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Preface 

This book was originally intended as a sequal to my book Finite Elements and Solution 
Proc.t.dures,fhr Structural Anufysis, Vol 1 -Linear Analysis, Pineridge Press, Swansea, 
1986. However, as the writing progressed, it became clear that the range of contents 
was becoming much wider and that it would be more appropriate to start a totally 
new book. Indeed, in the later stages of writing, it became clear that this book should 
itself be divided into two volumes; the present one on ‘essentials’ and a future one on 
‘advanced topics’. The latter is now largely drafted so there should be no further 
changes in plan! 

Some years back, I discussed the idea of writing a book on non-linear finite elements 
with a colleague who was much better qualified than I to write such a book. He 
argued that it was too formidable a task and asked relevant but esoteric questions 
such as ‘What framework would one use for non-conservative systems?’ Perhaps 
foolishly, I ignored his warnings, but 1 am, nonetheless, very aware of the daunting 
task of writing a ‘definitive work’ on non-linear analysis and have not even attempted 
such a project. 

Instead, the books are attempts to bring together some concepts behind the various 
strands of work on non-linear finite elements with which I have been involved. This 
involvement has been on both the engineering and research sides with an emphasis 
on the production of practical solutions. Consequently, the book has an engineering 
rather than a mathematical bias and the developments are closely wedded to computer 
applications. Indeed, many of the ideas are illustrated with a simple non-linear finite 
element computer program for which Fortran listings, data and solutions are included 
(floppy disks with the Fortran source and data files are obtainable from the publisher 
by use of the enclosed card). Because some readers will not wish to get actively 
involved in computer programming, these computer programs and subroutines are 
also represented by flowcharts so that the logic can be followed without the finer detail. 

Before describing the contents of the books, one should ask ‘Why further books 
on non-linear finite elements and for whom are they aimed?’ An answer to the first 
question is that, although there are many good books on linear finite elements, there 
are relatively few which concentrate on non-linear analysis (other books are discussed 
in Section 1. I ) .  A further reason is provided by the rapidly increasing computer power 
and increasingly user-friendly computer packages that have brought the potential 
advantages of non-linear analysis to many engineers. One such advantage is the 
ability to make important savings in comparison with linear elastic analysis by 
allowing, for example, for plastic redistribution. Another is the ability to directly 

xi  
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simulate the collapse behaviour of a structure, thereby reducing (but not eliminating) 
the heavy cost of physical experiments. 

While these advantages are there for the taking, in comparison with linear analysis, 
there is an even greater danger of the ‘black-box syndrome’. To avoid the potential 
dangers, an engineer using, for example, a non-linear finite element computer program 
to compute the collapse strength of a thin-plated steel structure should be aware 
of the main subject areas associated with the response. These include structural 
mechanics, plasticity and stability theory. In addition, he should be aware of how 
such topics are handled in a computer program and what are the potential limitations. 
Textbooks are, of course, available on most of these topics and the potential user of 
a non-linear finite element computer program should study such books. However, 
specialist texts do not often cover their topics with a specific view to their potential 
use in a numerical computer program. I t  is this emphasis that the present books 
hope to bring to areas such as plasticity and stability theory. 

Potential users of non-linear finite element programs can be found in the aircraft, 
automobile, offshore and power industries as well as in general manufacturing, and 
it is hoped that engineers in such industries will be interested in these books. In 
addition, it should be relevant to engineering research workers and software 
developers. The present volume is aimed to cover the area between work appropriate 
to final-year undergraduates, and more advanced work, involving some of the latest 
research. The second volume will concentrate further on the latter. 

It has already been indicated that the intention is to adopt an engineering approach 
and, to this end, the book starts with three chapters on truss elements. This might 
seem excessive! However, these simple elements can be used, as in Chapter 1, to 
introduce the main ideas of geometric non-linearity and, as in Chapter 2, to provide 
a framework for a non-linear finite element computer program that displays most of 
the main features of more sophisticated programs. In Chapter 3,  these same truss 
elements have been used to introduce the idea of ‘different strain measures’ and also 
concepts such as ‘total Lagrangian’, ‘up-dated Lagrangian’ and ‘corotational’ 
procedures. Chapters 4 and 5 extend these ideas to continua, which Chapter 4 being 
devoted to ‘continuum mechanics’ and Chapter 5 to the finite element discretisation. 

I originally intended to avoid all use of tensor notation but, as work progressed, 
realised that this was almost impossible. Hence from Chapter 4 onwards some use 
is made of tensor notation but often in conjunction with an alternative ‘matrix and 
vector’ form. 

Chapter 6 is devoted to ‘plasticity’ with an emphasis on J , ,  metal plasticity (von 
Mises) and ‘isotropic hardening’. New concepts such as the ‘consistent tangent’ are 
fully covered. Chapter 7 is concerned with beams and rods in a two-dimensional 
framework. It starts with a shallow-arch formulation and leads on to ‘deep- 
formulations’ using a number of different methods including a degenerate-continuum 
approach with the total Lagrangian procedure and various ‘corotational’ 
formulations. Chapter 8 extends some of these ideas (the shallow and degenerate- 
continuum, total Lagrangian formulations) to shells. 

Finally, Chapter 9 discusses some of the more advanced solution procedures for 
non-linear analysis such as ‘line searches’, quasi-Newton and acceleration techniques, 
arc-length methods, automatic increments and re-starts. These techniques are 
introduce into the simple computer program developed in Chapters 2 and 3 and are 
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then applied to a range of problems using truss elements to illustrate such responses 
as limit points, bifurcations, ‘snap-throughs’ and ‘snap-backs’. 

I t  is intended that Volume 2 should continue straight on from Volume 1 with, for 
example, Chapter 10 being devoted to ‘more continuum mechanics’. Among the 
subjects to be covered in this volume are the following: hyper-elasticity, rubber, large 
strains with and without plasticity, kinematic hardening, yield criteria with volume 
effects, large rotations, three-dimensional beams and rods, more on shells, stability 
theory and more on solution procedures. 

REFERENCES 

At the end of each chapter, we will include a section giving the references for that 
chapter. Within the text, the reference will be cited using, for example, [B3] which 
refers to the third reference with the first author having a name starting with the 
letter ‘B’. If, in a subsequent chapter, the same paper is referred to again, it would 
be referred to using, for example, CB3.41 which means that it can be found in the 
References at the end of Chapter 4. 

NOTATION 

We will here give the main notation used in the book. Near the end of each chapter 
(just prior to the References) we will give the notation specific to that particular 
chapter. 

General note on matrix/vector and/or tensor notation 

For much of the work in this book, we will adopt basic matrix and vector notation 
where a matrix or vector will be written in bold. I t  should be obvious, from the 
context, which is a matrix and which is a vector. 

In Chapters 4-6 and 8, tensor notation will also be used sometimes although, 
throughout the book, all work will be referred to rectangular cartesian coordinate 
systems (so that there are no differences between the CO- and contravariant compo- 
nents of a tensor). Chapter 4 gives references to basic work on tensors. 

A vector is a first-order tensor and a matrix is a second-order tensor. If we use 
the direct tensor (or dyadic) notation, we can use the same convention as for matrices 
and vectors and use bold symbols. In some instances, we will adopt the suffix notation 
whereby we use suffixes to refer to the components of the tensor (or matrix or vector). 
For clarity, we will sometimes use a suffix on the (bold) tensor to indicate its order. 
These concepts are explained in more detail in Chapter 4, with the aid of examples. 

Scalars 

E = Young’s modulus 
e =error  
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,f = yield function 
g 
G =shear modulus 
I 
J =det(F)  
k = bulk modulus 
K ,  =tangent stiffness 
t =thickness 
U, U ,  w = displacements corresponding to coordinates x, y, z 

V 
V =virtual work 
Vi =internal virtual work 
V ,  =external virtual work 
x, y ,  z = rectangular coordinates 

c =strain 
p = shear modulus 
i. = load-level parameter 
v = Poisson's ratio 
<, 7, i; = non-dimensional (natural) coordinates 
fl =stress 
z =shear stress 
4 =total potential energy 

= out-of-balance force or gradient of potential energy 

= 2nd moment of area 

= volume: dV = increment of volume; also 

1 
i = shear strain 

=curvature 

Subscripts 

2 =second order 
4 =fourth order 
cr = 'critical' (in relation to buckling) 
e =external 
ef = external (fixed) 

i =internal 
n =new 
o =old 
t =tangential 
v =virtual 

g =global 

Superscripts and special symbols 

. = rate or time-derivative 
T =transpose 
: = contraction (see equation (4.6)) 
0 =tensor product (see equation (4.31)) 
tr = trace ( =  sum of diagonal elements) 
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Vectors 

xv 

b = strain/nodal-displacement vector 
d = displacements 
e, = unit base vectors 
g = out-of-balance forces (or gradient of total potential energy) 
h = shape functions 
p = nodal (generalised) displacement variables 
q = nodal (generalised) force variables corresponding to p 
E = strain (also, sometimes, a terisor -see below) 
cs = stress (also, sometimes, a tensor- see below) 

Matrices or tensors 

(A subscript 2 is sometimes added for a second-order tensor (matrix) with a subscript 4 for a 
fourth-order tensor.) 

1 = Unit second-order tensor (or identity matrix) 
B = strain/nodal-displacement matrix 
C = constitutive matrices or tensors (with stress/strain moduli) 
D =diagonal matrix in LDL'  
H = shape function matrix 
I 
K = tangent stifrness matrix 
K,, = initial stress or geometric stiffness matrix 
KO = linear stiffness matrix 
L = lower triangular matrix in LDL' factorisation 
hi, = Kronecker delta ( = 1 ,  i = j ;  = 0, i # j ) 
E =strain 

= identity matrix or sometimes fourth-order unit tensor 

Special symbols with vectors or tensors 

(5 = small change (often iterative or virtual) so that 6p = iterative change in p or iterative nodal 

A = large change (often incremental--from last converged equilibrium state) so that 
'displacements', 6p, = virtual change in p 

Ap = incremental change in p or incremental nodal 'displacements' 



General introduction, brief 
history and introduction 
to geometric non-linearity 

1.1 GENERAL INTRODUCTION AND A BRIEF HISTORY 

At the end of the present chapter (Section 1.5), we include a list of books either fully 
devoted to non-linear finite elements or else containing significant sections on the 
subject. Of these books, probably the only one intended as an introduction is the 
book edited by Hinton and commissioned by the Non-linear Working Group of 
NAFEMS (The National Agency of Finite Elements). The present book is aimed to 
start as an introduction but to move on to provide the level of detail that will generally 
not be found in the latter book. 

Later in this section, we will give a brief history of the early work on non-linear 
finite elements with a selection of early references being provided at the end of the 
chapter. References to more recent work will be given at the end of the appropriate 
chapters. 

Following the brief history, we introduce the basic concepts of non-linear finite 
element analysis. One could introduce these concepts either via material non-linearity 
(say, using springs with non-linear properties) or via geometric non-linearity. I have 
decided to opt for the latter. Hence, in this chapter, we will move from a simple truss 
system with one degree of freedom to a system with two degrees of freedom. To 
simplify the equations, the ‘shallowness assumption’ is adopted. These two simple 
systems allow the introduction of the basic concepts such as the out-of-balance force 
vector and the tangent stiffness matrix. They also allow the introduction of the basic 
solution procedures such as the incremental approach and iterative techniques based 
on the Newton-Raphson method. These procedures are introduced firstly via the 
equations of equilibrium and compatibility and later via virtual work. The latter 
will provide the basis for most of the work on non-lineat finite elements. 

1.1.1 A brief history 

The earliest paper on non-linear finite elements appears to be that by Turner et ul. 
[T2] which dates from 1960 and, significantly, stems from the aircraft industry. The 

1 



2 INTRODUCTION TO GEOMETRIC NON-LINEARITY 

present review will cover material published within the next twelve years (up to and 
including 1972). 

Most of the other early work on geometric non-linearity related primarily to the 
linear buckling problem and was undertaken by amongst others [H3, K I], Gallagher 
et al. [G I ,  G21. For genuine geometric non-linearity, ‘incremental’ procedures were 
originally adopted (by Turner et al. [T2] and Argyris [A2, A31) using the ‘geometric 
stiffness matrix’ in conjunction with an updating of coordinates and, possibly, an 
initial displacement matrix [Dl ,  M1, M31. A similar approach was adopted with 
material non-linearity [Z2, M61. In particular, for plasticity, the structural tangent 
stiffness matrix (relating increment of load to increments of displacement) incorporated 
a tangential modular matrix [PI, M4, Y I ,  Z 1,221 which related the increments of 
stress to the increments of strain. 

Unfortunately, the incremental (or forward-Euler) approach can lead to an 
unquantifiable build-up of error and, to counter this problem, Newton-Raphson 
iteration was used by, amongst others, Mallet and Marcal [M I ]  and Oden [Ol]. 
Direct energy search [S2,M2] methods were also adopted. A modified 
Newton-Raphson procedure was also recommended by Oden [02], Haisler c t  al. 
[HI] and Zienkiewicz [Z2]. In contrast to the full Newton-Raphson method, the 
stiffness matrix would not be continuously updated. A special form using the very 
initial, elastic stiffness matrix was referred to as the ‘initial stress’ method [Zl] and 
much used with material non-linearity. Acceleration procedures were also considered 
“21. The concept of combining incremental (predictor) and iterative (corrector) 
methods was introduced by Brebbia and Connor [B2] and Murray and Wilson 
[M8, M9] who thereby adopted a form of ‘continuation method’. 

Early work on non-linear material analysis of plates and shells used simplified 
methods with sudden plastification [AI,BI]. Armen p t  al. [A41 traced the 
elasto-plastic interface while layered or numerically integrated procedures were 
adopted by, amongst others, Marcal c’t al. [M5, M7] and Whang [Wl] combined 
material and geometric non-linearity for plates initially involved ‘perfect elasto-plastic 
buckling’ [Tl, H21. One of the earliest fully combinations employed an approximate 
approach and was due to Murray and Wilson [MlO]. A more rigorous ‘layered 
approach’ was applied to plates and shells by Marcal [M3, M51, Gerdeen et ul. [G3] 
and Striklin et nl. [S4]. Various procedures were used for integrating through the 
depth from a ‘centroidal approach’ with fixed thickness layers [P2] to trapezoidal 
[ M7] and Simpson’s rule [S4]. To increase accuracy, ‘sub-increments’ were introduced 
for plasticity by Nayak and Zienkiewicz [NI]. Early work involving ‘limit points‘ 
and ‘snap-through’ was due to Sharifi and Popov [S3] and Sabir and Lock [Sl]. 

1.2 A SIMPLE EXAMPLE FOR GEOMETRIC 
NON-LINEARITY WITH ONE DEGREE OF FREEDOM 

Figure l . l (a)  shows a bar of area A and Young’s modulus E that is subject to a load 
W so that i t  moves a distance U’. From vertical equilibrium, 

N(z + M’) N(z + NI) - W = N sin 0 = - 
I” 1 
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Figure 1.1 Simple problem with one degree of freedom. (a) bar a lone (b) bar with spring 

where N is the axial force in the bar and i t  has been assumed that 0 is small. By 
Pythagoras’s theorem, the strain in the bar is 

Although (1.5) is approximate, it can be used to illustrate non-linear solution 
procedures that are valid in relation to a ‘shallow truss theory’. From ( I  .5)? the force 
in the bar is given by 
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and, from (1  . l),  the relationship between the load Wand the displacement, w is given by 

E A  
W = ~ - (z2w + gzw2 + iw”. 

1 3  

This relationship is plotted in Figure 1.2(a). If the bar is loaded with increasing - W, 
at point A (Figure 1.2(a)), it will suddenly snap to the new equilibrium state at point 
C. Dynamic effects would be involved so that there would be some oscillation about 
the latter point. 

Standard finite element procedures would allow the non-linear equilibrium path 
to be traced until a point A’ just before point A, but at this stage the iterations would 
probably fail (although in some cases it may be possible to move directly to point 
C-see Chapter 9). Methods for overcoming this problem will be discussed in 
Chapter9. For the present, we will consider the basic techniques that can be used 
for the equilibrium curve, OA’. 

For non-linear analysis, the tangent stiffness matrix takes over the role of the 
stiffness matrix in linear analysis but now relates small changes in load to small 
changes in displacement. For the present example, this matrix degenerates to a scalar 
dW/dw and, from ( l . l ) ,  this quantity is given by 

d W  ( z + w ) d N  N +-  
dw I dw I 

K , =  E - -  

1 

(1.10) 

Equation (1.6) can be substituted into (1.10) so that K ,  becomes a direct function 
of the initial geometry and the displacement w. However, there are advantages in 
maintaining the form of (1.10) (or (1.9)), which is consistent with standard finite 
element formulations. If we forget that there is only one variable and refer to the 
constituent terms in (1.10) as ‘matrices’, then conventional finite element terminology 
would describe the first term as the linear stiffness matrix because it is only a function 
of the initial geometry. The second term would be called the ‘initial-displacement’ or 
‘initial-slope matrix’ while the last term would be called the ‘geometric’ or ‘initial-stress 
matrix’. The ‘initial-displacement’ terms may be removed from the tangent stiffness 
matrix by introducing an ‘updated coordinate system’ so that z ’ = z +  w. In these 
circumstances, equation (1.9) will only contain a ‘linear’ term involving z’ as well as 
the ‘initial stress’ term. 

The most obvious solution strategy for obtaining the load-deflection response 
OA’ of Figure 1.2(a) is to adopt ‘displacement control’ and, with the aid of (1.7) (or (1.6) 
and (1.1))’ directly obtain W for a given w. Clearly this strategy will have no difficulty 
with the ‘local limit point’ at  A (Figure 1.2(a)) and would trace the complete 
equilibrium path OABCD. For systems with many degrees of freedom, displacement 
control is not so trivial. The method will be discussed further in Section 2.2.5. For 
the present we will consider load control so that the problem involves the computation 
of w for a given W. 
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Figure 1.2 Load/deflection relationships for simple one-dimensional problem 
(a) Response for bar alone. 
(b) Set of responses for bar-spring system. 
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Before discussing a few basic solution strategies, some dimensions and properties 
will be given for the example of Figure l.l(b) so that these solution strategies can be 
illustrated with numbers. The spring in Figure l . l(b) has been added so that, if the 
stiffness K ,  is large enough, the limit point A of Figure 1.2(a) can be removed and 
the response modified to that shown in Figure 1.2 (b). The response of the bar is then 
governed by 

E A  
W =  - ( z2w 4- ~ Z W ’  + + w 3 )  + K,w 

13 
(1.1 1) 

which replaces equation (1.7). For the numerical examples, the following dimensions 
and properties have been chosen: 

E A = 5 x 1 0 7 N ,  z = 2 5 m m ,  1=2500mm, KS=1.35N/mm, A W = - 7 N  

(1.12) 

where A W  is the incremental load. For brevity, the ‘units’ have been omitted from 
the following computations. 

1.2.1 An incremental solution 

An incremental (or Euler) solution scheme involves (Figures 1.2(a) and 1.3) repeated 
application of 

T t----z* / 

4 
I 
WP 

Displacement, w 

(1.13) 

Figure 1.3 Incremental solution scheme 
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For the first step, wo and N o  are set to zero so that, from (1.10): 

K O  = L , 4 i - j l +  K ,  = 3.35 
1 1  

and hence 

(1.14) 

(1.15) 

where A W  ( - 7) is the applied incremental load. From (1.6), the corresponding axial 
force is given by 

N I  = E A  {(;)(:') + 2 1  ( w 1 ) 2 )  = - 400.45. (1.16) 
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Figure 1.4 Incremental solution for bar-spring problem ( K ,  = 1 35) 
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The second increment of load is now applied using (see (1.10)) 

N l  
1 1  13 1 

K & v , )  = + E A ( 2 ~ ~ ,  + w:) + - + K ,  = 2.8695 

to give 

Awl  = K ‘A W = - 712.8695 = - 2.4394 

(1.17) 

(1.18) 

so that 
~2 = w 1 + Aw 1 = - 2.0896 - 2.4394 = - 4.5290 (1.19) 

and N ,  is computed from 

N 2 =  E A { ( j j ( g 2 ) + : ( : 2 ) 2 ) =  -823.76. (1.20) 

Inevitably (Figures 1.3 and 1.4), the solution will drift from the true equilibrium curve. 
The lack of equilibrium is easily demonstrated by substituting the displacement w1 
of (1.15) and the force N ,  of (1.16) into the equilibrium relationship of (1.1). Once 
allowance is made for the spring stiffness K,, this provides 

(1.21) 

= - 3.6698 - 2.82 10 - 6.4908 (1.22) 

which is only approximately equal to the applied load AW ( -  7). 

1.2.2 An iterative solution (the Newton-Raphson method) 

A second solution strategy uses the well-known Newton-Raphson iterative technique 
to solve (1.7) to obtain w for a given load W. To this end, (1.7) can be re-written as 

EA 
9 = 13 (z2w + $zw’ + + W 3 )  - W =  0. (1.23) 

The iterative procedure is obtained from a truncated Taylor expansion 

2 dw2 
Y n  2 Yo + 

dw 
(1.24) 

where terms such as dy,/dw imply dg/dw computed at  position ‘0’. Hence, given an 
initial estimate w, for which yo(wo) # O ,  a better approximation is obtained by 
neglecting the bracketed and higher-order terms in (1.24) and setting gn = 0. As a 
result (Figure 1.5) 

(1.25) 

and a new estimate for w is 

w1 = W O  + bw,. (1.26) 
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Load, W 

Figure 1.5 The Newton-Raphson method 

Substitution of (1.25) into (1.24) with the bracketed term 
proportional to g,”. Hence the iterative procedure possess 

Following (1.26), the iterative process continues with 

included shows that g, is 
‘quadratic convergence’. 

(1.27) 

In contrast to the previous incremental solutions, the 6ws in (1.24)-( 1.27) are iterative 
changes at the same fixed load level (Figure 1.5). 

Equations (1.25) and (1.27) require the derivative, dgldw, of the residual or 
out-of-balance force, g. But (1.23) was derived from (1.7) which, in turn, came from 
(1.1) so that an alternative expression for g, based on (l . l) ,  is 

where W is the fixed external loading. Consequently: 

dy ( z + w ) d N  N 
- - - + = K ,  
dw 1 dw 1 

(1.28) 

(1.29) 

which coincides with (1.8) so that dgldw is the tangent stiffness term previously derived 
in (1.8). 

However, although dg/dw will be referred to as K ,  and, indeed, involves the same 
formulae ( (  I.8)--( 1 .  lO)) ,  there is an important distinction between (1.8), which is a 
genuine tangent to the equilibrium path ( W -  w), and dgldw, which is to be used with 
an iterative procedure such as the Newton-Raphson technique. In the latter instance, 
K ,  = dg/dw does not necessarily relate to an equilibrium state since y relates to some 
trial w and is not zero until convergence has been achieved. Consequently, for 
equilibrium states relating to a stable point on the equilibrium path, such as points 
on the solid parts of the curve on Figure 1.6, K ,  = dW/dw will always be positive 
although K,=dg/dw, as used in an iterative procedure, may possibly be zero or 
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Load. - 

Figure 1.6 Positive and negative tangent stiffnesses. 

positive 

negative. This is illustrated for the Newton-Raphson method in Figure 1.6. Once 
the problems are extended beyond one variable, the statement ‘Kl will always be 
positive’ becomes ‘Kl will always be positive definite’ while ‘Kl may possibly be zero 
or negative’ becomes ‘Kt may possibly be singular or indefinite’. 

1.2.3 Combined incremental/iterative solutions 
(full or modified Newton-Raphson or the initial-stress method) 

The iterative technique on its own can only provide a single ‘point solution’. In 
practice, we will often prefer to trace the complete load/deflection response (equilibrium 
path). To  this end, it is useful to combine the incremental and iterative solution 
procedures. The ‘tangential incremental solution’ can then be used as a ‘predictor’ 
which provides the starting solution, wo, for the iterative procedure. A good starting 
point can significantly improve the convergence of iterative procedures. Indeed it can 
lead to convergence where otherwise divergence would occur. 

Figure 1.7 illustrates the combination of an incremental predictor with Newton- 
Raphson iterations for a one-dimensional problem. A numerical example will now 
be given which relates to the dimensions and properties of (1.12) and starts from the 
converged, ‘exact’, equilibrium point for W= - 7 (point 1 in Figure 1.4). This point 
is given by 

W I  = - 2.2683, N 1 = - 433.08. ( I  .30) 

As a consequence of the inclusion of the linear spring, the out-of-balance force term, 
y, is given by 

g = Wi(bar) + W,(spring) - We = y( 1.28) + K,w. (1.31) 

The term g(1.28) in (1.31) refers to equation (1.28). (Equation (1.23) could be used 
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Displacement, w - 
Figure 1.7 A combination of incremental predictors with Newton-Raphson iterations 

instead.) At the starting point, (1.30), the tangent stiffness is given by 

dy 
d U! 

K , = -  (1.9)+KS=1.4803+ 1.35 

so that the incremental (tangential predictor-solution) would give 

W = W ~  + A w ~ = w ~  +Kt- 'AW=w,-7/2.8306= -4.7415 

with (from (1.6)) 

N - 858.37. 

Equation (1.31) now provides the out-of-balance force, y, as 

9 = LJ( 1.28) + K , w  = - 6.9557 + 14.0 - 6.4010 = 0.6432 

while the tangent stiffness is given by 

K ,  = ~ dg -( 1.9) + K ,  = 0.97 + 1.35 = 2.32 
dw 

and the first iterative solution is, from (1.25) 

6~ = - 0.6432/2.320 = - 0.2773 

so that the total deflection is 

w = - 4.741 5 - 0.2773 = - 5.01 88 

with (from (1.6)): 

N = - 903.0. 

In order to apply a further iteration (1.31) gives 

y=g(1.28)+ K , w =  -7.2172+ 14.0-6.7754= -0.0074 

(1.32) 

(1.33) 

(1.34) 

(1.35) 

(1.36) 

(1.37) 

(1.38) 

(1.39) 

(1.40) 
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and, from (1.27) and (1.40)’ 

(1.41) 

and the total deflection is 

w = - 5.01 88 - 0.0032 = - 5.0220. ( I  .42) 

To four decimal places, this solution is exact and the next iterative change (which 
From (1.33), the initial is probably affected by numerical round-off) is - 0.28 x 

error is 

e ,  = 4.741 5 - 5.0220 = - 0.2805 (1.43) 

while from (1.38) 

e ,  = 5.0188 - 5.0220 = - 0.0032 (1.44) 

and the next error is e2 = - 0.28 x to-‘. Hence 

(1.45) 

which illustrates the ‘quadratic convergence’ of the Newton-Raphson method. 
An obvious modification to this solution procedure involves the retention of the 

original (factorised) tangent stiffness. If the resulting ‘modified Newton-Raphson’ (or 
mN-R) iterations [02,  Hl,Z2] are combined with an incremental procedure, the 
technique takes the form illustrated in Figure 1.8. Alternatively, one may only update 
K, periodically [Hl,  221. For example, the so-called K: (or KTI )  method would involve 
an update after one iteration [Z2]. 

Assuming the starting point of (1.30)’ the tangential solution would involve 
(1.32)-( 1.34) as before. The resulting out-of-balance force vector would be given by 
(1.35) but (1.36) would no longer be computed to form K,. Instead, the K ,  of (1.32) 

Displacement, w 

Figure 1.8 A combination of incremental predictors with modified Newton-Raphson iterations 
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-7 

Displacement, w 

Figure 1.9 The ‘initial stress method’ combined with an incremental solution. 

would be re-used so that 

6~ - 0.6432/2.8303 = - 0.2273, w = - 4.9688. ( 1.46) 

Thereafter 

-0.1210, 6 w =  -0.1210/2.8303= -0.04273, W =  -5.0115 (1.47) 

w = - 5.0200 (1.48) y = - 0.0239, 6~ = - 0.0239/2.8303 = - 0.00844, 

etc. In contrast to ( I  .45), 

(1.49) 

which indicates the slower ‘linear convergence’ of the modified Newton-Raphson 
method. However, in contrast to the full N-R method, the modified technique requires 
less work at each iteration. In particular, the tangent stiffness matrix, K,,  is neither 
re-formed nor re-factorised. 

The ‘initial stress’ method of solution [Zl] (no relation to the ‘initial-stress matrix’) 
takes the procedure one stage further and only uses the stiffness matrix from the very 
first incremental solution. The technique is illustrated in Figure 1.9. 

1.3 A SIMPLE EXAMPLE WITH TWO VARIABLES 

Figure 1.10 shows a system with two variables U and w which will be collectively 
referred to as 

pT = (U, w). (1 S O )  

For this system, the strain of (1.5) is replaced by 

E =  - U  I + (;)( 5 )  + ;( ;)2. (1.51) 
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u e  

I - 1 -  -- - 
I 

Initial configuration 

T we 

stiffness, 

Figure 1.10 Simple problem with two degrees of freedom. 

(The term ( ~ / 1 ) ~  can be considered as negligible.) Resolving horizontally, 

U ,  + N COS 8 2: U ,  + N = 0 

while, resolving vertically, 
N ( z  + w) 

1 
We=Nsin8+K,w2:  ~ + K,w. 

( I  .52) 

(1.53) 

These equations can be re-written as 

where g is an 'out-of-balance force vector', qi an internal force vector and qe the 
external force vector. The axial force, N, in (1.54) is simply given by 

N = E A E  (equation (1.5 1)). (1.55) 

In order to produce an  incremental solution procedure, the internal force, qi, 
corresponding to the displacement, p, can be expanded by means of a truncated 
Taylor series, so that 

(1.56) 

Assuming perfect equilibrium at both the initial configuration p and the final 
configuration, p + Ap, equation (1.56) gives 

or, in relation to the two variables U and w, 

where from ( I .  51), (1.54) and (1.55), 

(3W 

aw, 
dW 

+ 

(1.58) 

0 0 N/1 O I  

~i rn\ 
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with 

Z + W  

1 
p =  . 

15 

(1.60) 

The final matrix in (1.59) is the ‘initial-stress matrix’. Clearly, the incremental 
procedure of Section 1.2.1 can be applied to this two-dimensional system using the 
general form 

A p  = K,- ‘Aqe. (1.61) 

Alternatively, the tangent stiffness matrix of (1.59) can also be related to the 
Newton -Raphson iterative procedure and can be derived from a truncated Taylor 
series as in ( I  .24). For two dimensions this gives 

where K, is again given by (1.59). The Newton-Raphson solution procedure now 
involves 

(1.63) 

We will firstly solve the ‘perfect’ system, for which z (Figure 1.10) is zero. The 
applied load, W e ,  will also be set to zero. In these circumstances, ( 1  .58) and ( I  .59) give 

The solution is 

1 

A E  
A u =  ~ A U e ,  A w - 0  

so that 

1 
A E  

u =  ~ U ,  w = o .  

(1.64) 

(1.65) 

( I  .66) 

These solutions remain valid while ( K ,  + N / I )  is positive and the matrix K, is ‘positive 
definite’. However, when 

N = N,,= - I K ,  ( I  .67) 

the load U reaches a ‘critical value’, 

(1.68) 

at which K, becomes singular, Au and A w  are indeterminate and the system ‘buckles’. 



16 INTRODUCTION TO GEOMETRIC NON-LINEARITY 

This example illustrates one particular use of the ‘initial-stress matrix’. In general, 
for a perfect system (when the pre-buckled path is linear or ‘effectively linear’), we 
can write 

K, = KO + AKt, (1.69) 

where KO is the standard ‘linear stiffness matrix’ and K,, is the initial-stress matrix 
when computed for a ‘unit membrane stress field’ (in the present case, N = 1). The 
term A in (1.69) is the load factor that amplifies this initial stress field. As a consequence 
of (1.69), the buckling criterion becomes 

det(K, + AKt,) = 0 (1.70) 

which is an eigenvalue problem. Numerical solutions for the imperfect system (with 
z (Figure 1.10) # 0) will be given in Chapter 2. For the present, we will derive a set 
of ‘exact solutions’. 

1.3.1 ‘Exact’ solutions 

The governing equations (1.54) have solutions 

or 

as well as 

w = ( -  U ). 
u c r  - U 

u u  
- = - -- + p(a + $a2)  
ucr u c r  

where 

(1.71) 

(1.72) 

(1.73) 

(1.74) 

and the ‘buckling load’, Ucr, and equivalent displacement, U,,, have been defined in 
(1.68). 

Equations (1.72) and (1.74) have been plotted in Figure 1.1 1 where the ‘perfect solu- 
tions’ relate to the system of Figure 1.10 with z set to zero. The non-dimensionalising 
factor, z,, in Figure l.lO(a) is the initial offset, z ,  for the imperfect system and any 
non-zero value for the perfect system. In plotting equation (1.73) in Figure 1.1 l(a), 
the factor p of (1.74) has been set to 0.5 (i.e. as if using (1.12) but with K ,  = 4). 

The perfect solutions are stable up to point A from which the path AC (or A‘C’ 
in Figure 1.1 l(a)) is the post-buckling path. If the offset, z ,  in Figure 1.10 is non-zero, 
either the imperfect path EF  or the equivalent path E’F’ in Figure l . l l (a)  will be 
followed, depending on the sign of z .  At the same time, the ‘load/shortening relation- 
ship’ will follow OD in Figure 1.1 l(b). While these paths are fairly obvious, the 
solutions G H  (or G’H’) in Figure 1.1 l(a) and G H  in Figure 1.1 l(b) are less obvious 
and could not be reached by a simple monotonic loading. Nonetheless they do 
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Figure 1.11 Load/deflection relationships for two-variable bar- 
deflection; (b) shortening deflection. 

-spring problem: transverse 
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represent equilibrium states and their presence can cause difficulties with the numerical 
solution procedures. This will be demonstrated in Chapter 2 where it will be shown 
that i t  is even possible to accidentally converage on the 'spurious upper equilibrium 
states'. 

Before leaving this section, we should note the inverted commas surrounding the 
word 'exact' in the title of this section. The solutions are exact solutions to the 
governing equations (1.54). However, the ltter were derived on the assumption of a 
small angle 8 in Figure 1.10. Clearly, this assumption will be violated as the deflection 
ratios in Figure 1.1  1 increase, even if it is valid when w is small. 

1.3.2 The use of virtual work 

In Section 1.2, the governing equations were derived directly from equilibrium. With 
a view to later work with the finite element method, we will now derive the out-6f- 
balance force vector, g using virtual work instead. To this end, with the help of 
differentiation, the change in (1.51) can be expressed as 

sc:= --""+(I:">(")+[ 1 ( sw - ) 2 ] .  

1 2 1  h 

(1.75) 

For really small virtual changes, the last, higher-order, square-bracketed term in 
(1.75) is negligible and 

(1.76) 

where the subscript v means 'virtual'. 

expressed as 
The virtual work undertaken by the internal and external forces can now be 

V = 06&, dV + K,wSW, - U , ~ U ,  - W , ~ W ,  = N 1 6 ~ ,  + K,wGw, - U , ~ U ,  - W , ~ W , .  

(1.77) 
J 

Substituting from (1.76) into (1.77) gives 

v = gTspv (1.78) 

where 6pT = (du,, 6w,) and the vector g is of the form previously derived directly from 
equilibrium in (1.54). The principle of virtual work specifies that I/ should be zero 
for any arbitrary small virtual displacements, dp,. Hence (1.78) leads directly to the 
equilibrium equations of (1.54). Clearly, the tangent stiffness matrix, Kt, can be 
obtained, as before, by differentiating g. With a view to future developments, we will 
also relate the latter to the variation of the virtual work. In general, (1.78) can be 
expressed as 

V = 0 8% d V - qzsp, = (qi - q,)T6p, = gQp, (1.79) J T  
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from which 

d V  = 6pTdg = 6pT - ag 6p = dp;K,dp. 
aP 
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(1.80) 

The previous developments can be related to the total potential energy. For the 
current problem, the latter is given by 

(1.81) 

or 

Q I = - K , W ~ + - E A I  1 [ - - +  (;)( - 5> + ;( !$2]2 - U,u - W,W. 
2 2 

(1.82) 

If the loads U ,  and We are held fixed, and the displacements u and w are subjected 
to small changes, du  and 6w (collectively dp), the energy moves from QI, to QIn, where 

QI,=QI,+ 6p=QI,+gT6p (3 (1.83) 

or 

(1.84) 

The principle of stationary potential energy dictates that, for equilibrium, the change 
of energy, 4, - QIo, should be zero for arbitrary 6p (6u and dw). Hence equation (1 34)  
leads directly to the equilibrium equations of (1.54) (with N from (1.55)). Equation 
(1.83) shows that the 'out-of-balance force vector' g, is the gradient of the potential 
energy. Hence the symbol g. The matrix K, = ag/ap is the second differential of QI 
and is known in the 'mathematical-programming literature' (see Chapter 9) as the 
Jacobian of g or the Hessian of QI. 

1.4 SPECIAL NOTATION 

A = area of bar 
e = error 

K ,  = spring stiffness 
N = axial force in bar 
u = axial displacement at end of bar 
U = force corresponding to u 
w = vertical displacement at end of bar 
W = force corresponding to w 
z = initial vertical offset of bar 
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1 = initial length of bar 
p = geometric factor (equation (1.60)) 
E = axial strain in bar 
0 = final angular inclination of bar 
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2 A shallow truss element 
with Fortran computer 
program 

In Sections 1.2.1-3, we obtained numerical solutions for the simple bar/spring problem 
with one degree of freedom that is illustrated in Figure 1.1, We also proposed, in 
Figure 1.10, a simple example with two degrees of freedom. However, no numerical 
solutions were obtained for the latter problem. Once the number of variables is 
increased beyond one, i t  becomes tedious to obtain numerical solutions manually, 
and a simple computer program is more appropriate. 

Such a program will be of more use if its is written in a ‘finite element context’, 
so that different boundary conditions can be applied. So far, only indirect reference 
has been made to the finite element method. In this chapter, we will use the ‘shallow 
truss theory’ of Section 1.2 to derive the finite element equations for a shallow truss 
element. We will then provide a set of Fortran subroutines which allows this element 
to be incorporated in a simple non-linear finite element program. Flowcharts are 
given for an ‘incremental formulation’, a ‘Newton-Raphson iterative procedure’ and, 
finally, a combined ‘incremental/iterative technique’ that uses either the full or 
modified Newton-Raphson methods. Fortran programs, which incorporate the earlier 
subroutines, are then constructed around these flowcharts. Finally, the computer 
program is used to analyse a range of problems. 

2.1 A SHALLOW TRUSS ELEMENT 

We will now use the ‘shallow truss theory’ of Chapter 1 to derive the finite element 
equations for the shallow truss of Figure 2.1. The derivation will be closely related 
to the virtual work procedure of Section 1.3.2. Short-cuts could be used in the 
derivation but we will follow fairly conventional finite element procedures so that 
this example provides an introduction to the more complex finite element formulations 
that will follow. The element (Figure 2.1) has four degrees of freedom u 1  = p l ,  u2 = p 2 ,  
w 1  = p 3  and w 2  = p4. Both the geometry and the displacements are defined with the 
aid of simple linear shape functions involving the non-dimensional coordinate, 5,  so 
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< = 1  

< = - 1  ' \ t"' 
U1 Ft l2  ' 1 7  ' I  \ 

Figure 2.1 A shallow truss element. 

that 

Following from (1.51), the strain in the bar is 

while from (2.2), 

dx 

From (2.1), 

dx  
- = (x2 - x1)/2 = 1/2 
d5 

du d u d 5  

dx - d< dx  
- - _ _  = ( U 2  - UJl = Uz1/1 

where the shorthand uZ1 has been used for u2  - ul. In a similar fashion, 

dw dz 
-=w,,/l -~ = z2 111. 
dx dx  

Hence, from (2.3), 

(2.3) 
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and the axial force in the bar is 

N = E A c  (equation (2.7)). (2.8) 

From (2.3), a change of strain, A&, corresponding to displacement changes Au and 
Aw is given by 

Ac:=---- dAu +( dz -+--) dw dAw Ti-+j(dx) 1 dAw 

dx dx dx 

where the final (higher-order) term in (2.9) becomes negligible as Aw gets very small. 
Using (2.5) and (2.6): 

I f  a set of virtual nodal displacementst, 

are applied, the resulting strain is, from (2.9), 

where 

(2.10) 

(2.1 1) 

(2.12) 

(2.13) 

with 

(2.14) ,721 + w21 p = -____- 

1 

In deriving (2.12) from (2. IO), the quadratic terms involving 8 ~ : ~  have been considered 
negligible. 

The virtual work equation can (see (1.77)) be expressed as 

V = O ~ E ,  d V - qTdp, = 0 (2.15) S 
where qe are the external nodal forces corresponding to the nodal displacements, dp,. 
Because 8 6 ,  can be expressed, via (2.12), in terms of dp,, equation (2.15) can be 
re-written as 

where qi is the internal force vector, given by 

qi  = a b d V =  Nlb. s 
(2.16) 

(2.17) 

'This ordering would not be the most convenient for element assembly, but the ordering could easily be 
altered prior to such assembly. 
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For equilibrium, (2.16) should be satisfied for any virtual displacements. 6pv. Hence 

g = q . - q  i e  = o  (2.18) 

From (1.80), K, = dg/dp and a truncated Taylor expansion of g, about an ‘old’ 
where g is the out-of-balance force vector. 

configuration, g, gives 

g,, = g, + %! - 6p = g,, + Kt6p. (2.19) 
8P 

Hence, from equations (2.17)-(2.19), 

Hence, 

or 

From (2.8) and (2.12): 

ab 
K, = EAlbbT + 1N ~- 

dP 

(2.20) 

(2.21) 

(2.22) 

. (2.23) 

B - P 2  P 2  
This is the matrix equivalent of (1.9) with the second matrix being the ‘initial stress’ 
matrix. Equation (1.9) can be recovered by setting 

u1 = w 1  = zI = u2 = 0, w 2  = w and z2  = z. (2.24) 

2.2 A SET OF FORTRAN SUBROUTINES 

We will now provide a set of Fortran subroutines to enable the solution of the simple 
bar-spring problems of Chapter 1 and others to be discussed in Section 2.6 and 
Chapters 3 and 9. In its most general form, the adopted bar-spring system is that 
shown in Figure 2.2, with the bar element of Figure 2.1 being surrounded by up to 
four linear ‘earthed springs’ and one horizontal linear spring, connecting variables 1 
and 5. For many of the problems the linear spring E<,, will be omitted; however, the 
potential to include this spring allows the solution of the complete range of NAFEMS 
bar-spring problems [C 1, D 11 which include both ‘snap-throughs’ and ‘snap-backs’ 
(Chapter 9). In relation to Figure 2.2, for the shallow truss elements, there is assumed 
to be no effective difference between x21 and 1. 

The following subroutines are not designed for maximum computer efficiency but 
rather to illustrate the basic concepts. To a considerable extent, the subroutines are 
self-explanatory. However, a brief synopsis will be given above each routine. The 



A SET OF FORTRAN SUBROUTINES 27 

4 

Figure 2.2 Bar-spring system. (a) Bar element with springs; (b) variables. 

computer programs of Sections 2.3-5 will incorporate these subroutines to produce 
programs for the analysis of shallow trusses. These computer programs are also 
designed to incorporate the deep-truss elements of Chapter 3 and hence the present 
subroutines will include some ‘dummy variables’ that will only be used for the deep 
trusses. 

2.2.1 Subroutine ELEMENT 

This subroutine forms the internal force vector Fl(4) (using equation (2.17)) and/or 
the element tangent stiffness matrix AKT(4,4) (using equation (2.23)) for the shallow 
truss element. Only the upper triangle is formed but the full 4 x 4 structure is used. 

SUBROUTINE ELEMENT (FI,AKT,AN,X,Z,P,E,ARA,AL,IWRIT,IWR,IMOD, 

ARGUMENTS IN LINE ABOVE AND ARRAY X NOT USED FOR SHALLOW TRUSS 
1 IDUM,ADUMI ,ADUM2) 

C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

FOR SHALLOW TRUSS ELEMENT 
IMOD= 1 COMPUTES INT. LD. VECT. FI 
IMOD=2 COMPUTES TAN. STIFF. AKT 
IMOD = 3 COMPUTES BOTH 

AN=lNPUT TOTAL FORCE IN BAR 
Z = INPUT =Z COORD VECTOR 
P=lNPUT=TOTAL DISP. VECTOR 
AL = INPUT = LENGTH OF ELEMENT 
EA=lNPUT=YOUNGS MOD AND ARA (INPUT)=AREA OF ELEMENT 

IF IWRIT.NE.0 WRITES OUT FI AND/OR AKT ON CHANNEL IWR 

IMPLICIT DOUBLE PRECISION (A- H,O-Z) 
DIM ENS10 N AKT (4,4), FI (4) ,Z ( 2 ) ,  P( 4) ,X (2) 
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C 
€A = E*ARA 
EAL = EAIAL 
221 =Z(2)-Z( I )  
w21 = P(4) - P(3) 
BET = (221 + W21 )/AL 

IF (IMOD.NE.2) THEN 
COMPUTES INT. FORCE VECT. (SEE (2.17)) 

C 

C 
FI(1)= -1.DO 
Fl(2) = - 1 .DO 
Fl(3) = -BET 
Fl(4) = BET 
DO 1 1=1,4 

1 FI(I) =AN*FI(I) 
IF (IWRIT.NE.0) THEN 
WRITE (IWR,1000) (FI(I),I=l,4) 

1000 FORMAT(/,IX,'INT. FORCE VECT. FOR TRUSS EL IS1,/,lX,4G13.5) 
ENDIF 

ENDIF 

IF (IMOD.NE.l) THEN 
COMPUTES TAN STIFF. MATRIX (UPPER TRIANGLE) (SEE (2.23)) 
AKT(I , l )= l .DO 

AKT( 1,3) = BET 

AKT(2,2) = 1 .DO 

AKT(2,4) = BET 
AKT(3,3) = BET*BET 
AKT(3,4) = -AKT(3,3) 
AKT(4,4) = BET*BET 
DO 12 1=1,4 
DO 12 J=1,4 

C 

C 

C 

AKT( 1,2) = - 1 .DO 

AKT(1!4) = -BET 

AKT(2,3) = - BET 

12 AKT(I,J) =EAL*AKT(I,J) 
C 
C 
C 

NOW ADD GEOM. OR INlT STRESS MATRIX (SEE (2.23)) 

ANL=AN/AL 
AKT(3,3) = AKT(3,3) +ANL 
AKT(3,4) = AKT(3,4) -ANL 
AKT(4,4) = AKT(4,4) + ANL 
IF (IWRIT.NE.0) THEN 
WRIT (IWR,1001) 

1001 FORMAT(/,lX, 'TAN. STIFF. MATRIX FOR TRUSS EL. IS',/) 
DO 14 1=1,4 

14 WRITE (IWR,67) (AKT(I,J),J = 1,4) 
67 FORMAT (1 X,7G13.5) 

ENDIF 

ENDIF 

RETURN 
END 

C 

C 
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2.2.2 Subroutine INPUT 

This subroutine inputs the data for the geometry, properties, boundary conditions 
and loading (for sample data see Section 2.6.1.1). The first variable, NV, defines the 
number of variables (4 or 5). If NV is four the spring K,, of Figure 2.2 is omitted. 
The subroutine also inputs €A, and AL, the length of the bar. An initial force in the 
bar (usually zero), N o ,  is also input. For consistency with some of the work in 
Chapter 3 which includes large strains, the variable EA is subdivided into E and A 
(the variable ARA although for the current work this subdivision is unnecessary. 

The subroutine requires the z coordinates of nodes 1 and 2 (Figures 2.1 and 2.2). 
In addition, a fixed external load (or displacement) vector, qe = QFI(NV) and a 
boundary condition counter, IBC(NV) are input. The constituent terms of these 
vectors relate to the four or five degrees of freedom (Figure 2.2). 

Considering firstly standard load control, QFI(I) will contain a load (possibly zero) 
if the variable, I, is free. It will be zero if the variable, I, is constrained to zero. 
Simultaneously, IBC(I) will be set to zero if the variable is free or to unity if the 
variable is constrained to zero. To apply displacement control, QFI(I) is set to the 
magnitude of the fixed prescribed displacement (to be incremented), while IBC(I) is 
set to - 1 (see Section 2.2.5 and the example in Section 2.6.4.4). 

The routine inputs the number of linear 'earthed springs' (NDSP-up to four) 
followed by the degree-of-freedom numbers (IDSP(I), I = 1 ,NDSP) and the equivalent 
spring stiffnesses (AKSP(I),I = 1 ,NDSP). Finally, if NV is five, the subroutine inputs the 
stiffness of spring K,, (AK15) which connects variables 1 and 5 (Figure 2.2). 

SUBROUTINE INPUT (E,ARA,AL,QFI,X,Z,ANIT,lBC,IRE,lWR,AK14S,ID14S, 
1 NDSP,NV,AK15, 
2 ADUMI ,IDUM) 

C 
C 
C 
C 

ARGUMENTS IN LINE ABOVE AND ARRAY X NOT USED FOR SHALLOW TRUSS 

READS INPUT FOR TRUSS ELEMENT 

IMPLICIT DOUBLE PRECISION (A-H, 0-Z) 
DIM ENSlON X(2) ,Z( 2) ,QFI( NV) ,IBC( NV) ,AKI 4S(4) ,ID 1 4S(4) 

READ (IRE,*) NV.EA,AL,ANIT 
E=EA 
ARA = 1 .DO 
WRITE (IWR, 1000) NV,EA,AL,ANIT 

C 

1000 FORMAT(/,IX,'NV= NO. OF VARBLS. =',15,/,1X, 
1 'EA=',G13.5,/,1X, 
2 'AL=EL. LENGTH=',G13.5,1X, 
3 'ANIT = INIT. FORCE = ',G13.5) 

IF (NV.NE.4.AND.NV.NE.5) STOP 'INPUT 1000' 
READ (IRE,*) Z(I),Z(2) 
WRITE (IWR,1001) Z(l),Z(2) 

1001 FORMAT(/,IX,'Z CO-ORD OF NODE 1 =',G13.5,1X, 
1 'Z CO-ORD OF NODE 2=',G13.5) 
READ (IRE,*) (QFI(I),I=t,NV) 
WRITE (IWR,1002) (QFI(I),I= 1,NV) 
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1002 FORMAT(/,lX, 'FIXED LOAD OR DISP. VECTOR,QFI =',/,IX,5G13.5) 
WRITE (IWR, 1008) 

1008 FORMAT(/,IX, 'IF IBC(I)-SEE BELOW- = O ,  VARIABLE =A LOAD',/,lX, 
2 'IF IBC(I)-SEE BELOW-= - I ,  VARIABLE = A DISP.') 

READ (IRE,*) (IBC(I),I = 1 ,NV) 
WRITE (IWR,1003) (IBC(I),I= 1,NV) 

1003 FORMAT(/,IX,'BOUND. COND. COUNTER, IBC',/,IX, 
1 ' =O ,  FREE: = 1 ,  REST. TO ZERO: = - 1 REST. TO NON-ZERO',/,lX, 
2 515) 

READ (IRE,*) NDSP 
IF (NDSP.NE.0) THEN 
READ (IRE,*) (ID14S(l),l= 1,NDSP) 
READ (IRE,*) (AK14S(I),I= 1,NDSP) 
DO 40 I = 1 ,NDSP 
WRITE (IWR,1004) AK14S(I), ID14S(I) 

'ADDED AT VAR. NO. ',15) 
1004 FORMAT(/,l X, 'LINEAR SPRING OF STIFFNESS',Gl 3.5,/,1 X, 

1 
40 CONTINUE 

ENDIF 

IF (NV.EQ.5) THEN 
READ (IRE,*) AK15 
WRITE (IWR,1005) AK15 

C 

1005 FORMAT(/,IX, 'LINEAR SPRING BETWEEN VARBLS. 1 and 5 OF STIFF ', 

1 G13.5) 
ENDIF 

RETURN 
END 

C 

2.2.3 Subroutine FORCE 

This subroutine computes the axial force N in the bar using equations (2.7) and (2.8). 

SUBROUTINE FORCE(AN,ANIT,E,ARA,AL,X,Z,P,IWRIT,IWR, 

ARGUMENTS IN LINE ABOVE AND ARRAY X NOT USED FOR SHALLOW TRUSS 

COMPUTES INTERNAL. FORCE IN AN SHALLOW TRUSS ELEMENT 

1 IDUM, ADUMI ,ADUM2,ADUM3) 
C 
C 
C 
C USING (2.7) AND (2.8) 

IMPLICIT DOUBLE PRECISION (A-H, P-Z) 
DIM ENS10 N Z (2), P( 4) ,X( 2) 

€A = E*ARA 
EAL = EA/AL 

C 

U21 =P(2)-P(1) 
w21 = P(4) - P(3) 
221 =Z(2)-Z( I )  
AN = U21 + (221 *W21 /AL) +0.5DO*(W21 *W21 *AL) 
AN = EAL*AN + ANlT 
IF (IWRIT.NE.0) WRITE (IWR,1000) AN 
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1000 FORMAT(/,l X,'AXIAL FORCE AN = ',G13.5) 
RETURN 
END 

2.2.4 Subroutine ELSTRUC 

This subroutine puts the element stiffness matrix AKTE(4,4) into the structure stiffness 
matrix AKTS(NV,NV) (with NV=4 or 5),  adds in the 'earthed springs' (if NDSP>O) 
and, if NV = 5, the linear spring between variables 1 and 5. Depending on the input 
mode parameter, IMOD, the subroutine may alternatively, or also, apply similar 
operations to the internal forces FI. 

SUBROUTINE ELASTRUC(AKTE,AKTS, NV, AK15,ID14S,AK14S,NDSP,FI,PT, 
1 IMOD,IWRIT,IWR) 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

C 

C 

C 

C 

C 

C 

40 

1002 

FOR IMOD=2 OR 3 
PUTS EL-STIFF MATRIX AKTE(4,4) INTO STRUCT. STIFF AKTS(NV,NV) 
IF NV=5, ALSO ADDS IN LINEAR SPRING AK15 BETWEEN VARBLS. 1&5 

USING PROPERTIES IN AK14S(4) AND DEGS. OF F. IN IDSPS(4) 
THROUGHOUT ONLY WORKS WITH UPPER TRIANGLE 
FOR IMOD=I OR 3 
MODIFIES INTERNAL FORCE VECT., FI, TO INCLUDE EFFECTS FROM 
VARIOUS LINEAR SPRINGS USING TOTAL DISPS., PT. 

ALSO ADDS IN NDSP EARTHED LINEAR SPRINGS FOR VARBLS. 1-4 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION AKTE(4,4),AKTS( NV,NV),ID14S(4),AK14S(4) 
DIMENSION FI(NV,)PT(NV) 

IF (IMOD.NE.2) THEN 
MODIFY FORCES 
IF (INDSP.NE.0) THEN 
FOR EARTHED SPRINGS 
DO 40 I = 1 ,NDSP 
IDS = ID14S(I) 
FI(IDS) = FI(IDS) +AK14S(I)*PT(IDS) 
CONTINUE 
ENDIF 

IF (NV.EQ.5) THEN 
MODIFY FOR SPRING BETWEEN VARBLS. 1 AND 5 
FI(1) = FI(1) + AK15*(PT(1) - PT(5)) 
F1(5)=AK15*( -PT( l )+PT(5))  
ENDIF 

IF (IWRIT.NE.0) WRITE (IWR,1002) FI 
FORMAT(/,l X,'STR. INT. FORCE VECT lS'/, l X3G13.4) 

ENDIF 
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C 

C 

C 
C 

C 
C 

C 
C 

C 

11 
10 

21 
20 

30 

1001 

50 
67 

C 

C 

FORTRAN COMPUTER PROGRAM 

IF (IMOD.NE.l) THEN 
WORK ON STIFFNESS MATRIX: CLEAR STRUCT. STIFFNESS MATRIX 
DO 10 I= l ,NV 
DO 11 J= I ,NV 
AKTS(I,J) =O.DO 
CONTINUE 

INSERT EL. STIFFNESS MATRIX 
DO 20 1=1,4 
DO 21 J=1,4 
AKTS(I,J) = AKTE(I,J) 
CONTINUE 

SPRING BETWEEN VARBLS. 1&5 
IF (NV.EQ.5) THEN 
AKTS( 1 , 1 ) = AKTS( 1 , I  ) + AK 1 5 
AKTS( 1,5) = AKTS( 1,5) AK15 
AKTS(5,5) = AKTS(5,5) + AK15 
ENDIF 

EARTHED SPRINGS FOR VARBLS. 1-4. 
IF (NDSP.NE.0) THEN 
DO 30 I = 1 ,NDSP 
IDS= ID14S(I) 
AKTS( I DS, I DS) = AKTS( IDS, I DS) + AK 1 4S( I) 
CONTINUE 
ENDIF 

IF (IWRIT.NE.0) THEN 
WRITE (IWR,1001) 
FORMAT(/,IX, ‘FULL STRUCT. TAN. STIFF. IS’,/) 
DO 50 I =  1,NV 
WRITE (IWR,67) (AKTS(I,J),J = 1 ,NV) 
FORMAT( 1 X,7G13.5) 
ENDIF 

ENDIF 

RETURN 
END 

2.2.5 Subroutine BCON and details on displacement control 

The tangent stiffness equations can be assumed to be of the form 

(2.25) 

where subscript f means ‘free’ and subscript p means ‘prescribed’. (In practice, the 
ordering need not be of the form of (2.25).) Considering, firstly the case where the 
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displacements pp are constrained to zero, subroutine BCON effectively alters (2.25) to 
become 

(2.26a) 

This is achieved in subroutine BCON by setting the leading diagonal term of 
K = AKT(J,J) to unity if the boundary condition counter IBC(J) is unity (see Section 
2.2.2). In addition, the remainder of the Jth row and column are set to zero. Hence 
a ‘dummy equation’ is introduced (similar, in concept, to the second row of (2.26a)). 
(It  is assumed that no loads are applied at  constrained nodes.) 

If the displacements, pp, are to be constrained to non-zero values, instead of (2.26a)’ 
(2.25) is conceptually altered to 

(2.26b) 

These modifications are applied within subroutine BCON although, as previously 
discussed, the variables are not necessarily partitioned into the ordering of 
pT = (p:, PE). In practice, the procedure of (2.26b) will cover the procedure of (2.26a) 
where pp = 0 and there is no need to distinguished between ‘restrained variables’ (with 
pp = 0) and ‘prescribed variables’ (with pp + 0). Hence the same procedure is applied 
whether the boundary condition counter, IBC(J) is 1 or - 1.  The distinction is 
introduced for clarity in the input and for use with some of the more advanced 
solution procedures of Chapter 9. 

SUBROUTINE BCON(AK,IBC,N,F,IWRIT,IWR) 
APPLIES B. CONDS. TO MATRIX AK AS WELL AS 
ALTERING ‘LOAD VECTOR’, F FOR PRESC. DISPS. 
BY SETTING DlAG = 1 .  AND ROW AND COL TO ZERO IN REST. 
USES COUNTER IBC WHICH IS 0 IF FREE, 1 IF REST. TO ZERO, 

ON ENTRY F HAS LOADS FOR FREE VARIABLES AND DISPS. FOR 
REST. (POSSIBLY ZERO) VARIABLES. 
ON EXIT THE LATTER ARE UNCHANGED BUT LOADS ARE ALTERED 

- 1  IF REST. TO NON-ZERO VALUE. 

IMPLICT DOUBLE PRECISION (A-H, 0-Z) 
DIMENSIONS IBC(N) 
DIMENSION AK(N,N),F(N) 

C 

C 

IPRS = 0 
DO 10 I = I , N  
II = IBC(I) 
IF (II.LT.0) lPRS= 1 
IF (II.NE.0) AK(I,I) = 1 .DO 
IF (1.EQ.N) GO TO 10 
DO 20 J = 1  +1,N 
JJ = IBC(J) 
IF (II.EQ.O.AND.JJ.EQ.0) GO TO 20 
ABOVE BOTH FREE, BELOW BOTH REST. 
IF (II.NE.O.AND.JJ.NE.0) GO TO 25 
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C 

C 

C 

25 
20 
10 

1000 

30 

1001 
67 

C 

BELOW I REST OR PRESC. 
IF (II.NE.0) THEN 

BELOW J REST OR PRESC 
ELSE 

ENDIF 
AK(I,J) =O.DO 
CONTINUE 
CONTINUE 

F(J) = F(J) -AK(I,J)*F(I) 

F(I) = F(I) -AK(I,J)*F(J) 

IF (IWRIT.NE.0) THEN 
WRITE (IWR,1000) 
FORMAT(/,IX, ‘STIFF. MAT. AFTER B. CONDS. IS’,/) 
DO 30 I = I , N  
WRITE (IWR, 67) (AK(I,J),J = 1 ,N) 
IF (IPRS.EQ.l) WRITE (IWR,1001) F 
FORMAT(/,i X, ‘MODIFIED LOAD VECTOR AFTER B CONDS. IS ’ , / , I  X5G13.4) 
FORMAT(1 X,7G12.5) 
ENDIF 

RETURN 
END 

2.2.6 Subroutine CROUT 

Conceptually, subroutine CROUT applies the Crout factorisation [C2]  to the tangent 
stiffness matrix, K,. Here, L is a lower triangular matrix with unit terms on the leading 
diagonal and D is a diagonal matrix containing the ‘pivots’. In practice, the routine 
is entered with AK(N,N) containing the upper triangle of K, and exits with AK(N,N) 
containing LT while a vector D(N) exists with the diagonal pivots. 

SUBROUTINE CROUT(AK,D,N,IWRIT,IWR) 
C 
C 
C 
C 

C 

3 
2 

4 

INPUTS AK(N,N); OUTPUTS UPPER TRIANGLE IN AK AND DlAG 
PIVOTS IN D(N) 

I M P LICIT DO U B LE P REC IS10 N ( A-H ,O-Z) 
DIMENSION AK(N,N),D(N) 

D(1) =AK( I  , I )  
DO 1 J=2,N 

A=AK(I,J) 
IF (I.EQ.1) GO TO 2 

DO 2 I = I , J - I  

DO 3 L = l ,  1-1 
A= A - AK(L,J)*AK(L,I) 
AK(I,J) = A  

AK (I, J ) = AK ( I, J)/A K (I, I) 
DO 4 I = l , J - I  

DO 5 L = I , J - 1  



A SET OF FORTRAN SUBROUTINES 

~ 

35 

5 
1 

C 

1000 

10 
67 

1001 

C 

2.2.7 

AK(J,J) = AK(J,J) -AK(L,J)*AK(L,J)*AK(L,J) 
D(J) =AK(J,J) 

IF (IWRIT.NE.0) THEN 
WRITE (IWR,lOOO) 
FORMAT(/,l X, 'FACTORISED MATRIX IS',/) 
DO 10 I = l , N  
WRITE (IWR,67) (AK(I,J),J = 1 ,N) 
FORMAT( 1 X,7G12.5) 
WRITE (IWR,1001) 
FORMAT(/,lX, 'DIAG. PIVOTS ARE',/) 
WRITE (IWR,67) (D(l),l= 1,N) 
ENDIF 

RETURN 
END 

Subroutine SOLVCR 

This subroutine applies forward and backward substitution on the vector Q using 
the previously obtained LDLT factors (in AK and D-see Section 2.2.6). Hence Q enters 
as a load vector and exits as a displacement vector so that the routine obtains: 

C 
C 
C 

C 
C 

2 
1 

1000 

q = K , ' q  

SUBROUTINE SO LVC R (AK, D ,Q, N , I W R IT, IW R) 

APPLIES FORWARD AND BACK CROUT SUBS ON Q 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION AK(N,N),D(N),Q(N) 

FORWARD SUBS. 
DO 1 J=2,N 
DO 2 L = l , J - 1  
Q(J) = Q(J) - AK(L,J)*Q(L) 
CONTINUE 
IF (IWRIT.NE.0) THEN 
WRITE (IWR,1000) ( Q ( l ) , l =  1 ,N) 
FORMAT(/,l X,'DISP.INCS AFTER FORWARD SUBS. ARE',/, 

1 1 X,7G 12.5) 
ENDIF 

C 
C BACK SUBS. 

DO 3 I = l , N  
3 Q( I )  = Q(I)/D(I) 

C 
DO 4 JJ =2,N 
J = N  +2-JJ 
DO 5 L= I , J -1  

5 Q(L) =T Q(L) - AK(L,J)?Q(J) 
4 CONTINUE 

(2.28) 
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C 
IF (IWRIT.NE.0) THEN 
WRITE (IWR,1001) (Q(I),I= 1,N) 

1001 FORMAT(/,lX,’DISP INCS. AFTER BACKWARD SUBS. ARE’,/, 

ENDlF 
1 1 X,7G12.5) 

C 
RETURN 
END 

2.3 
AN INCREMENTAL (EULER) SOLUTION 

A FLOWCHART AND COMPUTER PROGRAM FOR 

A computer program for an incremental solution can be generated by extending the 
concepts of Sections 1.2.1 and 1.3. In particular, solutions will be obtained for a load 

Call INPUT obtain the geometry, properties, fixed loading, qef the boundary 
conditions counter, IBC and spring stiffness parameters 

Read in AA and the number of increments, NlNC I p=O, N = N,,A=O I 
I Begin loop through the increments, INC = 1,NING [ 

Aq = Qef 

Call ELEMENT which gives K, = fn.(N,z,EA,l,p) for the truss el. 
Call ELSTRUC which puts the el. stiff. matrix into the struct. 

stiff. matrix and modifies for earthed (and other) linear springs 

Call BCON which applies the boundary conditions. 
Call GROUT which computes K, = LDLT. 

Call SOLVCR which computes Ap = K, ‘Aq 
using the previously computed LDLT factors 

p =  p +  Ap;A = I. + AA 
Call FORCE which computes N = fn.(EA,l,z,p) 

Figure 2.3 Flowchart for an incremental solution (program NONLTA). 
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vector 

(2.29) 

where qef is a fixed external load vector that is input in subroutine INPUT and ;1 is 
the load-level parameter. For the present, we will work with fixed increments so that, 
in addition to qef, the program inputs the load-increment factor, AA. 

A flowchart for the incremental solution is given in Figure 2.3 and a computer 
program (NON LTA) follows. 

2.3.1 Program NONLTA 

PROGRAM NONLTA 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 

PERFORMS NON-LIN. INCREMENTAL SOLN. FOR TRUSS 
NV= NO. OF VARIABLES (4 OR 5) 
QFI =FIXED LOAD VECTOR 
IBC =B. COND. COUNTER (0= FREE, 1 = FIXED) 
Z = C  COORDS OF NODES 
QlNC = INC. LOAD VECTOR 
PT = TOTAL DISP. VECTOR 
AKTS = STRUCT. TAN. STIFF. MATRIX 
AKTE = ELEMENT TAN. STIFF. MATRIX 
FI (NOT USED HERE) =INTERNAL FORCES 
D = DIAGONAL PIVOTS FROM LDL (TRAN) FACTORISATION 

AKl4S= EQUIV. LINEAR SPRING STIFFNESSES 
ID14S=VAR. NOS. (1 -4) AT WHICH LIN EARTHED SPRINGS 

AK15=LlNEAR SPRING STIFF BETWEEN VARBLS. 1 and 5 (IF NV=5) 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIM ENSlON QFI (5) ,IBC( 5) ,Z(  2) ,QI NC( 5) ,PT( 5) ,AKTE( 4,4) 
DIM ENS10 N FI (5), D(5) ,AK14S(4) ,ID 1 4S( 4) ,AKTS(25) ,X( 2) 
ARRAY X ABOVE NOT USED FOR SHALLOW TRUSS 

IRE=5 
IWR=6 
OPEN (UNIT=5,FILE=' ') 
OPEN (UNIT=G,FILE=' ') 

C 

C 
C 

CALL INPUT(E,ARA,AL,QFI,X,Z,ANIT,IBC,IRE,lWR,AKl4S,ID14S,NDSP, 
1 NV,AK 15, 
2 POISS,ITYEL) 

ARGUMENTS IN LINE ABOVE NOT USED FOR SHALLOW TRUSS 
BELOW RELEVANT TO DEEP TRUSS BUT LEAVE FOR SHALLOW TRUSS 
ALN = A L  
ARN =ARA 

C 
READ (IRE,*) FACI,NINC,IWRIT 
WRITE (IWR,1000) FACI, NINC,IWRIT 



C 

C 
C 

C 
C 

C 
C 

C 
C 
C 

C 

C 

C 
C 

C 
C 

C 
C 

C 

C 

1000 FORMAT(/,IX, 'INCREMENTAL LOAD FACTOR= ',G13.5,/,1X, 
1 'NO. OF INC. (NINC)= ',15,/,1X, 
2 'WRITE CONTROL (IWRIT) = ',15,/,3X, 
3 'O=  LIMITED ; 1 =FULL') 
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END 

5 

1001 

10 

20 

1002 

AN = ANlT 
FACT = O.DO 
DO 5 I= l ,NV 
PT(I) = 0.DO 

DO 100 INC = 1 ,NINC 
FACT = FACT + FACl 
WRITE (IWR,1001) INC,FACT 
FORMAT(//,IX,'INC = ',15,'LD. FACTOR= ',G13.5) 
DO 10 I= l ,NV 
QINC(I) = FACI*QFI(I) 

BELOW FORMS EL. TAN. STIFF MATRIX AKT 
CALL ELEMENT (FI,AKTE,AN,X,Z,PT,E,ARA,AL,lWRlT,lWR,2, 

1 ITYEL,ALN,ARN) 
ARGUMENTS IN LINE ABOVE NOT USED FOR SHALLOW TRUSS 

CALL ELSTRUC(AKTE,AKTS, NV,AK15, ID 14S,AK14S, N DSP, FI, PT, 
1 2, I WRIT, I W R) 
ABOVE PUTS EL.STIFF AKTE IN STRUC STIFF AKTS AND 
ADDS EFFECTS OF VARIOUS LINEAR SPRINGS 

CALL BCON(AKTS,lBC,NV,QINC,IWRIT,IWR) 
ABOVE APPLIES B. CONDITIONS 
CALL CROUT(AKTS,D,NV,IWRIT,IWR) 
ABOVE FORMS LDL(TRAN) FACTORISATION INTO AKT AND D 
CALL SO LVC R ( AKTS, D ,Q I NC, NV, I WRIT, I W R) 
ABOVE SOLVES EQNS. AND GETS INC. DISPS IN QIN 

DO 20 I = 1 ,NV 
PT(I)=PT(I)+QINC(I) 
ABOVE UPDATES TOTAL DISPS. 

WRITE (6,1002) (PT(I),I = 1 ,NV) 
FORMAT(/,IX, 'TOTAL DISPS. ARE',/,l X,5G13.5) 

BELOW FORMS TOTAL FORCE IN BAR 
CALL FORCE(AN,ANIT,E,ARA,AL,X,Z,PT,IWRIT,IWR, 

1 ITYEL,ARN,ALN,POISS) 
ABOVE ARGUMENTS NOT USED FOR SHALLOW TRUSS 

100 CONTINUE 

STOP 'NONLTA' 
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2.4 

METHOD 

A FLOWCHART AND COMPUTER PROGRAM FOR AN 
ITERATIVE SOLUTION USING THE NEWTON-RAPHSON 

A computer program for an iterative solution can be generated by extending the 
concepts of Sections 1.2.2 and 1.3. Because an iterative procedure is being adopted, 
a convergence criterion must be introduced. A detailed discussion on convergence 
criteria will be given in Section 9.5.4. In the meantime, we will adopt a simple ‘force 
criterion’ whereby, 

1 1  g 1 1  = (gTg)’I2 -= /I 1 1  qe 1 )  
II gll < PI1 rll 

load control (a) 

displacement control (b) 
(2.30) 

where g is the out-of-balance force vector and qe is the current total external load 
vector while r is the reaction vector (with non-zero values where the displacements 
are constrained). The introduction of the r terms in (2.30) allows the procedure to 
work when displacement control is adopted and the external load vector, qe, is zero. 
(In very rare circumstances, under displacement control, 1 1  r I /  may be zero; hence the 
alternative convergence criterion included in subroutine ITER (Section 2.4.2) and its 
flowchart (Figure 2.4, Section 2.4.2).) Typical values for p lie between 0.001 and 0.01 
although a tighter tolerance might be required for displacement control because r 
will generally have terms for each component so that, with the same p, (2.30b) will 
be less severe than (2.30a). 

The reactions, r, are simply computed as being equal to the internal forces, qi (see 
(2.17)), at the constrained variables. In practice, in subroutine ITER (see Section 2.4.2), 
r is set to qi for all variables. Hence, for the early iterations, r will include the out- 
of-balance forces at  the free variables but, as the solution procedure converges, these 
terms will tend to zero. 

For the master segment of the computer program (NONLTB--see below), we simply 
read in, as before, the geometric data and properties as well as the fixed external 
load vector, qef, via subroutine INPUT. In addition, we input a starting ‘trial vector’, 
p,, = PT(NV) (possibly zero), and the required convergence tolerance, p (see (2.30)). 
Finally, the program calls a subroutine ITER (see Section 2.4.2) which performs the 
Newton-Raphson iterations until convergence is achieved. A flowchart for this 
subroutine is given in Figure 2.4. The subroutine is designed to operate with the 
general incremental/iterative strategy of the next section. Hence it allows either full 
or modified N-R iterations. However, only the former may be used with the program 
NONLTB. 

2.4.1 Program NONLTB 

PROGRAM NONLTB 
C 
C 
C 

PERFORMS NEWTON-RAPHSON ITERATION FROM STARTING PREDICTOR, PT 
NV=NO. OF VARIABLES (4 OR 5) 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

C 

C 
C 

C 

IBC = B. COND. COUNTER (0= FREE, 1 = FIXED) 
Z = Z  COORDS OF NODES 
PT = TOTAL DISP. VECTOR 
ID14S=VAR. NOS. (1-4) AT WHICH LINEAR EARTHED SPRINGS 
AK14S = EQUIV. LINEAR SPRING STIFFNESSES 
QFI =TOTAL LOAD VECTOR 
AKTS = STRUCT. STIFF. MATRIX 
AK15=LIN SPRING STIFF. BETWEEN VARBLS. 1 AND 5 (IF NV=5) 
FI = INTERNAL FORCE VECTOR 
GM=OUT-OF-BALANCE FORCE VECTOR 
REAC = REACTIONS 
X = X COORDS 
ARGUMENTS IN COMMON/DAT2/AND ARRAY X NOT USED FOR SHALLOW TRUSS 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
COMMON /DAT/ X(2),Z(2),E,ARA,AL,ID14S(4),AK14S(4),NDSP,ANIT,AK15 
COMMON /DAT2/ ARN, POISS,ALN, ITY EL 
DIMENSION QFI (5),IBC(5), PT( 5),AKTS(25),D( 5) ,G M( 5),Fl(5) 
DIMENSION REAC(5) 

IRE=5 
IWR=6 
OPEN (UNIT=5,FILE=' ')  
OPEN (UNIT=6,Fll.E=' ') 

CALL INPUT(E,ARA,AL,QFI,X,Z,ANIT,IBC,IRE,lWR,AKl4S,ID14S,NDSP, 
1 NV,AKl 5 
2 POISS,ITYEL) 
ARGUMENTS IN LINE ABOVE NOT USED FOR SHALLOW TRUSS 
BELOW RELEVANT TO DEEP TRUSS BUT LEAVE FOR SHALLOW TRUSS 
ALN =AL 
ARN =ARA 

READ (IRE*) (PT(I),I=l,NV) 
WRITE (IWR,2000) (PT(I),I=I,NV) 

READ (IRE*) BETOK,IWRIT 
WRITE (IWR,2001) BETOK,IWRIT 

2000 FORMAT(/,I X,2STARTING PREDICTOR DISPS ARE',/, 1 X,6G 12.5) 

2001 FORMAT(/,l X,'CONV. TOL FACTOR, BETOK = ',Gl2.5,/,1 X, 
2 'DIAGNOSTIC WRITE CONTROL(IWRIT) = ',15,/,3X, 
3 'O=NO ; l=YES')  

C SET TO NEWTON-RAPHSON ITERATIONS 

C 
ITERTY = 1 

CALL ITER(PT,AN,BETOK,QFI,IBC,IWRIT,IWR,AKTS,D,ITERTY,NV, 
1 GM, FI,REAC) 

C 
WRITE (IWR,1004), (PT('I,I = 1 ,NV) 

WRITE (IWR,1006) (REAC(I),I= 1,NV) 
1004 FORMAT(/,l X,'FINAL TOTAL DISPLACEMENTS ARE',/,l X5G12.5) 
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I. 

Call BCON which applies the boundary conditions. 
Call CROUT which computes K, = LDLT 

I 

41 

1006 FORMAT(/,l X,'FINAL REACTIONS ARE',/,l XSG12.5) 

1005 FORMAT(/,IX, 'AXIAL FORCE IN BAR IS ',G12.5) 
WRITE (IWR.1005) AN 

STP 'NONLTB' 
END 

2.4.2 Flowchart and computer listing for subroutine ITER 

Set max. number of iterations, NITMAX. 
Begin iterative loop, ITE = 1, NITMAX 

c 
Call SOLVCR which computes 6p = - K,- 'g 
using the previously computed LDLT factors 

P = P + 6 P  

1 
@ 

Figure 2.4 Flowchart for subroutine ITER which performs equilibrium iterations and can be used 
with program NONLTB (N-R iteration) or NONLTC (combined incremental/iteratlve) solution 
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C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

C 

C 

C 

C 
C 
C 
C 

C 
C 
C 
C 
C 

C 
C 
C 

1 

1005 

S U BRO UTI N E ITE R ( PT, A N , B ET0 K, Q EX, I BC, I W R IT, I W R, AKTS, D , ITE RY, N V, 
G M, FI, REAC) 

INPUTS PREDICTOR DISPS. PT(NV) AND EXT. FORCE VECTOR QEX(NV) 
ALSO BETOK = CONV. TOL, IBC = B. CON COUNTER 
ITERATES TO EQUILIBRIUM: OUTPUTS NEW PT AND FORCE IN BAR,AN 

IN LATTER CASE, AKTS AND D INPUT AS CROUT FACTORS (D = PIVOTS) 
LOCAL ARRAY IS AKTE=EL. STIFF. MATRIX 
ARGUMENTS IN COMMON/DAT2/AND ARRAY X NOT USED FOR SHALLOW TRUSS 

IF ITERTY (INPUT)=l USES FULL N-R, = 2  USES MOD N-R 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
COMMON /DAT/ X(2),Z(2),E,ARA,AL,ID14S(4),AK14S(4),NDSP,ANIT,AK15 
COMMON /DAT2/ ARN,POISS,ALN,ITYEL 
DIM ENSlON PT( NV) ,QEX( NV), IBC( NV), REAC( NV) 
DIMENSION FI(NV),GM(NV),AKTS(NV,NV),D(NV),AKTE(4,4) 

SMALL ~ 0 . 1  D -2 
NlTMAX = 16 
IMOD = 1 
IF (ITERTY.EQ.1) IMOD = 3 

DO 100 ITE=l,NITMAX 

IF (IWRIT.EQ.1) WRITE (IWR,l005) ITE 
FORMAT(/,IX,'ITERATIVE LOOP WITH ITE = ',l5) 
BELOW CALCS FORCE IN BAR (AN) 
CALL FORCE(AN,ANIT,E,ARA,AL,X,Z,PT,IWRIT,IWR, 

ITY EL,ARN,ALN,POISS) 
ABOVE ARGUMENTS NOT USED FOR SHALLOW-TRUSS 

ABOVE CALCS FORCE IN BAR, AN: BELOW TAN STIFF AKT 
(IF NR) AND INT. FORCE VECT. FI 
CALL ELEMENT(FI,AKTE,AN,X,Z,PT,E,ARA,AL,IWRIT,IWR~IMOD, 

ABOVE ARGUMENTS NOT USED FOR SHALLOW TRUSS 
ITY E L, ALN, ARN) 

BELOW PUTS EL. STIFF. MAT., AKTE, IN STR. STIFF., AKTS AND 
ADDS IN EFFECTS OF VARIOUS LINEAR SPRINGS (IF NR) 
ALSO MODIFIES INT. FORCE VECT. FI FOR SPRING EFFECTS 
CALL ELSTRUC(AKTE,AKTS,NV,AKl5,ID14S,AK14S,NDSP,FI,PT, 

I M OD, I W R IT, I W R) 

BELOW FORMS GM =OUT-OF-BALANCE FORCE VECTOR 
AND REACTION VECTOR 
DO 10 I=l,NV 
GM(I) =O.DO 
REAC(I) = FI(I) 
IF (IBC(I).EQ.O) THEN 

ENDIF 
GM(I) = QEX(I) - FI(I) 
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10 
67 
47 

50 

20 

1001 

1003 

30 

CONTINUE 
FORMAT(6G 13.5) 
FORMAT(5I5) 

OVERWRITE SPRING REACTION TERMS 
IF (NDSP.NE.0) THEN 
DO 50 I = 1 ,NDSP 
REAC( ID1 4S( I)) = - AK14S( I)*PT( I D 14S( I)) 
ENDIF 

BELOW CHECKS CONVERGENCE 
FNORM = O.DO 
GNORM=O.DO 
RNORM =O.DO 
IDSP=O 
DO 20 I = 1 ,NV 
IF (IBC(I).EQ.O) FNORM = FNORM + QEX(I)*QEX(I) 
IF (lBC(l).EQ.-1) IDSP=l 
RNORM = RNORM + REAC(I)*REAC(I) 
GNORM =GNORM + GM(I)*GM(I) 
FNORM = DSQRT(FN0RM) 
GNORM = DSQRT(GN0RM) 
RNORM = DSQRT(RN0RM) 
BAS = MAX( FNORM,SMALL) 
BELOW DISP. CONTROL 
IF (IDSP.EQ.l) BAS = MAX(RNORM,SMALL) 
BET = GNORM/BAS 

WRITE (IWR,1001) ITEM,BET 
FORMAT/,lX,'ITERN. NO.= ',l5,' CONV. FAC.= ',G13.5) 
IF (IWRIT.EQ.1) WRITE (IWR,1003) (GM(I),I= 1,NV) 

IF (BET.LE.BETOK) GO TO 200 

ITEM = ITE - 1 

FORMAT(/,l X,'OUT-OF-BAL. FORCE VECTOR = ',/, l X,4G13.5) 

IF (ITERTY.EQ.1) THEN 
CALL BCON(AKTS,lE3C,NV,GM,IWRIT,IWR) 
ABOVE APPLIES B. CONDITIONS 
CALL CROUT(AKTS,D,NV,IWRIT,IWR) 
ABOVE FORMS LDL(TRAN) FACTORISATION INTO AKTS AND D 
ENDIF 

CALL SOLVCR(AKTS,D,GM,NV,IWRIT,IWR) 
ABOVE KETS ITER. DISP. CHANGE IN GM 

DO 30 I= l ,NV 
IF (IBC(l).EQ.O) THEN 
PT(I) = PT(I) + GM(I) 
ELSE 
PT(I) = QEX(1) 
ENDIF 
CO NTlN U E 
ABOVE UPDATES DISPS. 
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IF (IWRIT.EQ.1) WRITE (IWR,1004) (PT(I),I= 1,NV) 
FORMAT(/,l X,‘TOTAL DISPS ARE’,/,I X,6G13.5) 

CONTl N U E 

WRITE (IWR,1002) 
FORMAT(/,IX,‘FAILED TO CONVERGE****’) 
STOP ‘ITER 100’ 

CONTINUE 
RETURN 
END 

2.5 A FLOWCHART AND COMPUTER PROGRAM FOR 
AN INCREMENTAL/ITERATIVE SOLUTION PROCEDURE 

ITERATIONS 
USING FULL OR MODIFIED NEWTON-RAPHSON 

A computer program for a combined incremental/iterative solution can be generated 
by extending the concepts of Sections 1.2.3 and 1.3. The master program NONLTC 
(see below) is very similar to the incremental program NONLTA (see, Section 2.3 and 
Figure 2.3) because it involves the generation of an incremental predictor prior to 
the application, via subroutine ITER (see Section 2.4 and Figure 2.3), of equilibrium 
iterations. The latter may be full or modified Newton-Raphson depending on a 
parameter, ITERTY, that is input in program NONLTC. 

Figure 2.5 gives a flowchart for t.his program. Immediately after the beginning of 
the main incremental loop, the flowchart contains 

Aq AAqe, ( - g)* (2.3 1)  

The term in brackets is omitted (and a comment statement included in program 
NONLTC) if a ‘pure incremental predictor’ is adopted. Generally, it is better to include 
the bracketed - g term because this ensures that the out-of-balance forces from the 
previous increment are included at the start of the current increment. Hence 

(2.32) 

Clearly, if a very tight convergence tolerance is adopted, there will be no difference 
between the two formulations. If a very coarse convergence tolerance is adopted, no 
real iterations will be performed in subroutine ITER and a ‘self-correcting incremental 
formulation’ will be produced [H 1.13. However, the term ‘self-correcting’ is too strong 
for, although the procedure does make some allowance for the out-of-balance forces 
from the previous increment, it does not ensure a genuine ‘equilibrium solution’. The 
reader may like to try this out by applying a coarse con:rergence tolerance (high 
a= BETOK as input to program NONLTC) to the single-variable problem of Figure I . l .  
The ‘pure incremental’ solution to this problem was obtained in Section 1.2.1 and is 
given in Figure 1.4. It will be found that a ‘self-correcting incremental formulation’ 
will only marginally improve the solution. 
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Call INPUT obtain the geometry, properties, fixed loading, qef, 
the boundary conditions counter, IBC and spring stiffness parameters 

Read in AA and the number of increments, NlNC I p=O, N=N,,A=O I 
Begin loop through the increments, INC = 1,NINC 

~ 

A = 1 + AA 
q e  = 1 q e f  ; Aq AAqef ( - g) 

Call ELEMENT which gives K, = fn.(N,z,EA,l,p) for the truss el. 
Call ELSTRUC which puts the el. stiff. matrix into the struct. 

stiff. matrix and modifies for earthed (and other) linear springs 
I 

Call BCON which applies the boundary conditions. 
Call CROUT which computes K, = LDLT. 

Call SOLVCR which computes Ap = Kt- Aq 

P = P + A P  
Call ITER which iterates to equilibrium 

Figure 2.5 Flowchart for a combined IncrernentaViterative solution procedure using either full or 
modified Newton-Raphson iterations. 

2.5.1 

C 
C 
C 
C 
C 
C 
C 
C 
C 

Program NONLTC 

PROGRAM NONLTC 

PERFORMS NON-LIN. INCREMENTAL/ITERATIVE SOLN. FOR TRUSS 
NV = NO. OF VARIABLES(4 OR 5) 
QFI =FIXED LOAD VECTOR 
IBC = B. COND. COUNTER (0= FREE, 1 = FIXED) 
Z = Z  COORDS OF NODES 
QlNC = INC. LOAD VECTOR 
PT=TOTAL DISP. VECTOR 
QEX=TOTAL (EXTERNAL) LOAD VECTOR 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

C 

C 
C 

C 

AKTS = STR. TAN. STIFF. MATRIX 
AKTE = ELE. TAN. STIFF. MATRIX 
FI =INTERNAL FORCES 
D = DIAGONAL PIVOTS FROM LDL(TRAN) FACTORISATION 

AK14S= EQUIV. LINEAR SPRING STIFFNESS 
AK15=LIN SPRING STIFF. BETWEEN VARBS. 1 AND 5 (IF NV=5) 

REAC = REACTIONS 
X = X  COORDS 
ARGUMENTS IN COMMON/DAT2/ANDARRAY X NOT USED FOR SHALLOW TRUSS 

ID14S=VAR. NOS. (1-4) AT WHICH LINEAR EARTHED SPRINGS 

GM =OUT-OF-BALANCE FORCES 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
COMMON /DAT/ X(2),Z(2),E,ARA,AL,ID14S(4),AK14S(4),NDSP,ANIT,AK15 
COMMON /DAT2/ ARN,POISS,ALN,ITYEL 
DIMENSION QFl(5),lBC(5),QINC(5),PT(5),AKTE(4,4) 
DIM ENSlON FI (5) ,D( 5) ,QEX( 5) ,G M (5) ,AKTS( 25) ,REAC( 5) 

IRE=5 
IWR=6 
OPEN (UNIT=5,FILE=' ') 
OPEN (UNIT=G,FILE=' ') 

CALL INPUT(E,ARA,AL,QFI,X,Z,ANIT,lBC,IRE,lWR,AKl4S,ID14S,NDSP, 
1 NV,AK15, 
2 POISS, ITY E L) 

ARGUMENTS IN LINE ABOVE NOT USED FOR SHALLOW TRUSS 
BELOW RELEVANT TO DEEP TRUSS BUT LEAVE FOR SHALLOW TRUSS 
ALN =AL 
ARN =ARA 

READ (IRE,*) FACI,NINC,IWRIT 
WRITE (IWR,I 000) FACI,NINC,IWRIT 

1000 FORMAT(/,lX,'INCREMENTAL LOAD FACTOR =',G13.4,/,1X, 
1 'NO. OF INCS. (NINC) = ',l5,/,1X, 
2 'WRITE CONTROL (IWRIT) = ' , I  5/13X, 
3 'O= LIMITED; 1 =FULL') 

READ (IRE.*)BETOK,ITERTY 
WRITE (IWR,1003) BETOK,ITERTY 

1003 FORMAT(/,l X,'CONV. TOL FACTOR, BETOK = ',G13.5,/, 
1 1 X,'ITERATIVE SOLN. TYPE, ITERTY = ',l5,/, 
2 5X,'=1, FULL N-R; =2, MOD. N-R') 

AN = ANlT 
FACT = O.DO 
DO 5 I=I,NV 
GM(I) =O.DO 

5 PT(I)=O.DO 
C 
C 

DO 100 INC= 1,NINC 
FACT = FACT + FACl 
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C 

1001 

C 
C 
C 

C 
C 

C 
C 
C 

C 
C 

C 

C 
C 

10 

30 

1007 
C 

C 
C 

20 
C 
C 

1002 
C 
C 

FACl IS INC LOAD FACTOR, FACT IS TOTAL 
WRITE (IWR, 1001) INC,FACT 
FORMAT(//,I X,'INC = ',l5, 'LD. FACTOR = ',G12.5) 
DO 10 I= l ,NV 
QEX(I) = FACT*QFI(I) 
QINC(I) = FACI*QFI(I) 
USE BELOW COMMENT LINE INSTEAD OF ABOVE TO INCLUDE 
ALLOWANCE FOR PREVIOUS O.B. FORCES 
QINC(I) = FACI*QFI(I) +GM(I) 
CONTINUE 

BELOW FORMS EL. TAN. STIFF MATRIX AKTE 
CALL ELEMENT (FI,AKTE,AN,X,Z,PT,E,ARA,AL,lWRlT,lWR,2, 

1 ITY EL,ALN,ARN) 
ARGUMENTS IN LINE ABOVE NOT USED FOR SHALLOW TRUSS 
BELOW PUTS EL. STIFF. AKTE IN STRUCT. STIFF. AKTS 
AND ADDS EFFECT OF VARIOUS LINEAR SPRINGS 
CALL ELSTRUC (AKTE,AKTS,NV,AKl 5,IDI 4S,AK14S,NDSP,FI,PT, 

1 2,1WRIT,IWR) 

CALL BCON (AKTS, IBC, NV,QI NC,I WRIT, IWR) 
ABOVE APPLIES B. CONDITIONS 
CALL CROUT(AKTS,D,NV,IWRIT,IWR) 
ABOVE FORMS LDL(TRAN) FACTORISATION INTO AKTS AND D 
BELOW CHECKS FOR NEGATIVE PIVOTS 
NEG=O 
DO 30 I=  1,NV 
IF (D(I).LT.O.DO) NEG = NEG + 1 
CONTINUE 
IF (NEG.GT.0) WRITE (IWR,1007) NEG 
FORMAT(/,IX'*** WARNING NO. OF NEG. PIVOTS = ',15) 

CALL SOLVCR(AKTS,D,QlNC,NV,IWRIT,IWR) 
ABOVE SOLVES EQNS. AND GETS INC. DISPS IN QIN 

DO 20 I = 1 ,NV 
IF (IBC(I).EQ.O) THEN 
PT(I)=PT(I) + QINC(I) 
ELSE 
PT( I) = QEX( I) 
ENDIF 
CONTl N U E 
ABOVE UPDATES TOTAL DISPS. 

WRITE (IWR,1002) (PT(I),I= 1,NV) 
FORMAT(/,l X,'TOTAL DISPS. AFTER TAN. SOLN ARE',/,l X,7G13.5) 

BELOW ITERATES TO EQUILIBRIUM 
CALL ITER(PT,AN,BETOK,QEX,IBC,IWRIT,IWR,AKTS,D,ITERTY,NV, 

1 GM,FI, REAC) 
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WRITE (IWR,1004) (PT(I),I= 1,NV) 
FORMAT(/.l X'FINAL TOTAL DISPLACEMENT ARE',/,l X,6G12.5) 
WRITE (IWR,1006) (REAC(I),I = 1 ,NV) 
FORMAT(/lX,'FINAL REACTIONS ARE',/,lX,5G12.5) 
WRITE (IWR,1005) AN 
FORMAT(/,IX'AXIAL FORCE IN BAR IS', G12.5) 

CONTINUE 

STOP 'NONLTC' 
END 

2.6 PROBLEMS FOR ANALYSIS 

In this section, we will give the data for and describe the results from a number of 
bar-spring problems that can be solved with the aid of the previous computer 
programs. In a few instances, we will also give truncated versions of the output. In 
addition to the present problems, the reader can, of course, devise those of his own. 
The present problems are all based on the dimensions and properties of (1.12), 
so that 

E A  = 5 x to7, 1 = 2500. (2.33) 

2.6.1 Single variable with spring 

The following data relates to the single-variable problem of Section 1.2 (see 1.12)) 
and Figure 1.1 with z = zZ1 = 25 and K ,  = K , ,  = 1.35. The expected response is that 
shown in Figure 1.4. For this problem, the variables 1, 2 and 3 (Figures 2.1 and 2.2) 
are constrained to zero and a spring (of magnitude 1.35) is provided at variable 4. 
A negative loading is incremented at variable 4. 

2.6.1.1 Incremental solution using program NONLTA 

The following data leads to 12 increments of a pure incremental solution which 
should illustrate the drift from equilibrium shown in Figure 1.4 and detailed for 2 
increments in Section 1.2.1. 

4 

0. 0. 0. -7. ; vert. load at variable 4 (node 2) 
1 1 1 0 ; only free at variable 4 
1 
4 
1.35 ; earthed spring of 1.35 at variable 4 
1.  12 1 ; AA= 1 ,  12 incs., write control on 

50000000. 2500. 0. ; data as in (2.33); solution as in Section 1.1.1 
0. 25. ; z = zZ1 = 25. 
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2.6.1.2 Iterative solution using program NONLTB 

With a starting value of zero, program NONLTB takes five Newton-Raphson 
iterations to obtain an equilibrium solution of w2 =p4  = - 28.39 for a load of 
44= -35. 

4 

0. 0. 0. -35. 
1 1 1 0 ; only free at variable 4 
1 
4 
1.35 ; earthed spring of 1.35 at variable 4 
0.0 0.0 0.0 0.0 ; starting vector for N-R iteration 
0.001 1 ; conv. tol., beta; write control on 

50000000. 2500. 0. ; data as in (2.33) and Figure 1.1 
0. 25. ; z = z Z 1  = 25. 

; load of -35 at variable 4 (vertical at node 2) 

2.6.1.3 Incrementalliterative solution using program NONLTC 

With a fixed loading of q,,(4) = - 7, four increments with AA = 2 (leading to a final 
loading of - 28) are applied. Using full Newton-Raphson (data as below), the number 
of iterations for the four increments are 2,2,4,2 while with modified Newton-Raphson 
iterations (data as below apart from changing the last variable from unity to zero), 
the first three increments require 5,9,4 iterations respectively and the fourth fails to 
converge. 

4 

0. 0. 0. -7.0 ; load of -7 at variable 4 (vertical at node 2) 
1 1 1 0 ; only variable 4 is free 
I 
4 
1.35 
2. 4 
0.001 I ; Conv. tol., beta, of 0.001; full N-R 

50000000. 2500. 0. ; data as in (2.33) and Figure 1.1 
0. 25. ; z = z Z 1  = 2 5 .  

; earthed spring of 1.35 at variable 4 
0 ; 4 incs. of Ail = 1.0 each 

2.6.2 Single variable; no spring 

When the spring is removed, the 'exact' (the inverted commas are required because 
the solution is only exact within the context of shallow-truss theory) solution is 
governed by (1.1 1)  with K ,  = 0. In particular, the response is that shown in Figure 1.2(a) 
with l%' = E A ( z / ~ ) ~  = 50 as the non-dimensionalising factor. The following data relates 
to the use of program NONLTC to obtain a load-controlled solution with increments 
of 0.1 w. 
4 50000000. 2500.0. ; data as in (2.33) and Figure l.l(a), response 1.2(a) 
0. 25. ; z = z~~ = 25. 
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0. 0. 0. -50.0 ; load of -50 (w) at variable 4 (vertical at node 2) 
1 1 1 0 ; only variable 4 is free 
0 ; no springs 
0.1 3 0 ; 3 incs. of AA = 0.1 each, write control off 
0.001 1 ; Conv. tol. beta, of 0.001; full N-R; 

Using full N-R (as in the data above), the required number of iterations were 
2,39,1. The 39 iterationst were required to jump over the limit points from a 
non-dimensional load (see Figure 1.2(a)) of w = 0.1 to one of = 0.2. When the 
iterative procedure was changed to modified Newton-Raphson (by changing the 1 
to a zero in the last data line above) 5,  iterations were required for the first increment, 
and for the second, which encompasses the limit points, no convergence was obtained 
within 100 iterations. 

In contrast to the previous difficulties, no problems are encountered when 
displacement control is used to analyse this problem. The following data relates to 
the application of seven increments of Aw, = Aw = 0.32, which allows the complete 
response in Figure 1.2(a) to be traced. For this problem, the displacement controlled 
solution is, in fact, trivial with not only no iterations but also no real equation solving. 

4 50000000. 2500. 0. ; data as in (2.33) and Figure l.l(a), response 1.2(a) 
0. 25. ; z = z~~ = 25. 
0. 0. 0. - 25.0 ; disp. of - 25 ( - z )  at variable 4 (vertical at node 2) 
1 1 1 - 1 ; variable 4 has presc. disp., restrained 
0 ; no springs 
0.3 7 0 ; 7 incs. of A i  = 0.3 each, write control off 
0.001 1 ; Conv. tol. beta, of 0.001; full N-R 

2.6.3 Perfect buckling with two variables 

The following data relates to the two-variable problem of Section 1.3 and Figure 1.1 
with the data as in (2.33) with a spring stiffness, K ,  = K,, = 4 and z = zZ1  = 0 so that 
the truss element is flat. In these circumstances, the critical buckling load is given 
(see (1.68)) by 

U,, = l K ,  = 2500 x 4 = 10,. (2.34) 

This load is applied to the incremental/iterative program NONLTC as q,(4) with 
increments of Ak = 0.4 using the following data: 

4 
0.0 0.0 z = z21 = 0 (perfect) 
10000. 0.0 0.0 0.0 ; horizontal LHS buckling load (at q l )  
0 1 1 0 ; only LHS horiz. (p l )  and RHS vert ( p , )  disps. free 
1 
4 
4.00 

50000000. 2500. 0. ; data as in (2.33) with K ,  = K,, = 4 

; earthed spring of 4.0 at RHS vertical variable (no. 4) 

'To obtain these 39 iterations, NITMAX in subroutine ITER must be increased to, say, 101. 
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0.4 5 1 ; 5 incs. with AA = 0.4 ( x crit. buckl. ld.), write contrl. on 
0.001 1 ; Conv. tol., fl  of 0.001, full N-R 

As anticipated, no iterations are required because the system remains flat and no 
out-of-balance forces are generated. Increment 3 takes the solution beyond the 
buckling load to U = 1.2Uc, and this can be detected by the negative pivot in the 
LDLT factorisation at the start of increment 4. The procedure then continues to climb 
the unstable equilibrium path (Figure 1.1 1). In fact, for this somewhat trivial problem, 
the negative pivots are obvious from the original tangent stiffness matrices which are 
of diagonal form, i.e. increment 2 (1 = 0.8) leads to 

and, from (1.64), the tangent stiffness matrix at the start of increment 3 is 

2000. 0. “=[ 0. 0.81 
(2.36) 

while, at the end of increment 3 (A = 1.2), 

U 
U I  = ~ = 0 . 6 ,  N =  - E A  -=  - 12000. (2.37) 

1 

and the tangent stiffness matrix at the start of increment 4 is 

(2.38) 

It might be thought that the solutions would not continue to climb the unstable 
path if iterations are actually applied because these iterations will force the solution 
off the unstable path. The reader can easily amend the program to ensure one iteration 
at each increment even if the solution has converged. He or she will find that this 
has no effect and the unstable path is still followed. 

2.6.4 imperfect ‘buckling’ with two variables 

As discussed in Section 1.3, the bifurcation in the previous problem can be removed 
by introducing an ‘imperfection’. In particular, we will set z = z21 = 25 so that, in 
relation to the exact solutions of Section 1.2.1, of (1.74) = 0.5 and the possible 
equilibrium paths are shown in Figure 1.1 1. 

2.6.4.1 Pure incremental solution using program NON LTA 

The following data leads to the application of five increments, each with A U / U c ,  = 0.3, 
using a pure incremental solution procedure. 

4 
0. 25.0 ; z = z Z 1  = 25. 

50000000. 2500. 0. ; data as in (2.33) with K ,  = Ks4 = 4 
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10000. 0.0 0.0 0.0 ; horizontal LHS critical buckling load (at q l )  
0 1 1 0 ; only LHS horiz. ( p l )  and RHS vert (p,) disp. free 
1 
4 
4.00 ; earthed spring of 4.0 at  RHS. vertical variable (no. 4) 
0.3 5 0 ; 5 incs. with AA = 0.3 ( x crit. buckl. ld.), write contr, off 

The resulting solutions are shown as squares in Figure 2.6. The drift from equilibrium 
can be clearly seen. 

2.6.4.2 An incrementalliterative solution using program NON LTC 
with small increments 

The following data leads to the circles on Figure 2.6 which effectively lie on the exact 
curves (see Section 1.3.1). 

4 

10000. 0.0 0.0 0.0 ; horizontal LHS critical buckling load (at q l )  
0 1 1 0 ; only LHS horiz. (p l )  and RHS vert ( p , )  disps. free 
1 
4 
4.00 ; earthed spring of 4.0 at RHS vertical (no. 4) 
0.3 3 1 ; 3 incs. with AA = 0.3 ( x crit. buckl. ld.), write contr. on 
0.001 1 ; Conv. tol., beta of 0.001, full N-R 

The required number of iterations (using the full N-R method) was 2,3,5. 
A truncated form of the output for the first increment of this problem is given 

below. The truncation has mainly involved only giving the response for the two active 
variables, a,  = p ,  = u1 and a, = p4 = w2 (Figures 2.1 and 2.2). Even without the 
computer program, the reader should be able to follow these results in conjunction 
with the theory of Sections 1.3 or  2.1 so as to understand the basis of the Newton- 
Raphson method for a two-variable geometrically non-linear problem. When studying 
these results, the spring stiffness (4.0) must be added for K, ,  and the equivalent term of 
4 . 0 W 2  must be added in to the out-of-balance force vectort: 

50000000. 2500. 0. ; data as in (2.33) with K ,  = K,, = 4 
0. 25.0 ; Z = Z , ~  =25. 

INC= 1 LD. FACTOR= .30000 
TAN. STIFF. MATRIX IS* 

20000. - 200.00 
.ooooo 6.0000 

,22500 7.5000 

,22500 7.5000 

.22500 7.5000 

DlSP INCS. ARE 

TOTAL DISPS. AFTER TAN. SOLN ARE 

TOTAL DISPS. AFTER TAN. SOLN ARE 

*Only the upper triangle of the printed tangent stiffness matrix is correct. 
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Figure 2.6 Solutions for two-variable bar-spring problem: (a) transverse deflection; (b) shortening 
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BEGIN ITERATIVE LOOP WITH ITE= 1 
AXIAL FORCE AN= -2775.0 

OUT-OF-BAL. FORCE VECTOR= 
225.00 6.0750 ; CONV. FAC. = .75027E-01 

TAN. STIFF. MATRIX IS 
20000. - 260.00 
.ooooo 6.2700 

DlSP INCS. ARE 
.51734E-01 3.1 142 

TOTAL DlSPS ARE 
.27673 10.61 4 

BEGIN ITERATIVE LOOP WITH IT€= 2 
AXIAL FORCE AN = 

OUT-OF-BAL. FORCE VECTOR = 

- 2961.2 

38.793 --.27235; CONV. FAC.=.12931E-01 

TAN. STIFF. MAT. IS 
20000. - 284.91 
.ooooo 6.8743 

DlSP INCS. ARE 
.33577E-02 .99547E-01 

TOTAL DlSPS ARE 
.28009 10.71 4 

BEGIN ITERATIVE LOOP WITH ITE= 

AXIAL FORCE AN= -3000.0 

OUT-OF-BAL. FORCE VECTOR = 

3 

.39639E-01 .97842E-03; CONV. FAG. = ,1321 7E-04 

FINAL TOTAL DISPLACEMENTS ARE 
.28009 10.714 

FINAL REACTIONS ARE 
3000.0 - 42.855 

AXIAL FORCE IN BAR IS -3000.0 

Although the iterations are terminated within the iterative loop with ITE = 3, we have 
classified this increment as requiring two iterations. For, although the tangent stiffness 
matrix has been reformed for ITE = 3, it has not been used to solve for a new set of 
iterative displacements, because having computed the out-of- balance forces, the 
convergence factor has been found to be less than the required tolerance 
( p  = 0.001 -see (2.30)). 

2.6.4.3 An incrementalliterative solution using program NONLTC 
with large increments 

To some degree, we have been assisted in obtaining the previous solutions by knowing 
the answer! In particular, this knowledge helped guide our choice of initial increment. 
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As an early illustration of the possible pitfalls of non-linear analysis, we will now 
re-solve this problem using increment of AA = U/Uc ,  = 1.2. The results, which relate 
to the following data, are shown as the triangles in Figure 2.6. 

4 50000000. 2500. 0. ; data as in (2.23) with K ,  = K,, = 4 

10000. 0.0 0.0 0.0 ; horizontal LHS critical buckling load (at q l )  
0 1 1 0 ; only LHS horiz. ( p l )  and RHS vert (p4) disps. free 
1 
4 
4.00 ; earthed spring of 4.0 at RHS vertical variable (no. 4) 
1.2 2 0 ; 3 incs. with AA = 1.2 ( x crit. buckl. ld.), write contr. on 
0.0001 1 ; Conv. tol., beta of 0.001, full N-R 

0. 25.0 ; z = z~~ = 25. 

I t  will be seen that we have converged on to and stayed on the wrong equilibrium 
path! Luckily, there are warning signs. In particular, on factorising the stiffness matrix 
following convergence to point 1, the LDLT factorisation indicates one negative pivot. 
The tangent stiffness is not’positive definite because, as in the simpler example of 
Section 2.6.2, we have ‘passed’ a bifurcation point (more strictly, we have crossed a 
stable equilibrium line). The situation can be more confusing because negative pivots 
can also be caused by passing limit points (see Chapter 9). The number of full 
Newton-Raphson iterations to obtain the triangles in Figure 2.6 were 6 and 5. 

2.6.4.4 
with displacement control 

An incrementalliterative solution using program NON LTC 

Instead of applying load control, we can apply displacement control at  variable 1 
(Figures 2.1 and 2.2). The critical buckling displacement, U , ,  is then 

1 
A E  

U,, = U,, = 0.5. (2.39) 

Applying increments of A2 = 3.0 = Au/u,, to this problem requires the following data 
which gives the solutions depicted by the inverted triangles in Figure 2.6. The results 
effectively lie on the exact equilibrium curves: 

4 

0.5 0.0 0.0 0.0 ; horizontal LHS critical buckling displacement (at p l )  
- 1 1 1 0 ; only RHS vert ( p , )  disps. free, LHS horiz. disp. ( p l )  prescribed 
1 
4 
4.00 ; earthed spring of 4.0 at RHS vertical variable (no. 4) 
3.0 3 I ; 3 incs. with A i  = 3.0 ( x crit. buckl. disp.), write contr. on 
0.00001 1 ; Conv. tol., beta of 0.00001, full N-R 

The required number of iterations (using the full Newton-Raphson method) for the 
three increments were 3,3,2. 

50000000. 2500. 0. ; data as in (2.33) with K ,  = K,, = 4 
0. 25.0 ; z = z Z 1  = 25. 
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2.7 SPECIAL NOTATION 

A = area of bar 
K ,  = spring stiffness 
N = axial force in bar 
r = reaction vector 
u = axial (x-direction) displacement in bar (function of x) 

u l ,  u2 = nodal displacements for bar in x-direction 
1.4,~ = U ,  - U ,  (similar convention for w21 and z 2 , )  

U , ,  U ,  = nodal forces corresponding to U , ,  u2 

wl, w2 = nodal displacements for bar in z-direction 
w = vertical ( z  direction) displacement in bar 

W,,  W2 = nodal forces corresponding to U’,, w 2  
z = initial vertical offset of bar 

1 = initial length of bar 
/? = geometric factor (equation (2.14)) or convergence tolerance factor (equation 

E = axial strain in bar 

zl, z2 = nodal values of z 

(2.30)) 

Subscripts 

f = free 
p = prescribed 
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3 Truss elements and 
solutions for different 
strain measures 

The developments of Chapters 1 and 2 have all been based on the ‘shallow-truss 
strain relationships’ of (1.51) and (2.3). In the present chapter, we will consider a 
number of alternative ‘strain measures’ that remain valid when the truss element is deep. 
In Sections 3.3-8, the new strain measures are used to derive finite element equations 
for a truss element. The detail is provided, not because of the intrinsic importance 
of truss elements, but rather because they provide a simple means of introducing 
some of the concepts that will later be used for continua or beams and shells. These 
concepts include ‘total Lagrangian’ and ‘updated Lagrangian’ techniques, 
‘corotational formulations’, as well as ‘equivalent constitutive laws’. 

In Section 3.9, we provide three Fortran subroutines which will allow the computer 
program of Chapter 2 to be applied to deep truss elements using the various strain 
measures. Section 3.10 gives a range of problems for which data and, in some instances, 
results are given. 

3.1 A SIMPLE EXAMPLE WITH 
ONE DEGREE OF FREEDOM 

Before turning to finite elements, the alternative strain measures will be introduced 
in relation to the simple example of Section 1.2, which is reproduced (with slightly 
different notation) in Figure 3.1. For each strain measure, the starting point will be 
the virtual work relationship of Sections 1.3.2 and 2.1. For the example of Figure 3.1, 
this relationship is given by 

or 

57 
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-1J- - - - 
Area A, Initial configuratlon 

Figure 3.1 Simple problem with one degree of freedom. 

where (3.1) is related to the final configuration with volume, V, and (3.2) is related 
to the initial configuration with volume, V,. (The clash of symbols with I/ representing 
both the virtual work and the volume should cause no difficulties because the form 
of use should be obvious from the context.) The relationships in Sections 3.1.1 and 
3.1.2 will be derived from the latter equation. 

3.1 .I A rotated engineering strain 

The strain measure 

measures the strain along the rotating bar so that the direction of 
changing. From Figure 3.1, 

is continuously 

(3.4) 1, = ( ( z  + w)2 + x y  = ( 2 2  + x y  = ( Z 2  - z 2  + 1 y 2 .  

Hence, from (3.3) and (3.4), 

Substitution from (3.5) (with a virtual &,,) into (3.2) and integration over the original 
volume of the element leads to 

where the subscript E means ‘Engineering’. Assuming a fixed ‘E-value’, the relationship 
between the load, 4, and the deflection, w, is given by 

EA,(z + w ) ( ( ( z  + w)2 + x 2 p 2  - I,) 
I,((z + w)2 + x 2 p 2  

(3.7) 

Both here and frequently, during future work, we will talk of ‘rotated’ strain or stress. 
Such measures can be assumed to relate to a coordinate system that continuously 
rotates with the bar. Alternatively they can be thought of as the stresses or strains 

q E =  ~ ~~~ ~ 
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in the bar once the latter has been rigidly rotated back to its original position. Further 
work on these concepts will follow in Chapters 4 and 7. 

3.1.2 Green’s strain 

so that, if is small, we can write 

where cG is known as Green’s strain. It is related 
of (3.3) via 

EG = EE(1 + + E E ) .  

From (3.4) and (3.9), 

(3.9) 

to the rotated engineering strain 

(3.10) 

Hence from (3.2) (using the virtual form of (3.1 1 ) )  

(3.1 1)  

(3.12) 

When generalised to a continuum (Chapter 4), the stress oG is referred to as the 
second Piola--Kirchhoff stress. Using a fixed ‘E-value’, from (3.12), 

EA,(z + w ) ( 2 z w  + w 2 )  EA”Z(2ZW - w 2 )  
- (3.13) qG=--- -  - - - - __ ~ - .  

21,” 21,” 

It will be noted that equation (3.13) is of a simpler form than (3.7). When the strains 
are small, 1, 2: 1, and from (3.8) and (3.9), the two strain measures coincide. In addition, 
the equilibrium relationships of (3.6) and (3.12) coincide. Hence, for small strains, the 
two load/deflection relationships of (3.7) and (3.1 3) coincide. 

3.1.3 A rotated log-strain 

For large strains, the adopted strain measure is often taken as the log-strain, which 
is basically of an incremental form, so that 

(3.14) 
61 

B E =  - 

1 
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where 1 is in the ‘current configuration’. Hence 

(3.15) 

which can be related to the previous strain measures ((3.3) and (3.9)) via 

EL = log,( 1 + &E) = + log,( 1 + 2&G). (3.16) 

The kinematics of a small movement, 6w, in Figure 3.1, ensure that 

z 
61, = -6w. (3.17) 

4 
Instead of using (3.2), it is now appropriate to adopt (3.1), which relates to the final 
configuration. However, for the present, we will assume no volume change, so that 
there is no difference between (3.1) and (3.2). In these circumstances, (3.14) and (3.17) 
can be substituted into (3.1) (or (3.2)) to give 

(3.18) 

If a fixed E-value is assumed, the relationship between the load, q, and the deflection, 
w, is given by 

rz  + w: + x2 >- EA,(z + W)l, 
qL = ~- - ~ t2 log, 

2((2+ w )  + x  ) 
___---____ (3.19) 

For small strains, the log-strain solutions coincide with the previous solutions 
involving rotated engineering strain (Section 3.1.1) and Green’s strain (Section 3.1.2). 

3.1.4 A rotated log-strain formulation allowing for volume change 

It has been indicated that the log-strain formulation could be used for large strains. 
Hence for this formulation, we could include the effects of the changing volume. In 
these circumstances, we need to consider strain changes at right angles to the axis 
of the bar of magnitude - v&. Hence 

so that 

and 

A + d A = A ( l  -vd&)22:A(1 -2vds) (3.20) 

(3.21) 

(3.22) 

(3.23) 

or 

Administrator
ferret
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so that: 
1 2 V  

(3.24) 

and the formulation of Section 3.1.3, which assumed Vn = V, is only strictly valid for 
v = 0.5. Substitution from (3.14), (3.17) and (3.24) into (3.1) gives 

(3.25) 
L 

in place of (3.18). If a fixed E-value is assumed, (3.25) leads to the load/deflection 
relationship 

A,(z + w ) l i v  
9 L = - -  - --__ 

2( ( z  + 4 2  + 
x 2 ) i l  + 2 v v 2  log, (3.26) 

Solutions relating to a constant area can, from (3.23), be obtained by setting v = 0 or 
to the previous solution for a constant volume (Section 3.1.3), by setting v = i. 

3.1.5 Comparing the solutions 

Resolving vertically in Figure 3.1 gives: 

A,‘cr’Z 
9 = -~ - -  

in 
(3.27) 

where ‘d is the ‘true stress’ in the bar. (In a continuum context, the ‘true’ stress is 
often referred to as the Cauchy stress-see Chapter 4.) Equation (3.27) can be 
compared to equations (3.6), (3.12), (3.18) and (3.25) for the same load values, 9 (i.e. 
removing the subscripts on 4). Comparing the first form of (3.25) (with A, rather 
than A,) with (3.27) shows that 

f s L  = ‘a’ (3.28) 

and hence the ‘log-stress’, oL, is the ‘true stress’. 
If (3.6) is compared with (3.27), 

while comparison of (3.12) with (3.27) gives 

(3.29) 

(3.30) 

Figure 3.2 plots the solutions to (3.7), (3.13) and (3.19) for the bar of Figure 3.1 with 
a fixed E value and the properties 

.4: = 2500, A, = 100, E = 5 x 105, z = 2500. (3.31) 

The solution with the rotated engineering strain is only a little more flexible than 
that obtained with the log-strain. However, Green’s strain leads to a significantly 
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Figure 3.2 Load/deflection relationships for deep truss. 

area) 
volume) 

more flexible response. All three solutions coincide in the early stages where the 
strains are small. If the rise, z ,  in Figure 3.1 were made small enough, the strains 
would remain small for the complete load/deflection response and all three solutions 
would coincide for the complete response. In the latter circumstances, while the angle 
8 in Figure 1.1 remained small, the solutions would coincide with those of Section 1.1 
and Figure 1.2(a). 

3.2 
TENSION OR COMPRESSION 

SOLUTIONS FOR A BAR UNDER UNlAXlAL 

The previous example (Figure 3.1) considered a rotating bar. Before proceeding to 
the full finite element formulations for a truss, it is instructive to consider the trivial 
example of a bar subject to a uniaxial load as in Figure 3.3. If we replace 6w, by 6u,, 
the virtual work equations (3.1) and (3.2) still apply. This substitution will be assumed 
in the following. Using the engineering strain of (3.3), the virtual work relationship 
(3.2) can then be used to produce 

q E  = AocE (3.32) 

1 -  

Figure 3.3 Bar under uniaxial load. 
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and, assuming (throughout) a fixed E-value, 

(3.33) 

where E is the engineering strain. Using (3.2), in conjunction with the Green’s strain 
of (3.9), gives 

q G = A , E  ( I + -  ;)(; - + -  ;( Il,)i) ~ = A , E ( *  + F ) ( E +  + E 2 )  

while, for the log-strain, (3.1) and (3.24) can be used to produce 
2 v  

q L  = A D L  = A,( :y) CTL 

EAO 

( 1  + E ) 2 V  
q L  = log,( 1 + E). 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

In terms of the ‘true stress’, ‘cT’, the equilibrium relationship is 

q = A,‘a’ (3.38) 

so that, from equilibrium, (3.27)-(3.29) again apply. The load/deflection relationships 
(3.33), (3.35) and (3.37) are plotted in Figure 3.4 for a bar with 

1, = 2500, A, = 100, E = 5 x 10‘. (3.39) 

Figure 3.4 demonstrates the potential unsuitability of Green’s strain for work with 
large strains (unless appropriate modifications are made to the C T - E  relationships). In 
particular, in compression, the formulation (see (3.35)) gives zero stress at F =  - 1 
and - 2 and artificial limit points at E= - 1 & 1/J3. In contrast, the solution obtained 
with the engineering strain does not differ significantly (Figure 3.4) from that obtained 
with the log-strain provided the strains are only ‘moderately large’. 

It should be emphasised that the relationships in Figures 3.2 and 3.4 were obtained 
by assuming a constant E-value. The same load/deflection relationship could be 
obtained for each of the strain measures if the secant E-values were made functions 
of the strains, so that from (3.33), (3.35) and (3.37), 

(3.40) 

We will return to this trivial example in Volume 2 when considering large strains in 
a more general environment. 

3.2.1 Almansi’s strain 

Before leaving this example we will introduce Almansi’s strain, which is often quoted 
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Figure 3.4 Load/deflection relationships for bar under uniaxial load. 
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in the literature (if less often used). This strain is given by 

(3.41) 

and is often quoted as being conjugate to the ‘true’ (or Cauchy - see Chapter 5) stress. 
The author finds this statement a little confusing for reasons that will be illustrated 
here. 

From (3.41), the variation of cA can be obtained as 

(3.42) 

where E is the engineering strain (see (3.33)). Introducing equation (3.42) into the 
virtual work relationship of (3.2) gives 

(3.43) 

which, when compared with the equilibrium-based ‘true stress’ relationship of (3.38), 
shows that 

(3.44) 

Hence the use of the Almansi strain does not lead to the relationship cA = ‘0’. Rather, 
as already demonstrated in Sections 3.1.3 and 3.1.5, the true stress is work conjugate 
to the log strain with variation cSc=61,/1, (see Section 4.6 for the continuum 
equivalent). 

It has already been noted that there is no effective difference between any of the 
previous strain measures when the strains are small. This finding also relates to the 
Almansi strain. In these circumstances, it may be useful, for computational con- 
venience, to use the Almansi strain (see Section 3.3.6). 

3.3 A TRUSS ELEMENT BASED ON GREEN’S STRAIN 

In devising the governing equations for the various truss elements, we will not 
necessarily adopt the most computationally efficient formulation. Instead, we intend 
to introduce the concepts in forms that can be readily extended to continua, beams 
and shells. Hence, we will adopt standard finite element procedures using shape 
functions etc., although such procedures are not strictly necessary for these simple 
elements. Detail will be given for two-dimensional ‘planar truss elements’, but it will 
be shown in Section 3.7 that the procedures and formulae are easily extendible to 
three-dimensional ‘space truss elements’. 

3.3.1 Geometry and the strain-displacement relationships 

Figure 3.5 shows a truss element PoQo in its original configuration with a non- 
dimensional coordinate, 5 ,  being used to define the position of a point A,, lying 
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X ( U )  

Figure 3.5 Deformation of general truss element. 

between P, and Q,. As the truss experiences deformation, points A, and the adjacent 
B, move to A,, and B,, respectively. During this process, the position vector, r,, of 
point A, moves to the position vector, r,, of A,, where: 

r, = r, + U (3.45) 

and, in two dimensions, 

rT = (x, z ) ,  uT = ( U ,  w ) .  (3.46) 

Equivalent nodal coordinates will be written as 

x, = x' = x, + p = x + p (3.47) 

where the initial coordinates x (or x,, but the subscript o will often be omitted) are 

(3.48) XT = (-' 1 7 '2 7 1 7 z 2  ) 

and the nodal displacements are (see Figure 3.6) 

P T = ( U 1 7  u 2 ,  w 1 7  w 2 ) .  (3.49) 

(Note the non-standard ordering of the components of p and see the footnote on 
page 25.) 

In Figures 3.5 and 3.6, we have introduced the non-dimensional coordinate, <, for 
use with standard finite element shape functions. However, we will initially avoid the 
use of such shape functions which are not strictly necessary for these simple elements. 

By Pythagoras' theorem, the initial length of the element is given by 

where 

and 

(3.50) 

(3.5 1)  

(3.52) 

In (3.50), we have, for compatibility with later developments using shape functions 
(Section 3.3.4), introduced the original 'length parameter', a,, which is half the original 
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Figure 3.6 Geometry and modes for general truss elernent 

length, 1,. For the current length, l,, the equivalent of (3.50) is 

1: = 4a: =(x21 + U 2 d 2  + (z21 + W 2 d 2  = (x21 + p2dT(x21 + p21) (3.53) 

where in a similar manner to (3.52), pi l  = ( U , , ,  wZl ) .  Using (3.9), (3.50) and (3.53), 
Green’s strain is given by 

Equation (3.54) can be re-expressed as 

where 

and 
symmetric 1 
0 I 1 1- 
0 - 1  I 

From (3.54)-(3.57), the incremental Green strain (caused by Ap) is given by 

1 
= --> ((x2 1 + p2 1 1 + ;APT, Ap2 1 )  

4a0 

(3.54) 

(3.55) 

(3.56) 

(3.57) 

1 1 
=(b, + b , ( ~ ) ) ~ A p +  -,ApTAAp= b(p)TAp+ -~ --ApTAAp (3.58) 

2E” 2a,” 
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where (compare (3.56)) 

(3.59) 

Comparing (3.58) with a Taylor series expansion for A&, 

(3.60) 

we can see that (l/ct:)A is the second partial derivative of E with respect to the dis- 
placements, p or the first partial derivative of b with respect to p. 

For a small virtual displacement, with 6pv instead of Ap, the last term in (3.58) 
becomes negligible and 

a& 1 a€ 1 db 
A€  = ~ -Ap + -ApT -- - Ap = b(p)TAp + -ApT--Ap 

dP 2 dPAP 2 dP 

(3.61) 

3.3.2 Equilibrium and the internal force vector 

The principle of virtual work (Sections 1.3.2, 2.1 and 3.1) can now be used to provide 
internal nodal forces, qi, that are in a weighted average sense CC2.21, in equili- 
brium with a set of stresses, 0, that relate to total displacements, p. To this end, using 
(3.6 11, 

1 Gp:qi = 1 scrGScvdVo = 1 6p: crGbdVo (3.62) 

where C, involves a 'summation' over the elements. For the following developments, 
we will drop this summation sign and hence will only directly deal with force vectors 
or stiffness matrices at the element level. The 'merging process' to the structural level 
is identical to that adopted for linear analysis CC2.21. 

The strain-displacement vector b in (3.62) is given by (3.61) (with (3.56) and (3.59)) 
while the subscript G on cr follows the work of Section 3.1.5, where it was shown 
that we must take note of the type of stress. The stress crG is the stress that is work 
conjugate to the Green strain (later-Chapter 4-to be called the second Piola- 
Kirch hoff stress). 

Equation (3.62) must stand for arbitrary 6pv and hence using (3.61), (3.56) and 
(3.59), 

e e e s  

Using (3.62), the procedure for computing the internal forces, qi, from a set of nodal 
displacements, p, is as follows: 

(1)  compute the strain from (3.54) or (3.55); 
(2) compute the stress, crG (here, constant over the element), assuming a linear material 

response from crG = E E ;  
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(3) compute the internal forces, qi, from (3.63) with b, and b2 being defined in (3.56) 
and (3.59). 

3.3.3 The tangent stiffness matrix 

From (2.20) and (3.63) 

Using (3.64) and the non-virtual form of (3.61)’ 

ac 

a P  a P  
= E -~ ~ = E(b,  + b , ( ~ ) ) ~  = Eb(p)T. 

(3.64) 

(3.65) 

From (3.64) and (3.65), the first term of (3.64) can be written as 

aa 
aP 

2a0A0b - G = 2Eu,A,bbT = K , ,  + K,, (3.66) 

where 
EA 

Ktl = 2EA0a0b1 b: = ~ c ( x ) c ( x ) ~  (3.67) 

Kt2 = 2EAa,[b1 b: + b2by + b,bfl= Ktza + &T2a + Kt2,. (3.68) 

Equation (3.67) provides the standard linear stiffness matrix while (3.68) gives the 
‘initial displacement (or slope) matrix’ (compare (1.10)). The ‘geometric’ or ‘initial- 
stress matrix’ (Section 1.2) comes from the second term in (3.64). Noting that, of the 
constituents of b (see (3.58))’ only b2 is a function of p, from (3.64) and (3.59)’ 

8a0 

1 symmetric 
db dbz 2 A a  

K,, = 2a0A0 - aG = 2aOA, - cG = --O “A = ~ -- 

aP ‘3P a0 

(3.69) 

(3.70) 

Equations (3.67) and (3.68) can be expanded to give 

symmetric 
X f  1 

-x21z21 z;1 

--x21z21 X 2 l Z 2 1  - 4 1  4 1  

(3.71) 
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4 f symmetric 

with the final tangent stiffness matrix being given by 

(3.72) 

(3.73) 

The internal force vector, qi, tangent stiffness matrix, Kt, and strain/displacement 
relationships that have just been derived can be incorporated into a computer program 
using a very similar procedure to that adopted for a shallow-truss theory in Chapter 2. 
(This is discussed further in Section 3.9.) The technique is known as ‘total Lagrangian’ 
because all measures are related back to the initial configuration. While the detail 
has been given in relation to a two-dimensional analysis, the concepts are equally 
valid in three dimensions-see Section 3.7. 

3.3.4 Using shape functions 

While shape functions are unnecessary for the current elements, with a view to more 
complex elements, it is useful to apply them. To this end, in relation to Figure 3.5, 
we define the incremental vector, dr, along A,B, as 

dr 

d t  
dr, = - 2 d t  (3.74) 

where r, was given in (3.46). In a similar fashion, the new incremental vector is, with 
the aid of (3.45), 

(3.75) 

where U has been defined in (3.46). Hence the length of dr, is 

where for the current simple elements, 2a, is the final length of the bar. In a similar 
fashion, the length of dr, is 

where, again for the current element, 2a, is the original length of the bar. 
From (3.9), the Green’s strain can be expressed as 

d r i  - drf 

2dr: 
F = -~ 

(3.77) 

(3.78) 
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Substitution from (3.76) and (3.77) into (3.78) gives 

(3.79) 

and an increment, A& relating to a displacement increment Au, can be expressed as 

Idr:dAu 1 duTdAu 1 dAuTdAu 

a;d< d <  a: de d t  2a: d? d t  * 

A & =  ~~ + -  + -  (3.80) 

For the displacement-based finite element method, shape functions are used to 
relate both the geometry and the displacements to nodal values so that, in relation 
to Figure 3.6, simple linear expansions give 

(3.81) 

In a similar fashion, the displacements, U, can be expressed as 

(3.82) 

where the vector, p, contains the nodal displacements as given in (3.49). Differentiation 
of (3.81) gives 

while differentiation of (3.82) gives 

so that, from (3.79), 

(3.83) 

(3.84) 

(3.85) 

where the explicit form of b, has already been given in (3.56) and of the matrix A in 
(3.57). From (3.80) (or (3.85)) 

(3.86) 
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where the explicit form of b,(p) has been given in (3.59). The virtual strain then 
follows as in (3.61) and one can proceed, as in Section 3.3.1, to apply virtual work 
as in (3.62) to obtain the internal force vector qi as in (3.63). Using the shape function 
approach, in performing the integrals in (3.63), one would apply 

d V, = A, dr, = A,a, d( = 2A,cr0. Li s (3.87) 

The derivation of the tangent stiffness matrix follows as in (3.64) but to maintain 
the shape function approach, one would write 

(3.88) 

which coincides with (3.64) and leads, as before, to (3.73). 

3.3.5 Alternative expressions involving updated coordinates 

The updated coordinates, x’, can be expressed as 

x ’ = x + p  or r , = r , + u  (3.89) 

where the first expression relates to nodal variables (Figure 3.6) while the second 
relates to a general point (see Figure 3.5). Using these updated coordinates, the strain 
increment of (3.58) can be re-expressed as 

1 1 1 
AE = b, ( x ’ ) ~ A ~  + ~ , ApTA Ap = ~ , ~ ( x ’ ) ~ A p  + --, ApTA Ap (3.90) 

2a0 4% 2a0 

where c(x’) follows the same form as the c(x) and c(p) vectors defined in (3.56) and 
(3.59). In place of (3.61), the virtual strain can be expressed as 

bcV = b, (x‘)Tbpv. (3.91) 

Using (3.91), an alternative expression to (3.63) can easily be derived for the internal 
forces, qi, whereby 

(3.92) 

In comparison with (3.63), there is now no q:2 term. 

and (3.72)) can be combined to give 
Again using updated coordinates, K,, ((3.67) and (3.70)) as well as Kt2 ((3.68), (3.71) 

(3.93) 
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or 

.ql 

x; z; - x; z; z;i 

symmetric 
- .ql X;i 

-Xk1Zk1 x;lz;l -Zf1 z;”1 
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=K[I,  (3.94) 

while the geometric stiffness matrix of (3.69) is unaltered. Consequently, if an updated 
coordinate system is adopted, both the internal force vector (3.92) and the tangent 
stiffness matrix (3.94) involve the standard linear terms although these are related to 
the new coordinates. However, the ‘linear’ tangent stiffness matrix must always be 
supplemented by the ‘geometric’ or ‘initial stress’ matrix. 

The introduction of updated coordinates can simply be considered as an alternative 
way of expressing the ‘Green-strain system’ which avoids the b2(p) terms and hence 
ommits qi2 (3.63) and Ktza (3.71) and Kt2b (3.72). 

3.3.6 An updated Lagrangian formulation 

The procedure in Section 3.3.5 is simply an alternative way of writing the previous 
total Lagrangian formulation, but it is very closely related to a so-called updated 
Lagrangian formulation. Using such a technique, after the coordinates had been 
updated using (3.89), the datum would be re-set so that the new configuration would 
become the old configuration (0). Before proceeding to the next increment or iteration, 
the second Piola--Kirchhoff stresses (oG in the notation of Section 3.1), which related 
to the old configuration, must be converted to ‘true stresses’ relating to the new 
configuration so that, from (3.30), 

(3.95) 

at which stage, with respect to the new configuration, the displacements p are zero 
and we must use a, and A,. With these differences, we may use the standard total 
Lagrangian formulae of Sections 3.3.2 and 3.3.3. Hence, from (3.63) (with p = 0), the 
internal force vector is given by 

(3.96) 

Substituting from (3.95) into (3.92) leads to (3.96) so that the updated Lagrangian 
procedure leads to an identical internal force vector to that obtained with the standard 
total Lagrangian formulation. In a similar fashion, the tangent stiffness matrix would, 
from (3.73) with p = 0, be given by 

E ’ A ,  2 A,‘o’ 
K,, = c ( ~ ’ ) c ( x ’ ) ~  + A. 

8U” a n  
(3.97) 

The second term in (3.97) gives the geometric stiffness matrix which, with ‘a’ from 



74 

(3.95) coincides 

where both of 
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with (3.69). However, the first term only corresponds with (3.94) if 

(3.98) 

the E-values in (3.98) are tangential, but E' is appropriate to the 
updated Lagrangian formulation while E relates to the total Lagrangian procedure. 
From the considerations of Section 3.2, we should not be surprised that different 
E-values are required if different formulations are to give the same answers. However, 
as before, for small strains, there is no need either to introduce the tangent E trans- 
formations of (3.98) or the stress measure transformations of (3.95). Both the previous 
(Section 3.3.5) use of updated coordinates in a total Lagrangian framework and the 
present updated Lagrangian formulation avoid the b,(p) terms and hence omit qi2 
(3.73) and Ktza (3.71) and K,,, (3.72). 

We have so far introduced an updated Lagrangian formulation whereby all 
measures are related to the current updated configuration. However, the Green-strain 
measure of (3.55) is related to the initial configuration. Using (3.59) and (3.89), this 
expression can be re-stated in terms of the current coordinates so that 

(3.99) 

Equation (3.99) corresponds to a re-expression of (3.79) as 

Neither (3.99) nor (3.100) is fully related to the current configuration because of the 
terms a,. However, we can generalise the expression in (3.41) for the Almansi strain 
to obtain a strain measure involving a,. In comparison to (3.78), the Almansi strain 
involves 

(3.101) 

Substituting from (3.76) and (3.77) into (3.101) gives 

which is identical to (3.100) apart from having a,s rather than a,s in the denominator. 
A similar relationship would follow (via (3.53) and (3.50)) for the Almansi form of 
(3.99) for which a,s would appear in the denominator. As shown in Section 3.2, we 
can expect the same answers from the two measures provided the strains (but not 
necessarily the rotations) are small. 

Further discussion on the total and updated Lagrangian formulations will be given 
in a continuum context in Chapters 5. Before moving to alternative strain measures, 
we should emphasise that the updating system that has been discussed here and in 
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Section 3.3.5 involves updated but unrotated coordinates. We will later discuss 
rotated coordinates. 

3.4 AN ALTERNATIVE FORMULATION USING 
A ROTATED ENGINEERING STRAIN 

The previous derivation (Section 3.3) was based on the use of Green’s strain. 
Sections 3.1 and 3.2 considered a number of alternative strain measures and we will 
now consider the rotated engineering strain. A natural derivation would involve a 
rotated coordinate system. This will be described in Section 3.6 but we will firstly 
maintain a fixed cartesian coordinate system. Throughout this section, the subscript 
E for engineering is implied but, for brevity, omitted both on the stresses and the 
strains. 

Extending the definition of (3.3), the rotated engineering strain, which relates to 
the direction of the rotating bar, is given by 

(3.103) 

where a, is given by (3.50) or (3.77) and a, by (3.53) or (3.76). With the aid of (3.57), 
a, from (3.53) can be re-expressed by 

01: = (X + P)~A(x + p) = x’~Ax’ 

From (3.103) and (3.104), 

(3.104) 

(3.105) 

where we have used the relationship, 

c(x’) = 4Ax’ (3.106) 

(see (3.59) for an identical relationship between c(p) and 4Ap). Hence, from the principle 
of virtual work, 

where 

(3.107) 

(3.108) 

Equation (3.107) can be compared with the Green’s strain solution of (3.92). 
In order to obtain the tangent stiffness matrix, (3.107) is differentiated so that 

where the first two terms have parallels in (3.64). From (3.105), 

(3.109) 

(3.1 10) 
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so that the first term from (3.109) is given by 

EAO E A , A ~  
K , ,  = ~ - c(x’)c(x’)T = ~~ c(x’)c(x’)T 

8a; a, Sa? 

which differs by the i2 term from the matrix q1 of (3.93). 
From (3.106), 

so that the second term from (3.109) gives 

(3.1 1 1 )  

(3.112) 

(3.1 13) 

which differs by a factor A from the ‘initial-stress matrix’, K,, of (3.69). Finally, with 
the aid of (3.105), the last term in (3.109) can be expressed as 

GAOL3 
c ( x ’ ) c ( X ’ ) T . GAO Kla2 = - -j c(x’)c(x’)~ = - 

8% 8~103 
(3.1 14) 

If 2 (3.108) is assumed to be unity, the present formulation gives identical equations 
to the Green’s strain formulation of Section 3.3, apart from the Kto2 matrix of (3.1 14) 
which has no counterpart in the Green’s strain formulation. 

In applying a formulation based on a rotated engineering strain, equation (3.103) 
is an inaccurate way of computing the strain because it involves the small difference 
between two relatively large numbers. It is computationally better to relate the 
engineering strain of (3.103) to the Green strain of (3.54), so that 

(3.1 15) 

3.5 AN ALTERNATIVE FORMULATION USING 
A ROTATED LOG-STRAIN 

In Section 3.1.3, we introduced a rotated log-strain and showed in Section 3.1.5 that 
the corresponding stress is 
the log-strain of (3.15) is 

In (3.1 16) and throughout 

the ‘true stress’. In relation to the current truss elements, 

E = log,( :I). (3.1 16) 

this section, a subscript, L, for log is implied on all the 
stress and strain terms. With the aid of (3.104), (3.1 16) can be differentiated to give 

(3.1 17) 

where A is given by (3.108) and (’3~/dp)(3.105) is the relationship in (3.105) for the 
engineering strain. 
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Hence, applying the principle 
ation, 

d I:? 
qi = j‘. iTp 

In deriving the last expression 

By including this relationship, 

of virtual work in relation to the current configur- 

(3.1 18) 

in (3. I 18), it has been assumed, from (3.24), that 

(3.1 19) 

we include both the solution for no volume change 
(with I’ = 0.5) and volume change ( v  # 0.5). 

leads to 
Differentiation of (3.1 18) follows the lines previously adopted in Section 3.4 and 

(3.120) 

(3.121) 

3.6 AN ALTERNATIVE COROTATIONAL 
FORMULATION USING ENGINEERING STRAIN 

In all of the previous developments, the coordinate axes x,z (and y )  have remained 
fixed in direction even if, as in Sections 3.3.5 and 3.3.6, we have updated the co- 
ordinates. We will now apply a ‘corotational’ formulation and will show that it gives 
the same results as those previously obtained in Section 3.4. The procedure adopts 
a set of corotational axes (x,, z,-.- Figure 3.7) which rotate with the element. In these 
circumstances, the engineering strain is given by 

In the above equation and throughout this section a subscript E for engineering will 
be implied but omitted on all strain and stress measures. Equation (3.123) is obvious 
but it could be derived by relating the shape-function approaches of the previous 
sections to the local coordinate system. Following from (3.123), the principle of virtual 
work gives . 

qi, = J 2ao cI d Vo = A 0 q .  (3.1 24) 
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We can now apply standard transformation procedures CC2.21, to give 

qi = TTqil = AooTTcl (3.125) 

where the transformation matrix, T, relates the local displacements, pl to the ‘global’ 
cartesian displacements, p, so that 

(3.1 26) 

The terms c and s in (3.126) are cos 8 and sin 8 respectively, where 8 is illustrated in 
Figure 3.7. If TT is multiplied by cl from (3.123), it can be shown that 

1 
TTcl = ~ - ~ ( x ’ )  

2En 

where c(x’) is given in (3.92). Hence substitution into (3.125) gives 

(3.127) 

(3.128) 

which coincides with (3.107), which was obtained with the aid of ‘fixed coordinates’. 
We could now proceed to differentiate (3.128) to obtain the tangent stiffness matrix 

given by the components (3.1 1 l), (3.1 13) and (3.1 14). However, we will instead adopt 
the spirit of the corotational approach and firstly differentiate (3.124) to obtain a 
‘local tangent stiffness matrix’. From (3.123) and (3.124) this gives 

( 3.1 29) 

In order to relate this local stiffness matrix to the fixed cartesian coordinate system, 

1 x ( 4  

Figure 3.7 Local (rotating) and global coordinate systems. 
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(3.125) can be differentiated to give 

(3.1 30) 

where use has been made of (3.126). Substitution from (3.127) into the first of the two 
stiffness terms in (3.130) gives 

E A  

8cl; CI, 
K,, = ------c(x’)c(x’)~ (3.13 1) 

which coincides with (3.1 1 1). 

can be differentiated so that 
In order to deal with the second stiffness term in (3.130), the T matrix in (3.126) 

--s 0 -c 0 

6TT= [ -! -: -;]do. 

0 --s 

From Figure 3.8, a unit vector normal to the rotating element is given by 

(3.132) 

(3.1 33) 

which is orthogonal to the truss vector, xi 1 .  The infinitesimal relative displacement 
vector (Figure 3.8) can be expressed as 

Resolving this vector in the direction n gives a scalar length: 

6a n 

I m x  

Figure 3.8 Small movement from new configuration. 

(3.134) 

(3.135) 
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Consequently, the angle 68 (Figure 3.8) is given by 

Hence, using (3.124) and (3.132), the second stiffness term in (3.130) is given by 

(3.137) 
0 - Z i 1  0 

-z;1 0 -xkl 

0 

with cl from (3.123). Alternatively 

6 p  = KJp. 

(3.138) 

symmetric 

Z F l  

z;lx;l x ? ~  

Z i 1 X i 1  -z;& -X;z1 x;21 

A00 6q. = - & 5 p  = __ 

’ 8cri 

It can easily be shown that the matrix K,, in (3.138) coincides with the sum of Ktnl 
and Kta2 from (3.1 13) and (3.1 14). Hence, identical solutions are produced by the two 
formulations using (a) a fixed cartesian system and (b) a rotating (corotational) 
coordinate system. A similar correspondence can be shown for the log-strain 
formulation. 

3.7 SPACE TRUSS ELEMENTS 

The detailed workings of the previous sections have related to the ‘planar truss 
element’ of Figure 3.6 and 3.7. However, the theory is readily extendible to the ‘space 
truss element’ of Figure 3.9. In these circumstances, the vectors rand U of(3.46) become 

(3.139) rT = (x, y, z), uT = (U, U ,  w )  

while the nodal vectors x and p of (3.48) and (3.49) become 

XT = b l ,  X 2 , Y l , Y 2 , Z l , Z 2 )  pT = (U17 U 2 7  01, u 2 ,  w 1 ,  w 2 ) .  (3.1 40) 

Allowing for these new definitions, most of the formulae in Section 3.3.1 remain valid, 
although the matrix A of (3.57) becomes 

I 

4 
A =  I 1 symmetric 

0 0  1 

0 0 - 1  1 
0 0  0 0  1 
0 0  0 0 - 1 1  

- 1  1 

(3.141) 
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Z‘ 

2 

(a) (b) 

Figure 3.9 Space-truss element: (a) initial coordinates: (b) updated ( x ’ ,  q, z’) and corotated ( x , ,  y,, z,) 
coordinates. 

For the Green’s strain formulation, (3.63) remains valid for the internal force vector 
while (3.94) and (3.69) (but with A from (3.141)) still apply for the tangent stiffness 
matrix. However, in (3.94), the vector c(x’) of (3.92) must be extended to 

C(X’)T=(-x;l,x;,’ -y;,,y;1, -z;l,z;J (3.142) 

(3.143) c(x)  = 2U-el (1) ,  e1W, -e1(2), el(2), -e  1 1 .  (3), e (3)) 

The alternative form of (3.142) given in (3.143) employs the local unit base vector 
e,  (Figure 3.9) and will be used in later developments. In the latter equation, e l ( l ) ,  
for example, is the component of the unit vector e, in the x (or 1 )  direction. With 
the extended definitions of (3.141) and (3.142), the formulae in Sections 3.4 and 3.5 
remain valid for space truss elements. 

For the corotated formulation of Section 3.6, the three-dimensional equivalent of 
the transformation matrix TT given in (3.126) is best expressed in terms of the three 
‘local unit base vectors’ e, ,  e2, e3 shown in Figure 3.9 (although it  will be shown later 
that, for truss elements, there is no need to explicitly compute e2 and e3). Hence, in 
place of (3.125) and (3.126), 

or 
I T  

edl) 0 e2(U 0 e3(U 0 - 1  
0 el(U 0 e2(l)  0 e3(U 1 

e J 2 )  0 e2(2) 0 e3(2) 
(3.144) 

0 .  
0 
0 

Clearly, only the first two columns (involving e,-Figure 3.9) in the TT matrix of 
(3.144) are required both in the above and in the three-dimensional equivalent of the 
first stiffness term in (3.130). The three-dimensional equivalent of the second stiffness 
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term in (3.130) involves 

- 1  0 0 
0 

del 

(3.145) 

where the Boolean matrix F is such that: 

6p2, = FT6p. (3.145a) 

The e,  vector (Figure 3.9(b)) can be written as 

so that differentiation leads to 

From (3.104) and (3.106), 

a,6~, ,  = x’*AGp = $c(~’ )~Gp 

Hence, using (3.143), 

(3.146) 

(3.147) 

(3.148) 

(3.149) 

Substitution into (3.145) and using (3.145a) gives 

1 ACJ 1 
6qi = 2-- [FFT - (Fel)(Fe,)TJ6p = c(x’)c(x’)~ 6p (3.1 50) 

2% 

which corresponds with the combination of (3.1 13) and (3.1 14). 

3.8 MID-POINT INCREMENTAL STRAIN UPDATES 

The Green-strain increment of (3.58) and (3.80) can be rewritten as 

(3.151) 

where xL1 and r,, = r, + U relate to the configuration at  the beginning of the increment 
prior to the imposition of an incremental displacement, Au. In direct terms of the 
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nodal variables, instead of (3.90) 

1 1 

AC = -+ c ( x , ) ~ A ~  = < C(X’ + $ A P ) ~ A P  = bl (xm)TAp 
4a0 4ao 

(3.152) 

where c(xm) is a ‘mid-point geometric vector’, given by 

c ( x , ) ~ = ( - X ; ~  - ; A U ~ ~ , X ; ,  +;AUZ~, -2L1 - - $ A W ~ ~ , Z ~ ~  + ~ A w ~ ~ )  (3.153) 

and the XI- and z’-coordinates in (3.153) relate to the updated coordinates at the 
beginning of the increment. Equation (3.152) is of the form of a ‘linear strain increment’ 
(i.e. similar to b:Ap in (3.58)), yet i t  is exact. A similar approach can be applied to 
the other strain measures so that, in relation to (3.103), 

1 
(3.154) 

1 d(r, + iAu)TdAu 1 
AEE -y ____ ~~ ___ _- - ~ ( x , ) ~ A p  = --eiAp 

aoam d< d t  4a00rm 2a0 

where (Figure 3.10), em is a unit vector relating to the mid-point configuration. In 
relation to the log-strain relationship of (3.1 16), 

1 d(r, + i A ~ ) ~ d A u  1 1 

a: dc d[ 4am 2am 
AcL 2 -___ _-I - - = -<-~(x,)~Ap = ---eiAp. (3.155) 

In contrast to (3.152)’ which is exact, (3.154) and (3.155), which involve the mid-point 

2 

1 

(c  1 
Figure 3.10 Mid-point incremental procedures: (a) vectors and displacements; (b) lengths; (c) under 
a rigid-body rotation. 
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‘length parameter’ a,, are approximate. For example, Figure 3.1 1 illustrates the 
approximations inherent in using (3.155) to integrate the simple stretching of a bar. 
For this illustration, the increment has been assumed to start from the initial 
configuration with length 1, = 2a,, although in general a succession of mid-point 
incremental approximations would be used. Nonetheless, (3.154) and (3.155) are easy 
to compute since they are in the form of simple ‘linear strain terms’. In addition, they 

= l o + u  t---j I, + u/2 

(c 1 

Figure3.11 Mid-point procedure for bar under uniaxial load: (a) Bar; (b)  Exact integration of 
j%(d//I= loge(/n//o) (c) Approx. integration of jk(d//I) = u / ( / ~  + u/2) 
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give zero strain when the incremental displacements Ap relate to a rigid-body rotation 
(Figure 3.10(c)). 

For the present truss elements, there is little to be gained by using an ‘incremental 
mid-point algorithm’ for updating the strains, since an exact solution using total 
strains can easily be obtained. However, the mid-point incremental algorithms can 
be very useful for more complex structures such as shells or continua subject to large 
strains. 

3.9 FORTRAN SUBROUTINES FOR 
GENERAL TRUSS ELEMENTS 

In Chapter 2, we gave Fortran computer programs for the analysis of shallow trusses. 
These programs were designed so that they could also be used for the deep truss 
elements of the present chapter, provided a set of new subroutines are used. These 
subroutines are given below. 

3.9.1 Subroutine ELEMENT 

The following subroutine should be used in place of the subroutine ELEMENT of 
Section 2.2.1 

SUBROUTINE ELEMENT (FI,AKT,AN,X,Z,P,E,ARA,ALO,IWRIT,IWR,IMOD, 
1 ITY,ALN,ARN) 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

C 

FOR GENERAL TRUSS ELEMENT 
IMOD = 1 COMPUTES INT. LD. VECT. FI 
IMOD=2 COMPUTES TAN. STIFF. AKT 
IMOD=3 COMPUTES BOTH 

AN=lNPUT TOTAL FORCE IN BAR 
Z=INPUT=Z COORD VECTOR; X=INPUT=X COORDS 
P = INPUT =TOTAL DISP. VECTOR 
ALO = INPUT=ORIGINAL LENGTH OF ELEMENT; ALN(IN) = NEW LENGTH 
E = INPUT = YOUNG’S MOD: ARN = INPUT= CURRENT AREA 

ITY=I ,  GREEN: =2, ENG., =3, LOG: =4 LOG WITH VOL CHANGE 

IF IWRIT.NE.0 WRITES OUT FI AND/OR AKT ON CHANNEL IWR 

IMPLICIT DOUBLE PRECISION(A-H,0-Z) 
DIM E N SIO N AKT (4,4), FI (4) ,Z (2), P (4) ,X( 2) ,C (4) 

IF (ITY.EQ.3) POlSS =0.5DO 
ALAM =ALO/ALN 
X21 D =X(2) - X( 1)  + P(2) - P( 1) 
221 D = Z(2) -Z(1) + P(4)-P(3) 

IF (IMOD.NE.2) THEN 
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C 
C 
C 

C 

C 

C 
C 

C 
C 

C 

C 
C 

C 

1000 

3 

1001 

14 
67 

COMPUTES INT. FORCE VECTOR 
SEE (3.92) FOR GREEN; (3.107) FOR ROTATED ENGNG., 
(3.1 18) FOR LOG-STRAIN 
CON =AN/ALO 
IF (ITY.GT.l) CON =ALAM*CON 
FI(1) -CON*X21 D 
Fl(2) = - FI( 1 ) 
F1(3)= -CON*Z21D 
Fl(4) = - Fl(3) 
IF (IWRIT.NE.0) THEN 
WRITE (IWR, 1000) (FI(I),I= 1,4) 
FORMAT(/,lX,'INT. FORCE VECT. FOR TRUSS EL IS ',/,lX,4G13.5) 
ENDIF 

ENDIF 

IF (IMOD.NE.l) THEN 
COMPUTES TAN STIFF. MATRIX (UPPER TRIANGLE) 
SEE (3.92) FOR C 

C(2) = X21 D 

C(4) = 221 D 
EA = E*ARN 
CON1 = 1 ./(ALO**3) 
IF (ITY.EQ.l) CON1 = EA*CONl 

C(1)= -X21D 

C(3) = -221 D 

IF (ITY.EQ.2) CON1 =ALAM*ALAM*CONl*(EA-AN*ALAM) 
IF (ITY.GE.3) CON1 =CONl*ALAM**4*(EA-(l .ODO+0.5DO*POISS)*AN) 
SEE (3.93) FOR GREEN, (3.1 11) AND (3.1 14) FOR ROTATED ENGNG., 

DO 3 1=1,4 
DO 3 J = l,4 
AKT(I, J) = CON1 *C(I)*C(J) 

SEE (3.120) AND (3.122) FOR LOG-STRAIN 

CON2=AN/ALO 
IF (ITY.GE.2) CON2 = CON2*ALAM 
SEE (3.69) FOR GREEN, (3.113) FOR ROTATED ENGNG., 

AKT( 1 , l )  = AKT( 1 , l )  + CON2 

AKT(2,2) =AKT(2,2) + CON2 
AKT(3,3) =AKT(3,3) + CON2 
AKT(3,4) =AKT(3,4) - CON2 
AKT(4,4) = AKT(4,4) + CON2 

(3.121) FOR LOG-STRAIN 

AKT( 1,2) = AKT( 1,2) - CON2 

IF (IWRIT.NE.0) THEN 
WRITE (IWR,1001) 
FORMAT(/,lX,'TAN. STIFF. MATRIX FOR TRUSS EL. IS',/) 
DO 14 1=1,4 
WRITE (IWR,67) (AKT(I,J),J= 1,4) 
FORMAT(lX,7Gl3.5) 
ENDIF 
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C 
ENDIF 

RETURN 
END 

3.9.2 Subroutine INPUT 

This subroutine should be used in place of subroutine INPUT of Section 2.2.2. In 
addition to the previous data which relates to the bar-spring system of Figure 2.2, 
this routine inputs the type of strain measure (via the parameter ITYE). Also, in 
contrast to the work of the previous section, the initial area of the element, A,, is 
required as well as the E-value, E .  Also, Poisson's ratio is required although, in 
practice, i t  is not used unless the specified type of non-linearity is 'Iog-strain with 
volume changes' (ITYE = 4). (Solutions obtained using the log strain without volume 
changes (ITYE = 3) should be the same as those obtained with v = 0.5 and ITYE = 4.) 

SUBROUTINE INPUT(E,ARA,AL,QFI,X,Z,ANIT,lBC,IRE,lWR,AKl4S,ID14S, 
1 NDSP,NV,AK15, 
2 PO ISS, ITY E) 

C 
C 
C 

READS INPUT FOR DEEP TRUSS ELEMENT 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIM ENS 10 N X( 2) ,Z (2), Q FI (NV) , IBC( NV) , AK 1 4S( 4), I D 1 4s (4) 

READ (IRE,*) NV,ITYE,E,ARA,POISS,ANlT 
WRITE (IWR,lOOO) NV,E,ARA,POISS,ANIT 

C 

1000 FORMAT(/,l X,'NV = NO. OF VARBLS. = ',l5,/,1 X, 
1 'E= ',G13.5,/,1X, 
2 'ARA=EL. INIT. AREA= ',G13.5,/,1X, 
3 'POISS = ',G13.5,/,1 X, 
3 'ANIT = INIT. FORCE = ',G13.5) 

1101 FORMAT(/,lX,'ELEMENT TYPE= ',l5,/, 
1 3X,'= 1, GREENS STRAIN',/, 
2 3X,' = 2, ENGNG. STRAIN',/, 
3 3X,'=3, LOG STRAIN',/, 
4 3X,'=4, LOG STRAIN WITH VOLUME CHANGES') 

WRITE (6,1101) ITYE 

IF (NV.NE.4.AND.NV.NE.5) STOP 'INPUT 1000' 
READ (IRE,*) X(l),X(2) 
READ (IRE,*) Z ( l  ) , Z ( 2 )  
WRITE (IWR,1001) X(I),X(2) 

1001 FORMAT(/,lX,'X CO-ORD OF NODE 1 ',G13.5,1X, 
1 'X CO-ORD OF NODE 2 =  ',G13.5) 
WRITE (IWR,1006) Z(l),Z(2) 

1006 FORMAT(/,IX,'Z CO-ORD OF NODE 1 ',G13.5,lX, 
1 'Z CO-ORD OF NODE 2= ',G13.5) 
AL=(X(2) -X(1) ) * *2+(2(2) -2 (1) ) * *2  
AL = DSQRT(AL) 
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READ (IRE,*) (QFI(I),I = 1 ,NV) 
WRITE (IWR,1002) (QFI(I),I = 1,NV) 
FORMAT(/,IX,'FIXED LOAD OR DISP. VECTOR,QFI = ' , / , l  X5G13.5) 
WRITE (IWR,1008) 
FORMAT(/,IX,'IF IBC(I)-SEE BELOW--0, VARIABLE =A LOAD',/,IX, 
2 'IF IBC(I)-SEE BELOW-= - 1 ,  VARIABLE=A DISP.') 

READ (IRE,*) (IBC(I),I = 1 ,NV) 
WRITE (IWR,1003) (lBC(l),I= 1,NV) 

1003 FORMAT(/,IX,'BOUND. COND. COUNTER, lEC'3/,l X, 
1 '=O,  FREE: = 1, REST. TO ZERO: = -1  REST. TO NON-ZERO',/,lX, 
2 515) 

1004 

READ (IRE,*) NDSP 
IF (NDSP.NE.0) THEN 
READ (IRE,*) (ID14S(l),l= 1,NDSP) 
READ (IRE,") (AKl4S(l), l= 1,NDSP) 
DO 40 I = 1 ,NDSP 
WRITE (IWR,1004) AK14S(l),lD14S(I) 
FORMAT(/l X,'LINEAR SPRING OF STIFFNESS ',G13.5,/,1 X, 

1 'ADDED AT VAR. NO. ',E) 
40 CONTINUE 

ENDIF 

IF (NV.EQ.5) THEN 
READ (IRE,*) AK15 
WRITE (IWR,1005) AK15 

C 

1005 FORMAT(/,lX,'LINEAR SPRING BETWEEN VARBLS. 1 AND 5 OF STIFF ', 

1 G13.5) 
ENDIF 

RETURN 
END 

C 

3.9.3 Subroutine FORCE 

This subroutine should be used in place of subroutine FORCE of Section 2.2.3. It not 
only computes the force in the bar but also the new area (A,  = ARN) although the 
latter should only differ from the original area, A,, for the log-strain measures (ITYE = 3 
or 4). 

SUBROUTINE FORCE(AN,ANIT,E,ARO,ALO,X,Z,P,IWRIT,IWR, 
1 ITY ,ARN,ALN, POISS) 

FOR GENERAL TRUSS ELEMENT, COMPUTES: 
A) INTERNAL FORCE,AN 
6) NEW LENGTH OF ELEMENT, ALN 
C) NEW AREA OF ELEMENT, ARN 

E =YOUNG'S MOD, ARO = ORIGINAL AREA, ALO =ORIG. LENGTH 
POISS = POISSON'S RATIO, Z =Z-COORDS, X =X-COORDS, 
P =TOTAL DISPS., IWRlT = WRITE CONTROL, IWR = WRITE CHANNEL 

INPUTS: 
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C 
C 
C 

C 
C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

1 

1000 

ITY = 1 ,  GREEN'S STRAIN, =2 ENGNG. STRAIN, =3  LOG-STRAIN 
=4 LOG-STRAIN WITH VOLUME CHANGE 

I M PLl ClT DO U B LE PRECIS ION ( A-H ,0-Z) 
DIMENSION Z( 2), P (4) ,X( 2) ,B1(4) 

COMPUTES NEW LENGTH 
X21 D = X(  2) - X( 1 ) + P(2) - P( 1 ) 
221 D = Z(2) - Z( 1 ) + P(4) - P(3) 
ALN = X21 D*X21 D + 221 D*Z21 D 
ALN = SQRT(ALN) 

IF (ITY.LE.2) THEN 
GREEN OR ENG. STRAIN 
x21 =X(2)-X(I) 
221 =Z(2)-Z( I )  
U21 =P(2)-P(1) 
w21 = P(4) - P(3) 
AL02 = ALO*ALO 
SEE (3.56) FOR B1 
B1(1)= -X21/AL02 
B1(2)= -B1(1) 
61 (3) = -Z21/AL02 
61 (4) - 61 (3) 
EGR =O.DO 
LINEAR PART OF GREEN STRAIN (SEE (3.55)) 
DO 1 1=1,4 
EGR=EGR+Bl(I)*P(I) 

EGR=EGR+0.5*(U21*U21 +W21*W21)/AL02 
EST = EGR 
SEE (3.115) FOR ROTATED ENGNG. STRAIN 
IF (ITY.EQ.2) EST = 2.*ALO*EGR/(ALN + ALO) 

ADD-IN NON-LIN PART (SEE (3.55) OR (3.54)) 

ELSE 

EST = ALOG(ALN/ALO) 
ENDIF 

LOG-STRAIN (SEE (3.1 16)) 

ARN =ARO 
IF (ITY.EQ.4) THEN 
ALLOWS FOR VOLUME CHANGE (SEE (3.23)) 
POW =2.DO*POISS 
RAT = ALO/ALN 
ARN = ARO*RAT**POW 
ENDIF 

AN = ANlT + E*ARN*EST 

IF (IWRIT.NE.0) WRITE (IWR,1000) AN,ALN,ARN 
FORMAT(/,lX,'AXIAL FORCE AN = ',G13.5,/, 
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1 lX,'NEW LENGTH, ALN = ',G13.4,/, 
2 IX,'NEW AREA, ARN= ' ,G13.4) 

RETURN 
END 

C 
C 

3.10 PROBLEMS FOR ANALYSIS 

The following problems mainly relate to the NAFEMS (National Agency of Finite 
Elements) tests [C1.2,D1.2]. The problem numbers will be related to those used in 
the latter document. i.e. 3.10.4 will refer to NAFEMS Example 4. Whenever exact 
solutions are given, they will relate to the 'rotated engineering strain'. Apart from 
the problems headed 'large strain', there should be little difference between the 
solutions obtained with the different strain measures. For a number of problems, 
although the exact governing equations are given, the detail of their solution, which 
involved the use of Laguerre's method, is not included here. Full details are given in 
cC1.21 as are tabulated solutions including both the primary and secondary equi- 
librium paths. Similar responses related to a simple structure can be found in [Pl]. 

3.10.1 Bar under uniaxial load (large strain) 

This is the problem previously discussed in Section 3.2 and defined in (3.39) and 
Figure 3.3. The responses are as shown in Figure 3.4. 

The following data relates to a solution using Green's strain for the compressive 
regime. It is obtained using displacement control so that no structural equations are 
solved. 

4 1 500000. 100. 0. 0. ; NV,ITYE(Green),E,ARA,POIS,ANIT, 
0. 2500. ; x-coords. 
0. 0.00 : z-coords. 
0. - 1000. 0. 0. ; fixed displ. vector 
1 - 1 1 1 ; Bdry condn. code. 
0 ; no earthed springs 
0.2 
0.001 1 ; convergence tol., iteration. type (N--R) 

6 0 ; load inc. factor, no. of incs., write control 

3.10.2 Rotating bar 

This problem has previously been used in Chapters 1 and 2 and involves the configur- 
ation of Figure 3.12(a) with K,, = 0 and a negative loading 9,. 

3.10.2.1 Deep truss ( large strains) (Example 2.1 ) 

This is the problem previously discussed in Section 3.1.5 and defined in (3.31) and 
Figure 3.12(a). The responses are as shown in Figure 3.2. 
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Load q4 

disp,p, * - _ - - - - -  $ 
(a) 

Figure 3.12 Configurations for bar-spring problems: (a) single degree of freedom; (b) two degrees 
of freedom; (c) three degrees of freedom. 

Data for a displacement-controlled solution using a rotated log-strain with 
Poisson's ratio of 0.5 (constant volume) is given below: 

4 4 500000. 100. 0.5 0.0 ; NV,ITYE=Log,E,ARA,POIS,ANIT, 
0. 2500. ; x-coords. 
0. 2500. ; z-coords. 
0. 0. 0. - 1000. ; fixed displ. vector 
1 1 1 -1  ; Bdry. condn. code 
0 ; no earthed springs 
0.5 12 0 ; Load inc. factor, no. of incs., write control 
0.001 1 ; convergence tol., iterative type (N-R) 

3.10.2.2 Shallow truss (small strains) (Example 2.2) 

This problem is identical to that of 3.10.2.1 apart from the provision of a lower 
'eccentricity's0 that z of Figure 3.12(a) is 25. With such an eccentricity, the response 
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will be close to that of the shallow truss of Sections 1 . 1  (Figure 1.2) and 2.6.2. In 
contrast to the shallow solution of (( 1.1 l), the exact load/deflection relationship, 
assuming a rotated engineering strain, is ([Cl.2)) 

(3.156) 

where 
a = z/x (3.157) 

and the symbols are from Figure 3.12(a)) while the bar implies that the variable has 
been non-dimensionalised with respect .to x (Figure 3.12(a)) i.e. p4 = p4/x. Also, for 
the current problem, K , ,  = 0. This spring term has been included in order to provide 
the solution for the following problem. 

The following data relates to a load-controlled solution using the modified 
Newton-Raphson method, for which the solutions are the points shown in 
Figure 3.1 3. 

4 2 50000000. 1. 0. 0. ; NV, ITYE (rot. eng.), E, ARA, POIS, ANlT 
0. 2500. ; x-coords. 
0. 25. ; z-coords. 
0. 0. 0. - 1.0 ; load of - 1.0 at variable 4 (vertical at node 2) 
1 1 1 0 ; only variable 4 is free 
0 ; no earthed springs 
1.9 6 0 ; Load inc. factor, no. of incs., write control 
0.001 2 ; Convergence tol., Iterative type (mN-R) 

Table 3.1 compares the iterative performance of the mN-R solution with that obtained 
(by changing the 2 to a 1 in the last line of the previous data) for the N-R method. 

I6 

Figure 3.13 Solution points for Example 2.2. 
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Table 3.1 Iterative performance for Problem 3.10.2.2 
(see Figures 3.12(a) and 3.13) (Aq,  = - 1.9). 

Iterations at load step 
Method 1 2 3 4 5  6 

mN-R 2 2 3 3 12 fail 
N-R 1 1 1 2 3 fail 

Although the full N-R method gave a better performance than the mN-R method, 
it was unable to take the jump from point 5 to point 6. For this trivial, one-dimensional 
problem, the solution could be obtained by displacement-control. Other methods 
will be discussed in Chapter 9. 

3.10.3 Hardening problem with one variable (Example 3) 

For this problem (Figure 3.12(a)), a linear spring, K,, = 1.125 has been added so that 
the response is continuously hardening although with a softening and then a stiffening 
region. The response will be a little stiffer than that shown in Figure 1.2 for 
K ,  = EAz2 /213 .  (Here, K ,  rr 1 . 1 2 5 E A ~ ~ / 2 1 ~ . )  The load/deflection response is governed 
by Equation (3.156). 

The following data relates to a load-controlled solution using the full N-R method 
and produced the points on Figure 3.14. 

4 2 50000000. 1. 0. 0. ; NV, ITYE (rot. eng.), E, ARA, POIS, ANlT 
0. 2500. ; x-coords. 
0. 25. ; z-coords. 

Vertical deflection, p4 

Figure 3.14 Solution points for Example 3. 

- 1  
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Table 3.2 Iterative performance for Problem 3.10.3 (see 
Figures 3.12(a) and 3.14) (Aq4 = -6). 

Iterations at load step 
Method 1 2 3 4 5  6 7 

mN-R 3 3 3 5 10 fail 
N-R 1 1 2 2 2 3  2 

0. 0. 0. - 1.0 ; load of - 1 at variable 4 (vertical at node 2) 
1 1 1 0 ; only variable 4 is free 
1 one earthed spring 
4 at variable 4 
1.125 ; of magnitude 1.125 
6. 7 0 ; Load inc. factor, no. of incs., write control 
0.001 1 ; Convergence tol., Iterative type (N-R) 

Table 3.2 compares the iterative performance of the full N-R solution with that 
obtained (by changing the 1 to a 2 in the last line of the previous data) for the 
modified N-R method. 

3.10.4 Bifurcation problem (Example 4) 

This problem is very similar to that discussed in Section 1.3 and further in Section 2.6.3. 
The configuration is that shown in Figure 3.12(b) with z = 0 and 

E A ,  = 5 x 107, x = 2500. (3.1 58) 

In reality, the length term 1 in (1.67) and (1.68) should be the current, rather than 
In addition, K,, = 1.5 so that, from (1.68), the buckling load is 3750. 

the original length. Hence 

U,, = qlc ,  = l,K,, 1 - -- ( 2:) (3.159) 

from which 

qlc, = foKs4( 1 + K24’0)-1 = f0K , ,  ( 1 + :::)-’ - z f,K,, (3.160) 
EAO 

where we have introduced the notation 

(3.161) 

to represent the stiffness of the rotating bar elements in Figures 3.12(a)-(c). (The 
approximation sign in (3.160) relates to the configurations used for these examples.) 

Figure 1.1 1 plotted the fundamental and post-buckling paths for a perfect shallow 
truss. Figure 3.15 plots the equivalent solutions for a rotated engineering strain. In 
contrast to the shallow formulation, the current formulation leads to a ‘falling’ or 
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Ql(or (7,) - -__ Post-buckling paths 

95 

, Hardening 
---.. . - - ---\ 

Figure 3.15 Load/deflection relationships for ‘perfect’ bar-spring system 

‘softening’ post-buckling path. However, this path can be made to harden by the 
addition of the spring K , ,  in Figure 3.12(b). In addition the response (now at variable 
5 --see Figure 3.12(c)) can be made to ‘snap back’ by adding a spring K,, so that 
the problem has three variables. I t  can be shown that the critical buckling load 
relating to Figure 3.12(b) (with z = 0 and .Y = I , )  is 

(3.162) 

where the approximation again relates to the configurations adopted for the current 
examples. Equation (3.162) also applies to q5cr, the critical buckling load for the 
perfect form of the configuration in Figure 3.12(c) (with z = 0 so that x = (,). 

Without the provision for post-buckling analysis (see Volume 2), the computer 
program will only be able to follow the basic fundamental path OAB of Figure 3.15. 
However, as discussed in Sections I .3 and 2.6.3, the instability of the solution beyond 
the bifurcation point (point A, Figure 3.15) should be apparent from the presence of 
a negative pivot following the LDLT factorisation of the tangent stiffness matrix for 
equilibrium points on the portion A B  of Figure 3.15. 

While the current computer program may be unable to trace the post-buckling 
paths such as ACD or AC’D (this would only be indirectly possible by adopting a 
very small ‘imperfection’, z or a small destabilising lateral force at q4), i t  is nonetheless 
worth briefly discussing the alternative paths in Figure 3.15. In particular, we will 
concentrate on the system of Figure 3.12(a) (with z =0)  with K, ,  = 0, for which 
the solution under displacement control (with monotonically increasing p 1  in 
Figures 3.12(b) and 3.13) may be assumed to follow the path OA until bifurcation, 
at which point i t  may follow either AC or AC’. The bar then follows the configurations 
illustrated in Figure 3.16. Assuming that CC’ is horizontal and has P = 0, point C in 



96 TRUSS ELEMENTS AND SOLUTIONS 

(iii) 

0 and A C D, E and F - 
Points on Figure 3 15 

Figure 3.16 Bar-spring configurations in relation to the ‘softening’ solution in Figure 3.15. 

Figure 3.15 relates to the configuration (ii) in Figure 3.16 with ‘b’ lying vertically 
above ‘a’ and so that there is no force in the bar and no loading, q 5 .  However, at 
this stage there is a considerable force in the compressed spring Ks4, so that when 
the deflection, p l ,  is taken beyond this configuration (with point ‘a’ of Figure 3.12(b) 
now to the right of point ‘b’), a compressive stress is required in the bar element and 
hence a negative force, q 5 .  The equilibrium path therefore follows CD in Figure 3.15. 
At  point D, points ‘b’ and ‘a’ (Figure 3.12(b)) now lie on a horizontal line but with 
point ‘a’ to the right of point ‘b’. This configuration is illustrated in Figure 3.16(iii). 
From this stage onwards, q5 is stretching the bar. Up to point E in Figure 3.15, this 
stretching is merely reducing the compression already in the bar while from point E 
to point F the bar is pulled into tension. 

3.10.5 Limit point with two variables (Example 5) 

An ‘imperfection’ is added to the previous example by setting z = 2 5  so that the 
bifurcation is eliminated. Assuming shallow truss theory, the response for this 
structure is that previously described in Section 1.3.1 and illustrated in Figure 1.1  1.  
When the theory is extended beyond the shallow truss assumptions, the response 
becomes that illustrated by the dotted lines in Figure 3.1 7, where the primary imperfect 
path is the ‘true path’ that should be followed by an increasing shortening ( p l )  and 
the secondary (or complementary) imperfect path is the equivalent alternative 
equilibrium state to that discussed in Section 1.3.1 and reached when large increments 
were adopted in Section 2.6.4.3. For the current deep truss theory, the primary 
imperfect path has a limit point beyond which the load q1 reduces. 

Using Pythagoras’s theorem, from Figure 3.12(b) in conjunction with (3.157) and 
(3.161), the force in the bar is given by 

N = K s b ( ( ( P 4  + a)2 + (1 - P1)2)”2 - (1 + a 2 ) l i 2 ) X  = K s b ( q  - (1 + a2)1’2)x (3.163) 
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- - - - - - - - Primary imperfect path 
- _ _  _ _  Complementary imperfect path 

Figure 3.17 Decomposition of perfect system due to an imperfection 

where the bar again indicates that the variable has been non-dimensionalised with 
respect to .Y (Figure 3.12(b)). The exact equilibrium equations can be obtained from 
equilibrium by resolving vertically and horizontally. This will be shown in the next 
section, which involves a generalisation of the present problem. 

For the NAFEMS problems, load control was firstly adopted with constant 
increments of A q ,  = 760 and should have produced the points marked 1 - - 5  on 

‘ X  

Figure 3.18 Solution points for Example 5. 
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Table 3.3 Iterative performance tor Problem 3.10.5 
(see Figures 3.12(b) and 3.18) ( A q ,  = 760).  

~ ~- 

Iterations at load step 
Method 1 2  3 4 5 6  

mN-R 5 8 fail 
N-R 2 2  3 3 7* 5* 

*Solution converged onto secondary imperfect path. 

Figure 3.18. In practice, the modified Newton-Raphson method was successful for 
only the first two increments, while the full Newton-Raphson method easily achieved 
solutions for steps 1-4 (see Table 3.3). The data for the latter solution is given below. 

4 2 50000000. 1. 0.0 0.0 ; NV, ITYE (rot. eng.), E, ARA, POIS, ANlT 
0. 2500. ; x-coords. 
0. 25. ; z-coords. 
760. 0. 0. 0. ; fixed load vector 
0 1 1 0 ; Bdry. condn. code 
1 ; one earthed spring 
4 ; at Variable 4 
1.5 ; of magnitude 1.5 
1.0 6 0 ; Load inc. factor, no. of incs., write control 
0.001 I ; Convergence tol., iterative type (N-R) 

Knowing that Step 5 would take the solution to q ,  = 3800, while the critical 
buckling load for the perfect solution (see Section 3.10.4) was 3750, trouble could be 
anticipated on Step 5 .  Indeed, even with the full N-R method, convergence was not 
achieved using Green’s strain while convergence to the ‘wrong path’ (point 5* in 
Figure 3.1 8) was obtained with the rotating engineering strain. Displacement control 
with large steps of Apl =250 gave satisfactory solutions with full N-R but failure 
with mN-R (from the very first step). Reducing the step size to Apl =0.3 gave 
converged solutions with either solution procedure. Further work on this example 
will be given in Section 9.9.5. 

3.10.6 Hardening solution with two variables (Example 6) 

For this problem, a spring K, ,  = 2.0 was added so that the limit points were removed 
and the response was continuously hardening (Figure 3. IS and 3.19). Using a similar 
procedure to that of Section 1.3 (see equation (1.54)), we can resolve firstly hori- 
zontally and then vertically to obtain the equilibrium equations: 

(3.165) 
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Primary path 
---_ Complementary path 

Figure 3.19 Solution points for Example 6 

where 8 relates to the displaced configuration (Figures 1.1 and 3.1) and use has been 
made of (3.162), (3.167) and (3.161). 

With load control, and steps of Aq,  = 1100, the mN-R method was only successful 
only for Step 1,  while the full N-R method had difficulties from Step 4 onwards. With 
Green’s strain, convergence was not achieved within a specified maximum of 12 
iterations while with the rotated engineering strain, Steps 4-6 ended on the wrong 
equilibrium path (see Figure 3.19). The data for the latter solution is given below and 
the convergence characteristics in Table 3.4: 

4 2 50000000. 1. 0.0 0.0 ; NV,ITY E = Engng.,E,ARA,POIS,ANIT 
0. 2500. ; x coords. 
0. 25. ; z coords. 
1100. 0. 0. 0. ; Fixed load vector, loading at variable 1 
0 1 1 0 ; Bdry condn. code; rest. at varbls. 2 and 3 
2 ; Two earthed springs 
1 4 ; At varbls. 1 and 4 
2.0 1.5 ; of mag 2.0 and 1.5 respectively 
1.0 6 0 ; Load inc. factor, no. of incs., write control 
0.001 1 21 0 ; Convergence tol., iterative type (N-R) 

If the ‘imperfection’, z, is reduced from 25 to 2.5, both strain measures will lead to 
solutions that swap branches onto the wrong equilibrium path from Step 4 onwards. 
With all these solutions in which such branch-swapping has occurred there is a 
potential warning in that a negative pivot is found on the LDLT factorisation for 
points on the ‘wrong’ path. This warning will be output by the computer program 
(see Section 2.5). When applying displacement control with steps of Ap, = 500, the 
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Table 3.4 iterative performance for Problem 3.10.6 (see 
Figures 3.12(b) and 3.19) (Asl = 1100). 

Iterations at load step 
Method 1 2 3 4 5 6  

mN-R 8 fail 

N-R (Green) 2 3 5 fail 
N-R (Eng.) 2 3 5 5* 3* 5* 

~~~ 

*Solution converged onto secondary imperfect path. 

mN-R method failed from the first step while the full N-R method gave satisfactory 
solutions. 

3.1 0.7 Snap-back (Example 7) 

By adding a third spring (Figure 3.12(c)) it is possible to create a ‘snap-back’. The 
governing equilibrium equations are then given by (3.165) in conjunction with 

g l  = - N c o s 8 + K s l p l  + K s 5 ( p l  - P S I  

(1 - Pl)(cp - (1 + ct2)1’2)x 
= K,b- _._______ + KS1p,x-K,5(p1 - p 5 ) ~ = 0  (3.166) 

cp 

g5 = - K s 5 ( p 1  - p5) - q 5  = - K s 5 ( P 1  - P 5 ) x  - q g X  O. (3.167) 

4500 

3000 

s 
g 1500 
U 

-I 

0 

- 1500 

- 3000 
/ 

/ 
Complementary path --- 

Figure 3.20 Solution points for Example 7. 
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For the numerical example, the geometry was maintained as before with z = 25, but 
the adopted spring stiffnesses were 

K,, = 0.25, K,, = 1.5, K,, = 1.0. (3.168) 

From (3.162) the critical buckling load is again approximately 3750 (see Section 3.10.4). 
In this situation, the relationship between the load, q,, and the shortening dis- 
placement, p s ,  is that shown in Figures 3.15 and 3.20. Adopting load control, with 
increment of Aq5 = 700, the solution should involve Steps 1-6 shown on that figure. 
However, the mN-R method achieved convergence only up to point 2 (see Table 3.4), 
while the full N-R method was successful for the first five steps but then either failed 
to converge within the specified maximum number of iterations (with Green’s strain) 
or converged onto the wrong equilibrium path (point 6*-with rotated engineering 
strain). The data for the latter solution is given below. 

5 2 50000000. 1. 0.0 0.0 ; NV,ITYE=Engng.,E,ARA,POIS,ANIT 
0. 2500. ; x coords. 
0. 25. ; z coords. 
0. 0. 0. 0. 700. Fixed load vector, loading at variable 5 
0 1 1 0 0 ; Bdry code; rest. at varbls. 2 and 3 
2 ; Two earthed springs 
1 4 ; At varbls. 1 and 4 
0.25 1.5 ; of mag 0.25 and 1.5 respectively 
1.0 ; linear spring of stiff 1 .O between variables 1 and 5 
1.0 7 0 ; Load inc. factor, no. of incs., write control 
0.001 1 ; Convergence tol., iterative type (N-R) 

With hindsight, this is not surprising because between Steps 5 ( q 5  = 3500) and 
Steps 6 ( q ,  = 4200), the solution passes the critical buckling load of 3750. Displacement 
controlled solutions with Ap, = 1000 failed on Step 2 with mN-R. With full N-R, 
from Step 4 onwards, the Green’s strain solutions again failed to converge within the 
specified maximum number of steps while the rotated engineering strain converged 
onto the wrong path. Cutting the step size with displacement control did not 
overcome the difficulties because of the snap-back. However, i t  will be shown in 
Chapter 9 that these problems can easily be overcome using a modified form of 
displacement control called the ‘arc-length method’. 

Table 3.5 Iterative performance for Problem 3.10.7 (see 
Figures 3.12(c) and 3.20) (Aq,  = 700). 

Iterations at load step 
Method 1 2  3 4 5  6 7 

mN-R 5 7 fail 

N-R (Green) 2 2  3 4 9 fail 
N-R (Eng.) 2 2  3 4 5  9* 3* 

~ -~ 

Solution converged onto secondary imperfect path. 
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3.1 1 SPECIAL NOTATION 

A =  
A =  
b, = 
b =  
C =  

C =  

C[ = 

e ,  = 

e, = 
F =  
h =  

h, = 
H =  

H, = 

Ks = 
Ks, = 

N =  
n =  
P =  

e2,e3 

P21= 
4 =  
r =  

To, = 

T =  
S =  

U = =  

area of bar 
matrix (3.57) or (3.141) 
vector connecting linear part of E to p 
vector connecting 6~ to 6p; b =  b, + b2 
cos 0 
vector (3.56) such that c(x) = 4Ax or c(p) = 4Ap 
vector (3.123) 
unit vector lying along the truss element 
unit vectors orthogonal to e ,  
unit vector relating to configuration at mid-increment 
Boolean matrix (see (3.145)) 
shape function array 
differential of h w.r.t. 5 
shape function matrix 
differential of H w.r.t. 5 
spring stiffness 
stiffness of bar element (see (3.161)) (Section 3.10) 
axial force in bar 
unit vector orthogonal to truss element 
nodal displacement vector 
ordering for 2-D truss is pT = ( u l ,  u2 ,  w l ,  w,) 
ordering for 3-D truss is pT = ( u l ,  U , ,  v l ,  v2, wl, w 2 )  
vector such that p:, = (u,~, w 2 , )  (or equivalent in 3-D) 
load at end of bar (Sections 3.1 and 3.2) 
position vector: initial position vector = r, 
dr0 
d5 
sin 0 
transformation matrix (see (3.126) or (3.144)) 
axial (x-direction) displacement at end of bar (Section 3.2) 

du 
U = displacement vector such that uT = (U, w )  (or, in 3-D-see (3.139)) 

= G 
U 1 ,  u2 = nodal displacements for bar in x-direction 

U21 = U2 - U 1  

w = vertical ( z  direction) displacement at end of bar (Section 3.1) 
wl, w2 = nodal displacements for bar in z-direction 

w 2 1 =  w2 - W1 

x = horizontal length (Sections 3.1 and 3.10) 
x ,  , x2 = nodal values of x 

x21 = x, - x, 
x = x, = vector of initial nodal coordinates (3.48) 
x’ = x, = vector of current nodal coordinates (3.47) 

xZ1 = vector (3.52) (or equivalent in 3-D) 
x, = vector of coordinates at mid-increment (see (3.153)) 
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z = initial vertical offset at end of bar (Sections 3.1 and 3.10) 
2 = z + w (Section 3.1) 

zl, z2 = nodal values of z 
x 2 1  = 2 2  - 2 1  

I ,  = current length of bar 
I ,  = initial length of bar 
3 = ‘length parameter’ (half-length of bar) 
a = z/x (Section 3.10) 

E = axial strain in bar 
t? = engineering strain 
i = length ratio (see (3.108)) 
6, = angular orientation of bar 

<p = non-dimensional constant (see (3.163)) 

‘d = ‘true stress’ 

Subscripts 

A = Almansi 
E = engineering 
G = Green 

1 = local 

o = old or original 
n = new or current 

L = log 

Superscripts 

- = quantity divided by x (Section 3.10) 

3.12 REFERENCES 

[PI] Pecknold, D. A., Ghaboussi, J. & Healey, T. J., Snap-through and bifurcation in a simple 
structure, J .  Engng. Mech., 111 (7) ,  909-922 (1985). 



4 Basic continuum 
mechanics 

The previous chapters have all been related to one-dimensional problems. Before 
moving on to two- and three-dimensional problems, we will include a chapter on 
basic continuum mechanics. Many specialist texts are available either directly on 
continuum mechanics [H 1, M 1 ,  M3, M4, S1, W2] or containing basic background 
information in relation to elasticity [Tl, L1, G l ]  or mechanics of solids [B3, Wl]. 
The present chapter will be far less rigorous and is intended to introduce sufficient 
continuum mechanics for the following chapters which concentrate on the finite 
element discretisation or solution procedures. It should also pave the way for some 
of the more advanced work in Volume 2. 

This chapter starts by introducing both vector and tensor [Y 11 notations for stress 
and strain. In the first instance, the ‘tensor form’ is introduced simply as a matrix. 
In the early sections, the distinction between the vector and tensor forms will be 
indicated by adding a subscript 2 (second order tensor) on the latter. This procedure 
will later be dropped as the distinction becomes obvious. Indicial notation is 
also introduced although for many developments such notation is completely 
avoided. 

Sections 4.1, 4.2 and 4.4 provide the basis for the finite element work of Chapter 5 
which uses the total Lagrangian formulations. Section 4.3 involves transformations 
between one coordinate system and another (not required for the main theme of 
Chapter 5 )  while Sections 4.5 and 4.6 introduces the Cauchy stress and hence are 
strictly required for updated Lagrangian formulations which are also considered in 
Chapter 5. Section 4.7 briefly discusses the relationship between the various stress 
and strain measures while Section 4.8 introduces the polar decomposition which is 
used in Section 4.9 to relate the Green and Almansi strains to the principal stretches 
and in Section 4.10 to give a simple explanation of the second Piola-Kirchhoff 
stresses. Section 4.1 1 gives a very brief overview of constitutive models with the aim 
that the finite element work of Chapter 5 should make sense in relation to concepts 
such as plasticity, although this subject will not be treated in detail until later 
(Chapter 6). 

The reader wishing to get straight into finite element work with only the minimum 
continuum mechanics could try reading only Sections 4.1, 4.2 and 4.4. 
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STRESS AND STRAIN 

4.1 STRESS AND STRAIN 

We can either represent the stress at a point (Figure 4.1) by a vector. 

or by a matrix 

O11 O 1 2  O13 

O21 O 2 2  O 2 3  

O 3 l  O32 Q 3 3  

105 

where the subscript 2 on cr is used to distinguish this two-dimensional representation 
from the one-dimensional vector representation of (4.1). The matrix, b2, in (4.2) can 
be represented using either letters or numbers. In either case, there are only six 
independent quantities since, from rotational equilibrium, for example, c12 = z,, = 

oZ1 = zPx. The quantity c2 in (4.2) is more than a matrix, it is a tensor which transforms 
to new axes according to certain laws [Y 1, M 11 which will be discussed in Section 4.3. 

With the stresses being expressed by (4.1), the strains at the same point can be 
expressed as 

ET = (Exx, E y y ,  E z z ,  Y x y ,  Y x z , Y y z ) *  (4.3) 

Alternatively, tensor notation can be adopted so that 

where again there are only six independent quantities and the tensor is symmetric. 

Figure 4.1 The stresses. 
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For small strains, 

a u  a w  au aw 
y x z =  ( -+- dz a,>. 

Y y z  = ((72 + ;y). 
(4.5) 

It should be noted that the tensor shear-strains in (4.4) are half the ‘engineering’ shear 
strains in (4.3). (The symbol y is used for the latter.) This ensures that both notations 
can be used to express the (linear) strain energy, cp, per unit volume via ‘scalar 
products’ so that 

cp =id& = qb2:E2  (4.6) 

where the oT& involves the familiar dot (or inner product) and the contraction symbol: 
implies a similar scalar product with every term in (r2 being multiplied by its 
equivalent term in E ~ ,  i.e. from (4.2) and (4.4): 

cp = i ( ~ x x E x ,  + O.~~, ,Y , ,  + 0 . 5 ~ x z Y x z  + o.5~,xy,, + (TyyEyy + ... + d,,E,,). (4.7) 

The stress tensor notation allows the stresses to be very simply related to equili- 
brating external forces (Figure 4.2) via 

where A,, A ,  and A, are the components of the area A (Figure 4.2) in the directions 
x,y,z. If the area A is unity, (4.8) becomes 

b2n = t (4.9) 

where n is the unit normal vector (Figure 4.2) and t is the vector of equilibrating 
external tractions per unit area. 

I 1 

Figure 4.2 Relationship between the external forces, F = At and the stresses: (a) forces and areas; 
(b) stresses on  face A,. 
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4.2 STRESS-STRAIN RELATIONSHIPS 

For a linear elastic, isotropic, material, the stresses and strains are related by 

107 

(1 -v) v V 

v ( 1  - v )  v 

V v (1 - v )  

+(l - 2v) 
$( 1 - 2v) 

+( 1 - 2v) 

(4.10) 

where E is Young’s modulus and v is Poisson’s ratio. Equation (4.10) can be 
re-expressed as 

d = C2E (4.1 1) 

where C2 is the constitutive matrix. Alternatively, we can write 

d 2  = Cq:E2 (4.12) 

where C, is the equivalent four-dimensional or fourth-order tensor [ Y l ]  to the 
two-dimensional matrix C, in (4.1 1). 

Rather than attempt to visualise a four-dimensional tensor, many tensor equations 
can be viewed in terms of vectors with nine terms (three repeating), so that 

(4.13) 

(4.14) 

Using such vectors, the connecting two-dimensional C2 would contain the same 
upper three-by-three submatrix as in (4.10) but the remaining diagonal terms would 
be doubled. 

bT = ( g x . x ,  g y y ,  gZz, zXy, fXz,  f Y z ,  fXy, f X z ,  T ~ ~ )  

ET = (Exx, Eyy, E Z Z ,  o .5yxy,  o . 5 y x z ,  o-5?y2, o - 5 y x y ,  0.5,,, o . 5 y y z ) .  

and 

4.2.1 Plane strain, axial symmetry and plane stress 

The three-dimensional formulation (Figure 4.1) can be simply reduced to 
two-dimensions (Figure 4.3) by setting 

f x ,  = f,, = yx, = y y z  = 0 (4.15) 
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@(Qb Z 

Figure 4.3 Various two-dimensional stress states: (a) plane stress (a, = 0); (b) plane strain ( E ,  = 0); 
(c) axial symmetry. 

so that equations (4.12) reduce to 

(4.16) 

For axial symmetry (Figures (4.3(c)), oz can be taken as the hoop stress with z = 13, 
while for plane strain, E ,  is set to zero. 

For plane stress, equations (4.16) are supplemented by, 6, = 0 and (4.16) reduces to 

(4.17) 

4.2.2 Decomposition into volumetric and deviatoric components 

An alternative form of the elastic stress-strain laws involves a decomposition of both 
the stresses and strains into their volumetric (or mean-subscript m) and deviatoric 
(subscript d) components. This decomposition is best applied with the tensor stress 
and strain measures, so that for the stresses 

where the deviatoric stresses 6 2 d  are often written as s. For the strains, 
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The stress-strain laws are then given by 

and 

(4.21) 

(4.22) 

where the shear modulus p (often written as G) and bulk modulus, k, are related to 
E and v via [Tl]: 

E E 

2(1 + v )  3(1 - 2 ~ )  
p = -  ~ . ~ ,  k =  

4.2.3 An alternative expression using the Lame constants 

From (4.18), (4.19) and (4.2 l), 

6 2  = (a, - 2pc,)I + 2 p 2  

6 2  = (3k - 2&,I + 2 P E 2 .  

and from (4.22), 

From (4.20), we can write 

(4.23) 

(4.24) 

(4.25) 

E ,  = 3tr(z2) (4.26) 

where the operation ‘trace’ (or tr) involves summing the diagonal elements. Hence 
in (4.25), 

(4.27) 

Here, 1 and p are the ‘Lame constants’. With suffix notation, (4.27) becomes 

aij = A 6 i j & k k  f 2P&ij  (4.28) 

where is the Kronecker delta ( = 1, i = j ;  = 0, i # j ). (All of the work in this 
chapter will be related to a rectangular cartesian reference frame so that all indices 
can be written as subscripts, there being no distinction, for such a system, between 
CO- and contravariant components. The latter will be considered in Volume 2.) 
A1 ternativel y, we can write 

a i j =  C i j k l E k l  (4.29) 

where C i j k r  are the components of a fourth-order tensor (C,) which, assuming 
linear-elastic isotropic conditions (as in (4.28)) is given by 

C i j k l  = p ( 6 i k 6  j [  + d i l 6 j k )  + A 6 i j d k I -  (4.30) 

This equation is sometimes written as 

C = C 4 = 2 p I  + R ( 1 0 1 ) = 2 p I , + ~ ( 1 2 0 1 2 )  (4.3 I )  

where, as indicated, the subscripts which relate to the order of the tensor are usually 
omitted. In equation (4.31), the symbol 0 means tensor product. The symbol I is in 
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some work reserved exclusively for the fourth-order unit tensor (as in (4.31)) with 1 
being used for the second-order unit tensor. We will sometimes follow this procedure 
but may also use I more conventionally as the second-order unit tensor or unit matrix, 

4.3 TRANSFORMATIONS AND ROTATIONS 

We have already mentioned in Section 4.1 that the stress tensor, c2, transforms in 
certain special ways to changes of axes and rotations. For most of this section, the 
stresses will be written in matrix or tensor notation and the subscript 2 will be dropped. 

4.3.1 Transformation to a new set of axes 

In this section, a line element or stress tensor will remain fixed but be represented 
in relation to a new set of axes. Starting in two dimensions (Figure4.4), the line 
element r can either be represented in ‘global’ coordinates as rg or in ‘local’ coordinates 

4 Ya 

(b)  

Figure 4.4 Different axes for transformations: (a) ‘local’ and ‘global’; (b) ‘old’ and ‘new’. 



TRANSFORMATION AND ROTATIONS 111 

as r,. Then, from Figure 4.4(a), 

r, = Tr, (4.32) 

where, for two dimensions, 

cos0 sin0 e: 
T=[  -sin0 cosO]=[eT] 

(4.33) 

and e, and e2 are the unit vectors of the x I - ,  y,-axes (Figure 4.4(a)) expressed in 
relation to the global coordinates and, hence, for example, 

xI = r[( 1)  = cos Ox, + sin 0 y, (4.34) 

where yl(l)  is the first component of rl. 
For three dimensions, .=[!I. (4.35) 

The components of the stress tensor, c,, transform to local coordinates via 

0, = Ta,TT. (4.36) 

Using the vector representation of stress in two dimensions, the equivalent expression 
to (4.36) is 

- 
c2 s2 2sc 
s2 c2 -2sc 

-ssc sc (c2 -s2)  - 

(4.37) 

where c = cos 19 and s = sin 0. This relationship is easily proved using the simple stress 
block of Figure 4.5. (The reader may also like to verify (most easily in two dimensions) 
that (4.37) corresponds to (4.36)) Physically, the stress remain the same but their 

4% 

Figure 4.5 Stresses in local and global coordinate systems. 
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components change because they are now written with regard to a new set of axes. 
It is easy to show that T is an orthogonal matrix such that 

T-’  =TT (4.38) 

Instead of considering ‘local’ and ‘global’ axes, we could consider ‘new’ and ‘old’ 
(local) axes (Figure 4.4(b)). In this case, the same vector r (Figure 4.4(b)) can be 
expressed either in relation to the initial (global) coordinates or with respect to either 
of the two local coordinate systems so that 

while 

and hence 

and 

r, = T,r, 

r, = Tor, 

rn = T,TTr, = Tr, 

6, = TG,T~ 

(4.39) 

(4.40) 

(4.41) 

(4.42) 

where 6, contains the components of stress with respect to the new local system and 
6, with respect to the old local system. In two dimensions (Figure 4.4(b)), 

= T,T: 1 T =  [ - sin 6 cos 0 1  [ ei,e,, eTne2, 
cos6 sin8 e:,e,, e:,e20 (4.43) 

where e,, and e2, are the unit base vectors of the old local system (written with 
respect to the global system) and e,, and e2n are the same for the new local system. (In 
confirming (4.43)’ the reader should note the transposes on the es in the definition 
of T in (4.33).) From Figure 4.4(b), 

el, = [‘OS a ] ,  e,, = [ - sin “1 
sin a cos a 

cos(a + 8) 

sin (a + 0) 
- sin (a + 8) 

cos (a  + 0) 
eln = [ 1’ e2n = [ ] 

(4.44) 

(4.45) 

so that 

eroeln = eToe2” = cos (a  + @cos a + sin (a + 6) sin a =  cos 6 (4.46) 

er,e2, = - cos a sin (a + 8) + sin a cos (a + 6) = - sin 8 (4.47) 

eqoel = - sin a cos (a + 6) + cos a sin (a + 8) = sin 0 (4.48) 

and (4.43) is confirmed. For three dimensions, the transformation matrix, T, is easily 
extended from (4.43) to give 

Using suffix notation, equation (4.49) can be expressed as 

(4.49) 

(4.50) 
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while (4.42) would be 

Oyj = Ti,&, Tlfj = TiaOzb T j b  = Ti, TjbCTzb (4.51) 

where the 'n' and '0' (for new and old) have been moved to be superscripts so as to 
ease the congestion. In a similar fashion, the strains can be expressed as 

&:j = Ti,Tjb&&, & y j  = T , i T b j & : b .  (4.52) 

Consequently, a constitutive relationship, 

= ',"bcd&:d (4.53) 

0:j = Cyjkl&il (4.54) 

would (using (4.5 I )  and the second part of (4.52) with cdkl instead of ijab) transform to 

where 

':Id = Tia  T j b  Tkc  T l d  c,"bcd (4.55) 

is the new constitutive tensor resulting from the transformation of coordinates. 

4.3.2 A rigid-body rotation 

In the previous section, the line element remained fixed but was related to different 
sets of axes: in the present, the line element, r, will be physically rotated from r, to 
r, (Figure 4.6). We can then write: 

r, = Rr, (4.56) 

In relation to Figure 4.6, when r, is rotated through 0 degrees to r,, 

= Ce,,e,l 1 cos0 -sin0 

sin8 cos0 
R=[ (4.57) 

where e, and e2 are the unit vectors caused by the rotation of the original x and y 
vectors, i ,  = (1 ,O) and i2  = (0,l). In three dimensions, 

ei = Rii, i = 1,3 (4.58) 

with the obvious extension of i l - 3  and 

R = re,, e2, e3 1. (4.59) 

A comparison of (4.41) and (4.33) with (4.56) and (4.57) shows that 

R = T ~  (4.60) 

where T is the transformation matrix of the previous section and R is the current 
rotation matrix. Equation (4.60) applies whether the rotation involves two or three 
dimensions. 

In general, if a vector r, (Figure 4.7) is rotated through 0 degrees to r,, the 'global' 
coordinate axes can be thought of as also rotating through 8 to 'local' axes (Figure 4.7). 
Clearly, r, with respect to the 'global' system (i.e. r0,J equals r, with respect to the 
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Figure 4.6 Applying a rotation: (a) with x = x,, y = y o ;  (b) with x # x,, y # y,. 

y' t t y g  

Figure 4.7 Illustrating rotations and transformations. 
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‘local’ system (rJ. Using (4.56), it follows that 

f , ,g  = Rr0,g = Rl.Il,l* (4.61) 

But we also know from (4.32) that 

%.g = TTrn,,. (4.62) 

Hence, equation (4.60) is confirmed. 
In a similar fashion, if a set of stress in the ‘global’ coordinate system is rotated 

through 6 degrees (Figure 4.Q which corresponds to the use of the rotation matrix 
of (4.56) and (4.57), the global system can be assumed to have rotated through 8 (or, 
more generally, via R). Clearly, the new stress with respect to the local system, c,,,, 
are equal to the old stress with respect to the global system, G , , ~ .  The components 
of the new stresses, c, ,~ ,  in the old, global system (i.e. c,,J are (from (4.36) with T 
changed to TT because we are moving from local to global rather than global to local): 

%g = T T ~ n , l T  = TT~o ,gT = R O , , ~ R ~ .  (4.63) 

Equation (4.63) defines a new stress-state, o,,~, caused by a rotation, R, of the stressed 
body while the coordinate system (g) remains fixed. In contrast, the earlier equation 
(4.36) involves a change of the axis system within which the stresses are represented, 
while the stressed body remained fixed. 

In the following, all terms will be related to global coordinates. If, in these 
circumstances, a set of old and new axes, e, and e,, are given by 

ei, = R,ii, ei, = R j i ,  

r, = R,r, ro = %r 
with also 

representing rotations of any vector r into the two 

r, = R,Rzr, = Rr, 

i =  1,3 (4.64) 

(4.65) 

frames, it follows that 

(4.66) 

where R represents the rotation from one frame to the other. From (4.59) and (4.66), 

R = e,,e:, + ezneiO + e3,e:o. (4.67) 

Figure 4.8 Rotating a stress state. 
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4.4 GREEN'S STRAIN 

The strains in (4.5) are related to small deflections. In Sections 3.1.2 and 3.3.1 we 
derived a convenient strain measure for describing strains in a bar when the deflections 
were large. These techniques can be generalised to a continuum so that (Figure 4.9) 
in place of (3.9), 

dr; - dr," = dx2 - dX2 = 2dXTE2dX (4.68) 

where dr; = dx2 is the squared final length of a line element originally of squared 
length dr," = dX2. The matrix E2 then defines the 'Green-Lagrange' (usually just 
referred to as Green) strain tensor which is valid for large deflections and replaces 
the small-deflection tensor, c2 of (4.4) with components obtained from (4.5). The 
matrix E2 measures the strain in an element dX as the original coordinates of a point 
X are moved to new coordinates x by the addition of displacements U, i.e. 

x = x + u  (4.69) 

(see Figure 4.9). The latter equation can be differentiated to give 

or: 

dx  = F d X =  

ax 
ax 
ay 
ax 
az 

- ax 

~ 

~ 

ay 1 + -  
a y  

(4.70) 

(4.7 1) 

where F is the deformation gradient and the matrix, D, in (4.71) is the 
displacement-derivative matrix: 

D =  

1 
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Figure 4.9 Position vectors and displacements. 

Substitution from (4.7 1)  into (4.68) gives 

so that 

The first term in (4.74) is a linear function of the displacement derivatives and 
corresponds exactly to the small-displacement matrix g2 of (4.4), with (4.5) for the 
individual terms. From (4.72) and (4.73), the vector strain E can be expressed as 

2E2 = FTF - I =  [I + D]’[I + D] - I  

E2 = i[FTF - I] = i[D + DT] + $DTD. 

(4.73) 

(4.74) 

+ 

(( + ( + (””>’> 

! 2 (( a y  + ( + (g)’> 
! (( + ( ; ! ) 2  + ( 

Z ax ax ax 

2 az 

(4.75) 

Clearly (4.74) is a neater representation. 
If we apply a rigid-body rotation so that, from (4.56), dx = RdX and we compare 

the solution with (4.71), we can observe that, for such a rigid rotation D = R - I .  
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Substitution into (4.74), then leads (after noting that RTR = I )  to E, = O  and, 
consequently, the Green strains are zero as a result of rigid-body rotation. However, 
if we neglect the iDTD term in (4.74) and effectively use a linear strain measure which 
is equivalent to the linear strain E ,  of (4.4) and ( 4 3 ,  we would obtain: 

~2 = $[R + RT] - I 

which is not zero. 

show that: 
Consider the two-dimensional case and let R be given by (4.57). It is then easy to 

62 
- I 
2 

E ,  = (COS 6 - 1)I 

which is very nearly zero for small rotations, 8. 

4.4.1 Virtual work expressions using Green’s strain 

The stress measure that is conjugate the Green’s strain tensor is the second 
Piola-Kirchhoff stress tensor, S,, or its vector equivalent S. Following the 
developments of Chapters 2 and 3, the finite element formulation usually spring from 
a virtual work expression. Using the Green’s strain, such an expression is given by 

r r 
V =  Vi- V e =  STdEvdVo- V e =  S2:dE.,,2dV0- Ve J J (4.76) 

where Ve is the external virtual work (see Sections 3.12 and 3.3 for similar 
developments with the truss element). 

With the aid of differentiation, from (4.73), the change in Green’s strain can be 
obtained as 

dE, = i[dD + 6DT] + $DTdD + $dDTD + (;6DTdD), (4.77) 

(4.78) 

The dD terms are simply obtained from (4.72) by replacing du/aX by ddu/dX, etc. 
The final bracketed terms (marked h) become negligible when the infinitesimal, 
virtual changes are applied and 

(4.79) 

As shown in Chapter 2 and 3, the tangent stiffness matrix can be obtained from 

d ~ ,  = + F ~ ~ D ,  + 4 6 ~ : ~ .  

the variation of the virtual work expression I/. From (4.76), this leads to 

From (4.71) and (4.79), 

6(dEv2) = $[SDTSD + SDT6Dv] (4.8 1) 
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If we assume that the changes in second Piola-Kirchhoff stress, 6s can be related 
to the changes in Green’s strain SE via: 

6s = Ct26E, SS,  = Ct4:6E2 (4.82) 

where the first form involves a matrix or second order constitutive tensor, C2, while 
the second form involves a fourth order constitutive tensor, C4 (see Section 4.2). From 
(4.8 0)-( 4.8 2), 

6V = (SEV2:Ct4:SE2 + S:6DT6D)dVo = (6ETCt26E + ST6(6Q2))dV0. (4.83) 

The equations of this section are sufficient for the derivation of a total Lagrangian 
finite element formulation for a continuum (see Sections 5.1 and 5.2). 

s s 
4.4.2 Work expressions using von Karman’s non-linear 
strain-displacement relationships for a plate 

The membrane part of von Karman’s strain-displacement relationships for 
moderately large-deflection analysis can be considered as a special case of the Green 
strain. If, for a plate in the x-y plane, the ‘in-plane strain terms’, (au/aX)’ and dv/dX)’ 
etc., are considered negligible, the Green strain vector of (4.75) degenerates to 

E =  + 

-! 2 ( a w  ax )’ 
(4.84) 

which are von Kirman’s equations [Vl, T2] for the membrane strains. The latter 
can be modified to Marguerre’s equations [M2,T2] for use with shallow shells 
(Chapter 8). Differentiation of (4.84) leads to a degenerated form of (4.79), whereby 

6E = + 
+ 

;(E?)’ 

h 

(4.85) 

As with (4.77), the higher order (marked h) terms in (4.85) becomes negligible when 
the infinitesimal virtual displacements are involved. One final expression, S(S&), is 
required (see 4.83) before we have the basis for a finite element formulation (Chapter 8). 
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From (4.85), 
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S(6Ev) = 

Hence, from (4.80), 

d V = j  

where 

- 

SSTSEv 

- 

- -  

- 1  

(4.86) 

(4.87) 

(4.88) 

and in (4.87), for convenience, we have mixed vector and tensor notation. 

element (see Section 8.1). 
The equations in this section provide the basis for the derivation of a shallow-shell 

4.5 ALMANSI'S STRAIN 

In Section 3.2.1, we introduced Almansi's strain (also sometimes called the Eulerian 
strain) for a one-dimensional truss element. The continuum extension of (3.41) can 
be written as 

dr i  - dro 2 = d X 2 - d X  - - 2dxTAdx (4.89) 

which can be contrasted with (4.68) for Green's strain. In order to compute the 
Almansi strain, A, the original length-increment vector, dX, must now be related to 
the final length-increment vector, dx, using the inverse of (4.70) or (4.71), so that 

(4.90) 

The last relationship in (4.90) follows from (4.69) with au/ax being of the same form 
as D = &/dX in (4.72). Substitution from (4.90) into (4.89) gives 

(4.9 1) 

in place of (4.74). The strain measure can be related to the Green strain, E, of (4.74) via 

FTAF = +[FTF - I] = E. (4.92) 
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4.6 THE TRUE OR CAUCHY STRESS 

If, in a finite element context, we adopt an updated coordinate system (as in 
Sections 3.3.6 and 5.3), but maintain the directions of the original rectangular cartesian 
system, we will need to use a stress measure that relates to this new (or current) 
system. Even if we adopt a Green strain second Piola-Kirchhoff system (as in 
Section 4.4) we may wish to interpret our final stresses in relation to the final geometry 
because (Figure 4.10) without additional knowledge concerning the deformations, the 
second Piola--Kirchhoff stresses are difficult to interpret. In either case, the solution 
involves the Cauchy or true stress, 6, which is the tensor equivalent of the 'true' stress 
'o', introduced in Section 3.1.5. 

In very simple terms, the Cauchy stress is force/final area rather than force/original 
area and is related to the current configuration, while the second Piola-Kirchhoff 
stress (work-conjugate to the Green's strain) relates to the original configuration. For 
the rest of the chapter, we will omit the subscript 2 implying tensor or matrix since we 
will usually use this notation rather than the vector forms for stress and strain. 

In Section 3.1.5, it was shown that the true stress was work conjugate to the virtual 
strain measure & / I  (see (3.14)). The equivalent continuum form is 

(4.93) 

-J 
1 

Figure 4.10 Cauchy and second Piola-Kirchhoff stresses (a) initial unloaded state, (b)  loaded 
state with Cauchy stresses, (c) unloaded state with second Piola-Kirchhoff stresses 
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where x contains the current coordinates. This strain measure is effectively in the 
form of a small 'engineering strain', but related to the current configuration. It is 
sometimes known as the linear Almansi strain increment or linear Euler strain 
increment but, as will be discussed later, it is not the virtual variation of the Almansi 
strain (4.91) but is more closely related (as for the truss-see Section 3.1.5) to a 
log-strain measure (Volume 2). The strain measure in (4.93) is also known as the 
Rivlin-Erikson rate of Almansi strain [Bl]. 

In order to relate the Cauchy stress to the second Piola-Kirchhoff stress, we now 
adopt equivalent work concepts, so that 

Vi = S:6& dVo = a:&, dV (4.94) s s 
where a is the Cauchy stress. 

We can relate the current incremental volume dV to the old volume dV, via 

d V = dx dy dz = J dX d Y d Z  = J dVo 
where: 

J = det(F) = det - (3 
(4.95) 

(4.96) 

(The two-dimensional form of this relationship is illustrated in Figure 4.1 1 with an 
initial element of side dX, d Y being moved to an element with sides dx,, dx,, so that 

ax ax 

dAi, = dx, x dx, = [ i ]  dX x [ i ]  dY = det(F) dX d Yi,  = det (F)dA,i3 

(4.97) 

where i3 is the unit vector orthogonal to the x-y plane.) 
Substitution from (4.95) into (4.94) gives 

J J 

I- 
J J 

(a) (b) 

Figure 4.11 Two-dimensional areas: (a) initial element; (b) final element. 
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where 

T = J C  (4.99) 

is known as the Kirchhoff or nominal stress. 
In order to complete the relationship between the stress measures, c and S, we 

must establish a relationship between the virtual strain measures, BE, (see (4.93) and 
6E, (see (4.79)) as used in (4.98). To this end, with the aid of (4.70) and (4.72), 

(4. loo) 

Substituting from (4.100) into (4.79) and comparing the result with (4.93) leads to 

6E, = FT6&,F. (4.101) 

Substitution from (4.101) into (4.98) gives 

The last relationship in (4.102) can be derived by noting the symmetry of S and BE, 
and twice making use of the matrix relationship 

m:cT = C A : B ~  = B C : A ~ .  (4.103) 

Hence, the final relationships between the true, Cauchy stresses and the second 
Piola-Kirchhoff stresses are given by 

1 

J 
c = - F S F ~  

or 
S = J F - ' O F - ~ .  

(4.104) 

(4.1 05) 

At this point, we should re-emphasise an issue first raised in Section 3.2.1. The 
Cauchy stress, C, is work conjugate to the virtual strain measure of (4.93). This term 
is not the virtual variation of the Almansi strain. In this sense, one should not really 
consider the Cauchy stress as being conjugate to the Almansi strain. Indeed from 
(4.91), one can show that 

(4.106) 

Although we have specifically omitted dynamics from the scope of this book, a 
stricter derivation of the previous equations requires the introduction of a time 
measure with a superimposed dot representing differentiation with respect to time. 
Because a lot of published work introduces this time element, we will give a brief 
summary at this stage. The strain-rate tensor, t, can then be considered as: 

1 
& = -- 8& 

dt  
(4.107) 

(strictly in the limit). As already indicated, the Euler strain increment, 8~ (see (4.93)), 
is related to the current geometry x rather than the original geometry, X. Hence there 
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are no 'initial displacement (D) terms' as in (4.77) and 8~ takes a similar form to the 
engineering strain increment, so that 

(4.108) 

where i: is often referred to as the rate of deformation tensor or velocity strain tensor. 
It is a function of L, where 

(4.109) 

and v is the velocity. L is known as the velocity gradient. Equation (4.109) is of a 
similar form to (4.72) and in component form involves 

From (4.73)' 

where 
l3,, = $[FTF + FTFv] 

(4.1 10) 

1 

(4.1 12) 

Hence 
Ev = i[FTLvF + FTLTF] = iFT[Lv + LT]F = FTBVF (4.1 13) 

which, with (4.107), coincides with (4.101). If the 8 ~ ,  and 8E, terms in (4.101) are now 
replaced by iV and Ev respectively, (4.104) and (4.105) can be derived as before. 

4.7 SUMMARISING THE DIFFERENT STRESS 
AND STRAIN MEASURES 

We have not yet introduced the first Piola-Kirchoff stress tensor, P. Referring back 
to (4.9) and Figure 4.2, the external tractions can be expressed either in terms of the 
original configuration (via P) or the final configuration (via, G, the Cauchy stress). 
Hence 

t ,dS,=PNdS,=tdS=andS (4.1 14) 

where n is the final and N the initial unit normal vectors. Referring to Figure 4.12, 
the unit area dS, can be expressed as (see [Ml] for details): 

NdS,=dX, xdXb=F-'dxuxF- 'dxb=-FT(dx,  1 xdxb)=-FTndS 1 (4.115) 

J J 
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Figure 4.12 Areas in the initial and final three-dimensional configurations: (a) initial; (b) final. 

with J being given by (4.96). Equation (4.1 15) is known as Nanson's formula. Substi- 
tution into (4.1 14) gives 

P = JaF-* = FS (4.1 16) 

where the last expression in (4.1 16) is obtained with the aid of (4.104). 
The first Piola-Kirchhoff stress, P, which is non-symmetric, is work-conjugate to 

the infinitesimal virtual displacement gradient, SD, (related to (4.72)). This can be 
demonstrated with the aid of (4.76) and (4.79), i.e. 

V i =  S:SE,dV,=i S : [ F T S D , + S D ~ F ] d ~  

(4.1 17) = JS: [FTSD,] dV, = FS:SD, dVo = P :  SD, d V,. 

We can now summarise the relationship between the various stress and strain 
measures using the principle of virtual power which is effectively equivalent to the 
principle of virtual work, but with virtual velocities instead of virtual displacements. 
Using the principle, 

s s 
s s 

where 
the first Piola-Kirchhoff stress: P = FS = [I + D]S = det(F)aFWT (4.1 19) 

the second Piola-Kirchhoff stress: S = det(F) F - ' c F - ~  (4.120) 

(4.121) 
1 

a = --- F S F ~  
det(F) 

the true or Cauchy stress: 

the Kirchhoff or nominal stress: z = det(F)a = FSFT. (4.122) 
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The stress tensors S, P and z are work-conjugate to their complementary virtual 
‘strain measures’ dE,, 6Dv (or Fv) and i, (or d ~ , )  in relation to the original volume 
V,, while the Cauchy stress, 6, is conjugate to i, (or 6 ~ , )  in relation to the final volume V .  

4.8 THE POLAR-DECOMPOSITION THEOREM 

The polar decomposition theorem is useful for ( 1 )  large-strain and large-rotation 
applications and ( 2 )  applications with corotational or convective coordinates [B2]. 
It can also be used to provide a simple physical explanation of the second Piola- 
Kirchhoff stresses. The theorem states that the deformation gradient of (4.71) can be 
decomposed (Figures 4.13 and 4.14) into a set of stretches followed by a rigid rotation. 

D B [Flc 
A 

1 
N: = - ( 1 , l )  

J* 
1 

Nl = - ( - 1 , l )  
J2 

Figure 4.13 A simple example of polar decomposition 

A’B’ = 2.0 AB A“B“ = A’B’ 

C’D’ = 0 5 CD 

1. - 1 )  

1 .  1 )  

Figure 4.14 A more complex example of polar decomposition 
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The stretches involve (Figure 4.13) 

and are followed 

and hence 

Figure 4.13) by the rotation 

127 

(5.123) 

(4.124) 

(4.125) 

Equally (Figure 4.13), the rotation can be followed by the stretch and hence 

F = RUR = ULR= VR. (4.126) 

We will usually use the first part of (4.126) and will often omit the subscript R (for 
right). For the simple two-dimensional example of Figure 4.13, 

,=,UR=[: - A ] = [ l  0 - 1  ][ 2 0  ]. 
0 0 1  

(4.127) 

In general, the decomposition is more complicated (Figure 4.14), because the 
principal stretch directions must be computed. In Figure 4.14, the material is sheared 
and then rotated. In relation to the original body, the principal directions involve 
AB (or A’B’) and CD (or C’D’) and have unit vectors given by 

1 1 
N i =  - { - l , l } .  (4.128) 

The N, direction is stretched by a factor of 2.0 and the N, direction by a factor of 
0.5 (i.e. compressed). hence, the stretch matrix, U, can be written as 

N: = 4 { } J 2  

[A::: 3 U = 2.0 N,NT + 0.5 N2N: = 

and the final deformation-gradient matrix F is given by 

1.25 0.75 
F=Ru=[: -A] [0.75 1.251. 

(4.129) 

(4.130) 

The concepts should become clearer once the theory has been formalised. 

A more direct ‘stretching measure’ is given by 
In (4.74) and (4.91), we introduced the strain measures E (Green) and A (Almansi). 

(4.13 1) 

so that 

(4.132) 
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where 

(4.133) 

is a unit vector in the direction of dX. The stretch measure, L, will be unity for a 
rigid- body rot at ion. 

It is useful to vary the directions of N and find the principal stretch values and 
their corresponding directions. To this end, consider the functional 

q5 = NTFTFN - a(NTN - 1) (4.134) 

where a is a Lagrangian multiplier provided to ensure that N remains a unit vector. 
For 84 = 0, variations with respect to N give 

[FTF - aI]N = 0. (4.135) 

Pre-multiplying (4.135) by NT and comparing with (4.132) shows that a = L2 and 
hence (4.135) gives 

[FTF - A21]N = [UTU - A21]N (4.136) 

where the last relationship follows from (4.126) (dropping the subscript R) having 
noted that R is a rotation matrix so that RT = R - ’ .  Equation (4.136) is an eigenvalue 
problem from which L: -;Is and hence 1’ - L3 can be obtained along with the 
principal directions N I  - N3. Hence, we can write 

FTF = UTU = A:NINr + AiN2Nz + A:N3Ni = Q(N)Diag(A2)Q(N)T (4.137) 

where 

contains the eigenvectors N -N3. These eigenvectors can be used to express the stretch 
matrix, U in terms of L1-13 and N1-N3 via 

U = LININT + A2N2N: + i3N3N: = Q(N Diag(L)Q(N)T = Q(N) 

which is the solution to the eigenvalue problem 

[U - LI]N = 0. 

Q“ 

(4.139) 

(4.140) 

Clearly (4.139) is compatible with (4.137). The eigenvectors or principal stretch 
directions N1-N3 satisfy NTN2 = NTN3 = N:N3 = 0 and define a rectangular 
orthogonal system of unit vectors referred to as the ‘Lagrangian triad’ or ‘material 
axes’. 

The equivalent of (4.133) in the current (spatial) configuration is 

n =  dx dx  
(dxT dx)1’2 Jldxll 

(4.141) 
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From (4.141), (4.70) and (4.133), 

Substitution from (4.142) into (4.136) gives 

iFTn - A3F- 'n = 0. 

Multiplying (4.143) by (l/A)F (assuming i # 0) gives 

[FF' - A21]n = [VV' - i21]n 

(4.142) 

(4.143) 

(4.144) 

where for the second relationship in (4.144), we have used the VR decomposition in 
(4.126). Equation (4.144) is the spatial equivalent of (4.136) while the equivalents of 
(4.139) and (4.140) are 

V = i l n l n r  + &n,nz + A3n3n: = Q(n) Diag(A)Q(n)' (4.145) 

and 

[V - RI]n = 0. (4.146) 

The unit vectors nl-n3 define the 'Eulerian triad'. 

it is given by 
Because the rotation matrix, R, defines the movement from N, to n,, from (4.67), 

R = Q(n)Q(NT. (4.147) 

Hence, from (4.126), (4.139) and (4.147): 

F = RU = Q(n)Diag(i)Q(N)'= AlnlN: + i2n2N: + A3n3NJ. (4.148) 

4.8.1 Example 

To help understand these concepts, it may help the reader to return to the example 
of Figure 4.14. A question could be formulated as follows. 

Given 

calculate, in order, 

(a) F and FTF 
(b) AT, A;, N1, N, from the eigenvalue problem of (4.1 36) 
(c) U from (4.139) 
(d) U- ' indirectly from (4.139) using 

(4.149) 

(4.150) 
U- '=-NlN:+--  1 1 N2N:=Q(N)Diag( !)Q(N)' 

21 4 A 
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(e).R from (4.126) via R = FU- '. 
( f )  a n )  and hence n, and n2 using (4.147) so that a n )  = RQ(N) 
(g) the stretch V from (4.145). 

The solutions have already been given in Figure 4.14 and (4.127)-(4.130). 
Although the information has already been obtained could also compute 

(h) FTT and hence A:, A;, Nl,N2 from the eigenvalue problem of (4.144). 

4.9 
PRINCIPAL STRETCHES 

GREEN AND ALMANSI STRAINS IN TERMS OF THE 

In principal strain space, the Green strain components (see (4.68) and (3.9)) can be 
written as 

(4.15 1) E .  I 2 1  = L(L2 - I ) ,  i = 1,3 

while the Almansi strains (see (4.89) and (3.41)) can be written as 

(4.152) 

and using (4.74) for E, and (4.137) for FTF, 

E = :(FTF - I) = $(UTU - Q(N)Q(N)T) = [ Q(N)Diag (12; I)YiN)'] (4.153) 

where we have used the orthogonality of QjN) so that aN)Q(N)'=I. Equation 
(4.153) confirms (4.151) and shows that the directions of the principal Green strain 
coincide with the Lagrangian (or material) triad, N1-N3. 

In a similar fashion, using (4.91) for the Almansi strain, A and (4.145) for V, 

k 2 -  1 
A $(I - FTF- ') = i(Q(n)Q(n)T - V T V -  I )  = [ a n )  Diag ( -2F- )U(.)'] (4.154) 

which not only confirms (4.152) but also shows that the directions of the principal 
Almansi strain coincide with the Eulerian (or spatial) triad, nl-n3. 

Suppose a Green strain, E,, is created by a stretch U, followed by a rotation R, 
(see Figures 4.13 and 4.14) while E, is created by U being followed by R2. It follows 
from (4.74) and (4.126) that 

and is therefore unaltered by a rotation change from R1 to R2. The same conclusion 
can be drawn by observing that the material triad, N1 -N3 is unaltered by R and 
hence from the right-hand side of (4.153), E is unaltered. 

In contrast, from (4.147), the Eulerian triad, a n ) ,  does change with R and hence 
the Almansi strain does change as a result of a rigid rotation. 
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4.10 A SIMPLE DESCRIPTION OF THE SECOND 
PIOLA-KCRCHHOFF STRESS 

If the strains are small, Ai 2: 1 and, from (4.139) we can write 

U--I  
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(4.156) 

so that, from the decomposition theorem of (4.126), 

F -- R. (4.157) 

Because of (4.157), 

J = det (F) E 1. (4.158) 

Hence, given a second Piola-Kirchhoff stress, S, obtained from the Green strain 
in fixed (global) axes, the latter can be converted to a Cauchy stress (still related to 
fixed, global, axes) so that with the aid of (4.104), (4.157) and (4.158), 

6, = RSR'. (4.159) 

This stress can now be related to the new (local) rotated axes via (4.36) so that with 
T' = R (see (4.60)), 

6, = R'O,R = R'RSR'R = s. (4.160) 

Hence, for small strains, the second Piola-Kirchhoff stress can be interpreted as the 
Cauchy stress related to axes that rotate with the material. 

4.1 1 COROTATIONAL STRESSES AND STRAINS 

Although the coincidence with the second Piola-Kirchhoff stress is valid only for 
small strains, the concept of a 'rotated Cauchy stress' is also useful for shell analysis 
[B2]. Figure 4.15 illustrates the ideas. 

Suppose the stress state in Figure 4.15(a) is rotated to the state in Figure 4.15(c). 
Clearly, in local coordinates, the state is unchanged. However, from Mohr's circle 
(Figure 4.15(d)), the stress state in global coordinates is as shown in Figure 4.15(e). 

1 /2 

YI 

1 - U - l  Y Z x 1  

:I 
't 112- 

t 

4112 

(a) (b) (c) (a (e) 

Figure 4.15 Some concepts with rotating coordinates: (a) 6,; (b) R; (c) c,, (d) Mohr's circle; ( e )  ag 
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This relationship can, alternatively, be found from the use of (4.160)’ so that 

cr,=Rcr,RT=-1[’ -:][ 1 0  ][ ‘I=-[ 1 1  1 ]. (4.161) 

2 1  0 0  -1  1 2 1  1 

If we assume that cr, (Figure 4.15(e)) is now a given Cauchy stress, a ‘corotated stress’, 
q, related to the rotated system (Figure 4,15(c)) can be computed via 

c1 = TC,T~ = R~G,R.  (4.1 62) 

Hence, this ‘corotated stress’ can either be thought of as the original Cauchy stress, 
cr,, expressed in ‘local coordinates’ that rotate with the body or, alternatively, as the 
original stresses, erg, still related to ‘global coordinates’ but rotated by RT (see 4.63)) 
i.e. rotated back to the original configuration (as in Figure 4.15(a)) via RT. 

4.12 MORE ON CONSTITUTIVE LAWS 

In the present books, we will be mainly concerned with three types of stress-stain law: 

(a) linear elastic 
(b) hyperelastic 
(c) hypoelastic 
(d) elasto-plastic. 

We have already discussed (a) in Section 4.2. A chapter of Volume 2 will be devoted 
to (b) while Chapter 6 of the current volume and further chapters of Volume 2 will be 
devoted to plasticity. Here we will give a very brief summary of the different relation- 
ships providing only sufficient detail to enable an understanding of the following 
Chapter 5 on finite elements and continua. 

Hyperelastic models are essentially higher-order forms of linear elastic models in 
which the stresses are some functions of the total strains or stretches [Dl]. The 
obvious example of a hyperelastic material is rubber. If we consider a ‘Green elastic 
materials’ this total relationship is derivable from an elastic potential. If the strain 
energy/unit volume can be expressed as cp, then the change of strain energy is 

(4.163) 

while the stresses can be obtained from 

cp = pep= Jcr:d. (4.164) 

via 

and the tangent relationship follows from a further differentiation, so that 

(4.165) 

(4.166) 
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(We might have written 6a and 8~ rather than 6 and i.) As a consequence of (4.166), 
C, will be symmetric (&p/dxdy = acp/dy). 

A one-dimensional example could involve a second-order parabolic relationship 
for o so that 

=f(c) = E(  E - Z0) 
where E ,  is the strain at  the peak response. From (4.164) 

while from (4.166) 

(4.167) 

(4.168) 

(4.169) 

This illustrates that the C, matrix is generally not constant (see also Sections 3.2). 
Within a finite element context, we will need the C, matrix (as in (4.82) or (4.166)) 
for the structural tangent stiffness matrix, but the total stresses and hence the internal 
force vector will, for a hyperelastic material, come directly from (4.165) and not from 
the integration of the ‘rate equation’ of the form of (4.166). 

In contrast, for hypoelastic materials [Dl], we have no such total relationships 
and are forced to start with a ‘rate (or incremental) relationship’ of the form: 

6 = Ct6, 6a = C,6& (4.170) 

in which C, (which may or may not be constant) will be given. Such relationships 
are often used for geomechanical materials. For a hypoelastic material, the C, matrix 
is not only required for the structural tangent stiffness matrix but also it must be 
‘integrated’ (at the Gauss-point level) to obtain the total stresses and hence the internal 
force vector. On applying a closed cycle of strain (which ends up with a total strain 
of zero), a hyperelastic model will give zero stress. This does not necessarily follow 
for a hypoelastic model (as will be discussed further in Volume 2). 

The reader will be aware of the main aspects of plasticity which is treated in 
Chapter 6. For the present we need merely state that plasticity leads to a ‘rate-form’ 
of constitutive law along the lines of (4.170). Generally, the tangent C, matrix will 
not only be a function of some material parameters but also of the current stresses 
and possibly ‘internal variables’ (see Section 6.4.1). The previous comments on 
hypoelastic materials apply also to plasticity. 

We have so far not mentioned the issue of large or small strains. Hyperelastic 
materials such as rubber inevitably involve large strains. Some metal plasticity also 
involves large strains. Many previous finite element formulations effectively treated 
such matters via hypoelastic relationships coupled with plasticity, so that the integra- 
tion of the rate equations was relevant both in relationship to plasticity and to the 
‘large-strain rate measures’ (as will be discussed in Volume 2). 

Before leaving this section we should re-emphasise the observation drawn in 
Section 3.2 that to obtain the same solution with different stress and strain measures, 
the stress-strain laws will need to be changed. This issue is discussed further in 
Sections 5.3 and 5.4. 
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4.13 SPECIAL NOTATION 

1 (or 12) = unit second-order tensor (see (4.30) and (4.31)) 
e,, e2, e3 = orthogonal unit vectors 

A = vector area with components A,, A,, A, (Section 4.1) 
A = Almani’s strain (see (4.91)) 

C2, C, = second- and fourth-order constitutive tensor (or matrices) 
D = displacement-derivative matrix (see (4.72)) 
E = Green’s strain (as vector or tensor; the latter is sometimes E,) 
F = external force vector (Section 4. I )  
F = deformation gradient (see (4.71)) 
I = unit fourth-order tensor (see (4.30) and (4.31)) or (sometimes) 

J = det (F) 
k = bulk modulus 
L = velocity gradient (see (4.1 10)) 
n = unit normal vector (Section 4.1) 

unit matrix (or second-order tensor) 

n,,  n2, n3 = unit vectors defining directions of principal stretch in final 
configuration (defines the Eulerian triad) 

NI, N2, N3 = unit vectors defining directions of principal stretch in initial 
N = n in initial configuration (Section 4.7) 

configuration (defines the Lagrangian triad) 
P = first Piola-Kirchhoff stresses 
Q = orthogonal matrix containing principal directions, Ns or ns 
r = line element 
R = rotation matrix 
S = second Piola-Kirchhoff stresses (as vector or tensor; the latter 

is sometimes S,) 
t = vector of equilibrating external tractions/unit area (Section 4.1) 

T = transformation matrix 
U = displacements 

U (sometimes U,) = right-stretch matrix (from polar decomposition) 
UL = left-stretch matrix (sometimes V) 

V = left-stretch matrix (from polar decomposition) 
x = final coordinates (x = X + U) 

X = initial coordinates 
y X Y ,  etc. = shear strains = ~ ~ , / 2  = cI2/2 

E, = mean strain 
E = vector or tensor of strains (latter sometimes g2) 

ib = Lame’s constant (Section 4.2.3) 
i- = stretch scalar (see 4.13 1))  
p = shear modulus 

c = stress (as vector or tensor; the latter is sometimes c2); note: c is 

zd (or or e) = deviatoric strains 

om = mean stress 

sometimes used specifically for the Cauchy stress 
c2d (or s) = deviatoric stresses 
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zXy, etc. = shear stress 
t = Kirchhoff or nominal stresses 

cp = strain energy 

Subscripts 

g = global 
1 = local 

n =  new 
o = old 
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5 Basic finite element 
analysis of continua 

5.1 
FORMULATION 

INTRODUCTION AND THE TOTAL LAGRANGIAN 

In the present chapter, we will apply some of the continuum mechanics of Chapter 4 
to the development of finite element formulations for two- and three-dimensional 
continua. We will mainly concentrate on the total Lagrangian formulation 
[Zl, B1, B2] but will also consider the updated Lagrangian technique [Bl, B21. 
Although the work is closely related to that described by Bathe [B2], there are some 
significant differences in approach. 

The total Lagrangian method is appropriate for large rotations and small strains 
but may also be applied to large elastic strains (such as occur in rubber) if an 
appropriate hyperelastic material model (see Section 4.1 1 and Volume 2) is used. The 
method can be used for elasto-plastic problems (Chapter 6) with small strains but 
large rotations. Readers wishing for a brief introduction could omit the sections on 
the updated Lagrangian technique. 

The total and updated Lagrangian procedures, which uses the Green strains and 
second Piola-Kirchhoff stresses (Section 4.4), have already been applied in Section 3.3 
to truss elements. The present work is closely related to these earlier developments. 

Generally, in this chapter, we will adopt the procedure of Chapter 4, whereby 
upper-case X ,  Y and 2 (collectively X) will relate to the initial coordinates, while 
lower-case x, y ,  z (collectively x) relate to the current configuration. However, 
throughout the present section on the total Lagrangian procedure, such a distinction 
is unnecessary since we will always be referring to the initial configuration. Hence, 
purely to aid a neater presentation, we will here violate this convention and use lower 
case. 

We start by summarising the main results from Section 4.4 on the Green strain 
which (see (4.74)) is given by 

(5.1) E, = i[FTF - I] = i[D + DT] + iDTD 

where F = I + D (see (4.71)). Instead, we could use the vector form of (4.75). From 
(4.78) the change, 6E, is 

6E2 = iFTGD + iDTF + [$3DT6D], (5.2) 

136 
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where the square-bracketed ‘higher-order’ terms vanish in the case of infinitesimal, 
virtual changes. From (4.76), the virtual work can be expressed as 

where V, contains the virtual work performed by the external loads. Both the tensor 
and vector forms are included in (5.3) (see (Section 4.1)) because they will both be 
required in the following. 

In equations (5.1)-(5.3), we have adopted the approach, introduced in the early 
part of Chapter 4, whereby a subscript 2 (second order) is introduced for the tensor 
(or matrix) stress and strain forms in order to distinguish them from the vector forms 
(which have no sufix). We will often, later, drop the subscript, 2, because it should 
be obvious from the context which form is being used. In particular, the tensor form 
will be required when the contraction symbol, :, is used (see discussion below equation 
(4.6)) while the vector form will be associated with the ‘transpose’, T (see equation (5.3)). 

Equation (5.3) will allow the formation of the out-of-balance force vector, g, while 
to form the tangent stiffness matrix, we can (but do not have to-see Section 5.1.2) 
use the change in (5.3). From (4.83), this is given by 

6v = (6ElfCt,6E + S2:GD;6D) dV, s (5.4) 

where, for future convenience, we have used the vector form for the first term and 
the tensor form for the second. 

5.1.1 Element formulation 

We will firstly consider a two-dimensional formulation in which the displacements 
U and v are related to nodal values U and v via shape functions h which involve the 
non-dimensional coordinates 5 and q, so that 

U = h(5, v )~u,  U = h(5, v ) ~ v .  (5.5) 
In the standard isoparametric manner, the shape functions are also used to relate 
the coordinates x and y to nodal coordinates x and y. Then at any point (in particular, 
a Gauss point), the Jacobian is obtained as 

a lr,! 
From (5.5) and (5.6), one can obtain 

a ;;; a =J[;j. 
and equivalent terms so that a vectorised form of the displacement derivative tensor, 
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D. can be obtained as 
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e =  

-J- l ( l ,  1)h: + J-l(1,2)h; OT 

where p contains the full vector of nodal displacement. (See the footnote on page 25 
regarding the ordering of the variables). A similar equation relates 66 (equivalent to 
SD) to Sp so that 

68 = G6p (5.9) 

and we can add the subscript 'v' for virtual to both SO and Sp in (5.9). Using (5.8), 
the Green's strain of (5.1) can be written in vector form (see (4.75)) as 

E = E, + E,, = 

or 

where 

E = E, + E,, = CH + + ~ ( e ) - ~ e  

The change in Green's strain (5.2) can be expressed in vector form as 

SE = SE, + +(e)68 + ;SA(e)e + o(6e2) 

(5.10) 

(5.1 1 )  

(5.12) 

(5.13) 

where SE, is as E, in (5.10) but with terms such as a6u/dx in place of du/dx. From 
the expression for A(8) in (5.10)' it is clear the SA will be A(S8), which is of the same 
form as A(8) in (5.10) but again with du/ax replaced by dSu/dx, etc. Because it can 
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be shown that 

A( 60)0 = A( 0)60 (5.14) 

equation (5.13) can be re-expressed as 

6E = 6E, + A(8)60 + 0(602) 
= [H + A(O)]S8 + 0(6e2) = [H + A(8)]G6p + 0(6e2). (5.15) 

Equation (5.15) can be rewritten as 

6E = (B, + A(0)G)Sp + .0(6p2) = Bn,6p + O(6p2) = (H + A(6))Gdp + O(bp2). (5.16) 

For small virtual displacements, (5.16) becomes 

6Ev = Bn,(P)JPv- (5.17) 

Substituting from (5.17) into (5.3) gives 

(5.18) 

from which the out-of-balance force vector, g, is given by 

where, for the two-dimensional case, 

5.1.2 The tangent stiffness matrix 

From (1.80) 

(5.21) 

or from (5.4) and (5.16) and (5.17): 

6V = 6p:K,6p = 6p;(Kt1 + K,,)Sp = 6pT BH,(p)C,(S)B,,dV,Sp + S:6DT6DdVo. s s 
(5.22) 

In the two-dimensional case, the second term in (5.22) is given by 

(5.23) 
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where K,, is the ‘geometric’ or ‘initial stress’ contribution to the tangent stiffness 
matrix (see also Sections 1.3 and 2.1). Equation (5.23) can be re-expressed as 

6P:Kt,6P = 

ax 

d 6 U  

dY 

d6V 

ax 
d6V 

r 

From (5.9) (in real and virtual form), it follows that 

6p;fKt,6p = dp; GTSGdVo 6p. s 
Hence, from (5.22) and (5.25), the full tangent stiffness matrix is 

K, = K,, + K,, = (B&I)C,B,,(~) + GTsG)dVo. s 

(5.24) 

(5.25) 

(5.26) 

We have just derived the tangent stiffness matrix by starting (see (5.4)) with the 
continuum form of the change in virtual work (derived in Section 4.4.1). We can 
instead work directly from the discretised out-of-balance or internal force vectors in 
(5.19). Using this approach, the change of the internal force vector q,, in (5.19) is given 
by 

6qi = (B:,6S + GB:,S)dVo. (5.27) 

The first term of (5.27) leads directly to the standard tangent stiffness matrix, Ktl (see 
(5.26)), while the second leads to the geometric stiffness matrix. Considering the 
expression for B,, in (5.16), it is clear that the changes in both H (see (5.12)) and G 
(see (5.8)) are zero. (For the latter observation, one should note that J in (5.6) involves 
the initial, fixed, coordinates.) We are left with a change to A@) which, as previously 
discussed, is A(60). It is then easy to show that: 

6B:,S = A(68)TS = SS0 = SG6p (5.28) 

where S is given in (5.24). In conjunction with (5.27), (5.28) leads to the geometric 
tangent stiffness matrix, K,, previously derived in (5.24). 

s 

5.1.3 Extension to three dimensions 

The extension to three dimensions is straightforward. In particular, we have: 
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p T  = (U, v, W)T (5.30) 

so that the G matrix takes a very similar form to that of (5.8) but instead, for example, 
the second row would read 

G(2,j)=((J-'(2,l)h:+ J-'(2,2)hT+ J-'(2,3)hF) 0' OT) (5.3 1 )  

where 5 ,  q, ( are the three non-dimensional coordinates. In place of the terms in (5 .  lO),  

and the matrix, H, of (5.12) is replaced by 

H =  

1 0 0 0 0 0 0 0 0  
0 0 0 0 1 0 0 0 0  
0 0 0 0 0 0 0 0 1  
0 1 0 1 0 0 0 0 0  
0 0 1 0 0 0 1 0 0  
0 0 0 0 0 1 0 1 0  

with the A(8) matrix of (5.10) being replaced by 

(5.32) 

(5.33) 

(5.34) 

In addition, the vector S of (5.20) becomes 

while S of (5.24) becomes 

s o 0  
s=  O S 0  

[o 0 s 
(5.36) 
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5.1.4 An axisymmetric membrane 

We will now consider a special form of continuum-an axisymmetric membrane- 
and will derive the finite element equations for a simple two-noded element (Figure 
5.1) using a total Lagrangian formulation. We could derive such an element by 
specialising the general formulation of Sections 5. I .  1-3 but instead will restart from 
first principles. 

The element has much in common with the total Lagrangian truss element of 
Section 3.3. In particular, the displacements and radius, R = x ,  are interpolated via 

u = h T u = - (  1 1 - 5  )T(::), w=hTw, R=hTR.  
2 1 + 5  

(5.37) 

As for the two-dimensional formulation of Sections 5.1.1-2, we will assume that the 
vector of total displacements can be written as pT = (uT, wT) .  

The strain along the membrane, E,, is precisely the same as the strain, E,  of 
Section 3.3. Hence, from that chapter (in particular, equation (3.55)), or directly from 
(5.37), we can write 

(5.38) 

where I, is the final length of the element, I, = 2a, is the original length and (see (3.56)): 

1 
b T  = --( - X 2 1 7 X 2 1 ,  - z 2 1 , z 2 1 )  (5.39) 

4 4  

where, as in Chapters 1-3, terms such as x21 means x2 - x l .  The matrix in (5.38) 

x ( 4  

Figure 5.1 A simple axisymmetric m e m b r a n e  element  
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is given by 

1 - 1  0 0 

A = l  4 I-; ; ; 01. 
0 - 1  

(5.40) 

Ne have used the symbol A here in contrast to the symbo A in (3.57) ctecause of 

(5.41) 

the alternative use in this chapter of A-see (5.10)) Also (see (3.61)): 

6El = b:Sp + b;Sp = b,l(p)T6p 

where (again using the convention u , ~  = U ,  - u l ,  etc.): 

The second strain, E,, is the hoop strain which is given by 

(5.42) 

(5.43) 

The terms c, and c, are the final and original circumferential lengths. From the 
adopted shape function, we can write 

1 

2R 
E,, = u/R = dTp = ( 1  - < , I  + <,O,O)Tp; 6E2,  = dT6p. (5.44) 

From (5.43) and (5.44), 

6E2 = (1 + E,,)6E,, = ( 1  + E,,)dT6p. 

Combining (5.41) and (5.45), 

Hence, as in (5.19), virtual work gives 

(5.45) 

(5.46) 

(5.47) 

where the vector S contains the two second Piola-Kirchhoff stresses corresponding 
to the Green strains E ,  and E ,  respectively. Also. 

d V, = 2m0R(<)~, d< (5.48) 

where r ,  is the (initial) thickness. 
The tangent stiffness matrix follows from differentiation of (5.47), which leads to 

an equation of the form of (5.27) with K,, as in (5.26) and C, as the 2 x 2 tangential 
modular matrix relating the small changes in S to the small changes in E (see Volume 
2 for a C, matrix appropriate to a rubber membrane). The geometric stiffness matrix 
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K,,, follows from the 6B2,S term in (5.27) so that, using (5.46), 

(5.49) 

from which, with the aid of (5.41) and (5.42) for db,,/i?p) (noting that b, in (5.41) is 
constant) and (5.44) for 6E,, 

SIAdVo + S2ddTdVo s (5.50) 

where A has been defined in (5.40). 

5.2 IMPLEMENTATION OF THE TOTAL 
LAGRANGIAN METHOD 

For a linear elastic material, the implementation would follow very similar lines to 
those already discussed in Chapters 2-3 for truss elements (tht shallow truss 
formulation of Chapter 2 can be considered as a special form of the total Lagrangian 
technique using a special form of the Green strain.) In particular, if a linear elastic 
analysis were performed with a fixed modular matrix so that C, = C, the stresses, S, 
in (5.20) or (5.35) could be computed directly from the total strains using S = CE 
with the Green strains, E, being computed in tensor form directly from (5.1), where 
D (see (4.72)), would be obtained from the components of 8 (see (5.8) or (5.29)). 
Alternatively, in vector form, we would use (5.10). Extensions of the total Lagrangian 
procedure to cover hyperelastic materials (see Section 4.12) will be considered in 
Volume 2. 

5.2.1 With an elasto-plastic or hypoelastic material 

As already discussed in Section 4.10 with an elasto-plastic or hypoelastic material, 
the stress-strain relationships take a ‘rate’ or ‘incremental form’ (see (4.170)) which, 
for the present purposes, can be considered to involve 

AS = C,(So)AE or AS = fn (So, AE) (5.51) 

where C, would not only be a function of the material properties but also of the 
current stresses, S. Strictly, the material relationship will involve ‘rates’ or very small 
changes (as in (4.170)). T o  overcome this problem, some form of integration procedure 
(Chapter 6) would be used at the Gauss-point level in order that AScould be computed 
from AE. Hence, the right-hand form in (5.51) would apply. In these circumstances, 
the ‘new’ stresses, S,, would be obtained from 

stl = s o  + As(AE(Ap)) (5.52) 

where So are the ‘old’ stresses stored at the end of the last converged increment and 
AS would be computed from AE where AE is the incremental strain. (The reason for 
working with incremental rather than iterative strains is discussed at the beginning 
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of the next chapter.) The incremental strain, AE, would be computed from the total 
incremental displacements obtained from the ‘predictor’, Ap, in conjuction with a 
number of iterative changes, Sp, ,  Sp,, etc., so that 

Ap=ApO+6pl  + S P ~ + - . *  (5.53) 

(or from the difference p, - p, with p, as the current total displacement and po as the 
displacements at the end of the previous increment). 

Enter with: 
p, = old displs. at end of last inc. 
P, = new displs. following predictor soln. 
So = old stresses at end of last inc. 
E, = old Green strains from end of last inc. 

Call MATERIAL (p,, So, E,, mat. properties, S,, E,) 
which: 
( 1 )  computes E, = fn. (p,) 
(2) computes AS = fn. (So, E, - E,) 
(3) S, = So+ AS 

Call ELEMENT which: 
computes qi and (possibly) K, 

I lCall SOLVCR which computes Sp = - K, ‘g 

7 p n = p o + S p  I 

So =I S,; E,, = E, 
Go to next inc. 

I 1 

Figure 5.2 Flowchart for elasto-plastic update. 
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Given Ap, AE, for use in  (5.52) can be computed from 

AE = E,,(p, + Ap) - Eo(p0) (5.54) 

where the total strains E, and E,, would be computed using the procedure described 
in the previous section. The old Green strain, E,, might well be stored along with 
the old second Piola-Kirchhoff stress, S,. Alternatively, AE could be computed 
directly from (5.2) (with As instead of 6s). But it would be essential to include the 
higher-order bracketed term, so that 

(5 .55)  

with the components of D (for F) and AD being computed from (5.8). To minimise 
the accumulation of round-off error, (5.54) might be preferred to (5.55). 

Figure 5.2 gives a flowchart containing one possible scheme. This chart can be 
considered to relate to the iterative subroutine ITER of Section 2.4.2 and would be 
entered following an incremental (predictor solution) which would have obtained 
Apo and hence p,, = p, + Apo. 

AEz = iFTAD + iADTF + iADTAD 

5.3 THE UPDATED LAGRANGIAN FORMULATION 

It has been shown in Section 3.3.6, for truss elements, that i t  is relatively simple to 
change a total Lagrangian formulation to an updated Lagrangian formulation. A 
very similar procedure can be used for continuum elements. As pointed out in Section 
3.3.6, if used in its piire form, the procedure should lead to the same solution as that 
of the total Lagrangian technique (see also [B2]). Gains in computational efficiency 
appear possible but it will be argued that, to take full advantage, approximations 
are required. Nonetheless, the updated Lagrangian procedure is often quoted and 
hence it is worth studying. Also there may be advantages for non-continuum 
applications such as shells when the two formulations could differ as a result of 
different shape function approximations. 

The essence of the updated Lagrangian procedure is that the reference system 
would be periodically updated so that 

x = x + p  (5.56) 

where x contains the 'new' (current coordinates) that are to be used as the new 
reference configuration. (Recall that in Section 5.1, we have been using this symbol 
x for the initial coordinates where strictly we should have used X.) Having updated 
the coordinates, we require the stresses with respect to the current configuration. As 
discussed in Sections 3.3.6 and 4.6, the relevant stresses with respect to the current 
configuration are 'true' or Cauchy stresses. Hence we must modify the previous 
second Piola-Kirchhoff stresses from the previous configuration to Cauchy stresses 
using (4.104) (details will be given in the next section). With respect to the current 
configuration, the displacement, p, are zero and hence, in place of (5.19), we have the 
simpler 

P 

g = B,(x)'a d Vn - q,. J (5.57) 
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Depending on the precise manner in which we apply the updates, the stresses c in 
(5.57) may, as indicated, be Cauchy stresses or they may be second Piola-Kirchhoff 
stresses with respect to the new configuration (details in the next section). 

In a similar manner, the tangent stiffness matrix of (5.26) would become 

K, = (B:C;B, + GT6G)dVn j (5 .58)  

with B,(x) replacing B,,(X,p). In computing C from (5.8) (and, hence, B, from (5.15) 
and (5.16)), the Jacobian matrix J (5.6) would, for the total Lagrangian formulation, 
always involve the initial geometry, i.e. J(X), while in the updated procedure, it would 
involve J(x). In a similar fashion, the dV, terms in (5.19) and (5.26) would involve 
det(J(X)) while in (5.57) and (5.58), the dV, term would involve det(J(x))d( dldy. 

From the work on truss elements in Section 3.3.6, i t  can be inferred that the tangent 
modular matrix for the updated Lagrangian formulation procedure should strictly 
differ from that for total Lagrangian formulation. For this reason, the prime has been 
added to the C, matrix in (5.58). Again, as discussed in Section 3.3.6, such a modification 
is unnecessary if the strains are small. 

5.4 IMPLEMENTATION OF THE UPDATED 
LAGRANGIAN FORMULATION 

The updated Lagrangian procedure can be implemented in a number of different 
ways. In each case, at a certain stage, the reference configuration would be updated 
and ‘frozen’. This contrasts with the so-called ‘Eulerian’ or ‘spatial’ formulations 
discussed in Volume 2. The latter procedures have some links with the ‘rotated 
engineering strain’ and ‘rotated log strain’ procedures discussed, for truss elements, 
in Chapter 3. In  these techniques, the reference coordinates continuously change and 
are never ‘frozen’. Because of this freezing process, the essence of the updated 
Lagrangian technique is the same as that of the total Lagrangian procedure (see 
Section 3.3). 

5.4.1 Incremental formulation involving updating after convergence 

Having converged with a set of second Piola-Kirchhoff stresses, S, these stresses 
would be transformed to Cauchy stresses relating to the new configuration using 
(4.104) so that 

1 

det(F) 
C =  - ~ FSFT (5 .59)  

where 

(5.60) 

with Au (and equivalent nodal values, Ap) are incremental displacements from the 
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previous (converged) configuration, 

x, = x + PO. (5.61) 

At  this stage, the nodal coordinates would be updated via 

X, = X, + Ap = X + (p, + Ap) = X + p,. (5.62) 

This would now become the new reference configuration ‘0’ (i.e. via x, = x,). Equation 
(5.58) would now be used for the tangent stiffness matrix, K,. (With regard to the 
new fixed reference configuration, the Cauchy stresses and second Piola-Kirchhoff 
stresses at the start of the increment would coincide because with Ap = 0, F of (5.60) 
would equal I.) This computation would involve J(x,). With the reference 
configuration kept fixed, the incremental green strain would be computed from, say, 
(5.55) and the stresses at the beginning of the increment would be updated to those 
at the end of the increment via 

S, = 6, + AS(AE(Ap)) (5.63) 

which replaces (5.52) with the minor change that 6, are the ‘old’ Cauchy stresses 
previously obtained via (5.59). The out-of-balance forces would then be computed 
from (5.19) (although now related to a reference configuration at the beginning of 
the increment). Using this procedure, the advantage whereby (5.57) uses B, instead of 
B,, (as in (5.19)) would not be gained. Also, if full Newton-Raphson iterations were 
used, K, would, in a similar fashion, need to be computed from a form similar to 
(5.26). Hence for the remainder of the increment, there would be little difference 
between the total and updated Lagrangian formulation except that the latter would 
use x, (referring to the configuration at the beginning of the increment) instead of X 
as the reference configuration. 

5.4.2 A total formulation for an elastic response 

In a total formulation, the reference configuration could always be the updated 
configuration so that advantages could be taken of (5.57) and (5.58). Strictly, a total 
formulation should follow similar lines to those described in the previous section so 
that S = CE should be followed by (5.59) with F = I + D(p) involving the total nodal 
displacements, p. Equations (5.57) and (5.58) would then be used for the out-of-balance 
forces and tangent stiffness matrix, in each case using the Jacobian, J(x,) = J(X + p). 

If the modular matrix, C, is isotropic and small strains (but, possibly large rotations) 
are considered, the transformation of (5.59) can be avoided [B2] and, instead, the 
Almansi strain (see Section 4.5) can be adopted so that 

d CE, (5.64) 

where E, are the Almansi strains of (4.91) (the symbol E ,  is now being used in place 
of the symbol A in Chapter 4 because A now has an alternative use (see (5.10)). The 
Almansi strain, E,, relates to the current configuration and, in place of (5. lO), is given by 
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This formulation would not give identical solutions to those obtained from a total 
Lagrangian formulation with S = CE but they would be very similar if the strains 
were small and C were isotropic. 

In these circumstances, the directions of principal stress and strain coincide and 
hence starting with a formulation based on Green's strain, from Section 4.9, we can 
write 

(5.66) 

where E, - are the three principle Green strains and, for example, 

If the strains are small, det(F) 'c 1, and the stretch, U, is approximately the identity 
matrix (see (4.156)) so that F 2: R (see (4.1j7) and with the aid of (5.59) and (4.147) 

But, when the strains are small (and the stretches nearly unity), the principal Green 
strains E i  are approximately equal to the principal Almansi strains E , ~  because via 
(4.15 1)  and (4.152): 

Hence replacing E ,  - 3  with E,, - 3  in (5.68) leads to 

(5.69) 

(5.70) 

which, again assuming that the directions of principal stress and strain coincide, leads 
via (4.154) to (5.64). Hence, effectively the same results would be obtained from using 
S = CE as G = CE, without introducing any transformations to the material modular 
matrices. 

5.4.3 An approximate incremental formulation 

We can, in an approximate manner, extend this procedure to an incremental 
formulation so that we again use the cheaper (5.57) and (5.58) instead of (5.19) and 
(5.26) and also avoid the use of the transformation (5.59). To this end, we replace (5.63) 
with 

(5.71) 

Here E,, are the old (probably stored) Almansi strains at the last converged 

G = 6, + A C ( & ~ "  - = 6, + Ao(A&,). 
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configuration, cr, is the old (stored) Cauchy stress related to this configuration while 
E,, is the current Almansi strain. 

However, for both this procedure and that of the previous section, neither the 
internal force vector nor the tangent stiffness matrix would be fully consistent with 
the stress updating. Hence the iterative performance might possibly suffer a little in 
comparison with the 'purer' total Lagrangian formulation of Section 5.1. 

5.5 SPECIAL NOTATION 

A(@ = matrix containing displacement derivatives (see (5.10) 
or (5.34)) 

A = special matrix (see (5.40)) (Section 5.1.4) 
bnl = vector connecting 6E1 to 6p (Section 5.1.4) 
B, =matrix connecting 6E, to 6p 

B,, = matrix connecting 6E to 6p 
d = vector relating linear part of E2 to 6p (Section 5.1.4) 

D = displacement-derivative matrix (see (4.72)) 
E, = Green's strain along axisymmetric membrane 

E, = hoop Green's strain for axisymmetric membrane 

E=Green's strain (as vector or tensor; the latter is 

El = linear part of Green's strain 
E,, = non-linear part of Green's strain 

F = deformation gradient (see (4.7 1))  
G = matrix connecting 0 to p (see (5.8)) 

q of shape function vector, h 

(Section 5.1.4) 

(Section 5.1.4) 

sometimes E2) 

h,, h, = vectors containing derivatives with respect to 5 and 

H = Boolean matrix (see (5.12) or (5.33)) 
I = unit matrix 
J = Jacobian matrix (see (5.6)) 

I,, 1, = old and new lengths (Section 5.1.4) 
n,, n,, n3 = unit vectors defining directions of principal stretch in 

final configuration (defines the Eulerian triad) 
NI,  N2, N3 = unit vectors defining directions of principal stretch in 

initial configuration (defines the Lagrangian triad) 

ordering of 2-D continuum element is pT = (U', v') 
ordering of 3-D continuum element is p' = (U', v', w') 
ordering of axisymmetric element is p' = (uT, w') 

Q = orthogonal matrix containing principal directions, Ns 
or ns 

R = radius (Section 5.1.4) 

p = nodal displacements 

S, ,  S, = second Piola-Kirchhoff stresses corresponding to 
strains E ,  and E ,  (Section 5.1.4) 
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S = second Piola-Kirchhoff stresses (as vector or tensor; 

S = matrix containing second Piola- Kirchhoff stresses 

U = displacements, sometimes specifically x-direction 

v = y-direction nodal displacements 
w = z-direction nodal displacements 

the latter is sometimes S,) 

(see (5.24) or (5.36)) 

nodal displacements 

x(with components x, y, z) = initial coordinates in Sections 5. I and 5.2 (sometimes 
used for nodal values) 

x(with components x,y,  z) = final coordinates (x = X + U) in Sections 5.3 and 5.4 
(sometimes used for nodal values) 

X (with components X ,  Y , Z )  = initial coordinates (in Sections 5.3 and 5.4) 
a, = length parameter relating to initial configuration 

E, = Almansi strain 
8 = displacement derivatives in vector form (see (5.8) or 

A = stretch scalar (see (4.13 1 ) )  
c =  Cauchy stress (as vector or tensor; the latter is 

(!J2) (Section 5.1.4) 

(5.29)) 

sometimes c2)  

Subscripts 

n = new 
o = old 
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6 Basic plasticity 

6.1 INTRODUCTION 

Books on plasticity can be found elsewhere [H2, M7, M10,52, P1, H5,N3,C2,11, Sl]  
and a review of recent developments in [D4]. The main objective of the present 
chapter is to concentrate on those aspects that relate to a ‘numerical solution’. In 
particular, we will be mainly thinking of the finite element method but many of the 
concepts also apply to other discretisation procedures such as finite differences. 
Books and manuals in this category can be found in [04, S5, C2, D2). The last :WO 

references relate primarily to geomechanical materials. In contrast, the present chapter 
will concentrate on the von Mises yield criterion [Vl,V2], although much of the 
work will be general and applicable to other yield functions. (Other yield criteria will 
be treate in more detail in Volume 2.) Reviews on numerical work on plasticity can 
be found in [A3, W1, W3, D3] while the workshop proceedings “31, although now 
a little out-of-date, gives a range of interesting papers and discussions. 

In the present chapter, only isotropic hardening will be treated in any depth (with 
kinematic and mixed hardening being considered in Volume 2) while the flow rules 
will generally be assumed to be associative. Because the plastic flow rules are 
incremental in nature [H2], elasto-plastic problems, should strictly be solved using 
small equilibrium steps. For, no matter how accurately we may, within an increment, 
satisfy the flow rules and keep to the yield surface, the solution is only in equilibrium 
at the end of each increment after the equilibrium iterations (Chapters 1-3,5) (see 
Section 6.2 for further discussion). Nonetheless, very acceptable solutions have often 
been obtained with large steps. 

In keeping with the main, static, theme of the book, we will not consider the 
time-dependent viscoplasticity [04, W 1,231 but should note that viscoplastic 
approaches have been used with a ‘pseudo-time’, to analyse time-independent 
elasto-plasticity [Z3,04]. In relation to such elasto-plasticity, having reached 
equilibrium at point A (Figure 6.1) on the effective stress/strain curve, the next step 
may continue to flow plastically to point B or else to unload elastically to C. Clearly, 
the two paths have very different stiffnesses. If it is known that the loads are to be 
reversed at point A, the elasto-plastic tangent stiffness matrix should not be used for 
the next increment and the elastic stiffness matrix should be used instead. But, in the 
absence of prior knowledge on load reversals, it will generally be assumed that plastic 
flow will continue and that the tangent stiffness relates to AB. However, even for 
monotonically increasing loads, certain areas of the structure can ‘unload’. In such 

152 
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6 

Figure 6.1 One-dimensional stress-strain relationship. 

circumstances, it is generally left to the iterative correction procedure (Chapters 1-3,5) 
to discover those areas that are ‘unloading’. However, if it is suspected that much 
unloading is occurring, it may be beneficial to revert to the elastic stiffness matrix 
and adopt a solution procedure based on the ‘initial stress’ method (see Section 1.2.3 
and Figure 1.9). For problems involving combined geometric and material 
non-linearity, no data is then provided on the stability of the solution (Chapter 9 
and Volume 2). 

In general, there are three separate roles for the plasticity algorithms of a finite 
element code. These roles are: 

( 1 )  the formation of the standard tangent modular matrix CP1.1, M4.1,Y 1.1,21.1,22.1] 
for use in the incremental tangent stiffness matrix of the structure or for use with 
the integration of the the stress/strain laws (see (3) below); 

(2) the formation of a ‘consistent’ tangent modular matrix for use with 
Newton- Raphson iterations; 

(3) the integration of the stress/strain laws to update the stresses. 

As already briefly discussed in Sections 4.12 and 5.2.1, with material 
non-linearity, the structural tangent stiffness matrix takes the form 

K, 

where C, is the standard 

The initial stress matrix 
As previously discussed 

= jBTCtBdV + initial stress matrix 

tangential modular matrix, which is given by 

8G 
- = c,. (6.2) 

in (6.1) only exists if geometric non-linearity is included. 
in Chapters 3 and 5, with such geometric non-linearity, 

we must specify the type of stress measure being used. However, for the present 
chapter, this issue will be avoided. 

If certain forms of stress updating are adopted, it is possible to derive a 
‘consistent’ tangent modular matrix, C,,, that is consistent with the numerical 
technique used for the stress updating. In general terms, the concept related to a 
‘consistent linearisation’ were discussed in [H7]. The ideas appear to have been 
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first applied to plasticity by Simo and Taylor [S6] and Runesson & Samuelsson 
[R3] (with subsequent work in [S6, S7, S5, A l ,  J1, H 1, B3, C4, M81). In comparison 
with the use of the ‘standard’ tangential modular matrix, the consistent tangent 
leads to a significantly faster convergence rate when the Newton-Raphson 
algorithm is used for the equilibrium iterations. 

Most of the work in this chapter will be presented from an ‘engineering approach’, 
starting from the early tangential modular matrices [ P1.l, M4.1, Y 1.1, Z 1.1,22.1] 
and leading on, via the ‘implicit’ integration procedures, to the ‘consistent tangent 
matrices’. Some of this work can also be approached [M6,SS,Sl,R3] from a 
more rigorous mathematical programming basis [M I ,  M 10, S9] (often with 
identical results). These issues will be briefly discussed in Section 6.10 which can 
be considered as an Appendix to this chapter. 

Before detailing the derivation of the ‘standard’ tangent modular matrix, Ct, we 
will briefly discuss an important aspect of stress updating that has been omitted 
from many books on finite elements and plasticity. 

6.2 STRESS UPDATING: INCREMENTAL OR 
ITERATIVE STRAINS? 

Because of the incremental (or rate) nature of the flow rules [HI, M71, it is almost 
inevitable that solution procedures based on incremental predictor/corrector 
approaches (Chapters 1-3 and 9) will lead to some error [A2,C3]. This error will 
not relate to a lack of equilibrium but rather will be caused by errors in the 
integration of the flow rules (Section 6.6) and their relation to the complete 
incremental/iterative solution procedure. Most analysts assume a linear strain 
path within an increment (see [M2] for more on the ‘loading path’ and plasticity). 
Even if equilibrium is exactly satisfied at both the beginning and end of an 
increment, and sub-increments (Section 6.6.4) are used to help integrate the strain 
rules accurately, the solution will not correspond exactly with a solution in which 
the increment was itself cut into a number of smaller increments for each of which 
equilibrium was exactly ensured. To limit these errors, Tracey and Freese [Tl] 
have developed an adaptive scheme that examines the local curvature of the yield 
surface and direction of the strain rate vector to select the load step sizes. 

The errors will be strongly related to the adopted procedure for updating the 
stresses and strains. In relation to the incremental/iterative procedure, two distinct 
algorithms would seem possible: 

( A )  Using iterative strains 
(1) Compute the iterative displacements, 6p, using, for example, 6p = - K, ‘8. 
(2) Compute the iterative strains, 8 ~ ,  from the iterative displacements, 6p, using 

SE = fn(6p). 
(3) Compute the iterative stresses using, ha = C,(a)& or, preferably, by ‘integrating 

the rate equations’ (Section 6.6) possibly with the aid of sub-incrementation 
(Section 6.6.4). 

(4) Update the stresses using, a, = a, + 6a where a, are the old stresses before the 
current iteration. 
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Figure 6.2 One-dimensional illustration of the alternative updating stategies. (a) updating strategy, 
A, (b) updating strategy, B. 

Using the incremental strains 
Compute the iterative dsplacements, 6p, using, for example, 6p = - Kt- ‘g. 
Update the incremental displacements (from the last converged equilibrium state) 
using Ap, = Ap, + 6p, where Apo are the incremental displacements at the end of 
the last iteration. 
Compute the incremental strains, A&, from the incremental displacements, Ap, 
using A& = fn(Ap). 
Compute the incremental stresses using, Aa = C,(a)A& or, preferably, by integrating 
the rate equations. 
Update the stresses using, a, = a, + Aa where a, are the old stresses at the end 
of the last increment. 

Strategy A is not recommended as it may lead to ‘spurious unloading’ during the 
iterations. This phenomenon is illustrated in Figure 6.2(a) in which point A represents 
a converged equilibrium state. The tangential incremental solution then takes the 
stress to point B. At this stage, the iteative process produces a negative iterative 
displacement and hence a negative iterative strain. As a consequence, the stress will 
spuriously unload to point C (Figure 6.2(a)). These issues were discussed in [K 1, C3] 
and the two different schemes have been compared by Marques [M4]. 

In the context of combined material and geometric non-linearity, Bushnell [B4] 
divorced the geometric non-linearity from the elasto-plastic formulation by 
performing equilibrium iterations on the former with fixed C, matrices before changing 
them to conform with the new converged stresses. This procedure was repeated until 
the complete system converged. Little [Ll] adopted a simpler but similar strategy 
to remove the material effects from the geometric effects. These procedures could 
become rather expensive for large problems. In addition, the ‘true’ equilibrium path 
will not be followed during the iterations. This ‘true’ path can be more closely (but 
still not exactly) followed if strategy B is adopted. 

Using this procedure, the incremental stress is simply re-computed from the new 
incremental strain which, in relation to Figure 6.2(b), is still positive and hence the 
stress/strain configuration moves from point A to point B. The main advantages of 
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0 
Final incremental s o h  

Figure 6.3 Incremental and iterative strains. 

strategy B are gained because the stresses are always updated from the stresses at the 
end of the last increment. These stresses are in equilibrium. This point is further 
illustrated in Figure 6.3. The true final strain increment is OD and by always working 
with incremental strains, the intermediate steps OA, OB, OC all lie reasonably close 
to this strain. In contrast, with strategy A, the steps AB,BC,CD, etc., may lie in 
entirely different directions. 

Nyssen “41 advocates a modified form of strategy A because he argues that 
strategy B uses too much work in integrating the rate equations (Section 6.6). 
Certainly, if sub-incrementation is adopted (Section 6.6.4), strategy B will require the 
same number of sub-increments for the later as for the earlier iterations even although 
the iterative strains will be considerably smaller. The modification to strategy A, 
proposed by Nyssen “41, involves ‘incremental reversibility’ and allows plastic 
unloading within an increment so that an ‘unloaded point’ is only defined as elastic 
for the next increment. Hence, the rule of no plastic unloading is only applied in a 
piecewise incremental manner. Nyssen further modified this strategy by adding the 
proviso that such unloading was only allowed until the plastic work done becomes 
again equal to its value at  the beginning of the considered increment. 

While there may be some justification for a modified strategy A when 
sub-increments are used, there would appear to be none with a ‘backward Euler 
integration scheme’ (Section 6.6.6) coupled with a ‘consistent tangent’ (Section 6.7). 
In summary, the author strongly recommends strategy B (see also Dodds [D3]). 

6.3 THE STANDARD ELASTO-PLASTIC MODULAR 
MATRIX FOR AN ELASTWPERFECTLY PLASTIC VON MISES 
MATERIAL UNDER PLANE STRESS 

In some senses, plane stress is one of the more difficult stress states. The complexities 
will be discussed in Section 6.8.2. In the meantime, plane stress will be used to 
introduce plasticity calculations simply because it involves fewer components. 
However, the prime aim is to develop the general form of the matrix, vector and 
tensor equations which will also apply to more general stress states. 

We will start with the simple plane-stress version of the von Mises ,[Vl, V2] yield 
function: 
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Figure 6.4 The von Mises yield criterion under principal stress (a, = ox,  a2 = a,) and plane-stress 
conditions. 

where 0, is the effective stress and (T, the yield stress. In conjunction with (6.3), the 
Prandtl-Reuss flow rules are: 

(6.4) 

where (Figure 6.4), the vector a is normal to the yield surface and is a positive 
constant usually referred to as the ‘plastic strain-rate multiplier’. (Note  that with the 
present notation, i?f/i?a is a column vector.) In equation (6.4) and generally during 
this chapter, we are using the ‘rate’ form denoted by a dot. However, as discussed 
in Section 4.6, we are not considering dynamic effects so that we have a ‘pseudo-time’ 
and indeed the dotted quantities can be simply considered as small changes which 
we have in the past often designated via Ss (strictly, SE = d St, but we will often loosely 
refer to i: as a small change). In addition to (6.4), the stress changes are related to 
the strain changes via 

where, assuming isotropic elasticity, (.167[ v 1 v  1 0 0 1. 
0 0 ( 1  -v)/2 



158 BASIC P LASTlC ITY 

Equation (6.5) relates the small changes in stress (or more strictly stress rates) to the 
small changes in elastic strain (or more strictly elastic strain rates), ie = it - iP. In 
this equation and throughout the chapter, the subscript t will sometimes be dropped 
from the total strain changes (or total strain rates). 

A negative ‘plastic strain-rate multiplier’, i, would imply plastic unloading from 
the yield surface. The latter cannot occur and, consequently, any negative, i s  should 
be replaced by zero so that elastic unloading occurs (see also Section 6.10). 

For plastic flow to occur, the stresses must remain on the yield surface and hence 

In equation (6.7), we have adopted an approach that we will use often in the chapter, 
and have given both the vector and tensor forms although only the former relates 
directly to the precise forms in (6.4)-(6.6). Generally, we will not use (as in Chapters 4 
and 5) subscripts such as 2 to indicate the order of the tensor. It should be obvious 
from the context which form is being used. In particular the use of the contraction 
symbol: will indicate the tensor form (see discussion below equation (4.6)) while the 
use of the symbol ‘T’ for transpose will imply the use of a vector. 

The situation described by (6.7) is illustrated in Figure 6.4 and shows that, for 
plastic flow, the stress changes, 6, are instantaneously moving tangentially to the 
surface with 6 being orthogonal to the vector a. Hence a is normal to the surface 
and the flow rules (equation (6.4)) invoke ‘normality’. 

In order to find the plastic strain-rate multiplier, i, equation (6.5) is premultiplied 
by the flow vector aT and, using equation (6.7) 

Consequently, substitution into equation (6.5) gives 

where C, is the tangential modular matrix (or fourth-order tensor in the final 
form in (6.9)) which is not only a function of E and v but also, via a, a function 
of the current stresses, c. This matrix can now be used in finite element expressions 
such as (6.1) to form the element and hence the structure tangent stiffness 
matrix. 

A numerical example involving the computation of the elasto-plastic modular 
matrix of (6.9) is given in Section 6.9.2. 

6.3.1 Non-associative plasticity 

Before introducing hardening, we should make a brief mention of non-associative 
plasticity, which is mainly relevant to geomechanical materials such as soils. For such 
materials, experiments show that the flow direction is not usually normal to the yield 
surface, f .  However, it can be considered as normal to some second function, g, 
known as the plastic potential. It then follows that in place of (6.4), Ep = i(ag/da) = i b  
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rather than ;a where, unless the plasticity is associative, b #a.  With this difference, 
the basic formulation follows that in the previous section, but in place of (6.8), 

: aTCi 
aTCb’ 

A =  

while in place of the relationship in (6.9), 

c, = c( I - 3;). 
I t  follows that, for non-associative plasticity, Ct is generally non-symmetric. 

6.4 INTRODUCING HARDENING 

Although we will introduce the concepts of hardening with specific reference to the 
plane-stress plasticity that we have just introduced, the concepts are equally valid in 
relation to general stress states. Indeed the equations remain valid for such general 
states (such as the three-dimensional plasticity to be introduced in Section 6.5). The 
only item specific to plane-stress plasticity is the precise form of the equivalent plastic 
strain. 

6.4.1 Isotropic strain hardening 

Hardening can be introduced by changing the fixed yield stress, C T ~ ,  in equation (6.3) 
to a variable stress, oo(cps), so that 

.f’ = Oc - ~ , ( C p J .  (6.10) 

The variable yield stress is now a function of the equivalent plastic strain: 
r 

Fps = Cbc,, = ips J 
which is accumulated from the equivalent plastic strain rates, 

2 
6,, = gx + gy + ipxipp + ; j p x y ) ” 2 *  

J3 

(6.1 1 )  

(6.12) 

Under uniaxial tension, U,, ipp = iPz = - +gpx so that there is no plastic volume 
change and i j p s  = tpr while crc = (T, = ( T ~ .  Consequently, the relationship between CT, 
and E,,  can be taken from the uniaxial stress/plastic strain relationship. In particular, 
we will require ?o,/?cp5 which, from Figure 6.5, is given by 

(6.13) 

Once hardening is introduced, the tangency condition of equation (6.7) is modified to 

(6.14) 
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Figure 6.5 One-dimensional stresdstrain relationship with linear hardening. 

Substitution from equation (6.4) into equation (6.12) gives 

ips = R = B(a)A. (6.15) 

For the present von Mises yield criterion, B(a)= I ,  but for other criteria, this may 
not be so. Substituting from (6.15) into (6.14) gives 

f = aTk - H ’ S ~  = aT6 - ~ ’ j  = 0. 

Hence, premultiplying equation (6.5) by aT and substituting into (6.16) give 

a:C:i: 

a:C:a + A’ 
- - aTC& A=-- - 

aTCa + A’ 

while equation (6.9) is replaced by 

1 

a:C:a+ A’ 
& = C t = C  € =  ( aTCa+ A’  ) ( aaTC 

(6.16) 

(6.1 7) 

(6.18) 

For linear hardening, A’ is (via H’ in (6.13)) a single measurable constant. For 
non-linear hardening, A’ will vary with E,, (and possibly other quantifies)-indeed, 
more generally, 0, (or A )  will vary with E,,. 

The equivalent plastic strain can be considered as an ‘internal variable’ as it is 
‘internal’ to the response [Zl, M3, M61. Using this terminology, only the directly 
measurable total stresses and total strains are external. However, the plastic strains 
are required in order to define the response of the body. Following the introduction 
of the flow rules and the hardening hypothesis, in the previous developments one 
was left with one internal variable, gPs, to define the behaviour. The hardening 
behaviour was a function of this ‘internal variable’. For a more complex material, 
one may require more ‘internal variables’ [M6]. 

6.4.2 Isotropic work hardening 

Work hardening [H2] is more generally applicable than strain hardening. With work 
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hardening, equation (6.10) is replaced by 

.f’ = a e  - .,(wp> 
where Wp is the plastic work, which is given by 

n n n 

(6.19) 

(6.20) 

where ipo is the one-dimensional plastic strain rate and the plastic work rate is 

wP = aoipo = oTcp = k T a .  (6.21) 

Instead of equations (6.14) or (6.16)’ 

(6.22) 

where 

(6.23) 
H’aTa H’a:a - A’ = - 

0 0  00 

is the hardening constant for use in equations (6.17) and (6.18). I f  the yield function 
can be written in a similar form to equation (6.3), so thatf’is a homogeneous function 
of order one, it is easily shown (Euler’s theorem [H2]) that 

o = aTo = a:o  = 6,. (6.24) 
3, f ‘ 1  

do 

Hence A’ = H’ (equation (6.13)) and for von Mises’ yield function (with B (equation 
(6.15) = l), strain hardening and work hardening formulations coincide. This is not 
always the case. 

6.4.3 Kinematic hardening 

For seismic problems or  low-cycle fatigue, the induced cyclic loading may involve 
relatively small plastic strains. In these circumstances, the Bauschinger effect [ H2) 
may be significant. Assuming a linear hardening this effect is illustrated for a 
one-dimensional problem in Figure 6.6. Here, the yielding in tension has lowered the 
compressive strength, so that 

(a - a)  = & a, (6.25) 

where a is the ‘kinematic shift’ of the centre of the yield surface. As a result of this 
shift, with a, being fixed (see Figure 6.6), the uniaxial stress a ‘hardens’. 
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I 
Figure 6.6 One-dimensional illustration of kinematic hardening. 

The Bauschinger effect [H2] cannot be treated by the methods of Sections 6.4.1 
and 6.4.2 which involve isotropic hardening and one must introduce kinematic 
hardening [P2,22] or an  ‘overlay’ [B 1, OS] or an equivalent [M9] model. These 
issues are discussed in Volume 2. 

6.5 VON MISES PLASTICITY IN THREE DIMENSIONS 

For the general three-dimensional case, the von Mises yield criterion is 

,f = oe - oo = j 3  J;l2 - oo 

1 
= [(a, - oYI2 + (fly - gZl2 + (0, - + 6(7iY + 7$ + ?,)I 1’2 - o0 
J2 

= J3[+(sf + s; + S i )  + 7fy + 7;z + T:x]1/2 - 0 0  

= J;(sTLs)1’2 - (To = &(s:s)1’2 - (To (6.26) 

where 

and 

L = [  1 

1 
1 

2 
2 

(6.27) 

(6.28) 
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Figure 6.7 Von Mises yield criterion In three-dlmensional principal stress space. 

are the deviatoric stresses previously defined in Section 4.2.2. They may also be 
written in tensor form (see (4.18) and in this case (see the last form in (6.26)) there is 
no need for the L matrix. 

The three-dimensional von Mises yield criterion is plotted in principal stress space 
in Figure 6.7 where the stress vector a is decomposed into a volumetric component 
(along the axis iT = (1, 1 , l ) )  and a deviatoric component, s. From (6.26), the radius 
of the von Mises cylinder is clearly J$CJ,. 

For three-dimensional plasticity, the equivalent plastic strain rate is given by* 

ips = J:[iix + g y  + i z z  + +(j:, + j;z + j ; 3 ]  1’2 = $(d 3 P P  :d )’” = Jx(it 3 P P  :it )1’2 (6.29) 

where it, are the deviatoric plastic strains (in tensor form-see (4.19)). The elastic 
stresses and strains are connected (see (4.10)) by 

V 

v ( 1 - v )  v 
v ( 1  - v )  

\I I 

or 

a = C &  or a = C : & .  (6.3 I )  

*With d,, = ipz = - i d p x ,  dps again degenerates to i,, for the uniaxial case. 
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Differentiating equation (6.26) gives 

1 

1 
0 
0 

a f T  I 

da 20, 
aT = -- = { (20, - o,, - cZ), ( 2 ~ ~  - 0, - oZ), (20, - 0, - f ly), 6zXy, 6~,,,, 6zZ,) 

I +  ti = im j + 6 

or, using the tensor form, 

S. 
8.f 8.f 3 
aa as 20, 

a = ~ = ~- = 

As in (6.4), kP = i a  so that in (6.29) 

(6.3 3) 

(6.34) 

With these new definitions of 6, E, C and a, an identical formulation to that of Sections 
6.2-6.4 produces equation (6.17) for' and (6.18) for C,. 

6.5.1 Splitting the update into volumetric and deviatoric parts 

With a view to later developments on the 'radial return' method (Section 6.6.7), it is 
useful to split the stress update into volumetric and deviatoric components. 
(Background information was given in Sections 4.2.2 and 4.2.3.) To this end, (6.30) 
and (6.32) can be used to show (see also [D 11) that (using the matrix and vector forms) 

and 

aTCa = a:C:a = 3p. 

Hence substitution into (6.18) gives 

(6.35) 

(6.36) 

In addition, the total strain rate, 6 ,  can be split (see also Section 4.2.2) into 

. .  
E = F, (6.38) 
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where im is the mean strain rate, 

im = (ix + iy + iJ3 =.$jTi: 

and e are the deviatoric strains. 
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(6.39) 

6.5.2 Using tensor notation 

Using tensor forms, the equivalent of (6.38) is (see (4.19)) 

k = i , l + i !  (6.40) 

where 1 is the second-order unit tensor (or identity matrix) which is often written as I. 
Equation (6.30) can be used to show that, using the matrix and vector forms, 

CE = 3kimj + 2&-'e (6.41a) 

or using the equivalent tensor forms (see also (4.21) and (4.22)), 

C:k = 3 k l +  2pe (6.41 b) 

where k is the bulk modulus (Section 4.2.2). In addition, from the definition of s in 
(6.32) and of j and e in (6.38), 

sTj = 0. (6.42) 

Hence the first, matrix and vector, form in (6.37) can be modified to 

while the tensor form is 

In (6.44), 1 is the second-order unit tensor while I is the fourth-order unit tensor-see 
(4.3 1). 

written as 
Using the notation and procedure of Section 4.2.2, the C, tensor in (6.44) can be 

(6.45a) 

while, taking account of (6.42), from (6.43), the matrix and vector form is 

(6.45b) 
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The latter is easily confirmed, with the aid of (6.42), by multiplying C, from (6.45b) 
by i from (6.40). 

6.6 INTEGRATING THE RATE EQUATIONS 

Some issues relating to the ‘integration of the flow rules’ have already been discussed 
in Section 6.2. If the stress and strain increments were very small, we could effectively 
proceed by applying the previous tangential formulae with terms like i: being replaced 
by terms like 8~ and use the strain updating scheme of Strategy B as discussed in 
Section 6.2. However, the strain and subsequent stress changes will not be 
infinitesimally small and, as a consequence, errors would accumulate just as they 
would under a pure ‘incremental’ or ‘forward-Euler scheme’ at the structural level 
(see Chapter 1). Consequently, an uncorrected forward-Euler procedure at the 
Gauss-point level would lead to an unsafe drift from the ‘yield surface’. In the same 
way as a pure incremental (tangential) procedure leads to a violation of equilibrium 
at the structural level (Chapter 1) so an equivalent tangential (forward-Euler) 
procedure leads to a violation of the yield criterion at the Gauss-point level. 

Before addressing the problem of finite increment sizes, we should note that, even 
if the increments were infinitesimally small, i t  would be computationally inefficient 
to use the tangent modular matrix, C,, to compute stress rates ir. Instead of using 
equation (6.18), it would be more efficient to separately use (6.17) to compute f i  and 
hence knowing a =  df/&, to compute ir from the general form in (6.5) (This is 
illustrated in the numerical example of Section 6.9.2.) With infinitesimal strain 
increments it would then only be necessary to update the equivalent plastic strain, 
cps using equations (6.1 1) and (6.12) (or (6.15))’ before proceeding to the next increment. 

However, the strain increments will not be infinitesimal and as a consequence, we 
cannot replace terms like i: with terms like AE although we can use 8~ where SE is 
infinitesimally small. For the von Mises yield criterion, we can however add a 
higher-order term and replace (6.7) by 

da da 
Af=aTAa+$AaTTAa=a:Aa+:Aa:- - :Aa 

- da 

where differentiation of (6.32) gives 

2 - 1  - 1  
- 1  2 - 1  
- 1  - 1  2 

6 
6 

6 

aa 
(6.46) 

1 
---aaT. (6.47) 
c e  

It is clear that the omission of the second-order terms in (6.46) will lead to error. We 
will later discuss methods which directly employ the ‘second-order’ information. 

If we simply calculate a = af/da at the beginning of the increment and use equation 
(6.17)’to compute AA, we adopt a ‘forward-Euler scheme’ which is bound to lead to 
stresses that lie outside the yield surface at the end of the increment (see Figure 6.8 
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Figure 6.8 Potential accumulation of error with the forward-Euler procedure. 

and the numerical example in Section 6.9.2). Unless steps are taken to return the 
stresses to the yield surface or in some other way to ensure that the stresses remain 
at least very close to the surface, errors are bound to accumulate and the computed 
collapse load will generally be overpredicted. 

There would appear to be three alternative procedures which can be used, either 
individually or in combinations to overcome this problem. They are: 

(1) Add a return to the yield surface to the ‘forward-Euler’ scheme. 
(2) Use sub-increments [H6, N l . l ,  22.1, S8,04, M4, B4, N4). 
(3) Use some form of backward or mid-point Euler scheme [W2, K2, K3,02,  S3, B3). 

In each case, the aim is to update the stresses at a Gauss point given (a) the old 
stresses, strains and equivalent plastic strains and (b) the new strains. For all 
procedures, the first step is to use an elastic relationship to update the stresses. If 
these updated stresses are found to lie within the yield surface, the material at the 
Gauss point is assumed to have either remained elastic or to have unloaded elastically 
from the yield surface. In these circumstances, there is no need to ‘integrate the rate 
equations’. However, if the elastic stresses are outside the yield surface, we need to 
adopt one of the ‘integration’ procedures. 

Recent work has seen increasing use of the backward-Euler scheme without 
sub-incrementation (Sections 6.6.6 and 6.6.7). This method is popular because, for 
the von Mises yield criterion, i t  takes a particularly simple form and, in addition, it 
allows the generation of a ‘consistent tangent modular matrix’ (Section 6.7) which 
ensures quadratic convergence (see Section 1.2.3) for the overall structural iterations 
when the full Newton-Raphson method is adopted. Nonetheless, for some compli- 
cated yield criteria when coupled with complex hardening laws, the backward-Euler 
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procedure is difficult to implement and hence techniques such as sub-incrementations 
may still be relevant. 

6.6.1 Crossing the yield surface 

A number, but not all, of the integration procedures require the location of the 
intersection [B2] of the elastic stress vector with the yield surface (Figure 6.9(a)). In 
such circumstances, we require 

f(ox + MAC,) = 0 (6.48) 

where the original stresses, ox are such that 

.f(ox) = . f x  < 0 (6.49) 

while, with a = 1, the elastic stresses ox + Ao, give 

f (~s )  = ./’(ox + Ace) > 0- (6.50) 

For some yield surfaces, this problem can be solved exactly. For example, with the 
von Mises yield function, we can use the A matrix in (6.47) to re-express the yield 
function (6.26) in squared form as 

f2  = 0,” - 0,’ = +oTAa - 0,” = 0. (6.5 1) 

Substituting the stresses, ox + aAo, into (6.51) gives 

f 2  = O L ~ O , ( A G , ) ~  + aAa%AoX + C T , ( C T ~ ) ~  - 0% = 0 (6.52) 

where the 0, terms are simply the ‘equivalent stress’ terms of (6.26). We require the 
positive root of (6.52). A numerical example is given in Section 6.9.1. 

Alternatively, for a general yield function we can use a truncated Taylor series with 
a as the only variable to set up an iterative scheme. Such a scheme might start with 
an initial estimate: 

- . f x  

f n  - J x  
a, = 

and then use the truncated Taylor series: 

(6.53) 

(6.54) 

to give a first change in a, 6a,. In applying (6.54), the ‘old’ yield function value,f,,, 
would for the iteration be computed from the stresses o = ox + a,Ao, with f, being 
computed from these same stresses. The scalar a would then be updated using 
x1 = a, + 6a,  while a second iteration would involve 

(6.55) 
- 1  

6 M ,  = ~ f l  
aTAo, 

where a and f l  would be computed at a , .  Having computed the intersection point 
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(b) 

Figure 6.9 The forward-Euler procedure: (a) Locating the intersection print, A; (b)  Moving 
tangentialy from A to C (and (later) correcting to D). 
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ox + ctAoe, the remaining portion of the strain increment, which is (1 - a)A.a, can be 
treated in an elasto-plastic manner. 

6.6.2 Two alternative ‘predictors’ 

We have already indicated that we may need some scheme to return the stresses to 
the yield surface following an initial ‘predictor’. The standard predictor CO41 is the 
forward-Euler procedure which follows from (6.5) by replacing the rates with As so that: 

A o  = CA& - A2 Ca = Aoe - A i  Ca (6.56) 

where we are now moving from the intersection point A (Figure 6.9(b)) so that A c e  
is now the elastic increment after reaching the yield surface (i.e. (1 - a) times the Ace  
in (6.48) or Figure 6.9(a)). In relation to Figure 6.9(b)) 

oc = oA + Ace  - AiCa = oB - A K a  (6.57) 

and the step can be interpreted as giving an elastic step from the intersection point 
A to B followed by a plastic return that is orthogonal to the yield surface at A. (To 
fully justify the pictorial representation in figures such as 6.9, the C matrix must be 
thought of as an identity matrix.) 

An alternative predictor (Figure 6.10) uses the normal at the ‘elastic trial point’, B 
and hence avoids the necessity of computing the intersection point, A. A first-order 
Taylor exapansion about point B gives 

af’ a f  
ac acps  

f = f B  + -__ ACJ + -- Acps = f B  - AA aiCa, - AA A’ (6.58) 

f ,  > 0 

Figure 6.10 An alternative ‘predictor’ (with later correction to D) 
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where the hardening parameter A’ has been defined in equations (6.13) and (6.16) (with 
B = 1). Equation (6.58) has used ‘the incremental form of equation (6.5) with A& = 0 
because the total strain A& has already been applied in moving from point X to point 
B (Figure 6.10). If the new yield-function valuef, is to be zero, equation (6.58) gives 

(6.59) 

where a and A’ are computed at B (Figure 6.10) and the final stresses, c,, are given by 

c, = cB - AI- Ca,. (6.60) 

This method (for which a numerical example is given in Section 6.9.5.1) can be 
viewed as a form of backward-Euler scheme although, unlike the full backward-Euler 
procedure (Section 6.6.6), the final stresses at C will not always lie on the yield surface 
(see Figure 6.10). However, for the three-dimensional von Mises criterion (with linear 
hardening), the present method coincides with the well-known ‘radial return algorithm’ 
[W 1, K2, K3,02] which is a special form of the backward-Euler procedure. This 
relationship will be explored in Section 6.6.7. 

6.6.3 Returning to the yield surface 

In general, both of the previous methods produce stresses that lie outside the yield 
surface. It is now possible to simply scale the stresses at C (Figure 6.9(b) or 6.10) by 
a factor r until the yield surface f becomes zero [02]. However, this technique, which 
should not be confused with the ‘radial return method’ (Section 6.6.7) which gives a 
radial return in deuiatoric space, will generally involve an elastic component and is 
not recommended. An alternative technique [01, C3], can be viewed as an extension 
of the previous backward-Euler predictor and has been related to ‘opcrator splitting’ 
by Ortiz and Simo [Ol]. 

Using this approach, the total strains are kept fixed while additional plastic strains 
are introduced in order to ‘relax’ the stresses on to the yield surface. To this end, 
equation (6.60) can be repeated at point C (Figure 6.9(b) or 6.10) so that 

q, = c, - 6&Ca, 

where 

(6.61) 

(6.62) 

If the resulting yield function at D (Figure 6.9(b) or 6.10) is insufficiently small, further 
relaxation can be applied. The final process leads to 

An = C A& - Ai,Ca, - 6A,Cau - 6R,Ca, (6.63) 

where, for the forward-Euler procedure (Figure 6.9(b)), a, is the normal at the 
intersection A while, for the backward-Euler predictor, a, is the normal at B 
(Figure 6.10). The method is illustrated via a numerical example in Section 6.9.4. 
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Figure 6.11 Reducing the drift via sub-increments (with later correction to E) 

6.6.4 Sub-incrementation 

Instead of introducing some artificial return to the yield surface, the errors that are 
introduced by the forward-Euler tangential scheme can be significantly reduced by 
sub-incrementation [H6, N4, S3, S8, B4, M41. Using such a technique (Figure 6.1 l), 
the incremental strain A& is divided into m sub-steps each of q A&, where q = l/m and 
the standard forward-Euler, tangential procedure is applied (at the Gauss-point level) 
at each step. 

Some workers [N4,S8] use a two-step Euler procedure to estimate the error 
produced by the standard Euler technique and hence to compute the required number 
of steps. Such a two-step scheme starts with a standard step: 

CBI = C A  + CtAA& = 6 A  + ACI (6.64) 

and then recomputes the step using the average tangential modular matrix, so that 

6 B 2  = C A  + i(CtA + CtBI)A& = C A  + i(AC1 + ACT,) (6.65) 

A c ~  = CtB, A&. (6.66) 

where 

Consequently, an estimate of the error is 

6C = 6 B 2  - = ;(A02 - AC,). (6.67) 

Nyssen “41 uses this error estimate, 66, to propose the following measure for the 
truncation error in f for one step: 

e = 2a,(Aa)/a,. (6.68) 
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He then argues that the total error will be roughly l/m times the error for a single 
step if m sub-increments are used. Hence the required number of substeps to give a 
tolerance of /) in f is 

(6.69) 

where he suggests a value of 0.05 for p. 
Equation (6.46) would indicate that the truncation error in the standard Euler 

scheme is proportional to the square of the length of the stress increment AG. Hence, 
it could be argued that 

(6.70) 

would be more appropriate. Sloan’s work [SS] suggests such a scheme, although he 
works with the Euclidean norm rather than with oe and computes the required 
reduction factor, q, as: 

4 =o.*( Pllall - ) l i2  

It A 6  I t  
(6.71) 

where he advocates 10-3-10-4 for p. Equations (6.70) and (6.71) are of the same 
form because 4 is inversely proportional to m. 

In practice, Sloan takes his procedure beyond the simple computation of a number 
of sub-increments. Instead, at each sub-increment, he uses equation (6.7 1) to indicate 
whether or not the current substep needs to be reduced further. In addition, he uses 
the two-step Euler scheme (equations (6.64)-(6.66)) at each substep. In contrast to 
most other workers, Sloan does not combine his substepping with a technique, such 
as that of Section 6.6.3, to return the stresses to the yield surface. Even if sub- 
incrementation is used, i t  is probably wise to introduce such a ‘correction’ either at 
the end of each substep or at the end of the increment (Figure 6.1 1 -from D to E). 

Other schemes have been proposed [B4, N4,53] for estimating the number of sub- 
increments. For instance, Marques [M4], proposes a Fortan-type algorithm whereby 

(6.72a) m = NSTEP = INT(AMAX(STEP 1, STEP 2 )  ) + 1 

(6.72 b) 

m2 = STEP 2 = P2ae(oH - aA)/oe(oA). (6.72~) 

Equation (6.72b) is designed to limit the radial movement from the yield surface 
while equation (6.72~) is designed to limit the tangential movement. 

The simplest form of sub-incrementation is illustrated by way of a numerical 
example in Section 6.9.3. 

6.6.5 Generalised trapezoidal or mid-point algorithms 

Ortiz and Popov CO21 have shown that a number of different integration algorithms 
can be included in the generalised algorithm: 
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or 

A E p  = AiCa((1 - V b ,  + V%)l (6.74b) 

f C  = 6eC(6C) - oOC(EpsC) = 6eC(QC) - 60C(EpsB + AEps(AEp)) (6.75) 

where (Figure 6.12(a)) A is the starting point and C the final point on the yield surface. 
If 21 = 0, equations (6.74a) and (6.74b) coincide and we obtain the previous ‘explicit’, 
forward-Euler, tangential algorithm. However, as we have already discussed, this 
algorithm does not directly lead to stresses that satisfy the yield criterion and hence 
equation (6.75) is not satisfied. 

If T,I = 1, we produce a ‘backward-Euler’ or ‘closest point’ algorithm (see 
Sections 6.6.6 and 6.6.10). A slightly modified version of this algorithm was discussed 
in Section 6.6.2. However, in contrast to the situation of Figure 6.9(b), the full 
backward-Euler scheme involves a vector a, that is normal to the yield surface at 
the final position C (Figure 6.12(b)) for which the stresses, cC, satisfy (6.75). Except 
in special circumstances (see Section 6.6.7), a, cannot be directly computed from data 
at A or B (Figure 6.12(a)). Hence an iterative procedure must be used at the 
Gauss-point level to solve the non-linear equations (6.73)-(6.75). This process will be 
described in more detail in Section 6.6.6. 

Figure 6.12 General and backward-Euler returns: (a) the flow vectors aA and a,; (b) backward-Euler 
return from inside the yield surface; (c) three-dimensional backward-Euler return. 
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Figure 6.12 (continued) 

For 0 < q < 1, either equations (6.74(a)) or (6.74(b)) may be used for the plastic 
flow. In the former instance, a generalised trapezoidal rule is produced while the 
latter gives a generalised mid-point rule. For q = i, the former procedure coincides 
with Rice and Tracey’s mean-normal procedure [R2] which was devised for the three- 
dimensional von Mises yield criterion with perfect plasticity. This method involves 
a simple modification to the basic forward-Euler procedure. Specifically, it takes 

(6.76) 

where aB is normal to the ‘enlarged’ yield surface at the ‘trial elastic position’, B 
(Figure 6.10) in conjunction with the condition 

+(aA + a,)TAc = 0 (6.77) 

in place of the incremental form of (6.7). For the three-dimensional von Mises yield 
criterion with perfect plasticity, this procedure ensures that the final stresses lie on 
the yield surface and no Gauss-point level iterations are required. 

For the von Mises yield criterion with linear hardening, the generalised trapezoidal 
(equation (6.74a)) and mid-point (equation (6.74b)) rules coincide [02]. More 
generally, Ortiz and Popov CO21 preferred the generalised mid-point rule and, in 
particular, q = t .  However, they showed that for large steps, the ( q  = l ) ,  backward- 
Euler scheme is better. It should also be noted that only with q = 1, is it unnecessary 
to compute the intersection point of the elastic predictor with the yield surface, i.e. 
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for y < 1, oA in equation (6.73) must be on the yield surface whereas for y = 1, oA is 
not required (see Figure 6.12(b)). 

6.6.6 A backward-Euler return 

The backward-Euler return is based on the equation 

o, = o, - AA Ca, (6.78) 

which can be obtained from (6.73) and (6.74) with q = 1.  A starting estimate for oc 
can be obtained from the second method of Section 6.6.2. Generally this starting 
estimate will not satisfy the yield function and further iterations will be required 
because the normal at the trial position B (Figure 6.10) will not generally equal the 
final normal. In order to derive such an iterative loop, a vector, r, can be set up to 
represent the difference between the current stresses and the backward-Euler stresses, 
i.e. 

r = c - (0, - A i  Ca,) (6.79) 

and iterations are introduced to reduce r to (almost) zero while the final stresses 
should satisfy the yield criterion, f = 0. 

With the trial elastic stresses, s, being kept fixed, a truncated Taylor expansion 
can be applied to equation (6.79) so as to produce a new residual, rn, where 

da 
r n = r o + b + i C a + A ; l C  ~ - 6  

is the change in AA. Setting rn to zero gives 

do 

b is the change in o and 

(r, + Ca) = - Q -  'r0 - iQ- 'Ca, 

(6.80) 

(6.8 1)  

Also, a truncated Taylor series on the yield function (6.75) gives (in a similar fashion 
to (6.58)): 

(6.82) 

so that (dropping the subscript C): 

: .fo - aTQ - 'r0 
A = 

aTQ- 'Ca + A" 
(6.83) 

Consequently, (6.81) can be solved to obtain the iterative stress change, 6. Also, from 
(6.19, the iterative change in the equivalent plastic strain is 

ips = B(o)i (6.84) 

A numerical example involving this general backward-Euler return is given in 
where, for many yield functicns, B(a) = 1.  

Section 6.9.5.1. 
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6.6.7 The radial-return algorithm, a special form 
of backward-Euler procedure 

It will now be shown that the radial return method is a special form of backward-Euler 
(or fully implicit integration) procedure. The radial return method was apparently 
first proposed by Wilkins [W2] and subsequently refined in [K2, K3, N1, S3). 

For the von Mises yield criterion with linear hardening, no iterations are required 
for the backward-Euler procedure and the second method of Section 6.6.2 gives an 
exact solution. This can best be demonstrated by splitting the update of Section 6.6.2 
into volumetric and deviatoric parts with the aid of some of the relationships that 
were developed in Section 6.5.1. Using the notation of (6.43) for the split into 
deviatoric and volumetric components, equation (6.57) can be re-expressed as 

cc = cm,j + sR - A>* Ca, = omBj + sc (6.85) 

where the elastic stresses, cB, at B (Figure 6.12) have been split into volumetric (om,j) 
and deviatoric (s,) components (see also (6.38) for j). With the aid of (6.35), (6.85) 
becomes 

ec = cmCj + sc = omRj + (6.86) 

Because sR has no component in the direction j (no volumetric component because 
of (6.42)), it follows that cmc = cmR and 

3pAi 
s, = CXS, = ( 1  - -,;-)... (6.87) 

These deviatoric stresses must satisfy the yield criterion of (6.75) so that (using (6.26) 
in either vector or tensor form for the yield function): 

f, = ce,(Sc) - o . o C ( ~ p s C )  = X o e H  - o.o,(~psC).  (6.88) 

Using (6.87) for Y, with linear hardening (with fixed A' ) ,  (6.88) simplifies to 

.fc = ceH - 311 AE. - (ooR + A' A E ~ < )  = f R  - ( 3 p  + A ' )  Ail = 0 (6.89) 

(recalling-see (6.15)---that Acps = Aj.). From (6.89), 

(6.90) .f H 

(311 + A ' )  
Ail = 

Substituting from (6.36) into (6.59) gives the same relationship as above. Hence the 
current procedure which was designed to satisfy the yield function at the final position 
(via (6.88)) coincides (for the von Mises criterion) with the predictor in Section 6.6.2 
based on a truncated Taylor series of the yield function at the 'trial position', B. The 
reason is that (6.87) defines a 'radial return' in deviatoric space (see Figure 6.12(c) 
which shows a cross-section of the von Mises cylinder of Figure 6.7). I f  s, = rsB, then 
from the yield function of (6.26), oeC = zceB and hence, from (6.32), 

a, = aH. (6.9 1) 
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From (6.85), (6.87) and (6.90), the complete update is 

(6.92) 

which takes an even simpler form without hardening. For the tensor form, one need 
simply replace j in (6.92) by 1. 

With non-linear hardening, the return is still radial in deviatoric space and again 
relates to (6.87). However, (6.90) can be longer be used for A2 although with 
A’ = A ;  = A ;  it can give a starting value for a scalar Newton-Raphson iteration. 
This scalar iteration relates to the satisfaction of’the yield function (6.88) with A2 as 
the only variable. A truncated Taylor series then leads to 

3P.fH 

(3P + 4 G e R  
cc = G m H j  + asg, cx = I - 

where the subscript n means ‘new’ and o means ‘old’. The term = HL0 (see (6.16) 
with B = 1) is the slope of the uniaxial stress/plastic strain relationship (see (6.13)) at 
the old trial value of the equivalent plastic strain, cpsco. 

6.7 THE CONSISTENT TANGENT MODULAR MATRIX 

Simo and Taylor [S4] and Runesson and Samuelsson [R3] derived a tangent modular 
matrix that is fully consistent with the backward-Euler integration algorithm of 
Section 6.6.7. (Other work on the consistent tangent approach can be found in 
[SS-S7, AI,  J 1, H 1, B3, C4, R 1, M81.) As a consequence of the ‘consistency’, the use of 
the consistent tangent modular matrix significantly improves the convergence 
characteristics of the overall equilibrium iterations if a Newton-Raphson scheme is 
used for the latter. Standard techniques would use the modular matrix of (6.18) which 
is ‘inconsistent’ with the backward-Euler integrations scheme (or any other effective 
integration schemes unless the increment sizes are infinitesimal) and hence destroys 
the ‘quadratic convergence’ inherent in the Newton-Raphson method. 

We will now give two derivations for consistent tangent relationships; one based 
on the general backward-Euler return of Section 6.6.6 and the other based on the 
specialised radial return of Section 6.6.7. For the von Mises yield criterion, the two 
techniques lead to exactly equivalent formulations. 

6.7.1 Splitting the deviatoric from the volumetric components 

We will firstly follow on from the radial return of Section 6.6.7. To this end, it is 
most convenient to work with the tensor forms for stress and strain but we will also 
give (sometimes on the same line) the matrix and vector forms. The former will involve 
the contraction symbol: while the latter will involve inner products designated via 
the ‘T’ symbol for transpose. 

From (6.87), the basic return was 

(6.94) 
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where with linear hardening A i  is given by (6.90) while for non-linear hardening, it 
would be obtained from the iterative procedure described at the end of the last section. 
To obtain a consistent tangent, we differentiate (6.94) to obtain 

s, = as, + cis, = 2pxe, + ciSB = 2 p e c  + ois, (6.95a) 

or, with matrices and vectors, 

s, = 2puctL - I e c  + is,. (6.95b) 

In (6.95), we have used the linear elastic relationship of (6.41) (see also (4.21) and 
(4.22)) and have also used the basic return algorithm of (6.78) for the relationship 
e, = eB (the movement from B to C being entirely governed by AA and a, = aB). 

From (6.94), 

(6.96) & = -  3pi  + 3pAIc _ _  6 =(1:9j+ (1 -~ -4  ~ (jeR 

A J” OeR 
efl 

GeH O ~ Z R  

while, from (6.26), 

We must now ensure that we remain on the yield surface at C, by differentiating 
(6.88) to obtain: 

fc = c i ~ , ,  + a6eB - A L i  = 0 (6.98) 

where A: is the tangential hardening parameter at C. Substituting from (6.96) into 
(6.98) gives 

6e,  - ( 3 p  + A$ = 0 (6.99) 

while substitution from (6.99) for and from (6.97) for ke, into (6.96) gives 

ci = 2ppsB : e ,  = 2pps;e, 

where 

(6.1 00) 

Substituting from (6.101) into (6.95) gives 

s, = 2p(aI + ps, @ sB):ec = 2p(aL - + pSeS; )ec .  (6.102) 

Knowing, from (6.94), that sc = asB and hence ceC = ao,,,.equations (6.101) and (6.102) 
can easily be re-expressed to contain sc and geC instead of s, and ceR. 

Combining (6.102) with the volumetric contribution (as in (6.43) and (6.44)) and 
using the notation of Section 4.2.2 (with 1 as a second-order unit tensor and I as a 
fourth-order unit tensor), leads to a consistent tangent modular tensor: 

c, = k - -~ ( 1  0 1 )  + 2 p ( d  - p s , @ s B )  ( 2:’”) 
(6.103a) 
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or, in matrix and vector form, as 

c, = k - __ (jj’) + 2p(aL- - BSHSi) .  ( (6.103b) 

It is instructive to compare (6.102) with the equivalent ‘inconsistent’ relationship 
in (6.43) or (6.44). Considering, for simplicity, the case with no hardening so that 
A’ = 0, the inconsistent form is (from (6.44)) 

while, from (6.102), the ‘consistent’ form is 

S = 2 p !  I -  ( 
For the radial return of (6.87), the scalar a 

0 s ) : e. 
S:S 

(6.104) 

(6.105) 

can be significantly less than unity and 
hence the inconsistent relationship can differ appreciably from the consistent form 
and hence destroy the favourable quadratic convergence characteristics of the full 
Newton-Raphson method. From the discussions of Chapter 1, this inconsistency 
would not affect the final answers (provided Strategy B of Section 6.2 is used) but 
will affect the convergence rate. In order to gain the potential benefits of the ‘consistent 
tangent‘, the author believes it  is important to use ‘line searches’ (see Section 9.2) for 
the early iterations before the iterative procedure reaches the bowl of Newton 
convergence. During these early iterations, the structural model is deciding which 
Gauss points are elastic, which unload, which remain plastic and which become plastic. 

6.7.2 A combined formulation 

A consistent tangent modular matrix can be derived without splitting the stresses 
and strains into volumetric and deviatoric components. Such a matrix can be derived 
even when the backward-Euler algorithm does not degenerate to a radial return in 
deviatoric space. The derivation of a more general form of the consistent tangent 
modular matrix is therefore relevant to a wider range of yield criteria. 

Returning to the conventional matrix notation, the standard backward-Euler 
algorithm can be expressed (see (6.78)) as 

c = cR - A K a  (6.106) 

where we are dropping the suffix C relating to the current configuration following 
the return (see Figure 6.12(b)) so that if a variable has no suffix it is assumed to relate 
to this configuration. The suffix B in (6.106) shows that cR are the elastic ‘trial’ stresses 
(Figure 6.12(b)). Differentiation of (6.106) gives 

da 

ae 
6 = CC: - k a  - A X  -~ 6 (6.107) 

where the last term in equation (6.107) is omitted from the derivation of the standard 
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tangent modular matrix. From equation (6.107), 

C(i: - ia )  = Q-'C(i: - ia)  = R(i: - E',a) (6.108) 

where the Q matrix has appeared before in relation to the backward-Euler return 
(see (6.81)). 

To remain on the yield surface, .f should be zero, and hence from (6.16) 

aTci = aTRi - iaTRa - A'R = 0 (6.109) 

and hence 

(6.1 10) 

In deriving equation (6.1 lO), account has been taken of the symmetry of R. This 
symmetry can be proved with the aid of the symmetries of C and da/da and the 
relationship 

A - 'B  = (B - 'A)  - l .  (6.1 11) 

In contrast to the consistent tangent matrix, the standard tangent modular matrix 
is derived by setting A2 to zero in equation (6.107). In this situation, the matrix da/da 
is unused. 

A numerical example involving the consistent tangent modular matrix of (6.1 10) 
is given in Section 6.9.6.1. 

6.8 SPECIAL TWO-DIMENSIONAL SITUATIONS 

6.8.1 Plane strain and axial symmetry 

The three-dimensional formulations of Sections 6.5-6.7 can be simply reduced to two 
dimensions by setting z,, = z,, = y x z  = y,,, = 0 so that equations (6.30) reduce to 

(1 - v) IV  E 
~~~ 

(1 + v)(l -2v) v 

+(l - 2v) I = C 4 E 4  

(6.1 12) 

where the subscript 4 relates to the four stress and strain components. For axial 
symmetry (Figure 4.3), oZ can be taken as the hoop stress, while for plane strain, E, 

is set to zero. 

6.8.2 Plane stress 

We have already described (Section 6.3) a forward-Euler formulation for plane-stress 
problems in which a,=0. I t  has been argued that, for such problems, a 
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backward-Euler scheme is impossible, or at least very difficult. However, i t  can be 
achieved [Jl, S6, S7) without too much difficulty. Before describing such a 
formulation, we will redrive the forward-Euler relationships (Section 6.3) starting from 
the four stresses and strains of equation (6.1 12). In the previous developments 
(Section 6.3), we assumed that the response could be related to the three-component 
forms of (6.3) and (6.5). We will now prove the validity of these assumptions. To this 
end, with fixed elastic properties, we can, from (6.112) write the four-parameter 
equivalent of (6.5) as 

6, = c,(i4 - Ep4) = c4(i4 - ia,) (6.1 13) 

where a, contains the first four terms from (6.32) and C, comes from (6.1 12). 
From (6.36) 

a:C,a, = 3,u 

so that (6.17) gives 

Because 6, = 0, the third row of equation (6.1 13) (with C, from (6.1 12)) gives 

After some algebra, if (6.1 16) is substituted into (6.1 1 9 ,  

(6.114) 

(6.1 15) 

(6.1 16) 

(6.1 17) 

where C, is the three-parameter C matrix of (6.6) and a, is the three-dimensional 
normal vector of (6.4). Further substitution for from (6.117) and 8, from (6.1 16) can 
be applied to (6.113) to give (6.18) with C as C, and a as a,. 

Apart from showing that the two schemes produce identical results, this derivation 
illustrates that the elastic rate bZe, which comes from the third row of (6.113) (see 
also (6.1 12) when the plastic strain rate, ZZp,  is set to zero), is non-zero while the 
complete 6, is zero. Hence, there would appear to be difficulties in applying a 
backward-Euler integration scheme. Using such an approach and starting from (6.78) 
with C from (6.1 12) leads to 

A i p  
oXc = o X A  + E’(  (1  - v)AE, + vAEY) + v E ’ A E ~  - - - (20, - oY)C (6.1 18) 

OeC 

(6.120) 

(6.121) 
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where 

E 
E’ = (6. I 22) 

and the bars over Acx, AE,, and Ayxy indicate that these are known quantities while, 
operating within a normal three-parameter plane-stress environment, AE= is unknown. 
However, the latter term can be computed from (6.121). After some manipulation, 
substitution into (6.1 18) and (6.1 19) gives, in conjunction with (6.120), 

cc = cA + C A6 - AiCa, = cB - AiCa, (6.123) 

where all vectors and matrices involve three components (see (6.6) for C and (6.4) for 
a). Hence there is no need to be concerned that the algorithm returns from four 
stresses at B to three stresses at points A and C (Figure 6.12). Instead, we can simply 
operate on the three-term equations (6.123). This could be achieved using the return 
of Section 6.6.6 and the consistent tangent of Section 6.7.2. However, as shown by 
Jetteur [Jl] and Simo et al. [S6,S7], a rather simpler return can be produced. To 
this end, equations (6.123) can be expanded and manipulated to give 

( 1  + v ) (  1 - 2v) 

(6.124) 

where oxB, opB and z,,,~ are known, and for convenience we write 

Aib‘ = AL/uec. (6.127) 

For plane-stress conditions, the effective stress of (6.3) can be re-expressed via 

of = +((OX + OJ2 + 3(o, - aJ2 + 1 2 2 3  (6.138) 

For the following, it is simplest to work with the squared form of the yield function, 
J; = a: - a:. Substitution from (6.124)-(6.126) for (a, + a,),, etc., gives 

where 

(6.1 29) 

(6.130) 

and 
(6.131) 

Equation (6.129) is non-linear in AA’ and may be solved with the aid of a scalar 
Newton-Raphson iteration derived from the truncated Taylor series: 

c ,  = (a, + cJ;, cz = 3(& - oJ; + 1215,,. 

(6.1 32) 

where, as before, the subscript o means old while the subscript n means new. Without 
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hardening, the af/aAL’ term is obtained from (6.129) as 

(6.133) 

With hardening, we can obtain i’ = (i - AA’oec)/oec from (6.127) and can supplement 
(6.129) with y = 03 - O& = 0. The iterative process is then applied to the latter in 
conjunction with (6.129) and up-dates both AA and oec. 

6.8.2.1 A consistent tangent modular matrix for plane stress 

Following the return of the previous section, a consistent tangent modular matrix 
could be computed using the general procedure of Section 6.7.2. However, a number 
of simplifications can be made [J 1, S6). 

Differentiation of (6.124)-(6.126) gives 

(6.134) 

from which 

where 
6 = R(i: - A’a’) 

1 1 
a T  = - arT = __ (20, - oY, 20, - o,, 62,,) 

O e  20, 

(6.135) 

(6.136) 

(6.137) 

(6.138) 

and 

P (6.139) +-- 0 1. 

PIA2 

I-1 
2(1 - v ) A ,  A2 2(1 - v ) A ,  A2 

O I  

P E 

E P E 

+ - E 
___-__ 

2(1 -v)A1 A2 2(1 - v ) A ,  A2 

0 0 

Equation (6.137) is of the same form as (6.108) and hence, assuming no hardening, 
the constituent tangent modular matrix is given by (6.1 10) with R from (6.139) but 
with a’ from (6.138) replacing a. With hardening we can use (6.1 10) with R from 
(6.139) provided A’ is replaced by A’( 1 - AA’A’). The method is illustrated via a 
numerical example in Section 6.9.6.2. Extensions of these concepts to shell analysis 
have been given by Ramm and Matzenmiller [Rl]. 
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A range of benchmark tests for plasticity has been given in [H3, H41. In this section, 
we will provide hand-based numerical computations using the various techniques 
developed in the previous sections. These numerical examples will all be related to 
the plane-stress yield function of Figure 6.13. Assuming that we are working in 
principle stress space with y,,, = zXy = 0, from (6.3), with crl = cr, and o2 = cry,  the yield 
function is 

f = 0, - Go = (0: + 0; - (71  cr2)1’2 - 0, = 0. (6.140) 

The adopted material properties are 

E = 200 000 N/mm’, v = 0, a, = 200 N/mm2. (6.141) 

6.9.1 Intersection point 

Question Starting from point X (Fig. 6.13(a)) with 

a]: = (cl, c2) = ( 120, - 80) (6.142) 

apply an elastic increment Aa, relating to a strain increment of 

AcT = (0.0009,0.0009) (6.143) 

and compute the intersection point A in Figure 6.1 3 and hence the ratio a of equation 
(6.48) which ensures that f(ax + cxAa,) = 0. 

Solution From (6.140), the initial stresses, ox in (6.142) give fx = - 25.64 and, from 
(6.140), a,(a,) = 174.4. From (6.143), the elastic incremental stresses are Aacf = 
(180,180) so that a,(Aa,) = 180. Equation (6.52) then provides the quadratic 
equation 

32 400a2 + 7200a - 9600 = 0 (6.1 44) 

for the intersection point a. The roots of (6.144) are 

a,  = 0.444, G C ~  = - 0.667 (6.145) 

which give the intersection points A and A’ on Figure 6.13(a). The required intersection 
point is at A for which the stresses are a: = (200,O). 

A forward Euler integration scheme would then proceed to apply the ratio 
(1 - a) = 0.667 of the strain increment of (6.143) in an elasto-plastic manner. 

The reader might like to try using the iterative procedure of Section 6.6.1 instead 
of the direct solution given above. 

6.9.2 A forward-Euler integration 

Question Assume that we have computed the intersection point, A, with stresses 

a; = (200,O). (6.146) 
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Figure 6.13 Numerical examples: (a) Computing the intersection print; (b) a forward-Euler step from 
A to C and (later) a correction to D; (c) using two sub-increments; (d) a backward-Euler return. 
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Apply a forward Euler step relating to a strain increment of 

AzT = (0.0005, 0.0005) (6.147) 

and plot the point graphically. 

Solution 
at point A (Figure 6.13(b)). From (6.4), 

We will firstly obtain a solution by computing the tangent modular matrix 

a: = (1.0, -0.5) (6.148) 

so that in (6.9), 

=200000[ 1 0  I----[ 1 
160 000 - 80 000 1 - [ 4000 80 0001 - 

0 1 250000 -80000 160000 8000 160000 
(6.149) 

Hence a forward Euler step leads to 

a , = a A + A a A = a A + C t A A ~ = (  200 )+( lz:)=( 260 ,,o) (6.150) 

which as shown in Figure 6.13(b) lies outside the yield surface. 
A more computationally efficient solution would involve: 

Compute 63, from (6.8) (but with A’s instead of dots) so that with a from (6.148) and 
AE from (6.147), 

(6.15 1) 

Compute AoA from (6.5) (again with A’s instead of dots) to give 

200 000 
Aa, =CA& - AACa = Aa, - AA Ca = 

6.9.3 Sub-increments 

Question Repeat the solution of 6.9.2 but use two sub-increments and plot the 
solution. 
Solution From (6.147), the sub-incremental steps are, AE = (0.000 25,O.O025). For the 
first sub-increment, using a similar procedure to that in (6.15 1)  but with half the step 
size gives AA = 0.0001. Hence the equivalent of (6.1 52) gives AaA = (30,60). Graphically, 
this takes the solution to point B in Figure 6.13(c) with aB = (230,60). At this stage, 
for the second sub-increment, we have from (6.4), 

aT = (0.9679, - 0.2662) (6.153) 

so that the incremental form of (6.8) gives AA = 0.000 174 and, using the incremental 
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form of (6.5), 

AcrB = CA& - AA Ca = (io) - 0.000174( 2ooooo) = (i:::;) (6.1 54) 
- 100000 

and the final stress at C of Figure (6.13(c)) is (246.3, 119.2). Clearly, in comparison 
with the procedure of Section 6.9.2 (Figure 6.13(b)), the use of sub-increments has 
reduced the drift from the yield surface. 

6.9.4 Correction or return to the yield surface 

Question Using the procedure of Section 6.6.3, return the final stresses obtained in 
Section 6.9.2, i.e. crT = (260,120) to the yield surface. 
Solution In relation to Figure 6.13(b), from (6.140), the yield function at C is fc = 

25.39, while a: = (0.8874, - 0.044 37). Hence in (6.62), 6R, = 25.39/157 900 = 0.000 161 
and from (6.61), an improved solution is 

177 480 28.54 231.5 

( T ~  = crc - 6i,. Ca, = (;~:)-o*ooo161( 8874)=(:::)-( - 1.43)=(121.4) 
(6.155) 

which is illustrated in Figure 6.13(b). As a result of this correction the yield function 
has been reduced from 25.39 to 0.531. The reader might try applying one further 
iteration. 

6.9.5 Backward-Euler return 

Question 
backward-Euler return, appropriate to an elastic increment of 

Starting from point X in Figure 6.13(d) (see equation (6.142)), apply a 

(6.156) AcT = (0.0014,0.0014). 

Firstly use the general procedure of Section 6.6.6 and then the special plane stress 
form of Section 6.8.2. 

6.9.5.1 General method 

Solution We start with the second predictor in Section 6.6.2. To this end (see 
Figure 6.1 3(d)), we firstly obtain the elastic increments ACF: = (280,280) so that the 
stresses at point B in Figure 6.1 3(d) are 

C F ~  = (400,200) (6.157) 

while the a vector is aB = (0.866,O) and the yield function is f B  = 146.4. Hence, from 
(6.59), A2 = 146.4/150 000 = 0.000 976 and hence, from (6.60), 

173200 230.9 . (6.158) 
cc = cB - AA Ca, = (i::) - 0.000 976( ) = ( 2oo ) 
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We now apply the backward-Euler corrector of Section 6.6.6 for which we require 
a, = (0.6031,0.3893) and f c  = 17.13. From (6.79), we now have 

(6.1 59) 
Using (6.81), 

11 0.002 93 - 0.003 39 

= [ [: - 0.003 39 0.003 9 1 
+ 0.000976 x 200000 

1.572 -0.661 

-0.661 1.572 

and from (6.83), 

(6.160) 

(6.161) 

while in (6.81) 

& =  - Q Q - l r o - i Q - l C a =  -(- 1726 ' )-0.0001302( 113 100 >=( 2*53) 

36.65 86 550 - 47.92 
(6.162) 

so that, at the end of the iteration, the uew point C is given by 0; = (233.5,152.1), 
fc = 5.256, A2 = 0.001 06. This point is plotted on Figure 6.13(d) as point D. 

The reader might like to try a further iteration which leads to 

= (226.3, 153.6), f c  = 0.0927, A2 = 0.001 160 (6.163) 

which is plotted as point E in Figure 6.13(d). 

6.9.5.2 Specific plane-stress method 

A more efficient return can be made by applying the special plane-stress return of 
Section 6.8.2 from the trial solution of (6.1 58). To this end, with r = 1 from (6.130), 
from (6.131) and (6.157), we obtain 

C, = 360000 C2 = 120000. (6.164) 

To start the iterative procedure, we will compute AA' from (6.127) using the AIu value 
in (6.158) (0.000976) and the geC value relating to the stresses, cC, in (6.158) so that 

AA' = 0.000 976/2 17.1 = 0.4495e - 5. (6.1 65) 

The yield function value, f 2  in (6.129) is then 

- (200)2 = 48 273 - 40 000 = 8273. (6.166) 
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In order to iteratively change AA’, we require, from (6.1 33), 

= - 0.7299e10 (6.167) 
c)f - 100000 360000 3 x 120000 - - 

?G 2 ( (1.45)3 -k (2.349)3 

so that from (6.132), the change in Ad’ is 

- 8273 
j,‘ = ~ ~~ = 0.1 133e - 5.  

- 0.7299e 10 
(6.168) 

Hence the updated A i ’  value is 0.4495e - 5 -t 0.1 133e - 5 = 0.5629e - 5 and, from 
(6.129), 

.f; = 40 997 - 40 000 = 997. 

This corresponds to a yield function value in the standard form of (6.140) of,f = 2.477. 

(6.169) 

Another iteration is hardly necessary but leads to 

- 997 

- 0.5432e10 
A I = -  ~ ~ = 0.180e - 6 (6.1 70) 

so that the final A i l  value is 0.5809e-5 which, from (6.127), corresponds to an 
unscaled AA value of 

A 2  = 0.5809e - 5 ,  AA = 0.5809e - 5 x 200 = 0.001 162. (6.171) 

Substituting for A i ‘  from (6.171) into (6.124)-(6.126) leads to the final stresses as 

0: = (226.2,153.3) (6.172) 

for which f = 0.1 7e - 4 and f 2  = 0.678e - 2. The stresses in (6.172) are very close to 
those obtained in (6.163) and are plotted as point E in Figure 6.13(d). 

6.9.6 Consistent and inconsistent tangents 

Question From the point obtained at the end of the previous section with stresses 
given by (6.172) and plastic multipliers given by (6.17 l) ,  compute (i) the inconsistent 
tangent and (ii) the consistent tangent ready for use in a structural Newton-Raphson 
iteration. 

From (6.4), we have 

a?’ = (0.7478,0.2010) (6.1 73) 

so that in (6.9), the inconsistent tangent modular matrix is given by 

1 aaTC 0.1 348e5 - 0.501 4e5 

- 0.501 4e5 0.1865e6 

6.9.6.1 Solution using the general method 

(6.174) 

Using the general method of Section 6.7.2 for the consistent approach, we firstly use 
(6.108) with Aj- from (6.171) and ?a/% from (6.47) to compute 
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1 0.002 204 - 0.003 252 

= [(: - 0.003 252 0.004 798 
+ 0.001 162 x 200000 

1.5 12 - 0.7558 

= [ -0.7558 2.1 15 
(6.175) 

and, from (6.108), 

0.805 1 0.2877 200 000 0.1610e6 0.5753e5 
0.2877 0.5757 ][ 0 200000] = [ 0.5753e5 0.1 M e 6  

R = Q - ~ C  = 

(6.176) 
so that in (6.1 IO), 

I 0.1610e6 0.5753e5 0.1742e11 0.8732e10 

0.5753e5 0.1 M e 6  0.8732e10 0.4378e10 

- 0.2044e5 

= [ - :;::4e5 0.7602e5 

which should be contrasted with the 'inconsistent' solution in (6.174). 

(6.177) 

6.9.6.2 Solution using the specific plane-stress method 

As already pointed out in Section 6.8.2.1, one can devise a more economical way of 
computing the consistent tangent for the plane stress case [Jl,S6,S7]. To this end, 
we compute a' from (6.1 38) as 

a'T = i(20, - ay, 20, - a,) = (149.6,40.20). (6.178) 

In order to compute R, we require A ,  and A,  from (6.124) and (6.125), which with 
AA' from (6.171) are given by 

A ,  = 1. + 0.581 le - 5 x 200000 = 1.581, 

A ,  = 1. + 3 x 0.551 le - 5 x 100000 = 2.743 
(6.1 79) 

and, from (6.139), R is given by 

1 0.9970e5 0.2679e5 
0.2679e5 0.9970e5 

R = [  

so that using (6.1 10) but with a' instead of a (see Section 6.8.2.1), 

aaTR 0.9970e5 0.2679e5 - - .- 1 __  [0.2556e15 0.1281e15 
0.27 13e 10 0.128 1 e 15 0.6424e 14 1 ( aTRa) [ 0.2679e5 0.9970e5 

C,,=R I--- 

- 0.2044e5 

= [ - :;::4e5 0.7602e5 
(6.180) 

which corresponds with the solution in (6.177). 
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6.10 PLASTICITY AND MATHEMATICAL PROGRAMMING 

The links between plasticity and mathematical programming can be found in 
[SS, M1, S1, R3,53, M5, M10, SS]. The present developments follow closely those in 
[SS, M5, R31. For simplicity, the work will be related to perfect plasticity. Extensions 
to include hardening can be found in the previous references. An essential prerequisite 
to the understanding of this section is some basic knowledge on constrained optimisa- 
tion with inequalities; in particular the use of Lagrangian functions, Lagrangian 
multipliers and the Kuhn-Tucker conditions. Good books covering these topics are 
due to Fletcher [Fl]  and Luenberger [L2]. 

We will start with the principle of maximum plastic work which Hill [H2] attributes 
to von Mises [Vl]. This principle firstly requires that the stresses must be restricted 
by the yield surface and, secondly, requires that they should be such as to maximise 
the increment (or rate) of plastic work, i.e. 

.f (4 G 0. (6. I8 1 a)  

m a x { w = a T i , ) .  (6.18 1 b) 

Using standard techniques of mathematical programming [ F 1, L2], we firstly turn 
the maximum into a minimum by changing ci/ to - ci/ and, secondly, create a 
Lagrangian function by adding a Lagrangian multiplier i times the constraint of 
(6.181a), so that 

L(a, i) = - dip + if(a). (6.182) 

We now make L stationary with respect to variations on a and i. This leads to the 
Kuhn-Tucker conditions: 

(6.183) 

. f (4 G 0 (6.184a) 

R 3 0 (6. I84b) 

(6. I 84c) 

The 'complementarity condition' (6.184~) requires that either the yield function is 
zero or 

Equation (6.183) is the flow rule, (6.184a) the yield criterion, and (6.184b) the 
condition for a 'positive plastic strain-rate multiplier'. All of these conditions have 
been considered before in the earlier developments of Section 6.3. 

There is one further condition that can be derived from the principle of maximum 
plastic work (equation (6.18 I ) ) .  This is the essential 'convexity' [FI, L2] of the yield 
surface. To prove this, we must re-write (6.181b) as 

if (a) = 0. 

is zero and there is no plastic flow. 

a*T&, 3 aT&, 
or 

(6.1 85a) 

(a - a*)=&, < 0, (6.185b) 

where a* are the actual stresses that maximise the plastic work rate, I$', and a are 
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any other admissible stresses (satisfying (6.181a)). (Note that many workers 
[SS, R3, S1, M5] use z and CT in place of the current c and c*.) Because of the flow 
rule (6.1 83) and the condition of non-negative (6. I84b), (6.185b) can be re-expressed 
as 

(6.186) 

which is illustrated in Figure 6.14 and ensures that the region contained by .f is 
'convex' [F 1, L21. 

By writing the plastic strain rate, ip, as the difference between the total strain rate, 
i, and the elastic rate, ie = C-'ir, we can rewrite (6.185b) in the form 

(6.187) (d - c*)'r(& - c -- 'ir) < 0. 

Integrating (6. t87) over the volume leads to 

(c - ~ * ) ~ ( i  - C -  'ir)dV ,< 0 i (6.188) 

which is a 'variational inequality' which has been used as the starting point of some 
numerical developments in plasticity. 

Yet another alternative to the principle of maximum plastic work (6.18 l) ,  is provided 
by adopting a complementary energy form [M5] with 

min ( 2  (Lkrc-  '6 - b T t )  (6.189) 

in place of (6.181b). In (6.189), the total strain rate, i, is fixed and the stress rates, ir, 
are variables. Adding the constraint of (6.18121) leads, instead of (6.182), to a 
Lagrangian: 

L @ j )  = tir'c- l6 - irTi + i,f(d) (6.190) 

Figure 6.14 Illustration of equation (6.186). 
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from which in place of (6.183) we have 

along with the other Kuhn-Tucker conditions of (6.1 84). In equation (6.191) we have 
used the flow-rule relationship of (6.183) which then leads in (6.191) to the standard 
additive decomposition into elastic and plastic strains. The converse is equally true. 

6.1 0.1 A backward-Euler or implicit formulation 

We will now derive the backward-Euler procedure of Section 6.6.6, by starting from 
an incremental form of (6.189) to which we add the constant (i or AE are fixed), 
+AE'CAE, which does not affect the minimisation process [M5]. I t  follows that the 
function to minimise is F .  where 

F = +AoTC-  'AV - AE'Ac + +At.'C AE 

F =+(A& - C-'AG)'(CAE - AG) 

F = +[E, + A& - C- ' ( 0  + Aa)lTIC(&,  + A&) - G - Ac] 

F = $ [ ~ , l ~  - (0 + Aa)]'C- ' [delt - (a + ACT)] 

F = +(a, - cC)  rC - (a13 - or). 

(6.192a) 

(6.192b) 

(6.192~) 

(6.192d) 

(6.192e) 

In the step from (6.192b) to (6.192c), we add and subtract terms E, = C-'a  which 
involve the elastic strains, E ~ ,  and total stresses at the beginning of the increment. 
The stresses oelt are the elastic 'trial stresses' given by 

cell = G~ = Q + C A &  = CE, + C AE. (6.193) 

In the final step in (6.192) (and in (6.193)) we have also introduced the subscripts B 
and C which relate to Figure 6.12 and the earlier developments of Sections 6.6.5 and 
6.6.6. Maintaining this notation, we now have to minimise (6.192e) with the final 
stresses, a,, as the variables and with the yield surface constraint (now with an equality 
because we are assuming plastic flow) being applied at the end via .f'(oc) = 0. Hence 
the Lagrangian equivalent to the minimisation of (6.192e) is 

L(G,, AI-) = $(c, - c , ) ~ C -  '(OR - c C )  + Aj-,f(oC). (6.194) 

The equivalent to (6.191) is now 

where we are introducing more of the notation of Sections 6.6.5 and 6.6.6 with 
a = df/da. Equation (6.195) provides the backward-Euler relationship: 

ac = oB - A;. Ca, . (6.196) 

From (6.192e), F can be identified as the scaled, squared length between point B 
previously given in (6.78). 
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(the elastic trial point) and C (the final point satisfying the yield function). It follows 
that ac (as given by (6.196)) is the closest-point projection onto the yield surface in 
the energy norm, 

E = jC(cF3 - ode- - %)I (6.197) 

induced by the metric, C- [SS]. 

6.1 1 SPECIAL NOTATION 

1 (or 1,) = unit second-order tensor (see (4.30) and (4.31)) 
a = af/aa which is defined here as a column vector 

A’ = hardening parameter (= H’B) 

A = special matrix within aa/da (see (6.47)) 
A 1 ,  A,  = scalars for plane-stress analysis (see (6.124) and (6.125)) 

B(a) = stress parameter (see (6.15)) 
C,,  C, = stress parameters for plane-stress analysis (see (6.13 1)) 

C, = tangential constitutive tensor (or matrix), 
C,, = consistent tangential constitutive tensor (or matrix) 
C, = constitutive matrix with three stress components; C4 = constitutive 

matrix with four stress components (Section 6.8) 
e = deviatoric strains 

E E’ = 
(1 + v) ( l  - 2v) 

f = yield function 
y x y ,  etc. = engineering shear strain = ~ ~ , , / 2  

H’ = hardening parameter 
I = unit fourth-order tensor (see (4.30) and (4.31)) or (sometimes) unit 

matrix (or second-order tensor) 
j’= ( I ,  1 , 1 , O , O , O )  

J ,  = second stress deviator invariant 
k = bulk modulus 
L= Lagrangian function (Section 6.10) 
L = special matrix (see (6.27)) required for use with vector stress and strain 

forms 

l + v  

1 - v  
r = (Section 6.8.2) 

r = residual vector (see (6.79)) 
R = special matrix (see (6.108) and (6.139)) 
s = deviatoric stresses (see (6.28) for vector form) 

a =  scalar for crossing the yield surface (Section 6.6.1) 
a = scalar for radial return (see (6.94)) 
p = scalar for consistent tangent (see (6.101)) 

Wp = plastic work 

= equivalent plastic strain 
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im = mean strain rate 
E = vector or tensor of strains (the latter is sometimes written as E ~ )  

i: = strain rate 
it = total strain rate (the subscript t is often dropped) 
i,, = plastic strain rate 

&d (or &2d ore) = deviatoric strains 
A = plastic strain-rate multiplier 
p = shear modulus 

oe = effective stress 
oo = yield stress 
o,,, = mean stress 
c = stress (as vector or tensor; the latter is sometimes written as cz) 
6 =stress rate 

zxy, etc. = shear stress 

Subscripts 

e = effective, elastic 
n = new 
o = old 
p = plastic 
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7 Two-dimensional 
formulations for beams 
and rods 

Much work has been devoted to finite element methods for beam and rod elements 
acting in a two-dimensional plane [B2-B4,C3-C5,El,Hl,H2,KI,M2,01,W3,W4]. A 
significant proportion of this work has involved the total and updated Lagrangian 
methods [B2.5,Bl,B4,C4,EI,FI,H2,Kl,M2,W3,W4] which have already been con- 
sidered in Chapter 3 for trusses and Chapter 5 for continuum elements. Beam elements 
for two-dimensional analysis are not only of interest in their own right but also in 
a didactic role. With this in mind, we will begin this chapter by following on from 
the work of Chapters 1 and 2 and will adopt a shallow-arch formulation CC4,CS-J 
which is a degenerate form of total Lagrangian technique. We will later introduce a 
corotational approach which can be considered as an extension of the procedure 
adopted for trusses in Section 3.6 which used a 'rotated engineering strain'. Finally, 
in Section 7.5, we will consider a degenerate-continuum approach using the total 
Lagrangian formulation [B2S,Bl,S4,W4]. This work can be considered as a natural 
extension of the work in Chapter 5 on continua and a precursor to the work in 
Chapter 8 on degenerate-continuum shells. 

We should note that some work on arch and ring elements has involved inter- 
polations for tangential and transverse displacements (in relation to the curved arch) 
[PI]. We will not consider these approaches in the present chapter because in relation 
to shell analysis (Chapter 8), most successful elements use interpolations in relation 
to fixed orthogonal axes. 

7.1 A SHALLOW-ARCH FORMULATION 

We will firstly consider an initially flat element as shown in Figure 7.1. From 
Chapter 4, equation (4.84), the axial strain in the x-direction can, using a degenerated 
form of the Green strain, be expressed (see also (2.3)) as 

201 



202 TWO-DIMENSIONAL FORMULATIONS 

I \  

(b) 

Figure 7.1 An initially flat shallow-arch element: (a) coordinates and nodes; (b )  detail. 

Assuming plane sections remain plane, the displacement in the x-direction, U ,  at 
distance z ,  from the centroid is given (see Figure 7.l(b)) by 

Combining (7.1) and (7.2), gives 

where x is the curvature. For an initially curved element (Figure 7.2), equation (7.3) 
must be modified to 

E, = -- dii + -( 1 ( d(z+w) ---d\--)’ - ( :!)’) - z l T .  d2w = E  - + z,x. 
dx 2 dx 

The virtual work equation can be expressed as 

(7.4) 
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a - I I- r r -  1 * x(u)  Q I - 1 -  

5 = 1  
I r =  - 1  < = O  

Figure 7.2 An initially curved shallow-arch element. 

where (SE, ,  is obtained by differentiation of (7.4) to give 

d(S6, d(z + w)ddw, 
dx dx dx 

(SE,, = (SE; + z,6xv = - 4- ____-___  + Z l b  

Substitution into (7.9, followed by integration through the depth, z l ,  leads to 

where, for convenience, we are writing w’ = w + z and the stress resultants in (7.7) are 
r r 

N =  gxdzl, M =  o,zldzl. J J 
At this stage, the finite element shape functions can be introduced so that 

U = hTu, w = h i w ,  z = h i z .  (7.9) 

Using a thin-beam, Kirchhoff assumption (as here), the lowest-order function we can 
use for w is a cubic CC2.21. For the present, we will adopt a quadratic, hierarchical 
function for ii CC2.21 but will later (Section 7.1.3) consider in more detail the issue 
of appropriate, matching, functions. With the chosen function, we have (see Figures 7.1 
and 7.2), 

(7.1 1 a) 

(7.1 lb) 

h: = +(I  - 5 ,  1 + 4,2(1 - t2)) (7.12) 

h% = $(4 - 65 + 2t3,  l(t2 - 1)(5 - I), 4 + 6 t  - 2t3, 1(t2 - l)(t + 1)). (7.13) 

In relation to these equations nodes 1 and 2 are the end-nodes (Figures 7.1 and 7.2) 
while node q is a central node at  which the hierarchical mid-side displacement Auq 
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(q for quadratic) acts. (The superscript will often be omitted from the nodal values 
of U, but it should be noted that all nodal u-values refer to displacement at the 
reference plane.) The more basic linear displacement function for ii can be obtained 
by setting Auq to zero. The nodal values Ox, and Ox2 are the nodal values of dw/dx 
and are variables, while the nodal quantities a,, and ax2 are fixed nodal values of 
dz/dx which, along with the fixed nodal quantities z1 and z2, define the initial 
configuration of the element. 

With a view to the computation of the strains, differentiation of (7.9) leads to 

(7.14) 

6( t2  - 1) 
dz 

dx 
w=bZw, - =bEz (7.15) 

434‘ + 1) 
so that, in (7.4), 

(7.16) 

F = bau + $(b:w’)2 - i(b:z)2 (7.17) 

where w’ = w + z. Hence, knowing the nodal displacements, U and w, the strain E, of 
(7.4) can be computed at any depth, z l .  Assuming, for the present elastic properties, 
N and M in (7.8) can be re-expressed as 

N = EAE, A4 = E I x .  (7.18) 

The shape-function relationships of (7.9) relate to total displacements but identical 

(7.19) 

expressions apply for the virtual displacements and hence substitution into (7.6) gives 

BE,, = BE, + z , B x ,  = brdu, + (b:w’)b%6wv + z ~ c ~ B w , .  

Further substitution into the virtual work of (7.7) gives 

I/ = J(N(b:Su, + (b:W’)b:BW,) + McT6w,)dx - Uffiu, - WT~W,  

= U’BU + w’6w - UfBu - wpw 
where the usual internal force vector, qi,  can be written as 

(7.20) 

q’ = (U’, W’) 
with 

U i =  Nb,dX s 
s Wi = (N(b:w’)b, + Mc)dx. 

(7.21) 

(7.22a) 

(7.22b) 
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In (7.20)-(7.22), the internal forces Ui correspond to the nodal displacements, U, 

in (7.10) and the ‘forces’, Wi to the nodal ‘displacements’, w in (7.11a). 

7.1.1 The tangent stiffness matrix 

The tangent stiffness matrix is obtained in the usual manner by differentiation of the 
internal force vector. To this end, it is most convenient to work in terms of submatrices, 
so that 

(7.23) 

L a U  a w  J 
Then, from (7.21) and (7.22) with the aid of(7.18) and the non-virtual form of (7.19), 

dM 
ww 

i3W 

= j (ElccT + EA(biw’)2bwbi + Nbwb:)dx 

where the last term in (7.24~) can be identified as the initial stress matrix. 

7.1.2 Introduction of material non-linearity or eccentricity 

In deriving (7.24), it has been assumed that 

6 N  = E A  dE,, 6 M  = E l  6x. 

(7.24a) 

(7.24b) 

(7.24~) 

(7.25) 

More generally, the tangent E-value at depth zl will not be E but, say, 
using (7.8) and (7.3). 

so that, 

E(&+ 2, Sx) dz, = E dz, SE+ I%, dzl 6 x  = ‘EA’ 6F+  ‘EX’ 6 x  (7.26) s*  s 
Ezl(6E+ z1 6 x )  dzl = Ez, dzl 6E+ Ez; dzl 6 x  = ‘EX’ 6F+ ‘El’ 6 x .  

(7.27) 

Even if the material is elastic so that = E, the cross-coupling term, ‘EX’, is zero 
only if the reference plane from which zl (Figures 7.1 and 7.2) is measured is at the 
centroid. 

s *  s 
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Figure 7.3 Schemes for numerical integration through the depth (five-point): (a) Gaussian; (b) 
Lobatto. 

As a consequence of (7.26) and (7.27), the stiffness matrices of (7.24) are modified to 

(7.28) 
J 

K,, = (‘EA’(b%w’)b,b, + ‘EX’b,cT) dx (7.29) s 
s K,, = (‘El’ccT + (‘EA’(b;w’)2 + N)b,b; + ‘EX’(b%w’)(b,cT + cb;) dx. (7.30) 

For non-linear materials, in obtaining ‘EA’ ,  ‘ E X ’  and ‘EI’ from (7.26) and (7.27), 
one must integrate through the depth of the beam. Numerical integration is usually 
adopted with the stresses and other relevant variables (such as the plastic strain) 
being stored at integration points through the depth. Hence at the integration points 
(see Figure 7.3) one may compute the tangent E-values, I?, from the stored stresses, 
and plastic strains. With plane sections remaining plane, it is unnecessary to store 
the strains at the integration points through the depth since the strains are completely 
defined, from (7.4), by F and 2. This approach can be easily extended to shells (see 
Section 8.1.2). 

Burgoynne and the author [BSI believe that the best procedure for the through- 
thickness integration is either standard Gaussian integration or the Lobatto rule, 
using, say, five points, if the material is non-linear. Two Gaussian points are adequate 
for a linear response although, of course, the integration can then be performed 
explicitly. In contrast to the Gaussian rule (Figure 7.3(a)), the Lobatto rule has points 
on the surface (7.3(b)). While the positioning and weights for Gaussian integration are 
given in many text-books the Lobatto values are not. Hence the latter are given in 
the Appendix. 

7.1.3 Numerical integration and specific shape functions 

As already discussed, with the adopted Kirchhoff bending theory, we cannot use a 
lower-order function for w than the cubic adopted in (7.9) and (7.13). In contrast, we 
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could, with respect to the continuity requirements, adopt any functions, from linear 
upwards, for U.  Strictly, from (7.1), with a cubic w, we require a quintic U [Dl,C2.2] 
in order to balance the €unctions and thus ensure that we can represent a constant 
membrane strain and, in particular, the zero membrane strain associated with 
‘inextensional bending’. Such a quintic element would be extremely cumbersome, 
particularly when extended to shells. 

Instead of using such an element, we can use a number of techniques to remove 
or, at least ameliorate, the ‘membrane locking’ [S3,C4,C2.2, M21. If we adopt the 
lowest possible, linear, function for U, then one solution is to use a single point, 
reduced integration for the membrane strain, E, in (7.4) [M2]. Alternatively, one could 
adopt linear functions for w and z with respect to the membrane strain, E, although 
a cubic w for the curvature, x [G2. I ,  M21. 

These devices might appear a little ad hoc. Certainly, they will lead to deformation 
modes involving w that lead to no membrane strain. However, the bending energy 
should ensure that there are no mechanisms. Also these methods can be put on a 
more rigorous footing via the Hu- Washizu variational principle [ W 1 ,  C2.23 with a 
constant membrane strain. (More discussion on this theme will be given in Section 
7.1 S.) The latter would effectively involve replacing the membrane strain, E from (7.4), 
with an effective membrane strain, Eeff, so that 

Ceff = 1 j c d x .  (7.31) 

Using 
(7.13), 

where 

the basic linear function for U (with AU, = 0), with the shape function of (7.10)- 
this would lead to 

(7.32) 

we are using the subscript ‘21’ to denote the difference between the variables 
at nodes 1 and 2, i.e. ii2 = U 2  - U , .  

One problem with the adoption of a linear U is that, in association with the quadratic 
dw/dx stemming from the cubic w, the terms in (7.2) do not match. Consequently 
(ignoring the non-linear (dw/dx)2 term), we have a solution that even for ‘bending- 
dominant problems’ [C7] depends on the chosen reference plane (at which U acts). 
Hence, with eccentricity (so that ‘ E X ’  in (7.26) and (7.27) are non-zero), we can produce 
over-stiff solutions [G 1, C2.2, C7). As indicated in Section 7. I .2, effective eccentricity 
can be induced by material non-linearity [C7]. 

Returning to ‘membrane locking’, if instead of using (7.31) or (7.32), we adopt the 
full functions, i t  is essential to use (at least) a quadratic function for U and include 
the AU, term to limit the self-straining (see also the more detailed discussion in 
Section 7.1 . S ) .  I f  this quadratic term is not included, the solutions will be dramatically 
over-stiff [C4). With this quadratic term included, if the integration of the internal 
force and tangent stiffness matrices is performed using two-point Gaussian integration, 
very reasonable solutions are obtained. The stresses must, of course, also be sampled 
at these reduced integration stations CC2.2). 
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7.1.4 Introducing shear deformation 

Instead of directly introducing the Kirchhoff hypothesis, we can adopt a Timoshenko 
beam formulation which includes shear deformation [Tl, C2.21. As a consequence, 
the rotation of the normal, 8 becomes a separate variable (Figure 7.4) and the curvature 
is given by x = d$/dx, while the shearing virtual work: 

(7.33) 

must be added to (7.7) (with Q as the transverse shear force). 
We will adopt quadratic hierarchical functions for both U, w and 6, so that 

U=hlfu, w=h;w, 8 = h i O  (7.34) 

OT = (8, , 8,, A$,). (7.35) 

where h, = h, = h, (Equation (7.12)) and, in addition to (7. lO), 

wT = (w, , w2, Aw,), 

It should be noted that the nodal rotational variables are now of the opposite sign 
to those adopted for the Kirchhoff formulation (currently they are the rotations of 
the normal (Figure 7.4) while before (see (7.1 1)  and Figure 7.1) they were (dw/dx)s). 

Differentiation of U (7.34) leads to (7.14) while differentiation of w and 8 in (7.34) gives 

= bit3 ---=b;w, -- 

dw d0 
dx dx 

(7.36) 

where b, = b, = b, (7.14). (Although we are here using the same shape functions for 
all of the variables, we will keep the subscripts to help with an understanding of the 
equations.) Using (7.36), the shear strain and curvature are given by 

dw d8 
dx dx y $ + - = bT,W + h i e ,  x = -- = biO. (7.37) 

Consequently, from (7.7) and (7.33) (compare (7.20)) the internal virtual work becomes 

Vi = N(blf6uv + (bT,W’)bT,dWv + M b i d e ,  + Q(hi60, + bT,Gw,) dx (7.38) s 
and the internal force vector is 

q; = (U:, WT, TT) (7.39) 

fl Current normal 

- 

Figure 7.4 Detail for element with shear deformation. 
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where the Ti terms are work-conjugate to the nodal variables, 8. The components of 
qi are given by 

U i =  Nb,dx s 
s 
s 

Wi = (N(b’,w’)b, + Qbw)dx 

Ti = (Mb, + Qh,) dx. 

It is convenient to subdivide the tangent stiffness matrix so that 

(7.40) 

(7.41) 

(7.42) 

(7.43) 

where, from (7.40)-(7.42) and with the aid of (7.17), (7.28), (7.29) and (7.37), the sub- 
matrices are given by 

(7.44a) 

(7.44b) 

(7.44c) 

(‘EA’(b’,w’)2bwbi + ‘GA’b,b’, + Nbwb:)dx (7.44d) = J  
K,, = S(.EX’(b;w’)b, ax -- + ‘GA’b, 

a0 

= {(‘EX’(b:w’)b,b: + ‘GA’b,h,)dx 

KO, = I( ‘El’b,;ig ax + 

= s(‘El’b,b; dx + ‘GA’h,h;)dx. 

(7.44e) 

(7.44f) 

The NbwbT, term in (7.44d) is the ‘initial stress’ or ‘geometric’ stiffness matrix. In 
(7.44d)-(7.44f), the ‘GA’ terms should include a shape-function factor for shear ($ for 
a rectangular section) [C2]. 
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7.1.5 Specific shape functions, order of integration 
and s hea r-locki ng 

Very acceptable solutions are achieved when the proposed quadratic shape functions 
are used in conjunction with two-point Gaussian integration. However, if the length- 
to-thickness ratio becomes very high, shear-locking can occur CC2.21. This limitation 
can be overcome by forcing the shear strain to be effectively constant (with x) and 
constraining out the Awq term so that CC2.21 

(7.45) 
I 

8 
Aw, (02 - 01). 

In these circumstances, the final element has U ,  w and 0 at the end nodes and Au and 
A8 at the mid-element node, q.  The constraining-out can be effected once the full 
stiffness matrix is formed but it is better to modify the b, function. 

We could eliminate all mid-element variables, by setting AQq to zero (thus giving 
a linear bending moment) and constraining out AU, in order to provide a constant 
membrane strain. This would lead to a very similar solution to that obtained with 
only linear functions if one-point integration for all of the terms. This relationship 
was first raised in Section 7.1.3 and will now be amplified. 

For simplicity, we will start with the membrane strain-displacement relationship 
in (7.3) rather than that of (7.4) which relates to an initially curved member. (The 
theory is easily modified to cover the latter.) Assuming a Timoshenko beam 
formulation as in the previous section, w may be taken as a quadratic. In these 
circumstances, from (7.3), to be able to reproduce a constant E, U must strictly be a 
cubic. Using hierarchical displacement functions CC2.21, this can be provided via 

(7.46) 

where we have added to (7.9), (7.10) and (7.12) a hierarchical cubic function which is 
zero at 5 = 0 and AUc at < = i. We can now substitute (7.46) and the quadratic function 
of (7.34) and (7.35) for w into (7.3) to find an expression for F. The expression is 
simplified by using non-dimensional displacements, z2 = U / l  and $ = w / l  and can be 
expressed as 

F =  (Gzl + iG: l  + YAGc) - 4[(AG, + G 2 1 A G q )  + SC2(A$: - 2AG,). (7.47) 

Hence, for a constant strain, we require 

(7.48) 

AG c = 2 q = [-!.-02 128 21 1. (7.49) 

The square-bracketed values at the end of equations (7.48) and (7.49) stem from the 
introduction of (7.45). If we actually impose (7.48) and (7.49) as constraints and 
eliminate A&, and AGc, we are left with 

(7.50) 

An identical expression would be obtained (more simply) via the use of (7.31) using 
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the quadratic w function and linear U function (with no introduction of AUq and AU,). 
In contrast, the use of a single-point integration would (see (7.47) with A$, = ACc = 0) 
lead to 

(7.51) 

The latter expression could also be obtained by using a linear function for w in the 
membrane strain (see earlier discussion in Section 7.1.3). The difference between (7.50) 
and (7.51) will vanish as the mesh is refined and Aw, tends to zero. Under constant 
curvature, equation (7.32) for the Kirchhoff element of Sections 7.1 -7.1.3 would again 
lead to (7.50). 

If we do not apply any averaging on the membrane strain, it is essential to include 
a quadratic membrane displacement, U.  From (7.47), with AUq included, the shape 
functions will allow a membrane strain field with no 5 term. Without a cubic (A&) 
term, we are strictly left with an unmatched quadratic term due to Aw, (see (7.47)) 
and hence cannot fully recover a constant membrane state. However, an ‘unmatched’ 
quadratic term is far less serious than an ‘unmatched’ linear term (as would arise, 
without averaging, if we did not include a quadratic, AGq). Consider, firstly, a solution 
starting with a cubic U, followed by the imposition of the constraint of (7.49) to 
eliminate AGC. As an alternative, consider a solution obtained with only a quadratic 
U .  It is not difficult to show (using (7.47)) that both solutions give exactly the same 
membrane strain, E, at the two-point Gaussian integrations stations, 5 = di. Hence, 
if we adopt two-point Gaussian integration and use a quadratic U, we can effectively 
recover a constant membrane strain. In the limit, as the element reaches a state of 
constant curvature, the cubic w function of the Kirchhoff element of Sections 7.1-7.1.3 
will become a quadratic and, in these, circumstances, the previous arguments will 
apply equally to that element. 

As previously discussed in Section 7.1.3, the ‘eccentricity issue’ [C7] is also relevant 
to the choice of matching shape functions. 

7.2 
KIRCHHOFF THEORY 

A SIMPLE COROTATIONAL ELEMENT USING 

A form of corotational technique has already been introduced in Section 3.6 for truss 
elements. The corotational technique [B2, B3, C3, C6, H 1, M 1, N 1,O 1,021 was 
initially introduced by Wempner [W2] and Belytschko and co-workers [B2, B3] and 
has much in common with the ‘natural approach’ of Argyris et al. [At]. Belytschko 
and co-workers [B2,B3] mainly applied the method to dynamic analysis using an 
‘explicit formulation’ and hence the issue of the tangent stiffness matrix was not directly 
addressed although Belytschko did schematically outline the procedure for the 
generation of a consistent tangent matrix [B2]. He showed that, contrary to some 
arguments [T2], i t  was possible to derive a tangent stiffness matrix using corotational 
procedures (which, as already indicated in Chapters 3 and 5,  are different from updated 
Lagrangian techniques). 

The term ‘corotational’ has been used in a number of different contexts but will 
be taken here to relate to the provision of a single element frame that continuously 
rotates with the element and with respect to which standard, small-strain, small- 
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displacement (or engineering) relationship can be applied (Locally shallow strain 
terms can be added-see Section 7.2.7.) Although corotational procedures have often 
been applied, they have not always been approached in a fully consistent manner 
particularly with regard to the generation of the tangent stiffness matrix. The key 
element in such a consistent derivation is the introduction of the variation of the 
local-global transformation matrices. This was recognised by Oran [OI, 0 2 1  who 
derived some elegant corotational formulations for beams and rods. (He also included 
‘beam-column’ terms which may have somewhat obscured the corotational basis.) 

Figure 7.5 Corotational stretch, U,. 

Initial configuration 

< I  

Figure 7.6 Local corotational slopes, 01,  and 012. 
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There has recently been a resurgence of interest in corotational formulations for both 
three-dimensional beams and shells [ R I ,  C6, NI]. These issues will be addressed in 
Volume 2. 

In this section, we will derive a two-dimensional corotational beam element using 
Kirchhoff theory. The element will be firstly described using simple engineering 
concepts without resource to shape functions. Throughout, the subscript, I ,  will be 
used for ‘local’ coordinates (see Figures 7.5 and 7.6) while if no subscript is given, 
the variable can be taken to be ‘global’ and relating to the fixed orthogonal axes. 
The formulation has much in common with that of Oran [Ol, 02) .  

7.2.1 Stretching ‘stresses’ and ‘strains’ 

The stretching side of the element formulation follows that given for the truss element 
of Sections 3.4 and (more directly) 3.6, which was derived using a ‘rotated engineering 
strain’. Using this approach (see Figure 7.5), the local ‘strain-inducing’ extension is 

U1 = I ,  - 10 = m 2 1  + d 2 1 ) T ( ( X 2 1  + d21))1’2 - (x:Ix21)1’2 (7.52) 

where the subscript 21 has the previous meaning with x21  = x2  - x , ,  where x1 and 
x2 are the initial position vectors of nodes 1 and 2. In practice, (7.52) is badly 
conditioned and it is better to adopt 

from which can be derived (see also Section 3.8), the mid-point formula [B2] 
3 

(7.53) 

(7.54) 

Using the initial basic form for the element, the axial strain is assumed constant as 
u,/Io and the axial force is given by 

N = EAuJl, .  (7.55) 

7.2.2 Bending ‘stresses’ and ’strains’ 

The standard engineering beam-theory relationships are assumed to apply in the 
local system so that with the local transverse displacements being zero (Figure 7.6): 

(7.56) 

where O l 1  and 8,, are the local slopes, (dwldx), (see Figure 7.6) in the corotating frame. 
These slopes are given by 

(7.57) 

where o! defines the rigid rotation of the bar (Figure 7.6) and O l l 0  and 8120 are the 
initial local slopes. The rigid rotation, a, can be found using the cross-product of the 

8,, = 8,  - o! - O I l o ,  6)12 = 8, - a - O , Z 0  
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unit vectors along the bar in its initial and final configuration via 

1 1 
s = sinix = (x2' x ( x ~ ~  + d Z 1 ) )  = (x21w21 - z21u21). (7.58) 

101, 101, 

Or, alternatively, using the inner product relationship: 

(7.59) 

Provided 1 a 1 < n, one can decide which formula to use by deciding in which quadrant 
the beam lies, i.e. 

a = s i n - ' s  i f ( s>O and c 3 0 )  or ( s d 0  and c>O)  

a = c o s - ' c i f ( s ~ O a n d c , < O )  (7.60) 

a = - c o s - ' c i f ( s < O a n d c < O ) .  

The previous relationships fail if 1 ~ 1 1  > n. However, in most circumstances, it is 
possible to extend the range to 271. To this end, we need to know the direction 
(clockwise or anticlockwise) in which the element has rotated. Then, knowing both 
c and s, we can uniquely find the quadrant in which the element lies. The direction 
of the rotation can be obtained from the sign of the (total) nodal rotations. More 
generally, in three dimensions, one can use quarternions to uniquely update a nodal 
triad-see [C6, S2] and Volume 2. 

7.2.3 The virtual local displacements 

In order to apply the principal of virtual work, we need to differentiate (7.52) (or 
(7.54)). An alternative, but completely equivalent, geometric approach follows from 

Figure 7.7 A small movement from the current configuration. 
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Figure 7.7 and involves 

cos p 1 .Y;l 

sin /j "2  1 

& U ,  = e:dd2, = ( Y z i d l l  = in( _, zid,, (7.61) 

where e ,  is the unit vector lying along the current configuration of the bar (Figure 7.7) 
and x i 1  = x2 + d, ,  . In future we will refer to cos [j as c' and sin /I as s .  

du, = ( - c, - s, 0, c, s, O)Sp = r'6p (7.62) 

where the components of zip are the infinitesimal displacement changes at the nodes 
with p ordered as 

pr = (u1, M'1,01, u2,  w 2 , w  

Equation (7.61) can be re-expressed as 

(7.63) 

From Figure 7.7, the unit vector orthogonal to e ,  is given by 

eT = ( - s, ( 3 )  (7.64) 

and hence (see Figure 7.7), a small rigid rotation from the current configuration is 
given by 

I 
ha= e;zidzl 

1" 

or, in terms of the nodal displacements, zip, 

1 1 
cscx = (s, -c', 0, - s ,  c', 0)Sp = zTzip. 

I n  In  

(7.65) 

(7.66) 

From (7.57) and (7.66), we can write 

Hence the complete vector of local 'strain producing' displacement changes is given by 

7.2.4 The virtual work 

(7.68) 

Equating the internal virtual work in both the local and global systems and making 
use of the virtual form of (7.68), we can write 

Vi = 6p:qi = N 8uIv + M 6fllIv + M26OL2,  = 6p:yQri = Gp:BTqli (7.69) 

where the local 'internal forces' are 

(1; = ( N ,  M 1, M2).  (7.70) 

Equation (7.69) must apply for any arbitrary 6pv and hence the global internal force 
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vector, qi, is given by 

qi = BTqli (7.71) 

which is readily computed once the stress resultants, qli, are known from (7.55) and 
(7.56). 

7.2.5 The tangent stiffness matrix 

Differentiation of (7.71) leads to 

6qi = BT6qlj + 6Bl + M ,  6B2 + M ,  6B3 = Kt16p + Kt06p, (7.72) 

where B,, for instance, denotes the second column of BT (from (7.68)). Assuming 
linear material behaviour, differentiation of (7.55) and (7.56) leads to 

(7.73) 

where r is the radius of gyration. Using (7.73), the first term on the right-hand side 
of (7.72) is easily computed as 

Ktl = BTCIB (7.74) 

which is the standard tangent stiffness matrix. The geometric stiffness matrix comes 
from the last three terms in (7.72). From (7.66) and (7.62), differentiation of the first 
column of BT (see (7.68)) leads to 

6B,  = 6r = Spz (7.75) 

with z from (7.66). But from Figure 7.6, Sg = 6a and hence, from (7.75) and (7.66), 

1 
SB,  = zzTGp. 

1" 

From (7.66)-(7.68), 

(7.76) 

(7.77) 

Therefore, from (7.61), (7.62) and (7.66), 

(7.78) 
1 

6B, = ,(rzT + zrT)6p. 
1, 

From (7.67) and (7.68), 6B, = 6B, and hence, from (7.72)-(7.78), the complete tangent 
stiffness matrix is given by 

(7.79) 
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7.2.6 Using shape functions 

21 7 

A more conventional finite element formulation would introduce shape functions. 
To this end, the local displacement, ul (< )  would be expressed as 

U , ( < )  = #  + < ) U ,  (7.80a) 
with 

(7.80b) x, = +( 1 + <)i0 

so that the local strain is obtained by differentiation to give 

du, du, d t  

dx, d< dx, 
cxl = - = = u1/4 (7.81) 

while the local transverse displacement would be given by the conventional cubic 
(but with w, being zero at  the two ends-Figure 7.6). Hence 

Differentiation of (7.82) leads to 

and further differentiation to 

From (7.8 
The (local 

), the axial strain is constant and hence the axial force 
bending moment is obtained from (7.84) as 

M I= EZX = EIbTBl 

(7.82) 

(7.83) 

(7.84) 

s given by (7.55). 

(7.85) 

and hence the internal virtual work follows from (7.81) and (7.84) as 

Vi = qF6pv = s,:"( M6zV + N dx, = N6ulv + 60; EZbbTOldx, (7.86) 

from which 

(7.87) 

On account of the definitions of M ,  and M 2  in (7.56), (7.87) coincides with (7.69) and 
hence, as anticipated, the internal force vector, qi of (7.71), is the same under the two 
formulations. It follows that the stiffness matrix, (7.79), will also coincide. 

7.2.7 Including higher-order axial terms 

Equation (7.55) was based on the approximation that the axial strain in the bar is 
equal to the relative axial deformation of the two ends divided by the original axial 
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length. Such an assumption does not allow for any straining caused by the beam 
shape departing from a straight line (see Figure 7.6). Such an effect can be simply 
introduced by introducing the local shallow-arch terms (Section 7.1) [B3] or by 
invoking Green's strain (see (4.75)), relative to the corotating system. The latter is 
more general and will be developed here. Assuming for the present that the bar is 
initially straight, with the aid of (4.79, (7.81) and (7.83), we have 

(7.88) 

If the shallow arch equations Lire used, the $ ( u J ( , ) ~  term in (7.88) would be neglected. 
As already discussed in Sections 7.1.3 and 7.1.5, unless extra variables are provided 
for ul ,  only a constant axial strain can be accommodated and hence one should adopt 
(7.31) to modity (7.88) to give 

(7.89) 

so that the last term in (7.88) is changed to take its average value. On performing 
the integration, (7.89) becomes 

4 - 1  
E,[ = + I ( + - I 4]el. 

10 2 10 

(7.90) 

Alternatively, it might be better to provide shallow terms relating to the state under 
constant curvature. From (7.50) we would then have 

(7.90a) 

I t  should be noted that, in the limit, as the mesh is refined, any of these additional 
terms (above U [ / ( , )  will vanish. For the present developments, we will work from 
(7.90), but there should be no difficulty in adapting the equations to relate to (7.90a). 

With a view to the virtual work, (7.90) can be differentiated to give (with the aid 
of (7.61) and (7.67)). 

(7.91) 

Hence, in place of (7.68), we have 

and following (7.69)-(7.71), the internal force vector, qi,  is given by (7.71) with qli 
defined by (7.70) and B by (7.92). 

The tangent stiffness matrix is obtained by differentiating (7.71) so that, in place 
of (7.79), we have 

K ,  = K,,  + K,, = BTCIBT + K,,, (7.93) 



COROTATIONAL ELEMENT USING TIMOSHENKO BEAM THEORY 21 9 

where C, was given in (7.73) and the ‘initial stress’ matrix is given by 

(7.94) 

where 

(7.95) 

A formulation involving the local shallow-arch equations would involve setting U, to 
zero in (7.92) and (7.94). 

7.2.8 Some observations 

The workings of the previous section have assumed that the bar was initially straigh 
rather than curved. If the latter applies, one may simply modify (7.88) to give 

(7.96 

where the last term in (7.96) includes the effects of the initial local slopes ( Q l 0 ) .  

The formulation including the higher-order terms gives, as expected, more accurate 
results than the basic co-rotational formulation [Cl]. However, this is achieved at 
some cost. In particular, once the higher-order terms are included, :he formulation 
seems to be more badly conditioned and some convergence difficulties occur [Cl]. 
(It  is possible that these difficulties may be ameliorated by using a development based 
on (7.90a) rather than (7.90).) However, as the mesh is refined, there should be little 
difference between the two formulations, both in terms of accuracy and convergence 
characteristics. For linear buckling problems with coarse meshes, the extra terms 
would be required. 

7.3 
TIMOSHENKO BEAM THEORY 

A SIMPLE COROTATIONAL ELEMENT USING 

If we include shear deformation, with the aid of Timoshenko beam theory, the 
stretching strain is exactly as in Section 7.2.1 but, see Figure 7.8, the bending and 
shear ‘stresses’ and ‘strains’ are given by 

(7.97) 

where IX is, as before, the rigid rotation given by (7.58)-(7.60). The minus signs in 



220 TWO- DI M E NSlO N AL FORM U LATlO NS 

,//- Final configuration 

Figure 7.8 Local corotational rotation of normal at node 1, O,,  

(7.97) and (7.98) are required in order to maintain the sign convention adopted for 
the shallow-arch formulation of Section 7.1.4. (Note that the 8,s in Figure 7.4 and 7.8 
are of opposite sign.) For simplicity, in (7.97) and (7.98), we have ignored the influence 
of any initial 8, terms although the latter are easily introduced. 

From (7.97) and (7.98) and using (7.62) and (7.66), in place of (7.68), we have 

(7.99) 

where r and z have been given in (7.62) and (7.66). Consequently, the internal virtual 
work is given by 

Vi = 6p:qi = /,,qE6E,, = 6p;BTqli (7.100) 

where the local internal forces are 

and the (global) internal force vector is given by 

qi = B'qli 

with B from (7.99). Differentiation of (7.102) leads to 

(7.102) 

6qi = BT6qli + ( N  SB, + M SB, + Q SB,) (7.103) 

where SB,, for example, is the differential of the second column of BT, given in (7.99). 
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In place of (7.73), we now have, using (7.99), 

6q,, = 6 M  [:T 
J L  -I 

so that the first term of (7.103) gives the standard tangent stiffness matrix as 

I 
K , ,  = BTC,B. 

10 

(7. I 05) 

To  form the geometric stiffness matrix, differentiation of the columns of BT (given in 
(7.99)) leads to 

SB, =SB,(equation (7.76)), 6B, =0, SB, = -loSB,(equation (7.78)). (7.106) 

Substitution into (7.103) leads to 

(7.107) 

7.4 AN ALTERNATIVE ELEMENT USING 
REISSNER'S BEAM THEORY 

With a view to later work (in Volume 2) involving three-dimensional beam elements, 
we will now describe an alternative two-noded element based on Reissner's beam 
theory [R2]. The element is closely related to a three-dimensional beam due to 
Vu-Quoc and Simo [Sl, S2] (which will be described in Volume 2). This element is 
not, within the previous definitions, corotational. In other words, i t  does not use a 
single corotating frame for the element and then use standard small-strain engineering 
terms with respect to that rotating frame. 

For this element, the bending moment and curvature are effectively the same (see 
(7.97)) as those of the previous element and are given by 

(7.108) 
E l  

M = E I x  = (0, - 0 , )  
10 

where the rotations of the nodal normals, (I1 and 0, are shown in Figure 7.9. 
In order to define the axial and shear strains, we require the orthogonal unit 

vectors, t ,  and t,, at the central Gauss point (Figure 7.9). These are related to the 
average normal rotation 

(Iav = 0.5 (0, + 0,) (7.109) 

via 

ty = (cos day, sin Q,, ), tz = ( - sin (Iav, cos (Iav).  (7.1 10) 

In addition, we require (see Figure 7.9) the vector, 

x;, = x 2 1  +d,, (7.1 1 1 )  
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where, 

normal at 
node 1 

Figure 7.9 Current configuration for arch element using Reissner's theory. 

as before, we use the notation x21 = x2 - x l ,  etc., and x describes the initial 
coordinates while d describes the total nodal displacements and (see Figure 7.5), 
x' = x + d describes the current coordinates. Using these terms, the strains can be 
expressed as 

(7.1 12) 

where r is as in (7.62) but with 

s = sin d,,, c = COS 19~" .  (7.1 13) 

Also, the shear strain, y ,  is given by 

(7.1 14) 

where zT = (s, - c, 0, -s, c, 0) with s and c being given by (7.1 13). 
An explanation of these strain measures can be found from Figure 7.9. In  particular, 

x i 1  = lnel 

where e,  is the unit vector along the tangent. Hence, from (7.1 12), 

1 1 
cl = (ln(eTtl) - I,) = ( I ,  cos - I,) 

10 1, 

(with /3 as in Figure 7.9), while from (7.1 14), 

I ,  sin /3 y = I"& - 
1 2 -  

10 10 

(7.1 15) 

(7.1 16) 

(7.1 17) 

As p -+ 0, equation (7.1 16) coincides with the previous 'rotated engineering strain' 
while, again with /3 -+ 0 and I ,  4 I,, equation (7.1 17) gives y -P [I which again corres- 
ponds with the previous measure for the shear strain. 



REISSNER’S BEAM THEORY 223 

To obtain the infinitesimal ‘strain’ changes, we differentiate (7.108), (7.1 12) and 
(7.1 14) to give 

(7.1 18) 1 rT + c2sT 
l ,cjE, = [l::;] =[ 0 0 - 1  0 0 1 =BTGp 

I ,  67.’ ZT + C I S T  

where s and c 1  and c2 are given by 

sT = (O,O, 1,0,0, 1) (7.1 19) 

(7.1 20) 

(7.121) 

C ,  = - 0.5t:x’,, = - 0.5(1, + u I )  = - 0.51, 

C~ = 0.5t:xi = 0.5711,. 

As usual, to compute the internal force vector, we start with the (internal) virtual work: 

(7.122) Vi = hp:qi = 1,q; Sclv = Gp:BTqli 
where 

qi = ( N ,  M ,  Q )  

and we have used (7.1 18) for S E ~ .  For arbitrary 6pv, from 
vector is given by 

qi = BTqli 

with B from (7.1 18). To obtain the tangent stiffness matrix 
leads to 

(7.123) 

7.122), the internal force 

(7.124) 

differentiation of (7.124) 

hq, = BT Sq,, + (N  6B, + M SB, + Q 6B3) = K, 6p (7.125) 

where hB,, for example, is the differential of the second column of BT (given in 
(7.1 18)). Using (7.104), the first term in (7.125) leads to (7.105) with B from (7.1 18). 
To form the geometric stiffness matrix, differentiation of the columns of BT (given in 
(7.1 18)) leads to 

6 B l  = +(szT6p + zsT6p) + $clssTbp (7.1 26) 

(5B, = 0 and 

SB, = - +(srT6p + rs’cjp) - ic-2ssTSp. (7.127) 

Substitution into (7.125) gives 

1 N N Q 
4 2 2 2 2 

K, = BTC,B + (szT + zs’) + clssT - Q(srT + rsT) - c2ssT. (7.128) 

7.4.1 
a general isoparametric element 

The introduction of shape functions and extension to 

The previous work can be extended to cover a general isoparametric formulation 
using the same functions (h) for the geometry (.Y and z )  and each of the ‘displacements’ 
(U, U’ and 0).  In  these circumstances, we require the ‘length parameter’, x (see 
Section 3.3.4), at the Gauss point. This parameter, which relates to the initial geometry 
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(and hence remains fixed at  a particular Gauss point), is given by 

where 

and x and z have the nodal values of x and z respectively. 
In place of equations (7.108), (7.1 12) and (7.1 14), the ‘strains’ become 

1 x =  CI hF9 

1 ,dx‘ 
E =  t, ~ - 1  

a d5 
and 

(7.129) 

(7.130) 

(7.13 1)  

(7.132) 

(7.133) 

where x’ relates to the current nodal geometry, i.e. 

x ‘ = x + d  (7.134) 

and the unit vectors t, and t2 relate to the particular point (usually the Gauss point), 
(, and are obtained from (7.110) but using 0 at ( (via the shape functions and the 
nodal OS) instead of Oav.  

Differentiation of (7.131)-(7.133) gives the ‘strain changes’ at any point ( as 

0 0 hS(2) a * *  =B6p (7.135) 1 rT + c2sT 

ZT + CIST 

ad&, = ct [:]=[O 0 h,( l )  

where h, is the differential of h with respect to and 

rT = (eh,( 1 ), shg( I ) ,  0, chS(2), shS(2), 0,. . .) 

zT = (-sh<(l), ch;( j), 0, - sh;(2), ~ h , ( 2 ) ,  0,. . .), 
where at  the particular point c 

c=cosO, s=sinO and $ =  hTO 

while 

with 

dx’ 

dc 
(’1 = - t: = - cx(1 + 1) 

dx’ 

sT = (O,O, h(l) ,  0,0, h(2), 0,. . .). 

(7.136) 

(7.137) 

(7.138) 

(7.139) 

(7.140) 

(7.141) 
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In (7.135) the ordering of the nodal variables would follow an  extension from (7.63). 
With the aid of (7.135), the (internal) virtual work is given by 

(7.142) 

where qli  is given by 
internal force vector, 

(7.123) and relates to a particular point 5 .  It follows that the 
q i ,  is given by 

(7.143) 

Following closely the procedure of Section 7.4, the tangent stiffness matrix becomes 

K, = S(LBTCfB + N(szT + zsT) + Nc,ssT - Q(sr' + rsT) - Qc2ssT d<.  (7.144) 
x i 

The theory can be applied to any order of clement. For  linear shapc functions. it will 
lead to the same clcment as that of Section 7.4 provided one-point Gaussian 
integration is adopted. 

7.5 AN ISOPARAMETRIC DEGENERATE-CONTINUUM 
APPROACH USING THE TOTAL LAGRANGIAN FORMULATION 

Figure 7.10 shows a three-noded isoparametric degenerate continuum clement for 
which the linear theory can be found in, for example, CC2.21. The following non-linear 
theory will relate to a general non-linear isoparametric element CB2.5. B1. S4, W41. 
Although the previous formulations in this chapter have involved a two-dimensional 
beam element in the x-z plane, we are now (Figure 7.10) describing an  element 
in the s-y plane. This change is introduced in order to correspond with the 
two-dimensional continuum formulation of Section 5.1. The present degenerate- 
continuum formulation can be considered as a special case of the latter. 

L x 

Figure 7.10 Three-noded degenerate-continuum arch element. 
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Following standard degenerate-continuum techniques, the geometry can be inter- 

.Y = hi(<).fi + hi(()ui  COS 'pi = hTX + [hTv,(a COS cp )  (7.145) 

v,(ucoscp)" =+(U1 cosq, ,u ,cosq, ,  . . . )  (7.146) 

contains the .u-direction components (see Figure 7.10) of the director vectors, v. In a 
similar fashion. 

(7.147) 

where vv(u sin c p )  is a similar vector to that in (7.146) but with sines instead of cosines. 
The vec'tors X and y in (7.145) and (7.147) contain the nodal .Y and J' coordinates of 
the element centre-line. 

To be consistent with (7.145) and (7.147). the displacements, I I  and I -  can be inter- 
polated in a similar manner, so that 

U = 1 h,(C)iii + ;rC h i ( < ) U i ( C 0 S  qi - cos q,i)  (7.1 48a) 
1 3  = h i ( < ) ~ i  + hi(<)ui(sin (pi - sin qoi) ( 7. I 48 b) 

where cpOi are the initial values of 'pi and Ui and Fi are the nodal displacements of the 
centre-line. At  any Gauss point (<,[), we can obtain 

polated (see Figure 7.10) via 

where 

~7 = c I Z ~ ( ; ) ~ V ~  + h i (c )u i  sin (pi = hTY + i:hTv,(u sin q )  

where J is the standard Jacobian (see (5.6)) relating to the initial geometry and, for 
example, from (7. I4Xa), 

(7.1 50) 

Having obtained the shape function and their derivatives, the procedure follows 
closely that already given in Section 5.1 for the two-dimensional continuum. In 
particular, from (5.10) (5.12), the Green strains are given by 

E =  
1 0 0 0  
0 0 0 1  
0 1 1 0  

I 

2 
+ 

0 
?U r7 1: 

0 
('.U ?.Y 

(7.151) 
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In order to compute the internal forces, we also require (see (5.1 5 ) )  

6E = B,,(p)Gp = [H + A(e)]C 6p (7.152) 

where (see (7.151) for 0): 

se = G csp (7.153) 

and for the full continuum case, G was given by (5.8). For the present degenerate 
continuum, the nodal variables in 6p are ordered as 

(7.1 54) 

where 6u contains the nodal values of 6U, bv the nodal values of 66 and 6cp the nodal 
values of 6cp (see the footnote on page 25 regarding the ordering of the variables). 
In order to obtain 68 (see (7.151) for e), we require from (7.148), 

6pT = @UT, SVT, ScpT) 

6u = h(l)T6ii - $[hTD(u sin c p )  6cp 

60 = h(<)T'sV + i[hTD(a COS cp)Scp 

where 

(7.155) 

(7.156) 

with a similar matrix for D(acoscp). In order to obtain the matrix G in (7.153), we 
must differentiate (7.155) and (7.1 56) so that, considering (7.155), 

and 

d 6 U  
= - +hTD(a sin cp)  6cp 

;li 

so that (compare the continuum form in (5.9)), 

1 

2 
- -  - 

-2J- ' ( I ,  l)hr OT 

25 - '(2,l)h; OT 

OT 2 J - ' ( l ,  1)hl 

OT 25 - '(2, l)he 

(7.158) 

(7.159) 

[-]=C6p (7.160) 
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with 

b, = -D(asinq)([J- ' ( l ,  l)h,+ J-'(1,2)h) 

b2 = - D(a sin q ) ( [ J  - '(2, l)h, + J -  '(2,2)h) 

b, =D(acOsq) ( i J - ' ( l ,  l )h ,+ J- '(1,2)h) 

b4 = D(a COS q)([J - '(2,l)hr + J -  '(2,2)h). 

The principle of virtual work now leads, with the aid of (7.152), to 

r r 
gi = B,,(P)~S d V, = GT[H + A(e)lTS d V,, J J 

where 

d V, = det (J) d l  d[ 

(7.161) 

(7.1 62) 

(7.163) 

(7.164) 

(7.165) 

(7.166) 

and S are the second Piola-Kirchhoff stresses of (5.20). In Section 5.1.2, it was shown 
that the continuum tangent stiffness matrix of (5.26) could be obtained either from 
the continuum form of the variation of the virtual work (as in (5.4) from (4.83)) or 
by direct differentiation of the internal force vector. In the current degenerate case, 
it is important to adopt the latter procedure in order to be fully consistent with the 
kinematic assumptions inherent in the model. To this end, differentiation of (7.165) 
where 

6qi = (B:, 6s + 6B%,S) dVo = 6~ + [KO, + KO*] 6~ (7.167) s 
s s 

where (see also (5.26)) 

Kt1 = B:,CtBn,dV, = GT[H + A(e)ITCtG[H + A(O)] dVo (7.168) 

where the Ct matrix in (7.168) relates 6s to 6E and should reflect the plane-stress 
assumption. This issue is discussed further in Section 8.2.1 which deals with shells. 
The K,, and K,, terms in (7.167) are given by 

GT 6A(8)TS d V, = K,, 6p S 
while 

6GT[H + A(e) lTS d V, = K026p. s 
(7.169) 

(7.170) 

Equation (7.169) leads to 

K,, = CTSGdVo (7.171) s 
which is of the same form as K,, in (5.26) with S from (5.24). 

There is no full continuum equivalent of KO,.  Indeed, this matrix would be missed 
if one worked directly from the continuum form of the variation of the virtual work 
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(see (4.83) and (5.4)). From (7.170), K,, is given by 

where 

s; =s,( 1 +;;)+s,, au 
aY 

s; = sxy( 1 + ;;) + s, au 
dY 

au 

av 
ax 

sl, = s,,( 1 + ;;) + sxax 

(7.1 73) 

(7.174) 

(7.175) 

(7.1 76) 

and differentiation of the first column of GT in (7.160) gives 6G ', etc. It is not difficult 
to show that, for k = 1,4, 

(7.1 77) 

where Dk are diagonal matrices with the ith term being given by 

Dl(i, i) = - $((J- '( 1, l )ht i  + J -  '( 1 , 2 ) h i ) ~ i c 0 ~  < p i  (7.178) 

D,(i, i) = - i((J- '(2,l)hCi + J -  '(2,2)hi)~i COS  pi (7.179) 

(7.180) 

(7.18 I )  

D3(i,i) = --;((J-'(l, l)hCi+ J-'(1,2)hi)aisincpi 

D4(i, i) = - i ( (J-  '(2, l)hti + J -  '(2, 2)hi)ui sin pi 

7.6 SPECIAL NOTATION 

a, = thickness at node i (Section 7.5) 
A =area of beam 
A = matrix (7.67) connecting 68, with 6p (Section 7.2) 

b = vector connecting curvature, x, to 8, (7.84) 
b, = differential of h, with respect to x 
b, = differential of h, with respect to x 
B = matrix connecting 6p, or 1,6~, to 6 p  ((7.68) or (7.92) for Kirchhoff theory; (7.99) 

c = cos f i  (Section 7.2.3), = cos 8 (Section 7.4.1) 
c = vector relating curvature, x ,  to w 

d = displacement vector 

A(8) = matrix of displacement-derivatives ((7.1 51) in Section 7.5) 

for Timoshenko theory; (7.1 18) for Reissner theory) 

C, = local constitutive matrix 
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d, = d, - d,;  di = displacement vector at node i 
e ,  = unit vector between nodes of beam element 
e, = unit vector orthogonal to e, 
E = Green’s strain (Section 7.5) 
G = matrix connecting 68 (displacement derivatives) to 6p (Section 7.5) 
h, = shape function vector for U displacement 
h, = shape function vector for w displacement 
h, = shape function vector for 8 
H = Boolean matrix (Section 7.5) 
I = second moment of area 
1 = initial ‘length’ of beam element (between nodes) in Section 7.1 

I ,  = initial ‘length’ of beam element, I ,  = current ‘length’ 
M = bending moment in beam 

N = axial force in beam 
p = vector of nodal ‘displacements’ 

- 
M ,  = internal bending moment in local system at node I ;  a, at node 2 

ordering such that pT = (uT, wT) in Sections 7.1-7.1.3 
ordering such that pT = (U=, wT, OT) in Section 7.1.4 
ordering as in (7.63) for Sections 7.2-4 
ordering as in (63) for Section 7.5 

Q = transverse shear force 
r = radius of gyration 
r = special geometry vector (7.62) 
s = sin p (Section 7.2.3), = sin 0 (Section 7.4.1) 
s = vector connecting 8, to the nodal values, 8, (Section 7.2.6) 
s = special vector (7.1 19) for Reissner theory 
S = second Piola-Kirchhoff stresses (Section 7.5) 

T = vector of nodal forces corresponding to 8 (Section 7.1.4) 
U = axial displacement at reference plane 
U = vector of in-plane nodal displacements at reference plane (U) 

U = nodal forces corresponding to U 

v i  = unit director vectors at node i (Section 7.5) 
w ’ = w + z  
w = vector of out-of-plane node1 ‘displacements’ (7.1 1 a) in Sections 7.1-7.1.3 

w = vector of nodal ws in Section 7.1.4 
w ‘ = w + z  
W = nodal forces corresponding to w 

x,, = x2 - X I  

x1 = initial position vector of node 1, x2  for node 2 
x,1 = x, - X I  

x ’ = x + d  

t, ,  t, = unit vectors for Section 7.4 

( w s  and OS) 

%=vector containing nodal values of x at element centre-line (Section 7.5) 
?=vector containing nodal values of y at element centre-line (Section 7.5) 
z = vector of initial out-of-plane variables (7. I 1 b) for Section 7.1 
z = special geometry vector (7.66) for Sections 7.2 and 7.3 
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x = rigid-body rotation angle of beam (Sections 7.1 and 7.2) 
x = 'length parameter' (7.129) in Section 7.4.1 

p = final orientation angle for beam element (Section 7.2) 
0 = dw/ds for Kirchhoff theory 
0 = rotation of normal for Timoshenko theory 
0 = rotation parameters (Figure 7.9) for Reissner theory 
0, = 8 in local frame with O , ,  and 1 9 , ~  at nodes; O l l o  and f1120 are initial values of O r ,  

E,  = dz/d.u 

and O r z  respectively 
0, = dw/dx 
6 = nodal values of 8 
6 = vector form of displacement derivatives as in (7.15 1 )  (Section 7.5) 
'pi = angular orientation of vi (Section 7.5) 

'pia = initial orientation of v i  (Section 7.5) 
6cp = vector of nodal values of cjcp (Section 7.5) 

= curvature (Section 7. I )  
x = curvature vector (Section 7.2) 

Subscript 

I = local or linear 
nl = non-linear 

Superscript 

- = 'at reference plane' 
= quantity divided by 1 (Section 7.1) 
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8 Shells 

Calladine [Cl] gives an ineresting review of the developments of theories for shell 
structures. We are here specifically concerned with finite element analysis. For linear 
analysis, some of the earliest work involved facet formulations [C3,22]. This concept 
was extended to non-linear analysis by Horrigmoe and Bergan [Hl] using a 
corotational approach (although in the paper, [H 11, the term ‘updated Lagrangian’ 
was used). Another early facet formulation, using a corotational approach, was given 
by Backlund [Bl] who used the Morley triangle [M4] which has mid-side rotational 
connectors. As discussed in the previous chapter, a corotational approach can be 
suppelemented by the addition of local shallow shell terms from Marguerre’s theory 
CM2.41. Such procedures have been applied to shells by, amongst others, Jetteur ot al. 
[J2,J3] and Stolarski et al. [S7]. 

Probably the majority of work on non-linear shell elements has followed on from 
the linear work of Ahmad et c r l .  [ A l l  using the degenerate-continuum approach with 
a total or updated Lagrangian formulation CW4.7, B2.5, B2, D1, F1, S4, S8, M2, P2, 
R1, R2, D1, H2] or using some ‘incremental’ (rate) form of strain measure [H3, L1, 
B3-B6, S5-S6] (often related to the corotational approach [B6]). As with linear 
analysis, problems occur with shear locking and, again as with linear analysis, these 
can be ameliorated by various forms of (selective) reduced integration. [Zl ,  P3, H3, 
H5, B3, B4, B6, S6). Alternatively, substitute shape-functions can be used (possibly 
in reltion to the covariant strain components [DI, H2, 511). Membrane locking (see 
Sections 7.1.3 and 7.1.5) can also occur and, again reduced integration [B3, B4, B6, 
S6] or substitute functions (possibly via ‘stress projection’ [B7]) [H2, B7, S6] can 
help. Alternatively (or additionally), some form of corotational (rate) strain measure 
may be used at the integration points [B6, S61. Reduced integration can lead to 
problems with mechanisms. These can be overcome using some form of ‘stabilisation 
technique’ [I B3, B5]. 

The isoparametric degenerate-continuum approach adopts shape functions for the 
components of displacement in a fixed rectangular cartesian system. Consequently, 
it allows the exact satisfaction of the rigid-body modes even when the plane-section 
constraint is applied in the through-thickness direction CC2.21. However, this is 
achieved only when the continuum approach is adopted throughout and the various 
shape-function manipulations involving the Jacobian are applied at all of the 
integration points including those in the ‘through-thickness direction’. 

Considerable savings in computer time can be achieved by using the 
through-thickness integration only for the treatment of material non-linearity. In 

234 
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relation t0.a beam (although not, specifically, in relation to a degenerate-continuum 
approach), the ideas were discussed in Section 7.1.2. In order to introduce such a 
technique one must work with membrane strains, E, and curvatures, x ,  and the 
corresponding ‘stress resultants’, N and M. In relation to linear analysis, a simple 
procedure was advocated by Zienkiewicz et ul. [Zl] for divorcing the 
through-thickness integration from the main shape-function procedure. As noted in 
[Il, C2.2, C9, M21, the simple approach of [Zl] can lead to stressing under rigid-body 
movement (although this drawback should vanish in the limit as the mesh is refined). 
Milford and Schnobrich have proposed a solution [M2] involving a truncated Taylor 
series for the inverse Jacobian. Much further work has followed with an emphasis 
on non-linear analysis and the development of a ‘continuum-based resultant form’ 
[SS, S6, Ll,  B31. 

As with linear analysis, an important issue in relation to the design of non-linear 
shell elements is that of the ‘sixth degree of freedom’ or ‘drilling rotation’. In a 
conventional formulation for a membrane plate, we have locally five degrees of 
freedom including two (out-of-plane) rotations. If  some form of coordinate trans- 
formation is adopted (say between local and global coordinates), we can then end 
up with six degrees of freedom at the structural level (now with three rotations). If 
all of the elements lie in the same plane, a mechanism results. To overcome this 
problem, Zienkiewicz suggested a fictitious spring stiffness relating to the (local) 
in-plane rotations CZ2.11. (An alternative formulation using a form of integrated 
spring stiffness has recently been suggested by Providos [P4] and has been found to 
give good results.) While the fictitious spring approach may work adequately for 
linear problems, there are more dangers with non-linear analysis when, with material 
non-linearity, the stiffnesses of the elements can vary significantly. 

I t  is possible for a smooth shell to work with only five variables by setting up 
some averaged system at the nodes with respect to which the out-of-plane rotations 
are taken. This approach was suggested, in relation to a facet analysis by Horrigmoe 
and Bergan [Hl]. Also, as will be shown in Section 8.2, i t  is possible to work with 
only five variables for a total Lagrangian continuum formulation. In this work, which 
follows that of Ramm and Matzenmiller [R2], the two ‘rotation variables’ are not 
rotations in the true sense but rather define the orientation of the director (which is 
of unit length). 

In order to encompass both smooth and non-smooth shells, some formulations 
use five degrees of freedom for the smooth regions and six for those involving junctions 
[C12]. This of course leads to complexities in the ‘house-keeping’. An alternative that 
is currently receiving much research interest is to always use six variables, with the 
local in-plane rotation being included as a ‘true’ rather than a ‘fictitious’ connector 
[A3, C2, 52, 53, B8, N1, Tl]. When rotations are used as variables, we also have to 
consider their non-commutativity when they become large [A4]. This issue is even 
more relevant to three-dimensional beams and rods and will be considered in 
Volume 2. 

This brief review of previous work on non-linear shell analysis has inevitably been 
somewhat cursory. Some recent papers that have not been discussed can be found 
in [Sl-S3, P1, W21. The reader might also refer to the review paper by Wempner 
[Wl] and the books edited by Hughes and Hinton CH4). 

The present chapter will concentrate on two procedures for non-linear shell analysis; 
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firstly a shallow-shell formulation and secondly the degenerate-continuum approach. 
The former follows on directly from the work on beams in Section 7.1. An important 
class of problems that can be treated by the shallow-shell formulation is that of 
imperfect steel plates. Such plates (often stiffened) form the main components of a 
wide range of structures from bridges to dock gates and ship decks. Appropriate 
non-linear analysis usually requires a combination of geometric and material effects. 
The author has applied such analyses, using the shallow-shell formulation, to both 
stiffened and unstiffened imperfect plates with a view to the assessment of the strength 
of bridges CC3.6, C7, C8, C10, C113. 

While the range of application of the shallow-shell approach is a little limited, 
along with the shallow-arch formulations of Section 7.1, they have an important 
teaching role. Also, as indicated in Section 8.1.7, their range of application can be 
extended. 

The second area covered in this chapter is that of the degenerate-continuum 
approach. As already discussed, there has been a mass of research work in this area 
and there are still many problems to be overcome. In the present chapter, we will 
concentrate on one aspect only, that of ‘consistency’ in relation to a total Lagrangian 
approach. The earliest approaches CB2.5, B2, R 1) discretised the problem after setting 
up the continuum expressions involving the tangent stiffness matrix. As a consequence, 
they did not produce a ‘consistent tangent stiffness matrix’. This limitation was partly 
corrected by Surana [SS] and, later, in an unambiguous manner, by Ramm and 
Matzenmiller [R2]. The presentation in this chapter will be closely related to the latter. 

8.1 A RANGE OF SHALLOW SHELLS 

In this section, we will extend the shallow-arch formulation of Section 7.1 to a shallow 
shell. In contrast to Section 7.1, where we started with a ‘Kirchhoff formulation’, we 
will here directly introduce shear deformation at the very start and thus adopt a form 
of Mindlin-Reissner analysis [M2, R2, C2.21. This formulation will provide a starting 
point even when we exclude shear deformation and adopt a form of Kirchhoff bending 
because, following the work in [CS, C6, C2.21, we will introduce the latter using a 
form of ‘discrete Kirchhoff’ hypothesis. 

8.1 .I Strain-displacement relationships 

From the assumption that plane sections remain plane, we can extend (7.3) 
(see also (4.84)) to give 

E = E + Z,X = E, + E,, + z , ~  

where the E terms relate to the reference plane (possibly but 
centre of the shell) and 

du a6 au au 
d x ’ d y ’ d y  ax 

where U and U are the in-plane displacements at the reference 

(8.1) 

not necessarily, the 

(8.2) 

plane and (see (7.4) 
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and (4.84)), 

(8.3) 

where z is the initial vertical coordinate of the shell reference plane and w the 
subsequent deformation (see Figure 8.1 where the variables 8, and 8, refer to the 
rotations of the normal). Using the Mindlin-Reissner approach, the curvatures are 
given by 

Equation (8.4) takes a very similar form to (8.2). For the virtual work, we also require 
the virtual form of (8.1) which is (see also (4.85)): 

dE, = dEv + z,6xv 

= dE,, + T ~ s ,  + zl6xV = 6E,, + 

where bE,, and 6x, take similar forms to (8.2) and (8.4) respectively. 
The vertical shear strains will be expressed in standard form as 

Figure 8.1 Coordinate system for a shallow shell. 
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8.1.2 Stress-strain relationships 

Using a similar procedure to that adopted for the arch (Section 7.1.2), we will not 
necessarily assume that the reference plane is at the centre of the section. We will 
also allow for the possibility of material non-linearity so that the stress-strain 
relationships at any depth zI are taken to be tangential, so that 

where 6ST = (6Sx, 6S,, 6Sx,) are the second Piola-Kirchhoff stresses at any depth zl. 
In the last relationship in (8.7), we have written C, using the linear-elastic, isotropic 
relationship for plane-stress conditions (Section 4.2.1). With plasticity, we would, 
instead, use the tangential elasto-plastic modular matrix (preferably ‘consistent’-see 
Section 6.8.2.1) under conditions of ‘plane stress’. 

Using a very similar procedure to that adopted in one dimension in equations (7.26) 
and (7.27), we now integrate (8.7) through the thickness zz to obtain the relationships 
for the stress resultants as 

6N = 6s dz, = C,(6E + z,GX)dz, j s  

Equations (8.8) and (8.9) define the membrane constitutive matrix, C,, the bending 
constitutive matrix, C, and the cross-coupling matrix, Cmb. All three of these matrices 
should be considered as ‘tangential’ although, to save space, the subscript t has been 
dropped. A discussion of the numerical integrations in (8.8) and (8.9) has already 
been given for the one-dimensional case in Section 7.1.2. The arguments remain valid 
for the present two-dimensional analyses. 

To supplement (8.8) and (8.9), we will assume tangential vertical shear relationships 
of the form 

S Q  = I( di,’)dz, dz,, = C,Gy = ($7. (8.10) 

In the last relationship in (8.10)’ we have assumed a linear-elastic, isotropic relationship 
with ct as the ‘shear factor’ (usually taken as 2 or 7t2/12 CC2.71). The author has 
applied (8.10) to the analysis of concrete bridges using an approximate non-linear 
relationship for the shear stiffnesses [CS]. 
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8.1.3 Shape functions 

The present shallow shell theory can be applied with a range of different elements 
with different shape functions. We will here concentrate on applications involving (a) 
standard isoparametric functions related to a standard Mindlin - Reissner formulation, 
and (b) a 'constrained Mindlin -Reismer' [C6,C2.2] and (c) a 'discrete Kirchhoff 
formulation [CS,C2.2] adopted by the author. In the latter cases ((b) and (c)), only 
an outline is given, the precise form of the constraints having already been described 
for linear applications in the references given previously. 

For all of these analyses, one can assume that the five variables U, fi, w, 0, and 8, 
are initially expanded using the same hierarchical shape functions (so would the initial 
geometry) so that 

U = hTU, V = hTV, cv = hTW; 0, = hT6,, O,, = hT8,. (8.1 1 ) 

For the present purposes, one can consider these functions to be either serendipity 
(8-noded) or Lagrangian (9-noded) --see Figure 8.2. Also, it is most convenient to 
think of the shape functions as being of a hierarchical form CC2.21 so that the mid-side 
and central variables are 'relative' and can therefore more easily be constrained out 
at some later time. Collectively, the nodal variables (U,  V, w, O,, 0,) will, as usual, be 
referred to as p. For some algebraic expressions i t  is also useful to refer to the 
membrane nodal displacements U and V, collectively as pm and the normal rotations 
0, and 0, collectively as pe. 

Using these shape functions, we can use the Jacobian in the standard way to obtain 

E, = B,p,, dE, = B,dp, (8.12) 

x =T Bhp,, 6~ = Bb6pO (8.13) 

where with the same shape functions for U, U, Ox and O,, B, and Bb will take the same 
form. Also the slopes, s (see (8.6)) and slope changes,'hs, can be obtained as 

s = B,w, 6s = B , ~ w  (8.14) 

so that from (8.6) and (8.14), 

y = o + s = H sp, + B,W, s y  = so + 6s = H sp, + B, bw (8.15) 

where the H matrix in (8.15) is simply composed of terms from the shape functions 

' I  
A 

Y 

Figure 8.2 8- or 9-noded element. 
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h of (8.1 1). Finally, from (8.5), (8.12) and (8.14), 

6E = 6E, + 6E,, = Bm6pm + T(w) 6s = Bm6pm + T(w)B, 6w. (8.16) 

The only non-linearity in the relationships of (8.13), (8.15) and (8.16) is in (8.16) and 
comes from the T matrix which, from (8.5) and via (8.14), is a function of the current 
nodal displacements, w. 

Further discussion on the issue of matching shape functions and numerical 
integration will be given in Section 8.1.5. 

8.1.4 Virtual work and the internal force vector 

The virtual work can be expressed as 

I/ = [(ST6E + QT6y)dVo - q:6p, = [(NT6Ev + MT6xV + QT6y)dAo - qfGp,. (8.17) 
J J 

Substituting from the virtual forms of (8.13), (8.15) and (8.16) into (8.17) gives 

V = (qT,i6pm + qtiSW + qii6p,i) dA, - q%Spv (8.18) s 
where the subvectors of the internal force vector, qi are given by 

= (B:M + HTQ)dA,. J 

(8.19a) 

(8.19b) 

(8.19~) 

With a view to future developments, it is useful to re-express the strain change/nodal 

6x = B, 6p (8.20) 

6y = B,, 6p (8.21) 

6E = B,(p) 6p. (8.22) 

If a standard Mindlin-Reissner relationship were adopted the B matrices in 
(8.20)-(8.22) would follow directly from (8.13), (8.15) and (8.16) and, for example, the 
B, matrix obtained from (8.13) would imply only connections between 6x and the 
6p, terms. However, in moving from (8.13), (8.15) and (8.16) we could with either the 
constrained Mindlin-Reissner or discrete Kirchhoff formulations, constrain out the 
mid-side hierarchical nodal Aws to be functions of the nodal 19s [CS, C6, C2.21. Hence, 
in these circumstances, there would be coupling between 6x and the nodal 6p,s while 
the Aws would be dummy terms (see CC2.21). For the discrete Kirchhoff element, we 
would also constrain out the 68s CC2.21. For the current formulation to be general, 
we will assume that any constraints have been applied in producing the B matrices 

displacement relationships of (8.1 3), (8.1 5 )  and (8.16) as 
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in (8.20)-(8.22) and will also adopt the general (possibly constrained) form 

6s = B, 6p (8.23) 

in place of (8.14). 
Using (8.20)-(8.23), the virtual work of (8.17) and (8.18) would be replaced by 

I/ = (NTB,(p) 6pv + M'B, 6pv + QTB, Sp,) d14, - qr 6pv = 

while the subvectors of (8.19a)-(8.19c) would collectively become 

9' 6pv dA, - q: 6pv (8.24) s s 
r 

(8.25) 

8.1.5 The tangent stiffness matrix 

The tangent stiffness matrix follows in the normal way by differentiation of (8.25), 
so that 

6qi = (B,(p)= 6 N  + BF 6M + BT 6Q) dA, + c ~ B , ( ~ ) ~ N  dA, = Kt1 6p + K,, 6p. (8.26) s s 
Substituting from (8.8)-(8.10) and (8.20)-(8.22) into the first term in (8.26) gives 

K i 1 = j [  $1 [;b ] [!: ]*CIA, (8.27) 

The geometric stiffness matrix, K,, comes (see (8.26)) from the variation of B, of 
(8.22). I t  is easier to derive this matrix by firstly reverting to the subvector forms of 
qi in (8.19a)-( 8. I ~ c ) ,  from which the only term not stemming from variations of N, M 
or Q (which lead to (8.27)) comes from (8.19b) as 

6qwi = B% 6T(w)'N dA, = BHN2Ss dA, = BgN2B, dA, SW = K,,Sw (8.28) s s s 
where 

N 2 = [  N x  

N X Y  

(8.29) 

In (8.28), use has been made of (8.5) for T and (8.14) for 6s. The K,, matrix in (8.28) 
could equally be derived directly from the continuum form as in (4.87) and (4.88) via 

6V = bsJN2SsdA,. (8.30) 

Allowing for any possible displacement constraints that may lead to (8.23) rather 
than (8.14), the complete tangent stiffness matrix becomes 

s 
K, = K,,(8.27) + B:N,B,dA,. i (8.31) 
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8.1.6 Numerical integration, matching shape functions and ‘locking’ 

We have already considered the introduction of various techniques to avoid ‘shear 
locking’ (see also CC2.21 for more detail in relation to the present elements). As 
previously discussed in Sections 7.1.3 and 7.1.5, we must also consider ‘membrane 
locking’. From these earlier discussions, we know that in order to avoid or, at the 
least, limit, such ‘locking’, we must use, at least, quadratic expansions (serendipity or 
Lagrangian) for the in-plane displacements, U and F. (Allman [A21 has given 
polynomial expressions for U and 5 which are strictly required in order to recover 
all admissible states of constant strain with the von Karman equations CV1.41 when 
w is expanded as a quadratic so as to represent the constant curvature states.) When 
coupled with two-by-two integration, the resulting configuration has been found, by 
the author, to give good results for a wide range of problems [CS,Cll]. 

An alternative approach, using only linear shape functions for U and C, could 
involve an extension of the methods suggested in Sections 7.1.3 and 7.1.5 for arch 
elements. One approach would simply involve the use of single-point integration for 
the membrane strain terms CM2.71. Alternatively (see equations (7.3 l ) ,  (7.32) and 
(7.50)), the membrane strains could be replaced by constant, averaged values. For 
the two-dimensional shell, rather than the one-dimensional beam, it is not immediately 
obvious how to apply such a technique. For a constant strain triangle, Stolarski et al. 
[S7] (followed by Jetteur and Frey [J2,J3] ) applied the previous one-dimensional 
relationships along the sides of the triangles. For a triangle with constant strain, the 
membrane strain vector, E, can easily be related to these three axial strains. An 
extension of these ideas to quadrilaterals has been given by Jetteur and Frey [J2,53]. 

Before leaving this section, we should note that the ‘eccentricity issue’ (see 
Section 7.1.3 and CC7.71) is also relevant to the choice of matching shape functions. 
I t  is most relevant in relation to the provision of eccentric stiffeners, but also affects 
the attached plate or shell element, particularly in the presence of material 
non- 1 i nea ri t y [ C 7.71. 

8.1.7 Extensions to the shallow-shell formulation 

The simplest way of extending the range of the shallow-shell formulation is to initially 
define a set of local flat surfaces with respect to which the shallow-shallow equations 
are defined. Prior to assembly of the overall systems, standard coordinate 
transformations can be applied. With triangular elements and with quadrilaterals for 
a cylindrical shell [C4] these facet systems are easily defined. For quadrilaterals with 
a general shell, some form of weighted averaging is required to define this surface 
[H I ,  J2,J3, N 11. In a non-linear environment, if the shallow-shell equations (and 
transformations) are always related to the initial locally flat system, the resulting 
formulation will be valid for deformations involving small rotations from the initial 
configuration. Morley [M5] and Providas [P4] have used a similar approach (but 
with the von Karman rather than thc Marguerre relationships) in conjunction with 
Morley’s triangular element [M4] which has mid-side rotational connectors. 

The limitation to small rotations from the initial configuration can be removed by 
adopting a corotational formulation for the local flat surfaces (facets) in conjunction 
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with a locally shallow formulation using the Marguerre equations. (These ideas have 
been discussed in relation to arches in Section 7.2.7.) Such an approach has been 
applied by Jetteur and Frey [J2,53] and Stolarski et al. [S7]. 

8.2 A DEGENERATE-CONTINUUM ELEMENT USING 
A TOTAL LAGRANGIAN FORMULATION 

In order to produce a non-linear degenerate shell element, we may, conceptually, 
simply extend the work of Section 7.5 into three dimensions. Early work applied the 
discretisation after the derivation of the tangent relationships at the continuum level 
[B2, R l ]  and consequently did not produce a consistent tangent stiffness matrix. The 
limitation was pointed out by Frey and Cescotto [Fl] and later by Surana [SS]. In 
the present section, we will follow closely the formulation of Ramm and Matzenmiller 
[R2] which is described further in a paper by Stander et al. [S4]. The developments 
are closely related to both the three-dimensional continuum formulation of Section 
5.1.3 and the two-dimensional ‘arch’ formulation of Section 7.5 and, to avoid 
repetition, some reference will be made to equations given in those sections. 

As a starting point (Figure 8.3), the geometry is expressed as 

where < and q are the non-dimensional coordinates in the plane of the shell and [ 
the non-dimensional coordinate in the thickness direction. The position vector, f in 
(8.32) relates to the centroidal or reference surface while Ar is in the direction of the 

Figure 8.3 8-noded  degenerate-cont inuum shell element  
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Figure 8.4 ‘Rotational’ variables, $ and (U for degenerate-continuum shell element, 

‘director’ (through the thickness). At  the nodes, the coordinates of the reference surface 
are given by ii, while the through thickness, director vectors are Ari = a iv i ,  where 
(Figure 8.3) ai is the thickness and vi  the unit  vector in the ‘thickness direction’. The 
vector vi  is defined by two parameters $i and (ui (Figure 8.4), where 

v i  = sin$coscci . i sin $ sin t o  I v i  = sin$coscci . i sin $ sin t o  I (8.33) 

In Figure 8.4, OA represents the unit vector v with $ as the angle between this vector 
and the x-axis. OB is the projection of v (OA) on to the y - z  plane while cr) defines 
the angle between this projection and the y-axis. The relationship in Figure 8.4 and 
(8.33) is not a unique way of defining the unit vector, vi  other possibilities exist but 
with v i  of unit length they should involve two parameters. 

For consistency with (8.32), the deflections, 

dT = ( U ,  0, ~ t )  (8.34) 

follow as 

d = d + Ad = 1 h i ( < ,  q)di + hiu i (v i  - via) (8.35) 

v: = (cos tji0, sin $io cos qo, sin $io sin wi0) (8.36) 

and $io, cuio are the initial values of $ and cu at node i and di contains the nodal 
values of the deflections at the reference surface (see (8.34) for d). 

Assuming di and vi  are known, the Green strain can be computed from (5.1 1 )  with 
H from (5.33) and A(8) from (5.34). The vector 8 (see (5.29)) of displacement gradients 
can be computed from the components of dd/dx, 8d/dy,3d/3z with the latter being 
computed using the usual Jacobian terms J (see CC2.21) in conjunction with the 

where 
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partial differentials of (8.35): 

(3d 1 ,; = 
( - 5  2 

E h , U i ( V i  - V i 0 )  

(8.37) 

(8.38) 

(8.39) 

where, as usual, h:i is the partial differential of h i  with respect to is. Differentiaion of 
(8.35) leads to 

CSU = h (<, q)'SU - + ihTD ( U  sin $) S+ (8.40) 

Cszi = h(5,  q)TCss + +[h'D (acos $ coscu)S+ - tyhTD(a sin $ sinw)Sco (8.41) 

S w  = h(t,q)TSW + $ih'D(acos$sintu)S+ + ~[h'D(usin$cos(o)Sco (8.42) 

where SU contain the nodal displacement changes of U,& the nodal displacement 
changes in F and SW the nodal displacement changes in ti', while h+ contains the 
nodal changes in the +s (see Figure 8.4) and 60 contains he nodal changes in the cos 
(see Figure 8.4). Collectively, these nodal displacement changes can be combined as 

6p1 = (&U', dvr,  hT, d+I, (hd) (8.43) 

(see the footnote on page25 regarding the ordering of the variables). The matrices 
such as D(u sin $) in (8.40)- (8.42) are diagonal and take the form previously discussed 
for the two-dimensional 'arch' in Section 7.5 (see equation (7.157)). 

Using (8.37) (8.42), the change in the displacement gradients 68 (see (5.29), 

can be related to the nodal variables, Csp, via 

1 

2 
Cse = 

In equation (8.45), 

sp = c a p .  

ak = 2(J ~ ' ( k ,  1)h: + J -  ' ( k ,  2)h,) 

b, = - D(a sin $)z, 

(8.44) 

(8.45) 

(8.46) 

(8.47) 
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with 

Also, 
z k =  CJ-’(k, l )ht+[J-’(k,2)h,+ J-’(k,3)h. (8.48) 

ck = D(a cos $ cos w)z,, (8.49) 

ek = - D(u sin $ sin co)zk, (8.50) 

With the new definition of (8.45) for G, (5.33) for H, and (5.34) for A@), equation 
(5.19) defines the internal force vector, qi .  

dk = D(a cos $ sin co)zk 

fk = D(a sin $ cos c0)zk. 

8.2.1 The tangent stiffness matrix 

As for the two-dimensional ‘arch’ formulation of Section 7.5, the tangent stiffness 
matrix can be expressed as 

Kt = Kt, + K u l  + KO2 (8.51) 

with K,, being defined by (7.168). Special treatment is required for the effective modular 
matrix C, which will be discussed later. 

The geometric stiffness matrix K,, is given, as for the continuum formulation, by 
(5.25) (although with G from (8.45)) with S being given by (5.36). For the second 
contribution to the geometric stiffness matrix, in place of the ‘arch equation’ of (7.172), 
we now have 

(8.52) 

where F(k) is the kth component of the vector: 

F = [H + A(O)]’S (8.53) 

with S from (5.35). Differentiation of the kth column of GT (from (8.45)) gives 6Gk 6p, 
where it can be shown that 

0 0 0  0 

(8.54) 
0 0 0 Dlk D2k 
0 0 0 D2k D3k 

where Dlk,  D,, and D3k are diagonal matrices with (i, i)th terms which involve z1 - 3  

from (8.48) and are given by the following equations: 

for k = 1,3: 

for k = 4,6: 

Dlk(i, i) = - ai sin t,bi cos wi zk - 3(i)  

D2Ji, i) = - ai cos $i sin coi zk - 3 ( i )  

D3,Ji, i) = - ui sin t,hi cos ui z k -  3( i )  

(8.55) 

(8.56) 
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for k = 7,9: 

Dl,(i, i) = - qs in  $isin(oiz,-6(i) 

D2,(i, i) = ai cos $i cos coi z, - 6( i )  

D3k( i, i) = - ai sin $i sin ccii zk - 6(  i). (8.57) 

In forming the standard tangent stiffness matrix, K , ,  (see (7.168)), the constitutive 
matrix (or tensor), C,, should include the plane-stress constraint that there be no 
stress in the initial thickness direction. At  a particular (Gauss) point c,q,  the unit 
vector, e3, in this direction can be computed from 

with Aro = 1 hiuivio Ar0 
I1 Aro I1 

e3 = (8.58) 

(see (8.32) for Ar). To find the unit vectors e ,  and e,, orthogonal to e3 (Figure 8.3), 
one can use procedures similar to those used in linear analysis [C2.2,22.1]. Assuming 
a linear material response, the local material modular matrix is given by 

E 
CI = 

(1  - v 2 )  

- 
1 \ I 0 0  0 0 
/ ' l o o 0  0 
0 0 0 0  0 0 
O O O A  0 0 
o o o o $ 4  0 

- 0 0 0 0  0 $4 

(8.59) 

where A = $(l - 11). To transform to global coordinates (for use in 7.168), the tensor 
relationship of (4.55) can be used with Cz,,, relating to CI and Ctkl  to the global C, 
in (7.168). The T tensor in (4.55) would be T,, = TZ, where the matrix form of T,, is 
given by (see (4.35)): 

(8.60) 

In order to produce an effective degenerate continuum shell element, the present 
theory must be supplemented by techniques to avoid 'shear' and 'membrane' locking. 
Also, for an efficient solution, the through-thickness integration should be divorced 
from the main calculations involving the Jacobians and shape functions. These 
concepts have been briefly discussed in the introduction and will be considered further 
in Volume 2. 

8.3 SPECIAL NOTATION 

ai = nodal 'thicknesses' (Section 8.2) 
ak, b,, c,, d,, f, = vectors for defining G (see (8.45)) (Section 8.2) 

A(8) = matrix containing displacement derivatives (see (5.34)) (Section 8.2) 
B, = matrix connecting E, to pm (Section 8.1) 
B, = matrix connecting x to pe (Section 8.1) 
B, = matrix connecting the slopes, s, to w (Section 8.1) 
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B, = modified B matrices after applying constraints (Section 8.1) 
B, = B matrix connecting 6E to 6p (Section 8.1) 
B, = B matrix connecting Sx to 6p (Section 8.1) 
B, = B matrix connecting 6y to Sp (Section 8.1) 

C,, c b  and Cmb = submatrices (membrane, bending and coupling) of tangential 
constitutive matrix, C, (Section 8.1) 

d = displacement vector (Section 8.2) 
d = displacement vector relating to reference surface (Section 8.2) 

D = diagonal matrices (see (7.157)) (Section 8.2) 
e, ,  e2, e3 = triad of orthogonal unit vectors at Gauss-point with e, in ‘thickness 

direction’ (Section 8.2) 
E = strains (Section 8.1) 
E = shallow-shell strains at reference plane (Section 8.1) 
E, = linear part of E (Section 8.1) 

Enl = non-linear part of E (Section 8.1) 
G = shear modulus 
F = H + A(€))-see (8.53) (Section 8.2) 
G = matrix connecting 60 to Sp (Section 8.2) 

H = shape-function matrix (see 8.15) (Section 8.1) 
H = Boolean matrix (see (5.33)) (Section 8.2) 
M = vector of bending moments (Section 8.1) 
N = vector of in-plane stress resultants (Section 8.1) 

N, = matrix of in-plane stress resultants (see (8.29)) (Section 8.1) 
p = nodal displacement; for Section 8.1, pT = (UT, VT, wT, €)I, 0;) = 

hg, h, = derivatives w.r.t 4 and V,I of shape function vector, h (Section 8.2) 

(PZ7 WT7 Pi) 
P, = matrix relating 6Gk to 6p (see (8.54)) (Section 8.2) 
Q = transverse shear forces (Section 8.1) 
r = position vector (Section 8.2) 
F = position vector of reference surface (Section 8.2) 
s = vector containing slopes, dw/dx and c3w/dy (Section 8.1) 
S = Second Piola-Kirchhoff stresses corresponding to E (Section 8.1) 
S = Second Piola-Kirchhoff stresses (Section 8.2) 
T = matrix of slopes (see (8.5)) (Section 8.1) 
U = U (x-direction) displacement at reference plane (Section 8.1) 
U = nodal values of U (Section 8.1) 
U = U (y-direction) displacement at reference plane (Section 8.1) 
V = nodal values of U (Section 8.1) 

vi = nodal ‘unit director vectors’ (Section 8.2) 
vio = nodal ‘unit director vectors’ in initial configuration (Section 8.2) 
w = nodal values of w (Section 8.1) 

X, y, Z = nodal values of x-, y -  and z coordinates of reference surface 
(Section 8.2) 

zk = vector used to define G (see (8.48)) (Section 8.2) 
y = vector of shear strains (Section 8.1) 

0 = vector containing 8, and 8, (Section 8.1) 
Ox, 8, = rotations of the normal (Section 8.1) 
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8 = vector containing displacement derivatives (see (8.44)) (Section 8.2) 
8, = nodal values of 8, (Section 8.1) 
8, = nodal values of 8, (Section 8.1) 

$i, ui = nodal parameter defining orientation of vi  (Section 8.2) 
$io, cuio = nodal parameter defining orientation of vio (Section 8.2) 

x = curvatures (Section 8.1) 
S\l/ = vector containing nodal values of h$ (Section 8.2) 
6u, = vector containing nodal values of 601 (Section 8.2) 
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9 More advanced solution 
procedures 

The solution procedure developed in Chapters 1-3 involved a combination of 
incremental load or displacement control coupled with full or modified Newton- 
Raphson iterations. Some history relating to the early introduction of these techniques 
was discussed in Section 1.1 with references (up to 1972) being given in Section 1.6. 
Further work following similar developments can be found in [S7, B7, C201. Although 
these techniques still provide the basis for most non-linear finite element computer 
programs, additional sophistications are required to produce effective, robust solution 
algorithms. In this chapter, we will describe a number of these procedures with 
emphasis on those techniques that I have found to be the most advantageous in 
practical non-linear calculations. References to other work will be given through- 
out but in the final Section 9.10, a summary is given of solution procedures that 
have not been covered earlier. Some of these will be considered in depth in 
Volume 2. 

The first topic to be discussed is that of ‘line searches’. This technique is widely 
used within ‘mathematical programming’. There are a whole range of procedures that 
have been developed within this field which are extremely relevant to non-linear finite 
element analysis (see also the quasi-Newton and acceleration techniques of Sections 
9.7 and 9.8). Good books on this topic are due to Fletcher [F7], Luenberger [L2] 
and Wolfe [WS]. 

A weakness of the full Newton-Raphson method is the high cost of each iteration. 
As discussed in Chapter 1, this can be reduced by adopting the ‘modified 
Newton-Raphson method’. However, the convergence rate is then rather poor. A 
compromise involves the ‘quasi-Newton techniques’ [ F7, L3, W6, DS] which are 
discussed in this chapter along with a set of ‘acceleration methods’ which are closely 
related. 

Apart from these techniques which stem from mathematical programming, the 
other procedures that will be discussed in this chapter are related to the mathematical 
field of ‘continuation techniques’ [R3, R4, R6, R7, U 1, C171 although, in relation to 
finite elements, they were often developed quite independently by engineers. It has 
already been indicated in Chapter 1 that ‘continuation techniques’ are aimed at tracing 
a complete path-for structures, an equilibrium path. It has also been shown in 
Chapter 1 that, when applying such techniques, severe difficulties can be encountered 
with ‘limit points’ where the load/deflection response becomes horizontal (or vertical 
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for displacement control). In the present chapter, emphasis will be placed on 
‘arc-length’ techniques for solving these problems. These techniques were originally 
introduced (in relation to mechanics) by Riks [R8, R9] and Wempner [WS] and later 
modified by a number of authors. 

Other techniques required for a robust continuation method largely relate to the 
automatic selection of a suitable increment size as well as the automatic reduction 
of this step when trouble is encountered. In addition, re-start facilities should be 
introduced because, despite one’s best attempts at automation, user intervention is 
often required. 

Throughout the chapter, the theoretical concepts are related directly to computer 
applications by the amendment of the simple non-linear finite element computer 
program originally developed in Chapters 2-3. The reader is given the same advice 
as in these chapters; if he or she does not wish to get involved in the full detail of 
the computer implementation, it should suffice to study the flowcharts rather than 
the Fortran listings. 

In Section 9.9, the enhanced computer program is used to re-analyse the ‘NAFEMS 
problems’ [D I .2, C1.21 originally introduced in Chapter 3. These examples are used 
to illustrate the application of all of the new techniques from ‘line searches’ to 
‘automatic increment reduction’ and the use of ‘re-starts’. 

9.1 THE TOTAL POTENTIAL ENERGY 

An energy basis for non-linear structural analysis was briefly discussed in Section 1.3.3. 
One important advantage of adopting such a viewpoint is that it allows the 
introduction of various solution algorithms developed in the field of mathematical 
programming or unconstrained optimisation [Fl, L1, W 13. Strictly, such techniques 
are not applicable to many structural problems such as those involving plasticity in 
which there is no elastic potential and the solution is path-dependent. Nonetheless, 
we can still beneficially adopt solution algorithms that stem from an energy approach 
even when the latter is not strictly applicable. With this in mind, we will now re-state 
in general terms the energy concepts of Section 1.3.3. 

The problem of (elastic) non-linear analysis can be viewed as that of minimising 
the total potential energy 4 which is a function of the total displacements, p. A 
truncated Taylor series then leads to 

dI,(p+6p)=4,(p)+ 84) - 6 p +  1 - 6 p T d 2 ? 3 p +  .. 
dp 2 (!p2 

where the subscript n means new while o means old. As indicated in Section 1.3.3, 
( d $ / i ? ~ ) ~  can be identified as the out-of-balance forces or gradient, g, of the total 
potential energy, while r724)jiip2 is the tangent stiffness matrix. I t  follows that (9.1) 
can be re-expressed as: 

where the principle of stationary total potential energy requires that, for equilibrium 
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at p, 
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WT 
dP 

g(p) = __ = 0 (9.3) 

while for the energy to be a minimum and for the equilibrium state to be stable, 

at the equilibrium point. Hence K, should, for stable equilibrium, be positive define 
at the equilibrium point. 

9.2 LINE SEARCHES 

9.2.1 Theory 

The line-search technique is an important feature of most numerical techniques for 
unconstrained optimisation and can be used with a wide range of iterative solution 
procedures. Detailed discussion is given in [F7, L3, W6, G4, C 161. Using such a 
technique, one would obtain a direction from an iterative procedure such as (in the 
present context) the modified Newton-Raphson iteration, i.e. 

where K, would be the tangent stiffness matrix at the end of the previous increment. 
The displacements would then be updated according to 

P" = P O  + V J P  (9.6) 

where po would be the fixed displacements at the end of the previous iteration and Sp 
the fixed direction obtained from (9.5). For the simple iterative procedures of 
Chapters 1-3, the scalar q in (9.6) would be set to unity. With the introduction of 
line searches, the scalar, q, becomes the iterative 'step length' which, for the line 
search, is the only variable. To derive the necessary conditions for 4 to be a minimum 
at a particular value of q, we replace (9.1) with an equivalent Taylor expansion about 
the solution at q, i.e. 

(9.7) 

where use has been made of (9.3) and (9.6). For the solution at y to be stationary, 
we require that 

In both (9.7) and (9.8), g has been written as a function of y because (see (9.6)), po 
and 6p are fixed. A search to satisfy equation (9.8) should find the step length, q, at 
which the angle a in Figure 9.1, is zero. From (9.8) and Figure 9.1, the slope, tancx, 
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/ I Exact soln cSp'g(q) = 0 I 
Range of 'slack' soln 4 

Figure 9.1 Line searches and the energy 4. 

at q = 0 is -s,), where 

so  = s(q = 0) = GpTg(q = 0) = 6pTgo (9.9) 

where go is the out-of-balance force vector at the end of the previous iteration. Zf we 
are adopting the modified Newton Raphson method as in (9.9, it follows that 

s o =  -gl'K-lg 0 t 0 -  - - 6 p T K 6 -  t P  (9.10) 

where K, is the tangent stiffness matrix at the last converged equilibrium state. 
Assuming that the latter is a stable state, K, will be positive-definite and hence s o  in 
(9.10) will be negative and the energy direction will, as illustrated in Figure 9.1, be 
'downhill'. 

If the full Newton-Raphson method were applied, (9.5) and (9.10) would still apply 
but, in place of K,, from the last converged equilibrium state, we should use K,, as 
computed from the last iterative solution, po. Because the displacements, po relate to 
the last iteration and not an equilibrium state, one cannot use stability of the 
equilibrium state to infer that K,, is positive-definite and there is no guarantee that, 
with the full N-R method, so will be negative and the current iterative direction will 
be in a downhill energy direction. Various techniques have been devised for directly 
modifying K, or otherwise changing the iterative procedure to ensure that it is positive 
definite [F7, L3, A2, Bl]. These techniques are usually aimed to converge on another 
state which is stable (with positive definite Kt) .  However, often in structural analysis, 
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the situation is more complex because (see Section 9.3.1) we do not always aim at a 
stable equilibrium state. 

For the present, we will simply assume that so (see (9.9)) is negative and that we 
can apply a standard downhill line search. I f  this line search were to be exact, we 
would be looking for the smallest positive y-value to make s (q )  (see (9.8)) zero. In 
practice, it is inefficient to apply an ‘exact’ line search and, instead, we apply a ‘slack’ 
line search with the aim of making the modulus of s(y) small in comparison with the 
modulus of so, i.e. 

(9.1 1)  

where PIS is the ‘line-search tolerance’. From the author’s experience, a suitable value 
for PIS is of the order of 0.8. The situation depicted in (9.1 I )  is illustrated in Figure 9.1. 
For mathematical programming, (9.1 1)  would be supplemented by a condition 
ensuring a sufficient reduction in 4 which would involve the energy itself and not 
just the slopes, s [F7, L3,G4]. 

In most finite element systems, we do not have the energy and hence we cannot 
apply this last condition. Also with plasticity, this quantity is questionable. Nonethe- 
less, it would probably be very valuable for finite element computer programs to 
compute an estimate of 4. This can be very economically produced at the Gauss-point 
level (as part of the stress updating) via 

(9.12) 

where w includes the weighting and area contribution, (T, are the current stresses, (T, 

the stresses at the last converged equilibrium state and AE the strain increment (from 
the last converged equilibrium state). The author introduced such a procedure into 
a finite element system and used both the energy terms and slopes, s, with a cubic 
interpolation procedure in order to estimate the required step length, y.  However, 
preliminary studies indicated that the resulting technique was very susceptible to 
round-off error [CS]. Hence, for the present, we will avoid the use of 4 and assume 
only the existence of the slopes, s, which can be easily computed (see (9.8) and (9.9)) 
from the inner product of the out-of-balance forces g and iterative displacement 
direction, 6p. We will also assume that we are including non-smooth non-linearity 
resulting from, say, plasticity or, more extremely, concrete cracking. 

In these circumstances, it is simplest to apply a simple bracketed interpolation 
procedure as illustrated in Figure 9.2, which relates to real computations on reinforced 
concrete beams and slabs that were performed by the author (C161. To produce the 
results in this figure, the line searches have been applied with a very tight tolerance 
(small P I S  in (9.1 1)). In practice such a tight tolerance would not be used. 

The main features of the procedure are illustrated in Figure 9.2(a). Having computed 
g in the standard way with q l  = y = 1, the inner product, s1 = s(q = l), of (9.8) was 
computed and related to the inner product of (9.9), so, (with y = 0) in order to obtain 
the ratio r(y) of (9.1 1). This ratio was about - 1.4 and is plotted as point 1 in 
Figure 9.2(a). Linear interpolation between point 0 and 1 then involved 

(9.13) 
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Dangerous extra polar ton 
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s - 1 0  
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Figure 9.2 Examples showing Iine-searches: (a) interpolated, (b) extrapolated, (c) limited extra- 
polation. 

indicating a new estimate for the step length ( q 2 )  of about 0.42. The out-of-balance 
force and inner product in (9.8) was then recomputed to give a ratio r ( q )  (see (9.1 1 ) )  
of about -0.7. This solution is plotted as point 2 in Figure 9.2(a). In practice, with 
PIS in (9.1 1) being set to 0.8, this point would be deemed acceptable and the line-search 
procedure would be completed and the next iteration begun. Purely for illustration 
purposes, the procedure was continued with interpolation between point 0 and 2 in 
Figure 9.2(a), which leads to point 3 and, following interpolation between points 0 
and 3, to point 4. 

A generalisation of (9.13), relevant to the procedure in Figure 9.2(a), would be 

(9.14) 

This process involves an interpolation between the current ‘slope’ and the ‘slope’ at 
q = 0. Such a procedure will not always be appropriate. 

Figure 9.2(b) shows that extrapolation can be used instead of interpolation while 
Figure 9.2(c) shows that this extrapolation should not be taken too far and that a 
maximum amplification (10 in Figure 9.2(c)) should be allowed. In a similar fashion, 
i t  is wise to introduce a minimum step-length, qmin. In Figure 9.2(c), the final 
interpolation to obtain point 3 is between point 1 and point 2 and therefore does 
not fit in with the procedure of (9.14). Instead the interpolation is performed between 
the point (2) with a negative ratio r = s (q ) / so  and the nearest point ( 1 )  with a positive 
ratio. This approach can be extended so as to involve the smallest q value with a 
negative ratio. 
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Before detailing an algorithm to implement a line-search procedure, it should be 
emphasised that, for many iterations, the first 'trial' step length of q = 1 would 
immediately satisfy the line-search tolerance. For example, in Figure 9.2(b), the ratio 
r of (9.11) corresponding to point 1 (with q =  I )  was about 0.6. With a tolerance 
factor, /3,$ in (9.1 I )  of 0.8, this solution would have been deemed satisfactory. Hence, 
no extra residual (or out-of-balance force vector) calculations would be required on 
account of the line-search procedure. The only extra work, in comparison with a 
formulation without line searches, would, in these circumstances, be the calculation 
of the inner product of (9.8) (with q = I ) .  In comparison with the other work, this 
work is almost negligible. 

9.2.2 Flowchart and Fortran subroutine to find the new step length 

The previous ideas are incorporated in the flowchart of Figure 9.3 and the following 
Fortran subroutine. The aim is to use linear interpolation as in Figure9.2(a) and 
9.2(c). However, this can only be applied once one has obtained in step length, q, 
relating to a negative ratio, Y (see (9.11)). I n  the absence of such a step length, the 

Find ( q - , r - )  
which gives minq with -ve r = r -  

with positive r 

q = extrap. ( q i ,  q i  - ) 
if ( q  < 0 or > amp x qmaxp), ! I +  + 0 . w -  - q + )  

v l =  amp X Vmaxp 

if ( q  > qmaxa and ICO = I ) ,  ICO = 2, RETURN 
and ( i f  ICO= 1 )  I C 0 = 2  I 

-1 

Figure 9.3 Flowchart for subroutine SEARCH 



LINE SEARCHES 259 

algorithm adopts extrapolation as in Figure 9.2(b) or, if  the extrapolation goes too 
far (Figure 9.2(c)), simple step-length amplification using an input maximum 
amplification factor, ‘amp’. The latter is illustrated in Figure 9 4 ~ ) .  

The algorithm is aimed at computing q i + l  after entering with a new step length, 
pii ,  and equivalent ratio, ri.  Additional input is ‘amp’, the maximum amplification 
factor, qmaxa, the maximum allowed step length and, gminu, the minimum allowed step 
length as well a s  ICO, a counter that is normally zero but is set to unity once the 
maximum or minimum allowable step length is reached. The subroutine sets ICO 
to two once the maximum allowable step length has been reached twice. In 
these circumstances, the computer program resorts to increment reduction (see 
Section 9.5. I ) .  

9.2.2.1 Fortran subroutine SEARCH 

The following FORTRAN subroutine implements the algorithm illustrated in the 
previous flowchart. The step lengths, q, are stored in ETA with corresponding ratios, 
I’ (see (9.1 I ) ) ,  in PRODR. These vectors are initially set up to contain 

1 2 3 

s(q = I )  
ETA (27) 0 1 

PRODR(r) 1 
‘7 0 

The routine is not optimised for efficiency so that, for example, searches are made 
through previous values to obtain a step length with a negative ratio. However, for 
practical sized problems, the time spent in computing the step length is almost 
negligible in comparison with the time required for the computation of a new 
out-of-balance force vector, g ( q ) .  

1 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 
C 
C 

SUBROUTINE SEARCH (ILS,PRODR,ETA,AMP,ETMXA,ETMNA,IWRIT 
IWR.ICO,NLSMXP) 

PERFORMS LINE LOCAL LINE-SEARCH TO GET STEP LENGTH 
IN ETA (ILS+2) 
ETA 1 -ILS HAS PREVIOUS STEP LENGTHS (ETA( 1 )  =O.,ETA(2) = 1 . )  
WITH EQUIVALENT INNER-PRODUCT RATIOS IN PRODR, (PRODR( 1) == 1 . )  
AMP HAS MAX AMP. FACTOR FOR STEP LENGTH, 
ETMXA AND ETMNA HAVE MAX AND MIN ALLOWED STEP LENGTHS 
ICO ENTERS=I IF MAX OR MIN STEP LENGTH USED ON PREVIOUS 
SEARCH 
EXITS SET TO 1 IF USED ON PRESENT SEARCH 

OR 2 IF ALSO USED ON LAST SEARCH 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION PRODR(NLSMXP).ETA(NLSMXP) 

OBTAIN INEG = NO OF PREVIOUS S-L WITH NEG. RATIO NEAREST 
TO ORIGIN 
AS WELL AS MAX PREVIOUS STEP LENGTH, ETMAXP 
IF NO NEGATIVE PRODUCTS, INEG ENDS AS 999 
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C 
INEG = 999 
ETANEG = 1 .D5 
ETMAXP = 0.DO 
DO 10 I = I , I L S + l  
IF (ETA(I).GT.ETMAXP) ETMAXP = ETA(I) 
IF (PRODR(I).GE.O.DO) GO TO 10 
IF (ETA(I).GT.ETANEG) GO TO 10 
ETANEG = ETA(I) 
INEG =I 

10 CONTINUE 
C 
C BELOW NOW ALLOWS INTERPOLATION 

IF (INEG.NE.999) THEN 
C 
C 

FIND IPOS=NO OF PREVIOUS S--L WITH POS RATIO THAT IS 
CLOSEST TO INEG (BUT WITH SMALLER S-L) 
IPOS = 1 
DO 20 I = l , I L S + I  
IF (PRODR(I).LT.O.DO) GO TO 20 
IF (ETA(I.).GT.ETA(INEG) ) GO TO 20 
IF (ETA(I).LT.ETA(IPOS) ) GO TO 20 
IPOS = I 

20 CONTINUE 
C 
C INTERPOLATE TO GET S-L ETAINT 

ETAINT = PRODR( INEG)*ETA(lPOS)-PRODR(lPOS)*ETA( INEG) 
ETAlNT ETAINT/(PRODR(INEG)-PRODR(lP0S) ) 

C 

C TAKE MAX 

C OR MIN STEP LENGTH 

ALTERNATIVELY GET ETAALT ENSURING A REASONABLE CHANGE 
ETAALT= ETA(IP0S) +0.2*(ETA(INEG)-ETA(IPOS) ) 

IF (ETAINT.LT.ETAALT) ETAINT = ETAALT 

IF (ETAINT.LT.ETMNA) THEN 
ETAINT = ETMNA 
IF (ICO.EQ.1) THEN 
I C 0 = 2  
WRITE (IWR,1010) 

ELSEIF (ICO.EQ.0) THEN 
ICO=1 
ENDIF 
ENDIF 

ETA(ILS+2)=ETAlNT 
IF (IWRIT.EQ.1) THEN 
WRITE (IWR,1001) (ETA(I),I= 1,ILS+2) 

WRITE(IWR,1002) (PRODR(I),I= 1,ILS+ 1 )  

ENDIF 
RETURN 

1010 FORMAT(/,IX,'MIN STEP-LENGTH REACHED TWICE') 

C 

1001 FORMAT(/,lX,'L-S PARAMETERS',/,IX,'ETAS ',(6G11.3) ) 

1002 FORMAT(/,1X,'RATIOS',(6G11.3) ) 
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C 
C 
C BELOW WITH EXTRAPOLATION 

C 
ELSE IF (INEG.EQ.999) THEN 
SET MAX TEMP STEP LENGTH 
ETMXT = AMP*ETMAXP 
IF (ETMXT.GT.ETMXA) ETMXT = ETMXA 
EXTRAP. BETWEEN CURRENT AND PREVIOUS 
ETAEXT=PRODR(ILS+ l)*ETA(ILS)-PRODR(ILS)*ETA(ILS+ 1)  
ETAEXT= ETAEXT/(PRODR(ILS + 1)-PRODR(ILS) ) 
ETA(ILS + 2) = ETAEXT 
ACCEPT IF ETAEXT WITHIN LIMITS 
IF (ETAEXT.LE.O.DO.OR.ETAEXT.GT.ETMXT) ETA(ILS + 2) = ETMXT 
IF (ETA( ILS + 2).EQ.ETMXA.AND.ICO.EQ.l) THEN 
WRITE (IWR,1003) 

C 

C 

1003 FORMAT(/,l X,' MAX STEP-LENGTH AGAIN') 
C STOP 'SEARCH 1003' 

ICO = 2 
RETURN 
ENDIF 
IF (ETA(ILS + 2).EQ.ETMAXA) ICO = 1 
IF (IWRIT.EQ.1) THEN 
WRITE (IWR,1001) (ETA(I),I= l,ILS+2) 
WRITE (IWR,1002) (PRODR(I),I=l,ILS+ 1) 
ENDIF 
ENDIF 
RETURN 
END 

9.2.3 Implementation within a finite element computer program 

We will now outline a procedure whereby the computer programs of Chapters 2 and 
3 could be modified to include line searches using the previous subroutine SEARCH. 
In Sections 9.4.2 and 9.6, we will give a modified computer program that includes 
not only line searches but also the arc-length method, automatic increment sizes, 
accelerations and automatic increment reduction. In order to introduce all these 
options, a number of changes have had to be made to the structure of the original 
programs. At the present stage, we will merely outline the way in which the programs 
of Chapters 2 and 3 could be most simply modified to introduce line searches. The 
reader might like to make these changes himself (or herself) or might, at this stage, 
prefer to simply follow the ideas and wait until Sections 9.4.2 and 9.6 before considering 
detailed implementation. 

In order to incorporate the previous subroutine within the finite element computer 
program of Chapters 2 and 3, we must firstly input the line-search parameters. 

9.2.3.1 input 

In order to achieve this with the minimum disruption to the previous programs, we 
can introduce a COMMON block, DATLS into both the main program NONLTC of 
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Set max. number of iterations, NITMAX 
Set line-search switch ILFAIL = 0 *** 
Begin iterative loop, ITE = 1 ,  NITMAX 

I f  (ITE = 1 or NLSMX = 0 (no-line searches) or ILFAIL = 1 (uphill))** 
call FORCE which computes N = fn. ( E A ,  I ,  z, p) 

Call ELEMENT and compute the internal force vector, qi ,  for the truss 
If full N--R iterations, also compute K, 

Call ELSTRUC which modifies qi for the effects of the linear springs 
and, if full N-R, puts the elements stiffness matrix into the 

struct. stiff. matrix and modifies for the effects of linear springs 

Compute the out-of-balance force vector, - g = qe - qi 
and store go = g*** 

create reaction vector, r = qi 
except at earthed springs where ri = - KSipi 

Call BCON which applies the bound. conditions 
Call CROUT which computes K, = LDLT 

Call SOLVCR which computes 6p = - K 1 g 
using the previously computed LDLT factors 

p = p + c s p  

call LSLOOP ****** 
I f  ILFAIL = 2, STOP ***** 

(STdP) 
Figure 9.4 Flowchart for subrouttne ITER when miodlfled to include line searches 
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Section 2.5.1 and into the main iterative routine ITER of Section 2.4.2. This block is 

C3MMON/DATLS/NLSMX,PERMLS, AMPMX, ETMXA,ETMNA,GO(S) 

where the constants will become apparent from the following and GO(5) will contain 
the initial (for any iteration) out-of-balance force vector, go (at rl  = 0). In addition the 
input line: 

READ (IRE,*) BETOK,ITERTY 

and accompanying output line of program NONLTC (see Section 2.5.1) can be 
amended to the following 

READ (IRE,*) BETOK,ITERTY,NLSMX 
WRITE (IWR,1003) BETOK,ITERTY,NLSMX 

1003 FORMAT(/,lX.'CONV. TOL FACTOR, BETOK= ',G13.5./, 
1 1 X,'ITERATIVE SOLN. TYPE, ITERTY = ',l5>/, 
2 5X,'= 1 ,  FULL N-R; =2, MOD. N-R',/, 
3 lX,'MAX. NO. OF L-SEARCHES= ',l5) 

C BELOW SPECIFIC TO LINE SEARCHES 
IF (NLSMX.NE.0) THEN 
READ (IRE, *) PERMLS, AMPMX, ETMXA, ETMNA 
WRITE (IWR, 1009) PERMLS, AMPMX, ETMXA, ETMNA 

100s FORMAT(/, I X ,  'LINE SEARCH PARAMS ARE',/, 
1 
2 3X, 'MAX. AMP AT ANY STEP, AMPMX = ',G13.4,/, 

3X, 'TOLERANCE ON RATIO, PERMLS = ',G 13.4/, 

3 
4 

3X, 'MAX. TOTAL STEP-LENGTH, ETMXA 1 'G13.4,/, 
3X, 'MIN. TOTAL STEP-LENGTH, EXTMNA = ' ,G13.4) 

9.2.3.2 Changes to the iterative subroutine ITER 

Figure 2.4 contains the flowchart for subroutine ITER which iterates, at the structural 
level, to equilibrium. In order to introduce line searches, this flowchart can be altered 
as indicated in Figure 9.4 where the asterisked sections relate to the changes. 

Apart from the introduction of the COMMON block DATLS (see Section 9.2.3.1), 
the changes to the subroutine ITER of Section 2.4.2 could involve: 

( 1 )  At the very start, setting ILFAIL = 0 
(2) Inserting before CALL FORCE, 

IF (ITE.EQ.1 .OR.NLSMX.EQ.O.OR.ILFAIL.EQ.I ) 
and after CALL ELSTRUC, 

ENDlF 
This avoids the recomputation of the internal force vectors immediately after a 
call to the line search loop (via CALL ISLOOP). 

(3) Replacing the DO 10 loop to form the out-of-balance force vector with: 

C BELOW FORMS G M  =OUT-OF-BALANCE FORCE VECTOR 
C AND REACTION VECTOR 
C IN ADDITION NOW SAVES GO FOR LINE SEARCHES 

DO 10 I = I , N V  
GM(I) =; 0 DO 
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REAC(I) = FI(I) 
IF (I BC (I).  EQ.0) TH E N 

ENDIF 

10 CONTINUE 

G M ( I )  = QEX( I)-FI( I) 

GO(I)= -GM(I) 

where the amendments have been underlined. 
(4) Just below the DO 30 loop to have: 

C ABOVE UPDATES DISPS. 
C 

IF (NLSMX.NE.0) CALL LSLOOP(PT,GM,IBC,IWRIT,IWR,ITERTY,NV, 

IF (ILFAIL.EQ.2) STOP C 

IF (IWRIT.EQ.1) WRITE (IWR,1004) (PT(I),I= 1,NV) 

1 FI,QEX,AKTS,AKTE,D) 

C 

where, again, the amendments have been underlined. 

9.2.3.3 Flowchart for line-search loop at the structural level 

In the above, we have called a subroutine =LSLOOP which calls subroutine 
SEARCH (see Section 9.2.2.1) and performs the line-search loop at the structural 
level. In the flowchart which is given in Figure 9.5, q is the vector ETA of Section 9.2.2 and 
r is the vector = PRODR containing the ratios r of (9.1 I) .  These arrays must be defined 
in subroutine = LSLOOP which, via the common /DATLS/ of Section 9.2.2.1 also has 
access to the array =GO = go formed in subroutine = ITER (see Section 9.2.3.2). 

This routine returns to ITER with ILFAIL = 0 if the line-search procedure has been 
satisfactory. If the iterative direction is ‘uphill’ (see Section 9.2.1), it returns with 
ILFAIL = 1 and ITER continues using the default step length of 1 (having abandoned 
the line search). If  the line-search procedure Fdils, ILFAIL is set to 2 and on the return 
to ITER, the safest option would be to STOP (see the flowchart in Figure 9.4). Later 
(in Section 9.5.1 and 9.6.5), we will instead adopt automatic increment reduction. 

A Fortran subroutine relating to a slightly modified form of the above will be 
given in Section 9.4.2.1. I t  has already been pointed out in Section 9.2.1 that, for 
many iterations, the introduction of the line-search algorithm (with a ‘slack tolerance’) 
will introduce very little extra work. This point can be checked by studying the 
flowcharts of Figures 9.4 and 9.5. They show that if, on the first application of the 
satisfaction check in Figure 9.5 (with 1 = l),  the line-search tolerance is satisfied, the 
extra computational work in comparison with a standard N-R or mN-R procedure 
only involves the computation of s,(y = 0) and s(y = 1). The advantage of introducing 
the line-search technique is that the ratio r (9.1 I )  gives a very effective indication of 
whether or not it is safe to proceed directly to the next iteration. In very many 
instances, with ‘slack line searches’ and PIS (see (9.1 1 ) )  rr 0.8, the tolerance check of 
(9.1 1)  will be satisfied within the line-search loop of Figure 9.5 with I = 1 so that no 
extra residual (or out-of-balance force) calculations are required. However, when 
Irl > PIS, without the line-search facility, the iterative procedure to enforce equilibrium 
will often diverge. 



LINE SEARCHES 

If full N-R, call ELEMENT and call ELSTRUC 
to form new K, 

RETURN 

265 

- 

Compute disps. at end of last iter., p, = p - 6p 
Compute so = 6pTg,, if positive, set ILFAIL = 1 and RETURN 

Set q(1) = qo = 0, q(2) = 1 and equiv. ratio 
r(1) = 1 

Set q = q(2) and ICO = O  

1 
I Begin 1-search loop, ITE(1) = 1, NITMAX 1 

4 

Call FORCE which computes N = fn.(EA,l,z,p) 
Call ELEMENT to compute the int. force vector, qi(q) for the truss 

Call ELSTRUC which modifies qi for the effects of the linear springs 
Compute s(q) = 6pT(q, - 9,) = 6pTg(q) 

and ratio r ( l +  1) = s(q)/so 

Call SEARCH to obtain q = q(1 + 2) 
P = P O  + r 6P 

@Li 
01 or 1 

I ILFAIL = 2, line-search trouble, RETURN I 

Figure 9.5 Flowchart for subroutine LSLOOP 
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9.3 THE ARC-LENGTH AND RELATED METHODS 

The arc-length methods are intended to enable solution algorithms to pass limit 
points (maximum and minimum loads-see Chapter 1). Prior to their introduction, 
analysts either used artificial springs CS3.1, W9], switched from load to displacement 
control [Sl.l] or abandoning equilibrium iterations in the close vicinity of the limit 
point [B7, B8). In relation to structural analysis, the arc-length method was originally 
introduced by Riks [R8,R9] and Wempner [WS] with later modifications being 
made by the author [Cl 1, C191 and other [Rl, R2, S2, F9, G3, B5, S61. Details will be 
discussed later. Closely related work can be found in the mathematical literature 
[Kl ,  K2, R6] with the first such paper appearing to be due to Haslegrove [H2]. 

9.3.1 
examples of their use 

The need for arc-length or similar techniques and 

Figures 9.6(a)-(c) show three possible load/deflection curves involving limit points with 
both ‘snap-throughs’ (Figure 9.6(a)) and ‘snap-backs’ (Figure 9.6(b)). Simple examples 
involving both of these phenomena have already been discussed in Chapters 1-3. 
More complex examples include as wide-ranging phenomena as the ‘buckling’ of 
shells (Figure 9.7 and [Cl t]), stiffened-plated structures (Figure 9.8 and [Ct 11) and 
the cracking of reinforced concrete (Figure 9.9 and [C14]). 

It has already been indicated in Chapters 1-3 that the true response in Figures 9.6(a) 
and (b) would involve both inertia effects and dynamics. Under load control the 
dynamic response in Figure 9.6(a) would follow the dashed line (possibly followed 
by a small damped oscillation around point C). In contrast, the solid, static line from 
A to C would maintain equilibrium but be unstable under load control but stable 
under displacement control. Under displacement control, the dynamic response in 
Figure 9.6(b) would follow the dashed line between A and C with the equivalent 
solid line being static but, again, unstable. 

The reader might ask ‘Why do we attempt to follow such unstable paths?’ Why 
not (a)jump straight from point A to point C using statics or (b) follow the dashed 
line using dynamics? The latter should indeed be possible with a non-linear dynamic 
finite element program. However, this is not a simple solution and we are here 
concerned with static computer programs. As already discussed in Chapters 2 and 
3, one can, in some circumstances, move directly from A to C but, in many other 
cases, the large jump is too much for the iterative solution procedure to handle. Also, 
the required response may be that shown in Figure 9.6(c) where there is no point C 
and the structure collapses at A. Again one might ask ‘Why bother to proceed beyond 
point A when the structure has collapsed?’ There are a number of answers: 

(i) ‘A’ may only be the local maximum (see Figures 9.6(a) and (b)). 
(ii) The ‘structure’ being analysed may be only a component. It may later be desirable 

to incorporate the load/deflection response of this component within a further 
analysis of a complete structure. 

(iii) In the above and other situations, it may be important to know not just the 
collapse load but whether or not this collapse is of a ‘ductile’ (Figure 9.6(d)) or 
‘brittle’ (Figure 9.6(c)) form. 
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Figure 9.6 Various load/deflection curves: (a) snap-through; (b) snap-back; (c) 'brittle' collapse; 
(d) 'ductile' collapse 
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Figure 9.8 Idealisation and computed responses for steel box-girder diaphragm (with experimental 
collapse load). 
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( iv)  Even if A is the only maximum, it may be necessary to move to point B (just 
beyond the maximum) because 
(a) This confirms that we have indeed just passed a limit-point. Many analysts 

simply apply further load increments until the solution procedure fails to 
conkergc (say applying the increment to level Y in Figure 9.6(c)) and then 
assume that this iterative fdilure reflects a structural failure. Sadly, iterative 
failure can occur for other reasons and this approach is not recommended. 
Even to establish the plateau in Figure 9.6(d), load control is inappropriate. 

(b) Having converged on a point such as B, it is then possible to investigate 
(preferably with the aid of graphics) the structural state (stresses, strains, 
deflections, plastic Lows, etc.) at B in order to gain insight into the mechanism 
or c;iuse of the structural failure. 

( v )  Figure 9.6(d) illustrates the type of load- deflection response, stemming from an 
elastic/perfectly plastic, geometrically linear analysis. For this type of problem, 
the load corresponding to the plateau could also be obtained via a ‘plastic 
mechanism’ or ‘yield-line method’. With standard load control, i t  would be very 
difficult to reproduce this ‘limit load’ and, without converging on a point such 
as B (Figure 9.6(d)), i t  would be impossible to fully establish the ‘mechanism’. 
With the aid of the arc-length method, the author has used the finite element 
method to obtain plastic mechanism solutions for reinforced concrete structures 
[Cl 81. 

Before discussing the detail of the arc-length and other related methods, one should 
mention standard ‘displacement control’ for which a solution algorithm has already 
been given in Section 2.2.5. For many problems. it is possible to use such a technique 
to obtain, for example, the complete solid line in Figure 9.6(a). By and large, this 
technique can be applied when an equivalent displacement-control could be used in 
an experiment. There are, however, occasions when this is difficult or impossible. For 
example, one may wish to obtain the scalar multiple of an ‘abnormal vehicle loading’ 
on a bridge in which the ‘abnormal loading’ involved a set of, say, sixteen wheel 
loads of equal magnitude [Cl 131 (or some other fixed loading pattern  figure 9.9). 

Other examples include structures for which the response involves a ‘snap-back 
behaviour’ as illustrated in Figure 9.6(b). Such a response is typical of shell structures. 
Figure 9.7 shows the load-deflection response that was computed by the author for 
the response of a thin cylindrical shell subjcct to a central point load [Cl 1). The 
solution obtained by the author involved the arc-length method coupled with 
automatic increments (see Section 9.5). The solution by Sabir and Lock [Sl. l]  was 
obtained by switching from load to displacement control. 

Another example involves the large-deflection elasto-plastic analysis of the stiffened 
diaphragm from a box-girder bridge which was analysed by the author [Cl 1,C21]. 
Because of the limited computer power, an elastic substructuring technique was 
combined with some structural idealisations [Cl 1,C20] so that only the diaphragm 
was analysed in a non-linear manner (Figure 9.8). In order to bracket the experimental 
behaviour, two extreme boundary conditions were applied to the out-of-plane 
deflections at the edges of the diaphragm. For analysis A (curve A, Figure 9.8), the 
boundaries were assumed to be simply supported, while for analysis B (curve B, 
Figure 9.8), they were assumed to be encastre. (The solution for analysis A has been 
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Figure 9.9 Computed response for prestressed concrete bridge (with experimental collapse 
load). 

offset from the origin in Figure 9.8 in order to avoid interference with the solution 
curve for analysis B.) For both analyses, the structure was ‘loaded’ by incrementing 
prescribed displacements across bearings and combining this displacement control 
with the arc-length method. In addition the length increments (see Section 9.3.2) were 
automatically computed (see Section 9.5). As illustrated in Figure 9.8, the resulting 
solutions bracketed the experimental collapse load. Solution A resulted in a snap-back 
form of response which could not be obtained without the addition of the arc-length 
constraint (Section 9.3.2). With ordinary displacement control, a point was reached 
at which numerical convergence could not be obtained. At  this stage, because of the 
suddenness of the ‘softening’ (Figure 9.8), a maximum load was not properly defined. 
It was this example that led to the author’s work on the arc-length procedure. 

On switching the emphasis of my work from steel to concrete structures [C14, C151, 
I was surprised to find that snap-through and snap-back responses were equally 
relevant to concrete structures. Figure 9.9 shows an example involving the analysis 
of a prestressed beam-and-slab bridge [C 141 for which the numerical solution clearly 
exhibits snap-throughs and local maxima. (The strange ‘blip’ in the solution was, at 
the time, attributed to a defect in the arc-length method. i t  now seems likely that the 
phenomenon was caused by the solution procedure assuming that a negative pivot 
in the factorised K, was associated with a ‘limit point’ when it was probably caused 
by a bifurcation associated with material instability [C 121.) Other work with concrete 
‘softening’ has encountered snap-backs [C 14, D5]. 

Procedures for directly computing the critical points have been discussed in 
[M5, R7, E2, F51. From an engineering viewpoint, the precise computation of limit 
points does not seem to be of major importance-a continuation solution passing 
over the point will usually locate the point to sufficient engineering accuracy (plasticity 
will often limit the increment size). On the other hand, it may be important to locate 
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bifurcation points with reasonable accuracy, in order to be able to switch to the 
post-buckling path (see Section 9.10). 

9.3.2 Various forms of generalised displacement control 

As a starting point to various ‘continuation methods’, we can write the equilibrium 
equations as 

g(p, 1.) = qi(P) - 4 e f  = 0 (9.15) 

where qi are the internal forces which are functions of the displacements, p, the vector 
qef is a ‘fixed external loading vector’ and the scalar i is a ‘load-level parameter’ 
that multiplies qef. Equation (9.1 5 )  defines a state of ‘proportional loading’ in which 
the loading pattern is kept fixed. Non-proportional loading will be discussed in 
Section 9.5.3. 

In Section 9.5, we will introduce a simple method whereby the scalar loading 
parameter, i, may be automatically incremented thus producing a ‘load-controlled 
continuation method’. However, as already discussed, the major limitation of load 
control is that, near a limit point, there may be no intersection between the equilibrium 
path of (9.15) and the plane i, = constant which represents the next ‘load level’. Various 
forms of ‘arc-length methods’ have stemmed from the original work of Riks [R8, R9] 
and Wempner [WS] who aimed to find the intersection 
where s is the arc length, defined by: 

and 

s =  [ds 

The scaling parameter $ is required in (9.17) because the 

of (9.15) with s = constant, 

(9.16) 

(9.17) 

load contribution depends 
on the adopted scaling between the load and displacement terms. Having introduced 
the arc-length, s, one may attempt to directly solve 

g(s) qi( p ( ~ ) )  - jv(S)qef = 0 (9.18) 

using a higher-order ODE method [W3]. However, with this approach it is often 
very difficult to successfully limit the ‘drift from equilibrium’ and hence ‘predictor-- 
corrector’ methods are usually used. For load control, these would involve the 
techniques of Chapters 1 -3 with an incremental, tangential, predictor being followed 
by Newton-Raphson or modified Newton-Raphson iterations which act as 
‘correctors’. For the arc-length methods, one would effectively replace the differential 
form of (9.17) with an incremental form: 

U = (ApTAp + A;v2$2qTfqef) - A12 = 0 (9.19) 

where Al is the fixed ‘radius’ of the desired intersection (see Figure 9.10 where for 
brevity we have written qef as q) which is an approximation to the incremental arc 
length. The vector Ap and scalar A i  are incremental (not iterative, for which we will 
us 6s) and relate back to the last converged equilibrium state (see Figure 9.10). 

The main essence of the arc-length methods is that the load parameter, 3., becomes 
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Figure 9.10 Spherical arc-length procedure and notation for one degree of freedom system (with 
$ = 1). 

a variable. Hence, together with the n displacement variables, we have a total of n + 1 
variables. To solve for these, we have the n equilibrium equations of (9.15) and the 
one constraint equation of (9.19). Following Riks [R8, R9] and Wempner [W5], we 
can solve for these n + 1 variables by directly applying the Newton-Raphson method 
to (9.15) and (9.19). From our previous developments, the Newton-Raphson method 
is best introduced via a truncated Taylor series with the subscript n meaning new 
and o meaning old. From (9.15) and (9.19) this leads to 

(9.20a) 

Equations (9.20a) and (9.20b) can be combined and, after setting g, and a, to zero, 
solved for 6p and 6;l, giving 

(9.21) 

The augmented ‘Jacobian’ or ‘stiffness matrix’ within the square brackets in (9.21) 
remains non-singular even when Kt = ag/dp is singular. (Equations of the form of 
(9.21) are also known as ‘bordered’ equations [R14]. Other interesting structural 
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uses of bordered equations have been given by Kroplin et ul. [K7, K9, K101). 
Equations (9.21) can be used directly to find the changes 6 p  and 6 i .  However, in 
contrast to K,, the augmented stiffness matrix in (9.21) is neither symmetric nor banded. 

9.3.2.1 The 'spherical arc-length' method 

Instead of solving (9.21), one may directly introduce the constraint of (9.20b) by 
following Batoz and Dhatt [B4] for displacement control at a single point (see 
Section 9.3.2.3). To this end, the iterative displacement, Zip, is split into two parts. 
Hence the Newton change at the new unknown load level, in = L,, + Z i i ,  becomes 

6 p  = - K,- 'g(po ,  A) = - K,- '(qi(p0) - inqer )  = - K,-'(g(p,, A,,) - 6 iqe f ) .  (9.22) 

One can work with either of the forms on the far right-hand side of (9.22). The 
penultimate form involves a complete split into internal forces, qi,  and external forces, 
,iqef, while the final form can be expressed as 

(9.23) 

with 6p, = K,- I Q e r .  Using this form, Sp is the iterative change that would stem from 
the standard load-controlled Newton -Raphson method (at a fixed load level, io), 
while 6p, is the displacement vector corresponding to the fixed load vector, qef.  I f  
the modified Newton-Raphson method is adopted, Zip, must be computed for the 
initial 'predictor' (Section 9.4.3) step but (because K ,  is fixed) does not change during 
the iterations. 

Having obtained 6 p  from (9.23) (with 6R still unknown), the new incremental 
displacements are 

Apn = Apo + 6 p  = Ap, + Sp + 6R 6p,  (9.24) 

where 6 L  is the only unknown. It can be found from the constraint of (9.19), which 
can be re-expressed as 

(9.25) 

Substitution from (9.24) for Ap,, into (9.25) leads to the scalar quadratic equation: 

where 
a ,  6L2 + u,ZiA + u j  = 0 (9.26) 

a1 = 6 ~ : 6 ~ t  + +2q:rqef (9.27a) 

a2 ~ ~ P , ( A P ,  + SP) + 2AAo+2qzfqef (9.27b) 

a3 = (Ape + ZiP)T(Apo + 6p) - A12 + Albi$2q:rqef ( 9.27~) 

which can be solved for dA so that, from (9.24), the complete change is defined. (The 
issue of the choice of root will be discussed in Section 9.4.1.) In contrast to the use 
of (9.2.1), this technique only requires the inversion (or, in practice, factorisation) of 
the banded symmetric tangent stiffness matrix, K,.  In theory, the method suffers from 
the limitation that, precisely at the limit point, K, will be singular and the equations 
cannot be solved. In reality, the author has not found this to be a significant problem, 
because one appears never to arrive precisely at the limit point (see also [B4]). 
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Nonetheless, a number of authors have addressed the issue of ‘stabilising’ the 
stiffness matrix near to limit points. Riks and Rankin [R14] have proposed two 
techniques, one of which requires knowledge of the lowest eigenmode of K,. Felippa 
[Fl, F2] has combined a partitioning device of Rheinboldt [R6] with the original 
‘fictitious spring approach’ of Sharifi and Popov CS3.11. As already discussed, in the 
mathematical programming literature there are approaches to modify K, in the 
presence of ‘uphill directions’ [F7, L31. These methods must also be relevant. 

We have not yet discussed the ‘scaling parameter’, $, in the constraints of (9.19) 
and (9.25). Both the author [Cl I ]  and Ramm [ R l ,  R2] independently concluded that, 
for practical problems involving a realistic number of variables, the ‘loading terms’ 
(those involving $) had little effect and hence advocated setting $ to zero. As a result, 
the constraint should be considered as ‘cylindrical’ rather than ‘spherical’. This 
cylindrical constraint will be adopted in the detailed treatment of Section 9.4. Padovan 
and Arechaga [Pl] and Park [P7] proposed adopting a variable $ which is large 
in the initial stages (so that the technique then tends towards load control) and small 
when the limit points is approached. In Section 9.5.2, we will discuss a procedure 
that produces a similar effect by switching to ‘arc-length control’ as the limit point 
is reached. Felippa [FI, F2] and Simo et al. [SS] have taken the scaling or weighting 
further by replacing the ApTAp term in (9.19) ApTS Ap, where one suggestion for the 
scaling matrix S in Diag (K,). Weighting schemes have also been advocated by de 
Borst [D5] and Gierlinski and Graves-Smith [G3]. 

At this stage, it would be a good idea to describe the progress of the arc-length 
method in relation to Figure 9.10 (where, for brevity, we have written q instead of 
qef). Having converged on the equilibrium point ( p,, dOqef), an incremental, tangential 
predictor (Apl ,  AAl) would be computed (see Section 9.4.3 for further details on the 
predictor) leading to the point ( p l ,  Alqef). The first iteration would then use (9.26) 
and (9.27) with the ‘old’ Ap, as Apl and the ‘old’ A i ,  as A i l  to obtain dp, and di,, 
after which the updating procedure (see 9.24)) would lead to 

Ap, = ApI + d p , ,  A i ,  = AA, + d i 1 .  (9.28) 

When added to the displacements, p, and load level, A,, at the end of the previous 
increment this process would lead to the point (p, ,  AA2qef) in Figure 9.10. 

The next iteration would then re-apply (9.26) and (9.27) with the old value Ap, as 
Ap2 and the old AA, as AA2 to obtain Sp, and S i 2 ,  after which the updating procedure 
would lead to Ap3 = Ap, + 6p2 and AA3 = AA, + hi,. The iterations would cease once 
the convergence criterion (see Section 9.5.4) was satisfied. 

9.3.2.2 Linearised arc-length methods 

A number of authors [R 1, R2, R8, R9, W5, S2, F9, F 121 have advocated linearised 
forms of arc-length method. From (9.20b), we can write 

(9.29) 

where a, is the ‘old’ value of the arc-length mismatch (see (9.19)). If a, is taken as 
zero, we have Ramm’s approach [R 1, R2] which ensures that the iterative change 
(dp, dA$qef) is orthogonal to the ‘secant change’ (Ape, AA0+qef) (see Figure 9.1 l(b)). 
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*Displacement Displacement 

/ 
(a) (b) 

Figure 9.11 Linearised arc-length methods: (a) the Riks-Wempner method; (b) Ramm’s method. 

Using (9.23), this leads to 

(9.30) 

This technique is closely related to the original procedures due to Riks [R8, R9] and 
Wempner [WS] which, as illustrated in Figure 9.1 l(a), involve making the iterative 
change (Sp, SA$qer) orthogonal to the predictor solution (Ap,, AA,) (again with a,=O). 
The relevant formulae are simply obtained by replacing the ‘old incremental’ (Ap,,AA,) 
with the ‘initial predictor’, (Ap,, AA,) in (9.29) and (9.30). A further variation has been 
given by Fried [F12] which uses (dp,,  1 /($2q:rqer)) in place of (Ap,, AA,) with also 
U ,  = 0. In this approach, which is related to a procedure by Haselgrove [H2], the 
solution process does not depend on the predictor solution. The idea of including 
the U, terms in (9.29) and (9.30) is due to Schwiezerhof and Wriggers [S2] and Riks 
[RI I] with a further modification by Forde and Stiemer [F9]. 

The linearised versions are simpler than the spherical form of Section 9.3.2.1 because 
there is no issue of the choice of root in the solution to (9.26). However, the ‘spherical 
form’ has the advantage that throughout the iterations the solution is alway aimed 
at the same point (although some improvements can be made, in this respect, to the 
linear forms by including the a, terms in (9.30)). Hence, it is more stable and can 
converge when the linearised form misses the equilibrium path [W4]. 

9.3.2.3 Generalised displacement control at a specific variable 

All the methods described in this section may be considered as forms of generalised 
displacement control which can be applied although, physically, the problem does 
not involve displacements control. This has effectively been achieved with the 
spherical arc-length method (with $ = 0) by constraining the Euclidean norm of the 
incremental displacement to a fixed quantity (equation (9.25)). Instead, following Batoz 
and Dhatt [B4], one may constrain the displacement increment at a particular variable 
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to a specified quantity so that in place of (9.25) one would have 

where Ap(k) is the kth (scalar) component from the vector Ap and Apk is the prescribed 
magnitude of the kth incremental displacement variable. Using, as before, (9.23) for 
the iterative change 6p, the constraint (9.31) then leads to 

The tangential, predictor solution would simply be achieved by finding 

(9.32) 

(9.33) 

with Kt as the tangent stiffness matrix at the beginning of the increment and then 
AA from 

AA 6pt(k) = APk (9.34) 

where 6p,(k) is the kth (scalar) component from the vector 6pt. In contrast to standard 
displacement control (Section 2.2.5), the variable k would be one where, physically, 
there would be no real displacement control (and hence no reaction). Rheinoldt 
[R3,R6] has adopted this approach with the variable k being changed for each 
increment so as to relate to the largest tangential (predictor) component. 

Simons and Bergan [SSJ, expanding on the work of Powell and Simons [Pl 11 and 
Bergan and Mollestad [B 101, have advocated a ‘hyperplane control method’ which 
effectively involves an extension of Batoz and Dhatt’s method with a weighted linear 
combination of ‘individual specified displacements’ with, say, half-a-dozen key 
displacement variables and weights being specified by the user. A procedure lying 
between the arc-length method and this ‘hyperplane control’ has been proposed by 
Gierlinski and Graves-Smith [G3]. 

9.4 DETAILED FORMULATION FOR 
THE ‘CYLINDRICAL ARC-LENGTH’ METHOD 

In Section 9.3.2.1 we introduced the ‘spherical arc-length method’ and (with $ = 0 
in (9.25)) the ‘cylindrical method’. In the present section, we will complete the detail 
(with $ = 0) and provide flowcharts and a computer implementation. 

9.4.1 
application of the arc-length constraint 

Flowchart and Fwtran subroutines for the 

We will now apply equations (9.26) and (9.27) (with $ = 0) which lie at the heart of 
the arc-length method. However, we must firstly address the issue of finding an 
appropriate root to (9.26). The idea is to compute both solutions (6Al and d&) and 
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6E* = h i l  
if (Ai2 cos 6 2  > A12 cos fll), 6 i  = 6A2 
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hence to have both 

Ap,, = Apt, + 6p + 6 i , 6 p t  (9.35a) 

Apn2 = Ap, + Sp + 622 6pt (9.3 5 b) 

and then to find which of Apn, and Apn2 lies closest to the old incremental direction 
Ap,. This should prevent the solution from ‘doubling back on its tracks’. This 
procedure can be implemented by finding the solution with the minimum angle 
between Apo and Ap, and hence the maximum cosine of the angle, using 

and 

(9.36) 

U 1  = 6pT6p1 

a2 = 26pT(Ap, + 6p) 
a3 = (Ap, + 6p)T(Apo + Sp) - A12 

a4 = ApiSp  + ApTAp, 

a5 = APPPt  

Call QSOLV with a , ,  a2 and a j  to obtain 61v1 and 6R2 

Also IFAIL = 0 with two roots, 1 with linear solution 
and (possibly) dLlin = - a 3 / u 2  

= 2 no real roots 
I 

I 

A = /I + 62 
p = p + 6 p  = p + dp + 6A6p, 

Figure 9.12 Flowchart for subroutine ARCLl 



278 MORE ADVANCED SOLUTION PROCEDURES 

where we have used (9.24) for Apn. Assuming that we have computed 

6p  = -K;Ig,,, apt = KT1qef (9.37) 

a flowchart to implement (9.26), (9.27) (with t,b =0) and (9.36) is given as Figure 9.12. 
In the accompanying Fortran subroutine ARCLI , instead of Apo, we have PT which 

contains the current displacement, p and PTOL which contains the old total displace- 
ments at the end of the last increment. The difference between the two gives Apo. 
Also, at  the end of the routine we update the total displacement rather than updating 
the incremental displacement, Ap. 

The subroutine ARCLI calls a routine QSOLV which solves the quadratic equation 
(9.26). The reader might prefer to introduce his own routine for this purpose. If, 
because a1 is very small (see (9.26) and (9.27)), the constraint relationship is effectively 
linear, we adopt the linear solution. If we can find no real roots to the constraint 
equation, we exit from ARCLI with the variable IFAIL set to 2 and (via subroutine 
NEXINC-see Sections 9.5.1 and 9.6.5), we cut the increment. Other remedies are 
possible [C6, C161. 

9.4.1.1 Fortran subroutines ARCLI and QSOLV 

SUBROUTINE ARCL1 (DT, DELBAR, PT, PTOL, IBC, NV, DL2, FACT, IFAIL) 

DT =TANGENTIAL DlSP WITH FIXED LOADS 
DELBAR =TANGENTIAL DlSP WITH 0.6. FORCES 

PTOL=TOTAL DISPS AT END OF LAST INC 

C FOR ARC-LENGTH SOLN 
C 
C 
C PT=TOTAL DISPS 
C 
C DL2=DESlRED INC LENGTH SQUARED 
C FACT=TOTAL LOAD FACTOR 
C 
C 

lFAlL=OUTPUT AS 2 IF NEED TO CUT INC. 

IMPLICIT DOUBLE PRECISION (A-H, 0-Z) 
DIMENSION DT(NV), DELBAR(NV), PT(NV), IBC(NV), PTOL(NV) 

A1 =O.DO 
A2 = O.DO 

A4 = 0.DO 
A5 = O.DO 
DO 10 I=1, NV 
IF (IBC(I).NE.l) THEN 
A1 =A1 +DT(I)*DT(I) 

A2 = A2 + 2 .D 0 * DT (I) * D PBAR 
A3 = A3 + DPBAR'DPBAR 
A4 = A4 + DPBAR*(PT(I)-PTOL(1)) 
A5 = A5 + DT( I) * (PT( I)-PTOL( I)) 

C 

A3= -DL2 

DPBAR =PT(I)-PTOL(I) + DELBAR(1) 

ENDIF 
10 CONTINUE 
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C 

C BELOW NEEDS INC. CUTTING 
CALL QSOLV(A1, A2, A3, RI, R2, RLIN, IFAIL) 

C 

C 
C 
C 
C 
C 
C 

C 

C 

C 

IF (IFAIL.EQ.2) RETURN 
IF (IFAIL.EQ.1) THEN 
ONLY LINEAR SOLN. POSSIBLE 
SOL = R1 
ELSE1 F (I FA1 L.EQ.0) THEN 
COST1 = A4 + A5*R1 
COST2 = A4 + A5*R2 
SOL = RI 
IF (COST2.GT.COSTl) SOL = R2 
ENDIF 
FACT = FACT +SOL 
DO 20 I=1, NV 

RETURN 
END 

20 PT(1) = PT(I) + DELBAR(1) + SOL*DT(I) 

SUBROUTINE QSOLV(A1, A2, A3, RI, R2, RLIN, IFAIL) 

SOLVES QUADRATIC AI X**2 + A2 X + A3 
IF A2.NE.0 LINEAR SOLN, -A3/A2 in RLIN 
IF IFAIL OUT AS ZERO TWO REAL ROOTS IN R1, R2 
IF IFAIL OUT AS UNITY A1 TENDS TO ZERO AND R1 OUT AS RLlN 
IF IFAIL OUT AS 2. NO REAL ROOTS 

IMPLICIT DOUBLE PRECISION (A-H, 0-Z) 

SMALL=l.D-IO 
IFAIL = 0 
IF (A2.NE.0) RLlN= -A3/A2 
FAC = A2*A2-4.DO**AI *A3 
IF (FAC.LT.O.DO) THEN 

NO REAL ROOTS 
IFAIL = 2 
RETURN 

REAL ROOTS 
FAC = DSQRT(FAC) 
IF (Al.EQ.O.DO) THEN 

IF (A2.NE.0) THEN 

ELSE 

RI =RLIN 
IFAIL = 1 
RETURN 

ELSE 
STOP ‘QSOLV 1 ’ 
A1 =O AND A2-0 

ENDIF 
ELSE 
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If (ITE = 1 or NLSMX = 0 (no line searches) or ILFAIL = 1 (1s. uphill) 
call FORCE which computes N = fn. (EA, l , z ,p )  

Call ELEMENT and compute the internal force vector, qi for the truss 
If full N-R iterations, also compute K, 

Call ELSTRUC which modifies qi for the effects of the linear springs 
and, if full N-R, put the element stiffness matrix into the 

struct. stiff. matrix and modify for the effects of linear springs 
I 

C REAL ROOTS AND AA.NE.0 
R l  = - 0.5D*( FAC + BB)/AA 
R2 = 0.5DO*( FAC-BB)/AA 

ENDIF 
ENDIF 
RETURN 
END 

Compute the out-of-balance force vector, - g ( G M )  = - qi + Lqef(QFI) 
and store go = g 

if arc length (IARC = I ) ,  set dp, (DT) = qef(QFI) 
create reaction vector, r = qi 

except at earthed springs where ri = - &pi . 

9.4.2 Flowchart and Fortran subroutine for the main 
structural iterative loop (ITER) 

The routine ARCLI of Section 9.4.1 will be called from the main iterative subroutine 
ITER that was initially introduced in Section 2.4.2 and, in outline, modified for line 
searches in Section 9.2.3.2. We will now further adapt this routine so that it can be 
used with either line searches or the arc-length method (the combination of the two 
is discussed in [Cl91 and will be considered in Volume 2). Apart from the direct call 
to subroutine ARCLl, the main modification to the routine involves the use of 
g=qi- ; lq , ,  rather than, as before (Chapter 2), g = q i - q e  where qe was the fixed 
external load vector relating to load level, 1. The vector q,, is the fixed loading vector 
(see Chapter 2) that was before (see Section 2.3.1) and is now called QFI. The loading 
parameter, A, is called FACT (total factor). Having introduced these changes, the final 
modified flowchart is shown in Figure 9.13. 
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1 
11 q, 11 - Id cont. 

max( I1 r II,O.OOI) - disp. cont. 
Convergence check: 11 g 11 < f i  

No 

I f  arc-I and full N-R 
'ICall SOLVCR gives Gp,(OT) = K; lqCr 

[Call SOLVCR gives ~p (GM) = - K,- I g  I 

new E. and new p 

1 (arc-I) 

to modify 6p 
I 1 

I 

I f  line-searches (NLSM 20) 

1 If IAUTO = 1, RETURN else STO 

Figure 9.13 Flowchart for final subroutine ITER. 
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The last box in the flowchart implements (with lAUTO= 1 )  automatic increment 
reduction if convergence is not achieved, if no real roots are found for the arc-length 
constraint or if difficulties are encountered with the line-search procedure. These 
issues are discussed further in Section 9.5. The flowchart also refers to a subroutine 
ACCEL (following the computations of Sp in subroutine SOLVCR). This subroutine 
applies an 'acceleration' to the modified Newton-Raphson method and is discussed 
in Section 9.8. 

The arc-length procedure will work with either applied load-control or displacement 
control. However, as implemented here, the latter can only be used with the full N-R 
method and not the modified N--R method. In the latter case, the new K, matrix is 
not formed and nor is dp, = Kt-'q,,. However, with displacement control, we need 
the new K, matrix (or part of it) in order to produce the 'effective load vector' in 
subroutine BCON (see Section 2.2.5). 

9.4.2.1 Fortran subroutine ITER 

SUBROUTINE ITER(PT,AN,BETOK,QFI,IBC,IWRIT,IWR,AKTS,D,ITERTY,NV, 
1 GM, FI,REAC,PTOL,DT, FACT,DL,IARC) 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

C 

THIS FINAL VERSION HAS EITHER LOAD,DISP OR ARC-L CONTROL 
ALSO INCLUDES LINE-SEARCHES (BUT NIT FOR ARC-L) VIA 

A) COMMON /DATLS/ 
B) POSSIBLE CALL TO LSLOOP 

INPUTS PREDICTOR DISPS. PT(NV) AND TOTLA. FIXED FORCE VEC QFI(NV) 
ALSO BETOK = CONV. TOL, IBC = B. CON COUNTER 
ITERATES TO EQUILIBRIUM: OUTPUTS NEW PT AND FORCE IN BAR,AN 
IF ITERTY (INPUT)=I USES FULL N-R, =2 USES MODN-R 
IN LATTER CASE, AKTS AND D INPUT AS CROUT FACTORS (D=PIVOTS) 
LOCAL ARRAY IS AKTE = EL. STIFF. MATRIX 
GM USED FOR 0.6. FORCES, FI FOR INT FORCES, 
PTOL HAS OLD DISPS. AT END OF LAST INC., 

ARGUMENTS IN COMMON/DAT2/ AND ARRAY X NOT USED FOR SHALLOW TRUSS 
ARGUMENTS IN COMMON/ACEL/ ONLY FOR ACCELERATION 

DT FOR TANGENTIAL (DUE TO TOTAL LD) DISPS (FIXED IF MOD N-R) 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
COMMON /DAT/ X(2),Z(2),E,ARA,AL,ID14S(4),AK14S(4),NDSP,ANIT,AK15 
COMMON /DAT2/ ARN,POISS,ALN,ITYEL 
COMMON /DATLS/ NLSMX,PERMLS,AMPMX,ETMXA,ETMNA,GO(5) 
COMMON /AUTOINC/ IAUTO,ITE,NITMAX,BET 
CO M M 0 N /ACE L/D E LO (5), G 00 (5), I ACC, R 1 C, R2C 
DIMENSION PT( NV),QFI(NV),IBC( NV),REAC( NV) 
D I M ENS I0  N F I ( N V) , G M ( NV) , AKTS ( NV, NV) , D ( N V) ,A KTE (4,4) 
DIMENSION DT(NV),PTOL(NV) 

ILFAIL =O 
SMALLz0.1 D-2 
BELOW OLD STEP-LENGTH FOR ACCN 
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C 

C 

1005 

C 
C 

C 
C 
C 
C 

C 
C 
C 
C 
C 

C 
C 
C 
C 

C 
C 

C 
C 

10 
67 
47 

50 

SLOL=I.DO 
DL2 = DL*DL 
IMOD = 1 
IF (ITERTY.EQ.1) IMOD=3 

DO 100 ITE=l,NITMAX 

IF (IWRIT.EQ.1) WRITE (IWR,1005) ITE 
FORMAT(/,lX,'ITERATIVE LOOP WITH ITE = ',E) 
IF (ITE.EQ.l .OR.NLSMX.EQ.O.OR.ILFAIL.EQ.l) THEN 
ILFAIL = 1 IF LS LOOP GAVE UPHILL 
BELOW CALCS FORCE IN BAR (AN) 
CALL FORCE(AN,ANIT,E,ARA,AL,X,Z,PT,IWRIT,IWR, 

ABOVE ARGUMENTS NOT USED FOR SHALLOW TRUSS 
1 ITYEL,ARN,ALN,POISS) 

ABOVE CALCS FORCE IN BAR, AN: BELOW TAN STIFF AKT 
(IF NR) AND INT. FORCE VECT. FI 
CALL ELEMENT(FI,AKTE,AN,X,Z.PT,E,ARA,AL,IWRIT,IWR,IMOD, 

ABOVE ARGUMENTS NOT USED FOR SHALLOW TRUSS 
1 ITYEL,ALN,ARN) 

BELOW PUTS EL. STIFF. MAT., AKTE, IN STR. STIFF., AKTS AND 
ADDS IN EFFECTS OF VARIOUS LINEAR SPRINGS (IN NR) 
ALSO MODIFIES INT. FORCE VECT. FI FOR SPRING EFFECTS 
CALL ELSTRUC(AKTE,AKTS,NV,AK15,ID14S,AK14S,NDSP,FI,PT, 

ENDIF 
1 I M OD, I WRIT, I WR) 

BELOW FORMS GM = OUT-OF-BALANCE FORCE VECTOR 
AND REACTION VECTOR 
IN ADDITION, NOW SAVES GO FOR LINE SEARCHES 
DO 10 I=I ,NV 
GM (I) = O.DO 
REAC(I) = FI(I) 
IF (IARC.EQ.l.AND.ITERTY.EQ.1) DT(I) =QFI(I) 
IF (IBC(I).EQ.O) THEN 

ENDIF 

CONTINUE 
FORMAT(6G13.5) 
FOR MAT( 515) 

GM(I) = FACT*QFI(I)-FI(I) 

GO(I)= -GM(I) 

OVERWRITE SPRING REACTION TERMS 
IF (NDSP.NE.0) THEN 
DO 50 I=  1,NDSP 

ENDIF 
REAC(ID14S(I) ) = - AK14S(I)*PT(ID14S(I) ) 

BELOW CHECKS CONVERGENCE 
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FNORM=O.DO 
GNORM =O.DO 
RNORM =O.DO 
INDSP=O 
DO 20 I=  1,NV 
IF (IBC(I).EQ.O) FNORM = FNORM + QFI(I)*QFI(I) 
IF (IBC(I).EQ.- 1) IDSP= 1 
RNORM = RNORM + REAC(I)*REAC(I) 

20 GNORM =GNORM + GM(I)*GM(I) 
FNROM = FACT*DSQRT(FNORM) 
GNORM = DSQRT(GN0RM) 
RNORM = DSQRT(RN0RM) 
BAS = MAX(FNORM,SMALL) 

IF (IDSP.EQ.1) BAS= MAX(RNORM,SMALL) 
BET = GNORMIBAS 

WRITE (IWR,1001) ITEM,BET 
FORMAT(/,l X,'ITERN. NO. = ',IS,'CONV.FAC. = ',G13.5) 
IF (IWRIT.EQ.1) WRITE (IWR,1003) (GM(I),I= 1,NV) 

IF (BET.LE.BETOK) GO TO 200 

C BELOW DISP. CONTROL 

ITEM = ITE - 1 

1001 

1003 FORMAT(/,lX,'OUT-OF-BAL.FORCE VECTOR =',/,lX,6G13.5) 

C 
C BELOW FOR FULL N-R 

IF (ITERTY.EQ.1) THEN 

IF (IARC.EQ.l) THEN 
CALL BCON(AKTS,lBC,NV,DT,IWRIT,IWR) 
ELSEIF (IARC.EQ.0) THEN 

CALL BCON(AKTS,lBC,NV,GM,IWRIT,IWR) 

ENDlF 
CALL CROUT (AKTS, D, NV, IW R IT, IW R) 
ABOVE FORMS LDL(TRAN) FACTORISATION INTO AKTS AND D 
ENDlF 

IF (IA RC. EQ. 1 .AN D. ITE RTY. EQ. 1 ) 

ABOVE GIVES TANGENTIAL CHANGE DT DUE TO LOADING 
CALL SOLVCR( AKTS, D,G M, NV, I WRIT,I WR) 
ABOVE GETS ITER. DISP. CHANGE IN GM DUE TO O.B. FORCES 

IF (IARC.EQ.l) THEN 
CALL ARCLI (DT,GM,PT,PTOL,IBC,NV,DL2,FACT,IFAIL) 
IF (IFAIL.EQ.2) STOP 'ITER 30' 

C BELOW FOR ARC-L ON LOADING TERM 

C BELOW NON-ARC L 

C ABOVE APPLIES B. CONDITIONS 

C 

C 

1 CALL SOLVCR(AKTS,D,DT,NV,IWRIT,IWR) 
C 

C 
C 

C 
C BELOW NON ARC-L 

NO ROOTS TO ARC-L CONSTRAINT 

ELSEIF (IARC.EQ.0) THEN 
IF ACCEL., MODIFIES ITER. DISP. VECT., GM 
IF (IACC.EQ.l) 

C 
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1 CALL ACCEL( GM,GO,GOO,IBC,NV,DELO,SLOL,Rl C,R2C,ITE,IWRIT, 
2 IWR) 

DO 30 I = l , N V  
IF (IBC(I).EQ.O) THEN 
PT(I)=PT(I)+GM(I) 
ELSE 
PT(I) = FACT*QFI(I) 
ENDIF 

30 CONTINUE 
C ABOVE UPDATES DISPS. 
C 

IF (NLSMX.NE.0) CALL LSLOOP(PT,GM,IBC,IWRIT,IWR~ITERTY,NV 

IF (ILFAIL.EQ.2) GO TO 110 
ENDIF 

1 ,Fl,QFI,AKTS,AKTE,D,FACT,AN,SLOL,ILFAIL) 

C 

1004 

100 

110 

1002 

C 

C 

C 
200 

IF (IWRIT.EQ.1) WRITE (IWR,1004) (PT(I),I= 1,NV) 
FORMAT(/,l X,’TOTAL DISPS ARE’,/,l X,6G13.5) 

CONTINUE 

WRITE (IWR,1002) 
ITE = NITMAX 
FORMAT(/,lX,’FAILED TO CONVERGE OR L.S. TROUBLE****’) 
IF (IAUTO.EQ.0) THEN 
STOP ‘ITER 100’ 
ELSE 
RETURN 
ENDIF 

CONTINUE 
RETURN 
END 

In the above subroutine, both the COMMON /ACEL/ and the call to subroutine 
ACCEL relate to an accelerated modified Newton-Raphson method that will be 
discussed in Section 9.8. 

9.4.3 The predictor solution 

We have so far described the implementation of the ‘spherical arc-length method’ 
within the overall iterative loop for equilibrium but have not discussed in any detail 
the implementation of the ‘predictor’ solution. Assuming, as before, the adoption of 
a forward-Euler tangential predictor, the latter is given by 

where K, is the tangent stiffness matrix at the beginning of the increment. Substituting 
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(9.38) into the constraint of (9.25) (with $ = 0) gives 

(9.39) 

where AI is the given incremental length. Because of the plus or minus sign in (9.39) 
we have two possible predictors. Following [Cl 11, in the present work we will let s 
be + 1 when K, (at the beginning of the increment) is positive definite. In relation to 
the adopted solution procedure the latter will occur when all the terms in D, the 
diagonal matrix of the LDLT factorisation of K, are positive. When one of these terms 
is negative, we have one ‘negative pivot’, which implies one negative eigenvalue for 
K,. This will occur when we have overcome a limit point (see Figure 9.6(a)) and we 
then set s to - 1.  Unfortunately, a negative pivot will also be found (see Sections 
2.6.3, 3.10.4 and 9.9.4) when we have passed a bifurcation point rather than a limit 
point. Hence, as will be shown in Section 9.9.4, in the presence of a bifurcation, the 
present algorithm will lead to a solution that oscillates about this bifurcation point. 
If one simply wishes to continue following the unstable post-bifurcation path, one 
may, instead of switching with a negative pivot in K,, switch when the predictor ‘work 
increment’, AqTAp becomes positive [C22, M2- M41. The latter is essentially the 
‘current stiffness parameter’ which will be discussed in Section 9.5.2. As shown in 
Section 9.9.4, this parameter does not respond to ‘bifurcations’. 

Ideally, however, one would prefer to automatically switch to the stable (or more 
stable) post-buckling path. These issues will be briefly discussed in Section 9.10 and, 
in more detail, in Volume 2. This volume will also consider the problems in which 
one encounters more than one negative pivot [C12, C15, M2-M4]. For the present, 
the solution algorithm will automatically stop if more than one negative pivot is 
encountered on the factorisation of the tangent stiffness matrix at the beginning of 
an increment. (The author recommends that, until more advanced path-following 
techniques are available within commercial finite element codes, a similar approach 
should be adopted therein. It should, of course, be possible to override this requirement 
and, with the aid of restarts (Section 9.5.5) and manual intervention, the problems 
may be overcome but the user should, at the very least, be made aware that he is 
treading in dangerous waters.) 

More sophisticated predictors can be used instead of the ‘forward-Euler’ predictor 
of (9.38) [R13]. However, den Heijer and Rheinboldt ID71 have argued that ‘higher 
order predictions are very rarely effective.’ In order to avoid duplication, we will not 
give the precise details of the predictor solution for the arc-length method at this 
stage but will wait until Section 9.6, when we have discussed the provision of automatic 
increments and automatic increment reduction. For the non-linear analysis of skeletal 
space structures, Kondoh and Atluri [K5] have adjusted the ‘incremental length’, A!, 
to be no greater than the step required to initiate ‘local buckling’. 

9.5 AUTOMATIC INCREMENTS, NON-PROPORTIONAL 
LOADING AND CONVERGENCE CRITERIA 

We will firstly discuss automatic increments in relation to standard load or displace- 
ment control, for which we wish to find a way of choosing a suitable ‘load increment 
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factor’, AL. (The solution algorithms of Chapters 2 and 3 were all based on the use 
of fixed, equal, increments (as input by FACl = AL).) A number of procedures have been 
advocated for calculating a changing increment size [D7, S 1, B7, B9, C 1 1, R 1, R21. Den 
Heijer and Rheinboldt [D7] relate the increment size to the curvature of the non-linear 
path, with the latter requiring both the tangential predictor and the difference between 
the displacement vectors at the current and previous load levels. This procedure has 
much in common with a technique advocated by Bergan and Soreide [B9]. Later, 
Bergan and co-workers [B6, B7, DS] advocated an approach based on the ‘current 
stiffness parameter’, which will be discussed in Section 9.5.2. Following numerical 
experiments, they observed [BSI that both techniques led to nearly the same number 
of iterations being required to restore equilibrium. The author (Cl 1 )  advocated a 
procedure whereby this was aimed at directly. To  this end, the new increment factor, 
A& was set to 

(9.40) 

where AA, is the old increment factor for which I ,  iterations were required and I ,  is 
the input, desired, number of iterations (Zd 2 3). The parameter n was set to unity. 
Ramm [Rl, R2] suggested that n should be set to and this approach has since been 
adopted by the author and will be used here. This technique leads to the provision 
of small increments when the response is most non-linear and large increments when 
the response is most linear. 

This simple technique can very easily be extended to the arc-length method so 
that instead of (9.40) with n = i, we would have 

(9.41) 

where A(, and ALo are ‘incremental lengths’ (Section 9.3.2). As well as inputting the 
desired number of increments, the user should provide a maximum and, possibly, a 
minimum increment size. (Note, however, that the provision of too high a minimum 
increment size can interfere with the increment-cutting procedure of Section 9.5.1 .) 

The user of a non-linear finite element computer program will (or should) usually 
have some idea of a suitable starting load increment so that once this is specified the 
technique of (9.40) (with the addition of maximum and minimum step-sizes) can lead 
to a fully automatic solution. However, the user will have little idea of an appropriate 
magnitude for a starting length increment, AI = d ( A p T A p ) .  There are (at least) three 
possible solutions. The first is to apply a preliminary load-controlled step and from 
the output A /  (this should be output even under load control) a suitable starting 
value can be estimated. Alternatively, the user may start by specifying a load increment 
AA. The incremental displacement vector, Ap, can then be computed from (9.38) and, 
via (9.39), a starting length increment, Al, can be obtained. This is one of the procedures 
adopted in the current computer program. 

A third, very useful, tactic is to apply standard load (or displacement) control for 
the early increments and only switch to arc-length control once a limit point is 
approached. A procedure for automatically introducing such a switch is given in 
Section 9.5.2. 



288 MORE ADVANCED SOLUTION PROCEDURES 

9.5.1 Automatic increment cutting 

If convergence of the structural equilibrium iterations is not achieved within the 
specified number of iterations, a simple strategy is to cut the increment size. In the 
present computer program, we have introduced the simple algorithm 

(9.42) 
A 1.” 

A ;Io A10 11 
or A’n =‘Id but 3 0.1 and < 0.5 

where p is the convergence factor of (2.30) and pd is the input, desired convergence 
factor (BETOK in the Fortran). Automatic increment cutting can be adopted in other 
situations [C6] such as the failure of the ‘spherical’ or ‘cylindrical arc-length method 
to find real roots to the constraint equation [Cl 1 ,  M2-M4]. 

9.5.2 The current stiffness parameter and automatic 
switching to the arc-length method 

The current stiffness parameter [B6, B7, B8, B 101 is a very useful index to give some 
scalar measure of the degree of non-linearity. In its unscaled form, it effectively 
measures the ‘stiffness’ of the system as related to the tangential predictor, i.e. 
‘k’ = Aq/Ap, where Aq is the incremental applied load vector and Ap the resulting 
tangential displacements. However, because Aq and Ap are vectors, we must multiply 
the top and bottom by A p  so that 

(9.43) 

where we have used Aq = A;Iqef and (9.38). For displacement control, instead of using 
the ‘fixed load vector’, qef in (9.43), we must use the ‘effective fixed load vector’ as 
produced by the process of Section 2.2.5. 

To obtain the current stiffness parameter, C,, we simply scale the current ‘k’-value 
by the initial ‘k’-value, so that 

’ k’ c,= . 
‘ko’ 

(9.44) 

Bergan and co-workers [B6-B8] advocated a technique for automatic incrementation 
whereby, instead of (9.40), they would place on the right hand-side of that equation, 
AC,,/Ac,, with ACSd as the desired change in ‘current stiffness’ and ACso would be 
the previously achieved change. 

Many structures exhibit a response in which the structure softens as the load is 
applied (i.e. Figure 9.6(c)). In such situations, it is very useful to force the solution 
procedure to automatically switch from load (or displacement) control to arc-length 
control as the limit point is reached (C, will be zero at the limit point). This can be 
achieved by introducing a value for the current stiffness parameter (say c,) below 
which this switch is automatically introduced. Such a feature is included in the 
computer program to be described in Section 9.6. 

. 
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A range of alternative or supplementary 'path-measuring parameters' has been 
advocated by Eriksson [E3]. 

9.5.3 Non-proportional loading 

Most of the solution procedures in this chapter have been based on the equilibrium 
relationship of (9.15) which implies a single loading (or displacing) vector, qef,  is 
proportionally scaled via 3,. For many practical structural problems, this loading 
regime is too restrictive. For example, we often wish to apply the 'dead load' or 
'self-weight' and then monotonically increase the live load. In other instances, a whole 
range of loading stages may be required [C18]. Fortunately, many such loading 
regimes can be applied by means of a series of loading sequences involving two 
loading vectors, one that will be scaled (the previous q e f )  and one that will be fixed 
(qef). The external loading can then be represented by 

(9.45) q e  = Qef + h e f  

so that the out-of-balance force vector becomes 

An equation such as (9.22) then becomes 

so that with these new definitions, the basic structure of the previous algorithms can 
be maintained. 

These modifications are not difficult to implement in a general-purpose finite 
element system but, to avoid clouding the other issues, will be omitted from the 
present computer program. 

9.5.4 Convergence criteria 

In Section 2.4, we introduced a convergence criterion for the overall structural 
iterations that was effectively based on the magnitude of the Euclidean norm of 
out-of-balance force vector, g. For the computer program to be given in Section 9.6, 
we will stick to this criterion. In the present section, we will briefly discuss some 
a1 terna t ive criteria. 

Obvious alternatives involve the use of different norms such as 'the maximum 
norm'. Other alternatives involve some scaling so that, for example, in place of (2.30a) 
for load control, we could have 

(9.48) 

where S is a scaling matrix that could, for example, be used to ensure that, for a 
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problem involving rotational variables, all parameters had the same dimensions. In 
[C15], the author used S = C - ’ ,  where C was the diagonal matrix containing the 
leading diagonal terms from the tangent stiffness matrix at the beginning of the 
increment. 

Instead of, or in addition to, force-based convergence criteria, displacement-based 
criteria can be adopted so that, for example, we could have 

IPPll <PIIPIl (9.49) 

where dp are the iterative displacement changes and p the total displacements. As 
shown in [CS], the norm of the iterative displacement change can be very small while 
the out-of-balance force norm is very large. Hence it is unwise to adopt a 
displacement-based criterion such as (9.49) on its own without supplementing it with 
some force-based criterion. 

An apparently attractive alternative to force or displacement- based convergence 
criteria is to use an energy-based criterion of the form 

(9.50) 

There are various ways in which such a criterion could be introduced but the author 
believes they should be used with great caution. For example, suppose that, more 
specifically, we had 

I6pTg,l = I - 6PTK, 6Pl < BIPT%I (9.51) 

where the iterative change was 6p = - K,- go. Equation (9.5 1 )  merely gives some 
measure of the ‘stiffness’ of K,. Clearly as a limit point is approached, this can be 
small and yet the solution procedure may not have converged at all. (With a full 
Newton-Raphson iteration, away from equilibrium, K, may have no structural 
significance at all.) Alternatively, one could have 

(9.52) 

where we have introduced some of the notation of Section 9.1 on line searches. The 
criteria for dpTg, to be zero is merely the criterion for an ‘exact line search’. This can 
be achieved even by chance with a step length q = 1 and merely implies that a 
stationary energy position has been reached in the currmt iterntiue direction, 6p. This 
can, and frequently does, occur when the solutions is still a very long way from 
equilibrium. (A tentative thought; it appears that such energy-based criteria are often 
used in dynamics-surely the same limitations apply.) 

9.5.5 Restart facilities and the computation of the 
lowest eigenmode of K, 

It almost goes without saying that a non-linear finite element computer program 
should have restart facilities. Despite all efforts to introduce a fully robust system, 
there will be many occasions when i t  is necessary to restart using, say, a different 
iterative procedure. On some occasions, the author has found i t  necessary to retrack 
quite a few increments and restart with a tighter convergence tolerance in order to 
avoid eventual divergence. When even such measures fail, it is often extremely useful 
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at an equilibrium point beyond which no progress can be made, to compute and 
plot the lowest eigenmode of the system. The author has, in this way, discovered 
such diverse phenomena as (a) spurious mechanisms (b) errors in the computer 
program (c) errors in the input data [C6]. 

For the present computer program, we have included a very basic restart facility 
whereby (when using automatic increments), the solution can be restarted from the 
solution obtained at the end of the previous run. If one wishes to restart from an 
earlier position, one must firstly rerun the original problem with a reduced number 
of increments. 

9.6 THE UPDATED COMPUTER PROGRAM 

In this section, we will give both flowcharts and Fortran coding for the final complete 
computer program (apart from subroutine ACCEL-see Section 9.8.2) which includes: 

line searches 
the ‘spherical’ arc-length method 
automatic increments 
automatic increment cutting 
the current stiffness parameter 
automatic switching to the arc-length method 
acclerations to the mN--R method (Section 9.8) 
restarts. 

Many of the subroutines have already been given. In particular, from Chapter 2, we 
require 

ELSTRUC (2.2.4) 
BCON (2.2.5) 
CROUT ( 2.2.6) 
SOLVCR (2.2.7) 

Assuming that we are to use the general truss elements of Chapter 3 (rather than the 
shallow elements of Chapter 2, although these could be used), we also require from 
Chapter 3, 

E L E M E N T  (3.9.1) 
INPUT (3.9.2) 
FORCE (3.9.3) 

From the present chapter we require 

SEARCH (9.2.2.1 ) 

QSOLV (9.4.1.1) 
ITER (9.4.2.1) 
LSLOOP (9.6. I )  
INPUT2 (9.6.2.1) 
NONLTD (9.6.3.1) 

ARCLI (9.4.1.1) 
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SCALUP (9.6.4.1) 
NEXINC (9.6.5.1) 
ACCEL (9.8.2) 

where the last six routines have yet to be given. 
In Section 9.2.3.3, we gave a flowchart for the line-search loop at the structural 

level. We did not then give the Fortran because this had to be related to the modified 
subroutine ITER which was altered in Section 9.4.2.1 to allow the introduction of the 
arc-length method. We are now in a position to give the Fortran for LSLOOP. In 
relation to the flowchart of Section 9.2.3.3, the only significant change is the 
introduction of the out-of-balance forces in the form g = qi - Rq,, (as in (9.15)) so 
that both qef (QFI) and 3, (FACT) are required. 

9.6.1 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 

C 
C 

Fortran subroutine LSLOOP 

SUBROUTINE LSLOOP(PT,PBAR,IBC,IWRIT,IWR,ITERTY,NV,FI,QFI, 
AKTS,AKTE, D, FACT,AN ,SLO L,I LFAl L) 

PERFORMS LINE SEARCH LOOP 
INPUTS TOTAL DISPS IN PT(NV), ITERATIVE CHANGE IN PBAR(NV) 
QFI =TOTAL EXTERNAL LOADING (UNFACTORED) 
GO=OLD O.B. FORCE VECTOR 
IBC=B.CON COUNTER, FI FOR INTERNAL FORCE VECT., 

FACT=TOTAL LOAD FACTOR LEVEL 
ARGUMENTS IN COMMON/DATA2/AND ARRAY X NOT USED FOR SHALLOW TRUSS 
ILFAIL EXITS WITH ZERO IF O.K, 1 IF UPHILL (ABANDON L.S.) 
WITH 2 IF L.S. PROBLEMS (CUT INC IF IAUTO = 1 )  

IF ITERTY (INPUT)=l  USES FULLY N-R, = 2  USES MOD N-R 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
COMMON /DAT/ X(2),Z(2),E,ARA,AL,ID14S(4),AK14S(4),NDSP,ANIT,AKI5 
COMMON /DAT2/ ARN,POISS,ALN,ITYEL 
COMMON /DATLS/ N LSMX, PERM LS,AMPMX,ETMXA, ETM NA,G0(5) 
COMMON /AUTOINC/IAUTO,ITE,NITMAX,BET 
DIMENSION PT(NV),QFI(NV),IBC(NV) 
DIMENSION FI(NV),PBAR(NV),AKTS(NV,NV),AKTE(4,4),D(NV) 
DIM E N SIO N P R 0 0 R ( 1 0) , ETA ( 1 0) , PTO ( 5) 

CHECK ON SIZE OF PRODR AND ETA 
IF (NLSMX.GT.8) STOP ‘LSLOOP 1’ 
PRODR AND ETA MUST BE OF DIM. GE. NLSMX+2 
COMPUTE INNER PRODUCT AT START AND STOP IF POS. (UPHILL) 
SO = O.DO 
ILFAIL = 0 
DO 10 I = l ,NV 
IF (IBC(I).EQ.O) SO=SO+ PBAR(I)*GO(I) 
CONTINUE 
IF (SO.GE.O.DO) THEN 
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C 
C 

C 
C 
C 
C 
C 

C 
C 

C 

ILFAIL = 1 
WRITE (IWR,1001) SO 

RETURN 
ENDIF 

1001 FORMAT(/,l X,'RETURNS BECAUSE START INNER-PRODUCT UPHILL=',G13.5) 

PREPARE STARTING PRODUCT RATIOS, PRODR AND STEP LENGTHS, ETA 
PRODT( 1 ) = 1 .DO 
ETA(1) =O.DO 
ETA( 2) = 1. DO 
ICO=O 
ABOVE COUNTER WILL BECOME 1 WHEN MAX OR MIN S-LENGTH IS REACHED 
OR 2 WHEN REACHED TWICE RUNNING 

GET FIXED TOTAL DISPS AT END OF LAST ITER IN PTO 
NOTE, FIXED ITER. DlSP CHANGE IN PBAR 
DO 20 I = 1 ,NV 
PTO(I) =O.DO 
IF (IBC(I).EQ.O) THEN 

ENDIF 
20 CONTINUE 

PTO(I) = PT(I)-PBAR(I 

BEGIN LINE-SEARCH OOP 
DO 100 ILS= 1,NLSMX 

IF (IWRIT.EQ.1) WRITE (IWR,1005) ILS 
1005 FORMAT(/,l X,'LINE-SEARCH LOOP WITH ILS =',E) 

C BELOW CALCS FORCE IN BAR (AN) 
CALL FORCE(AN,ANIT,E,ARA,AL,X,Z,PT,IWRIT,IWR, 

ABOVE ARGUMENTS NOT USED FOR SHALLOW TRUSS 

ABOVE CALCS FORCE IN BAR, AN: BELOW INT. FORCE VECT, FI 
CALL ELEMENT( FI,AKTE,AN,X,Z,PT,E,ARA,AL,lWRlT,lWR,l , 

ABOVE ARGUMENTS NOT USED FOR SHALLOW TRUSS 

BELOW MODIFIES INT. FORCE VECT. FI FOR SPRING EFFECTS 
CALL ELSTRUC (AKTE,AKTS, NV,AK 1 5,1 D 14S,AK 1 4S, N DSP, FI, PT, 

1 ITY EL,ARN,ALN,POISS) 
C 
C 
C 

1 ITYEL,ALN,ARN) 
C 
C 
C 

1 1 ,IWRIT,IWR) 
C 
C BELOW FORMS CURRENT INNER-PROD RATIO 

SETA = O.DO 
DO 30 I= l ,NV 
IF (IBC(I).EQ.O) SETA= SETA + PBAR(I)*(FI( I)-FACT*QFI(I) ) 

30 CONTINUE 
SETA = SETAISO 
PRODR(ILS + 1 ) = SETA 

67 FORMAT(6G 13.5) 
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47 
C 
C 
C 

C 
C 

C 

40 

100 
C 

C 

1002 
110 

C 
300 

1003 

C 
C 

1 

1 
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FORMAT(5IS) 

BELOW CHECKS FOR SATISFACTION OF L-S TOLERANCE 
IF (ABS(SETA).LT.PERMLS) GO TO 300 

CALL L-S ROUTINE TO GET NEW ESTIMATE ETA IN ETA(ILS+2) 
CALL SEARCH(ILS,PRODR,ETA,AMPMX,ETMXA,ETMNA,IWRIT,IWR,ICO,NLSMS+2) 
IF (IC0.EQ.2) GO TO 110 
GET CURRENT DISPS. 
DO 40 I = 1 ,NV 
IF (IBC(I).EQ.O) THEN 
PT( I) = PTO( I) + ETA( ILS + 2)*PBAR( I) 
€NDIF 
CONTINUE 

CONTINUE 

WRITE (IWR,1002) 

CONTINUE 
IF (IAUTO.EQ.0) THEN 
STOP 'LSLOOP 1002' 
ELSEIF (IAUTO.EQ.1) THEN 
ILFAIL = 2 
RETURN 
ENDIF 

FORMAT(/,l X,'MAX NO OF L-SEARCHES EXCEEDED') 

CONTINUE 
IF (ILS,GT.I) WRITE (IWR,1003) ILS-l,ETA(ILS+ 1 )  
FORMAT(/, 1 X,'L-S, EXTRA RES. CALCS = ',l5,' S-L = ',G 13.4) 
SLOL=ETA(ILS+ 1) 
BEFORE RETURNING TO ITER MUST COMPUTE TANGET STIFF IF 

IF (ITERTY.EQ.1) THEN 
CALL ELEMENT ( F I, AKTE ,AN ,X,Z, PT, E, ARA, AL, I WRIT, I W R ,2, 

CALL ELSTRUC( AKTE,AKTS,NV,AKl5,ID 1 4S,AK 1 4S, NDSP ,FI, PT, 

ENDIF 
RETURN 
END 

USING FULL N-R ITERATION 

ITYEL,ALN,ARN) 

2, I W R IT, I W R) 

The final step-length, q, is output as =SLOL so that it can be used with the 
accelerated modified Newton-Raphson method (Section 9.8). 

9.6.2 Input for incremental/iterative control 

In the computer programs of Chapters 2 and 3, the incremental/iterative control 
parameters were input into the main program module, NONLTC (Section 2.5.1). 
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Because the present non-linear control is more complex, we now introduce a separate 
subroutine. This subroutine, INPUT2, which is given in Section 9.6.2.1, is almost 
self-explanatory (particularly when read in conjunction with the examples of 
Section 9.9). Nonetheless, we will here give some brief notes relating to the various 
input ‘cards’ in that routine. 

Card 1 
In the first card, the factor, 

FAC I 

NlNC 

IWRlT 
IAUTO 

IARC 

IACC 

IRES 

Curd 2 

is the initial value of A i .  If the arc-length method is to be adopted (IARC = 1)  
and the ‘desired length’, Aid, for the first increment on Card 6 is input as 
zero, A i  = FACl is automatically converted to a ‘length’. 
is the desired number of increments (if the increment is cut, i t  will count as 
two increments). 
Write control for extra information, 0 is off, 1 is on. 
If the parameter IAUTO is set to unity, automatic increment sizes are 
computed. Such automatic increments must be used with the arc-length 
method. If IAUTO is set to zero, equal increments of magnitude A i  = FACl 
are adopted as in Chapters 2 and 3. 
is set to zero for load (or displacement control) and 1 for arc-length control. 
To start with load control and later switch (Section 9.5.2) IARC is input as 0. 
is usually set to zero but to I if the acceleration method of Section 9.8 is to 
be used with the mN R method (not for arc-length method). 
is set to zero for a standard solution and to I if the present solution is to 
be re-started from an earlier solution (see Section 9.5.5). Whenever IAUTO is 
set to I ,  the program will, following the last increment, output an unformatted 
restart file ‘RESOUT’. In order to restart using this information, the file 
‘RESOUT’ must be copied to a file ‘RESIN’, which will be input if IRES is set 
to 1 .  Whenever IAUTO = 1, the main (formatted) output will contain, at the 
end, the parameters that the automatic incrementing routine, NEXINC (see 
Section 9.6.5) would use for the next increment. In particular, these include 
some of the parameters required on Cards 3 and 4 below. 

For this card: 

BETOK = convergence tolerance factor (see Section 2.4) 
ITERTY = 1 for full N-R; = 2 for modified N - R  
NITMAX = maximum number of iterations 
NLSMX = maximum number of extra residual calculations during line-searches (set 

Card 3 
This card relates to the line searches and inputs the parameters discussed in Section 
9.2.3.1. Note that, at present, line searches cannot be applied with the arc-length 
method. (This facility will be introduced in Volumes 2.) 

Curd 4 
This card relates to automatic increments (Section 9.5) and requires 

to zero if no line-searches are required). 

I,, AAmin, ISWCH. 
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(Note that the provision of too high a A i m i n  can interfere with the automatic increment 
cutting procedure.) With ISWCH = I ,  the algorithm will automatically switch to the 
arc-length method using the procedure of Section 9.5.2, which requires Card 5. 

Card 5 
The desired current stiffness parameter for switching (cs). 
Curd 6 
If  the arc-length method is to be applied from the very start (IARC = l) ,  this card 
requires 

where AId is the desired length for the first increment and the other two factors are 
self-explanatory. (Note that the provision of too high a Almin can interfere with the 
automatic increment cutting procedure.) If the parameters on this card are set to 
zero, the program will use the load parameters of Cards 1 and 4 to compute 
appropriate AI quantities. 

Curd 7 
This card relates to the cut-outs required for the accelerated modified 
Newton-Raphson method (Section 9.8.1) which is activated if IACC (card 1 )  is set to 
unity. 

9.6.2.1 Subroutine INPUT2 

SUBROUTINE IN PUT2( FACI,NINC,IARC,BETOK,ITERTY ,I DES,FACMX, FACM N. 
I DLDES,DLDMX,DLDMN,ISWCH,CSTIFS,IBC,NV,IRE,IWR,IWRIT,IRES) 

C 
C INPUTS INCREMENTAL/ITERATIVE CONTROL 
C 
C 
C 
C 

ARGUMENTS IN COMMON/DATLS/ FOR L-SEARCHES 
ARGUMENTS IN COMMON/AUTOINC/ FOR AUTO-INCS. 
ARGUMENTS IN COMMON/ACEL/ FOR ACCEL. MOD. N-R 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
COMMON /DATLS/ N LSMX,PERM LS,AMPMX,ETMXA, ETM NA,G0(5) 
COMMON /AUTOINC/ IAUTO,ITE,NITMAX,BET 
COMMON /ACEL/ DELO(5),GOO(5),lACC,R1C,R2C 
DIM E N SI 0 N I BC ( NV) 

C 
C 

READ (IRE,*) FACI,NINC,IWRIT,IAUTO,IARC,IACC,IRES 
WRITE ( I  W R, 1 000) FAC I, N I N C, I W R IT, I AUTO, IARC, IACC, I R ES 

1000 FORMAT(/,IX,'INCREMENTAL LOAD FACTOR = ',G 13.5,/,1 X, 
1 'NO. OF INCS. (NINC)=',15,/,1X 
2 'WRITE CONTROL (IWRIT) =',15,/,3X, 
3 'O= LIMITED ; 1 = FULL' , / , lX,  
4 'IAUTO = ',15,/,3X, 
5 
6 'IARC = ',l5,/,3X, 

'0 = FIXED INCS., 1 = AUTOMATIC',/,l X, 
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7 'O= LOAD INCS., 1 = ARC-LENGTH',/,l X, 
8 'IACC = ',15,/3X, 
9 'O=NO ACCEL, 1 =ACCEL WITH MOD. N-R' , l , lX,  

A 'IRES = ',l5,/,3X 
B ' O =  NOT A RE-START, 1 == IS A RE-START') 

C 
READ ( IRE ,*) BET0  K, ITERTY, N ITM AX, N LSM X 
WRITE (IWR, 1003) BETOK, ITERTY, NITMAX, NLSMX 

1003 FORMAT(/,l X,'CONV. TOL FACTOR, BETOK = ',G 13.5,/, 
1 lX,'ITERATIVE SOLN. TYPE, ITERTY = ',l5,/, 
2 5X,'= 1 ,  FULL N-R; =2, MOD. N-RI,/, 
3 1 X,'MAX NO OF ITERATIONS = 3,/, 
4 IX,'MAX NO. OF L-SEARCHES=',15) 

C 
IF (ITERTY. EQ.l).OR.(IARC.EO.l)) THEN 
IF(IACC,EQ.l) STOP 'INPUT2 1009' 

ENDIF 

BELOW SPECIFIC TO LINE SEARCHES 
IF (NLSMX.NE.0) THEN 
READ (IRE,*) PERMLS,AMPMX,ETMXA,ETMNA 
WRITE ( I  W R, 1 009) PERM LS, AM P M X, ETMXA, ETM N A 

1009 FORMAT(/,l X,'LINE SEARCH PARMS ARE',/, 
1 3X,'TOLERANCE ON RATIO, PERMLS = ',G13.4,/, 
2 3X,'MAX. AMP. AT ANY STEP, AMPMX = ',G 13.4,/, 

C 

C 
C 

NO ACCN. WITH FULL N-R OR WITH ARC-L 

3 
4 

3X,'MAX. TOTAL STEP-LENGTH, ETMXA = ',G13.4,/, 
3X,'MIN. TOTAL STEP-LENGTH, ETMNA = ',G13.4) 

ENDIF 

BELOW SPECIFIC TO AUTOMATIC INCS. 
IF (IAUTO.EQ.1) THEN 
READ (IRE,*) IDES,FACMX,FACMN,ISWCH 
WRITE ( I W R, 1 008) IDES, FAC MX, F AC M NI IS WC H 

1008 FORMAT(/,l X,'DATA FOR AUTOMATIC INCREMENTS',/, 
1 lX,'DESIRED NO. OF ITERATIONS =',l5,/, 
2 lX,'MAX. LOAD INC.= 'G13.4,/, 
3 IX,'MIN. LOAD INC.= ',G13.4,/, 

C 
C 

4 IX,'PARAM FOR ARC-L, lSWCH= ',l5,/, 
5 3X,'=O NO SWITCH, = 1 SWITCH') 

IF (ISWCH.EQ.1) THEN 
READ (IRE,*) CSTIFS 
WRITE (IWR,1004) CSTIFS 

ENDIF 
ENDIF 

1004 FORMAT(/,lX,'SWITCHES TO ARC-L WHEN CSTIF.LE.CSTIFS=',G13.4) 

C 
C BELOW SPECIFIC TO ARC-L METHOD 

IF (IARC EQ. l )  THEN 
READ (IRE,*) DLDES,DLDMX,DLDMN 
WRITE (I W R, 1 005) D LDES, D LD MX, D LDM N 
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1005 FORMAT(/,l X,'FOR ARC-LENGTH CONTROL',/, 
1 
2 3X,'MAX. LENGTH INC., DLMX=',G13.4,/, 
3 3X,'MIN. LENGTH INC., DLMN =',G13.4,/,5>(. 

3X,'DESIRED LENGTH INC., DLDES= ',G13.4,/, 

4 
C 

10 

1100 

C 
C 

1110 
1 

C 

'NOTE**, IF DLDES = DLMX= DLMN =O.,  USES LOAD INC FACT FOR 1ST INC') 
CHECKS NOT USING MOD N-R WITH DISP. CONTROL 
IDSP=O 
DO 10 I= l ,NV 
IF (IBC(I).LT.O) IDSP = 1 
CONTINUE 
IF (IDSP.EQ.l .AND.ITERTY.EQ.2) THEN 
WRITE (IWR,lIOO) 

STOP 'INPUT2 1100' 
ENDIF 
ENDIF 

FORMAT(/,l X,'**STOPS,CANNOT HAVE PRESC DlSPS + ARC-L + MOD. N.R') 

BELOW SPECIFIC TO ACCELERATION 
IF (IACC.EQ.1) THEN 
READ (IRE,*) RlC,R2C 
WRITE (IWR,1110) RlC,R2C 
FORMAT(/,l X,'CUT-OFF PARAMS FOR ACCN. ARE',/, 

'RlC=',G13.4,' R2C=',G13.4) 
ENDIF 

RETURN 
END 

9.6.3 Flowchart and Fortran subroutine for the 
main program Module NONLTD 

The main program module NONLTD is a modification of the module NONLTC 
given in Section 2.5. A flowchart is given in Figure 9.14, while the Fortran is given 
in Section 9.6.3.1. 

Call INPUT to obtain the geometry, properties, fixed loading, qef (QFI) the 
bound. cond. counter, IBC and spring stiffness parameters 

I Call INPUT2 to obtain incremental/iterative control parameters I 
1 

If IRES = 0, initialise p(PT) = 0, A(FACT) = 0 

If IRES = 1, read-in unformatted restart file, RESIN fi 
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.~ ~ ~ 

Save parameters relating to end of last increment 
pol(PTOL) = p, N o ,  = N ,  A,,(FACTOL) = A(FACT) 

GPt(DT) = qeAQFI) 

299 

I Begin loop through the increments, INC = 1, NlNC 1 

1 
Call ELEMENT which gives K, = fn.(N,z,EA,l,p) for the truss el. 
Call ELSTRUC which puts the el. stiff. matrix into the struct. 

stiff. matrix and modifies for earthed (and other) linear springs 

Call BCON which applies the boundary conditions. 
Call CROUT which computes K, = LDLT. 

Call SOLVCR which computes Gp,(DT) = K,- 'qef 

Compute stiffness, k and current stiff, C, = k / k ,  
NEG = no. of neg. pivs. and A1 = ()6pt )I 

(STOPS if NEG > 1) 

Call SCALUP which computes AA,Al, updates A and p 
Call ITER which iterates to equilibrium 

I 

If IAUTO = 1, call NEXINC which computes params for next inc. 

.L 

If IAUTO = 1, output unformated file RESOUT 
and data useful for restart 

Figure 9.14 Flowchart for main program module, NONLTD. 
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9.6.3.1 Fortran for main program module NONLTD. 

PROGRAM NONLTD 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

THIS VERSION INCLUDES FULL AUTO-INCS, LINE-SEARCHES, ARC-L 
AND AUTOMATIC INCREMENTS (WITH INC. CUTTING) 

NV= NO. OF VARIABLES (4 OR 5) 
QFI = FIXED LOAD VECTOR 
IBC=B. COND. COUNTER (0= FREE, 1 =FIXED) 
Z=Z  COORDS OF NODES 
PT = TOTAL DISP. VECTOR 
PTOL=TOTAL DlSP VECTOR AT END OF LAST INC 
DT=TANGENT DlSP VECTOR FROM TOTAL LOAD (QFI) 
GO=OLD O.B. FORCE VECTOR (FOR L-SEARCHES) 
AKTS = STR. TAN. STIFF. MATRIX 
AKTE = ELE. TAN. STIFF. MATRIX 
FI = INTERNAL FORCES 
D = DIAGONAL PIVOTS FROM LDL(TRAN) FACTORISATION 

AK14S= EQUIV. LINEAR SPRING STIFFNESS 
AK15=LIN SPRING STIFF. BETWEEN VARBS. 1 AND 5 (IF NV=5) 

REAC = REACTIONS 
X = X  COORDS 
FACT= TOTAL LOAD FACTOR, FACl= INC. LOAD FACTOR 
DL= INCREMENTAL ‘LENGTH’ (DLDES = DESIRED VALUE) 
ARGUMENTS IN COMMON/DATZ/ AND ARRAY X NOT USED FOR 
SHALLOW TRUSS 

PERFORMS NON-LIN. INCREMENTAL/ITERATIVE SOLN. FOR TRUSS 

ID14S=VAR. NOS. (1-4) AT WHICH LINEAR EARTHED SPRINGS 

GM =WILL BE OUT-OF-BALANCE FORCES (IN SIR ITER) 

ARGUMENTS IN COMMON/DATLS/ FOR L-SEARCHES 
ARGUMENTS IN COMMON/AUTOINC/ FOR AUTO-INCS. 
ARGUMENTS IN COMMON/ACEL/ FOR ACCELERATED MOD N-R. 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
COMMON /DAT/ X(2),Z(2),E,ARA,AL,IDI 4S(4),AK14S(4),NDSP,ANIT,AK15 
COMMON /DAT2/ ARN,POISS,ALN,ITYEL 
COMMON /DATLS/ NLSMX,PERMLS,AMPMX,ETMXA,ETMNA,GO(5) 
COMMON /AUTOINC/ IAUTO,ITE,NITMAX,BET 
COMMON /ACEL/ DELO(5),GOO(5),1ACC,Rl C,R2C 
DIMENSION QFl(5),IBC(5),DT(5),PT(5),AKTE(4,4) 
DIMENSION Fl(5),D(5),QEX(5),GM(5),AKTS(25),REAC(5) 
DIMENSION PTOL(5) 

IRE=!? 
IWR=6 
OPEN (UNIT=S,FILE=‘ ’) 
OPEN (UNIT=G,FILE=‘ ’ )  
OPEN (UNIT= 17,FILE= ‘RESIN’,FORM = ‘UNFORMATED’) 
OPEN (UNIT= 18,FILE=‘RESOUT’,FORM = ‘UNFORMATED’) 
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C 
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C 
C 

C 
C 

C 

C 

CALL INPUT(E,ARA,AL,QFI,X,Z,ANIT,IBC,IRE,lWR,AKl4S,ID14S,NDSP, 
1 NV,AKl5, 
2 POISS,ITYEL) 

ARGUMENTS IN LINE ABOVE NOT USED FOR SHALLOW TRUSS 
BELOW RELEVANT TO DEEP TRUSS BUT LEAVE FOR SHALLOW TRUSS 
AKN=AL 
ARN =ARA 

READS IN DATA FOR INC/ITERATIVE CONTROL 
CALL INPUT2(FACI,NINC,IARC,BETOK,ITERTY,IDES,FACMX,FACMN, 

1 DLDES,DLDMX,DLDMN,ISWCH.CSTIFS,IBC,NV,IRE,IWR,IWRIT,IRES) 

IF (IRES.EQ.0) THEN 
AN = ANlT 
FACT = O.DO 
DO 5 I= l ,NV 

ELSEIF (IRES.EQ.l) THEN 
BELOW FOR RESTART FROM PREVIOUS RUN 
READ (17) AN,ALN.ARN,STIFI,FACT,PT 
CLOSE (UNIT = 17) 
ENDIF 

5 PT(I)=O.DO 

C 
C 

DO 100 INC= 1,NINC 
WRITE (IWR, 1001 ) INC 

DO 10 I = I ,NV 
SAVE DISPS. PT IN PTOL 
PTOL(I) = PT(I) 
DT WILL BE TANGENTIAL DISPS DUE TO TOTAL LOAD QFI 
DT(I) =QFI(I) 

SAVE OLD FORCE FOR CUT INC AND OLD TOTAL LOAD LEVEL 
FACTOL = FACT 
ANOL=AN 

BELOW FORMS EL. TAN. STIFF MATRIX AKTE 
CALL ELEMENT (FI,AKTE,AN,X,Z,PT,E,ARA,AL,IWRIT,lWR,2, 

ARGUMENTS IN LINE ABOVE NOT USED FOR SHALLOW TRUSS 
BELOW PUTS EL. STIFF. AKTE IN STRUCT. STIFF. AKTS 
AND ADDS EFFECT OF VARIOUS LINEAR SPRINGS 
CALL ELSTRUCT(AKTE,AKTS,NV,AK15,ID14S,AK14S,NDSP,FI,PT, 

1001 FORMAT(//. l X,'INCREMENT NO. = ',E) 

C 

C 

10 CONTINUE 
C 

C 
C 

1 ITYEL,ALN,ARN) 
C 
C 
C 

1 2,IWRIT.IWR) 
C 
C 

C ABOVE APPLIES B. CONDITIONS 
CALL BCON(AKTS,lBC,NV.DT,IWRIT,IWR) 
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C 
C 

C 

C 
C 
C 
C 
C 

C 
C 
C 

C 

C 

C 
C 

C 

15 

20 

1010 
1 

1002 

1 

1 

1003 

1004 

MORE ADVANCED SOLUTION PROCEDURES 

BELOW PUTS EFFECTIVE TANGENT LOAD VECTOR, DT 
STIFF) 
DO 15 I= l ,NV 
GM(I) =DT(I) 
CALL CROUT(AKTS,D,NV,IWRIT,IWR) 

IN GM (FOR CUR 

ABOVE FORMS LDL(TRAN) FACTORISATION INTO AKTS AND D 
CALL SOLVCR(AKTS,D,DT,NV,IWRIT,IWR) 
ABOVE SOLVES EQNS. AND GETS TAN. DISPS IN DT (FOR UNSCALED 
LD) 

BELOW COMPUTES NO OF NEG PIVOTS AND PARAMS FOR CURRENT 
STIFF PARAM AND LENGTH INCS. 
STIFT = O.DO 
NEG=O 
DL =O.DO 
DO 20 I=  1,NV 
IF (IBC(I).EQ.O) THEN 
STlFT=STlFT+ DT(I)*GM(I) 
DL = DL + DT(I)*DT(I) 
IF (D(I).LT.O) NEG = NEGI 
ENDlF 
CONTINUE 

BELOW COMPUTES ‘STIFFNESS’, STlF AND CSTIF = RATIO 
OF VERY FIRST ‘STIFFNESS’ 
STlF = STIFT/DL 
IF (INC.EQ.1 .AND.IRES.EQ.O) STlFl =STlF 
CSTIF = STIF/STIFI 
DL = DSQRT(DL) 

WRITE (IWR,1010) CSTIF,NEG 
FORMAT(/,l X,’CURRENT STIFF. FACTOR = ’,G13.4,1 X, 

IF (NEG.GT.l) THEN 
WRITE (IWR,1002) 
FORMAT(/,‘STOP BECAUSE NO OF NEG PIVS. GT. 1’) 
STOP ‘NONLTC 1002’ 
ENDlF 

‘NO. OF NEG. PIVS.= ’,l5) 

CALL SCALUP(IAUTO,IARC,NEG,FACt,FACT,DL,DLDES,PT,PTOL,DT, 
ISWCH,CSTIF,CSTIFS,NV,IWR,DLDMX,DLDMN) 

BELOW ITERATES TO EQUILIBRIUM 
CALL ITER( PT,AN,BETOK,QFI,IBC,lWRlT,lWR,AKTS,D,ITERTY,NV, 

GM,FI,REAC,PTOL,DT,FACT,DL,IARC) 

IF (IARC.EQ.l) WRITE (IWR,1003) FACT 

WRITE (IWR,1004) (PT(I),I= 1,NV) 
FORMAT(/,l X, ‘FINAL TOTAL DISPLACEMENTS ARE’,/,lX,6G12.5) 
WRITE (IWR,1006) (REAC(I),I = 1 ,NV) 

FORMAT(/,lX, ‘TOTAL LOAD FACTOR AFTER ARC-L ADJUST= ‘,G13.4) 
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1006 

1005 

FORMAT(/,l X,'FINAL REACTIONS ARE',/,l X5G12.5) 
WRITE (IWR,1005) AN 
FORMAT(/,lX,'AXIAL FORCE IN BAR IS',G12.5) 

1 00 

1007 
1 
2 

BELOW COMPUTES INC. FACTORS FOR NEXT INCREMENT 
IF (IAUTO.EQ.1) THEN 
CALL NEXINC(IARC,ITE,NITMAX,FACI,FACMX,FACMN,DL,DLDES, 

ENDIF 
1 DLDMX,DLDM N,BETOK,BET,PT,PTOL,AN,ANOL,NV,IDES,FACT,FACTOL) 

CONTINUE 

IF (IAUTO.EQ.1) THEN 
WRITE (IWR,1007) FACI,FACMX,FACMN,DLDES,DLDMX,DLDMN 
FORMAT(/,lX,'AT END OF RUN',/, 

lX,'FACI= ',G13.4,'FACMX= ',G13.4,'FACMN = ',G13.4,/, 
1 X,'DLDES = ',G13.4,'DLDMX = ',G13.4,'DLDMN = ',G13.4) 

WRITE RESTART TAPE 
WRITE (18) AN,ALN,ARN,STIFI,FACT,PT 
CLOSE (UNIT= 18) 
ENDIF 

STOP 'NONLTC' 
END 

9.6.4 Flowchart and Fortran subroutine for routine SCALUP 

This routine is called by program NONLTD (see last Section) following the 
computation of dp, = Kt-'q,, in the array DT. Its main function is to compute A 2  
and 61, and update and the displacements, p, following the predictor solution. The 
flow chart is given in Figure 9.15 and the Fortran in Section 9.6.4.1. 

9.6.4.7 Fortran for routine SCALUP 

1 
C 
C 
C 
C 

C 

C 
C 
C 

SUBROUTINE SCALUP(IAUTO,IARC,NEG,FACI,FACT,DL,DLDES,PT,PTOL, 
DT,ISWCH,CSTIF,CSTIFS,NV,IWR,DLDMX,DLDMN) 

UPDATES TOTAL LOAD FACTOR, FACT VIA INC. FACTOR FACl 
AND OBTAINS INC LENGTH (POSSIBLY USING DESIRED VALUE) 
UPDATES TOTAL DISPS. IN PT 

DIMENSION PT(NV),PTOL(NV),DT(NV) 
IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

IF (IAUTO.EQ.0) GO TO 100 
BELOW AUTOMATIC INCREMENTS 

CHECKS FOR SWITCH TO ARC-L 
IF (ISWCH.EQ.1) THEN 



1 

l A l =  

can 
switch 

1.. 
No lengths given so 

Al, = AA AI 
Almax = 3A1, 

Almin = 0.01 A1, v 

3, (FACT) = 3, + AA (FACI) 

P = P O 1  + AA JP, 

Figure 9.15 Flowchart for routine SCALUP. 

IF ((IARC.EQ.0). AND. (CSTIF.LT.CSTIFS)) THEN 
IARC = 1 
DLDES = DL 
DLDMX = !j.DO*DL 
DLDMN =0.01 DO*DL 
WRITE (IWR,1001) CSTIF,CSTIFS 

1001 FORMAT(/,lX,'SWITCHED TO ARC-L BECAUSE CSTlF = ',G13.4,/3X, 
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1 

1003 

100 

1002 
1 

10 

1004 

' LESS THAN CSTIFS= ',G13.4) 
ISWCH = O  
ENDIF 
ENDIF 

IF (IARC.EQ.0) THEN 

DL = FACI*DL 
ELSEIF (IARC.EQ.1) THEN 

FIRSTLY SET UP LENGTHS IF NONE WERE GIVEN 

BELOW LOAD-CONTROL 

BELOW ARC-LENGTH CONTROL 

IF (DLDES.EQ.O.DO) THEN 
DLDES = FACI'DL 
DLDMX = 5.DO'DLDES 
DLDMN = 0.01 'DLDES 
ENDIF 

COMPUTE INC LOAD FACTOR, FACl 
ASIGN = 1 .DO 

IF (NEG.EQ.l) WRITE (IWR,1003) 
FORMAT(/,l X,'SWITCHING SIGN OF LOAD INCREMENT') 
FACl =ASIGN*(DLDES/DL) 
DL = DLDES 
ENDIF 

IF (NEG.EQ.l) ASIGN= -1.DO 

CONTINUE 
FACT = FACT + FACl 
WRITE (IWR,1002) FACT,FACI,DL 
FORMAT(/,lX, 'TOTAL LD FACTOR = ',G13.4,'INC FACTOR = ',G13.4, 

DO 10 I= l ,NV 
PT(I) = PTOL(I) + FACI*DT(I) 
WRITE (IWR,1004) (PT(I),I= 1,NV) 
FORMAT(/l X,'TOTAL DISPS.AFTER TANG.SOLN ARE',/,l X,7G 13.4) 
RETURN 
END 

'INC LENGTH = ',G13.4) 

9.6.5 Flowchart and Fortran for subroutine NEXINC 

Subroutine NEXINC is called by the main module NONLTD (see Section 9.6.3) when 
IAUTO is unity in order to compute the parameters for the next increment. The routine 
implements the techniques discussed in Sections 9.5 and 9.5.1 and, in particular, 
equations (9.40)-(9.42). The flowchart is given in Figure 9.16 and the Fortran in 
Section 9.6.5.1. 

9.6.5.1 Fortran for subroutine NEXINC 

SUBROUTINE NEXINC(IARC,ITE,NITMAX,FACI,FACMX,FACMN,DL,DLDES, 
1 DLDMX,DLDMN,BETOK,BET,PT,PTOL,AN,ANOL,NV,IDES,FACT,FACTOL) 

WITH AUTOMATIC INCREMENTS, COMPUTES FACTORS FOR NEXT INC C 
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Did not converge Did converge 

Cut  increment 
FAC = p / p d  but (0.5 and)0.1 
p = pol; N No,;AA = A - Aol 

#I = Aol 

C 
IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION PT(NV),PTOL(NV) 

IF (ITE.GE.NITMAX) THEN 
DID NOT CONVERGE AT LAST INC, GET REDUCTION FACTOR, FAC 
FAC = BETOKIBET 
IF (FAC.GT.O.5DO) FAC =0.5DO 
IF (FAC.LT.O.1 DO) FAC=0.1 DO 
RETURN DISPS AND FORCES TO VALUES BEFORE FAILED INC 
DO 30 I = l , N V  
PT(I) = PTOL(I) 

30 CONTINUE 
AN=ANOL 

C 

C 

C 

FACI = FACT-FACTOL 
FACT= FACTOL 
ELSE 
DID CONVERGE AT LAST INC., GET CHANGE FACTOR, FAC 
MAKE LARGE IF NO REAL ITERS ON LAST INC. 
FAC = 1OOO.DO 

C 
C 

IF (ITE.GT.l) THEN 

RIDES = IDES 
RlTER = ITE-1 

FAC = J( :) - A  _- 

4 m 
arc-1 Id. control 
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FAC = RIDES/RITER 
FAC = DSQRT( FAC) 
ENDIF 

ENDIF 
C 

IF (IARC.EQ.0) THEN 
C LOAD CONTROL 

FACl = FAC*FACI 
IF (FACI.GT.FACMX) FACl= FACMX 
IF (FACI.LT.FACMN) FACl= FACMN 
ELSEIF (IARC.EQ.l) THEN 

DLDES = FAC*DL 
IF (DLDES.GT.DLDMX) DLDES= DLDMX 
IF (DLDES.LT.DLDMN) DLDES = DLDMN 
ENDIF 
RETURN 
END 

C ARC LENGTH 

9.7 QUASI-NEWTON METHODS 

In the fields of methametical programming and unconstrained optimisation, much 
work has been devoted to the development of quasi-Newton solution procedures 
[F6, F7, L3, W6, Bl l ,  B12, B13, D2, D3, D8, S4, G5] (also known as the ‘variable metric 
method’ [D2]). A good review is given by Dennis and Moore [DS]. These 
quasi-Newton methods resemble the N-R technique but do not require the explicit 
re-formation of the tangent stiffness matrix. Instead, the stiffness matrix, or its inverse 
(or its Cholesky factors [G4]) are continuously updated as the iterations proceed. 
One of the earliest applications of the quasi-Newton method to finite elements 
involved linear analysis and was due to Fox and Stanton [FlO]. 

In order to explain the method, it is best to replace the previous ‘0’ for ‘old’ and 
‘n’ for ‘new’ with an iterative counter, i, so that in place of (9.6)’ the iterative update is 

(9.53) 

where, using a Newton-like algorithm (as in (9.5)), 

Spi = - K,: ‘gi. (9.54) 

For a pure Newton-Raphson iteration K, in (9.54) would be the true tangent stiffness 
matrix computed from pi. With the quasi-Newton methods, Ki, is instead an 
approximation that satisfies the ‘quasi-Newton equation’: 

qi- 16pi- = Ki_’,yi (9.55) 

where 
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This equation is exactly satisfied for quadratic energy functions (linear structural 
analysis): 

4 = +PTKP - q;fP (9.57) 

for which 

gi- 1(Pi- 1) = __ = Kpi- 1 - q e  (9.58) ::I:- 1 

so that, for the new displacements pi = pi- + qi- (see (9.53)), 

gib- 1 + qi -  16Pi- 1) = gi- 1 + yi = Kpi - Qe 

= K*(pi- 1 + qi-  16pi- 1) - qe = gi- 1 + qi -  1K 6pi- 1. (9.59) 

(The * multiplication sign has been used in the above to distinguish the following 
bracket from the 'function of' form.) 

Many formulae have been derived that produce Kis satisfying (9.55). One of the 
most successful is the rank-2 BFGS update [F6, B12, S4] which can be written in the 
form 

(9.60) 

For the finite element method, the main difficulty with the quasi-Newton methods 
relates to the banded nature of the finite element stiffness matrix. Conventional 
applications will destroy this banded nature (away from equilibrium). Fortunately, 
as shown by Matthies and Strang [Ml], an indirect form of solution can be adopted 
in which K i  is not directly formed. (Mattheis and Strang's method is closely related 
to work in the mathematical programming literature by Buckley [B14], Nazareth 
[Nl] and Nocedal "21.) The method is used with an alternative, but equivalent, 
update to (9.60) whereby [M 1, B 1 11: 

KF = (I + w,vf)K~-',(I + v , w ~ )  = U:Ki_',Ui (9.61) 

where 

and 

(9.62) 

(9.63) 

(9.64) 

It is not difficult to show that (9.61) satisfies (9.55). By substituting (9.55) into (9.64) 
one can show that a, is positive provided K, and K i p  are positive-definite. (Positive- 
definiteness is a basic assumption with the BFGS method [F7, L31. For systems that 
are not necessarily positive definite (i.e. those beyond limit points as solved by the 
arc-length method), it might be more appropriate to use a rank 1 update such as 
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that due to Davidon [D3] and Broyden [B13] or to Broyden as given by Dennis 
and Moore [Dsl-the latter is unsymmetric and might therefore be appropriate for 
non-symmetric systems such as those arising from non-associative plasticity.) For 
positive-definite systems, there are, in concept, no problems in taking the square root 
of ai in (9.63). 

Because 

(9.63) and (9.64) can be written in the more convenient form: 

vi = - ( 1  + a;'2qi- ')gi- 1 - gi 

with 

(9.66) 

(9.67) 

In order to 'indirected' apply the quasi-Newton technique, with i = 1, the iterative 

(9.68) 

change of (9.54) and (9.61) is 

6p1 = - KF 'g1 = - (I + wlvT)Ko- '(I + vlwr)gl 

which can be solved without directly computing K;', via 

(9.69) 

(9.70) 

and 

6p' = - c ,  -(v;cl)wl. (9.71) 

Having obtained 6pl, a line-search would lead to q1 (which, with a slack line search, 
may well be unity) after which the procedure would continue with 

8p2 = - (I + W ~ V Z ) ( I  + W1Vr)Ki '(I + v,wT)(I + v ~ w T ) ~ ,  (9.72) 

which can again be solved indirectly without ever forming K,' or Kil. 
The main disadvantage of the method is the continued accumulation of more and 

more vectors that have to be stored. However, depending on the storage availability, 
one can discard old vectors and merely accumulate new ones. 

To avoid numerically dangerous updates, Matthies and Strang [M 13 recommend 
that the updates of (9.61) are omitted if an estimate of the increase in condition 
number of K -  ' exceeds some tolerance, to1 ( N 105). From the work of Brodlie et al. 
[Bll], this leads to 

where 1JvII is the Euclidean norm of v and, for brevity, the subscript i on the vectors 
vi  and wi in (9.63) (or (9.66)) and (9.62) have been omitted. 

Before leaving the quasi-Newton methods, and moving to related iterative 
techniques, it is useful to derive a weaker form of the quasi-Newton equation (9.55) 
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t 

Figure 9.17 Secant relationship. 

by multiplying both sides by g, and using (9.54), so that 

ap;yi = - yli-  lap;- lg,. (9.74) 

In one-dimension, this scalar relationship becomes the 'secant formula' illustrated in 
Figure 9.17. 

Quasi-Newton methods have been applied to non-linear finite elements by a number 
of workers [B3, P9, G2, H41. 

9.8 SECANT-RELATED ACCELERATION TECHNIQUES 

In [C7, C9, C10, C13, C171, the author developed a range of 'faster modified Newton- 
Raphson iterations' or 'secant-Newton techniques' which are closely related to the 
previous BFGS procedure. In particular, suppose we apply the technique of Section 
9.7 but always discard all old updates except the current one. Hence, the iterative 
direction would from (9.54) and (9.61) take the form 

(9.75) 

where KO is, say, the tangent stiffness matrix from the beginning of the increment so 
that if wi and vi were zero, we dould obtain the standard modified Newton-Raphson 
method. In these circumstances, it is easy to show that the iteration direction of Sp, 
of (9.54) can be written as 

ap, = A a;, + Bq,-  lap,-  1 + ca;,- 1 (9.76) 

6pi = - [I + wivfK0- '[I + viwf]gi 

where 

(9.77) 
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The scalars A, B and C are given by 

(9.78) 

A = l - C  (9.79) 

(9.80) 

The three-vector iterative change in (9.76) can equally be derived from (9.54) and 
(9.60) with KO instead of K i - l .  I t  is therefore directly derived from the BFGS 
‘quasi-Newton formula’ and is a ‘memoryless single cycle’ version of the Matthies 
and Strang BFGS procedure. I t  is also related to conjugate-gradient-like procedures 
by Shanno [S3] and others [B14, B15,Nl,N2]. 

A two-vector update can be produced by making the approximation: 

This leads to 

where A is again given by (9.79) (with C from (9.78)) and by 

(9.8 1) 

(9.82) 

(9.83) 

(with A and C from (9.78) and (9.79)). The update of (9.82) is not directly derivable 
from the BFGS method but does satisfy the ‘secant relationship’ of (9.74). Also, if KO 
in (9.77) is replaced by the identity matrix, then for a quadratic energy function, with 
exact line searches both of the updates of (9.76) and (9.82) correspond with the 
conjugate-gradient method. With KO as the tangent stiffness matrix at the beginning 
of the increment, the methods can be seen as forms of preconditioned conjugate 
gradient method [CS, C7, CS]. When seen in this light, they are closely related to the 
conjugate-Newton method of Irons and Elsawaf [ I l l .  It is work noting that numerical 
experiments [Cl 31 showed a good performance using only a single-parameter 
accelerator via (9.82), with A being taken from (9.79) and B being set to zero. 

It has already been indicated in Section 9.7 that there are iterations for which it is 
better to avoid the quasi-Newton update. These occasions also occur with the 
acceleration methods of Section 9.8 so that, in some circumstances, instead of using 
(9.76) or (9.82), one would use the standard modified Newton -Raphson direction of 

6pi = 66, (9.84) 

with 65, from (9.77). Purely on the basis of numerical experiments [CS], the author 
devised the ‘cut-out’ criteria whereby the accelerated iterations ((9.76) or (9.82)) are 
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only used if 

or, with (9.76), 

> - i R 2  
B + C  

R , > -  
A 

(9.85) 

(9.8 6a) 

or with (9.82), 
E 

R,>-> - i R 2 .  (9.86b) 
A 

Otherwise, the rnN-R change of (9.84) is used instead. In the work of [CS], it was 
recommended that R ,  lies between 2 and 3 and R ,  between 0.3 and 1 .  Subsequent 
work suggested a higher cut-off with R ,  and for the present work, R ,  has been taken 
as 3.5 and R ,  as 0.3. 

9.8.2 Flowchart and Fortran for subroutine ACCEL 

For the present computer program, we will implement the two-vector acceleration of 
(9.82). To this end, as already discussed in Section 9.4.2, subroutine ITER calls a routine 
ACCEL to change the mN-R direction Spi = S i i  to account for the acceleration (see 
flowchart in Figure 9.13). A flowchart for subroutine ACCEL is given in Figure 9.18, 
where we are using the subscript 'n' for 'new' and '0' for 'old'. 

Yes 

1 

Figure 9.18 Flowchart for subroutine ACCEL. 
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9.8.2.1 Fortran for subroutine ACCEL 

SUBROUTINE ACCEL( DPB,GO,GOO,IBC,NV,DELO,SLOL,Rl C,R2C,ITE,IWRIT, 
1 IWR) 

C 
C 
C 
C 
C 
C 
C 

C 
C 

C 

10 

20 
C 

1007 

100 
C 

C 

APPLIES SECANT ACCELERATION TO THE MOD N-R METHOD 
DPB=lTER DlSP TO BE MODIFIED ON ACCOUNT OF ACEL. 
GO = CURRENT GRAD, GOD =OLD 
DELOzOLD DlSP CHANGE (WITHOUT S-L), SLOL=OLD STEP-LENGTH 
R1C AND R2C ARE INPUT CUT-OUT PARAMS. 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIM ENSlON DPB (NV) ,GO( NV) ,GO0 (NV), IBC( NV), DE LO (NV) 

SET CUT-OUT VALUES 
R l  I = 1 .DO/Rl C 

IF (ITE.EQ.l) GO TO 100 
BELOW REAL ACCN. 
BAS = 0. DO 
TOP =O.DO 
TOP2 = O.DO 
DO 10 I= l ,NV 
IF (IBC(I).EQ.O) THEN 

TOP =TOP + DELO(I)*GO(I) 
TOP2= TOP2+ DPB(I)*(GO(l)-GOO(1)) 
ENDIF 
CONTl N U E 

C = TOP/BAS 

R2E = - 0.5DO*R2C 

BAS= BAS+ DELO(l)*(GO(l)-GOO(1)) 

IF (ABS(BAS).LT.O.D-10) GO TO 100 

A = 1 .DO-C 
B =  - C-(A*TOP2/(SLOL*BAS)) 
IF (A.LT.RlI) GO TO 100 
IF (A.GT.RlC) GO TO 100 
RAT = B/A 
IF (RAT.LT.R2E) GO TO 100 
IF (RAT.GT.R2C) GO To 100 
DO 20 I = 1 ,NV 
IF (IBC(I).EQ.O) THEN 
DPB(I) =A*DPB(I) + B*SLOL*DELO(I) 
ENDIF 
CONTl N U E 
END OF ACCN. UPDATE 
IF (IWRIT.EQ.1) WRITE (IWR,1007) A,B 
FORMAT(/,lX,'ACCN. WITH A= ',G13.4,' B =  ',G13.4) 

CONTINUE 
STORE OLD VALUES 
DO 30 I= l ,NV 
IF (IBC(I).EQ.O) THEN 
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DELO(I) = DPB(I) 
GOO(1) = GO(I) 
ENDIF 

30 CONTINUE 
RETURN 
END 

9.9 PROBLEMS FOR ANALYSIS 

In Section 3.10, we have already described a range of ‘Benchmark tests for solution 
procedures for geometric non-linearity’ that have been proposed by NAFEMS, the 
National Agency of Finite Elements cC1.2, D1.21. We have also applied the basic 
Newton-Raphson (N-R) and modified Newton-Raphson (mN-R) methods to these 
problems. To this end, we used the computer program of Chapter 2 in conjunction 
with the deep-truss routines of Section 3.9. This computer program only allowed 
fixed increments. In the present section, we will apply some of the more advanced 
solution procedures of this chapter to these same problems. 

In studying the results, it should be remembered that the solution algorithms have 
not been aimed specifically at these small problems but rather at more realistic 
large-scaled problems. Hence, one cannot necessarily draw useful conclusions 
regarding the relative efficiency of the different methods from these small problems. 
Nonetheless, they should illustrate the main features. In addition, they provide 
valuable examples for checking one’s understanding of the various techniques. If the 
reader has implemented the computer programs, he (or she) may find it very useful 
to follow the program through some of the examples using, say, an interactive 
‘debugger’. He or she can, of course, experiment by trying different combinations of 
solution algorithm or, indeed, by solving different problems. 

Unless stated otherwise, the convergence criterion will be that of (2.30) with 
p = 0.001 while, if line searches are used the tolerance, P I S  of (9.1 1 )  will be set to 0.8. 
Also, the maximum number of iterations will be set to 21. 

9.9.1 The problems 

From Section 9.9.2 onwards, we will follow the convention whereby Section 9.9.x 
refers to the NAFEMS Example x. This procedure was followed in Section 3.10. I t  
will be useful to return to the relevant subsection of Section 3.10 in order to recall 
the problems and their attributes. In order to avoid repetition, reference will be made 
to some of the figures (and tables) in that chapter. Figure 9.19 summarises the different 
tests and refers to relevant earlier work in the book. 

9.9.2 Small-strain, limit-point example with one variable 
(Example 2.2) 

This example is illustrated in Figure 9.19(a) and was previously discussed in Section 
3.10.2.2. Table 9.1 supplements that of Table 3.1 by including the effects of line searches 
and accelerations. 
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___) 4 
I- P1 

‘t/ P4 

Figure 9.19 The range of examples: (a) Example 2 (see Figures 3.12(a), 3.13); (b) Example 3 (see 
Figures 3.12(a), 3.14); (c) Example 4 (see Figure 3.15); (d) Example 5 (Figures 3.12(b) + 3.18); (e) 
Example 6 (Figures 3.12(b) + 3.19); ( f )  Example 7 (see Figures 3.12(c) and 3.20). 
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Table 9.1. Iterative performance for Example 2.2 (see 
Figures 3.12(a) and 3.13). 

Iterations at load step 
Method 1 2 3 4 5 6  

mN-R 2 2 3 3 12 fail 
mN-R + accn. 2 2 2 2 4 fail 
mN-R +l.s. 2 2 3 3 12 3(3) 
N-R 1 1 1 2 3 fail 
N-R + 1.s 1 1 1 2 3 17(7) 

In the above table and for the rest of the chapter when giving results for a solution 
procedure with line searches, the figure in brackets will be the number of extra 
calculations of the out-of-balance force vector, g, resulting from the use of the line 
searches. Hence in the above table, the addition of line searches to the mN-R method 
allowed point 6 (Figure 3.13) to be reached via three iterations 
‘residual’ calculations. 

The following data is for the mN-R method with line searches. 

and three extra 

4 2 50000000. 1 .  0. 0. ; NV, ITYE (rot eng.), ARA, POIS, ANlT 
0. 2500. x coords. 
0. 25. z coords. 
0. 0. 0. - 1.0 ; load of - 1.0 at variable 4 (vertical at node 2) 
1 1 1 0 ; only variable 4 is free 
0 ; no earthed springs 
1.9 6 0 0 0 0 0 ; FACI,NINC,IWRIT,IAUTO,IARC,IACC,IRES 
0.001 2 21 6 ; BETOK,ITERTY(mN-R),NITMAX,NLSMX 
0.8 5.0 25. 0.01 PERMLS,AMPMX,ETMXA,ETMNA 

This problem could be successfully solved using either displacement control or the 
arc-length method (effectively the same for this trivial problem with a single variable). 

9.9.3 Hardening problem with one variable (Example 3) 

For this problem, a linear spring, has been added (Figure 9.19(b)) so that the response 
is continuously hardening although with a softer and then a stiffer region. On 
introducing the newer solution procedure, Table 3.2 becomes augmented to give 
Table 9.2. 
Data for the solution using the accelerated mN-R method is given below: 

4 2 50000000. 1 0. 0. ; NV, ITYE (rot. eng.), E, ARA, POIS, ANlT 
0. 2500. x coords. 
0. 25. z coords. 
0. 0. 0. - 1.0 ; load of - 1 at variable 4 (vertical at node 2) 
1 1 1 0 ; only variable 4 is free 
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Table 9.2. Iterative performance for Example 3.10.3 (see Figures 3.12(a) 
and 3.14). 

~~ ~ 

Iterations at load step 
Method 1 2 3 4  5 6 7 

mN-R 3 3 3 5  10 fail 
mN-R + accn. 2 2 2 3  a 9 3 
mN-R + 1 .s. 3 3 3 5 7(1) 3(1) 6 
N-R 1 1 2 2  2 3 2 

1 one earthed spring 
4 at variable 4 
1.125 ; of magnitude 1.125 
6. 7 0 0 0 1 0 ; FACI,NINC,IWRIT,IAUTO,IARC,IACC,IRES 
0.001 2 21 0 ; BETOK,ITERTY NITMAX,NLSMX 
3.5 0.3 ; RlC, R2C 

This example can also be used to illustrate the use of ‘automatic increments’ and 
‘automatic increment reduction’. The following data relates to such a solution with 
the basic mN-R method. 

4 2 50000000. 1. 0. 0. ; NV, ITYE (rot. eng.), E,ARA, POIS, ANlT 
0. 2500. x coords. 
0. 25. z coords. 
0. 0. 0. - 1.0 ; load of - 1 at variable 4 (vertical at node 2) 
1 1 1 0 ; only variable 4 is free 
1 one earthed spring 
4 at variable 4 
1.125 ; of magnitude 1.125 
6. 30 0 1 0 0 0 ; FACI,NINC,IWRIT,IAUTO,IARC,IACC,IRES 

‘ 0.001 2 10 0 ; BETOK,ITERTY NITMAX,NLSMX 
3 8 0.5 0 ; IDES,FACMX,FACMN,ISWCH 

The results are plotted in Figure 9.20. With the maximum number of iterations 
(NITMAX) being set to 10 (see above data), the increments were automatically cut on 
two occasions (Figure 9.20). 

9.9.4 Bifurcation problem (Example 4) 

The bifurcation problem (Figure 9.19(c)) has already been discussed in Sections 1.2, 
Section 2.6.3 and 3.10.4. In the present context, it is useful to apply the arc-length 
method to this problem and to imagine that we did not know of the bifurcation. As 
a precursor to the arc-length solution we might have applied a single load increment 
of 1000 which would give a length increment, A1 of 0.05. Suppose we then wished to 
start from the beginning with the arc-length method with increments of A1 = 0.05. 
Appropriate data is given below. 
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Vertical displacement. p4 

Figure 9.20 Solution points for Example 3. 

4 2 50000000. 1. 0.0 0.0 ; NV,ITYE(Engng.).E,ARA,POIS,ANIT 
0. 2500. ; x coords. 
0. 0.0 ; z coords. 
1000. 0. 0. 0. ; fixed LOAD vector 
0 1 1 0 ; Bdry.condn. code 
1 ; one earthed spring 
4 ; at variable 4 
1.5 ; of mag. 1.5 
1.0 7 0 1 1 0 0 ; FACI,NINC,IWRIT,IAUTO,IARC,IACC,IRES 
0.001 2 21 0 BETOK,ITERTY(mN-R),NITMAX,NLSMX 
3 1. 1. 0 IDES,FACMX,FACMN,ISWCH 
0.05 0.05 0.05 DLDES,DLDMX,DLDMN 

Because DLDES = Al,,, is specified as 0.05 on the last ‘card’, the load increment 
factors on the penultimate card are not used. The first increment would result in a 
1-value of 1 or, with the given loading, a load of 1000. Because AI,,, and Almi,, are 
also set to 0.05, the next increment would be of the same length, leading to A=2 
and then A =  3 and on the fourth increment 1 = 4. At this stage, the critical buckling 
load of 3750 would have been passed and on factorising K, one negative pivot would 
be found. Hence the switching procedure in subroutine SCALUP (see Section 9.6.4) 
would reverse the sign for the next (fifth) increment leading to 1 = 4 - 1 = 3 at which 
level K, would be positive-definite so that the next increment would be positive. This 
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would continue with the solution oscillating about the critical buckling load. The 
reason for this behaviour has already been discussed in Section 9.4.3 and relates to 
a bifurcation point being mistaken for a limit point. It is worth observing from the 
solution to this problem that the current stiffness parameter (Section 9.5.2) does not 
respond at all to the bifurcation and remains at unity throughout the analysis. 

9.9.5 Limit point with two variables 

Problem 5 is illustrated in Figure 9.19(d) and has been discussed before in Section 
3.10.5. Because it involves a limit point, it would seem a good example to illustrate 
the automatic switch to the arc-length method. Appropriate data is given below: 

4 2 50000000. 1 .  0.0 0.0 ; NV,ITYE(Engng.).E,ARA,POIS,ANIT 
0. 2500. ; x coords. 
0. 25. ; z coords. 
1000. 0. 0. 0. ; fixed LOAD vector 
0 1 1 0 ; Bdry.condn. code 
1 ; one earthed spring 
4 ; at variable 4 
1.5 ; of mag. 1.5 
0.76 30 0 1 0 0 0 ; FACI,NINC,IWRIT,IAUTO,IARC,IACC,IRES 
0.001 1 21 0 BETOK,ITERTY,NITMAX,NLSMX 

0.3 ; CSTIFS 

This data is designed to start under load control with a first increment of AA = 0.76 
(leading to a load of 760), to apply automatic increments with a maximum factor of 
AA = 1 and a minimum of AA = 0.1. The solution should switch automatically (Section 
9.5.2) to the arc-length method once the current stiffness parameter reduces below 0.3. 

In order to record the solution, it is useful to plot an end-on view of the solution 
in Figure 3.17, i.e. in the ql-p4 plane (see Figure 3.12(b)). The results of the previous 
load-controlled solution (Section 3.10.5) are plotted as circles in Figure 9.21 and 
clearly indicate the branch switching. The triangles were obtained using the previous 
data and illustrate the success of the automatic switch to the arc-length procedure 
on increment 4. The solution then proceeded without dificulty under arc-length 
control until increment 26 (see Figure 9.21). At the following increment the solution 
switched to the secondary branch in the region Z on Figure 3.17 and then oscillated 
between points 26 and 27 (Figure 9.21). From the exact solutions CC1.21, we know 
of the second branch in this region and so, with this knowledge, the solution is at 
least believable although not desirable. 

Before giving a reason for this behaviour, we should explain how we continued 
on from point 26 (Figure 9.21) to obtain the ‘correct solutions’ which are the squares 
in Figure 9.2 1.  This was achieved by firstly rerunning the previous data but reducing 
the number of increments from 30 to 26. Hence the ‘unformatted’ restart file, RESOUT 
was available for a restart from point 26. The data used to obtain the squares in 
Figure 9.21 is given below: 

4 2 50000000. 1. 0.0 0.0 ; NV,ITYE,E,ARA,POIS,ANIT 

. 3 1.0 0.1 1 IDES,FACMX,FACMN,ISWCH 
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Figure 9.21 Solution points for Example 5. 

0. 2500. ; x coords. 
0. 25. ; z coords. 
1000. 0. 0. 0. ; fixed LOAD vector 
0 1 1 0 ; Bdry.condn. code 
1 ; one earthed spring 
4 ; at variable 4 
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1.5 ; of mag. 1.5 
0.08583 10 0 I 1 0 1 ; FACI,NINC,IWRIT,IAUTO,IARC,IACC,IRES 
0.001 I 21 0 BETOK,ITERTY,NITMAX,NLSMX 
3 1.0 0.1 0 IDES,FACMX,FACMN,ISWCH 
10.0 10.0 0.5 DLDES,DLDMX,DLDMN 

This data forces the solution to start under arc-length control with a length 
increment, AI of 10 and does not let the incremental length grow beyond this value. 
This increment compares with the value of AI = 370 that was used in going between 
the triangles 26 and 27 in Figure 9.21. As a result of this dramatic reduction in 
increment size, the squared points in Figure 9.21 were obtained (although off the 
graph, the seventh increment again introduced a branch switch). 

In explaining the strange behaviour associated with the previous branch switching, 
i t  is useful to return to the solutions in Figure 3. I5 which relate to the ‘perfect system’ 
and to reconsider the explanation of these solutions that was originally given in 
Section 3.10.4 and is related to the system of Figure 3.12(b) or 9.19(d) (with z = 0). 
This explanation related the load-deflection response OAC (or C’) DEF (Figure 3.15) 
to the configurations in Figure 3.16. While the present analysis relates to an imperfect 
rather than a ‘perfect’ system, the two are closely related (Figure 3.17). In relation to 
the current analysis, the low point in Figure 9.21 relates to point D in Figure 3.15 
and the rising part to the line DEF. At  point D in Figure 3.1 5 ,  the configuration of 
the bar is as in Figure 3.16(iii) with point ‘a’ now lying horizontally on the right of 
the pivot point b. The rising portion DEF in Figure 3.15 then involves further 
movement of the ‘load point a’ to the right, thus reducing the compression in the 
bar and eventually taking it  into tension. Movement downwards from point D, Figure 
3.15 towards point G involves an ‘unstable’ compression of the bar with the load 
point a now moving to the left. The differences between a small movement from D 
towards F and one towards G (Figure 3.15) are very minor in comparison with the 
total movements to reach that configuration. In particular, the movement p1 
(Figure 9.19~)  to reach the configuration (iii) in Figure 3.16 is about 50000 or twice 
the length of the bar. In these extreme circumstances, the two alternative solutions 
are, as far as the arc-length method is concerned, very close together so that the 
method may converge on one or the other. In relation to Figure 3.18, which relates 
to the present imperfect system, the stable solution is towards point 5, while the 
unstable solution induces further compression towards point x. The solution with 
the triangle 27 in Figure 9.21 lies on the latter unstable equilibrium curve. Because 
it  is unstable, a negative pivot was detected and hence the oscillation (Figure 9.21) 
between points 26 and 27. 

Clearly, the most sensible way to solve this problem is to use displacement control 
at the ‘loading point’. The following data relates to such a solution: 

4 2 50000000. 1. 0.0 0.0 ; NV,ITYE(Engng),E,ARA,POIS,ANIT 
0. 2500. ; x coords. 
0. 25. ; z coords. 
1000. 0. 0. 0. ; fixed Displ. vector 
- 1  1 1 0 ; Bdry.condn. code 
1 ; one earthed spring 
4 : at varbl. 4 



322 MORE ADVANCED SOLUTION PROCEDURES 

1.5 ; of mag. 1.5 
0.25 25 0 1 0 0 0 ; FACI,NINC,IWRIT,IAUTO,IARC,IACC,IRES 
0.001 1 21 0 BETOK,ITERTY,NITMAX,NLSMX 
3 0.25 0.05 0 IDES,FACMX,FACMN,ISWCH 

This solution involves applying a first increment of Ap, = 250 and forcing 
subsequent displacement increments to be no larger. The results are plotted as the 
crosses in Figure 9.21. 

9.9.6 Hardening solution with two variables (Example 6) 

This problem has previously been discussed in Section 3.10.6. In relation to the results 
for fixed load-increments that were given in Table 3.4 and relate to Figure 3.19, the 
new solution procedures, such as line searches and accelerations, were not very 
successful. Successful solutions were obtained using the following data for a solution 
with automatic load increments and the mN-R method with line searches although 
the increments became very small so that progress was very slow. 

4 2 50000000. 1. 0.0 0.0 ; NVJTYE = Engng.,E,ARA,POIS,ANIT 
0. 2500. ; x coords. 
0. 25. ; z coords. 
1000. 0. 0. 0. ; fixed LOAD Vector 
0 1 1 0 ; Bdry.condn. code 
2 ; Two earthed springs 
1 4 ; At varbls. 1 and 4 
2.0 1.5 ; of mag. 2.0 and 1.5 respectively 
1.0 25 0 I 0 0 0 ; FACI,NINC,IWRIT,IAUTO,IARC,IACC,IRES 
0.001 2 21 4 BETOK,ITERTY(mN-R),NITMAX,NLSMX 
0.8 5.0 25. 0.01 PERMLS,AMPMX,ETMXA,ETMNA 
3 2.0 0.02 0 IDES,FACMX,FACMN,ISWCH 

A solution was also obtained using the automatic switch to the arc-length method 
via 

4 2 50000000. 1 .  0.0 0.0 ; NV,ITYE = Engng.,E,ARA,POIS,ANIT 
0. 2500. ; ?c coords. 
0. 25. ; z coords. 
1000. 0. 0. 0. ; fixed LOAD Vector 
0 1 1 0 ; Bdry.condn. code 
2 ; Two earthed springs 
1 4 ; At varbls. 1 and 4 
2.0 1.5 ; of mag. 2.0 and 1.5 respectively 
1.0 60 0 1 0 0 0 ; FACI,NINC,IWRIT,IAUTO,IARC,IACC,IRES 
0.001 1 21 0 BETOK,ITERTY,NITMAX,NLSMX 
3 2.0 0.02 I IDES,FACMX,FACMN,ISWCH 
0.3 ; CSTIFS 
0.0 0.0 0.0 ; DLDES,DLDMX,DLDMN 
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However, as with the previous example (9.9.5), branch-switching and oscillation 
occurred in the very late stages when the bar was almost fully inverted. Again, as 
with the previous example, the difficulties could be overcome via displacement control. 

9.9.7 Snap-back (Example 7) 

This example has previously been discussed in Section 3.10.7. Because of the 
snap-back, this is an ideal example for the arc-length method. Figure 9.22 shows the 
relationship between end load, q ,  and end-shortening, p s  that was obtained with the 
aid of the following data: 

5 1 50000000. 1 .  0.0 0.0 ; NV,ITY E = (Engng.),E,ARA,POIS,ANIT 
0. 2500. ; x coords. 
0. 25. ; z coords. 
0. 0. 0. 0. 100. Fixed LOAD Vector, loading at variable 5 
0 1 1 0 0 ; Bdry.condn. code 
2 ; Two earthed springs 
1 4 ; At varbls. 1 and 4 
0.25 1.5 ; of mag 0.25 and 1.5 respectively 
1.0 ; linear spring of stiff 1.0 between variables 1 and 5 

400C 

3000 

2000 

C 

1000 
0 J 

1000 

- 2000 

- 3000 

Figure 9.22 Solution points for Example 7 
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1.0 100 0 1 1 0 0 ; FACI,NINC,IWRIT,IAUTO,IARC,IACC,IRES 

3 1. 1. 0 IDES,FACMX,FACMN,ISWCH 
700. 3500. 10. ; DLDES,DLDMX,DLDMN 

A preliminary analysis had indicated that an appropriate starting length increment 
would be AI = 700 which give a load change, Aqs of about 700 and a shortening, Aps 
also of about 700. The solution in Figure 9.22 shows some very small increments. 
As indicated in the data above, a total of one hundred increments were used. 

0.001 1 12 0 ; BETOK,ITERTY(N-R),NITMAX,NLSMX 

9.10 FURTHER WORK ON SOLUTION PROCEDURES 

Inevitably, a whole range of work on solution procedures has so far been omitted 
from this chapter. Papers with significant reviews on the subject can be found in 
[W2,C4, R7, R11, R12, Fl,C8,C17]. In this last section, we will now attempt to 
mention at least some of the work. Extensions will be given in Volume 2. 

In Section 9.3, we discussed the arc-length and some related methods. A further 
related method, advocated by Bathe and Dvorkin [B2] uses, as a constraint, the 
‘constant increment of external work’. With this approach, the predictor solution 
would (see also (9.38)) be governed by 

A W =  (3, + iAAp)q:fApp = AAp(3, + $AAP)q:$pt (9.87) 

where 2 is the load-level parameter at the end of the last increment and the work 
A W  takes the place of the arc length, Al. For subsequent iterations, the ‘iterative 
external work’ is set to zero via (see (9.23)) 

where A, is the ‘old’ (at the end of the previous iteration) value of A. As with the 
‘spherical arc-length method’, (9.88) leads to a quadratic equation with two roots for 
the load-level change, 83, (compare (9.26) and (9.27)). In contrast to the arc-length 
method, these roots will always be real. Consequently, some workers [BSI have 
advocated switching to the work procedure when no real roots are obtained with 
the arc-length method. With the previous computer implementation of the arc-length 
method, we have, in these circumstances, simply cut the length increment, Al. 

Bergan [B6] has advocated an approach involving the minimisation of the 
out-of-balance force norm. Neither the author [CS] nor Clarke and Hancock [C4] 
found this method to be very successful when applied on its own. Eriksson [El] has 
recommended a procedure whereby the iterative change is decomposed to include 
separately a component involving the lowest eigenmode (see also [J2]). Near limit 
points, this component is damped. 

In earlier sections, we have separately discussed the arc-length methods, line 
searches, quasi-Newton and secant-Newton methods. Clearly these procedures can 
be combined and the combination of arc-length and acceleration techniques has been 
considered by the author [CS,Cl 1). A difficulty relates to the line searches which 
have to be enforced at a variable load level and may or may not be up hill [C16, C191. 
Much further work is required. 
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A further set of solution procedures can be derived from so-called ‘homotopy’ of 
‘relaxation’ equations whereby the equilibrium equations g(p) = 0 (here assuming the 
load level R is fixed) are embedded in an extended equation of the form 

where t can be considered as a ‘pseudo-time’ and as t -, CO, one obtains the desired 
solution g(p) = 0. These methods (said to be due to Davidenko [Dl]) have been much 
applied in both the mathematical [AI, G1, K3] and structural [P6, F2, F4] literatures. 
They have often been used with arc-length-type constraints and then have much in 
common with the previous ‘continuation methods’. 

A simplified variation of the method can be used to recover equilibrium from a 
state (related to a loading Aqef) at which g # 0 and from which standard methods fail 
to achieve convergence. The procedure is based on the observation that this solution 
is in equilibrium with a modified external loading, ‘qef’= iqef  + g. Hence, we may 
restart the analysis procedure working with two load vectors following the lines of 
(9.49, so that 

‘qe ’  = ‘Qef )  + P ‘ q e f )  = (h.f + g) - Pg. (9.90) 

In order to apply this loading ‘qef’ is kept fixed while the new ‘loading scalar’, P, 
(usually written as A) is incremented fron zero to unity in order to recover an equilibrium 
state related to the original intended loading (Asef). During this process, the whole 
range of solution strategies can be adopted, including, for example, automatic incre- 
mentation and line searches. In this basic form, the process can only be applied with 
elastic materials. 

The ‘homotopy’ methods obviously have some links with a range of structural 
methods derived from the dynamic analogy [01, D4, K8). One of these is the form 
of dynamic relaxation as originally proposed by Otter and Day [Ot, D4] which has 
been applied to both linar [C3] and non-linear [F13] structural problems. In this 
form a diagonalised mass matrix is used and, in relation to the solution of linear 
equations, the method can be viewed [CS] as a second-order Jacobi or Richardson 
process [Fl 11. 

Such a method is only one of a range of iterative methods (without a stiffness 
matrix) that can be used to solve both linear and non-linear equations. Similar 
methods include conjugate gradients [H3, P10, F8, CS] and the Lanczos method 
[Ll,P8]. As for linear problems, a difficulty with such methods can be their slow 
convergence rates with badly conditioned problems (such as shells) and a range of 
pre-conditioning techniques have been used [K4, J1, H5, H6, C5, P17, P2, N5, Cl]. 
These preconditioning techniques can be viewed as providing an approximate, easily 
factorisable stiffness marix [CS]. For non-linear structural problems, the iterative 
solution techniques can be embedded in an inner-outer loop whereby the outer 
loop is a form of Newton procedure for the non-linearities while the inner loop 
involves the iterative solution of the linear equations “4, P3, P4, P51. Because of 
the outer loop, the inner loop need not be solved accurately for the early outer 
iterations. 

We have already indicated the difficulties that the arc-length method (and other 
methods) encounters with fiburcation points. There has been a mass of literature on 
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the basic theory and numerical procedures [K I ,  K3, P5,Tl -T4, A4, D6, M5, Ul]. (The 
review by Ulrich [U 11 gives 1568 papers on numerical methods for continuation and 
bifurcation problems!) Techniques for their implementation in finite element codes 
have been given in [W7, W8, A3, R 10, R 1 I ,  R 12, K6] but, again, further work is 
required. 

A further set of techniques that should be mentioned are the perturbation and 
reduced basis techniques in which various methods are used to provide a reduced 
number of basis vectors with which the non-linear analysis can work [C2, H I ,  
A5,N3]. Clearly as the solution path is traced, these reduced basis vectors must 
be updated. 

9.1 1 SPECIAL NOTATION 

ui = scalar for quasi-Newton update (see (9.64)) 
C, = current stiffness parameter (see (9.44)) 
I ,  = desired number of iterations 
I, = number of iterations for old (previous) increment 

KO = old fixed tangent stiffness matrix (Section 9.8) 
qef = ‘fixed’ external load vector (usually to be incremented via a scalar A) 
ijef = fixed external load vector that will not be incremented (see (9.45)) 
qi = internal nodal forces 
r = line search ratio (see (9.1 I ) )  
s = energy slope = t@/dq (Section 9.2) or arc-length distance (Section 9.3) 

s , = s a t q = O  
vi  = vector for quasi-Newton update (see (9.63)) 
wi = vector for quasi-Newton update (see (9.62)) 
f l =  convergence tolerance (see (2.30)) 

( j l s  = line-search tolerance (see (9.1 1) )  
Y = g, - go 

6p  = iterative displacement change 
6;. = - K-’g. 
6p, = tangential displacement change (see (9.23)) 
6p = iterative displacement change 
AI = incremental arc length 
Ap = incremental displacement change (from last converged equilibrium state) 
6A = iterative change in i, 
AA = incremental change in j. 

0 1  

A = scalar load-level parameter 
q = step length for line search 
$ = scaling parameter for arc-length constraint (see (9.19)) 

Subscripts 

n = ‘new’ 
o = ‘old’ 
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Appendix 

Lobatto rule for numerical 
integration 

No. of Position Weighting 
points 

3 
0 

4 + I  

+ 1  

0 

f 0.447 21 3 60 

5 - + 0.654 653 67 

6 f 0.765 055 32 
k 0.285 231 52 

- + 1  
7 +_ 0.830 223 90 

f 0.468 848 79 
0 

+ I  
+_ 0.871 740 15 
k 0.591 700 18 
& 0.209 299 22 

+ 1  
& 0.899 757 9954 
f 0.677 186 2795 
& 0.363 1 17 4638 

0 

0.333 333 33 
1.333 333 33 

0.1 66 666 67 
0.833 333 33 

0.100 000 00 
0.544 444 44 
0.711 111 1 1  

0.066 666 67 
0.378 474 96 
0.554 858 38 

0.047 61 9 04 
0.276 826 04 
0.431 74538 
0.487 61 9 04 

0.035 71 4 28 
0.21 0 704 22 
0.341 12270 
0.41 2 458 80 

0.027 777 7778 
0.165 495 361 6 
0.274 538 71 26 
0.346 428 51 10 
0.371 519 2744 
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No. of 
points 

Position Weighting 

10 

1-1 0.022 222 2222 
0.133 305 9908 
0.224 889 4320 
0.292 042 6836 
0.327 539 761 2 

t: 0.91 9 533 9082 
& 0.738 773 8651 
0.477 924 9498 

& 0.165 278 9577 
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