—de (3) 0 0 —1
de (3) L O 0 1
de (1)
=A0F]| de,(2) | = A,0Fde,
(581(3)
where the Boolean matrix F is such that:
op,, = F'op.

The e, vector (Figure 3.9(b)) can be written as

e Xz P2 X5,
= =
20 2a

n n

so that differentiation leads to
o da,
_ P21 e
2

n

de, .
&

n

From (3.104) and (3.106),
2,00, = X' Adp = Le(x')'Op

Hence, using (3.143),

_0pa ec(x)'op_ 1

I 2y [l*eler](jpzl-

de,
2
4o 2a,

n

Substitution into (3.145) and using (3.145a) gives

A A
og = QF[FFT"(Fel)(Fel)T](Sp: '06
2, 2,

1 s
[A " c(x)e(x)" iIOp

n

which corresponds with the combination of (3.113) and (3.114).

3.8 MID-POINT INCREMENTAL STRAIN UPDATES

The Green-strain increment of (3.58) and (3.80) can be rewritten as
[ d(r, + ;Au)" dAu
o2 dé dé

o

1
(X3, +5Ap;,) Apy, =

Ag= -
4x?

(3.145)

(3.145a)

(3.146)

(3.147)

(3.148)

(3.149)

(3.150)

(3.151)

where x,, and r, = r, + u relate to the configuration at the beginning of the increment
prior to the imposition of an incremental displacement, Au. In direct terms of the
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nodal variables, instead of (3.90)
1

Ag =
402

1
e(x)' Ap = 42Xt TApAp=b\(x,.)'Ap (3.152)

o

where ¢(x,,) is a ‘mid-point geometric vector’, given by
’ ' ’ ’ 1
(X)) = (= X5, — 38Uy, Xy + 3Auyy, — 2y — AW, 25+ 7Aw,)) (3.153)

and the x’- and z’-coordinates in (3.153) relate to the updated coordinates at the
beginning of the increment. Equation (3.152) 1s of the form of a ‘linear strain increment’
(i.e. similar to b{Ap in (3.58)), yet it is exact. A similar approach can be applied to
the other strain measures so that, in relation to (3.103),
1 d(r, +iAu)"dA 1 1
Age~ - -2 - WA _ Tk iap= - enAp (3.154)
Xy d¢ dé 0,0 2a,

where (Figure 3.10), e, is a unit vector relating to the mid-point configuration. In
relation to the log-strain relationship of (3.116),

I dir, +;Aw'dAu_ 1
a2 dé dé 4o

m

1
Agy ~ c(x,,) Ap= 5y el Ap. (3.155)
&

m

In contrast to (3.152), which is exact, (3.154) and (3.155), which involve the mid-point

20%a

(c)
Figure 3.10 Mid-point incremental procedures: (a) vectors and displacements: (b} lengths, (¢} under
a rigid-body rotation.
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‘length parameter’ «,, are approximate. For example, Figure 3.11 illustrates the
approximations inherent in using (3.155) to integrate the simple stretching of a bar.
For this illustration, the increment has been assumed to start from the initial
configuration with length [ =2« , although in general a succession of mid-point
incremental approximations would be used. Nonetheless, (3.154) and (3.155) are easy
to compute since they are in the form of simple ‘linear strain terms’. In addition, they

P
E== = == :.:
1 [n e u
l.
(a)
4
1
i
af N
L L -
(b) =l +u
1
!
| L I !

Figure 3.11 Mid-point procedure for bar under uniaxial load: (a) Bar; (b) Exact integration of
jj;(d//l:loge(ln/lo) (¢c) Approx. integration of j",‘;(d///) = ul{ly + w/2)
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give zero strain when the incremental displacements Ap relate to a rigid-body rotation
(Figure 3.10(c)).

For the present truss elements, there is little to be gained by using an ‘incremental
mid-point algorithm’ for updating the strains, since an exact solution using total
strains can easily be obtained. However, the mid-point incremental algorithms can
be very useful for more complex structures such as shells or continua subject to large
strains,

3.9 FORTRAN SUBROUTINES FOR
GENERAL TRUSS ELEMENTS

In Chapter 2, we gave Fortran computer programs for the analysis of shallow trusses.
These programs were designed so that they could also be used for the deep truss
elements of the present chapter, provided a set of new subroutines are used. These
subroutines are given below.

3.9.1 Subroutine ELEMENT

The following subroutine should be used in place of the subroutine ELEMENT of
Section 2.2.1

SUBROUTINE ELEMENT (FI,AKT,AN.X.Z,P.E.ARA ALO.IWRIT IWR.IMOD.,
1 ITY.ALN,ARN)

FOR GENERAL TRUSS ELEMENT

IMOD =1 COMPUTES INT. LD. VECT. i
IMOD =2 COMPUTES TAN. STIFF. AKT
IMOD =3 COMPUTES BOTH

AN=INPUT TOTAL FORCE IN BAR

Z=INPUT =2 COORD VECTOR; X=INPUT =X COORDS

P=INPUT =TOTAL DISP. VECTOR

ALO =INPUT =0ORIGINAL LENGTH OF ELEMENT; ALN(IN)=NEW LENGTH
E=INPUT = YOUNG'S MOD: ARN =INPUT = CURRENT AREA

ITY=1, GREEN: =2 ENG., =3, LOG: =4 LOG WITH VOL CHANGE

IF IWRIT.NE.O WRITES OUT FI AND/OR AKT ON CHANNEL IWR

OOCOOOO0000O000O000OO0

IMPLICIT DOUBLE PRECISION(A-H,0-2)
DIMENSION AKT(4,4),F1(4).Z2(2),P(4).X(2).C(4)

IF (ITY.EQ.3) POISS=0.5D0
ALAM =ALO/ALN

X210 = X(2) — X(1) + P(2) — P(1)
721D =2Z(2) — Z(1) + P(4) — P(3)

IF (IMOD.NE.2) THEN
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COMPUTES INT. FORCE VECTOR
SEE (3.92) FOR GREEN; (3.107) FOR ROTATED ENGNG.,
(3.118) FOR LOG-STRAIN
CON=AN/ALO
F (ITY.GT.1) CON=ALAM*CON
Fl{1)= —CON*X21D
Fi(2)= —FI(1)
FI(3)= —CON*Z21D
Fi(4) = — FI(3)
IF (IWRIT.NE.O) THEN
WRITE (IWR. 1000) (FI(l).l=14)
1000 FORMAT(/,1X'INT. FORCE VECT. FOR TRUSS EL IS '/, 1X.4G13.5)
ENDIF

~_ ===

ENDIF

F (IMOD.NE.1) THEN
COMPUTES TAN STIFF. MATRIX (UPPER TRIANGLE)
SEE (3.92) FOR C

C(1)= —X21D
C(2) = X21D
C(3)= -2721D
C(4)=221D
EA=E*ARN

CON1=1./(ALO*3)
F (ITY.EQ.1) CON1 =EA*CONT
F (ITY.EQ.2) CON1=ALAM*ALAM*CON1*(EA-AN*ALAM)
F (ITY.GE.3) CON1=CON1*ALAM**4*(EA—(1.0D0 + 0.5D0°POISS}*AN)
SEE (3.93) FOR GREEN, (3.111) AND (3.114) FOR ROTATED ENGNG.,
SEE (3.120) AND (3.122) FOR LOG-STRAIN
DO 3I=14
DO 3J=14
3 AKT(I,J) = CONT*C(h*C(J)

CON2 =AN/ALO

IF (ITY.GE2) CON2 =CON2*ALAM

SEE (3.69) FOR GREEN, (3.113) FOR ROTATED ENGNG.,
(3.121) FOR LOG-STRAIN

AKT(1,1) = AKT(1.1) + CON2

AKT(1,2) = AKT(1,2) ~ CON2
AKT(2,2) = AKT(2,2) + CON2
AKT(33) AKT(3.3) + CON2
AKT(3.4) = AKT(3,4) — CON2
AKT(4,4) = AKT(4,4) + CON2

F (IWRIT.NE.O) THEN
WRITE (IWR,1001)
1001 FORMAT(/ 1XTAN. STIFF. MATRIX FOR TRUSS EL. IS'./)
DO 141=14
14 WRITE (IWR,67) (AKT(lJ),J=14)
67 FORMAT(1X.7G13.5)
ENDIF
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ENDIF

RETURN
END

3.9.2 Subroutine INPUT

This subroutine should be used in place of subroutine INPUT of Section 2.2.2. In
addition to the previous data which relates to the bar-spring system of Figure 2.2,
this routine inputs the type of strain measure (via the parameter ITYE). Also, in
contrast to the work of the previous section, the initial area of the element, A, is
required as well as the E-value, E. Also, Poisson’s ratio is required although, in
practice, it is not used unless the specified type of non-linearity is ‘log-strain with
volume changes’ (ITYE = 4). (Solutions obtained using the log strain without volume
changes (ITYE = 3) should be the same as those obtained with vy = 0.5 and ITYE = 4.)

SUBROUTINE INPUT(E.ARA AL, QFI.X.Z ANIT.IBC,IREIWR AK14SID14S,
1 NDSP NV AK15,

2 POISSITYE)
C
C READS INPUT FOR DEEP TRUSS ELEMENT
C
IMPLICIT DOUBLE PRECISION (A-H,O-2)
DIMENSION X(2),Z2(2).QFI(NV).IBC(NV) AK145(4) 1D14S(4)
C

READ (IRE.") NV.ITYE,E.ARA,POISS.ANIT
WRITE (IWR.1000) NV.E,ARA POISS ANIT
1000 FORMAT(/,1X/NV=NO. OF VARBLS.= "I5./.1X,
1 E= "G135/1X,
2 CARA=EL. INIT. AREA= 'G13.5/,1X.
3 'POISS= 'G13.541X,
3 ANIT=INIT. FORCE= ".G13.5)
WRITE (8,1101) ITYE
1101 FORMAT(/,1X.'ELEMENT TYPE= 15/,
13X =1. GREENS STRAIN'/,
2 3X =2, ENGNG. STRAIN /.
3 3% =3 LOG STRAIN'/,
4 3%, =4, LOG STRAIN WITH VOLUME CHANGES')
IF (NV.NE 4. AND.NV.NE 5) STOP "INPUT 1000"
READ (IRE.*) X(1)X(2)
READ (IRE.") Z(1).2(2)
WRITE (IWR,1001) X{(1).X(2)
1001 FORMAT(/.1X.'X CO-ORD OF NODE 1= “G135.1X,
1 'X CO-ORD OF NODE 2= ".G13.5)
WRITE (IWR.1006) Z(1).2(2)
1006 FORMAT(/1X,’Z CO-ORD OF NODE 1= ".G13.5.1X,
1 ‘7 CO-ORD OF NODE 2= ' G13.5)
AL = (X(2) = X(1))**2 + (Z(2) — Z(1))™*2
AL =DSQRT(AL)
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READ (IRE,") (QFI(1)) =1,NV)
WRITE (IWR,1002) (QFI(I),) =1,NV)
1002 FORMAT(/,1X.'FIXED LOAD OR DISP. VECTOR.QFI= "/.1X.5G13.5)
WRITE (IWR.1008)
1008 FORMAT(/,1X.'IF IBC(1)—SEE BELOW— =0, VARIABLE =A LOAD" /,1X,
2 F IBC(l)—SEE BELOW— = — 1, VARIABLE =A DISP.)
READ (IRE.") (IBC(l).1=1,NV)
WRITE (IWR.1003) (IBC(I).l=1,NV)
1003 FORMAT(/,1X,'BOUND. COND. COUNTER, IBC'./.1X,
1 ‘=0, FREE: =1, REST. TO ZERO: = —1 REST. TO NON-ZERO'/,1X,
2 515)
READ (IRE,") NDSP
IF (NDSP.NE.0) THEN
READ (IRE.") (ID14S(1).| = 1,NDSP)
READ (IRE.*) (AK14S(l), = 1,NDSP)
DO 40 I=1,NDSP
WRITE (IWR,1004) AK145(1)JD14S())
1004 FORMAT(/1X LINEAR SPRING OF STIFFNESS 'G13.5/.1X,
1 'ADDED AT VAR. NO. 'I5)
40 CONTINUE
ENDIF

IF (NV.EQ.5) THEN
READ (IRE,") AK15
WRITE (IWR,1005) AK15

1005 FORMAT(/,1X/LINEAR SPRING BETWEEN VARBLS. 1 AND 5 OF STIFF ",
1 G13.5)
ENDIF

RETURN
END

3.9.3 Subroutine FORCE

This subroutine should be used in place of subroutine FORCE of Section 2.2.3. It not
only computes the force in the bar but also the new area (A4, = ARN) although the
latter should only differ from the original area, 4., for the log-strain measures ITYE = 3
or 4).

SUBROUTINE FORCE (AN ANIT E.ARO,ALO.X,Z,P.IWRIT IWR,
1 ITY.ARN,ALN,POISS)

FOR GENERAL TRUSS ELEMENT, COMPUTES:
A) INTERNAL FORCEAN
B) NEW LENGTH OF ELEMENT, ALN
C) NEW AREA OF ELEMENT, ARN

INPUTS:
E=YOUNG'S MOD, ARO = ORIGINAL AREA, ALO=O0RIG. LENGTH
POISS =POISSON'S RATIO, Z=2-COORDS, X=X-COORDS,
P=TOTAL DISPS.. IWRIT=WRITE CONTROL, IWR=WRITE CHANNEL

OO0 000
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ITY =1, GREEN'S STRAIN, =2 ENGNG. STRAIN, =3 LOG-STRAIN
=4 LOG-STRAIN WITH VOLUME CHANGE

IMPLICIT DOUBLE PRECISION{A-H,0-2)
DIMENSION Z(2),P(4).X(2).B1(4)

COMPUTES NEW LENGTH
X21D = X(2) = X{1) + P(2) — P(1)
7210 =2(2) - Z(1) + P(4) — P(3)
ALN=X21D*X21D + 221D*221D
ALN =SQRT(ALN)

IF (ITY.LE2) THEN
GREEN OR ENG. STRAIN

X21 = X(2) —X(1)
721=2(2)—2(1)
U21=P(2) — P(1)

W21 =P(4)—-P(3)
ALOZ2=ALO*ALO
SEE (3.56) FOR B1

B1{1)= —X21/ALO2

B1(2)=—B1(1)

B1(3) = — Z21/ALO2

B(4) = —B1(3)

EGR=0.D0

LINEAR PART OF GREEN STRAIN (SEE (3.55))
DO 11=14

1 EGR=EGR+B1(I)'P()
ADD-IN NON-LIN PART (SEE (3.55) OR (3.54))
EGR=EGR+0.5%(U21°U21 +W21"W21)/ALO2
EST=EGR
SEE (3.115) FOR ROTATED ENGNG. STRAIN
IF (ITY.EQ.2) EST=2"ALO'EGR/(ALN + ALO)

ELSE

LOG-STRAIN (SEE (3.116))
EST =ALOG(ALN/ALO)
ENDIF

ARN=ARO

IF (ITY.EQ.4) THEN

ALLOWS FOR VOLUME CHANGE (SEE (3.23))
POW =2.D0*POISS

RAT = ALO/ALN

ARN = ARQO'RAT**POW

ENDIF

AN = ANIT + E*ARN*EST

IF (IWRIT.NE.O) WRITE (IWR,1000) AN, ALN,ARN
1000 FORMAT (/11X 'AXIAL FORCE AN= "G135/.

89
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1 IX/NEW LENGTH. ALN= ".G13.4..
2 1IXNEW AREA, ARN= "G13.4)
RETURN
END

3.10 PROBLEMS FOR ANALYSIS

The following problems mainly relate to the NAFEMS (National Agency of Finite
Elements) tests [C1.2,D1.2]. The problem numbers will be related to those used in
the latter document. i.c. 3.10.4 will refer to NAFEMS Example 4. Whenever exact
solutions are given, they will relate to the ‘rotated engineering strain’. Apart from
the problems headed ‘large strain’, there should be little difference between the
solutions obtained with the different strain measures. For a number of problems,
although the exact governing equations are given, the detail of their solution, which
involved the use of Laguerre’s method, is not included here. Full details are given in
[C1.2] as are tabulated solutions including both the primary and secondary equi-
librium paths. Similar responses related to a simple structure can be found in {P1].

3.10.1 Bar under uniaxial load (large strain)

This is the problem previously discussed in Section 3.2 and defined in (3.39) and
Figure 3.3. The responses are as shown in Figure 3.4.

The following data relates to a solution using Green's strain for the compressive
regime. It is obtained using displacement control so that no structural equations are
solved.

4 1 500000. 100. 0. 0. ; NVITYE(Green),E,ARA,POIS,ANIT,
0. 2500. ; x-coords.

0. 0.00 : z-coords.

0. —1000. 0. 0. ; fixed displ. vector

1 —1 1 1 ; Bdry condn. code.

0 ; no earthed springs

0.2 6 0 ; load inc. factor, no. of incs., write control
0.001 1 ; convergence tol, iteration. type (N--R)

3.10.2 Rotating bar
This problem has previously been used in Chapters 1 and 2 and involves the configur-
ation of Figure 3.12(a) with K, =0 and a negative loading ¢,.

3.10.2.1 Deep truss (large strains) (Example 2.1)

This is the problem previously discussed in Section 3.1.5 and defined in (3.31) and
Figure 3.12(a). The responses are as shown in Figure 3.2.
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Load q,

Load q,

Figure 3.12 Configurations for bar-spring problems: (a} single degree of freedom; (b) two degrees
of freedom; (c) three degrees of freedom.

Data for a displacement-controlled solution using a rotated log-strain with
Poisson’s ratio of 0.5 (constant volume) is given below:

4 4 500000. 100. 0.5 0.0 ; NV,ITYE=Log,E,ARA,POISANIT,
0. 2500. ; x-coords.

0. 2500. ; z-coords.

0. 0. 0. —1000. ; fixed displ. vector

1 1t 1 —1; Bdry. condn. code

0 ; no earthed springs

0.5 12 0 : Load inc. factor, no. of incs., write control

0.001 1 ; convergence tol., iterative type (N -R)

3.102.2 Shallow truss (small strains) (Example 2.2)

This problem is identical to that of 3.10.2.1 apart from the provision of a lower
‘eccentricity’ so that z of Figure 3.12(a) is 25. With such an eccentricity, the response
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will be close to that of the shallow truss of Sections 1.1 (Figure 1.2) and 2.6.2. In
contrast to the shallow solution of ((1.11), the exact load/deflection relationship,
assuming a rotated engineering strain, i1s ([C1.2])

EA x (1 +a?)1? ) _
_eA N T - Kox 3.156
= ((l+(134+<x)1)”2 XPa (130
where
o= z/x (3]57)

and the symbols are from Figure 3.12(a)) while the bar implies that the variable has
been non-dimensionalised with respect.to x (Figure 3.12(a)) i.e. p, = ps/x. Also, for
the current problem, K, = 0. This spring term has been included in order to provide
the solution for the following problem.

The following data relates to a load-controlled solution using the modified
Newton-Raphson method, for which the solutions are the points shown in
Figure 3.13.

4 2 50000000. 1. 0. 0. ; NV, ITYE (rot. eng.), E, ARA, POIS, ANIT
0. 2500. ; x-coords.

0. 25. ; z-coords.

0. 0. 0. —1.0 ; load of — 1.0 at variable 4 (vertical at node 2)

1 11 0; only variable 4 is free

0 ; no earthed springs

1.9 6 0 : Load inc. factor, no. of incs., write control

0.001 2 ; Convergence tol., Iterative type (mN-R)

Table 3.1 compares the iterative performance of the mN-R solution with that obtained
(by changing the 2 to a | in the last line of the previous data) for the N-R method.

154
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— 54
— 10/

Figure 3.13 Solution points for Example 2.2.
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Table 3.1 lterative pertormance for Problem 3.10.2.2
(see Figures 3.12(a) and 3.13) (Ag, = —1.9).

Rerations at load step

Method 1 2 3 4 5 6
mN-R 2 2 3 3 12 fail
N-R 1 1 1 2 3 fai

93

Although the full N-R method gave a better performance than the mN-R method,
it was unable to take the jump from point S to point 6. For this trivial, one-dimensional
problem, the solution could be obtained by displacement-control. Other methods
will be discussed in Chapter 9.

3.10.3 Hardening problem with one variable (Example 3)

For this problem (Figure 3.12(a)), a linear spring, K, = 1.125 has been added so that
the response is continuously hardening although with a softening and then a stiffening
region. The response will be a little stiffer than that shown in Figure 1.2 for
K,= EAz%/21°. (Here, K, ~ 1.125EAz%/21°) The load/deflection response is governed
by Equation (3.156).

The following data relates to a load-controlled solution using the full N-R method
and produced the points on Figure 3.14.

4 2 50000000. 1. 0. 0. ; NV, ITYE (rot. eng.), E, ARA, POIS, ANIT
0. 2500. ; x-coords.

0. 25.

50

404

304

204

;. z-coords.

s

—12 —18 —24 -30 —36

Vertical deflection. py

Figure 3.14 Solution points tor Example 3.

)

— 48
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Table 3.2 lterative performance for Problem 3.10.3 (see
Figures 3.12(a) and 3.14) (Ag, = —6).

Iterations at load step

Method 1 2 3 4 5 6 7
mN-R 3 3 3 5 10 fail
N-R 1 1 2 2 2 3 2

0. 0. 0. —1.0; load of —1 at variable 4 (vertical at node 2)
1110 ; only variable 4 is free

1 one earthed spring

4 at variable 4

1.125 ; of magnitude 1.125

6. 7 0 ; Load inc. factor, no. of incs., write control

0.001 1 ; Convergence tol., Iterative type (N -R)

Table 3.2 compares the iterative performance of the full N-R solution with that
obtained (by changing the | to a 2 in the last line of the previous data) for the
modified N- R method.

3.10.4 Bifurcation problem (Example 4)

This problem is very similar to that discussed in Section 1.3 and further in Section 2.6.3.
The configuration is that shown in Figure 3.12(b) with z =0 and

EA,=5x 107, x = 2500. {3.158)

In addition, K., = 1.5 so that, from (1.68), the buckling load is 3750.
In reality, the length term [ in (1.67) and (1.68) should be the current, rather than
the original length. Hence

qlcr
Ucr: cr:10K< l - - 3159
4, .4( EA0> ( )
from which
KN\t K. \!
w= LK 1+ %) =LK, 1+ *“) ~ 1K, 3.160
q, 4( EAO) \4< K., s4 ( )

where we have introduced the notation
EA,

K, = l (3.161)
to represent the stiffness of the rotating bar elements in Figures 3.12(a)—(c). (The
approximation sign in {3.160) relates to the configurations used for these examples.)

Figure 1.11 plotted the fundamental and post-buckling paths for a perfect shallow
truss. Figure 3.15 plots the equivalent solutions for a rotated engineering strain. In
contrast to the shallow formulation, the current formulation leads to a ‘falling’ or

o
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Figure 3.15 Load/detlection relationships for 'perfect’ bar-spring system.

‘softening’ post-buckling path. However, this path can be made to harden by the
addition of the spring K, in Figure 3.12(b}). In addition the response (now at variable
5 -see Figure 3.12(c)) can be made to ‘snap back™ by adding a spring K 5 so that
the problem has three variables. It can be shown that the critical buckling load
relating to Figure 3.12(b) (with z=0and x=1,) is

(Ksh+ K.sl)

. ~ LK. (3.162)
4(K5b+Kﬂ4) k4

qlcr:chr:[nK o
where the approximation again relates to the configurations adopted for the current
cxamples. Equation (3.162) also applies to ¢s,,. the critical buckling load for the
perfect form of the configuration in Figure 3.12(c) (with z =0 so that x=1,).

Without the provision for post-buckling analysis (see Volume 2), the computer
program will only be able to follow the basic fundamental path OAB of Figure 3.15.
However, as discussed in Sections 1.3 and 2.6.3, the instability of the solution beyond
the bifurcation point (point A, Figurc 3.15) should be apparent from the presence of
a negative pivot following the LDL' factorisation of the tangent stiffness matrix for
equilibrium points on the portion AB of Figure 3.15.

While the current computer program may be unable to trace the post-buckling
paths such as ACD or AC'D {(this would only be indirectly possible by adopting a
very small ‘imperfection’, = or a small destabilising lateral force at ¢,). it Is nonetheless
worth briefly discussing the alternative paths in Figure 3.15. In particular, we will
concentrate on the system of Figure 3.12(a) (with z=0) with K, =0, for which
the solution under displacement control (with monotonically increasing p, in
Figures 3.12(b) and 3.13) may be assumed to follow the path OA until bifurcation,
at which point it may follow either AC or AC”. The bar then follows the configurations
illustrated in Figure 3.16. Assuming that CC’ is horizontal and has P =0, point C in
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Figure 3.16 Bar-spring configurations in relation to the "soflening’ solution in Figure 3.15.

Figure 3.15 relates to the configuration (11) in Figure 3.16 with ‘b’ lying vertically
above ‘a’ and so that there is no force in the bar and no loading, ¢gs. However, at
this stage there is a considerable force in the compressed spring K,,, so that when
the deflection, p,, is taken beyond this configuration (with point *a’ of Figure 3.12(b)
now to the right of point ‘b’), a compressive stress is required in the bar element and
hence a negative force, ¢5. The equilibrium path thercfore follows CD in Figure 3.15.
At point D, points ‘b’ and *a’ (Figure 3.12(b)) now lic on a horizontal line but with
point ‘a’ to the right of point *b’. This configuration is illustrated in Figure 3.16(ii).
From this stage onwards, ¢, is stretching the bar. Up to point E in Figure 3.15, this
stretching 1s merely reducing the compression alrcady in the bar while from point E
to point F the bar is pulled into tension.

3.10.5 Limit point with two variables (Example 5)

An ‘imperfection’ is added to the previous example by setting z =25 so that the
bifurcation is eliminated. Assuming shallow truss theory. the response for this
structure is that previously described in Section 1.3.1 and illustrated in Figure 1.11.
When the theory is extended beyond the shallow truss assumptions, the response
becomes that illustrated by the dotted lines in Figure 3.17, where the primary imperfect
path is the ‘true path’ that should be followed by an increasing shortening (p,) and
the secondary (or complementary) imperfect path is the equivalent alternative
equilibrium state to that discussed in Section 1.3.1 and reached when large increments
were adopted in Section 2.6.4.3. For the current decp truss theory, the primary
imperfect path has a limit point beyond which the load g, reduces.

Using Pythagoras’s theorem, from Figure 3.12(b) in conjunction with (3.157) and
(3.161), the force in the bar is given by

N =Ko (((pa+ a2 +(1—=p))"2— (1 + a2 x =Kyl — (1 +23))x  (3.163)
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/e Primary imperfecl path
Complementary imperfect path
Perfect system

Figure 3.17 Decomposition of perfect system due to an imperiection

where the bar again indicates that the variable has been non-dimensionalised with
respect to x (Figure 3.12(b)). The exact equilibrium equations can be obtained from
equilibrium by resolving vertically and horizontally. This will be shown in the next
section, which involves a generalisation of the present problem.

For the NAFEMS problems, load control was firstly adopted with constant
increments of Ag, =760 and should have produced the points marked 1 5 on

q,

Primary path
/2 Complementary path

P

Figure 3.18 Solution points for Example 5.
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Table 3.3 lierative performance tor Problem 3.105
(see Figures 3.12{b) and 3.18) (Aq, = 760).

lterations at load step

Method 1 2 3 4 5 6
mN-R 5 8 fail
N-R 2 2 3 3 7 5

*Solution converged onto sccondary imperfect path.

Figure 3.18. In practice, the modified Newton-Raphson method was successful for
only the first two increments, while the full Newton -Raphson method easily achieved
solutions for steps 1 -4 (sec Table 3.3). The data for the latter solution is given below.,

4 2 50000000. 1. 0.0 0.0 ; NV.ITYE (rot. eng.). E, ARA, POIS, ANIT
0. 2500. ; x-coords.

0. 25. . z-coords.

760. 0. 0. 0. ; fixed load vector

0 1 1 0 ; Bdry. condn. code

1 onc earthed spring

4 . at Variable 4

1.5 . of magnitude 1.5

1.0 6 0 ; Load inc. factor, no. of incs., write control

0.001 I : Convergence tol., iterative type (N-R)

Knowing that Step 5 would take the solution to ¢, = 3800, while the critical
buckling load for the perfect solution (see Section 3.10.4) was 3750, trouble could be
anticipated on Step 5. Indeed, even with the full N-R method, convergence was not
achieved using Green's strain while convergence to the ‘wrong path’ (point 5* in
Figure 3.18) was obtained with the rotating engineering strain. Displacement control
with large steps of Ap, =250 gave satisfactory solutions with full N -R but failure
with mN R (from the very first step). Reducing the step size to Ap, =0.3 gave
converged solutions with either solution procedure. Further work on this example
will be given in Section 9.9.5.

3.10.6 Hardening solution with two variables (Example 6)

For this problem, a spring K, = 2.0 was added so that the limit points were removed
and the responsc was continuously hardening (Figure 3.15 and 3.19). Using a similar
procedure to that of Section 1.3 {sce cquation (1.54)), we can resolve firstly hori-
zontally and then vertically to obtain the cquilibrium cquations:
1—p e—(1+2%)"3);
gi=—Neost+Kopy—gy =Ky PIOTIFEON s =0 (u164)
¢
: ; (Patado—(1+2%)" ?)x _
go=Nsinti+ K p, =K + K pax=0 (3.165)
@



PROBLEMS FOR ANALYSIS 99

Primary path
' — — ~ -Complementary path

Figure 3.19 Solution points for Example 6.

where 6 relates to the displaced configuration (Figures 1.1 and 3.1) and use has been
made of (3.162), (3.167) and (3.161).

With load control, and steps of Ag, = 1100, the mN-R method was only successful
only for Step 1, while the full N- R method had difficulties from Step 4 onwards. With
Green’s strain, convergence was not achieved within a specified maximum of 12
iterations while with the rotated engineering strain, Steps 4 6 ended on the wrong
equilibrium path (see Figure 3.19). The data for the latter solution is given below and
the convergence characteristics in Table 3.4

4 2 50000000. 1. 0.0 0.0 ; NV,ITYE =Engng..E.,ARA,POIS ANIT
0. 2500. ; x coords.

0. 25. ; z coords.
1100. 0. 0. 0. ; Fixed load vector, loading at variable 1
0 t 1 0 ; Bdry condn. code: rest. at varbls. 2 and 3

2 ; Two carthed springs

1 4 ; At varbls. | and 4

2.0 1.5 ; of mag 2.0 and 1.5 respectively

1.0 6 0 ; Load inc. factor, no. of incs., write control
0.001 1 21 0 ; Convergence tol,, itcrative type (N- R)

If the ‘imperfection’, z, is reduced from 25 to 2.5, both strain measures will lead to
solutions that swap branches onto the wrong equilibrium path from Step 4 onwards.
With all these solutions in which such branch-swapping has occurred there is a
potential warning in that a negative pivot is found on the LDLT factorisation for
points on the ‘wrong’ path. This warning will be output by the computer program
(see Section 2.5). When applying displacement control with steps of Ap, =500, the
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Table 3.4 lterative performance for Problem 3.10.6 (see

Figures 3.12(b) and 3.19) (Ag, = 1100).

lterations at load step
Method 1 2 3 4 5 6
mN-R 8 fail
N-R (Eng.) 2 3 5 5* 3 5*
N-R (Green) 2 3 5 fail

*Solution converged onto sccondary imperfect path.

mN R method failed from the first step while the full N-R method gave satisfactory
solutions.

3.10.7 Snap-back (Example 7)

By adding a third spring (Figure 3.12(c)) it i1s possible to create a ‘snap-back’. The
governing equilibrium equations are then given by (3.165) in conjunction with

g, =—NcosO+ K p, +Ks(p, —ps)

(L=p g~ +a®)'¥)x _ o
=Ko — = == T K x = KBy — Bs)x =0 (3.166)
@
gs=—Ks(py —ps)—qs = — Ks(py — ps)x —gsx=0. (3.167)
45004 .
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Figure 3.20 Solution points for Example 7.
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For the numerical example, the geometry was maintained as before with z = 23, but
the adopted spring stiffnesses were

K, =025 K, =15 K,=10. (3.168)

From (3.162) the critical buckling load is again approximately 3750 (see Section 3.10.4).
In this situation, the relationship between the load, ¢, and the shortening dis-
placement, ps, is that shown in Figures 3.15 and 3.20. Adopting load control, with
increment of Ag, = 700, the solution should involve Steps 1-6 shown on that figure.
However, the mN-R method achieved convergence only up to point 2 (see Table 3.4),
while the full N--R method was successful for the first five steps but then either failed
to converge within the specified maximum number of iterations (with Green’s strain)
or converged onto the wrong equilibrium path (point 6* —with rotated engineering
strain). The data for the latter solution is given below.

5 2 50000000. 1. 0.0 0.0 ; NV,ITYE =Engng..E,ARA,POIS ANIT
0. 2500. : x coords.

0. 25. . z coords.

0. 0. 0. 0. 700. Fixed load vector, loading at variable 5
0 1 1 0 O0; Bdrycode; rest. at varbls. 2 and 3

2 ; Two earthed springs

1 4 ; At varbls. 1 and 4

0.25 1.5 ; of mag 0.25 and 1.5 respectively

1.0 ; linear spring of stiff 1.0 between variables 1 and 5
1.0 7 0 : Load inc. factor, no. of incs., write control
0.001 1 ; Convergence tol., iterative type (N-R)

With hindsight, this is not surprising because between Steps 5 (g5 = 3500) and
Steps 6 (g5 =4200), the solution passes the critical buckling load of 3750. Displacement
controlled solutions with Ap = 1000 failed on Step 2 with mN-R. With full N-R,
from Step 4 onwards, the Green's strain solutions again failed to converge within the
specified maximum number of steps while the rotated engineering strain converged
onto the wrong path. Cutting the step size with displacement control did not
overcome the difficulties because of the snap-back. However, it will be shown in
Chapter 9 that these problems can easily be overcome using a modified form of
displacement control called the ‘arc-length method’.

Table 3.5 lterative performance for Problem 3.10.7 (see
Figures 3.12(c) and 3.20) (Ags = 700).

iterations at load step

Method 1 2 3 4 5 6 7
mN-R 5 7 fail

N-R (Eng.) 2 2 3 4 5 9" 3
N-R (Green) 2 2 3 4 9 fail

*Solution converged onto secondary imperfect path.
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3.11 SPECIAL NOTATION

A = area of bar
A = matrix (3.57) or (3.141)
b, = vector connecting linear part of € to p
b = vector connecting d¢ to p; b=b, + b,
c=cosl
¢ = vector (3.56) such that ¢(x) = 4Ax or ¢(p) = 4Ap
¢, = vector (3.123)
e, = unit vector lying along the truss element
e,.€; = unit vectors orthogonal 1o e,
e, = unit vector relating to configuration at mid-increment
F = Boolean matrix (see (3.145))
h = shape function array
. = differential of h w.r.t. &
H = shape function matrix
H. = differential of H w.r.t. ¢
K. = spring stiffness
K, = stiffness of bar element (see (3.161)) (Section 3.10)
N = axial force in bar
n = unit vector orthogonal to truss element
p = nodal displacement vector
ordering for 2-D truss is p' = (uy, u,, w,, w,)
ordering for 3-D truss is p' = (uy, u,, v, 03, w,, W,)
P2 = vector such that pl, = (u,,, w,,) (or equivalent in 3-D)
q = load at end of bar (Sections 3.1 and 3.2)
r = position vector: initial position vector =r,

dr,

Foe=-,

dé
s=sin#

T = transformation matrix (see (3.126) or (3.144))
u = axial (x-direction) displacement at end of bar (Section 3.2)
u = displacement vector such that u" = (i, w) (or, in 3-D—see (3.139))
" — du
T4
uy,u, = nodal displacements for bar in x-direction
Uy = Uy — Uy
w = vertical (z direction) displacement at end of bar (Section 3.1)
w,, w, = nodal displacements for bar in z-direction
Wy =W, — W,
x = horizontal length (Sections 3.1 and 3.10)
Xy, X, = nodal values of x
X1 = Xy — Xy
X = X, = vector of initial nodal coordinates (3.48)
X' = x,, = vector of current nodal coordinates (3.47)
X»; = vector (3.52) (or equivalent in 3-D)
X, = vector of coordinates at mid-increment (see (3.153))



REFERENCES

z = initial vertical offset at end of bar (Sections 3.
Z =z + w (Section 3.1)
2y, 2, = nodal values of z
Xy = zz -z,
I, = current length of bar
l, = nitial length of bar
= ‘length parameter’ (half-length of bar)
= z/x (Section 3.10}
‘true stress’
= axial strain in bar
£ = engineering strain
/.= length ratio (see (3.108))
¢ = angular orientation of bar
@ = non-dimensional constant (see (3.163}))

II

I

:‘«.q-&z&
i

Subscripts
A = Almansi
E = engincering
G = Green
[ =local
L =log

o = old or original
n = new or current

Superscripts

— = quantity divided by x (Section 3.10)

3.12 REFERENCES

1 and 3.10)
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4 Basic continuum
mechanics

The previous chapters have all been related to one-dimensional problems. Before
moving on to two- and three-dimensional problems, we will include a chapter on
basic continuum mechanics. Many specialist texts are available either directly on
continuum mechanics [H1, M1, M3, M4, S1, W2] or containing basic background
information in relation to elasticity [T1, L1, G1] or mechanics of solids [B3, W1].
The present chapter will be far less rigorous and is intended to introduce sufficient
continuum mechanics for the following chapters which concentrate on the finite
element discretisation or solution procedures. It should also pave the way for some
of the more advanced work in Volume 2.

This chapter starts by introducing both vector and tensor [ Y1] notations for stress
and strain. In the first instance, the ‘tensor form’ is introduced simply as a matrix.
In the early sections, the distinction between the vector and tensor forms will be
indicated by adding a subscript 2 (second order tensor) on the latter. This procedure
will later be dropped as the distinction becomes obvious. Indicial notation is
also introduced although for many developments such notation is completely
avoided.

Sections 4.1, 4.2 and 4.4 provide the basis for the finite element work of Chapter 5
which uses the total Lagrangian formulations. Section 4.3 involves transformations
between one coordinate system and another (not required for the main theme of
Chapter 5) while Sections 4.5 and 4.6 introduces the Cauchy stress and hence are
strictly required for updated Lagrangian formulations which are also considered in
Chapter 5. Scction 4.7 briefly discusses the relationship between the various stress
and strain measures while Section 4.8 introduces the polar decomposition which is
used in Section 4.9 to relate the Green and Almansi strains to the principal stretches
and in Section 4.10 to give a simple explanation of the second Piola-Kirchhoff
stresses. Section 4.11 gives a very brief overview of constitutive models with the aim
that the finite element work of Chapter 5 should make sense in relation to concepts
such as plasticity, although this subject will not be treated in detail until later
(Chapter 6).

The reader wishing to get straight into finite element work with only the minimum
continuum mechanics could try reading only Sections 4.1, 4.2 and 4.4.

104
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4.1 STRESS AND STRAIN

We can either represent the stress at a point (Figure 4.1) by a vector.

T __
¢ = (Uxx’ nys Oz Txy’ Txzo Iy: (4])
or by a matrix
axx Txy Txz Ull 012 013
G, = Tyx  Oyy  Ty: = 01 032 033 4.2)
Tex Tzy Oz 031 O32 033

where the subscript 2 on o is used to distinguish this two-dimensional representation
from the one-dimensional vector representation of (4.1). The matrix, ¢,, in (4.2) can
be represented using either letters or numbers. In either case, there are only six
independent quantities since, from rotational equilibrium, for example, ¢, =1,, =
@,, = 1,,. The quantity o, in (4.2) is more than a matrix, it is a tensor which transforms
to new axes according to certain laws [Y 1, M1] which will be discussed in Section 4.3.
With the stresses being expressed by (4.1), the strains at the same point can be
expressed as
81 = (Sxx’ Eyy’ €220 7’xy’ ?xz’yyz)' (43)

Alternatively. tensor notation can be adopted so that

E,u O'SVXy 0'5}‘,(: Cxx xy nx: 81 1 81 2 ‘cl 3
g=| 05y, &, 05y |=| &, ¢, &. | =1 ¢, &, &, | (44
0'5.}‘:x 0‘5}‘2)7 8:: gzx gzy 6:: 83 1 832 83 3

where again there are only six independent quantities and the tensor is symmetric.

Figure 4.1 The stresses.
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For small strains,

du dy cw cu v
= £y =5 b= Vo=l - +- |

= s Yy T L] 2z N fxy
ox éy Oz

ou éw dr Ow
Y=\ 2 +% ) V= 4 -] (4.5)
’ <6z @x) Tz ((72 (?y>

It should be noted that the tensor shear-strains in (4.4) are half the ‘engineering’ shear
strains in (4.3). (The symbol y is used for the latter.) This ensures that both notations
can be used to express the (linear) strain energy, ¢, per unit volume via ‘scalar
products’ so that

SXX

¢ =16"e=10,¢, (4.6)

where the "¢ involves the familiar dot (or inner product) and the contraction symbol:
implies a similar scalar product with every term in o, being multiplied by its
equivalent term in g&,, i.e. from (4.2) and (4.4):

0= %(O-xx‘gxx + 0'5rxy7xy + O'erzy‘x: + O'STyxyyx + O-yygyy t+ 61:8:::)‘ (47)

The stress tensor notation allows the stresses to be very simply related to equili-
brating external forces (Figure 4.2) via

O-XX Txy rx: AX I:X [.\'
6, A= 1, 0, T, A, =F=| F, | =4]| ¢, (4.8)
T T,y O A F t.

X < z

zy Iz

where A,, A, and A, are the components of the area A (Figure 4.2) in the directions
x,y,z. If the area A is unity, (4.8) becomes

where n is the unit normal vector (Figure 4.2) and t is the vector of equilibrating
external tractions per unit area.

Figure 4.2 Relationship between the external forces, F = At and the stresses: (a) forces and areas:
(b) stresses on face A,.
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4.2 STRESS-STRAIN RELATIONSHIPS

For a linear elastic, isotropic, material, the stresses and strains are related by

I o, T [ (1 —v) v v 7]
o, v (t—v v
o, E v v (1 —v)
o | L+l —2v) 11 —2v)
Tes %(1 —2v)
| T L 3(1—2v) |
e
E.V
¢,
X ?;‘ (4.10)
Txz
Vy:_

where £ 13 Young’s modulus and v is Poisson’s ratio. Equation (4.10) can be
re-expressed as

o=C (4.11)
where C, is the constitutive matrix. Alternatively, we can write
o,=0C,¢, (4.12)

where C, is the equivalent four-dimensional or fourth-order tensor {Y!] to the
two-dimensional matrix C, in (4.11).

Rather than attempt to visualise a four-dimensional tensor, many tensor equations
can be viewed in terms of vectors with nine terms (three repeating), so that

Tops Tozs Tyz) (4.13)

yz

T

O = (0yes Ty Oopy Tuyn Tozs T

yyr Yzzs Lxps bxzs tyze

and
€' = (Ecps £pys 6250 0.57,,, 0.57,.,0.57,,,0.57,,,0.5,.,0.5y,.). 4.14)

Using such vectors, the connecting two-dimensional C, would contain the same
upper three-by-three submatrix as in (4.10) but the remaining diagonal terms would
be doubled.

4.2.1 Plane strain, axial symmetry and plane stress
The three-dimensional formulation (Figure4.l) can be simply reduced to
two-dimensions (Figure 4.3) by setting

I)L'Z = IyZ = yx: = -})y' = 0 (4‘15)

z
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D

(a) (b) (c)

Figure 4.3 Various two-dimensional stress states: (a) plane stress (o, =0); (b) plane strain (¢, =0);
(c) axial symmetry.

so that equations (4.12) reduce to

g, (1 —v) v v £

o= o |_ E _ v (1—v) v £y —Cee
o. | 4m—1| v voo(1-w) ‘.
t.\'y %(l - 2") 7xy

(4.16)

For axial symmetry (Figures (4.3(c)), ¢, can be taken as the hoop stress with z = 6,
while for plane strain, ¢, is set to zero.
For plane stress, equations (4.16) are supplemented by, ¢, = 0 and (4.16) reduces to

g, E 1 v 0 €y
a, =1 ;v ! 0 &, 4.17)
Tay Vo 0 a—w2 (] v,

4.2.2 Decomposition into volumetric and deviatoric components

An alternative form of the elastic stress—strain laws involves a decomposition of both
the stresses and strains into their volumetric (or mean—subscript m) and deviatoric
{(subscript d) components. This decomposition is best applied with the tensor stress
and strain measures, so that for the stresses

Om 0 0 Oxx ~ Oy Ty Txz
o,=0,l+06,5=| 0 o, O [+ Tyx G, — 0g T, (4.18)
0 0 o, Ty T, 0,,— 0
where the deviatoric stresses @,, are often written as s. For the strains,
&g, 0 0 Exx—E&n 05y, 05y,
g, =gl +tey=] 0 &, 0 |+]| 05y, &,—&, 057, 4.19)
0 0 ¢, 0.5y,, 0.5y, &.,—¢,

where the deviatoric strains g,, are often written as e. In (4.18) and (4.19),

Oy = %(O-xx + Oyy + oz:)’ b = %(8xx + Ly + 8::)‘ (420)
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The stress—strain laws are then given by
624 =8; =2 &g =2ue, (4.2
and
Om=3ke, (4.22)

where the shear modulus u (often written as G) and bulk modulus, &, are related to
Eand vvia [T1]):

E E
u= S k= = 4.23)
2(1 +v) 3(1 —2v)
4.2.3 An alternative expression using the Lamé constants
From (4.18), (4.19) and (4.21),
6, = (0, — 2ue, ) + 2ug, (4.24)
and from (4.22),
6, =(3k — 2u)e I + 2ue,. (4.25)
From (4.20), we can write
o = Str(E,) (4.26)

where the operation ‘trace’ (or tr) involves summing the diagonal elements. Hence
in (4.25),

3k-2
622( 3 --u)tr(sz)l+2u£2=/'Ltr(£2)l+2psz. (4.27)

Here, 4 and y are the ‘Lamé constants’. With suffix notation, (4.27) becomes
0= A0ty + 2ue;; (4.28)

where &, is the Kronecker delta (=1, i= j; =0, i# j). (All of the work in this
chapter will be related to a rectangular cartesian reference frame so that all indices
can be written as subscripts, there being no distinction, for such a system, between
co- and contravariant components. The latter will be considered in Volume 2.)
Alternatively, we can write

0= Cijklskl (4.29)

where C;,, are the components of a fourth-order tensor (C,) which, assuming
linear-elastic isotropic conditions (as in (4.28)) is given by

Cijkl = #(5"“6)‘, + (5“(5!‘,‘) + /A.(Sij(sk{. (4.30)
This equation is sometimes written as
C=C,=2uldl+ 2@ =2ul,+ /1, ®1,) 4.31)

where, as indicated, the subscripts which relate to the order of the tensor are usually
omitted. In equation (4.31), the symbol ® means tensor product. The symbol I is in
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some work reserved exclusively for the fourth-order unit tensor (as in (4.31)) with 1
being used for the second-order unit tensor. We will sometimes follow this procedure
but may also use I more conventionally as the second-order unit tensor or unit matrix.

4.3 TRANSFORMATIONS AND ROTATIONS

We have already mentioned in Section 4.1 that the stress tensor, @,, transforms in
certain special ways to changes of axes and rotations. For most of this section, the
stresses will be written in matrix or tensor notation and the subscript 2 will be dropped.

4.3.1 Transformation to a new set of axes

In this section, a line element or stress tensor will remain fixed but be represented
in relation to a new set of axes. Starting in two dimensions (Figure 4.4), the line
element rcan either be represented in ‘global’ coordinates as r, or in ‘local’ coordinates

4Yq
Y

e;
X/

(a)

(h)

Figure 4.4 Ditfereat axes for transtormations: (a) 'local’ and ‘global’; {b) ‘old’ and ‘new’.



TRANSFORMATION AND ROTATIONS 111
as r;. Then, from Figure 4.4(a),
r,=Tr, (4.32)

where, for two dimensions,

osf) sind 3
T=[ c‘ sin =[e1] 433)
—sin@ cos® el
and e, and e, are the unit vectors of the x;-, y,-axes (Figure 4.4(a)) expressed in
relation to the global coordinates and, hence, for example,
x;=r(l)=cosfx, +sinby, (4.34)

where y,(1) is the first component of r;.
For three dimensions,

T=]| e} |. (4.35)

The components of the stress tensor, 6,, transform to local coordinates via
6,=Te, T (4.36)

Using the vector representation of stress in two dimensions, the equivalent expression
to (4.36) is

o, st 2s¢ .
o, | =| s & =2 o, (4.37)
Ty |0 —s¢ sc (¢r—s?) Toy |u

where ¢ = cos 8 and s = sin 6. This relationship is easily proved using the simple stress
block of Figure 4.5. (The reader may also like to verify (most easily in two dimensions)
that (4.37) corresponds to (4.36).) Physically, the stress remain the same but their

Figure 4.5 Stresses in local and global coordinate systems.
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components change because they are now written with regard to a new set of axes.
It is easy to show that T is an orthogonal matrix such that

T'=T" (4.38)

Instead of considering ‘local’ and ‘global’ axes, we could consider ‘new’ and ‘old’
(local) axes (Figure 4.4(b)). In this case, the same vector r (Figure 4.4(b)) can be
expressed either in relation to the initial (global) coordinates or with respect to either
of the two local coordinate systems so that

r,=T.r, 4.39)
while

r,=T,r, (4.40)
and hence

r,=T,T!r,=Tr, (4.41)
and

¢,=To, T' (4.42)

where 6, contains the components of stress with respect to the new local system and
o, with respect to the old local system. In two dimensions (Figure 4.4(b)),

T cost) sin0] [el.e, ef.es, T “43)
—sinf cosf ele., el e e .

where e, and e,, are the unit base vectors of the old local system (written with
respect to the global system) and e, , and e,, are the same for the new local system. (In
confirming (4.43), the reader should note the transposes on the es in the definition
of T in (4.33).) From Figure 4.4(b),

cos 2 —sin«
€= [ . :|~ €, = [ ] (4.44)
sina cos

os(x+ 8 —sin )
in = [Zin ((oz :())):I’ €2n = I: cos (o(za++()) )} (443
so that
el e;,=el e, =cos(a+ 0)cosa+sin(az + 0)sina=cos (4.46)
el e, = —cosasin(x+6) +sinxcos(x + )= —sind (4.47)
el,e,, = —sinxcos(a+ )) + cos asin(x + ) = sin (4.48)

and (4.43) is confirmed. For three dimensions, the transformation matrix, T, is easily
extended from (4.43) to give

T T T
elnelc e]neZU elne3o
_ T T T . T
T - eZnelo eZnEZD €3,€3, - TnTo - (449)
T T T
€in€1o €3,€2, €3,€3,
Using suffix notation, equation (4.49) can be expressed as

T =eje, (4.50)
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while (4.42) would be
oy = Tiaasz:j =Ty00 T =T, Tjpo5 (4.51)

7

where the ‘'n’ and "o’ (for new and old) have been moved to be superscripts so as to
ease the congestion. In a similar fashion, the strains can be expressed as

&= Ty, Tvton 0, =Ty Ty;eh, (4.52)
Consequently, a constitutive relationship,
0% = Copeatsy {4.53)
would (using (4.51) and the second part of (4.52) with cdkl instead of ijab} transform to
07 = Clitd (4.54)
where
Clid = T Tjn T TiaCopeg (4.55)

is the new constitutive tensor resulting from the transformation of coordinates.

4.3.2 A rigid-body rotation

In the previous section, the line element remained fixed but was related to different
sets of axes: in the present, the line element, r, will be physically rotated from r, to
r, (Figure 4.6). We can then write:

r, = Rr, {4.56)
In relation to Figure 4.6, when r, is rotated through 0 degrees to r,,

[cos 8 —sinb
sinf)  cos@

].—_ [el,ez] (457)

where e, and e, are the unit vectors caused by the rotation of the original x and y
vectors, i, =(1,0) and i, =(0, 1). In three dimensions,

e, = Ri;, i=13 {4.58)
with the obvious extension of i,_; and
R=[e; e;.¢;] {4.59)
A comparison of (4.41) and (4.33) with (4.56) and (4.57) shows that
R=T" {4.60)

where T is the transformation matrix of the previous section and R is the current
rotation matrix. Equation (4.60) applies whether the rotation involves two or three
dimensions.

In general, if a vector r, (Figure 4.7) is rotated through 0 degrees to r,, the ‘global
coordinate axes can be thought of as also rotating through 6 to ‘local’ axes (Figure 4.7).
Clearly, r, with respect to the ‘global’ system (i.e. r, ) equals r, with respect to the

[}
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v dv.=y

(a)

Figure 4.6 Applying a rotation: (a) with x = x,, y =y, (b) with x # X, y # yo.

Figure 4.7 lllustrating rotations and transtormations.
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‘local’ system (r,, ). Using (4.56), it [ollows that
r..=Rr, =Rr . (4.61)
But we also know from (4.32) that

r. =T'r

n.g nl*

(4.62)

Hence, equation (4.60) is confirmed.

In a similar fashion, if a set of stress in the ‘global’ coordinate system is rotated
through 8 degrees (Figure 4.8), which corresponds to the use of the rotation matrix
of (4.56) and (4.57), the global system can be assumed to have rotated through 6 (or,
more generally, via R). Clearly, the new stress with respect to the local system, & |,
are equal to the old stress with respect to the global system, @, ,. The components
of the new stresses, 6, ,, in the old, global system (i.e. 6, are (from (4.36) with T
changed to T" because we are moving from local to global rather than global to local):

o,,=T'e, T=T's, T=Ro, R" (4.63)

Equation (4.63) defines a new stress-state, 6, , caused by a rotation, R, of the stressed
body while the coordinate system (g) remains fixed. In contrast, the earlier equation
(4.36) involves a change of the axis system within which the stresses are represented.
while the stressed body remained fixed.

In the following, all terms will be related to global coordinates. If, in these
circumstances, a set of old and new axes, e, and e, are given by

€in = Rnii’ €, = R()ii’ i= ', 3 (4.64)
with also
r,=R,r, r,=R,r (4.65)
representing rotations of any vector r into the two frames, it follows that
r.=R,Rlr,=Rr, (4.66)
where R represents the rotation from one frame to the other. From (4.59) and (4.66),
R=e¢ €], +e5,e5,+ el (4.67)
b Vg
Yi 1
\\ ag.
\
\ o,
\ <
\\ X
() p— o -
/\\ 3] . -
L0
f - X

Figure 4.8 Rotating a stress state.
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4.4 GREEN’S STRAIN

The strains in (4.5) are related to small deflections. In Sections 3.1.2 and 3.3.1 we
derived a convenient strain measure for describing strains in a bar when the deflections
were large. These techniques can be generalised to a continuum so that (Figure 4.9)
in place of (3.9),

dr? —dr? = dx? — dX? = 2dX"E,dX (4.68)

where dr? = dx? is the squared final length of a line element originally of squared
length dr? = dX?. The matrix E, then defines the ‘Green-Lagrange’ (usually just
referred to as Green) strain tensor which is valid for large deflections and replaces
the small-deflection tensor, &, of (4.4) with components obtained from (4.5). The
matrix E, measures the strain in an element dX as the original coordinates of a point
X are moved to new coordinates x by the addition of displacements u, i.e.

x=X+u 4.69)
(see Figure 4.9). The latter equation can be differentiated to give
¢ AX +
dx =X ax=Fax="X""x (4.70)
5.4 X
or: B
Ix O
[ox ox ]
cX oY oz
dy dy dy
dx=FdX= - dyY
X éX oY oz
éz 0 0
0z 0z oz 4z
_JX aY 0Z |
_ R -
- du Qu du dx
X oY 14
v dy v
= 1+ - - dY |=[I1+D]d 4.71
135, 4 Y oz [I+DJdX @7D
i g 0
oW ™o e | Laz
| X oY oz |

where F is the deformation gradient and the matrix, D, in (4.71) is the
displacement—derivative matrix:

du du du

oX &Yy oz
U U u
dv v v e du
D: — — — = u =lu;, . J]=--. 472
ﬁX (3Y (‘JZ 2,1 u2.2 uZ.J [ l.j] (}}x ( )

ow  dw  dw

X oY oz |
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dx

aX

— X

Figure 4.9 Position vectors and displacements.

Substitution from (4.71) into (4.68) gives
2E, =F'F-I=[1+D]"[I+D] -1

so that

E, =i[F'F - I}=4(D+D"] +iD'D.

17

(4.73)

(4.74)

The first term in (4.74) is a linear function of the displacement derivatives and
corresponds exactly to the small-displacement matrix €, of (4.4), with (4.5) for the
individual terms. From (4.72) and (4.73), the vector strain E can be expressed as

1 [ e T '1(((7“)2 (01‘)2 <8w>2
Exx - + + .
oX 2\\ 02X X cX
dv 1// ou\? v \? ow\?
Eyy +1 . Rl S
Y 2\\¢dY cY Y
ow 1((614 )2 ((30 )2 <6w>2>
£ X )+ )+
- iz 2\\éZ 0z oz
E= = +
u v ((’u)(?u) ((‘?v)(ﬁv)
Vay R e - )+
’ Y X X oY oX Y
du  Ow <ﬁu)<8u) <(?v)((?v) (
-\l,xz + - - - + — +
0Z X 80X/ \oZ X /\oZ
v Ow Cu cu v v
?y: o + - o n + - + -
| ) | 0Z ¢Y | L \¢Y oz Y oz 3

Clearly (4.74) is a neater representation.
If we apply a rigid-body rotation so that, from (4.56), dx = RdX and we compare
the solution with (4.71), we can observe that, for such a rigid rotation D=R—1.

(4.75)
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Substitution into (4.74), then leads (after noting that RTR=1) to E, =0 and,
consequently, the Green strains are zero as a result of rigid-body rotation. However,
if we neglect the $DD term in (4.74) and effectively use a linear strain measure which
is equivalent to the linear strain &, of (4.4) and (4.5), we would obtain:

g, =R+ R—1I

which is not zero.
Consider the two-dimensional case and let R be given by (4.57). It is then easy to
show that:

92
€, =(cosf0 — 1)12)2— I

which is very nearly zero for small rotations, 6.

4.4.1 Virtual work expressions using Green’s strain

The stress measure that is conjugate the Green's strain tensor is the second
Piola—Kirchhoff stress tensor, S,, or its vector equivalent S. Following the
developments of Chapters 2 and 3, the finite element formulation usually spring from
a virtual work expression. Using the Green's strain, such an expression is given by

V=V,— V. = jSTo"EVdV0~ V, = J-Szzéﬂdeo— V. 4.76)

where V, is the external virtual work (see Sections 3.12 and 3.3 for similar
developments with the truss element).

With the aid of differentiation, from (4.73), the change in Green’s strain can be
obtained as

SE, =1[6D + D71+ iD"SD + 15D'D + (16D"3D), 4.77)
or
SE, =1F"6D + 16D'F + (15DD),. (4.78)

The éD terms are simply obtained from (4.72) by replacing du/éX by déu/0X, etc.
The final bracketed terms (marked h) become negligible when the infinitesimal,
virtual changes are applied and

OE,, =3FTéD, + 16DIF. (4.79)

As shown in Chapter 2 and 3, the tangent stiffness matrix can be obtained from
the variation of the virtual work expression V. From (4.76), this leads to

oV = J((SSTéEV + STOBE N dV, = J(éSzzéEvz + S:0(0E,,))dV,. (4.80)

From (4.71) and (4.79),
H(OE,,) = 3[6DISD + 6D'6D, ] (4.81)



GREEN'S STRAIN 19

If we assume that the changes in second Piola-Kirchhoff stress, 3§ can be related
to the changes in Green’s strain JE via:

8S=C,0E,  0S,=C,:0E, (4.82)

where the first form involves a matrix or second order constitutive tensor, C,, while
the second form involves a fourth order constitutive tensor, C, (see Section 4.2). From
(4.80)-(4.82),

oV = j(o‘E‘z:Cm:(SE2 +8:5DfoD)dV, = J((SETCQ(SE + STH(SE,,))dV,. (4.83)

The equations of this section are sufficient for the derivation of a total Lagrangian
finite element formulation for a continuum (see Sections 5.1 and 5.2).

4.4.2 Work expressions using von Karman’s non-linear
strain—displacement relationships for a plate

The membrane part of von Karman's strain-displacement relationships for
moderately large-deflection analysis can be considered as a special case of the Green
strain. If, for a plate in the x -y plane, the ‘in-plane strain terms’, (fu/¢ X )? and Jv/6X)?
etc., are considered negligible, the Green strain vector of (4.75) degenerates to

— du n Tl (0w )2 N
1354 2\ X
| & ! ( ﬁw>2 (4.84)
cY 2\7Y
ou (v ow \ [ ow
Loy ox _(ax) ((’:’Y)_j

which are von Karman’s equations [V1, T2] for the membrane strains. The latter
can be modified to Marguerre’s equations [M2,T2] for use with shallow shells
(Chapter 8). Differentiation of (4.84) leads to a degenerated form of (4.79), whereby

Aoy 9 [ ew 0 [ l(ﬁéw)z ]
cX cX 2\ ¢fX
SE cor oo Cw (T)w 1 (F‘&v)z
Tl ey oY oot 2\ey
dou  Gov cw  Cw f'é{v dow [ dow
L, T % A aY " A
LcY X | LY ¢X | | \ X Y /1.

(4.85)

As with (4.77), the higher order (marked h) terms in (4.85) becomes negligible when
the infinitesimal virtual displacements are involved. One final expression, 0(3E,), is
required (see 4.83) before we have the basis for a finite element formulation (Chapter 8).
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From (4.85),
((/0W> (("(SW) 7]
X
. 0w\ [ ¢ow
wlC |

(4.86)
(0w> (Bbw ((75w> <(7(3w)
_+_ —
| \ax ax J .\ ey ) ]
Hence, from {4.80),
aow [T 6w
o 115.¢ oX
dv = f OSTSE, + ) S, . dv, (4.87)
oow aow
oY |, Y
where
S'={0,0,17,}, S;= [ 7 r”] (4.88)
T, Oy

and in (4.87), for convenience, we have mixed vector and tensor notation.
The equations in this section provide the basis for the derivation of a shallow-shell
element (see Section 8.1).

4.5 ALMANSI’'S STRAIN

In Section 3.2.1, we introduced Almansi’s strain (also sometimes called the Eulerian
strain) for a one-dimensional truss clement. The continuum extension of (3.41) can
be written as

dr? —dr? = dx? - dX? = 2dx"A dx (4.89)

which can be contrasted with (4.68) for Green’s strain. In order to compute the
Almansi strain, A, the original length-increment vector, dX, must now be related to
the final length-increment vector, dx, using the inverse of (4.70) or (4.71), so that
oX .
dX= ~dx=F 'dx=|I— dx. (4.90)
X ax
The last relationship in (4.90) follows from (4.69) with du/éx being of the same form
as D = du/0X in (4.72). Substitution from (4.90) into (4.89) gives

_MI-FTF1 = [(’u ﬁuT}_lﬁuTC‘u

- 491
20x Ox ( )

ox x
in place of (4.74). The strain measure can be related to the Green strain, E, of (4.74) via

FTAF=4{[F'F-1]=E. (4.92)
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4.6 THE TRUE OR CAUCHY STRESS

If, in a finite element context, we adopt an updated coordinate system (as in
Sections 3.3.6 and 5.3}, but maintain the directions of the original rectangular cartesian
system, we will need to use a stress measure that relates to this new (or current)
system. Even if we adopt a Green strain second Piola- Kirchhoff system (as in
Section 4.4) we may wish to interpret our final stresses in relation to the final geometry
because (Figure 4.10) without additional knowledge concerning the deformations, the
second Piola- Kirchholff stresses are difficult to interpret. In either case, the solution
involves the Cauchy or true stress, o, which is the tensor equivalent of the ‘true’ stress
‘o, introduced in Section 3.1.5.

In very simple terms, the Cauchy stress 1s force/final area rather than force/original
area and is related to the current configuration, while the second Piola-Kirchhoff
stress (work-conjugate to the Green’s strain) relates to the original configuration. For
the rest of the chapter, we will omit the subscript 2 implying tensor or matrix since we
will usually use this notation rather than the vector forms for stress and strain.

In Section 3.1.5, it was shown that the true stress was work conjugate to the virtual
strain measure ol /1 (see (3.14)). The equivalent continuum form is

Pou, oo
dt, = [( ot 4 ¢ 1"‘} (4.93)
X X

ANSRAY

NANNAN

(¢

Figure 4.10 Cauchy and second Picla—-Kirchhoff stresses. (a) initial unioaded state; (b) loaded
state with Cauchy stresses: (c) unloaded state with second Piola-Kirchholl stresses
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where X contains the current coordinates. This strain measure is effectively in the
form of a small ‘engineering strain’, but related to the current configuration. It is
sometimes known as the linear Almansi strain increment or linear Euler strain
increment but, as will be discussed later, it is not the virtual variation of the Almansi
strain (4.91) but is more closely related (as for the truss —see Section 3.1.5) to a
log-strain measure (Volume 2). The strain measure in (4.93) is also known as the
Rivlin-Erikson rate of Almansi strain [B1].

In order to relate the Cauchy stress to the second Piola-Kirchhoff stress, we now
adopt equivalent work concepts, so that

v - js;aa dV‘,=Jc:o'svdV (494)

where 6 is the Cauchy stress.
We can relate the current incremental volume dV to the old volume dV via

dV =dxdydz=JdXdYdZ=JdV, (4.95)
where:

J = det(F) = det ((‘;) (4.96)

(The two-dimensional form of this relationship is illustrated in Figure 4.11 with an
initial element of side d X, d Y being moved to an element with sides dx,, dx,,, so that

0x X
oX Y
dAdi; =dx, xdx,=| _ |dX x i dY =det(F)dX dYi; = det(F)dA,i,
cy oy
cX Y

(4.97)

where i; is the unit vector orthogonal to the x-y plane.)
Substitution {rom (4.95) into (4.94) gives

V= fo:és,dV = ch:ésvdl/o = Jr:ésv dv, = fS:ciE\,qu (4.98)

- dy -7
oY — /

dy /

- ﬁYdY dx, /
| ¢ Xa Oy

ay | ) dx
3 X
x «
d
ax X ax
X X
(a) (b)

Figure 4.11 Two-dimensional areas: (a) initial element; (b) final element.
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where
t=Jo (4.99)

is known as the Kirchhoff or nominal stress.

In order to complete the relationship between the stress measures, ¢ and S, we
must establish a relationship between the virtual strain measures, og, (see (4.93) and
OE, (see (4.79)) as used in (4.98). To this end, with the aid of (4.70) and (4.72),
¢ou, Cdu, 0x _ Odu,

D, = - R (4.100)
oX ix X éx

Substituting from (4.100) into (4.79) and comparing the result with (4.93) leads to
OE, = F1oe F. {4.101)
Substitution from (4.101) into (4.98) gives

v, =on:58VdV0=jS:[FTéaVF]dV(,zj[FSFT]:é"sVdVO. 4.102)

The last relationship in (4.102) can be derived by noting the symmetry of S and J¢,
and twice making use of the matrix relationship

AB:C"=CA:B"=BC:A". (4.103)

Hence, the final relationships between the true, Cauchy stresses and the second
Piola—Kirchhoff stresses are given by

1
c=J—FSFT (4.104)

or
S=JF 'oF " (4.105)

At this point, we should re-emphasise an issue first raised in Section 3.2.1. The
Cauchy stress, o, is work conjugate to the virtual strain measure of (4.93). This term
is not the virtual variation of the Almansi strain. In this sense, one should not really
consider the Cauchy stress as being conjugate to the Almansi strain. Indeed from
(4.91), one can show that

dou,

2l

JA, = dg, — [AT
ax ax

dou’
+ oo A]. (4.106)
Although we have specifically omitted dynamics from the scope of this book, a
stricter derivation of the previous equations requires the introduction of a time
measure with a superimposed dot representing differentiation with respect to time.
Because a lot of published work introduces this time element, we will give a brief
summary at this stage. The strain-rate tensor, &, can then be considered as:

1
£¢=- 0t (4.107)
dr

(strictly in the limit). As already indicated, the Euler strain increment, dg (see (4.93)),
is related to the current geometry x rather than the original geometry, X. Hence there



124 BASIC CONTINUUM MECHANICS

are no ‘initial displacement (D) terms’ as in (4.77) and e takes a similar form to the
engineering strain increment, so that

1 . 1[déu 0Oou"

=- Jg=— [—- q+____u 1=%[L+ L"] {4.108)
dt di} dx ax

£

where £ is often referred to as the rate of deformation tensor or velocity strain tensor.
It is a function of L, where
1 déu Jx oOv
= == (4.109)
dt &x ?Jx dx
and v is the velocity. L is known as the velocity gradient. Equation (4.109) is of a
similar form to (4.72) and in component form involves

[ 6x, ¢&x, éx,
axl axz axs
Lo| %% o 0k (4.110)
axl aXZ 6X3

0%y 0%y 0%

ax, 0x, 0,

From (4.73),
E, =F'F+FF,] (4.111)
where
. 0k, 0%, 0
F,= XX R (4.112)
X ox oX
Hence

E, = i{F'LF+FL'F]=!F[L,+L]F=F%F (4.113)

which, with (4.107), coincides with (4.101). If the d¢, and JE, terms in (4.101) are now
replaced by &, and E, respectively, (4.104) and (4.105) can be derived as before.

4.7 SUMMARISING THE DIFFERENT STRESS
AND STRAIN MEASURES

We have not yet introduced the first Piola—Kirchoff stress tensor, P. Referring back
to (4.9) and Figure 4.2, the external tractions can be expressed either in terms of the
original configuration (via P) or the final configuration (via, e, the Cauchy stress).
Hence

t,dS, = PNdS, = tdS = ondS (4.114)

where n is the final and N the initial unit normal vectors. Referring to Figure 4.12,
the unit area dS, can be expressed as (see [M1] for details):

1 1
NdS,=dX, xdX,=F 'dx, x F'dx, =jFT(dxa x dx,) =JFTndS (4.115)
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a (b)

Figure 4.12 Areas in the initial and final three-dimensional configurations: (a) initial; (b} final.

with J being given by (4.96). Equation (4.115) is known as Nanson’s formula. Substi-
tution into (4.114) gives

P=JoF "=FS (4.116)

where the last expression in (4.116) is obtained with the aid of (4.104).

The first Piola- Kirchhoff stress, P, which is non-symmetric, is work-conjugate to
the infinitesimal virtual displacement gradient, éD, (related to (4.72)). This can be
demonstrated with the aid of (4.76) and (4.79), i.e.

V,= Js:éEvdVO = %Js:[lﬂéov + 3DIF1dV,

=fs:[FT(SDv]dVﬁst:aDvdVo:fpzal)vdvo. 4.117)

We can now summarise the relationship between the various stress and strain
measures using the principle of virtual power which is effectively equivalent to the
principle of virtual work, but with virtual velocities instead of virtual displacements.
Using the principle,

S PR | . 1
V= '= S:OE,dV, = | S:E, dV,= - | P:éD,dV,
dr dt f E. f E, dt ,[
. t
= |P:F, dV, = —l jr:éevdVo =Jr:évdVo =- Jc:ésvdV = jc:évdV (4.118)
dt dt
where
the first Piola-Kirchhoff stress: P=FS=[I+D]S=det(F)oF " 4.119)
the second Piola—Kirchhoff stress: S=det(F)F 'oF~ " (4.120)
I
the true or Cauchy stress: o6=--- - -FSF' (4.121)
det(F)

the Kirchhoff or nominal stress: 7 = det(F)o = FSF'. (4.122)
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The stress tensors S, P and 1 are work-conjugate to their complementary virtual
‘strain measures’ 0E,, 6D, (or F,} and ¢, (or d¢,) in relation to the original volume
V, while the Cauchy stress, g, is conjugate to &, (or d¢,) in relation to the final volume V.

4.8 THE POLAR-DECOMPOSITION THEOREM

The polar decomposition theorem is useful for (1) large-strain and large-rotation
applications and (2) applications with corotational or convective coordinates [B2].
[t can also be used to provide a simple physical explanation of the second Piola-
Kirchhoff stresses. The theorem states that the deformation gradient of {4.71) can be
decomposed (Figures 4.13 and 4.14) into a set of stretches followed by a rigid rotation.

aX = {o}\\/ 12
10

dx':{o} v T[o 2}

NE A'B = 20AB A'B" - AG’
C'D =05CD D -

Figure 4.14 A more complex example of polar decomposition.
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The stretches involve (Figure 4.13)
ox,
dx,= “dX=UgdX {(5.123)
dX

and are followed (Figure 4.13) by the rotation

o

dx = ¥ dx, = Rdx, (4.124)
CX,
and hence
dx= " "Xdx = FdX = "% ™ 4X = RU, dX. (4.125)
X (x X

Equally (Figure 4.13), the rotation can be followed by the stretch and hence

We will usually use the first part of (4.126) and will often omit the subscript R (for
right). For the simple two-dimensional example of Figure 4.13,

F=RUR:[0 ‘1]:[0 _1}[2 0]. (4.127)
20 1 o]lo 1

In general, the decomposition is more complicated (Figure 4.14), because the
principal stretch directions must be computed. In Figure 4.14, the material is sheared
and then rotated. In relation to the original body, the principal directions involve
AB (or A’B’y and CD (or C'D’) and have unit vectors given by

AY 0 NI=- o1l (4.128)

The N, direction is stretched by a factor of 2.0 and the N, direction by a factor of
0.5 (i.e. compressed). hence, the stretch matrix, U, can be written as
1.25 O.75:|

(4.129)
0.75 125

U=20N,N} +0.5N,N] =[

and the final deformation-gradient matrix F is given by

0 —1jf125 075
F=RU= . (4.130)
1 040075 125
The concepts should become clearer once the theory has been formalised.

In (4.74) and (4.91), we introduced the strain measures E (Green) and A (Almansi).
A more direct ‘stretching measure’ is given by

T 12
/::dr,, (dx dx) \dx“ @131)
dr, \dXTdX 1dX |
so that
T
229X I rpreN (4.132)

-~ dXTdX
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where
dX dX
N= NT A2 - av
@xtdxyts  dXj
is a unit vector in the direction of dX. The stretch measure, 4, will be unity for a
rigid-body rotation.

It is useful to vary the directions of N and find the principal stretch values and
their corresponding directions. To this end, consider the functional

¢ =N'F'FN-oN'N-1) (4.134)

where « is a Lagrangian multiplier provided to ensure that N remains a unit vector.
For §¢ =0, variations with respect to N give

[F'F —al]N=0. (4.135)

Pre-multiplying (4.135) by NT and comparing with (4.132) shows that « = A% and
hence (4.135) gives

{4.133)

[F'F — 1IN ={U'U — 2?I]N (4.136)

where the last relationship follows from {4.126) (dropping the subscript R) having
noted that R is a rotation matrix so that R" = R™'. Equation (4.136) is an eigenvalue
problem from which A2 — 4% and hence 4, — Z; can be obtained along with the
principal directions N, — N;. Hence, we can write

FTF=UU= AfN,N{ + },gNzNg + ),§N3N§ = Q(N)Diag (A1HQ(N)T (4.137)
where

QN) = [N, N2 N, ] (4.138)

contains the eigenvectors N, -N;. Thesc eigenvectors can be used to express the stretch
matrix, U in terms of 4,-4; and N,-N, via

A

U= 4,N,NT + i,N,NT + 4,N,N! = Q(N) Diag (DQ(N)' = Q(N) Ao |lQMVT

(4.139)
which is the solution to the eigenvalue problem
[U—-AillN=0. (4.140)

Clearly (4.139) is compatible with (4.137). The eigenvectors or principal stretch
directions N;~N; satisfy NIN, =NIN; =NIN, =0 and define a rectangular
orthogonal system of unit vectors referred to as the ‘Lagrangian triad’ or ‘material
axes’.

The equivalent of (4.133) in the current (spatial) configuration is

_ dx dx

R 4.141
(dxTdx)''? x| ( )
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From (4.141). (4.70) and (4.133),

d FdX dx!
ao O _FdX_| ‘FN:{FN. (4.142)
fdxj| ldx| [dx]|| A
Substitution from (4.142) into (4.136) gives
F'n—A2F 'n=0. {4.143)

Multiplying (4.143) by (1/A)F (assuming 2 # 0) gives
[FF' — A2[n=[VV' - /[]n (4.144)

where for the second relationship in (4.144), we have used the VR decomposition in
(4.126). Equation (4.144) is the spatial equivalent of (4.136) while the equivalents of
(4.139) and (4.140) are

V = /;mn] + 4n,n] + 400 = Q(n) Diag (4)Q(n)’ (4.145)
and
[(V—illn=0. (4.146)
The unit vectors n, -n, define the *Eulerian triad’.
Because the rotation matrix, R, defines the movement from N; to n, from (4.67),
it is given by
R =QmQMN)". (4.147)
Hence, from (4.126), (4.139) and (4.147):

F = RU = Q(n) Diag (HQ(N)" = i, n,NT + 2,n,NT + ;,;n,NT.  (4.148)

4.8.1 Example

To help understand these concepts, it may help the reader to return to the example
of Figure 4.14. A question could be formulated as follows.

Given
‘u  Cu
"X Y 0.25 0.75
p=| " = (4.149)
cvo Or 0.75 026
cX Y

calculate, in order,

(a) Fand F'F
(b) 23,43, N,,N, from the eigenvalue problem of (4.136)
{c) U from (4.139)
(d) U™ ! indirectly from (4.139) using
i 1 ) o
U“=)-N1N{+/_— N2N§=Q(N)Dlag( )Q(M' (4.150)

!
1 )
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(e)-R from (4.126) via R=FU "
(f) Q(m) and hence n; and n, using (4.147) so that Q(n) = RQ(N)
(g) the stretch V from (4.145).
The solutions have already been given in Figure 4.14 and (4.127)-(4.130).
Although the information has already been obtained could also compute
(h) FT" and hence £2, 23, N,.N, [rom the eigenvalue problem of (4.144).

4.9 GREEN AND ALMANSI STRAINS IN TERMS OF THE
PRINCIPAL STRETCHES

In principal strain space, the Green strain components (see (4.68) and (3.9)) can be
written as

E =14 -1, i=13 (4.151)

while the Almansi strains (sec (4.89) and (3.41)) can be written as
1
Ai:§<l~‘2>. i=13 (4.152)
A
and using (4.74) for E, and (4.137) for F'F,
2
E=4{F"F - 1)=LU"U - QMN)QNY) = [Q(N)Diag(" , l)Q(N)T] (4.153)

where we have used the orthogonality of XN) so that QINYQ(N)' = L. Equation
(4.153) confirms (4.151) and shows that the directions of the principal Green strain
coincide with the Lagrangian (or material) triad, N, N,.

In a similar fashion, using (4.91) for the Almansi strain, A and (4.145) for V,

-2

A=31-F'F ) =3QmQm" -V 'V = [Q(n) Diag</'.-2

—1
2 )Q(n)TJ (4.154)
which not only confirms (4.152) but also shows that the directions of the principal
Almansi strain coincide with the Eulerian (or spatial) triad, n,-n;.

Suppose a Green strain, K|, is created by a stretch U, followed by a rotation R,
(scc Figures 4.13 and 4.14) while E, is created by U being followed by R,. It follows
from (4.74) and (4.126) that

E =E=4FF-Dh=}U'U-T (4.155)

and is therefore unaltered by a rotation change from R, to R,. The same conclusion
can be drawn by observing that the material triad, N, N; is unaltered by R and
hence from the right-hand side of (4.153), E is unaltcred.

In contrast, from (4.147), the Eulerian triad, Q(n), does change with R and hence
the Almansi strain does change as a result of a rigid rotation.
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410 A SIMPLE DESCRIPTION OF THE SECOND
PIOLA-KIRCHHOFF STRESS

If the strains are small, 4, ~ | and, from (4.139) we can write

U=I (4.156)
so that, from the decomposition theorem of (4.126),
F~R (4.157)
Because of (4.157),
J=det(F)~1. (4.158)

Hence, given a second Piola--Kirchhoff stress, §, obtained {from the Green strain
in fixed (global) axes, the latter can be converted to a Cauchy stress (still related to
fixed, global, axes) so that with the aid of (4.104), (4.157) and (4.158),

o, = RSR". (4.159)

This stress can now be related to the new (local) rotated axes via (4.36) so that with
T" = R (see (4.60)),
o,=R's,R=R'RSR'R=S. (4.160)

Hence, for small strains, the second Piola—Kirchhofl stress can be interpreted as the
Cauchy stress related to axes that rotate with the matenal.

4.11 COROTATIONAL STRESSES AND STRAINS

Although the coincidence with the second Piola -Kirchhoff stress is valid only for
small strains, the concept of a ‘rotated Cauchy stress’ is also useful for shell analysis
[B2]. Figure 4.15 illustrates the ideas.

Suppose the stress state in Figure 4.15(a) is rotated to the state in Figure 4.15(c).
Clearly, in local coordinates, the state is unchanged. However, from Mohr’s circle
(Figure 4.15(d)), the stress state in global coordinates is as shown in Figure 4.15(e).

1/2

N —1/2

7 i V2
A e 8 =L

\:3) g] {e 021=\}2[_1 —11] ;[1 11?]

(a) (b) (c) (d) (e)

Figure 4.15 Some concepts with rotating coordinates: (a} a,: (b) R. (¢} 6. (d) Mohr's circle, (e) a.
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This relationship can, alternatively, be found from the use of (4.160), so that

cngoaRT:I[l _'][l 0[ ! 1]:' 1 1} (4.161)
2Lt 1dlo ol -1 1] 201 1

If we assume that o, (Figure 4.15(¢)) is now a given Cauchy stress, a ‘corotated stress’,
o, related to the rotated system (Figure 4.15(c)) can be computed via

6,=Te,T"=R'0,R. (4.162)

Hence, this ‘corotated stress’ can either be thought of as the original Cauchy stress,
6., expressed in ‘local coordinates’ that rotate with the body or. alternatively, as the
original stresses, 6, still related to ‘global coordinates’ but rotated by RT (see 4.63))
i.e. rotated back to the original configuration (as in Figure 4.15(a)) via R".

4.12 MORE ON CONSTITUTIVE LAWS

In the present books, we will be mainly concerned with three types of stress—stain law:

(a) linear elastic
(b) hyperelastic
(c) hypoelastic
(d) elasto-plastic.

We have already discussed (a) in Section 4.2. A chapter of Volume 2 will be devoted
to (b) while Chapter 6 of the current volume and further chapters of Volume 2 will be
devoted to plasticity. Here we will give a very brief summary of the different relation-
ships providing only sufficient detail to enable an understanding of the following
Chapter 5 on finite elements and continua.

Hyperelastic models are essentially higher-order forms of linear elastic models in
which the stresses are some functions of the total strains or stretches [D1]. The
obvious example of a hyperelastic material is rubber. If we consider a ‘Green elastic
materials’ this total relationship is derivable from an elastic potential. If the strain
energy/unit volume can be expressed as ¢, then the change of strain energy is

. . dp
dp=06:0e= _ :0¢ (4.163)
133

while the stresses can be obtained from

) =f5(p =J6:5£ (4.164)
via
)
a=""  5,=2 (4.165)
Ce
and the tangent relationship follows from a further differentiation, so that

Rt 22
6=Cui=" Vb, Gy=_ — i (4.166)
cede
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(We might have written do and J¢ rather than 6 and £.) As a consequence of (4.166),
C, will be symmetric (Co/¢xCy = @/dy).

A one-dimensional example could involve a second-order parabolic relationship
for ¢ so that

2
o=f(8)=E(¢;— ¢ ) 4.167)
2,
where ¢, is the strain at the peak response. From (4.164)
Bk (4.168)
?=5 6t '
while from (4.166)
N2 2
d=E(fZ=i(fé=E(£—s )e (4.169)
ce” 2¢,

This illustrates that the C, matrix is generally not constant (see also Sections 3.2).
Within a finite element context, we will need the C, matrix (as in (4.82) or (4.166))
for the structural tangent stiffness matrix, but the total stresses and hence the internal
force vector will, for a hyperelastic material, come directly from (4.165) and not from
the integration of the ‘rate equation’ of the form of (4.166).

In contrast, for hypoelastic materials [D1], we have no such total relationships
and are forced to start with a ‘rate (or incremental) relationship’ of the form:

é6=Cg, do = Coe (4.170)

in which C, (which may or may not be constant) will be given. Such relationships
are often used for geomechanical materials. For a hypoelastic material, the C, matrix
is not only required for the structural tangent stiffness matrix but also it must be
‘integrated’ (at the Gauss-point level) to obtain the total stresses and hence the internal
force vector. On applying a closed cycle of strain (which ends up with a total strain
of zero), a hyperelastic model will give zero stress. This does not necessarily follow
for a hypoelastic model (as will be discussed further in Volume 2).

The reader will be aware of the main aspects of plasticity which is treated in
Chapter 6. For the present we need merely state that plasticity leads to a ‘rate-form’
of constitutive law along the lines of (4.170). Generally, the tangent C, matrix wiil
not only be a function of some material parameters but also of the current stresses
and possibly ‘internal variables’ (see Section 6.4.1). The previous comments on
hypoelastic materials apply also to plasticity.

We have so far not mentioned the issue of large or small strains. Hyperelastic
materials such as rubber inevitably involve large strains. Some metal plasticity also
involves large strains. Many previous finite element formulations effectively treated
such matters via hypoelastic relationships coupled with plasticity, so that the integra-
tion of the rate equations was relevant both in relationship to plasticity and to the
‘large-strain rate measures’ (as will be discussed in Volume 2).

Before leaving this section we should re-emphasise the observation drawn in
Section 3.2 that to obtain the same solution with different stress and strain measures,
the stress-strain laws will need to be changed. This issue is discussed further in
Sections 5.3 and 5.4.
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4.13 SPECIAL NOTATION

1 (or 1,) = unit second-order tensor (see {(4.30) and (4.31))
e,,e,, e; = orthogonal unit vectors
A = vector area with components A, A,, A (Section 4.1)
A = Almani’s strain (see (4.91))
C,,C, = sccond- and fourth-order constitutive tensor (or matrices)
D = displacement-derivative matrix (see (4.72))
E = Green’s strain (as vector or tensor; the latter is sometimes E,)
F = external force vector (Section 4.1)
F = deformation gradient (sce (4.71))
I = unit fourth-order tensor (see (4.30) and (4.31)) or (sometimes)
unit matrix (or second-order tensor)
J =det(F)
k = bulk modulus
L = velocity gradient (see (4.110))
n = unit normal vector (Section 4.1)
N, Ny, N3 = unit vectors defining directions of principal stretch in final
configuration (defines the Eulerian triad)
N = n in initial configuration (Section 4.7)
N,.N,, N; = unit vectors defining directions of principal stretch in initial
configuration (defines the Lagrangian triad)
P = first Piola- Kirchhoff stresses
Q = orthogonal matrix containing principal directions, Ns or ns
r = line element
R = rotation matrix
S = second Piola—Kirchhoff stresses (as vector or tensor; the latter
is sometimes S,)
t = vector of equilibrating external tractions/unit area (Section 4.1)
T = transformation matrix
u = displacements
U(sometimes Ug) = right-stretch matrix (from polar decomposition)
U, = left-stretch matrix (sometimes V)
V = left-stretch matrix (from polar decomposition)
x = final coordinates (x = X + un)
X = initial coordinates
Vxp €tC. = shear strains =¢,,/2 =¢,,/2
&, = mean strain
€ = vector or tensor of strains (latter sometimes g,)
€4 (Or €,4 or e} = deviatoric strains
+ = Lamé’s constant (Section 4.2.3)
/. = stretch scalar (see 4.131))
4 = shear modulus
0, = Mmcan stress
¢ = stress (as vector or tensor; the latter is sometimes ¢,); note: o is
sometimes used specifically for the Cauchy stress
0,4 (or s) = deviatoric stresses

|
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T, ctc. = shear stress
1 = Kirchhoff or nominal stresses
¢ = strain energy

Subscripts
g = global
/= local
n=new
o=old
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5 Basic finite element
analysis of continua

5.1 INTRODUCTION AND THE TOTAL LAGRANGIAN
FORMULATION

In the present chapter, we will apply some of the continuum mechanics of Chapter 4
to the development of finite element formulations for two- and three-dimensional
continua. We¢ will mainly concentrate on the total Lagrangian formulation
(Z1,B1,B2] but will also consider the updated Lagrangian technique (Bl,B2].
Although the work is closely related to that described by Bathe [B2], there are some
significant differences in approach.

The total Lagrangian method is appropriate for large rotations and small strains
but may also be applied to large elastic strains {such as occur in rubber) if an
appropriate hyperelastic material model (sec Section 4.11 and Volume 2) is used. The
method can be used for clasto-plastic problems (Chapter 6) with small strains but
large rotations. Readers wishing for a brief introduction could omit the sections on
the updated Lagrangian technique.

The total and updated Lagrangian procedures, which uses the Green strains and
second Piola- Kirchholff stresses (Section 4.4), have already been applied in Section 3.3
to truss elements. The present work is closely related to these carlier developments.

Generally, in this chapter, we will adopt the procedure of Chapter 4, whereby
upper-case X, Y and Z (collectively X) will relate to the initial coordinates, while
lower-case x,y,z (collectively x} relate to thc current configuration. However,
throughout the present section on the total Lagrangian procedure, such a distinction
is unneccessary since we will always be referring to the initial configuration. Hence,
purely to aid a neater presentation, we will here violate this convention and use lower
case.

We start by summarising the main results from Section 4.4 on the Green strain
which (see (4.74)) is given by

E,=i{FF-I1=i{{D+D']+iD'D (5.1

where F =1+ D (see (4.71)). Instead, we could use the vector form of (4.75). From
(4.78) the change, JK, is

JE, =L1FT6D + 1DTF + [16DT5D], (5.2)
136
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where the square-bracketed ‘higher-order’ terms vanish in the case of infinitesimal,
virtual changes. From (4.76), the virtual work can be expressed as

V= Jszzo‘az av, -V, = jsT(deo —V, (5.3)

where V, contains the virtual work performed by the external loads. Both the tensor
and vector forms are included in (5.3) (see (Section 4.1)) because they will both be
required in the following.

In equations (5.1)-(5.3), we have adopted the approach, introduced in the early
part of Chapter 4, whereby a subscript 2 (second order) is introduced for the tensor
(or matrix) stress and strain forms in order to distinguish them from the vector forms
(which have no suffix). We will often, later, drop the subscript, 2, because it should
be obvious from the context which form is being used. In particular, the tensor form
will be required when the contraction symbol, ;, is used (see discussion below equation
(4.6)) while the vector form will be associated with the ‘transpose’, T (see equation (5.3)).

Equation (5.3) will allow the formation of the out-of-balance force vector, g, while
to form the tangent stiffness matrix, we can (but do not have to-—see Section 5.1.2)
use the change in (5.3). From (4.83), this is given by

5V=iﬁ5EﬂlﬁE+SﬁéDfMHdK, (54

where, for future convenience, we have used the vector form for the first term and
the tensor form for the second.

5.1.1 Element formulation

We will firstly consider a two-dimensional formulation in which the displacements
u and v are related to nodal values u and v via shape functions h which involve the
non-dimensional coordinates ¢ and 1, so that

u=Hh¢Z n, v=h& . (5.5)

In the standard isoparametric manner, the shape functions are also used to relate
the coordinates x and y to nodal coordinates x and y. Then at any point (in particular,
a Gauss point), the Jacobian is obtained as

¢ ox ay 0 ¢

o _ ot ¢ O0x -3 (“jc (5.6)

0 x dy é 0

on oy oOn dy cy

From (5.5) and (5.6), one can obtain

¢ 0 5]
e Zeaant (5.7)
fx o n

and equivalent terms so that a vectorised form of the displacement derivative tensor,
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D, can be obtained as

ou]
ox
ou | 9711 Dhy + 37 (1. 2)hy 0"
ol Y _| 9@ hi+ I 2. by ) 0" ] ["}Gp 5.8)
év 0" J7(1, D] + J (1, 2)h] (L
éx 0" J7'2. Dhf + 3712, 2h]
cr
| éy |

where p contains the full vector of nodal displacement. (See the footnote on page 25
regarding the ordering of the variables). A similar equation relates 40 (equivalent to
dD) to Jp so that

30 =G op (59)

and we can add the subscript ‘v’ for virtual to both 38 and Jp in (5.9). Using (5.8),
the Green's strain of (5.1) can be written in vector form (see (4.75)) as

| cu]
r du 7 [~ Cu v 1 Ox
éx (?ic 0 F)Lc 0 ou
; s v
E=E+E,= ;: +—; 0 ?; 0 ::t ;i =E, +1A(0)0 (5.10)
du v u du v O ax
L gy éxd Loy éx dy oxd|aw
| oy _
or
E=E +E,=[H+1A(0)70 (5.11)
where
I 0 0 O
H=({0 0 0 1 |. (5.12)
01 10

The change in Green’s strain (5.2) can be expressed in vector form as
OE = OE, + $A(8)30 + 15A(6)0 + 0(56%) (5.13)

where JE, is as E, in (5.10) but with terms such as ddu/dx in place of du/éx. From
the expression for A(0) in (5.10), it is clear the 6A will be A(68), which is of the same
form as A(0) in (5.10) but again with ¢u/dx replaced by ¢du/éx, etc. Because it can
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be shown that
A(36)0 = A(8)00
equation (5.13) can be re-expressed as

OE = OE, + A(8)60 + 0(36?)

=[H+ A(8)]58 + 0(30%) = [H + A(8)]Gop + 0O(56%).

Equation (5.15) can be rewritten as
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(5.14)

(5.15)

3E = (B, + A(B)G)dp + O(5p*) = B,,3p + 0(5p?) = (H + A(6))Gdp + O(3p?). (5.16)

For small virtual displacements, (5.16) becomes
SE, = B_,(p)dp,.
Substituting from (5.17) into (5.3) gives

V=2:p! j Bl (p)SdV,—3d"q.=dp)g

from which the out-of-balance force vector, g, is given by

g=¢-q.= jBL(p)SdVo —9q.= fGT[H +A0)1'SdV, -

where, for the two-dimensional case,

ST = (Sxxw Syy’ Sxy) = (SI 1 SZZ’ SIZ)'

5.1.2 The tangent stiffness matrix

From (1.80)
,
3V = opT “Bop = 5pTK.Ip
op

or from {5.4) and (5.16) and (5.17):

q.

(5.17)

(5.18)

(5.19)

{5.20)

(5.21)

8V = opTK,0p = 6p(K,, +K,,)5p = dp! f BL(p)C,(S)B,,dV,5p + fS:fSDI DAYV,

In the two-dimensional case, the second term in (5.22) is given by

dou  dov Adu

3 ) Sy S Ax  dx 3,
oplK,op= |S:6DIsDaV, = || O 2l f Y o
S12 S22 oou (v dor

cy  éy |, ox

(5.22)
(7(511
vy
ey,
dor
cy
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where K,, is the ‘geometric’ or ‘initial stress’ contribution to the tangent stiffness
matrix (see also Sections 1.3 and 2.1). Equation (5.23) can be re-expressed as

(oou |7 |
ox ax
dou |:Sn Sujl[ 0 0 ] ﬁéu
oy S, S 0 0 é .
6pTK(,,5p=f -~ o Y dVozjéefScSOdVo.
‘ 66L I:O 0][8“ Slz] 869
dx 0 0JLS,, S, 0x
(2‘5” Oéq
dy ay
- - - (5.24)
From (5.9) (in real and virtual form), it follows that
SpTK,,op = op! IGTSGd v, dp. (5.25)
Hence, from (5.22) and (5.25), the full tangent stiffness matrix is
K| = Kll + Kla = J(BII(P)C(an(P) + GTSG)dVo- (5.26)

We have just derived the tangent stiffness matrix by starting (see (5.4)) with the
continuum form of the change in virtual work (derived in Section 4.4.1). We can
instead work directly from the discretised out-of-balance or internal force vectors in
(5.19). Using this approach, the change of the internal force vector g;, in (5.19) is given
by

oq, = J(Bg,as + SBLS)dV,. (5.27)

The first term of (5.27) leads directly to the standard tangent stiffness matrix, K,, (see
(5.26)), while the second leads to the geometric stiffness matrix. Considering the
expression for B, in (5.16), it is clear that the changes in both H (see (5.12)) and G
(see (5.8)) are zero. (For the latter observation, one should note that J in (5.6) involves
the initial, fixed, coordinates.) We are left with a change to A() which, as previously
discussed, is A(60). It is then easy to show that:

SBILS = A(38)'S = §50 = SGp (5.28)

where § is given in (5.24). In conjunction with (5.27), (5.28) leads to the geometric
tangent stiffness matrix, K,, previously derived in (5.24).

5.1.3 Extension to three dimensions

The extension to three dimensions is straightforward. In particular, we have:

o7 ((714 u du v v v w  éw 0w>

-, . (5.29)
ox Ov 0z Ox

bl I 3 V_.7
dy Jz {dx  dy 0Oz
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pl=(u v, w7
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(5.30)

so that the G matrix takes a very similar form to that of (5.8) but instead, for example,

the second row would read

G2, )=(J M2, Dhl +J7 (2. 2h] +J7(2.3)h]) 0° 0")

(5.31)

where &, , { are the three non-dimensional coordinates. In place of the terms 1n (5.10),

L .
éx Qy Oz Oy

cu v cw  (u
E,f:< . +

and the matrix, H, of (5.12) is replaced by

S oCc oo —-
SO - O O O
o - O O o O
S o = O O O

v

P

[=lelele N

O - O O o O

with the A(8) matrix of {5.10) being replaced by

cu or
' 0 0
- N
x Ox
cu
0 0 O
A
oy
cu
0 0 0
z
AG) =] _
cu  Cu Cl
ay  Ox )
cu cu
0
- - -
iz ‘x (:z
el o
u (u
o . 0
L cz Oy

In addition, the vector S of (5.20) becomes

ST =(S S S::’ Sxy‘s_\*:* Sx:):(sl I*SZZ*S.\}’

xx3Pyys

while S of (5.24) becomes

u

I
(2R l}
o e
€2l —2—

0

0

~ T

3]

- o o Cc oo

-~ -
o Cw
al + o
cZ Yy

0

0

1

0

0

O—.-

0 0T

w 0

Cy

0 (ﬁw
iz

cw 0

Cx
2

0 (;n
Cx

w o Cw

‘s Oy

51283, 813)

(5.32)

(5.33)

(5.35)

(5.36)
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5.1.4 An axisymmetric membrane

We will now consider a special form of continuum—an axisymmetric membrane—
and will derive the finite element equations for a simple two-noded element (Figure
5.1) using a total Lagrangian formulation. We could derive such an element by
specialising the general formulation of Sections 5.1.1--3 but instead will restart from
first principles.

The element has much in common with the total Lagrangian truss element of
Section 3.3. In particular, the displacements and radius, R = x, are interpolated via

_EN\T
u=hTu=;(:+§> (”‘). w=h'w. R=h"R (5.37)
U

As for the two-dimensional formulation of Sections 5.1.1-2, we will assume that the
vector of total displacements can be written as p’ = (u’, w").

The strain along the membrane, E,, is precisely the same as the strain, & of
Section 3.3. Hence, from that chapter (in particular, equation (3.55)), or directly from
(5.37), we can write

Bl owips A (5.38)
v = 212 =bp 21313 p .
where [ 1s the final length of the element, [, = 22, is the original length and (see (3.56)):
| .

brz%'(z(”xzhxzu‘-21’521) (5.39)

where, as in Chapters 1-3, terms such as x,, means x, — x,. The matrix A in (5.38)

» X(u)

Figure 5.1 A simple axisymmetric membrane element.
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is given by
[ 0 0
L B (5.40)
4 0 0 1 -1

(We have used the symbol A here in contrast to the symbol A in (3.57) because of
the alternative use in this chapter of A—see (5.10).) Also (see (3.61)):

SE, =bTép+bldp=>b,(p)op (5.41)
where (again using the convention u,; = u, — u,, etc.);

1

42

b

(= Uy Uy, — Wap, Wyy). (5.42)

The second strain, E,, is the hoop strain which is given by

2t u l<u z
E,= " Jo=" 4" =E +lE2' 5.43
*7 22 TR 2\R 2 >4

The terms ¢, and ¢, are the final and original circumferential lengths. From the
adopted shape function, we can write

) | ;
Ey=uw/R=d"p= pll-ét+eo 0)p; SE, =d"op. (5.44)
From (5.43) and (5.44),

SE, = (1 + Ep)8E, = (1 + E;)d78p. (5.45)

Combining (5.41) and (5.45),

; T
SE = (5}:1 ) _ [ b.(p) T:I(sp = B,,dp. (5.46)
SE, (1 + Ey)d

Hence, as in (5.19), virtual work gives
Q= jBLS dv, (5.47)

where the vector S contains the two second Piola -Kirchhoff stresses corresponding
to the Green strains E, and E, respectively. Also.

dV, = 2nt R(&)x, dE (5.48)

where 1, is the (initial) thickness.

The tangent stiffness matrix follows from differentiation of (5.47), which leads to
an equation of the form of (5.27) with K,, as in (5.26) and C, as the 2 x 2 tangential
modular matrix relating the small changes in S to the small changes in E (see Volume
2 for a C, matrix appropriate to a rubber membrane). The geometric stiffness matrix
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K,,. follows from the 6BLS term in (5.27) so that, using (5.46),

) -
K(aépzjsl (..P‘-';-'dV‘,ép+ jszdbﬁl,dVO (5.49)

from which, with the aid of (5.41) and (5.42) for ob,,/@p) (noting that b, in (5.41) is
constant) and (5.44) for éE,,

1 -
K‘U=J&251AdVO+JSdeTdV‘, (5.50)

where A has been defined in (5.40).

5.2 IMPLEMENTATION OF THE TOTAL
LAGRANGIAN METHOD

For a linear elastic material, the implementation would follow very similar lines to
those already discussed in Chapters 2--3 for truss elements (the shallow truss
formulation of Chapter 2 can be considered as a special form of the total Lagrangian
technique using a special form of the Green strain.} In particular, if a linear elastic
analysis were performed with a fixed modular matrix so that C, = C, the stresses, S,
in (5.20) or (5.35) could be computed directly from the total strains using S = CE
with the Green strains, E, being computed in tensor form directly from (5.1), where
D (see (4.72)), would be obtained from the components of 8 (see (5.8) or (5.29)).
Alternatively, in vector form, we would use (5.10). Extensions of the total Lagrangian
procedure to cover hyperelastic materials (see Section 4.12) will be considered in
Volume 2.

5.2.1 With an elasto-plastic or hypoelastic material

As already discussed in Section 4.10 with an elasto-plastic or hypoelastic material,
the stress—strain relationships take a ‘rate’ or ‘incremental form’ (see (4.170)) which,
for the present purposes, can be considered to involve

AS = C,(S,)AE or AS =1In(S,, AE) (5.51)

where C, would not only be a function of the material properties but also of the
current stresses, S. Strictly, the material relationship will involve ‘rates’ or very small
changes (as in (4.170)). To overcome this problem, some form of integration procedure
(Chapter 6) would be used at the Gauss-point level in order that AS could be computed
from AE. Hence, the right-hand form in (5.51) would apply. In these circumstances,
the ‘new’ stresses, S, would be obtained from

S, =S, + AS(AE(Ap)) (5.52)

where S, are the ‘old’ stresses stored at the end of the last converged increment and
AS would be computed from AE where AE is the incremental strain. (The reason for
working with incremental rather than iterative strains is discussed at the beginning
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of the next chapter.) The incremental strain, AE, would be computed from the total
incremental displacements obtained from the ‘predictor’. Ap, in conjuction with a
number of iterative changes, op;. dp,. etc., so that

Ap = Ap, + dp; +op> + - (5.53)

(or from the difference p, — p, with p, as the current total displacement and p, as the
displacements at the end of the previous increment).

Enter with:

p, = old displs. at end of last inc.

p. = new displs. following predictor soln.
S, = old stresses at end of last inc.

E, = old Green strains from end of last inc.

Call MATERIAL (p,., S.. E,. mat. propertics, S, E_)
which:
(1) computes E, = [n.(p,)
(2) computes AS=fn.(S,.E, — E,)
(3) S, =S, +AS

Call ELEMENT which:
computes ¢; and (possibly) K,

< Convergence check using | gil. Converged? Y@ﬁ

No

Call SOLVCR which computes dp= — K 'g

Po=P,+0p

S() = Sn, Eo = E
Go to next inc.

Figure 5.2 Flowchart for elasio-plastic update



146 BASIC FINITE ELEMENT AMALYSIS OF CONTINUA
Given Ap. AE. for use in (5.52) can be computed from
AE=E,(p, + Ap) — E/(p,) (5.54)

where the total strains E, and E, would be computed using the procedure described
in the previous section. The old Green strain, E,, might well he stored along with
the old second Piola-Kirchhoff stress, S,. Alternatively., AE could be computed
directly from (5.2) (with As instead of ds). But it would be essential to include the
higher-order bracketed term, so that

AE, = F'AD + JAD'F + 5AD'AD (5.55)

with the components of D (for F) and AD being computed from (5.8). To minimise
the accumulation of round-off error, (5.54) might be preferred to (5.55).

Figure 5.2 gives a flowchart containing one possible scheme. This chart can be
considered to relate to the iterative subroutine ITER of Section 2.4.2 and would be
entered following an incremental (predictor solution) which would have obtained
Ap, and hence p, = p, + Ap..-

5.3 THE UPDATED LAGRANGIAN FORMULATION

It has been shown in Section 3.3.6, for truss elements, that it is relatively simple to
change a total Lagrangian formulation to an updated Lagrangian formulation. A
very similar procedure can be used for continuum elements. As pointed out in Section
3.3.6. if used in its pure form, the procedure should lead to the same solution as that
of the total Lagrangian technique (sec also [B2]). Gains in computational efficiency
appear possible but it will be argued that, to take full advantage, approximations
are required. Nonetheless, the updated Lagrangian procedure is ofien quoted and
hence it is worth studying. Also there may be advantages for non-continuum
applications such as shells when the two formulations could differ as a result of
different shape function approximations.

The essence of the updated Lagrangian procedure is that the reference system
would be periodically updated so that

x=X+p (5.56)

where x contains the ‘new’ (current coordinates) that are to be used as the new
reference configuration. (Recall that in Section 5.1, we have been using this symbol
x for the inttial coordinates where strictly we should have used X.) Having updated
the coordinates, we require the stresses with respect to the current configuration. As
discussed in Sections 3.3.6 and 4.6, the relevant stresscs with respect to the current
configuration arc ‘truc¢’ or Cauchy stresses. Hence we must modify the previous
second Piola- Kirchhoff stresses from the previous configuration to Cauchy stresses
using (4.104) (details will be given in the next section). With respect to the current
configuration, the displacement. p, are zero and hence, in place of (5.19), we have the
simpler

g:J‘B{(x)‘o‘an_qc' (557)
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Depending on the precise manner in which we apply the updates, the stresses ¢ in
(5.57) may, as indicated, be Cauchy stresses or they may be second Piola-Kirchhofl
stresses with respect to the new configuration (details in the next section).

In a similar manner, the tangent stifiness matrix of (5.26) would become

K, = f(B,T C'B,+ G'6G)dV, (5.58)

with B,(x) replacing B (X, p). In computing G from (5.8) (and, hence, B, from (5.15)
and (5.16)), the Jacobian matrix J (5.6} would, for the total Lagrangian formulation,
always involve the initial geometry, 1.e. J(X), while in the updated procedure, it would
involve J(x). In a similar fashion, the dV, terms in (5.19) and (5.26) would involve
det(J(X)) while 1n (5.57) and (5.58), the dV,, term would involve det(J(x))d& d{ dxy.

From the work on truss elements in Section 3.3.6, it can be inferred that the tangent
modular matrix for the updated Lagrangian {formulation procedure should strictly
differ from that for total Lagrangian formulation. For this reason, the prime has been
added to the C, matrix in (5.58). Again, as discussed in Section 3.3.6, such a modification
1s unnecessary if the strains are small.

5.4 IMPLEMENTATION OF THE UPDATED
LAGRANGIAN FORMULATION

The updated Lagrangian procedure can be implemented in a number of different
ways. In cach case, at a certain stage, the reference configuration would be updated
and ‘frozen’. This contrasts with the so-called *Eulerian” or ‘spatial’ formulations
discussed in Volume 2. The latter procedures have some links with the ‘rotated
engineering strain” and ‘rotated log strain’ procedures discussed, for truss elements,
in Chapter 3. In these techniques, the reference coordinates continuously change and
are never ‘frozen’. Becausc of this freezing process, the essence of the updated
Lagrangian technique is the same as that of the total Lagrangian procedure (see
Section 3.3).

5.4.1 Incremental formulation involving updating after convergence
Having converged with a set of second Piola -Kirchhoff stresses, S, these stresses

would be transformed to Cauchy stresses relating to the new configuration using
(4.104) so that

- FSFT 5.59
? 7 det(F) -9
where
A
F=1+"""=I+AD(Ap) (5.60)
X,

with Au (and equivalent nodal values, Ap) are incremental displacements from the
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previous (converged) configuration,
X, = X + p,. (5.61)
At this stage, the nodal coordinates would be updated via
X, =X, +Ap=X+(p, + Ap) =X+ p,- (5.62)

This would now become the new reference configuration ‘o’ (i.e. via x, = x,,). Equation
(5.58) would now be used for the tangent stiffness matrix, K,. (With regard to the
new fixed reference configuration, the Cauchy stresses and second Piola- Kirchhoff
stresses at the start of the increment would coincide because with Ap =0, F of (5.60)
would equal L) This computation would involve J(x,). With the reference
configuration kept fixed, the incremental green strain would be computed from, say,
(5.55) and the stresses at the beginning of the increment would be updated to those
at the end of the increment via

S, =6, + AS(AE(Ap)) (5.63)

which replaces (5.52) with the minor change that o, are the ‘old” Cauchy stresses
previously obtained via (5.59). The out-of-balance forces would then be computed
from (5.19) (although now related to a reference configuration at the beginning of
the increment). Using this procedure, the advantage whereby (5.57) uses B, instead of
B, (as in (5.19)) would not be gained. Also, if full Newton—-Raphson iterations were
used, K, would, in a similar fashion, need to be computed from a form similar to
(5.26). Hence for the remainder of the increment, there would be little difference
between the total and updated Lagrangian formulation except that the latter would
use X, (referring to the configuration at the beginning of the increment) instead of X
as the reference configuration.

5.4.2 A total formulation for an elastic response

In a total formulation, the reference configuration could always be the updated
configuration so that advantages could be taken of (5.57) and (5.58). Strictly, a total
formulation should follow similar lines to those described in the previous section so
that § = CE should be followed by (5.59) with F = + D(p) involving the total nodal
displacements, p. Equations (5.57) and (5.58) would then be used for the out-of-balance
forces and tangent stiffness matrix, in cach case using the Jacobian, J(x,) = J(X + p).

If the modular matrix, C, is isotropic and small strains (but, possibly large rotations)
are considered, the transformation of (5.59) can be avoided [B2] and, instead, the
Almansi strain (see Section 4.5) can be adopted so that

6>~Cg, (5.64)

where €, are the Almansi strains of (4.91) (the symbol g, is now being used in place
of the symbol A in Chapter 4 because A now has an alternative use (see (5.10)). The
Almansi strain, g,, relates to the current configuration and, in place of (5.10), is given by

i[éu ou'] 1ou"cu 1féu ot
gu:[‘_.“g_“_] e |:(u+(u]—%A(B)O:E,—%A(B)G. (5.65)

21 0x  0x 20x0x 21 0x ox
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This formulation would not give identical solutions to those obtained from a total
Lagrangian formulation with § = CE but they would be very similar if the strains
were small and C were isotropic.

In these circumstances, the directions of principal stress and strain coincide and
hence starting with a formulation based on Green’s strain, from Section 4.9, we can
write

JUE, )
S=Q(N) LAE _3) ()(N)r (5.66)
J3E, 3)
where £, _, are the three principle Green strains and, for example,
. E
fAE, 3} =8, = | _\'2{b2+\'E1 + vE,). (5.67)

If the strains are small, det(F) ~ 1, and the stretch, U, is approximately the identity
matrix (see (4.156)) so that F ~ R (see (4.137) and with the aid of (5.59) and (4.147)

SiE, _5)
¢ =Q(n) f2AE, -3) Q). (5.68)
FAE, 3)
But, when the strains are small (and the stretches nearly unity), the principal Green
strains E; are approximately equal to the principal Almansi strains g,; because via
(4.151) and (4.152):

} 1/i2—1
Eizé(/tf—l):ea,-=2<—/? ) (5.69)
Hence replacing E, _ ; with ¢,;, .5 in (5.68) leads to
Silear -3)
o ~Q(n) Sale,-3) Q(n)T (5.70)
_f}(‘cal - 3)

which, again assuming that the directions of principal stress and strain coincide, leads
via (4.154) to (5.64). Hence, effectively the same results would be obtained from using
S = CE as 6 = Cg, without introducing any transformations to the material modular
matrices.

5.4.3 An approximate incremental formulation

We can, in an approximate manner, extend this procedure to an incremental
formulation so that we again use the cheaper (5.57) and (5.58) instead of (5.19) and
(5.26) and also avoid the use of the transformation (5.59). To this end, we replace (5.63)
with

o6 =¢6,+ Ao(g,, — €,,) =6, + Aa(Ag,). (5.71)

Here ¢,, are the old (probably stored) Almansi strains at the last converged
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configuration, ¢, is the old (stored) Cauchy stress related to this configuration while
€,, 18 the current Almansi strain.

However, for both this procedure and that of the previous section, neither the
internal force vector nor the tangent stiffness matrix would be fully consistent with
the stress updating. Hence the iterative performance might possibly suffer a little in
comparison with the ‘purer’ total Lagrangian formulation of Section 5.1.

5.5 SPECIAL NOTATION

A(0) = matrix containing displacement derivatives {see (5.10)
or (5.34))
A = special matrix (see (5.40)) (Section 5.1.4)
b,, = vector connecting JE; to Jp (Section 5.1.4)
B, =matrix connecting JE, to dp
B,, = matrix connecting 3E to dp
d = vector relating linear part of E; to dp (Section 5.1.4)
D = displacement-derivative matrix (see (4.72))
E, = Green’s strain along axisymmetric membrane
(Section 5.1.4)
E, =hoop Green’s strain for axisymmetric membrane
(Section 5.1.4)
E = Green’s strain (as vector or tensor; the latter is
sometimes E,)
E, = linear part of Green’s strain
E_, = non-linear part of Green’s strain
F = deformation gradient (see (4.71))
G = matrix connecting 8 to p (see (5.8))
h;, h, = vectors containing derivatives with respect to ¢ and
n of shape function vector, h
H = Boolean matrix (see (5.12) or (5.33))
= unit matrix
J = Jacobian matrix (see (5.6))
l,.1, = old and new lengths (Section 5.1.4)
n,,n,, n, = unit vectors defining directions of principal stretch in
final configuration (defines the Eulerian triad)
N, N,, N; = unit vectors defining directions of principal stretch in
mitial configuration (defines the Lagrangian triad)
p = nodal displacements
ordering of 2-D continuum element is pT =" v")
ordering of 3-D continuum element is p* = (u”, v', w')
ordering of axisymmetric element is p'=(u’,w")
Q = orthogonal matrix containing principal directions, Ns
or ns
R =radius (Section 5.1.4)
S..5,=second Piola—Kirchhoff stresses corresponding to
strains E, and E, (Section 5.1.4)
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S = second Piola- Kirchhoff stresses (as vector or tensor;
the latter is sometimes S,)

S = matrix containing second Piola-Kirchhoff stresses
(see (5.24) or (5.36))

u = displacements, sometimes specifically  x-direction
nodal displacements

v = y-direction nodal displacements

w = z-direction nodal displacements

x (with components x, y, z) = initial coordinates in Sections 5.1 and 5.2 (sometimes
used for nodal values)
x (with components x, y, z) = final coordinates (x = X + u) in Sections 5.3 and 54
(sometimes used for nodal values)
X (with components X, Y, Z) = initial coordinates (in Sections 5.3 and 5.4)

a, = length parameter relating to initial configuration
(1,/2) (Section 5.1.4)

£, = Almansi strain

0 = displaccment derivatives in vector form (see (5.8) or
(5.29))

/ = stretch scalar (see (4.131))

o = Cauchy stress (as vector or tensor; the latter is
sometimes o,)

Subscripts
n = new
o=old
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6 Basic plasticity

6.1 INTRODUCTION

Books on plasticity can be found elsewhere [H2, M7, M10,J2, P1, H5N3,C2,11,81]}
and a review of recent developments in [D4]. The main objective of the present
chapter is to concentrate on those aspects that relate to a ‘numerical solution’. In
particular, we will be mainly thinking of the finite element method but many of the
concepts also apply to other discretisation procedures such as finite differences.
Books and manuals in this category can be found in [O4,85,C2, D2]. The last two
references relate primarily to geomechanical materials. In contrast, the present chapter
will concentrate on the von Mises yield criterion [V1, V2], although much of the
work will be general and applicable to other yield functions. (Other yield criteria will
be treate in more detail in Volume 2.) Reviews on numerical work on plasticity can
be found in [A3, W1, W3, D3] while the workshop proceedings [ N3], although now
a hittle out-of-date, gives a range of interesting papers and discussions.

In the present chapter, only isotropic hardening will be treated in any depth (with
kinematic and mixed hardening being considered in Volume 2) while the flow rules
will generally be assumed to be associative. Because the plastic flow rules are
incremental in nature [H2], elasto-plastic problems, should strictly be solved using
small equilibrium steps. For, no matter how accurately we may, within an increment,
satisfy the flow rules and keep to the yield surface, the solution is only in equilibrium
at the end of each increment after the equilibrium iterations (Chapters 1-3,5) (see
Section 6.2 for further discussion). Nonetheless, very acceptable solutions have often
been obtained with large steps.

In keeping with the main, static, theme of the book, we will not consider the
time-dependent viscoplasticity [O4,W1,Z3] but should note that viscoplastic
approaches have been used with a ‘psecudo-time’, to analyse time-independent
elasto-plasticity {Z3,04]. In relation to such e¢lasto-plasticity, having reached
equilibrium at point A (Figure 6.1) on the effective stress/strain curve, the next step
may continue to flow plastically to point B or else to unload elastically to C. Clearly,
the two paths have very different stiffnesses. If it is known that the loads are to be
reversed at point A, the elasto-plastic tangent stiffness matrix should not be used for
the next increment and the elastic stiffness matrix should be used instead. But, in the
absence of prior knowledge on load reversals, it will generally be assumed that plastic
flow will continue and that the tangent stiffness relates to AB. However, even for
monotonically increasing loads, certain areas of the structure can ‘unload’. In such

152
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&

Figure 6.1 One-dimensional stress-strain relationship.

circumstances, it is generally left to the iterative correction procedure (Chapters 1 3, 5)
to discover those areas that are ‘unloading’. However, if it is suspected that much
unloading is occurring, it may be beneficial to revert to the elastic stiffness matrix
and adopt a solution procedure based on the ‘initial stress’ method (see Section 1.2.3
and Figure 1.9). For problems involving combined geometric and material
non-linearity, no data is then provided on the stability of the solution (Chapter 9
and Volume 2).

In general, there are three separate roles for the plasticity algorithms of a finite
element code. These roles are:

{1) the formation of the standard tangent modular matrix {P1.1,M4.1,Y1.1,71.1,Z2.1]
for use in the incremental tangent stiffness matrix of the structure or for use with
the integration of the the stress/strain laws (see (3) below);

(2) the formation of a ‘consistent’ tangent modular matrix for use with
Newton- Raphson iterations;

(3) the integration of the stress/strain laws to update the stresses.

As already briefly discussed in Sections 4.12 and 5.2.1, with material
non-linearity, the structural tangent stiffness matrix takes the form

K = jBTCle V + initial stress matrix (6.1)

where C, is the standard tangential modular matrix, which is given by

-~

“_c. (6.2)
CE

The initial stress matrix in (6.1) only exists if geometric non-linearity is included.
As previously discussed in Chapters 3 and 5, with such geometric non-linearity,
we must specify the type of stress measure being used. However, for the present
chapter, this issue will be avoided.

If certain forms of stress updating are adopted, it is possible to derive a
‘consistent” tangent modular matrix, C,, that is consistent with the numerical
technique used for the stress updating. in general terms, the concept related to a
‘consistent linearisation’ were discussed in [H7]. The ideas appear to have been
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first applied to plasticity by Simo and Taylor [S6] and Runesson & Samuelsson
[R3] (with subsequent work in [S6,57,585,A1,J1,H1,B3,C4, M&]). In comparison
with the use of the ‘standard’ tangential modular matrix, the consistent tangent
leads to a significantly faster convergence rate when the Newton- Raphson
algorithm is used for the equilibrium iterations.

Most of the work in this chapter will be presented from an “enginecring approach’,
starting from the early tangential modular matrices [P1.1,M4.1,Y1.1,Z1.1,Z2.1]
and leading on, via the ‘implicit’ integration procedures, to the ‘consistent tangent
matrices’. Some of this work can also be approached [M6,85,S1. R3] from a
more rigorous mathematical programming basis [MI1,MI10,59] (often with
identical results). Thesc issues will be briefly discussed in Section 6.10 which can
be considered as an Appendix to this chapter.

Before detailing the derivation of the ‘standard’ tangent modular matrix. C,. we
will briefly discuss an important aspect of stress updating that has been omitted
from many books on finite clements and plasticity.

6.2 STRESS UPDATING: INCREMENTAL OR
ITERATIVE STRAINS?

Because of the incremental (or rate) nature of the flow rules [H1,M7], it is almost
inevitable that solution procedures based on incremental predictor/corrector
approaches (Chapters 1-3 and 9) will lead to some error [A2,C3]. This error will
not relate to a lack of equilibrium but rather will be caused by errors in the
integration of the flow rules (Section 6.6) and their relation to the complete
incremental/iterative solution procedure. Most analysts assume a linear strain
path within an increment (see [M2] for more on the ‘loading path’ and plasticity).
Even if equilibrium is exactly satisfied at both the beginning and end of an
increment, and sub-increments (Section 6.6.4) arc used to help integrate the strain
rules accurately, the solution will not correspond exactly with a solution in which
the increment was itsell cut into a number of smaller increments for cach of which
equilibrium was exactly ensured. To limit thesc errors, Tracey and Freese [T1]
have developed an adaptive scheme that examines the local curvature of the yield
surface and direction of the strain rate vector to select the load step sizes.

The errors will be strongly related to the adopted procedure for updating the
stresses and strains. In relation to the incremental/iterative procedure, two distinct
algorithms would scem possible:

(A) Using iterative strains

(1) Compute the iterative displacements, dp, using, for example, dp= — K, 'g.
(2) Compute the iterative strains, de, from the iterative displacements, dp, using
og = fm(dp).

(3) Compute the iterative stresses using, d6¢ = C,(0)d¢ or, preferably, by ‘integrating
the rate cquations’ (Section 6.6) possibly with the aid of sub-incrementation
(Section 6.6.4).

(4) Update the stresses using, @, =6, + d6 where 6, are the old stresses before the
current iteration.
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(a) (b)

Figure 6.2 One-aimensional illustration of the alternative updating stategies: (a) updating strategy,
A; (b) updating strategy, B.

B) Using the incremental strains

1} Compute the iterative dsplacements, dp, using, for example, op= — K 'g.

2} Update the incremental displacements (from the last converged equilibrium state)
using Ap, = Ap, + 0p, where Ap, are the incremental displacements at the end of
the last iteration.

(3) Compute the incremental strains, Ag, from the incremental displacements, Ap,
using Ag = fn(Ap).

(4) Compute the incremental stresses using, Ae = C,(6)As or, preferably, by integrating
the rate equations.

(5) Update the stresses using, ¢, = 6, + Ae where 6, are the old stresses at the end

of the last increment.

(
(
(

Strategy A is not recommended as it may lead to ‘spurious unloading’ during the
iterations. This phenomenon is illustrated in Figure 6.2(a) in which point A represents
a converged equilibrium state. The tangential incremental solution then takes the
stress to point B. At this stage, the iteative process produces a negative iterative
displacement and hence a negative iterative strain. As a consequence, the stress will
spuriously unload to point C (Figure 6.2(a)). These issues were discussed in [K1,C3]
and the two different schemes have been compared by Marques [M4].

In the context of combined material and geometric non-linearity, Bushnell [B4]
divorced the geometric non-linearity from the elasto-plastic formulation by
performing equilibrium iterations on the former with fixed C, matrices before changing
them to conform with the new converged stresses. This procedure was repeated until
the complete system converged. Little [L1] adopted a simpler but similar strategy
to remove the material effects from the geometric effects. These procedures could
become rather expensive for large problems. In addition, the ‘true’ equilibrium path
will not be followed during the iterations. This ‘true’ path can be more closely (but
still not exactly) followed if strategy B is adopted.

Using this procedure, the incremental stress is simply re-computed from the new
incremental strain which, in relation to Figure 6.2(b), is still positive and hence the
stress/strain configuration moves from point A to point B. The main advantages of
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Final incremental soln

Figure 6.3 Incremental and iterative strains.

strategy B are gained because the stresses are always updated from the stresses at the
end of the last increment. These stresses are in equilibrium. This point is further
illustrated in Figure 6.3. The true final strain increment is OD and by always working
with incremental strains, the intermediate steps OA, OB, OC all lie reasonably close
to this strain. In contrast, with strategy A, the steps AB,BC,CD, etc., may lie in
entirely different directions.

Nyssen [N4] advocates a modified form of strategy A because he argues that
strategy B uses too much work in integrating the rate equations (Section 6.6).
Certainly, if sub-incrementation is adopted (Section 6.6.4), strategy B will require the
same number of sub-increments for the later as for the earlier iterations even although
the iterative strains will be considerably smaller. The modification to strategy A,
proposed by Nyssen [N4], involves ‘incremental reversibility’ and allows plastic
unloading within an increment so that an ‘unloaded point’ is only defined as elastic
for the next increment. Hence, the rule of no plastic unloading is only applied in a
piecewise incremental manner. Nyssen further modified this strategy by adding the
proviso that such unloading was only allowed until the plastic work done becomes
again equal to its value at the beginning of the considered increment.

While there may be some justification for a modified strategy A when
sub-increments are used, there would appear to be none with a ‘backward Euler
integration scheme’ (Section 6.6.6) coupled with a ‘consistent tangent’ (Section 6.7).
In summary, the author strongly recommends strategy B (see also Dodds [D3]).

6.3 THE STANDARD ELASTO-PLASTIC MODULAR
MATRIX FOR AN ELASTIC/PERFECTLY PLASTIC VON MISES
MATERIAL UNDER PLANE STRESS

In some senses, plane stress is one of the more difficult stress states. The complexities
will be discussed in Section 6.8.2. In the meantime, plane stress will be used to
introduce plasticity calculations simply because it involves fewer components.
However, the prime aim is to develop the general form of the matrix, vector and
tensor equations which will also apply to more general stress states.

We will start with the simple plane-stress version of the von Mises [V1, V2] yield
function:

f=(ol+06]—0,0,+31})~0p=0.—0, (6.3)
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Cf

Figure 6.4 The von Mises yield criterion under principal stress (6, = g,, 6, = 0,) and plane-stress
conditions.

where o, is the effective stress and o, the yield stress. In conjunction with (6.3), the
Prandt!l- Reuss flow rules are:

Lof ) €px ; 20,-0,
&, = },( - ) =/a=\| §, |=_- 20,0, (6.4)
de L 20,
am.' 61,,

where (Figure 6.4), the vector a is normal to the yield surface and 4 is a positive
constant usually referred to as the ‘plastic strain-rate multiplier’. (Note that with the
present notation, ¢f/de is a column vector.) In equation (6.4) and generally during
this chapter, we are using the ‘rate’ form denoted by a dot. However, as discussed
in Section 4.6, we are not considering dynamic effects so that we have a ‘pseudo-time’
and indeed the dotted quantities can be simply considered as small changes which
we have in the past often designated via ds (strictly, d¢ = € dt, but we will often loosely
refer to £ as a small change). In addition to (6.4), the stress changes are related to
the strain changes via

g, < Epx
6= o6, |=| C & | &y =C(E —&,)=Cl& — 2a) (6.5
7 xy éxy épxy
where, assuming isotropic elasticity,
E 1 v 0
C=-- - v 1 0 . (6.6)
I—?
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Equation (6.5) relates the small changes in stress {or more strictly stress rates) to the
small changes in elastic strain (or more strictly elastic strain rates), £, = ¢, —£,. In
this equation and throughout the chapter, the subscript t will sometimes be dropped
from the total strain changes (or total strain rates).

A negative ‘plastic strain-rate multiplier’, 2, would imply plastic unloading from
the yield surface. The latter cannot occur and, consequently, any negative, /s should
be replaced by zero so that elastic unloading occurs (see also Section 6.10).

For plastic flow to occur, the stresses must remain on the yield surface and hence
. \/'T

f=_ 6=a"¢=a:6=0. 6.7

ce

In equation (6.7), we have adopted an approach that we will use often in the chapter,
and have given both the vector and tensor forms although only the former relates
directly to the precise forms in (6.4) -(6.6). Generally, we will not use (as in Chapters 4
and 5) subscripts such as 2 to indicate the order of the tensor. It should be obvious
from the context which form is being used. In particular the use of the contraction
symbol: will indicate the tensor form (see discussion below equation (4.6)) while the
use of the symbol “T” for transpose will imply the use of a vector.

The situation described by (6.7) is illustrated in Figure 6.4 and shows that, for
plastic flow, the stress changes, &, are instantancously moving tangentially to the
surface with 6 being orthogonal to the vector a. Hence a is normal to the surface
and the flow rules (equation (6.4)) invoke ‘normality’.

In order to find the plastic strain-rate multiplier, 4, equation (6.5) is premultiplied
by the flow vector a” and, using equation (6.7)

. a'Cé_ aCi

= . 6.8

a'Ca aCa (6.3)
Consequently, substitution into equation (6.5) gives
aa'C 1

s=Cé=ClI— . - )Jge=|C—- Ca)®(Ca) ):& 6.9

¢ ( aTCa> ( a:C:a( )& a)) (6.9)

where C, is the tangential modular matrix (or fourth-order tensor in the final
form in (6.9)) which is not only a function of E and v but also, via a, a function
of the current stresses, 6. This matrix can now be used in finite element expressions
such as (6.1) to form the element and hence the structure tangent stiffness
matrix.

A numerical example involving the computation of the elasto-plastic modular
matrix of (6.9) is given in Section 6.9.2.

6.3.1 Non-associative plasticity

Before introducing hardening, we should make a brief mention of non-associative
plasticity, which is mainly relevant to geomechanical materials such as soils. For such
materials, experiments show that the flow direction is not usually normal to the yield
surface, f. However, it can be considered as normal to some second function, ¢,
known as the plastic potential. It then follows that in place of (6.4), &, = )'.(Eg/(“c) = ib
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rather than /a where, unless the plasticity is associative, b # a. With this difference,
the basic formulation follows that in the previous section, but in place of (6.8),
. a'Ce
~a'Cb’
while in place of the relationship in (6.9),
baTC>
C =C(l— _ .
( a'Chb

It follows that, for non-associative plasticity, C, is generally non-symmetric.

6.4 INTRODUCING HARDENING

Although we will introduce the concepts of hardening with specific reference to the
plane-stress plasticity that we have just introduced, the concepts are equally valid in
relation to general stress states. Indeed the equations remain valid for such general
states (such as the three-dimensional plasticity to be introduced in Section 6.5). The
only item specific to plane-stress plasticity is the precise form of the equivalent plastic
strain.

6.4.1 Isotropic strain hardening

Hardening can be introduced by changing the fixed yield stress, o,, in equation (6.3)
1o a variable stress, o,(e,,), so that

f=0.—-0a4e,) (6.10)

The variable yield stress is now a function of the equivalent plastic strain:
Eps = LOEL, = J‘ém (6.11)

which is accumulated from the equivalent plastic strain rates,

5
e = (1';;\_ + é':f’_\, F Epbpy F 7o) (6.12)
\,‘ -

Under uniaxial tension. o,. &, = &,. = — 1f,, so that there is no plastic volume
change and ¢, =&, while g,= 0, =g, Consequently, the relationship between a,
and &, can be taken from the uniaxial stress/plastic strain relationship. In particular,
we will require ¢o,/Ce,, which, from Figure 6.5, is given by

‘o, (o E,

e fe . 1 — E/E

i px

(6.13)

Once hardening is introduced, the tangency condition of equation (6.7) is modified to

el | nt ~
. cf . cf day . - ..
J = ;f c+ﬁ‘f L i =a'6—HE, =0. (6.14)
o €O, Cp,
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Figure 6.5 One-dimensionat stress/sirain relationship with linear hardening.

Substitution from equation (6.4) into equation (6.12) gives
£y = 4 = B(6)4. (6.15)

For the present von Mises yield criterion, B(s) = 1, but for other criteria, this may
not be so. Substituting from (6.15) into (6.14) gives
f=a"6—HBi=a"é- A'7=0. (6.16)
Hence, premultiplying equation (6.5) by a' and subslituting into (6.16) give
T'Ci :C:é
jo MG wCi 617
aCa+td aCa+ A

while equation (6.9) is rcplaced by

C
(x=C,é=C<l— aa >¢=

aTCa + A’ (C?a)®(Cia)>:£. (6.18)

(¢-
a:Ca+ A

For linear hardening, A" is {(via H' in (6.13)) a single measurable constant. For
non-linear hardening, A" will vary with & (and possibly other quantities)- -indeed,
more generally, g, (or A) will vary with ¢

The equivalent plastic strain can be considered as an ‘internal variable’ as it 1s
‘internal’ to the response [Z1,M3,M6]. Using this terminology, only the directly
measurable total stresses and total strains are external. However, the plastic strains
are required in order to define the response of the body. Following the introduction
of the flow rules and the hardening hypothesis, in the previous developments one
was left with one internal variable, «,, to define the behaviour. The hardening
behaviour was a function of this ‘internal variable’. For a more complex material,
one may require more ‘internal variables’ [Mé6].

6.4.2 Isotropic work hardening

Work hardening [H2} is more generally applicable than strain hardening. With work
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hardening, equation (6.10) is replaced by
f=a.—0a(W) (6.19)

where W, is the plastic work, which is given by

W, = j O oo = J o't = j /o'a {6.20)

where £, is the one-dimensional plastic strain rate and the plastic work rate is
F ¢ eTe I T
W,=0,,=06¢,=/06a. 6.21

Instead of equations (6.14) or (6.16),

. of do, - 3
f=a"é+ = _ "W, =a'é—._ ‘ale
ca,cW, cW,
o] PN
P N
CLpy CW,
=a'6—4 ac=a'6-A4i=0 (6.22)

a

a

where
Hoe'a He:a

[e2

A (6.23)

T

[} o

is the hardening constant for use in equations (6.17) and (6.18). If the yield function
can be written in a similar form to equation (6.3), so that fis 2 homogeneous function
of order one. it is easily shown (Euler’s theorem [H2]) that

-

('j c=ac=a0=0, (6.24)

Xy
Hence A’ = H’ (equation (6.13)) and for von Mises’ yield function (with B (equation
{6.15) = 1), strain hardening and work hardening formulations coincide. This is not
always the case.

6.4.3 Kinematic hardening

For seismic problems or low-cycle fatigue, the induced cyclic loading may involve
relatively small plastic strains. In these circumstances, the Bauschinger effect [H2]
may be significant. Assuming a linear hardening this effect is illustrated for a
one-dimensional problem in Figure 6.6. Here, the yielding in tension has lowered the
compressive strength, so that

(6—-—2)=+a, (6.25)

where « is the ‘kinematic shift’ of the centre of the yield surface. As a result of this
shift, with g, being fixed (see Figure 6.6), the uniaxial stress ¢ hardens’.
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3
a

Figure 6.6 One-dimensional illustration of kinematic hardening.

The Bauschinger effect [H2] cannot be trcated by thc methods of Sections 6.4.1
and 6.4.2 which involve isotropic hardening and one must introduce kinematic
hardening [P2.Z2] or an ‘overlay’ [Bl,O5] or an equivalent [M9] model. These
issues are discussed in Volume 2.

6.5 VON MISES PLASTICITY IN THREE DIMENSIONS
For the general three-dimensional case, the von Mises yield criterion is
f=0,—0,= V/}J; ‘- G0
l i 2 2 2
= [lo,—a)V +(o,—0. ) +lo.— 0 )V +6(t] +1.+72)]'* ~0,
\‘//2 ) ]
= /32 + st+s+ i+l ] T —a,

= 3TLs) T~ gy = /3is:9) 2 - gy, (6.26)

where

L= (6.27)

[

)

and
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P
=10

Figure 6.7 Von Mises yield criterion in three-dimensional principal stress space

are the deviatoric stresses previously defined in Section 4.2.2. They may also be
written in tensor form (sec (4.18) and in this case (see the last form in (6.26)) there is
no need for the L matrix.

The three-dimensional von Mises yield criterion is plotted in principal stress space
in Figure 6.7 where the stress vector ¢ is decomposed into a volumetric component
{along the axis i' =(1,1,1)) and a deviatoric component, s. From (6.26), the radius
of the von Mises cylinder is clearly \/—%Uo.

For three-dimensional plasticity, the equivalent plastic strain rate is given by*

= VA 46 462 LGE 9 +92)) = SR = e e (6.29)

where ¢, are the deviatoric plastic strains (in tensor form- -sec (4.19)). The elastic
stresses and strains are connected (sce (4.10)) by

O-X
o,
0. | E
Ty (I +v)(1 —2v)
TX:
L Ty
(1 —v) v v 17/,
v (1—v) v £
v v (1—v) L.
T 1(6.30
. L1 —2v) o | Y
{1 —2v) Vs
L =2 [\ 7
or
c=Csg or c=C: 6.31)

*With &, = .. = — 1£,,.£,, again degenerales to £, for the uniaxial case.
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Differentiating equation (6.26) gives

T:CfT= 1. !

a {20, —0,—0.).(20,—0,—0.),(20. -0, —0),61,,67,,,61,,}

fe 20,
3 . ofT
= 808084214, 27,21 = 7 (Ls)' = (f (6.32)
20, 20, s
or, using the tensor form,
U
azd 3 (6.33)
de s 2a,
As in (6.4), &, = 4a so that in (6.29)
b=/ 2ABTL™'2)2 = /2)(a:a)"? = /2 " 'L = A (6.34)
O-C

With these new definitions of 6, ¢, Cand a, an identical formulation to that of Sections
6.2-6.4 produces equation (6.17) for 4 and (6.18) for C,.

6.5.1 Splitting the update into volumetric and deviatoric parts

With a view to later developments on the ‘radial return’ method (Section 6.6.7), it is
useful to split the stress update into volumetric and deviatoric components.
(Background information was given in Sections 4.2.2 and 4.2.3.) To this end, (6.30)
and (6.32) can be used to show (see also [D1]) that (using the matrix and vector forms)

/
3 3
Ca—\/—ﬂs= H

VAR

s=2ul 'a {6.35)

and
a'"Ca=a:C:a=3u (6.36)

Hence substitution into (6.18) gives

3 3
s=[C— - H_ ssTli={C— " . _s®s| (6.37)

A’ A’
Jf(l + > af(l + )
3u 3u

In addition, the total strain rate, &, can be split (see also Section 4.2.2) into

+eé=4,)+¢ (6.38)
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where £ is the mean strain rate,
bm =+ &, + 83 =35j"¢ (6.39)

and é are the deviatoric strains.

6.5.2 Using tensor notation

Using tensor forms, the equivalent of (6.38) is (see (4.19))
E=¢ 1+¢é {6.40)

where 1 is the second-order unit tensor (or identity matrix) which is often written as L.
Equation (6.30) can be used to show that, using the matrix and vector forms,

Cé =3kij+2ul " té (6.41a)
or using the equivalent tensor forms (see also (4.21} and (4.22)),
C:& =3kl + 2ué (6.41b)

where k is the bulk modulus (Section 4.2.2). In addition, from the definition of s in
(6.32) and of j and ¢ in (6.38),

s'j=0. (6.42)

Hence the first, matrix and vector, form in (6.37) can be modified to

- » . v . 3 71 3 ’r . .

6=0,j+8=3ké j+2u(L - — o ss (e=Cg (6.43)

203(1 + - )
3u

while the tensor form is

.. . . 3 . ,

6=06,1+8=3ké 1 +2u)1—- - = - - s®s):e=C¢ (6.44)

A/
20’5(] + = )
kYD

In (6.44), 1 is the second-order unit tensor while 1 is the fourth-order unit tensor—see
(4.31).

Using the notation and procedure of Section 4.2.2, the C, tensor in (6.44) can be
written as

C.:(k-?)(l@luzu -~ 2 _s@s (6.45a)

;1',
203(1 + >
3u
while, taking account of (6.42), from (6.43), the matrix and vector form is

3 .
C,:(k—2:>jjr+2u | LI ssT |. (6.45b)

(143,
200( L+
3u
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The latter is easily confirmed, with the aid of (6.42), by multiplying C, from (6.45b)
by & from (6.40).

6.6 INTEGRATING THE RATE EQUATIONS

Some issues relating to the ‘integration of the flow rules’ have already been discussed
in Section 6.2. If the stress and strain increments were very small, we could effectively
proceed by applying the previous tangential formulae with terms like ¢ being replaced
by terms like d¢ and use the strain updating scheme of Strategy B as discussed in
Section 6.2. However, the strain and subsequent stress changes will not be
infinitesimally small and, as a consequence, errors would accumulate just as they
would under a pure ‘incremental’ or ‘forward-Euler scheme’ at the structural level
(see Chapter 1). Consequently, an uncorrected forward-Euler procedure at the
Gauss-point level would lead to an unsafe drift from the ‘yield surface’. In the same
way as a pure incremental (tangential) procedure leads to a violation of equilibrium
at the structural level (Chapter 1) so an equivalent tangential (forward-Euler)
procedure leads to a violation of the yield criterion at the Gauss-point level.

Before addressing the problem of finite increment sizes, we should note that, even
if the increments were infinitesimally small, it would be computationally inefficient
to use the tangent modular matrix, C,, to compute stress rates 6. Instead of using
equation {6.18), it would be more efficient to separately use (6.17) to compute 4 and
hence knowing a =¢f/de, to compute 6 from the general form in (6.5) (This is
llustrated in the numerical example of Section 6.9.2.) With infinitesimal strain
increments it would then only be necessary to update the equivalent plastic strain,
£, Using equations (6.11) and (6.12)(or (6.15}), before proceeding to the next increment.

However, the strain increments will not be infinitesimal and as a consequence, we
cannot replace terms like € with terms like Az although we can use de where dg 1s
infinitesimally small. For the von Mises yield criterion, we can however add a
higher-order term and replace (6.7) by

; +fa %
Af =a'Ac + A6’ - Ac=a:A6 + }As:
(«

‘ . Ao (6.46)
(G

¢
iy

where differentiation of (6.32) gives

2 -1 - ]
—1 2 -~
ca_ty-t -t e A lan 647)
6 2o, 6 o, 20, 7
6
6

It is clear that the omission of the second-order terms in (6.46) will lead to error. We
will later discuss methods which directly employ the ‘second-order’ information.

If we simply calculate a = ¢ f /o at the beginning of the increment and use equation
(6.17) to compute A4, we adopt a ‘forward-Euler scheme’ which is bound to lead to
stresses that lie outside the yield surface at the end of the increment (see Figure 6.8
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Ao

Figure 6.8 Pctential accumuiation of error with the forward-Euler procedure

and the numerical example in Section 6.9.2). Unless steps are taken to return the
stresses to the yield surface or in some other way to ensure that the stresses remain
at least very close to the surface, errors arc bound to accumulate und the computed
collapse load will generally be overpredicted.

There would appear to be three alternative procedures which can be used. cither
individually or in combinations to overcome this problem. They are:

(1) Add a return to the yield surface to the forward-Euler® scheme.
(2) Use sub-increments [H6, N1.1.Z2.1, 88, 04, M4, B4, N4).
{3) Usesome form of backward or mid-point Euler scheme [W2,K2,K3.02,S3. B3].

In each case, the aim 15 to update the stresses at a Gauss point given (a) the old
stresses, strains and equivalent plastic strains and (b) the new strains. For all
procedures, the first step 1s 10 use an elastic relationship to update the stresses. If
these updated stresses are found to lie within the yield surface, the material at the
Gauss point i1s assumed to have either remained elastic or to have unloaded elastically
from the yield surface. In these circumstances, there is no need to ‘integrate the rate
equations’. However, if the clastic stresses are outside the yield surface, we nced to
adopt one of the ‘integration’ procedures.

Recent work has seen increasing use of the backward-Euler scheme without
sub-incrementation (Sections 6.6.6 and 6.6.7). This method is popular because, for
the von Mises yield criterion, it takes a particularly simple form and, in addition. it
allows the generation of a ‘consistent tangent modular matrix’ (Section 6.7) which
ensures quadratic convergence (sec Section 1.2.3) for the overall structural iterations
when the full Newton -Raphson method is adopted. Nonetheless, for some compli-
cated yield criteria when coupled with complex hardening laws, the backward-Euler
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procedure is difficult to implement and hence techniques such as sub-incrementations
may still be relevant.

6.6.1 Crossing the yield surface

A number, but not all, of the integration procedures require the location of the
intersection [B2] of the clastic stress vector with the yield surface (Figure 6.9(a)). In
such circumstances, we require

floy + 2A6,)=0 (6.48)
where the original stresses, o are such that
fox)=/fx<0 (6.49)
while, with « = 1, the elastic stresses 64 + Ao, give
floy) = flox + Ac,)>0. (6.50)

For some yield surfaces, this problem can be solved exactly. For example, with the
von Mises yield function, we can use the A matrix in (6.47) to re-express the yield
function (6.26) in squared form as

fi=0l—0l=16"Ac — 0’ =0. (6.51)
Substituting the stresses, oy + xAs, into (6.51) gives
1, =%c(A6,)? + aAc]Ady + a (0x)* — a2 =0 (6.52)

where the o, terms are simply the ‘equivalent stress’ terms of (6.26). We require the
positive root of (6.52). A numerical example is given in Section 6.9.1.

Alternatively, for a general yield function we can usc a truncated Taylor series with
2 as the only variable to set up an iterative scheme. Such a scheme might start with
an initial estimate:

o= (6.53)
fll *fX
and then use the truncated Taylor series:
2 I Ao
fom ot T ou = 4 aTAG I =0 (6.54)
COCX

to give a first change in 2, dx,. In applying (6.54), the ‘old’ yield function value, f,,
would for the iteration be computed from the stresses 6 = o + x,A6, with [ being
computed from these same stresses. The scalar x would then be updated using
2, = 2, + 0% while a second iteration would involve

(511 = aTAo- ./‘l (655)

€

where a and f, would be computed at %,. Having computed the intersection point
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Figure 6.9 The forward-Euler procedure: (a) Locating the intersection print, A
tangentialy from A to C (and (fater) correcting to D).

(b) Moving
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ox + 2A6,, the remaining portion of the strain increment, which is (1 — 2)Ae, can be
treated in an elasto-plastic manner.

6.6.2 Two alternative ‘predictors’

We have already indicated that we may need some scheme to return the stresses to
the yield surface following an initial ‘predictor’. The standard predictor [O4] is the
forward-Euler procedure which follows from (6.5) by replacing the rates with As so that:

Ao =CAe—AsCa=Ac, — AzCa {6.56)

where we are now moving from the intersection point A (Figure 6.9(b)) so that Ae,
is now the elastic increment after reaching the yield surface (i.e. (I — %) times the Ag,
in (6.48) or Figure 6.9(a)). In relation to Figure 6.9(b))

6 =6, + Ao, — AiCa=0,—AiCa (6.57)

and the step can be interpreted as giving an elastic step from the intersection point
A to B followed by a plastic return that is orthogonal to the yield surface at A. (To
fully justify the pictorial representation in figures such as 6.9, the C matrix must be
thought of as an identity matrix.)

An alternative predictor (Figure 6.10) uses the normal at the ‘elastic trial point’, B
and hence avoids the necessity of computing the intersection point, A. A first-order
Taylor exapansion about point B gives

o g o o
f=fat A6+ 7 Ae,,=fp—AlagCay— AL A (6.58)
il 4 O,
——_B
\\\
f=1;>0
\\ C
~
X O\
/'
t=0

Figure 6.10 An alternative 'predictor’ (with later correction to D).
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where the hardening parameter A’ has been defined in equations (6.13) and (6.16) (with
B =1). Equation (6.58) has used the incremental form of equation (6.5} with Ae =0
because the total strain Ag has aiready been applied in moving from point X to point
B (Figure 6.10). If the new yield-function valuef, is to be zero, equation (6.58) gives

fa Jn

As = o = e T e (6.59)
agCay + 4, ag:Ciag + A

where a and A" are computed at B(Figure 6.10) and the final stresses, 6., are given by
o =06y — AiCay. (6.60)

This method (for which a numerical example is given in Section 6.9.5.1) can be
viewed as a form of backward-Euler scheme although, unlike the full backward-Euler
procedure (Section 6.6.6), the final stresses at C will not always lie on the yield surface
(see Figure 6.10). However, for the three-dimensional von Mises criterion (with linear
hardening), the present method coincides with the well-known ‘radial return algorithm’
[W1,K2,K3,02] which is a special form of the backward-Euler procedure. This
relationship will be explored in Section 6.6.7.

6.6.3 Returning to the yield surface

In general, both of the previous methods produce stresses that lie outside the yield
surface. It is now possible to simply scale the stresses at C (Figure 6.9(b) or 6.10} by
a factor r until the yield surface /" becomes zero [O2]. However, this technique, which
should not be confused with the ‘radial return method’ (Section 6.6.7) which gives a
radial return in deviatoric space, will generally involve an elastic component and is
not recommended. An alternative technique [O1,C3]. can be viewed as an extension
of the previous backward-Euler predictor and has been related to ‘operator splitting’
by Ortiz and Simo [O1].

Using this approach, the total strains are kept fixed while additional plastic strains
are introduced in order to ‘relax’ the stresses on to the yield surface. To this end,
equation (6.60) can be repeated at point C (Figure 6.9(b) or 6.10) so that

op =6 — 0icCag (6.61)
where
fe

die= |,
‘T aTCa+ Al

(6.62)

If the resulting yield function at D (Figure 6.9(b) or 6.10) is insufficiently small, further
relaxation can be applied. The final process leads to

Ao = C Ag — AiyCa, — 3/5Cay, — 54-Cag (6.63)

where, for the forward-Euler procedure (Figure 6.9(b)), a, is the normal at the
intersection A while, for the backward-Euler predictor, a, is the normal at B
(Figure 6.10). The method is illustrated via a numerical example in Section 6.9.4.
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Figure 6.11 Reducing the drift via sub-increments (with later correction to E)

6.6.4 Sub-incrementation

Instead of introducing some artificial return to the yield surface, the errors that are
introduced by the forward-Euler tangential scheme can be significantly reduced by
sub-incrementation [H6, N4, 83, S8, B4, M4]. Using such a technique (Figure 6.11),
the incremental strain Ag is divided into m sub-steps each of g Ag, where g = 1/m and
the standard forward-Euler, tangential procedure is applied (at the Gauss-point level)
at each step.

Some workers [N4,S8] use a two-step Euler procedure to estimate the error
produced by the standard Euler technique and hence to compute the required number
of steps. Such a two-step scheme starts with a standard step:

6y, =05 + C,Ae =0, + Ao, (6.64)
and then recomputes the step using the average tangential modular matrix, so that
652 =6, +3(Cia + Ciy1)Ae = 6, + Ao, + As;) (6.65)
where
Ae, = Cy, Ac. (6.66)
Consequently, an estimate of the error is
36 = 0, — 0, = 3(AG, — Aa)). (6.67)

Nyssen [N4] uses this error estimate, Je, to propose the following measure for the
truncation error in f for one step:

e =20.(A6)/0,. (6.68)
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He then argues that the total error will be roughly 1/m times the error for a single
step if m sub-increments are used. Hence the required number of substeps to give a
tolerance of # in f is
20.(Ag)
m=

(6.69)
Baoo

where he suggests a value of 0.05 for f.
Equation (6.46) would indicate that the truncation error in the standard Euler
scheme is proportional to the square of the length of the stress increment Aa. Hence,

it could be argued that
A 1/2
moc ("“ “)> (6.70)
Go

would be more appropriate. Sloan’s work [S8] suggests such a scheme, although he
works with the Euclidean norm rather than with ¢, and computes the required

reduction factor, ¢, as:
1/2
q:0.8<ﬂ”6”) (6.71)
[ As |

where he advocates 1072 -107* for B. Equations (6.70) and (6.71) are of the same
form because ¢ is inversely proportional to m.

In practice. Sloan takes his procedure beyond the simple computation of a number
of sub-increments. Instead, at each sub-increment, he uses equation (6.71) to indicate
whether or not the current substep needs to be reduced further. In addition, he uses
the two-step Euler scheme (equations (6.64) (6.66)) at each substep. In contrast to
most other workers, Sloan does not combine his substepping with a technique, such
as that of Section 6.6.3, to return the stresses to the yield surface. Even if sub-
incrementation is used, it is probably wise to introduce such a ‘correction’ either at
the end of each substep or at the end of the increment (Figure 6.11- from D to E).

Other schemes have been proposed [B4, N4,S3] for estimating the number of sub-
increments. For instance, Marques [M4], proposes a Fortan-type algorithm whereby

m = NSTEP = INT(AMAX(STEP 1, STEP 2)) + 1 (6.72a)
where

my =STEP 1= f,(0.(6p) — 6.(64))/0c(04) (6.72b)

m, =STEP2 = f,0.(65 — 64)/c.(04). (6.72¢c)

Equation (6.72b) is designed to limit the radial movement from the yield surface
while equation (6.72¢) is designed to limii the tangential movement.

The simplest form of sub-incrementation is illustrated by way of a numerical
example in Section 6.9.3.

6.6.5 Generalised trapezoidal or mid-point algorithms

Ortiz and Popov [O2] have shown that a number of different integration algorithms
can be included in the generalised algorithm:
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oc =06, + C(Ae — Ag,) = 65 — CAg, (6.73)
Az, = AA[(1 —nla, + nac)] (6.74a)
or
Az, = Ai[a((] — n)o, + noc)] (6.74b)
Je = 0.(6¢) — oclesc) = Oec(B¢) — Toclepsg + Ae,(Agy)) (6.75)

where (Figure 6.12(a)) A is the starting point and C the final point on the yield surface.
If # =0, equations (6.74a) and (6.74b) coincide and we obtain the previous ‘explicit’,
forward-Euler, tangential algorithm. However, as we have already discussed, this
algorithm does not directly lead to stresses that satisfy the yield criterion and hence
equation (6.75) is not satisfied.

If =1, we produce a ‘backward-Euler’ or ‘closest point’ algorithm (see
Sections 6.6.6 and 6.6.10). A slightly modified version of this algorithm was discussed
in Section 6.6.2. However, in contrast to the situation of Figure 6.9(b), the full
backward-Euler scheme involves a vector a. that is normal to the yield surface at
the final position C (Figure 6.12(b)) for which the stresses, o, satisfy (6.75). Except
in special circumstances (see Section 6.6.7), a cannot be directly computed from data
at A or B (Figure 6.12(a)). Hence an iterative procedure must be used at the
Gauss-point level to solve the non-linear equations (6.73)—{6.75). This process will be
described in more detail in Section 6.6.6.

(a)

Figure 6.12 General and backward-Euler returns: (a) the flow vectors a, and a; (b) backward-Euler
return from inside the yield surface: (c) three-dimensional backward-Euler return.
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(b)

Figure 6.12 {continued)

For 0 <n < 1, either equations (6.74(a)) or (6.74(b)) may be used for the plastic
flow. In the former instance, a generalised trapezoidal rule is produced while the
latter gives a generalised mid-point rule. For n =3, the former procedure coincides
with Rice and Tracey’s mean-normal procedure [R2] which was devised for the three-
dimensional von Mises yield criterion with perfect plasticity. This method involves

a simple modification to the basic forward-Euler procedure. Specifically, it takes
Aﬁp = %A;.(aA + a") (676)

where ag is normal to the ‘enlarged’ yicld surface at the “trial elastic position’, B
{Figure 6.10) in conjunction with the condition

Has+ay) Ac=0 (6.77)

in place of the incremental form of (6.7). For the three-dimensional von Mises yield
criterion with perfect plasticity, this procedure ensures that the final stresses lie on
the yield surface and no Gauss-point level iterations are required.

For the von Mises yield criterion with linear hardening, the generalised trapezoidal
(equation (6.74a)) and mid-point (equation (6.74b)) rules coincide [O2]. More
generally, Ortiz and Popov [O2] preferred the generalised mid-point rule and, in
particular, n = ;. However, they showed that for large steps, the (7 = 1), backward-
Euler scheme is better. It should also be noted that only with # = 1, is it unnecessary
to compute the intersection point of the elastic predictor with the yield surface, i.e.
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for n < 1, 6, in equation (6.73) must be on the yield surface whereas for n =16, is
not required (sce Figure 6.12(b)).

6.6.6 A backward-Euler return

The backward-Euler return is based on the ecquation
G- =0y — A). Cac (678)

which can be obtained from (6.73) and (6.74) with » = 1. A starting estimate for o
can be obtained from the second method of Section 6.6.2. Generally this starting
estimate will not satisfy the yicld function and further iterations will be required
because the normal at the trial position B (Figure 6.10) will not generally equal the
final normal. In order to derive such an iterative loop, a vector, r. can be set up to
represent the difference between the current stresses and the backward-Euler stresses,
Le.

r=0— (6, — ArCac) (6.79)

and iterations are introduced to reduce r to (almost) zero while the final stresses
should satisfy the yield criterion, f =0.

With the trial elastic stresses, 6, being kept fixed, a truncated Taylor expansion
can be applied to equation (6.79) so as to produce a new residual, r,, where

. fa
nL=r,+6+iCa+tAiC & (6.80)
(&)

& is the change in ¢ and / is the change in AJ. Setting r, to zero gives

’\‘ _1 « .
c=~<l+A;.c’f‘) (r,++Ca)= —Q 'r,— iQ 'Ca. (6.81)
o

Also, a truncated Taylor series on the yield function (6.75) gives (in a similar fashion
to (6.58)):

: aft.af Ta i
fen=fcot oo 6+ o, bps=feotAc6 + AA= 0 (6.82)
so that (dropping the subscript C):
C Ty 1
: fo—a Qi {6.83)

A= .
a'Q 'Ca+ A4
Conscquently, (6.81) can be solved to obtain the iterative stress change, 6. Also, from
(6.15), the iterative change in the equivalent plastic strain is
£ps = B(O)A (6.84)

where, for many yield functions, B(s) = {.
A numerical example involving this general backward-Euler return is given in
Section 6.9.5.1.
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6.6.7 The radial-return algorithm, a special form
of backward-Euler procedure

[t will now be shown that the radial return method is a special form of backward-Euler
(or fully implicit integration) procedure. The radial return method was apparently
first proposed by Wilkins [W2] and subsequently refined in [K2,K3,N1,53].

For the von Mises yield criterion with linear hardening, no iterations are required
for the backward-Euler procedure and the second method of Section 6.6.2 gives an
exact solution. This can best be demonstrated by splitting the update of Section 6.6.2
into volumetric and deviatoric parts with the aid of some of the relationships that
were developed in Section 6.5.1. Using the notation of (6.43) for the split into
deviatoric and volumetric components, equation (6.57) can be re-expressed as

6c = Oppj + S5 — AL Cag =0 4j + ¢ (6.85)

where the elastic stresses, 6, at B (Figure 6.12) have been split into volumetric (g,,j)
and deviatoric (sy) components (see also (6.38) for j). With the aid of (6.35). (6.85)
becomes

. . Judrs
Oc=0ncdtSc=0mj+{1— Si- (6.86)

Gen

Because s, has no component in the direction j (no volumetric component because
of (6.42)), it foliows that 6, =06, and

JuAs
S, = 1sﬂ=(1 _H />s},. (6.87)
Oen

These deviatoric stresses must satisfy the yield criterion of (6.75) so that (using (6.26)
in either vector or tensor form for the yield function):

Jo=0.c(8¢) = Oolipee) = 20 ep — ToclPne). (6.88)
Using (6.87) for 2. with linear hardening (with fixed A"). (6.88) simplifies to
Je=0p = 3AL— (0,0 + A Arp )= fr—3u+ AVA2 =0 {6.89)
(recalling —see (6.15)- ~that Ag, = AZ). From (6.89),
fB

Ar= . (6.90)
(3 + A)

Substituting from (6.36) into (6.59) gives the same relationship as above. Hence the
current procedure which was designed to satisfy the yield function at the final position
(via (6.88)) coincides (for the von Mises criterion) with the predictor in Section 6.6.2
based on a truncated Taylor series of the yield function at the "trial position’, B. The
reason is that (6.87) defines a ‘radial return’ in deviatoric space (see Figure 6.12{c)
which shows a cross-section of the von Mises cylinder of Figure 6.7). If s, = xs,,. then
from the yield function of (6.26), ¢, = 2g,; and hence, from (6.32),

a. =ay. (6.91)
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From (6.85), (6.87) and (6.90), the complete update is

Gc = Tpp + %Sy, x=1- 3 (6.92)
Bu+ Aoy
which takes an even simpler form without hardening. For the tensor form, one need
simply replace j in (6.92) by 1.

With non-linear hardening, the return is still radial in deviatoric space and again
relates to (6.87). However, (6.90) can be longer be used for A/ although with
A'= A, = A, it can give a starting value for a scalar Newton -Raphson iteration.
This scalar iteration relates to the satisfaction of the yield function (6.88) with A/ as
the only variable. A truncated Taylor series then leads to

JeamJout L= fer Bur i =0 (693)
CAZ

where the subscript n means ‘new’ and o means “old’. The term A, = H, (see (6.16)

with B = 1) is the slope of the uniaxial stress/plastic strain relationship (see (6.13)) at

the old trial value of the equivalent plastic strain, &,¢,.

6.7 THE CONSISTENT TANGENT MODULAR MATRIX

Simo and Taylor [S4] and Runesson and Samuelsson [ R3] derived a tangent modular
matrix that is fully consistent with the backward-Euler integration algorithm of
Section 6.6.7. (Other work on the consistent tangent approach can be found in
[S5-S7,A1,J1,H1.B3,C4,R1, M81.) As a consequence of the “consistency’, the use of
the consistent tangent modular matrix significantly improves the convergence
characteristics of the overall equilibrium iterations if a Newton ~-Raphson scheme is
used for the latter. Standard techniques would use the modular matrix of (6.18) which
is ‘inconsistent’ with the backward-Euler integrations scheme (or any other effective
integration schemes unless the increment sizes are infinitesimal) and hence destroys
the "‘quadratic convergence’ inherent in the Newton -Raphson method.

We will now give two derivations for consistent tangent relationships; onc based
on the general backward-Euler return of Section 6.6.6 and the other based on the
specialised radial return of Section 6.6.7. For the von Mises yield criterion, the two
techniques lead to exactly equivalent formulations.

6.7.1 Splitting the deviatoric from the volumetric components

We will firstly follow on from the radial return of Scction 6.6.7. To this end, it is
most convenient to work with the tensor forms for stress and strain but we will also
give (sometimes on the same line) the matrix and vector forms. The former will involve
the contraction symbol: while the latter will involve inncr products designated via
the “T" symbol for transposc.

From (6.87). the basic return was

RITIAV
S¢ = ISy =<l _ />s,, {6.94)
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where with linear hardening A4 is given by (6.90) while for non-linear hardening, it
would be obtained from the iterative procedure described at the end of the last section,
To obtain a consistent tangent, we differentiate {6.94) to obtain

Sc = a8y + dsy = 2uxéy + asy = 2uxée + dsy (6.95a)
or, with matrices and vectors,
sc = 2‘[11147 lé(‘ + O'CSB. (6.95b)

In (6.95), we have used the linear elastic relationship of (6.41) (see also (4.21) and

(4.22)) and have also used the basic return algorithm of (6.78) for the relationship

éc = é (the movement from B to C being entirely governed by A/ and a. = ay).
From (6.94),

3ui 3uli -2 (1-
N L IR P (6.96)
Op  Oly Al Oeg
while, from (6.26),
3sy:$ 3 3 3 3
Ge =\/ BB T sy = “ Spiéy = - # Spiéc = # spéc. (6.97)
2 “SB H ZacB ocB (TCB Oen

We must now ensure that we remain on the yield surface at C, by differentiating
(6.88) to obtain:

/( =%0.4+ %04 — A’(/ =0 (6.98)

where A is the tangential hardening parameter at C. Substituting from (6.96) into
(6.98) gives

Gy — B+ AL =0 (6.99)
while substitution from (6.99) for 4 and from (6.97) for 6., into (6.96) gives

where

p 3 Oon ) _ 3 ((] —a)(3u + A¢) — 3

=, 0= 1)(1 . , \
205, AL+ Ag) (3pe+ Ag)
Substituting from (6.101) into (6.95) gives

). (6.101)

262
0.y

S = 2u(al + Py ® sg)iéc = 2u(al ™" + Psgspléc. (6.102)

Knowing, from (6.94), that s. = as, and hence o = 20,4, equations (6.101) and (6.102)
can easily be re-expressed to contain sc and a,c instead of sg and 7,

Combining (6.102) with the volumetric contribution (as in (6.43) and (6.44)) and
using the notation of Section 4.2.2 (with 1 as a second-order unit tensor and I as a
fourth-order unit tensor), leads to a consistent tangent modular tensor:

2
C(:(k— ‘3‘“)(1®l)+2u(zl—ﬁs“®s“) (6.103a)
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or, in matrix and vector form, as

C, = (k - 2‘3-‘“)(,'55 +2u(xL" " — Bsys). (6.103b)

It 1s instructive to compare (6.102) with the equivalent “inconsistent’ relationship
in (6.43) or (6.44). Considering, for simplicity, the case with no hardening so that
A’ =0, the inconsistent form is (from (6.44))

3
é=2u(l— 2s®s):é=2u(l—s®s-):é (6.104)
20 s:s
while, from (6.102), the ‘consistent’ form is
= 2;1:1(1 ~S®S):é. (6.105)
S:S

For the radial return of (6.87), the scalar x can be significantly less than unity and
hence the inconsistent relationship can differ appreciably from the consistent form
and hence destroy the favourable quadratic convergence characteristics of the full
Newton-Raphson method. From the discussions of Chapter 1, this inconsistency
would not affect the final answers (provided Strategy B of Section 6.2 is used) but
will affect the convergence rate. In order to gain the potential benefits of the ‘consistent
tangent’, the author believes it is important to use ‘line searches’ (see Section 9.2) for
the early iterations before the iterative procedure reaches the bowl of Newton
convergence. During these early iterations, the structural model is deciding which
Gauss points are elastic, which unload, which remain plastic and which become plastic.

6.7.2 A combined formulation

A consistent tangent modular matrix can be derived without splitting the stresses
and strains into volumetric and deviatoric components. Such a matrix can be derived
even when the backward-Euler algorithm does not degenerate to a radial return in
deviatoric space. The derivation of a more general form of the consistent tangent
modular matrix is therefore relevant to a wider range of yield criteria.

Returning to the conventional matrix notation, the standard backward-Euler
algorithm can be expressed (see (6.78)) as

6=0,— AiCa (6.106)

where we are dropping the suffix C relating to the current configuration following
the return (sce Figure 6.12(b)) so that if a variable has no suffix it is assumed to relate
to this configuration. The suffix B in (6.106) shows that o are the elastic ‘trial’ stresses
(Figure 6.12(b)). Differentiation of (6.106) gives

. . L 02
6=C¢t—iCa—-AiC ¢ (6.107)
‘o

where the last term in equation (6.107) is omitted from the derivation of the standard
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tangent modular matrix. From equation {6.107),
; -1 . . .
6= (I + ALC (;a> C(¢ — /a)= Q 'C(¢ — ia) = R(£ — /a) {6.108)
‘o
where the Q matrix has appeared before in relation to the backward-Euler return

(see (6.81)). i
To remain on the yield surface, f should be zero, and hence from (6.16)

a'6=a"Ré—+a"Ra— A'A=0 (6.109)
and hence
Raa™R7
c‘r:Cc,é:(R— g )s (6.110)
a RaA

In deriving equation (6.110), account has been taken of the symmetry of R. This
symmetry can be proved with the aid of the symmetries of C and ¢a/ca and the
relationship

A"'B=(B 'A)" " 6.111)

In contrast to the consistent tangent matrix, the standard tangent modular matrix
is derived by setting A/ to zero in equation (6.107). In this situation, the matrix fa/de
is unused.

A numerical example involving the consistent tangent modular matrix of (6.110)
is given in Section 6.9.6.].

6.8 SPECIAL TWO-DIMENSIONAL SITUATIONS
6.8.1 Plane strain and axial symmetry

The three-dimensional formulations of Sections 6.5~6.7 can be simply reduced to two
dimensions by setting 1., = 1,. =y,. = 7,. = 0 so that equations (6.30) reduce to

[ (1 - ) Ex
o, E v (1—v) &,
0,y = = =C,e
*T g, (1+v)(1—2v)| v v o (1—v) £ e
T,y =29 [} v,
(6.112)

where the subscript 4 relates to the four stress and strain components. For axial
symmetry (Figure 4.3), ¢, can be taken as the hoop stress, while for plane strain, ¢,
is set to zero.

6.8.2 Plane stress

We have already described (Section 6.3) a forward-Euler formulation for plane-stress
problems in which o.=0. It has been argued that, for such problems, a
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backward-Euler scheme is impossible, or at least very difficult. However, it can be
achieved [J1,S6,S7] without too much difficulty. Before describing such a
formulation, we will redrive the forward-Euler relationships (Section 6.3) starting from
the four stresses and strains of equation (6.112). In the previous developments
(Section 6.3), we assumed that the response could be related to the three-component
forms of (6.3} and (6.5). We will now prove the validity of these assumptions. To this
end, with fixed elastic properties, we can, from (6.112) write the four-parameter
equivalent of (6.5) as

64 = Calts —§p4) = Culéy — 22,) (6.113)

where a, contains the first four terms from (6.32) and C, comes from (6.112).
From (6.36)

a;C,a, =3y (6.114)
so that (6.17) gives
T .
o daCata (6.115)
u+ A

Because 4. =0, the third row of equation (6.113) (with C, from (6.112)) gives

—v 1= 2v) (0, +0,)

b= (8. +6)— (6.116)
: (I~v)(' ») 26,1 —v)
After some algebra, if (6.116) is substituted into (6.115),
T «
2,Cats (6.117)

L= ,
a,Cia; + 4

where C; is the three-parameter C matrix of (6.6) and a, is the three-dimensional
normal vector of (6.4). Further substitution for 4 from {6.117) and £. from {6.116) can
be applied to (6.113) to give (6.18) with C as C; and a as aj.

Apart from showing that the two schemes produce identical results, this derivation
illustrates that the elastic rate d.,, which comes from the third row of (6.113) (sce
also (6.112) when the plastic strain rate, £.,, is set to zero), is non-zero while the
complete ¢, is zero. Hence, there would appear to be difficulties in applying a
backward-Euler integration scheme. Using such an approach and starting from (6.78)
with C from {6.112) leads to

A
o, — o) (6.118)

Oec

O c =04+ E'{(1 —VAZ, + VAL, + vE Ag, —

A -
Gy = Oy + EN(1 = VAE, + VAL +vEAe. — M 20, —0)e  (6.119)
' . Oec )

Teye = Topa + HAT,, (6.120)
Alu
Oec

0.c=0=VvE(Aé, + Ai) + vEAs, + ' (0, +0,)c (6.121)
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where

E = E (6.122)
(1 + (1 —2v)
and the bars over Ac,, A¢, and Ay, indicatc that these are known quantities while,
operating within a normal three-parameter plane-stress environment, A¢_ is unknown.
However, the latter term can be computed from (6.121). After some manipulation,
substitution into (6.118) and (6.119) gives, in conjunction with (6.120),

6c=6,+CAc—AiCa. =06, — AsCa, (6.123)

where all vectors and matrices involve three components (sce (6.6) for C and (6.4) for
a). Hence there is no need to be concerned that the algorithm returns from four
stresses at B to three stresses at points A and C (Figure 6.12). Instead, we can simply
operate on the three-term equations (6.123). This could be achieved using the return
of Section 6.6.6 and the consistent tangent of Section 6.7.2. However. as shown by
Jetteur [J17] and Simo et al. [S6,S7], a rather simpler return can be produced. To
this end, equations (6.123) can be expanded and manipulated to give

AVE
(1 + 7“/ ]>(‘Tx ta)e=Al0,+0)c=(0,+0) (6.124)
< — ¥
(1 +3A4ul o, —a)c= Ao, — 0, )c=(0,— 0y (6.125)
(14+3A4 0T o= AsT e = T (6.126)

where .5, 0, and 1,5 are known, and for convenience we write
Al =Ar/o . {6.127)
For plane-stress conditions, the effective stress of (6.3) can be re-expressed via
ol=Mo, +0,) +3a,—0a) +12t]). (6.128)

For the following, it is simplest to work with the squared form of the yield function,
f, =02 — g’ Substitution from (6.124)-(6.126) for (g, + 7). etc,, gives

C
fzzl( Cl. ,t 2. 7>-6(2)(':0 (6.129)
ANV + Axury (1 +3A4)°

where
l 3
p b (6.130)
(1=
and
C,=(0,+ 0,5 C,=3o,—a);+ 1272, (6.131)
Equation (6.129) is non-linear in A2’ and may be solved with the aid of a scalar
Newton Raphson iteration derived from the truncated Taylor series:
N
Fan= Tt 2 =0 (6.132)
CA Y,

where, as before. the subscript 0 means old while the subscript n means new. Without
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hardening, the df/@AL term is obtained from (6.129) as

i
(;fiz__lf( ,C_‘lf;__;_ . _3.C?A._._>. (6.133)
OAX 2\ + AV pr)® (1 +3A4w)

With hardening, we can obtain A =(i- Alea . )o,. from (6.127) and can supplement

(6.129) with g =02 — 02 =0. The iterative process is then applied to the latter in
conjunction with (6.129) and up-dates both A/ and g,.

6.8.2.1 A consistent tangent modular matrix for plane stress

Following the return of the previous section, a consistent tangent modular matrix
could be computed using the general procedure of Section 6.7.2. However, a number
of simplifications can be made [Jt,S6].

Differentiation of (6.124)—(6.126) gives

o P EV
ch+<7yc=/‘4'(0xu+0yn)"2("l:;)2 (0 + 0yc)
1 1
=- - (e Ee)—- - - - ~lo.cto, 6.134
(l—v)Al( c+£50) 2(]_‘_)/11( c+0y) ( )
. . . . 3k
o-xC_o-yC::‘ _(UXB_U)?B)— - '(ch—oyc)
2 2
2u L 3k
p——— éx —¢& —_ - - ax — 0 6135
AZ( C yC) A2 ( C yC) ( )
. l 3u ., uo, 3u .,
rxyc=/’42Txyu—'Az ~Txyc=;4;?xyc—;12"“xyc (6.136)
from which
6=R(E— 4a) (6.137)
where i
a'I' S arT - _ _ (2Ux —o,, 2Uy — Oy 6rxy) (6138)
a. 20,
and . -
- E + 0o E 0
20—-v)A, A, 21—-v)4, A,
R=| E _H B N I o | (6.139)
20—v)4, A, 2(1-wA, A,
B 0 0 B/ Az ]

Equation (6.137) is of the same form as {6.108) and hence, assuming no hardening,
the constituent tangent modular matrix is given by (6.110) with R from (6.139) but
with a’ from (6.138) replacing a. With hardening we can use (6.110) with R from
(6.139) provided A4’ is replaced by A'(1 —AAX'4’). The method is illustrated via a
numerical example in Section 6.9.6.2. Extensions of these concepts to shell analysis
have been given by Ramm and Matzenmiller [R1].
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6.9 NUMERICAL EXAMPLES

A range of benchmark tests for plasticity has been given in [H3, H4]. In this section,
we will provide hand-based numerical computations using the various techniques
developed in the previous sections. These numerical examples will all be related to
the plane-stress yield function of Figure 6.13. Assuming that we are working in
principle stress space with 7, =1, =0, from (6.3), with ¢, = 6 and ¢, = g, the yield
function is

f=0.,—0,=(6+adi—0,0,)"—0a,=0. (6.140)
The adopted material properties are
E = 200000 N/mm?, r=0, 6, =200 N/mm?. (6.141)

6.9.1 Intersection point

Question Starting from point X (Fig. 6.13(a)) with
6y =(0,,0,)=(120, —80) (6.142)
apply an elastic increment Ag, relating to a strain increment of
Ae" = (0.0009,0.0009) (6.143)

and compute the intersection point A in Figure 6.13 and hence the ratio x of equation
(6.48) which ensures that f(ox + 2As,) =0.

Solution From (6.140), the initial stresses, 6y in (6.142) give fy = — 25.64 and, from
(6.140), a.(6,) = 174.4. From (6.143), the elastic incremental stresses are Acfz
(180, 180) so that o.(Ae,)=180. Eguation (6.52) then provides the quadratic
equation

3240002 + 7200 — 9600 = 0 (6.144)
for the intersection point «. The roots of (6.144) are
x, =0.444, %, = - 0.667 (6.145)

which give the intersection points A and A" on Figure 6.13(a). The required intersection
point is at A for which the stresses are o =(200,0).

A forward Euler integration scheme would then proceed to apply the ratio
{1 —a)=0.667 of the strain increment of (6.143) in an elasto-plastic manner.

The reader might like to try using the iterative procedure of Section 6.6.1 instead
of the direct solution given above.

6.9.2 A forward-Euler integration

Question Assume that we have computed the intersection point, A, with stresses

6! =(200,0). (6.146)
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Figure 6.13 Numerical examples: (a) Computing the intersection print; {b) a forward-Euler step from
Ato C and (later) a correction to D; (¢) using two sub-increments; (d) a backward-Euler return.,
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Apply a forward Euler step relating to a strain increment of

Ag™ = (0.0005, 0.0005) (6.147)
and plot the point graphically.

Solution We will firstly obtain a solution by computing the tangent modular matrix
at point A (Figure 6.13(b)). From (6.4),

a, =(10, —0.5) (6.148)
so that in (6.9),

0 1] 250000 —80000 160000 8000 160000
(6.149)

1 O] 1 |:l60000 —80000]_[4000 80000:'

Hence a forward Euler step leads to

200 60 260
=0, + A0, =06, + C At = + = 6.150
Gc =04+ A6, =0, JAs ( 0 ) (]20> (120) ( )

which as shown in Figure 6.13(b) lies outside the yield surface.
A more computationally efficient solution would involve:

Compute A4 from (6.8) (but with A’s instead of dots) so that with a from (6.148) and
Ag from (6.147),

CA S
ar=2CA 0 6000 (6.151)
a"Ca 250000
Compute Ao, from (6.5) (again with A’s instead of dots) to give

Ac,=CA¢—AiCa=Acs,— AiCa= 1003 _ 0.0002< 200 000) = ( 60). (6.152)
100 ~100000/  \ 120

6.9.3 Sub-increments

Question Repeat the solution of 6.9.2 but use two sub-increments and plot the
solution.

Solution From (6.147), the sub-incremental steps are, Ag = (0.000 25, 0.0025). For the
first sub-increment, using a similar procedure to that in (6.151) but with half the step
size gives A4 =0.0001. Hence the equivalent of (6.152) gives Ae , =(30, 60). Graphically,
this takes the solution to point B in Figure 6.13(c) with a5 =(230,60). At this stage,
for the second sub-increment, we have from (6.4),

a’ =(0.9679, — 0.2662) (6.153)

so that the incremental form of (6.8) gives A4 = 0.000 174 and, using the incremental
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) {6.154)
— 100000 59.27

and the final stress at C of Figure (6.13(c)) is (246.3, 119.2). Clearly, in comparison
with the procedure of Section 6.9.2 (Figure 6.13(b)), the use of sub-increments has
reduced the drift from the yield surface.

6.9.4 Correction or return to the yield surface

Question Using the procedure of Section 6.6.3, return the final stresses obtained in
Section 6.9.2, i.e. 67 = (260, 120) to the yield surface.

Solution In relation to Figure 6.13(b), from (6.140), the yield function at C is f. =
25.39, while al = (0.8874, — 0.044 37). Hence in (6.62), 8/ = 25.39/157 900 = 0.000 161
and from (6.61), an improved solution is

1774 , .
cgzcc—d).oCac:(%O)—0.000161( 7 8()):(260 _( 2854)=(23‘5
120 8874) 120/ "\ —143) " 1214

(6.155)

which is illustrated in Figure 6.13(b). As a result of this correction the yield function
has been reduced from 25.39 to 0.531. The reader might try applying one further
iteration.

6.9.5 Backward-Euler return
Question Starting from point X in Figure 6.13(d) (see equation (6.142)), apply a
backward-Euler return, appropriate to an elastic increment of

Ag' ={0.0014,0.0014). (6.156)

Firstly use the general procedure of Section 6.6.6 and then the special plane stress
form of Section 6.8.2.

6951 General method

Solution We start with the second predictor in Section 6.6.2. To this end (see
Figure 6.13(d)), we firstly obtain the elastic increments As! = (280, 280) so that the
stresses at point B in Figure 6.13(d) are

o = (400, 200) (6.157)

while the a vector is a = (0.866,0) and the yield function is f; = 146.4. Hence, from
(6.59), Ai=146.4/150000 = 0.000976 and hence, from (6.60),

400 173 .
oc=c,,—A,1Ca,,=<200>—o.000976( 0200>=(§389>. (6.158)
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We now apply the backward-Euler corrector of Section 6.6.6 for which we require
ac=(0.6031,0.3893) and f. = 17.13. From (6.79), we now have

2309 40 120620 —51.34
r=cc—(c,,—A/lCaC):( )_(< O>-0.000976( 6 )>:( >
200 200 77860 76.00

(6.159)
Using (6.81),
.
Q:(HA/:C‘;‘" )
06| c
0 000293 —0.00339
~|! +0.000976 x 200000] ° ﬂ
0 1 —000339 000391
_[ 15712 —os61 (6.160)
—0661  1.572
and from (6.83),
_aTO- ! _
_JezacQ ' 1713386 _ 001300 (6.161)

alQ 'Cac 101 900
while in (6.81)

. —17.26 113100 2.53
é=—Q“ro—iQ"1Ca=~( )~0.0001302( =< )
36.65 86 550 4792

(6.162)

so that, al the end of the iteration, the new point C is given by ag =(233.5,152.1),
Jc=15.256,A4=0.00106. This point is plotted on Figure 6.13(d) as point D.
The reader might like to try a further iteration which leads to

6. =(2263.1536), fc=0.0927, Ai=0.001 160 (6.163)
which is plotted as point E in Figure 6.13(d).

6.95.2 Specific plane-stress method

A more efficient return can be madc by applying the special plane-stress return of
Section 6.8.2 from the trial solution of (6.158). To this end, with r =1 from (6.130),
from (6.131) and (6.157), we obtain

C,=360000 C,=120000. (6.164)

To start the iterative procedure, we will compute A4’ from (6.127) using the A4 value
in (6.158) (0.000976) and the . value relating to the stresses, 6, in (6.158) so that

A" =0.000976/217.1 = 0.4495¢ — 5. (6.165)
The yield function value, f, in (6.129) is then

6 120 000
fr= ]<34-0000 412000 ) — (200)* = 48273 — 40000 = 8273.  (6.166)
4\ (1452 (2349
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In order to iteratively change A/, we require, from (6.133),

¢f —100000/360000 3 x 120000
s ( 4 ): —0.729910 (6.167)
CAZ 2 (1.45)? (2.349)°
so that from (6.132), the change in A" is
. — 8273
2 = =0.1133e - 5. (6.168)
—0.7299¢10

Hence the updated Az value i1s 0.4495¢ — 5 +0.1133e — 5=0.562%9¢ — 5 and. from
(6.129),

J,=40997 — 40000 =997. (6.169)

This corresponds to a yield function value in the standard form of (6.140) of /' = 2.477.
Another iteration is hardly necessary but leads to
: - 997
A= =0.180¢ — 6 (6.170)
—0.5432¢10
so that the final A4" value is 0.5809¢ — 5 which, from (6.127), corresponds to an
unscaled Az value of

A+ =0.5809¢ — 3, A/ =0.5809¢ — 5 x 200 = 0.001 162. (6.171)
Substituting for AZ" from (6.171) into (6.124)-(6.126) leads to the final stresses as
6. =(226.2,153.3) (6.172)

for which f=0.17e — 4 and [, = 0.678¢c — 2. The stresses in (6.172) are very close to
those obtained in (6.163) and are plotted as point E in Figure 6.13(d).

6.9.6 Consistent and inconsistent tangents

Question From the point obtained at the end of the previous section with stresses
given by (6.172) and plastic multipliers given by (6.171). compute (i) the inconsistent
tangent and (ii) the consistent tangent ready for use in a structural Newton- Raphson
iteration.

From (6.4). we have

a' =(0.7478,0.2010) (6.173)
o that in (6.9), the inconsistent tangent modular matrix is given by
aa' .13 —0.501
c-C llaaC _[ 01348e5 -050 465]. (6.174)
a'Ca —0.5014e5 0.1865¢6

6.96.1 Solution using the general method

Using the general method of Section 6.7.2 for the consistent approach, we firstly use
(6.108) with Az from (6.171) and a/Ce from (6.47) to compute
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)

- 0003
L0, 0001162 x 200000 | O] 0002204 —0003252
01 0 1]l 0003252  0.004798

1.512 —0.7558
0755 (6.175)
—0.7558 2,115
and, from (6.108),

0.8051 0.2877 || 200000 0
0.2877 0.5757 0 200000

.
Q:(HA;.C"“

‘o

R=Q 'C=

[O. 1610e6 0.575365:|

0.5753¢5 0.1151e6

(6.176)
so that in (6.110),

_?;1er>_[0.1610€6 0.5753e5 1 0.1742e11  0.8732¢10
a'Ra 0.5753e5 0.1151e6 0.8732e10  0.4378e10

5493 —0.2044e5
—0.2044e5 0.7602¢5 |’

C(C = R(l

(6.177)

which should be contrasted with the ‘inconsistent’ solution in (6.174).

6.96.2 Solution using the specific plane-stress method

As already pointed out in Section 6.8.2.1, one can devise a more economical way of
computing the consistent tangent for the plane stress case [J1,56,S7]. To this end,
we compute a’ from (6.138) as

aT =120, ~ 0,20, — 0,) = (149.6,40.20). (6.178)

In order to compute R, we require A, and A, from (6.124) and (6.125), which with
A/’ from (6.171) are given by

Ay =1.+05811e -5 x 200000 = 1.58]1,

(6.179)
A;=1.+3x05511e— 5 x 100000 = 2.743

and, from (6.139), R is given by

_ [O.9970e5 0.267965}
0.267%5 0.9970e5
so that using (6.110) but with a’ instead of a (see Section 6.8.2.1),
Com R(l B a_gT_R) _ [0.9970e5 0.267985] B I [0‘2556615 0‘1281e15:|
a'Ra 0.2679e5 0.9970e5 0.2713e10| 0.1281¢l5 0.6424¢14
B [ 5493 —0.2044e5:|
—0.2044¢5 0.7602e5

which corresponds with the solution in (6.177).

(6.180)
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6.10 PLASTICITY AND MATHEMATICAL PROGRAMMING

The links between plasticity and mathematical programming can be found in
[S5,MI1,51,R3,J3,M5,M10,S9]. The present developments follow closely those in
[SS5,M5,R3]. For simplicity, the work will be related to perfect plasticity. Extensions
to include hardening can be found in the previous references. An essential prerequisite
to the understanding of this section is some basic knowledge on constrained optimisa-
tion with inequalities; in particular the use of Lagrangian functions, Lagrangian
multipliers and the Kuhn- Tucker conditions. Good books covering these topics are
due to Fletcher [F1] and Luenberger [L2].

We will start with the principle of maximum plastic work which Hill [H2] attributes
to von Mises [V1]. This principle firstly requires that the stresses must be restricted
by the yield surface and, secondly, requires that they should be such as to maximise
the increment (or rate) of plastic work, i.e.

f(e)<0. (6.181a)
max{W =67, ). (6.181b)

Using standard techniques of mathematical programming [F1.L2]. we firstly turn
the maximum into a minimum by changing W to — W and. secondly, create a
Lagrangian function by adding a Lagrangian multiplier / times the constraint of
{6.181a), so that

Lia, /)= —6"¢, + Af (o). (6.182)

We now make L stationary with respect to variations on & and 4. This leads to the
Kuhn -Tucker conditions:

Lo g +i% 20 (6.183)
(2 o
fie)<0 (6.184a)
420 (6.184b)
/f(6)=0. (6.184¢)

The ‘complementarity condition” (6.184c) requires that either the yield function is
zero or 4 is zero and there is no plastic flow.

Equation (6.183) is the flow rule, (6.184a) the yield criterion, and (6.184b) the
condition for a ‘positive plastic strain-rate multiplier’. All of these conditions have
been considered before in the earlier developments of Section 6.3.

There is one further condition that can be derived from the principle of maximum
plastic work (equation (6.181)). This is the essential ‘convexity’ [F1.L2] of the yield
surface. To prove this, we must re-write (6.181b) as

o*'E > 0't, (6.185a)
or
(6 —o%)'é, <0, (6.185b)

where 6* are the actual stresses that maximise the plastic work rate, W. and o are
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any other admissible stresses (satisfying (6.181a)). (Note that many workers
[S5.R3,S1,M5] use t and o in place of the current ¢ and ¢*.) Because of the {low
rule (6.183) and the condition of non-negative 4 (6.184b), {6.185b) can be re-expressed
as
cf
(6—0¢%' " <0 {6.186)
‘o
which is illustrated in Figure 6.14 and ensures that the region contained by f is
‘convex’ [F1.L2].
By writing the plastic strain rate, &, as the difference between the total strain rate,
£, and the elastic rate, ¢, = C~'6, we can rewrite (6.185b) in the form

(6 —6%)'(&--C 6) <0 (6.187)

Integrating (6.187) over the volume leads to
j(a»o*)'(:‘:~C’ '¢6)dV <0 (6.188)

which is a ‘variational inequality” which has been used as the starting point of some
numerical developments in plasticity.

Yet another alternative to the principle of maximum plastic work (6.181). is provided
by adopting a complementary energy form [MS5] with

min!}6'C™'6 — 6"} (6.189)
in place of (6.181b). In (6.189), the total strain rate, &, is fixed and the stress rates. 6,

are variables. Adding the constraint of (6.181a) lcads, instead of (6.182), to a
Lagrangian:

L(6./)=16"C 6 —6"¢+ /(o) (6.190)

Figure 6.14 lllustration ot equation (6.186)



PLASTICITY AND MATHEMATICAL PROGRAMMING 195

from which in place of (6.183) we have

AL Lo
- :C"‘agmz‘;/=c-’¢—s~,+s~.p:0 (6.191)
& &4

along with the other Kuhn- Tucker conditions of (6.184). In equation (6.191) we have
used the flow-rule relationship of (6.183) which then leads in (6.191) to the standard
additive decomposition into elastic and plastic strains. The converse is equally true.

6.10.1 A backward-Euler or implicit formulation

We will now derive the backward-Euler procedure of Section 6.6.6. by starting from
an incremental form of (6.189) to which we add the constant (¢ or Ag are fixed),
1AeTC Ag, which does not affect the minimisation process [M3]. It follows that the
function to minimise is F, where

F=1A6¢"C7'Ac — Ae' Ao + 1Ae'C Ag (6.192a)
F = Y{Ag — C " 'Ac)"(C A - Ac) (6.192b)
F=1e. + A —-C Y6+ Aa06)][Cg, + At) — 6 — Ac] (6.192¢)
F=1{6,—(0+A46)]'C ‘[0, — (6 + Ac)] (6.192d)
F = 3(65 —6)'C™ (64 — 60). (6.192¢)

In the step from {6.192b) to (6.192c), we add and subtract terms ¢, = C~ '¢ which
involve the clastic strains, g,. and total stresses at the beginning of the increment.
The stresses 6,,, are the elastic “trial stresses’ given by

0., =6,=6+ CAeg =Cg + CAec. (6.193)

In the final step in (6.192) (and in (6.193)) we have also introduced the subscripts B
and C which relate to Figure 6.12 and the earlier developments of Sections 6.6.5 and
6.6.6. Maintaining this notation, we now have to minimisc (6.192¢) with the final
stresses, 6, as the variables and with the yield surface constraint (now with an cquality
because we arc assuming plastic flow) being applied at the end via f(e) = 0. Hence
the Lagrangian equivalent to the minimisation of (6.192¢) is

L(o¢, Ad) = Yoy — 6c)C ™ Yop — 6¢) + ALf(ae) (6.194)

The equivalent to (6.191) is now

".L i N R
i —=—C"o,,+C'lo(-+A/.(~j =~Cloy+C oo+ Arac=0  (6.195)
Coc (6|

where we are introducing more of the notation of Sections 6.6.5 and 6.6.6 with
a = ¢ [/¢e. Equation (6.195) provides the backward-Euler relationship:

o-=6,— AsCa, . (6.196)

previously given in (6.78).
From (6.192e), F can be identified as the scaled. squared length between point B
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(the elastic trial point) and C (the final point satisfying the yield function). It follows
that o (as given by (6.196)) is the closest-point projection onto the yield surface in
the energy norm,

E=/[{6p—6c)C ™ (o5 — o)] (6.197)
induced by the metric, C™' [S5].

6.11 SPECIAL NOTATION

1 (or 1,) = unit second-order tensor (see (4.30) and (4.31))
a = Jf/0o which is defined here as a column vector
A’ = hardening parameter (= H'B)
A, A, =scalars for plane-stress analysis (see (6.124) and (6.125))
A = special matrix within da/de (see (6.47))
B(o) = stress parameter (see (6.15))
C,,C, =stress parameters for plane-stress analysis (see (6.131))
C, = tangential constitutive tensor (or matrix),
C,. = consistent tangential constitutive tensor (or matrix)
C, = constitutive matrix with three stress components; C, = constitutive
matrix with four stress components (Section 6.8)
e = deviatoric strains
: E
(14w}t —2w
J =yield function
7xv» €iC. = engineering shear strain = ¢, /2
'~ H’ = hardening parameter
I = unit fourth-order tensor (see (4.30) and (4.31)) or (sometimes) unit
matrix (or second-order tensor)
i"=1(1,1,1,0,0,0)
J, =second stress deviator invariant
k = bulk modulus
L= Lagrangian function (Section 6.10)
L = special matrix (see (6.27)) required for use with vector stress and strain
forms

L+ Section 6.8.2)
—y
r = residual vector (see (6.79))
R = special matrix (see (6.108) and (6.139))
s = deviatoric stresses (see (6.28) for vector form)
W, = plastic work
o = scalar for crossing the yield surface (Section 6.6.1)
a = scalar for radial return (see (6.94))
B = scalar for consistent tangent (see (6.101))
£, = €quivalent plastic strain



REFERENCES 197

&, = Mean strain rate
= vector or tensor of strains (the latter is sometimes written as €,5)
£ = strain rate
& = total strain rate (the subscript t is often dropped)
£, = plastic strain rate
&4 (0r £,4 Or €) = deviatoric strains
¢ = plastic strain-rate multiplier
u = shear modulus
o, = effective stress
o, = yield stress
O = mean stress
¢ = stress (as vector or tensor; the latter is sometimes written as 6,)
& =stress rate
T,y €1C. = shear stress

Subscripts
= effective, elastic
n = new
o=old
p = plastic

6.12 REFERENCES

[A1] ABAQUS — Theory manual, Vers. 4.6, Hibbit, Karlsson & Sorensen, providence, Rhode
Island. USA (1984).

[A2] Argyris,J. H., Vaz, L. E. & Willam, K. J., Improved solution methods for rate problems,
Comp. Math. Appl. Mech. & Engng., 16, 231-277 (1978).

[A3] Armen, H., Assumptions, models and computational methods for plasticity, Computers
& Structures, 10, 161-174 (1979).

[B1] Besseling, J. F., A theory of elastic, plastic, and creep deformations of an initially
isotropic material showing anisotropic strain-hardening, creep recovery and secondary
creep, JAM, 24, 529- 536 (1958).

[B2] Bicanic, N.P., Exact evaluation of contact stress state in computational
elasto-plasticity, Engineering Comp., 6, 67-73 (1989).

(B3] Braudel, H. J., Abouaf, M. & Chenot, J. L., An implicit and incremental formulation
for the solution of elastoplastic problems by the finite element method, Computers and
Structures, 22 {5), 801-814 (1986).

[B4] Bushnell, D., A strategy for the solution of problems involving large deflections,
plasticity and creep, Int. J. Num. Meth. Engng., 10, 1343-1356 (1976).

[C1] Caddemi. S. & Martin, J. B, Convergence of the Newton- Raphson algorithm in
incremental elastic-plastic finite element analysis, Computational Plasticity: Models,
Software & Applicutions, Vol. 1, ed. D. R. J. Owen er al., Pineridge, Swansea, pp. 27-48
(1989).

[C2] Chen, W. F., Plasticity in Reinforced Concrete, McGraw-Hill, New York (1984).

[C3] Crisfield, M. A., Numerical analysis of structures, Developments in Thin-walled
Structures-—1,ed. J. Rhodes er al.. Applied Science, pp. 235- 284 (1981).

[C4] Crisfield, M. A, Consistent schemes for plasticity computation with the Newton-
Raphson method, Computational Plasticity: Models, Software und Applications, Part
1, Pineridge, Swansea, pp. 133 -259 (1987).



198
[D1]
[D2)
[D3)
[D4]
[F1]
[H1]

[H2]
[H3]

[H4]
(H5]
(He]
(H7]
(1]
(il

[J2]
[13]

(k1]

[(K2]

(K3]

(L]
[L2]

[M1]

[(M2]

[M3]

[M4]

(M5]

BASIC PLASTICITY

De Borst, R.. Non-linear analysis of frictional materials, Ph.D. Thesis, Inst. TNO for
Building Matertals and Structures, Delft {1986).

Desal, C. 8. & Sirtwardane, H. 1., Constitutive Laws for Engineering Materials, Prentice
Hall (1984).

Dodds. R. H.. Numerical techniques for plasticity computations in finite element
analysis, Computers & Struct., 26(5), 767-779 (1987),

Drucker, D. C., Conventional and unconventional plastic response and representation,
Appl. Mech. Rer., 41(4), 151167 (1988).

Fletcher. R., Practical Methods of Optimisation, 2nd edition, Wiley (1987).

Hibbitt, H. D., Some issues in numerical simulation of the nonlinear response of metal
shells, Proc. FEMSA 86 Symp. on Finite Element Methods in South Africa, University
of Witwatersrand. Johannesburg (February 1986).

Hill, R., The Mathematical Theory of Plasticity, Oxford University Press (1950).
Hinton, E., Hellen, T. K. & Lyons, L. P. R., On elasto-plastic benchmark philosophies,
Computational Plasticity: Models, Software and Applications, ed. D. R, J. Owen et al.,
Pineridge, Swansea, pp. 389408 (1989).

Hinton. E, & Ezzat, M. H., Fundamental tests for two- and three-dimensional, small
strain. elastoplastic finite element analysis, National Agency for Finite Element
Methods and Standards Report SSEPT. (1987).

Hodge, P. G., Plastic Analysis of Structures. McGraw-Hill (1959).

Huffingion, N. GG, Numerical analysis of elastoplastic stress, Memorandum Report
No. 2006, Ballistic Res. Labs., Aberdeen Proving Ground. Maryland (1969).

Hughes, T. J. R. & Pister, K. S., Consistent linearisation in mechanics of solids and
structures, Comp. & Struct., 8, 391 397 (1978).

Ilyushin, A. A, Plasticité - deformations elusto-plustiques (transated from Russian in
French), Editions Eyrolles, Parts, (1956).

Jetteur, P.. Implicit integration algorithm for elastioplasticity in plane stress analysis,
Engineering Computations, 3(3), 251 253 (1986).

Johnson, W. & Mecllor, P. B., Engineering Plasticity, Ellis Horwood, Chichester (1983)
Johuson, C., A mixed finite clement method for plasticity problems with hardening,
SIAM J. Num. Anal., 14, 575- 584 (1977).

Key. S. W, Stone, C. M. & Krieg. R. D, A solution strategy for the quasi-static large-
deformation, inelastic response of axisymmetric solids, Europe/US Workshop on
Nonlinear Finite Element Analysis in Structural Mechanics, Bochum (1980).

Krieg, R. D. & Krieg. D. B., Accuracies of numerical solution methods for the elastic-
perfectly platic model, Trans. ASME, S10-515 (November 1977).

Kreig, R.D. & Key. S. M., Implementation of a time independent plasticity theory
nto structural computer programs, Constitutive Equations in  Viscoplasticity:
Computational and Engineering Aspects, AMD-20, ed. J. A. Stricklin et al., ASME, New
York, pp. 125-138 (1976).

Little, G. H., Rapid analysis of plate collapse by live-energy minimisation, Int. J. Mech.
Sei 19, 725 -743 (1977).

Luenberger. D. G., Linear and Nonlinear Programming, 2nd edition, Addison-Wesley,
Reading, Mass. (1984).

Maeir, G. & Nappt. A, On the unified framework provided by mathematical
programming to plasticity. Mechanics of Materials Behaviour, ed. G. J. Dvorak et al,
Elsevier, Amsterdam, pp. 253 273 (1983).

Martin. J. B. & Bird, W. W_, Integration along the path of loading in elastic - plastic
problems, Engineering Computations, 5. 217 -223 (1988).

Martin. J. B.. An internal variable approach to the formulation of finite element
problems in plasticity, Physical Nonlinearities in Structural Analysis, ed. J. Holt et al.,
Springer-Verlag, pp. 165 176 (1981).

Marques, J. M. M. C,, Stress computation in elastoplasticity, Engineering Computations,
1,42 51 (1984).

Matthies, H. G., A decomposition method for the integratton of the elastic—plastic rate
problem, {nt. J. Num. Meth. Engng.. 28. 1- 11 (1989).



(M6]
(M7]
[Mg]
(M9]
[M10]
[N1]
[N2]
(N3]
[N4]
(0o1]
(02)

(03]

[04]
03]
[(P1]
(P2]
[R1]
[R2]

[R3]

(R4]
(s1]
[s2]
{s3]

(S4]
[S5]
[Se]

REFERENCES 199

Matthies, H., The rate problem for complex material behaviour with internal variables,
Computational Plasticity: Models, Sofiware & Applications, Vol. [. ed. D. R.J. Owen
et al., Pineridge, Swansea. pp. 27- 48 (1989).

Mendelson. A., Plasticity: Theory and Application, McMillan. New York (1968).
Mitchell, G. P. & Owen. D. R. J.. Numerical solutions for elastic plastic problems,
Engineering Computations, 5(4), 274 284 (1988).

Mroz, Z., An attempt to describe the behaviour of metals under cyclic loads using a
more general work-hardening model, Acta Mechanica, 7(2 3).199 212(1969).

Martin. J. B., Plasticity ~Fundamentals and  General  Results. The MIT  Press,
Cambridge, Mass.. London (1975).

Nagtegal. J. C., On the implementation of inelastic constitutive equations with special
reference 1o large deformation problems. Comp. Meth. Appl. Mech. & Engng.. 33.
469 484 (1982).

Neal, B. G., The Plastic Methods of Structural Analysis, Chapman Hall, London (1963).
Nemat-Nasser, S. {ed.). Theoretical foundation for large-scale computations for
nonlinear material behaviour, Proc. Workshop, Evanston, lllinois. 1983, Martinus
Nijhoff. Dordrecht (1984).

Nyssen. C., An efficient and accurate iterative method allowing large incremental steps
to solve elasto-plastic problems, Computers & Structures. 13, 63 71 (1981).

Ortiz, M. & Simo, J. C., An analysis of a new class of integration algorithms for
elastoplastic constitutive relations, Int. J. Num. Meth. Engng.. 23,353 366 (1986).

Ortiz. M. & Popov, E. P, Accuracy and stability of integration algorithms for
elastoplastic constitutive relations, Int. J. Num. Meth. Engng.. 21(9). 1561~ 1576 (1985).
Ortiz. M., Pinsky. P. M. & Taylor. R. L., Operator split methods for the numerical
solution of the elastoplastic dynamic problem, Comp. Meth. Appl. Mech. & Engny., 39.
137 157 (1983).

Owen, D.R.J. & Hinton, E.. Finite Elements in Plasticity - Theory and Practice,
Pineridge Press, Swansea (1980).

Owen, D. R. J.. Prakahs, A. & Zienkicwicz, O. C., Finite element analysis of non-linear
composite materials by use of overlay systems, Int. J. Num. Meth. Engng.. 4. 1251 1267
(1974).

Prager, W., Introduction to Plusticity, Addison-Wesley (1959).

Prager. W.. A new method of analysing stress and strains in work-hardening plastic
sohds. J. Applied Mechanics. 23, 493 496 (1956).

Ramm, E. & Matzenmiller, A.. Consistent linearization in elasto-plastic shell analysis.
Engineering Computations, 5(4), 289 299 (1988).

Rice, J. R. & Tracey. D. M., Computation fracture mechanics, Proc. Symp. Num. Meth.
Struct. Mech., ed. S, J. Fenves. Academic Press, p. 585 (1973).

Runesson, K. & Samuelsson. A, Aspects on numerical technigues in small deformation
plasticity. NUMETA 85, Numerical Methaods in Engineering: Theory and Applications,
ed. J. Middleton et al., A. A. Balkema, Rotterdam. Vol. 1. pp. 337 348 (1985).
Runesson, K., Samuelsson, A. & Bernspang, L., Numerical techniques in plasticity
including solution advancement control, Int. J. Num. Meth. Engng.. 22,769 788 (1986).
Samuelsson, A. & Froter, M., Finite elements in plasticity - a vartational inequality
approach, MAFELAP 111, ed. J. R. Whiteman, Academic Press. New York (1979).
Save, M. A. & Massonet, C.. Plastic Anulysis and Design of Plates, Shells and Discs,
North-Holland, Amsterdam (1972).

Schrever. H. L., Kulak, R F. & Kramer, J. M., Accurate numerical solutions for
elasto-plastic models, ASME Journal of Pressure Vessel Tectmology, 101, 226 234
(1979).

Simo. J. C. & Taylor, R. J., Consistent tangent operators for rate-independent clasto-
plasticity, Comp. Meth. Applied Mechanics and Engng.. 48, 101 118 (1985).

Simo. J. C. & Hughes, T. 1. R., Elasto-plasticity and Viscoplasticity  Computational
Aspects, to be published.

Simo.J. C. & Taylor. R. L., A rcturn mapping algorithm for plane stress clastoplasticity.,
Int. J. Num. Meth, Engng.. 22. 649 670 (1986).



200
(s7]
[S8]

(89]

[T1]
[v1)
[v2]
[W1]
[W2]
[W3]
[Z1]

[Z22]
(23]

BASIC PLASTICITY

Simo. J. C. & Govindjee, S., Exact closed-form solution of the return mapping algorithm
in plane stress elasto-viscoplasticity, Engineering Computations, 5(3), 254-258 (1988).
Sloan, S. W., Substepping schemes for the numerical integration of elastoplastic
stress-strain relations, Int. J. Num. Meth. Engny., 24,893-912(1987).

Strang, G., Matthies, H. & Temam, R.. Mathematical and computational methods in
plasticity, Variational Methods in the Mechanics of Solids, ed. S. Nemat-Nasser,
Pergamon Press, Oxford (1980).

Tracey, D. M. & Freese, C. E.. Adaptive load incrementation in elasto-plastic finite
element analysis, Comp. & Struct., 13,45 53 (1981).

Von Mises, R.. Mechanik der plastischen Formanderung von Kristallen, Z. Angew.
Math. Mech., 8(3), 161 185 (1928).

Von Mises, R., Mechanik der festen Kdrper im plastisch deformablen Zustand, Gotting
Nachr. Math. Phys. K1, 582 -592 (1913).

Waszezyszyn, Z.. Computational methods and plasticity, Report LR-583, Tech. Univ.
Delft, Faculty of Aerospace (February 1989).

Wilkins, M. L., Calculation of clastic-plastic flow, Methods of Computational Physics,
Vol. 3, ed. B. Alder et al., Academic Press (1964).

Willam, K.J., Recent issues in computational plasticity. Computational Plasticity;
Madels, Software & Applications, ed. D. R. ). Owen eral., Part 2, Pineridge, Swansea,
pp. 1353 1378 {1989).

Ziegler, H., An Introduction 10 Thermodynamics, North-Holland, Amsterdam (1983).
Ziegler, H., A modification of Prager’s rule, Quarterly of Appl. Math.,17,55-65(1959).
Zienkiewicz, O. C. & Cormeau, 1. C, Viscoplasticity, plasticity and creep in elastic
solids — a unified numerical solution approach, Int. J. Num. Meth. Engng., 8, 821-845
(1974).



7 Two-dimensional
formulations for beams
and rods

Much work has been devoted to finite element methods for beam and rod elements
acting in a two-dimensional plane [B2-B4,C3-C5EIL,HI H2,K1,M2,01, W3 W4]. A
significant proportion of this work has involved the total and updated Lagrangian
methods [B2.5,B1,B4,C4,E1,F1,H2 K1 M2 W3 W4] which have already been con-
sidered in Chapter 3 for trusses and Chapter 5 for continuum elements. Beam elements
for two-dimensional analysis are not only of interest in their own right but also in
a didactic role. With this in mind, we will begin this chapter by following on from
the work of Chapters 1 and 2 and will adopt a shallow-arch formulation [C4,C5]
which is a degenerate form of total Lagrangian technique. We will later introduce a
corotational approach which can be considered as an extension of the procedure
adopted for trusses in Section 3.6 which used a ‘rotated engineering strain’. Finally,
in Section 7.5, we will consider a degenerate-continuum approach using the total
Lagrangian formulation [B2.5,B1,S4,W4]. This work can be considered as a natural
extension of the work in Chapter 5 on continua and a precursor to the work in
Chapter 8 on degenerate-continuum shells.

We should note that some work on arch and ring elements has involved inter-
polations for tangential and transverse displacements (in relation to the curved arch)
[P1]. We will not consider these approaches in the present chapter because in relation
to shell analysis (Chapter 8), most successful elements use interpolations in relation
to fixed orthogonal axes.

7.1 A SHALLOW-ARCH FORMULATION

We will firstly consider an initially flat element as shown in Figure 7.1. From
Chapter 4, equation (4.84), the axial strain in the x-direction can, using a degenerated
form of the Green strain, be expressed (see also (2.3)) as

2
éix=du+l<qw) . (7.1
dx 2\dx
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Figure 7.1 An initially flat shallow-arch element: (a) coordinates and nodes; (b) detail.

Assuming plane sections remain plane, the displacement in the x-direction, u, at
distance z, from the centroid is given (see Figure 7.1(b)) by

dw
Uu=u-—z . 7.2
Lax (7.2)
Combining (7.1) and (7.2), gives
di 1/dw\? d?w
= + . — 2z, =42z 7.3
7 ax 2<dx) a2 CT (7-3)

where y is the curvature. For an initially curved element (Figure 7.2), equation (7.3)
must be modified to

da 1 z 2 2 2
&y = oy ((d( * w)) _<dz> )—z,c‘i-—v—v=€+ 2z (7.4)
dx 2 dx dx dx?

The virtual work equation can be expressed as

V= J(jaxdsxv dz,)dx —qldp, (7.5)
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Figure 7.2 An initially curved shaltow-arch element.

where d¢,, is obtained by differentiation of (7.4) to give

. dou, d Hdow, .

Boy, = 05, + 2,07, = S0 dEH WO s (7.6)
dx dx  dx

Substitution into (7.5), followed by integration through the depth, z,, leads to
dou, dw'ds
V= (N( T L SV EON) L My, Jdx — qTop, (7.7)
dx dx dx

where, for convenience, we are writing w’ = w + z and the stress resultants in(7.7) are
N = fa, dz,, M= jaxz, dz,. (7.8)

At this stage, the finite element shape functions can be introduced so that
= _hT T BT
i=h,u, w=h_w, z=hz. (7.9)

Using a thin-beam, Kirchhoff assumption (as here), the lowest-order function we can
use for w is a cubic [C2.2]. For the present, we will adopt a quadratic, hierarchical
function for # [C2.2] but will later (Section 7.1.3) consider in more detail the issue
of appropriate, matching, functions. With the chosen function, we have (see Figures 7.1
and 7.2),

u=(uy,uy, Auy) (7.10)
T dW
w :(w‘lsf)xjv “”290,(2)9 Hx: . (7lla)
dx
. dz
2 =(2y,%1,22, %), o, =- (7.11b)
dx

hi =101 =&, 1+¢&,2(1 - ¢&%) (7.12)
hl = 44 — 65+ 283 (&2 — 1)E — D4+ 68 — 283U - DE+ 1) (T.13)
)

In relation to these equations nodes 1 and 2 are the end-nodes (Figures 7.1 and 7.2
while node q is a central node at which the hierarchical mid-side displacement Au,
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(q for quadratic) acts. (The superscript will often be omitted from the nodal values
of &, but it should be noted that all nodal u-values refer to displacement at the
reference plane.) The more basic linear displacement function for i can be obtained
by setting Au, to zero. The nodal values 0, and 8, are the nodal values of dw/dx
and are variables, while the nodal quantities a,, and «,, are fixed nodal values of
dz/dx which, along with the fixed nodal quantities z;, and z,, define the initial
configuration of the element.
With a view to the computation of the strains, differentiation of (7.9) leads to

-1 T
di |
S 1| u=bTu (7.14)
dx | .
—4¢
6(E—1) T
dw 1] 132 —28—1) . dz ..
dw _ , =bTw, ““=blz (715
dx 4| 6(1-¢& TENT (-13)
(362 +2¢ — 1)
6&
2w 1]i3c-1
X="d;2=—2- e w=¢c'w (7.16)
(3¢ + 1)
so that, in (7.4),
£=bTu+ L(bTw)? — L(bT)? (1.17)

where w' = w + z. Hence, knowing the nodal displacements, @i and w, the strain ¢, of
(7.4) can be computed at any depth, z;. Assuming, for the present elastic properties,
N and M in (7.8) can be re-expressed as

N = EAg, M=Ely. (7.18)

The shape-function relationships of (7.9) relate to total displacements but identical
expressions apply for the virtual displacements and hence substitution into (7.6) gives

de,, = ¢, + 2,0y, = bl du, + (bl w)bLow, + z,cTow,. (7.19)

Further substitution into the virtual work of (7.7) gives
V= J(N(b}éuv + (b, w)blow,)+ McTdw,)dx — Uldu, — Wldw,

=Uéu+ W]ow—Uléu— WTiw (7.20)
where the usual internal force vector, q;, can be written as

q/ =(UL,W]) (7.21)
with

U.

Nb,dx (7.22a)

W, - f (N(BTw)b, + Mc)dx. (7.22b)
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In (7.20)-(7.22), the internal forces U; correspond to the nodal displacements, q,
in (7.10) and the ‘forces’, W, to the nodal ‘displacements’, w in (7.11a).

7.1.1 The tangent stiffness matrix
The tangent stiffness matrix is obtained in the usual manner by differentiation of the

internal force vector. To this end, it is most convenient to work in terms of submatrices,
so that

U, ou.
|((=|:K““ Kuw}z Ju  Ow . 023

K. Ko oW, oW,

u o ow

Then, from (7.21) and (7.22) with the aid of (7.18) and the non-virtual form of (7.19),

U, N
K= '= Jbu( Y dx = fEAbubj dx (7.24a)
ou cu
U, N
K=" = j b," " dx= jEA(bzw')bubI,dx (7.24b)
cw W
W, oM N
wa:q d= (c - +bw(blw')( - + Nb,bl )dx
ow ow ow
- f (Elcc” + EA(bTw)?b,bT + Nb,bT)dx (7.24¢)

where the last term in (7.24¢) can be identified as the initial stress matrix.

7.1.2 Introduction of material non-linearity or eccentricity

In deriving (7.24), it has been assumed that

ON = EA 3¢, oM = EI 6y. (7.25)
More generally, the tangent E-value at depth z, will not be E but, say, E so that,
using (7.8) and (7.3).
SN =J50dz,=Jf(6§+ z 5x)dz,=jﬁdz, ae-+Jﬁz,dz,ax=~EA’aé+~EX’ax (7.26)

oM = Jéaz, dz, = JEZ,(5§+ z,0y)dz, =sz, dz; 06+ fézf dz,0x="EX’ 6+ EI 0.

(7.27)

Even if the material is elastic so that £ = E, the cross-coupling term, ‘EX’, is zero
only if the reference plane from which z, (Figures 7.1 and 7.2) is measured is at the
centroid.
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Figure 7.3 Schemes for numerical integration through the depth (five-point): (a) Gaussian; ()
Lobatto.

As a consequence of (7.26) and (7.27), the stiffness matrices of (7.24) are modified to

K, = j‘EA’bub;f dx (7.28)
K. — J-(‘EA'(vavw’)b,,bw +EXb,eT)dx (7.29)
K, = j(‘EI’ccT +(EA(bIw)’ + N)b,bL + EX (bIw)(b,c" +¢bT)dx. (7.30)

For non-linear materials, in obtaining ‘£A°, *EX” and ‘EI’ from (7.26) and (7.27),
one must integrate through the depth of the beam. Numerical integration is usually
adopted with the stresscs and other relevant variables (such as the plastic strain)
being stored at integration points through the depth. Hence at the integration points
(see Figure 7.3) one may compute the tangent E-values, E, from the stored stresses,
and plastic strains. With planc sections remaining plane, it is unnecessary to store
the strains at the integration poiats through the depth since the strains are completely
defined, from (7.4), by & and y. This approach can be casily extended to shells (see
Section 8.1.2).

Burgoynne and the author [B5] believe that the best procedure for the through-
thickness integration is either standard Gaussian integration or the Lobatto rule,
using, say, five points, if the material is non-linear. Two Gaussian points are adequate
for a linear response although, of course, the integration can then be performed
explicitly. In contrast to the Gaussian rule (Figure 7.3(a)), the Lobatto rule has points
on the surface (7.3(b)). While the positioning and weights for Gaussian integration are
given in many text-books the Lobatto values are not. Hence the latter are given in
the Appendix.

7.1.3 Numerical integration and specific shape functions

As already discussed, with the adopted Kirchhoff bending theory, we cannot use a
lower-order function for w than the cubic adopted in (7.9) and (7.13). In contrast, we
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could, with respect to the continuity requirements, adopt any functions, from linear
upwards, for a. Strictly, from (7.1), with a cubic w, we require a quintic 4 [D1,C2.2]
in order to balance the functions and thus ensure that we can represent a constant
membrane strain and, in particular, the zero membrane strain associated with
‘inextensional bending’. Such a quintic element would be extremely cumbersome,
particularly when extended to shells.

Instead of using such an element, we can use a number of techniques to remove
or, at least ameliorate, the ‘membrane locking’ [S3,C4,C2.2, M2]. If we adopt the
lowest possible, linear, function for i, then one solution is to use a single point,
reduced integration for the membrane strain, & in (7.4) [M2]. Alternatively, one could
adopt linear functions for w and = with respect to the membrane strain, & aithough
a cubic w for the curvature, y [G2.1,M2].

These devices might appear a littie ad hoc. Certainly, they will lead to deformation
modes involving w that lead to no membrane strain. However, the bending energy
should ensure that there are no mechanisms. Also these methods can be put on a
more rigorous {ooting via the Hu -Washizu variational principle [W1,C2.2] with a
constant membrane strain. (More discussion on this theme will be given in Section
7.1.5.) The latter would effectively involve replacing the membrane strain, & from (7.4),
with an effective membrane strain, &, so that

I
Eopr = 1 szdx. (7.31)

Using the basic linear function for u (with Adt, = 0), with the shape function of (7.10)-
(7.13), this would lead to

i 1
gty LT f b b dxw — -z' [b,bTdxz (1.32)
) 2

where we are using the subscript ‘21’ to denote the difference between the variables
at nodes | and 2. ie 4, =@, — 4.

One problem with the adoption of a linear i 1s that, in association with the quadratic
dw/dx stemming from the cubic w, the terms in (7.2) do not match. Consequently
(ignoring the non-linear (dw/dx)* term), we have a solution that even for ‘bending-
dominant problems’ [C7] depends on the chosen reference plane (at which @ acts).
Hence, with eccentricity (so that *EX " 1n (7.26) and (7.27) are non-zero), we can produce
over-stiff solutions [G1,C2.2,C7]. As indicated in Section 7.1.2, effective eccentricity
can be induced by material non-linearity [C7].

Returning to ‘membrane locking’, if instead of using (7.31) or (7.32), we adopt the
full functions, it is essential to usc (at least) a quadratic function for i and include
the Ad, term to limit the self-straining (see also the more detailed discussion in
Section 7.1.5). If this quadratic term is not included, the solutions will be dramatically
over-stiff [C4]. With this quadratic term included, if the integration of the internal
force and tangent stiffness matrices is performed using two-point Gaussian integration,
very reasonable solutions are obtained. The stresses must, of course, also be sampled
at these reduced integration stations [C2.2].
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7.1.4 Introducing shear deformation

Instead of directly introducing the Kirchhoff hypothesis, we can adopt a Timoshenko
beam formulation which includes shear deformation [T1,C2.2]. As a consequence,
the rotation of the normal, 8 becomes a separate variable (Figure 7.4) and the curvature
is given by y = df/dx, while the shearing virtual work:

V,= jQ Sy, dx = fQ(é()v + djv.-“)dx (7.33)
X

must be added to (7.7) (with Q as the transverse shear force).
We will adopt quadratic hierarchical functions for both 1, w and 8, so that

d=nhlu, w=nhlw, 6=h;0 (7.34)
where h,, = h, = h, (Equation (7.12)) and, in addition to (7.10),
wh=(wy, w,, Aw,), 0T =(8,,0,,A8,). (7.35)

It should be noted that the nodal rotational variables are now of the opposite sign
to those adopted for the Kirchhoff formulation (currently they are the rotations of
the normal (Figure 7.4) while before (see (7.11) and Figure 7.1) they were (dw/dx)s).
Differentiation of i (7.34) leads to (7.14) while differentiation of w and @ in (7.34) gives
Wb, ¥ _pe (7.36)

dx dx

where b, = b, = b, (7.14). (Although we are here using the same shape functions for
all of the variables, we will keep the subscripts to help with an understanding of the
equations.) Using (7.36), the shear strain and curvature are given by

d do
3=0+ =blw+hl0,  y=" =bl0. (7.37)
dx dx

Consequently, from (7.7) and (7.33) (compare (7.20)) the internal virtual work becomes

V, = j N(bTSu, + (b w')bT 5w, + MbI 58, + Q(h 50, + b’ ow,)dx (1.38)

and the internal force vector is

q" = (UT, WI, TT) (7.39)

4 Current normal
e

Figure 7.4 Detail for element with shear deformation.
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where the T; terms are work-conjugate to the nodal variables, 8. The components of
q; are given by

~

U,= | Nb,dx (7.40)
r

W, = | (N(b,w')b, + Ob,)dx (7.41)

T,= | (Mb, + Oh,)dx. (7.42)

It is convenient to subdivide the tangent stiffness matrix so that
K. K. K,
K=| K K, K., (7.43)
K, K., Ky

where, from (7.40) (7.42) and with the aid of (7.17), (7.28), (7.29) and (7.37), the sub-
matrices are given by

oU; 0¢

Kﬂy:“U'z ‘EA'bui} =J‘EA'bubIdx (7.44a)
‘u cu
eu;, ... ¢ TR LT

K, = '=|EAb, = |EAMbIw)bnb!dx (7.44b)
ow cw
U, 0,

Ko=Yio lexb, Fdx= j ‘EX’b,b] dx (7.44c)
69 J (19

"W, &3 A
K,.= Wi ‘EA’(blw"b, cf + ‘GA'bw( X + wabfv>d_\‘
ow ow cw

~

= | CEA'Tw)?b,b" + GA’b,bT + Nb,bT)dx (7.44d)

r - -,
K., = (~Ex*(b§,w')bw” +°GAD, ) dx
20 aw

.
= {CEX"(bIw)b, bl +'GA'b hy)dx (7.44¢)

(o Oy O
Keo= { [ ‘EI'by -~ +'GA’hy " Jdx

] o0 o0

R

= | (EI'bgb, dx + "‘GA’hghy)dx. (7.44f)

Y

The Nb,b! term in (7.44d) is the ‘initial stress’ or ‘geometric” stiffness matrix. In
(7.44d)- (7.441), the ‘G A’ terms should include a shape-function factor for shear (f; for
a rectangular section) [C2].
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7.1.5 Specific shape functions, order of integration
and shear-locking

Very acceptable solutions are achicved when the proposed quadratic shape functions
are used in conjunction with two-point Gaussian integration. However, if the length-
to-thickness ratio becomes very high, shear-locking can occur {C2.2]. This limitation
can be overcome by forcing the shear strain to be cffectively constant (with x) and
constraining out the Aw, term so that [C2.2]

Aw, = E[;(()2 —4,). (7.45)

In these circumstances, the final element has u, w and 0 at the end nodes and Au and
Af at the mid-element node, q. The constraining-out can be effected once the full
stiffness matrix is formed but it is better to modify the b, function.

We could climinate all mid-element variables, by setting A0, to zero (thus giving
a linear bending moment) and constraining out Ar, in order to provide a constant
membrane strain. This would lead to a very similar solution to that obtained with
only linear functions if one-point integration for ail of the terms. This relationship
was first raised in Section 7.1.3 and will now be amplificd.

For simplicity, we will start with the membrane strain-displacement relationship
in (7.3) rather than that of (7.4) which relates to an initially curved member. (The
theory is easily modified to cover thc latter.) Assuming a Timoshenko beam
formulation as in the previous section, w may be taken as a guadratic. In these
circumstances, from (7.3), to be able to reproduce a constant & u must strictly be a
cubic. Using hierarchical displacement functions [C2.2], this can be provided via

11—\ u .
i= ) (M) 40— 22, + B — E)Aa, (7.46)
2\ 1 +¢ i, ¢

where we have added to (7.9), (7.10) and (7.12} a hicrarchical cubic function which is
zero at & = 0 and Aa, at & = 1. We can now substitute (7.46) and the quadratic function
of (7.34) and (7.35) for w into (7.3) to find an expression for ¢. The expression is
simplified by using non-dimensional displacements, 1t = // and W = w/l and can be
expressed as
&=l + %“'51 + AG,) - 4E(An, + Way AV ) + 8§Z(A\€'j — 2A4,). (7.47)
Hence, for a constant strain, we require
Aty = — vy A, = [4d5,0,,] (7.48)
and
A, = %A\i'j =03, 1 (7.49)
The square-bracketed values at the end of equations (7.48) and (7.49) stem from the
introduction of (7.45). If we actually impose (7.48) and (7.49) as constraints and
eliminate Ad, and Ad,, we arc left with
E=1,, + w3, +-§A\£ﬁ:[ﬁ21 + 33, + 50241 (7.50)

An identical expression would be obtained (more simply) via the use of (7.31) using
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the quadratic w function and linear  function (with no introduction of Ai, and A#,).
In contrast, the use of a single-point integration would (see (7.47) with Ad, = Aiji, = 0)
lead to

F=iyy + D2 (7.51)

The latter expression could also be obtained by using a linear function for w in the
membrane strain (see earlier discussion in Section 7.1.3). The difference between (7.50)
and (7.51) will vanish as the mesh is refined and Aw, tends to zero. Under constant
curvature, equation (7.32) for the Kirchhoff element of Sections 7.1-7.1.3 would again
lead to (7.50). .

If we do not apply any averaging on the membrane strain, it is essential to include
a quadratic membrane displacement, u. From (7.47), with A4, included, the shape
functions will allow a membrane strain field with no & term. Without a cubic (A#,)
term, we are strictly left with an unmatched quadratic term due to Aw, (see (7.47))
and hence cannot fully recover a constant membrane state. However, an ‘unmatched’
quadratic term is far less serious than an ‘unmatched’ linear term {(as would arise,
without averaging, if we did not include a quadratic, Ai ). Consider, firstly, a solution
starting with a cubic #u, followed by the imposition of the constraint of (7.49) to
eliminate Aid_. As an alternative, consider a solution obtained with only a quadratic
4. It is not difficult to show (using (7.47)) that both solutions give exactly the same
membrane strain, £, at the two-point Gaussian integrations stations, { = + \/%. Hence,
if we adopt two-point Gaussian integration and use a quadratic i, we can effectively
recover a constant membrane strain. In the limit, as the element reaches a state of
constant curvature, the cubic w function of the Kirchhoff element of Sections 7.1-7.1.3
will become a quadratic and, in these, circumstances, the previous arguments will
apply equally to that element.

As previously discussed in Section 7.1.3, the ‘eccentricity issue’ [C7] is also relevant
to the choice of matching shape functions.

7.2 A SIMPLE COROTATIONAL ELEMENT USING
KIRCHHOFF THEORY

A form of corotational technique has already been introduced in Section 3.6 for truss
elements. The corotational technique [B2,B3,C3,C6,HI,M1.N1,01,02] was
initially introduced by Wempner [W2] and Belytschko and co-workers [B2, B3] and
has much in common with the ‘natural approach’ of Argyris et al. [A1]. Belytschko
and co-workers [B2, B3] mainly applied the method to dynamic analysis using an
‘explicit formulation’ and hence the issue of the tangent stiffness matrix was not directly
addressed although Belytschko did schematically outline the procedure for the
generation of a consistent tangent matrix [B2]. He showed that, contrary to some
arguments [ T2], it was possible to derive a tangent stiffness matrix using corotational
procedures (which, as already indicated in Chapters 3 and 5, are different from updated
Lagrangian techniques).

The term ‘corotational’ has been used in a number of different contexts but will
be taken here to relate to the provision of a single element frame that continuously
rotates with the element and with respect to which standard, small-strain, small-
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displacement (or engineering) relationship can be applied (Locally shallow strain
terms can be added -—see Section 7.2.7.) Although corotational procedures have often
been applied, they have not always been approached in a fully consistent manner
particularly with regard to the generation of the tangent stiffness matrix. The key
element in such a consistent derivation is the introduction of the variation of the
local—-global transformation matrices. This was recognised by Oran [O1,02] who
derived some elegant corotational formulations for beams and rods. (He also included
‘beam--column’ terms which may have somewhat obscured the corotational basis.)

Figure 7.5 Corotational stretch, u,.

— -
R 0,

e
—~
\. Imtial configuration

— X

Figure 7.6 Local corotational slopes, 0, and 0,,.
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There has recently been a resurgence of interest in corotational formulations for both
three-dimensional beams and shells [R1,C6,N17. These issues will be addressed in
Volume 2.

In this section, we will derive a two-dimensional corotational beam element using
Kirchhoff theory. The element will be firstly described using simple engineering
concepts without resource to shape functions. Throughout, the subscript, {, will be
used for ‘local’ coordinates (sec Figures 7.5 and 7.6) while if no subscript is given,
the variable can be taken to be "global’ and relating to the fixed orthogonal axes.
The formulation has much in common with that of Oran [O1,02].

7.2.1 Stretching ‘stresses’ and ‘strains’

The stretching side of the element formulation follows that given for the truss element
of Sections 3.4 and (more directly) 3.6, which was derived using a ‘rotated engineering
strain’. Using this approach (see Figure 7.5), the local ‘strain-inducing” extension is

wp=1l,— 1, =((xy, +d21)r((x21 +d21))”2 - (XLXN)“Z (7.52)

where the subscript 21 has the previous meaning with x,, = x, — x,, where x, and
x, are the initial position vectors of nodes | and 2. In practice, (7.52) 15 badly
conditioned and 1t 1s better to adopt

[— [
oty = ey gy (7.53)
([n+[(') 1n+10

from which can be derived (see also Section 3.8), the mid-point formula [B2]
2
= X, + 4dy)'d,,. 7.54
i (l"+lo)( 21 +3d2)7dy, (7.54)

Using the initial basic form for the element, the axial strain is assumed constant as
u,/l, and the axial force is given by

N = Edu/l,. (7.55)

7.2.2 Bending ‘stresses’ and ‘strains’

The standard engineering beam-theory relationships are assumed to apply in the
local system so that with the local transverse displacements being zero (Figure 7.6):

M,\ 2EI[2 1]/6,
_ = (7.56)
M, L, L1 24\0,
where 8,, and 8,, are the local slopes, (dw/dx), (see Figure 7.6) in the corotating frame.
These slopes are given by
O =0, —2—b,, Oy =0, — % — ), (7.57)

where « defines the rigid rotation of the bar (Figure 7.6) and 6,,, and 6,5, are the
initial local slopes. The rigid rotation, «, can be found using the cross-product of the
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unit vectors along the bar in its initial and final configuration via

. 1 1
S=Sln1:[1 (X3 X (X, +d21)}=1[ (X21Way — 231Uy (7.58)

o

Or. alternatively, using the inner product relationship:

1 .
c=cosq= Ny (X3, (x5 +dyy)) (7.59)

o'n

Provided |2] < 7, one can decide which formula to use by deciding in which quadrant
the beam lies, t.e.

x=sin"'sif(s=0and c=20)or(s<0and ¢=0)
x=cos 'cif(s=0and ¢ <0) (7.60)
2= —cos tcif(s<0and ¢ <0).

The previous relationships fail if |«] > z. However, in most circumstances, it is
possible to extend the range to 2z. To this end, we need to know the direction
(clockwise or anticlockwise) in which the element has rotated. Then, knowing both
¢ and s, we can uniquely find the quadrant in which the element lies. The direction
of the rotation can be obtained from the sign of the (total) nodal rotations. More

generally, in three dimensions, one can use quarternions to uniquely update a nodal
triad-—see [C6,S2] and Volume 2.

7.2.3 The virtual local displacements
In order to apply the principal of virtual work, we need to differentiate (7.52) (or

{7.54)). An alternative, but completely equivalent, geometric approach follows from

24

Figure 7.7 A small movement from the current configuration.
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Figure 7.7 and involves

os A\T 1/x \' .
Su, = el 5d,, =(“f”/) ody, = (‘;‘) dd,, (7.61)
sin i [\ 25,

where e, is the unit vector lying along the current configuration of the bar (Figure 7.7)
and X,, = x;, +d,;. In future we will refer to cos ff as ¢ and sin f§ as s.
Equation (7.61) can be re-expressed as

oup=(—c¢, —8.0,¢,500p=r"dp (7.62)

where the components of dp are the infinitesimal displacement changes at the nodes
with p ordered as

T =, w0 us, wy, 0,). (7.63)
From Figure 7.7, the unit vector orthogonal to e, is given by
el =(—x0) (7.64)

and hence (see Figure 7.7), a small rigid rotation from the current configuration is
given by

1
dr= eTod,, (7.65)

n

or, in terms of the nodal displacements, dp,

1 | -
= (s —¢.0, —s.c,0)0p= | 1'op. {7.66)

n n

From (7.57) and (7.66). we can write

) 0 001 00 0] 1z ,
50, = ”):[ } [] sp=ATop. 7.67
o <0,2 00000 1] 1|2/ P ton

Hence the compilete vector of local 'strain producing” displacement changes is given by

du, T

- . r .

op=\| o0, |= |: T]()p = Bdp. (7.68)
. A
o0,

7.2.4 The virtual work
Equating the internal virtual work in both the local and global systems and making
use of the virtual form of (7.68), we can write
Vi=0plq = Nou, + M, 80, + M,80,,, = 5p/.q, = 3p] BTq, (7.69)
where the local “internal forces™ are
q;,=(N.M, M,). (7.70)

Equation (7.69) must apply for any arbitrary dp, and hence the global internal force
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vector, q;, is given by
q; = BT% (7.1)

which is readily computed once the stress resultants, q,;, are known from (7.55) and
(7.56).

7.2.5 The tangent stiffness matrix

Differentiation of (7.71) leads to
dq;=B7dq,,+ NoB, + M, 0B, + M, B, =K,,dp + K, op. (7.72)

where B,, for instance, denotes the second column of BT (from (7.68)). Assuming
linear material behaviour, differentiation of (7.55) and (7.56) leads to

ON . t 0 0

°T | Ea N

oM, |= i 0 4r* 2r* |6p,=Cp, (7.73)
M, o[ 0 2rr 47

where r is the radius of gyration. Using (7.73), the first term on the right-hand side
of (7.72) is easily computed as

K, =B'CB (7.74)

which is the standard tangent stiffness matrix. The geometric stiffness matrix comes
from the last three terms in (7.72). From (7.66) and (7.62), differentiation of the first
column of BT (sec (7.68)) leads to

IB, =dr=43fz (7.79)
with z from (7.66). But from Figure 7.6, 8ff = dx and hence, from (7.75) and (7.66),

l )
OB, = zz'op. (7.76)
From (7.66)-(7.68),
. 1 I .
oB, = | oz + 1210“" (7.77)

Therefore, from (7.61), (7.62) and (7.66),

0B, = llz(rzT + zr")dp. (7.78)

n

From (7.67) and (7.68), 6B; = 5B, and hence, from (7.72)-(7.78), the complete tangent
stiffness matrix is given by

(M, +M,)

12

. + N . : .
K.=B'CB" + | 2" + (rz" + r"). {7.79)

n
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7.2.6 Using shape functions

A more conventional finite element formulation would introduce shape functions,
To this end, the local displacement, u,(Z) would be expressed as

ul) =31+ )y, (7.80a)
with
X, =41+ N, (7.80b)
so that the local strain is obtained by differentiation to give
d du, d¢
b= oSS (7.81)
dx, dé&dx,

while the local transverse displacement would be given by the conventional cubic
(but with w, being zero at the two ends — Figure 7.6). Hence

L{(E2=1(E-D\T[0
Wy = ('((jz N )> ( “>. (7.82)
BN —-DE+ 1)/ \0,
Differentiation of (7.82) leads to
dw, 1/ —1—=2&+32\T
o, =" ( STee ) 8, =70, (7.83)
dx, 4\ —142F+3¢2
and further differentiation to
do, 1/ —1+3\"T
y= = ( *) 0,=b"0, (7.84)
dx, 1, 1+ 3¢

From (7.81), the axial strain is constant and hence the axial force is given by (7.55).
The (local) bending moment is obtained from (7.84) as

M = Ely = EIb9, (7.85)

and hence the internal virtual work follows from (7.81) and (7.84) as

i

Vi=qiTOpv=J <Mézv+N 7")dx,=N0u,v+<)0{vj EIbb'8,dx, (7.86)

0 o o]

from which

El 4 2

Vi=Nou + 00] 8,. (7.87)
! 2 4

On account of the definitions of M, and A7IZ n (7.56), (7.87) coincides with (7.69) and
hence, as anticipated, the internal force vector, g; of (7.71), is the same under the two
formulations. It follows that the stiffness matrix, (7.79), will also coincide.

o

7.2.7 Including higher-order axiai terms

Equation (7.55) was based on the approximation that the axial strain in the bar is
equal to the relative axial deformation of the two ends divided by the original axial
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length. Such an assumption docs not allow for any straining caused by the beam
shape departing from a straight line (see Figure 7.6). Such an effect can be simply
introduced by introducing the locul shallow-arch terms (Section 7.1) [B3] or by
invoking Green'’s strain (sec (4.75)). relative to the corotating system. The latter is
more general and will be developed here. Assuming for the present that the bar is
initially straight, with the aid of (4.75). (7.81) and (7.83). we have

Loodu, 1 du,)2 L U 1(u,>1 -
e (8= '+ +402 ="+ +107ss’@,. 7.88
i dx, 2<dx, 2\ R (7.88)

If the shallow arch equations are used, the (u,/1,)* term in (7.88) would be neglected.
As already discussed in Sections 7.1.3 and 7.1.5, unless extra variables are provided
for u,, only a constant axial strain can be accommodated and hence one should adopt
(7.31) to modity (7.88) to give

A e
ea="w (M) 4 a7 |ssTdxe, (7.89)
L2\ ) T

- o

o o

o

so that the last term in (7.88) is changed to take its average value. On performing
the integration, (7.89) becomes

u, t{u\? 4 1
bl = lol + 2([:) + "l"eTl: _y 4:'91 (790)

Alternatively, it might be better to provide shallow terms relating to the state under
constant curvature. From (7.50) we¢ would then have
U

a I -1
b= | + 2%9,'[ » , JO,. (7.90a)

It should be noted that, in the limit, as the mesh is refined, any of these additional
terms {(above u,/l)) will vanish. For the present developments, we will work from
{7.90), but there should be no difficulty in adapting the equations to relate to {7.90a).

With a view to the virtual work, (7.90) can be differentiated to give (with the aid
of (7.61) and (7.67)).

. | i . 4 -1,
o.cx,:l (l + 7'>rlbp+-_‘%9,‘[ | 4:|Ar(*ip. (7.91)

\]

Hence, in place of (7.68), we have

1,3, <l N u')r'r + I, 9?[ 4 —1 :|A'"
op;=1 90, |= l 30 -1 4 dp=Bdp (7.92)
0, AT
and following (7.69) (7.71), the internal force vector, g;, is given by (7.71) with g
defined by (7.70) and B by (7.92).

The tangent stiffness matrix is obtained by differentiating (7.71) so that, in place
of {7.79), we have

K=K, +K,=B'CB +K,_, (7.93)
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where C; was given in (7.73) and the ‘initial stress’ matrix is given by

NQ + ?‘l/ﬁlo)uT re’ + (Mn + Mz + ]L_O__Nvln(()ll +6),)

K,=B'C*B + + N R = (rz" + zrT)
(7.94)
where
NI, 0 0 0
C*= 0 0 4 —1 . (7.95)
) 0 -1 4

A formulation involving the local shallow-arch equations would involve setting u, to
zero in (7.92) and (7.94).

7.2.8 Some observations

The workings of the previous section have assumed that the bar was initially straight
rather than curved. If the latter applics, onc may simply modify (7.88) to give
du, l(du,

eq(l)= ~ +
(&) dx,

ot )#%0,2—%0,{, (7.96)
x, 2

where the last term in (7.96) includes the effects of the initial local slopes (0,,).

The formulation including the higher-order terms gives, as expected, more accurate
results than the basic co-rotational formulation [C1]. However, this is achieved at
some cost. In particular, once the higher-order terms are included, the formulation
seems to be more badly conditioned and some convergence difficulties occur [C1].
(It 1s possible that these difficulties may be ameliorated by using a development based
on (7.90a) rather than (7.90).) However, as the mesh is refined, there should be little
difference between the two formulations, both in terms of accuracy and convergence
characteristics. For linear buckling problems with coarse meshes, the extra terms
would be required.

7.3 A SIMPLE COROTATIONAL ELEMENT USING
TIMOSHENKO BEAM THEORY

If we include shear deformation, with the aid of Timoshenko beam theory, the
stretching strain is exactly as in Section 7.2.1 but, see Figure 7.8, the bending and
shear ‘stresses” and ‘strains’ are given by
El Erl
M =Ely= - ['(912‘911)=— | (0, —0,) (7.97)

(M o

6
0="GA"y = —‘GA‘(HH; “)= _~GA’(0‘ ;’92-9{) (7.98)

where x is, as before, the rigid rotation given by (7.58)—(7.60). The minus signs in



220 TWO-DIMENSIONAL FORMULATIONS

Current
normat

—— Initial configuration

— X

Figure 7.8 Local corotational rotation ot normal at node 1, 0,

(7.97) and (7.98) are required in order to maintain the sign convention adopted for
the shallow-arch formulation of Section 7.1.4. (Note that the 8,s in Figure 7.4 and 7.8

are of opposite sign.) For simplicity, in (7.97) and (7.98), we have ignored the influence
of any initial 8, terms although the latter are ¢asily introduced.
From (7.97) and (7.98) and using (7.62) and (7.66), in place of (7.68), we have

Sy, r7 07
1,6g,= | 1,0x |= 00 1 00 -1 [+°]0° op=Bdp
1,0y 00 —1/2 00 —1,2] "4

—~—
<

_—

(7.99

where r and z have been given in (7.62) and (7.66). Conscquently, the internal virtual
work is given by

T

V.= 5p.q; = ,q;0¢, = 3p] By, (7.100)
where the local internal forces are
qf = (N, M, Q) (7.101)
and the (global) internal force vector is given by
¢ =B"gq; {7.102)
with B from (7.99). Differentiation of (7.102) leads to
dq, =BTq;+ (N B, + MJB, + QJIB;) (7.103)

where B, for example, is the differential of the second column of B”, given in (7.99).
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In place of (7.73), we now have, using (7.99),

IN EA 0O 0 |
(5q“ = ()M = 0 h[ 0 (58{ = Cléﬁf = [ CIB[()p (7 104)
50 0 0 GA o

so that the first term of (7.103) gives the standard tangent stiffness matrix as

1
K”:{WC£. (7.105)

o

To form the geometric stiffness matrix, differentiation of the columns of B' (given in
(7.99)) leads to

dB, =3B (equation (7.76}), dB,=0, 0B, = —1,6B,(equation (7.78)).  (7.106)
Substitution into (7.103) lcads to

1 N l )
K, = | B'CB+ 1 7z’ — Qz"(rzT + ') (7.107)

7.4 AN ALTERNATIVE ELEMENT USING
REISSNER’S BEAM THEORY

With a view to later work (in Volume 2) involving threc-dimensional beam elements,
we will now describe an alternative two-noded clement based on Reissner’s beam
theory [R2]. The element is closely related to a three-dimensional beam due to
Vu Quoc and Simo [S1,82] (which will be described in Volume 2). This clement is
not, within the previous definitions, corotational. In other words, it does not use a
single corotating frame for the clement and then use standard small-strain enginecring
terms with respect to that rotating frame.

For this element, the bending moment and curvature arc effectively the same (see
{7.97)) as those of the previous element and are given by

El
M=Ely=""(0:~0)) (7.108)

a

where the rotations of the nodal normals. 0, and 0, are shown in Figure 7.9.

In order to define the axial and shear strains, we require the orthogonal unit
vectors, t, and t,, at the central Gauss point (Figure 7.9}). These are related to the
average normal rotation

0,, =05(0, +0,) {7.109)
via
t] =(cos0,,,sin0,,), t=(—sin0,,.cos,). (7.110)
In addition, we require (see Figurc 7.9) the vector,

Xy, =X, +dy, (7.111)
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Figure 7.9 Current configuration for arch element using Reissner’s theory.

where, as before, we use the notation x,, = x, — x|, etc,, and x describes the initial
coordinates while d describes the total nodal displacements and (see Figure 7.5),
x' = x + d describes the current coordinates. Using these terms, the strains can be
expressed as

1 1 1
c,:ltfx’m—lz (}x2,+1er*l (7.112)

[ [\ [«]

where r is as in (7.62) but with
s=sinfl,,, c=costl,,. (7.113)
Also, the shear strain, 7, is given by

! 1 .
P=p Xy = 0+ 2P (7.114)

o o V]

where 2T = (s, —¢,0, —s, ¢, 0) with s and ¢ being given by (7.113).
An explanation of these strain measures can be found from Figure 7.9. In particular,

x5y, =1le (7.115}
where e, is the unit vector along the tangent. Hence, from (7.112),
1 . !
£ :l (l(ety)— 10)=1 (I,cos i —1)) (7.116)

(with 8 as in Figure 7.9), while from (7.114),

L . Lsinp
W= It2: ] N

(7.117)

As -0, equation (7.116) coincides with the previous ‘rotated engineering strain’
while, again with f—0 and [, -, equation (7.117) gives  — f§ which again corres-
ponds with the previous measure for the shear strain.
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To obtain the infinitesimal ‘strain’ changes. we differentiate (7.108), (7.112) and
(7.114) 10 give

du, ' +c,s’
logg=1 1oy | = 0 0 -1 0 0 1 [=B'dp (7-118)
1,07 2"+ eyt

where s and ¢, and ¢, are given by

s' =(0,0,1,0,0. 1) (7.119)
¢; = —05tx,, = = 0.5, + u) = — 0.5], (7.120)
¢, = 0568, =0.5;1,. (7.121)
As usual, to compute the internal force vector, we start with the (internal) virtual work:
Vi = (Sp‘[ql = [nq‘l]i. (Sglv = ()pTqull (7]22)
where
q,=(N, M. Q) (7.123)

and we have used (7.118) for dg,. For arbitrary dp,. from (7.122), the internal force
vector is given by
q,=B'q, (7.124)
with B from (7.118). To obtain the tangent stiffness matrix, differentiation of (7.124)
leads to
dq,=B'dq,; + (NOB, + MJB, + Q4B,) =K, dp (7.125)
where 8B,, for example, is the differential of the second column of B' (given in
(7.118)). Using (7.104), the first term in (7.125) leads to (7.105) with B from (7.118).
To form the geometric stiffness matrix, differentiation of the columns of B' (given in
(7.118)} leads to
OB, = Lsz'dp +zs'dp) + Lcyss'op (7.126)
OB, =0 and
By = —sr"dp +rs'dp)— Jc,ss'op. (7.127)
Substitution into (7.123) gives

1 N . . N - v ) .
K.= B'CB+ > (sz" +2s') + R c,ss' — g(srT +1s') - g('zssr, (7.128)

Q <

7.4.1 The introduction of shape functions and extension to
a general isoparametric element

The previous work can be extended to cover a general isoparametric formulation
using the same functions (h) for the geometry (x und z) and cach of the “displacements’
{u.w and ). In these circumstances. we require the ‘length parameter’, x (see
Section 3.3.4), at the Gauss point. This parameter. which relates to the initial geometry
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(and hence remains fixed at a particular Gauss point), is given by
, [dxy [do}?
A=) + (7.129)
dé d¢

x=h"x, :z=h'z " =hlx,

where

=hTz (7.130)

and x and z bave the nodal values of x and z respectively.
In place of equations (7.108), (7.112) and (7.114), the ‘strains’ become

1

= hio (7.131)
o d
1 dx’

e= t  —1 (7.132)
a  dé

and

yo X (7.133)

o T dé

where x’ relates to the current nodal gcometry, ie.
x'=x+d (7.134)

and the unit vectors t, and t, relate to the particular point (usually the Gauss point),
£, and are obtained from (7.110) but using § at ¢ (via the shape functions and the
nodal 0s) instead of 0,,.

Differentiation of (7.131) (7.133) gives the ‘strain changes’ at any point & as

de, r+e,st
g =al Sy [=[ 0 0  hyl) 0 0 hJ2) -~ |=Bép (7.135)
dy 2 +c,s!

where h, is the differential of h with respect to & and

r' = (chy(1). she(1), 0, cho(2), sh,(2),0,.. ) (7.136)
2" = (—sh(1), che(1), 0, — sh,(2), ch.(2).0,...), (7.137)
where at the particular point ¢&
¢ =cosf, s=sin{) and f=h'e (7.138)
while
pdx’
(-1:_(1d::-x(l+1:} (7.139)
d !
=t = (7.140)
dé
with

sT =(0.0.h(1).0,0,h(2),0,...). (7.141)
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In (7.135) the ordering of the nodal variables would follow an extension from (7.63).
With the aid of (7.135), the (internal) virtual work is given by

V= q;r(spl\' = Jqﬂéﬁlv dx; = JapﬁBqui d¢ (7.142)

where q,; is given by (7.123) and relates to a particular point ¢. It follows that the
internal force vector, q;, 1s given by

q = J‘BTq,i dé. (7.143)
Following closely the procedure of Section 7.4, the tangent stiffness matrix becomes
1
K = J(BTC,B 4+ N(sz" + zsT) 4+ Ne,ssT — Q(srT +rsT) — chssT> dé. (7.149)
o

The theory can be applied to any order of clement. For linear shape functions, it will
lead to the same clecment as that of Section 7.4 provided one-point Gaussian
integration is adopted.

7.5 AN ISOPARAMETRIC DEGENERATE-CONTINUUM
APPROACH USING THE TOTAL LAGRANGIAN FORMULATION

Figure 7.10 shows a three-noded isoparametric degenerate continuum clement for
which the linear theory can be found in, for example, [C2.2]. The following non-linear
theory will relate to a general non-linear isoparametric element [B2.5, B1,S4, W4].
Although the previous formulations in this chapter have involved a two-dimensional
beam element in the x—z plane, we are now (Figure 7.10) describing an element
in the x-y plane. This change is introduced in order to correspond with the
two-dimensional continuum formulation of Section 5.1. The present degenerate-
continuum formulation can be considered as a special case of the latter.

v,
ay, 7(;)1 \\
Y

N

Figure 7.10 Three-noded degenerate-continuum arch element.
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Following standard degenerate-continuum techniques. the geometry can be inter-
polated (see Figure 7.10) via
x =Y "%+ Y hi(&a;eos oy =h'x + Ch'v (acos o) (7.145)
where
v (ucos )t = Ha, cos @, u,cos@,... ) (7.146)
contains the x-dircction components (sec Figure 7.10) of the director vectors, v. In a
similar fashion.
y=3 bl E+ 50 hidasing; =h'y + 3Chv (asin ) (7.147)
where v, (a sin ) is a similar vector to that in {7.146) but with sincs instcad of cosines.
The vectors X and ¥ in (7.145) and (7.147) contain the nodal x and v coordinates of
the clement centre-line.
To be consistent with (7.145) and (7.147). the displacements, v and © can be inter-
polated in a similar manner. so that

u=> h(chy + 1> h(da(cos @ — cos @) (7.148a)
=3 (& + é‘:zhl(;")ui(sin p; — sin ;) (7.148b)

where o,,; are the initial values of ¢; and i, and r; arc the nodal displacements of the
centre-line. At any Gauss point (&, J), we can obtain

cu cu cr cr
CX B S (X I RS
A =J R o |=d . {7.149)
cu Cu cr cr
cy I cy &l

where J 1s the standard Jacobian (sce (5.6)) relating to the initial geometry and, for
example, from (7.148a),

‘1
(wl =3 hai, + YWY haicos @ — cos ;). (7.150}
&

Having obtained the shape function and their derivatives, the procedure follows
closely that already given in Section 5.1 for the two-dimensional continuum. In
particular, from (5.10) (5.12), the Green strains arc given by

.~ — . —
Cu cu
Cx F cu cr AN
) o0 U0 .
Cu Cx X Cu
£, I 0 0 0 o . N -
) | cu cr cy
E=| « |={0 0 0 1 A +j 0 0 A
e 2 ) (
o1 10|l ~ N
XN [ T T O S X
Ci Cy Ox o Oy Ox J Ct
‘1 F‘_VJ
L o

=[H + 1A(0)]0. (7.151)
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In order to compute the internal forces, we also require (see (5.15))
OE =B,,(p)op=[H + A(0)]G op {7.152)
where (see (7.151) for 0):
00 =G op (7.153)

and for the full continuum case, G was given by (5.8). For the present degenecrate
continuum, the nodal variables in dp are ordered as

3p" = (ou', v, s¢") (7.154)
where du contains the nodal values of du, év the nodal values of ¢ and ¢ the nodal

values of ¢ (see the footnote on page 25 regarding the ordering of the variables).
In order to obtain 30 (see (7.151) for @), we require from (7.148),

ou =h(&)'oa — 1{h"Diasin ) do (7.15%)
dv=h(&)"dV + ' Dia cos )o@ (7.156)
where
a,sing,
D(assin @) = dsme. (7.157)
aysin @,
elc.

with a similar matrix for D(acos ¢). In order to obtain the matrix G in (7.153), we
must differentiate (7.155) and (7.156) so that, considering (7.155),

e
%~ 1o — $¢hID(asin @) 5o (7.158)
cg
and
cou . .
.. = —1ih"D(asing) dep (7.159)
(&S

so that (compare the continuum form in (5.9)),

oou |
Cx
fou 23711, k! 07 b’ .
(2, )h! 0" b! .
so| V=t 2 (?’ h _ 1 sv |=Gop (7.160)

cor 2 0 2J7'(1, Dh! b} .
L . : . o
fx 0’ 2072, hh] b
oov

| ¢y ]
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with
b, = — D(asin @)({J ™ (1. DHhe +J 7 '(1,2)h) (7.161)
b, = — D(usin¢)({J (2, hh;+J~ '(2,2h) (7.162)
b; = D(acos ¢)(CI™'(1. Dh: + J~}(1,2)h) (7.163)
b, = D(acos @)({J ™12, Dh: + 742, 2)h). (7.164)

The principle of virtual work now leads, with the aid of (7.152), to

q = an,(p)TSdVoz JGT[H +A0)]'SdV, (7.165)

where
dV, =det(J)d<dC (7.166)

and S are the second Piola Kirchhoff stresses of (5.20). In Section 5.1.2, 1t was shown
that the continuum tangent stiffness matrix of (5.26) could be obtained either from
the continuum form of the variation of the virtual work (as in (5.4} from (4.83)) or
by direct differentiation of the internal force vector. In the current degenerate case,
it 18 important to adopt the latter procedure in order to be fully consistent with the
kinematic assumptions inherent in the model. To this end, differentiation of (7.165)
where

oq; = f(BL oS + oBT S)dV,=K,, op + [K,, + K ,]1dp (7.167)

where (see also (5.26))
K, = JBI,C,Bn,dVO = ch[H +A@)]"C,G[H + A0)]1dV, (7.168)
where the C, matrix in (7.168) relates 68 to JE and should reflect the plane-stress

assumption. This issue is discussed further in Section 8.2.1 which deals with shells.
The K, and K, terms in (7.167) are given by

JGT(SA(G)TSdVO =K,,dp (7.169)
while
j(sc’f[u +A(0)]'SdV, =K,,p. (7.170)
Equation (7.169) leads to
K”1=fGT§GdVO (7.171)

which is of the same form as K, in (5.26) with S from (5.24).
There is no full continuum cquivalent of K. Indeed, this matrix would be missed
if one worked directly from the continuum form of the variation of the virtual work
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(see (4.83) and (5.4)). From (7.170). K, is given by

K,,0p = J(s;ac, +8,6G, + 5,0G, + S,6G,4)dV,

where

x Cy
‘u Qu
S =S,‘(l + . )+S,
Cx oy
! cr
S’3=Sn<l + . )+Sx
cy cx
or ov
S;:S}(l + . >+SXH
qy T ix
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(7.172)

(7.173)

(7.174)

(7.175)

(7.176)

and differentiation of the first column of G” in (7.160) gives 4G, etc. It is not difficuit

to show that, for k= 1,4,

00 0
5G,=| 0 0 0 |op
0 0 D,

where D, are diagonal matrices with the ith term being given by
D,(i,i) = — 371, Bhy + 37 (1, 2)h,)a; cos o,
D,(i,i) = — X372, Dhg + J 712, 2)h;)a; cos ¢,
D,(i,i) = = I 71, Dhg + 37 (1, 2)hy)a; sin o
D, (i, i) = — (I~ 12, Dhg + I~ (2, 2)h;)a; sin @

7.6 SPECIAL NOTATION

a; = thickness at node i (Section 7.5)
A = area of beam
A = matrix (7.67) connecting 40, with Jdp (Section 7.2)
A(0) = matnx of displacement-derivatives ((7.151) in Section 7.5)
b = vector connecting curvature, y, to 8, (7.84)
b, = differential of h, with respect to x
b, = differential of h,, with respect to x

(7.177)

(7.178)
(7.179)
(7.180)
(7.181)

B = matrix connecting op, or [, 3¢, to dp ((7.68) or (7.92) for Kirchhoff theory; (7.99)

for Timoshenko theory; (7.118) for Reissner theory)
¢ =cos f§ (Section 7.2.3), = cos 8 {Section 7.4.1)
¢ = vector relating curvature, y, to w
C, = local constitutive matrix
d = displacement vector
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d,, =d, —d,;d; = displacement vector at node i
e, = unit vector between nodes of beam element
e, = unit vector orthogonal to e,
E = Green's strain (Section 7.3)
G = matrix connecting 60 (displacement derivatives) to dp (Section 7.5)
h, = shape function vector for i displacement
h,, = shape function vector for w displacement
h, = shape function vector for #
H = Boolean matrix (Section 7.5)
I = second moment of area
[ = initial ‘length® of beam clement (between nodes) in Section 7.1
{, = initial ‘length’ of beam clemeant. /| = current ‘length’
M = bending moment in beam
M, = internal bending moment in local system at node 1; M, at node 2
N = axial force in becam
p = vector of nodal *displacements’
ordering such that p' = (u",w?) in Sections 7.1 7.1.3
ordering such that p* = (u",w'.0") in Scction 7.1.4
ordering as in (7.63) for Sections 7.2- 4
ordering as in (63) for Section 7.5
Q@ = transverse shear force
r = radius of gyration
r = special geometry vector (7.62)
s=sin f§ (Section 7.2.3), =sin{ (Section 7.4.1)
s = vector connecting f, to the nodal values, 0, (Section 7.2.6)
s = special vector (7.119) for Reissner theory
S = second Piola-Kirchhoff stresses (Section 7.5)
t,,t, = unit vectors for Section 7.4
T = vector of nodal forces corresponding 1o 8 (Section 7.1.4)
7 = axial displacement at reference plane
u = vector of in-plane nodal displacements at reference plane (ir)
U = nodal forces corresponding to u
v, = unit director vectors at node i (Scction 7.5)
w=w+z
w = vector of out-of-plane nodel ‘displacements’ (7.11a) in Sections 7.1-7.1.3
(ws and 0s)
w = vector of nodal ws in Section 7.1.4
w=w+1z
W = nodal forces corresponding to w
X3 =X, —X,
X, = initial position vector of node 1, x, for node 2
X21 = X2 — Xy
X' =x+d
X = vector containing nodal values of x at element centre-line (Section 7.5)
y = vector containing nodal values of y at element centre-line (Section 7.3)
z = vector of initial out-of-plane variables (7.11b) for Section 7.1
z = special geometry vector (7.66) for Sections 7.2 and 7.3
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» = rigid-body rotation angle of beam (Sections 7.1 and 7.2)
¥ = ‘length parameter’ (7.129) in Section 7.4.1
2, =dz/dx
f# = final orientation angle for beam element (Section 7.2)
! = dw;dx~ for Kirchhoff theory
0 = rotation of normal for Timoshenko theory
) = rotation parameters (Figure 7.9) for Reissner theory
0, = 0 in local frame with ¢, and 0,, at nodes; 0,,, and 0, are initial values of 0,,
and f};, respectively
0, =dw/dx
0 = nodal values of 0
8 = vector form of displacement derivatives as in (7.151) (Section 7.5)
o, = angular orientation of v; (Section 7.5)
¢;, = nitial orientation of v; (Section 7.5)
dp = vector of nodal values of d¢ (Section 7.5)
7 = curvature (Section 7.1)
¥ = curvature vector (Section 7.2)

Subscript

[ = local or linear
nl = non-linear

Superscript

= ‘at reference plane’
quantity divided by ! (Section 7.1}

7.7 REFERENCES

[A1] Argyris. J. H. Balmer, H., Doltsinis, J. St.. Dunne, P. C.. Haase. M.. Klicber, M.,
Malejannakis. G. A.. Mlejenek. J. P. Muller. M. & Scharpf, D. W.. Finite element
method  the natural approach. Comp. Meth. Appl. Mech. & Engng.. 17/18,1 106 (1979).

[B1] Bathe, K. J. & Bolourchi. S.. Large displacement analysis of three-dimensional becam
structures, Inr. J. Num. Meth. Engng.. 14, 9619386 (1975).

[B2] Belytschko. T. & Hseih, B. J., Non-linear transient finite element analysis with convected
co-ordmates, Ini. J. Num. Mcth. Engng.. 7. 255-271 (1973).

[B3] Belytschko,T. & Glaum, L. W., Applications of higher order corotational stretch theortes
to nonlinear finite element analysis, Computers & Structures, 10, 175182 (1979).

[B4] Brink, K. & Kratzig. W. B.. Geometrically correct formulations for curved finite bar
elements under large deformations, Nonlinear Finite Element Analysis in Structural
Mechanics, ed. W. Wunderlich et ul., Springer-Verlag, Berlin, pp. 236 256 (1981).

[B5] Burgovnne. C. & Crisficld. M. A.. Numcrical integration strategy for plates and shells.
Int. J. Num. Meth. Engng., 105 121 (1990).

[C1] Cole, G.. Consistent co-rotational formulations for geomctrically non-lincar beam
elements with special reference to large rotations. Ph.D. Thesis, Kingston Polytechnic.
Surrey (1990).



232

TWO-DIMENSIONAL FORMULATIONS

[C2] Cowper, G. R., The shear coefficient in Timoshenko's beam theory, J. Appl. Mech.. 33,

[C3]

[C4]

[C3)

[C6]

[C7]

(D1}
[E1]
[F1]

[G1]
(H1]
(H2]

(K1]

(M1]

[(MZ]

(NI]
[o1]

(02}
[P1]
[R1]

(R2]

[s1]
[s2]

(S

3

]

335-340 (1966).

Crisfield, M. A. & Cole, G., Co-rotational beam elements for two- and three-dimensional
non-linear analysis, Discretisation Methods in Structural Mechanics, ed. G. Kuhn et al.,
Springer-Verlag, pp. 115 124 (1989).

Crisficld. M. A. & Puthli. R. S., Approximations in the non-linear analysis of thin plated
structures, Finite Elements in Non-linear Mechanics, Vol. 1. ed. P. G. Bergan et al., Tapir
Press, Trondheim. Norway, pp.373- 392 (1978).

Crisfield. M. A. Large-deflection elasto-plastic buckling analysis of eccentrically stiffened
plates using finite elements, Transport & Road Research Laboratory Report, LR 725,
Crowthorne, Berks., England (1976).

Crisfield. M. A.. A consistent co-rotational formulation for non-linear, three-dimensional
beam elements, Comp. Meth. Appl. Mech. & Engng., 81, 131-150 (1990).

Crisfield, M. A, The “eccentricity issue’ in the design of beam, plate and shell elements,
Communications in Appl. Num. Meth., 7, 47 56 (1991).

Dawe, D. J., Some higher order elements for arches and shells, Finite Elements for Thin
Shells and Curved Members. ed. D. G. Ashwell et wl.. Wiley, London, pp. 131- 153 (1976).
Epstein, M. & Murray. D. W., Large deformation in-plane analysis of thin walled beams,
Computers and Structures, 6, 1 9 (1976).

Frey, F. & Cescotto, S.. Some new aspects of the incremental total Lagrangtan description
in nonlincar analysis, Finite Elements in Nonlinear Structural Mechanics, Tapir,
Trondheim (1978).

Gupta, A. K. & Ma, P. S Error in eccentric beam formulation, Int. J. Num. Meth.
Engng.. 11. 1473 1477 (1977).

Hsiao, K. M. & Hou, F. Y., Nonlincar finitc e¢lement analysis of eclastic frames,
Computers and Structures, 26, 693 701 (1987).

Haefner, L. & Willam, K. 1., Large deflection formulations of a simple beam element
including shear deformations, Engineering Computations, 1. 359 -368 (1984).
Karamanlidis, D.. Honecker, A. & Knothe. K., Large deflection finite element analysis
of pre- and posteritical response of thin elastic frames, Nonlinear Finite Element Analysis
in Structural Mechanics, ed. W. Wunderlich et al.. Springer-Verlag, Berlin, pp.217 235
(1981).

Mattiason. K., On the co-rotational finite clement formulation for large deformation
problems. Pub. 83: 1. Dept. of Structural Mechanics, Chalmers Univ. of Technology
(1983).

Moan. T. & Soreide, T.. Analysis of stiffened plates considering nonlinear material and
geometric behaviour, Proc. World Cong. on Finite Element Methods in Struct. Mech.,
ed. J. Robinson. Bournemouth. England. Vol. [L. pp. 14.1 14.28 {1975).

Nour-Omid, B. & Rankin, C. C., Finitc rotation analysis and consistent linearisation
using projectors, Comp. Meth. Appl. Mech. & Engng. (to be published).

Oran, C. & Kassimali. A., Large deformations of framed structures under static and
dynamic loads, Computers & Structs., 6, 539 547 (1976).

Oran, C., Tangent stiffness in space frames, Proc. ASCE, J. Struct. Dir., 99, ST6,973 985
(1973).

Prathap, G., The curved beam;deep arch finite ring element revisited, Int. J. Num. Meth.
Engng.. 21, 389 407 (1985).

Rankin, C. C. & Brogan, F. A, An element independent corotational procedure for
the treatment of large rotations, Collapse Analysis of Structures, ed. L. H. Sobel &
K. Thomas, ASME, New York, 85- 100 (1984).

Reissner, E., On one-dimensional, large-displacement, finite-strain beam theory, Stud.
Appl. Muath., 52,87 95 (1973).

Simo, J. C.. A finite strain beam formulation. The three dimensional dynamic problem:
Part 1. Comp. Meth. Appl. Mech. & Engng., 49, 55 70 (1985).

Simo, J.C. & Vu-Quoc, L., A three-dimensional finite strain rod model: Part 2:
Computational aspects, Comp. Meth. Appl. Mech. & Engng.. 58, 79 116 (1986).
Stolarski, H. & Belytschko, T.. Membrane locking and reduced integration for curved
elements, J. Appl. Mech., 49, 172 176 (1982).



REFERENCES 233

[S4] Surana, K. S., Geometrically non-linear formulation for two-dimensional curved beam
elements. Computers & Structures. 17, 105 114 (1983).

[T1] Timoshenko, S., On the correction for shear of the differential equation for transverse
vibration of prismatic bars, Phil. Muy., 41, 744-746 (1921).

[T2] Tang, S. C.. Yeung. K. S. & Chon, C. T., On the tangent stiffness matrix in a convected
coordinate system, Computers & Structures, 12, 849-856 (1980).

[W1] Washizu, K.. Variational Methods in Elasticity and Plasticity, 2nd edition, Pergamon
Press, Oxford (19735).

{W2] Wempner, G., Finite elements, finite rotations and small strains of flexible shells, Int.
J. Solids & Structs., 5, 117-153 (1969).

[W3] Wen, R. K. & Rahimzadeh, J.. Nonlinear elastic frame analysis by fintte element, Proc.
ASCE. J. Struct. Dir., 109(8), 1952 1971 (1983).

[W4] Wood. R. D. & Zienkiewicz, O. C., Geometrically nonlinear finite element analysis of

beams, frames, arches and axisymmetric shells, Computers & Structures, 7, 725-735
(1977).



8 Shells

Calladine [C1] gives an ineresting review of the developments of theories for shell
structures, We are here specifically concerned with finite element analysis. For linear
analysis, some of the earliest work involved facet formulations [C3,Z2]. This concept
was extended to non-linear analysis by Horrigmoe and Bergan [H1] using a
corotational approach (although in the paper, [H1], the term ‘updated Lagrangian’
was used). Another early facet formulation, using a corotational approach, was given
by Backlund [B1] who used the Morley triangle [ M4] which has mid-side rotational
connectors. As discussed in the previous chapter, a corotational approach can be
suppelemented by the addition of local shallow shell terms from Marguerre's theory
[M2.4]. Such procedures have been applied to shells by, amongst others, Jetteur et al.
(J2,J3] and Stolarski et al. [S7].

Probably the majority of work on non-linear shell elements has followed on from
the lincar work of Ahmad et ol. [A1] using the degenerate-continuum approach with
a total or updated Lagrangian formulation [W4.7, B2.5, B2, DI, F1, S4, S8, M2, P2,
R1, R2, D1, H2] or using some "incremental’ (rate) form of strain measure [H3, L1,
B3 B6, S5 S6] (often related to the corotational approach [B6]). As with linear
analysis, problems occur with shear locking and. again as with linear analysis, these
can be ameliorated by various forms of (selective) reduced integration. [Z1, P3, H3.
HS, B3, B4, B6, 56]. Alternatively, substitute shape-functions can be used (possibly
in reltion to the covariant strain components {D1, H2, J17). Membrane locking (see
Sections 7.1.3 and 7.1.5) can also occur and, again reduced integration [B3, B4, B6,
S6] or substitute functions (possibly via ‘stress projection’ [B7]) [H2, B7, S6] can
help. Alternatively (or additionally), some form of corotational (rate) strain measure
may be used at the integration points [B6, S6]. Reduced integration can lead to
problems with mechanisms. Thesc can be overcome using some form of “stabilisation
technique’ [ B3, BS).

The isoparametric degencrate-continuum approach adopts shape functions for the
components of displacement in a fixed rectangular cartesian system. Consequently,
it allows the cxact satisfaction of the rigid-body modes even when the plane-section
constraint is applied in the through-thickness direction [C2.2]. However, this is
achieved only when the continuum approach is adopted throughout and the various
shape-function manipulations involving the Jacobian are applied at all of the
integration points including those in the ‘through-thickness direction’.

Considerable savings in computer time can be achicved by using the
through-thickness integration only for the treatment of material non-linearity. In
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relation to-a beam (although not, specifically, in relation to a degenerate-continuum
approach), the ideas were discussed in Section 7.1.2. In order to introduce such a
technique one must work with membrane strains, & and curvatures, y, and the
corresponding ‘stress resultants’, N and M. In relation to lincar analysis, a simple
procedure was advocated by Zienkiewicz et «al. [Z1] for divorcing the
through-thickness integration from the main shape-function procedure. As noted in
(11, C2.2,C9, M2], the simple approach of [Z1] can lead to stressing under rigid-body
movement (although this drawback should vanish in the limit as the mesh is refined).
Milford and Schnobrich have proposed a solution {M2] involving a truncated Taylor
series for the inverse Jacobian. Much further work has followed with an emphasis
on non-linear analysis and the development of a ‘continuum-based resultant form’
[Ss, 86, L1, B3]

As with lingar analysis, an important issue in relation to the design of non-linear
shell elements is that of the ‘sixth degree of freedom’ or ‘drilling rotation’. In a
conventional formulation for a membrane plate, we have locally five degrees of
freedom including two (out-of-plane) rotations. If some form of coordinate trans-
formation is adopted (say between local and global coordinates), we can then end
up with six degrees of freedom at the structural level (now with three rotations). If
all of the elements lie in the same plane, a mechanism results. To overcome this
problem, Zienkiewicz suggested a fictitious spring stiffness relating to the (local)
in-plane rotations [Z2.1]. (An alternative formulation using a form of integrated
spring stiffness has recently been suggested by Providos [P4] and has been found to
give good results.) While the fictitious spring approach may work adequately for
linear problems, there are more dangers with non-linear analysis when, with material
non-linearity, the stiffnesses of the elements can vary significantly.

It is possible for a smooth shell to work with only five variables by setting up
some averaged system at the nodes with respect to which the out-of-plane rotations
are taken. This approach was suggested, in relation to a facet analysis by Horrigmoe
and Bergan [H1]. Also, as will be shown in Section 8.2, it is possible to work with
only five variables for a total Lagrangian continuum formulation. In this work, which
follows that of Ramm and Matzenmiller [R2], the two ‘rotation variables' are not
rotations in the true sense but rather define the orientation of the director (which is
of unit length).

In order to encompass both smooth and non-smooth shells, some formulations
use five degrees of freedom for the smooth regions and six for those involving junctions
[C12]. This of course leads to complexities in the *house-keeping’. An alternative that
1s currently receiving much research interest is to always use six variables, with the
local in-plane rotation being included as a ‘true’ rather than a ‘fictitious’ connector
[A3, C2, 12,13, B8 NI, T1]. When rotations are used as variables, we also have to
consider their non-commutativity when they become large [A4]. This i1ssue is even
more relevant to three-dimensional beams and rods and will be considered in
Volume 2.

This brief review of previous work on non-linear shell analysis has inevitably been
somewhat cursory. Some recent papers that have not been discussed can be found
in [S1-83,P1,W2]. The reader might also refer to the review paper by Wempner
[W1] and the books edited by Hughes and Hinton [H4].

The present chapter will concentrate on two procedures for non-linear shell analysis;
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firstly a shallow-shell formulation and secondly the degenerate-continuum approach.
The former follows on directly from the work on beams in Section 7.1. An important
class of problems that can be treated by the shallow-shell formulation is that of
imperfect steel plates. Such plates (often stiffened) form the main components of a
wide range of structures from bridges to dock gates and ship decks. Appropriate
non-linear analysis usually requires a combination of geometric and material effects.
The author has applied such analyses, using the shallow-shell formulation, to both
stiffened and unstiffened imperfect plates with a view to the assessment of the strength
of bridges [C3.6. C7, C8, Cl10, Cl11].

While the range of application of the shallow-shell approach is a little limited,
along with the shallow-arch formulations of Section 7.1, they have an important
teaching role. Also, as indicated in Section 8.1.7, their range of application can be
extended.

The second area covered in this chapter is that of the degenerate-continuum
approach. As already discussed, there has been a mass of research work in this area
and there are still many problems to be overcome. In the present chapter, we will
concentrate on one aspect only, that of ‘consistency’ in relation to a total Lagrangian
approach. The earliest approaches [B2.5, B2, R1] discretised the problem after setting
up the continuum expressions involving the tangent stiffness matrix. As a consequence,
they did not produce a ‘consistent tangent stiffness matrix’. This limitation was partly
corrected by Surana [S8] and, later, in an unambiguous manner, by Ramm and
Matzenmiller [R2]. The presentation in this chapter will be closely related to the latter.

8.1 A RANGE OF SHALLOW SHELLS

In this section, we will extend the shallow-arch formulation of Section 7.1 to a shallow
shell. In contrast to Section 7.1, where we started with a ‘Kirchhoff formulation’, we
will here directly introduce shear deformation at the very start and thus adopt a form
of Mindlin—Reissner analysis [M2, R2,C2.2]. This formulation will provide a starting
point even when we exclude shear deformation and adopt a form of Kirchhoff bending
because, following the work in [C5,C6,C2.2], we will introduce the latter using a
form of ‘discrete Kirchhoff” hypothesis.

8.1.1 Strain-displacement relationships

From the assumption that plane sections remain plane, we can extend (7.3)
(see also (4.84)) to give

E=E+zy=E+E, +2x (8.1)

where the E terms relate to the reference plane (possibly but not necessarily, the
centre of the shell) and

Bl = (Oa,;ﬁ i N (?E> 8.2)

where 1 and v are the in-plane displacements at the reference plane and (see (7.4)
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[ w42\ | [i/é:
2( Cx ) 2(r’x>
£ - ]([’(wjrz))z - l((r:)z 8.3)
2 cy 2\ ¢y
p
P

and (4.84)),

c(w + 2)d(w + 2)
L Cx oy

where z is the initial vertical coordinate of the shell reference plane and w the
subsequent deformation (see Figure 8.1 where the variables 0, and 0, refer to the
rotations of the normal). Using thc Mindlin- Reissner approach, the curvatures are

given by
1= ((?0’.‘ 80’_‘, 80.’5 + (?(i) ) (8.4)

)
ox Oy &y x

Equation (8.4) takes a very similar form to (8.2). For the virtual work, we also require
the virtual form of (8.1) which is {see also (4.85)):

OE, = OE, + 2,01,

O 4 =
c(nq+ ) 0 —‘
cx cow,
= : . = Aw+z ix .
=JE, + Tds, + 2,0y, = ok, + 0 R ) . +z;0x,  (8.5)
cy (oW,
Sw+z) dw+z) ¢y
L Oy x|

where SE,, and dy, take similar forms to (8.2) and (8.4) respectively.
The vertical shear strains will be expressed in standard form as

( (0‘) e (8.6
=)= ")+ =0+s. :
! ) 0, aw )

> x(u)

Figure 8.1 Coordinate system for a shallow shell
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8.1.2 Stress—strain relationships

Using a similar procedure to that adopted for the arch (Section 7.1.2), we will not
necessarily assume that the reference plane is at the centre of the section. We will
also allow for the possibility of material non-linearity so that the stress-strain
relationships at any depth z; are taken to be tangential, so that

[ v 0
ol 1 0 (6E + z,8%) 8.7
=0 0 1+w2

. _ E
58S = C,0E = C(SE + z,0%) =

where 08" =(85,.,0S,.0S,,) are the second Piola Kirchhoff stresses at any depth z.
In the last relationship in (8.7), we have written C, using the linear-elastic, isotropic
relationship for plane-stress conditions (Section 4.2.1). With plasticity, we would.
instead, use the tangential elasto-plastic modular matrix (preferably ‘consistent’— see
Section 6.8.2.1) under conditions of ‘plane stress’.

Using a very similar procedure to that adopted in one dimension in equations (7.26)
and (7.27), we now integrate (8.7) through the thickness z, to obtain the relationships
for the stress resultants as

ON = ja‘s dz, = JC(((SE + z,6%)dz,
= j C,dz, 0F + f C,z,dz, 8¢ = C,, 6E + C,,,0% (8.8)
oM = jéSz, dz, = JC(Z,(M_E + z,dy)dz,
= j.C,z, dz, OF + JC,zf dz,; 0y = CT, 3E + C,oy. (8.9)

Equations (8.8) and (8.9) define the membrane constitutive matrix, C,, the bending
constitutive matrix, C, and the cross-coupling matrix, C,,,,. All three of these matrices
should be considered as ‘tangential’ although, to save space, the subscript t has been
dropped. A discussion of the numerical integrations in (8.8) and (8.9) has already
been given for the one-dimensional case in Section 7.1.2. The arguments remain valid
for the present two-dimensional analyses.

To supplement (8.8) and (8.9), we will assume tangential vertical shear relationships

of the form
5 10
5Q = J(”‘-)m, C,,.(iy=1(}r[0 J(sy. (8.10)

In the last relationship in (8.10), we have assumed a linear-clastic, isotropic relationship
with a as the ‘shear factor' (usually taken as ? or n?/12 [C2.7]). The author has

applied (8.10) to the analysis of concrete bridges using an approximate non-linear
relationship for the shear stiffnesses [C8].
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8.1.3 Shape functions

The present shallow shell theory can be applied with a range of different elements
with different shape functions. We will here concentrate on applications involving (a)
standard isoparametric functions related to a standard Mindlin Reissner formulation.
and (b) a ‘constrained Mindlin Reissner” [C6.C2.2] and (¢) a “discrete Kirchhoff
formulation [C5.C2.2] adopted by the author. In the latter cases ((b) and (¢)). only
an outline s given, the precise form of the constraints having aircady been described
for hinear applications in the references given previously.

For all of these analyses, one can assume that the five variables . &, w, 8, and 0,
are initially expanded using the same hierarchical shape functions (so would the initial
geometry) so that

g=h"a, r=h"v, w=h'w;, 0.=h'9,, 0 =h"0,. (8.11)

For the present purposes, one can consider these functions to be either serendipity
(8-noded) or Lagrangian (9-noded) see Figure 8.2. Also, it is most convenient to
think of the shape functions as being of a hierarchical form [C2.2] so that the mid-side
and central variables are ‘relative” and can therefore more easily be constrained out
at some later time. Collectively, the nodal variables (i, v, w,0,.8,) will, as usual, be
referred to as p. For some algebraic expressions it is also useful to refer to the
membrane nodal displacements @ and ¥, collectively as p,, and the normal rotations
0, and 0, collectively as p,.
Using these shape functions, we can use the Jacobian in the standard way to obtain
E,=B.,p.. OoE =B_dp, (8.12)
% =Byps. 0y =B,op, (8.13)

where with the same shape functions for 4.7, 0, and 0., B,, and B, will take the same
form. Also the slopes, s (see (8.6)) and slope changes, ds, can be obtained as

s =Bw, Oos = Bow (8.14)
so that from (8.6) and (8.14),
vy=0+s=Hop,+ Bw. oy = 008 + os = H op, + B, ow {8.15)

where the H matrix in (8.15) 1s simply composed of terms from the shape functions

Figure 8.2 8- or 9-noded element.



240 SHELLS
h of (8.11). Finally, from (8.5), (8.12) and (8.14),
OE = JE, + OE,, = B,,0p,, + T(w) s = B_dp,, + T(w)B, ow. (8.16)
The only non-linearity in the relationships of (8.13), (8.15) and (8.16) is in (8.16) and
comes from the T matrix which, from (8.5) and via (8.14), is a function of the current
nodal displacements, w,
Further discussion on the issue of matching shape functions and numerical
integration will be given in Section 8.1.5.
8.1.4 Virtual work and the internal force vector
The virtual work can be expressed as
V= j(STéE +Q%éy)dV, —qldp, = j(NWSEV + My, + QTy)dA, — qldp,. (8.17)
Substituting from the virtual forms of (8.13), (8.15) and (8.16) into (8.17) gives
V= j(qLépm +q,,0W + q;,0py) d A, — qOp, (8.18)

where the subvectors of the internal force vector, g; are given by

~

Qi = | BINdA, (8.19a)

¢ = | BIT(W)'N + Q)d4, (8.19b)
dr‘

qﬂi = (BZIM + H[Q) dAU. (8190)

Y

With a view to future developments, it is useful to re-express the strain change/nodal
displacement relationships of (8.13), (8.15) and (8.16) as

5y =B,dp (8.20)
dy=B.dp (8.21)
OE = B,(p) op. (8.22)

If a standard Mindlin—Reissner relationship werc adopted thc B matrices in
(8.20)-(8.22) would follow directly from (8.13), (8.15) and (8.16) and, for example, the
B, matrix obtained from (8.13) would imply only connections between dy and the
dp, terms. However, in moving from (8.13), (8.15) and (8.16) we could with either the
constrained Mindlin—Reissner or discrete Kirchhoff formulations, constrain out the
mid-side hierarchical nodal Aws to be functions of the nodal 8s [CS, C6, C2.2]. Hence,
in these circumstances, there would be coupling between oy and the nodal dp,s while
the Aws would be dummy terms (see {C2.2]). For the discrete Kirchhoff element, we
would also constrain out the Afls [C2.2]. For the current formulation to be general,
we will assume that any constraints have been applied in producing the B matrices
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n (8.20)-(8.22) and will also adopt the general (possibly constrained) form
ds = B, dp (8.23)

in place of (8.14).
Using (8.20)-(8.23), the virtual work of (8.17) and (8.18) would be replaced by

V= J (N"B,(p)dp, + M"B, Jp, + Q'B, dpy)d4, —q.dp, = J q/ op,dA,—qp, (8.24)
while the subvectors of (8.19a)- (8.19¢) would collectively become

4= J(ﬁe(p)TN +BIM + B'Q)dA,. (8.25)

8.1.5 The tangent stiffness matrix

The tangent stiffness matrix follows in the normal way by differentiation of (8.25),
so that

5q, = f(l_is(p)TéN +B]éM + B]5Q)dA4, + Jaﬁe(p)‘N d4,=K,, dp+K,dp. (8.26)

Substituting from (8.8) -(8.10) and (8.20) (8.22) into the first term in (8.26) gives

B! C, C., 0 B,
K, = J B! cl, C, 0 B, [da, (8.27)
BT 0 0 C B,

The geometric stiffness matrix, K,, comes (see (8.26)) from the variation of B, of
(8.22). It is easier to derive this matrix by firstly reverting to the subvector forms of
q; in (8.19a)- (8.19¢), from which the only term not stemming from variations of N, M
or Q (which lead to (8.27)) comes from (8.19b) as

E =fBIéT(w)TNdA0=JBINzésdA0=jBZNZBSdA(,éw:K,,,(Sw (8.28)

where

N, =[ N N"]_ (8.29)
B N N

Xy ¥

In (8.28), use has been made of (8.5) for T and (8.14) for ds. The K, matrix in (8.28)
could equally be derived directly from the continuum form as in (4.87) and (4.88) via

3V = jdsVTNzésdAn. (8.30)

Allowing for any possible displacement constraints that may lead to (8.23) rather
than (8.14), the complete tangent stiffness matrix becomes

K, =K,(827)+ JBINzﬁSdAO. (8.31)
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8.1.6 Numerical integration, matching shape functions and ‘locking’

We have already considered the introduction of various techniques to avoid “shear
locking’ (see also [C2.2] for more detail in relation to the present elements). As
previously discussed in Scctions 7.1.3 and 7.1.5, we must also consider ‘membrane
locking’. From these carlier discussions. we know that in order to avoid or, at the
least, limit, such ‘locking’, we must use. at least, quadratic expansions (serendipity or
Lagrangian) for the in-planc displacements, u and r. (Allman [A2] has given
polynomial expressions for & and & which are strictly required in order to recover
all admissible states of constant strain with the von Karman equations [V1.4] when
w is expanded as a quadratic so as to represent the constant curvature states.) When
coupled with two-by-two integration. the resulting configuration has been found. by
the author, to give good results for a wide range of problems [C8,C11].

An alternative approach. using only lincar shape functions for & and . could
involve an extension of the methods suggested in Sections 7.1.3 and 7.1.5 for arch
elements. One approach would simply involve the use of single-point integration for
the membrane strain terms [M2.7]. Alternatively (sec equations (7.31), (7.32) and
(7.50)), the membrane strains could be replaced by constant, averaged values. For
the two-dimensional shell, rather than the one-dimensional beam. it is not immediately
obvious how to apply such ua technique. For a constant strain triangle, Stolarski et al.
[S7] (followed by Jetteur and Frey [J2.J37]) applied the previous one-dimensional
relationships along the sides of the triangles. For a triangle with constant strain. the
membrane strain vector, & can easily be related to these three axial strains. An
extension of these ideas to quadrilaterals has been given by Jetteur and Frey [J12,J3].

Before leaving this section, we should note that the ‘eccentricity issue’ (see
Section 7.1.3 and [C7.7]) is also relevant to the choice of matching shape functions.
It i1s most relevant in relation to the provision of eccentric stiffeners. but also affects
the attached plate or shell element, particularly in the presence of material
non-hnearity [C7.7].

8.1.7 Extensions to the shallow-shell formulation

The simplest way of extending the range of the shallow-shell formulation is to initially
define a set of local flat surfaces with respect to which the shallow-shallow equations
arc defined. Prior to assembly of the overall systems. standard coordinate
transformations can be applied. With triangular elements and with quadrilaterals for
a cylindrical shell [C4] these fucet systems are easily delined. For quadrilaterals with
a general shell, some form of weighted averaging is required to define this surface
[HLJ2,J3.NI1]. In 2 non-linear environment, if the shallow-shell equations (and
transformations) are always rclated to the initwl locally flat system. the resulting
formulation will be valid for deformations imvolving small rotations from the initial
configuration. Morley [M35] and Providas [P4] have used a similar approach (but
with the von Karman rather than the Marguerre relationships) in conjunction with
Morley's triangular clement [M4] which has mid-side rotational conncectors.

The limitation to small rotations from the nitial configuration can be removed by
adopting a corotational formulation for the local flat surfaces (facets) in conjunction
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with a locally shallow formulation using the Marguerre equations. (These ideas have
becn discussed in relation to arches in Section 7.2.7.) Such an approach has been
applied by Jetteur and Frey [J2, J3] and Stolarski et al. [S7].

8.2 A DEGENERATE-CONTINUUM ELEMENT USING
A TOTAL LAGRANGIAN FORMULATION

In order to produce a non-linear degenerate shell element, we may, conceptually,
simply extend the work of Section 7.5 into three dimensions. Early work applied the
discretisation after the derivation of the tangent relationships at the continuum level
[B2,R1] and consequently did not produce a consistent tangent stiffness matrix. The
limitation was pointed out by Frey and Cescotto [F1] and later by Surana [S8]. In
the present section, we will follow closely the formulation of Ramm and Matzenmiller
[R2] which is described further in a paper by Stander et al. [S4]. The devclopments
are closely related to both the three-dimensional continuum formulation of Section
5.1.3 and the two-dimensional ‘arch’ formulation of Section 7.5 and, to avoid
repetition, some reference will be made to equations given in those sections.
As a starting point (Figure §.3), the geometry is expressed as

X Ax
r=f+3JAr=| 7 | +3| AF [ =2 h(&mi+ 3 WG may,  (8.32)
I Az

where & and n are the non-dimensional coordinates in the plane of the shell and ¢
the non-dimensional coordinate in the thickness direction. The position vector, r in
(8.32) relates to the centroidal or reference surface while Ar is in the direction of the

Z4

Figure 8.3 8-noded degenerate-continuum shell element.
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Figure 8.4 ‘Rotational’ variables,  and w for degenerate-continuum shell element.

‘director’ (through the thickness). At the nodes, the coordinates of the reference surface
are given by I, while the through thickness, director vectors are Ar; = v, where
(Figure 8.3) a; is the thickness and v, the unit vector in the ‘thickness direction’. The
vector v, is defined by rwo parameters i, and w; (Figure 8.4), where

/C()Sl//
v,=| sinycosw |. (8.33)

sinysinm |/,

In Figure 8.4, OA represents the unit vector v with ¢ as the angle between this vector
and the x-axis. OB is the projection of v (OA) on to the v c plane while » defines
the angle between this projection and the y-axis. The relationship in Figure 8.4 and
(8.33) is not a unique way of defining the unit vector, v;  other possibilities exist but
with v; of unit length they should involve two parameters.

For consistency with (8.32), the defllections,

d' = (i eow) (8.34)
follow as
d=d+Ad =3 h(&nd; + 503 (v, — vi,) (8.35)
where
Ve = (COS Yo SIN Y4, COS my,, SIN G, SINy,) (8.36)
and ¥,. w, arc the initial values of ¥ and @ at node 1 and d; contains the nodal

values of the deflections at the reference surface (see (8.34) for d).

Assuming d; and v, are known, the Green strain can be computed from (5.11) with
H from (5.33) and A(0) from (5.34). The vector 0 (sce (5.29)) of displacement gradients
can be computed from the components of ¢djéx, ¢d/Cy, d/cz with the latter being
computed using the usual Jacobian terms J (see [C2.2]) in conjunction with the
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partial differentials of (8.35):

(.d = Zhiiai + 502 haailvi— viy) (8.37)
[ i

cd .

L= Z hr,idi + 3¢ Z hr,iai(vi - Vi) (8.38)
ey

cd |

(W =, Zhiai(vi — Vi) (8.39)
ol 2

where, as usual, A, is the partial differential of h; with respect to & Differentiaion of
(8.35) leads to

Su=h(E n'ou—Lh'D(asinyg) P (8.40)

dr =h(Z.7)'ov + L hTD(acos Y cos w) o — L Ch'D (asiny sinw) o (8.41)

dw =h(E T ow + LhTD (acosy sin ) + 3Ch'D (asiny cos w)do (8.42)

where éu contain the nodal displacement changes of i, 0v the nodal displacement

changes in ¢ and ow the nodal displacement changes in W, while d{ contains the

nodal changes in the WPs (see Figure 8.4) and do contains he nodal changes in the ws

(sce Figure 8.4). Collectively, these nodal displacement changes can be combined as

op' = (Su". ov' ow' 3! s’ (8.43)

{sec the footnote on page 25 regarding the ordering of the variables). The matrices

such as D(asiny) in (8.40) (8.42) arc diagonal and take the form previously discussed
for the two-dimensional ‘arch’ in Section 7.5 (see equation (7.157)).

Using (8.37) (8.42). the change in the displacement gradients 00 (see (5.29),
{8.44)

- . - - N
-~ - - - - -

o Cou Cou Cou Cor Cor Cor Cow Cow Cow
o0 =( .. ..
CON (Y (2 O Oy (o Ox Oy oz

can be related to the nodal variables, dp, via
[al 0" o' b 0]
al 0" 0" bl 0
ay 0' 0 b._'x 0"
0" al o' ¢!

1
] . R )
o‘()z7 0' al 0" ¢} e} [dp=Gop. (8.45)
2
3

In equation (8.45),
a,=2(J Yk, Dhe+J7 (kD) (8.46)
b, = — D{asin y)z, (8.47)
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with
7, = {J 7k, Dh, + {37k, 2)h, + J 7 (K, 3)h. (8.48)

Also,
¢, = D(acos i cos w)z,, d. = D(acos y sin w)z, (8.49)
e, = — D(asin i sin w)z,, f, = D(asiny cos w)z,. (8.50)

With the new definition of (8.45) for G, (5.33) for H, and (5.34) for A(0), equation
(5.19) defines the internal force vector, q;.

8.2.1 The tangent stiffness matrix

As for the two-dimensional ‘arch’ formulation of Section 7.5, the tangent stiffness
matrix can be expressed as

K=K, +K,, +K,, (8.51)

with K, being defined by (7.168). Special treatment is required for the effective modular
matrix C, which will be discussed later.

The geometric stiffness matrix K, is given, as for the continuum formulation, by
(5.25) (although with G from (8.45)) with S being given by (5.36). For the second
contribution to the geometric stiffness matrix, in place of the *arch equation’ of (7.172),
we now have

K,,op = J J F(k)oG, dV, (8.52)
k=19

where F(k) is the kth component of the vector:
F =[H + A(0)]7S (8.53)

with S from (5.35). Differentiation of the kth column of G' (from (8.45)) gives 6G, dp,
where it can be shown that

000 0 0
000 0 0

6G,=Pap=[0 0 0 0 0 |op (8.54)
0 0 0 D, D,
0 0 0 D,, Dy,

where D, D, and Dy, are diagonal matrices with (i,if" terms which involve z, _,
from (8.48) and are given by the following equations;

for k=1,3:

D,.(i,i)= —a;cosy,z,(i)

D, (i,)) =D (i, =0 (8.55)
for k=4,6:

D, (i,i) = — a;sin y; cos w; z, _ ;i)

D, (i,i) = — a;cos ¥, sin w,; z, _ (i)

Dy (i, 1) = — a;siny; cos w, 2, _ 5(i) (8.56)
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for k=79

D, (i.i)= —a;siny;sinw; z, _ (i}
D, (i.§) = a;cos i, cos 1, 2, _ ()
D (i) = — a;siny, sinw; z, _ (). (8.57)
In forming the standard tangent stiffness matrix, K,, (see (7.168)), the constitutive
matrix (or tensor}, C,, should include the plane-stress constraint that there be no

stress in the initial thickness direction. At a particular (Gauss) point £, 5. the unit
vector, €5, in this direction can be computed from

Ar

e;= with Ar, =Y hayv, (8.58)
YA 2
(see (8.32) for Ar}. To find the unit vectors e, and e,, orthogonal to e, (Figure 8.3),
one can use procedures similar to those used in linear analysis [C2.2, Z2.17]. Assuming
a linear material response, the local material modular matrix is given by
1 voo0o 0o o]
v 10 0 0 0
E 000 0 0 0
C = 8.59
Ta-vyl0o 00 4 0 0 (89
00 0 24 0

0
(00000 0 24
where 4 = %(1 —v). To transform to global coordinates (for use in 7.168), the tensor
relationship of (4.55) can be used with (7, , relating to C, and 7y, to the global C,
in (7.168). The T tensor in (4.55) would be T, = T}, where the matrix form of T, is
given by (see (4.35)):

gl =

T,=]|e! |. (8.60)

T
3

8
¢

\
In order to produce an effective degenerate continuum shell element, the present
theory must be supplemented by techniques to avoid ‘shear” and ‘membranc’ locking,
Also. for an efficient solution, the through-thickness integration should be divorced
from the main calculations involving the Jacobians and shape functions. These
concepts have been briefly discussed in the introduction and will be considered further
in Volume 2.

8.3 SPECIAL NOTATION
a; = nodal "thicknesses’ (Section 8.2)
a, b, ¢, d, f, = vectors for defining G (see (8.45)) (Section 8.2)
A(0) = matrix containing displacement derivatives (see (5.34)) (Section 8.2)
B,. = matrix connecting E, to p,, (Section 8.1)
B, = matrix connecting % to p, (Section 8.1)
B, = matrix connecting the slopes, s, to w (Section 8.1)
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B. = modified B matrices after applying constraints (Section 8.1)
B, = B matrix connecting JE to Jdp (Section 8.1)
B, = B matrix connecting dy to dp (Section 8.1)
B, =B matrix connecting dy to dp (Section 8.1)

C..Cyand Cm,',zsubmatrices {membrane, bending and coupling) of tangential

constitutive matrix, C, (Section 8.1)
d = displacement vector (Section 8.2)
d= displacement vector relating to reference surface (Section §.2)
D = diagonal matrices (see (7.157)} (Section 8.2)

e,, e, e; = triad of orthogonal unit vectors at Gauss-point with e, in ‘thickness

direction’ (Section 8.2)
l_? = strains (Section 8.1)
E = shallow-shell strains at reference plane (Section 8.1)

_E, =linear part of E (Section 8.1)
E., = non-linear part of E (Section 8.1)

G = shear modulus
F =H + A(0) - see (8.53) (Section 8.2)
G = matrix connecting J8 to dp (Section 8.2)

h. h, = derivatives w.r.t ¢ and n of shape function vector, h (Section 8.2)

H = shape-function matrix (see 8.15) (Section 8.1)
H = Boolean matrix (see (5.33)) {Section 8.2)

M = vector of bending moments (Section 8.1)

N = vector of in-plane stress resultants (Section 8.1)

N, = matrix of in-plane stress resultants (see (8.29)) (Section 8.1)

p =nodal displacement; for Section 8.1, p' =", v, w', 0], 0])=
(P W' P)
P, = matrix relating 3G, to Jp (see (8.54)) (Section 8.2)
Q = transverse shear forces (Section 8.1)
r = position vector (Section 8.2)
r = position vector of reference surface (Section 8.2)
s = vector containing slopes, éw/cx and ¢w/¢y (Section 8.1)
S = Second Piola -Kirchhoff stresses corresponding to E (Section 8.1)
S = Second Piola-Kirchhoff stresses (Section 8.2)
T = matrix of slopes (see (8.5)) (Section 8.1)
i = u (x-direction) displacement at reference plane (Section 8.1)
@ = nodal values of @ (Section 8.1)
U

¥ = nodal values of ¢ (Section 8.1)

v, = nodal ‘unit director vectors’ (Section 8.2)
v,, = nodal ‘unit director vectors’ in initial configuration (Section 8.2)
w = nodal values of w (Section 8.1)

X,y.z=nodal values of x-, - and z coordinates of reference surface

(Section 8.2)
z, = vector used to define G (see (8.48)) (Section 8.2)
vy = vector of shear strains (Section 8.1)

0,.0, = rotations of the normal (Section 8.1)

6 = vector containing 6, and 0, (Section 8.1)
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0 = vector containing displacement derivatives (see (8.44)) (Section §.2)
0, = nodali values of €_ (Section §.1)
8, = nodal vajues of #/, (Scction 8.1)

Yo, =nodal parameter defining orientation of v; (Section 8.2)

w,, = nodal parameter defining oricntation of v;, (Section 8.2)

¥ = curvatures (Section 8.1}
oY = vector containing nodal values of sy (Section 8.2)
dm = vector containing nodal values of dw (Section §.2)

o
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9 More advanced solution
procedures

The solution procedure developed in Chapters 1 -3 involved a combination of
incremental load or displacement control coupled with full or modified Newton-
Raphson iterations. Some history relating to the early introduction of these techniques
was discussed in Section 1.1 with references (up to 1972) being given in Section 1.6.
Further work following similar developments can be found in [S7, B7, C20]. Although
these techniques still provide the basis for most non-linear finite element computer
programs, additional sophistications are required to produce effective, robust solution
algorithms. In this chapter, we will describe a number of these procedures with
emphasis on those techniques that I have found to be the most advantageous in
practical non-linear calculations. References to other work will be given through-
out but in the final Section 9.10, a summary is given of solution procedures that
have not been covered earlier. Some of these will be considered in depth in
Volume 2.

The first topic to be discussed is that of ‘line searches’. This technique is widely
used within ‘mathematical programming’. There arc a whole range of procedures that
have been developed within this field which are extremely relevant to non-linear finite
clement analysis (see also the quasi-Newton and acceleration techniques of Sections
9.7 and 9.8). Good books on this topic are due to Fletcher [F7], Luenberger [L2]
and Wolfe [W6].

A weakness of the full Newton- Raphson method is the high cost of each iteration.
As discussed in Chapter 1, this can be reduced by adopting the ‘modified
Newton- Raphson method’. However, the convergence rate is then rather poor. A
compromise involves the ‘quasi-Newton techniques” [F7,1L3, W6,D8] which are
discussed in this chapter along with a set of “acceleration methods’ which are closely
related.

Apart from these techniques which stem from mathematical programming, the
other procedures that will be discussed in this chapter are related to the mathematical
field of ‘continuation techniques’ [R3,R4 R6,R7, U1, C17] although, in relation to
finite elements, they were often developed quite independently by engineers. It has
already been indicated in Chapter 1 that ‘continuation techniques’ are aimed at tracing
a complete path —for structures, an equilibrium path. It has also been shown in
Chapter | that, when applying such techniques, severe difficulties can be encountered
with ‘limit points’ where the load/deflection response becomes horizontal (or vertical
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for displacement control). In the present chapter, emphasis will be placed on
‘arc-length’ techniques for solving these problems. These techniques were originally
introduced (in relation to mechanics) by Riks [R8, R9] and Wempner [W5] and later
modified by a number of authors,

Other techniques required for a robust continuation method largely relate to the
automatic selection of a suitable increment size as well as the automatic reduction
of this step when trouble is encountered. in addition, re-start facilities should be
introduced because, despite one’s best attempts at automation, user intervention is
often required.

Throughout the chapter, the theoretical concepts are related directly to computer
applications by the amendment of the simple non-linear finite element computer
program originally developed in Chapters 2-3. The reader is given the same advice
as in these chapters; if he or she does not wish to get involved in the full detail of
the computer implementation, it should suffice to study the flowcharts rather than
the Fortran listings.

In Section 9.9, the enhanced computer program is used to re-analyse the ‘NAFEMS
problems’ [D1.2.C1.2] originally introduced in Chapter 3. These examples are used
to illustrate the application of all of the new techniques from ‘line searches’ to
‘automatic increment reduction” and the use of ‘re-starts”.

9.1 THE TOTAL POTENTIAL ENERGY

An energy basis for non-linear structural analysis was briefly discussed in Section 1.3.3.
One important advantage of adopting such a viewpoint is that it allows the
introduction of various solution algorithms developed in the field of mathematical
programming or unconstrained optimisation [F1,L1, W1]. Strictly. such techniques
are not applicable to many structural problems such as those involving plasticity in
which there is no elastic potential and the solution is path-dependent. Nonetheless,
we can still beneficially adopt solution algorithms that stem from an energy approach
even when the latter is not strictly applicable. With this in mind, we will now re-state
in general terms the energy concepts of Section 1.3.3.

The problem of (elastic) non-linear analysis can be viewed as that of minimising
the total potential energy ¢ which is a function of the total displacements, p. A
truncated Taylor series then leads to

%} N2
¢n(p+5p)=¢a(p)+(¢dp+;ép'r( ¢6p+-~- (9.1)

(‘}p (1p2
where the subscript n means new while o means old. As indicated in Section 1.3.3,
(0¢/3p)T can be identified as the out-of-balance forces or gradient, g, of the total
potential energy, while ¢*¢p/cp? is the tangent stiffness matrix. It follows that (9.1)
can be re-expressed as:

Bo(p + Ip) = ¢,(p) + &(p) P + S K (p)p + - (9.2)

where the principle of stationary total potential energy requires that, for equilibrium
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at p,

AALT
g(p)—w:) =0 (9.3)

while for the energy to be a minimum and for the equilibrium state to be stable,
Sp"K (p)dp = ap ()p >0 (9.4)
cp

at the equilibrium point. Hence K, should, for stable equilibrium, be positive define
at the equilibrium point.

9.2 LINE SEARCHES
9.2.1 Theory

The line-search technique is an important feature of most numerical techniques for
unconstrained optimisation and can be used with a wide range of iterative solution
procedures. Detailed discussion is given in [F7,L3, W6,G4,C16]. Using such a
technique, one would obtain a direction from an iterative procedure such as (in the
present context) the modified Newton-Raphson iteration, i.e.

sp=-K'g (9.5)

where K, would be the tangent stiffness matrix at the end of the previous increment.
The displacements would then be updated according to

P. =P, + 1P (9.6)

where p, would be the fixed displacements at the end of the previous iteration and 3p
the fixed direction obtained from (9.5). For the simple iterative procedures of
Chapters 1-3, the scalar # in (9.6) would be set to unity. With the introduction of
line searches, the scalar, #, becomes the iterative ‘step length® which, for the line
search, is the only variable. To derive the necessary conditions for ¢ to be a minimum
at a particular value of #, we replace (9.1) with an equivalent Taylor expansion about
the solution at #, i.e.

d A @ .
G0 + 1) = o(n) + f +~“=¢o+(¢ Pon+ o = ¢+ @ 5PN + -

op oy
(9.7)

where use has been made of (9.3) and (9.6). For the solution at » to be stationary,
we require that

('1

st =2 — 5p"g0n) = 0. 9.38)

cn
In both (9.7) and (9.8), g has been written as a function of x because (see (9.6)), p,
and &p are fixed. A search to satisfy equation (9.8) should find the step length, n, at
which the angle « in Figure 9.1, is zero. From (9.8) and Figure 9.1, the slope, tan x,
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Figure 9.1 Line searches and the energy ¢.

atn=01s —s,, where

so=s(n=01=03p"gn=0)=0p"g, {9.9)

where g, 1s the out-of-balance force vector at the end of the previous iteration. If we
are adopting the modified Newton Raphson method as in (9.5), it follows that

so=—giK 'gy=—3p'Kp (9.10)
where K, is the tangent stiffness matrix at the last converged equilibrium state.
Assuming that the latter is a stable state, K, will be positive-definite and hence s, in
(9.10) will be negative and the energy direction will, as illustrated in Figure 9.1, be
‘downhill’.

If the full Newton-Raphson method were applied, (9.5) and (9.10) would still apply
but. in place of K,, from the last converged equilibrium state, we should use K,, as
computed from the last iterative solution, p,. Becausc the displacements. p, relate to
the last iteration and not an equilibrium state, one cannot use stability of the
equilibrium state to infer that K, is positive-definite and there is no guarantee that,
with the full N R method, s, will be negative and the current iterative direction will
be in a downhill energy direction. Various techniques have been devised for directly
modifying K, or otherwise changing the iterative procedure to ensure that it is positive
definite [F7,L3. A2, B1]. These techniques arc usually aimed to converge on another
state which is stable (with positive definite K,). However, often in structural analysis,
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the situation is more complex because (sec Section 9.3.1) we do not always aim at a
stable equilibrium state.

For the present, we will simply assume that s, (see (9.9)) is negative and that we
can apply a standard downhill line search. If this line search were to be exact, we
would be looking for the smallest positive y-valuc to make s(n) (sce (9.8)) zero. In
practice, it is inefficient to apply an ‘exact’ line scarch and, instead, we apply a ‘slack’
line search with the aim of making the modulus of s() small in comparison with the
modulus of s, ic.

s(n)

|r(n)l=|‘ < 9.11)

So

where f,, is the ‘line-search tolerance’. From the author’s experience, a suitable value
for f3 is of the order of 0.8. The situation depicted in (9.11) is illustrated in Figure 9.1.
For mathematical programming, (9.11) would be supplemented by a condition
ensuring a sufficient reduction in ¢ which would involve the energy itsell and not
just the slopes, s [F7,L3,G4].

In most finite element systems, we do not have the energy and hence we cannot
apply this last condition. Also with plasticity, this quantity is questionable. Nonethe-
less, it would probably be very valuable for finite element computer programs to
compute an estimate of ¢. This can be very economically produced at the Gauss-point
level (as part of the stress updating) via

Ad, ~ Ad, + tw(e, +6,) Ae (9.12)

where w includes the weighting and area contribution, 6, are the current stresses, 6,
the stresses at the last converged cquilibrium state and Ag the strain increment (from
the last converged equilibrium state). The author introduced such a procedure into
a finite clement system and used both the encrgy terms and slopes, s, with a cubic
interpolation procedure in order to estimate the required step length, 5. However,
preliminary studies indicated that the resulting technique was very susceptible to
round-off error [C9]. Hence, for the present, we will avoid the use of ¢ and assume
only the existence of the slopes, s, which can be easily computed (see (9.8) and (9.9))
from the inner product of the out-of-balance forces g and iterative displacement
direction, dp. We will also assume that we are including non-smooth non-linearity
resulting from, say, plasticity or, more extremely, concrete cracking.

In these circumstances, it is simplest to apply a simple bracketed interpolation
procedure as illustrated in Figure 9.2, which relates to real computations on reinforced
concrete beams and slabs that were performed by the author (C16]. To produce the
results in this figure, the line searches have been applied with a very tight tolerance
(small . in (9.11)). In practice such a tight tolerance would not be used.

The main features of the procedure are illustrated in Figure 9.2(a). Having computed
g in the standard way with 5, =5 =1, the inner product, s, = s(n = 1), of (9.8) was
computed and related to the inner product of (9.9), s, (with # = 0) in order to obtain
the ratio r(») of (9.11). This ratio was about —1.4 and is plotted as point 1| in
Figure 9.2(a). Linear interpolation between point 0 and | then involved

— S0 —1
L TR 613
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Figure 9.2 Examples showing line-searches: (a) interpolated; (b) extrapolated: (c) hmited extra-
polation.

indicating a new cstimate for the step length {n,) of about 0.42. The out-of-balance
force and inner product in (9.8) was then recomputed to give a ratio r(n) (see (9.11))
of about —0.7. This solution is plotted as point 2 in Figure 9.2(a). In practice. with
i, 10 (9.11) being sct to 0.8, this point would be deemed acceptable and the line-search
procedure would be completed and the next iteration begun. Purely for illustration
purposes, the procedure was continued with interpolation between point 0 and 2 in
Figure 9.2(a), which leads to point 3 and. following interpolation between points 0
and 3, to point 4.
A generalisation of (9.13), relevant to the procedure in Figure 9.2(a), would be

— 8o
Hiv1 = '7},'( i i ) (9.14)
Sj— So

This process involves an interpolation between the current ‘slope’ and the “slope’ at
n =0. Such a procedure will not always be appropriate.

Figure 9.2(b) shows that extrapolation can be used instead of interpolation while
Figure 9.2(c) shows that this extrapolation should not be taken too far and that a
maximum amplification (10 in Figure 9.2(c)) should be allowed. In a similar fashion,
it s wise to introduce a minimum step-length, n,,. In Figure 9.2(c), the final
interpolation to obtain point 3 1s between point I and point 2 and therefore does
not fit in with the procedure of {(9.14). Instead the interpolation is performed between
the point (2) with a negative ratio r = s(y)/s, and the nearest point (1) with a positive
ratio. This approach can be extended so as to involve the smallest # value with a
negative ratio.
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Before detailing an algorithm to implement a line-search procedure. 1t should be
emphasised that, for many iterations, the first “trnial’ step length of y=1 would
immediately satisly the line-search tolerance. For example, in Figure 9.2(b). the ratio
r of (9.11) corresponding to point 1 (with = 1) was about 0.6. With a tolerance
factor, i, in (9.11) of 0.8, this solution would have been deemed satisfactory. Hence,
no extra residual (or out-of-balance force vector) calculations would be required on
account of the line-search procedure. The only extra work, in comparison with a
formulation without line searches, would, in these circumstances, be the calculation
of the inncr product of (9.8) (with 5 = 1). In comparison with the other work, this
work is almost ncgligible.

9.2.2 Flowchart and Fortran subroutine to find the new step length

The previous ideas are incorporated in the flowchart of Figure 9.3 and the foilowing
Fortran subroutine. The aim is to usc lincar interpolation as in Figure 9.2(a) and
9.2(¢c). However, this can only be applied once one has obtained in step length, #,
relating to a negative ratio, r (sce (9.11)). In the absence of such a step length, the

Find (4_.r )
which gives minn with —ver=r

Find (n,.r,)
which gives largest 5 <y
with positive r

J

interp.(n .y,
Wiwy = max( E vr-.n.) ) n=extrap. (.4 1)
ne+ 0200 —n.) if(n <0or >amp x ..,

H=amp x ’7muxp

l

If (7 <Hmina = Mnina l il () > Npaxa and ICO=1). 1ICO =2 RETURN
and (if ICO=1) ICO=2
or (if ICO=0) ICO=1

| |
RETURN ) e————1 il (7 > Hpaxa aNd1CO =0}y = 1,00, and ICO =1

Figure 9.3 Flowchart tor subroutine SEARCH

| .
‘ Get A, , = Max previous g

PR —
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algorithm adopts extrapolation as in Figure 9.2(b) or. if the extrapolation goes too
far (Figurc 9.2(c)), simple step-length amplification using an input maximum
amplification factor, "amp’. The latter is illustrated in Figure 9.2(c).

The algorithm is aimed at computing ;. after entering with a new step length,
;. and equivalent ratio, ri. Additional input is ‘amp’, the maximum amplification
factor, #.y,. the maximum allowed step length and, n,,,.. the minimum allowed step
fength as well as ICO, a counter that is normally zero but is set to unity once the
maximum or minimum allowable step length is reached. The subroutine sets ICO
to two once the maximum allowable step length has been reached twice. In
these circumstances, the computer program resorts to increment reduction (see
Section 9.5.1).

9221 Fortran subroutine SEARCH

The following FORTRAN subroutine implements the algorithm illustrated in the
previous flowchart. The step lengths, 5, are stored in ETA with corresponding ratios,
r {sce (9.11)), in PRODR. These vectors are initially set up to contain

I 2 3
ETA () 0 !
stn = 1
PRODR () 1 W=
S()

The routine is not optimised for efficiency so that, for example, searches are made
through previous values to obtain a step length with a negative ratio. However, for
practical sized problems, the time spent in computing the step length is almost
negligible i comparison with the time required for the computation of a new
out-of-balance force vector. g(n).

SUBROUTINE SEARCH (ILS.PRODRETAAMP.ETMXA ETMNAIWRIT,
1 IWRICO.NLSMXP)

PERFORMS LINE LOCAL LINE-SEARCH TO GET STEP LENGTH
INETA (ILS+2)
ETA 1-1LS HAS PREVIOUS STEP LENGTHS (ETA(1)=0.ETA(2)=1))
WITH EQUIVALENT INNER-PRODUCT RATIOS IN PRODR. (PRODR(1)=1.)
AMP HAS MAX AMP. FACTOR FOR STEP LENGTH,
ETMXA AND ETMNA HAVE MAX AND MIN ALLOWED STEP LENGTHS
ICO ENTERS =1 IF MAX OR MIN STEP LENGTH USED ON PREVIOCUS
SEARCH
EXITS SET TO 1 {F USED ON PRESENT SEARCH

OR 2 IF ALSO USED ON LAST SEARCH

SNONOHONONONONONONONON)

IMPLICIT DOUBLE PRECISION (A-H,0-2)
DIMENSION PRODR(NLSMXP) ETA(NLSMXP)

OBTAIN INEG =NO OF PREVIOUS S-L WITH NEG. RATIO NEAREST
TO ORIGIN

AS WELL AS MAX PREVIOUS STEP LENGTH, ETMAXP

IF NO NEGATIVE PRODUCTS. INEG ENDS AS 999

OOO000
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INEG =999
ETANEG=1.D5
ETMAXP =0.00
DO 10 (=1ILS+1
IF (ETA().GT.ETMAXP) ETMAXP = ETA(I)
IF (PRODR(I).GE.0.D0) GO TO 10
IF (ETA(I).GT.ETANEG) GO TO 10
ETANEG =ETA(l)
INEG =
10 CONTINUE

C BELOW NOW ALLOWS INTERPOLATION

IF (INEG.NE.999) THEN
C FIND IPOS =NO OF PREVIOUS S-L WITH POS RATIO THAT IS
C CLOSEST TO INEG (BUT WITH SMALLER S-L)

IPOS =1

DO 20 I=1ILS+1

IF (PRODR(/).LT.0.D0) GO TO 20

IF (ETA(I).GT.ETA(INEG)) GO TO 20

IF (ETA{).LT.ETA(IPOS)) GO TO 20

IPOS=1

20 CONTINUE

C INTERPOLATE TQ GET S-L ETAINT
ETAINT = PRODR(INEG)*ETA(IPOS)-PRODR(IPOS)*ETA(INEG)
ETAINT = ETAINT/(PRODR(INEG)-PRODR(IPOS) )

C ALTERNATIVELY GET ETAALT ENSURING A REASONABLE CHANGE
ETAALT =ETA(IPOS) + 0.2*(ETA(INEG)-ETA(IPOS) )

C TAKE MAX
IF (ETAINT.LT ETAALT) ETAINT =ETAALT

c OR MIN STEP LENGTH
IF (ETAINT.LT.ETMNA) THEN
ETAINT =ETMNA
IF (ICO.EQ.1) THEN
ICO=2
WRITE (IWR.1010)

1010 FORMAT(/.1X/MIN STEP-LENGTH REACHED TWICE’)

ELSEIF (ICO.EQ.0) THEN
ICO=1
ENDIF
ENDIF

ETA(ILS+2) =ETAINT
IF (IWRIT.EQ.1) THEN
WRITE (IWR,1001) (ETA()I=1ILS+2)
1001 FORMAT(/1X'L-S PARAMETERS'/,1XETAS "(6G11.3))
WRITE(IWR.1002) (PRODR()1=1ILS+1)
1002 FORMAT({/,1X,/RATIOS (6G11.3))
ENDIF
RETURN
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OO0

BELOW WITH EXTRAPOLATION

ELSE IF (INEG.EQ.999) THEN

C SET MAX TEMP STEP LENGTH
ETMXT = AMP*ETMAXP
IF (ETMXT.GT.ETMXA) ETMXT = ETMXA

C EXTRAP. BETWEEN CURRENT AND PREVIOUS
ETAEXT = PRODR(ILS + 1)*ETA(ILS)-PRODR(ILS)*ETA(ILS + 1)
ETAEXT = ETAEXT/(PRODR(ILS + 1)-PRODR(ILS) )
ETA(ILS +2) =ETAEXT

C ACCEPT IF ETAEXT WITHIN LIMITS
IF (ETAEXT.LE.C.DO.OR.ETAEXT.GT ETMXT) ETA(ILS+2) =ETMXT
IF (ETA(ILS +2) EQ.ETMXA AND.ICO.EQ.1) THEN
WRITE (IWR,1003)

1003 FORMAT(/.1X," MAX STEP-LENGTH AGAIN")

C STOP "SEARCH 1003

ICO=2

RETURN

ENDIF

IF (ETA(ILS +2) EQ.ETMAXA) ICO =1

IF (IWRIT.EQ.1}) THEN

WRITE (IWR,1001) (ETA(I}1=11LS+2)

WRITE (IWR,1002) (PRODR(I}.I=1ILS+ 1)

ENDIF

ENDIF

RETURN

END

9.2.3 Implementation within a finite element computer program

We will now outline a procedure whereby the computer programs of Chapters 2 and
3 could be modified to include line searches using the previous subroutine SEARCH.
In Sections 9.4.2 and 9.6, we will give a modified computer program that includes
not only line searches but also the arc-length method, automatic increment sizes,
accelerations and automatic increment reduction. In order to introduce all these
options, a number of changes have had to be made to the structure of the original
programs. At the present stage, we will merely outline the way in which the programs
of Chapters 2 and 3 could be most simply modified to introduce line searches. The
reader might like to make these changes himself (or herself) or might, at this stage,
prefer to simply follow the ideas and wait until Sections 9.4.2 and 9.6 before considering
detailed implementation.

In order to incorporate the previous subroutine within the finite element computer
program of Chapters 2 and 3. we must firstly input the line-search parameters.

9.23.1 Input

In order to achieve this with the minimum disruption to the previous programs, we
can introduce a COMMON block, DATLS into both the main program NONLTC of
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Set max. number of iterations, NITMAX
Set line-search switch ILFAIL =(Q  ***
Begin iterative loop. ITE = 1, NITMAX

£ 4

If ITE=1 or NLSMX =0 (no-linc scarches) or ILFAIL =1 (uphill))**
call FORCE which computes N = fn. (EA.{,z.p)
Call ELEMENT and compute the internal force vector, gq;, for the truss
If full N R iterations, also compute K,
Call ELSTRUC which modifies q; for the effects of the linear springs
and, if full N- R, puts the clements stiffness matrix into the
struct. stiff. matrix and modifics for the effects of lincar springs

|

Compute the out-of-balance force vector, — g =g, —q;
and store g, = g***
create reaction vector, 1 = q;
except at carthed springs where r, = — K ;p,

i

e

- o heek- i liq.t — 1d cont.
E@“ check: gl < f§ max(!rli.0.001)—disp. cont,

—

No |

+ Full N R?
Yes|
Call BCON which applies the bound. conditions
Call CROUT which computes K, = LDL'
-l
Call SOLVCR which computes op= - K 'g
using the previously computed LDL' factors
p=p+9p
!
If line-scarches (NLSMX £ () *****

call LSLOQP ***x**
If ILFAIL =2, STOP *****

- I

Figure 9.4 Flowchart for subroutine ITER when modified to include line searches
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Section 2.5.1 and into the main iterative routine ITER of Section 2.4.2. This block is
COMMON/DATLS/NLSMX.PERMLS, AMPMX, ETMXA ETMNA GO(5)

where the constants will become apparent from the following and GO(5) will contain
the nitiaf (for any iteration) out-of-balance force vector. g, (at 4 = 0). In addition the
input line:

READ (IRE.") BETOK.ITERTY

and accompanying output line of program NONLTC (sce Section 2.5.1) can be
amended to the lollowing

READ (IRE.") BETOK.ITERTY NLSMX
WRITE (IWR.1003) BETOKITERTY.NLSMX

1003 FORMAT(/ 1X ' CONV. TOL FACTOR, BETOK= G135/
1 1XITERATIVE SOLN. TYPE. ITERTY = 157,

2 5X. = 1. FULL N-R: =2. MOD. N-R'/
3 1X'MAX. NO. OF L-SEARCHES = "5)
C BELOW SPECIFIC TO LINE SEARCHES

IF (NLSMX.NE.Q) THEN

READ (IRE. ") PERMLS. AMPMX, ETMXA, ETMNA

WRITE (IWR, 1009) PERMLS. AMPMX, ETMXA, ETMNA
100S FORMAT(/. 1X, 'LINE SEARCH PARAMS ARE'"/.
3X. 'TOLERANCE ON RATIO. PERMLS = "G13.4/,
3X. 'MAX AMP. AT ANY STEP, AMPMX = ".G13.4./
3X. 'MAX. TOTAL STEP-LENGTH. ETMXA ="'G13.4./.
33X MIN. TOTAL STEP-LENGTH. EXTMNA =".G13.4)

AW N -

9232 Changes to the iterative subroutine ITER

Figure 2.4 contains the flowchart for subroutine ITER which iterates, at the structural
level, 1o equilibrium. In order to introduce line scarches. this flowchart can be altered
as indicated in Figure 9.4 where the asterisked sections relate to the changes.

Apart from the introduction of the COMMON block DATLS (see Section 9.2.3.1).
the changes to the subroutine ITER of Section 2.4.2 could involve:

(1) At the very start, setting ILFAIL =0
(2) Inserting before CALL FORCE,
IF (ITEEQ.1.ORNLSMX.EQ.0.ORILFAIL.EQ.1}
and after CALL ELSTRUC,
ENDIF

This avoids the recomputation of the internal force vectors immediately after a

call to the line search loop (via CALL ISLOOP).
(3) Replacing the DO 10 loop to form the out-of-balance force vector with:

BELOW FORMS GM = QUT-OF-BALANCE FORCE VECTOR
AND REACTION VECTOR

IN_ ADDITION NOW SAVES GO FOR LINE SEARCHES

DO 10 1=1.NV

GM{1) == 0.D0

OO0




264 MORE ADVANCED SOLUTION PROCEDURES

REAC(l) = FI(I)
IF(IBC(1).EQ.0) THEN
GM(l) = QEX(I)~FHl)
ENDIF

GO()= —GM(l
10 CONTINUE

where the amendments have been underlined.
(4) Just below the DO 30 loop to have:

C ABOVE UPDATES DISPS.

Cc
IF_(NLSMX.NE.O) CALL LSLOOP(PT,GM,IBC.IWRIT,IWRITERTY NV
1 FLQEX.AKTS AKTE D)
IF (ILFAILEQ.2}) STOP C

C IF (IWRIT.EQ.1) WRITE (IWR.1004) (PT(l).I=1.NV)

where, again, the amendments have been underlined.

9.2.3.3 Flowchart for line-search loop at the structural level

In the above, we have called a subroutine =LSLOOP which calls subroutine
SEARCH (see Section 9.2.2.1) and performs the line-search loop at the structural
level. In the flowchart which is given in Figure 9.5, 1 is the vector ETA of Section 9.2.2 and
ris the vector = PRODR containing the ratios r of (9.11). These arrays must be defined
in subroutine =LSLOOP which, via the common /DATLS/ of Section 9.2.2.1 also has
access to the array =G0 =g, formed in subroutine =ITER (see Section 9.2.3.2).

This routine returns to ITER with ILFAIL = 0 if the line-scarch procedure has been
satisfactory. If the iterative direction is ‘uphill’ (see Section 9.2.1), it returns with
ILFAIL =1 and ITER continues using the default step length of 1 (having abandoned
the line scarch). If the line-search procedure fails, ILFAIL is set to 2 and on the return
to ITER, the salest option would be to STOP (see the flowchart in Figure 9.4). Later
(in Section 9.5.1 and 9.6.5), we will instcad adopt automatic increment reduction,

A Fortran subroutine relating to a slightly modified form of the above will be
given in Section 9.4.2.1. It has already been pointed out in Section 9.2.1 that, for
many iterations, the introduction of the line-search algorithm (with a ‘slack tolerance’)
will introduce very little extra work. This point can be checked by studying the
flowcharts of Figures 9.4 and 9.5. They show that if. on the first application of the
satisfaction check in Figurc 9.5 (with [ = 1), the line-search tolerance is satisfied, the
extra computational work in comparison with a standard N- R or mN - R procedure
only involves the computation of s4{# = 0) and s(y = 1). The advantage of introducing
the line-search technique is that the ratio r (9.11) gives a very effective indication of
whether or not it is safe to procced directly to the next iteration. In very many
instances, with ‘slack line scarches’ and fi, (see (9.11)) =~ 0.8, the tolerance check of
{9.11) will be satisfied within the line-search loop of Figure 9.5 with [ =1 so that no
extra residual (or out-of-balance force) calculations are required. However, when
[¥] > B, without the line-scarch facility, the iterative procedure to enforce equilibrium
will often diverge.
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Compute disps. at end of last iter., p,=p — dp
Compute s, = 6p'g,, if positive, set ILFAIL =1 and RETURN
Set n(1) =1, =0, n(2)= 1 and equiv. ratio
l)=1
Set n =n(2) and ICO=0

1

Begin 1-search loop, ITE(l) = 1, NITMAX

l

Call FORCE which computes N = {n.(EA.lzp)
Call ELEMENT to compute the int. force vector, q;() for the truss
Call ELSTRUC which modifies q; for the effects of the linear springs
Compute s(r) = 0p"(q; — q.) = 3p"g(n)
and ratio r(! + 1) = s(n)/s,

Yes

Satisfaction check:

[e(l+ D] < By?

No |

Call SEARCH to obtain n =n(l + 2)
P=Po+1nop

1 2

OJ' orl 1

ILFAIL = 2, line-search trouble, RETURN

If full N-R, call ELEMENT and call ELSTRUC joe———d
to form new K,
RETURN

Figure 9.5 Flowchart tor subroutine LSLOOP.
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9.3 THE ARC-LENGTH AND RELATED METHODS

The arc-length methods are intended to enable solution algorithms to pass limit
points (maximum and minimum loads—sce Chapter 1). Prior to their introduction,
analysts either used artificial springs [S3.1, W97, switched from load to displacement
control [S1.1] or abandoning equilibrium iterations in the close vicinity of the limit
point [ B7, B8]. In relation to structural analysis, the arc-length method was originally
introduced by Riks [R8,R9] and Wempner [W5] with later modifications being
made by the author [C11,C19] and other [R1,R2,S2, F9,G3, BS, S6]. Details will be
discussed later. Closely related work can be found in the mathematical literature
[K1,K2,R6] with the first such paper appearing to be due to Haslegrove [H2].

9.3.1 The need for arc-length or similar techniques and
examples of their use

Figures 9.6(a)—(c) show three possible load/deflection curves involving limit points with
both ‘snap-throughs’ (Figure 9.6(a)) and ‘snap-backs’ (Figure 9.6(b}). Simple examples
involving both of these phenomena have already been discussed in Chapters 1-3.
More complex examples include as wide-ranging phenomena as the ‘buckling’ of
shells (Figure 9.7 and [C117]), stiffencd-plated structures (Figure 9.8 and {C11]) and
the cracking of reinforced concrete (Figure 9.9 and [C14]).

It has already been indicated in Chapters 1- 3 that the true response in Figures 9.6(a)
and (b) would involve both inertia cffects and dynamics. Under load control the
dynamic response in Figure 9.6(a) would follow the dashed line (possibly followed
by a small damped oscillation around point C). In contrast, the solid, static line from
A to C would maintain equilibrium but be unstable under load control but stable
under displacement control. Under displacement control, the dynamic response in
Figure 9.6(b) would follow the dashed line between A and C with the equivalent
solid line being static but, again, unstable.

The reader might ask “Why do we attempt to follow such unstable paths?” Why
not (a) jump straight from point A to point C using statics or (b) follow the dashed
line using dynamics? The latter should indeed be possible with a non-lincar dynamic
finite element program. However, this is not a simple solution and we are here
concerned with static computer programs. As already discussed in Chapters 2 and
3, one can, in some circumstances, move directly from A to C but, in many other
cases, the large jump is too much for the iterative solution procedure to handle. Also,
the required response may be that shown in Figure 9.6(c} where there is no point C
and the structure collapses at A. Again one might ask ‘Why bother to proceed beyond
point A when the structure has collapsed? There are a number of answers:

(i) ‘A’ may only be the local maximum (see Figures 9.6(a) and (b)).

(ii) The ‘structure’ being analysed may be only a component. [t may later be desirable
to incorporate the load/deflection response of this component within a further
analysis of a complete structure.

(ii)) In the above and other situations, it may be important to know not just the
collapse load but whether or not this collapse is of a *ductile’ (Figure 9.6(d)) or
‘brittle’ (Figure 9.6(c)) form,
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(iv) Even if A is the only maximum. it may be necessary to move to point B (just

beyond the maximum) because

{a) This confirms that we have indeed just passed a limit-point. Many analysts
simply apply further load increments until the solution procedure fails to
converge (say applying the increment to level Y in Figure 9.6(¢)) and then
assume that this iterative failure reflects a structural failure. Sadly. iterative
failure can ocecur for other reasons and this approach is not recommended.
Even to establish the platcau in Figure 9.6(d), load control is inappropriate.

(b) Having converged on a point such as B, it is then possible to investigate
(preferably with the aid of graphics) the structural state (stresses, strains,
deflections, plastic zonces, ete.) at B in order to gain insight into the mechanism
or causc of the structural failure.

Figure 9.6(d) illustrates the type of load- deflection response, stemming from an

elastic;perfectly plastic, geometrically linear analysis. For this type of problem,

the load corresponding to the platcau could also be obtained via a “plastic
mechanism’ or ‘yield-line method’. With standard load control. it would be very
difficult to reproduce this ‘hmit load’ and, without converging on a point such
as B (Figure 9.6(d)), it would be impossible to fully establish the ‘mechanism’.

With the aid of the arc-fength method, the author has used the finite element

method to obtain plastic mechanism solutions for reinforced concrete structures

[C18].

-«
—

Before discussing the detail of the arc-length and other related methods, one should
mention standard *displacement control’ for which a solution algorithm has already
been given in Section 2.2.5. For many problems. it is possible to usc such a technique
to obtain, for example, the complete solid line in Figure 9.6(a). By and large, this
technique can he applied when an cquivalent displacement-control could be used in
an experiment. There ure. however. occasions when this is difficult or impossible. For
example, one may wish to obtain the scalar multiple of an "abnormal vehicle loading’
on a bridge in which the “abnormal loading’ involved a set of, say, sixteen wheel
loads of equal magnitude [C18] (or some other fixed loading pattern  Figure 9.9).

Other examples include structures for which the response involves a ‘snap-back
behaviour™ as illustrated in Figure 9.6(b). Such a response is typical of shell structures.
Figure 9.7 shows the load -deflection response that was computed by the author for
the response of a thin cylindrical shell subject to a central point load [C11]. The
solution obtained by the author involved the arc-length method coupled with
automatic increments {see Section 9.5). The solution by Sabir and Lock [S1.1] was
obtained by switching from load to displacement control.

Another example involves the large-deflection clasto-plastic analysis of the stiffened
diaphragm from a box-girder bridge which was analysed by the author [C11.C21].
Because of the limited computer power, an elastic substructuring technique was
combined with some structural idealisations [C11,C20] so that only the diaphragm
was analysed in a non-linear manner (Figure 9.8). In order to bracket the experimental
behaviour, two extreme boundary conditions were applied to the out-of-plane
deflections at the edges of the diaphragm. For analysis A (curve A. Figure 9.8), the
boundaries were assumed to be simply supported, while for analysis B (curve B,
Figure 9.8). they were assumed to be encastré. (The solution for analysis A has been
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Figure 9.9 Computed response for prestressed concrete bndge (with experimental collapse
load).

offset from the origin in Figure 9.8 in order to avoid interference with the solution
curve for analysis B.) For both analyses, the structure was ‘loaded’ by incrementing
prescribed displacements across bearings and combining this displacement control
with the arc-length method. In addition the length increments (see Section 9.3.2) were
automatically computed (see Section 9.5). As illustrated in Figure 9.8, the resulting
solutions bracketed the experimental collapse load. Solution A resulted in a snap-back
form of response which could not be obtained without the addition of the arc-length
constraint (Section 9.3.2). With ordinary displacement control, a point was reached
at which numerical convergence could not be obtained. At this stage, because of the
suddenness of the ‘softening’ (Figure 9.8), 2 maximum load was not properly defined.
It was this example that led to the author’s work on the arc-length procedure.

On switching the emphasis of my work from steel to conerete structures [C14,C15],
I was surprised to find that snap-through and snap-back responses were equally
relevant 1o concrete structures. Figure 9.9 shows an example involving the analysis
of a prestressed beam-and-slab bridge [C14] for which the numerical solution clearly
exhibits snap-throughs and local maxima. (The strange *blip’ in the solution was, at
the time, attributed to a defect in the arc-length method. it now seems likely that the
phenomenon was caused by the solution procedure assuming that a negative pivot
in the factorised K, was assoctated with a 'limit point’ when it was probably caused
by a bifurcation associated with material instability [C12].) Other work with concrete
‘softening’ has encountered snap-backs [C14, D5].

Procedures for dircctly computing the critical points have been discussed in
[M5,R7,E2,F5]. From an engineering viewpoint, the precisec computation of limit
points does not seem to be of major importance- a continuation solution passing
over the point will usually locate the point to sufficient engineering accuracy (plasticity
will often limit the increment size). On the other hand, it may be important to locate
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bifurcation points with reasonable accuracy, in order to be able to switch to the
post-buckling path (see Section 9.10).

9.3.2 Various forms of generalised displacement control

As a starting point to various ‘continuation methods’, we can write the equilibrium
equations as

g(p.4) =qi(p) — 24, =0 (9.15)

where q; are the internal forces which are functions of the displacements, p, the vector
q.r 1s a ‘fixed external loading vector” and the scalar 7 is a ‘load-level parameter’
that multiplies q.;. Equation (9.15) defines a state of ‘proportional loading” in which
the loading pattern 1s kept fixed. Non-proportional loading will be discussed in
Section 9.5.3.

In Section 9.5. we will introduce a simple method whereby the scalar loading
parametcr, 4, may be automatically incremented thus producing a ‘load-controlled
continuation method’. However, as already discussed, the major limitation of load
control is that. ncar a limit point, there may be no intersection between the equilibrium
path of (9.15) and the plane 2 = constant which represents the next ‘load level’. Various
forms of “arc-length methods” have stemmed from the original work of Riks [R8, R9]
and Wempner [WS5] who aimed to find the intersection of (9.15) with s = constant,
where s is the arc length, defined by:

5= J‘ds (9.16)

ds = /(dp' dp + dA*¥2q q.). (9.17)

The scaling parameter ¥ is required in {9.17) because the load contribution depends
on the adopted scaling between the load and displacement terms. Having introduced
the arc-length, s. one may attempt to directly solve

2(5) = q,(p(s)) — A5)qe = 0 9.18)

using a higher-order ODE mecthod [W3]. However, with this approach it is often
very difficult 1o successfully limit the “drift from cquilibrium’ and hence “predictor
corrector’ methods are usually used. For load control, these would involve the
techniques of Chapters 1- 3 with an incremental, tangential, predictor being followed
by Newton Raphson or modified Newton Raphson iterations which act as
‘correctors’. For the arc-length methods, one would effectively replace the differential
form of (9.17) with an incremental form:

a=(Ap'Ap + ALTqliqy) — AP =0 {9.19)

and

where Al is the fixed ‘radius’ of the desired intersection (see Figure 9.10 where for
brevity we have written q,, as q) which is an approximation to the incremental arc
length. The vector Ap and scalar A/ are incremental (not iterative, for which we will
us ds) and relate back to the last converged cquilibrium state (see Figure 9.10).

The main essence of the arc-length methods 1s that the load parameter, 4. becomes
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Figure 9.10 Spherical arc-length procedure and notation for one degree of freedom system (with

yo=1).

a variable. Hence, together with the n displacement variables, we have a total of n + 1
variables. To solve for these, we have the n equilibrium equations of (9.15) and the
one constraint equation of (9.19). Following Riks [R8, R9] and Wempner [W5], we
can solve for these n + 1 variables by directly applying the Newton—Raphson method
to (9.15) and (9.19). From our previous developments, the Newton—Raphson method
is best introduced via a truncated Taylor series with the subscript n meaning new
and o meaning old. From (9.15) and (9.19) this leads to

Og og
= bt B51 = K.op—q. 64i=0 20
gn go + 8p 6p + 8/{ go + p qef (9 d’)
ay = ao + 2ApTp + 20454 qLq, = 0. (9.20b)

Equations (9.20a) and (9.20b) can be combined and, after setting g, and «, to zero,
solved for dp and 4, giving

/6[)\:_[ K, s 1~I/g0\ (92])
64 20pT 2840 qNq,; as '

The augmented ‘Jacobian’ or ‘stiffness matrix’ within the square brackets in (9.21)
remains non-singular even when K, = 3g/0dp is singular. (Equations of the form of
(9.21) are also known as ‘bordered” equations [R14]. Other interesting structural
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uses of bordered cquations have been given by Kroplin et al. [K7,K9,K10]).
Equations (9.21) can be used directly to find the changes op and 44 However, in
contrast to K, the augmented stiffness matrix in (9.21)1s neither symmetric nor banded.

932.1 The ‘spherical arc-length’ method

Instead of solving (9.21), one may directly introduce the constraint of (9.20b) by
following Batoz and Dhatt [B4} for displacement control at a single point (see
Section 9.3.2.3). To this end, the iterative displacement, dp, 1s split into two parts.
Hence the Newton change at the new unknown load level, 2, = 4, + 4, becomes

dp=—K 'g(p,, )= — K 'qi(p,) — 400cr) = — K. ' (8(Po. £,) — Aqe).  (9.22)

One can work with either of the forms on the far right-hand side of (9.22). The
penultimate form involves a complete split into internal forces, q;. and external forces,
/q.¢» while the final form can be expressed as

op=~K, ‘g, + 5K 'q. = 5p + 4dp, (9.23)

with dp, = K, 'q,;. Using this form, dp is the iterative change that would stem from
the standard load-controlled Newton -Raphson method (at a fixed load level, 4,),
while dp, is the displacement vector corresponding to the fixed load vector, q.. If
the modified Newton Raphson method is adopted, dp, must be computed for the
initial ‘predictor’ (Section 9.4.3) step but (because K, is fixed) does not change during
the iterations.

Having obtained dp from (9.23) (with &4 still unknown), the new incremental
displacements are

Ap, = Ap, + op = Ap, + op + 34 Ip, (9.24)

where d/ is the only unknown. It can be found from the constraint of (9.19), which
can be re-cxpressed as

(ApIAP, + Ar2 Y qlq.) = (ApIAp, + AiZyiqlq,) = Al% {9.25)
Substitution from (9.24} for Ap, into (9.25) leads to the scalar quadratic equation:

4,04 +us0s +ay=0 (9.26)
where ‘ ‘
a; = 3p; Op + ¥ a4 g (9.27a)
a, =20p,(Ap, + 3p) + 2A4 4 qlq.¢ (9.27b)
ay = (Apy + 0p) (AP, + Ip) — AI* + Ai2y2ql q (9.27¢)

which can be solved for d4 so that, from (9.24), the complete change is defined. (The
issue of the choice of root will be discussed in Section 9.4.1.) In contrast to the use
of (9.2.1), this technique only requires the inversion (or, in practice, factorisation) of
the banded symmetric tangent stiffness matrix, K,. In theory, the method suffers from
the limitation that, precisely at the limit point, K, will be singular and the equations
cannot be solved. In reality, the author has not found this to be a significant problem,
because one appears never to arrive precisely at the imit point (sce also [B4]).
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Nonetheless, a number of authors have addressed the issue of ‘stabilising’ the
stiffness matrix near to limit points. Riks and Rankin [R14] have proposed two
techniques, one of which requires knowledge of the lowest eigenmode of K,. Felippa
[F1,F2] has combined a partitioning dcvice of Rheinboldt [R6] with the original
“fictitious spring approach’ of Sharifi and Popov [S3.1]. As already discussed, in the
mathematical programming literature there are approaches to modify K, in the
presence of ‘uphill directions’ [F7,L3]. These methods must also be relevant.

We have not yet discussed the ‘scaling parameter’, ¥, in the constraints of (9.19)
and (9.25). Both the author [C11] and Ramm [R1, R2] independently concluded that,
for practical problems involving a realistic number of variables, the ‘loading terms’
(those involving ) had little effect and hence advocated setting i to zero. As a result,
the constraint should be considered as ‘cylindrical’ rather than ‘spherical’. This
cylindrical constraint will be adopted in the detailed treatment of Section 9.4. Padovan
and Arechaga [P1] and Park [P7] proposed adopting a variable ¢ which is large
in the initial stages (so that the technique then tends towards load control) and small
when the limit points is approached. In Section 9.5.2, we will discuss a procedure
that produces a similar effect by switching to ‘arc-length control’ as the limit point
is reached. Felippa [F1, F2] and Simo er al. [S6] have taken the scaling or weighting
further by replacing the Ap"Ap term in (9.19) Ap'S Ap, where one suggestion for the
scaling matrix S in Diag (K,). Weighting schemes have also been advocated by de
Borst [D5] and Gierlinski and Graves-Smith [G3].

At this stage, it would be a good idea to describe the progress of the arc-length
method in relation to Figure 9.10 (where, for brevity, we have written q instead of
g.¢). Having converged on the equilibrium point (p,, 4,4.¢), an incremental, tangential
predictor (Ap,, A4,) would be computed (see Section 9.4.3 for further details on the
predictor) leading to the point (p,. 4,q.). The first itcration would then use (9.26)
and (9.27) with the ‘old” Ap, as Ap, and the ‘old’ A/, as A4, to obtain dp, and d4,,
after which the updating procedure (see 9.24)) would lead to

AP, =Ap, +0p,.  Ai,=Al, + 54, (9.28)

When added to the displacements, p, and load level, 4,, at the end of the previous
increment this process would lead to the point (p,. A4,q.¢) in Figure 9.10.

The next iteration would then re-apply (9.26) and (9.27) with the old value Ap, as
Ap, and the old A4, as A/, to obtain dp, and d4,, after which the updating procedure
would lead to Ap; = Ap, + dp, and Ai; = A4, + 3/,. The iterations would cease once
the convergence criterion (see Scction 9.5.4) was satisfied.

9322 Linearised arc-fength methods

A number of authors [R1,R2,R8,R9, W5 ,S2,F9,F12] have advocated linearised
forms of arc-length method. From (9.20b), we can write
Ap;op + ALY Q) = — d,/2 (9.29)

where a, is the ‘old” value of the arc-length mismatch (see (9.19)). If a is taken as
zero, we have Ramm’s approach [R1,R2] which ensures that the iterative change
(Op, diyrq.) is orthogonal to the ‘secant change’ (Ap,, A4 Yq.) (see Figure 9.11(b)).
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Figure 9.11 Linearised arc-length methods: (a) the Riks—Wempner method; (b) Ramm’'s method.

Using (9.23), this leads to
—(a0/2) — Ap;op
(APIop, + A2oy ¢l qu)

This technique is closely related to the original procedures due to Riks [R8, R9] and
Wempner [WS5] which, as illustrated in Figure 9.11(a), involve making the iterative
change (p, 5Ayq,,) orthogonal to the predictor solution (Ap,, A4,) (again with a,=0).
The relevant formulae are simply obtained by replacing the ‘old incremental’ (Ap,,A4,)
with the ‘initial predictor’, (Ap,, A4,) in (9.29) and (9.30). A further variation has been
given by Fried [F12] which uses (ép,, 1/(¥°q}q,)) in place of (Ap,, Al,) with also
a, = 0. In this approach, which is related to a procedure by Haselgrove [H2], the
solution process does not depend on the predictor solution. The idea of including
the «, terms in (9.29) and (9.30) is due to Schwiezerhof and Wriggers [S2] and Riks
[R11] with a further modification by Forde and Stiecmer [F9].

The linearised versions are simpler than the spherical form of Section 9.3.2.1 because
there is no issue of the choice of root in the solution to (9.26). However, the ‘spherical
form” has the advantage that throughout the iterations the solution is alway aimed
at the same point (although some improvements can be made, in this respect, to the
linear forms by including the a, terms in (9.30)). Hence, it is more stable and can
converge when the linearised form misses the equilibrium path [W4].

SA(Ap,. Ado) =

(9.30)

9.3.2.3 Generalised displfacement control at a specific variable

All the methods described in this section may be considered as forms of generalised
displacement control which can be applied although, physically, the problem does
not involve displacements control. This has effectively been achicved with the
spherical arc-length method (with ¢ = 0) by constraining the Euclidean norm of the
incremental displacement to a fixed quantity (equation (9.25)). Instead, following Batoz
and Dhatt [B4], one may constrain the displacement increment at a particular variable
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to a specified quantity so that in place of (9.25) one would have
Ap,(k) = Ap (k) + dp(k) = Ap,(k) = Ap, (9.31)

where Ap(k) is the kth (scalar) component from the vector Ap and Ap, is the prescribed
magnitude of the kth incremental displacement variable. Using, as before, (9.23) for
the iterative change Jp, the constraint (9.31) then leads to

Apy — Ap,(k) — 6p(k)

Si= : (9.32)
op,(k)
The tangential, predictor solution would simply be achieved by finding
op. = —Kq,' {9.33)

with K, as the tangent stiffness matrix at the beginning of the increment and then
A/ from

AL Sp k) = Ap, (9.34)

where op,(k) is the kth (scalar) component from the vector dp,. In contrast to standard
displacement control (Section 2.2.5), the variable k would be one where, physically,
there would be no real displacement control (and hence no reaction). Rheinoldt
[R3,R6] has adopted this approach with the variable k being changed for each
increment so as to relate to the largest tangential (predictor) component.

Simons and Bergan [S5], expanding on the work of Powell and Simons [P11] and
Bergan and Mollestad [B10], have advocated a ‘hyperplane control method® which
effectively involves an extension of Batoz and Dhatt’s method with a weighted linear
combination of ‘individual specified displacements’ with, say, half-a-dozen key
displacement variables and weights being specified by the user. A procedure lying
between the arc-length method and this *hyperplane control’ has been proposed by
Gierlinski and Graves-Smith [G3].

9.4 DETAILED FORMULATION FOR
THE ‘CYLINDRICAL ARC-LENGTH’ METHOD

In Section 9.3.2.1 we introduced the ‘spherical arc-length method’ and (with ¢ =0
in (9.25)) the ‘cylindrical method’. In the present section, we will complete the detail
(with i = 0) and provide flowcharts and a computer implementation.

9.4.1 Flowchart and Fortran subroutines for the
application of the arc-length constraint

We will now apply equations (9.26) and (9.27) (with y» = 0) which lie at the heart of
the arc-length method. However, we must firstly address the issue of finding an
appropriate root to (9.26). The idea is to compute both solutions (64, and J4,) and
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hence to have both

Ap,, = Ap, + 3p + 34, 9p, (9.35a)
and
Ap,> = Ap, + Jp + 54, dp, (9.35b)

and then to find which of Ap,, and Ap,, lies closest to the old incremental direction
Ap,. This should prevent the solution from ‘doubling back on its tracks’. This
procedure can be implemented by finding the solution with the minimum angle
between Ap, and Ap, and hence the maximum cosine of the angle, using
AplAp, Apl(Ap,+3Sp) .. Aplop, a, +asdi
cosfi= "¢ = +o4 " = -

9.36
Al? Al? Al? Al? 8.30)

a, = (5p;r(5p[

ay = 20p(Ap, + op)

uy =(Ap, + 6p)'(Ap, + 6p) — Al*
ag = Ap;dp+ Ap]Ap,

as = Ap,op,
!
Call QSOLV with a,, a, and a, to obtain 44, and d4,
and (possibly) 34y, = —dy/a,

Also IFAIL = 0 with two roots, 1 with linear solution
=2 no real roots

| !

« FAIL? no real roots
cut inc. so
0 RETURN

Only linear soln.
834 = 04y, Two real roots, so

Al?cosl, =a, + agd4,

Al*costl, = ay + a5 04,
5i=0%,
if (AI* cos ), > Al*cos0),),0/ = (5/14
!

So= 4+ Ok
p=p+3p=p+0p+0oiip

Figure 9.12 Flowchart for subroutine ARCL1
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where we have used (9.24) for Ap,. Assuming that we have computed
55 = _K‘-lgn! 6pl = l—]qef (937)

a flowchart to implement (9.26), (9.27) (with y =0) and (9.36) is given as Figure 9.12.

In the accompanying Fortran subroutine ARCL1, instead of Ap,, we have PTwhich
contains the current displacement, p and PTOL which contains the old total displace-
ments at the end of the last increment. The difference between the two gives Ap,.
Also, at the end of the routine we update the total displacement rather than updating
the incremental displacement, Ap.

The subroutine ARCL1 calls a routine QSOLV which solves the quadratic equation
(9.26). The reader might prefer to introduce his own routine for this purpose. If,
because a is very small (see (9.26) and (9.27)), the constraint relationship is effectively
linear, we adopt the linear solution. If we can find no real roots to the constraint
equation, we exit from ARCL1 with the variable IFAIL set to 2 and (via subroutine
NEXINC—see Sections 9.5.1 and 9.6.5), we cut the increment. Other remedies are
possible [C6, C16].

9.4.11 Fortran subroutines ARCL1 and QSOLV

SUBROUTINE ARCL1 (DT, DELBAR, PT, PTOL, IBC, NV, DL2, FACT, IFAIL)

C  FOR ARC-LENGTH SOLN
C  DT=TANGENTIAL DISP WITH FIXED LOADS
C  DELBAR=TANGENTIAL DISP WITH OB. FORCES
C  PT=TOTAL DISPS
C  PTOL=TOTAL DISPS AT END OF LAST INC
C  DL2=DESIRED INC LENGTH SQUARED
C  FACT=TOTAL LOAD FACTOR
C  IFAIL=OUTPUT AS 2 IF NEED TO CUT INC.
c
IMPLICIT DOUBLE PRECISION (A-H, O-2)
DIMENSION DT (NV), DELBAR(NV), PT(NV), IBC(NV), PTOL(NV)
c
A1=0D0
A2=0.D0
A3=—DL2
A4=0D0
A5=0D0
DO 10 I=1, NV

IF (IBC()NE.1) THEN
A1 =A1+DT(l)"DT()
DPBAR =PT(l)-PTOL(I) + DELBAR()
A2=A2+2.D0"DT(l)*DPBAR
A3 =A3+DPBAR"DPBAR
A4 = A4+ DPBAR"(PT(I)-PTOL(1))
A5 = A5+ DT (I)*(PT()-PTOL(I))
ENDIF

10 CONTINUE
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CALL QSOLV(A1, A2, A3, R1, R2, RLIN, IFAIL)
BELOW NEEDS INC. CUTTING

IF (IFAILEQ.2) RETURN

IF (IFAILEQY) THEN

ONLY LINEAR SOLN. POSSIBLE

SOL =R1

ELSEIF(IFAIL.EQ.0) THEN

COST1 = A4+ A5'R1

COST2=A4 +A5"R2

SOL=R1
IF (COST2.GTCOST1) SOL =R2
ENDIF
FACT = FACT +SOL
DO 20 =1, NV

20 PT(l) =PT{l) + DELBAR(!) + SOL*DT(l)
RETURN
END

SUBROUTINE QSOLV(A1, A2, A3, R1, R2, RLIN, IFAIL)

IMPLICIT DOUBLE PRECISION (A~H, O-Z)

SOLVES QUADRATIC A1 X**24+ A2 X+ A3

IF A2.NE.O LINEAR SOLN, —A3/A2 in RLIN

iF IFAIL OUT AS ZERO TWO REAL ROOTS IN R1, R2

IF IFAIL OUT AS UNITY A1 TENDS TO ZERO AND R1 QUT AS RUIN
IF IFAIL OUT AS 2, NO REAL ROOTS

SMALL =1D-10
IFAIL =0
IF (A2.NEO) RLIN = ~A3/A2
FAC =A2°A2-4DO""A1"A3
IF (FACLTO.DO) THEN
NO REAL ROOTS
IFAIL = 2
RETURN
ELSE
REAL ROOTS
FAC =DSQRT(FAC)
IF (ALEQO.DO) THEN
IF (A2.NE.O) THEN
R1=RLIN
IFAIL =1
RETURN
ELSE
STOP ‘QSOLV 1*
A1=0 AND A2=0
ENDIF
ELSE
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c REAL ROOTS AND AANE.O
R1= —05D"(FAC + BB)/AA
R2 =0.5D0*(FAC-BB)/AA
ENDIF
ENDIF
RETURN
END

9.4.2 Flowchart and Fortran subroutine for the main
structural iterative loop (ITER)

The routine ARCL1 of Section 9.4.1 will be called from thc main iterative subroutine
TER that was initially introduced in Section 2.4.2 and, in outline, modified for linc
searches in Scction 9.2.3.2. We will now further adapt this routine so that it can be
used with either line searches or the arc-length method (the combination of the two
is discussed in [C19] and will be considered in Volume 2). Apart from the direct call
to subroutine ARCL1, the main modification to the routine involves the use of
g = q; — ~q.; rather than, as before (Chapter 2), g =q; — q. where q, was the fixed
external load vector relating to load level, 4. The vector q is the fixed loading vector
(see Chapter 2) that was before (see Section 2.3.1) and is now called QFI. The loading
parameter, 2, is called FACT (total factor). Having introduced these changes, the final
modified flowchart is shown in Figure 9.13.

ILFAIL=0
Begin iterative loop, ITE = 1 NITMAX

w j

_—
If (ITE=1 or NLSMX =0 (no line searches) or ILFAIL =1 (Ls. uphill)
call FORCE which computes N = fn. (EA.Lzp)

Call ELEMENT and compute the internal force vector, g; for the truss
If full N-R iterations, also compute K,

Call ELSTRUC which modifies q; for the effects of the linear springs
and, if full N -R, put the element stiffness matrix into the
struct. stiff. matrix and modify for the effects of linear springs

l

Compute the out-of-balance force vector, — g (GM) = — q; + Aq.(QFI)
and store g, =g
if arc length (IARC = 1), set dp, (DT) = q..(QF})
create reaction vector, r = q;
except at earthed springs where r, = — K;p;
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1 |
lq.ll — id cont. Yes
C heck: < RETURN
onvergence check: lig| ﬂmax(l[rll,0.00l) - disp. cont.

]

full N-R?

Yes
Call BCON for 0 1 (arc-l) Ca“ BCON for
b.cons. on K, b.cons. onK,
withGM = —g

with DT = q,,(QF)

l——'[Call CROUT to compute K, = LDLT]

l

If arc-1 and full N-R
Call SOLVCR gives p,(DT) =K, 'q,

L

| Call SOLVCR gives 65 (GM)= — K/ 'g

0 1 (arc-1) -
If IACC =1, call ACCEL IARC ? call ARCL 1 gives
to modify ép new A and new p

p=p+3p Xis—
|

‘ 1No
|

If line-searches (NLSM #0)
call LSLOOP

l

(LFAIL = 27) Yes

(I 1IAUTO = 1, RETURN else STOP J—

Figure 9.43 Flowchart for final subroutine ITER.
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The last box in the flowchart implements (with IAUTO =1) automatic increment
reduction if convergence is not achieved, if no real roots are found for the arc-length
constraint or if difficulties are encountered with the line-search procedure. These
issues are discussed further in Section 9.5. The flowchart also refers to a subroutine
ACCEL (following the computations of dp in subroutine SOLVCR). This subroutine
applies an ‘acceleration’ to the modified Newton Raphson method and is discussed
in Section 9.8.

The arc-length procedure will work with either applied load-control or displacement
control. However, as implemented herg, the latter can only be used with the full N R
method and not the modified N--R method. In the latter case, the new K, matrix is
not formed and nor is dp, =K 'q.. However, with displacement control, we need
the new K, matrix (or part of it) in order to produce the ‘effective load vector’ in
subroutine BCON (see Section 2.2.5).

9.42.1 Fortran subroutine ITER

SUBROUTINE ITER(PT.AN,BETOK,QFI,IBCIWRIT IWR,AKTS DITERTY NV,

1 GM.FI.REAC PTOL,DT.FACT.OLIARC)
C
C THIS FINAL VERSION HAS EITHER LOAD,DISP OR ARG-L CONTROL
C ALSO INCLUDES LINE-SEARCHES (BUT NIT FOR ARC-L) VIA
C A) COMMON /DATLS/
o B) POSSIBLE CALL TO LSLOOP
C INPUTS PREDICTOR DISPS. PT(NV) AND TOTLA. FIXED FORCE VEC QFI(NV)
C ALSO BETOK=CONV. TOL, IBC =B. CON COUNTER
C ITERATES TO EQUILIBRIUM: OUTPUTS NEW PT AND FORCE IN BARAN
C IF ITERTY (INPUT) =1 USES FULL N-R, =2 USES MODN-R
C IN LATTER CASF, AKTS AND D INPUT AS CROUT FACTORS (D =PIVOTS)
C LOCAL ARRAY IS AKTE =EL. STIFF. MATRIX
C GM USED FOR 0.B. FORCES, FI FOR INT FORCES,
C PTOL HAS OLD DISPS. AT END OF LAST INC.,
C DT FOR TANGENTIAL (DUE TO TOTAL LD) DISPS (FIXED IF MOD N-R)
C ARGUMENTS IN GOMMON/DAT2/ AND ARRAY X NOT USED FOR SHALLOW TRUSS
C ARGUMENTS IN COMMON/ACEL/ ONLY FOR ACCELERATION
C

IMPLICIT DOUBLE PRECISION (A-H,0-2)

COMMON /DAT/ X(2).2(2).E.ARAAL.ID14S(4) AK14S(4) NDSP.ANIT.AK15

COMMON /DAT2/ ARN.POISS ALN,ITYEL

COMMON /DATLS/ NLSMX,PERMLS. AMPMX.ETMXA.ETMNA GO(5)

COMMON /AUTOINC/ IAUTQITE NITMAX BET

COMMON /ACEL/DELO(5),GOO(5)IACC,R1CR2C

DIMENSION PT(NV),QFI{NV) IBC{NV} REAC(NV)
DIMENSION FINV),GM(NV) AKTS(NV.NV).D(NV) AKTE(4.4)

DIMENSION DT(NV) PTOL (NV)
c

ILFAIL=0

SMALL =0.1D-2

C BELOW OLD STEP-LENGTH FOR ACCN.
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SLOL=1.D0O
DL2=DL*DL
IMOD =1

IF (ITERTY.EQ.1) IMOD=3
DO 100 ITE =1,NITMAX

IF (IWRIT.EQ.1) WRITE (IWR,1005) (TE
FORMAT(/,1X.ITERATIVE LOOP WITH ITE= ",I5)

IF (ITE.EQ.1.OR.NLSMX.EQ.0.ORILFAIL.EQ.1) THEN
ILFAIL =1 IF LS LOOP GAVE UPHILL

BELOW CALGS FORCE IN BAR (AN)

CALL FORCE(AN ANIT E.ARAALX.Z.PTIWRIT.IWR,

1 ITYEL.ARN ALN,POISS)

ABOVE ARGUMENTS NOT USED FOR SHALLOW TRUSS

ABOVE CALCS FORCE IN BAR, AN: BELOW TAN STiFF AKT
(IF NR) AND INT. FORCE VECT. Fi

CALL ELEMENT(FI,AKTE AN X,Z PT E ARA AL IWRIT IWR,IMOD,
i ITYEL.ALN,ARN)

ABOVE ARGUMENTS NOT USED FOR SHALLOW TRUSS

BELOW PUTS EL. STIFF. MAT., AKTE, IN STR. STIFF., AKTS AND
ADDS IN EFFECTS OF VARIOUS LINEAR SPRINGS (IN NR)
ALSO MODIFIES INT. FORCE VECT. FI FOR SPRING EFFECTS
CALL ELSTRUC(AKTE AKTS.NV AK15,ID14S AK14SNDSP.FI.PT,

1 IMODIWRIT.IWR)

ENDIF

BELOW FORMS GM =QUT-OF-BALANCE FORCE VECTOR
AND REACTION VECTOR
IN ADDITION, NOW SAVES GO FOR LINE SEARCHES

DO 10 I=1NV
GM(l)=0.D0
REAC(1) = FI(l)

IF (ARC EQ.1.ANDITERTY.EQ.1) DT() =QFI(})
IF (IBC(I).EQ.0) THEN

GM({1) = FACT*QFI(1)-FI(l)

ENDIF

GO(l) = — GM(l)

CONTINUE

FORMAT(6G13.5)

FORMAT(5(5)

OVERWRITE SPRING REACTION TERMS
IF (NDSP.NE.O) THEN

DO 50 t=1,NDSP

REAC(ID14S(l)) = — AK14S(I)*PT(ID14S(1))
ENDIF

BELOW CHECKS CONVERGENCE
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FNORM =0.DO
GNORM =0.00
RNORM =0.DO
INDSP =0
DO 20 1=1.NV
IF (1IBC(I}.EQ.0) FNORM = FNORM + QFI(1)*QFI(})
IF (IBC(1}.EQ.—1) IDSP=1
RNORM =RNORM + REAC(I)*REAC()
20 GNORM = GNORM + GM({I)*GM(l)
FNROM =FACT'DSQRT(FNORM)
GNORM = DSQRT(GNORM}
RANORM = DSQRT(RNORM)
BAS = MAX(FNORM, SMALL)
C BELOW DISP. CONTROL
IF (IDSP.EQ.1) BAS=MAX(RNORM SMALL)
BET =GNORM/BAS
ITEM=ITE —1
WRITE (IWR.1001) ITEMBET
1001 FORMAT(/1XITERN. NO.="15'CONV.FAC.="G13.5)
IF (IWRIT.EQ.1) WRITE (IWR.1003) (GM()).I=1.NV)
1003 FORMAT(/,1X,;QUT-OF-BAL.FORCE VECTOR="/1X.6G13.5)
IF (BET.LE.BETOK) GO TO 200

C
C BELOW FOR FULL N-R

IF (ITERTY.EQ.1) THEN
C BELOW FOR ARC-L ON LOADING TERM

IF (IARC.EQ.1) THEN

CALL BCON(AKTS,IBC,NV.DT IWRIT IWR)

ELSEIF (IARC.EQ.0) THEN
C BELOW NON-ARGC L

CALL BCON{AKTS.IBC.NV.GM.IWRITIWR)
C ABOVE APPLIES B. CONDITIONS

ENDIF

CALL CROUT(AKTS,D.NV.IWRIT,IWR)
C ABOVE FORMS LDL(TRAN) FACTORISATION INTO AKTS AND D

ENDIF
C

IF (IARC.EQ.1.AND.ITERTY.EQ 1)

1 CALL SOLVCR(AKTS.D,DT.NV.IWRIT IWR)
C ABOVE GIVES TANGENTIAL CHANGE DT DUE TO LOADING

CALL SOLVCR(AKTS,D,GM.NV,IWRIT IWR)
C ABOVE GETS ITER. DISP. CHANGE IN GM DUE TO O.B. FORCES
C

IF (ARC EQ.1) THEN

CALL ARCL1(DT,GM PTPTOLBC,NV,DL2.FACT.IFAIL)

IF (IFAIL.EQ.2) STOP 'ITER 30
c NO ROOTS TO ARG-L CONSTRAINT
C BELOW NON ARC-L

ELSEIF (IARC.EQ.0) THEN
C IF ACCEL., MODIFIES ITER. DISP. VECT., GM

IF (JACC.EQ.T)
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1 CALL ACCEL(GM.GO,GOO.IBC.NV.DELO.SLOL.R1C R2CITE.IWRIT.
2 IWR)

DO 30 |=1.NV

IF (IBG(1).EQ.0) THEN

PT(l) =PT () + GM()

ELSE

PT(l)=FACT*QFI(l)

ENDIF

30 CONTINUE
ABOVE UPDATES DISPS.

O

IF (NLSMX.NE.Q) CALL LSLOOP(PT,GM.IBC.IWRIT.IWR.ITERTY NV
1 FIQFIAKTS.AKTE,D.FACT.AN,SLOLILFAIL)

IF (ILFAILEQ.2) GO TO 110

ENDIF

IF (IWRIT.EQ.1) WRITE (IWR,1004) (PT(}).l=1.NV)
1004 FORMAT(/1X, TOTAL DISPS ARE'/1X.6G13.5)

100 CONTINUE

110 WRITE (IWR.1002)
ITE = NITMAX
1002 FORMAT(/.1X.FAILED TO CONVERGE OR L.S. TROUBLE"**")
IF (IAUTO.EQ.0) THEN
STOP "ITER 100
ELSE
RETURN
ENDIF

200 CONTINUE
RETURN
END

In the above subroutine, both the COMMON /ACEL/ and the call to subroutine
ACCEL relate to an accelerated modified Newton-Raphson method that will be
discussed in Section 9.8.

9.4.3 The predictor solution

We have so far described the implementation of the “spherical arc-length method’
within the overall iterative loop for equilibrium but have not discussed in any detail
the implementation of the ‘predictor’ solution. Assuming, as before, the adoption of
a forward-Euler tangential predictor, the latter is given by

Ap, =K, 'Aq, = Aj K, 'q = AL dp, (9.38)

where K, is the tangent stiffness matrix at the beginning of the increment. Substituting
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(9.38) into the constraint of (9.25) (with ¢ = Q) gives

A= B A
P /epTop)  /(opTop)

where Al is the given incremental length. Because of the plus or minus sign in (9.39)
we have two possible predictors. Foliowing [C11], in the present work we will let s
be +1 when K, (at the beginning of the increment) is positive definite. In relation to
the adopted solution procedure the latter will occur when all the terms in D, the
diagonal matrix of thc LDL" factorisation of K, arc positive. When one of these terms
is negative, we have one ‘negative pivot’, which implies one negative eigenvalue for
K,. This will occur when we have overcome a limit point (see Figure 9.6(a)) and we
then set s to — 1. Unfortunately, a negative pivot will also be found (see Sections
2.6.3, 3.10.4 and 9.9.4) when we have passed a bifurcation point rather than a limit
point. Hence, as will be shown in Section 9.9.4, in the presence of a bifurcation, the
present algorithm will lead to a solution that oscillates about this bifurcation point.
If one simply wishes to continue following the unstable post-bifurcation path, one
may, instead of switching with a negative pivot in K, switch when the predictor ‘work
increment’, Aq"Ap becomes positive [C22, M2 M4]. The latter is essentially the
‘current stiffness parameter’ which will be discussed in Section 9.5.2. As shown in
Section 9.9.4, this parameter does not respond to “bifurcations’.

Ideally, however, one would prefer to automatically switch to the stable (or more
stable) post-buckling path. These issues will be briefly discussed in Section 9.10 and,
in more detail, in Volume 2. This volume will also consider the problems in which
one encounters more than one negative pivot [C12,C15, M2- M4]. For the present,
the solution algorithm will automatically stop if more than one negative pivot is
encountered on the factorisation of the tangent stiffness matrix at the beginning of
an increment. (The author recommends that, until more advanced path-following
techniques are available within commercial finite element codes, a similar approach
should be adopted therein. It should, of course, be possible to override this requirement
and, with the aid of restarts (Section 9.5.5) and manual intervention, the problems
may be overcome but the user should, at the very least, be made aware that he is
treading in dangerous waters.)

More sophisticated predictors can be used instead of the ‘forward-Euler’ predictor
of (9.38) [R13]. However, den Heijer and Rheinboldt [D7] have argued that ‘higher
order predictions are very rarely effective.’ In order to avoid duplication, we will not
give the precise details of the predictor solution for the arc-length method at this
stage but will wait until Section 9.6, when we have discussed the provision of automatic
increments and automatic increment reduction. For the non-linear analysis of skeletal
space structures, Kondoh and Atluri [KS5] have adjusted the ‘incremental length’, Al,
to be no greater than the step required to initiate ‘local buckling’.

(9.39)

9.5 AUTOMATIC INCREMENTS, NON-PROPORTIONAL
LOADING AND CONVERGENCE CRITERIA

We will firstly discuss automatic increments in relation to standard load or displace-
ment control, for which we wish to find a way of choosing a suitable ‘load increment
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factor’, A/. (The solution algorithms of Chapters 2 and 3 were all based on the use
of fixed, equal, increments (as input by FACI = AZ).) A number of procedures have been
advocated for calculating a changing increment size [D7,S1,B7,B9,C11,R1,R2]. Den
Heijer and Rheinboldt [ D7] relate the increment size to the curvature of the non-linear
path, with the latter requiring both the tangential predictor and the difference between
the displacement vectors at the current and previous load levels. This procedure has
much in common with a technique advocated by Bergan and Soreide [BY]. Later,
Bergan and co-workers [B6, B7, D8] advocated an approach based on the ‘current
stiffness parameter’, which will be discussed in Section 9.5.2. Following numerical
experiments, they observed { B8] that both techniques led to nearly the same number
of iterations being required to restore equilibrium. The author (C11) advocated a
procedure whereby this was aimed at directly. To this end, the new increment factor,
Az, was set to

AA"==A10<[“) (9.40)

where Az, is the old increment factor for which [ iterations were required and 1 is
the input, desired, number of iterations (I, =~ 3). The parameter n was sct to unity.
Ramm [R1,R2] suggested that n should be set to 3 and this approach has since been
adopted by the author and will be used here. This technique leads to the provision
of small increments when the response is most non-linear and large increments when
the response is most linear.

This simple technique can very easily be extended to the arc-length method so
that instead of (9.40) with n = 1, we would have

1 1/2
AQ=AQ(;> (9.41)

o

where Al, and A/, are ‘incremental lengths’ (Section 9.3.2). As well as inputting the
desired number of increments, the user should provide a maximum and, possibly, a
minimum increment size. (Note, however, that the provision of too high a minimum
increment size can interfere with the increment-cutting procedure of Section 9.5.1.)

The user of a non-linear finite clement computer program will (or should) usually
have some idea of a suitable starting load increment so that once this is specified the
technique of (9.40) (with the addition of maximum and minimum step-sizes) can lead
to a fully automatic solution. However, the user will have little idea of an appropriate
magnitude for a starting length increment, Al = ./(Ap'Ap). There are (at least) three
possible solutions. The first is to apply a preliminary load-controlled step and from
the output A/ (this should be output even under load control) a suitable starting
value can be estimated. Alternatively, the user may start by specifying a load increment
Ai. The incremental displacement vector, Ap, can then be computed from (9.38) and,
via (9.39), a starting length increment, A/, can be obtained. This is one of the procedures
adopted in the current computer program.

A third, very useful, tactic is to apply standard load (or displacement) control for
the early increments and only switch to arc-length control once a limit point is
approached. A procedure for automatically introducing such a switch is given in
Section 9.5.2.



288 MORE ADVANCED SOLUTION PROCEDURES

9.5.1 Automatic increment cutting

If convergence of the structural equilibrium iterations is not achieved within the
specified number of iterations, a simple strategy is to cut the increment size. In the
present computer program, we have introduced the simple algorithm

Ai, Al, B,
or =
A Al

(] o

but =01 and <05 (9.42)

where 8 is the convergence factor of (2.30) and f4 is the input, desired convergence
factor (BETOK in the Fortran). Automatic increment cutting can be adopted in other
situations [C6] such as the failure of the *spherical’ or ‘cylindrical arc-length method
to find real roots 1o the constraint cquation [C11, M2 M4].

9.5.2 The current stiffness parameter and automatic
switching to the arc-length method

The current stiffness parameter [B6, B7. B8, B10] is a very useful index to give some
scalar measure of the degree of non-linearity. In its unscaled form, it effectively
measures the ‘stiffness’ of the system as related to the tangential predictor, ie.
k> = Aq/Ap, where Aq is the incremental applied load vector and Ap the resulting
tangential displacements. However, because Aq and Ap are vectors, we must multiply
the top and bottom by Ap so that

T T 3
g = A ‘Ap _ flcfo__pl (9.43)
Ap'Ap  op{dp.

where we have used Aq = Azg,, and (9.38). For displacement control, instead of using
the “fixed load vector’, q in (9.43), we must use the ‘effective fixed load vector’® as
produced by the process of Section 2.2.5.

To obtain the current stiffness parameter, C,, we simply scale the current “k™-value
by the initial ‘k’-value, so that

Co= . (9.44)

Bergan and co-workers [B6 -B8] advocated a technique for automatic incrementation
whereby, instcad of (9.40), they would place on the right hand-side of that equation,
AC4/AC,, with AC4 as the desired change in ‘current stiffness’ and AC,, would be
the previously achicved change.

Many structures exhibit a response in which the structure softens as the load is
applied (i.e. Figure 9.6(c)). In such situations, it is very useful to force the solution
procedure to automatically switch from load (or displacement) control to arc-length
control as the limit point is reached (C, will be zero at the limit point). This can be
achicved by introducing a value for the current stiffness parameter (say C.) below
which this switch is automatically introduced. Such a feature is included in the
computer program to be described in Section 9.6.

S0
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A range of alternative or supplementary ‘path-mecasuring parameters’ has becn
advocated by Eriksson [E3].

9.5.3 Non-proportional loading

Most of the solution procedures in this chapter have been based on the 2quilibrium
relationship of (9.15) which implies a single loading (or displacing) vector, g, is
proportionally scaled via 4. For many practical structural problems. this loading
regime is too restrictive. For example, we often wish to apply the ‘dead load” or
self-weight” and then monotonically increase the live load. In other instances, a whole
range of loading stages may be required [C18]. Fortunately. many such loading
regimes can be applied by means of a series of loading sequences involving two
loading vectors, once that will be scaled (the previous q.¢) and one that will be fixed
{(q.r) The external loading can then be represented by

q. = G + AQ (9.45)

so that the out-of-balance force vector becomes

=4 — Qs — /qer- {9.46)
An equation such as (9.22) then becomes

p=—K 'g= ~ K Hqip,) ~ Qs — +ur) (9.47a)
or
(Sp = - Kl- l(qi(po) - (_L*f - )'oqef) - (S'Z‘K[” 1qcf = (5I_) + (5/:()pl (947b)

so that with these new definitions, the basic structure of the previous algorithms can
be maintained.

These modifications are not difficult to implement in a general-purpose finite
element system but, to avoid clouding the other issues, will be omitted from the
present computer program.

9.5.4 Convergence criteria

In Section 2.4. we introduced a convergence criterion for the overall structural
iterations that was cffectively based on the magnitude of the Euclidean norm of
out-of-balance force vector, g. For the computer program to be given in Section 9.6,
we will stick to this criterion. In the present section, we will briefly discuss some
alternative cniteria.

Obvious alternatives involve the use of different norms such as ‘the maximum
norm’. Other alternatives involve some sculing so that. for example, in place of {2.30a)
for load control, we could have

\ (8'Sg) < (q;Sq.) (9.48)

where S is a scaling matrix that could. for example, be used to ensure that, for a
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problem involving rotational variables, all parameters had the same dimensions. In
[C15], the author used S=C~!, where C was the diagonal matrix containing the
leading diagonal terms {rom the tangent stiffness matrix at the beginning of the
increment.

Instead of, or in addition to, force-based convergence criteria, displacement-based
criteria can be adopted so that, for example, we could have

Iopl < Alipl {9.49)

where dp are the iterative displacement changes and p the total displacements. As
shown in [C6], the norm of the iterative displacement change can be very small while
the out-of-balance force norm is very large. Hence it is unwise to adopt a
displacement-based criterion such as (9.49) on its own without supplementing it with
some force-based criterion.

An apparently attractive alternative to force or displacement-based convergence
criteria is to use an energy-based criterion of the form

|5p"gl < BIp"q.!. {9.50)

There are various ways in which such a criterion could be introduced but the author
believes they should be used with great caution. For example, suppose that. more
specifically, we had

|op'g. =1—op'K 'dpl < fip'q.! (9.51)

where the iterative change was dp= — K, 'g,. Equation (9.51) merely gives some
measure of the ‘stiffness’ of K,. Clearly as a limit point is approached, this can be
small and yet the solution procedure may not have converged at all. (With a full
Newton -Raphson iteration, away from equilibrium, K, may have no structural
significance at all.) Alternatively, one could have

[0p'g,| = [op g(p. + 7 p) < Blp'q.| (9.52)

where we have introduced some of the notation of Section 9.1 on line searches. The
criteria for ép"g, to be zero is merely the criterion for an “exact line scarch’. This can
be achieved even by chance with a step length 5 =1 and merely implies that a
stationary energy position has been reached in the current iterative direction, op. This
can, and frequently does, occur when the solutions is still a very long way from
equilibrium. (A tentative thought; it appears that such cnergy-based criteria are often
used in dynamics —surely the same limitations apply.)

9.5.5 Restart facilities and the computation of the
lowest eigenmode of K,

It almost goes without saying that a non-lincar finite element computer program
should have restart facilities. Despite all efforts to introduce a fully robust system,
there will be many occasions when it Is necessary to restart using, say, a different
iterative procedure. On some occastons, the author has found it necessary to retrack
quite a few increments and restart with a tighter convergence tolerance in order to
avoid eventual divergence. When even such measures fail, it is often extremely useful
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at an equilibrium point beyond which no progress can be made, to compute and
piot the lowest eigenmode of the system. The author has, in this way, discovered
such diverse phenomena as (a) spurious mechanisms (b) errors in the computer
program (c) errors in the input data [C6].

For the present computer program, we have included a very basic restart facility
whereby (when using automatic increments), the solution can be restarted from the
solution obtained at the end of the previous run. If one wishes to restart from an
earlier position, one must firstly rerun the original problem with a reduced number
of increments.

9.6 THE UPDATED COMPUTER PROGRAM

In this section, we will give both flowcharts and Fortran coding for the final complete
computer program (apart from subroutine ACCEL — see Section 9.8.2) which includes:

(1) line searches

(2) the ‘spherical’ arc-length method

(3) automatic increments

(4) automatic increment cutting

} the current stiffness parameter

) automatic switching to the arc-length method
{7) acclerations to the mN R method (Section 9.8)
) restarts.

Many of the subroutines have already been given. In particular, from Chapter 2, we
require

ELSTRUC (2.2.4)
BCON (2.2.5)
CROUT (2.2.6)
SOLVCR (2.2.7)

Assuming that we are to use the general truss elements of Chapter 3 (rather than the
shallow elements of Chapter 2, although these could be used), we also require from
Chapter 3,

ELEMENT (3.9.1)

INPUT (3.9.2)

FORCE {3.9.3)

From the present chapter we require
SEARCH (9.2.2.1)

ARCL1 9.4.1.1)

QSOLV (9.4.1.1)

ITER (9.4.2.1)

LSLOOP (9.6.1)

INPUT2 9.6.2.1)

NONLTD 9.6.3.1)
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SCALUP (9.6.4.1)
NEXINC (9.6.5.1)
ACCEL (9.8.2)

where the last six routines have yet to be given,

In Section 9.2.3.3, we gave a flowchart for the line-search loop at the structural
level. We did not then give the Fortran because this had to be related to the modified
subroutine ITER which was altered in Section 9.4.2.1 to allow the introduction of the
arc-length method. We are now in a position to give the Fortran for LSLOOP. In
relation to the flowchart of Section 9.2.3.3, the only significant change is the
introduction of the out-of-balance forces in the form g =q; — £q,; (as in (9.15)) so
that both q.; (QF1) and 4 (FACT) are required.

9.6.1 Fortran subroutine LSLOOP

SUBROUTINE LSLOOP({PT PBAR.IBC.IWRIT IWRITERTY NV FI,QF],
1 AKTS AKTE D.FACT AN SLOL ILFAIL)

PERFORMS LINE SEARCH LOOP

INPUTS TOTAL DISPS IN PT(NV), ITERATIVE CHANGE IN PBAR(NV)

QFI=TOTAL EXTERNAL LOADING (UNFACTORED)

GO=0LD 0.B. FORCE VECTOR

IBC=B.CON COUNTER. FI FOR INTERNAL FORCE VECT.,

IF ITERTY (INPUT) =1 USES FULLY N-R, =2 USES MOD N-R

FACT=TOTAL LOAD FACTOR LEVEL

ARGUMENTS IN COMMON/DATA2/ AND ARRAY X NOT USED FOR SHALLOW TRUSS
ILFAIL EXITS WITH ZERO IF 0K, 1 IF UPHILL (ABANDON L.S.)

WITH 2 IF L.S. PROBLEMS (CUT INC IF IAUTO =1)

o NONONCEONONONONONON OGNS

IMPLICIT DOUBLE PRECISION (A—H.0-2)

COMMON /DAT/ X(2).Z(2),E.ARA AL ID14S(4) AK14S(4) NDSP ANIT AK15
COMMON /DAT2/ ARN POISS ALNITYEL

COMMON /DATLS/ NLSMX.PERMLS AMPMX ETMXAETMNA.GO(5)
COMMON /AUTOINC/IAUTO ITE NITMAX BET

DIMENSION PT(NV).QFI{NV).IBC(NV)

DIMENSION FI{NV) PBAR(NV) AKTS(NV.NV) AKTE(4,4), D(NV)
DIMENSION PRODR(10),ETA(10).PTO(5)

C CHECK ON SIZE OF PRODR AND ETA
IF (NLSMX.GT.8) STOP "LSLOOP 1
C PRODR AND ETA MUST BE OF DIM. GE. NLSMX +2
C COMPUTE INNER PRODUCT AT START AND STOP IF POS. (UPHILL)
SO=0D0C
ILFAIL=0
DO 10 I=1NV
IF (IBC(1) EQ.0) SO=S0 + PBAR(1)*GO(l)
10 CONTINUE
IF (SO.GE.0.DO) THEN
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ILFAIL =1

WRITE (IWR,1001) SO

FORMAT(/1X'RETURNS BECAUSE START INNER-PRODUCT UPHILL =",G13.5)
RETURN

ENDIF

PREPARE STARTING PRODUCT RATIOS, PRODR AND STEP LENGTHS, ETA

PRODT(1)=1.D0O
ETA(1)=0DO
ETA(2)=1.D0
ICO=0

ABOVE COUNTER WiILL BECOME 1 WHEN MAX OR MIN S-LENGTH IS REACHED
OR 2 WHEN REACHED TWICE RUNNING

GET FIXED TOTAL DISPS AT END OF LAST ITER IN PTO
NOTE, FIXED ITER. DISP CHANGE IN PBAR

DO 20 I=1NV

PTO(l)=0.DO

IF (1IBC(1).£Q.0) THEN

PTO(y=PT()-PBAR(l)

ENDIF

CONTINUE

BEGIN LINE-SEARCH LOOP
DO 100 LS =1,NLSMX

IF (WRIT.EQ.1) WRITE (IWR.1005) ILS

FORMAT(/ 1X,'LINE-SEARCH LOOP WITH ILS ="15)

BELOW CALCS FORCE IN BAR (AN)

CALL FORCE(ANANIT.E ARAALX.ZPTIWRITIWR,
ITYEL. ARN,ALN,POISS)

ABOVE ARGUMENTS NOT USED FOR SHALLOW TRUSS

ABQOVE CALCS FORCE IN BAR, AN: BELOW INT. FORCE VECT, FI

CALL ELEMENT(FILAKTE AN X,Z PT E ARA AL IWRITIWR.1,
ITYEL.ALN.ARN)

ABOVE ARGUMENTS NOT USED FOR SHALLOW TRUSS

BELOW MODIFIES INT FORCE VECT. FI FOR SPRING EFFECTS
CALL ELSTRUC(AKTE AKTS NV AK15,10145 AK145 NDSP FIPT,
1IWRITIWR)

BELOW FORMS CURRENT INNER-PROD RATIO
SETA=0.D0

DO 30 |=1.NV

IF (IBC(1).EQ.0) SETA =SETA + PBAR(I)*(FI()=FACT*QFI{))
CONTINUE

SETA=SETA/SO

PRODR(ILS + 1) =SETA

FORMAT(6G13.5)
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47 FORMAT(5I5)

OO0

BELOW CHECKS FOR SATISFACTION OF L-S TOLERANCE
IF (ABS(SETA).LT.PERMLS) GO TO 300

[ON@]

CALL L-S ROUTINE TO GET NEW ESTIMATE ETA IN ETA(ILS +2)
CALL SEARCH(ILS,PRODRETAAMPMX ETMXA ETMNA IWRIT IWR.ICO NLSMS +2)
IF (ICO.EQ.2) GO TO 110
C GET CURRENT DISPS.
DO 40 1=1NV
IF (IBC{1).EQ.0) THEN
PT(l)=PTO(l) + ETA(ILS + 2)"PBAR(1)
ENDIF
40 CONTINUE

100 CONTINUE

WRITE (IWR,1002)
1002 FORMAT(/,1X,MAX NO OF L-SEARCHES EXCEEDED")
110 CONTINUE
IF (IAUTO.EQ.0) THEN
STOP "LSLOOP 1002
ELSEIF (JAUTQ.EQ.1) THEN

ILFAIL=2
RETURN
ENDIF
C
300 CONTINUE
IF (ILS.GT.1) WRITE (IWR,1003) ILS-1 ETA(ILS + 1)
1003 FORMAT(/,1X,'L-S. EXTRA RES CALCS="l5. S-L="G13.4)
SLOL=ETA(LS+ 1)
c BEFORE RETURNING TO ITER MUST COMPUTE TANGET STIFF iF
C USING FULL N-R ITERATION

IF (ITERTY.EQ.1) THEN

CALL ELEMENT (FILAKTE ANX.ZPTEARAALIWRITIWRZ2
ITYEL ALN,ARN)

CALL ELSTRUC(AKTE AKTS NV AK151D145 AK145 NDSP.FIPT,
2 /WRIT IWR)

ENDIF

RETURN

END

The final step-length, 5, is output as =SLOL so that it can be used with the
accelerated modified Newton-Raphson method (Section 9.8).

9.6.2 Input for incremental/iterative control

In the computer programs of Chapters2 and 3, the incremental/iterative control
parameters were input into the main program module, NONLTC {Section 2.5.1).
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Because the present non-linear control is more complex, we now introduce a separate
subroutine. This subroutine, INPUT2, which is given in Section 9.6.2.1, is almost
self-explanatory (particularly when read in conjunction with the examples of
Section 9.9). Nonetheless, we will here give some brief notes relating to the various
input “cards’ in that routine.

Card 1
In the first card, the factor,

FAC! 1s the initial value of A/. If the arc-length method is to be adopted (JARC = 1)
and the “desired length’, Al,, for the first increment on Card 6 is input as
zero, Az = FACI is automatically converted to a ‘length’.

NINC  is the desired number of increments (if the increment is cut, it will count as
two increments).

IWRIT  Write control for extra information, 0 is off, 1 is on.

IAUTO  If the parameter [AUTO is set 1o unity, automatic increment sizes are
computed. Such automatic increments must be used with the arc-length
method. If IAUTO is set to zero, equal increments of magnitude Az = FAC]
are adopted as in Chapters 2 and 3.

IARC s set to zero for load (or displacement control) and 1 {or arc-length control.
To start with load control and later switch (Section 9.5.2) IARC is input as 0.

IACC  is usually set to zero but to 1 if the acceleration method of Section 9.8 is to
be used with the mN R method (not for arc-length method).

IRES is set to zero for a standard solution and to 1 if the present solution is to
be re-started from an earlier solution (see Section 9.5.5). Whenever IAUTO is
set to |, the program will, following the last increment, output an unformatted
restart file ‘RESOUT". In order to restart using this information, the file
‘RESOUT’ must be copied to a file *RESIN’, which will be input if IRES is set
to 1. Whenever 1AUTO = 1, the main (formatted) output will contain, at the
end. the parameters that the automatic incrementing routine, NEXINC (see
Section 9.6.5) would use for the next increment. In particular, these include
some of the parameters required on Cards 3 and 4 below.

Card 2
For this card:

BETOK = convergence tolerance factor (see Section 2.4)

ITERTY =1 for full N-R; =2 for modified N R

NITMAX = maximum number of iterations

NLSMX = maximum number of extra residual calculations during line-searches (set
to zero if no linc-searches are required).

Card 3

This card relates to the line searches and inputs the parameters discussed in Section
9.2.3.1. Note that, at present, line searches cannot be applied with the arc-length
method. (This facility will be introduced in Volumes 2.)

Cuard 4
This card relates to automatic increments (Section 9.5) and requires

[y Ad, . Ad,.. ISWCH.
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{Note that the provision of too high a A4 can interfere with the automatic increment
cutting procedurc.) With ISWCH = 1, the algorithm will automatically switch to the
arc-length method using the procedure of Section 9.5.2, which requires Card 5.

Card 5 B
The desired current stiffness parameter for switching (C,).

Card 6
If the arc-length method is to be applied from the very start (IARC = 1), this card
requires

Al Al Al

max* min

where Al; 1s the desired length for the first increment and the other two factors are
self-cxplanatory. (Note that the provision of too high a A/l . can interfere with the
automatic increment cutting procedure.) If the parameters on this card are set to
zero, the program will use the load parameters of Cards | and 4 to compute

appropriate Al quantities.

Card 7
This card relates to the cut-outs required for the accelerated modified
Newton: Raphson method (Section 9.8.1) which is activated if IACC (card 1) is set to
unity.

962.1 Subroutine INPUT2

SUBROUTINE INPUT2(FACININC IARC BETOK ITERTY.IDES.FACMX,FACMN,
DLDES.DLDMX.DLDMNISWCH.CSTIFS.IBC NV.IRE IWR.IWRIT IRES)

INPUTS INCREMENTAL/ITERATIVE CONTROL
ARGUMENTS IN COMMON/DATLS/ FOR L-SEARCHES
ARGUMENTS IN COMMON/AUTOINC/ FOR AUTO-INCS.
ARGUMENTS IN COMMON/ACEL/ FOR ACCEL. MOD. N-R

SN ONONONONS]

IMPLICIT DOUBLE PRECISION (A-H.0--2)

COMMON /DATLS/ NLSMX.PERMLS AMPMX ETMXA ETMNA .GO(5)
COMMON /AUTOINC/ IAUTOITE NITMAX BET

COMMON fACEL/ DELO(5).GOO(5).IACC,R1C.R2C

DIMENSION IBC{NV)

READ (IRE.") FACLNINC.IWRIT JAUTQ.IARC.IACC IRES
WRITE (IWR, 1000} FACI.NINC IWRIT IAUTO.JARC IACC,IRES
1000 FORMAT(/.1XINCREMENTAL LOAD FACTOR="G135/.1X.

1 'NO. OF INCS. (NINC) ="15/1X

2 ‘'WRITE CONTROL (IWRIT)="15/3X,

3 0=LIMITED : 1 =FULL'/.1X,

4 IAUTO ="15./.3X.

5 ‘0=FIXED INCS., 1 =AUTOMATIC / 1X,

6 IARC="15/3X,



7
8
9

1003

1
2
3
4

1009

1
2
3
4

1008

(€200 SO B ST

1004

THE UPDATED COMPUTER PROGRAM

‘0=LOAD INCS.. 1 =ARC-LENGTH"/1X,

1ACC ="15./3X.

‘0=NO ACCEL, 1=ACCEL WITH MOD. N-R" 11X,
A IRES="15/3X
B '0=NOT A RE-START, 1 =IS A RE-START")

READ (IRE.") BETOKITERTY NITMAX NLSMX
WRITE (IWR, 1003} BETOK, ITERTY, NITMAX, NLSMX
FORMAT(/ 1XCONV. TOL FACTOR, BETOK="G135/,
1IXITERATIVE SOLN. TYPE ITERTY ="15./,
S5X/=1 FULL N-R: =2 MOD. N-R/
1X'MAX NO OF ITERATIONS ="15/,
IX,MAX NO. OF L-SEARCHES ="15)

IF (ITERTY. EQ.1).0R.(IARC.EQ.1)) THEN
IFIACC.EQ.1) STOP 'INPUT2 1009

NC ACCN. WITH FULL N-R OR WITH ARC-L
ENDIF

BELOW SPECIFIC TO LINE SEARCHES

IF (NLSMX.NE.O) THEN

READ (IRE,") PERMLS AMPMX ETMXA ETMNA

WRITE (IWR,1009) PERMLS AMPMX ETMXA ETMNA

FORMAT(/,1X,LINE SEARCH PARMS ARE'/,
3X. TOLERANCE ON RATIO, PERMLS =".G134./,
3X'MAX. AMP. AT ANY STEP, AMPMX ="(G13.4/,
3X'MAX. TOTAL STEP-LENGTH, ETMXA="G134//,
3XMIN. TOTAL STEP-LENGTH, ETMNA ="G13.4)

ENDIF

BELOW SPECIFIC TO AUTOMATIC INCS.

IF (IAUTO.EQ.1) THEN

READ (IRE.") IDES.FACMX.FACMN,ISWCH

WRITE (IWR.1008) IDES,FACMX FACMN, ISWCH
FORMAT(/,1X. DATA FOR AUTOMATIC INCREMENTS /.

1X;DESIRED NO OF ITERATIONS =" 15/,
1X'MAX. LOAD INC.= 'G13.4,/,
IXMIN. LOAD INC.= G134/,
1X'PARAM FOR ARC-L, ISWCH= "5/

3X, =0 NO SWITCH, =1 SWITCH")
IF (ISWCH.EQ.1) THEN
READ (IRE.*) CSTIFS
WRITE (IWR,1004) CSTIFS

FORMAT(/1X,;SWITCHES TO ARC-L WHEN CSTIF.LE.CSTIFS="G13.4)

ENDIF
ENDIF

BELOW SPECIFIC TO ARC-L METHOD

IF (IARC EQ.1) THEN

READ (IRE,") DLDES,DLDOMX,DLDMN
WRITE (IWR,1005) DLDES,DLDMX DLDMN
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FORMAT(/,1X, FOR ARC-LENGTH CONTROL' /.
3X 'DESIRED LENGTH INC., DLDES="G13.4./,
3X'MAX. LENGTH INC., DLMX="G13.4,/,
3X'MIN. LENGTH INC.. DLMN="G13.4./5X.
‘NOTE**, IF DLDES =DLMX=DLMN =0., USES LOAD INC FACT FOR 1ST INC')
CHECKS NOT USING MOD N-R WITH DISP. CONTROL
IDSP =0
DO 10 I1=1,NV
IF (IBC().LT.0) IDSP =1
CONTINUE
IF (IDSP.EQ.1.AND.ITERTY.EQ.2) THEN
WRITE (IWR,1100)
FORMAT(/,1X,**STOPS.CANNOT HAVE PRESG DISPS + ARC-L + MOD. N.R")
STOP INPUT2 1100'
ENDIF
ENDIF

BELOW SPECIFIC TO ACCELERATION

IF (IACC.EQ.1) THEN

READ (IRE,*) R1C.R2C

WRITE (IWR.1110) R1C.R2C

FORMAT(/,1X CUT-OFF PARAMS FOR ACCN. ARE"/,
'R1C="G134, R2C="G134)

ENDIF

RETURN
END

9.6.3 Flowchart and Fortran subroutine for the
main program Module NONLTD

The main program module NONLTD is a modification of the module NONLTC

given in Section 2.5. A flowchart is given in Figure 9.14, while the Fortran is given
in Section 9.6.3.1,

Call INPUT to obtain the geometry, properties, fixed loading, q.; (QFi) the

bound. cond. counter, IBC and spring stifiness parameters

|

Call INPUTZ2 to obtain incremental/iterative control parameters

If IRES = 0, initialise p(PT) =0, A(FACT)=0

If IRES = 1, read-in unformatted restart file, RESIN
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Begin loop through the increments, INC = 1, NINC

L

Save parameters relating to end of last increment
po(PTOL) =p, N, = N, i (FACTOL) = A(FACT)
op{DT) = . QF1)

Nl

Call ELEMENT which gives K, ={n.(N,z,EA,Lp) for the truss el.
Call ELSTRUC which puts the el. stiff. matrix into the struct.
stiff. matrix and modifies for earthed (and other) linear springs

!

Call BCON which applies the boundary conditions.
Call CROUT which computes Ky = LDLT.
Call SOLVCR which computes dp(DT) =K, 'q

Compute stiffness, k and current stiff, C, = k/k,
NEG = no. of neg. pivs. and Al = ||dp, ||
(STOPS if NEG > 1)

Call SCALUP which computes A4, Al, updates 4 and p
Call ITER which iterates to equilibrium

If IAUTO =1, call NEXINC which computes params for next inc.

If IAUTO = 1, output unformated file RESOUT
and data useful for restart

]

Figure 8.18 Flowchart tor main program module, NONLTD.

299
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96.3.1 Fortran for main program module NONLTD.

PROGRAM NONLTD

THIS VERSION INCLUDES FULL AUTO-INCS, LINE-SEARCHES. ARC-L
AND AUTOMATIC INCREMENTS (WITH INC. CUTTING)
PERFORMS NON-LIN. INCREMENTAL/ITERATIVE SOLN. FOR TRUSS
NV =NO. OF VARIABLES (4 OR 5)

QFI=FIXED LOAD VECTOR

IBC=8. COND. COUNTER (0=FREE., 1 =FIXED)

Z=7 COORDS OF NODES

PT=TOTAL DISP. VECTCR

PTOL=TOTAL DISP VECTOR AT END OF LAST INC

DT =TANGENT DISP VECTOR FROM TOTAL LOAD (QFl)

GO =0LD O.B. FORCE VECTOR (FOR L-SEARCHES)

AKTS=STR. TAN. STIFF. MATRIX

AKTE=ELE. TAN. STIFF. MATRIX

FI=INTERNAL FORCES

D =DIAGONAL PIVOTS FROM LDL(TRAN) FACTORISATION

ID14S =VAR. NOS. (1-4) AT WHICH LINEAR EARTHED SPRINGS
AK14S =EQUIV. LINEAR SPRING STIFFNESS

AK15=LIN SPRING STIFF. BETWEEN VARBS. 1 AND 5 (IF NV=5)
GM=WILL BE OUT-OF-BALANCE FORCES (iN S/R ITER)

REAC =REACTIONS

X=X COORDS

FACT =TOTAL LOAD FACTOR, FACI=INC. LOAD FACTOR

DL =INCREMENTAL 'LENGTH' (DLDES =DESIRED VALUE)
ARGUMENTS IN COMMON/DAT2/ AND ARRAY X NOT USED FOR
SHALLOW TRUSS

ARGUMENTS IN COMMON/DATLS/ FOR L-SEARCHES
ARGUMENTS IN COMMON/AUTOINC/ FOR AUTO-INCS.
ARGUMENTS IN COMMON/ACEL/ FOR ACCELERATED MOD N-R.

SN NONONONCEONONONONONONONONONONONONONONCNONCNONONCONONONS!

IMPLICIT DOUBLE PRECISION (A-H,0-7)

COMMON /DAT/ X(2).Z(2).E.ARA.AL ID14S(4),AK14S(4) NDSP ANIT AK15
COMMON /DAT2/ ARN,POISS ALN,ITYEL

COMMON /DATLS/ NLSMX,PERMLS AMPMX ETMXA ETMNA.GO(5)
COMMON /AUTOING/ IAUTO,ITE NITMAX BET

COMMON /ACEL/ DELO(5).GOO(5) IACC,R1C.R2C

DIMENSION QFI(5),IBC(5),DT(5).PT(5),AKTE(4.4)

DIMENSION FI(5),D(5).QEX(5),GM(5).AKTS(25),REAC(5)

DIMENSION PTOL(5)

IRE=5

IWR=6

OPEN (UNIT=5FILE="")

OPEN (UNIT=6FILE=" ")

OPEN (UNIT =17 FILE ='RESIN’ FORM ="UNFORMATED"
OPEN (UNIT =18 FILE ='RESOUT" FORM = "UNFORMATED")
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CALL INPUT(E.ARA AL QFI.X.Z ANITIBC.IREIWR AK145,1D145.NDSP.

NV AK15,

POISS.ITYEL)
ARGUMENTS IN LINE ABOVE NOT USED FOR SHALLOW TRUSS
BELOW RELEVANT TO DEEP TRUSS BUT LEAVE FOR SHALLOW TRUSS
AKN =AL
ARN =ARA

READS IN DATA FOR INC/ITERATIVE CONTROL
CALL INPUT2(FACININC.IARC.BETOK.ITERTY.IDES.FACMX FACMN.
DLDES DLDMX.DLOMN,ISWCH CSTIFS.IBC NV, IRE IWR.IWRIT.IRES)

IF (IRES.EQ.Q) THEN

AN=ANIT

FACT=0DO

DO S I=1NV

PT(}=0DO

ELSEIF (IRESEQ.1) THEN

BELOW FOR RESTART FROM PREVIOUS RUN
READ (17) ANLALN ARN.STIFI.FACT.PT

CLOSE (UNIT=17)

ENDIF

DO 100 INC= 1.NINC
WRITE (IWR.1001) INC
FORMAT(// 11X INCREMENT NO.= I5)

DO 10 1=1.NV
SAVE DISPS. PT IN PTOL
PTOL()=PT())

DT WILL BE TANGENTIAL DISPS DUE TO TOTAL LOAD QFl

DT =QFI(}

CONTINUE

SAVE OLD FORCE FOR CUT INC AND OLD TOTAL LOAD LEVEL
FACTOL =FACT

ANOL = AN

BELOW FORMS EL. TAN. STIFF MATRIX AKTE
CALL ELEMENT (FLAKTE AN X.Z PT.E.ARA AL IWRIT JIWR 2.
ITYEL ALN.ARN)
ARGUMENTS IN LINE ABOVE NOT USED FOR SHALLOW TRUSS
BELOW PUTS EL. STIFF. AKTE IN STRUCT. STIFF. AKTS
AND ADDS EFFECT OF VARIOUS LINEAR SPRINGS
CALL ELSTRUCT(AKTE AKTS NV AK15.1D14S AK14S NDSP.FI.PT,
2 IWRIT IWR)

CALL BCON(AKTS.IBC.NV.DT.IWRIT.IWR)
ABOVE APPLIES B. CONDITIONS

301
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C BELOW PUTS EFFECTIVE TANGENT LOAD VECTOR. DT IN GM (FOR CUR
C STIFF)
DO 15 1=1,NV
15 GM(1)=DT(l)

CALL CROUT(AKTS D NV IWRIT IWR)

ABOVE FORMS LOL(TRAN) FACTORISATION INTO AKTS AND D

CALL SOLVCR(AKTS,D,DT,NV,IWRIT IWR)

ABOVE SOLVES EQNS. AND GETS TAN. DISPS IN DT {FOR UNSCALED
LD)

(@]

BELOW COMPUTES NO OF NEG PIVOTS AND PARAMS FOR CURRENT
STIFF PARAM AND LENGTH INCS
STIFT =0.D00
NEG=0
DL=0.D0
DO 20 1=1NV
IF (IBC(1).EQ.0) THEN
STIFT =STIFT + DT()*GM())
DL = DL + DT(*DT()
IF (D(1).LT.0) NEG = NEGT
ENDIF
20 CONTINUE

OO0

c BELOW COMPUTES 'STIFFENESS’, STIF AND CSTIF =RATIO
c OF VERY FIRST ‘STIFFNESS’

STIF=STIFT/DL

IF (INC.EQ.1.AND.IRES.EQ.0) STIFI=STIF

CSTIF = STIF/STIF!

DL=DSQRT(DL)

WRITE (IWR,1010) CSTIF,NEG
1010 FORMAT(/1X,/CURRENT STIFF. FACTOR= "G13.4,1X,
1 ‘NO. OF NEG. PIVS. = '15)
IF (NEG.GT 1) THEN
WRITE (IWR,1002)
1002 FORMAT(/'STOP BECAUSE NO OF NEG PIVS. GT. 1)
STOP 'NONLTC 1002’
ENDIF

CALL SCALUP{IAUTO IARC NEG,FACILFACT DL DLDES,PT,PTOL,DT,
1 ISWCH,CSTIF,.CSTIFS NV IWR,DLDMX.DLDMN)

C BELOW ITERATES TO EQUILIBRIUM
CALL ITER(PT,AN,BETOK,QF}IBC IWRIT IWR AKTS,D ITERTY NV,
1 GM,FIREAC PTOL,DT,FACT DL IARC)

IF (ARC.EQ.1) WRITE (IWR,1003) FACT

1003 FORMAT(/,1X, ‘TOTAL LOAD FACTOR AFTER ARC-L ADJUST = 'G13.4)
WRITE (IWR,1004) (PT(I)I=1,NV)

1004 FORMAT(/,1X, ‘FINAL TOTAL DISPLACEMENTS ARE'/.1X,6G12.5)
WRITE (IWR,1006) (REAC(I).| =1,NV)
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1006 FORMAT({/.1X,FINAL REACTIONS ARE'/1X5G12.5)
WRITE (IWR, 1005} AN
1005 FORMAT({/ 1X'AXIAL FORCE IN BAR IS',G12.5)

C
C BELOW COMPUTES INC. FACTORS FOR NEXT INCREMENT
IF IAUTO.EQ.1) THEN
CALL NEXINC(IARCITE NITMAX FACIFACMX FACMN,DL DLDES,
1DLDMX DLDMN BETOK BET.PT PTOL.AN ANOL NVIDES FACT.FACTOL)
ENDIF
C
100 CONTINUE
C

IF (IAUTO.EQ.1) THEN
WRITE (IWR,1007) FACLFACMX FACMN.DLDES . DLDMX DLDMN
1007 FORMAT({/,1X'AT END OF RUN"/,
1 1X'FACI= 'G13.4'FACMX= "G134 'FACMN= "G134/,
2 1X.DLDES = "G13.4'DLDMX= "G134'DLDMN= "G13.4)
C WRITE RESTART TAPE
WRITE (18) AN ALN,ARN,STIFI.FACT.PT
CLOSE (UNIT=18)
ENDIF

STOP ‘NONLTC’
END

9.6.4 Flowchart and Fortran subroutine for routine SCALUP

This routine is called by program NONLTD (see last Section) following the
computation of dp, = K, 'q. in the array DT. Its main function is to compute Ai
and Al, and update / and the displacements, p, following the predictor solution. The
flow chart is given in Figure 9.15 and the Fortran in Section 9.6.4.1.

96.4.1 Fortran for routine SCALUP

SUBROUTINE SCALUP(IAUTO.JARC NEG,FACI.FACT DL.DLDESPT.PTOL,
1 DT ISWCH.CSTIF CSTIFS.NVWR,DLDMX DLDMN)

UPDATES TOTAL LOAD FACTOR, FACT VIA INC. FACTOR FAC!
AND OBTAINS INC LENGTH (POSSIBLY USING DESIRED VALUE)
UPDATES TOTAL DISPS. IN PT

IMPLICIT DOUBLE PRECISION (A-H.0-2)

DIMENSION PT(NV),PTOL(NV).DT(NV)

OO0

€ (IAUTO.EQ.0) GO TO 100
BELOW AUTOMATIC INCREMENTS

OO0

CHECKS FOR SWITCH TO ARC-L
IF (ISWCH.EQ.1) THEN
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auto incs.

can
1| switch
to arc-1

IARC = 0 (1d. cont). and
< C, (specified

no switch to arc-1

Switch to arc-1
IARC =1

No lengths given so
Aly=ALAl
Al =3Al,

Al =001 Al

0
- ] o)
| 1d. cont. ARC?
1|arc-1
Al= AL Al Yes
No

CIENEG = 1.A7 = — Ad

Al = Al

|

i (FACT) = 4 + Ai (FACI)

P=0p, +A.0p,
RETURN

Figure 9.15 Flowchart for routine SCALUP.

IF ({IARC.EQ.0). AND. (CSTIF.LT.CSTIFS)) THEN
IARC =1
DLDES=DL
DLDMX =5.00"DL
DLDMN =0.01D0"DL
WRITE (IWR,1001) CSTIF,CSTIFS
1001 FORMAT(/,1X,'SWITCHED TO ARC-L BECAUSE CSTIF =

"G13.4./3X,




1003

100

1002

1004
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© LESS THAN CSTIFS= "(G13.4)
ISWCH=0
ENDIF
ENDIF

IF (IARC.EQ.0) THEN
BELOW LOAD-CONTROL
DL =FACI'DL
ELSEIF (IARC.EQ.1) THEN
BELOW ARC-LENGTH CONTROL
FIRSTLY SET UP LENGTHS IF NONE WERE GIVEN
IF (DLDES.EQ.0.D0) THEN
DLDES =FACI*DL
DLDMX =5.D0*DLDES
DLDMN =0.01*DLDES

ENDIF
COMPUTE INC LOAD FACTOR, FACI
ASIGN=1.D0
IF (NEG.EQ.1) ASIGN= —1D0

IF (NEG.EQ.1) WRITE (IWR,1003)

FORMAT(/ 1X'SWITCHING SIGN OF LOAD INCREMENT")
FACI=ASIGN*(DLDES/DL)

DL=DLDES

ENDIF

CONTINUE
FACT =FACT + FACI
WRITE (IWR.1002} FACT,FACIDL

FORMAT(/,1X, 'TOTAL LD FACTOR= "G13.4/INC FACTOR= "G13.4,
INC LENGTH= 'G13.4)

DO 10 1=1NV

PT(H) =PTOL(l) + FACI'DT(I)

WRITE (IWR.1004) (PT(I).l=1,NV)

FORMAT(/1X'TOTAL DISPS.AFTER TANG.SOLN ARE'/1X,7G13.4)

RETURN
END

9.6.5 Flowchart and Fortran for subroutine NEXINC

Subroutine NEXINC is called by the main module NONLTD (see Section 9.6.3) when
IAUTO is unity in order to compute the parameters for the next increment. The routine
implements the techniques discussed in Sections 9.5 and 9.5.1 and, in particular,
equations (9.40)-(9.42). The flowchart is given in Figure 9.16 and the Fortran in
Section 9.6.5.1.

9.6.5.1 Fortran for subroutine NEXINC

1

SUBROUTINE NEXINC(IARC.ITE NITMAX FACIFACMX FACMN DL DLDES,
DLOMX.ODLDMN BETOK BET.PT PTOL AN ANOL, NV IDES FACT FACTOL)
WITH AUTOMATIC INCREMENTS, COMPUTES FACTORS FOR NEXT INC
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Yes

Did not converge

FAC = B/f, but 0.5 and 0.1

Cut increment

ITE = NITMAX

No

Did converge

-

P=Por: N=NyAd=1—14y
L=i,
0 ARC? !
1d. control  ~_~" arc-1
L '
AL =FAC*AZ Aly=FAC*Al
if Ad > Ad,, AdA=AX,, if Aly> Al Aly=Al,,
if Ad< Adp,, A= Ad i if Aly < Al Aly= Al
(ﬁ RETURN 4)
Figure 9.16 Flowchart tor subroutine NEXING
IMPLICIT DOUBLE PRECISION (A-H 0O-7)
DIMENSION PT{NV).PTOL(NV)
IF (ITE.GE.NITMAX) THEN
DID NOT CONVERGE AT LAST INC, GET REDUCTION FACTOR, FAC
FAC =BETOK/BET
IF (FAC.GT.0.5D0) FAC=05D0
IF (FAC.LT.0.1D0) FAC=0.1D0
RETURN DISPS AND FORCES TO VALUES BEFORE FAILED INC
DO 30 I1=1NV
PT()=PTOL()
30 CONTINUE
AN =ANOL

FACI=FACT-FACTOL
FACT=FACTOL
ELSE

DID CONVERGE AT LAST INC.. GET CHANGE FACTOR. FAC
MAKE LARGE IF NO REAL ITERS ON LAST INC.

FAC =1000.00
IF (ITE.GT.1) THEN
RITER=ITE-1
RIDES=IDES
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FAC =RIDES/RITER
FAC = DSQRT(FAC)
ENDIF

ENDIF

IF (IARC.EQ.0) THEN
C LOAD CONTROL
FACI=FAC'FACI
IF (FACIL.GT.FACMX) FACI=FACMX
IF (FACILLT.FACMN) FACI=FACMN
ELSEIF (JARCEQ.1) THEN
C ARC LENGTH
DLDES=FAC*DL
IF (DLDES.GT.DLDMX) DLDES = DL.DMX
IF (DLDES.LT.DLDMN) DLDES =DLDMN
ENDIF
RETURN
END

9.7 QUASI-NEWTON METHODS

In the fields of methametical programming and unconstrained optimisation, much
work has been devoted to the development of quasi-Newton solution procedures
[F6,F7,L3,W6,B11,B12,B13,D2, D3, D8, S4, G5](also known as the ‘variable metric
method’ [D2]). A good review is given by Dennis and Moore [D8]. These
quasi-Newton methods resemble the N-R technique but do not require the explicit
re-formation of the tangent stiffness matrix. Instead, the stiffness matrix, or its inverse
(or its Cholesky factors [G4]) are continuously updated as the iterations proceed.
One of the earliest applications of the quasi-Newton method to finite elements
involved linear analysis and was due to Fox and Stanton [F10].

In order to explain the method, it is best to replace the previous ‘o’ for ‘old’ and
‘n’ for ‘new’ with an iterative counter, i, so that in place of (9.6), the iterative update is

Pivs =P + 10D (9.53)
where, using a Newton-like algorithm (as in (9.5)),
opi=-K; 'g: (9.54)

For a pure Newton-Raphson iteration K; in (9.54) would be the true tangent stiffness
matrix computed from p,. With the quasi-Newton methods, K;, is instead an
approximation that satisfies the ‘quasi-Newton equation’.

Mio10P;i- 1 = K,'—Alx’Yi (9.55)
where

Yi=8dp:) — 8i-1(Pi- 1) (9.56)
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This equation is exactly satisfied for quadratic energy functions (linear structural
analysis);

¢=1p"Kp—q.p (9.57)
for which
a T
g pn="21" —Kp_, -q (9.58)
opl_,

so that, for the new displacements p,=p;_, + #;_,0p;_, (see (9.53)),
8Pt + 1 0Pi-1)=8-1+7.=Kp;—q,
=K#(pi— +7-10p;-1)—Qq.=8-, +n,_-,Kdp;_;. (9.59)

(The * multiplication sign has been used in the above to distinguish the following
bracket from the ‘function of” form.)

Many formulae have been derived that produce K;s satisfying (9.55). One of the
most successful is the rank-2 BFGS update [F6,B12,84] which can be written in the
form

K-t og- 0P oKDy KT\voRl, < {4 YK )T’;‘-L‘Ll—’t 1P,

5l_’iT— 1Yi 513.?- 1Yi ni- 15l—)in 1 Vi 5l-’,-T- 1 Yi
(9.60)

For the finite element method, the main difficulty with the quasi-Newton methods
relates to the banded nature of the finite element stiffness matrix. Conventional
applications will destroy this banded nature (away from equilibrium). Fortunately,
as shown by Matthies and Strang [M1], an indirect form of solution can be adopted
in which K ! is not directly formed. (Mattheis and Strang’s method is closely related
to work in the mathematical programming literature by Buckley [B14], Nazareth
[N1] and Nocedal [N2].) The method is used with an alternative, but equivalent,
update to (9.60) whereby [M1,BI117:

K~ =1+ WiV.'T)K"_—‘l(I + V,-W‘T) = U?—Kiv—llui (9.61)

where

1
W= ——  5p._ 9.62
i 5i)lT_ 17‘- pl 1 ( )
v, = 01”2’7.'— 1Kio 10D — ;i (9.63)
and
=T
. (_ B __‘2_!":.1!:'_ _ _). (9.64)
Mi-10D; - K; 16p; -,

It is not difficult to show that (9.61) satisfies (9.55). By substituting (9.55) into (9.64)
one can show that g; is positive provided K; and K; , are positive-definite. (Positive-
definiteness is a basic assumption with the BFGS method [F7,L3]. For systems that
are not necessarily positive definite (i.e. those beyond limit points as solved by the
arc-length method), it might be more appropriate to use a rank 1 update such as
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that due to Davidon [D3] and Broyden [B13] or to Broyden as given by Dennis
and Moore [D8]—the latter 1s unsymmetric and might therefore be appropriate for
non-symmetric systems such as those arising from non-associative plasticity.) For
positive-definite systems, there are, in concept, no problems in taking the square root

of a; in (9.63).
Because

op; 1=K g . (9.65)

{9.63) and (9.64) can be written in the more convenient form:
vi=—(1+ a}’zm- 1)8i-1 — 8 (9.66)
with
—6p7 .y,
D LU (9.67)
Mi-10D;_ 18-

In order to ‘indirected’ apply the quasi-Newton technique, with [ = 1, the iterative
change of (9.54) and (9.61) is

op,=—K;'g,=—(1+w,vDK "I+ v,whg, (9.68)

which can be solved without directly computing K, via

b, =g, +(wig,)v, (9.69)
¢, =K, 'b, (9.70)

and
Op, = — ¢, —(vicy)w,. 9.71)

Having obtained Jp,, a line-search would lead to », (which, with a slack line search,
may well be unity) after which the procedure would continue with

3Py = — (T +wyD)(T+ w vDK "I+ v, wiHI + v,whig, 9.72)

which can again be solved indirectly without ever forming K, ' or K, .

The main disadvantage of the method is the continued accumulation of more and
more vectors that have to be stored. However, depending on the storage availability,
one can discard old vectors and merely accumulate new ones.

To avoid numerically dangerous updates, Matthies and Strang [M1] recommend
that the updates of (9.61) are omitted if an estimate of the increase in condition
number of K ! exceeds some tolerance, tol{~10%). From the work of Brodlic er al.
[B11}, this leads to

LUVl Iwll 4+ LIV W + 41+ vTw) 12]2

= tol 9.73)
41 +vTw) ©-73)

est=cond(U) =

where |v| is the Euclidean norm of v and, for brevity, the subscript i on the vectors
v; and w; in (9.63) (or (9.66)) and (9.62) have been omitted.

Before leaving the quasi-Newton methods, and moving to related iterative

techniques, it is useful to derive a weaker form of the quasi-Newton equation (9.55)
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Figure 8.17 Secant relationship.

by multiplying both sides by g; and using (9.54), so that
5@?7:’ = —MNi- 155.?» 18i- (9.74)

In one-dimension, this scalar relationship becomes the ‘secant formula’ illustrated in
Figure 9.17.

Quasi-Newton methods have been applied to non-linear finite elements by a number
of workers [B3, P9, G2, H4].

9.8 SECANT-RELATED ACCELERATION TECHNIQUES

In [C7,C9,C10,C13,C17], the author developed a range of ‘faster modified Newton—
Raphson iterations’ or ‘secant-Newton techniques’ which are closely related to the
previous BFGS procedure. In particular, suppose we apply the technique of Section
9.7 but always discard all old updates except the current one. Hence, the iterative
direction would from (9.54) and (9.61) take the form

opi= — [T+ wy K [T+ viwi g (9.75)

where K is, say, the tangent stiffness matrix from the beginning of the increment so
that if w; and v; were zero, we dould obtain the standard modified Newton-Raphson
method. In these circumstances, it is easy to show that the iteration direction of Jp;
of (9.54) can be written as

5l3i:'4561+3'7f—1‘5|_)i—1 + C(Sl*;.‘—x (5.76)
where

5?);: —Ko—]gi' 55.‘—1 = —Ko_lgi—l- 9.77)



SECANT-RELATED ACCELERATION TECHNIQUES 3n

The scalars A, B and C are given by

.
C— o-!-)"{ 18 (9.78)
op;_(Yi
A=1-C (9.79)
5pi— 0P )g (OB — OB )Y
PP Sty U e TR (9.80
Ni- OB\ Y Ni-10P; -, ¥i

The three-vector iterative change in (9.76) can equally be derived from (9.54) and
(9.60) with K, instead of K;_,. It is therefore directly derived from the BFGS
‘quasi-Newton formula’ and is a ‘memoryless single cycle’ version of the Matthies
and Strang BFGS procedure. It is also related to conjugate-gradient-like procedures
by Shanno {S3] and others [B14,BI15, N1, N2].

A two-vector update can be produced by making the approximation:

nio0po 1~ — K. 'gio. (9.81)
This leads to

Op; = A P, + Bni_ 0P, —, (9.82)
where A is again given by (9.79) (with C from (9.78)) and B by

_ Sply.
B=-Cc—a - Pl
M- 10P;_ (Y

(with A4 and C from (9.78) and (9.79)). The update of (9.82) is not directly derivable
from the BFGS method but does satisfy the ‘secant relationship’ of (9.74). Also, if K,
in (9.77) is replaced by the identity matrix, then for a quadratic energy function, with
exact line searches both of the updates of (9.76) and (9.82) correspond with the
conjugate-gradient method. With K, as the tangent stiffness matrix at the beginning
of the increment, the methods can be seen as forms of preconditioned conjugate
gradient method [CS5,C7,C8]. When seen in this light, they are closely related to the
conjugate-Newton method of Irons and Elsawaf [11]. It is work noting that numerical
experiments [C13] showed a good performance using only a single-parameter
accelerator via (9.82), with A being taken from (9.79) and B being set to zero.

(9.83)

9.8.1 Cut-outs

It has already been indicated in Section 9.7 that there are iterations for which it is
better to avoid the quasi-Newton update. These occasions also occur with the
acceleration methods of Section 9.8 so that, in some circumstances, instead of using
(9.76) or (9.82), one would use the standard modified Newton - Raphson direction of

3p; = Op; (9.84)

with ()‘ﬁ,- from (9.77). Purely on the basis of numerical experiments [C8], the author
devised the ‘cut-out’ criteria whereby the accelerated iterations ((9.76) or (9.82}) are
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only used if

or, with (9.76),

or with (9.82),
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(9.85)

(9.86a)

(9.86b)

Otherwise, the mN-R change of (9.84) is used instead. In the work of [C8], it was
recommended that R; lies between 2 and 3 and R, between 0.3 and 1. Subsequent
work suggested a higher cut-off with R, and for the present work, R, has been taken
as 3.5and R, as 0.3.

9.8.2 Flowchart and Fortran for subroutine ACCEL

For the present computer program, we will implement the two-vector acceleration of
(9.82). To this end, as already discussed in Section 9.4.2, subroutine ITER calls a routine
ACCEL to change the mN-R direction ép; = 65,. to account for the acceleration (see
flowchart in Figure 9.13). A flowchart for subroutine ACCEL is given in Figure 9.18,
where we are using the subscript ‘n’ for ‘new’ and ‘o’ for ‘old".

TE=1) Yes

I No

[C-;

_ ép;g“__. A=1-C B:_C_épTEgn_go)

0 p:(gn - go)’

opl (g8, — 8.)

A>R or A<1/R,? Yes
B/A>R, or B/A <~ R,/2?

3p = A op + Bn,dp,

l

0P, =0p, g =g, |—

Figure 9.18 Flowchart for subroutine ACCEL.
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Fortran for subroutine ACCEL

SUBROUTINE ACCEL(DPB,GO,GOO,IBCNV,DELO SLOL,R1C,R2CITE IWRIT,
IWR)

APPLIES SECANT ACCELERATION TO THE MOD N-R METHOD

DPB =ITER DISP TO BE MODIFIED ON ACCOUNT OF ACEL.

GO =CURRENT GRAD, GOD=0LD

DELO=0LD DISP CHANGE (WITHOUT S-L), SLOL=0LD STEP-LENGTH
R1C AND R2C ARE INPUT CUT-OUT PARAMS.

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION DPB(NV),GO(NV),GOO(NV),IBC(NV),DELO(NV)

SET CUT-OUT VALUES

R1l = 1.00/R1C

R2E = — 0.5D00°R2C

IF (ITE.EQ.1) GO TO 100

BELOW REAL ACCN.

BAS =0.D0

TOP =0.00

TOP2=0.00

DO 10 I=1,NV

IF (IBC(1).EQ.0) THEN

BAS = BAS + DELO(I)*(GO(1)-GOO(1))
TOP =TOP +DELO(I)*GO(l)

TOP2 = TOP2 + DPB(I)(GO(1)-GOO(I))
ENDIF

CONTINUE

IF (ABS(BAS).LT.0.0-10) GO TO 100
C=TOP/BAS

A=1.00-C

B= —C-(A*TOP2/(SLOL*BAS))

IF (ALTR1) GO TO 100

IF (AGT.R1C) GO TO 100

RAT =B/A

IF (RAT.LT.R2E) GO TO 100

IF (RAT.GT.R2C) GO To 100

DO 20 I=1,NV

IF (IBC().EQ.0) THEN

DPB(l) = A*‘DPB(I) + B*SLOL*DELO(1)
ENDIF

CONTINUE

END OF ACCN. UPDATE

IF (IWRIT.EQ.1) WRITE (IWR.1007) AB
FORMAT(/,1X;ACCN. WITH A= G134, B= 'G13.4)

CONTINUE

STORE OLD VALUES
DO 30 I=1NV

IF (IBC{).EQ.0) THEN
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DELO(I) = DPB(l)
GOO(l) =GO())
ENDIF

30 CONTINUE
RETURN
END

9.9 PROBLEMS FOR ANALYSIS

In Section 3.10, we have already described a range of ‘Benchmark tests for solution
procedures for geometric non-linearity’ that have been proposed by NAFEMS, the
National Agency of Finite Elements [C1.2, D1.2]. We have also applied the basic
Newton—Raphson (N -R) and modified Newton- Raphson (mN R) methods to these
problems. To this end, we used the computer program of Chapter 2 in conjunction
with the deep-truss routines of Section 3.9. This computer program only allowed
fixed increments. In the present section, we will apply some of the more advanced
solution procedures of this chapter to these same problems.

In studying the results, it should be remembered that the solution algorithms have
not been aimed specifically at these small problems but rather at more realistic
large-scaled problems. Hence, one cannot necessarily draw useful conclusions
regarding the relative efficiency of the different methods from these small problems.
Nonetheless, they should illustrate the main features. In addition, they provide
valuable examples for checking one’s understanding of the various techniques. If the
reader has implemented the computer programs, he (or she) may find it very useful
to follow the program through some of the cxamples using, say, an interactive
‘debugger’. He or she can, of course, experiment by trying differecnt combinations of
solution algorithm or, indeed, by solving different problems.

Unless stated otherwise, the convergence criterion will be that of (2.30) with
f# = 0.001 while, if line searches are used the tolerance, ff,, of (9.11) will be set to 0.8.
Also, the maximum number of iterations will be set to 21.

9.9.1 The problems

From Section 9.9.2 onwards, we will follow the convention whereby Section 9.9.x
refers to the NAFEMS Example x. This procedure was followed in Section 3.10. It
will be useful to return to the relevant subscction of Section 3.10 in order to recall
the problems and their attributes. In order to avoid repetition, reference will be made
to some of the figures (and tables) in that chapter. Figure 9.19 summarises the different
tests and refers to relevant earlier work in the book.

9.9.2 Small-strain, limit-point example with one variable
(Example 2.2)

This example is illustrated in Figure 9.19(a) and was previously discussed in Section
3.10.2.2. Table 9.1 supplements that of Table 3.1 by including the effects of line searches
and accelerations.
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Figure 9.19 The range of examples: (a) Example 2 {see Figures 3.12(a), 3.13); (b) Example 3 (see
Figures 3.12(a), 3.14); (¢) Example 4 (see Figure 3.15); (d) Example 5 (Figures 3.12(b) + 3.18); (e)
Example 6 {Figures 3.12(b) + 3.19); (f) Example 7 (see Figures 3.12(c) and 3.20).
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Table 9.1. lterative performance for Example 22 (see
Figures 3.12(a) and 3.13).

Iterations at load step

Method 1 2 3 4 5 6
mN-R 2 2 3 3 12 fail
mN-R + accn. 2 2 2 2 4 fail
mN-R + 1.s. 2 2 3 3 12 3(3)
N-R 1 1 1 2 3 fail
N-R+1s 1 1 1 2 3 17(7)

In the above table and for the rest of the chapter when giving results for a solution
procedure with line searches, the figure in brackets will be the number of extra
calculations of the out-of-balance force vector, g, resulting from the use of the line
searches. Hence in the above table, the addition of line searches to the mN-R method
allowed point 6 (Figure 3.13) to be reached via three iterations and three extra
‘residual’ calculations.

The following data is for the mN-R method with line searches.

4 2 50000000. 1. 0. 0. ; NV, ITYE (rot eng.), ARA, POIS, ANIT
0. 2500. x coords.

0. 25.  z coords.

0. 0. 0. —1.0 ; load of —1.0 at variable 4 (vertical at node 2)

1 110 ; only variable 4 is free

0 ; no earthed springs

196 0000 0 ; FACILNINC,IWRITJJAUTOJARC IACC,IRES

0.001 2 21 6 ; BETOKJITERTY(mN-R),NITMAX NLSMX

0.8 5.0 25. 0.01 PERMLS,AMPMXETMXA,ETMNA

This problem could be successfully solved using either displacement control or the
arc-length method (effectively the same for this trivial problem with a single variable).

9.9.3 Hardening problem with one variable (Example 3)

For this problem, a linear spring, has been added (Figure 9.19(b)) so that the response
is continuously hardening although with a softer and then a stiffer region. On
introducing the newer solution procedure, Table 3.2 becomes augmented to give
Table 9.2.

Data for the solution using the accelerated mN-R method is given below:

4 2 50000000. 1 0.0.; NV, ITYE (rot. eng), E, ARA, POIS, ANIT
0. 2500. x coords.

0. 25. z coords.

0. 0. 0. —1.0 ; load of —1 at variable 4 (vertical at node 2)

1 110 ; only variable 4 is free
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Table 9.2, lterative performance for Example 3.10.3 (see Figures 3.12(a)

and 3.14).

lterations at load step
Method 1 2 3 4 5 6 7
mN-R 3 3 3 5 10 fail
mN-R + accn. 2 2 2 3 8 9 3
mN-R + 1.s. 3 3 3 5 7(1) 3(1) 6
N-R 1 1 2 2 2 3 2

1 one earthed spring

4 at variable 4

1.125 ; of magnitude 1.125

6. 70001 0; FACILNINCIWRITJIAUTO,JARC IACC,IRES
0.001 2 21 0 ; BETOKJITERTY NITMAX NLSMX

3503 ; R1C,R2C

This example can also be used to illustrate the use of ‘automatic increments’ and
‘automatic increment reduction’. The following data relates to such a solution with
the basic mN-R method.

4 2 50000000. 1. 0. 0. : NV,ITYE (rot. eng.), E.ARA, POIS, ANIT
0. 2500.  x coords.

0. 25. z coords.

0. 0. 0. —1.0 ; load of —1 at variable 4 (vertical at node 2)
111 0; only variable 4 is free

1 one earthed spring

4 at variable 4

1.125 ; of magnitude 1.125

6.30 01 00 0 ; FACILNINCIWRIT,IAUTO,IARC,IACC.IRES
0.001 2 10 0 ; BETOK,JTERTY NITMAX,NLSMX

3 805 0 ; IDESFACMXFACMN,ISWCH

The results are plotted in Figure 9.20. With the maximum number of iterations
(NITMAX) being set to 10 (see above data), the increments were automatically cut on
two occasions (Figure 9.20).

9.9.4 Bifurcation problem (Example 4)

The bifurcation problem (Figure 9.19(c)) has already been discussed in Sections 1.2,
Section 2.6.3 and 3.10.4. In the present context, it is useful to apply the arc-length
method to this problem and to imagine that we did not know of the bifurcation. As
a precursor to the arc-length solution we might have applied a single load increment
of 1000 which would give a length increment, Al of 0.05. Suppose we then wished to
start from the beginning with the arc-length method with increments of Al =0.05.
Appropriate data is given below.
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Figure 9.20 Solution points for Example 3.

4 2 50000000. 1. 0.0 0.0 ; NV,ITYE(Engng.).E,ARA,POIS,ANIT
0. 2500. ; x coords.

0. 0.0 . z coords.

1000. 0. 0. 0. ; fixed LOAD vector

0 1 1 0; Bdry.condn. code

1 ; one earthed spring

4 . at variable 4

1.5 ; of mag. 1.5

1.0701 100 ; FACLNINCIWRIT,JAUTO,IARC,IACC,IRES
0.001 2 21 0 BETOK,ITERTY(mN-R),NITMAX,NLSMX

3 11,0 IDES,FACMX,FACMN,ISWCH

0.05 0.05 0.05 DLDES,DLDMX,DLDMN

Because DLDES = Al is specified as 0.05 on the last ‘card’, the load increment
factors on the penultimate card are not used. The first increment would result in a
A-value of 1 or, with the given loading, a load of 1000. Because Al,,, and Al,;, are
also set to 0.05, the next increment would be of the same length, leading to A =2
and then 2 =3 and on the fourth increment 4 = 4. At this stage, the critical buckling
load of 3750 would have been passed and on factorising K, one negative pivot would
be found. Hence the switching procedure in subroutine SCALUP (see Section 9.6.4)
would reverse the sign for the next (fifth) increment leading to A =4 — | = 3 at which
level K, would be positive-definite so that the next increment would be positive. This
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would continue with the solution oscillating about the critical buckling load. The
reason for this behaviour has already been discussed in Section 9.4.3 and relates to
a bifurcation point being mistaken for a limit point. It is worth observing from the
solution to this problem that the current stiffness parameter (Section 9.5.2) does not
respond at all to the bifurcation and remains at unity throughout the analysis.

9.9.5 Limit point with two variables

Problem 5 is illustrated in Figure 9.19(d} and has been discussed before in Section
3.10.5. Because it involves a limit point, it would seem a good example to illustrate
the automatic switch to the arc-length method. Appropriate data is given below:

4 2 50000000. 1. 0.0 0.0 ; NV,ITYE(Engng.).E,ARA,POIS ANIT
0. 2500. ; x coords.

0. 25. ; z coords.

1000. 0. 0. Q. ; fixed LOAD vector

0 1 1 O ; Bdrycondn. code

1 ; one earthed spring

4 ; at variable 4

1.5 ; of mag. 1.5

0.76 30 0 1 0 0 0 ; FACININC,IWRIT,JAUTO,IARC,IACC,IRES
0001 1 21 0 BETOK,TERTY,NITMAX,NLSMX

3 1.001 1 IDESFACMX,FACMN,ISWCH

0.3 ; CSTIFS

This data is designed to start under load control with a first increment of A1 =0.76
{leading to a load of 760), to apply automatic increments with a maximum factor of
Ai=1and a minimum of A4 = 0.1. The solution should switch automatically (Section
9.5.2) to the arc-length method once the current stiffness parameter reduces below 0.3.

In order to record the solution, it is useful to plot an end-on view of the solution
in Figure 3.17,i¢. in the ¢,-p, plane (see Figure 3.12(b)). The results of the previous
load-controlled solution (Section 3.10.5) are plotted as circles in Figure 9.21 and
clearly indicate the branch switching. The triangles were obtained using the previous
data and illustrate the success of the automatic switch to the arc-length procedure
on increment 4. The solution then proceeded without difficulty under arc-length
control until increment 26 (see Figure 9.21). At the following increment the solution
switched to the secondary branch in the region Z on Figure 3.17 and then oscillated
between points 26 and 27 (Figure 9.21). From the exact solutions [C1.2], we know
of the second branch in this region and so, with this knowledge, the solution is at
least believable although not desirable.

Before giving a reason for this behaviour, we should explain how we continued
on from point 26 (Figure 9.21) to obtain the ‘correct solutions’ which are the squares
in Figure 9.21. This was achieved by firstly rerunning the previous data but reducing
the number of increments from 30 to 26. Hence the ‘unformatted’ restart file, RESOUT
was available for a restart from point 26. The data used to obtain the squares in
Figure 9.21 is given below:

4 2 50000000. 1. 0.0 0.0 ; NVITYE,E,ARA,POIS,ANIT
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Figure 9.21 Solution points for Example 5.

0. 2500. ; x coords.

0. 25. ; z coords.

1000. 0. 0. 0. ; fixed LOAD vector
0 I 1 0; Bdry.condn. code

1 ; one earthed spring

4 ; at vaniable 4
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1.5 ; of mag. 1.5

0.08583 100 1 1 01 ; FACLNINCIWRITJAUTO,JARC,IACC,IRES
0.001 1 21 0 BETOK,ITERTY NITMAX,NLSMX

310010 IDESFACMX,FACMNISWCH

10.0 100 0.5 DLDES,DLDMX,DLDMN

This data forces the solution to start under arc-length control with a length
increment, Al of 10 and does not let the incremental length grow beyond this value.
This increment compares with the value of Al = 370 that was used in going between
the triangles 26 and 27 in Figure 9.21. As a result of this dramatic reduction in
increment size, the squared points in Figure 9.21 were obtained (although off the
graph, the seventh increment again introduced a branch switch).

In explaining the strange behaviour associated with the previous branch switching,
it is useful to return to the solutions in Figure 3.15 which relate to the *perfect system’
and to reconstder the explanation of these solutions that was originally given in
Section 3.10.4 and is related to the system of Figure 3.12(b) or 9.19(d) (with z =0).
This explanation related the load-deflection response OAC (or C') DEF (Figure 3.15)
to the configurations in Figure 3.16. While the present analysis relates to an imperfect
rather than a “perfect’ system, the two are closely related (Figure 3.17). In relation to
the current analysis, the low point in Figure 9.21 relates to point D in Figure 3.15
and the rising part to the line DEF. At point D in Figure 3.15, the configuration of
the bar is as in Figure 3.16(ii1) with point *a’ now lying horizontally on the right of
the pivot point b. The rising portion DEF in Figure 3.15 then involves further
movement of the ‘load point a’ to the right, thus reducing the compression in the
bar and eventually taking it into tension. Movement downwards from point D, Figure
3.15 towards point G involves an ‘unstable’ compression of the bar with the load
point a now moving to the left. The differences between a small movement from D
towards F and onc towards G (Figure 3.15) are very minor in comparison with the
total movements to reach that configuration. In particular, the movement p,
{Figure 9.19¢) to reach the configuration (ii1) in Figure 3.16 1s about 50000 or twice
the length of the bar. In these extreme circumstances. the two alternative solutions
are, as far as the arc-length method is concerned, very close together so that the
method may converge on one or the other. In relation to Figure 3.18, which relates
to the present imperfect system, the stable solution is towards point 5, while the
unstable solution induces further compression towards point x. The solution with
the triangle 27 in Figure 9.21 lies on the latter unstable equilibrium curve. Because
it is unstable. a negative pivot was detected and hence the oscillation (Figure 9.21)
between points 26 and 27.

Clearly. the most sensible way to solve this problem is to use displacement control
at the ‘loading point’. The following data relates to such a solution:

4 2 50000000. 1. 0.0 0.0 ; NV,ITYE(Engng).E ARA,POISANIT
0. 2500. ; x coords.

0. 25. ; z coords.

1000. 0. 0. 0. ; fixed Displ. vector

—1 1 1 0 : Bdry.condn. code

| : one earthed spring

4 ; at varbl 4
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1.5 ; of mag. 1.5

0252501 00 0 ; FACININCIWRITJAUTO,IARCJACC.IRES
0001 1 21 0 BETOKJITERTY,NITMAX,NLSMX
30250050 IDESFACMX,FACMN,ISWCH

This solution involves applying a first increment of Ap, =250 and forcing
subsequent displacement increments to be no larger. The results arc plotted as the
crosses in Figure 9.21.

9.9.6 Hardening solution with two variables (Example 6)

This problem has previously been discussed in Section 3.10.6. In relation to the results
for fixed load-increments that were given in Table 3.4 and relate to Figure 3.19, the
new solution procedures, such as line searches and accelerations, were not very
successful. Successful solutions were obtained using the following data for a solution
with automatic load increments and the mN-R method with line searches although
the increments becamc very small so that progress was very slow.

4 2 50000000. 1. 0.0 0.0 : NVITYE =Engng..E,ARA POIS ANIT
0. 2500. ; x coords.

0. 25. ;- coords.

1000. 0. 0. 0. ; fixed LOAD Vector

0 1 1 0: Bdrycondn. code

2 ; Two carthed springs

1 4 ;. At varbls. 1 and 4

2.0 1.5 ; of mag. 2.0 and 1.5 respectively

1.02501 000 ; FACI,NINCIWRITJAUTO,IARC,IACC,IRES
0.001 2 21 4 BETOK,JTERTY(mN -R)NITMAX NLSMX

0.8 5.0 25. 0.01 PERMLSAMPMXETMXAETMNA

320 002 0 IDES,FACMX,FACMN,ISWCH

A solution was also obtained using the automatic switch to the arc-length method
via

4 2 50000000. 1. 0.0 0.0 ; NVITYE =Engng.,E,ARA,POISANIT
0. 2500. ; x coords.

0. 25. .z coords.

1000. 0. 0. 0. ; fixed LOAD Vector

0 1 1 O0: Bdrycondn. code

2 ; Two carthed springs

1 4 ; At varbls. 1 and 4

2.0 1.5 ; of mag. 2.0 and 1.5 respectively

106001000 FACININC,IWRITJAUTOIARCJACC.IRES
0001 T 21 0 BETOKJTERTY,NITMAX.NLSMX

3 200021 IDES,FACMX.FACMN,ISWCH

0.3 . CSTIFS

0.0 0.0 0.0 ; DLDES.DLDMX,DLDMN
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However, as with the previous example (9.9.5), branch-switching and oscillation
occurred in the very late stages when the bar was almost fully inverted. Again, as
with the previous example, the difficulties could be overcome via displacement control.

9.9.7 Snap-back (Example 7)

This example has previously been discussed in Section 3.10.7. Because of the
snap-back, this is an ideal example for the arc-length method. Figure 9.22 shows the
relationship between end load, ¢, and end-shortening, ps that was obtained with the
aid of the following data:

5 1 50000000. 1. 0.0 0.0 ; NV,ITYE =(Engng.),E,ARA POISANIT
0. 2500. ; x coords.

0. 25. ; = coords.

0. 0. 0. 0. 100. Fixed LOAD Vector, loading at variable 5

0 1 1 0 0, Bdrycondn. code

2 ; Two earthed springs

I 4 ; At varbls. | and 4

0.25 1.5 ; of mag 0.25 and 1.5 respectively

1.0 ; linear spring of stiff 1.0 between variables 1 and $§

4000 (
3000 F
o000

&
T 000

. . 1 1
1000 2000 Iy 4000 5000
Ena-shortering. p.

1000 F
-2000
-3000 L

Figure 9.22 Solution points for Example 7.
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1.0 100 0 1 1 0 0 ; FACILNINCWRITJJAUTO,IARC,IACC,IRES
0.001 1 12 0 ; BETOKJITERTY(N- R),NITMAXNLSMX

3 1. 1. 0 IDES,FACMX,FACMN,ISWCH

700. 3500. 10. ; DLDES,DLDMX.DLDMN

A preliminary analysis had indicated that an appropriate starting length increment
would be Al = 700 which give a load change, Agqs of about 700 and a shortening, Ap;
also of about 700. The solution in Figure 9.22 shows some very small increments.
As indicated in the data above, a total of one hundred increments were used.

9.10 FURTHER WORK ON SOLUTION PROCEDURES

Inevitably, a whole range of work on solution procedures has so far been omitted
from this chapter. Papers with significant reviews on the subject can be found in
[W2,C4,R7,R11,R12,F1,C8,C17]. In this last section, we will now attempt to
mention at least some of the work. Extensions will be given in Volume 2.

In Section 9.3, we discussed the arc-length and some related methods. A further
related method, advocated by Bathe and Dvorkin [B2] uses, as a constraint, the
‘constant increment of external work’. With this approach, the predictor solution
would (see also (9.38)) be governed by

AW = (i + LA2 )T Ap, = A (7 + LA )q%op, 9.87)

where 1 is the load-level parameter at the end of the last increment and the work
AW takes the place of the arc length, Al. For subsequent iterations, the ‘iterative
external work’ is set to zero via (see (9.23}))

(2o + 554)Q20p = (3o + 304)(q 0P + 549 p) =0 (9.88)

where 4, is the ‘old’ (at the end of the previous iteration) value of /. As with the
‘spherical arc-length method’, (9.88) leads to a quadratic equation with two roots for
the load-level change, 3/ (compare (9.26) and (9.27)). In contrast to the arc-length
method, these roots will always be real. Consequently, some workers [B35] have
advocated switching to the work procedure when no real roots are obtained with
the arc-length method. With the previous computer implementation of the arc-length
method, we have, in these circumstances, simply cut the length increment, Al

Bergan [B6] has advocated an approach involving the minimisation of the
out-of-balance force norm. Netther the author [C8] nor Clarke and Hancock [C4]
found this method to be very successful when applied on its own. Eriksson [E1] has
recommended a procedure whereby the iterative change is decomposed to include
separately a component involving the lowest eigenmode (see also [J2]). Near limit
points, this component is damped.

In carlier sections, we have separately discussed the arc-length methods, line
searches, quasi-Newton and secant -Newton methods. Clearly these procedures can
be combined and the combination of arc-length and acceleration techniques has been
considered by the author [C8,C11]. A difficulty relates to the line secarches which
have to be enforced at a variable load level and may or may not be up hill [C16,C19].
Much further work is required.
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A further set of solution procedures can be derived from so-called *homotopy’ of
‘relaxation’ equations whereby the equilibrium equations g(p) = 0 (here assuming the
load level 4 is fixed) are embedded in an extended equation of the form

glp.t)=g(p)— e ‘glp,) =0 {9.89)

where t can be considered as a ‘pseudo-time’ and as t — ¢, one obtains the desired
solution g(p) = 0. These methods (said to be due to Davidenko [D1]) have been much
applied in both the mathematical [Al, G1, K3] and structural [P6, F2. F4] literatures.
They have often been used with arc-length-type constraints and then have much in
common with the previous ‘continuation methods’.

A simplified variation of the method can be used to recover equilibrium from a
state (related to a loading Aq,;) at which g # 0 and from which standard methods fail
to achieve convergence. The procedure is based on the observation that this solution
is in equilibrium with a modified external loading, ‘q. = Aq.; + g. Hence, we may
restart the analysis procedure working with two load vectors following the lines of
(9.45), so that

‘q; = Tlcf‘ + ﬁ~qcf’ = (;'qcf + g) - ﬁg (990)

In order to apply this loading “q. is kept fixed while the new ‘loading scalar’, §,
(usually written as 4) is incremented fron zero to unity in order to recover an equilibrium
state related to the original intended loading (4q.). During this process, the whole
range of solution strategies can be adopted, including, for example, automatic incre-
mentation and line searches. In this basic form, the process can only be applied with
elastic materials.

The *homotopy’ methods obviously have some links with a range of structural
methods derived from the dynamic analogy [O1, D4, K8}. One of these is the form
of dynamic relaxation as originally proposed by Otter and Day [O1, D4] which has
been applied to both linar [C3] and non-linear [F13] structural problems. In this
form a diagonalised mass matrix is used and, in relation to the solution of linear
equations, the method can be viewed [C5] as a second-order Jacobi or Richardson
process [F11].

Such a mecthod is only one of a range of iterative methods (without a stiffness
matrix) that can be used to solve both linear and non-lincar equations. Similar
methods include conjugate gradients [H3, P10, F8,C5] and the Lanczos method
[L1,P8]. As for linear problems, a difficulty with such methods can be their slow
convergence rates with badly conditioned problems (such as shells) and a range of
pre-conditioning techniques have been used [K4,J1,HS5 H6,C5 P17, P2, N5 C1].
These preconditioning techniques can be viewed as providing an approximate, easily
factorisable stiffness marix [C3]. For non-linear structural problems, the iterative
solution techniques can be embedded in an inner-outer loop whereby the outer
loop is a form of Newton procedure for the non-linearities while the inner loop
involves the iterative solution of the linear equations [N4, P3, P4, P5). Because of
the outer loop, the inner loop need not be solved accurately for the early outer
iterations.

We have already indicated the difficulties that the arc-length method (and other
methods) encounters with fiburcation points. There has been a mass of literature on
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the basic theory and numerical procedures [K1,K3. PS5, T1 T4,A4,D6, M5, U1].(The
review by Ulrich [U17] gives 1568 papers on numerical methods for continuation and
bifurcation problems!) Techniques for their implementation in finite element codes
have been given in [W7, W8 A3 RI0.RI1,R12, K6] but, again, further work is

required.

A further set of techniques that should be mentioned are the perturbation and
reduced basis techniques in which various methods are used to provide a reduced
number of basis vectors with which the non-lincar analysis can work [C2,HI,
A5,N3]. Clearly as the solution path is traced, these reduced basis vectors must

be updated.

9.11 SPECIAL NOTATION

a; = scalar for quasi-Newton update (see (9.64))
C, = current stiffness parameter (sce (9.44))
I, = desired number of iterations
I, = number of iterations for old (previous) increment
K, = old fixed tangent stiffness matrix (Section 9.8)
¢.; = fixed’ external load vector (usually to be incremented via a scalar 4)
§.; = fixed external load vector that will not be incremented (sec (9.45))
q; = internal nodal forces
r = line search ratio (see (9.11)})
s = energy slope = d¢/cn (Section 9.2) or arc-length distance (Section 9.3)
s5,=satn=0
v, = vector for quasi-Newton update (see (9.63))
w, = vector for quasi-Newton update (see (9.62))
f = convergence tolerance (see (2.30))
B, = line-search tolerance (see (9.11}))

Y=8,"8
Jp = iterative displacement change
- % -1
op;= — K 'g;

Jp, = tangential displacement change (see (9.23))
op = iterative displacement change
Al = incremental arc length
Ap = incremental displacement change (from last converged cquilibrium state)
d4 = iterative change in £
A4 = incremental change in £

A = scalar load-level parameter

n = step length for line search

iy = scaling parameter for arc-length constraint (sce (9.19))

Subscripts

n="'new’
o="old’
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Appendix

No. of Position Weighting
points
3 +1 0.33333333
0 1.33333333
4 +1 0.166 666 67
+0.447 21360 0.83333333
+1 0.10000000
5 +0.654 65367 0.544 444 44
0 0711111 11
+1 0.066 666 67
6 +0.765055 32 0.378474 96
+0.28523152 0.554 858 38
+1 0.047 61904
7 +0.83022390 0.276 826 04
+0.46884879 0.43174538
0 0.48761904
+1 003571428
8 +087174015 0.210704 22
+0.59170018 0.34112270
+0.209 299 22 0.41245880
+1 00277777778
+0.899 757 9954 0.1654953616
9 +0677 1862795 02745387126
+0.363 1174638 0.346428 5110
0 03715192744
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APPENDIX: LOBATTO RULF

No. of Position Weighting
points
+1 0.022222 2222
+0.9195339082 0 1333059908
10 +0.738 7738651 0.224 889 4320
+0.4779249498 0.2920426836
+ 01652789577 0.327 5397612
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Computer program
NONLTA 37,48, 51
NONLTB 39-41
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NONLTD 298-303
updating 291-307
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178-81
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Consistent tangents 191-2
Constitutive laws 132-3
Constrained Mindlin—Reissner formulation
239
Continuation mcthod 2
Continuum mechanics 104-36
Convergence criteria 289-90
Corotational element
using Kirchhoff theory 211-19
using Timoshenko beam theory 219-20
Corotational formulation 219
using engineering-strain 77-80
Corotational stresses and strains 131-2
Current iterative direction 290
Current stiffness parameter 288
Cut-outs 311-12
Cylindrical arc-length method 276-86

Decomposition theorem 131

Degencrate-continuum approach 235

Degenerate-continuum element using total
Lagrangian formulation 243-7
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178-80

Deviatoric space 171

Deviatoric stresses 163

Discrete Kirchhoff formulation 239

Discrete Kirchhoff hypothesis 236

Displacement control 4

Displacement derivative matrix 116

Displacement derivative tensor 137

Drilling rotation 235

Eccentricity 205-6, 211

Eigenvalue problem 128

Elastic/perfectly plastic von Mises material
under plane stress 156-9

Elastic response 148-9

Elastic stiffness matrix 2

Elasto-plastic material 144-6

Elasto-plastic modular matrix 156-9

Elasto-plastic tangent stiffness matrix 152

Elasto-plasticity 152

Engincering-strain, corotational formulation
using 77-80

Equilibrium path 9

Euclidean norm 289

Eulerian strain 120

Eulerian triad 129

E-values 74,76, 205

‘Exact’ solutions 16-18

Finite differences 152
Finite clement computer program 2614
Finite element formulation 137-9
Finite element method 152
Flow rule 193, 194
Fortran computer program 23-56
Fortran subroutines 26-36

ACCEL 312-14

application of arc-length constraint

276-80

ARCL 278-80

BCON 32-4

CROUT 34-5

ELEMENT 27-8, 85-7

ELSTRUC 31-2

for general truss elements 85

for main structural iterative loop 280-5

FORCE 30-1, 88-90

INPUT 29-30, 87-8

INPUT2 296-8

ITER 280-5

LSLOOP 2924

NEXINC 305-7

QSoLV 278-80

SCALUP 303-5

SEARCH 259-61

SOLVCR 35-6

to find new step length 258-61
Forward-Euler integration 185-8
Forward-Euler predictor 286
Forward-Euler procedure 166, 167, 170,

175

Forward-Euler relationships 182
Forward-Euler tangential algorithm 174

Gauss point 166, 167, 221, 223, 224, 256
Gaussian integration 206, 210-11
General isoparametric element 223-5
Generalised displacement control 271-6
Geometric matrix 4
Geometric non-linearity 1
with one degree of freedom 2-13
with two variables 13-19
Geometric stiffness matrix 2, 73, 209, 216,
241
Green elastic materials 132
Green-Lagrange strain tensor 116
Green's strain 59, 63, 70, 73, 75, 81,
116-20, 130, 136, 138, 146, 149, 201,
226
truss element based on 65-75
virtual work expressions using 118-19

Hardening concepts 159-62
Hardening solution

with one variable 93-4,316-17

with two variables 98-100, 322-3
Hierarchical displacement functions 210
Hu-Washizu variational principle 207
Hyperelastic materials 132, 133
Hyperplane control method 276
Hypoelastic materials 133, 144-6

Implicit formulation 195-6
Inconsistent tangents 191-2
Incremental formulation
approximate 149-50
involving updating after convergence
147-8
Incremental/iterative control input 294-6
Incremental/iterative solution
using program NONL'TC 49
using program NONLTC with displacement
control 55
using program NONLTC with large
increments 54-5
using program NONLTC with small
increments 52-4
Incremental mid-point algorithm 85
Incremental procedures 2
Incremental solution §-8
computer program 37-8
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Incremental solution (cont.)
flowchart 36-7
using program NONLTA 48, 51-2
Incremental strains 144-6, 155-6
Incxtensional bending 207
Initial displacement 4
matrix 2
Initial local slopes 219
Initial slope matrix 4
Initial stress matrix 4, 13, 15, 16, 26, 73,
76, 153, 209, 219
Initial stress method 2, 10-13
Internal force vector 68-70, 240-1
Intersection point 185
Isoparametric degenerate-continuum
approach 225-9,234
{sotropic hardening 152
Isotropic strain hardening 159-60
Isotropic work hardening 160-1
Iterative correction procedure 153
[terative displacement direction 256
Iterative solution 8-10
computer program 39-41
flowchart 41
subroutine ITER 41-4
Iterative strains 154

Jacobian 137, 234, 272

K! (or KT1) method 12
Kinematic hardening 161-2
Kirchhoff assumption 203
Kirchhoff bending theory 206
Kirchhoff element 211
Kirchhoff formulation 236
Kirchhoff hypothesis 208
Kirchhoff stress 123, 125
Kirchhoff theory, corotational clement
using 211-19
Kuhn-Tucker conditions 193, 195
K-value 288

Lagrangian formulation 73-5
Lagrangian function 193
Lagrangian multiplier 128, 193
Lagrangian triad 128, 130
Lamé constants 109-10
Large-deflection elasto-plastic analysis 269
Layered approach 2
Limit point 2, 266, 269, 270, 274
with two variables 96-8, 319-22
Limit-point, small-strain, with one variable
314-16
Line-search technique 254-8
Line-search tolerance 256
Lincar Almansi strain increment 122

Linear convergence 13

Linear Euler strain increment 122
Linear stiffness matrix 16

Linear strain increment 83

Linecar tangent stiffness matrix 73
Linearised arc-length methods 274-5

Load-controlled continuation method 271

Load/deflection curves 266
Load/deflection relationships §, 17
Load/deflection response 269
Load increment factor 286-7
Lobatto rule 206

for numerical integration 334
Local limit point 4
Local tangent stiffness matrix 78
Log-strain relationship 83

Marguerre’s equations 119
Material axes 128

Material non-linearity 205-6
Material triad 130

Mathematical programming and plasticity

193-6
Maximum norm 289
Mean-normal procedure 175
Membrane locking 207, 242
Membrane strains 235
Mid-point algorithms, gencralised
trapezoidal 173-6
Mid-point geometric vector 83

Mid-point incremental strain updates 82-5

Mindlin-Reissner analysis 236, 237, 239
Minimisation procedure 195
Mohr’s circle 131

NAFEMS (National Agency of Finite
Elements) 1, 90
Nanson's formula 125
Newton--Raphson algorithm 154
Newton-Raphson method 1, 2, §-13, 98§,
148,167, 178, 180, 183, 252, 254,
255,271-3, 282
computer program 39-41
flowchart 41
subroutine ITER 414
Nodal displacement 138
Nominal stress 123, 125
Non-associative plasticity 158-9
Non-linear finite elements
general introduction 1
history 1-2
Non-linear materials 205-6
Non-linear shell analysis 234
Non-proportional loading 289
Numerical integration 206-7
Lobatto rule for 334
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Qut-of-balance forces 10-12, 14, 18, 19,
26, 44, 137, 148, 255-7, 289

Path-measuring parameters 289
Piola-Kirchhoff stresses 68, 73, 118-19,
121-6, 131, 143, 146-7, 228, 238
Planar truss element 80
Plane strain 107-8, 181
Plane siress 107-8, 181-4, 190-2
consistent tangent modular matrix for
184
Plastic strain-rate multiplier 157, 158
Plasticity 152-200
algorithms 153
and mathematical programming 193-6
numerical solution 152
Polar-decomposition theorem 126-30
Potential energy 19
see also Total potential energy
Prandtl-Reuss flow rules 157
Predictor solution 285-6
Predictors 170-1
Principal strain 130
Principle of virtual work 68, 125, 214
Pythagoras’ theorem 3, 66, 96

Quadratic convergence 9, 12
Quasi-Newton formula 311
Quasi-Newton methods 252, 307-10

Radial-return algorithm 177-8
Radial-return method 164
Rate equations, integrating 166-78
Reissner’s beam theory 221-5
Restart facilities 290-1
Rigid-bedy rotation 113-15
Rods, two-dimensional formulations
201-33
Rotated engincering strain 58-9,75-6, 213
Rotated log-strain 59-60, 76-7
formulation allowing for volume change
60-1
Rotating bar
deep truss (large strains) 90-1
shallow truss (small strains) 91-3
Rotation variables 235

Scalar loading parameter 271
Scaling parameter 271
Secant-related acceleration techniques
310-14

Shallow arch equations 218, 219
Shallow arch formulation 201-11
Shallow shells 236-43

formulation extensions 242-3

Shallow truss element 23-56
Shallow truss strain relationships 57
Shallow truss theory 23
Shallowness assumption 1
Shape functions 70-2, 77, 137, 204,
206-8, 210-11, 217, 223-5, 234,
239-40
Shear deformation 208
Shear factor 238
Shear-locking 210-11
Shells 234-51
degenerate-continuum element using
total Lagrangian formulation 243~7
non-linear analysis 234-5
smooth and non-smooth 235
see also Shallow shells
Simpson’s rule 2
Sixth degree of freedom 235
Small-strain limit-point example with one
variable 314-16
Snap-backs 26, 100-1, 266, 270, 3234
Snap-throughs 2, 26, 266, 270
Space truss elements 80-2
Spherical arc-length method 273-4, 285
Stabilisation technique 234
Stiffness matrix 272
Strain. See Stress and strain; Stress—strain
relationships
Strain-displacement relationships 65-8,
236-7
Strain-displacement vector 68
Strain hardening 159-60, 160-1
Strain increment using updated coordinates
72-3
Strain-inducing extension 213
Stress and strain
measures 57-103, 122, 124-6
tensor and vector rotations 105-6
Stress rates 166
Stress resultants 235
Stress—strain laws 132-3
Stress—strain relationships 107-10, 144,
238
Stress updating, incremental or iterative
strain 154-6
Stretching stresses and strains 213
Sub-increments 172-3, 188-9

Tangent modular matrix 2, 153, 154, 166,
188

Tangent stiffness 11

Tangent stiffness matrix 4, 69-70, 73, 78,
139-40, 148, 205, 209, 211, 212, 216,
218, 223, 225, 236, 241, 246-7, 253

Tangential incremental solution 10

Taylor expansion 254
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Tensor notation 165
Three-dimensional formulation 140-1
Through-thickness integration 234
Time-independent elasto-plasticity 152
Timoshenko beam formulation 208
Timoshenko beam theory, corotational
element using 219-20
Total Lagrangian continuum formulation
235
Total Lagrangian formulation 136-44,
225-9
implementation of 144-6
Total potential energy 2534
Transformation matrix 78
Transformation procedures 78
Transformation to new set of axes 110-13
True stress 121-5, 146-7
Truncated Taylor expansion 8, 26
Truncated Taylor series 14, 15, 168, 177,
178, 183, 253
Truss elements
based on Green's strain 65-75
Fortran subroutines for 85-90
Two-dimensional formulation 137

Unit membrane stress field 16

INDEX

Updated coordinates 72-3
Updated Lagrangian formulation 146-7
implementation of 147-50

Variational inequality 194
Virtual local displacements 214-15
Virtual work 18, 215-16, 240-1
expressions using Green’s strain 118-19
see also Principle of virtual work
Viscoplasticity 152
Volumetric components 108-9, 164,
178-80
von Kdrmén equations 242
von Karmén strain-displacement
relationships 119-20
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