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PROFESSOR ISAO IMAI - 7. 10. 1914 TO 24. 10. 2004

It was on 24 October 2004, two days before the opening of the present
IUTAM Symposium, that Professor Isao Imai passed away in Tokyo on cardiac
insufficiency at the age of ninety. He was involved in this Symposium as
one of the supervisors of its mother project, Special Project Research on New
Developments in Turbulence Study by Means of Turbulent Elementary Vortices
supported by Ministry of Education, Culture, Sports, Science and Technology,
and his presence to the Symposium was expected if his health permitted. In
the Opening Session of the Symposium, a tribute to his memory has been paid
by Professor Keith Moffatt, President of the IUTAM who participated in the

achievements in the fields of Theoretical and Applied Mechanics and devoted
contribution to the IUTAM for many years, it has been decided to dedicate this
IUTAM Symposium to the memory of the late Professor Isao Imai.

He was born in 1914 in Tairen of Manchuria, China, and has grown up in
Kobe since his family came back to Japan afterward. His outstanding gift was
already apparent from his boyhood as he finished his elementary and middle
school courses each one year earlier and entered The First High School in Tokyo.
Then he proceeded to Tokyo University, Faculty of Science, Department of
Physics, and obtained there the degree of B. Sc. in 1936 at the age of 21.

He started his academic career at Osaka University as a research associate to
Prof. S. Tomotika, and after two years he came back to Tokyo University as a
lecturer, then was promoted to an associate professor and nominated Professor
of Physics in 1950. In Tokyo University, he achieved brilliant contributions in
science, brought up a number of excellent scientists and extended his scientific
influence to general people until his retirement in 1975. Then he continued his
academic activity in Osaka University for three years and again came back to
Tokyo to teach in Kogakuin University.

His scientific works have mostly been made in the fields of fluid mechanics
and mathematical physics. When he started his research in 1936, fluid mechan-
ics has been in a stage of innovation. The traditional hydrodynamics, dealing
with the perfect fluid devoid of the compressibility and viscosity of the fluid,
had already been in a deadlock and new fields such as high-speed airflows,
boundary layers and turbulence have been attracting researchers’ interest. The
representatives of his early works, that is, wing theory of arbitrary sections,
transonic similarity of high-speed airflows and theory of slow viscous flows, are
all excellent contributions to these new fields. These subjects concerning the
real-fluid effects in fluid flows had already been dealt with by several researchers
but not always satisfactorily, and his solutions derived using his unique methods

In view of his greathim has been offered by all attendants of the Session.
Symposium as a member of the Scientific Committee, and a silent prayer to



based on complex analysis are known to be the most general, systematic and
complete. He was awarded the Asahi Culture Prize in 1951 and the Prize and
Imperial Award of the Japan Academy in 1959. He was elected the Honorary
Member of the American Aeronautical Society (now AIAA) in 1962.

The physical generality and the mathematical elegance of his approach have
been displayed beyond the realm of fluid mechanics. Inspired by the progress
in astro-physics and nuclear-fusion research after the War, great interests of
researchers have been directed to the new field of magneto-hydrodynamics
(MHD). He extended his activity to this field and, using a new concept of
virtual fluid, expressed the MHD flows in terms of ordinary fluid mechanics
and reformulated the framework of the MHD. Furthermore, his interest has been
directed to electromagnetism itself and, defining the electro-magnetic field as
a mechanical system satisfying the conservation laws of the momentum and
the energy, he reformulated the theory of electromagnetism according to the
fluid-mechanical concepts and methodology. As the result, several ambiguities
and errors have been removed from the formulas of the electromagnetic forces
acting on the solid bodies.

Another important extension of his approach has been made to the theory
of hyper-function. Taking the reverse view of the conventional concept of
fluid mechanics as a branch of applied mathematics, he considered the hyper-
function of Sato as a vortex-layer in fluid mechanics and reformulated the theory
of hyper-function. Such a change of the view-point seems to provide us with
a clear image of the hyper-function and open a broad way of its application to
science and technology.

His ability has also been displayed in administrative posts both domestic
and international. He was appointed the president of the Physical Society of
Japan, the president of the Japan Society of Fluid Mechanics, the vice-president
of the International Union of Pure and Applied Physics (IUPAP), and the bu-
reau member of the International Union of Theoretical and Applied Mechanics
(IUTAM). He also held visiting professorship in several universities such as
Maryland University, Marseilles University, Cornell University, and Aachen
Technical University. In appreciation of his outstanding academic contribu-
tions, he was honored as the Person of Distinguished Services in Culture in
1979 and awarded the Order of Cultural Merit in 1988 and the First Order of
Merit in 1992.

Looking back his brilliant scientific works for many years, we should recog-
nize his clear line of thought on fluid physics. That is to consider the fluid as a
mechanical system subject to physical conservation principles and to derive the
physical laws of fluid flows by solving the governing mathematical equations,
using new concepts and methods if necessary. Here the fluid flows are often
expressed as the singularities of the equations and their physical laws take the
form of the asymptotic similarity around the singularities. If such an approach



of fluid physics may be called mathematical physics of fluids, the outstanding
feature of his works, the “clarity and generality”, seems to stem from his stoical
adherence to mathematical physics of fluids.

Although he himself has not dealt with any particular problem of turbulence,
he has always been encouraging the efforts by younger people to upgrade tur-
bulence research to the stage of mathematical physics of fluids. Actually we
may notice several papers in the present Symposium along this line of idea.

Now the subject of fluid physics is expanding from the classical Newtonian
fluid to electromagnetic fluid, quantum fluid, reacting fluids, atmospheric and
oceanic fluids, cosmic and planetary fluids and so on, and all of these new fluids
are known to be associated with some kind of turbulent phenomena. It should
be our pleasant task to take our steps of turbulence research forward to such
new fields of mathematical physics of fluids.

Tomomasa Tatsumi
Emeritus Professor of Kyoto University
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Preface

By the elementary vortices, we mean those tubular swirling vortical struc-
tures with concentrated vorticity which are commonly observed in various kinds
of turbulent flows as the smallest coherent motion. The elementary vortices play
key roles in turbulence dynamics (e.g. enhancement of mixing, diffusion and
resistance) and characterizes turbulence statistics (e.g. intermittency). Because
of their dynamical importance, manipulation of elementary vortices and coher-
ent structures is expected to be effective and useful in turbulence control as well
as in construction of turbulence modeling. Besides its dynamical significance,
the vortical structure is convenient in describing and understanding turbulence
structure (e.g. skeleton representation with vortex axes), and the topological
characterization by knottedness and crossing number. The vorticity equation
has rich mathematical structures. The physics and mathematics of vortex re-
connection and the finite-time singularity for both Euler and Navier-Stokes
equations are related unresolved problems.

For the purpose of deepening our understanding on these subjects and search-
ing new perspectives in theory, prediction, and control of turbulence the IUTAM
Symposium entitled Elementary Vortices and Coherent Structures — Signifi-
cance in Turbulence Dynamics was held during 26 – 28 October 2004, at Kyoto
International Community House, Kyoto, Japan. There were eighty registered
participants, representing eleven countries. The scientific program was com-
posed of 5 sectional lectures of 50 minutes each, 16 regular lectures of 25
minutes each, and 21 posters with oral presentations of 3 minutes each. Most
of these presentations are included in this proceedings. All the papers were ref-
ereed by all members of Scientific Committee and revised appropriately. They
are divided into six groups: (A) Vortex dynamics, (B) Coherent structures, (C)
Chaotic advection and mixing, (D) Statistical properties of turbulence, (E) Ro-
tating and stratified turbulence, (F) Instability and transition, (G) Dynamics of
thin vortices, (H) Finite-time singularity, and (I) Superfluid turbulence.

It was two days before this Symposium that Professor Isao Imai passed away
at the age of ninety. It is really our deep grief that we lost such a distinguished
and respectful scientist. He was one of the most influential scientists known
worldwide in fluid mechanics and mathematical physics: high-speed flows,
viscous flows, magnetohydrodynamics, theory of hyperfunctions, and so on.
He was the member of IUTAM bureau in 1984 – 1992. At the opening of the
Symposium a memorial address for him was given by Professor H.K. Moffatt,
the President of IUTAM, and a silent prayer was offered by all participants.
This proceedings is devoted to him with an obituary written by Professor T.
Tatsumi, the former member of IUTAM bureau.



xviii

This Symposium would not have been performed successfully without de-
voted cooperation of many people. Professor T. Kambe, the representative of
Japan in IUTAM, has encouraged and supported us continuously from the plan-
ning stage. The selection of papers for presentation in the Symposium as well
as for publication in this proceedings was made based upon strict reviews by
the Scientific Committee members. All the practical preparation of the Sym-
posium, including the arrangement of the Symposium venue, the setup of the
Symposium homepage, the raising of the financial support, and so on and so
forth, was accomplished by the Local Organizing Committee members through
their time-consuming efforts. All the miscellaneous tasks, occasionally being
unexpected and confusing, were dealt with smoothly by Ms. Y. Shichida, the
secretary general, with assistance of Ms. I. Goto. We would like to express
our hearty gratitude to all of these people as well as all the participants of the
Symposium who activated it.

Generous supports to the Symposium are gratefully acknowledged for IU-
TAM, the Commemorative Organization for the Japan World Exposition (’70),
Inoue Foundation for Science, and the 21st Century COE Programs in Kyoto
University for Research and Education on Complex Functional Mechanical
Systems, for Elucidation of the Active Geosphere (KAGI21), for Formation
and an International Center of Excellence in the Frontiers of Mathematics and
Fostering of Researchers in Future Generations, and for Center of Diversity and
Universality in Physics.

Shigeo Kida

August 2005
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CLUSTERING OF INTENSE STRUCTURES
IN ISOTROPIC TURBULENCE: NUMERICAL
AND EXPERIMENTAL EVIDENCE

Frédéric Moisy
Fluides, Automatique et Systèmes Thermiques, Bât. 502, 91405 Orsay Cedex, France

moisy@fast.u-psud.fr

Javier Jiménez
School of Aeronautics, U. Politécnica, 28040 Madrid, Spain
Centre for Turbulence Research, Stanford University, USA

jimenez@torroja.dmt.upm.es

Abstract The spatial distribution of intense structures in isotropic turbulence is studied
from numerical and experimental data. Box-counting of the intense vorticity and
strain rate sets gives evidence of a strong clustering at intermediate scales, from
which a possible fractal dimension can be defined. Algebraically distributed
free intervals between intense velocity derivative from experimental time series
confirms this self-similar clustering at larger Reynolds numbers, but without
further specifying its dimensionality.

Keywords: Turbulence, clustering, box-counting, fractals, dimension

1. Introduction

Regions of high levels of dissipation and of vorticity in turbulent flows, such
as vortex sheets and tubes, have been observed and characterized for a long
time from numerical simulations. They result in highly non-Gaussian statistics
of the velocity increments, which may depend both on the geometry of the
individual structures, on their size distribution and on their spatial distribution
at larger scales. Vortex tubes probably arise from stretched vortex layers formed
at earlier time (Passot et al. 1995), and it is in those layers, and in the periphery
of the vortex tubes, that high levels of energy dissipation are concentrated.

Intense objects are often treated as being randomly distributed in space.
With this assumption, Hatakeyama & Kambe (1997) obtained inertial range
scaling from an assembly of random Burgers’ vortices. However, evidence

3
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(a)  |ω| > 3 ω' (b)  |ω| > 6 ω'

(c)  |s| > 2.8 s'

Figure 1. Structures of intense vorticity (a, b) and intense strain rate (c).

from numerics is inconsistent with a fully random distribution. Worms seem to
accumulate in the interface between largely empty large-scale eddies (Jiménez
et al. 1993), leading to an apparent inertial-scale clustering of intense vortices
(Porter, Woodward & Pouquet 1997). Box-counting methods have been used
by Moisy & Jiménez (2004) to further characterize this clustering.

Experimentally, spatial distributions can be inferred from waiting times be-
tween intense events recorded in one-point time series. The results of pressure
measurements by Abry et al. (1994) showed algebraically-distributed waiting
times, for inertial separations, between pressure drops marking large coherent
vortices, suggesting self-similar clustering. Belin et al. (1996) and Mouri, Hori
& Kawashima (2002) gave evidence, from one-point velocity time series, of the
clustering of intense velocity gradients, which was shown to be self-similar by
Camussi & Guj (1999) and Moisy (2000).

2. Box-counting of intense sets from numerical data

Examples of structures of intense vorticity and intense strain rates are shown
in figure 1 (Moisy & Jiménez 2004). Here, a structure simply refers to a
connected volume satisfying a thresholding criterion, |ω| ≥ τω′ or |s| ≥ τs′,
where the primes denote the rms values, with ω′2 = 2s′2 = ε/ν (ε is the
energy dissipation rate and ν the kinematic viscosity). These structures have
been extracted from numerical simulations of forced isotropic turbulence at
Reλ = 168 (Jiménez et al. 1993). The resolution is 5123 collocation points,
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Figure 2. Symbols: Number of boxes of size r covering the vorticity sets, for the thresholds
|ω| ≥ 4, 8 and 12 ω′. —, Box counts for sets of Poisson-distributed balls of the same total
volume (data from the numerical simulation).

with periodic boundary conditions. The box size is 760η and the integral scale
L0 is around 1/4 of the box size, providing a scale separation of L0/η � 200.

The vorticity structures essentially show ribbons for moderate thresholds,
and long filamentary tubes (figure 1b) for higher ones. The biggest structures
associated to a moderate vorticity threshold show patterns resulting from the
interaction of an intense vortex tube with surrounding weaker tubes, as in fig-
ure 1a. Very large thresholds only show smaller tubes, probably parts of the
larger ones observed at lower thresholds, but no sheets or ribbons. The situa-
tion is different for the strain rate structures, for which both moderate and large
thresholds show essentially sheets or ribbons. For low thresholds, the selected
objects show intricate sponge-like patterns (figure 1c), or assemblies of sheets
and ribbons. Increasing the threshold results in structures more like isolated
sheets or ribbons.

In order to characterize the distribution of these structures in space, we begin
by applying the classical method of box-counting to the sets of points of intense
vorticity and strain rate magnitude. The computational domain is divided into
cubical boxes of side r, and the number N(r) of boxes containing some point of
the set is counted. In the case of a pure fractal set of dimension D, the number
of boxes would follow a power law N(r) ∼ r−D. In real systems this relation
only holds in a restricted range of scales between a large- and a small-scale
cutoff.

Figure 2 shows box counts for the sets of points of high vorticity, Nω(r), for
different values of the threshold. Similar results are obtained for the box count
of the strain rate sets. The curves approach Nω(r) ∼ r−3 as r → L, in which
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Figure 3. Minimum of the local slope of box counts as a function of the threshold, for
the vorticity (�) and the strain rate (◦) fields. The intersections of these curves with D = 2
(horizontal dashed line) indicate the thresholds above which sets of negative dimension are
expected from experimental one-point measurements (see § 3).

case both the high-dissipation and the high-enstrophy sets look as a single solid
object. At the small-scale end, r ≈ η, the slopes also increase, reflecting the
compactness of the objects at scales which are small enough for viscous effects
to be important. For r � η both sets should look as collections of small solid
volumes, and one should expect the box counts to behave as N(r) � r−3. For
intermediate scales, η � r � L, the box counts show a continuous evolution
with the threshold, and none of the curves displays a real power-law range.

In order to interpret these box counts, it is of interest to compare them with
box counts of sets with no clustering. If we consider a set of Poisson-distributed
balls of radius δ, the expected number of covering boxes is

N0(r) =
(

L

r

)3 (
1 − exp[−(r + δ)3/r3

0]
)
, (1)

where r0 is the mean distance between the balls. Together with the box-counts of
figure 1 are plotted the best fits given by equation (1), using the constraint that the
actual sets and the Poisson sets have the same volume, i.e. N0(r) � Nω(r) for
r → η. Clearly the actual box counts are not described well by the assumption of
Poisson-distributed balls. The actual number of covering boxes Nω(r) is found
to be significantly smaller than N0(r) for the central range 10η < r < 200η,
implying that the regions of high vorticity are concentrated on a smaller fraction
of space than the random balls.

The clustering of the intense vorticity and strain rate sets for intermediate
scales can be further characterized by introducing a local scaling exponent,
defined as the logarithmic slope D(r) = − lnN(r)/dr. Since one must recover
the trivial exponent D = 3 at both large and small scales, one may expect the
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Figure 4. Symbols: Number of boxes of size r covering the set of baricenters of the vorticity
structures, for the thresholds |ω| ≥ 6 and 12 ω′. —, Box counts for sets of Poisson-distributed
points.

minimum slope, D∗, to provide a useful measure of the dimensionality of
the clustering. In the ideal case of objects distributed in space with a fractal
dimension D, we should expect D∗ → D in the limit of very large scale
separation η � r � L. For finite scale separation, both the large- and the
small-scale contamination tend to increase the observed minimum D∗, which
therefore only represents an upper bound for the possible fractal dimension.

This minimum slope D∗ is plotted in figure 3 as a function of the threshold for
the vorticity and the strain rate sets. Both D∗

ω and D∗
s decrease as the threshold

increases, and none of them shows a plateau on which to define a threshold-
independent dimension. The sets associated to typical fluctuations, |ω| � ω′

and |s| � s′, have dimensions of about 2.5, suggesting that regions of typical
dissipation and enstrophy levels are wrinkled sheets, in qualitative agreement
with other indirect estimates (Sreenivasan 1991; Sreenivasan & Antonia 1997).

Since the vorticity and strain rate sets considered here are a collection of
structures as those shown in figure 1, two contributions are expected for the
box counts. For scales smaller or of the order of the structures size, the box
counts essentially describe the geometry and the size distribution of the struc-
tures, while for larger scales the box counts is more sensitive to their spatial
distribution. Since we are interested in the clustering of the intense structures,
one may separate the latter contribution from the global box-counting, by re-
placing each structure by a single point located at its baricenter, and applying
the box-counting method to the resulting point sets. This procedure is only
valid in the limit of very large threshold, for which the mean distance between
structures is expected to be much larger than the structure size.

Figure 4 shows the box counts Nb(r) for the set of baricentres of the intense
vorticity structures for two values of the threshold. As before, the scaling
Nb(r) ∼ r−3 for large scales indicates the homogenous covering at large scales.
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At small scales, Nb(r) saturates at the total number of structures, as expected
for a set of points. The cross-over between the small-scale plateau and the
large-scale decrease occurs at the typical distance r0 between structures, which
depends on the threshold.

These box-counts may be compared to that of Poisson-distributed points, by
taking δ = 0 in equation (1). As for the global box-counting, the actual curves
are well below the Poisson law, indicating that the points are concentrated in
a smaller fraction of space than for the random set. This clustering fraction is
maximum for scales in the inertial range, and takes values around 0.5. Similar
results are obtained for the clustering of intense strain rate structures. One may
conclude that the clustering effect shown in figure 2 is not only an effect of
the intense vorticity field being concentrated into structures, but also that the
structures themselves are concentrated into clusters.

3. Clustering of intense events from experimental data

An issue raised by the previous observations in the low Reynolds number
numerical simulations is whether the clustering of intense regions is still present
at higher Reynolds number, and whether a range of scales exists for which this
clustering is self-similar.

The decrease of the dimension D∗
α as the threshold is increased in figure 3

has important consequences for experiments for which only one-point measure-
ments are available. From those measurements, the clustering of intense regions
may be characterized from the distribution of the free intervals between succes-
sive intense events (Belin et al. 1996; Moisy 2000; Mouri, Hori & Kawashima
2002). For a fractal set of points of dimension 0 < d < 1 with self-similar
clustering, the distribution of the free intervals ∆x decays as ∆x−1−d (Feder
1988). However, for large enough thresholds, figure 3 shows that both the
vorticity and the dissipation fields concentrate into sets of dimension D < 2.
As a consequence, the corresponding sets defined from one-dimensional cuts,
as obtained from one-point time series with the use of the Taylor’s hypothesis,
should have a dimension d = D−2 < 0, and are therefore almost surely empty.
Only the presence of a small-scale cutoff, imposed by the Kolmogorov length
scale or by the probe resolution, ensures that the one-dimensional sections are
not empty.

Distributions of the free intervals ∆x between successive intense velocity
derivatives have been computed from experimental time series. The data are
from a low temperature helium experiment, in which a large range of microscale
Reynolds numbers can be spanned in very controlled conditions, Reλ from 150
up to 2000 (Zocchi et al. 1994; Moisy, Tabeling & Willaime 1999). The flow
takes place in a cylinder and is driven by two rotating disks equipped with
blades, 20 cm in diameter and spaced 13 cm apart. Velocity measurements
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Figure 5. Probability density functions of the free intervals between intense velocity derivative
|∂xu| from the experimental time series, for Reλ = 1300. They have been computed using
logarithmic bins to ensure an acceptable number of events in the bins corresponding to the
highest intervals. Thresholds: −−, 2(∂xu)′; . . . , 5(∂xu)′; —, 8(∂xu)′.

were carried out using a hot wire anemometer, and the Taylor hypothesis has
been used to convert temporal fluctuations into spatial ones.

Figure 5 shows the probability density function p(∆x/η) of the free intervals
between intense longitudinal velocity derivative, |∂xu| ≥ τ(∂xu)′, for 3 differ-
ent values of the threshold τ , for Reλ = 1300. As before, the prime denotes
the rms value, which is related to the mean energy dissipation rate using the
assumption of isotropy, (∂xu)′2 = 2s′2/15 = ε/15ν. Note that, since only
the longitudinal component of the velocity can be measured in the experiment,
the intense longitudinal velocity derivatives are expected to trace essentially
the intense strain rate regions rather than the intense vorticity regions. With
this approximation, the quantity (∂xu)2 has been extensively used as a one-
dimensional surrogate for the local energy dissipation rate ε(x) (Sreenivasan
1991).

For sufficiently large threshold, the pdfs show a clear power law decay over
a significant range of scales, starting from the dissipative range, ∆x � 3η, up
to a large scale cutoff, of order of 103 − 104η, that depends on the threshold.
This algebraic decay confirms that the intense events do not appear randomly in
space, but tend to form self-similar clusters with no characteristic scale. Beyond
the large scale cutoff, the pdfs decay approximately exponentially, indicating
statistically uncorrelated events at large scales. The poorly defined scaling law
for moderate threshold probably originates from the increasing contribution
from the exponential decay, that may contaminate intermediate scales.
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Figure 6a. Exponent µ of the power law
from the distribution of free intervals between
intense velocity derivative, p(∆x) ∼ ∆x−µ,
as a function the threshold (data from the fig-
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The exponent µ of the power law decay, p(∆x) ∼ ∆x−µ, is plotted as a
function of the threshold τ in figure 6a. It is found to slightly decrease from
values larger than 1, and saturates toward approximately 1 for large threshold.
This trend is consistent with the fractal dimension D∗ determined from the
numerical simulations, that takes values less than 2 for large enough threshold
(see figure 3). As a consequence, the law p(∆x) ∼ x−1−d with d = D − 2
does not hold any more for d < 0, and the distributions collapse towards the
single curve p(∆x) ∼ ∆x−1 for sufficiently large threshold. Similar observa-
tions have been reported for the free intervals between intense scalar fronts in
turbulent mixing (Moisy et al. 2000).

In figure 6b is plotted the exponent µ∞, obtained in the limit τ � 1, as a
function of Reλ, indicating that the power law p(∆x) ∼ ∆x−1 is robust for
sufficiently large Reynolds numbers, Reλ > 400. This asymptotic exponent
µ∞ is found to increase from 0.5 to approximately 1 for Reλ < 400. It must
be noted that values of µ less than 1 for low Reynolds numbers can not be
interpreted in the frame of the law p(∆x) ∼ x−1−d for an exact fractal set of
points of dimension d, and probably results from finite scaling effects.

These experimental distributions confirm that the intense events appear within
self-similar clusters, and cannot be considered as randomly distributed. This is
consistent with the clustering of the intense dissipation events observed in the
low Reynolds numbers simulations, but the one-dimensional cut in the experi-
ment does not allow to further characterize the dimensionality of this clustering.



Clustering of intense structures in isotropic turbulence 11

4. Discussion and conclusion

Three-dimensional box-counting from numerical simulations, and pdf of free
intervals from experiments, gave evidence that the intense regions in isotropic
turbulence, in the form of vortex sheets or tubes, tend to form clusters of inertial
range extent. The dynamics of formation of the small scale structures from the
instability of stretched shear layers at larger scales is probably the reason for this
phenomenon. One may speculate that, for large Reynolds numbers, this process
may repeat at different scales, leading to the observed self-similar clustering.

It is important to note that algebraic distributions for free intervals are not
a trivial consequence of the self-similarity of the velocity field itself. Orey
(1970) rigorously established that level sets from a Gaussian process with a
power-law spectrum, E(k) ∼ k−n with 1 < n < 3, lead to fractal set of point
of dimension d = (3−n)/2. In the case of the Kolmogorov spectrum, n = 5/3,
this relation yields d = 2/3, and pdf of free intervals between iso-values of the
velocity should decay as p(∆x) ∼ ∆x−d−1 ∼ ∆x−5/3. Although turbulent
velocity fluctuations are not Gaussian, the experimental results of Praskovsky et
al. (1993) and Scotti, Meneveau & Saddoughi (1995) were in good agreement
with Orey’s theorem. However, it is clear that a fractal velocity field does not
imply that the derivative fields are also fractal, and thus provides no insight
into the spatial distribution of intense structures. Orey’s theorem does not hold
for the vorticity or dissipation fields, which have a spectrum k2E(k) ∼ k1/3.
For instance, a Gaussian process with power-law spectrum and random phase
has sets of iso-derivatives that are randomly distributed. One may conclude
that the clustering of intense structures with a distribution of free intervals as
p(∆x) ∼ ∆x−1 is not a trivial consequence of the Kolmogorov spectrum, but
is a true intermittency effect, that reveals the hierarchical organization of the
small scale structures in turbulence.

The authors are indebted to P. Tabeling and H. Willaime for the use of the
experimental data and for fruitful discussions.
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Moisy, F. & Jiménez, J. 2004 Geometry and clustering of intense structures in isotropic
turbulence., J. Fluid. Mech. 513, 111–133.

Mouri, H., Hori, A. & Kawashima, Y. 2002 Vortex tubes in velocity fields of laboratory
isotropic turbulence: dependence on the Reynolds number. Phys. Rev. E 67, 06305.

Orey, S. 1970 Gaussian sample functions and the Hausdorf dimension of level crossings. Z.
Wahrscheinlichkeitheorie verw. Geb. 15, 249–256.

Passot, T., Politano, H., Sulem, P.L., Angilella, J.R & Meneguzzi, M. 1995
Instability of strained vortex layers and vortex tube formation in homogeneous turbulence. J.
Fluid. Mech. 282, 313–338.

Porter, D.H., Woodward, P.R. & Pouquet, A. 1997 Inertial range structures in
decaying compressible turbulent flows, Phys. Fluids 10, 237–245.

Praskovsky, A.A., Foss, J.F., Kleis, S.J. & Karyakin, M.Y. 1993 Fractal proper-
ties of isovelocity surfaces in high Reynolds number laboratory shear flows. Phys. Fluids A
5, 2038–2042.

Scotti, A., Meneveau, C. & Saddoughi, S.G. 1995 Fractal dimension of velocity
signals in high-Reynolds-number hydrodynamic turbulence. Phys. Rev. E 51 5594–5608.

Sreenivasan, K.R. 1991 Fractals and multifractals in fluid turbulence. Annu. Rev. Fluid
Mech. 23, 539–600.

Sreenivasan, K.R. & Antonia, R.A. 1997 The phenomenology of small-scale turbulence.
Annu. Rev. Fluid Mech. 29, 435–472.

Zocchi, G., Tabeling, P., Maurer, J., & Willaime, H. 1994 Measurement of the
scaling of the dissipation at high Reynolds numbers Phys. Rev. E 50 (5), 3693–3700.



MULTI MODES FOR THE VORTEX SHEET-TUBE
TRANSFORMATION PROCESS AND
VISCOELASTIC EFFECT
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Abstract A process for formation of the stretched spiral vortex was investigated using
the DNS data of homogeneous turbulence. It was shown that vortex tube was
generated not by a rolling up of single vortex sheet but through an interaction
of dual sheets. Depending on the alignment of vorticity vectors on vortex tube
and vortex sheets which emanate from vortex tube, three modes of configuration
were shown to exist. Frequency of appearance of three modes and its implication
for turbulence generation was discussed in isotropic and sheared flows.

Keywords: Stretched spiral vortex, vortex sheet, isotropic turbulence, sheared turbulence

1. Introduction

Primary elements which constitute the turbulent flow field are vortex sheets
and vortex tubes (e.g., Horiuti 2001). These two structures are not distinctively
separable because vortex tube is generally formed along vortex sheet during
the rolling up of the sheet. One of the notable models which induces energy
cascade and subsequent energy dissipation is the stretched spiral vortex model
(Lundgren 1982). This model comprises of the vortex tube and the sheets which
wraps around the tube, and yields the energy spectrum obeying the −5/3 law.
The aim of the present study is to reveal a process for formation of the stretched
spiral vortex, and show the role of the occurrence of this formation process on
turbulence generation.

2. A formation process of spiral vortex in isotropic
turbulence

isotropic turbulence, which were generated with 2563 and 5123 grid points.
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We utilized the DNS data for incompressible decaying/forced homogeneous
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In this section, we show the results obtained using the data in the decaying
case with the 2563 grid points and at an instant when the Reynolds number
based on the Taylor microscale, Rλ ≈ 88. In the present study, vortex tube
and vortex sheet were identified using the second-order invariant of the veloc-
ity gradient tensor, Q, and the eigenvalue of the −(SikΩkj + SjkΩki) term,
[−(SikΩkj + SjkΩki)]+, respectively. Sij and Ωij denote the strain-rate and
vorticity tensors, respectively. The eigenvalues were ordered so that the eigen-
value, the eigenvector of which is maximally aligned with the vorticity vector,
is chosen as the z component, the largest remaining eigenvalue as the + com-
ponent, the smallest one as the − component (Horiuti 2001). The eigenvalues
of Sij tensor are denoted as σz and σ±.

Figure 1. Isosurfaces of the
[−(SikΩkj + SjkΩki)]+ eigenvalue
(plotted using the white color), and Q
(black), obtained from DNS.

Figure 2. Front view of isosurfaces
of [−(SikΩkj +SjkΩki)]+ (white), Q
(black), and the dissipation term (dark
gray).

In an early stage, several flat sheets, the lateral extents of which were several
times the integral scale, emerged in the flow field. With lapse of time, the
formation of tube occurred along these extensive sheets. Figure 1 shows the
side view of the isosurfaces of the Q term, and the [−(SikΩkj + SjkΩki)]+
eigenvalue. It is seen in Fig. 1 that the vortex tube, which can be identified as
a concentrated region of Q and drawn using the black color in the figure, was
formed and the vortex sheets, which were drawn using the white color, were
stretched and entrained by the vortex tube, and spiraling around the tube. These
tube and sheets formed a structure similar to that of the stretched spiral vortex
model (Lundgren 1982). Figure 2 shows the front view of the distribution of
the dissipation term superposed on the isosurfaces of the vortex sheet and tube.
It can be seen that the dissipation takes large values along this stretched spiral
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vortex, indicating that intense energy cascade and subsequent dissipation take
place along the sheet with the stretching and differential rotation of the sheets.

Figure 3a shows the schematic sketch of the distributions of the vorticity
vectors along the vortex tube and sheets shown in Fig. 1. It was found that
the distributions of the vorticity vectors on the two sheets shown in Fig. 1 were
asymmetric, i.e., the vorticity vectors on upper sheet were perpendicular to those
along the vortex tube, while the vorticity vectors on lower sheet were parallel
to those along the tube. Arrangement of these vorticity vector alignment is
different from that obtained using a conventional theory for the formation of
vortex tube along vortex sheet, i.e., the rolling up of single vortex sheet due
to the Kelvin-Helmholz instability (e.g., Neu 1994). This theory yields an
arrangement of the vorticity vectors shown in Fig. 3b. In the following, the
configurations shown in figures 3b and 3a are referred to as Mode 1 and Mode
2, respectively. The configuration with Mode 1 was considered in Lundgren
(1982).

Figure 3a. Sketch of the
vorticity vector arrange-
ment along the dual sheets
and the tube in Mode 2

Figure 3b. Sketch for
Mode 1

Figure 3c. Sketch for
Mode 3

Appearance of the configuration in Mode 2 is inconsistent with the stabil-
ity analysis for the stagnation-point flow (Kerr and Dold 1994), in which it
was shown that the vorticity component perpendicular to the direction of the
diverging flow decays, and that the parallel component can grow. To educe
the formation process of the configuration shown in Fig. 1, we traced the time
development of the structures back in time. It was revealed that the vortex
sheets shown in Fig. 1 actually consists of two different sheets, and the tube
shown in Fig. 1 was not formed by a rolling-up of a single sheet, but formed
through an interaction of the dual sheets. At an earlier time, these dual sheets
formed a τ -shaped configuration, and one of the dual sheets was perpendicular
to another sheet, and generated the stagnation point flow on another sheet. In
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the region surrounded by the dual sheets, weak circulation associated with low
pressure was generated. A schematic sketch of the basic configuration of the
vorticity and velocity vectors along the dual sheets is shown in Fig. 4. The
filled and dashed lines denote the velocity and vorticity vectors, respectively.
The dual sheets were stretched by the recirculating flow, and the low-pressure
region concentrated to form the vortex tube with lapse of time. Because these
vortex sheets were similar to Burgers’ vortex layer, the vorticity vectors on the
two sheets are parallel to the velocity vectors on the sheets. Therefore, the
direction of the vorticity vectors in the recirculating region is perpendicular to
the direction of the vorticity vectors on the dual sheets. Thus, to adjust this non-
aligned and incompatible arrangement of the vorticity directions, the direction
of the vorticity vectors on the stretched sheets were altered by the recirculating
flow. This alteration was characterized by the appearance of the region with
σz < 0 on the sheets. Due to the continuity constraint, the transverse compo-
nent, σ+, became positive in turn, and this led to reduction of the vorticity in
the stretching (z−)direction, ωz , and increase of the transverse vorticity, ω+.
The vorticity direction on the sheet was converted to the transverse direction,
which is parallel to the vorticity direction in the recirculating region. When the
vorticity directions on both stretched sheets were altered, the configuration with
Mode 1 was formed, while the vorticity direction only on one of the stretched
sheets was altered, the configuration with Mode 2 was formed.

Figure 4. Sketch of the vorticity
and velocity vector arrangement on the
dual sheets and the recirculating region

Figure 5. Front view of isosurfaces
of [−(SikΩkj +SjkΩki)]+ (white), Q
(black). Arrows denote the vorticity
vectors.

The circulation around the tube with Mode 1 was generally large, and the
tube with Mode 1 persisted for a rather long period of time, but most of the
spiral vortices identified in the DNS data were in Mode 2. It should be noted
that the direct wrapping up of the dual sheets shown in Fig. 4 by the recirculating
flow leads to the configuration shown in Fig. 3c, in which the vorticity vectors
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along both sheets are perpendicular to those along the vortex tube (Mode 3).
The Mode 3 configuration was considered in Pullin and Lundgren (2001) and
Kawahara et al. (1997). Mode 3, however, was rarely identified in the DNS
data, because when the circulation of the vortex tube was sufficiently large,
the vorticity direction on the stretched sheets were altered. Mode 3 may be
realizable only in the recirculating flow with very weak circulation. Analysis
of inter-component energy transfer in Mode 2 showed that on the upper branch
of the two sheets in Fig. 1, the turbulent energy of z−component tended to
be transferred to the energy of the transverse (+) component which is in the
direction parallel to the tube, indicating that the upper branch of Mode 2 may not
be energetic and even the configuration with Mode 2 may tend to be converted
into the configuration with Mode 1. Indeed, it was shown in Pullin et al. (2001)
that Mode 3 yields the energy spectrum with a slope of −7/3 which is steeper
than that of the Kolmogorov law.

As the frequency of occurrence of this spiral vortex formation increased,
intense energy cascade took place, and the energy spectrum showed a profile
with a slope of the−5/3 law. As the Reynolds number was increased in the 5123

case, a cluster of the spiral vortices was formed due to an abundant occurrence
of formation of the spiral vortices along the vortex sheets. Similar results were
obtained in the forced case.

3. Appearance of Mode 3 configuration in sheared
turbulence

To examine the effect of the mean shear on the spiral vortex formation, we
utilized the DNS data for a nearly homogeneous sheared turbulence, which
is in a statistically stationary state by an volume forcing (Schumacher 2001).
The isosurfaces of the vortex sheets and the vortex tube (rib vortices) and the
distribution of the vorticity vectors along the sheets are shown in Fig. 5. Due to
the imposition of the mean shear, the shear layer with spanwise vorticity was
formed, and this shear layer was entrained by the streamwise vortex tube and
wrapped around the tube. The vortex vector configuration shown in Fig. 5 is
in Mode 3. In this flow, the vorticity direction on the sheets were not altered
because the spanwise vorticity of the sheets was intense. It is interesting to note
that the energy spectrum obtained in this flow consisted of the two components.
The energy spectrum showed a slope of−5/3, while the co-spectrum exhibited a
slope of−7/3. These results were consistent with those in Ishihara et al. (2002).
We speculate that an appearance of Mode 3 may be responsible for generation
of −7/3 co-spectrum.

We note that by terminating an occurrence of the spiral vortex formation with
an incorporation of viscoelasticity, the turbulence generation may be annihilated
(Horiuti et al. 2005).
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Abstract Local topological and statistical measures of enstrophy and strain-rate structures
are compared with global statistics to determine the effects of mean shear on the
interactions between fluctuating vorticity and strain rate in DNS of transition-
ing isotropic to shear turbulence. “Structures” are extracted as concentrations of
turbulence fluctuations, allowing quantitative with visual analysis. We find that
mean shear adjusts the alignment of fluctuating vorticity and strain rate so as to (1)
enhance global and local alignments between vorticity and the second eigenvector
of fluctuating strain rate, (2) two-dimensionalize fluctuating strain rate, and (3)
align the compressional components of fluctuating and mean strain rate. Shear
causes amalgamation of structures and suppresses strain-rate structures between
enstrophy structures. Shear enhances “passive” strain-rate fluctuations—strain
rate kinematically induced by local vorticity concentrations with negligible en-
strophy production—relative to “active,” or vorticity-generating, strain-rate fluc-
tuations. Enstrophy structures separate into “active” and “passive” based on
the second eigenvalue of fluctuating strain rate. The time evolution of a shear-
induced hairpin enstrophy structure was analyzed. The structure originated in
the initial isotropic state as a vortex sheet, evolved into a vortex tube during a
transitional period, and developed into a well-defined horseshoe vortex in the

Keywords: Turbulence, turbulence structure, vorticity, strain rate, shear flow
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1. Introduction

In fully developed turbulence, the small scales evolve from dynamical inter-
actions between vorticity and strain-rate fluctuations ubiquitous over the flow.
Local concentrations of strain-rate fluctuations are kinematically induced by
distributions of concentrated vorticity that change locally at a rate determined
by the magnitudes and alignments of vorticity and strain rate in regions of
overlap. The alignments are modulated by mean gradients depending on the
relative strengths of mean-to-fluctuating velocity gradients and Reynolds num-
ber. Here we study the effects of mean shear on the structure and evolution of
fluctuating vorticity and strain rate in fully developed homogeneous turbulence
at Reynolds numbers and normalized mean shear rates comparable to the lower
inertial layer of wall-bounded shear flows. To isolate the direct effects of mean
shear on the fluctuating vorticity and strain-rate fields we analyze direct numer-
ical simulation (DNS) data during transition from isotropic to shear-dominated
fully developed homogenous turbulence, focusing on local and global dynam-
ical evolution of vorticity and strain-rate production and alignments between
the vorticity and strain rate induced by shear.

Using the Rogallo (1981) pseudo-spectral algorithm, we carried out well-
resolved DNS of the transition from isotropic to shear-dominated homoge-
nous turbulence with normalized shear-rate S∗ = Sq2/ε ∼ 6 − 10, where
S = dU/dy, q2 = 〈uiui〉 and ε is dissipation-rate. Initial isotropic decaying
turbulence was generated on a 256× 128× 128 grid in a box with aspect ratio
2 : 1 : 1 in x : y : z to maintain isotropy. At the initiation of isotropic power-law
decay, the data were interpolated onto a 1283 grid with cell aspect ratio 2, and
shear was switched on. To separate the effects of mean shear from the transition
from Gaussian initial conditions, S was switched on only after the isotropic de-
caying turbulence was produced (in contrast with Rogers and Moin 1987, Kida
and Tanaka 1994, Nomura and Diamessis 2000). During the simulation period
(St = 0 to 4), S∗ increased from 2.6 to 10, Reλ = q11,1λ/ν increased from 22
to 65, and production-to-dissipation-rate reached an asymptote of 1.6.

2.
turbulence fluctuations

“Structures” are defined as local three-dimensional (3-D) volumes in which
a turbulence variable was concentrated, surrounding a peak in the fluctuating
variable, at fixed time. Subjective empirical evidence suggests that all well-
resolved structures, as defined, are temporally coherent.

We developed an algorithm that identifies the surfaces of individual structures
during a process of extraction that orders structures in order of peak fluctuation
level, for subsequent visual and statistical analysis. To conceptualize the ap-
proach, imagine 3-D concentrations of turbulence fluctuations as analogous to

Turbulence “structures” as concentrations of
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Figure 1. A simplified 1-D illustration of the process by which volumetric concentrations of
a fluctuating variable are extracted and defined as “structures” for subsequent analysis.

two-dimensional “mountains” of varying height, expanse and connectivity ris-
ing from a rough planar “terrain” of lower level crags and crevices as illustrated
in Fig. 1. The “mountains” represent concentrations of the variable surrounded
by interstitial spaces of lower-level fluctuations. Whereas a “structure” visual-
ized with 3-D isosurfaces generally isolates and displays only the tails of the
corresponding pdf (the peaks of the highest “mountains” of Fig. 1), we extract
from the dataset the complete 3-D mountains of Fig. 1, each of which includes
both its peak and lower level topography surrounding its peak defining the full
mountain. Applied to a DNS dataset, a “structure” is the entire concentration
of a fluctuating variable surrounding a peak in 3-D space, distinct from other
structures, and separated by a boundary that surrounds both high- and low-level
fluctuations. Thus, an extracted vortex contains not only the highest levels of
vorticity within the vortex core (Jiménez et al., 1993), but also the contiguous
low-level vorticity fluctuations within the complete structure.

Details of the extraction algorithm with automated determination of structure
boundaries are given by Lin (1993). In Fig. 2 we contrast traditional isosurface
visualization of enstrophy (ω2) with extracted enstrophy structures. Fig. 2(a)
shows an isosurface of enstrophy at a relatively high threshold of 3 SD in a 643

subdomain of a 1283 DNS of homogeneous shear turbulence at Rλ = 74 and
S∗ = 9. Compare this traditional visualization of vortical structure with the first
30-40 most intense enstrophy structures in the same subdomain of the dataset
(Fig. 2(b)) obtained using the extraction algorithm described above. Note
that isosurfaces display only part of individual vortical structures. Whereas
tube-like streamwise vortices are apparent in the isosurface image, when the
entire structure surrounding the more intense regions is extracted, well-defined
horseshoe vortices appeared—structure commonly observed in wall-bounded
shear turbulence (vid. Robinson, 1991). Once extracted, it is straightforward
to interrogate internal structure in a variety of useful ways.
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Figure 2. Comparison of (a) a single isosurface of fluctuating enstrophy (ω2) at 3 SD with (b)
30-40 primary enstrophy structures from the same 643 subdomain of a 1283 DNS of homoge-
neous turbulent shear flow; Rλ = 74, S∗ = 9.

3. Global enstrophy and strain-rate balances

The dynamic equations for fluctuating vorticity (ωi) and strain-rate (sij)
variance in homogeneous shear turbulence contain the following terms:

d〈ω2〉
dt

= 〈Pω2〉 + 〈Pω2〉 + 〈Dω2〉,

d〈s2〉
dt

= 〈Ps2〉 + 〈Ps2〉 + 〈PRs2〉 + 〈Ds2〉.
(1)

Here 〈Pω2〉 and 〈Pω2〉 are production rates of vorticity variance by vortex
stretching from turbulence fluctuations and mean velocity gradients, respec-
tively. Similar production terms, 〈Ps2〉 and 〈Ps2〉 , exist in the evolution of
strain-rate variance, Eq. (2). 〈Dω2〉 and 〈Ds2〉 are the rates of viscous dissipa-
tion of vorticity and strain-rate variance. Strain-rate variance is also influenced
by correlations between fluctuating pressure force gradient and fluctuating ve-
locity gradient, 〈PRs2〉 . In homogeneous turbulence, 〈ω2〉 = 2〈s2〉 and

〈Pω2〉 = 2〈ωisijωj〉 = −3
2
〈sijsjkski〉,

〈Ps2〉 = −〈sijsjkski〉 −
1
4
〈ωisijωj〉 =

24
13

〈Pω2〉.
(2)

Thus, on average, the rates of strain-rate and vorticity production are propor-
tional. Whereas the proportionalities between 〈ω2〉 and 〈s2〉, and between
〈Pω2〉 and 〈Ps2〉, are only true after the ensemble average, the productions of
enstrophy and strain-rate variance are given also locally by the middle expres-
sions in (3). Thus, there is dynamic significance to conditional averages of
these quantities within structures.
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4. Active vs. passive strain rate

In local principal axes, the three principal strain rates (eigenvalues) are α, β
and γ, where α > 0 is elongational, γ < 0 is compressional, and β may be
either; the corresponding eigenvectors are eα, eβ , eγ . In principal axes, Pω2 =
2(αω2

α +βω2
β −|γ|ω2

γ) locally, so the relative orientations between the vorticity
vector and strain-rate tensor are of considerable dynamical interest. Ashurst
et al. (1987) with DNS data and Tsinober et al. (1992) with experiment (and
subsequently others) found that in isotropic turbulence vorticity fluctuations
tend to align with the second principal eigenvector of the strain-rate tensor,
and that this eigenvalue tends to be positive with a ratio α : β : γ of roughly
2 : 1 : −3. Figure 3a shows the pdf of βn ≡ β/(s2/6)1/2 in the isotropic
state and under shear when S∗ = 10, where βn is bounded between +1 and
-1. In the isotropic state the most frequent value of βn is 0.6 implying α : β :
γ ≈ 2.2 : 1 : −3.2 is most common. Under the influence of mean shear βn

continually decreases until, at S∗ = 10, the most probable value of βn ≈ 0.28,
implying α : β : γ ≈ 5.6 : 1 : −6.6. Thus, shear has a strong tendency to
move the local fluctuating strain-rate field asymptotically towards local two-
dimensionality with second eigenvalue reduced relative to the extensional and
compressional eigenvalues.

Figure 3. Pdfs of (a) normalized second eigenvalue of fluctuating strain rate; (b) cosine
of the angle between second principal direction of fluctuating strain-rate tensor and vorticity.
Solid curves: isotropic; dotted curves: St = 4. Solid curves: isotropic. Dotted curves: shear
(S∗ = 10).

Figure 3b shows that the tendency for fluctuating vorticity to align with the
second eigenvector of sij is enhanced by shear. However, whereas we find
that the average magnitude of the second eigenvalue is roughly independent
of ω2, the alignment between the second eigenvector and vorticity fluctuations
is stronger at high vorticity intensity levels (not shown). However, whereas
βn decreases globally with shear over all vorticity and strain rate intensity
levels, when the second eigenvalue is conditioned on the level of enstrophy
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production, we find that in regions of higher enstrophy production the aver-
age level of βn remains near 0.6 (the most probable value of βn in isotropic
turbulence) independent of the influence of shear (not shown). The shift in βn

to lower values with shear, the corresponding two-dimensionalization of sij ,
and the increased alignment of the second strain rate eigenvector, are therefore
associated with strain-rate fluctuations that do not contribute to the production
of enstrophy (and strain-rate variance).

We conclude that strain-rate fluctuations must be of two types: “active”
fluctuations that contribute to vortex stretching, and “passive” strain-rate fluc-
tuations that do not. The dynamical interactions between mean shear and tur-
bulence appears to enhance passive strain-rate fluctuations–those fluctuations
characterized by local two dimensionalization of sij (decreasing βn), improved
alignment between eβ and ω, and no vortex stretching-in contrast with active
strain-rate fluctuations involving higher levels of βn and alignment between the
second eigenvector of sij and fluctuating vorticity. Furthermore, shear encour-
ages the elongational eigenvector eα to align at 90◦ to fluctuating vorticity (not
shown), as eβ tends to align more strongly with ω, and βn tends to decrease,
consistent with an increase in passive sij fluctuations.

In Fig. 4 we plot the joint pdf of the directions of the third principal eigenvec-
tor of fluctuating strain rate (compressional) of the highest intensity s2 struc-
tures (§2) over spherical angles (θ, φ), where θ is defined from the +y axis
and φ is positive from the +x axis towards −z. The joint pdf of eγ is con-
centrated at (+45◦,±180◦), the direction of compressional mean strain. The
same tendency is observed within lower intensity s2 structures, implying that
the compressional direction of fluctuating strain rate is strongly aligned with
the compressive component of mean strain rate. Furthermore, fluctuating vor-
ticity tends to align with the principal elongational component of mean strain
rate (not shown). We conclude that the tube-like vortical structures aligning
at 45◦ and rotating by mean shear (Fig. 2) are continuously flattened by the
combination of fluctuating and mean strain rate acting together at 90◦ to the
axis of the vortex (Brasseur & Wang, 1995; Lin, 1993).

To summarize, we find that: (1) mean shear tends to stretch fluctuating vortic-
ity at 45◦ then rotate it slowly towards the mean flow direction, (2) mean strain
rate tends to align fluctuating compressional strain rate in the same direction as
the compressional component of mean strain, enhancing the tendency to flatten
aligned vortex tubes, (3) whereas the second eigenvector of fluctuating strain
rate tends to align with vorticity in the isotropic state (with the first eigenvector
showing slight tendency of alignment), the application of mean shear destroys
the alignment with the first eigenvector and generates an even stronger align-
ment with the second eigenvector; (4) mean shear tends to two-dimensionalize
the structure of fluctuating strain rate with enhanced alignment between ω and
eβ but with no change in enstrophy production rate, implying that enstrophy
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Figure 4. Joint pdf of the directions of the compressional eigenvector of fluctuating strain rate
within the highest intensity s2 structures.

production follows primarily from the interaction between fluctuating vorticity
and the second eigenvalue of the fluctuating strain-rate tensor both in isotropic
and shear turbulence, and therefore (5) the primary effect of shear is to enhance
passive (non enstrophy producing) strain-rate fluctuations, sij fluctuations with
strong alignment between vorticity and the second eigenvector, but with low
second eigenvalue, of sij . We propose that passive strain-rate fluctuations are
those kinematically induced by local concentrations of enstrophy with co-
herent vorticity defining localized vortex tubes and shear-layers. Shear aligns
concentrated vorticity, generating coherent tube and sheet-like vortices that are
aligned, stretched and flattened by mean shear, also increasing the alignment be-
tween ω and eβ , decreasing βn, and forcing the generation of passive strain-rate
fluctuations.

5. Local dynamics within vorticity and strain-rate
structures

Using the algorithm described in §3, we extracted hundreds of primary ω2

and s2 structures in the isotopic state and after application of mean shear at
St = 4 (S∗ = 10). Although the extracted structures are ordered by peak
intensity, to confirm the robustness of our analytical method we repeated the
statistics using peak, mean and standard deviation as intensity measures, and
obtained the same results (Brasseur & Lin 1991). 1800 ω2 structures and
1920 s2 structures were extracted from the initial isotropic state and ordered by
intensity. The structures contribute 39% and 28%, respectively, to the global
variance of vorticity and strain rate while only occupying 13% and 10% of
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global volume, reflecting the concentrated nature of the fluctuations within. In
the sheared state 800 ω2 and 810 s2 structures were extracted contributing 50%
and 38%, respectively to global variance, and 16% and 13% to the volume.
The variance-to-volume-ratio is 3 to 1 in both isotropic and sheared states, the
average volume of ω2 and s2 structures increases by 300%, indicating major
amalgamation and growth of structures by shear. Whereas the contribution
to global variance 〈ω2〉 and 〈s2〉 increases for typical structures, the variance
per structure volume changed little after application of shear. The variance-per-
volume in these structures changed by only 3−4% under the influence of shear,
yet their relative contributions to vorticity and strain-rate production increased
by 12 − 65%. Interestingly, the contribution of vorticity structures to strain-
rate production sijsjkski, and of strain-rate structures to vorticity production
ωiωjsij , is much larger than strain-rate structures to strain-rate production and
vorticity structures to vorticity production. We conclude that shear creates
overlaps between regions of concentrated strain rate and vorticity by reducing
the relative number of strain-rate structures outside vorticity structures in the
low-vorticity interstitial regions.

Figure 5(a) shows average enstrophy production-rate in each enstrophy struc-
ture in the shear-dominated state ordered by the intensity of enstrophy within
each structure, relative to global average production-rate. The highest intensity
structures (100-200 structures) have distinguishingly higher rates of vorticity
production than do lower-intensity structures. In the isotropic state one finds
a similar, but more gradual, decrease in 〈Pω2〉ω2 with decreasing structure in-
tensity. In both isotropic and shear turbulence nearly all extracted enstrophy
structures (which contain 40 − 50% of global enstrophy) are enstrophy pro-
ducing, on average. Any compression of vortex lines apparently must occur
in the low-magnitude fluctuations between the vortical structures. Whereas
the highest intensity structures are distinguished by higher levels of enstrophy
production, Figure 5(b) shows no clear trend in the magnitude of the second
eigenvalue of fluctuating strain rate except for an increased variability with
lower-intensity structures. The same is true of 〈cos θβ〉ω2 (not shown). Inter-
estingly, Fig. 5(b) indicates that 〈βn〉ω2 ≈ 0.3, the most probable value of βn

with shear state shown by the pdf of Fig. 3(a). We conclude that the shear-
induced two-dimensionalization of strain-rate fluctuations described for most
probable fluctuations in §4 is associated with vortical structures as extracted
here.

It appears that the changes in structure of strain rate and vorticity caused
by shear for most probable strain-rate fluctuations (§4) are associated with the
extracted vortical structures. In particular, two-dimensionalization of sij , in-
creases in passive strain rate, and increased role of the second eigenvalue in
active vortex stretching, are all within the vortical structures extracted as con-
centrations of enstrophy. When we again plot the average second eigenvalue
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Figure 5. Average of fluctuating variables within each enstrophy structure plotted against
structure number in the shear-dominated state (St = 4), ordered by structure intensity. (a)
Structure average of enstrophy production-rate, nondimensionalized by global production-rate.
(b) Structure average of normalized second eigenvalue of the fluctuating strain-rate tensor.

within enstrophy structures, but with the structures reordered according to av-
erage enstrophy production-rate in each structure, the structures with enstrophy
production are found to be those with higher 〈βn〉ω2 (not shown). Thus we
observe a distinction between "active" and "passive" enstrophy structures in
sheared turbulence distinguished by the degree of two-dimensionalization of
the strain rate within each structure, but not by the alignment between vorticity
and second principal axis of strain rate (enhanced by shear in all structures).
"Active" vortices resist two-dimensionalization by mean shear and contain "ac-
tive" strain rate with 〈βn〉ω2 ∼ 0.3 − 0.6 and enstrophy production. "Passive"
vortices are two-dimensionalized by shear and contain "passive" strain-rate fluc-
tuations with low values of 〈βn〉ω2 , kinematically tied to the local vorticity field
and with negligible enstrophy production.

6. Local dynamics within vorticity and strain-rate
structures

We applied an interactive approach (Moquin & Brasseur 1992) in which (1)
a structure of interest was identified in the shear-dominated period, (2) the same
structure was identified in datasets a short time earlier and later by searching
the same local region and interactively extracting structures within the localized
sub-volume using the algorithm in S2, (3) repeating the interactive extraction
process at each St = 0.2 and storing the structure nodes and sub-volume
coordinates at each time increment from St = 0 − 4. Using this approach, we
analyze visually and quantitatively the evolution of a single well-defined hairpin
vortex in the asymptotic shear state from its origin in the isotropic state. We
begin with a well-formed hairpin vortex at St ≈ 2. The change in topology of
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extracted structure is shown at every St = 0.2 from the isotropic state (St = 0)
to time St = 2.2 in Fig. 6 (each in its extracted subvolume). It is fascinating
to discover that the horseshoe vortex at St = 2.2 originates from a vortical
structure with sheet-like topology in the isotropic state (Fig. 6(a)). The initial
structure is, in fact, a localized vortex sheet and its evolution occurs in three
phases: (1) transition from a vortex sheet to a short vortex tube, (2) transition
from vortex tube into a sheet-like hairpin vortex, and (3) evolution into squashed
vortex tubes with hairpin topology.

The transition from a sheet to a tube is demonstrated by Figs. 6 (a)-(c). When
the strain-rate and enstrophy structures are displayed separately with vorticity
vectors (Lin 1993), the isotropic enstrophy and strain-rate fields overlap, con-
sistent with vortex sheet topology. However, in the transition period after shear
is switched on, the local shear layer undergoes a rapid change in topology from
sheet-like to tube-like with unidirectional vorticity. In a classical vortex tube,
the locally induced strain-rate field is asymmetrically distributed around the
tube core. The vortex tube after transition (Fig. 6(c)), however, has elliptical
cross section with local strain rate concentrated on two sides of the vortex core.
This process takes place during the transition in global statistics from isotropic
to equilibrium evolution under shear.

Figure 6. Time evolution of an enstrophy structure over the period St = 0 to 2.8 in increments
of 0.4. The extracted subvolume at each time is shown by the box.

The aspect ratios (AR) of the enstrophy structure decreases rapidly from 12
in the isotropic initial state to 2 at St = 0.6, then to AR ≈ 1 at St = 1, shortly
after which the tube begins a transition to a hairpin vortex. As shown in Figs.
6(c)-(f), the process involves the elongating and flattening of the vortex tube
and the bending over and formation of a rather flattened head that is distinct
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from a single tube-like leg. As the vortex elongates and bends, the leg of the
hairpin remains tube-like with little overlap with the more concentrated strain-
rate fluctuations. The elongation process does not appear to be associated with
stretching of vortex lines by fluctuating strain rate, and its extension likely
reflects continuous stretching by mean strain rate. As the head of the hairpin
formed, however, it flattens and evolves into a structure akin to a local shear
layer. This flattening is a consequence of the orientation of the compressional
eigenvector of mean strain rate and, in a statistical sense, fluctuating strain rate
(§4). At St ≈ 1.6, the long and short axes of the vortex head were about 6 and
3 Kolmogorov scales, respectively. Although there appears to be some feeble
attempt to roll up, this local shear layer remains relatively stable. Afterwards,
the enstrophy structure continues to evolve into a fully formed hairpin vortex
head and limbs alternating between sheet-like to tube like, and back again.

The three topological phases of evolution are mirrored by the dynamical re-
lationships associated with enstrophy and strain-rate production. For example,
we compare the correlations between the square of fluctuating vorticity and
strain rate with the cosine of the angle between vorticity ω and second principle
strain-rate direction eβ averaged within the evolving enstrophy structure and
plotted over time. These correlations show well-defined changes that mirrored
the three periods of topological changes in vortex structure.

7. Conclusions

Shear alters vorticity dynamics through the restructuring of the local vorticity
and strain-rate fields in relationship to the mean strain rate, and consequently in
relationship to each other. In this study normalized mean shear is comparable
to mixing layers jets, wakes, and boundary layers. We find that both linear
and nonlinear interactions generate a tendency for two-dimensionalization of
fluctuating strain rate so as to encourage the generation of aligned flattened
vortex tubes and horseshoe vortices. Passive and active strain rate fluctuations
are enhanced by shear within the more intense enstrophy structures. Enhanced
passive strain rate is associated with increased kinematic association between
axial vorticity and two-dimensionalized strain rate as vorticity is progressively
aligned. Enhanced active strain rate is confined to those high-intensity vortical
structures with significant enstrophy production arising from enhanced second
eigenvalue of fluctuating strain rate, but not from enhanced alignment. Interest-
ingly, it is possible for horseshoe vortices to evolve from vortex sheets, rather
than vortex tubes, with a structure that changes locally between sheet-like and
tube-like, with "squashed" tube being the preferred topology. Local correlations
and alignments between vorticity and strain-rate fluctuations mirror temporal
changes in topology during formation and evolution of the horseshoe vortex
structure.
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Abstract The interaction between a columnar vortex and external turbulence is investigated
numerically. As columnar vortices, the Lamb-Oseen vortex and the q-vortex are
used. The columnar vortex is immersed in an initially isotropic homogeneous
turbulence field, which itself is produced by a direct numerical simulation of de-
caying turbulence. Using visualization techniques, we investigate the formation
of inhomogeneous fine turbulent eddies around the columnar vortex, vortex-core
deformations and the dynamical evolution in the passive scalar field.

Keywords: Columnar vortex, direct numerical simulation, turbulence

1. Introduction

Interactions between intense columnar vortices and surrounding turbulent
motions occur often in engineering and environmental flows, and they occur
naturally in most sheared turbulent flows, such as circular jets, plane jets, and
mixing layer. These interactions are thought to play an important role in the
three-dimensionalization of the flow fields. It is also of practical interest to
estimate the lifetime of trailing vortices under the influence of atmospheric
turbulence.

We investigate the dynamical evolution of the vortex structure and the pas-
sive scalar structure, which appears in the isotropic homogeneous turbulence
interacting with the columnar vortex. The characteristics of the flow field are
analyzed by using several flow-visualization techniques. The statistics of the
turbulence around the columnar vortex are investigated by computing the two-
point energy spectrum tensors, and they are compared with the results of rapid
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π

4π

Figure 1. Arrangement of the columnar vortices in the cubic box with periodic boundary
conditions.

2. Numerical method

We solve the Navier-Stokes equation for incompressible fluids

∂u
∂t

+ u · ∇u = −1
ρ
∇p + ν∇2u, (1)

∇ · u = 0 (2)

and the transport equation for the passive scalar (such as a passive temperature
field or a dye)

∂s

∂t
+ u · ∇s = κ∇2s (3)

under periodic boundary conditions with period 4π. A spectral method is used to
solve the equations. The time integration is performed using the Runge-Kutta-
Gill method with spatial resolutions of 2563 and 5123. The columnar vortex is
immersed in an initially isotropic homogeneous turbulence field, which itself is
produced numerically by a direct numerical simulation of decaying turbulence.
It is well known that under a strain field of a vortex pair the Widnall-Bliss-Tsai
instability and the Crow instability occur. To suppress these instabilities, we
embed four columnar vortices with alternating directions to eliminate a strain
field with azimuthal wavenumber m = 2 (shown in Fig. 1). To verify that the
instabilities are not excited, we carry out direct numerical simulations with four
columnar vortices embedded in the field with very small noise: No instabilities
are excited. As the columnar vortex, we use the q-vortex, which is a model for
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trailing vortices. The q-vortex is defined by

(Ur, Uθ, Uz) =
(

0,
Γ0

2πr

{
1 − exp

(
−r2

r2
0

)}
,

Γ0

2πr0q
exp
{
−r2

r2
0

})
, (4)

where Ur, Uθ and Uz are the radial, azimuthal and axial components of the
velocity field, r0 (= 0.5) is the radius of the columnar vortex, and q is the
swirling parameter. The initial circulation Γ0 is an arbitrary parameter, so we
set the circulation strong enough to dominate the vortex dynamics of the flow
field as

Γ0 = 40r2
0ωrms, (5)

where ωrms is the root-mean-square of the vorticity of the initial turbulence. The
Reynolds number Γ0/ν of the columnar vortex takes values between 20, 000
and 80, 000. We consider three values of q, namely −∞ (the Lamb-Oseen
vortex), −0.45 (unstable case) and −1.5 (marginally stable case).

We analyse the calculated field statistically using the function

〈〈ui(r1, θ1, z1, t)uj(r2, θ2, z2, t)〉〉 =
∞∑

m=−∞

∫ ∞

−∞
dkzΦij(r1, r2, t; kz, m) exp[ikz(z1 − z2) + im(θ1 − θ2)], (6)

where kz is the axial wavenumber, m is the azimuthal wavenumber, and 〈〈·〉〉
is the ensemble average over twenty realizations. This statistical function was
introduced as two-point energy spectrum tensor for RDT by Miyazaki & Hunt
2000. We use it for analyzing the nonlinearity of the field. The kernel Φij of
the correlation function enables us to investigate the dynamics of the vortices
in detail, such as scale dependence, nonlinear interaction, and the comparison
with RDT.

3. Lamb-oseen vortex (q = −∞)

3.1 Flow field

In the case of the Lamb-Oseen vortex (Takahashi et al. 2005), the columnar
vortex undergoes a deformation due to the interaction, and the vortex wraps
worms around its surface in a spiral structure (Fig. 2). In larger scales, we can
see that a vortex has a columnar structure at the center of the region, and that it is
curved. In finer scales, we observe the characteristic structure of thin, tube- and
ring-like shapes, which implies that the vortex rings have developed from the
fine-scale structure, which was input as worms in the initial turbulence. Figure
3 shows the time evolution of the maxima of the axisymmetric axial and radial
components of the two-point energy spectrum tensor (Eq. (6)) summed over kz ,
which has peaks at r ≥ r0. The axial component |Φzz| grows proportional to
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Figure 2. Isosurface of vorticity of the Lamb-Oseen vortex case at t/T = 6.
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Figure 3. Peak values at r0(t) ≤ r ≤ 3r0(t) of the axisymmetric axial and radial two-point
energy spectrum tensor |Φij(r, r, t; m)| summed over kz which has peaks at r ≥ r0(t): axial
component (|Φzz|, solid line) and radial component (|Φrr

t0.9, whereas the radial component |Φrr| hardly grows. This shows the excita-
tion of axial disturbances around the surface of the vortex core that corresponds
to the blocking effect. The modes with higher azimuthal wavenumbers also
grow, but their amplitudes are negligible compared to that of the axisymmetric
and bending modes. This result is consistent with RDT. On the other hand, the
azimuthal disturbances increase proportional to t, which is different from RDT
(∝ t2). At present, we do not understand the reason for this.

|, dotted line) .
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Figure 4. Time evolution of isosurfaces of enstrophy (dark gray) and passive scalar (light
gray).

To show the discrepancy between the linear theory and the numerical results,
we change the intensity of the turbulent flow. We introduce a damping parameter
AD of the initial turbulence ui = ADu, and perform simulation for AD =
10−2, 10−1 and 10−0.5. We immerse the columnar vortex, and perform the
time integration of Eqs. (1) and (2). For small AD (≤ 10−1), we cannot
find the excitation of the vortex wave via visualization techniques. For large
AD (≥ 10−0.5), we find humps on the surface of the vortex core. Next, we
focus on the small-scale structures, which depend on AD in the initial turbulent
field. For small AD(≤ 10−1), we observe that they deform to spirals and
surround the vortex core. On the other hand, for large AD (≥ 10−0.5), the
circumference of the spirals become short, and they cannot surround the vortex
core. The deformation of the vortical structures under various values of AD is
analysed using the two-point energy spectrum tensors Φij . For AD ≤ 10−1,
the time dependence of Φzz is proportional to t2, consistent with RDT. For
AD ≥ 10−0.5, the time dependence of Φzz deviates from the graph for t2.
This result suggests that mainly the nonlinear interaction between the columnar
vortex and turbulence affects the properties of the velocity field.

3.2 Passive scalar field

The scalar field is initialized with the profile s0(z), which depends only
on the axial component of z and has a Gaussian profile. The instantaneous
snapshot of the scalar field shows noticeable advection of the passive scalar
field around the surface of the vortex core (Fig. 4). This phenomenon may be
due to the fact that the blocking effect of the velocity field is excited where the
mean axial gradient of the scalar field is large. Another characteristic advection
is observed separately from the vortex core. The fine-scale structure (worm)
wraps the passive scalar; i.e., the swirling motion of the fine structure becomes
important in the scalar advection.
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4. q-vortex

4.1 Unstable case (q = −0.45)

The q vortex with q = −0.45 is the case most unstable against the bending
disturbance m = 1 (Mayer & Powell 1992). Fig. 5 shows the time evolution
of the vortical structure using enstrophy visualization. At the early stage, we
observe the excitation of the linear instability, which causes the deformation
of the structure of the columnar vortex. As shown in Fig. 5a, the structure
around the columnar vortex has two helices. At the next stage (Fig. 5b), the
deformation of the columnar vortex is large, and the helices separate from each
other. Simultaneously, we observe that the surfaces of the helices are uneven,
namely that secondary structures occur on the surface of each helix. These
deformations are amplified at the last stage(Fig. 5c), and the vortical structure
becomes complex (like a rib). After a while, the columnar vortex breaks down
abruptly.

Figure 5. Isosurfaces of vorticity (q-vortex, q = −0.45). From left to right: (a) t/T = 0.84,
(b) 1.3 and (c) 1.7.

A way to illustrate the energy transfer process across scales is through the
two-point energy spectrum tensor Φij(r, r, t; kz, m) (Eq. (6)) at various values
of kz and m. Figs. 6a and b are contour plots for the maximum values of
Φij(r, r, t; kz, m) at t/T = 0.47 and 1.7, respectively. At an early stage (t/T =
0.47), Fig. 6a shows that max |Φzz(r, r, t; kz, m)| at low wavenumbers is larger
than at high wavenumbers. This implies the energy transfer from larger to
smaller scales, i.e. the normal energy cascade. This tendency of energy cascade
changes at a later stage (t/T = 1.7) when the characteristic deformation of the
columnar vortex is observed. Fig. 6b shows that max |Φzz(r, r, t; kz, m)| at
low wavenumbers (kzr0, m) = (10, 0) has almost the same amplitude as that
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Figure 6. Contour map of the maximum value of |Φzz(r, r, t; kz, m)| in (kz, m) plane:
(a)t/T = 0.47, (b) 1.7. The contour lines are plotted in logarithmic scale.

of higher wavenumbers (10, 15). This implies that the energy of the columnar
vortex is transferred to larger and smaller scales simultaneously.

4.2 Stable case (q = −1.5)

We investigate the marginally stable case in which the q-vortex has the swirl
parameter q = −1.5. This parameter is selected so that the q-vortex is almost
neutrally stable, because the q-vortex of |q| >

√
2 is stabilized against shortest

wavenumber disturbances (WKB modes, Leibovich & Stewartson 1983).
Fig. 7 shows vortical structures of the q-vortex of swirl parameter q = −1.5

with isosurface of vorticity at t/T � 1.67. Inside the vortex core, an emer-
gence of thin and strong spiral structures, which are different from worms, are
observed. This indicates that the nonlinear interaction is concentrated inside
the core. These structures generated around the surface of the core are wound
up by the columnar vortex, which stretches and thins the structure. The thin and
strong filaments around the vortex core have swirling motion. After long times
(t/T > 5), these filaments are thinned and elongated enough to be dissipated
by viscosity.

5. Summary

We investigated the interaction between a columnar vortex and external tur-
bulence using direct numerical simulations.

We observed that the Lamb-Oseen vortex (q = −∞) wraps worms around
itself which form spirals. Inside the vortex core, axisymmetric, and bending
vortex waves are excited. The velocity disturbance corresponding to the worms
become statistically axisymmetric, whereas the corresponding vorticity distur-
bance increases not only in the axisymmetric mode but also in other modes.
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Figure 7. Time evolution of isosurfaces of the q-vortex with q = −1.5.

These results are consistent with RDT. The initial turbulence affects the growth
of the velocity and vorticity disturbance. In the case with damping initial turbu-
lence, the growth is proportional to t2, which coincides with the RDT results.
In the normal initial turbulence, the growth is proportional to t0.9 and t1 respec-
tively. The interaction promotes scalar advection on the surface of the vortex
core: the blocking effect of the velocity field on the surface of the vortex core,
and the fine scale structure (worm) around the vortex core.

We observed the q-vortex for two values of swirl parameter q. In the case of
the unstable columnar vortex (q-vortex, q = −0.45), helical structures occur
due to the linear instability. At the saturation of the linear instability, the sec-
ondary instability sets in and the columnar vortex breaks down. We showed that
the energy at fine scales increases abruptly when the vortex breakdown occurs.
In the case of the marginally stable columnar vortex (q-vortex, q = −1.5), thin
and strong spirals form inside the vortex core. These structures are stretched
by the differential rotation around the columnar vortex, and they are dissipated
gradually.
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Abstract DNSs of turbulent channel flows with one rough wall and one smooth wall are
presented to show how the vorticity field depends on the shape and orientation of
the roughness elements. The passive scalar is also evaluated. The high correlation
coefficients between vorticity and scalar gradients, in the wall layer, emphasize
that in all cases flow visualizations can be used in a laboratory to have a qualitative
picture of the modifications of the high- and low-speed streaks. Joint probability
density function between vorticity and scalar gradients show how the bursting
events affect the scalar distribution.

Keywords: Turbulence, roughness, vorticity, heat transfer

1. Introduction

The heat transfer in turbulent wall-bounded flows depends on the near-wall
vortical structures. It follows that an increase or reduction of the heat transfer
can be achieved through the modification of these structures. Flows with differ-
ent types of vortical structures, such as flows over rough surfaces, may be useful
to understand the correlation between heat transfer and vorticity. Experimental
investigations are rather difficult due to the complexity in carrying out reliable
vorticity and temperature measurements near the roughness elements. Numer-
ical simulations are limited to low Reynolds numbers. Nonetheless, assuming
that the flow physics in the near-wall region is less dependent on the Reynolds
number than the outer region, much can be learned from low-Re simulations.

There have been many previous experimental and numerical studies of rough
surfaces with different roughness element shapes. These elements produce dif-
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ferent effects on the incoming flow depending on the orientation of the structures
and on the separation of the solid elements. Leonardi et al. (2003) performed
numerical simulations to explain why the maximum drag for square bars or-
thogonal to the flow occurred at w/k = 7 (w indicates the separation between
elements and k the height). By comparison with circular rods it was observed
that the resistance, for w/k > 3, is weakly dependent on the shape of the ele-
ments. Orlandi et al. (2004) investigated the modifications of the statistics for
square, circular and triangular elements both aligned and orthogonal to the flow
for w/k = 1, in which case the shape and orientation plays a large effect. Near
the plane of the crests flow isotropization was observed. Under these conditions
there is an increase of disorder of the near-wall vortical structures compared
with those for a smooth wall. On the other hand, for elements aligned with the
flow, the organization may be increased. Due to these drastic changes to the
vorticity field we should expect large modifications to the statistics of a passive
scalar injected at the solid walls. The present paper focuses on the modifications
to the vorticity and passive scalar statistics in the region close to the plane of
the crests where the effect on the fluid motion between the elements is strong.
The same geometries of Orlandi et al. (2004) are considered. Throughout
the paper the geometries are denoted by capital letters, C for the smooth wall
channel, S for square bars, R for circular rods and T for triangular elements.
The orientation of the elements is indicated by the subscript N for transverse,
and P for longitudinal elements. The first number in the subscript relates to k
(2 for k/h = 0.2 and 1 for k/h = 0.1) and the last to w/k. Statistics for C,
S2N1, R2N1, T2N1, T2N0, S2P1, R2P1, T2P1, T2P0 are discussed.

Different geometries are considered, each simulation starts from the flow
and thermal fields of a smooth channel, with symmetric mean velocity and
antisymmetric temperature profile. Thus, the heat entering at one wall is equal
to that exiting from the other. In the simulations, one wall is rough and the other
smooth. The time necessary to reach for the velocity field a statistical steady
state, is not sufficient for the thermal field and an imbalance occurs between the
heat entering from the rough wall and that exiting from the smooth wall. This
imbalance depends on the shape of the disturbances. The profiles of the passive
scalar statistics near the two walls do not vary, time variations being localised
to the central part of the channel. Since our interest is in the region close to the
walls, we think that this condition is tolerable.

2. Numerical procedure

The Navier-Stokes equations are discretized in an orthogonal coordinate
system using a staggered second-order finite-difference approximation. More
details of the numerical method can be found in Orlandi (2000). To deal with
different types of geometrical elements, an accurate method consists in main-
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taining the equations in orthogonal coordinates and approximate the complex
geometry by the immersed boundary technique. Here, as described in Orlandi
et al. (2004), at the first point outside the roughness element, the second-order
derivatives are discretized as is usually done at the first point close to a smooth
wall; but here the geometrical coefficients vary along the solid wall. Near the
boundaries, the scheme is first-order accurate without an effect on the flow since
the flow physics implies that near a solid boundary the velocity tends to zero
linearly. The non-linear terms are evaluated without any correction to account
for the changes of the metric near the solid boundary. The accuracy of the
method was validated by Orlandi et al. (2004) where the pressure distribution
around circular bars was compared with that measured by Furuya et al. (1976).
Minor discrepancies between the numerical and experimental results could be
ascribed to the different types of flows and the Reynolds number. In the labo-
ratory, the Reynolds number was higher and a boundary layer was considered.
The temperature field is treated as the velocity field and for isothermal walls it
is preferable to locate θ (temperature) at the same location as u2 (wall-normal
velocity).

Two different computational boxes are considered. The first one for orthog-
onal disturbances has physical dimensions L1 = 8h, L2 = 2.2h and L3 = πh
respectively in the streamwise x1, normal x2 and spanwise x3 directions. The
grid used was 400×158×128. For the disturbances aligned with x1 the dimen-
sions were L1 = 8h, L2 = 2.2h and L3 = 4h and the grid was 256×158×200.
With these dimensions, it was possible for disturbances of height k = 0.2h and
w/k = 1 to have respectively 20 and 10 elements. Each element was described
by a 10 × 30 grid. For both configurations the basic smooth channel flow was
at Re = UP h/ν = 4200 (UP is the laminar Poiseuille velocity at the center
of the channel), corresponding to a Rτ ≈ 180. The reduced resolution in x1

for the second configuration reflects the expectation of more ordered turbulent
structures.

No heat sources are added in the temperature transport equation. This choice
differs from that in previous DNS of heated turbulent channels (e.g. Kim &
Moin 1989) where a heat source is added, so that the scalar is created at the
interior and removed on the walls. In these simulations, as for the total shear
stress, the sum of the turbulent and molecular heat fluxes normal to the wall,
normalized by the wall heat flux, decreases linearly from 1 at the wall to 0
at the channel centerline. Without the heat source, the total heat flux remains
constant across the channel, when a statistical steady state is reached. This case
was considered by Johansson & Wikstrom (1999) that performed simulations
at Rτ = 180 and 265. Orlandi & Leonardi (2004) have shown that finite
differences produced results in good agreement with those by Johansson &
Wikstrom (1999) obtained by a pseudospectral code. To avoid the use of very
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fine grids for resolving temperature scales smaller than those of the velocity,
Pr has been taken equal to 1.

For smooth walls, for symmetry reasons, the thermal equilibrium is reached
in a reasonable time. In channels with one rough wall and one smooth wall,
the transient needed to reach thermal equilibrium can be long and hence a large
amount of CPU is necessary. The flow, was analyzed in an interval of time
when ∂Θ/∂t is constant (Θ is the bulk temperature). For flows with orthogonal
disturbances ∂Θ/∂t is greater than that for longitudinal disturbances. This is
a first indication that with normal disturbances the heat transfer is greater than
for longitudinal disturbances. Orlandi et al. (2004) observed that only for
triangular geometries aligned with the flow and with w/k = 0, a drag reduction
was achieved. For this case ∂Θ/∂t is negative implying that the heat transfer
is reduced.

3. Results

3.1 Vorticity correlations

The results for the statistics of the velocity field were presented and discussed
by Orlandi et al. (2004) and are not repeated here. Instead we focus on the
one-point correlations of the vorticity field. Since the latter is related to the
small scales, the distribution in the y direction of the rms vorticity should
indicate the effect the shape of the roughness has on the vortical structures.
From previous DNS of smooth-wall channels, it was observed that ω2 is strictly
linked to the high- and low-speed streaks, that are located in a vertical layer
of the order of 20 wall units. At the present Reynolds number, this layer is
approximately equal to y = 0.1h where the maximum of ω̃2 is located (Fig.
1a). The tilde denotes rms value and averages are taken with respect to time
and both spanwise and streamwise directions. Fig. 1a shows that near a smooth
wall, the vorticity components differ substantially from each other whereas in
the rest of the channel they coincide. It can be deduced that over a large part
of the channel (0.3 < |y| < 1.0) the small scales of the velocity field are
approximately isotropic. On the other hand, the large scales (rms velocity) are
isotropic only at the center of the channel.

Fig. 1b-d show that, for orthogonal elements, there is a large increase of
ω3 due, in particular, to the modifications to the flow near the leading edge of
the cavities. As expected, the sharp vertex of the triangle produces stronger
and thinner layers and as a consequence ω̃2 decays faster. The strong vertical
ejections into the outer region produce higher levels of ω̃1 compared with the
other two components and, in addition, all components increase in the region
far from the plane of the crests. With regard to the near-wall region the profile
of ω̃1 shows that the streamwise vortices loose their coherence. In Fig. 1 a
well defined minimum at y = 0.03 is appreciable; by increasing the amount of
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Figure 1. RMS vorticity distributions ω3, • ω2, � ω1 a) smooth wall,
b) S2N1, c) R2N1, d) T2N1, e) S2P1, f) R2P1, g) T2P1, h) T2P0).
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Figure 2. Vorticity correlations 〈ω2ω3〉, • 〈ω1ω3〉, � 〈ω1ω2〉; a)
smooth wall, b) S2N1, c) R2N1, d) T2N1, e) S2P1, f) R2P1, g) T2P1, h) T2P0).

the disturbance, rather small for square bars (Fig. 1b), the minimum reduces
and gets closer to the plane of crests. For triangles (Fig. 1d), the disturbance
becomes quite strong and the minimum almost disappears. On the plane of the
crests, the amount of solid boundary reduces with the consequence that ω̃2 is
no longer zero. This is the component that is most affected by the roughness
and the distribution change drastically.

The amount of non-solid surface at the plane of the crest for the aligned
elements plays a more important role, as can be observed by the profiles of ω̃2

in Fig. 1e-h. In some of the configurations, the profiles of ω̃2 coincide with
those of ω̃3 (triangular riblet with w/k = 0). In "riblets" of triangular shape, for
any w/k, these two vorticity components are greater than ω̃1 and for the drag
reducing shape (w/k = 0, Fig. 1h) the difference extends for a greater distance
than for the geometry with a slight drag increase (Fig. 1g). To summarise, the
tendency to have the same level of rms vorticity for the spanwise and normal
components indicates that the structures are more ordered than on a smooth
wall.
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Fig. 2a shows that only one component of the symmetric vorticity tensor
is large and the other two are close to zero. The small oscillations in the near
wall region are related to the lack of fields saved to evaluate the statistics; usu-
ally, the components of the off diagonal terms converge more slowly than the
diagonal elements. Fig. 2b-d show that for orthogonal disturbances 〈ω1ω2〉 is
increased significantly while 〈ω2ω3〉 and 〈ω1ω3〉 remain small. The effect of
the disturbance is to increase the peak value by leaving unchanged the shape of
the profile. On the other hand, for parallel elements, depending on the shape
of the grooves, the symmetry is broken in a narrow layer close to the plane
of the crests, and this is more pronounced for 〈ω3ω2〉 than 〈ω1ω3〉. This cor-
roborates the previous statement about more ordered structures. The increase
and decrease in organization are important for understanding the interaction
between vorticity and the passive scalar. The modifications of the Joint Prob-
ability Density Function (JPDF) help to explain how the most relevant events
are modified.

From the plots in Fig. 2, three configurations can be selected to understand the
differences between parallel and normal elements; in particular the triangular
elements with w/k = 1 (T2N1, T2P1) whose results are compared with those for
a smooth wall. The JPDF underlines the contribution from different events to
the correlation coefficient Rqiqj = 〈q′iq′i〉/

√
〈q′2i 〉〈q′2j 〉. Here, a prime indicates

a fluctuation and angular brackets averages in time and both spanwise and
streamwise directions. The profiles of Rqiqj can be quite different from those
of 〈q′iq′i〉 and indeed Fig. 3a-c corroborate this. Whereas 〈ω′

1ω
′
2〉 decreases far

from the wall (Fig. 2), Rω1ω2 remains constant. In addition, while 〈ω′
3ω

′
2〉 for

the aligned elements is large, the correlation coefficient is rather small. The
JPDF is evaluated at y = 0.07 where the differences between the correlation

coefficients are quite large. Hereafter qi stands for q′i/
√
〈q′2i 〉.

The JPDFs in Fig. 4bdf explain that Rω3ω2 are small because the contribu-
tions from quadrants I and II as well as those from III and IV are equal. The
quadrant analysis shows that quadrants III and IV contribute slightly more than
I and II. Flow visualizations in horizontal planes emphasize that ω2 and ω3 are
organised according to structures of different shapes; elongated structures for
ω2 and in patches for ω3. These two types are not correlated. This is a very
interesting result because one could expect that the bursting events, detected
by ω3, are those which create the streaks. The JPDF between ω1 and ω3, not
reported for lack of space, has a greater symmetry and this corroborates what is
shown in Fig. 3, that Rω3ω1 is smaller than Rω3ω2 . Also ω1 is located in patches
and is correlated with ω2 in the sense that there is a large probability that the
two vorticity components have the same sign. In the case of ordered structures
(smooth wall and T2P1) Fig. 4 shows that strong positive and negative ω1 occur
where ω2 is low. For T2P1 (Fig. 4e) the contribution from quadrants I and III
is greater than for a smooth wall (Fig. 4a). For structures with less organiza-
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Figure 3. Normalised vorticity correlations Rω2ω3 , •Rω1ω3 , �Rω1ω2 ;
a) smooth wall, b) T2N1, c) T2P1.

tion the correlation coefficient increases (Fig. 3b) and this reflects the larger
probability of finding large values of ω1 and ω2 of the same sign.

3.2 Vorticity scalar-gradient correlations

The distribution of temperature and its correlation with the velocity field is of
interest for deciding whether flow visualizations can provide a qualitative pic-
ture how streaks are modified by the roughness elements. The scalar gradients
are important in combustion. To our knowledge, the correlation between scalar
gradients (gi = ∂θ/∂xi) and vorticity has not been evaluated or discussed even
for a smooth wall. The correlation tensor, γij = 〈g′iω′

j〉, for a smooth wall has
four relatively large components, γ32, γ23, γ31, γ13.

To obtain a better comprehension of the correlation between g′i and ω′
j , the

correlation coefficient Rgiωj = γij/
√
〈g′2i 〉〈ω′2

j 〉 can be evaluated. Fig. 5a
shows that, for a smooth wall, Rg3ω2 and Rg2ω3 have the same magnitude but
opposite signs; near the wall, these correlations are rather high. For Rg3ω2 this
should be expected since Ru1θ is very high. In fact, a high g′3 indicates the
alternation of positive and negative θ′, while a high ω′

2 indicates the alternation
of low- and high-speed streaks. The high Rg2ω3 implies that large contributions
to g′2 arise from bursting events, in the near-wall region, which are connected to
high values of ω′

3. Also the correlation between g′1 and ω′
3 is related to sweeps
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Figure 4. Contours of the JPDF between ω2 (abscissa) and ω3 (ordinate) on the top and ω2

(abscissa)and ω1 (ordinate) on the bottom. a), b) smooth wall; c) d) T2N1; e) f) T2P1.
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Figure 5. Correlations coefficients Rgiωj Rg3ω2 , • Rg2ω3 , � Rg1ω3

∇ Rg3ω1 a) smooth wall, b) S2N1, c) R2N1, d) T2N1, e) S2P1, f) R2P1, g) T2P1,
h) T2P0).

and ejections; the substantial difference between Rg2ω3 and Rg1ω3 implies that
the bursting events play a bigger role in forming streaks more than in determin-
ing their lengths. Through visualization in a (x2, x3) plane of contours of ω1 and
θ (not given here), it can be appreciated that spikes of θ are located where high
values of ω1 occur. There is a difference in the very near-wall region between
regions with ω1 concentrated in thin layers and regions with ω1 concentrated
in circular patches. This explains the change of sign for Rg3ω1 near the wall.

The physics associated with the correlation coefficients Rgiωj in the smooth
channel (Fig. 5a) is more interesting in the near-wall layer. It would be therefore
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useful to understand in how these correlations are affected by the roughness
elements. Fig. 5 shows that, for the orthogonal disturbances, there is a decrease
of Rg3ω2 which becomes substantial for T2N1. As shown in Leonardi et al.
(2003), the roughness, through u′

2 disturbances emanating from the grooves,
reduces the coherence of the streaks (ω′

2) and hence that of g′3. For the triangular
elements, the disturbances are the strongest and the reduction of Rg3ω2 the
smallest. This reduction occurs also for the aligned grooves but in this case the
shape of the elements is irrelevant. This can be understood through the JPDF in
Fig. 6; the effect on Rg3ω2 is stronger than for aligned elements. In the former
case, the probability of having high values of ω2 increases and consequently
the probability of high values of g3 is also increased. These two quantities can
be considered as those which emphasize the formation of streaks near the wall.
From the JPDF, however, it is not possible to infer whether a modification in the
length occurred. Flow visualizations show that indeed the length is reduced in
the presence of the geometrical disturbances; in particular, for aligned triangles,
the structures maintain the coherence but are shorter. The greater contribution
of quadrants II and IV indicates that low and high speed streaks can be detected
by flow visualizations and this holds also for the normal disturbances. These
plots show that ω2 and g3 have zero skewness.

It is well known that the bursting events are skewed with more events (ω′
3 < 0

sweeps) contributing to high-speed than low-speed streaks. As a consequence,
g2 is also negatively skewed; this is reproduced by the JPDF between ω3 and
g2 (Fig. 6 subscript 2). With aligned elements the distribution of sweeps is
essentially unchanged but probability of strong ejections increases. For the
normal elements, the probability of the sweeps changes and Fig. 6 shows that
the greater changes occur for g2 > 0.

The JPDFs permit also to understand the reduction of Rg3ω1 and Rg1ω3 in the
presence of roughness. For the former coefficient, Fig. 6 (subscript 3) shows
that the differences between the quadrants are reduced and that these do not
depend on the shape and orientation of the elements; this was shown in Fig. 5,
where, for all cases, Rg3ω1 = −0.25. In accord to Fig. 5, where only for the
smooth wall there is a change of sign in the wall region, it has been observed
that near the wall, the first and third quadrants contribute more than the other
two. Very near the wall, locations with large g3 coincide with those where
ω1 is maximum. Fig. 5 shows that at a certain distance from the wall, this
coincidence is lost, and this holds also in presence of geometrical disturbances.

Fig. 6 (subscript 4) explains why at y = 0.07 in Fig. 5 there is a large
reduction of Rg1ω3 from −0.517 for the smooth wall, to −0.145 for T2N1

and −0.220 for T2P1. From the PDF of g1 it appears that this quantity has a
positive skewness with a large probability for strong positive gradients. Strong
positive and negative gradients are located in localised patches, the positive
being correlated with sweeps and the negative with ejections. The correlation
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Figure 6. Contours of the JPDF between (1) g3 and ω2, (2) g2 and ω3, (3) g3 and ω1, (4) g1

and ω3; a) smooth wall, b) T2N1, c) T2P1.
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coefficients decrease in the T2N1 configuration because these strong positive
gradients are uncorrelated with the sweeps. Contour plots in horizontal planes
show that g1 are more equally distributed but in regions where ω3 is rather small.
An intermediate behavior between these two cases occurs when the elements
are aligned with the flow.

4. Conclusions

DNSs of flows in channels with rough walls of different shapes are used
to understand the interaction between the vorticity field and a passive scalar
field. Although the Reynolds number is small we believe that, for rough wall
flows, the Reynolds number dependence is less important than for a smooth
wall. By changing the shape and the orientation of the roughness elements, it
is possible to change the vorticity field. In all cases, there is a good correlation
between streamwise velocity and passive scalar; this implies that the correlation
coefficient between ω2 and g3 is rather high. This result is of large interest to the
experimentalist because laboratory flow visualizations can provide a qualitative
picture of the variations of the shape of high- and low-speed streaks.

We have also understood through the JPDF between vorticity and temper-
ature gradients why, in certain cases, the correlation coefficients are reduced
appreciably compared with the smooth wall. This is important in applications
where combustion occurs in the presence of solid walls. Although we were
not able to develop this theme here due to shortage of space, the present results
can be useful in designing combustion chambers given that the passive scalar
gradients are modified by the shape of the roughness.
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Abstract Models for the viscous and buffer layers over smooth walls are reviewed. It
is shown that there is a family of numerically-exact nonlinear structures which
account for about half of the energy production and dissipation in the wall layer.
The other half can be modelled by the unsteady bursting of those structures.
Many of the best-known characteristics of the wall layer, such as the lateral
spacing among the streaks, are well predicted by these models. The limitations of
minimal models are then discussed, and it is noted that a better approximation is to
represent the velocity streaks as ‘semi-infinite’ wakes of the wall-normal velocity
structures, both in the buffer and in the logarithmic layer. The consequences of
this characterization on the causal relation between bursting structures are also
briefly discussed.

Keywords: Turbulence, boundary layers, nonlinear systems.

1. Introduction

This paper reviews current theories about the flow in the immediate vicinity
of smooth walls. We will see that, although this part of the flow is geometrically
very thin in the high-Reynolds number limit, it is the seat of a large fraction
of the total velocity difference across the turbulent boundary layer. The same
is true for the total energy production and dissipation, and for many of the
features that distinguish wall-bounded turbulent shear flows from those away
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from walls. The study of this region of the flow is simpler than that of turbulence
in general, in part because the characteristic Reynolds numbers associated with
its wall-normal coordinates are small, but also because of the local importance
of the mean shear. It is for that reason that we will be able to offer relatively
closed models for its behaviour.

In the same way that the near-wall region dominates a large fraction of the
flow at intermediate Reynolds numbers, the logarithmic layer does the same at
higher ones. As the Reynolds number tends to infinity, the fraction of the total
velocity difference which is confined to the logarithmic layer tends to unity.
Working in large part by analogy with the near-wall region we will also be able
to say something about the lower part of the logarithmic layer, and thus about
most of the energy-relevant aspects of the turbulent boundary layer.

The modern study of this part of the flow began experimentally in the 1970’s
(Kim et al. 1971; Morrison 1971), and got a strong impulse with the advent of
direct numerical simulations in the late 1980’s and 1990’s (Kim et al. 1987).
We will mostly use here evidence from numerical simulations. That emphasis
is partly a personal bias of the authors, but it is not altogether arbitrary. The
thinness of the near-wall region makes it well-suited to simulation and difficult
to explore experimentally, and much of the available information is numerical.
In §2 we outline the models that have been proposed for this part of the flow,
including how recent work on equilibrium solutions is related to turbulence. In
§3 and §4 we discuss the time-dependent bursting and the characterization of
the streamwise-velocity streaks as wakes. The conclusions are summarized in
§5.

2. The structure of near-wall turbulence

Wall-bounded turbulence over smooth walls can be described in terms of two
sets of scaling parameters (Tennekes & Lumley 1972). Viscosity is important
near the wall, and the length and velocity scales in that region are constructed
with the kinematic viscosity ν and with the friction velocity uτ . Magnitudes
expressed in these ‘wall units’ are denoted by + superscripts. The near-wall
layer extends at most to y+ = 150 (Österlund et al. 2000) and, since y+ can
be interpreted as a Reynolds number, its relatively-low values make near-wall
turbulence a good candidate for simple models.

Far from the wall the velocity also scales with uτ , but the length scale is the
flow thickness h. Between those two regions there is an intermediate layer with
no fixed length scale, where the mean velocity is given approximately by

U+ = κ−1 log y+ + A. (1)

The Kármán constant, κ ≈ 0.4, is an essentially universal property of turbulence
in the logarithmic layer, but the intercept, A ≈ 5 for smooth walls, is a boundary
condition that depends on the viscous inner region.
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Figure 1. Fraction of the velocity difference across the different layers of wall-bounded
turbulent flows, according to equation (1). , across the near-wall region, y+ < 150;

, across the logarithmic layer, y < 0.2h.

That inner layer is extremely important for the flow as a whole. The ratio
between the inner and outer length scales is the friction Reynolds number, h+,
which may range up to h+ = 5 × 105 for large water pipes. In that limit the
near-wall layer is only about 3×10−4 times the pipe radius, but it follows from
(1) that even in that case 40% of the velocity drop takes place below y+ = 150.

Most of the remaining drop of the mean velocity happens within the loga-
rithmic layer, that can be defined as the inner 20% of the flow (Österlund et
al. 2000). Figure 1 shows the fractions of the velocity within the near-wall
and the logarithmic layers. Because of (1), they only depend logarithmically
on h+ and, while the near-wall fraction decays with h+, the logarithmic layer
eventually accounts for the whole velocity drop. Turbulence is characterized by
the expulsion of the energy dissipation away from the large energy-containing
eddies. In wall-bounded flows that separation occurs not only in scale space,
but also in the shape of the mean velocity profile. The singularities are expelled
both from the large scales and from the centre of the flow towards the wall.
Because of this singular nature, the near-wall layer is not only important for
the rest of the flow, but it is also largely independent from it (Jiménez & Pinelli
1999).

2.1 Classical models for the sublayer

Because of this global influence, the region below y+ ≈ 150 has been
intensively studied. It is dominated by coherent streaks of the streamwise
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velocity and by quasi-streamwise vortices. The former are an irregular array
of long (λ+

x ≈ 1000) sinuous alternating streamwise jets superimposed on the
mean shear, with an average spanwise separation of the order of λ+

z ≈ 50−200
(Smith & Metzler 1983). The vortices are slightly tilted away from the wall
(Jeong et al. 1997), and stay in the near-wall region for x+ ≈ 200. Several
vortices are associated with each streak, with a longitudinal spacing of the order
of λ+

x ≈ 400 (Jiménez & Moin 1991). Most of them merge into disorganized
vorticity after leaving the wall neighbourhood (Robinson 1991).

It was proposed very early that streaks and vortices form a regeneration cycle
in which the vortices are the results of an instability of the streaks (Swearingen
& Blackwelder 1987), and the streaks are caused by the advection of the mean
velocity gradient by the vortices (Bakewell & Lumley 1967; Kim et al. 1971).
It is for example known that disturbing the streaks inhibits the formation of the
vortices (Jiménez & Pinelli 1999). The manipulation is only effective if the flow
is perturbed between y+ ≈ 10 and y+ ≈ 60, suggesting that it is between those
levels that the streaks are involved in the vortex-generation process. There is a
substantial body of numerical (Hamilton et al. 1995; Waleffe 1997; Schoppa &
Hussain 2002) and analytic (Reddy et al. 1998; Kawahara et al. 2003) work on
the linear instability of model streaks. It shows that they are unstable to sinuous
perturbations associated with inflection points of the perturbed velocity profile,
whose eigenfunctions correspond approximately with the shape and location
of the observed vortices. This type of models imply a time-dependent cycle in
which streaks and vortices are created, grow, generate each other, and eventually
decay. Additional references can be found in Jiménez & Pinelli (1999).

A slightly different point of view is that the regeneration cycle is organized
around a nonlinear travelling wave, a fixed point in some phase space, which
represents a nonuniform streak. This is not too different from the previous
model, which essentially assumes that the undisturbed streak is a fixed point,
and that the cycle is an approximation to an orbit lying near its unstable man-
ifold. The new models however consider fixed points which are nontrivially
perturbed streaks, and therefore separates the dynamics of turbulence from those
of transition.

Nonlinear equilibrium solutions of the three-dimensional Navier–Stokes equa-
tions, with the right characteristics, have been obtained numerically in the past
few years for plane Couette flow (Nagata & Busse 1983; Nagata 1990; Wal-
effe 2003), plane Poiseuille flow (Toh & Itano 2001; Waleffe 2001; Waleffe
2003), and autonomous wall flows (Jiménez & Simens 2001). Several of those
solutions contain a wavy low-velocity streak flanked by a pair of staggered
quasi-streamwise vortices of alternating signs (Waleffe 1998; Kawahara et al.
2003), closely resembling the spatially-coherent objects educed from the near-
wall region of true turbulence. Their mean and fluctuation intensity profiles are
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reminiscent of the experimental ones (Jiménez & Simens 2001; Waleffe 2003),
and the same is true of other properties.

In those cases in which the stability of these solutions has been investigated,
they have been found to be unstable saddles in phase space at the Reynolds
numbers at which turbulence is observed. They are not therefore expected to
exist as such in real turbulence, but the flow could spend a substantial fraction
of its lifetime in their neighbourhood. Exact limit cycles and heteroclinic orbits
based on these fixed points have been found numerically (Kawahara & Kida
2001; Toh & Itano 2003), and reduced dynamical models of the near-wall region
have been formulated in terms of low-dimensional projections of such solutions
(Aubry 1988; Sirovich & Zhou 1994; Waleffe 1997).

Two questions remain open: whether all the exact solutions that have been
published for wall-bounded flows are related to each other and to near-wall
turbulence, and whether real turbulence is best described in terms of steady
structures or in terms of unsteady events.

The first question is addressed in figure 2. The earliest and best-known
nontrivial steady solutions of a wall-bounded Navier-Stokes shear flow are those
in (Nagata 1990), which were recently extended by Jiménez et al. (2005) to a
wider range of parameters. A representative solution family is shown in figure
2(a), where the friction coefficient is given in terms of the spanwise wavelength
and of the friction Reynolds number. The solutions can be classified into ‘upper’
and ‘lower’ branches in terms of their mean wall shears. The gray patch in the
lower coordinate plane in figure 2(a) is the region in which solutions exist, and
it is significant that it coincides very approximately with the range in which
streaks spacing is found experimentally (Smith & Metzler 1983). It is shown in
Jiménez et al. (2005) that most of the known wall-bounded solutions by other
authors can also be classified into one or the other branch. The ‘lower’ solutions
have strong and essentially straight streaks, and weak vortices in the form of
vorticity sheets. Those solutions are essentially weakly nonlinear versions of
the eigenfunctions of the linear instability of the velocity streaks (Kawahara et
al. 2003). ‘Upper’ solutions have weaker sinuous streaks flanked by stronger
vortices, which are nonlinear enough to have collapsed into roughly circular
cores. They consequently have weaker root-mean-square streamwise-velocity
fluctuations u′, and stronger wall-normal ones v′ than those in the lower branch.
Their velocity fluctuation profiles agree well with those of real turbulence.

The relative strength of both types of fluctuations for a particular solution
can be characterized by the maximum values of its profiles of r.m.s. u′ and v′.
Different solutions can then be compared among themselves, and with fully-
turbulent flows, by means of those two numbers. The r.m.s. profiles of the
exact solutions, which are computed over periodic domains of size L+

x ×L+
z ≈

400 × 100 parallel to the wall, cannot however be compared directly with the
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Figure 2. (a) Solution surface for Nagata’s steady solutions in Couette flow, in terms of the
spanwise wavelength, and of the friction Reynolds number. λx/h = 2π (Jiménez et al. 2005).
(b) Comparison of some exact solutions with the near-wall turbulent structures, in terms of the
maxima of the u′ and v′ r.m.s. profiles taken over boxes of size b+

x ×b+
z ×y+ = 380×110×50.

� , Nagata’s solutions for Couette flow (Jiménez et al. 2005). Solid symbols are ‘upper branch’
solutions, and open ones are ‘lower branch’. • , autonomous permanent waves (Jiménez &
Simens 2001). The solid loop is an exact limit cycle in plane Couette flow (Kawahara & Kida
2001). Other open symbols are probability isocontours from large-box Poiseuille flows (del
Álamo et al. 2004): � , h+ = 1880; ♦ , 950; � , 550; ◦ , 180. They contain 90% of the p.d.f.

fluctuation profiles compiled from experiments or from full-scale simulations,
which typically have domains of the order of L+

x × L+
z ≈ 10, 000 × 5, 000.

To allow the comparison in figure 2(b), each wall of the large computational
boxes was divided into ‘minimal’ sub-boxes with the same wall-parallel dimen-
sions as the computational boxes of the exact solutions, b+

x × b+
z ≈ 380× 110,

and the statistics were compiled over them. Each sub-box was characterized
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by its maximum r.m.s. intensities below y+ = 50, and the values for different
sub-boxes were summarized as a joint probability density function of the two
quantities, compiled over the different sub-boxes and over time. Each flow was
not therefore characterized by a single point, but by the probability distribution
of the possible states of the sub-boxes.

The results in figure 2(b) suggest that only the ‘upper-branch’ exact solutions
are representative of real turbulence. They also show that the correspondence
is reasonably good, but that there are fluctuations in the near-wall region of
real turbulent flows which are substantially stronger than those of the exact
solutions.

3. Bursting versus steady solutions

The next question is whether those stronger fluctuations can best be described
by a different kind of steady solutions or by unsteady ones. The unsteady mod-
els discussed at the beginning of section 2 follow the original interpretation
of the visualizations of the sublayer by Kim et al. (1971), which was that
the streaks regenerate through intermittent ‘bursting’. That interpretation has
sometimes been dismissed as a visualization artifact, and even the original au-
thors acknowledged that their visualizations could be consistent with advecting
permanent objects (Offen & Kline 1975). Bursting became associated with
the ejections observed by stationary velocity probes, specially after numeri-
cal simulations showed that the velocity streaks were long-lived. The events
identified in the analysis of single-point data were associated to the passing
of quasi-streamwise vortices, intermittent in space but not necessarily in time
(Robinson 1991). This explanation bypassed the question of whether the ob-
served temporally-intermittent sublayer events were artifacts or really existed.

The difficulty of following for long times individual structures in fully turbu-
lent flows complicates the distinction between permanent structures and time-
dependent processes with a long period, but intermittent breakdown of near-wall
turbulence is observed in minimal-flow numerical simulations (Jiménez & Moin
1991) in which spatial intermittency is not an issue. In these simulations the
wall-parallel periodic dimensions of the computational box are small enough
to produce a periodic array of identical essentially-single structures, and the
analysis is simplified because those structures can easily be followed in time.
An example is given in figure 3, where the evolution of the flow near the wall in
a minimal channel is represented in terms of the production P and of the dissi-
pation D, integrated below δ+ = 50. Each instantaneous state of the minimal
flow is represented by a point in the (P, D) plane, and the joint p.d.f. in figure
3 is compiled as the system evolves in time. The arrows in the figure represent
the mean evolution velocity in parameter space.
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Figure 3. Joint probability density functions of the turbulent energy production and dissipation
below y+ = 35. h+ ≈ 180. The diagonal line is energy equilibrium, P = D. The arrows are
explained in the text. , minimal Poiseuille flow, L+

x × L+
z = 450 × 125; , full

channel, analysed over similar sub-boxes. The isolines contain 40% and 90% of the data. • ,
equilibrium solutions from Jiménez & Simens (2001).

The flow describes a cycle in the (P, D) plane, during which the fluctuations
accumulate energy when P > D, grow, cross into the dissipative part of the
plane where D > P , and finally decay. The period of the cycle is of the order
of T+ ≈ 400 in the high-Reynolds number limit (Jiménez et al. 2005), during
which the structures advect about x+ = 5000. The steady upper-branch equi-
librium waves described above are in this representation production-dominated
in the near-wall layer and relatively quiescent. The Couette limit cycle which
was included in figure 2, but which is not plotted here for clarity, is a miniature
version of the energy cycle in figure 3, with whom it shares many characteristics
(Jiménez et al. 2005).

Figure 3 shows that the minimal flow ‘bursts’ in the sense of the original
unsteady descriptions of Kim et al. (1971). The same temporal information is
not accessible for full flows, because of the problem of identifying individual
structures, but a joint p.d.f. of P and D can be compiled for them over minimal
sub-boxes. Such a p.d.f. is included in figure 3, and it is similar enough to that
of the minimal case to strongly suggest that the full flow is also bursting.

Note that these bursts are not ejections associated with the passing of qui-
escent vortices. The sub-boxes that we have used to analyse the flow are large
enough to always contain a full vortex pair, and in particular they are large
enough for their mean wall-normal velocity to be always very close to zero.
The scatter in figure 3 is due to differences between quiescent and excited full
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Low−Speed Wake

High−Speed Wake (a)

Low−Speed Wake
(b)

Figure 4. (a) Sketch of the wakes left in the mean velocity profile by a compact v-structure
moving with an advection velocity intermediate between the flow below and above it. The wakes
below the structure contain higher velocities than the local mean, but they are in slower-moving
fluid and are left behind. Those above the structure contain lower velocities, and ride ahead of
the v-structure. (b) Because the low-speed streaks created by the vortices are only semi-infinite,
the new vortices created by their instability form downstream of the original ones. Models using
a minimal flow unit wrap the original and the new vortical structures into a single one.

sets of structures. The mean profiles of most quantities change according to
their position in the bursting cycle (Jiménez et al. 2005). The general effect of
bursting is to move the active structures away from the wall.

4. Longer structures as wakes

4.1 Wakes in the buffer region

The model in the previous section is suggestive, and we have seen that it
accounts for many of the characteristics of the viscous and buffer layers. In
essence it assumes that the near-wall region is populated with compact nonlin-
ear structures, formed by a segment of an infinitely-long streamwise-velocity
streak, and by its associated quasi-streamwise vortices. They stay in the neigh-
bourhood of some steady equilibrium solution, and move along the wall with an
advection velocity of the order of U+

c = 10 (Kim & Hussain 1993). However
it is clear that this cannot be the whole story.

Consider the situation in figure 4(a), in which the compact vortical structure
advects along the wall with a velocity intermediate between the mean velocities
close to the wall and far away from it. The vertical advection induced by the
vortices creates a high-speed streak near the wall, and a low-speed one farther up
but, because of the relative velocities of the mean flow and of the perturbation,
the former is left behind, while the former rides ahead of the vortices. These
relative positions of the v and u structures in the buffer layer were documented
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Figure 5. Two-dimensional spectral energy density kxkzE/u2
τ in the buffer layer, y+ = 16.

Shaded, autonomous flow masked above δ+ = 60 (Jiménez et al. 2004); , channel.
h+ = 550; , channel. h+ = 950 (del Álamo et al. 2004). The solid diagonal is
λz = λx, and the dashed one is λz ∼ λ

1/3
x . The dotted rectangle is the Fourier transform of the

minimal box λ+
x × λ+

z = 400 × 100. (a) Wall-normal velocity. (b) Streamwise velocity.

in Jiménez et al. (2004). The high-speed streaks formed in this way are close
to the wall, and they are quickly dissipated by viscosity. The low-speed streaks
diffuse away from the wall and last longer (Jiménez et al. 2004), but they are
nevertheless only semi-infinite, instead of truly infinite as in the model of the
previous section. The result is that they can only close the regeneration cycle by
forming new vortices somewhere downstream of the original ones, as in figure
4(b). The minimal-flow box wraps both the new and the old vortices into a
single structure, and makes the semi-infinite streak appear fully infinite. We
have seen that the resulting minimal model accounts for many of the statistical
aspects of the buffer region, but the true model should be closer to the one just
described.

The difference between the lengths of the compact v structures and the longer
u streaks is seen in the spectral energy densities in figure 5. The wall-normal
velocity is roughly contained within the minimal box, and scales in wall units for
the three Reynolds numbers represented. The spectrum of streamwise velocity
in figure 5(b) is more complex. Within the minimal box the u-spectra of the three
Reynolds numbers scale well in wall units, and more or less coincide with those
of v. This part of the spectrum is the one described by the minimal models in the
previous section. In the upper-left corner there is a component which depends
on the Reynolds number. Those structures scale in outer units, and correspond
to global modes spanning the whole boundary layer (del Álamo & Jiménez
2003). Between both extremes there is a spectral ridge which scales well in
this representation, although probably with a Reynolds-dependent length. It
follows the power law λz ∼ λ

1/3
x , which is consistent with diffusion in a shear.

It can be shown that it is formed by structures which are essentially linear, in
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Figure 6. Two-dimensional spectral energy density kxkzE/u2
τ in the logarithmic layer layer,

y/h = 0.11, h+ = 950. The shaded contours are the wall-normal velocity; the lines are the
streamwise velocity. The solid diagonal is λz = λx, and the dashed one is λz = (yλx)1/2.

the sense that the wall-normal velocity generates the streamwise fluctuations,
but the latter do not influence the former (Jiménez et al. 2004). Confirmation
of this interpretation of the u-structures as wakes generated by v will be given
below using similar relations in the logarithmic layer.

4.2 Wakes in the logarithmic region

As we move away from the wall, the form of the energy spectrum changes
(del Álamo & Jiménez 2003; del Álamo et al. 2004). The spectra of u and
v at one station in the lower logarithmic region are shown in figure 6. The
wall-normal velocity is concentrated in scales which are roughly isotropic and
or the order of the wall distance y, but u has in addition a long ridge of ‘wakes’.
It follows in this case

λz ≈ (yλx)1/2, (2)

rather than a cube-root law found in the viscous layer. This is also consistent
with the model of a wake left by compact structures, because in the logarithmic
and outer layers the velocity is almost constant, and the diffusion of the wake
is due to an eddy viscosity which, on dimensional grounds, is νT ≈ uτy. The
similarity solution is then (del Álamo et al. 2004)

u ∼ u[y/x, z/(yx)1/2]. (3)

It was shown by del Álamo & Jiménez (2003) and by del Álamo et al. (2004)
that the short structures of the wall-normal velocity are effectively detached
from the wall, in the sense that the correlation of individual Fourier modes
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Figure 7. Perturbation velocity field conditioned on the presence of a vortex cluster, whose
mean position is given by the meshed object. The flow is from bottom-left to top-right. h+ =
950. Only clusters with y+

max > 100 are used. The lighter central object downstream of the
cluster is the isosurface u+ = U+(y)− 0.15. The two darker objects to the sides and upstream
of the cluster are u+ = U+(y) + 0.35.

between the logarithmic and the buffer layer is very small. The height over
which those correlations are large increases as the structures become longer.
The eddies touch the wall when λx is some low multiple of y, and the attached
eddies beyond that limit are the ones that populate the wake ridge.

The nature of the v structures generating the wakes is discussed in del Álamo
et al. (2005), which studies the vorticity structures in the buffer and logarithmic
layers using simulations in full numerical boxes with h+ ≤ 1900 (del Álamo
et al. 2004). Vortices are defined as being formed by points in which the
discriminant D of the velocity gradient tensor is larger than a properly-defined
threshold (Chong et al. 1990). Connected sets of such points are collected
into individual vortex clusters, which break naturally into two distinct groups
according to whether their lowest points are above or below a critical level
around y+ ≈ 20. We will call the latter group attached and the former detached.
The most interesting clusters are those attached to the wall and reaching above
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y+ = 100 into the logarithmic layer. When each of them is inscribed into a
parallelepipedal box aligned to the coordinate directions, the boxes are self-
similar, with dimensions ∆z ≈ 1.5∆y and ∆x ≈ 3∆y. For attached clusters it
makes sense to associate ∆y with the height y, because their minimum distance
to the wall is small. When this is done, and when ∆x and ∆z are also equated
to the streamwise and spanwise wavelengths, the dimensions of the bounding
boxes roughly coincide with the location of the spectral peak for the wall-normal
velocity v. The vortices themselves appear to be arranged as surfaces or shells
within the boxes because, while the volume of the bounding box increases as
∆3

y, the volume contained in points classified as vortices increases only as ∆2
y.

A conditionally-averaged flow field, based on the centres of the vortex boxes,
and scaled with their vertical dimensions, shows a strong v ejection surrounded
by two counter-rotating vortices, as in a classical hairpin. The antisymmetry is
only statistical and, as in the case of the buffer-layer vortices (Robinson 1991),
there is little evidence for symmetry in individual vortex clusters.

When the conditionally-averaged flow field is extended down- and up-stream
from the location of the vortex box, the result is that in figure 7. The central
object extending downstream from the vortex cluster is the low velocity streak,
while the two lower objects on the sides and upstream are high-velocity features.
The location of both features is consistent with the wake model in figure 4(a).
The spanwise symmetry of figure 7 is again only statistical. Individual structures
are typically irregular. When the transverse velocities are plotted in planes
normal to the stream, the averaged vortical structure of the wakes contains
two weak counter-rotating vortices which are much larger than the size of the
original vortex packet, and which are reminiscent of the downstream structure
of the wake of a transverse jet in a boundary layer (Fric & Roshko 1994).

Similar ramp-vortex structures have been observed by previous investigators
(Adrian et al. 2000; Christensen & Adrian 2001), with geometric characteristics
similar to those found here, but the present interpretation of their relation with
the vortex packets is, to our knowledge, new. The results in del Álamo et
al. (2005) suggest that the detached vortex clusters are associated with the
interior of the low-velocity ramps (Tanahashi et al. 2004), and that they may be
responsible for the maintenance of the shear layers which define the ramp tops.
The attached clusters are only found at the ramp origins. Note for example the
absence of any coherent low-velocity structure upstream of the vortex box in
figure 7(a), except near the wall. When the conditioned flow field is computed
for the detached vortex clusters, the low-speed region extends upstream and
downstream of the box.

The velocity perturbations due to the ramps are of the order of uτ , and the
total projected surface of the boxes bounding the wakes is enough to cover the
whole wall with some overlap. The perturbation due to the wakes is therefore
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a substantial fraction of the total perturbation energy in the channel, as could
be expected from the u spectrum in figure 6.

The spectra at different wall distances show that the wakes widen along the
ridge (2) until λz ≈ 2h (del Álamo et al. 2004). This effectively determines
the longest wavelength in the spectrum, which is

λx,max/h ≈ 4h/y. (4)

This limit is longest at the bottom of the logarithmic layer, where y+ ≈ 100
and λx,max/h ≈ h+/20. These are very long structures that, even taking
into account possible numerical factors, point to hundreds of boundary-layer
thicknesses at high Reynolds numbers. Spectral peaks of the order of 20h
have been documented in experiments (Jiménez 1998; Kim & Adrian 1999),
where they are probably limited by the length of the experimental records.
The full simulations being used here only reach to λx ≈ 25h and, although
longer to our knowledge than any other available simulation, they are not long
enough to settle the matter. The premultiplied spectra of u at the bottom of their
logarithmic layers are still essentially flat at their longest wavelengths, as seen
in figure 6. On the other hand, numerical experiments with shorter simulation
boxes show very little difference in the part of the spectrum that is resolved
by the simulations (del Álamo et al. 2004), suggesting that those very long
structures are essentially passive and do not feed into the shorter ones. This
brings to mind the similar property of the buffer-layer streaks mentioned in the
previous section. We have already noted that short simulation boxes model the
long scales as if they were infinitely long, and the previous results suggest that
structures longer than about 5h behave as if they were dynamically infinite.

The shortening of the spectra above the lower logarithmic layer predicted
by (4) had been previous noted experimentally, although without explanation
(Lawn 1971; Jiménez 1998; Kim & Adrian 1999).

An interesting question is whether the vortex clusters and the ramps discussed
here are features of the whole logarithmic layer, or just of its lower edge. The
probability density function p(∆y) for the dimensions of the attached vortex
clusters collapses well in wall units for different Reynolds numbers, with a
maximum around ∆+

y = 50 (del Álamo et al. 2005). This suggests that the
clusters are buffer-layer phenomena which should become negligible for most
of the logarithmic layer when h+ is large enough, but this is not necessarily
so, and depends on the behaviour of p(∆y). The projected area of each vortex
cluster on the plane of the wall is ∆x∆z ≈ 5∆2

y, and for any p.d.f. decaying
slower than ∆−2

y the largest clusters would be the ones covering most area. This
would for example be the case for the distribution p(∆y) ∼ ∆−1

y , which was
suggested in (Perry et al. 1986) on similarity grounds. In our simulations the
decay of p(∆y) depends on the threshold used to define the vortices, with ill-
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defined decay slopes which are always steeper than ∆−3
y , although the Reynolds

numbers are too low to draw definite conclusions.

5. Conclusions

We have reviewed the present understanding of the dynamics of turbulent
flows near smooth walls. This is a subject that, like most others in turbulence, is
not completely closed, but which has evolved in the last decades from empirical
observations to relatively coherent theoretical models. It is also one of the first
cases in turbulence, perhaps together with the structure of small-scale vorticity
in isotropic flow, in which the key technique responsible for cracking the prob-
lem has been numerical simulation. The reason is that the Reynolds numbers
of the important structures are low, and therefore accessible to computation,
while experiments are difficult. For example the spanwise Reynolds number
of the streaks is only of the order of z+ = 100, which is less than a millimetre
in most experiments, but we have seen that it is well predicted by the range of
parameters in which the associated equilibrium solutions exist.

We have seen that, to a good approximation, the dynamics of the near-wall
regions are described by these equilibrium solutions, and that much of what
is not explained by them can be accounted for by their unsteady bursting. We
have however argued that this description is not complete, and that the bursting
does not probably refer to the periodic temporal behaviour of a single structure,
but to the generation of new structures by the instability of the wakes left by
the original ones. The presence of the wakes has been explicitly demonstrated
in the lower logarithmic layer, where the the quasi-streamwise vortices of the
buffer layer are substituted by self-similar vortex tangles, and the ramp-like
wakes take the place of the streaks. Note that, in this case, the downstream
regeneration of the vortex tangles in the wakes generalizes the formation of
hairpin trains studied by previous researchers in the absence of background
fluctuations (Zhou et al. 1999).

The description of the buffer layer in term of minimal equilibrium or periodic
solution should then be seen as a first approximation which folds the actual flow
structure into the spatially periodic minimal box. Although we have seen that
this folding has very little influence in the overall statistics, the causal relations
are different and, for example, control strategies developed from minimal flows
might not necessarily be optimal for the real case.
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Abstract Coherent fine scale eddies (CFSEs) play an important role in generating streak
structures and Reynolds shear stress not only in the near-wall region but also in the
logarithmic region. The diameter and maximum azimuthal velocity of the CFSEs
in the near-wall, logarithmic and wake regions can be scaled by Kolmogorov
length η and velocity uk. The most expected diameter and maximum azimuthal
velocity of the CFSEs are about 10 η and 2.0 uk in the near-wall region (y+ < 40).
In the logarithmic region (40 < y+ < 200 ∼ 300), they become about 8.5 η
and 1.7uk, respectively. These features are independent of Reynolds number up
to Reτ = 1270. Large-scale structure in turbulent channel flows is organized by
the CFSEs in the logarithmic region, which contribute to the streamwise velocity
deficit (i.e. low-momentum region). By visualizing spatial distributions of the
CFSE axes, it is made clear that the probability that the CFSEs exist in low-
momentum regions is higher than that existing in high-momentum regions. The
low-momentum regions of the logarithmic layer are composed of the CFSEs
which have narrower diameter and stronger azimuthal velocity.

Keywords: DNS, turbulent channel flow, coherent fine scale eddy, large-scale structure

1. Introduction

It has been shown that turbulence is composed of universal fine scale eddies
(i.e. coherent fine scale eddies, hereafter CFSEs) from the results of direct
numerical simulations (DNSs) (Jiménez et al. 1993, Jiménez & Wray 1998,
Tanahashi et al. 1999a, 1999b, 2001, 2004). In the near-wall region (y+ < 60),
quasi-streamwise vortices are elongated in the edge of the low-speed streak and
kinked above it away from the wall (Jeong et al. 1997). These streamwise
eddies possess the same feature as the CFSEs which have been observed in
homogeneous turbulence and turbulent free-shear flows (Tanahashi et al.1999a,
2001). The characteristics of the CFSEs can be scaled by the Kolmogorov
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length (η) and r. m. s. of velocity fluctuation (urms) in turbulent flows of low
Reynolds number, and the most expected diameter and maximum azimuthal
velocity are about 8η and 0.5 ∼ 1.0urms (Jiménez et al. 1993, Tanahashi et al.
1999a). Recent study in homogeneous isotropic turbulence up to Reλ ≈ 220
has revealed the exact scaling of the CFSEs (Miyauchi et al. 2002). Similar to
the results obtained in low Reλ cases, the most expected diameter is 8η even for
highest Reλ. On the other hand, the maximum azimuthal velocity can be exactly
scaled by uk in place of urms and the maximum azimuthal velocity shows a
peak at 1.2uk for all Reλ. Note that relatively strong CFSEs can be well scaled
by urms even for higher Reλ cases. Jiménez & Wray (1998) have reported
that the azimuthal velocity can be scaled by urms for relatively high Reynolds
number cases up to Reλ ≈ 170. The difference between Miyauchi et al. (2002)
and Jiménez & Wray (1998) is mainly caused by the detection method of the
fine scale eddy. Since Jiménez & Wray (1998) use enstrophy magnitude to
identify the eddy, stronger eddies may be detected preferentially. The detailed
discussion about the detection scheme has been reported in Tanahashi et al.
(1999a). In turbulent channel flows, directional dependence or alignment of
the rotating axis can be observed near the wall. Tanahashi et al. (1999b, 2004)
have suggested that the aligned CFSEs correspond to the streamwise vortices.
The streamwise vortices are frequently observed near the wall, and are inclined
at 9 degrees in the vertical plane and tilted alternately at +4 and −4 degrees in
the horizontal plane (Jeong et al. 1997).

From the PIV measurements, Adrian et al. (2000) have observed that ejection
patterns on streamwise-wall normal planes near the wall (y+ < 50 ∼ 100)
are consistent with the vortex legs bending and becoming quasi-streamwise
vortices, and the inclination angles of the neck and head vary from 15 to 75
degrees (45 degrees is typical). The spanwise wavelengths of the maxima in
pre-multiplied energy spectrum of streamwise fluctuating velocity are linearly
increased in the logarithmic region (Jiménez 1998, Tomkins & Adrian 2003,
Kawamura et al.2003, Álamo & Jiménez 2003). The increase of these spanwise
wavelengths is caused by the low-speed region existing in logarithmic region,
and results in the large-scale motion in wall turbulence. The large-scale motions
are important in wall turbulence because their lifetime is long. Tomkins &
Adrian (2003) have suggested that the dominant large-scale motions at elevated
Reynolds numbers are low u-momentum regions elongated in the streamwise
direction from PIV measurements on streamwise-spanwise planes in turbulent
boundary layers. They have also argued that the low-momentum regions are
consistently associated with vortical motions at each height. In the present
study, DNSs of turbulent channel flows up to Reτ = 1270 are conducted.
The characteristics of the CFSEs in the near-wall and logarithmic regions are
discussed by analyzing these DNS data. We also investigate structure of the
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CFSE cluster and features of the CFSEs embedded in the low-momentum parts
of the logarithmic regions.

2. DNS database

DNSs of turbulent channel flows are carried out by solving incompressible
Navier-Sokes equations and continuity equation. Reynolds number based on
the friction velocity (uτ ) and channel half width (δ) is 400, 800 and 1270.
Spectral methods are used in the streamwise (x) and spanwise (z) directions
and 4th-order central finite difference scheme is used in the wall-normal (y)
direction. Periodic boundary conditions for the velocity and pressure fields are
used in the x and z directions. No-slip conditions for the velocity are used at the
walls. Table 1 shows the computational domain size (Lx, Ly, Lz), the number
of grid points (Nx, Ny, Nz) and spatial resolution (∆+

x , ∆+
y , ∆+

z ) in the x, y
and z directions. For more details about the numerical method, see Tanahashi
et al. (1999c).

3. Coherent fine scale eddies in the near-wall and
logarithmic regions

Figure 1 shows iso-surfaces of the second invariant (Q) of the velocity
gradient tensor for Reτ = 400, where Q is normalized by δ and the mean
streamwise velocity Uc at the channel center. The domain size visualized is
lower half of the computational domain. The second invariant of the veloc-
ity gradient tensor is defined by Q = (ΩijΩij − SijSij)/2, where Sij and
Ωij are the symmetric and antisymmetric parts of the velocity gradient tensor
Aij(= ∂ui/∂xj = Sij + Ωij). Streamwise vortices near the wall and hairpin-
type vortices can be visualized by the positive Q region, which coincides with
the results by λ2 (Jeong et al. 1997) and ∆-definition (Blackburn et al. 1996).
However, all of the visualizations including Fig. 1 depend on the threshold of
the variables. To educe CFSEs without any threshold from the flow fields, a
new identification scheme (Tanahashi et al. 1999a) based on local flow pattern
is employed. The educed section includes a local maximum of Q along with
the axis of a fine scale eddy, and a central point of swirling motion is identified.
The diameter and maximum azimuthal velocity of the detected CFSEs can be
scaled by η and uk (Tanahashi et al. 2004).

The probability density functions (pdfs) of the diameter and maximum az-
imuthal velocity of the CFSEs in the near-wall region (y+ < 40), the loga-
rithmic region (40 < y+ < 200 ∼ 300) and the wake region near the center
of the channel are shown in Fig. 2 for all Reynolds number case simulated.
The diameter and maximum azimuthal velocity are normalized by η and uk

at y+ where the CFSE exists. The η and uk are calculated from the mean
dissipation rate (ε(y+)) of turbulent kinetic energy at y+. The most expected
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Table 1. Numerical parameters for DNS of turbulent channel flows.

Reτ Re Lx×Ly× Lz Nx×Ny×Nz ∆ x+ ∆ y+ ∆ z+

400 8200 3πδ×2δ×πδ 384×385×192 9.817 0.479∼5.183 6.544
800 17760 2πδ×2δ×πδ 512×769×384 9.817 0.479∼5.183 6.544
1270 30320 2πδ×2δ×πδ 864×1239×648 9.236 0.450∼5.183 6.157

x

y

z

3πδ

πδ

δ

Figure 1. Contour surfaces of second invariant Q of the velocity gradient tensor for Reτ = 400
(Q = 4, domain size: lx× ly × lz = 3πδ×δ×πδ). Perspective view from above and upstream.

diameter and maximum azimuthal velocity in the near-wall region are about 10 η
and 2.0uk for all Reynolds numbers. In the logarithmic region they are about
8.5 η and 1.7uk, which are slightly wider and stronger than those in homoge-
neous isotropic turbulence (Miyauchi et al. 2002) and turbulent mixing layers
(Tanahashi et al. 2001). However, the most expected diameter and maximum
azimuthal velocity in the wake region become about 8η and 1.2uk, respectively,
which coincide with the features of the CFSEs in homogeneous turbulence and
turbulent mixing layers. It should be noted that the CFSEs with diameter wider
than about 40 η hardly exist in the near-wall region. Both pdfs for all regions are
independent of the Reynolds number. Figure 3 shows joint pdfs of the diameter
and the maximum azimuthal velocity of the CFSEs in the near-wall and loga-
rithmic regions for Reτ = 800. Since the intervals of contour lines are selected
to be log2 p, probability densities on neighboring two contour lines are different
by 2 times. The most expected diameter and maximum azimuthal velocity are
the same as shown in Fig. 2. The joint pdfs show peaks at the same position
(D=10 (near-wall) ∼ 8η (wake region), vθ,max=2.0 (near-wall)∼ 1.2uk (wake
region)) which is independent of Reτ , whereas the shapes of joint pdfs show
weak y+-dependence. The joint pdf in the near-wall region is more compact
than those away from the wall, and the probability of the CFSEs with diameters
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Figure 2. Probability density functions of the diameter (a)∼(c) and maximum azimuthal
velocity (d)∼(f) of the CFSEs for all Reynolds numbers. (a) and (d): near-wall regions, (b) and
(e): logarithmic regions, (c) and (f): wake regions near the channel center. ◦: Reτ = 400, �:
Reτ = 800 and �: Reτ = 1270.

Figure 3. Joint probability density functions of the diameter and maximum azimuthal velocity
of the CFSEs for Reτ = 800. (a) : near-wall region, (b) and (c): logarithmic region.

and maximum azimuthal velocities greater than 40η and 8uk is very low as
shown in Fig. 2. There are two regions in the joint pdfs where probabilities
of the CFSEs are nearly zero. One is in the region of very small diameter (I).
Diameters corresponding to the boundary of zero-probability increase linearly
with the increase of the maximum azimuthal velocity. Another is in the re-
gion of small maximum azimuthal velocity (II). In this region, the maximum
azimuthal velocity at the zero-boundary increases linearly with the increase
of diameter. The former corresponds to the CFSEs with very high speed of
rotation and deeply related to intermittency of turbulence, and the latter cor-
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Figure 4. Spatial distributions of the CFSE axes. The diameters of the CFSE axes are drawn
to be proportional to the square root of Q∗

c . (a) Reτ = 400, domain size is l+x × l+y × l+z =
1884 × 400 × 1256, (b) Reτ = 800, domain size is l+x × l+y × l+z = 2513 × 800 × 713.

responds to the large tube-like structure with relatively weak swirling motion.
This tendency becomes stronger in the upper region of the logarithmic layer
(100 < y+ < 200 ∼ 300). From distributions of the inclination angles and the
tilting angles of axes of these CFSEs, Tanahashi et al. (2004) have shown that
these two angles show strong directional dependence with the decrease of y+.
This directional dependence of the axes at Reτ = 800 has been observed even
for y+ ≈ 600. The strong anisotropy in the near-wall region can be attributed
to the smallest CFSEs, since the variance of the diameters becomes relatively
small near the wall as shown in Fig. 2 (a) and Fig. 3 (a).

4. Structure of the CFSE cluster

Figure 4 shows spatial distributions of the CFSE axes for Reτ = 400 and 800.
Their diameters have been drawn to be proportional to the square root of Q∗

c on
the axes, where the superscript ∗ indicates a non-dimensional quantity scaled
by η and uk. Since the CFSEs in turbulent channel flows are scaled by η and uk,
the vortical structures could be visualized very well even in the regions far from
the wall. These visualizations provide evidence for the existence of hairpin type
vortices (see marked arrow) and groups of the CFSEs throughout the logarithmic
region (see marked circles). In the case of Reτ = 800, the clusters of the CFSEs
are clearly observed because the logarithmic region is wider than that in case of
Reτ = 400. From the PIV measurements on x−z planes in turbulent boundary
layer, Tomkins & Adrian (2003) and Ganapathisubramani et al. (2003) have
shown that the low u-momentums region enveloped by positive and negative
vortex cores representing the packets of hairpin vortex are the dominant large-
scale motions in the logarithmic region. Figure 5 (a) shows spatial distributions
of the CFSE axes with the iso-surface of streamwise fluctuating velocity in a
typical region for Reτ = 800. The threshold value of the iso-surface in Fig. 5
(a) is selected to be u′+ = −1.8, which is equal to about -u′+

rms at y ≈ 0.5δ.
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Figure 5. Spatial distributions of the CFSE axes with (a) the iso-surface of u′+ and with (b) the
contour of u′+ on x− y plane at z+ ≈ 200. Domain size is l+x × l+y × l+z = 2513×800×328,
threshold of the iso-surface is u′+ = −1.8.

The large-scale low-momentum region is composed of the CFSE clusters in
the outer region. This visualization also reveals that the scale growth of the
low-momentum region from the bottom of logarithmic region is related with
the CFSE clusters. Figure 5 (b) shows spatial distributions of the CFSE axes
and the contour of streamwise fluctuating velocity on x− y plane at z+ ≈ 200.
In this figure, the light-gray and dark-gray regions indicate high- and low-
speed regions, respectively. It is clearly observed that the CFSE clusters are
embedded in the low-momentum region (u′+ < −1.8; black color) of the
logarithmic layer. The CFSE cluster in the bottom of the logarithmic layer
lies within a low-momentum region (I-1 zone) which has a slope of about 7
degrees. Another CFSE cluster in I-2 zone forms a low-momentum region
which includes the CFSE cluster in the bottom of logarithmic layer. This low-
momentum region along with the CFSE cluster grows at a 17 degrees to the
wake region in vertical plane. From the PIV measurement in the x − y plane
of the turbulent boundary layer, Adrian et al. (2000) have shown that zones of
relatively uniform streamwise momentum (0.79U∞) exist within the packets of
hairpin vortex and the nesting of one packet within another leads to the creation
of multiple zones of different uniform momentum.

From the y+ dependence of distributions of the CFSE axes, Tanahashi et al.
(2004) have shown that the distributions of the CFSE axes with weaker swirling
motions are not so much related to low-speed streaks in the logarithmic re-
gion. To estimate a relation between the streak structure and the CFSEs in
the logarithmic region, conditional pdfs of streamwise fluctuating velocity u′+

c

(= u+
c −u+(y+),where u+(y+) is the mean streamwise velocity profile) at the

CFSE centers are plotted in Fig. 6. Here, pdfs are conditioned by the values of
Q∗

c which is less than or greater than Qc
∗(y+), where Qc

∗(y+) indicates the av-
erage values of Qc

∗ for x−y plane per ∆y+ = 20 from the wall. There are a lot
of the CFSEs in the low-momentum regions (u′+

c < −1.0 ∼ −1.5) compared
with those in the high-momentum regions in the outer layer, especially in the
logarithmic layer. This tendency is clearly observed for Q∗

c > Qc
∗(y+) in the

logarithmic layer, and is independent of Reynolds numbers (up to Reτ = 1270).
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Figure 6. Conditional pdfs of u′+
c at the CFSE centers for Reτ = 400 (a),(b) and 800 (c),(d).

(a) and (c): Q∗
c < Qc

∗
(y+), (b) and (d): Q∗

c > Qc
∗
(y+). ◦: near-wall region, �: logarithmic

region and �: wake region.

Figure 7. Conditional pdfs of the diameter (a) and maximum azimuthal velocity (b) of the
CFSEs in the high-momentum (u′ > 0.8urms) and low-momentum (u′ < −0.8urms) regions
of the logarithmic layer.

This result shows that the low-momentum regions of the logarithmic layer con-
sist of the CFSE clusters with relatively strong rotation rate. The characteristics
of the CFSEs in the high- and low-momentum regions of the logarithmic layer
have been investigated by using pdfs of the diameter and maximum azimuthal
velocity of the CFSEs conditioned with streamwise fluctuating velocity at the
CFSE center for all Reynolds numbers. Figure 7 (a) and (b) show the pdfs of the
diameter and maximum azimuthal velocity of the CFSEs in the high- and low-
momentum regions of the logarithmic layer (45 < y+ < 200 ∼ 300). The most
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expected diameter and maximum azimuthal velocity in the high-momentum re-
gions are about 10η and 1.3uk, respectively. In the high-momentum region of
the logarithmic layer, the diameter and maximum azimuthal velocity tend to be-
come wider and weaker compared with those of the CFSEs without conditioning
by u′ (i.e. the expected values in the whole flow field). However, the probabil-
ities of the diameter and maximum azimuthal velocity in the low-momentum
regions show peaks at 8η and 2.4uk, respectively. In the low-momentum regions
of the logarithmic layer, the most expected diameter and maximum azimuthal
velocity of the CFSEs are slightly narrower and 30 ∼ 50% stronger than the
most expected values of CFSEs in the whole flow field. Especially, the most
expected maximum azimuthal velocity of the CFSE in the low-momentum re-
gions is about 2 times of that in the high-momentum regions.

5. Conclusions

In the present study, direct numerical simulations of turbulent channel flows
were conducted up to Reτ = 1270 to investigate the characteristics of the CFSE
and the CFSE cluster in the near-wall, logarithmic and wake regions. The CF-
SEs in turbulent channel flows can be scaled by the Kolmogorov length and
velocity in each region. In the near-wall region, the most expected diameter
and maximum azimuthal velocity are about 10 η and 2.0 uk, but they become
about 8.5 η and 1.7 uk in the logarithmic region. These results are independent
of Reynolds number up to Reτ = 1270. The joint pdfs of the diameter and
maximum azimuthal velocity of the CFSEs are also independent of Reynolds
numbers, but they have weak y+-dependence. The probability of the CFSEs
with the diameter and maximum azimuthal velocity greater than 40η and 8uk

is very low in the near-wall region. To investigate the low-momentum region
and the CFSE clusters in the logarithmic region, the CFSE axes were educed by
using an axis tracing method (Tanahashi et al. 1999a, Tanahashi et al. 2004).
There are many clusters of the CFSEs in the logarithmic region of turbulent
channel flows. In the logarithmic region, the probability of the CFSEs exist-
ing in low-momentum regions (u′+ < −1.0 ∼ −1.5) is much higher than
that of the CFSEs existing in high-momentum regions (u′+ > 1.0 ∼ 1.5),
which is emphasized for the relatively strong CFSEs. The CFSE clusters form
low-momentum regions in the bottom of the logarithmic layer, and this low-
momentum region stands up with a small angle (about 10 ∼ 20 degrees) in
vertical plane to the wake region. These clusters are composed of the CFSEs
which have a slightly narrower diameter and much stronger swirling motion
compared with those in the high-momentum region.
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Abstract Direct numerical simulation of a turbulent channel flow in a periodic domain of
relatively wide spanwise extent, but minimal streamwise length, is carried out at
Reynolds number Reτ = 349. The large-scale structures previously observed
in studies of turbulent channel flow using huge computational domains are also
shown to exist even in the streamwise-minimal channel of the present work. In
the system, it is also clearly observed how the large-scale structures and the near-
wall structures affect each other. While the collective behaviour of near-wall
structures enhances a large-scale structure, the resulting large-scale structure in
turn activates the generation and drift of the latter. Hence near-wall and large-
scale structures interact in a co-supporting cycle.

Keywords: Turbulent channel flow, coherent structure, generation mechanism, numerical
simulation

1. Introduction

In the vicinity of the wall, including the viscous and buffer layers which
together constitute the near-wall region, a pair of streamwise vortices induces
a low-speed streaky region, “wall streak”, the instability of which makes the
near-wall region energetic, and regenerates the streamwise vortices. This cyclic
process, which was first recognized as self-sustaining process in plane Couette
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flow by Hamilton et al. (1995) and Waleffe (1997) is thought to be common
in many types of wall-bounded turbulent flows. It has been recently explained
by exact solutions (cf. Waleffe (1998); Kawahara & Kida (2001)) (cf. Waleffe
1998, Kawahara & Kida 2001) for the minimal flow unit proposed by Jiménez
& Moin (1991). Although the process may largely account for turbulent fluc-
tuations in the near-wall region, the minimal flow unit is a small subspace of
the huge computational domain which is required to simulate “real” turbulence.
In the real turbulence therefore, large-scale structures in the outer region and a
huge number of these near-wall structures in the near-wall region, interacting
and developing spatially, participate in the production and transfer of turbulent
fluctuation toward the outer region (Miyake et al. 1987, Lee & Kim 1991,
Komminaho et al. 1996) .

In the present work, our main interest is in understanding the collective be-
haviour of the near-wall structures, and investigating how the behaviour could
be associated with the large-scale structures from a physical point of view. As
a first step of the challenge, we prevent the near-wall and large-scale structures
from evolving spatially in the streamwise direction and thus restrict the stream-
wise length of the computational box to the minimal length in direct numerical
simulations of channel flow. Because this channel still has large spanwise extent
comparable to the extent of huge computational domains used previously, we
will call this box a “streamwise-minimal” channel. In the present approach, we
will show that large-scale structures can exist even in the streamwise-minimal
channel, and propose a mechanism for the sustenance of large-scale structures
based on the observation of the dynamical behaviors of a large-scale structure
and near-wall structures.

2. Streamwise-minimal flow

The numerical scheme we use to simulate channel flow is the same as used
in Toh & Itano (2003), which is based on that developed by Kim et al. (1987).
The origin of coordinate system is taken on the mid-plane of the channel with
the x,y,z axes in the streamwise, wall-normal and spanwise directions, respec-
tively. The no-slip boundary condition is imposed at the top (y = +h) and
bottom (y = −h) walls, where h is half the channel width. Flow is driven by
constant streamwise volume flux Q per unit spanwise length. We define the
characteristic velocity Uc as 3Q/4h; for laminar Poiseuille flow Uc is just the
centerline velocity. In the present work, we fix the Reynolds number based
on Uc, h and the kinematic viscosity ν at 9000. In order to guarantee the total
computational time T is long enough for the statistical convergence of turbulent
flow in our domain, we confirm that the relative error of the time average of
wall friction defined as |〈f〉t − 〈f〉T |/〈f〉T is less than 1% for any t > T/2,
where 〈f〉t = 1

t

∫ t
0 ν ∂U

∂y (t′, y = ±h)dt′. The Reynolds number based on the
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Table 1. Parameters used in several past studies.

Re Reτ L+
x L+

z

minimal flow Jiménez & Moin (1991) 2000 (300) (100)
3000 (250) (110)
5000 (400) (80)

Jiménez & Pinelli (1999) 4500 201 360 105
9000 428 448 128

18000 633 397 113

large-scale structure Moser, Kim & Mansour (1999) 180 2270 756
395 2560 1250
590 3720 1840

Del Álamo & Jiménez (2001) 185 6974 2320
550 13800 6910

Abe, Kawamura & Matsuo (2001) 640 4020 12100

present work (streamwise-minimal) 9000 349 384 833
(minimal) 9000 320 352 139

friction velocity, Reτ = Uτh/ν, is 349 and 320 for our streamwise-minimal
and minimal channels respectively, where Uτ =

√
〈f〉T .

Table 1 summarizes the Reynolds numbers and dimensions of computational
domains which were used in several earlier studies. In the present work, the
streamwise length of our streamwise-minimal channel is set to be approxi-
mately minimal by reference to the domain sizes of the minimal flow units used
by Jiménez & Pinelli (1999). Thus, it is obvious that the streamwise length
Lx of our domain is much shorter than that used in the earlier studies which
suggested the existence of large-scale structures in the turbulent channel flow.
On the other hand, the spanwise extent of the domain is relatively wide; since
it is more than 800 in wall units, about six to eight wall streaks could survive
in the near-wall region in our domain. The spanwise extent Lz of the domain
is 2.39h for the streamwise-minimal channel. Therefore, Lz exceeds just the
critical value, 2h, necessary for large-scale structure to exist in the outer region,
as described by Jiménez (1998).

As seen in figure 1a, the empirical law of the wall and log-law velocity pro-
file whose description has been obtained by many researchers (for example, see
Schlichting 1979), appears to offer a good approximation. Figure 1b shows the
turbulent intensity obtained for our channels. Note that the peak value of the
turbulent intensity of streamwise velocity fluctuation is somewhat larger than
that obtained from direct numerical simulations with not only minimal flow
unit but also huge domains; for example Moser et al. (1999) found turbulent
intensity to vary between 2.6 to 2.8 for 180 < Reτ < 590. This difference
also exists in comparison with the minimal flow as described by Jiménez &
Pinelli (1999). Thus, the large peak value is probably due to our domain size;
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Figure 1a. Mean streamwise veloc-
ity of the present channels in wall units.
Thick and thin curves correspond to those
of streamwise-minimal (Reτ = 349) and
standard-minimal flow (Reτ = 320).
Dashed lines are U+ = 2.5 log η+ + 5 and
U+ = η+, where η is distance from the wall,
η = h − |y|.
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Figure 1b. Turbulent intensity pro-
files. Thick curves correspond to streamwise
(solid), wall-normal (dashed), and spanwise
(dotted) velocity profiles of streamwise-
minimal channel at Re = 9000 (Reτ =
349). Thin curves correspond to those in
the standard minimal flow at Re = 9000
(Reτ = 320).

the large spanwise extent of our domain allows large-scale structures to ex-
ist in the outer region, while the short streamwise length of our domain may
encourage increased interaction between near-wall structures and large-scale
structures. In fact, turbulent intensity in the centre region of our domain lies
between those obtained for the minimal flow unit and huge domains, especially
regarding the intensity of the spanwise velocity. This suggests that our channel
contains not only near-wall structure but also large-scale structure, although it
cannot completely reproduce turbulent flow in huge domains.

3. Large-scale structure

The pre-multiplied power spectra have been often used to suggest the exis-
tence of large-scale structures in channel flow, e.g., Jiménez (1998) and Abe et
al. (2001). Specifically, we define the pre-multiplied power spectra as

φff (kz)|η = kzEff (kz, y)
/ max(kz)∑

kz=2π/Lz

Eff (kz, y), (1)

Eff (kz, y) =
1

TLx

∫ T

0

∫ Lx

0
(|fkz(x, y, t)|2 + |f−kz(x, y, t)|2)dxdt, (2)

where fkz(x, y, t) is the Fourier coefficient for a spanwise wavenumber kz

of velocity component f(x, y, z, t), f = u, v, w and distance from the wall
η = h − |y|. We use pre-multiplied spectra φ(kz) ≡ kzE(kz) so that areas
under the curve in log-lin plots correspond to the actual energy content, i.e.
E(kz)dkz = φ(kz)d(ln kz). Figures 2a-c show pre-multiplied power spectra
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Figure 2. Pre-multiplied power spec-
trum, φ(kz), as a function of λz = 2π/kz .
(a) φuu, (b) φvv , (c) φww in the case of
the streamwise-minimal channel at Re =
9000 (Reτ = 349). Increasing dis-
tance from the wall, η = h − |y|, cor-
responds to a rightward shift towards the
long-wavelength end of the spectrum. All
the spectra are normalized to unit area under
the curve in the log-lin plots, to emphasize
their frequency content.

obtained for the present streamwise-minimal channel. The characteristic length
giving the spectrum peak is dependent on distance from the wall and is thought
to correspond to the spanwise scale of a relatively dominant structure at each
distance in the flow. In the case of the streamwise-minimal channel, φuu and
φww at η+ = 5 peak approximately at λ+

z = 100, which corresponds to the
accepted mean spacing of the wall streaks in the near-wall region. With in-
creasing η in both cases, the peaks move to a longer wavelength corresponding
to the outer length.

Compared with the spectra of u and w, the spanwise wavelength of the peak
of φvv is a half of the other two in the near-wall region. This fact was originally
considered by Kim et al. (1987). They investigated the spanwise two-point
autocorrelations of velocity components and found that the minimum of the
spanwise autocorrelation Rvv(z) of wall-normal velocity v is at ∆z+ � 25.
They claimed that this spanwise characteristic separation of Rvv(z) is consis-
tent with the mean diameter of the streamwise vortical structures. Thus, it is not
surprising that the spanwise length of the peak of φvv differs from that of the
near-wall structure. Still, the difference between the peak of φvv and the other
two has remained open. We argue that this is a direct consequence of no-slip
and incompressibility in the following. Suppose that the flow near the wall is



86

independent of the streamwise direction and can be described as

v(η, z) ∼ (v1eiκz + v2ei2κz)η2 and w(η, z) ∼ (w1eiκz + w2ei2κz)η, (3)

where λz = 2π/κ is taken as the most energetic spanwise wavelength in the
near-wall region, λ+

z = 100 in wall units (λ+
z = λzUτ/ν). From the de-

finition of pre-multiplied spectrum, φvv(κ)/φvv(2κ) ∼ κ|v1|2/(2κ|v2|2) =
|v1/v2|2/2 and φww(κ)/φww(2κ) ∼ |w1/w2|2/2. Exploiting the incompress-
ibility, we obtain 2v1 = κw1 and 2v2 = 2κw2, thus in the near-wall region

φvv(κ)
φvv(2κ)

∼ 1
4

φww(κ)
φww(2κ)

. (4)

Actually, φww(kz) peaks at λ+
z = 100 but φvv(kz) instead peaks at 50, since

φww(κ)/φww(2κ) ≈ 3 is obtained from figure 2a and thus φvv(2κ) > φvv(κ).
(In fact, comparing results with the full numerical solution we were able to see
that the two-mode approximations (3) appear to adequately capture the leading-
order behaviour of the solutions.)

In this section, it is shown that the pre-multiplied power spectra of streamwise
and spanwise velocities have two specified peaks corresponding to the mean in-
tervals of near-wall structure in the near-wall region and large-scale structure in
the outer region. These characteristics have been also reported in many studies
using direct numerical simulation with more realistic huge channel, for exam-
ple Jiménez (1998). The similarities between the streamwise-minimal channel
and a huge channel suggest that the former contains a large-scale structure
quite close to that in the latter. If this is so, we will then be interested in what
makes a large-scale structure and, how the large-scale structure contributes to
turbulence, in the streamwise-minimal channel.

4. Co-supporting cycle

The streamwise-minimal channel allows for only one near-wall and one
large-scale structure with respect to the streamwise direction. This artificial
restriction inhibits some of the rich spatio-temporal properties observed in huge
domains, for example, the spatial growth of structures and the interaction be-
tween structures aligned in the streamwise direction (Adrian et al. 2000). Still,
this simplified system appears to include fundamental dynamics of both the
large-scale structure and near-wall structures.

The structures interact with each other while moving around in a streamwise
cross-section and repeating their own dynamical processes. In order to under-
stand the dynamics of the structures as a whole, we below represent the location
of a near-wall structure or a large-scale structure simply as the low-speed zone
at η+ = 5 (near-wall region) or 200 (outer region) respectively. The low-speed
zone is defined as z satisfying u2D(t, y, z) < U(t, y) at time t and the distance
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Figure 3a. Shaded regions represent the low-speed zone, u2D(t, y, z) < U(t, y) at η+ = 5
(near-wall region) in the lower half domain (−h < y < 0) in the interval 0 < t < 720. The
vertical axis z+ is scaled by 100 wall units.

z+

Figure 3b. Same as in (a) but at η+ = 200 in the outer region.

from the lower wall η = h − |y|, where

u2D(t, y, z) =
1
Lx

∫ Lx

0
u(t, x, y, z)dx and

U(t, y) =
1
Lz

∫ Lz

0
u2D(t, y, z)dz.

(5)

Time-development of low-speed zones in both regions are shown in figures 3a
and b, which allow us to trace the spanwise movement and generation processes
of near-wall and large-scale structures. In fact, the characteristic spanwise
wavelength λ+

z at the peak of φuu mentioned in the previous section finds
reasonable agreement with the mean spanwise interval between two adjacent
minima; as may be seen from the figure, ∆z+ ≈ 100 and 400 for η+ = 5 and
200, respectively.

Moreover, from figure 3a we can see that the branches may be classified
into two types: dominant branches, which survive for a relatively long time,
and weak branches. As time elapses, weak branches are successively merged
into a few dominant branches in almost all of the merging events in the near-
wall region, while some weak branches emerge from structure-free areas. The
branches in figure 3a are reminiscent of rivers in a map of a mountainy area and
thus we call the regions where branches gather “valley” and the structure-free
regions where branches emerge “watershed”. It is also significant to note that
large-scale structures in figure 3b appear to be located always above a valley,
that is, a long-lived dominant branch in figure 3a, while a watershed in figure
3a separates two adjacent large-scale structures in figure 3b.

The dynamics of the large-scale structures and near-wall structures in the
streamwise-minimal channel is described as follows (see figure 5): Immature
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Figure 4a. Snapshots of flow in the
Re = 9000 (Reτ = 349) case in a (z, y)
cross-section at t = 120. Vector field in-
dicates (w2D, v2D). Shaded region indi-
cates u2D < 0.7Uc and contour levels are
0.6Uc, 0.5Uc, ..., 0.1Uc.

Figure 4b. Same as in (a) but t = 140.
A concentrated eruption follows a merging
event of near-wall structures A and B in the
panel (a).

Figure 5. Schematic view of a snapshot in our channel in a (z, y) cross-section, where
three elementary processes of the co-supporting cycle are described. Thin solid curves indicate
contours of u2D in the outer region, each bulge of which corresponds to the low-speed region of
a large-scale structure. The circulation of a large-scale structure is represented by thick dashed
curve. Shaded regions near the walls denote wall streaks.

near-wall structures are continually generated through a local instability near a
watershed between two adjacent large-scale circulations and slowly move to-
ward either of the two. Moreover, a dominant near-wall structure continually
attracts and merges weaker structures into itself, beneath the low-speed region
of a large-scale structure. We considered that the introduction of a tight cou-
pling between a large-scale structure and near-wall structures makes it possible
to explain these facts. The coupling consists of three elementary processes
described below (see figure 5).

1 One of the two circulations of a large-scale structure induces the near-
wall structures to move in the spanwise direction toward the area under
the low-speed region of the large-scale structure.
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2 Generally, when two near-wall structures merge, a concentrated eruption∗

occurs which causes an influx of fluid from the near-wall region into the
outer region. Such a merging event is seen in figures 4a and 4b. In
our simulations, a concentrated eruption appears to be slightly stronger
than a burst∗ which occurs as part of the self-sustaining process of a
near-wall structure. The concentrated eruption also brings about strong
suction from both sides which acts to maintain the large-scale circulation,
moreover, through drawing in fluid with lower streamwise speed from
the near-wall region also acts to maintain the low-speed region of the
large-scale structure.

3 There is a watershed, a separation region close to the wall formed by the
part of one of the circulations of the large-scale structure, in which fluid
is directed towards the channel wall. In these regions, new wall streaks
are created continually through some instability.

∗ The term “eruption” is used for blowup occurring through merging
process of near-wall structures and “burst” for blowup as a part of
SSP of a single near-wall structure. The eruption often occurs and
thus is robust. This fact may be confirmed in some animations at
the web: http://www-kyoryu.scphys.kyoto-u.ac.jp/movies/ .

The coupling with the near-wall structures through the three processes above
probably enables the large-scale structure to survive. However, in the cycle
the large-scale structure is not just passive, but active enough to contribute to
the generation, spanwise-movement and merger of near-wall structures, which
re-activate the large-scale structure itself. Therefore, we denote the whole cycle
as “co-supporting cycle” of a large-scale structure and near-wall structures, to
distinguish this from the self-sustaining process of a single near-wall structure.

5. Concluding remarks

In this paper, we have shown that large-scale structures exist even in a
streamwise-minimal box whose streamwise dimension is confined to the min-
imal length required for the sustenance of turbulence. In the present study, a
large-scale structure involves two counter-rotating large-scale circulations and
a streak-like low-speed region. The large-scale structures are likely to be cou-
pled with near-wall structures and sustained by their direct interaction. We
have therefore proposed a sustaining cycle of a large-scale structure in the
streamwise-minimal flow and called this a co-supporting cycle.

main restricted in both the streamwise and spanwise directions. It is expected
that, in the minimal flow, large-scale structures are fallen apart so that the
co-supporting cycle is disrupted. In order to examine the effect upon the near-

The minimal channel has been originally defined as the computational do-
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wall region of large-scale structures, we moreover perform the minimal flow
turbulent channel. This minimal channel is set at the same bulk Reynolds num-
ber, Re = 9000, and with the same streamwise length but with the one-sixth
spanwise extent of the streamwise-minimal channel investigated (see table 1).
To briefly summarize the result, it is observed that the generation and merger
processes of near-wall structures was suppressed in the minimal channel. It
follows that the wall friction is reduced by about 15%. In addition, in the outer
region, the turbulent intensity of u is obviously decreased by about 0.2 in the
minimal channel (see figure 1b). In contrast, there is a little difference of the
turbulent intensity of v between the minimal and streamwise-minimal channels
in the outer region. This fact suggests that the inflow towards the outer region
in bursts in the self-sustaining process is comparable to that of the eruption in
co-supporting cycle, but that the resulting bulge of low-speed zone in the outer
region dissipates in the former more quickly than in the latter because of the
difference of spanwise extent of the inflows, i.e., ∂tu ∼ ν∂2

zu.
Finally, it remains to make it convincing that the co-supporting cycle can be

realized even in the huge computational box. Del Álamo & Jiménez (2001)
and Del Álamo & Jiménez (2003) reported that the pre-multiplied power spec-
trum of the streamwise velocity, which characterizes the large-scale structure,
decomposes into two components: quasi-isotropic modes of relatively short
streamwise length scales and (maybe infinitely) long modes deeply penetrated
into the near-wall region. They suggested that the latter modes interact with
the near-wall region. In this work, we have seen that our large-scale structures
are dominated by modes with kx = 0, i.e., with infinitely long streamwise
length. We conclude, therefore, that our large-scale structure corresponds to
their long, deep modes and thus reflect some properties of the large-scale struc-
ture observed in real turbulence. Thus, since streamwise-minimal channel may
accommodate large-scale structure, the collective motion of wall streaks and
their interactions as well as the self-sustaining processes of individual near-wall
structures, the present study will contribute significantly to the elucidation of
real wall-bounded turbulence.

In this work, T.I. was supported in part by Center of Excellence for Research
and Education on Complex Functional Mechanical Systems (COE program of
the Ministry of Education, Culture, Sports, Science and Technology, Japan).
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Del Álamo, J.C. & Jiménez, J. 2003 Spectra of the very large anisotropic scales in
turbulent channels. Phys. Fluids 15, L41–44.

Hamilton, J.M., Kim, J. & Waleffe, F. 1995 Regeneration mechanisms of near-wall
turbulence structures. J. Fluid Mech. 287, 317–348.
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Abstract We investigate unstable periodic motion embedded in isotropic turbulence with
high symmetry. Several orbits of different period are continued from the regime
of weak turbulence into developed turbulence. The orbits of short period diverge
from the turbulent state as the Reynolds number increases but the orbit of longest
period we analysed, about two to three eddy-turnover times, represents several
average values of the turbulence well. In particular we measure the energy dissi-
pation rate and the largest Lyapunov exponent as a function of the viscosity. At
the largest micro-scale Reynolds number attained in the continuation we com-
pare the energy spectra of periodic and turbulent motion. The results suggest
that periodic motion of a sufficiently long period can represent turbulence in a
statistical sense.

Keywords: Isotropic turbulence, unstable periodic motion, high-symmetric flow.

1. Introduction

In the paradigm of dynamical systems theory, turbulence is a manifestation
of high dimensional chaos. It is represented in phase space by fractal attractors
which consist of countably infinitely many unstable periodic orbits. From this
point of view, unstable periodic orbits are natural objects to consider when
investigating turbulence. However, in turbulence research this paradigm is not
widely adhered to. Turbulence research is rather concentrated on sophisticated
statistical analysis and simulation of flows at high resolution. We feel, however,
that the direct and constructive application of the tools of dynamical systems
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theory will be a valuable contribution to the understanding of the nature of
turbulence.

The main obstacle in applying the ideas of dynamical systems theory to devel-
oped turbulence is the large number of degrees of freedom. More specifically the
main problem is the computation and manipulation of the matrix of derivatives
of the vector field or the associated Poincaré map. The computation time and
memory requirements have until recently restricted the continuation and bifur-
cation analysis of equilibria and periodic motion to regular or weakly turbulent
flow. In the case of Taylor-Couette flow, for instance, bifurcation analysis was
carried out and compared successfully to experiments at low Reynolds number
(see Cliffe et al. (2000)).

Recently, plane Couette flow has been the subject of bifurcation analysis
beyond the onset of developed turbulence. Moehlis et al. (2002) exploited the
spatial symmetries and used empirical orthogonal basis functions computed at
a Reynolds number of about 400, where turbulence is sustained. Their model
is then reduced to only O(10) degrees of freedom and standard software can be
used for the analysis of equilibria and periodic orbits. A result of this analy-
sis was the identification of attracting heteroclinic cycles connecting unstable
streaky structures. A disadvantage of this approach is the coupling between
elementary structures such as streaks and streamwise vortices in the basis func-
tions that limits the description of their interaction. Kawahara & Kida (2001)
used a more general approach, handling about 15, 000 degrees of freedom at
the same Reynolds number. They found two kinds of unstable periodic motion.
One represents turbulent and the other laminar flow. In a turbulent integra-
tion the state point of the flow wanders back and forth between these motions,
highlighting the phenomenon of bursting.

Inspired by that success we study unstable periodic motion in isotropic turbu-
lence. In order to reduce the number of degrees of freedom the high symmetry,
introduced by Kida (1985), is imposed on the solutions. Under this symmetry
condition a resolution of 1283 gives us about 10, 000 degrees of freedom. We
identify several unstable periodic orbits in the weakly turbulent regime, at a
micro-scale Reynolds number of Rλ = 50 and continue them up to Rλ = 67,
where turbulence is developed. The continuation algorithm requires the com-
putation of the matrix of derivatives of the Poincaré map, which is done by
finite differencing on a parallel computer. We compare the energy dissipation
rate, the largest Lyapunov exponent and the energy spectrum of the periodic
motion to those of the turbulent state. A recent result in shell model turbulence
by Kato & Yamada (2003) suggests that an unstable periodic solution can rep-
resent the turbulent energy cascade process. Indeed, we find periodic motion,
with a period of about two to three eddy-turnover times, which reproduces the
turbulent averages well. The motion with shorter period, however, diverges
from the turbulent state as the micro-scale Reynolds number increases.
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Increasing computing power and advances in numerical algorithms are mak-
ing way for the application of continuation and bifurcation analysis to turbu-
lence. The current work on unstable periodic motion is only a first step. To go
to a higher resolution or relax the symmetry condition might require the appli-
cation of new ideas from numerical linear algebra. Methods which circumvent
the computation of the matrix of derivatives have recently been applied suc-
cessfully to Navier-Stokes flow for finding equilibria and periodic motion (see
Nore et al. (2003); Sánchez et al. (2004)). If such analysis can be applied to
general high Reynolds number flow much insight can be gained into the nature
of turbulence.

2. High-symmetric flow

We consider the motion of an incompressible viscous fluid in a periodic box
given by 0 < x1, x2, x3 ≤ 2π. In terms of the Fourier representation of velocity
and vorticity,

v = i
∑
k

ṽ(k)eik·x, ω =
∑
k

ω̃(k)eik·x, (1)

the Navier-Stokes equation and the continuity equation are written as

d
dt

ω̃i(k) = εijkkjkl ṽkvl − νk2ω̃i(k), (2)

kiũi = 0, (3)

where ν is the kinematic viscosity, εijk is the permutation symbol and the tilde
denotes the Fourier transform. By definition we have

ω̃i(k) = −εijkkj ṽk(k). (4)

In terms of the standard norm, energy and enstrophy are given by

E =
1
2
‖v‖2, Q =

1
2
‖ω‖2, (5)

respectively. We will also monitor the energy dissipation rate, the Taylor micro-
scale Reynolds number and the largest Lyapunov exponent, defined respectively
by

ε = 2νQ, Rλ =

√
10
3

1
ν

E√
Q

, Λ = lim
t→∞

1
t

∫ t

0
λ(t′)dt′, (6)

where λ(t) is the largest local Lyapunov exponent as computed from the lin-
earised Navier-Stokes equation. Energy is supplied by fixing the smallest
wavenumber components of velocity to a constant value. The smallest wavenum-
ber corresponding to a nonzero velocity component is kf = |kf | =

√
11 and

the energy of these fixed components is Ef = 3/8.



96

 0.0001

 0.01

 1

 100

0.05 0.1 0.2 0.4 1
 20

 40

 80

 160

 100  200  400  800

kη

E
/(

εν
5

)1/
4

ν1/

R
λ

ν−1/2

Figure 1. Left: time averaged micro-scale Reynolds number as a function of viscosity. Con-
tinuation of periodic orbits is done at the onset of the 1/

√
ν scaling, as indicated by the bold

line. Right: one-dimensional longitudinal energy spectrum at R̄λ = 67. The error bars denote
standard deviation and the straight line the Kolmogorov scaling.

In our simulations we use a cubic truncation given by |kx|, |ky|, |kz| < N/2
with N = 128 and set the maximal wavenumber to kmax = [N/3] to eliminate
aliasing interactions. Under the high-symmetry condition we have about n =
10, 000 degrees of freedom. For time stepping we use the fourth-order Runge-
Kutta-Gill scheme with step size ∆t = 0.005. In the following, time averaged
quantities are denoted by an over bar. In the energy spectra, the wavenumber
is normalised by the Kolmogorov dissipation scale η = 4

√
ν2/(2Q).

Kida et al. (1989) studied the transition to turbulence in high-symmetric
flow and found that at ν ≈ 0.005 (Rλ ≈ 50) the Ruelle-Takens route to chaos
is followed. The chaotic motion corresponds to weak turbulence in the sense
that the spatial structure of the flow remains simple. Around ν = 0.004 (Rλ =
60) developed turbulence sets in, which is reflected by the scaling of Rλ as
1/
√

ν, as shown in figure 1 (left). The energy dissipation rate ε becomes
approximately constant as a function of ν. The longest intrinsic time scale
of isotropic turbulence is the large eddy-turnover time. It can be estimated
from the frequency power spectra of enstrophy and energy and takes the value
TT = 4.4.

Below we describe the continuation of periodic orbits at the onset of de-
veloped turbulence. In figure 1 (right) the energy spectrum is shown at the
maximal micro-scale Reynolds number that can be attained with our resolu-
tion, Rλ = 67. In order to see a developed inertial range we would need to
increase the resolution. For the time being, this is not feasible for reasons that
will become apparent in the next section.
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3. Continuation of unstable periodic orbits

We look for time periodic solutions of Eqs. (2)–(4), i.e. vorticity fields that
satisfy ω̃(k, t) = ω̃(k, t+T ) for all wave vectors k, all time t and some period
T . Consider the n-dimensional phase space of Eqs. (2)–(4). A point in this
space corresponds to a vorticity field ω. We specify a hyperplane S in this space
by fixing one of the large wave vector components of vorticity to a constant.
Periodic orbits are then fixed points of the iterated Poincaré map Pν on S:

P(p)
ν (X) − X = 0, (7)

where X ∈ R
n−1. Equation (7) is highly nonlinear and can be solved by

Newton-Raphson iteration. However, for large n the initial guess should be
rather close to the fixed point to guarantee convergence. In order to find initial
points we perform very long time integrations with ν = 0.0045, in the weakly
turbulent regime. We compute the intersection points with the plane S and if a
point is mapped close to itself after p iterations of the Poincaré map, i.e.

‖P(p)
ν (X) − X‖Q < δ, (8)

it is marked as an initial point. Here, ‖.‖Q denotes the enstrophy norm, i.e. the
enstrophy of the vorticity field corresponding to a given point in phase space.
A suitable threshold for the distance is given by δ = 0.2, about 10 % of the
standard deviation of enstrophy in time. Thus we find a collection of periodic
orbits with p ranging from 1 to 5.

For continuation of the periodic orbits down to ν = 0.0035 we use the
pseudo-arclength method, which requires solving an equation similar to Eq. (7)
at each step. The most time consuming part of this algorithm is the computation
of the derivatives of the Poincaré map DX ,νPν . We use finite differencing for
the derivatives, which means that for each Newton-Raphson iteration we have
to run (n + 1) integrations, which can be conveniently done in parallel. We
use 128 processors simultaneously on a Fujitsu GP7000F900 parallel computer.
The computation of one iteration of the Poincaré map and its derivatives takes
about 25 minutes of CPU time on each processor. The average step size in
the parameter is ∆ν ≈ 4 · 10−5 and about three Newton-Raphson iterations
are taken at each step before the residue is smaller than 10−9 in the enstrophy
norm. This brings the total computation time for continuation of a period one
orbit (p = 1) down to ν = 0.0035 to about 31 hours.

We computed the distribution of the return time of the Poincaré map in a long
time integration. It takes the average value TR = 2.2 and is sharply peaked.
Consequently, the periodic orbits identified as fixed points ofP(p)

ν have a period
T ≈ pTR. This holds true in the whole range 0.0035 < ν < 0.0045. In the
following we refer to them as period-p orbits.

The results of the continuations are shown in figure 2. At each point of
the continuation curve we compute the energy dissipation rate and the largest
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Lyapunov exponent of the periodic motion for comparison to the turbulent
state. The largest Lyapunov exponent for the periodic motion is computed
directly from the eigenvalues of DXPν . Computation of the curves of the
period-3 and period-4 motion is still in progress, but it seems that only the
period-5 motion reproduces the turbulent averages well. The motion of shorter
period displays a monotonically decreasing energy dissipation rate. The largest
Lyapunov exponent gives a less clear-cut picture, but again the value found for
the period-5 motion is close to that of turbulence, especially at higher Rλ. At
ν ≈ 0.00367 the first and the second Lyapunov exponents cross, which shows
up as a cusp in the curve. In the next section we will further investigate the
period-5 motion and its relation to turbulence at Rλ = 67.

4. Periodic motion representing turbulence

Figure 3 shows the probability density function (PDF) of the turbulent state,
projected on energy input rate e and energy dissipation rate ε, along with a
projection of the period-5 motion. The PDF is skewed due to bursting events in
which relatively large amounts of kinetic energy are absorbed and dissipated.
The periodic motion makes a large excursion to high energy dissipation rate
corresponding to such a burst. Dots are drawn on the periodic motion at equal
time intervals so that we can see that most time is spent near the time averaged
energy dissipation rate and in one slow excursion to relatively low values.

Next we compare the energy spectrum averaged along the periodic motion
to that of turbulent motion, as shown in figure 4 (left). The two are in good
agreement all the way down to the Kolmogorov dissipation scale. As explained
below, the error bars denote the expected difference if we compare the turbulent
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spectrum to randomly chosen, non periodic time segments of the same length.
Figure 4 (right) shows a comparison of our results to laboratory measurements
of shear flow at Rλ = 130 done by Champagne et al. (1970). There is good
agreement beyond the energy containing range, which demonstrates that our
results are not an artifact of the imposed spatial symmetries.
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Figure 3. Contours of the PDF of turbulence projected on energy input rate and energy
dissipation rate. Contours are drawn at 80% of the peak value and successive factors of 0.5,
with on the axes departure from time average normalised by standard deviation. The period-5
motion is shown by the solid line with dots at equal time intervals.
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Figure 4. One-dimensional longitudinal energy spectrum. Left: period-5 motion (dots)
and turbulence (bars). For an explanation of the error bars see text. Right: turbulence
(circles), period-5 motion (pluses) and laboratory measurements (dots).
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In order to quantify the difference between the periodic motion and the
turbulence we compare it to the standard deviation of an ensemble of randomly
selected, non periodic time segments. If quantity a is measured as a function
of time, the running mean over interval τ is defined by

aτ (t) =
1
τ

∫ t+τ

t
a(t′)dt′. (9)

Obviously, a has expectation value a. If a behaves like a random variable,
its standard deviation is given by σaτ = σa

√
Ta/τ , where σa is the standard

deviation and Ta the typical time scale of variation of a. For the quantities
under consideration here, namely the energy dissipation rate ε, the largest local
Lyapunov exponent λ and the energy spectrum E‖, this assumption is readily
verified numerically. Let aper be the average of a in the periodic motion. Then
the normalised difference,

da(τ) =
|aper − a|

σaτ

, (10)

indicates how well the periodic motion reproduces the turbulent average of a.
The typical time scales of variation of ε and λ are Tε ≈ TT/2 and Tλ ≈ TT/4,

respectively, and their standard deviations are given by σε ≈ 0.016 and σλ ≈
0.4. For the period-5 motion we set τ = 5TR and find that dε(5TR) < 0.25
and dλ(5TR) < 0.4 for viscosity in the range 0.0035 ≤ ν ≤ 0.004, which
shows that the period-5 motion does indeed reproduce the turbulent averages
remarkably well. When considering the energy spectrum we have to take it into
account that the typical time scale of variation of E‖(k) depends on the spatial
scale l = 2π/k. On dimensional grounds we assume that the typical time scale
is given by (l2/ε)1/3. If we denote by Σ(k) the standard deviation of E‖(k), as
plotted in figure 1 (right), and by Στ (k) the standard deviation in an ensemble
of averages over time segments of length τ , we have

Στ (k) = Σ(k)
(

4π2

k2ετ3

) 1
6

. (11)

In figure 4 (left), Στ (k) is drawn with error bars for τ = 5TR. The spectrum
measured in the periodic motion falls within these error bars for all wavenum-
bers.

Finally, we examine the time dependence of the energy spectrum. Figure
5 shows the departure from time mean of the band averaged energy spectrum
as a function of time (a) along the periodic orbit and (b) in turbulent motion.
The time axis has been normalised by TR. The horizontal scale is logarithmic
to illuminate the cascade process, thought to be a series of decompositions of
coherent structures into parts about half their size. This process is visible as
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Figure 5. Three-dimensional energy spectrum as a function of time. The departure from time
mean, normalised by standard deviation, is drawn with contours at regular intervals from +1.5
(lightest) to −0.62 (darkest). The scales are normalised by TR and η. The horizontal scale is
logarithmic to illuminate the energy cascade process. (a) Embedded periodic orbit. (b) Fragment
from a turbulent time series.

streaks with constant inclination. The time interval between these streaks is
about one eddy-turnover time TT/2 and agrees well between the periodic and
turbulent motion. Also, we see a quiescent phase during the first half of the
period, and a bursting phase during the second half of the period, both in the
periodic and in the turbulent motion. The turbulent time segment was selected
from a long time series by looking at the energy input rate and energy dissipation
rate and comparing them to the periodic behaviour, as in the projection shown
in figure 3. In a turbulent integration time segments as close to the periodic
motion as the one shown in figure 5(b) typically occur every ten eddy-turnover
times or so.

5. Conclusion

We have analysed several unstable periodic orbits in isotropic turbulence
with high symmetry. These orbits, with periods up to three large eddy-turnover
times, were distilled from long time integrations in the weakly turbulent regime
and continued into developed turbulence. We computed the energy dissipation
rate and the largest Lyapunov exponent in the periodic motion as a function of
viscosity, and compared them to the values found in the turbulent state. It turns
out that the orbits with a period up to two large eddy-turnover times diverge from
the turbulent state as the micro-scale Reynolds number increases. However, the
orbit with a period of about 2.5TT reproduces the turbulent averages well.
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We have investigated the period-5 motion in some detail at the maximal
micro-scale Reynolds number, Rλ = 67. The one-dimensional longitudinal
energy spectrum, measured in the periodic motion, almost coincides with the
spectrum found in turbulent motion. It also compares well to laboratory mea-
surements, which goes to show that the similarity between the periodic and
the turbulent motion is not an artifact of the imposed symmetries. Looking at
the time dependent energy spectrum, we see that turbulent time intervals very
similar to the periodic motion frequently recur in a turbulent time series.

A measure for the difference between the periodic and turbulent motion
is given by the standard deviation of an ensemble of averages over the same
period. We have shown that for the energy dissipation rate, the largest Lyapunov
exponent and the energy spectrum the averages produced by the periodic motion
are significantly closer to the turbulent averages than expected for randomly
selected, non periodic time intervals.

The current work raises several questions. For instance, what is the minimal
period of periodic motion that represents turbulence? The longest intrinsic time
scale in isotropic turbulence is the large eddy-turnover time. Arguing that the
period of the periodic motion should be significantly longer than the longest
intrinsic time scale, this might explain the minimal period of two to three eddy-
turnover times that we observe. However, due to the complexity of the system
under consideration we could only analyse five orbits in full and only at the
onset of developed turbulence, thus our understanding is incomplete. A more

motion in detail. We can learn about the structure of isotropic turbulence by
analysing periodic motion, which is inherently simpler than analysing turbu-
lence itself. Also, by application of new algorithms, such as the matrix free
methods recently used by Nore et al. ´ (2004), we

developed inertial range.

This paper is dedicated to the late Professor Isao Imai.
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VORTEX TUBES IN VELOCITY FIELDS OF
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Abstract The most elementary structures of turbulence, i.e., vortex tubes, are studied using
laboratory velocity data for boundary layers with Reynolds numbers Reλ = 295–
1258. We conduct conditional averaging for enhancements of a small-scale
velocity increment and obtain the typical velocity profile for vortex tubes. Their
radii are of the order of the Kolmogorov length. Their circulation velocities are
of the order of the root-mean-square velocity fluctuation. These properties are
independent of the Reynolds number and are hence expected to be universal.

Keywords: Vortex tubes, small-scale intermittency, laboratory experiment

1. Introduction

Turbulence contains vortex tubes as the most elementary spatial structures.
Regions of strong vorticity are organized into tubes. They occupy a small
fraction of the volume and are embedded in the random background flow.

The basic parameters of vortex tubes at microscale Reynolds numbers Reλ ≤
200 have been derived with direct numerical simulations (e.g., Jiménez et al.
1993; Makihara et al. 2002). The radii are of the order of the Kolmogorov
length η. The total lengths are of the order of the integral length. The circulation
velocities are of the order of the Kolmogorov velocity uK or the root-mean-
square velocity fluctuation 〈u2〉1/2.

However, the universality of these tube parameters has not been established
since it is difficult to conduct a direct numerical simulation at Reλ > 200. We
accordingly study velocity fields of laboratory turbulence at Reλ = 295–1258
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and estimate some parameters of vortex tubes from their circulation flows (for
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details, see Mouri et al. 2004). The velocity field is intermittent at small scales.
A small-scale velocity variation is enhanced at the positions of circulation flows
associated with vortex tubes.

2. Experiment

The experiment was done in a wind tunnel of the Meteorological Research
Institute. We use the coordinates x, y, and z in the streamwise, spanwise, and
floor-normal directions. The origin x = y = z = 0 m is taken on the tunnel
floor at the entrance to the test section. Its size was δx = 18 m, δy = 3 m,
and δz = 2 m. Over the entire floor of the test section, we placed blocks as
roughness elements. Their size was δx = 0.06 m, δy = 0.21 m, and δz = 0.11
m. The spacing of adjacent blocks was δx = δy = 0.5 m. We set the incoming-
wind velocity at x = 0 m to be Ui = 2–20 m s−1.

Using a hot-wire anemometer, we measured the streamwise (u) and spanwise
(v) velocities. The measurement positions were at x = 12.5 m, where the
boundary layer was well developed. The 99% thickness was about 0.8 m. The
displacement thickness was about 0.2 m. They were almost independent of
the incoming-wind velocity. The measurement height was z � 0.3 m in the
log-law sublayer.

The signal was linearized, low-pass filtered at 2–20 kHz, and then sampled
digitally at 4–40 kHz. The data length was (2–8) × 107 points. We obtained
Reλ = 295, 430, 655, 861, 1054, and 1258 for Ui = 2, 4, 8, 12, 16, and 20
m s−1. The energy spectra are shown in figure 1a.

3. Velocity profile of vortex tubes

The typical profiles for circulation flows of vortex tubes in the streamwise (u)
and spanwise (v) velocities are extracted as the typical profiles for small-scale
intermittency. We average signals centered at the position where the absolute
value of the spanwise-velocity increment |v(x+δx)−v(x)| is enhanced above a
certain threshold (e.g., Mouri et al. 2003). The scale δx is set to be the sampling
interval. The threshold is set to be the highest percentile for the absolute values
of the velocity increments. Thus 1% of them are used for the averaging. When
the velocity increment is negative, we invert the sign of the v signal before the
averaging. The results are shown in figure 2a (solid lines).

The threshold value for the enhancement of the velocity increment has been
determined with a compromise. If the threshold is higher, the statistics are less
significant. If the threshold is lower, the contamination with the background
flow is more significant. We have nevertheless ascertained that our following
results are qualitatively independent of the threshold if the fraction of the ve-
locity increments used for the averaging is 0.1–1%. These velocity increments
comprise the tail of the probability density distribution that is well above the
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Figure 1a. Energy spectrum of the span-
wise velocity at Reλ = 295, 430, 655, 861,
1054, and 1258 (from bottom to top). The
wave number is in units of m−1 instead of
the usual radian m−1. The other flow pa-
rameters are as follows. The Kolmogorov
length η is 0.0554, 0.0331, 0.0197, 0.0154,
0.0123, and 0.0106 cm. The Kolmogorov
velocity uK is 0.0260, 0.0438, 0.0737,
0.0955, 0.122, and 0.141 m s−1. The root-
mean-square fluctuation of the spanwise ve-
locity 〈v2〉 is 0.227, 0.462, 0.958, 1.42,
2.01, and 2.53 m s−1.
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Figure 1b. Dependence of tube parame-
ters on Reλ. (a) R0/η. (b) V0/〈v2〉1/2.
(c) V0/uK . (d) Re0/Re

1/2
λ . (e) Re0.

These quantities are normalized by their
values at Reλ = 430, i.e., R0/η = 6.04,
V0/〈v2〉1/2 = 0.526, V0/uK = 5.55,
Re0/Re

1/2
λ = 1.62, and Re0 = 33.5.

Gaussian distribution with the same standard deviation as shown in figure 2b.
The only deficit is that the threshold is too high for some weak vortex tubes.
They are not considered here.

For reference, in figure 2a (dotted lines), we show the circulation flow of a
Burgers vortex as a model for vortex tubes:

uΘ(R) ∝ ν

aR

[
1 − exp

(
−aR2

4ν

)]
(a > 0). (1)

Here ν is the kinematic viscosity. The circulation is maximal at the tube radius
R = R0 = 2.24(ν/a)1/2. We have determined the radius R0 and the maximum
circulation velocity V0 so as to fit the observed v profile around its peaks.

Since the observed v profile is close to the profile of a Burgers vortex, we con-
firm the existence of vortex tubes at high Reynolds numbers. Their circulation
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flows are responsible for small-scale intermittency. The radius R0 is several
times the Kolmogorov length η, while the maximum circulation velocity V0 is
about a half of the root-mean-square velocity fluctuation 〈v2〉 or several times
the Kolmogorov velocity uK (e.g., Jiménez et al. 1993; Makihara et al. 2002).

The u profiles in figure 2a are separated for u(x + δx) − u(x) > 0 and
u(x+δx)−u(x) ≤ 0 at x = 0 (designated as u+ and u−). They are dominated
by the circulation flow uΘ of vortex tubes passing the probe at some distances
or with some incident angles.
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Figure 2a. Typical profiles for vortex
tubes in the streamwise (u) and spanwise
(v) velocities. The unit scale on the ordi-
nate corresponds to one-tenth of the root-
mean-square velocity fluctuation 〈v2〉1/2.
The dotted lines denote the profiles of Burg-
ers vortices.
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bution of the absolute velocity increment
|v(x+ δx−v(x)|. The arrows indicate the
range of the enhanced velocity increments
used in our analyses. The dotted lines de-
note a Gaussian distribution.
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4. Dependence on the Reynolds number

The dependences of the tube parameters on the microscale Reynolds number
Reλ are studied here. To extend the Reλ range, we also use velocity data from
our previous experiment of grid turbulence at Reλ = 105–329 (Mouri et al.
2003). These data are reanalyzed in the same manner as for our present data.
The results are summarized in figure 1b, where quantities are normalized by
their values at Reλ = 430.

The tube radius R0 scales with the Kolmogorov length η as R0 ∝ η over the
entire range of the Reynolds number [figure 1b(a)].

The maximum circulation velocity V0 scales with the root-mean-square ve-
locity fluctuation 〈v2〉1/2 as V0 ∝ 〈v2〉1/2 at Reλ > 400 [figure 1b(b)]. Since
this is not the case at Reλ ≤ 400, the scaling is achieved at high Reynolds num-
bers. The maximum circulation velocity V0 also scales with the Kolmogorov
velocity uK as V0 ∝ uK [figure 1b(c)]. However, at Reλ > 400, this scaling
is less significant than the scaling with the velocity fluctuation 〈v2〉1/2.

The scaling laws for the radius R0 and the maximum circulation velocity V0

lead to the scaling law for the Reynolds number Re0 = R0V0/ν that charac-
terizes the circulation flows of vortex tubes:

Re0 ∝ Re
1/2
λ if R0 ∝ η and V0 ∝ 〈v2〉1/2, or

Re0 = constant if R0 ∝ η and V0 ∝ uK .
(2)

The present result favors the former scaling [figure 1b(d)] rather than the
latter [figure 1b(e)] at least for Reλ > 400.

For general vortex tubes, we do not necessarily expect the scaling laws
V0 ∝ 〈v2〉1/2 and Re0 ∝ Re

1/2
λ . Weak vortex tubes are not considered here

because our velocity profiles were obtained for enhancements of a velocity in-
crement. Actually in direct numerical simulations, the scaling law V0 ∝ uK

was obtained when vortex tubes were identified as local minima of the pressure
(e.g., Makihara et al. 2002). The scaling law V0 ∝ 〈v2〉1/2 was obtained when
vortex tubes were identified as enhancements of the vorticity above a threshold
(e.g., Jiménez et al. 1993).

5. Conclusion and future prospects

For the first time at high Reynolds numbers, we have obtained the scaling
laws R0 ∝ η, V0 ∝ 〈v2〉1/2, and Re0 = V0R0/ν ∝ Re

1/2
λ . They are expected

to be universal among vortex tubes in turbulence at high Reynolds numbers.
To confirm this expectation, experiments at the higher Reynolds numbers are
desirable. Those at similar Reynolds numbers but under different experimental
configurations are also desirable.
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The vortex tubes have been identified using enhancements of a velocity in-
crement above a threshold. Thus our results are biased against weak tubes.
The development of a method to identify vortex tubes with various strengths
is desirable. We nevertheless believe that our results are useful because strong
vortex tubes play an important role in small-scale intermittency. Their role in
energy dissipation is also expected to be important.
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LOCAL VORTEX IDENTIFICATION CRITERIA:
INTER-RELATIONSHIPS AND A UNIFIED
OUTLOOK
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Abstract We consider local vortex identification in turbulent flows using the two kinematic
parameter framework of Chakraborty, Balachandar & Adrian (2005) (hereafter
referred to as CBA05). The inter-relationships between the various local crite-
ria are summarized and the notion of ‘equivalent thresholds’ is applied to two
canonical turbulent flows: sphere wake and channel flow. Remarkably similar
vortex structures are extracted using the ‘equivalent thresholds’.

Keywords: Vortex identification, turbulence

1. Introduction

The characteristic shape of vortical structures in turbulent flows forms the
basis of the structural approach of understanding turbulence. Owing to the
lack of a universally accepted definition of a vortex, many different vortex
identification schemes have been proposed for identifying vortical regions in
complex flows. Here, we restrict attention to local or point-wise schemes to
identify vortex filaments (as opposed to vortex sheets or vortex blobs). Vortex
filaments allows for simple understanding of a large part of the entire flow using
the Biot-Savart law. Also, since the filaments occupy a rather small volume,
the Biot-Savart law effects a type of data compression, making the entire flow
understandable in terms of the vortex induced flow and the dynamics of the
filament.

We consider various commonly used local vortex identification criteria,
namely: Q, λ2, ∆, and λci (for references see CBA05). They are based on
local point-wise analysis of the velocity gradient tensor (∇v) and the essential

CBA05 proposed a two kinematic parameter
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framework to inter-relate the different criteria and explain the similarity and

difference between them comes from the defining characteristic each criterion
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ascribes to a vortex filament.
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differences in the vortex structure educed by the application of the different
schemes. Hence, the two parameters provide a new way of interpreting the dif-
ferent criteria and thus serves to formulate a unified interpretation of the differ-
ent schemes. For many turbulent flows, owing to the local two-dimensionality
of the intensely swirling structures, CBA05 proposed the idea of ‘equivalent
thresholds’ that result in remarkably similar looking vortex structures. The next
section summarizes the two-parameter system and the inter-relationships be-
tween the different criteria. Thereafter the proposal of ‘equivalent thresholds’
is applied to two canonical turbulent flow examples: sphere wake and channel
flow.

2. Enhanced swirling strength and inter-relationships

The proposal of enhanced swirling strength criterion of CBA05 uses the ref-
erence frame of a critical point. In the regions where the eigenvalues of ∇v
are complex, two kinematic parameters are identified: the imaginary part of
the complex eigenvalue (λci) and the ratio of the real to imaginary part of the
complex eigenvalue (λcr/λci). The plane of swirling is identified to be the
plane spanned by the complex eigenvectors. In this plane, for the instantaneous
streamlines, 2π/λci is the time for one complete revolution and exp(2πλcr/λci)
is the ratio of the final to initial radial positions. Hence, these two parameters
have unambiguous interpretation in terms of the local flow kinematics. Al-
though this two-parameter formulation is valid for both incompressible and
compressible flows, here we restrict attention to incompressible flows.

CBA05 explored the inter-relationships between the different criteria using
these two parameters. In the region of complex eigenvalues of ∇v, Q and ∆
can be explicitly related with these parameters in closed form relations:

Q = λ2
ci

(
1 − 3

(
λcr
λci

)2
)

, (1a)

∆ = λ6
ci

27

[
1 + 9

(
λcr
λci

)2
]2

. (1b)

In general, the λ2 criterion cannot be expressed in terms of the eigenvalues of
∇v. CBA05 established that in an approximate sense λ2 < 0 region corre-
sponds to the region of |λcr/λci| values being O(1). CBA05 defined a parameter
λ̃2 as a proxy for λ2 and obtained an exact relation for λ̃2 as

λ̃2 = λ2
ci

((
λcr

λci

)2

− 1

)
. (2)

For the special case, when the eigen-basis vectors of ∇v are orthonormal, λ2

and λ̃2 are equivalent.
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(a) λci (b) Q

(c) λ2 (d) λ̃2

(e) ∆

Overlap volume %
vol(λci, Q)/vol(λci) 86.19
vol(λci, ∆)/vol(∆) 77.31

vol(λci, λ2)/vol(λci) 78.92
vol(λci, λ2)/vol(λ2) 99.61
vol(Q, λ2)/vol(λ2) 96.90
vol(Q, λ2)/vol(Q) 89.06

vol(λ2, λ̃2)/vol(λ2) 99.20

(f) quantitative comparison

Figure 1. Vortex structure in the wake of uniform flow past a rigid sphere for (λci)thR/U =
0.25, where R and U are the radius of the sphere and the ambient flow velocity respectively.
The sphere is represented by solid black color and the incident flow is from the right. Frame
(f) depicts quantitative comparison of overlapping vortex volumes, where vol(α, β) represents
overlapping vortex volumes identified by the parameters α and β.

3. ‘Equivalent thresholds’ and turbulent flows

CBA05 considered the following problem: given the threshold conditions

λci ≥ (λci)th = ε and (λcr/λci) ≤ (λcr/λci)th = δ , (3)

what are the corresponding ‘equivalent thresholds’ for Q, ∆, and λ2? This
equivalence is in the sense of extracting similar vortex regions. This problem,
in general, has no unique solution. CBA05 made a simple proposal for the
‘equivalent thresholds’ which is based on the following observation: inside the
intense vortical structures of most turbulent flows, the swirling motion domi-
nates and the ratio |λcr/λci| takes small values. For incompressible flows the
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(a) λci (b) Q

(c) λ2 (d) λ̃2

(e) ∆

Overlap volume %
vol(λci, Q)/vol(λci) 90.14
vol(λci, ∆)/vol(∆) 72.87

vol(λci, λ2)/vol(λci) 83.39
vol(λci, λ2)/vol(λ2) 99.29
vol(Q, λ2)/vol(λ2) 97.76
vol(Q, λ2)/vol(Q) 91.09

vol(λ2, λ̃2)/vol(λ2) 99.01

(f) quantitative comparison

Figure 2. Vortex structure in channel flow for (λci)thh/(Reτuτ ) = 0.14, where h and uτ

are the half channel height and the friction velocity respectively. For the sake of clarity 1/16 ×
1/4× 1/16 of the simulation box is shown. The coordinates (x, y, z) represent the streamwise,
wall-normal, and spanwise directions respectively. Frame (f) depicts quantitative comparison of
overlapping vortex volumes, where vol(α, β) represents overlapping vortex volumes identified
by the parameters α and β.

limit λcr/λci → 0 corresponds to two-dimensional motion in the vortex plane,
thereby indicating that the local motion in the intense structures is essentially
planar with limited radial motion. Based on the above observation, CBA05
proposed the following ‘equivalent thresholds’:

Q ≥ Qth = ε2, (4)

∆ ≥ ∆th =
1
27

ε6, (5)
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λ2 ≤ (λ2)th = (λ̃2)th = −ε2. (6)

The above thresholds become exact in the limit λcr/λci = 0. Note that λ2

and λ̃2 are equal as well in this limit. Now we apply the above ‘equivalent
thresholds’ to two canonical turbulent flow examples.

4. Results

Vortex structure in the wake region of uniform flow past a rigid sphere is
computed using DNS data at Reynolds number (based on the diameter of sphere)
Re = 610 (Bagchi & Balachandar 2004). We use equations 4 - 6 to get the
thresholds for the different vortex identification criteria and the resulting wake
structure is shown in figure 1.

Vortex structure in a channel flow is computed using DNS data at friction
Reynolds number Reτ = 940 (del Álamo et al. 2004). We use equations 4
- 6 to get the thresholds for the different vortex identification criteria and the
resulting wake structure is shown in figure 2.

We observe that the usage of ‘equivalent thresholds’ for the two canonical
turbulent flow examples considered results in nearly identical vortex structures
extracted by the various criteria. This observation is similar to the isotropic
turbulence example studied in CBA05. The values of |λcr/λci| were observed
to be small inside the intense vortices, which explains the similarity in the
vortex structures. Also, as remarked in CBA05, the ∆ criterion is seen to educe
a comparatively denser vortex structure.
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PERSISTENT MULTIPLE-SCALE STAGNATION
POINT STRUCTURE
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Abstract In isotropic turbulence, stagnation points form a fractal multiple-scale network
in space such that their number density ns = Cs L−d (L/η)Ds where Cs is
a dimensionless constant, L/η is the inner to outer length-scale ratio and the
fractal dimension Ds is given by p + 2Ds/d = 3; d is the dimensionality of
the flow and p is the exponent of the energy spectrum. On the other hand, the
statistical persistence of stagnation points is defined in terms of the statistics of
stagnation point velocities, and we show that, on average, stagnation points stop
moving as the Reynolds number tends to infinity in the frame where the mean flow
is zero. In that same limit, stagnation points tend to become zero-acceleration
points on average, and to be persistent. Turbulent-like velocity fields obtained by
Kinematic Simulations (KS) can be made to reproduce some persistence prop-
erties of the multiple-scale stagnation point network by appropriately choosing
the KS time-dependence. Studies of turbulent pair diffusion in such KS lead
to 〈∆2〉 ≈ G∆L2(u′t/L)γ (where ∆ is the pair separation at time t, u′ is the
r.m.s. turbulent velocity and G∆ is the Richardson dimensionless constant) with
γ = 2d/Ds. A simple argument based on the time between successive en-
counters of particle-pairs with stagnation points and on a re-interpretation of the
locality-in-scale hypothesis in terms of a multiplicative pair-separation process
confirms this relation between the Lagrangian exponent γ and the Eulerian ex-
ponent Ds. This model also leads to G∆ ∼ Cs

2/Ds thus suggesting that the
Richardson constant might not be universal. Simulations confirm that G∆ is an
increasing function of Cs. Finally, we seek to corroborate these ideas and results
with a low Reynolds number laboratory simulation of high Reynolds number two-
dimensional turbulence. We complement this laboratory simulation with DNS
of the same and similar flows. In this laboratory simulation we reproduce the
cat’s eyes within cat’s eyes topological streamline structure of two-dimensional

s

measurements of the energy spectrum corroborate the formula p+2Ds/d = 3.

Keywords: Turbulence, pair diffusion, flow topology, stagnation points, electromagnetic
forcing, fractal geometry
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1. Multiple-scale persistent flow topology

In this paper, the word “coherent” in “coherent structure” is interpreted to
mean persistent in time, and the word “structure” refers to the multiple-scale
topological structure of stagnation points. One reason amongst others why we
focus attention on stagnation points is their impact on turbulent diffusion by
virtue of the strong curvature of streamlines in their vicinity. Indeed, Fung et
al. (1992) conjectured that straining stagnation points (hyperbolic points in
two-dimensional flows and stagnation points with a non-zero real eigenvalue of
the velocity gradient matrix in three-dimensional flows; see Davila & Vassilicos
2003) are responsible for sudden pair separation events and that pairs travel to-
gether for a long time and do not separate significantly till they meet such points.
In laboratory experiments of two-dimensional turbulence electromagnetically
forced at the small scales so as to generate an approximate −5/3 power-law
energy spectrum, Jullien et al. (1999) confirmed that fluid element pairs travel
together for long stretches of time and then separate suddenly, but they did not
attempt to identify the events responsible for these sudden separations.

1.1 Multiple-scale network of stagnation points

Fung & Vassilicos (1998) attempted to reconcile the locality-in-scale hy-
pothesis (Richardson 1926, Obukhov 1941, Batchelor 1950) with the straining
stagnation points and found, numerically using Kinematic Simulations (KS)
with energy spectra E(k) ∼ k−p where 1 < p < 3, that in two-dimensional
turbulence the multiple-scale instantaneous streamline structure consists of cats’
eyes within cats’ eyes, or equivalently figures of eight within figures of eight
(see figure 1). This provides a suggestive schematic picture of the multiple-
scale topological structure of straining stagnation points which was confirmed
in Direct Numerical Simulations (DNS) of inverse cascading two-dimensional
turbulence with E(k) ∼ k−5/3 (Goto & Vassilicos 2004).

Figure 1. Schematic of a fractal (multi-scale) flow based on an 8 in 8 topology.
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The concept of “structure” in “coherent structure” does not need to be lo-
calised. In statistically isotropic and homogeneous two-dimensional (d = 2)
turbulence stagnation points are distributed on a fractal set in space in the man-
ner just described. In three-dimensions the schematic topology is yet unknown,
but it is possible to quantify this topological structure of stagnation points in
terms of the number density ns per unit area (d = 2) or per unit volume (d = 3)
which is an increasing power-law function of the ratio of the inner to the outer
length-scales L/η. Specifically,

ns(L/η) = CsL
−d(L/η)Ds , (1)

where Cs is a dimensionless constant which we refer to as the “Avogadro num-
ber of turbulence” (“how many stagnation points per litre of turbulence?”) and
where the fractal dimension Ds of the stagnation point structure of turbulence
is found to be equal to 2 when d = 3 (Davila & Vassilicos 2003) and 4/3 when
d = 2 (Goto & Vassilicos 2004) by means of DNS (three-dimensional and two-
dimensional in the inverse energy cascade regime) and also laboratory measure-
ments (on the basis of some assumptions required to interpret one-dimensional
hot wire data, see Davila & Vassilicos 2003 for more details). Stagnation
points are therefore distributed on a fractal set both in two-dimensional and
three-dimensional homogeneous isotropic turbulence.

KS of statistically isotropic and homogeneous turbulence, which are Gaussian
turbulent-like flows with prescribed incompressibility, energy spectrum E(k) ∼
k−p and time dependence, reproduce the multiple-scale stagnation point struc-
ture of the turbulence with

p + 2Ds/d = 3 (2)

(Davila & Vassilicos 2003). In fact, this formula can be derived kinematically
on the assumption of sufficient phase scrambling in Fourier space. Surprisingly
perhaps, when p = 5/3, this formula implies Ds = 2 for d = 3 and Ds = 4/3
for d = 2 in agreement with DNS isotropic and homogeneous turbulence.

We now sketch this heuristic kinematic derivation. (Formula (2) can, how-
ever, be obtained rigorously for fractional Brownian motions in conjunction
with a rule for estimating fractal dimensions of intersections of surfaces; see
Orey 1970 and Davila & Vassilicos 2003.) Assume that one component, say
u1, of the velocity field u(x, t) has an instantaneous zero-crossing surface of
fractal dimension D larger or equal to d − 1. Any rectilinear cut through this
surface will have fractal dimension D − d + 1 and on account of the statisti-
cal isotropy of the turbulence considered here, the statistics of the fluctuations
of u1 along this cut (measured with coordinate x, say) will be the same as
the statistics of u(x, t) in the entire flow. Therefore the dimension of the
graph of u1(x) is D − d + 2. A characteristic length of the graph u1(x) for
a length-resolution r along the axis x can be estimated to be proportional to



122

r−1
√
〈[u1(x + r) − u1(x)]2〉 + r2 if there is sufficient Fourier phase scram-

bling for the signal to be “homogeneous” enough that the structure function
〈[u1(x + r) − u1(x)]2〉 may be used in this way. Another way to estimate
this same length at that same resolution is the fractal estimate r1−(D−d+2).
Hence, for r sufficiently small, 〈[u1(x + r) − u1(x)]2〉 ∼ r2(d−D) which im-
plies E(k) ∼ k−p with p − 1 = 2(d − D). Stagnation points of u(x, t) are
intersections of the zero-crossing surfaces of each component of u(x, t), and
the fractal dimension Ds of the set of these intersections is Ds = d(D−d+1)
(see Davila & Vassilicos 2003) which leads to (2).

1.2 Statistical persistence of stagnation points

Having established and characterised in terms of the fractal dimension Ds

the multiple-scale topological structure of stagnation points, we now attempt
to establish its persistence. We measure the statistical persistence of stagnation
points in terms of the statistics of stagnation point velocities Vs (velocities
with which stagnation points move, not fluid velocities). Given an arbitrary
frame of reference, the fluid velocity u at a stagnation point s(t) at time t
vanishes, i.e. u(s, t) = 0, and remains so for as long as this stagnation point
exists. Hence, during the stagnation point’s life-time, 0 = (d/dt)u(s, t) =
∂u/∂t+Vs·∇u at positions and time t, andVs ≡ ds/dt. The fluid acceleration
is defined as a ≡ ∂u/∂t+u ·∇u at all positions x and times t. Setting x = s,
we obtain

a = −Vs · ∇u (3)

at any time t and any stagnation point s(t) of the flow. Note that this relation
holds in any frame of reference. What changes with frame is the number and
positions of stagnation points (where these relations hold). It follows that the
acceleration r.m.s. a′ is related to the r.m.s. V ′

s of Vs in any frame by

V ′
s ∼ a′τη , (4)

where τη is the Kolmogorov time micro-scale. Strictly, a′ is the accelera-
tion r.m.s. over all stagnation points, but it is also equal to the acceleration
r.m.s. over the entire field because Galilean transformations leave a′ unchanged
even though they cause the r.m.s. statistics to be calculated over different en-
sembles of points. Our DNS and KS calculations of a′ and V ′

s support this
view.

Kolmogorov scaling applied to a′ (laboratory experiments by La Porta et al.
(2001) support Kolmogorov scaling of a′) implies that the r.m.s. ratio V ′

s/u′

(where u′ is the turbulence velocity fluctuation r.m.s.) scales as (L/η)−1/3 ∼
Re

−1/2
λ (where Reλ is the Taylor-length-based Reynolds number). Further-

more, due to correlations between accelerations and velocities, which we cap-
ture by three-dimensional statistically isotropic and homogeneous DNS turbu-
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lence, 〈Vs〉 = 0 in the frame where the mean flow is zero but not in other frames,
and persistence of stagnation points is therefore maximised in that privileged
frame where the mean flow is zero (see Goto et al. 2005). In fact, in that frame,
stagnation points stop moving relative to Lagrangian trajectories as the Reynolds
number tends to infinity as a consequence of V ′

s/u′ ∼ (L/η)−1/3 ∼ Re
−1/2
λ .

Of course, large-scale stagnation points cannot be expected to be so persistent
as they strongly depend on boundary conditions and the large eddies of the flow.
But, in view of (1), there are so many more small-scale stagnation points than
large-scale ones that the large-scale unsteadiness does not contribute much to
the statistical quantity V ′

s .
We also estimate the mean life-time of stagnation points to be of the order

of the integral time scale. This estimate relies on the following argument con-
structed around the notion that stagnation points disappear and reappear when
they meet, and uses the number density of stagnation points (1). This number
density implies that the average distance between stagnation points is the Taylor
microscale λ = L(η/L)2/3. Hence, the time that two stagnation points will
take to meet if they move head on is λ/[u′(η/L)1/3], where u′(η/L)1/3 is the
velocity of these stagnation points. Stagnation points can only be expected to
disappear as a result of stagnation point "collisions". However, most of the time
they will miss each other, so the estimate of the average life-time of stagna-
tion points must also involve the probability that stagnation points may collide.
We think of stagnation points as being surrounded by an influence sphere the
size of which relates to the "size" of the stagnation point (i.e. the size of the
streamlines emanating from it). Because there are stagnation points of varying
size, we define the time t(δ) for stagnation points of size δ to meet as being
L(δ/L)2/3/[u′(δ/L)1/3] (compare with the time λ/[u′(η/L)1/3] given above).
The probability p(δ/L) for such points to meet (or rather for their spheres of
influence to meet) is proportional to (δ/L)d(L/δ)Ds . The average life-time of
stagnation points is therefore given by

∫ L

η
t(δ) p(δ/L) d(δ/L) , (5)

which integrates to L/u′. Hence, stagnation points are on average long-lived.

2. The impact of the persistent multiple-scale flow
topology on turbulent pair diffusion

KS turbulent-like velocity fields can be made to reproduce persistence prop-
erties of stagnation points, and in particular small values of V ′

s/u′, by care-
fully choosing the KS time-dependence even though they do not physically
reproduce the exact sweeping effect of smaller eddies by larger ones (Os-
borne 2004). Studies of two-particle turbulent diffusion in such KS lead to
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〈∆2〉 ≈ G∆L2(u′t/L)γ (where ∆ is the pair separation at time t, G∆ is the
Richardson dimensionless constant and 〈 · 〉 represents an average over many
pairs and/or realisations) with

γ = 2d/Ds (6)

(Ds can be changed in KS by changing p). These KS results (see Fung &
Vassilicos 1998, Davila & Vassilicos 2003) indicate a correlation between γ and
Ds but not necessarily a causal relation. Such a causal relation can, however, be
obtained in the context of a simple mechanical model of turbulent pair diffusion
which is based on the time between successive encounters of particle-pairs with
stagnation points and on a re-interpretation of the locality-in-scale hypothesis
in terms of a multiplicative pair-separation process (see Goto & Vassilicos 2004
for more details).

The fundamental assumption underpinning this model is that, in the frame
of reference where 〈Vs〉 = 0, particle pairs travel with velocity u′ whereas
straining stagnation points remain persistent by not moving much and as a
consequence, pairs and stagnation points move relative to each other with
characteristic velocity u′ and with enough persistence for their encounters to
result, on average, in sudden pair-separation bursts. The time between suc-
cessive bursts is interpreted to be proportional to the doubling time Tρ(∆)
(see Boffetta et al. 1999): a pair which, after a given burst, has separa-
tion ∆, takes a time Tρ(∆) to meet another straining stagnation point and
then suddenly increase its separation by a factor ρ > 1 to ρ∆. This dou-
bling time can be estimated from the number density of stagnation points ns:
it is proportional to the characteristic distance between straining stagnation
points of size ∆ or larger. This characteristic distance is [ns(L/∆)]−1/d,
and therefore Tρ(∆) ∼ [ns(L/∆)]−1/d/u′ = (CρL/u′)(L/∆)−Ds/d where

Cρ ∼ C
−1/d
s . The time t required for pair separations to evolve from ∆0 to

∆(t) = ρn∆0 is, on average, t =
∑n−1

j=0 Tρ(ρj∆0) which implies, for long
enough times, that 〈∆2〉 ≈ G∆L2(u′t/L)γ with γ given by the KS result (6)

and G∆ ∼ C
−2d/Ds
ρ ∼ C

2/Ds
s . This model stresses the importance, for pair

diffusion, of straining stagnation points and persistent streamline structure of
the turbulence rather than just high strain rate regions. (How these regions may
relate to straining stagnation points is currently a central issue in our research.)
This model also leads to G∆ ∼ C

2/Ds
s thus suggesting that the Richardson

constant might not be universal because Cs is expected to be determined by the
large scales of motion. DNS and KS confirm that G∆ is an increasing function
of Cs (Davila & Vassilicos 2003, Goto & Vassilicos 2004).
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3. Low Reynolds number laboratory simulation of high
Reynolds number turbulence

Finally, we seek to corroborate these ideas and results with a low Reynolds
number laboratory simulation of high Reynolds number two-dimensional tur-
bulence. We complement this laboratory simulation with DNS of the same and
similar flows which can be analysed in more detail. In this laboratory simulation
we reproduce the cat’s eyes within cat’s eyes topological streamline structure
of two-dimensional turbulence by appropriate multiple-scale electromagnetic
forcing of a shallow layer quasi-two-dimensional (Q2D) brine flow (see figure
2 and Rossi et al. 2004).

Electromagnetic forcing of Q2D brine flow has been used in previous works
to generate Q2D chaotic advection (e.g. Rothstein et al. 1999) and Q2D turbu-
lent flows (e.g. Jullien et al. 1999 and references therein). In these experiments
as well as here, electromagnetic body forcing is produced with magnetic fields
generated by permanent magnets (placed under the horizontal bottom wall sup-
porting the thin layer of brine) and an electrical current generated by electrodes
placed on opposite sides of the square tank. The difference here compared to
previous works is that the electromagnetic forcing acts over many (here three)
length-scales on a fractal-like set because we are using three different magnet
sizes organised as in figure 2b,c,d (one pair of largest North/South magnets;
four pairs of medium-sized North/South magnets; and eight pairs of smallest
North/South magnets). This choice of fractal-like structure has been made so as
to reproduce the multiple-scale streamline topology which consists of cat’s eyes
within cat’s eyes. This particular fractal-like set-up of magnets gives Ds ≈ 0.6
if one considers the stagnation points generated by each pair of magnet and
their sizes.

The thickness of the layer of brine is chosen at 5 mm in order to achieve
the best compromise between quasi-two-dimensionality (Satijn et al. 2001)
and reduced bottom friction (Clercx et al. 2003) so that the flow can be driven
by the magnets and not halted by the bottom wall. The magnets’ distances
to the bottom wall are chosen so as to create electromagnetic forces that are
roughly the same in the flow above each magnet, whatever the magnet’s size.
(We computed these forces by the method described in Rossi (2001) and they
are shown in figure 2c). The size of our tank (17002 mm2) is large compared
to the size of our magnets (160 mm; 40 mm; 10 mm) and the electromagnetic
forcing area represents only 2.8 % of the total area of the bottom wall which
is small compared to all previous such laboratory set-ups. Hence, the flow
region of interest is far away from the boundaries of the tank, and we find
that the flow does acquire the desired topology shown in figures 1 and 2. Dye
visualisation of the flow reported in figure 3 shows how the flow develops and
acquires its fractal topology. Velocities are of the order of ten millimetres per
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Figure 2. (a) Rig’s schematic for electromagnetic forcing of a shallow brine layer. (b)
Schematic of a fractal flow and associated permanent magnets. (c) Electromagnetic forcing
distribution, I = 1A, Bref = 1T, fx in N/m2. (d) Under-wall distribution of permanent
magnets used in experiments. (e) Photograph of the rig.

second and are measured with Particle Image Velocimetry (PIV) (see figure 4).
We control the magnitudes of these velocities by tuning the current between
the electrodes on either side of the tank and we find that we can change the
intensity of the flow without significantly changing the fractal-like streamline
topology over more than one decade of velocity magnitude. The flow is laminar
but electromagnetically forced to have many scales of motion, which is why we
refer to it as a low Reynolds number laboratory simulation of high Reynolds
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Figure 3. Dye visualisations for I = 0.3A. (a) Entire flow, magnets (M160 and M40) are
indicated by N and S, while the electrical potential is indicated by + and −. The power is switch
on at t = 0. (b) Quarter flow, picture taken about 75s after switch on.

Figure 4. PIV measurements for I = 0.3A. (a) Entire flow, physical frame about 80cm;
1pixel≈0.397mm. (b) Quarter of the flow, physical frame about 40cm; 1pixel≈0.202mm. 1
vector velocity every 8 measurement point, |u| in mm/s.

number turbulence. The Reynolds number is low in the sense that the flow is
too slow and too controlled by the Lorentz forces to allow flow instabilities to
set in.

In parallel with this laboratory experiment, we are running DNS of two-
dimensional Navier-Stokes flow under similar fractal-like electromagnetic forc-
ing and periodic boundary conditions. Our integrations are carried out with a
pseudo-spectral code on a 10242 grid and the domain size (2π × 2π) is large
compared to the size of the square magnets (2π/5 × 2π/5; 2π/20 × 2π/20;
2π/80×2π/80). Referring to the Lorentz force as f0f(x), f0 being the ampli-
tude and f(x) accounting for the spatial distribution of the magnets; modelling
the wall’s friction force by a Rayleigh −αu term; and rescaling all quantities
with the length-scale f0/α2 and the time-scale α−1, the equations of motions
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Figure 5. DNS streamlines pattern and stagnation points locations; full flow (left hand side)
and top left quarter (right hand side).

are
∂u

∂t
+ u · ∇u = −∇p − u +

1
Ha

2∇
2u + f , (7)

where Ha stands for Hartmann number and Ha
2 = f2

0 /να3, and

∇ · u = 0 . (8)

Our PIV measurements show that the energy spectrum E(k) of the flow has
an approximate power-law shape k−p with p ≈ 2.4 over a significant range of
scales which includes the magnet sizes (see figure 6). This exponent p lies be-
tween the 5/3 value which would result from forcing a two-dimensional turbu-
lence at the small scales and the value 3 which characterises a two-dimensional
turbulence forced at the large scales. Indeed, the present forcing extends over
various scales, and it is important to note that the obtained value p = 2.4 agrees
with equation (2) as d = 2 and Ds ≈ 0.6 in the present case. This result
suggests that we might be able to control the energy spectrum’s power-law
exponent p by suitably designing the fractal-like electromagnetic force field.
Such control of the energy spectrum should allow to test relation (6) between
the Lagrangian exponent γ and the Eulerian fractal dimension Ds.

The numerical simulations demonstrate that, when αt � 1, the total kinetic
energy of the flow remains constant in time and equal to Cf2

0 /α2 where C =
C(Ha) is a dimensionless number which increases with Ha but eventually
appears to tend towards a constant. The DNS also show very good agreement
with the laboratory experiment both in the energy spectrum and the detailed
streamline pattern (see figures 5 and 6). The small differences in streamline
shapes are due to the fact that the ratio of the size of the box (or tank) over the
size of the largest magnets is twice smaller in the DNS than in the rig.
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(a)

(b)

Figure 6. Energy spectrum, (a) experiments and (b) DNS with Ha = 8 × 104, the straight
line gives E(k) ∝ k−2.4.

Currently the flow is stationary in time, but various modes of time dependence
are envisaged for the near future. Studies of turbulent diffusion are to follow
to test the relation between flow topology and turbulent stirring, in particular
Eulerian-Lagrangian relations such as γ = 2d/Ds and such as G∆ ∼ C

2/Ds
s .
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Abstract A new approach to particle pair diffusion in self-similar turbulence is developed
in terms of coherent structures, i.e. coherent vortices and streamlines associated
with them. The well-known Richardson equation can be re-derived by a simple
model proposed by this approach. The model and its implications are verified
by the use of direct-numerical simulation of pair diffusion in the inverse energy
cascade regime of two-dimensional turbulence.

Keywords: Turbulent diffusion, coherent vortex, stagnation point, the Richardson law

1. Introduction

The pair diffusion of fluid particles in statistically homogeneous isotropic
self-similar turbulence was first investigated by Richardson (1926). In the paper,
based on his intuition and the measurements of atmospheric turbulence, he
proposed the following governing equation for the probability density function
(PDF) P (∆, t) of the separation ∆(t) between particle pairs

∂P

∂t
=

∂

∂∆

(
F ∆d−1 ∂

∂∆

(
P

∆d−1

))
. (1)

Here, d is the spatial dimension, and F (∆) (∼ ∆
4
3 ) is a scale-dependent diffu-

sivity. Interestingly, some recent experiments (see Ott & Mann 2000) support
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Figure 1. (a) Energy spectrum E(k) and (b) energy flux function Π(k) in the inverse energy
cascade regime of two-dimensional turbulence. Here, u′ is the root-mean square velocity.

the solution of the Richardson equation (1) (although it is not conclusive due
to limited Reynolds numbers). Since (1) was an ansatz, the first purpose of the
present article is to understand the physics behind this equation.

On the other hand, Fung et al. (1992) and Fung & Vassilicos (1998) em-
phasised the importance of streamlines and stagnation points in pair diffusion.
They claimed that particle pairs separate only when they encounter straining
stagnation points. Later, Dávila & Vassilicos (2003) suggested based on nu-
merical results of kinematic simulations that the exponent γ of the mean square
separation,

〈
∆2
〉
∼ tγ , can be related to the fractal dimension Ds of spatial

distribution of straining stagnation points as follows

γ = 2d/Ds . (2)

However, it seems strange that pair diffusion which is Galilean invariant can be
explained by a theory based on straining stagnation points which are not Galilean
invariant. Hence, the second purpose of the present article is to resolve this
superficial inconsistency, and to reformulate how the statistics of pair diffusion
can be described in terms of the spatial distribution of stagnation points. We
shall show that we must choose a specific frame to relate the statistics of pair
diffusion with those of spatial distribution of straining stagnation points.

2. Pair diffusion in terms of coherent vortices

2.1 Self-similar structure of coherent vortices

In what follows, we investigate pair diffusion using observations from direct
numerical simulation (DNS) of self-similar turbulence, i.e. turbulence with a
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Figure 2. Contour of coarse-grained vorticity obtained by low-pass filtering with a sharp
cutoff wavenumber kc. Left, kc = kf/4; middle, kf/8; right, kf/16. Here, kf is the peak
wavenumber of the forcing spectrum.

sufficiently wide inertial range. As it remains difficult to simulate directly such
self-similar turbulence in three-dimensional space, we restrict ourselves to the
case of two-dimensional turbulence with a small-scale force. Employing an
energy sink at large scales, the energy cascades from small to large scales, and
a statistically stationary state can be achieved (figure1). By using 40962 grid
points in a periodic box, the inertial range, where the energy spectrum E(k) is
proportional to ε

2
3 k− 5

3 and the energy flux Π(k) is equal to −ε, extends over
two decades (see Goto & Vassilicos 2004 for details of the simulation). We
consider pair diffusion in this inertial range.

The coherent vortices in this velocity field reveal a simple self-similar struc-
ture. Figure 2 shows the coarse-grained vorticity fields obtained by low-pass
filtering of the energy spectrum with a sharp cut-off wavenumber kc within the
inertial range. Since the enstrophy spectrum is proportional to k2E(k) ∼ k

1
3 in

the inertial range, coherent vortices of cut-off scale can be seen. The temporal
movements of these vortices show that a cluster of smaller-scale vortices corre-
sponds to a larger-scale vortex. In other words, smaller-scale coherent vortices
are auto-rotating (by the definition of vorticity), and at the same time they are
swept by larger-scale coherent vortices. Since the velocity field is self-similar
in the inertial range, it is reasonable that the coherent vortices also have this
self-similar structure. Although it is hard to state what kind of self-similarity
of coherent vortices can be observed in three-dimensional isotropic turbulence
(because the coherent structures are observed as vortex tubes or sheets, and their
length scales are not unique), coherent vortices in the inverse energy cascade
regime of two-dimensional isotropic turbulence seem to possess this simple
self-similar structure. Note, in passing, that the coherent vortical structure in
decaying two-dimensional turbulence (see Dritschel 1993, e.g.) must be very
different from that in the present system.
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(a) (b) (c)

Figure 3. (a)(b) Particle pair’s trajectories together with the intensity of vorticity. (c) Stream-
lines in the Lagrangian frame moving with the central vortex in (b). At the same time with (b).

2.2 Trapping and release of particles by coherent vortices

Bearing the picture of the self-similar coherent vortical structure in mind, it
is easy to describe particle motions and pair diffusion, since DNS observations
show that particle motions at each scale of the inertial range are well described
in terms of flow induced by coherent vortices at that scale. The characteristic
motion of a single particle is as follows: it is trapped by a vortex at each scale
for the duration of one eddy turnover time of the vortex, and leaves occasionally
(see §3) the vortex to be trapped by another adjoining vortex at that scale. Then,
the typical motion of a particle pair can be described as follows: a pair with
separation ∆ is likely to be trapped by a same coherent vortex of size ∆. As
long as the two particles are trapped by the vortex, the separation remains O(∆).
However, when one of the particles leaves the vortex, the separation suddenly
increases from ∆ to ξ∆ (see DNS visualisation in figure 3(a)(b) and a schematic
picture in figure 5(a)). Here, we assume ξ(> 1) to be a constant. Because the
particles remain trapped by a vortex of larger scale ξ∆, their relative motions
are now determined by the flow induced by vortices at that scale ξ∆. This
scale-by-scale separation picture allows us to propose a model of the temporal
evolution of particle pair separation ∆ in a self-similar manner as

∆0
T (∆0)−−−−→ ξ∆0

T (ξ∆0)−−−−→ ξ2∆0
T (ξ2∆0)−−−−−→ · · · . (3)

This model has two physical parameters: the scale ratio ξ and the time-scale
T (∆) for a particle pair to be trapped by a single vortex of size ∆. Here,
we assume, based on the above observation from DNS, that the time T (∆) is
proportional to the eddy turnover time of vortices of size ∆, i.e.

T (∆) ∼ ∆√
E(1/∆)/∆

∼ ε−
1
3 ∆

2
3 . (4)
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Then, the probability Qn(t) for a particle pair separation to be between ξn∆0

and ξn+1∆0 may be governed by

d
dt

Qn = bn−1 Qn−1 − bn Qn

(
with bn ∝ T (ξn∆0)

−1 ∝ (ξn∆0)−
2
3

)
. (5)

A Taylor expansion of the above equation up to the second order leads to the
governing equation for the PDF P (∆, t) of particle pair separations,

∂P

∂t
= −B α

∂

∂∆

(
∆

1
3 P
)

+
B α2

2
∂

∂∆

(
∆

∂

∂∆

(
∆

1
3 P
))

, (6)

where α ≡ log ξ. Notice that the derived equation is a generalisation of the
Richardson equation (1), which is recovered by the specific choice α = 6/(3d−
2); α = 3

2 for d = 2, and α = 6
7 for d = 3. It is interesting that the solution (see

(7), below) of (6) leads to the well-known t3 law (Richardson 1926) of mean
square separations, 〈∆2〉, irrespective of the value of α. This may be seen also
by the invariance of (6) under the scale-transformation ∆ → λ∆ and t → λ

2
3 t.

It is straightforward to show that the solution of (6) with initial condition
P (∆, 0) ∝ δ(∆) has the similarity form as

P̃ (∆̃) = A ∆̃− 1
3
+ 2

α exp
(
−G0

1
3 ∆̃

2
3

)
, (7)

where
∆̃ ≡ ∆

/〈
∆2
〉 1

2 , (8)

A is a normalise factor, and G0 ≡ (3 + 3/α) (2 + 3/α) (1 + 3/α). Note that
the functional form of P̃ given by (7) is uniquely determined when we choose
an α. Now we compare (7) with DNS estimation in figure 4. The numerical
estimation of P (∆, t) is well fitted with the value of α = 1.3 (ξ ≈ 4). This is
nearly equal to α = 3

2 corresponding to the Richardson equation (1) for d = 2.
In summary, based on the schematic picture (3) of particle pair separation

in terms of scale-by-scale trapping and release by the self-similar structure of
coherent vortices we have re-derived the Richardson equation (1). Thus, one
may depict the physics behind the equation. Indeed, the model described in this
section seems not far from the original picture that Richardson seemed to have
in mind when he proposed (1); Richardson 1926 reads “Suppose that we were
to let loose a sphere 0.01 cm. in diameter of acetylene... after a few seconds,
part may get caught in one of the gusts..., while another part remain in a lull,...
Next squalls of several minutes’ duration separate it more rapidly... Then one
part gets into a cyclone and another remains behind in an anticyclone...” A
weak point of the schematic picture, however, is that it cannot specify when or
where one of two particles changes the vortex to be trapped (and the particle
pair separates suddenly). We deal with this problem in the next section.
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Figure 4. PDF of normalised pair separation ∆ by its root-mean square. Symbols, DNS
estimations for different times; solid curve, the solution (7) of the derived equation (6) for
α = 1.3.

3. Pair diffusion in terms of persistent streamlines

3.1 Streamlines and trajectories

A question to be addressed here is when and where a particle leaves the
coherent vortex trapping it. To answer this question we first note the fact that
if the velocity field is frozen in time, the trajectories of particles coincide with
streamlines, and the motion of particles can be described in terms of streamline
topology. Of course turbulence is never stationary, but one may choose a frame
where the local velocity field is approximately stationary within some time-
scale. Indeed, this frame is the Lagrangian (local) frame moving with a coherent
vortex with a relatively long lifetime.

In order to define unambiguously the velocity of the Lagrangian frame mov-
ing with a coherent vortex, we introduce zero-acceleration points, i.e. the points
where a ≡ ∂u/∂t+u ·∇u = 0. There are two (elliptic and hyperbolic) types
of zero-acceleration points with different streamline topologies around them.
These two types are classified by the sign of ∇·a. Our present DNS shows that
many elliptic points are located at the centres of coherent vortices, and many
hyperbolic points reside in zero-vorticity strips between the vortices. Hence,
we define the velocity of the Lagrangian frame as the fluid velocity at the elliptic
zero-acceleration point at the centre of a vortex. Note that in the Lagrangian
frame moving with a zero-acceleration point, the point is a stagnation point and
the streamlines around it may be persistent in time because ∂u/∂t vanishes at
that point in this frame. It is worth mentioning, in passing, that our identifi-
cation of vortex centres in two-dimensional turbulence is closely related to the
low-pressure vortex identification of Miura & Kida (1997) in three-dimensional
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(a) (b)

ξ∆
∆

u′T (∆)

Figure 5. Schematic picture of particle pair motion (a) in the Lagrangian frame, and (b) in the
Eulerian frame.

turbulence, since the pressure gradient is the dominant contribution to the ac-
celeration.

In figure 3(c), we plot the streamlines in the Lagrangian frame moving with
the central vortex in the figure at the same time as (b). By comparing the particle
trajectories plotted in (b) with the streamlines plotted in (c), it is clearly seen
that the trajectories approximately coincide with persistent streamlines in the
Lagrangian frame moving with the coherent vortex. Particles change through
the action of hyperbolic streamlines, and therefore particle pairs separate sud-
denly around a hyperbolic stagnation point in the Lagrangian frame in which
streamlines are approximately stationary.

3.2 Ballistic motion of particle pairs

As seen in the previous section, particle trajectories approximately coincide
with streamlines in the Lagrangian frame moving with a coherent vortex. Let
us observe the motion of the same particle pair in an Eulerian frame (see figure
5(b)). Note that coherent vortices move with a speed of the order of the root-
mean square velocity u′, on average, in the frame where the mean velocity
vanishes. While trapped by the vortex, the particle pair moves with this speed,
which is much faster than the relative swirling motion around the centre of
the vortex when the Reynolds number is large. Hence, this motion becomes
ballistic in the Eulerian frame. Indeed, such ballistic motions of particle pairs
have been observed in laboratory experiments (Jullien et al. 1999; Ott & Mann
2000).
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The mean distance �b(∆) of ballistic motions at the scale ∆ can be written,
by the use of (4), as

�b(∆) ∼ u′ T (∆) ∼ L 1
3 ∆

2
3 , (9)

where we have used the Taylor relation, ε ∼ u′3/L. Here, L denotes the
integral scale. It might be interesting to notice that �b is proportional to the
Taylor scale when ∆ is the Kolmogorov scale. Since �b(∆) gets larger (and
more conspicuous) with ∆, the ballistic motion observed in the experiments
may be �b(L) ∼ L.

3.3 Impact of stagnation points on the pair diffusion

In §3.1 we have observed that the sudden separations of particle pairs take
place around hyperbolic stagnation points in the Lagrangian frame moving
with coherent vortices. It is interesting, based on this observation, to restate the
hypothesis employed in previous papers (Fung et al. 1992; Fung & Vassilicos
1998; Dávila & Vassilicos 2003; Goto & Vassilicos 2004):

(hypothesis) the mean length �b(∆) of the ballistic motion of a parti-
cle pair with separation ∆ is proportional to the mean distance �s(∆)
between straining (hyperbolic) stagnation (zero-velocity) points of the
coarse-grained velocity field obtained by low-pass filtering with a sharp
cut-off ∆ in the Eulerian frame, i.e.

�b(∆) ∼ �s(∆) . (10)

Here we refer to the choice of frame. It is obvious that neither the mean
length of ballistic motions nor the mean distance between stagnation (zero-
velocity) points are Galilean invariant. It is therefore reasonable to choose one
specific frame to formulate the above hypothesis. Recall that the derivation of
(9) requires the mean velocity of the flow (and therefore the mean velocity of
coherent vortices) to vanish. Hence, the above hypothesis may be formulated
most naturally in the frame where the mean velocity vanishes.

Let Ns be the number of straining stagnation points in the Eulerian velocity
field induced by vortices larger than ∆. In general, Ns depends on ∆, L and
the system size L0, and is related to �s by

�s ∼ L0/Ns
1
d . (11)

Hence, (9) and the hypothesis (10) lead to the estimation of Ns as

Ns ∼
(

L0

L

)d (L
∆

)Ds
(

with Ds =
2d

3

)
. (12)
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Figure 6. The number Ns of stagnation points in the coarse-grained velocity field obtained
by low-pass filtering with a sharp cut-off ∆c for two-different Reynolds numbers; open squares,
L/(2π/kf ) = 19; solid squares, 30.

We plot DNS-estimated Ns(L, ∆) in figure 6 in the two-dimensional (d = 2)
turbulence for different ∆ and L, where L0 is fixed at 2π. This figure clearly
supports (12).

It is worth mentioning that the fractal dimension Ds of the spatial distribution
of stagnation points can be related to the exponent p of the energy spectrum
E(k) ∼ k−p in the self-similar range by

Ds =
d(3 − p)

2
(13)

(see Dávila & Vassilicos 2003 for a rigorous derivation by the use of a theorem on
the Hausdorff dimension of the graph of Gaussian fractal signal, or Vassilicos
et al. 2005 for a physical derivation). Equation (13) is consistent with (12),
because we are considering the case of the Kolmogorov spectrum (p = 5

3 ).
Thus, it has been shown that the implication (12) of the hypothesis (10) is
supported by both the present DNS (figure 6) and the mathematical formula
(13).

Finally, we reconstruct the simple model developed in §2.2 in terms of the
fractal dimension Ds under the hypothesis (10). By using (12), (11), (10)
and (9) in this order, we can estimate the time-scale T (∆) for a particle pair
separation to remain ∆ as

T (∆) ∼ u′−1 L1−Ds
d ∆

Ds
d . (14)

Then, it can be shown by the same procedure as in §2.2 that the governing
equation for P (∆, t) is the same as (6) provided that ∆

1
3 P is replaced by
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∆1−Ds
d P on the right-hand side. The scale-similarity, ∆ → λ∆ and t → λ

Ds
d t,

of the derived equation (see Goto & Vassilicos 2004 for the explicit derivation)
implies that the mean square separation

〈
∆2
〉

evolves in time as

〈
∆2
〉
∼ t

2d
Ds , (15)

which leads to the relationship (2) suggested by kinematic simulations (Dávila
& Vassilicos 2003).

4. Concluding remarks

We reviewed our recent efforts to understand the background physics of
particle pair diffusion in self-similar turbulence in terms of coherent structures.
Here, the word “coherent” is used to express persistence in time, and the word
“structure” does not necessarily indicate a vortex. It is shown that a simple
description of the pair diffusion in terms of coherent vortices does lead to the
Richardson PDF equation (§2); the proposed model is schematically described
in terms of stepwise self-similar separations (3). It is also shown that persistent
streamlines in the Lagrangian frame moving with coherent vortices are useful for
the description of particle trajectories. Finally, we have restated the hypothesis
(10) on the importance of stagnation points for pair diffusion in §3. Although
the hypothesis does require further investigation, its implication (12) for the
number of stagnation points is supported by the present DNS (figure 6) and
the kinematic formula (13). The hypothesis may be of great use if it is valid,
because it directly leads to nontrivial relations such as (2) between an Eulerian
variable (the fractal dimension Ds) and Lagrangian statistics (the exponent of
mean square separation of pair diffusion). It has been shown (see Vassilicos
et al. 2005) by the use of Kolmogorov theory on the one hand and DNS data
of three-dimensional isotropic turbulence on the other that the characteristic
velocity Vs of stagnation points (in the frame where the mean flow velocity
vanishes) becomes much slower than u′ at very high Reynolds number, and
that stagnation points in that frame become zero-acceleration points at large
Reynold numbers. Hence, in high Reynolds number turbulence, stagnation
points and streamlines around them are persistent even in the Eulerian frame
in the sense that �b(∆) � Vs T (∆). Here, VsT (∆) is the typical distance of
stagnation point movements for the duration that a particle pair separates from
∆ to ξ∆. This seems to be the reason why hypothesis (10) appears to be valid
in the present system.
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Abstract Dynamical properties of passive particle pairs are investigated in two-dimensional
free convection turbulence by direct numerical simulation. In terms of the exit-
time statistics, it is confirmed that the growth of relative separations r(t) is con-
sistent with the prediction of the Bolgiano-Obukhov scaling in the inertial range,
〈r2(t)〉 ∝ t5. Furthermore, by looking into the probability density function
(PDF) of exit-time, motions of relative separations of particle pairs are classi-
fied into two types: ballistic and diffusive motions, both of which satisfy the
Bolgiano-Obukhov scaling. The probability density function of exit-time of dif-
fusively separating motions is described by Richardson’s diffusion equation, and
that of ballistically separating motions corresponds to the PDF of the Lagrangian
velocity increment. Our results also indicate that the PDF of the Lagrangian
velocity increment relates to that of the stretching rate of a relative separation in
the dissipation range.

Keywords: Relative dispersion, fully developed turbulence, Lagrangian statistics, 2-D free
convection

1. Introduction

Recently, researches on the relative dispersion in fully-developed turbulence
have been stimulated by the progress of particle-tracking techniques both in
experiments and numerical simulations (Jullien et al. 1999, Boffetta & Sokolov
2002). Through these researches, ballistically separating motions of particle
pairs have been clarified to be relevant even in the inertial range, which are
probably caused by some coherence such as fine coherent vortical structures

Sokolov 2002, Goto & Vassilicos 2004). However, we have not yet understood
their nature and role in pair dispersion processes well.
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In this paper we will show that we can extract, in terms of exit-time statistics,
ballistically separating motions of particle pairs from separation processes. Be-
sides, we will show that the probability density function (PDF) of their exit-time
relates to the PDF of the Lagrangian velocity increment, and show that some
of our results suggest that it also relates to the PDF of the stretching rate of
relative separation in the dissipation range.

We carry out DNS of 2-D free convection (2D-FC) turbulence instead of
that of 3-D Navier-Stokes (3D-NS) turbulence. This is because the 2D-FC tur-
bulence has both statistical and dynamical characteristics similar to those of
3D-NS turbulence (Toh & Matsumoto 2003), and because DNS of 2D-FC tur-
bulence requires much less computer resources than that of 3D-NS turbulence.

2. 2-D free convection turbulence

The basic equations of the 2D-FC system are

∂tu + (u·∇)u = −ρ0
−1∇p + ν�u − αgTeg, (1)

∂tT + (u·∇)T = κ�T, (2)

where u, T and p represent the solenoidal velocity, temperature and pressure
fields, respectively. eg is the unit vector in the direction of the gravity. In
our DNS, a large-scale forcing and friction are added to the temperature and
velocity fields respectively in order to keep the system statistically stationary.

The entropy S ≡ 1
2

∫
T 2dx is a conserved quantity of 2D-FC system in the

inviscid limit, and S cascades from larger to smaller scales similar to the energy
cascade in 3D-NS turbulence (Toh & Suzuki 1994). This entropy cascade
leads Bolgiano-Obukhov (BO) scaling of the energy and entropy spectra in the
inertial range, E(k) ∝ k−11/5 and S(k) ∝ k−7/5. The scaling law of velocity
increment δv(r) is also predicted that δv(r) ∝ r3/5. According to the BO
scaling, the growth of pair separation r(t) is expected as 〈r2(t)〉 ∝ t5, where
〈·〉 denotes an ensemble average.

We carry out DNS of 2D-FC system by using the 4th-order Runge-Kutta
(RK4) and pseudo-spectral method with resolution of 20482.

3. Exit-time statistics

The exit-time TE(δ; ρ) is defined by TE(δ; ρ) ≡ TF(ρδ) − TF(δ), where
TF(δ) is the time when r(t) reach the threshold δ for the first time (first-passage
time). According to the BO scaling, spatial scale dependence of exit-time is
expected that 〈TE(δ; ρ)〉 ∝ δ2/5.

We use exit-time statistics (Boffetta & Sokolov 2002) to investigate dynamics
of particle pairs for the following reasons: (i) Exit-time statistics can specify
a spatial scale by choosing a threshold δ. (ii) The interval between thresholds
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Figure 1. The PDF of exit-time (ρ = 1.1)
obtained by our DNS at four different scales
in the inertial range. Each of them is rescaled
with its mean. The inset plot is the spatial scale
dependence of the mean exit-time.
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Figure 2. The PDF of exit-time obtained by
our DNS and that of calculated from Richard-
son’s diffusion equation at ρ = 1.01, 1.21 and
4.59. Each of them is rescaled with its mean.

(the width for averaging) can be controlled by ρ; This means that we can control
the degree of coarse graining of dispersion process.

In our simulation, particle pairs are distributed homogeneously with relative
separations of the grid scale ∆x at initial time, and tracked by the advection
equation with the RK4 method. We prepare spatial thresholds δn as δn =
ρn−1∆x and calculate exit-time TE(δn; ρ) = TF (δn+1)−TF (δn) for all particle
pairs.

The inset of figure 1 shows the spatial scale dependence of the mean exit-
time, in which we can confirm the BO scaling in the inertial range. Figure 1
shows that rescaled PDFs of different scales in the inertial range collapse onto
a single curve. This means that pair dispersion process is self similar in the
inertial range. Besides, it is clear that the PDF of exit-time is divided into two
regions: a sharp peak and a long tail. We call them the BS- and DS-regions,
respectively. Figure 2 shows the PDF in the DS-region fits with the PDF of exit-
time calculated from Richardson’s diffusion equation. This indicate that particle
pairs in the DS-region separate diffusively and are described by Richardson’s
diffusion equation.

4. Ballistically separating motions

If particle pairs separate ballistically, it is expected that a relative separation
r is governed by dr/dt = AIr

3/5, according to the BO scaling, in the inertial
range, and dr/dt = ADr in the dissipation range. In fact, the relative separa-
tions of particle pairs in the dissipation range grow exponentially on average
as shown in the inset of figure 1, that is, the constancy of the mean exit-time
corresponds to the exponential growth. The relative velocity of a particle pair is
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the Lagrangian velocity increment of the scale of the relative separation, hence
AI is the coefficient of the scaling law of the Lagrangian velocity increment1,
AI = CIε

1/5
θ (αg)−2/5. Besides, AD is regarded as the stretching rate of relative

separation in the dissipation range.
Suppose that a relative separation r grows ballistically from δ to ρδ on a

time interval T ′
E . This means that the exit-time of the particle pair at δ is

T ′
E . Thereby, with the above two equations, the coefficients AI and AD are

calculated as

AI =
5
2

(ρ2/5 − 1)δ2/5

T ′
E

, (3)

AD =
log ρ

T ′
E

. (4)

We can transform the PDF of exit-time into those of AI and AD as shown in
figure 3 by Eqs. (3) and (4). The PDFs of AI (AD) of different values of ρ
collapse onto a single curve for large values of AI (AD). The collapse regions
of the PDF of AI and AD correspond to the BS-regions of the PDF of exit-
time. These collapses indicate that PDFs of AI and AD are nearly independent
not only from δ but also from ρ, and that particle pairs having the exit-time
T ′

E separate with a constant AI (AD) on average in the inertial (dissipation)
range. This result indicates that there exists some long-range coherence which
is consistent with the BO scaling.

Since the PDFs of AI and AD for the collapse regions look similar in shape,
we expect these two PDFs are related with each other. At a matching scale rDI ,
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if exists, Eqs. (3) and (4) should give the same exit-time T ′
E as

5
2

(ρ2/5 − 1)r2/5
DI

AI
=

log ρ

AD
. (5)

Furthermore, suppose that the crossover region in δ is narrow and thus ρ is close
to unity as ρ = 1+α with α � 1, Eq. (5) yields the following relation between
AI and AD:

AI = r
2/5
DI AD. (6)

Figure 4 shows the PDF of AI and that of ÃD ≡ r
2/5
DI AD with rDI = 38∆x.

Here rDI is estimated as shown in the inset of figure 1. We can see that the PDF
of AI agrees with that of ÃD for the same ρ except high values for AI > 2. This
result suggests that there are some relations between the dynamics of particle
pairs in the inertial range and that in the dissipation range.

5. Concluding remarks

We confirmed the relative dispersion in 2D-FC turbulence obeys the BO
scaling in terms of exit-time statistics. The separation of particle pairs consists
of ballistic (fast) and diffusive (slow) motions both in the dissipative and iner-
tial ranges. Diffusively separating motion in the inertial range is governed by
Richardson’s diffusion equation on average. The ballistically separating mo-
tions from δ to ρδ on an exit-time T are almost deterministic and governed by
dr/dt = AIr

3/5 in the inertial range and by dr/dt = ADr in the dissipation
range where AI and AD are really almost constant for each motion. This con-
stancy of AI and AD suggests that the ballistic separation is occurred along
some coherence which might result from a T -vortical structure (Toh & Mat-
sumoto 2003). By the relations (Eqs.(3) and (4)) we can obtain the PDFs of AI

and AD which correspond to the PDF of Lagrangian velocity increment in the
limit of ρ → 1. The coincidence of the PDFs of AI and AD for intermediate
values of them indicates a tight link between the separation processes of particle
pairs in the inertial and dissipation ranges via some coherence.

Notes

1. 〈δv(r)〉 = CIε
1/5
θ

(αg)2/5r3/5 according to the BO scaling, where εθ is the entropy- dissipation
rate and CI is considered to be a universal constant.
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Abstract The purpose of this study is to elucidate the relation between a growth of two-
particle distance and the fine-scale structures of turbulence by the three-dimensional
direct numerical simulation. It is shown that the Lagrangian bursts of particle-
pair occur in the straining stagnation region, where ∆ < 0 (here, ∆ = (Q/3)3 +
(R/2)2 with Q and R being the 2nd and 3rd invariance of the velocity gradient
tensor). The scaling law of 〈(∆l)2〉∼τγ (∆l and τ are the increment of sepa-
ration distance and the diffusion time, respectively) has been investigated. It is
found that the relation γ = 6/Ds is useful, where Ds is the power exponent
of ns≈CsL

−3(L/η)Ds (L and η are the integral length scale and Kolmogorov
microscale, respectively; ns is the number density of straining stagnation points;
Cs is a dimensionless number). It is also shown that the trajectories of particle-
pairs in the (Q, R) space are useful to recognize the fine-scale structure bearing
the Lagrangian burst of particle-pair.

Keywords: DNS, turbulence, two-particle diffusion, fine-scale structure, Lagrangian burst
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1. Introduction

Two-particle relative diffusion is a fundamental phenomenon in turbulence.
To begin with, we consider a pair of fluid particles which leave the given
neighboring points at time t0, and reach the coordinates x1 = x1(t) and
x2 = x2(t) at a single time t > t0. For the stationary homogeneous tur-
bulence, it is convenient to take t0 as the origin of time and replace t by
τ = t − t0. In this paper τ is called the diffusion time. The general prob-
lem is to determine the statistical characteristics of two-particle separation
l(τ) = |l(τ)| = |x2(t0 +τ)−x1(t0 +τ)|. It is known that the two-particle dif-
fusion is classified according to the diffusion time τ (Monin & Yaglom 1975).
At small diffusion time, the increment of two-particle separation is proportional
to τ , while at large diffusion time, it is proportional to

√
τ . Here, the special

attention is given to the transitional period between the small and large diffusion
time. At this transitional period, in case of the small initial separation between
two particles, the rapid growth of separation distance can be observed (Yeung
1994, Malik & Vassilicos 1999), and it occurs suddenly and intermittently in
the space (Fung & Vassilicos 1998). The purpose of this study is to elucidate
the relation between a rapid growth of two-particle distance and the fine-scale
structures of turbulence by the three-dimensional direct numerical simulation
(DNS).

2. Fine-scale structures of turbulence

The topology of fine-scale motions in turbulence may be classified con-
veniently by the critical theory (Chong et al. 1990). The velocity gradient
tensor Wij = ∂ui/∂xj can be decomposed into the symmetric tensor of rate of
strain Sij = (Wij + Wji)/2 and the skew-symmetric tensor of rate of rotation
Ωij = (Wij − Wji)/2 = −(1/2)εijkωk (ωi being the vorticity and εijk the
Eddington alternating tensor). For an incompressible flow, the eigenvalues λ
of Wij are solutions of the characteristic equation λ3 + Qλ + R = 0, where
Q = −(1/2)WijWji = −(1/2)(SijSji + ΩijΩji) = (1/2){(1/2)ωkωk −
SijSji} = (1/2)∇2p and R = −(1/3)WijWjkWki. The discriminant ∆ is
given by ∆ = (Q/3)3 + (R/2)2. The local geometry of the flow is charac-
terized by Q and R (or ∆)(see Chong et al. 1990 for details). If ∆ < 0, the
streamlines form stagnation (saddle) points, and if ∆ > 0 they show the spiral
curves like vortex. Note that in the region of ∆ < 0 a sphere is deformed into
a "pancake" or a "cigar" according as R > 0 or R < 0. In the following, the
region of ∆ < 0 is referred to the "straining stagnation region".
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3. Simulation method and conditions

We perform the DNS of nondecaying homogeneous isotropic incompressible
turbulence using a standard pseudospectral code with grids of 1283. In the
velocity fields of Taylor microscale Reynolds numbers Reλ ranging from 40 to
120, 4096 particle-pairs are released and tracked by the fourth-order-accurate
cubic-spline method. In all runs, the initial separation of particle-pairs is set at
l0/η = 1, where η is the Kolmogorov length.

4. Results and discussions

First, we investigate what structures cause the rapid growth of the particle-
pair separation. When a violent pair separation (here called “Lagrangian burst"
of particle-pair) occurs, it is expected that its separation velocity is larger in
comparison with other non-bursting particle-pairs. Therefore, we pick up the
particle-pair with the largest separation velocity among all the sample particle-
pairs in case of Reλ = 120, then investigate the Lagrangian time evolutions
of Q, R and ∆ for that specific bursting particle-pair. In Figs.1a and 1b, we
plot the time evolutions of R(τ) and ∆(τ) of each component particle in the
particle-pair and the separation distance l(τ). Here, τη is the Kolmogorov time
scale, and the superscript ′ denotes the r.m.s. value. It is found in this figure
that the Lagrangian burst of particle-pair is provoked in the region of R > 0 and
∆ < 0 (note that Q < 0 in this case since ∆ = (Q/3)3 +(R/2)2). This means
that this particle-pair meets the pancake type of straining stagnation region,
then separates in sudden burst.

Next, we examine the relation between the power law for the mean square
separation increment 〈(∆l)2〉∼τγ (∆l = (∆li∆li)1/2, γ is the power exponent)
and the spatial distribution of the straining stagnation regions. Dávila & Vas-
silicos (2003) showed by the kinematic simulations (KS), DNS and laboratory
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experiments of homogeneous isotropic turbulence that the number of straining
stagnation points per unit volume is given by

ns≈CsL
−3
(

L

η

)Ds

, (1)

where Ds = 2, Cs is a dimensionless number and L is the integral length scale.
The exponent Ds can be interpreted as a fractal dimension. By KS, they also
found that γ and Ds are related by

γ =
6

Ds
. (2)

When Ds = 2, we obtain γ = 3 which is consistent with Richardson’s law. In
the present simulations of 40 < Reλ < 120, the Richardson’s law can not be
observed because of small Reynolds number, but instead our data showed a τ4

behavior over 10 < τ/τη < 102. Equation (2) then gives Ds = 1.5. In order to
check this value of Ds, we estimate the volume Vss of the straining stagnation
regions in the space of L3, and examine the scaling law,

Vss∼
(

L

η

)Dss

. (3)

The result of this estimation is shown in Fig.2. It is found that Dss = 1.5 fits
with the data very well. This suggests that the relation (2) holds even if Reλ is
so small that the “locality assumption" for the particle-pair diffusion (see Fung
& Vassilicos 1998, Goto & Vassilicos 2004) may not be applicable.

Further, in order to make the role of the straining stagnation regions clearer,
we calculated PDF of the square separation increment (∆l)2 = |∆l|2 = ∆li∆li
under the following three conditions, i.e., [1] both of, [2] at least one of, or [3]
neither of two particles are contained in the straining region. The results at
τ/τη = 4 in case of Reλ = 120 are presented in Fig.3. It is found that the
PDF in Conditions 1 and 2 is smaller in the range of small separation increment
∆l/η≤17 (∆li∆li/η2 ≤ 300 ), and larger around ∆l/η = 20 (∆li∆li/η2 =
400 ) in comparison with the one in no condition. On the contrary, the PDF
in Condition 3 is larger in ∆l/η≤17, and smaller around ∆l/η = 20. This
implies that the straining stagnation regions have the effect of increasing the
separation distance of particle-pair. Thus, it is expected that the Lagrangian
bursts of particle-pair occur in the straining stagnation regions.

Next we investigate the trajectories of particle-pairs in the (Q, R) space.
Figure 4 presents the trajectories of a particle-pair undergoing the Lagrangian
burst in case of Reλ = 120. Particles 1 and 2 are initially at point A and B,
respectively and move closely together until particle 1 suddenly starts to go away
at point C, presumably because of being trapped by another fine structure. It is
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also confirmed that the time until the two-particle distance increases rapidly in
the (Q, R) space coincides with the time until the Lagrangian burst of particle-
pair occurs in the physical space. This result suggests that the trajectories of
particle-pairs in the (Q, R) space are useful to recognize the fine-scale structure
bearing the Lagrangian burst of particle-pair.
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the open and solid circles are plotted at constant time intervals. The parameters with superscript
′ denote Q′ = u2

r.m.s/η2, R′ = u3
r.m.s/η3, where ur.m.s is the r.m.s. value of velocity

fluctuation.

5. Conclusions

The results presented in this article show that the most violent particle-pair
separation occurs when it meets the pancake type of stagnation region, and the
relation γ = 6/Ds (equation (2)) is useful even if Reλ is so small that the
"locality assumption" for the particle-pair diffusion (Dávila & Vassilicos 2003,
Goto & Vassilicos 2004) is not applicable. It is also shown that the Lagrangian



154

burst of particle-pair can be recognized well by the trajectories of particle-pair
in the (Q, R) space.
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Abstract We consider a simple model of transport of a passive scalar around a coherent
vortex at distances much larger than its size but much smaller than the distance
to its nearest neighbours. The vortex is approximated by a point vortex with
circulation Γ, the strain rate has harmonic time-dependence, and the principal
axes rotate with constant angular velocity.

Keywords: Chaotic advection, point vortex, time-dependent straining flow, coherent struc-
tures in turbulence.

1. Introduction

The flow in the late stages of the decaying two-dimensional turbulence is
dominanted by a small number of strong coherent vortices (McWilliams 1984).
Except for their brief and relatively infrequent interactions these coherent struc-
tures move like interacting point vortices, i.e., the motion of their centres can
be reasonably described in terms of point vortex dynamics by a finite set of
ODEs. The motion of more than three point vortices usually exhibits deter-

account their internal structure (Bajer & Matloch 2004). However, even when
the motion of vortices is regular, as long as it is unsteady, the trajectories of
fluid particles may be chaotic.
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At close range coherent structures resemble vortex patches of roughly ellip-
tical shape that can be approximated by Kida vortices (Kida 1981). The chaotic
pathlines in their vicinity had been studied previously (Polvani & Wisdom
1990). Here we investigate the kinematics of the flow at a distance sufficient
to make the point-vortex approximation. We focus on one vortex and approxi-
mate the combined effect of distant companions as time-dependent linear strain
(Jimenez et al. 1996).

The system exhibits rich behaviour with different characteristics in different
regions. Close to the vortex the straining flow can be regarded as small pertur-
bation of the vortex flow while far away we have the opposite situation. Both
regimes allow analytical treatment (Branicki 2001) the details of which will be
described elsewhere.

2. Dynamical system

The time-dependence of the the ambient strain at the location of a given
vortex is caused by the change of positions of its neighbours. That change of
positions can be, broadly speaking, decomposed into rotation and deformation.
The rotation of the system of neighbours results in the rotation of the principal
axes of strain while deformation results in the change of the strain rate. In
the following we assume that the principal axes of strain rotate with constant
angular velocity λ and the strain rate β(t) has harmonic time variation

β(t) = B
∆ + cos(ωt)

∆ + 1
= Bb(t), B, ∆, ω — arbitrary constants. (1)

When written in a frame of reference co-rotating with strain the flow can be
described by a two-dimensional, non-autonomous dynamical system[

ẋ
ẏ

]
=

Γ
2π (x2 + y2)

[ −y
x

]
+
[ −Bb(t) λ

−λ Bb(t)

] [
x
y

]
. (2)

Using natural units of length and time, L = (Γ/2πB)1/2, T = B−1, we re-
write the (non-dimensionalised) equations in polar coordinates (�, ϕ) obtaining

�̇ = −� cos 2ϕ
∆ + cos Ωτ

∆ + 1
,

ϕ̇ = sin 2ϕ
∆ + cos Ωτ

∆ + 1
+

1
�2

− Λ ,

(3)

where Ω = ω/B, Λ = λ/B and τ = Bt. As we can see, the problem is
determined by three dimensionless parameters: the rotation rate of the principal
axes of strain Λ; the frequency of the variations of the strain amplitude Ω and
the amplitude (bias parameter) of those variations ∆.

The exploration of the three-dimensional parameter space of this problem
reveals a rich and diverse behaviour of the system.



Flow due to a point vortex in an oscillating and rotating straining flow 157

Figure 1. Streamlines of the steady (Ω = 0) flow (3) with Λ = −2 (left), Λ = 0 (middle) and
Λ = 2 (right).

3. Steady state

When Ω = 0 the system (3) is two-dimensional, time-independent and there-
fore integrable. Its phase portrait depends only on Λ.

For Λ = 0 we have a typical cat’s eye pattern with two hyperbolic stagnation
points at the distance where the strain and the vortex flow are comparable. Then
the asymptotic angle of the separatrices is 90◦. In co-rotating strain (Λ < 0,
the same sense of rotation as the vortex), as Λ decreases there is a bifurcation at
Λ = −1 upon which the two hyperbolic stagnation points disappear at infinity
and for Λ < −1 we have a simple recirculating flow with closed streamlines.
In the counter-rotating strain (Λ > 0) there is a bifurcation at Λ = 1 when two
new elliptical stagnation points are born at infinity and approach the vortex as
Λ increases (figure 1). When the strain rate becomes time-dependent (Ω �= 0)
the flows shown in figure 1 are perturbed. The exact stroboscopic maps of the
pathlines may, in general, be obtained only numerically except in some special
parameter regimes when they can be approximately calculated analytically.
One example is the highly symmetric situation with non-rotating (Λ = 0) and
sign-reversing (∆ = 0) strain.

4. Far field in the highly symmetric case Λ = ∆ = 0

In the far field the vortex is a small perturbation of strain. When we rescale
the radial coordinate, � → ε−1/2� and put Λ = ∆ = 0, the system (3) becomes

�̇ = −� cos 2ϕ cosΩτ, ϕ̇ = sin 2ϕ cosΩτ + ε�−2, ε � 1. (4)

The unperturbed system, ε = 0, has two invariants,

I = 1
2�2 sin 2ϕ, C = eΩ−1 sin Ωτ (� sin ϕ)−1 , (5)

that change slowly upon perturbation thus defining an adiabatic invariant that
can be computed. Figure 2 shows that the Poincaré sections of the perturbed
system indeed lie on the surfaces of this adiabatic invariant.
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Figure 2. The highly symmetric case, Λ = ∆ = 0. The surfaces of constant adiabatic invariant
(left) and computed Poincaré sections of the sytem (4). The sections are the stroboscopic maps
with common period of all unperturbed orbits, i.e. T = 2πΩ−1.

5. Near field and intermediate field

The system (3) can be cast in a (non-autonomous) Hamiltonian form. In the
near field, � � 1, we use the rescaling � → ε1/2�. The Hamiltonian expressed
in terms of the action-angle variables becomes

H = −1
2 lnJ+εJΛ+εJ sin 2θ

∆ + cos Ωτ

∆ + 1
, J = 1

2�2, θ = −ϕ, ε � 1,

(6)
which is a sum of two Hamiltonians: the Hamiltonian corresponding to pure
point vortex flow and the perturbing Hamiltonian due to strain. The action
variable is, clearly, an invariant of the unperturbed system (pure vortex). For
ε > 0, a new invariant can be calculated by means of the canonical perturbation
theory. In figure 3 we compare the results of such calculations with the com-
puted stroboscopic sections of the perturbed system for one particular choice
of parameters. The dashed line in the left panel of figure 3 is the outline of the
rational torus whose breakup gave rise to two primary islands (Tabor 1989).

Figure 3. The near field. The isosurfaces of the invariant derived from the canonical pertur-
bation theory (left) and the computed Poincaré sections of the sytem (right).
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Finally in figure 4 we show the computed Poincaré sections for three dif-
ferent sets of parameters chosen to illustrate the complexity of the phase-space
structure for this apparently simple system. The time-dependent, Hamiltonian
perturbation creates localised regions of strong chaos. It may also mimic dif-
fusion when a prticle ‘leaks’ across the cat’s eye boundary and is carried away
by the straining flow. Further details will be presented in a forthcoming article.

Figure 4. Poincaré sections of the system (3) for such values of the parameters for which
various chaotic domains are particularly prominent: Ω = 10.1, Λ = 0, ∆ = 1.5 (left); Ω = 2.1,
Λ = 0.5, ∆ = 0 (middle); Ω = 1.1, Λ = 0, ∆ = 0 (right).

Two-dimensional turbulence is ruled by the motion of a relatively small
number of coherent vortices that may spontanaeously emerge from a sea of
small-scale vorticity. Each vortex feels the presence of other vortices whose
combined influence is, in the first approximation, that of an irrotational am-
bient straining flow with variable rate of strain. The model presented in this
paper reveals the complexity of advection between coherent structures. This
advection, when combined with viscous diffusion, influences the level of weak
background vorticity in two-dimensional turbulence.
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Abstract Pressure fluctuation is measured by using a condenser microphone and piezore-
sistive transducer. In order to confirm the experimental accuracy, measured data
are compared with direct numerical simulation. This basic test encourages us
to study small-scale statistics from the standpoint of Kolmogorov universal scal-
ing. The power-law exponent and proportional constant of normalized pressure
spectrum are discussed. The clear power law with scaling exponent −7/3 is
confirmed in the range of Rλ ≥ 600. These Reynolds numbers are much larger
than those in velocity fluctuation for achieving the Kolmogorov scaling. The
spectral constant Kp is not universal but depends on Reynolds number.

Keywords: Turbulence, pressure statistics, universal spectral scaling

1. Introduction

Pressure is a fundamental quantity contained in the dynamical equation of
fluid motion. In a usual notation, pressure relates to the acceleration vector,
a = Du/Dt = −∇(p/ρ)+ν∇2u. This means that acceleration is decomposed
into the contributions from the pressure gradient and viscous force, while the
fluid density ρ is constant (Monin & Yaglom 1975). Taking the divergence of the
acceleration equation together with the incompressibility condition, we obtain
the Poisson equation, ∇2(p/ρ) = −∂ui/∂xj∂uj/∂xi (i, j = 1, 2, 3) . Only the
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velocity derivative terms appear on the right-hand side, so small-scale velocity
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fluctuations dominate the pressure gradient. It is known that large negative
pressure indicates large vorticity or small dissipation region. Pressure is the key
physical quantity to identify the small-scale structures and plays an important
role in acceleration (Nelkin 1994, Sreenivasan & Antonia 1997). However, it
is the least understood quantity due to the difficulty inherent in measuring this
term by conventional equipment. In this paper, we measure the static pressure
fluctuation in a fully developed turbulence, and study its statistical property
from the standpoint of Kolmogorov scaling (Tsuji & Ishihara 2003).

2. Experimental condition

The data are measured on the centerline in a free jet. A small wind tunnel
with a 40 × 40 mm2 nozzle size and a large wind tunnel with a 400 × 700
mm2 nozzle is operated in the velocity range of 5 ≤ UJ ≤ 15. UJ m/s is the
average velocity at the nozzle exit. The Reynolds numbers are in the range
of 200 ≤ Rλ ≤ 1200, here Rλ is the Taylor micro-scale Reynolds number.
Velocity and pressure fluctuations are measured at the same time. Velocity
fluctuation is measured by a hot-wire made of tungsten wire with a diameter
of φ = 5 µm and a sensitive length of �s = 0.7 mm. The probe is operated
by a constant-temperature anemometer and it is set at a distance of 2 mm from
the pressure probe. The measurement of pressure fluctuation in the flow field
is accomplished with a small piezoresistive transducer, and a standard quarter-
inch condenser microphone developed by Kobashi (1957), Toyoda et al. (1993).
The detailed conditions are mentioned in Tsuji & Ishihara (2003).

The transducer has a frequency response from DC up to 150 kHz with a
dynamic range of 3.5×103 Pa. The maximum errors contained in linearity and
hysteresis are 0.25%. A microphone is available for measuring the frequency
of 20 ∼ 70×103Hz. The lower frequency is restricted owing to its mechanical
system. The dynamic range is 2 × 10−2 ∼ 3.2 × 103 Pa, so a very small
amplitude can be measured. The probe is a standard Pitot-static tube measuring
1.0 mm in outside diameter and 0.1 mm in thickness. Four static-pressure
holes (0.4 mm in diameter) are spaced 90◦ apart and located at a distance of 22
tube diameters from the tip of the probe to minimize sensitivity to cross-flow
error. The leeward end is terminated by the microphone or transducer. The
sensor diameters are dT = 1.6 mm and dM = 7.0 mm for the transducer and
microphone, respectively.

The transducer can detect the low-frequency pressure, but its amplitude can-
not be small. The measurable amplitude is put at more than 10 Pa. The mi-
crophone can detect a very small amplitude, but low-frequency data cannot be
obtained. This ability is the reverse to a transducer. Thus, a microphone is
preferred for use with a low Reynolds-number flow, because of its small am-
plitude but moderate-scale motions with a frequency of more than 20 Hz. The
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static pressure increases with the Reynolds number, and large-scale motions
are generated accordingly. In this condition, a transducer is used instead of a
microphone for measurement. We suppose that a microphone is available up
to Rλ � 350, but a transducer may be used beyond this Reynolds number. The
sensors are fitted with tubing as a pressure duct, as shown in Fig. 1, and are
inserted into the flow domain in such a way that the axis of the microphone (or
the transducer) itself is aligned with the mean stream. We have preliminarily
checked the angle between the pressure probe and the flow direction for its
effect on the measured data. The error was less than 2.5% for −15 ≤ θ ≤ +15.
Statistical quantities such as spectrum and pdf does not change significantly
while θ is not so large. The frequency response of the system is limited by
the Helmholtz-resonator response of the tube and sensor cavity (Kobashi 1957,
Toyoda et al.1993) Toyoda et al.1993).

DNS of incompressible homogeneous turbulence is performed using periodic
boundary conditions of periods of 2π in each of the three Cartesian coordinate
directions. There are three different runs in which Rλ = 94 (N = 2563),
164 (N = 5123), and 283 (N = 10243). Here N is the number of grid points.
An almost statistically stationary state is achieved with an energy flux nearly
equal to the energy dissipation rate 〈ε〉 in the case of Rλ = 283. Detailed
explanations on DNS are given in Ishihara et al. (2003).

3. Results and discussion

3.1

Observing the measured pressure fluctuation, as shown in Fig. 2, it is noted
that its fluctuation takes occasionally large negative values. This might corre-
spond to the small vortex filaments visualized by Douady et al. (1991). The
probability density function (PDF) of pressure is plotted in Fig. 3, which is
negatively skewed. In order to check the quantitative accuracy, measured PDF

Figure 1. Schematic view of static pressure probe. φ1 = 0.4 mm, φ2 = 1.0 mm, L1 = 22.5
mm, L2 = 47.5 mm, L3 = 30.0 mm.

Quantitative evaluation of measured data
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Figure 2. Typical example of pressure fluctuation at Rλ = 1150. Vertical axis is normalized
by its standard deviation.

is compared with that of DNS for almost the same Reynolds number. PDF
shifts to the positive side and its maximum peak locates slightly away from
p = 0. There is a small qualitative difference between DNS and the experi-
ment around |p/p′| ≤ 1, where p′ is a standard deviation of p. On the positive
side, experimental values are slightly larger than DNS. They are closer to the
Gaussian profile. On the negative side, −6 ≤ p/p′ ≤ 0, PDFs agree with one
another sufficiently.

Figure 3. PDF of measured pressure (symbols) are compared with DNS (solid lines). p′ is
a standard deviation of p. Insets show the core region |p/p′| ≤ 3.0. Dotted line is Gaussian
profile.

Two-point pressure correlations can be expressed in terms of fourth-order
structure functions of velocity. In homogeneous isotropic flow, the longitudinal
velocity correlation coefficient f(r) is used for evaluating the right-hand side
of the Poisson equation subject to the quasi-normal assumption. It means that
fourth-order velocity structure functions are represented by products of factored
second-order quantities (Monin & Yaglom 1975). Using this assumption, the
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Figure 4. Root-mean-square of pressure fluctuation is normalized by ρu′2, where u′ is standard
deviation of streamwise velocity fluctuation.

root-mean-square of pressure is scaled by ρu′2 like p′/(ρu′2) = C1, where
u′ is a standard deviation of velocity fluctuation. In the case of an empirical
relation, f(r) � exp(−r2), C1 is about 0.7 (Hinze 1975). Batchelor evaluated
C1 = 0.58 by using f(r) obtained in a high Reynolds number experiment
(Monin & Yaglom 1975). Recent DNS data suggest 0.8 ≤ C1 ≤ 1.0 for
Rλ < 300 but a weak dependence of Reynolds number is confirmed (Gotoh
& Fukayama 2001, Vedula & Yeung 1999, Cao, Chen & Doolen 1999). In the
course of this study, C1 is found to be slightly dependent on Rλ. C1 is about
0.7 in the low-Reynolds-number range, but increases gradually up to 1.0 until
Rλ reaches 700. In larger Reynolds numbers, 700 ≤ Rλ ≤ 1200, the ratio is
almost constant; C1 � 1.0. As plotted in Fig. 4, these experimental results
indicate quantitative agreement with the present DNS results.

3.2 Scaling of pressure spectrum

Kolmogorov presented hypotheses for small-scale statistics based on the idea
of local isotropy, which is restated by the relation,

Epp(k1) = ρ2 〈ε〉3/4 ν7/4φp(k1η) , (1)

for the case of pressure fluctuation, where ν is kinetic viscosity, 〈ε〉 is energy
dissipation rate per unit mass on average, and η is a typical length scale defined
by η ≡ (ν3/ 〈ε〉)1/4. The wavenumber is defined by k1 ≡ 2πf/U , where f is
the time frequency and U the local mean velocity. φp is a non-dimensional func-
tion. When the Reynolds number becomes large, according to Kolmogorov’s
idea, the spectrum exhibits a simpler form independent of kinetic viscosity as

Epp(k1) = Kpρ
2 〈ε〉4/3 k

−7/3
1 . (2)

The −7/3 power-law scaling was supported theoretically with various assump-
tions in 1950’s by Batchelor (1951), Inoue (1951), and Obukhoff & Yaglom
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Figure 5. Scaling exponent γp and constant K′
p defined by Eq. (3) are plotted as a function

of Reynolds number.

(1951). George et al. (1984) and Jones et al. (1979) measured the pressure
spectrum in the mixing layer of a round jet, and Elliott (1972) and Albertson
et al. (1998) measured the pressure in the atmospheric boundary layer. But all
these experiments were not enough to ascertain the power-law scaling exponent
and the scaling form of Eq. (1). The relation was also investigated by analyzing
the data of direct numerical simulation of homogeneous isotropic turbulence (
Pumir 1994; Gotoh & Fukayama 2001; Vedula & Yeung 1999; Cao et al. 1999).
However, the Reynolds number was too low to confirm the validity of the scal-
ing form. At this stage, there is no consensus on the scaling exponent of the
pressure spectrum and on the Kolmogorov similarity scaling.

We study here how the spectral form varies depending on the Reynolds
number. Especially, the spectral exponent and constant Kp are studied from the
standpoint of Kolmogorov scaling. A power-law exponent of pressure spectrum
is systematically obtained by fitting the relation

Epp(k1) = Kp
′ρ2 〈ε〉3/4 ν7/4(k1η)−γp , (3)

against the measured spectrum, while the normalized spectrum Epp/(k1η)−γp

shows the broadest flat region. Kp
′ is a non-dimensional quantity. If the scaling

exponents γp are plotted as a function of Rλ, they indeed depart from 7/3 in
low Reynolds numbers. This trend is similar to the results of DNS. But the
exponents certainly approach 7/3 as the Reynolds number increases. In this
experiment, the −7/3 power-law scaling is confirmed for 600 � Rλ. Small-
scale intermittency effect is not discussed here.

There has been little discussion as to the value of a spectral constant. We had
systematically obtained K ′

p by way of Eq. (3). K ′
p is a increasing function of

Rλ, and it is 5.0± 1.0 at Rλ � 1000. By fitting Epp(k1) = Kpρ
2 〈ε〉4/3 k

−7/3
1

against the measured spectrum, we found that Kp is about 6.5 at Rλ = 1030.
Therefore, we conclude that the Reynolds number dependence of Kp is not neg-
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Figure 6. Pressure spectra are normalized by Kolmogorov scaling defined by Eq. (3) with
γp = 7/3.

ligible. The exponent γp approaches 7/3 when Rλ is larger than 600. This is a
significantly higher Reynolds number than needed for inertial scaling in veloc-
ity statistics. The pressure spectrum has a noticeably narrower scaling region
than the velocity. This is consistent with the result that the higher Reynolds
number is needed to realize a clear −7/3 power-law scaling (Ishihara et al.
2003).

In Fig. 6 the pressure spectra are normalized in Kolmogorov scaling defined
by Eq. (3) with γp = 7/3. As the Reynolds number increases, a flat region
appears where we expect the inertial range. In the dissipation region, there is a
small bump for 0.03 ≤ k1η. It takes a maximum around k1η = 0.14. However,
in low Reynolds numbers it is difficult to distinguish between the inertial range
and the bump region. Thus, the power low exponent γp inevitably represents the
slope of the beginning part of the bump. Gotoh & Fukayama (2001) reported that
the −5/3 slope observed in DNS is due to the spectral bump around kη � 0.2.
Comparing the spectral bump in the experiment with that of DNS, we see that
the bump exists at almost the same location (0.03 ≤ kη), but the DNS bump
steeply increases and takes its maximum at kη � 0.2. The maximum value,
depending on the Reynolds number, is clearly larger than that in the experiment.

References
Albertson, J. D., Katul, G. G., Parlange, M. B., and Eichinger, W. E.

1998, Spectral Scaling of Static Pressure Fluctuations in the Atmospheric Surface Layer:
The Interaction between Large and Small Scales, Physics of Fluids, 10, 1725–1731.

Batchelor, G. K. 1951, Pressure Fluctuations in Isotropic Turbulence, Proc. Camb. Phil.
Soc., 47, 359–374.

Cao, N., Chen, S. & Doolen, G. D. 1999, Statistics and Structures of Pressure in Isotropic
Turbulence, Phys. of Fluids, 11, 2235–2250.



170

Douady, S., Couder, Y. & Brachet, M. E. 1991, Direct Observation of the Intermit-
tency of Intense Vorticity Filaments in Turbulence, Physical Rev. Lett., 67 983–986.

Elliott, J. A. 1972, Microscale Pressure Fluctuations Measured within the Lower At-
mospheric Boundary Layer, J. Fluid Mech., 53, 351–383.

Gotoh, T. & Fukayama, D. 2001, Pressure Spectrum in Homogeneous Turbulence, Phys.
Rev. Lett., 86 3775–3778.

George, W. K., Beuther, P. D. and Arndt, R. E. A. 1984, Pressure Spectra in
Turbulent Free Shear Flows, J. Fluid Mech., 148, 155–191.

Hinze, O. 1975, Turbulence. McGraw-Hill, New York.
Inoue, E. 1951, The Application of the Turbulence Theory to the Large-scale Atmospheric

Phenomena, Geophys. Mag., 23, 1–14.
Ishihara, T., Kaneda, Y., Yokokawa, M., Itakura, K. & Uno, A. 2003, Spec-

tra of Energy Dissipation, Enstrophy and Pressure by High-Resolution Direct Numerical
Simulations of Turbulence in a Periodic Box, J. Phys. Soc. Jpn., 72, 983–986.

Jones, B. G., Adrian, R. J., Nithianandan, C. K., Planchon Jr., H. P., 1979,
Spectra of Turbulent Static Pressure Fluctuations in Jet Mixing Layers, AIAA Journal, 17,
449–457.

Kobashi, Y. 1957, Measurements of Pressure Fluctuation in the Wake of Cylinder, J. Physical
Soc. Japan, 12 533–543.

Monin, A. S. & Yaglom, A. M. 1975, Statistical Fluid Mechanics. MIT, Cambridge, MA,
Vol. 2.

Nelkin, M. 1994, Universality and Scaling in Fully Developed Turbulence, Advances in
Physics, 43 143–181.

Obukhoff, A. M. and Yaglom, A. M. 1951, The Microstructure of Turbulent Flow,
NACA TM 1350.

Pumir, A. 1994, A Numerical Study of Pressure Fluctuations in Three-dimensional, Incom-
pressible, Homogeneous, Isotropic Turbulence, Phys. Fluids, 6, 2071–2083.

Sreenivasan, K. R. & Antonia, R. A. 1997, The Phenomenology of Small-scale Tur-
bulence, Annu. Rev. Fluid Mech., 29 435–472.

Toyoda, K., Okamoto, T, & Shirahama, Y 1993, Eduction of Vortical Structures by
Pressure Measurements in Noncircular Jet, Fluid Mech. and Its Applications, 21 125–136.

Tsuji, Y. & Ishihara, T. 2003, Similarity Scaling of Pressure Fluctuation in Turbulence,
Physical Rev. E, 68 026309.

Vedula, P. & Yeung, P. K. 1999, Similarity Scaling of Acceleration and Pressure Statistics
in Numerical Simulation of Isotropic Turbulence, Phys. of Fluids, 11, 1208–1220.



INTERMITTENCY, FIELD STRUCTURES AND
ACCURACY OF DNS IN A PASSIVE SCALAR
TURBULENCE

Takeshi Watanabe, Toshiyuki Gotoh
Department of Mechanical Engineering, Applied Physics Program, Nagoya Institute of Tech-
nology,
Gokiso, Showa-ku, Nagoya 466-8555 Japan

watanabe@nitech.ac.jp, gotoh.toshiyuki@nitech.ac.jp

Abstract Resolution requirements of direct numerical simulation (DNS) for passive scalar
advected by homogeneous turbulence are numerically investigated. We examine
the effects of dissipation intermittency on the small-scale statistics by performing
DNSs with various spatial resolutions at the fixed Reynolds number Rλ 
 180.
It is found that the statistics of intermittent fluctuations for the energy and scalar
dissipations strongly depend on the value of cutoff wavenumber Kmax. However
the behavior of spectra and high-order structure functions at the scales much
larger than the Kolmogorov scale η̄ are found to be insensitive to the variation of
Kmaxη̄.

Keywords: Passive scalar, intermittency, direct numerical simulation

1. Introduction

It is well-known from the direct numerical simulations (DNSs) and ex-
periments for the homogeneous turbulence that the energy dissipation field
ε(x) = ν(∂iuj + ∂jui)2/2 shows strong intermittency of fluctuations (Frisch
1995). It is thought that such a dissipation intermittency poses the stringent
resolution requirements of DNS (Sreenivasan 2004), which is given by

Kmaxηmin ≥ 1, (1)

instead of the usual requirement by Kmaxη̄ ≥ 1, where Kmax is a cutoff
wavenumber due to the truncation of Fourier series expansion, η̄ = (ν3/ε̄)1/4

is the Kolmogorov scale. The smallest dissipation scale ηmin is defined by
ηmin ≡ (ν3/εmax)1/4 = (ε̄/εmax)1/4η̄, where εmax

ε(x) in space. A multifractal theory of turbulence (Frisch 1995) evaluates
εmax/ε̄ ∼ R2

λ λ

number. The existence of strong intermittency means εmax
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is the Taylor microscale Reynolds

is the largest value of
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the resolution requirement based on η̄, i.e. Kmaxη̄ = 1 ∼ 2 as used in the recent
DNSs (Wang et al. 1999, Yeung et al. 2002, Gotoh et al. 2002), yields the
failure of (1); Kmaxηmin � 1. Thus the statistical nature at sub-Kolmogorov
scale must be affected by the contaminations around Kmax.

The effects of dissipation intermittency on the resolution requirement of DNS
become to be more significant in the case for the passive scalar in turbulence (
Sreenivasan 2004). This is originated from the empirical fact that the dissipa-
tion field of the scalar variance χ(x) = κ(∂iθ)2 exhibits stronger intermittency
of fluctuation than that in ε(x) (Warhaft 2000), where κ is diffusivity. The dis-
sipation scale of scalar variance, namely the Batchelor scale η̄B = (κ2ν/ε̄)1/4,
varies with the Schmidt number SC = ν/κ as

η̄B = S
−1/2
C η̄. (2)

This relation means that the spatial resolution finer than that only in the velocity
field is required for the passive scalar DNS with SC � 1 in order to resolve the
small-scale natures in the scalar field.

Above suggestions bring us a very important problem when we aim to re-
alize as high-Rλ turbulence as possible by DNS in the limited computational
resource. Is the resolution requirement Kmaxη̄ = 1 adequate for the DNS of
high-Rλ turbulence with passive scalar transport even when SC = 1? The pur-
pose of the present study is to examine this point by investigating the effect of
the contamination around Kmax on the behavior of several important statistical
quantities like the spectra and structure functions.

2. Direct numerical simulations and results

The fundamental equations of motion for the incompressible velocity field
ui(x, t) (i = 1, 2, 3) and the scalar field θ(x, t) are given by the Navier-Stokes
equation and the advection diffusion equation, respectively. We consider only
a case of SC = 1. Several settings of DNS and the definitions of statistical
quantities are the same ways as those in our previous paper (Watanabe & Gotoh
2004). All the parameters included in a series of DNS are fixed except the spatial
resolution N3 (or Kmax). We performed three cases of DNS, which are named
as Run A (N = 2563, Kmaxη̄ = 1.0), Run B (N = 5123, Kmaxη̄ = 2.0)
and Run C (N = 10243, Kmaxη̄ = 3.7). In these cases, we obtained the
turbulent states with Rλ � 180, and the values of fundamental statistics like
the normalized mean dissipations (ε̂, χ̂) = (0.48, 0.32), the integral scales
(L, Lθ) = (1.20, 0.78) and the Taylor microscales (λ, λθ) = (0.21, 0.12) were
almost independent of N . Moreover, we refer to our previous result of the
high-Rλ DNS with the passive scalar transport (Run 2 in Watanabe & Gotoh
2004); the case for Rλ = 427, N = 10243 and Kmaxη̄ = 1.06 is named as
WG04.
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Figure 1a. Kmaxη̄-dependences of PDFs
for ε/ε̄ and χ/χ̄. Curves for χ are shifted by
10 for clarity.

Figure 1b. Log-log plot of figure1a.

Figure 1 shows the behavior of probability density functions (PDFs) for ε/ε̄
and χ/χ̄ obtained by Runs A, B and C. The PDFs for χ/χ̄ have larger proba-
bilities of rare fluctuations than those for ε/ε̄. Thus χ/χ̄ is more intermittent
than ε/ε̄. The probabilities in the tail part for both cases increase as Kmaxη̄ in-
creases. In the case for Run C, we can approximately evaluate as εmax/ε̄ ∼ 300.
This means ηmin ∼ η̄/4, i.e. Kmaxηmin � 1. Thus the condition for Run C
satisfies the resolution requirement of DNS given by (1) (Sreenivasan 2004).
As shown in figure1b, in contrast, each PDF is on the same curve in the ranges
ε/ε̄ < 10 and χ/χ̄ < 10. Quantitative examination yields that the moments
evaluated by Run A are underestimated, in which 〈(ε/ε̄)3〉 and 〈(χ/χ̄)3〉 are
about 55 and 43 percents for those by Run C, respectively. The above results
suggest that the high-order derivative statistics are sensitive to the variation of
Kmaxη̄, but for the low-order statistics, the effect of resolution is negligible as
far as Kmaxη̄ ≥ 1 as mentioned in the previous paragraph.

Next we examine the effects of resolution on the behavior for spectra and
structure functions. The classical scaling theory of turbulence with passive
scalar transport (Kolmogorov 1941, Obukhov 1949, Corrsin 1951, named as
KOC) yields the scaling laws in the inertial-convective range (ICR); the energy
spectrum E(k) and the scalar variance spectrum Eθ(k) are given by

E(k) = ε̄2/3k−5/3f(kη̄), Eθ(k) = χ̄ε̄−1/3k−5/3fθ(kη̄B, η̄/η̄B), (3)

respectively, where f(x) and fθ(x, y) are universal scaling functions being free
from the details of large-scale natures. In the case for SC = 1, the statistical
properties in the range kη̄ � 1 are independent of ν and κ, i.e. f(x) = K
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Figure 2. Kmaxη̄-dependences of com-
pensated spectra f(x), fθ(x, 1) for Runs A,
B, C and WG04.

Figure 3. Approach of the curves to the
4/5 and 4/3 laws for Runs A, B, C and
WG04.

and fθ(x, 1) = COC with x � 1, where K and COC is the Kolmogorov and
Obukhov-Corrsin constants, respectively. Figure 2 shows the behavior of f(kη̄)
and fθ(kη̄, 1) obtained by Runs A, B, C and WG04. It is clearly recognized that
the results for Runs A, B and C are on the same curve irrespective of Kmaxη̄
except the range k ∼ Kmax. Moreover the bodies of spectra are satisfactorily in
good agreement with that evaluated by WG04. This result strongly suggests that
we can accurately obtain the behavior of spectra from ICR to viscous-convective
range even in the case for Kmaxη̄ � 1 as used in WG04.

The effects of resolution on the third-order structure functions for the longi-
tudinal velocity increment δur and the scalar increment δθr are also examined.
There are asymptotically exact statistical laws in η̄, η̄B � r � L, the so-called
4/5 and 4/3 laws, derived from the fundamental equations of motion under the
hypoteses of isotropy and homogeneity (Monin & Yaglom 1975) as

−〈(δur)3〉/ε̄r = 4/5, − 〈δur(δθr)2〉/χ̄r = 4/3. (4)

Figure 3 shows the results by DNS. The plateaus of the compensated 4/5 and
4/3 laws for Runs A, B and C are narrower than those by WG04 because of
low-Rλ. The curves for Runs A, B and C are almost independent of Kmaxη̄
except the range r ∼ L. This comes from the non-stationary effects at the large
scales due to the shorter averaging times of Runs B and C than that of Run A.

The intermittency problem in the high-Rλ turbulence is highlighted in the
scaling of the high-order structure functions. The Kmaxη̄-dependences of the q-
th order structure functions, SL

q (r) = 〈|δur|q〉, Sθ
q (r) = 〈|δθr|q〉 and SθL

q (r) =
〈|δurδθ

2
r |q/3〉 are examined for this purpose. The DNS results are shown in
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figure 4, in which the structure functions with order q (q = 3, 4, 6 and 8)
are compensated by the KOC scaling. In the range r/η̄ < 10, each structure
function is sensitive to the variation of Kmaxη̄ as q increases, while in r/η̄ > 10
the curves are almost independent of Kmaxη̄. These features are also confirmed
more clearly by examining their local slopes (figures are not shown).

Figure 4. Kmaxη̄-dependences of (a) SL
q (r), (b) Sθ

q (r) and (c) SθL
q (r) compensated by KOC

scaling. Curves are for q = 3, 4, 6 and 8 from the lowermost curve.

3. Summary

We have examined the resolution requirement of passive scalar DNS by
investigating the Kmaxη̄-dependences of the several statistics in the velocity and
scalar fields. It was clarified that the high-order derivative statistics are sensitive
to the variation of Kmaxη̄. In contrast, it was shown that the statistics like the
spectra and the third-order structure functions are insensitive to the variation
of Kmaxη̄. It is quite an encouraging result that the scalar variance spectra
at wavenumbers kη̄ < 0.7 are accurately computed even when Kmaxη̄ = 1,
although the previous DNSs have computed the spectra with the condition
Kmaxη̄ � 1.5 stronger than Kmaxη̄ = 1 (Wang et al. 1999, Yeung et al. 2002).
Moreover it was shown that the high-order structure functions significantly
depend on Kmaxη̄ in the range r/η̄ < 10, but their Kmaxη̄-dependences are
negligible in r/η̄ > 10 when q ≤ 8. Our previous study showed that the
ICR exists in r/η̄ > 200 (Watanabe & Gotoh 2004). This fact suggests that
the condition Kmaxη̄ = 1 is satisfactory to assure the accuracy of the passive
scalar DNS with SC = O(1) for studying the scaling structures associated with
the intermittency problems in ICR scale.

The authors thank the Information Technology Center of Nagoya University,
the Theory and Computer Simulation Center of the National Institute for Fu-
sion Science and the Earth Simulator Center for providing the computational
resources.
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Abstract A new similarity theory is proposed for decaying two-dimensional Navier–Stokes
turbulence, including the viscous range, which encompasses all Reynolds num-
bers and various degrees of hyperviscosity. In the high Reynolds number limit
where the energy E is invariant, the theory predicts the enstrophy decay law
Q ∼ t−1/p, where t is time and p is the degree of hyperviscosity (p = 1 is
the usual Laplacian viscosity). This is at variance with the vortex scaling theory
of Carnevale et al. (1991). However it is consistent with previously published
numerical simulations using the usual viscosity. That enstrophy decay in the high
Reynolds number limit may depend on the degree of hyperviscosity suggests that
the inviscid limit is singular. Indeed, our similarity theory based on the invis-
cid equations predicts an upscale energy flux for all wavenumbers, in violation
of basic physical constraints. This may be part of the reason for the failure of
Batchelor’s (1969) decay law E ∼ t0, Q ∼ t−2.

Keywords: Decaying two-dimensional turbulence, self-similarity, Batchelor’s similarity hy-
pothesis

1. Introduction

Self-similarity has been one of the most attractive approaches to the study of
decaying turbulence. Batchelor (1969) proposed a self-similar energy spectrum

of high Reynolds number and predicted the energy and enstrophy decay laws as
E ∼ t0 and Q ∼ t−2, respectively. However, his theory has not been supported
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by direct numerical simulations. It is well known that the existence of coherent
vortices is responsible for the failure of Batchelor’s theory (Bartello & Warn
1996). Recently, self-similar evolution of the energy spectrum for decaying 2-D
NS turbulence with the usual viscosity has been found numerically at various
Reynolds numbers (Bartello & Warn 1996, Chasnov 1997, Das et al. 2001). At
a particular low Reynolds number, Re = 15.73, the energy and enstrophy decay
as E ∼ t−1 and Q ∼ t−2, respectively (Chasnov 1997). For high but finite
Re, the energy and enstrophy decay laws are approximated well by E ∼ t0 and
Q ∼ t−1 (Bartello & Warn 1996, Chasnov 1997, Das et al. 2001). Although
Chasnov & Herring (1998) proposed a self-similarity theory to explain these
decay laws, their theory only treats the NS equation with the usual viscosity.
Here we propose a theory for decaying 2-D NS turbulence that is applicable to
the case of hyperviscosity. We also discuss the failure of Batchelor’s similarity
hypothesis within our framework.

2. Theory

We consider decaying evolution of the 2-D NS equation with hyperviscosity
of degree p. The starting point of the present analysis is the evolution equation
for the energy spectrum,

∂

∂t
E(k) = T (k) − 2νpk

2pE(k). (1)

Here k is the horizontal wavenumber (the system is assumed to be isotropic),
T (k) is the nonlinear energy transfer function between wavenumbers, and νp

is the hyperviscosity coefficient.
We suppose that the energy spectrum has the self-similar form,

E(k) = cΛσtδG (x) , x ≡ k Λ, (2)

where σ and δ are constants, c is also a constant with the dimension of
(length)3−σ/(time)δ+2, G is a positive definite function of universal form,
and Λ is a length scale. That is, the energy spectrum is supposed to be scaled
in terms of length Λ and time t. We do not explicitly define the length scale
Λ. If the self-similarity is satisfied over all wavenumbers, then all length scales
must grow at the same rate. Therefore, it is possible to take Λ to be either the
energy containing scale or the dissipation scale. When σ = 3 and δ = −2,
the dimension of Λσtδ coincides with that of E(k) and c is non-dimensional.
However, for other choice of σ and δ, the dimension of Λσtδ does not coincide
with that of E(k) and c is dimensional. Therefore, we refer to self-similarity
(2) with σ = 3 and δ = −2 as normal self-similarity, and to other cases as
anomalous self-similarity.
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The self-similar forms of the energy transfer function T (k) and the energy
flux Π(k), which is defined by Π(k) = −

∫ k
0 T (k′) dk′, are then obtained as

T (k) = cΛσtδ−1G1(x) (3)

and

Π(k) = cΛσ−1tδ−1G2(x), (4)

respectively. Here, G1 and G2 are also functions of universal form. From the
definition of Π(k), the relation between G1 and G2 is given by

G2(x) = −
∫ x

0
G1(x′) dx′. (5)

In addition, conservation of energy in the nonlinear interactions ensures∫ ∞

0
G1(x) dx = 0. (6)

Using (2) and (3), (1) reduces to

G1(x) = γ
d
dx

{xG(x)} + {(σ − 1)γ + δ}G(x) + 2νpΛ−2ptx2pG(x),

γ ≡ d ln Λ
d ln t

.

(7)

In order to ensure the existence of the functions of universal form, (7) must be
explicitly independent of time t. This constrains γ and Λ−2pt to be constant,
which requires

γ =
1
2p

. (8)

Leaving γ arbitrary for now, integrating (7) with respect to x from 0 to ∞,
and using (6) and assumptions xG(x) → 0 as x → 0 and x → ∞, we obtain

{(1 − σ)γ − δ}
∫ ∞

0
G(x) dx = 2νpΛ−2pt

∫ ∞

0
x2pG(x) dx. (9)

Since the energy evolution equation is given by dE/dt =
−2νp

∫∞
0 k2pE(k) dk, (9) is equivalently written as

dE
dt

= −{(1 − σ)γ − δ} E
t
. (10)

Equation (10) is the closed energy equation and leads to the energy decay law,

E ∼ t−θ, θ = (1 − σ)γ − δ. (11)
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The energy dissipation must be non-negative, which leads to the inequality
(1 − σ)γ ≥ δ. A similar analysis to the enstrophy spectral evolution equation
leads to the enstrophy decay law,

Q ∼ t−θ−2γ . (12)

In the case of normal self-similarity with the usual viscosity (p = 1), i.e.,
inserting γ = 1/2, σ = 3 and δ = −2 into (11) and (12), the latter equations
reduce to E ∼ t−1 and Q ∼ t−2, respectively. That is, this case recovers
the critical Reynolds number decay law numerically found by Chasnov (1997).
Moreover, the above analysis shows that normal self-similarity cannot exist in
the high Reynolds number limit, for which θ = 0.

Study of decaying two-dimensional turbulence has been performed not only
by numerical simulations but also by laboratory experiments (e.g., Hansen et
al. 1998). A major difference between numerical simulations and laboratory
experiments is that the effect of bottom friction of the container on the evolution
of the system cannot be ignored in laboratory experiments. The effect of bottom
friction can be modelled by an additional linear damping term of the vorticity
equation as follows:

∂ω

∂t
+ J (ϕ, ω) = −αω + (−1)p−1νp∇2pω, (13)

where α is the friction coefficient and is regarded as a constant. When the
additional linear damping term exists in the vorticity equation of the two-
dimensional Navier-Stokes system, the former equation of (7) is replaced by

G1(x) = γ
d
dx

{xG(x)}+{(σ − 1)γ + δ}G(x)+2νpΛ−2ptx2pG(x)+αtG(x).
(14)

In order to ensure the existence of the functions of universal form, the above
equation must be explicitly independent of time t. Then, the friction coefficient
must depend on time as α ∼ t−1. Therefore, our analysis suggests that in
the presence of a bottom friction modelled by a linear damping of the vorticity
equation, with a constant friction coefficient, self-similar evolution of the energy
spectrum over all wavenumbers cannot be realized.

3. Dynamical interpretation of failure of Batchelor’s
similarity hypothesis

Next, we consider the inviscid case of normal self-similarity. Neglecting the
viscosity term (setting νp = 0) and setting σ = 3 and δ = −2, (7) reduces to

G1(x) = γ
d
dx

{xG(x)} + 2(γ − 1)G(x). (15)
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As before, γ must be constant in order to allow the existence of the universal
functions G and G1, but now γ is not yet determined. However, for σ = 3
and δ = −2, (11) and (12) reduce to E ∼ t−2(1−γ) and Q ∼ t−2, respectively.
Therefore, one obtains γ = 1 as the condition to ensure energy conservation in
the inviscid limit. The above decay law is nothing but Batchelor’s prediction.
Therefore, in the case of inviscid and normal self-similarity, our general theory
recovers Batchelor’s similarity hypothesis (Batchelor (1969)).

The above discussion sheds light on the reasons for the failure of Batchelor’s
similarity hypothesis. Using (5) and setting γ = 1, (15) reduces to

G2(x) = −xG(x), (16)

where we assume xG(x) → 0 as x → 0, again. Since the function G(x) is
positive definite, (16) implies that G2(x) is negative definite, i.e. the energy
flux is upscale for all wavenumbers. Thus, the relation (16) cannot possibly
represent downscale transfers of energy. However, it is well known from Fjørtoft
(1953) and Merilees & Warn (1975) that decaying 2-D turbulence must involve
a spread of energy both to larger and to smaller scales. The relation (16) is in
contradiction with this basic dynamical fact. This is a dynamical interpretation
for the failure of Batchelor’s similarity hypothesis.

4. Summary

In this paper, we have proposed a new self-similarity hypothesis for decay-
ing 2-D NS turbulence, including viscous effects. The self-similarity hypothe-
sis proposed in this study allows for dimensionally anomalous scaling, and is
therefore called anomalous self-similarity, in contrast to normal self-similarity
which has a dimensionless multiplicative factor. Our analysis shows that the
self-similar spectra observed by Chasnov (1997) at a critical Reynolds number
correspond to normal self-similarity, while those observed at high Reynolds
number by Chasnov (1997) and Das et al. (2001), as well as by Bartello &
Warn (1996) using the usual viscosity, correspond to anomalous self-similarity.
In the inviscid case, our analysis leads to Batchelor’s (1969) similarity hypoth-
esis, which is not observed in numerical simulations. However, our analysis
provides an explanation for the failure of Batchelor’s similarity hypothesis from
the viewpoint of energy transfer in wavenumber space.
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Abstract This paper presents a new grid-free type of redistribution model for turbulent
flow analysis, in which each vortex particle is redistributed into some elements in
accordance with its stretching rate. The model is applied to an inclined collision
of two vortex rings. Energy spectra are analyzed and compared with existing
DNS data and results of experiments by Saddoughi & Veeravalli (1994). The
energy cascade and dissipation process are reasonably simulated. In addition,
the LES model proposed by Kiya & Izawa (1999) is applied to the proposed
redistribution model. The results show that the analyzed energy spectra are in
close agreement with the existing DNS data up to high wave number region.

Keywords: Vortex methods, 3-D core spreading method, redistribution model, turbulence
analysis, stretching effect

1. Introduction

In vortex methods, vorticity distribution in the flow field is represented by
discrete vortex elements. When compared to other computational schemes,
vortex methods have the advantage that the nonlinear distortion or stretching
of the vorticity region is directly calculated. Numerical resolution is dependent
on the scale of the discrete vortex elements. When their size approaches the

dent on the local strain rate. Therefore, particle redistribution schemes are
necessary for high strain regions. Usually, vortex methods are divided into
two methods. The first is the vortex-in-cell (VIC) method, in which the stream
function is calculated on the fixed grid, and the velocity is computed by finite
differences on the grid. The second is the Biot-Savart law method, in which the
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velocity is calculated by the Biot-Savart law, without using the grid. Cottet et al.
(2002) calculated two examples of fundamental turbulent flow using the VIC
method and a grid-based redistribution model. The results indicated that the
energy spectra were close to those analyzed by DNS. Nakanishi & Kamemoto
(1992) proposed 3-D core spreading method which is based on the Biot-Savart
law method. In this method, each vortex element is replaced by one vortex
blob element at each time step. The great advantage of this scheme is that it
can be easily applied to flows with complex geometry because of its grid-free
characteristic (see, for example, Ojima & Kamemoto 2000). In high strain re-
gions, however, the spatial resolution becomes worse because the distance of
each vortex element becomes larger than its core radius.

In our previous study (Fukuda & Kamemoto 2001), the unsteady deformation
of sub-core scale eddies of vortex blob elements was numerically investigated by
discretizing one vortex blob with smaller-scale vortex particles and calculating
their evolution. The results showed that the deformation of the sub-core scale
structure of a vortex blob is dependent on its stretching rate. Recently, Fukuda &
Kamemoto (2004) proposed a new grid-free type of redistribution model based
on 3-D core spreading method, in which the deformation of each vortex particle
is estimated by its stretching rate and each vortex element is redistributed into a
number of vortex blobs in accordance with the estimated scale. The model was
applied to an inclined collision of two vortex rings. The analyzed energy spectra
were in close agreement with the existing DNS data and results of experiments
by Saddoughi & Veeravalli (1994).

For high Reynolds number flows, turbulence models are necessary to sim-
ulate them in reasonable computational time. In this study, the LES model
proposed by Kiya & Izawa (1999) was applied to the redistribution model. In
the calculation using the proposed redistribution model, the vortical structure in
the high strain region is represented by small-scale vortex elements. Therefore,
by applying the LES model to the proposed redistribution model, it may be
possible to simulate the effects of sub-core scale vortices more accurately than
the calculation using the conventional 3-D core spreading method and the LES
model. In this study, the energy spectra were analyzed and compared to the
existing DNS data and results of experiments.

2. Mathematical basis

2.1 Basic equation

The governing equations of viscous and incompressible flows are described
by the vorticity transport equation,

∂ω

∂t
+ (u · �)ω = (ω · �)u + ν∇2ω. (1)
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where u is the velocity vector and the vorticity ω is defined as ω=�×u.

2.2 3D vortex blob model and 3D core spreading method

Vorticity distribution in the flow field is represented by the vortex blob el-
ement which is the spherical model with a radially symmetric distribution of
vorticity. The velocity induced by vortex blobs is calculated by the Biot-Savart
law and the trajectory of the vortex particle over the time step dt is calculated
by the second order Adams-Bashforth method. On the other hand, the time
evolution of vorticity is calculated using the 3-D core spreading method mod-
ified by Nakanishi & Kamemoto (1992). In this method, the stretch term and
diffusion term are separately considered and the viscous term is expressed by
the core spreading method proposed by Leonard (1980).

2.3 Redistribution model

When the stretching effect is larger than the diffusion effect, the time evo-
lution of the length becomes larger than the one of the core radius. In this
redistribution model, each discrete element is replaced by some vortex blobs
according to its deformed length and radius estimated by the 3-D core spread-
ing method and therefore the spatial resolution is maintained or improved. The
number of the redistributed vortex blobs for one deformed element is decided
using

n = floor (lt+∆t/(C · 2σt+∆t)) . (2)

Here, the function floor(x) gives the largest integer less than or equal to x.
C is the key factor used to select the resolution of the redistribution model.
When C is low, the spatial resolution becomes high. In this study, the value of
C=1.0 is selected. Each redistributed element has the equivalent volume and
the total volume of the redistributed elements is the same as the volume of the
deformed element. The length of the deformed element is divided into n parts,
and new elements are redistributed on their center points. The vortex strength
is conserved through the redistribution procedure.

2.4 Subgrid-scale model

Kiya & Izawa (1999) proposed the nonlinear core spreading algorithm, in
which the subgrid-scale viscosity νSGS is estimated using the local vorticity
stretching rate (1/ω) (dω/dt). In this study, the model is applied to the proposed
redistribution model. For the constant C ′, the value of 0.17 is employed.

3. Calculation conditions

The inclined collision of two vortex rings is analyzed. The initial set-up of
the vortex rings is as Table 1. Each vortex ring is inclined by angle θ. The
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Table 1. Vortex rings parameter in the initial state.

Ring circulation Γ0 2.0
Cut-off radius of a ring δ0/R0 0.275

Inclined angle θ 30◦

Distance of two rings D/R0 3.0
Reynolds number ReΓ0 = Γ0/ν 2200

initial vorticity distribution on the cross section of the single vortex ring is

ω(r) = 1/(aR0
2)·exp

(
−r3/R0

3
)

(a = 1.414), (3)

where r and R0 are the position on the cross section and the core radius of
the vortex ring respectively. This condition is consistent with one of the study
by Knio & Ghoniem (1990). The initial circulation on the cross section is
Γ0 = 2.0. The selected time step is ∆t = 0.02R0

2/Γ0. On vortex blob scale in
the initial state, the number of blobs is N0=15288 and the initial cut-off radius
is σ0/R0=0.085.

4. Calculation results

Figures 1 (a) and (b) show the instantaneous flow patterns at tΓ0/R0
2=12.0

calculated by the proposed redistribution model and both the redistribution
model and LES model proposed by Kiya & Izawa (1999) respectively. The
results show that the spatial resolution in the high strain region is maintained
by the redistribution model. There are not significant effects of the LES model
on the flow patterns. Figures 2 (a) and (b) show the analyzed one-dimensional
longitudinal power energy spectra based on Kolmogorov’s universal scale using
the proposed redistribution model and both the proposed redistribution model
and LES model respectively. The energy dissipation rate ε is obtained from

ε = 2ν

∫ 1/(2σmin)

0
kx

2E(kx)dKx. (4)

Here, σmin is the core radius of the smallest discrete vortex element. According
to the results, the energy spectra decrease close to the existing DNS data; the
energy cascade mechanism is reasonably simulated. In the present calculations,
the energy spectra are elongated to the high wave number region as the progress
of time, which means that smaller elements are introduced and the energy is
appropriately redistributed to each vortex element. Especially, by applying the
LES model, the analyzed energy spectra are in close agreement with the existing
DNS data up to higher wave number region.
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(a) (b)

Figure 1. Isosurfaces of vorticity |ω|=2 at tΓ0/R0
2=12. (a) redistibution model, (b) redisti-

bution model and LES model.

(a) (b)

Figure 2. Time evolution of energy spectra compared with other DNS data and results of
experiments (Saddoughi et al. 1994) (a) redistibution model, (b) redistibution model and LES
model.

5. Conclusions

In this paper, an inclined collision of two vortex rings was simulated using a
new grid-free type of redistribution model and the LES model proposed by Kiya
& Izawa (1999). The results showed that the redistribution model is useful to
maintain the spatial resolution in high strain regions. Furthermore, the analyzed
energy spectra were in close agreement with the existing DNS data up to high
wave number region.
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Abstract The turbulent motion of the Earth’s atmosphere and oceans is hugely influenced
by the effects of rotation and stratification. These effects alter the nature of tur-
bulence profoundly from that of a homogeneous fluid. In particular, motions
are dominantly horizontal, with vertical motions some three to four orders of
magnitude smaller than horizontal motions. Moreover, coherent structures —
vortices — are highly anisotropic, with vertical scales one to two orders of mag-
nitude smaller than horizontal scales. And, fluid particle motions are doubly
constrained: they must remain on (nearly flat) density surfaces and must retain
their scalar value of ‘potential vorticity’. These constraints are shown to be pow-
erful, even in flow regimes for which rotation and stratification are not dominant
effects.

Keywords: Rotation, stratification, turbulence, potential vorticity, balance

1. Introduction

A fundamental problem in fluid dynamics that remains a mystery, even after
half a century of dedicated research, is turbulence. It is a central feature of
atmospheric and oceanic dynamics, within which the effects of rotation and
stratification are paramount. These effects, however, have not been properly
accounted for in previous research. In particular, it is well known in meteorol-
ogy and oceanography that the distribution of ‘potential vorticity’ (representing
the ‘balanced motions’) has the greatest influence on the observed fluid motion,
whereas higher-frequency ‘inertia-gravity waves’ (representing the ‘imbalanced
motions’) are of secondary importance (see Ford et al. 2000, Dritschel & Viúdez
2003 & refs.). Many previous studies and numerical simulations have consid-
ered these two types of motion to be of comparable importance (cf. Smith &
Waleffe 2002) — this is not the regime relevant to atmospheric and oceanic

Here, we address this regime in detail, using arguably the most
advanced numerical method available, the contour-advective semi-Lagrangian
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(CASL) algorithm (Dritschel & Ambaum 1997, Dritschel & Viúdez 2003).
This approach is novel because it directly addresses the dominantly balanced
regime of turbulence. Numerical results indicate that this regime extends far
beyond the confines of fast rotation and strong stratification (small Rossby and
Froude numbers, R and F). Moreover, they indicate that there is no qualitative
difference between turbulence at small R and F, and turbulence at O(1) R and
F, over a moderate number of characteristic eddy rotation periods.

2. Problem formulation

2.1 Mathematical system

We consider an incompressible rotating stratified fluid of negligible viscosity,
a situation appropriate to oceanic turbulence in particular (the atmospheric case
is complicated by the exponential dependence of density with height). We make
the usual Boussinesq approximation, valid for density profiles which vary little
from a background constant (in the ocean, this variation is around 0.3%, see
Gill 1982). Although this variation is weak, the increase of density with depth
is sufficient to render the motion layerwise-two-dimensional over most of the
ocean; i.e. the stratification is important. The mean gradient of stratification

defines the buoyancy frequency through N =
√
−gρ−1

0 dρ̄/dz, where g is the
acceleration due to gravity, ρ̄(z) is the mean density as a function of height over
the region of interest (typically a few hundred kilometres in each horizontal
direction), and ρ0 is the mean density (mean of ρ̄(z) over z). Rotation is also
important for oceanic scales of interest, and it gives rise to a Coriolis acceleration
fk × u in the momentum equations, where f is the local vertical component
of the planetary vorticity 2ΩE , k is the local vertical unit vector, and u is the
velocity field.

In what follows, we consider only constant values of f , N and k, appro-
priate to sufficiently small regions of the ocean away from the Equator. This
allows one to study rotating stratified turbulence in the simplest context. Even
so, the problem is not at all simple. Turbulence depends fundamentally on
three basic parameters. The first is the ratio of frequencies f/N (this tends to
range from about 10−2 to 10−1 in the oceans, and about an order of magnitude
smaller in the atmosphere, see Gill 1982). To date, most studies have consid-
ered f/N = O(1), which is inappropriate but numerically less demanding (the
time step is predicated by the buoyancy frequency N ). The relevant regime of
small f/N has been given much less attention, as regards turbulence, though
this regime is what concerns weather forecasting and ocean modelling. Here,
following previous related studies of simpler flows (Viúdez & Dritschel 2003,
Dritschel & Viúdez 2003), we consider small f/N , specifically f/N = 10−1.
The principle effect of reducing f/N is to weaken the vertical motion and flatten
isopycnals (constant density surfaces). Further work is required to determine
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if smaller f/N has any qualitative effect on turbulence. The second basic pa-
rameter which shapes turbulence is the Rossby number R, defined as ||ζ||/f ,
where ζ is the relative vertical vorticity (with respect to a frame rotating at
the rate f/2), in some norm ||.||. Small Rossby number means that rotation is
important. Without stratification, vortex lines would tend to become vertical,
leading to 2D motion (with ζ conserved following fluid particles, see Gill 1982).
Rotation enhances vertical correlations. The third basic parameter is the Froude
number F, defined as ||ωh/Ntot||, where ω = ∇×u is the vorticity, ωh is the
horizontal part of it, and Ntot is the total buoyancy frequency, corrected for local

variations in density, i.e. Ntot =
√
−gρ−1

0 ∂ρ(x, t)/∂z. Small Froude num-
ber means that stratification is important. Without rotation, stratification tends
to generate layering, decoupled motions over vertical length scales exceeding
||u||/N (corresponding to F = O(1)). Stratification thus breaks down vertical
coherence for scales larger than this. The joint effect of rotation and stratifica-
tion leads to three-dimensional structures — coherent vortices (see below for
definition) — whose characteristic scale ratio H/L is O(f/N) (Charney 1971,
Dritschel et al. 1997, Reinaud et al. 2003 & refs.). This implies F ∼ R. In the
atmosphere and oceans, the Rossby number is O(10−1), but values of O(1) do
occur, e.g. near the Gulf Stream, which generates many strong vortices through
meandering instabilities.

Details of the governing mathematical equations and their numerical treat-
ment may be found in published works (Dritschel & Viúdez 2003 & refs.). The
most significant novel aspect of the numerical approach is to make explicit use
of the material conservation of ‘potential vorticity’ Π, i.e. DΠ/Dt = 0, where
we use the dimensionless form

Π ≡ (k + ω/f)·(k + ∇b/N2) , (1)

where b = −g(ρ − ρ̄)/ρ0 is the buoyancy. Note, Π is proportional to the total
(absolute) vorticity dotted into the gradient of the density.

This is accomplished by tracking material contours of potential vorticity
(PV) on isopycnal surfaces (which are also material). This proves to be a very
efficient and accurate approach, and is crucial for the accurate modelling of
these flows.

Having chosen PV as a ‘prognostic’ variable, we are faced with what to
choose for the other two (altogether, there are three independent time deriva-
tives in the equations). One could use any other independent set of variables
(two components of velocity for example), but there is an advantage to choos-
ing a pair of variables that represents, as far as is practically possible, what
the PV cannot: namely the inertia–gravity waves. This motivates choosing
a pair of variables which measure the departure from the leading-order (in R
and F) ‘geostrophic’ and ‘hydrostatic’ balances (obtained by striking out the
acceleration in the momentum equations, and equating the horizontal and ver-
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tical parts respectively). This leads to taking the components of the horizontal
ageostrophic vorticity ωag

h = ωh +∇hb/f to be the other two prognostic vari-
ables. (Advantages of this choice are discussed in Dritschel & Viúdez 2003.)

2.2 Quasi-geostrophic balance

In the small Rossby number limit, with F ∼ R, the full equations simplify
to the quasi-geostrophic (QG) balance equations (Pedlosky 1987, Dritschel &
Viúdez 2003). These equations are obtained by truncating the full equations,
written in the prognostic variables Π and ωag

h , at O(R). Then, the prognostic
equations for ωag

h can be dropped (ωag
h = O(R2)), and the PV in Eq.(1) can be

simplified to its linear part:

q = ζ + fN−2∂b/∂z . (2)

The quantity q is known as the QG PV. Like Π, q is materially conserved,
Dq/Dt = 0, but it is advected by a 2D non-divergent velocity field of the form
u = (−∂ψ/∂y, ∂ψ/∂x, 0) where the streamfunction ψ(x, y, z, t) is recovered
by inverting a 3D linear operator:

∂2ψ

∂x2
+

∂2ψ

∂y2
+

f2

N2

∂2ψ

∂z2
= q . (3)

Note, the buoyancy is b = f∂ψ/∂z at this order. By stretching z by N/f , the
operator becomes Laplace’s operator, and the inversion problem is isotropic inx,
y, and Nz/f . The explicit dependence on f/N then disappears, and moreover
there is no explicit dependence on R. It is convenient then to scale the equations
by R and work in terms of the stretched vertical coordinate, hereafter simply
denoted z. The QG system is not isotropic, however, because the advecting
velocity field is layerwise-2D.

Nevertheless, it is appropriate to stretch coordinates in this way, even in
the full system, and not treat the turbulence problem as a simple variation
on homogeneous turbulence. Rotation and stratification are here the leading-
order effects, and it is essential to account for them, e.g. by using much finer
resolution in the original height coordinate than in the horizontal coordinates.
Many phenomena in the atmosphere and oceans appear roughly isotropic after
stretching the vertical coordinate by N/f (e.g. ocean vortices are roughly 10–
100 km wide and 1–10 km deep), and this is consistent with Charney’s theory
of geostrophic turbulence (Charney 1971) as well as recent high-resolution QG
turbulence studies (Reinaud et al. 2003 & refs.).

2.3 Parameter settings and initialisation

Several simulations were carried out to compare the behaviour of turbulence
at finite R with QG turbulence. To this end, first a QG simulation was carried
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out (see Reinaud et al. 2003 for related simulations), starting with an isotropic
PV field (after the customary vertical stretching) consisting of spheres of QG
PV q = ±4π ⇒ Teddy = 1, where Teddy is a characteristic vortex rotation
period. An equal number and volume of cyclonic and anti-cyclonic vortices
were placed randomly (without overlap) in the domain initially. Their sizes
were picked from a frequently-observed power-law number density distribution
(Reinaud et al. 2003), and approximately a tenth of the domain was covered
by the vortices. The domain is a triply-periodic cube (in stretched coordinates),
with a basic grid resolution of 128 in each direction. Four times as many layers
were used to represent the PV on isopycnal surfaces, and a grid 4 times finer in
each horizontal direction was used in converting PV contours into gridded PV
values, needed in the rest of the numerical algorithm. Contour surgery, which
limits the growth in complexity of the contours, was applied at a twentieth of
the horizontal grid resolution (see Dritschel & Viúdez 2003 for further details
of these standard parameter settings).

The QG simulation was then run for 60 time units, well into the decaying
stage (peak contour complexity occurs around t = 40). The QG PV field at
t = 55 was extracted and used to initialise three other simulations now using
the full equations at finite R. We set the true PV anomaly � = Π−1 = εq/4π,
where ε can be thought of as an approximate Rossby number. In the full
model, the initial values of ωag

h must also be set. Taking zero values results
in an unrealistically strong generation of inertia–gravity waves. Instead, we
make use of a time-ramping procedure (Viúdez & Dritschel 2003, Dritschel
& Viúdez 2003) in which we artificially grow � from 0 to its final amplitude
(keeping it fixed in space) over a period ∆τI � Tiner, where Tiner = 2π/f is
the inertial period. Meanwhile we evolve ωag

h from zero initial values (a state of
rest). At the end of the initialisation period, the fields are found to contain only
weak inertia–gravity waves, a state consistent with atmospheric and oceanic
observations. Here we take ∆τI = 10Tiner.

The full model was then integrated forwards, over the equivalent of 5 QG
time units, in three cases: ε = 0.25, 0.5 and 0.75. An explicit third-order
time stepping procedure was used, with a time step ∆t = 0.1Tbuoy, where
Tbuoy = 2π/N is the buoyancy period. This ensures that the inertia–gravity
waves, with frequencies lying between f and N , are well resolved in time. A
larger time step could have been used for the PV advection, which tends to be
much slower.

3. Results

3.1 Potential vorticity evolution

A comparison of the three full model solutions with the QG solution, at the
equivalent of QG t = 60, is presented in Fig.1. Note, in the case ε = 0.25,
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QG ε = 0.25

ε = 0.5 ε = 0.75

Figure 1. Comparison of the PV anomaly fields � for various Rossby numbers ε, as labelled,
at 60 QG time units. The QG case corresponds to ε → 0. The view is orthographic, 60◦ from
the vertical, and from a point in the y-z plane. Cyclonic vortices with � > 0 are lightly shaded,
while anti-cyclonic vortices are darkly shaded. Only the inner eighth of the domain is shown.

this corresponds to 400 buoyancy periods or 40 inertial periods, plenty of time
for exciting inertia–gravity waves (see below). Most remarkable is the close
agreement in the PV fields at this time, despite the fact that Rmax = 0.98 and
Fmax = 0.60 in the case ε = 0.75. One would not expect the QG model to do
so well, at least according to popular belief. Part of this surprising agreement
may be due to the nearly balanced initialisation used in setting up the initial
fields: poor initialisation can rapidly deteriorate forecast accuracy. This is well
known in weather forecasting.

Note that the vortices have remained roughly isotropic; that is, they retain
an f/N aspect ratio in the original coordinates. This demonstrates the need
to ensure that the vertical grid spacing is f/N finer than the horizontal grid



A new twist to rotating stratified turbulence 197

spacing. Otherwise, one would not correctly represent the dominantly balanced
vortical motions, and as a consequence misrepresent the imbalanced inertia–
gravity wave motions as well. Once again, approaching this problem from
homogeneous turbulence is misleading.

3.2 Vertical velocity and isopycnal displacement

Figure 2. Comparison of the vertical velocity fields w for various Rossby numbers ε, as
labelled, at 60 QG time units. Contour intervals are 0.00004, 0.0001 and 0.004 for ε = 0.25,
0.5 and 0.75, respectively.

The vertical velocity field w is extraordinarily weak in most atmospheric
and oceanic motions, and is often taken to be a measure of inertia–gravity wave
activity. However, there can be a significant balanced component (i.e. arising
from the PV), particularly for small R and F, and when starting close to a state
with minimal wave activity.

A comparison of w in the three full model solutions, at QG t = 60, is pre-
sented in Fig.2. Both horizontal and vertical cross sections are shown. Again,
there is close agreement for the largest magnitude structures, indicating that they
are balanced motions linked with the PV (see below and Viúdez & Dritschel
2003). The maximum amplitudes are some two to three orders of magnitude
smaller than those for the horizontal velocity components (not shown). The
smaller, more random parts of the field are likely to be inertia–gravity waves
(Viúdez & Dritschel 2003, Viúdez & Dritschel 2004).
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Figure 3. Comparison of the isopycnal displacement fields D for various Rossby numbers ε,
as labelled, at 60 QG time units. Contour intervals are 0.002, 0.004 and 0.008 for ε = 0.25,
0.5 and 0.75, respectively.

The vertical displacement of isopycnals D = −b/fN (stretched by N/f )
is compared in the same format in Fig.3. Note that this field is substantially
smoother that w and is virtually free of inertia–gravity waves. This is true also
of the horizontal velocity field (not shown). Evidently, D is closely linked to the
PV field (see below). The monopolar structures seen in the z = 0 cross section
occur where the cross section cuts a vortex, either above or below its mid-plane
(cf. Viúdez & Dritschel 2003, Dritschel & Viúdez 2003). The displacement
is toward the vortex centre for cyclones, and away for anti-cyclones. D ≈ 0
passing through the vortex centre. Mainly dipolar structures are seen in the
y = 0 cross section, consistent with the above. Again, the agreement between
the fields at this time is surprisingly close.

3.3 Field intercomparison

To establish the link between the PV and the flow variables, a comparison
of w, ζ/f , D and � is presented in Fig.4. First, the PV field is clearly the
most compact, with only a small fraction of the domain occupied by nonzero
anomalies. Some of these anomalies are directly correlated with ζ/f , which
is less compact (note the strong gradients in ζ/f at the locations of the PV
contours). Others are not. In some places, there are strong values of ζ/f with
no evident PV anomaly. In these places, ζ/f is induced by PV anomalies in
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layers just above or below the central layer shown — the vorticity extends over
a wider range than does �. In turn, there are close links between D and ζ/f ,
except where as noted before the cross section cuts close to the centre of a
vortex. Finally, strongest w values occur along the flanks of the most deformed
vortices: these are associated with the rise and fall of the isopycnal surfaces as
the vortex rotates (Viúdez & Dritschel 2003). All of this demonstrates that the
flows simulated, even at O(1) Rossby numbers, remain largely driven by the
PV — remain nearly balanced — with only a small amount of inertia–gravity
wave activity. The latter appears to play virtually no role in the dynamics of
turbulence in this regime.

Figure 4. Comparison of the vertical velocity w, local Rossby number ζ/f , isopycnal dis-
placement D and PV anomaly �, for various Rossby numbers ε, at z = 0 and at 60 QG time
units. Contour intervals are the same as before for w and for D, while for ζ/f they are 0.02,
0.03 and 0.06 for ε = 0.25, 0.5 and 0.75, respectively. The PV contour interval is ε.

4. Conclusions

This paper has demonstrated that rotating stratified turbulence, starting from
a near balanced state with minimal inertia–gravity waves, remains close to bal-
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ance for times t <∼ 10Teddy ∼ 20Tiner/R. The turbulence evolution over this
period is quantitatively similar to quasi-geostrophic turbulence, which strictly
applies only for R � 1. This is interesting theoretically, but also important
practically. Since the potential vorticity field is responsible for much of the ob-
served fluid motion, it must be simulated with great care. Numerical accuracy
depends crucially upon the treatment of potential vorticity.
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Dritschel, D. G. & Viúdez, A. 2003 A balanced approach to modelling rotating stably-
stratified geophysical flows. J. Fluid Mech. 488, 123–150.

Ford, R., McIntyre, M. E. & Norton, W. A. 2000 Balance and the slow quasimani-
fold: some explicit results. J. Atmos. Sci. 57, 1236–1254.

Gill, A. E. 1982 Atmosphere-Ocean Dynamics. Academic Press.
Pedlosky, J. 1997 Geophysical Fluid Dynamics. Springer-Verlag.
Reinaud, J., Dritschel, D. G. & Koudella, C. R. 2003 The shape of vortices in

quasi-geostrophic turbulence. J. Fluid Mech. 474, 175–191.
Smith, L. M. & Waleffe, F. 2002 Generation of slow large scales in forced rotating

stratified turbulence. J. Fluid Mech., 451, 145–168.
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Abstract In order to investigate the formation process of the k
−5/3
H energy spectrum ob-

served in the atmospheric mesoscales, we perform numerical experiments on
forced turbulence in a rotating stratified fluid and examine the energy cascade
processes. When the energy injection by the dynamical forcing is concentrated
in small scales, upscale energy cascade is expected to form a k

−5/3
H spectrum.

However, our result shows that the upscale cascade is not enough to form this
spectrum for the terrestrial parameter range. On the other hand, the spectral slope
generated by downscale energy cascade from energy injection in larger scales is
close to −2 and is not sensitive to static stability when the Coriolis parameter is
greater than the terrestrial angular velocity.

Keywords: Stratified turbulence, energy cascade, numerical experiment

1. Introduction

The atmospheric energy spectrum as a function of horizontal wavenumber
kH over the range from a few kilometers to synoptic scales was obtained by
Nastrom et al. (1984) and Nastrom and Gage (1985). They found that the
spectra follow the −3 power law in the range from 1000 to 3000 km and the
−5/3 power law in the horizontal scales less than a few hundred km (about
400–500 km). More recent observations also support the −5/3 power law in

1999). Numerical simulations using the GFDL-
SKYHI GCM reproduced these spectral slopes (Koshyk et al. 1999, Koshyk
and Hamilton 2001). While the formation mechanism of the k−3

H spectrum can
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be interpreted as enstrophy downscale cascade in quasi-geostrophic turbulence
(Charney 1971), an interpretation of the k

−5/3
H spectrum in the mesoscales is

more complicated. It can be speculated as it is created by energy cascades
like 3D turbulence or inverse energy cascades like 2D turbulence. Lilly (1983)
attempted to understand the energy spectrum in the mesoscales from inverse
energy cascades in stratified turbulence. However, numerical simulations of
stratified turbulence indicate that inverse energy cascades does not occur unless
Rossby number is less than unity (Métais et al. 1994).

In this study, numerical experiments on stratified turbulence are conducted
with a simple dynamical model. We investigate downscale energy cascades
from energy injection at large scales as well as inverse energy cascades from
small scales. We examine whether or not an inverse energy cascade process
makes a −5/3 spectral slope in smaller wavenumber. Further, energy spectra
formed by the energy cascade are also discussed.

2. Model description

We assume a nonhydrostatic, incompressible Boussinesq fluid on an f -plane.
The domain is set to 400× 400 km2 in a horizontal plane and 10 km vertically.
The number of the computational grids is 200 × 200 × 40, which corresponds
to 2 km resolution in the horizontal direction and 250 m in the vertical one. The
boundary conditions are assumed to be cyclic in the horizontal direction and
rigid at the top and bottom. Time-integration is carried out for 15 days with a
time interval of 50 seconds. We analyze the results for the last five days where
turbulence is speculated to be in quasi-equilibrium in our calculations.

The dependence of the forcing amplitude on the total horizontal wavenumber
kH is given by the following formulation:

|F (kH)|2 = F 2
0

k
γ/2
H

(k0 + kH)γ
. (1)

Here, k0 and γ characterize a spectral peak wavenumber and a spectral band
width, respectively. F0 determines a forcing amplitude. We examine two types
of the forcing distribution: (k0, γ) = (20, 100) (referred as Type I hereafter)
and (k0, γ) = (1, 20) (Type II). In experiments with the Type I forcing, we
expect upscale energy cascades from the peak wavenumber of the forcing and
intend to examine energy spectrum in the wavenumbers smaller than it. On the
other hand, the Type II forcing distribution has a peak at the domain size in order
to examine energy cascade processes to smaller scales. The vertical distribution
of the forcing is assumed to have the first baroclinic structure. Following the
traditional studies in forced turbulence (e.g. Lilly, 1969), a random Markovian
formulation is used for time evolution of the forcing function.
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f = 2Ωf = 0 f = 20Ω

Figure 1. Energy spectra as a function of horizontal wavenumber for the Type I forcing
cases. Each panel represents f = 0, 2Ω and 20Ω from the left. Solid, dashed and dotted lines
indicate rotational part and divergent part of kinetic energy and potential energy, respectively.
The reference straight line represents a −5/3 power law.

The eddy viscosity and diffusivity forms are assumed for the dissipation
terms. In order to determine the eddy viscosity and thermal diffusion coeffi-
cients, we adopt the formulation based on the Smagorinsky-Lilly parameteriza-
tion (Smagorinsky 1963, Lilly 1962), which is well known as a parameterization
of LES. Namely,

ν(h,v) = (CS∆(h,v))
2

√√√√1
2

(
∂ui

∂xj
+

∂uj

∂xi

)2

fν(Ri),

κ(h,v) = ν(h,v)
fκ(Ri)
fν(Ri)

,

(2)

where ∆(h,v) is the horizontal and vertical grid intervals and CS is called the
Smagorinsky constant, which is set to 0.21. In this formulation, effects of strat-
ification are explicitly expressed as functions of Richardson number Ri. In our
numerical experiments, the following empirical formulae based on laboratory
experiments and the measurements in atmospheric boundary layer by Ueda et
al. (1981) are adopted:

fν(Ri) =

{
(1 + 2.5Ri)−1 (Ri > 0),
min((1 − 25Ri)1/3, 6) (Ri < 0),

(3)

fκ(Ri) =
{

(1 + 5.625Ri)−2 (Ri > 0),
1 + 5(1 − exp(12Ri))2 (Ri < 0). (4)

3. Results

Figure 1 indicates energy spectra obtained for Type I forcing and atmospheric
stratification with 20 minutes of Brunt-Väisälä period. Amplitude of the vortical
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f = 0 Ω/2 Ω 3Ω/2 2Ω

−2

−3

−1

Neutral
20 min.
10 min.
5 min.

Figure 2. The spectral slopes estimated by the least-squares method in the range from 10
to 100 km. The horizontal reference line denotes −5/3. Error bars are taken as two times a
standard deviation.

mode (solid line) is dominant especially in the lower wavenumbers. However,
a −5/3 slope in the lower wavenumbers cannot be seen in the range 0 ≤
f ≤ 2Ω (Ω is the terrestrial angular velocity) due to too small amplitude of
the energy in the large scales. This energy distribution shows that upscale
energy cascades is not sufficient to form the −5/3 slope. It is suggested that
the inverse cascade process like 2D turbulence cannot be appropriate for the
formation mechanism of the spectrum in the atmospheric mesoscales. On the
other hand, the distribution close to −5/3 spectral slope is obtained in the lower
wavenumbers than the forcing scale in the high rotation cases, f = 20Ω. In
this case, Rossby and Froude numbers averaged over the domain are about 0.3
and these values are consistent with the criterion for predominance of inverse
energy cascade shown by Métais et al. (1994).

In the experiments using Type II forcing, the spectral slope largely depends on
rotation and stratification. In order to summarize this dependency, we estimate
the slopes by the least-squares method in the range from 10 to 100 km and
illustrate the results in Figure 2. In all the cases, error bars are small enough to
discuss the dependency. In the cases without stratification, the slope is about
−1 and the dependence on rotation is weak, while the classical theory of 3D
isotropic turbulence predicts that the energy spectrum can be expressed by a
k
−5/3
H (kH : horizontal wavenumber) (Lilly 1983). This discrepancy would be

attributed to the aspect ratio of the computational domain in our experiments.
In the experiments including stratification, the slope becomes steeper as Brunt-
Väisälä period is shorter, but its dependence is not so sensitive in the f = 2Ω
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Figure 3. Energy flux averaged over the last five days for the Type II forcing cases. Results
for same stratification are drawn in a same panel. Solid and dashed lines indicate f = 0 and 2Ω,
respectively.

cases. For the rotation rate more than Ω, the slope of the total energy is within
the range from −1.9 to −2.1.

We calculate total energy flux for Type II forcing cases (Figure 3). In neutral
stratification cases, the total energy flux has a positive constant value in the
horizontal scale of 20–100 km. This fact indicates that an inertial subrange
appears in the range of this scale. The value of the flux is 7 × 10−5 (m2/s3)
for f = 0 and 6 × 10−5 (m2/s3) for f = 2Ω. The flux in the case with strat-
ification has a positive peak in the horizontal wavenumber 3–5 and decreases
in the higher wavenumber. The flux is smaller for larger static stability and the
smaller flux corresponds to the steeper slope of the energy spectrum (Figure
2). Effects of rotation appear in high wavenumbers; the increase of the rotation
rate contributes to energy transfer to the high wavenumbers.

4. Summary

In the small-scale forcing cases, energy transfer to lower wavenumbers in-
creases with static stability, but this upscale energy cascade is too small to form
the k−5/3 spectrum in the terrestrial parameter range of rotation and stratifi-
cation. On the other hand, upscale energy cascade by the vortical mode is
dominant in the case with an extremely rapid rotation rate. The spectral slope
generated by downscale energy cascade is within the range from −1.9 to −2.1
for f ≥ Ω and in the case close to the one observed in the mid- and high
latitudes. However, it is sensitive to static stability without rotation, while the
observed spectral slope is universal throughout all latitudes (Cho et al. 1999).
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Abstract An asymmetry of jet profiles is found between eastward and westward jets which
appear spontaneously in two-dimensional β-plane decaying turbulence. West-
ward jets are narrower and more intense than eastward jets. A theory for this
asymmetrization is developed using Rossby wave propagation theory. The the-
oretical explanation also makes clear the maintenance mechanism of the zonal
jets.

Keywords: β-plane turbulence, jet formation, Rossby wave propagation theory

1. Introduction

Spontaneous zonal jet formation is a well-known significant feature in two-
dimensional β-plane turbulence (Rhines 1975, Vallis & Maltrud 1993). The
formation itself is considered due to the energy upward cascade which is in
favor of zonal structure by the existence of the β term. Why the formed zonal
jets are maintained in the turbulence, however, has been an open question. Val-
lis & Maltrud (1993) found an asymmetry between eastward and westward jet
profiles which emerged from turbulent states in forced-dissipative experiments.
That is, eastward jets are narrower and more intense than westward jets. This
asymmetry is thought to be related to the Rayleigh-Kuo criterion of barotropic
instability. Whether such an asymmetry exists or not in decaying experiments,

decaying turbulence numerically, by conducting a number of ensemble exper-

207

C©

anism and symmetric properties of the zonal jets in two-dimensional β-plane

2006 Springer. Printed in the Netherlands.

however, has not been explored. Therefore, we study the maintenance mech-
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iments. Furthermore, we propose a theoretical scenario to explain the found
asymmetry using the Rossby wave propagation theory.

2. Model

The system under consideration is a non-divergent two-dimensional flow
with a hyper-viscosity on a β-plane. The flow is governed by the vorticity
equation,

∂ζ

∂t
+

∂ψ

∂x

∂ζ

∂y
− ∂ψ

∂y

∂ζ

∂x
+ β

∂ψ

∂x
= (−1)p+1ν2p(∇2)pζ. (1)

Here, ζ ≡ ∇2ψ is the vorticity, ψ is the streamfunction, x is the longitude,
y is the latitude, t is the time, ∇2 is Laplacian, ν2p is the hyper-viscosity
coefficient, p is the order of the hyper-viscosity. We fix p and νp as p = 2 and
νp = 1.0 × 10−10. We assume the periodic boundary condition in both x and
y directions as

ζ(x, y + 2π, t) = ζ(x, y, t) = ζ(x + 2π, y, t).

To integrate (1) numerically, we adopt Fourier spectral method with the trun-
cation wavenumber of 1024 for the spatial discretization. The time integration
scheme is the classical 4th-order Runge-Kutta scheme.

The initial condition is given by a random vorticity field which has a
peak in the energy spectrum at wavenumber K = 226. The phase of
each component is set randomly. The total energy of the initial state is
set at 1/2. This means that the root-mean-square velocity (u0) for the ini-
tial state is 1. We sweep the value of β as an experimental parameter as
β = 100, 200, 400, 800, 1600, 3200, 6400, 12800, 25600, 51200. The results
for β = 6400 are presented mainly below.

3. Results

Figure 1 shows the zonal-mean zonal flow profiles at the final stage (t = 12)
for the 10 different values of β. The width of each jet is roughly estimated
by Rhines scale L =

√
u0/β. Checking the jet profiles in detail, we can find

an asymmetry between westward and eastward jet profiles. Figure 2 shows
composites of intense jet profiles at the final stage for β = 6400. It is clear that
there is an asymmetry between Figs. 2(b) and (d), that is, westward jets are
narrower and more intense than eastward jets. This asymmetry can be also seen
in the time-evolution of the peak flow speeds of westward jets and eastward jets
(Fig. 3). Although there is no difference initially, the peak speed of westward
jets becomes larger than that of eastward jets. We confirmed the existence of
asymmetry for other values of β and checked its statistical validity by using
other random initial conditions.
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Figure 1. Zonal-mean zonal flow profiles at t = 12 for various values of β. The vertical axis
indicates y.

Figure 2. Composite of intense jet profiles at
t = 12 for β = 6400. (a): composite of 36 intense
eastward jet profiles. (b): the mean profile and the
standard deviation of (a) (gray area). (c): composite
of 42 intense westward jet profiles. (d): the mean
profile and the standard deviation of (c) (gray area).
the dashed line is the mirror image of the profile in
(b)

Figure 3. Time evolutions of the
peak flow speeds of westward jets
(gray) and eastward jets (black) for
β = 6400. The horizontal axis in-
dicates time t.

4. Theory

In order to explain the asymmetry described in the previous section, we
propose a following scenario for the asymmetry formation.
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(i) At the early stage, weak zonal jets are formed through the upward energy
cascade in the β-plane turbulence.

(ii) According to the Rossby wave propagation theory, l2 (l being the latitu-
dinal wavenumber) of Rossby waves becomes so large in westward jet
regions that Rossby waves are dissipated more easily than in eastward
jet regions due to the hyper-viscosity.

(iii) When Rossby waves are dissipated, they leave their westward pseudo-
momentum to zonal jets. Therefore, westward jets are intensified
sharply.

We check the validity of this scenario, using the linearized equation of (1),

∂ζ ′

∂t
+ U(y)

∂ζ ′

∂x
+

(
β − d2U

dy2

)
∂ψ′

∂x
= (−1)p+1ν2p(∇2)pζ ′.

Here, U(y) is a prescribed basic zonal flow, and ζ ′ = ∇2ψ′. The acceleration
is evaluated by

∆U = −
∫ t

0

d
dy

(u′v′)dt′,

where u′ = −∂ψ′/∂y and v′ = ∂ψ′/∂x.
First, we consider an idealized situation. The prescribed basic zonal flow

profile is set as

U(y) = −A sin(my).

The initial disturbance is set to be a monochromatic wave,

ψ′(x, y, t = 0) = sin(kx + ly)

with k = l = m = 64 and A = 0.14. This choice is based on the mean values
of the wavenumbers for both zonal components and wavy disturbances, and of
the speed of zonal jets in the nonlinear time-evolution at t = 0.2 when zonal
jets start growing but the asymmetry has not yet developed. Figure 4 shows
the total acceleration (∆U ) for this idealized situation. As is expected in the
proposed scenario, the westward acceleration is sharper and more intense in the
westward jet region than the eastward acceleration in the eastward jet region.

The situation above is a little too idealized to confirm the scenario because
the initial disturbance is set to be a monochromatic wave. Therefore, we adopt
a more relevant initial condition. We set the initial ψ′ to be the same field as
that of the turbulent field in the time-evolution of (1) at t = 0.2 excluding zonal
components. Figure 5 shows the total acceleration for this situation. Even in
this case, the westward acceleration is sharper and more intense in the westward
jet region, which confirm our scenario for the asymmetry formation.
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Figure 4. Total acceleration by an initially
monochromatic Rossby wave in the linearized
model. Solid line: the total acceleration. Dot-
ted line: the prescribed zonal flow profile.
Only one cycle of the zonal jet is shown.

Figure 5. Composite of total accelerations
by Rossby waves in the linearized model.
Thin gray lines: the acceleration profiles.
Thick line: the mean profile of the total ac-
celerations. Thin line: the prescribed zonal
flow profile. Every cycle of the zonal jet is
put together.

5. Conclusions

We found an asymmetry in zonal jet profiles in β-plane decaying turbulence
— westward jets are narrower and more intense than eastward jets. We made
clear that the asymmetry is due to the change of l2 of Rossby waves by the
basic zonal flow using Rossby wave propagation theory. This mechanism also
contributes to the maintenance of zonal jets.
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Abstract We have measured instantaneous velocity profiles in mercury thermal turbulence
in a cylindrical cell of 1/2-aspect-ratio. In our previous work, we obtained some
intriguing results from the measurement of the vertical velocity profile w(z)
along the central axis of the cell. To investigate the velocity field in more detail,
we have recently improved the apparatus so that horizontal velocity profiles u(x)
and v(y) just below the top plate can be measured as well as w(z). In this paper,
some preliminary results from the measurements of the horizontal profiles are
introduced together with the speculation of the shape of the mean flow, and future
prospects are presented.

Keywords: Thermal turbulence, mercury, ultrasonic velocimetry

1. Introduction

a long time as a prototype of complex physical systems. Nevertheless, many
problems still remain open: How is the ultimate state of thermal turbulence at
very high Rayleigh number (Ra)? Are there some statistical laws of fluctuations
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Thermal turbulence is a ubiquitous phenomenon and has been studied for
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peculiar to thermal turbulence? How does the mean flow emerge and behave in
well-developed thermal turbulence? To attack most of the open problems, it is
highly desired to understand the structure of the velocity field in terms of both
time and space. However, such a requirement has not been achieved to a satis-
factory extent so far, due to the difficulty of the measurement of instantaneous
velocity profiles.

We applied the ultrasonic velocimetry in thermal turbulence for the first time
and measured instantaneous velocity profiles in a 1/2-aspect-ratio cylinder filled
with mercury. The main reason for the use of mercury is its low Prandtl number
(Pr ∼ 0.025 at room temperature). In low-Pr fluids, the boundary layers get
destabilized and hence a new state beyond the hard turbulence is likely to be
induced, at relatively low Ra . Therefore, the use of a low-Pr fluid is adequate
to study well-developed thermal turbulence and seek the ultimate state. The
Rayleigh number (Ra ≡ αg∆Th3/κν, whereα, κ, ν, g, andh are the expansion
coefficient, thermal diffusivity, kinematic viscosity of the fluid, gravitational
acceleration, and the cell height, respectively) is a nondimensional expression
of the temperature difference ∆T between the top and bottom boundaries,
and can be increased to very high values in this apparatus of h = 612 mm
height; 2 × 109 ≤ Ra ≤ 6 × 1010, which is the world record for low-Pr
fluids. In the previous work, we measured the vertical velocity profile w(z)
along the central axis of the cell, which brought about some intriguing results (
Mashiko et al. 2004a; Mashiko et al. 2004b): The energy spectrum E(k) was
calculated from w(z) without employing Taylor’s frozen-flow hypothesis for
the first time, which agreed well with the prediction of E(k) ∝ k−11/5 in the
Bolgiano theory (Bolgiano 1959). Also, possible shapes and sloshing motion
of the mean flow were proposed through the principal component analysis and
other analyses. Furthermore, the reversal of the mean profile near the boundary
plate was discovered. However, measurements in the previous work were just
for the one-dimensional profile w(z). To further examine the velocity field, we
have recently started new measurements.

2. Experiment

2.1 Improvement of the apparatus

We improved the apparatus so that the horizontal velocity profiles u(x) and
v(y) near the boundary plate can be measured as well as w(z) (Fig. 1). Ul-
trasound transducers X and Y are installed for the measurements of u(x) and
v(y), respectively, in addition to Z for w(z). Each of X and Y is located so
that its cylindrical axis should lie 4.5 mm below the bottom surface of the top
plate, where the diameter of each transducer is 8 mm (the beam diameter is
5 mm). The transducer emits ultrasound pulses of frequency f0 = 4 MHz and
receives the echoes scattered in the fluid. One-dimensional profile of the veloc-
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ity component along the beam axis is obtained by detecting the Doppler-shift
frequencies.

x

z

y

ultrasound transducer

x

z

y

fluid velocity (u,v,w)

v(y)

w(z)w(z)

u(x)
Z Z

X

Y

Figure 1. Improvement of the experimental system. Horizontal velocity profiles u(x) and
v(y) are measured in addition to w(z).

2.2 Results

We show in Fig. 2 typical results of the measurements of u(t, x) and v(t, y)
in the form of the spatiotemporal plots (left), together with the corresponding
mean profiles 〈u(x)〉 and 〈v(y)〉 (right). Both u and v were measured at Ra =
2.69 × 1010 (but separately) with the sampling time of ∆t = 64.8 ms and the
spatial resolutions of ∆x = ∆y = 2.18 mm. The span of each spatiotemporal
plot is 0 ≤ t ≤ 32.3 s in time and −128.8 ≤ x, y ≤ 148.1 mm in space which
covers most of the plate diameter (−153 ≤ x, y ≤ 153 mm). In these plots,
slanted straight patterns are characteristic, as indicated by white arrows. By
flow visualization in water thermal turbulence, Zocchi et al. (1990) observed
traveling waves along the boundary plate. They suggested that the waves are
produced when plumes (mushroom-shaped thermal structures) hit the plate. We
presume that the slanted straight patterns in Fig. 2 are the sign of such traveling
of thermal structures, whereas the thermal structures are possibly rather vague
without clear perimeters like the plumes, in the low-Pr fluid, mercury. We are
going to elucidate the identity and detailed behavior of the thermal structures
in further measurements.

We notice that the spatiotemporal plots are mostly covered by white-colored
regions. This means that the horizontal flow just below the top plate is unidirec-
tional in most part of the plate, while the opposite flow is observed just in a little
portion of the plate. This tendency is also confirmed by the mean profiles, each
of which was calculated from 10000 successive instantaneous profiles: Both
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〈u(x)〉 and 〈v(y)〉 are asymmetric in that the zero-crossing points (xzero and
yzero) are far from the z axis (x = y = 0). While the mean profiles shown in
the figure were calculated from data over 648 s, the asymmetry was generally
observed even in measurements for more than 4.5 hours. On the other hand,
we found that the vertical mean profile 〈w(z)〉 was symmetric in that the zero-
crossing point nearly corresponds with z = 0, i.e. the cell center (Mashiko et
al. 2004a), where data of nearly the same length were used for the calculation
of the horizontal and vertical mean profiles. Also, it was found that |umax| and
|vmax|, |xzero| and |yzero| generally increase as Ra increases.

Figure 2. Spatiotemporal plots of the velocity field (left) and the mean profiles (right). The
top plots are of u and the bottom are of v.

3. Discussion

By the present measurement of the horizontal velocity profiles, we can ad-
vance in the speculation of the mean flow. In the previous measurement of
w(z), we found that the flow is upward in the upper half of the cell and down-
ward in the lower half on average and proposed two simple patterns as the
shape of the mean flow as shown in Fig. 3 (Mashiko et al. 2004a). In this
figure, probable mean profiles are schematically shown by gray arrows. The
left pattern would be accompanied by asymmetric horizontal profiles, while the
right pattern seems to be accompanied by symmetric profiles. Actually, the
horizontal mean profiles were asymmetric, as was shown in Fig. 2. Therefore,
we suggest that the left pattern is preferable for the mean-flow shape in a cylin-
der of 1/2-aspect-ratio. Then we can interpret the above-mentioned properties
qualitatively. For example, the increase of |xzero| and |yzero| with the increase
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of Ra is explained by that the main elliptic roll of the mean flow comes to run
closer to the cell perimeter when Ra is increased (Xia et al. 1997). Also, the
increase of |umax| and |vmax| can be explained by the increase of the mean-flow
velocity. By the way, assuming the symmetry of the experimental setup, the
mean profiles should be symmetric in long-enough time scales. Symmetric
horizontal mean profiles might be obtained in much longer measurements.

xzero

yzero

xzero, yzero

Figure 3. Speculation of the mean flow. We proposed two simple shapes of the mean flow
from the result of 〈w(z)〉 in the previous work. Horizontal profiles 〈u(x)〉 and 〈v(y)〉 in the
present work imply that the left one is likely.

4. Summary

We introduced preliminary results of the measurements of the horizontal
velocity profiles u(x) and v(y) in the boundary region. In particular, the mean-
flow behavior was discussed. We are going to start the simultaneous measure-
ments of u(x), v(y), and w(z) soon. The above-mentioned behaviors of the
mean flow (in terms of |umax| and |vmax|, |xzero| and |yzero|) and the sloshing
motion speculated in the previous work will be clearly confirmed in such a trial.
Also, the reversal of w(z) near the boundary plate (Mashiko et al. 2004b) will
be investigated in detail. Additionally, we aim to establish statistical laws of
fluctuations in thermal turbulence. For example, we will observe the variance
of the energy spectrum E(k) with varying Ra , and compare the results with
theories.

This work was supported by a Grant-in-Aid for Scientific Research from the
Ministry of Education, Culture, Sports, Science, and Technology of Japan (No.
16206020).
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Abstract We show numerically, theoretically and experimentally that two co-rotating ver-
tical vortices in a stably stratified fluid are subjected to a new three-dimensional
similar to the zigzag instability observed on counter-rotating vortices (Billant &
Chomaz, 2000). This zigzag instability induces the formation of thin horizon-
tal layers with a thickness inversely proportional to the Brunt-Väisälä frequency.
This three-dimensional instability is believed to make stratified turbulence depart
from two-dimensional turbulence since it alters the merging of vortices.

Keywords: Vortex, stratification, three-dimensional instability, layers, merging

1. Introduction

The atmosphere — especially the stratosphere — and the ocean are charac-
terized by a stable stratification that limits vertical motions and makes the flow
mainly horizontal. Riley et al. (1981) have shown that if both the horizontal
and the vertical scales of the flow are large compared to the buoyancy length
scale, the leading order dynamics are then two-dimensional. Building upon
this conjecture, Lilly (1983) has proposed that the kinetic energy spectra ob-

dynamics with a transfer of energy from small (∼ 1 km) to large (∼ 500 km)
scales. Recently, Lindborg (1999) invalidated this interpretation by deducing

the dynamic is not two-dimensional because the vertical scale selected by the
B = U/N (where U is the horizontal

velocity scale and N the Brunt-Väisälä frequency), invalidating the hypoth-
esis of Riley et al. (1981). Billant & Chomaz (2000) have also shown that
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direction: from large to small scales. Billant & Chomaz (2001) proposed that

served in the atmosphere at mesoscale are a manifestation of a two-dimensional
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from high order statistical moments that the energy cascade is in the opposite
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the vertical scale selection is due to an instability, named zigzag instability,
in the specific case of a counter-rotating vortex pair. In the present paper, we
extend the work of Billant & Chomaz (2000) and study the stability of a pair
of co-rotating vortices in a stratified fluid. We show that the zigzag instability
also affects such basic state and decorrelates the flow on the buoyancy length
scale. This suggests that the zigzag instability is a general instability affecting
stratified flows with at least two vortices.

2. Three-dimensional linear stability analysis

2.1 Numerical analysis

The three-dimensional stability of a pair of co-rotating vertical vortices has
been investigated numerically using a pseudo-spectral solver of the linearized
Navier-Stokes equations. The basic state has been obtained numerically from
a two-dimensional numerical simulation initialized by two co-rotating axisym-
metric gaussian vortices. The two vortices adapt to each other and evolve
quickly toward a quasi-steady state. The three-dimensional stability of this ba-
sic flow is then investigated as a function of the Froude number in the case where
the ratio of the vortex radius a and the separating distance b is a/b = 0.15. We
have observed that the elliptic instability is the most unstable instability when
the horizontal Froude number Fh = Γ/πa2N , where Γ is the vortex circulation,
is large: Fh > 10. In contrast, we have found that the zigzag instability is the
most unstable instability for strong stratification: Fh < 2.85.

As seen on the vertical vorticity of the eigenmode (figure 1a), the zigzag
instability translates the two vortices with almost no deformation along opposite
directions. This motion amounts to a small rotation of the vortex pair as a whole
together with a slight variation of the separating distance. The instability will
consequently bring the vortices closer or farther, alternatively along the vertical.

Figure 1b shows further that the growth rate of the zigzag instability is a
function of the wavenumber times the Froude number: kzFh for small Fh.
This self-similarity means that the most unstable wavenumber is inversely pro-
portional to the Froude number implying that the wavelength decreases as the
stratification increases. The instability will therefore generate horizontal layers
with a thickness scaling as the buoyancy length in agreement with the scaling
law of Billant & Chomaz (2000) in the case of counter-rotating vortices. The
fact that co-rotating and counter-rotating vortex pairs are both affected by the
zigzag instability suggests that this instability is a generic three-dimensional
instability of stratified flows.

In addition, by varying the parameter a/b for a given Froude number, we have
been able to show that the growth rate of the zigzag instability scales like the
strain ε = Γ/2πb2 while its most amplified wavelength scales on the separating
distance b, not on the vortex radius a.
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Figure 1a. Vertical vorticity of the eigen-
mode of the zigzag instability for Fh = 1,
Re = 1000, a/b = 0.15 and kz = 1.5. The
arrows indicate the direction of translation of
the two vortices due to the zigzag instability.
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Figure 1b. Growth rate as a function of
kzFh for Re = 15000, Fh = 1.7 (�), Fh =
1 (◦), Fh = 0.5 (
) and Fh = 0.2 (+). The
dotted line represents the asymptotic growth
rate (1).

The additional effect of a planetary rotation has been also investigated in order
to draw a link between the zigzag instability observed in strongly stratified fluids
and the tall-column instability observed in strongly stratified and rapidly rotating
fluids (quasi-geostrophic fluids) (Dritschel & de la Torre Juárez, 1996). The
maximum growth rate of the zigzag instability is approximately independent of
the Rossby number (Ro = Γ/πa2f , where f is the Coriolis parameter equal to
twice the planetary rotation rate). In contrast, the most unstable wavenumber
kzm varies continuously and scales as the Rossby number for small Ro for a
given Fh. This result together with the dependence: kzm ∝ 1/Fh shows that
the most unstable wavenumber scales as kzm ∝ Ro/Fh i.e. kzm ∝ N/f for
small Fh and Ro in agreement with the quasi-geostrophic theory (Dritschel et
al., 1999).

2.2 Theoretical analysis of the zigzag instability

The numerical results have been confirmed by an asymptotic stability analy-
sis for well-separated vortices and for small horizontal and vertical Froude
numbers. We first consider bending perturbations on a single axisymmetric
Lamb-Oseen vortex, and then the coupling between these bending perturba-
tions on each vortex and the strain due to the companion vortex. This leads to
the growth rate of the zigzag instability for small Fh, Fhkz and a/b as

σ2
a = − 2Γ2

π2b2
D0(Fhkz)

2 − D0
2 Γ2

π2
(Fhkz)

4, (1)
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where D0 is a negative constant. As seen in figure 1b, the asymptotic growth
rate of the zigzag instability is in excellent agreement with the numerical linear
stability analysis. Furthermore, the formula shows that σmax = Γ/πb2 and
kzm = 1/Fhb

√
−1/D0, i.e. the growth rate scales like the strain and the most

amplified wavelength scales like Fhb in agreement with the scaling laws found
numerically.

3. Experiment and direct numerical simulation

3.1 Experimental observations

The existence of the zigzag instability on the co-rotating vortex pair has been
confirmed experimentally. The experiments have been performed in a 100cm
wide, 100cm long and 70cm deep glass tank filled with a linear stratified salt
solution. Two co-rotating columnar vortices are created by quickly rotating two
flaps with an apparatus similar to the one used by Meunier & Leweke (2001).
The flow is visualized by UV light and fluoresceine dye.

For strong stratification, we have observed the zigzag instability (figure 2).
Just after their formation (time t1), the two vortices rotate one around the other
and are straight along the vertical. At time t2, the zigzag instability which
distorts symmetrically the two vortices can be clearly seen. The distance be-
tween the vortices varies sinusoidally along the vertical generating layers where
merging is accelerated or delayed (time t3) resulting in a complex twisting of
the vortices (time t4).

t1 = 0s t2 = 81s t3 = 87s t4 = 135s

Figure 2. Side view visualizations of the zigzag instability of two co-rotating vortices in a
strongly stratified fluid at different times.

3.2 Direct Numerical Simulations

In addition, we have performed direct numerical simulations of the zigzag
instability (this work is done in collaboration with Y. Kimura of Nagoya Univer-
sity). A pseudo-spectral code simulating the Navier-Stokes equation under the
Boussinesq approximation has been initialized by two Lamb-Oseen vortices.
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As seen in figure 3, the pairing between the two co-rotating vortices is alterna-
tively enhanced and delayed along the vertical generating a layered structure as
observed in the experiments. Ultimately, the two vortices merge all along the
vertical. The wavelength observed is in good agreement with both experiment
and linear theory.

Figure 3. Direct numerical simulations of the zigzag instability: two contours (5% and 60%
of the maximum vertical mean) of vertical vorticity are shown in light grey and dark grey at
different times. The resolution used is 1283, and the parameters are Fh = 1.3, Re = 2000 and
a/b = 0.15.

4. Summary

A new zigzag instability has been discovered in the case of two co-rotating
vertical vortices in a stably stratified flow. The numerical stability analysis has
shown that the instability consists in displacement of the vortices and selects
a vertical wavelength proportional to the buoyancy length (LB=U /N ) with a
growth rate proportional to the strain rate. The coupling between the bending
modes of each vortex with the strain field is the origin of the instability. Ex-
perimental observations and DNS show that the instability does not saturate
and leads to the vertical decorrelation of the flow on a scale proportional to
LB . As vortex merging plays a crucial role in two-dimensional turbulence,
this new three-dimensional instability is believed to alter the energy transfer
and therefore makes three-dimensional stratified turbulence depart from two-
dimensional turbulence.
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Abstract In rotating duct flows, coherent longitudinal vortical structures develop even
for very low Reynolds numbers due to the shear-Coriolis instability, where the
mean absolute vorticity is close to zero. We investigate the creation mechanism
of zero-mean-absolute-vorticity region focusing on the role of the longitudinal
vortical structures for the plane-Poiseuille- and plane-Couette-type flows with
the system rotation. It is found that the way of the vortex tubes to create zero-
mean-absolute-vorticity state is different between the two cases. For the rotating
plane-Poiseuille-type flow, the generated longitudinal vortex tubes develop the
spanwise vorticity around them, whereas for the rotating plane-Couette-type flow,
they enhance the spanwise vorticity inside them. However, it is common for the
two cases that zero-mean-absolute-vorticity state is created by the action of the
coherent longitudinal vortices in the anticyclonic region.

Keywords: Rotating fluid, zero-mean-absolute-vorticity state, shear-Coriolis instability

1. Introduction

Rotating shear flows have been attracting interest of many researchers be-
cause of their ample applications in meteorology, turbo-machinery, and so on.
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In the rotating shear flow, if the direction of the system rotation is opposite to
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that of the vorticity of the basic shear, the shear-Coriolis instability (inertia insta-
bility) occurs and coherent vortical structures are generated in the anticyclonic
region (Bradshaw 1969, Yanase et al. 1993). The vortical structures due to the
shear-Coriolis instability tend to make the mean absolute vorticity close to zero.
This zero-mean-absolute-vorticity state is observed numerically for the rotat-
ing free shear flow (Métais et al. 1995), the rotating plane-Couette-type flow
(Bech & Andersson 1997) and the rotating plane-Poiseuille-type flow (Kristof-
fersen & Andersson 1993, Lamballais et al. 1998) and experimentally for the
rotating plane-Poiseuille-type flow (Johnston et al. 1972, Kitoh 1999). The
physical mechanism of this phenomenon is, however, not well understood so
far.

In the present study, we elucidate it by use of numerical simulations. For
this purpose, we examine the plane-Poiseuille- and plane-Couette-type flows
with the system rotation, and find the difference of the creation mechanism
of zero-mean-absolute-vorticity regions between these two typical flows with
special consideration on the role of coherent vortical structures.

2. Numerical methods

We consider an incompressible viscous fluid flowing between two parallel
plates perpendicular to the y-axis located at y = ±h. The basic flow is directed
along the x-axis and the whole system rotates around the z-axis with the angular
velocity Ω̃ (see Fig. 1). All variables are nondimensionalized by use of h,
the kinetic viscosity ν and the maximum velocity U0 of the basic flow. The
Reynolds number is defined byRe = hU0/ν. The basic flows areU(y) = 1−y2

for the rotating plane-Poiseuille-type flow and U(y) = y for the rotating plane-
Couette-type flow. We assume that the flow is periodic in the x- and z-directions
and the computational domain is (Lx, Ly, Lz) = (2π/α, 2, 2π/β), where α and
β are the basic wavenumbers in the x- and z-directions, respectively. We take
α = 1 and β = 2, which are chosen by aretaking into consideration of the
linear instability to wavy disturbances performed by Finlay (1997).

The nondimensionalized Navier-Stokes and continuity equations in the ro-
tating coordinate system are written as

∂u

∂t
+ (u · ∇)u = −∇P +

1
Re

�u + 2Ωu × k , (1)

∇ · u = 0, (2)

where k is the unit vector in the z-direction, P = p − (Ωk × x )2/2 the
modified pressure and Ω = Ω̃h/U0 the rotating angular velocity. The velocity
u and vorticity ω are decomposed into the basic (¯) and perturbed (ˆ) terms as
u = (ūx, ūy, ūz)+(ûx, ûy, ûz), ω = (ω̄x, ω̄y, ω̄z)+(ω̂x, ω̂y, ω̂z). The Fourier
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Figure 1a. Rotating plane-Poiseuille-type
flow.
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Figure 1b. Rotating plane-Couette-type
flow.

series expansion is employed to the x- and z-directions and the Chebyshev
polynomial expansion to the y-direction.

3. Results

3.1 Rotating plane-Poiseuille-type flow

For the rotating plane-Poiseuille-type flow, we performed time-evolution
calculations for Re ≤ 550 and 0 ≤ Ω ≤ 1. We obtained many characteristic
solutions exhibiting typical vortical structures, such as steady, traveling-wave,
time-periodic and chaotic solutions. We also obtained exact traveling-wave
solutions by use of the Newton-Raphson iteration method (see Yanase & Kaga
2004).

We show the vortical structures of the chaotic solution at Re = 400 and
Ω = 0.25 in Fig. 2, where tubular vortical structures of the chaotic solution
are visualized with iso-surfaces of a positive value of the second invariant of
velocity gradient Q = −1

2
∂ui
∂xj

∂uj

∂xi
(see Jeong & Hussain 1995). We display

these vortex tubes by black and gray for positive and negative ωx, respectively.
As seen in this figure, the tubular vortical structures appear in the anticyclonic
region (y < 0), and the upflow region (uy > 0) occupies narrower space than
the downflow region (uy < 0), because the negative Coriolis force −2Ωux in
the whole flow region enhances the downflow. Figure 3 shows the distribution
of three mean values of the chaotic solution of Fig. 2, 〈ωz + 2Ω〉, 〈ωz〉 and
〈ω̂z〉, where the symbol 〈 〉 denotes double averaging which includes a spatial
average over a plane perpendicular to the y-axis and a temporal average over
some given time period. It is found that ω̂z develops in the anticyclonic region
(y < 0) and the mean absolute vorticity 〈ωz + 2Ω〉 approaches zero there.
Figure 4 shows a (y, z) cross section of the chaotic solution. In this figure, the
position of zero-local-absolute-vorticity in the (y, z) plane is denoted by the
thick line and positive- and negative-local-absolute-vorticity regions distribute
respectively above and below the line. It should be noted here that zero-local-
absolute-vorticity locates at y = −Ω for the undisturbed basic flow. Downflow
and upflow induced by the Coriolis force increase and decrease the spanwise
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Figure 2. Tubular vortical structures of the
chaotic solution at Re = 400 and Ω = 0.25.
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Figure 3. Mean values of the chaotic solu-
tion at Re = 400 and Ω = 0.25. Thick line:
〈ωz + 2Ω〉, thin line: 〈ωz〉, thin dashed line:
〈ω̂z〉.
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Figure 4. (y, z) cross section of the chaotic solution at Re = 400 and Ω = 0.25. Thick line:
ωz + 2Ω = 0, thin lines: contours of positive Q, arrows: vorticity vectors of (ω̂y, ω̂z).

vorticity ωz around the position of zero-local-absolute-vorticity respectively,
because ux are accelerated in the opposite directions above and below the po-
sition of zero-local-absolute-vorticity by the term uy(−∂ux/∂y + 2Ω) in Eq.
(1), and simultaneously the streamwise vortex tubes are formed there (see Fig.
8a below). Then, the positive- and negative-local-absolute-vorticity regions
distribute by turns in the region where vortical structures exist, and the mean
absolute vorticity is close to zero there.

3.2 Rotating plane-Couette-type flow

For the rotating plane-Couette-type flow, we performed time-evolution cal-
culations for Re ≤ 400 with the anticyclonic system rotation 0 ≤ Ω ≤ 0.5.
In this case, we also obtained many characteristic solutions exhibiting typical
vortical structures as in the preceding section.
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Figure 5. Tubular vortical structures of the
chaotic solution at Re = 250 and Ω = 0.40.
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Figure 6. Mean values of the chaotic solu-
tion at Re = 250 and Ω = 0.40. Thick line:
〈ωz + 2Ω〉, thin line: 〈ωz〉, thin dashed line:
〈ω̂z〉.
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Figure 7. (y, z) cross section of the chaotic solution at Re = 250 and Ω = 0.40. Thick
lines: contours of ωz + 2Ω ≥ 0, thin lines: contours of positive Q, arrows: vorticity vectors of
(ω̂y, ω̂z).

Swirling vortex tubes are generated in the central region between two plates
by the Coriolis force −2Ωux in the y-direction, therefore swirling motion be-
comes active if Ω is increased. We show the results of the chaotic solution ob-
tained at Re = 250 and Ω = 0.40 in Figs. 5–7, which correspond to Figs. 2–4
for the rotating plane-Poiseuille-type flow. As shown in Fig. 5, the tubular vor-
tical structures appear in the central region between two parallel plates, which
contrasts with the rotating plane-Poiseuille-type flow in which they appear in
the anticyclonic region for −1 < y < 0. The zero-mean-absolute-vorticity
region is created more prominently than that of the rotating plane-Poiseuille-
type flow (see Fig. 6), because the swirling motion of the longitudinal vortex
tubes spreads out in a dominant part of the flow region. Figure 7 shows the
flow in a (y, z) cross section of the chaotic solution. For the plane-Couette-type
flow with the anticyclonic system rotation, the local-absolute-vorticity for the
undisturbed basic shear is negative in a whole flow region. If the longitudinal
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vortex tubes are generated, however, the local-absolute-vorticity becomes posi-
tive inside the vortex tubes (Fig. 7). Accordingly, zero-mean-absolute-vorticity
region is created in the central region by the development of the ω̂z inside the
vortex tubes, while, for the rotating plane-Poiseuille-type flow, it is created by
the development of the ω̂z around the position of zero-local-absolute-vorticity
(see Fig. 8).

−

Figure 8a. Sketch of the generation mech-
anism of zero-mean-absolute-vorticity region
for rotating plane-Poiseuille-type flow. Gray
and white regions are positive and negative
local-absolute-vorticity regions respectively.
Thick black arrows denote the direction of
spanwise vorticity.

Figure 8b. Sketch of the generation mech-
anism of zero-mean-absolute-vorticity region
for rotating plane-Couette-type flow. Gray and
white regions are positive and negative local-
absolute-vorticity regions respectively. Thick
black arrows denote the direction of spanwise
vorticity.

4. Conclusions

We investigated the creation mechanism of zero-mean-absolute-vorticity
state for the rotating plane-Poiseuille- and plane-Couette-type flows. It was
found that zero-mean-absolute-vorticity state is created by the action of longi-
tudinal vortical structures for both cases, although the roles of them are different
between the two cases.
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Abstract Nonlinear development of streak instability modes is examined up to the turbulent
stage experimentally through artificially producing spanwise-periodic low-speed
streaks in a laminar boundary layer. The experiment is focused on the subhar-
monic sinuous mode of instability. The sinusoidal motion of low-speed streaks
caused by the streak instability is maintained three or four wavelengths down-
stream beyond the nonlinear saturation stage of instability, and subsequently
breaks down. After the breakdown, near-wall low-speed streaks with lateral
spacing of 100 wall units newly develop, and the mean velocity profile starts
to exhibit the log-law. It is also found that the interaction between the quasi-
streamwise vortices developing along the neighboring streaks causes large-scale
arch-like vortices to develop in the region away from the wall.

Keywords: Wall turbulence, low-speed streaks, streak instability, streamwise vortices

1. Introduction

With an insight that turbulence is caused and then sustained by a sequence
of flow instabilities, we have been working on the transition to wall turbu-
lence. In wall-bounded shear flows, transition depends on disturbance envi-
ronments and therefore has various paths to wall turbulence even for the same
flow geometry. In any transition path, however, prerequisite for the onset of
wall turbulence is development of low-speed streaks near the wall. Under low
background turbulence, low-speed streaks appear at the later stage after the

low-speed streaks appear at the initial stage of transition. When the low-speed

streak breakdown into turbulent spots or patches (Brandt & Henningson 2002).
The oscillatory motion of streaks is due to the so-called streak instability, insta-
bility of inflectional velocity profiles across each low-speed streak. The present
study concerns the instability and transition of low-speed streaks, which are also
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streaks are intensified, they undergo oscillatory motions leading to subsequent
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closely related to the regeneration mechanism of coherent near-wall vortices in
wall turbulence.

To examine how the streak instability leads to the onset of wall turbulence
in detail, it is important to realize laminar low-speed streaks initially as well
as to introduce well-controlled artificial disturbances, as has been done in our
previous studies (Asai et al. 2002, Konishi & Asai 2004). In the present
experimental study on the evolution of streak instability, spanwise-periodic
low-speed streaks are generated in a laminar boundary layer by using small
pieces of screen set normal to the boundary-layer plate with an equal interval
in the spanwise direction. In our previous stability experiment (Konishi &
Asai 2004), the linear instabilities to the fundamental and subharmonic sinuous
modes were examined in detail for the periodic low-speed streaks of various
spanwise intervals and the subharmonic sinuous modes were found to be more
amplified than the fundamental sinuous modes unless the streak spacing is
much larger than the streak width. So, in the present study on the nonlinear
development of the streak instability, we focus on the development of the most
amplified subharmonic sinuous mode.

2. Experimental setup and procedure

The whole experiment is conducted in a low turbulence wind tunnel of open
jet type. The wind tunnel has three damping screens spanning the diffuser and
five damping screens and a honeycomb in the settling chamber of 1200×1200
mm in cross section. The area ratio of the contraction to the test section of
400×400 mm is 9. A boundary-layer plate, which is 10 mm thick and 1100
mm long, is set parallel to the oncoming uniform flow in the test section. The
free-stream velocity U∞ is fixed at 4 m/s throughout the experiment. The free-
stream turbulence is less than 0.1% of U∞. The periodic low-speed streaks are
produced in the boundary layer by using small 40-mesh screens (wire-gauzes)
set normal to the boundary-layer plate at a location 500mm downstream of
the leading edge. Without the screens, Blasius boundary layer develops with
the displacement thickness of about 2.5mm at the locaion 500mm downstream
of the leading edge. The screens whose width and height are 6mm and 3mm
respectively are set with an equal interval of 15mm in the spanwise direction.
In order to excite the streak instability, well-controlled external disturbances
are introduced into the laminar low-speed streaks by time-periodic suction and
blowing through small holes. We here focus on the sinuous mode of instability.
In order to excite a sinuous instability mode, holes of 2mm in diameter are
drilled at locations at both edges of each screen, 13.5mm downstream of the
screens, and are connected separately to two loudspeakers by vinyl hoses. The
two loudspeakers are driven with sine-wave signals which are 180 deg out of
phase. A constant-temperature hot-wire anemometer is used to measure time-
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mean and fluctuation velocities in the streamwise direction, U and u. Flow
visualization is done by means of smoke-wire technique. As for the coordinate
system, x is the streamwise distance measured from the leading edge, y the
normal-to-wall distance, and z the spanwise distance. The x-position of the
screens, x = 500mm, is denoted by x0.

3. Results and discussion

First let us show the laminar low-speed streaks artificially generated by using
the screens. Figure 1 illustrates the flow field downstream of the screens in terms
of the mean velocity U/U∞ in the cross-section at x − x0 = 60mm. We see
the development of the regularly aligned streaky structure with the spanwise
spacing λ = 15mm, in the region below y = 4mm. The distinct low-speed streaks
extend far downstream beyond x − x0 = 400mm though the velocity defect
across each low-speed streak fills up gradually with x. The low-speed streaks
remain laminar in the whole observation region up to x − x0 = 400mm owing
to the low background (wind tunnel) turbulence. Spanwise-periodic low-speed
streaks are unstable to fundamental and/or subharmonic disturbances whose
dominant spanwise wavelengths are the same as the streak spacing and twice
the streak spacing respectively. In our previous experiment (Konishi & Asai
2004), the linear instability to fundamental and subharmonic sinuous modes
was examined for various streak intervals in detail and subharmonic modes
were found to be more amplified than fundamental modes for the present streak
geometry. Note that the amplification of fundamental modes becomes weak
with decreasing the ratio of the streak spacing to the streak width. So, we here
focus on the evolution of the most amplified subharmonic sinuous mode.

Figures 2 and 3 show smoke-wire visualization pictures of the instability
process. The streak instability attains a nonlinear saturation around x − x0

= 120mm. Up to the nonlinear saturation stage of instability where a train
of quasi-streamwise vortices of alternate sign of vorticity (Jeong et al. 1997)
develops, the development of streak instability along each low-speed streak is
similar to that observed in a singe low-speed streak (Asai et al. 2002), showing
that interactions between the neighboring streaks are not strong in the early
stage of the transition for the subharmonic mode. After the saturation stage,
the low-speed streaks suffer from a large spanwise oscillation in each cycle
and the neighboring quasi-streamwise vortices (inclined both in the spanwise
and normal-to-wall directions) interact with each other, giving rise to strong
blow-up motion which causes a large-scale arch-like structure to develop in
the outer region. The sinusoidal motion of low-speed streaks continues at
least three streamwise wavelengths downstream beyond the nonlinear satura-
tion stage. Subsequently the lifted-up streamwise vortices break down into
irregular smaller-scale vortices. Figure 4 illustrates the disturbance develop-
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Figure 1. Iso-velocity contours in y − z plane at x − x0=60mm.

Figure 2. Flow visualization of development of subharmonic mode: Smoke-wire height is
1.5mm.

Figure 3. Cross-sectional view of smoke-wire visualization. x − x0 = 160mm, 210mm,
270mm. Smoke-wire is located 30mm upstream of the observation location.

ment in terms of r. m. s. intensity of velocity fluctuations. The breakdown
stage around x−x0 = 200mm corresponds to the region where the disturbances
become weak. After the breakdown, near-wall low-speed streaks newly develop
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Figure 4. R.m.s. value of velocity fluctuations. Upper, x− z plane at y=3mm. Lower, x− y
plane at z=0.

Figure 5. Mean velocity distributions (averaged over -7.5mm≤z≤7.5mm) at x−x0=160mm,
210mm , 270mm, 330mm.

downstream, that is, a regeneration of low-speed streaks occurs, as demonstrated
by Jiménez & Pinelli (1999) and Kawahara & Kida (2001) through numerical
simulation. Importantly, the newly-developed low-speed streaks have lateral
spacing of 100 wall units, similar to the value in wall turbulence. The time-
mean velocity profile (averaged -7.5mm≤z≤7.5mm) exhibits the log-law at
that stage as illustrated in figure 5.

4. Summary

Nonlinear development of subharmonic streak instability mode has been in-
vestigated experimentally for spanwise periodic low-speed streaks. The break-
down and subsequent regeneration stages of streaky structure have been demon-
strated through exciting well-controlled disturbances. The lateral spacing of
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primary, artificially-generated streaks is much larger than that observed in wall
turbulence, but low-speed streaks newly-developed after the breakdown of the
primary streaks have that of wall turbulence. At that stage, the time-mean ve-
locity distribution exhibits the log-law. It has also been found that the growth
of subharmonic modes cause large-scale arch-like vortices to develop in the re-
gion away from the wall through the interaction between the quasi-streamwise
vortices developing along the neighboring streaks.
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Jiménez, J. & Pinelli, A. 1999 The autonomous cycle of near-wall turbulence J. Fluid

Mech. 389, 335–359.
Kawahara, G. & Kida, S. 2001 Periodic motion embedded in plane Couette turbulence:

regeneration cycle and burst J. Fluid Mech. 449, 291–300.
Konishi, Y. & Asai, M. 2004 Experimental investigation of the instability of spanwise-

periodic low-speed streaks Fluid Dyn. Res. 34, 299–315.



THE TURBULENT ENERGY CASCADE BUILT BY
A VORTEX BURST

Yannis Cuypers, Philippe Petitjeans
Laboratoire de Physique et de Mecanique des Milieux Heterogenes
Ecole Superieure de Physique et de Chimie Industrielles, 10 rue Vauquelin
75005 Paris - France

cuypers@pmmh.espci.fr phil@pmmh.espci.fr

Agnes Maurel
Laboratoire Ondes et Acoustique
Ecole Superieure de Physique et de Chimie Industrielles, 10 rue Vauquelin
75005 Paris - France

agnes.maurel@espc.fr

Abstract We present an experiment where a stretched vortex is experiencing quasi-
periodical turbulent bursts inside a laminar environment. The flow is charac-
terized in the spectral and spatial domain using hot film and Particle Image Ve-
locimetry Measurements. Some comparisons with the Lundgren vortex energy
cascade mechanism are proposed.

Keywords: Stretched vortex, turbulent cascade, vortex burst, Lundgren vortex

1. Introduction

We present an experiment where a stretched vortex is experiencing quasi-
periodical turbulent bursts inside a laminar environment. Hot film and Particle
Image Velocimetry (PIV) measurements show that the turbulent bursts are re-
sponsible for the build-up of a Kolmogorov k−5/3 energy spectrum over one
decade (Cuypers et al. 2003, 2004). The main particularity of that flow is that
the turbulence generated is resulting from a single coherent structure evolution.
The build-up of the experimental turbulent spectrum with time is investigated.

vortex model (Lundgren 1982) which exhibits an energy cascade mechanism
resulting from the evolution of vorticity under the influence of two ingredients:
the stretching along the vortex axis and the structure’s own differential rotation.
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The results are compared and interpreted with the Lundgren stretched spiral
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Figure 1. Experimental setup

2. Experimental set up and phenomenological description
of the flow

A stretched vortex is generated in a low velocity hydrodynamic channel. A
small step added to a laminar boundary layer profile in the bottom wall pro-
duces the initial vorticity that is strongly enhanced by the stretching produced by
sucking the flow through slots on each lateral wall (Fig.1). Varying the experi-
mental parameters, i-e the suction flow-rate Q2, and the downstream flow-rate
Q1, makes two regimes occur: in the first one the vortex is stable, in the second
one the vortex is experiencing periodical bursts. The flow is characterized by
the following experimental values: R = 3 cm (lateral extension of the burst),
Re = 4000, with Re = Γ/ν and Γ the vortex circulation for r = R). A coarse
estimation of the stretching a = ∂Uz/∂z is given by a = 1 − 10 s−1.

We focus on the second regime, where the velocity field of the flow is mea-
sured via synchronized hot film velocity measurements and PIV measurements.
The PIV measurements are performed in a cross section
of the vortex at the middle of the channel ((z = 0) plane) (Fig.2). Our PIV
system is composed of a high resolution camera (1280× 1024 pixels) capturing
images at a frequency of 4 Hz and a double pulsed Nd:Yag laser delivering 12
mJ at each pulse. We use two measurement areas, 9 cm × 6.8 cm, and 5 cm
× 4 cm. The interrogation window W chosen is 32 × 32 pixels 2. The spatial
resolution obtained is 86 × 64 vectors.

The PIV measurement is synchronized with a hot film measurement. The
beginning of the hot film acquisition is triggered by the first PIV measurement
and is continuous afterwards. The hot film probe is situated in the middle of the
channel and is set parallel to the z axis so that it measures: U =

√
U2

x + U2
y

(Fig.1). U can also be expressed using cylindrical coordinates (r, θ, z) in the
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Figure 2. Experimental setup for PIV measurements

reference frame of the vortex core as U =
√

U2
r + U2

θ , where Ur is the radial
velocity and Uθ is the azimuthal velocity.

Figure 3 shows the synchronized hot film and PIV measurements corre-
sponding to a typical cycle of the flow. The vorticity field characterizing the
small-scale structure of the flow is shown in background of the PIV velocity
fields for a 9 cm × 6.8 cm window. The flow is also illustrated using two
visualizations, a laser induced fluorescence visualisation of a cross section of
the flow in the (z = 0) plane, and a top view visualization using dye injection.

A typical flow cycle appears to be composed of two stages: a laminar stage
and a turbulent stage. The laminar stage (Fig.3 a, b) simply corresponds to the
advection of the vortex core in the (z = 0) plane under the influence of the flow.
During this stage, the vortex brings a stronger and stronger contribution Uθ to
the velocity U recorded by the probe, which therefore grows continuously.

The second stage (Fig.3 c, d) shows rapid erratic velocity fluctuations cor-
responding to the passage of the turbulent spot on the probe position. On Fig.
3 c, one can observe the beginning of a turbulent part on the hot film signal.
As it appears on the PIV measurement, the beginning of this turbulent part
corresponds to a burst structure composed of a central vortex core surrounded
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Figure 3. Characterization of one flow cycle, Hot film measurement (1st line), Laser induced
fluorescence cross section visualization (2nd line), PIV measurement (3rd line) top view visu-
alization (4th line). (a) t = 1 s, (b) t = 3 s, (c) t = 5 s, (d) t = 5.5 s. The hot film position is
pictured as a white cross on the visualization

with compact vorticity structures, that are qualified in the following as vorticity
patches. At later times (Fig. 3 d), the patches structures have been sheared and
have merged in a vortex layer structure. The general evolution described here
is reproducible from one turbulent spot to another. Note for instance the good
agreement with the visualizations obtained from a different flow cycle.

3. Results

3.1 Hot film data processing

A typical hot film velocity signal shows the quasi-periodical character of the
bursts (Fig.4). Each cycle is composed of two parts: a laminar part, for which
the vortex is still coherent, showing a smooth increase of the velocity, and a
turbulent part associated to the vortex burst, showing rapid velocity fluctuations.

This velocity signal is decomposed between a mean velocity Umean(t) (ob-
tained through cycle averaging) and velocity fluctuations u(t). Using an appro-
priate rescaling of the hot film data and a local Taylor hypothesis based on the
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mean velocity to obtain spatial scales, we compute the energy spectrum E(k)
of the turbulent parts averaged over the N bursts (N=200). A neat Kolmogorov
k−5/3 fall-off is obtained between km = 0.2 cm−1 and kM = 2 cm −1 (Fig.6).
In the Lundgren model, the inertial range can be estimated between km = 1/R
and kM =

√
a/ν. With our experimental values one gets km � 0.3 cm−1 and

10 cm−1 ≤ kM ≤ 34 cm−1 that reasonably compare with the experimental
inertial range.
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Figure 4. Temporal recording U(ta), ta denotes absolute time; ◦ indicates the times tn of
the beginning of the turbulent parts on each cycle; (t = ta − tn; t < 5s). The mean velocity
Umean is overprinted in dashed line

One remarkable property of the Lundgren model is that the time averaging
over the lifetime of the vortex always results in the k−5/3 spectrum, indepen-
dently of the spiral structure considered. Indeed instantaneously a spiral vortex
gives a k−p energy spectrum, where p is dependent on the flow field character-
istics.

To better understand the energy cascade build-up and to go further in the
comparison with the Lundgren model, we focus on the temporal evolution
of the energy spectrum during the vortex burst. We define the cumulative
spectrum Ec(k, t) as the spectrum averaged over the N bursts and computed
between t = 0 and t, where t = 0 denotes the onset of the turbulent parts
for each burst. The figure 5a shows the evolution of the cumulative spectrum
slope pc (computed over the inertial range [km; kM ]) with t. pc is found to
decrease from a value close to −1 and reaches −5/3 for t = Tv = 1.5 s. The
cumulative spectrum is expected to give the averaged spectral contribution of
the vortex burst between t = 0 s and t. Therefore, we can conclude from
this representation that there is a temporal evolution in the spectrum and that
averaging over [0, Tv] leads to the k−5/3 behavior. Tv can be compared with
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the lifetime tc of a Lundgren vortex which is equal to the diffusion time of the
spiral arms. The estimation of this time with our experimental values gives
0.5 s < tc < 2.5 s, in good agreement with Tv.

In order to characterize the evolution in the spectra slopes, we compute the
quasi-instantaneous spectra e∆t(k, t) over small windows [t, t + ∆t], (∆t �
Tv) within the turbulent parts. The temporal window width ∆t is chosen in order
to keep a constant ∆r = Umean(t)∆t. However, since in this procedure a small
∆t implies a small ∆r (and therefore a less resolved spectrum), a balance has
to be chosen between the precision on time t and the spectral resolution. We are
interested in studying the behavior of the instantaneous spectra in the inertial
range [km; kM ] (fixed by the behavior of E(k)). When decreasing ∆r, the first
resolved k value (except k =0) is given by 1/∆r and can thus overtake km. To
give a consistent representation of the spectra, we use the following criterion :
∆r (and thus ∆t) is chosen in such a way that at least 80% of the inertial range
is kept. The spectra e∆t(k, t) are expected to give a quasi-instantaneous picture
of the vortex bust energy distribution among scales at different times. We find
that the slope of the spectra is time dependent and varies between a value close
to −1 at the beginning of the burst to a value close to −2 at the end of the burst
(Fig.5b).
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Figure 5. (a) Variation of the cumulative spectrum slope pc versus t. (b) Variation of the
quasi-instantaneous spectrum-slope pi versus t.

3.2 PIV data processing

In order to perform a quantitative statistical exploitation of the PIV velocity
fields, we have acquired a large amount (� 4000) of PIV measurements. The
measurement area is 5 cm× 4 cm, resulting in a spatial resolution δr = 0.06 cm
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which is a priori sufficient to capture small scales of the inertial range. Owing
to the synchronized acquisition of the PIV measurements and hot film measure-
ments, times of PIV acquisition have been rescaled with the burst period. We
have then computed the energy spectrum E(k) from 600 PIV velocity fields
acquired during the time interval [0, Tv]. A good agreement is found between
the PIV spectrum and the hot-film spectrum over the scales of the inertial range
(Fig.6). For wavenumbers k in the dissipative range, a discrepancy between
the two spectra is observed. The steeper decay of the PIV spectrum results
from truncation errors introduced by the computational method used, which
is based on the vorticity field derived from the velocity field. This measure-
ment confirms both the k−5/3 behavior and the ability of PIV measurements to
characterize the burst structure.

4. Prospects

In the Lundgren model, the initial vorticity is a free parameter. Different
choices for this parameter may lead to a different evolution in the instantaneous
spectrum, although averaging over time should always result in the k−5/3 spec-
trum. Pullin et al. (1994) have performed computations for a particular solution
of the Lundgren model as a vorticity sheet in the process of roll-up. Their com-
putations lead to a transition from−2 to−1 in the instantaneous spectra inverted
compared to the experimental one. On the ground of our PIV measurements,
we are actually computing a particular solution of the Lundgren vortex with
vorticity patches as the initial condition. We expect that this condition closer
to the experiment will allow a transition from −1 to −2.
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Abstract The present paper describes our recent experimental studies on the supersonic
mixing and combustion enhancement using streamwise vortices in spanwise-
row configuration. Firing tests verify streamwise vortices of Γ/ν = 3 × 104

to be powerful for supersonic combustion enhancement. Cold-flow hot-wire
measurements show that Kolmogorov’s −5/3 power law region appears in the
spectrum of ρu-fluctuations in the vortices for Γ/ν above about 104. This is
not inconsistent with the minimum Reynolds number for the mixing transition
proposed by Dimotakis (2000).

Keywords: Mixing transition, Kolmogorov’s −5/3 power law, supersonic mixing and com-
bustion, turbulence control

1. Introduction

The propulsion for airbreathing hypersonic flight relies on the so-called su-
personic combustion ramjet (scramjet) engine under development. The reason
for the supersonic combustion is to avoid the possible large total pressure loss
and high static temperature rise that would be caused by the deceleration of
hypersonic flow to subsonic. For typical operating conditions of scramjet, the
time scale for complete combustion of the fuel hydrogen and the air oxygen
will be on the order of (or less than) 1ms so that the problem of providing rapid
mixing of molecular level is thus quintessential for the combustor design of
scramjet (Ferri 1973, Gutmark et al. 1995). To achieve the necessary mixing
enhancement by means of turbulence control is a real challenge. This is because
the compressibility can strongly suppress vortical motions at supersonic speeds.
In compressible mixing layers, for instance, the growth rate of the thickness
decreases considerably with increasing the convective Mach number Mc (Bog-
danoff 1982, Papamoschou & Roshko 1988). It is well known that low-speed
mixing layers are governed by energetic vortical motions called Brown-Roshko
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vortices. Such vortical activities are highly suppressed in supersonic mixing
layers for Mc beyond 0.6 as demonstrated by Papamoschou & Roshko (1988).

The fuel injector for supersonic combustion should be capable of generating
such vortical motions that cause the fuel-air interface area to increase rapidly
and enhance the micro mixing of molecular level, hence leading to efficient
combustion. For such supersonic mixing enhancement the use of large-scale
streamwise vortices seems to be the most advantageous (Nishioka 1990, Gut-
mark et al. 1995, Nishioka et al. 2002). We may expect that streamwise
vortices are rather “insensitive” to the compressibility effect. This is because
their large-scale motion is perpendicular to that of the supersonic mainstream
fluid, which is to be entrained into the vortical region. Indeed, for the case of
a single streamwise vortex embedded in a Mach 2.4 uniform flow, our stability
analyses for various vortices with vorticity distributions of hollow-type indicate
that streamwise vortices are almost free from the compressibility effect unless
the circumferential velocity component exceeds about 0.6 in terms of Mach
number (Nishioka et al. 2002). Imagine that streamwise vortices containing
the fuel in their core regions break down into small-scale turbulent eddies. No
doubt, this increases the fuel-air interface area rapidly and enhances the micro
mixing. Therefore it is important to know the flow condition for the supersonic
streamwise vortices to undergo the mixing transition in the sense of Dimotakis
(2000) (see Section 3). However, the condition for the mixing transition has
not been clarified for the present supersonic case in spite of a number of studies
made on the supersonic mixing enhancement using streamwise vortices.

In the present paper we first briefly review our studies on the supersonic mix-
ing and combustion enhancement. Next we describe our recent experiments
made to examine the mixing capability of a pair of counter-rotating streamwise
vortices introduced into a turbulent boundary layer. Our main interests are to
measure the streamwise mass-flux fluctuation (ρu)′ by hot-wire and to exam-
ine the turbulent activities within the streamwise vortices and their resulting
streamwise growth. With all these results we have tried to clarify the mixing
transition in our supersonic streamwise vortices.

2. Supersonic mixing and combustion enhancement using
streamwise vortices

As emphasized in the introduction the use of streamwise vortices seems to
be the most advantageous for supersonic mixing enhancement. Since the first
demonstration by Swithenbank & Chigier (1968) many studies have been made
through trying various ways of generating streamwise vortices as reviewed in
detail (see Gutmark et al. 1995). Among those so far evaluated through firing
tests the so-called wall-mounted swept ramp injector developed by Northam
and others (Northam et al. 1989, Northam et al. 1991, Drummond et al. 1989,
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Stouffer et al. 1994) was once believed to be the most promising in USA. Even
for the wall-mounted swept ramp injector, however, the combustion efficiency
is not sufficient according to Stouffer, Vandsburger & Northam (1994). It is thus
clear that further studies are needed to explore and develop more effective use
of streamwise vortices for enhancing the supersonic mixing and combustion.
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Figure 1. Streamwise-vortex generator called Alternating Wedge (AW) strut, illustrated by
typical geometry in (a), assumed 2D inviscid flow in (b) and results (density contours in the
vortex formatin region) of direct numerical simulation in (c).

We have been working on the supersonic mixing and combustion enhance-
ment using streamwise vortices. In our studies streamwise vortices are intro-
duced into the otherwise uniform freestream as well as the near-wall flow like
the swept ramp injector. Our basic idea for generating streamwise vortices in
supersonic air stream (Nishioka 1990, Nishioka & Sunami 1995) is illustrated
in Fig. 1 (a) and (b) showing a double-wedge shaped strut. The front half of the
strut is of a two-dimensional wedge. The rear half is characterized by spanwise
alternating upward and downward expansion-ramps, with each opposite surface
parallel to the incoming freestream. This type of strut is called the “Alternating
Wedge (AW) strut”. The important dimensions are the strut thickness h, the
spanwise width of expansion-ramps and the ramp angle θ. The idea for stream-
wise vortex generation by the AW strut is as follows. The shock and expansion
wave pattern around a cross section containing the upward ramp is illustrated
in Fig. 1 (b) by assuming 2D-inviscid flow. When two streams along the neigh-
boring upward and downward ramps merge at the their interface, there appears
a slip in the vertical velocity direction, with its magnitude of 2v, see Fig. 1 (b).
This introduces the streamwise vorticity necessary for generating streamwise
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(a) (b) (c)

Figure 2. Supersonic combustions with and without the mixing enhancement due to stream-
wise vortices introduced by AW strut. (a) firing test of CNR11-R15(direct photo), (b) cold flow
(schlieren photo), (c) firing test of multiple orifice strut (Sunami et al. 2002).

vortices in the wake. A measure of the circulation Γ for the streamwise vortex
is thus written as 2vh.

Fig. 1 (c) (Sunami et al. 1998, Sunami et al. 2002) shows results (density
contour maps) of our numerical simulation to illustrate the formation of stream-
wise vortices in spanwise-row configuration immediately behind CNR10-R11
strut sketched on the top. As for the name of AW strut, CNR10-11, CNR means
“AW strut for generating counter rotating streamwise vortices”, the figure fol-
lowing CNR, 10 means that the spanwise width of expansion-ramps is 10mm,
and the last label R11 means that the ramp angle is 11 degrees. We found (1)
that in supersonic flows streamwise vortices can be generated by our AW strut
quite easily and almost without additional losses in total pressure such as those
due to shock waves, (2) that their breakdown into smaller scale, which is essen-
tial for mixing enhancement, can be controlled by their geometry in spanwise
row configurations and by various combinations of their scales, intensity of
circulation and rotational directions (Sunami & Nishioka 1997, Sunami et al.
2001), and (3) that the hydrogen fuel can be injected into their core region. At
a freestream Mach number 2.5 firing tests are carried out to realize and con-
firm the supersonic combustion as demonstrated by in Fig. 2 (a), which shows
top-view direct photo indicating the formation of streamwise vortices and their
capability of flameholding. Indeed we see intensive supersonic combustion in
Fig. 2 (a). Fig. 2 (b) illustrates the formation of streamwise vortices in cold
flow. For comparison, firing tests are also made for the case of a generic fuel
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Figure 3. Wall-mounted device generating a pair of couter-rotating streamwise vortices (see
(a)). Their streamwise development is illustrated by schlieren photos in (b) and (c).

injection strut (without generating streamwise vortices), see Fig. 2 (c). The
results show the effectiveness of the present streamwise vortices for supersonic
mixing and combustion enhancement.

3. Mixing transition in supersonic streamwise vortices

We have demonstrated that the mixing enhancement due to streamwise vor-
tices is really powerful. The streamwise vortices in spanwise-row configuration
are very effective in enhancing the supersonic combustion. The intensive com-
bustion shown in Fig. 2 (a) is a firm evidence for the appearance of active small-
scale eddies. For their appearance we have to know the flow condition, if any.
What is most important in this connection is the mixing transition proposed
by Dimotakis as noted in the introduction. Small-scale turbulence activities
should manifest themselves in their power spectra. Hot-wire measurements
have been made across the streamwise vortices using a constant voltage hot-
wire anemometer (see Sarma 1993 for the operating principle). It is noted
that in supersonic flows a hot-wire measures the streamwise mass-flux and its
fluctuations.
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Figure 4. Mass-flux fluctuations in streamwise vortices (see (a) to (c)) and turbulent boundary
layer (see (d)) at M = 2.4, illustrated by their power spectra. Solid lines indicate the power
spectra of ρu-fluctuations, lines with corsses the electric noise, and broken lines the −5/3 power
law. (a) (x, y) = (45, 6), (b) (x, y) = (90, 4), (c) (x, y) = (90, 8), (d) y/δ = 0.58.

Here we first describe experiments made to see the mixing capability of a
pair of counter-rotating streamwise vortices introduced into a near-wall region
otherwise occupied by turbulent boundary layer. Our device generating the
vortex pair consists of one compression ramp and two neighboring expansion
ramps as shown in Fig. 3 (a). The device is installed on the wall of a supersonic
wind tunnel of Mach 2.4. Schlieren photos in Fig. 3 (b) and (c) show the
generated counter-rotating vortex pair, which moves upwards from the wall by
their mutual induced velocity. In these photos we see a thin plate glued on the
upper surface of the compression ramp extending downstream by about 10mm.
This extension helps maintain the pressure immediately behind the base of the
device at a low value to generate strong vortices. During the vortex formation the
tunnel wall turbulent boundary layer (6mm in thickness) is partly engulfed into
the vortex pair. It is found from a number of schlieren visualization photos that
the downstream growth of the vortex pair in height is quite large, indeed, being as
large as the growth rate of low-speed mixing layers governed by Brown-Roshko
vortices. Hot-wire measurements of mass-flux fluctuations made across the
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vortex at various downstream stations indicate that the fluctuation rms intensity
is quite large, attaining 20% of the freestream mean value. Results of the
corresponding FFT spectrum analyses are given in Fig. 4, which compares
streamwise mass-flux ρu-fluctuations in the streamwise vortices and the tunnel-
wall turbulent boundary layer. The electric noise spectrum indicates that our
hot-wire response is flat at least up to about 300 kHz. Discrete noise components
above 600 kHz are due to broadcast radio waves. We see high-frequency ρu-
fluctuations even beyond 500 kHz, which is beyond the flat response of hot-wire.
The power spectrum partly follows Kolmogorov’s −5/3 power law, indicating
that the streamwise vortex pair generates small-scale turbulent eddies of high
mixing power. Similar results are obtained for the case that the same vortex pairs
sit side by side in the spanwise direction to form a spanwise row configuration.
The circulation of these vortices Γ and the vortex Reynolds number Γ/ν are
estimated to be 0.98m2/s and 1.8 × 104 respectively. We have carried out
similar hot-wire measurements at M = 1.85 for the case where Γ = 0.27m2/s
and Γ/ν = 0.77 × 104. In this case there appears almost no Kolmogorov’s
−5/3 power law region in the spectrum of ρu-fluctuations.

Next we describe experiments for the case of streamwise vortices (of Γ =
4.8m2/s, Γ/ν = 9.2 × 104) introduced into the otherwise uniform freestream
at M = 2.4, in a spanwise row configuration. Fig. 5 (a) shows two kinds of
AW struts. One is the same model as used in the firing test. The other is a
modified strut with 2-dimensional cavity embedded within the upper and lower
strut walls. Supersonic flow over a cavity may undergo strong oscillations. It
is thus interesting to see whether or not the streamwise vortices can be excited
by disturbances due to the supersonic cavity-flow oscillations. It is important
to examine whether or not such turbulence control can excite more energetic
fluctuations in the −5/3 power law frequency range. By comparing turbulence
activities visualized by schlieren photos (in Fig. 5 (b) and (c) ) and also by
comparing power spectra (in Fig. 6) of ρu-fluctuations within the streamwise
vortices, between the two cases with and without cavity-excited high-frequency
disturbances (of about 46 kHz), we find that the present turbulence control
is quite effective in generating energetic fluctuations in the −5/3 power law
frequency range.

According to Dimotakis (2000) fully-developed turbulence requires a mini-
mum Reynolds number. Typically, the transition to fully-developed turbulence
can be identified as leading to an enhanced-mixing turbulent-flow state charac-
terized by the appearance of Kolmogorov’s −5/3 power law in the fluctuation
power spectrum. He called the transition to fully-developed turbulence the mix-
ing transition and proposed the minimum Reynolds number (defined as Γ/ν for
streamwise vortices) to be 1 ∼ 2 × 104 for low-speed jets and mixing layers.
The present results described so far for supersonic streamwise vortices are not
inconsistent with those low-speed results. It should be added that firing tests
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Figure 5. Turbulence activities in streamwise vortices (introduced into otherwise uniform
freestream at M = 2.4. Compare schlieren photos (b) and (c) taken behind AW struts without
and with cavity as shown in (a).

verifies streamwise vortices of Γ/ν = 3 × 104 to be powerful for supersonic
mixing and combustion enhancement.
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Figure 6. Turbulence activities in streamwise vorticies (introduced into otherwise uniform
freestream at M = 2.4. Compare power spectra in (a) to (d) obtained behind AW struts without
and with cavity as shown in Fig5.(a). Thick and thin lines indicate the cases of with and
without cavity excited disturbances, lines with crosses the electric noise, and broken lines the
−5/3 power law. (a) (x, y) = (22,−1), (b) (x, y) = (22,−8), (c) (x, y) = (70,−3), (d)
(x, y) = (70,−13).

4. Summary

We have described our recent studies on the supersonic mixing and combus-
tion enhancement. Streamwise vortices in spanwise-row configuration gener-
ated by the AW fuel injector strut are very effective in enhancing the supersonic
mixing and combustion. Typically, the transition to fully developed turbulence
can be identified as leading to an enhanced-mixing turbulent-flow state charac-
terized by the appearance of Kolmogorov’s −5/3 power law in the spectrum
of ρu-fluctuations. Dimotakis (2000) proposed the minimum Reynolds num-
ber (defined as Γ/ν for streamwise vortices) for the mixing transition to be
1 ∼ 2 × 104 for low speed jet and mixing layers. The present supersonic
results are not inconsistent with those low-speed results. Firing tests verifies
streamwise vortices of Γ/ν = 3 × 104 to be powerful for supersonic mixing
and combustion enhancement.
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Abstract We present results obtained from a direct numerical simulation for a model of
incompressible trailing vortices consisting of an array of counter-rotating vor-
tices and a superposed axial velocity in a doubly-periodic domain, infinite in the
vertical direction. The Reynolds number based on vortex circulation is 1000. It
is found that for sufficiently strong axial flow, helical instability modes develop
on each vortex. This leads to a decrease in the magnitude of the axial flow and
subsequent relaminarization of each vortex. At later times, modes correspond-
ing to the more slowly growing co-operative instability become dominant. These
produce their own helical structures followed by the rapid growth of small scales,
then vorticity cancellation and decay of the vortex array. In the presence of strong
axial flow the helical structure persists and the vortices appear more resistant to
the breakdown phenomena than for arrays with no axial flow.

Keywords: Trailing vortices, axial flow, M&M Vortex

1. Introduction

A detailed knowledge of the interactions between vortices is of great interest
both from a fundamental standpoint concerning coherent structures in turbulent
flows as well as from the more practical problem of the wake shed from a
lifting body; the counter rotating pair that results from the latter having been
observed to persist tens of miles downstream of large aircraft (Spalart 1998).
The q-vortex (Batchelor vortex), defined by a vorticity distribution that decays
exponentially with the square of the radius, is typically chosen as an abstraction
of an isolated trailing vortex. While this vortex is Rayleigh stable, the presence
of axial velocity proportional to the vorticity renders the flow linearly unstable
for sufficiently strong axial motion (Leibovich & Stewartson 1983). It is also

counter-rotating pair leaves the system susceptible to the long wave length Crow
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well known that the strain field produced on one vortex by the other member of a
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instability (Crow 1970) as well as short wavelength Widnall modes (Widnall
1974); these instabilities fall under the more general class of elliptic instabilities
being a result of two-dimensional flows with elliptic streamlines being unstable
to three-dimensional disturbances (Pierrehumbert 1986, Bayly 1986). Presently
we discuss results obtained from direct numerical simulation (DNS) of a vortex
array that exhibits all of these instability modes. We use an initial condition
comprising an array of counter-rotating vortices with superposed axial flow that
is an exact weak solution to the incompressible Euler equations.

2. Geometry and initial condition

In Cartesian (x1, x2, x3) co-ordinates we consider DNS of the incompress-
ible Navier-Stokes equations on a domain that is periodic in both the x1 and
x2 directions and is unbounded in x3. Numerically, this is achieved by using
a Cain’s mapping (Cain et al. 1984) to stretch onto a computational domain
that is periodic in all directions. The vortex axis is chosen along x1. As (un-
perturbed) initial condition we utilize the counter-rotating M&M vortex array
(Mallier & Maslowe 1993), the vorticity concentration being governed by a
parameter C. An axial flow that is proportional to the axial vorticity is chosen
resulting in an initial condition that satisfies the steady two-dimensional, three
velocity component Euler equations,

u1(x2, x3) =
1.56 u3max

q0

∣∣∣∣ω1(x2, x3)
ω1(0, 0)

∣∣∣∣ , (1)

u2(x2, x3) =
C2 sinh(Cx3) cos(x2)

cosh2(Cx3) − C2 cos2(x2)
, (2)

u3(x2, x3) = − C cosh(Cx3) sin(x2)
cosh2(Cx3) − C2 cos2(x2)

. (3)

At any time t > 0 the flow then corresponds to an x2-periodic array of vortex
pairs. A parameter q0 defines the relative strength of the swirl velocity to the
axial flow inside a member of the array,

q0 = 1.56
u3max

ud
, (4)

ud being the difference between the free stream axial velocity (zero presently)
and its peak value. The prefactor on the right-hand side of (4) is chosen to
produce values of q0, using the present initial condition, that match those char-
acteristic of the Batchelor vortex. We define a Reynolds number ReΓ = Γ/2πν,
where ν is the kinematic viscosity and use C = 0.9 to define an initial condition
with compact vortices.
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3. Direct numerical simulation results

DNS were performed at ReΓ=1000 for q0 = 1 and q0 = ∞, the latter
corresponding to zero initial axial flow. Each vortex in the array (the half
domain) is resolved with 64× 64× 128 points, the initial core being described
by 24 points in the diameter. The axial extent of the domain was chosen to
contain one wavelength of the most unstable Crow mode and the time step
was chosen to correspond to an initial CFL number of 0.1. The base flow was
perturbed initially by divergence-free white noise modulated by an exponential
decay in the x3 direction. As flow diagnostics we define 〈ε〉, the dissipation
integrated over a domain corresponding to a pair of opposite-signed vortices,
and Γ, the circulation around one vortex averaged in the x1 direction. For
flow visualization we consider the second invariant of the velocity gradient
tensor Q = −1

2 (SijSji + ΩijΩji) where Sij and Ωij are the symmetric and
antisymmetric parts of the velocity gradient tensor respectively. Positive values
of Q are representative of regions in which rotation dominates strain magnitude,
hence providing a means to identify vortical structures (Hunt et al. 1988, Chong
et al. 1990).

3.1 Early development

Figure 1 shows visualization of the resulting flow development through iso-
surfaces ofQ = 1, shaded with local dissipation. It is found that the large growth
rates associated with susceptibility of the rotational flow to non-axisymetric in-
stabilities in the presence of axial motion causes each vortex in the linear array
to first develop helical structures. This can be seen in figure 2a as a small
increase in 〈ε〉 at around t = 10. During this phase, the energy of the axial
flow is extracted through turbulence within the core, the perturbations gener-
ated presumably being transported outward toward regions of local stability.
This behavior has been observed for the isolated Batchelor vortex (Jacquin &
Pantano 2002). In these regions, the perturbations do not modify the mainly
tangential flow, and so the axial velocity reduces whilst the angular momentum
is maintained. Figure 2b shows this, and also the evolution of q towards values
that are stable in the linear sense. Ultimately, the core stabilizes with respect to
the helical modes and the vortex relaminarizes before the co-operative modes
have shown appreciable growth.

3.2 Co-operative instabilities

At later times the more slowly growing co-operative elliptic instabilities (the
x2 periodic analog of the Crow and Widnall modes, referred to as CM and WM
henceforth) become apparent as indicated by a large-scale bending of the vor-
tices toward their neighbors, and by short wavelength kinks on each structure
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Figure 1. Isosurfaces with Q = 1 shaded by dissipation. ReΓ = 1000, C = 0.9. Left,
q0 = ∞. Right q0 = 1. Evolution is from top to bottom and shown at non-dimensional
times (a) 0, (b) 12, (c) 21, (d) 32, (e) 40, (f) 45. One vortex pair in the array is shown.
(x, y, z) ≡ (x1, x2, x3)

respectively. In figure 1e, which corresponds to t = 40, a striking difference
between the two flows has become apparent. In the absence of axial velocity,
the WM has distorted each vortex to the extent where separate tubular structures
can be seen surrounding a highly dissipative core region. The next snapshot
captured in figure 1f shows that, analogously to the vortex pair experiments
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of Leweke & Williamson (1998), the fluid in these structures is drawn closer
to the neighboring vortices where it is quickly wrapped around by the mean
circulation. This effect is magnified in regions where the CM pulls pairs of
vortices closer together, increasing the local strain and hence the WM growth
rate. Ultimately this exchange of vorticity between counter-rotating pairs re-
sults in a rapid decrease in circulation and explosive growth in dissipation. In
contrast, the helical structure that results from the axial velocity is observed to
persist and whilst the WM is still present, the flow appears to be more resistant
to the aforementioned phenomenon. This is seen from the volume averaged
quantities in figure 2a where the onset of both the sharp decrease in circulation
and growth in dissipation is delayed for q0 = 1. Finally, the dissipation peaks
in both cases before undergoing a rapid reduction. This maximum is signifi-
cantly higher for the q0 = ∞ case, providing further evidence of the increased
mixing that occurs in the absence of axial flow. As pointed out by Leweke &
Williamson (1998), the final state is different from the organized array of vortex
rings that would result from the reconnection of the primary structures if only
the CM were present.
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Abstract The spiral form of vortex breakdown observed in the numerical simulations of
Ruith et al. (2003) is interpreted as the consequence of the development of a
so-called nonlinear global mode originating in the convective/absolute transition
of the instability in the lee of the vortex breakdown bubble. This local theory
gives an excellent prediction of the precession frequency measured in the three-
dimensional DNS.

Keywords: Vortices, centrifugal instability, helical modes

Besides the striking phenomenon of vortex breakdown resulting in a strong
deceleration along the jet axis, swirling jets are known to experiment a wide
range of helical instabilities, breaking their axisymmetry. The relevant para-
meter in these studies is the swirl S which measures the ratio of the azimuthal
velocity with respect to the axial velocity. These modes of instability are classi-
Þed according to their azimuthal wavenumber m. The present paper is dedicated
to the inßuence of the spatio-temporal development of helical instabilities in the
mode selection in swirling jets both in the pre- (S < Sc) and post-breakdown
(S > Sc) regime. An interpretation of the double-helix structure observed for
swirl ratios less than Sc by Billant et al. (1998) is proposed, based on the local

at nozzle exit. Secondly, the spiral form of vortex breakdown observed in the
numerical simulations of Ruith et al. (2003) is interpreted as the consequence
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absolutely unstable nature of the swirling jet with regard to the m = −2 mode
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of the development of a so-called nonlinear global mode originating in the con-
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vective/absolute transition of the instability in the lee of the vortex breakdown
bubble.

1. Helical structures at the pre-breakdown stage

The goal of this Þrst part is to identify the selection mechanism responsible
for the appearance of a double-helix structure in the pre-breakdown stage of
swirling jets, such as those of Escudier (1988), or Billant et al. (1998). In order
to represent satisfactorily the nozzle velocity distributions measured in the latter
swirling jet experiment, our basic ßow is obtained by combination of classical
azimuthal velocity proÞles of shielded vortices with classical axial velocity
proÞles of jets. For the azimuthal velocity Uθ, the three parameters α, rc and
q non-dimensional family of proÞles introduced by Carton and McWilliams
(1989)

Uθ(r) = qr e(−r/rc)α
(1)

is an excellent approximation of the measured proÞles as seen in Þgure 1. As
far as the axial velocity Uz is concerned, the one parameter N non-dimensional
family of proÞles introduced by Monkewitz (1988)

Uz(r) =
1

1 + (er2 log(2) − 1)N
(2)

is seen (Þgure 1 b) to yield a good approximation of the measured proÞles if one
is willing to neglect the inßuence of the axial velocity overshoot. This satisfying
approximation is further discussed in Gallaire and Chomaz (2003). In the above
expressions, the parameters α, rc and N are determined once and for all in order
to Þt the measurements. Only the swirl ratio q, deÞned here as the slope at the
origin of the azimuthal velocity is varied throughout the study. Expression (2)
Þxes the velocity and length scales to be the axial velocity Uc on the jet axis and
the jet radius R, which enable us to deÞne a Reynolds number Re = UcR/ν
as well as another form of the swirl number S = Uθ(R/2)/Uc. As in classical
viscous stability analysis, the basic ßow (1) and (2), which constitutes an exact
stationary solution of the Euler equations in unbounded space, is assumed to be
steady and uniform in the axial direction. Formally, this may be achieved by
adding a body force that exactly compensates for the viscous diffusion of the
basic ßow.

Temporal and absolute/convective instability properties are directly retrieved
from numerical simulations of the linear impulse response in a box 1440 ×
196 × 196 following the method introduced by Delbende et al. (1998) at a
Reynolds number Re ∼ 670 for different swirl parameter settings. The tempo-
ral growthrates are computed from the evolution of the energy of each Fourier
axial and azimuthal component whereas the absolute growthrate is deduced
from the space-time-evolution of the energy spreading from the initial local-
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Figure 1. Azimuthal (a) and axial (b) velocity proÞles corresponding to expressions (1) and
(2). Symbols refer to experimental data of Billant et al. (1998) at Re = 666 and S = 0.68 (�),
S = 0.92 (o), S = 1.08 (�).

ized perturbation. Figure 2 demonstrates that a large range of negative helical
modes, winding with the underlying rotating basic ßow, are destabilized as the
swirl is increased, in close agreement with the asymptotic stability predictions
of Leibovich and Stewartson (1983). At Re ∼ 670, the most unstable mode is
m = −5, but it should be noted that this selection is due to the damping effect
of viscosity. At Re ∼ 1300 for instance the most unstable mode is m = −8
(Gallaire and Chomaz 2003): the temporal study therefore fails to yield a sharp
selection principle.

Turning to the spatio-temporal study, Þgure 3 shows that, when the swirl is
increased from zero, the swirling jet is determined to Þrst become absolutely
unstable to the m = −2 mode, winding with the underlying base ßow, above a
swirl threshold of qC/A ∼ 1.12. This transition from convective to absolute in-
stability is proposed as a selection mechanism accounting for the experimental
observation of a double-helix, which is interpreted as a global mode triggered by
a front located at the nozzle exit where the m = −2 mode is absolutely unstable.
The theoretical predictions in terms of swirl onset, frequency and wavenum-
ber compare satisfactorily with the experimental observations of Billant et al.
(1998).

2. Spiral form of vortex breakdown

The widespread phenomenon of vortex breakdown affecting swirling jets is
both observed in its axisymmetric form (the bubble) or in its spiral form, as soon
as the swirl parameter S is large enough. These synchronized helical vortex
breakdown states (see Escudier 1988 for a review) are characterized by small
azimuthal wavenumbers (m = 1 or m = 2), they rotate in time in the same
direction as the swirling base ßow but wind in space in the opposite direction.
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According to the initial suggestion of Maxworthy (private communication),
Delbende et al. (1998), and to the Þrst qualitative comparisons with the Batch-
elor vortex of Yin et al. (2000) and Ruith et al. (2003), the spiral vortex
breakdown is supposed to result form the development of a global mode trig-
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Figure 4. Meridional cut of the streamlines associated to the base ßow obtained numerically
by imposing the axisymmetry of the ßow; S = 1.095, Re = 200 (Ruith et al. 2003).

gered by the absolutely unstable nature of the m = 1 mode in the lee of the
breakdown bubble.

Our purpose is to validate this hypothesis by using as a base ßow the ve-
locity proÞles obtained in the numerical simulations of Ruith et al. (2003) by
enforcing the axisymmetry (see Þgure 4). As seen in Þgure 4, vortex break-
down is observed at the swirl number S = 1.095, characterized by the typical
recirculation zone. At each axial station z along the streamwise axis, the ßow
is assumed to be weakly non-parallel and the stability study is conducted on
a parallel ßow basis with the base ßow measured locally at the station z. The
weakly non-parallel but strongly nonlinear theory of Pier et al. (2001) suggests
that, if there exists a station zC/A where the imaginary part of the absolute fre-
quency ω0 vanishes and where the ßow changes from convective (ω0,i(z) < 0
for z < zC/A) into absolute (ω0,i(z)0 for zC/A < z), then a nonlinear global
mode might be triggered with a front located in zC/A. This global mode inherits
the real absolute frequency at this point ω0(zC/A).

For the same parameter setting as in Þgure 4 but by relaxing the axisymmetry
assumption, Þgure 5 represents the instantaneous emission lines at t = 1850
obtained in the DNS with an initial random noise imposed on the base ßow
(Þgure 4) at t = 0. The ßow settles to a limit cycle oscillating at a well
determined frequency ωNL

G .
The stability analysis is conducted by numerical means by the method out-

lined in Delbende et al. (1998) in a box 1440 × 196 × 196. The results are
depicted in Þgure 6. Two absolutely unstable regions can be distinguished in
shaded. A Þrst region located in the recirculation bubble between z1

C/A = 1.1
and z1

A/C = 3.3 and a second region in the lee of the bubble for z ≥ z2
C/A = 4.7.

The value of the global frequency ωNL
G measured in the DNS is shown

in Þgure 6 by a horizontal heavy line. The agreement between the measured
frequency ωNL

G and ω
C/A
0,r,2 is excellent, whereas it is less satisfactory with ω

C/A
0,r,1.
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Figure 5. Instantaneous emission lines at t = 1850 associated to the three-dimensional ßow
obtained by DNS at S = 1.095 and Re = 200 (Ruith et al. 2003).
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Figure 6. Streamwise evolution of the real ω0,r and imaginary part ω0,i of the local absolute
frequency as a function of the streamwise coordinate z.

This suggests that the second region is responsible for the global instability and
that the transition point z2

C/A plays the role of a wavemaker. The validity of
the interpretation of the self-sustained oscillator in term of a nonlinear global
mode with a front located at the transition point z2

C/A is further conÞrmed by
the analysis of the streamwise amplitude distribution and wavenumber variation
extracted from the DNS.
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Abstract Motions of fluid particles advected by a 3D vortex filament are studied. As ex-
tensions of a circular vortex ring, which provides a basis of fluid transport by
vortex, two types of motions, elliptic vortex ring and vortex soliton are consid-
ered. For an elliptic vortex ring, it is verified that the local induction equation
(LIE) describes its motion properly if the aspect ratio is close to 1. Using the
solution of LIE, particle motions are simulated for two different induction con-
stants corresponding to a thin and a fat vortex for the circular vortex ring case,
respectively. Intrinsic difficulty for calculating the finite transported volume by
an elliptic vortex ring is suggested. For a vortex soliton, it is demonstrated that
particle motions are confined in a torus near the kink of a soliton for a wide range
of parameters that characterize the shape and the strength of the vortex soliton.

Keywords: 3D vortex filament, elliptic vortex ring, vortex soliton, particle transport

1. Introduction

Transport of fluid particles by an isolated vortex has been a fundamental
problem which, particularly if a vortex moves steadily, provides a direct example
of long-surviving advection of materials from a turbulent region where a vortex
is excited to a laminar region in fluids. The main objective of this paper is to
demonstrate such transport by 3D motions of a vortex filament.

The best example of such transport is the case of a circular vortex ring. In
this axisymmetric situation, fluid particles are trapped inside a region near the
vortex core, and the volume of the region is determined as a function of the

the vortex ring (Batchelor 1967, Saffman 1992). If this idealistic situation is
modified either to time-dependent or to extended 3D flow field, we may have
different pictures of transport of particles according to the features of the vortex
motion. In this paper, we shall present two such examples of particle transport:
one is by an elliptic vortex ring, and the other is by a vortex soliton. The former
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parameter σ/L, where σ is the core radius and L is the curvature radius of
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provides an example of an unsteady vortex motion by adding a time periodic
perturbation to a circular vortex ring, while the latter provides an extended 3D
but steady vortex flow in a certain reference frame.

2. Particle transport by an elliptic vortex ring

As a direct modification of the circular vortex ring problem to an unsteady
motion, we consider particle transport by an elliptic vortex ring. We have
verified numerically that, as long as the ellipticity is small, the motion of an
elliptic vortex ring is periodic in time which is well-described by the LIE,

∂X
∂t

=
Γ
4π

log
(

L

σ

)[
∂X
∂s

× ∂2X
∂s2

]
, (1)

where X(s, t) = (x(s, t), y(s, t), z(s, t)) is the position of the vortex segment
parametrized by the arc-length s, at time t, and Γ is the circulation of the vortex
ring. If we assume that the prefactor, Γ

4π log
(

L
σ

)
, is a constant, G called the

self-induction constant, the above equation can be written as

v(s) = Gκ(s)b(s), (2)

where v, κ, and b are velocity, curvature and the binormal unit vector of the
vortex segment parametrized by s. The usage of LIE for the motion of an elliptic
vortex ring was first proposed by Arms and Hama (1965). Later it was argued
by Dhanak and de Bernardinis (1981) that the LIE is an approximation which
neglects such vortex instability as Crow instability or elliptic instability on the
core. Figure 1 shows a snapshot of an elliptic vortex ring moving upward. (The
initial aspect ratio a/b = 1.5, and the thickness of the core is exaggerated. )
The curve on each plane is a projection on to the plane. Similar figures were
obtained also experimentally (Oshima et al. 1988).

It is well-known that the LIE is equivalent with the nonlinear Schrödinger
equation (NLS)

i
∂φ

∂t
+

∂2φ

∂s2
+

1
2
|φ|2φ = 0, (3)

where

φ(s, t) = κ(s, t) exp
[
i
∫ s

τ(s′, t)ds′
]

, (4)

and the time has been rescaled by means of G. The time periodic motion of an
elliptic vortex ring implies that the corresponding NLS solution is also a space
and time periodic solution. But because of the phase information in (4), not all
periodic NLS solutions can apply to closed vortex filament solutions. We shall
report this point elsewhere.
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Figure 1. A snapshot of an elliptic vortex ring moving upward. The curve on each plane is a
projection of the plane.

For the motion of particles, the Biot-Savart integral,

dr
dt

=
1
4π

∫ ∞

−∞

X′(s, t) × (r − X(s, t))
|r − X(s, t)|3 ds (5)

is used to calculate the induced velocity at the position of a particle r(t). For
simplicity, we set the circulation Γ = 1, which means that a relation log

(
L
σ

)
=

4πG is imposed for the thickness (i.e. the ratio between the long and short
length scales) of the core.

Figures 2a and 2b are plots of particles carried by an elliptic vortex ring in a
reference frame which moves with the center of mass. At t = 0, the particles
are placed in a plane adjacent to the vortex ring. Figure 2a is the case with
G = 1 (thin vortex) and Figure 2b is with G = 0.25 (fat vortex). For both
cases, some particles rotate around the vortex core and move with the unsteady
vortex ring. One thing we should point out is that the translational speed of a
thin vortex is fast, and that is why smaller number of particles can catch up with
the vortex ring while rotating around the core.

As a fundamental transport property, the fluid volume carried by a vortex ring
is of interest. This quantity could be approximately measured by the number
of particles trapped by the vortex ring. Unfortunately, however, even if the
analytical solution for the motion of an elliptic vortex ring is given, it may be
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Figure 2a. Particles driven by an elliptic
vortex ring. G = 1 (thin vortex)

Figure 2b. Particles driven by an elliptic
vortex ring. G = 0.25 (fat vortex)

difficult to calculate the definite amount of the volume. The situation can be
understood by appeal to an analogy with the corresponding 2D problem of a
perturbed vortex pair (Rom-Kedar et al. 1990). In this situation, the unstable
manifold of a vortex pair (i.e. the boundary of the pair) is dramatically deformed
by time periodic sinusoidal perturbations to produce many lobes outside. In
Figs. 2a and 2b, scattered particles are observed in the wake of the vortex ring.
Those particles may indicate the existence of such lobes in this perturbed vortex
ring problem also.

3. Particle transport by a vortex soliton

The interplay between LIE and NLS was first made clear in the discussion
of vortex soliton by Hasimoto (1972). The vortex soliton is one of few steady
solutions for a vortex filament under LIE, and it belongs to a class of traveling
solutions of NLS (Kida 1981). In the original observation of vortex soliton in a
rotating tank experiment by Hopfinger et. al. (1981), a transport mechanism of
physical quantities such as mass and energy was already suggested. Following
the experimental result, it was shown analytically that impulse and angular
momentum are transported by a vortex soliton (Kimura 1989), but to investigate
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the transport of mass, we need to scrutinize the flow field and track particles
around vortex solitons.

Making use of the fact that the motion of a vortex soliton is decomposed into
rotation and translation of a fixed shape, we can introduce a moving reference
frame in which the vortex soliton is fixed. The equation for the motion of a
fluid particle at r(t) in such a moving frame is

dr
dt

=
1
4π

∫ ∞

−∞

x′(s) × (r − x(s))
|r − x(s)|3 ds + (ν2 + τ2)G


 y

−x
0


− 2τG


 0

0
1


 ,

(6)

where x(s) is the position of the vortex filament parametrized by the arc length
s, and ν and τ are half-maximum curvature and torsion, respectively. In our
previous paper (Kimura & Koikari 2004), we corroborated the transport of
particles by vortex solitons with a wide range of three parameters (ν, τ,G)
which characterize the shape and strength of the soliton. Also the following
things were reported:

(i) Some particles are confined in a torus region which makes a knot with the
loop part of the vortex soliton (Figure 3) The Poincaré section shows
a similar structure with the KAM torus for non-integrable Hamiltonian
systems.

(ii) The volume of the torus is calculated as a function of the parameters,
(ν, τ,G). An optimized shape of the soliton is determined for the maxi-
mum rate of transport.

(iii) To explain the essential mechanism of the torus formation, the following
ODE system, the chopsticks model, is proposed:

d
dt


 x

y
z


 =

1
2π

1
|tA × (x − aA)|2


 sin φ sin θ z − cos θ (y + y0)

cos θ (x − x0) − cos φ sin θ z
cos φ sin θ (y + y0) − sin φ sin θ (x − x0)




+
1
2π

1
|tB × (x − aB)|2


 sin φ sin θ z − cos θ (y − y0)

cos θ (x − x0) + cos φ sin θ z
− cos φ sin θ (y − y0) − sin φ sin θ (x − x0)




+ (ν2 + τ2)G


 y

−x
0


− 2τG


 0

0
1


 , (7)

where φ and θ are usual azimuthal and polar angles for tangent vectors,
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Figure 3. Perspective view of a torus formed by a single trajectory near the loop part of a
vortex soliton for (ν, τ) = (1.924, 0.3827) and G = 0.1832.

respectively (i.e. θ = 0: z-axis, θ = π/2, φ = 0: x-axis), and

|tA × (x − aA)|2 = (cos2 θ + sin2 φ sin2 θ) (x − x0)2

+ (cos2 θ + cos2 φ sin2 θ) (y + y0)2 + sin2 θ z2

− 2 sin θ cos θ sin φ z (y + y0) − 2 sin θ cos θ cos φ (x − x0) z

− 2 sin φ cos φ sin2 θ (x − x0)(y + y0)

and

|tB × (x − aB)|2 = (cos2 θ + sin2 φ sin2 θ) (x − x0)2

+ (cos2 θ + cos2 φ sin2 θ) (y − y0)2 + sin2 θ z2

− 2 sin θ cos θ sin φ z (y − y0) + 2 sin θ cos θ cos φ (x − x0) z

+ 2 sin φ cos φ sin2 θ (x − x0)(y − y0) .

This model just replaces the original soliton with two straight line vortices
(with infinite length) tangent to the two strongest interaction points while
keeping the background rotational and translational terms. Interestingly
enough, this model still produces a similar torus around the sticks. Fig-
ure 4 shows the Poincaré section and the perspective view of the torus
produced by the chopsticks model. Although the upper part of the torus
is exaggerated because of the absence of the loop of the soliton, the torus
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keeps the same topology with the original soliton. Also the Poincaré sec-
tion looks more regular but still holds the hyperbolic strucuture inside.

Figure 4. Poincaré section (a) and perspective view (b) of a torus produced by the chopsticks
model.

4. Summary

We have demonstrated that a perturbed or an extended circular vortex ring
system (such as elliptic vortex ring and vortex soliton) can transport particles.
An elliptic vortex ring provides unsteady but periodic perturbation to a circular
vortex ring, whose motion can be approximated well by LIE (particularly for
ellipses close to a circle.) A possible intrinsic difficulty for calculating a definite
value of the transported volume was discussed by referring to the corresponding
2D problem as an example. In contrast with the obscureness for the boundary
of the trapped region for an elliptic vortex ring, the torus for a vortex soliton
has a rather sharp boundary, and we could compute the transported volume
for various parameter values. To explain the torus formation we proposed the
chopsticks model. It seems that the configuration of two vortex sticks in 3D
space is essential for producing the torus.

The author is grateful of the discussion with Professor Harvey Segur. The
second part of this paper is a collaboration with Dr. Souji Koikari.

This paper is dedicated to the late Professor Isao Imai.
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Abstract A new linear instability mechanism of curvature origin is established for a vor-
tex ring. The curvature effect reduces O(2) × SO(2) symmetry of a circular-
cylindrical tube to O(2), and fuels a pair of Kelvin waves whose azimuthal
wavenumbers on the core are separated by one. For Kelvin’s vortex ring, the
growth rate and eigenfunctions are written out in closed form. In the inviscid
case, the curvature effect dominates over the elliptically straining effect, but the
former suffers from enhanced viscous damping. There are numerous excitable
modes. As a first step toward an understanding of the route to a matured stage, we
derive equations for weakly nonlinear evolution of amplitudes of the curvature
instability. Our direct numerical simulation successfully captures the elliptical
instability.

Keywords: Vortex ring, curvature instability, weakly nonlinear stability, Hamiltonian spectra,
normal form

1. Introduction

Vortex rings are ubiquitous coherent structures, featured by vortex-tube cur-
vature, in practical flows and in nature. They commonly entail wavy distortions,

attracted continuous attention (Maxworthy 1977; Naitoh et al. 2002). It pre-
vails that the Moore-Saffman-Tsai-Widnall instability (the MSTW instability)
is responsible for instability (Widnall et al. 1974; Moore & Saffman 1975; Tsai
& Widnall 1976; Widnall & Tsai 1977). Its source is the local straining field
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sometimes resulting in disruption, and their three-dimensional instability has
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that deforms the circular core into an ellipse. Recently we have found a new
linear instability mode driven by the effect of curvature (Hattori & Fukumoto
2003; Fukumoto & Hattori 2005).

When viewed locally, a thin vortex ring is regarded as a straight tube. Owing
to SO(2)×O(2) symmetry, a circular-cylindrical vortex is spectrally stable and
supports an infinite family of three-dimensional oscillations, the Kelvin waves.
In the asymptotic expansions of the Navier-Stokes equations for a vortex ring
in powers of a small parameter ε, the ratio of core- to ring-radii, the curvature
effect is embodied as a local dipole field, in proportion to cos θ and sin θ, of
O(ε), in terms of the local moving polar coordinates (r, θ) in the meridional
plane (Fukumoto & Moffatt 2000). This precedes the quadrupole field of O(ε2)
associated with the elliptical deformation of the core. The dipole field breaks
circular (SO(2)-) symmetry of the core and can mediate a parametric resonance
between a pair of waves whose azimuthal wavenumbers differ by one.

We exemplify this by an analytically tractable model (Fukumoto & Hattori
2005). Kelvin’s vortex ring is an asymptotic solution of the Euler equations
which starts at O(ε0), with a circular vortex of uniform vorticity, that is, the
Rankine vortex. Remarkably this model admits a closed-form solution of the
linearized Euler equations for disturbances, solely in terms of the Bessel and
the modified Bessel functions. We reveal, by an asymptotic analysis, that the
most unstable mode occurs in the short-wave limit with radial and azimuthal
wavenumbers being of the same magnitude. The limiting value 165/256ε of
growth rate coincides with the value obtained by the geometric optics method
(Hattori & Fukumoto 2003).

ThisO(ε) instability mode outweighs, in the entire range of ε (0 < ε < 1), the
MSTW instability of O(ε2). However the viscosity acts to damp preferentially
the O(ε) instability, and hence the O(ε2) mode may take over O(ε) one. After
a formulation in §2, a concise description of the O(ε) linear instability is given
in §3.

At a large Reynolds number, a great number of resonance modes, of vari-
ous origins, are excitable. Nonlinear mode interactions hold the key to mode
selection and eventual breakdown as demonstrated by numerical simulations (
Shariff et al. 1994). We address nonlinear evolution of unstable Kelvin modes
in two ways. In §4, weakly nonlinear evolution equations of amplitudes of an
unstable mode on Kelvin’s vortex ring are derived, to cubic order in amplitude,
in the form compatible with the Hamiltonian normal form (Knobloch et al.
1994). We rely on the inner-product formulation (Moore & Saffman 1975) and
on the method of multiple time scales (Sipp 2000).

Further in §5, using the pseudo-spectral method, a direct numerical sim-
ulation of the Navier-Stokes equations is conducted for evolution of three-
dimensional waves on a Gaussian core at high Reynolds numbers. The targeted
question is the competition between the O(ε) and the O(ε2) effects.
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2. Formulation

Kelvin’s vortex ring is a thin axisymmetric vortex ring, in an incompress-
ible inviscid fluid, with vorticity proportional to the distance from the axis of
symmetry, which propagates steadily in the direction of axis of symmetry. The
assumption is made that the ratio ε of the core radius σ to the ring radius R is
very small:

ε = σ/R � 1 . (1)

Introduce toroidal coordinates (r, θ, s) co-moving with the ring, linked with the
global Cartesian coordinates (x, y, z), with the x-axis lying on the symmetric
axis, in such a way as

x = r cos θ , y = (R + r sin θ) cos(s/R) , z = (R + r sin θ) sin(s/R) .
(2)

In the meridional plane s = 0, the origin r = 0 is maintained at the center of
the circular core and the angle θ is measured from the direction parallel to the
x-axis. The center circle penetrating inside the toroidal ring is parameterized
by the arclength s.

We denote the circulation carried by the ring by Γ and normalize the radial
coordinate r by the core radius σ, the velocity by the maximum azimuthal
velocity Γ/2πσ, the time t by 2πσ2/Γ. Let the r and θ components of velocity
field be U and V inside the core (r < 1). The velocity potential for the exterior
irrotational flow (r > 1) is denoted by Φ. The basic flow is expanded in powers
of ε to first order as

U = U0 + εU1 + · · · , (3)

whose components, along with the velocity potential for the external flow, are

U0 = 0 , V0 = r , Φ0 = θ , (4)

U1 =
5
8
(1 − r2) cos θ , V1 =

(
−5

8
+

7
8
r2

)
sin θ ,

Φ1 =
(

1
8
r − 3

8r
− 1

2
r log r

)
cos θ .

(5)

Circular form of core boundary (r = 1) remains intact. Elliptical deformation
comes into play at O(ε2).

The O(ε)-field U1 pertains to a dipole field and may be taken as a product
of the curvature effect; vortex lines of a steady vortex ring are stretched on
the convex side and are contracted on the concave side of the torus. As a
consequence, the vorticity is enhanced on the convex side and is weakened on
the concave side, producing effectively an anti-parallel vortex pair (Fukumoto
& Moffatt 2000).
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Superposed on (3) is the following form of the disturbance field (Sipp 2000):

u = αu01 + α2u02 + α3u03 + · · · + εαu11 + εα2u12 + · · · , (6)

and we inquire into its evolution. The power in α indexes the order of nonlin-
earity.

Relevant to linear stability are αu01 and εαu11. The following section
presents an outline of the linear stability result (Fukumoto & Hattori 2005).

3. Linear instability of O(ε)

The global linear stability problem was formulated by Widnall & Tsai (1977),
though they skipped analysis of the O(εα) field. Allowance is made for weak
viscous dissipation (cf. Eloy & Le Dizes 2001).

3.1 Solution ansatz

The O(α) field is the Kelvin wave. We send a pair of Kelvin waves with
azimuthal wavenumbers m and m+1, which are capable of being in resonance
via the dipole field (5),

u01 =
{

A+uA+(r)eimθ + B+uB+(r)ei(m+1)θ
}

ei(ks−ωt)

+
{

A−uA−(r)eimθ + B−uB−(r)ei(m+1)θ
}

ei(−ks−ωt) + c.c. , (7)

where c.c. stands for complex conjugate. The presence of the field of wavenum-
ber −k signifies the reflection symmetry in the toroidal (s-) direction. The nor-
malized wavenumber k and the frequency ω are expanded as k = k0+εk1+· · · ,
and ω = ω0 + εω1 + · · · .

To have an idea, we write the r-component of the Navier-Stokes equations
as

− iω0u11 +
∂u11

∂θ
− 2v11 +

∂π11

∂r

=
(

iω1 −
∂U1

∂r

)
u01 − U1

∂u01

∂r
− V1

r

∂u01

∂θ
−
(

1
r

∂U1

∂θ
− 2V1

r

)
v01

+ ν̃

{(
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂θ2
− k2

0 −
1
r2

)
u01 −

2
r2

∂v01

∂θ

}
, (8)

where π11 is the disturbance pressure and ν̃ = 2πν/(Γε) is the normalized
viscosity, being supposed of O(ε0). Thence, the O(αε) field takes the following
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angular dependence:

u11 =
{

B+

[
sB+(r)eimθ + u

(m+2)
11 (r)ei(m+2)θ

]
+ A+

[
sA+(r)ei(m+1)θ + u

(m−1)
11 (r)ei(m−1)θ

]}
ei(ks−ωt)

+
[
ei(−ks−ωt) terms

]
+ c.c. (9)

Emergence of the same wavenumber pair (m, m + 1) with (7) indicates possi-
bility of parametric resonance.

3.2 Growth rate and short-wavelength asymptotics

The Navier-Stokes equations for sB+(r) collapse to a single second-order
ordinary differential equation for the disturbance pressure. This equation can
be integrated with use of the Bessel functions of first kind, and thereafter the
velocity field sB+(r) are deduced in closed form. The exterior velocity potential
is constructed in terms of the modified Bessel functions of second kind. The
boundary conditions at O(εα) bring in the condition on u01 for sB+(r) to
be soluble. The same procedure is repeated for sA+(r). The requirement for
simultaneous existence of non-vanishing A+ and B+ gives rise to the correction
ω1 to the frequency. If ω1 is an imaginary number, parametric resonance is
invited and the magnitude of the imaginary part provides the growth rate σ1.

For resonance, it suffices to evaluate σ1 at the intersection points of the
dispersion curves of m and m + 1 modes. In the absence of viscosity, the local
maximum growth rate σ1max, that is attained in the midway (k1 = 0) of each
unstable wavenumber band, is provided by

σ2
1max =

− (ω0 − m)3(ω0 − m − 1)3(ω0 − m + 1)(ω0 − m + 2)(ω0 − m − 2)(ω0 − m − 3)h2

1024k4
0(2ω0 − 2m − 1)4f (1)f (2)

,

(10)

where f (1) is defined, using the notation Km = Km(k0) for the modified Bessel
function, by

f (1) = m
[
ω3

0 − (3m + 4)ω2
0 + 3m2ω0 − m(m2 − 4m − 8)

]
+ 2k2

0(ω0 − m)2

+ 4
[
(m + 1)ω2

0 − 2m2ω0 + m(m2 − m − 4)
]k0Km+1

Km

− 2(ω0 − m + 2)(ω0 − m − 2)
k2

0K
2
m+1

K2
m

, (11)

and similarly for f (2) and h.
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We have evaluated σ1max at many of intersection points (k0, ω0) of the dis-
persion curves. It is probable that resonance occurs at every intersection points
of upgoing branch of m wave and downgoing branches of m+1 and that other
intersection points exhibit no loss of stability. This fact is accounted for by the
signature of wave energy. The energy of upgoing braches (cograde mode) is
positive and that of downgoing branches (retrograde modes) is negative (Fuku-
moto 2003). The above result is consistent with the necessary condition for
loss of stability that signatures of the energy of degenerate modes be opposite
(MacKay 1986). Given a combination (m, m + 1), relatively large growth rate
σ1max is maintained at the sequence of intersection points with ω0 ≈ m + 1/2
as is read off from (10). Among them, the largest growth rate is taken at the
intersection point of the smallest wavenumber. Table 1 lists the values of σ1max,
along with of (k0, ω0) of the first intersection points, for small m. The tendency
is clear that the largest growth rate of (m, m+1) resonance increases with m.

Table 1. The most unstable modes for a given (m, m + 1)

(m, m + 1) k0 ω0 σ1max

(0, 1) 0.81348683 0.59708954 0.054341234
(1, 2) 1.17352897 1.56470856 0.152116646
(2, 3) 1.50383466 2.54945870 0.214606641
(3, 4) 1.82101796 3.54021094 0.259041769
(4, 5) 2.13006949 4.53394704 0.292771395
(5, 6) 2.43339746 5.52940916 0.319520462

The most unstable mode occurs in the short-wave limit with radial and az-
imuthal wavenumbers being of the same magnitude, and the asymptotics of
σ1max is manipulated as

σ1max ≈ 0.64453125 − 1.548698742/m2/3 .

The limit 165/256 (≈ 0.64453125) agrees with the result of the WKB method
(Hattori & Fukumoto 2003).

The value εσ1max is compared with the growth rate of O(ε2) (Widnall &
Tsai 1977). The O(ε) instability mode surpasses that of O(ε2). However care
should be exercised. Unlike the latter, the dominant unstable eigenmodes of
O(ε) have short wavelengths in all radial, azimuthal and toroidal directions and
is therefore liable to substantial viscous damping.

3.3 Viscous selection

When viscosity is small, a rather systematic treatment, though incomplete,
is feasible for our inviscid basic flow (3), namely integrating (8) and other com-
ponents of the Navier-Stokes equations with the inviscid boundary conditions
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Figure 1. Regions dominated by one of (m, m+1) modes of the O(ε) effect, with m indicated.
The left thick line is the critical curve for the O(ε) mode. The right thick line is the critical one,
the right-hand side of which is superseded by the O(ε2) effect.

(Eloy & Le Dizes 2001). A similar analysis is conducted for the O(ε2) effect.
At a high Reynolds number RΓ = Γ/ν, the dominant unstable mode of O(ε2)
would be the first stationary helical-helical wave resonance.

We draw, in Fig. 1, border curves in the parameter space (ε, RΓ) di-
viding the regions according to dominant modes. The solid lines are con-
cerned with the O(ε) instability modes. The left thick line is the cut-off
curve RΓ ≈ 899.90244/ε, below which all modes are damped. At (ε, RΓ) ≈
(0.1265, 7115), this gives way to the cut-off curve of the O(ε2) (the lower thick
line). The band bounded by the thick line and adjacent line is the region where
the (1, 2) mode is dominant, and is then followed by the dominant region of the
(2, 3) mode in increasing order in RΓ. The right thick line with RΓ increasing
with ε, except at smaller ε, is the critical line, in the right region of which the
O(ε2) effect surpasses the O(ε) effect. For RΓ < 10000, the range of ε domi-
nated by the O(ε) effect is not wide, but it expands with RΓ for RΓ > 10000.

4. Weakly nonlinear analysis

4.1 Amplitude equation

Here we briefly summarize the weakly nonlinear analysis of the curvature
instability and derive amplitude equations.

By substituting the velocity field expressed as (6), we obtain a linear ordi-
nary differential equation at each order. The matching conditions at the core
boundary should be expanded and expressed at r = 1. The resulting equations
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become more and more complicated at higher orders. To avoid this, we place
a slip wall at r = 1 that surrounds the vortex-ring core so that the conditions
reduce to uij = 0 at r = 1. This simplification does not change the nature of
linear instability significantly. In particular, the results in the short wavenum-
ber limit are unchanged. Of course, this does not exclude the possibility that
nonlinear properties do change; the effects of matching conditions remain to
be checked. Note also that the form of the amplitude equation is unchanged by
this simplification.

At O(α2), all the relevant equations are non-degenerate. They have forcing
terms due to nonlinear interaction of O(α) waves. Hence u02 is a sum of terms
like A+B+rA+B+ei[(2m+1)θ+2ks−2ωt].

At O(α3), we have to deal with the equations for the modes that have the
same azimuthal and toroidal wavenumbers and frequencies with the Kelvin
modes in (7) since they have forcing terms due to nonlinear interaction of O(α)
and O(α2) waves. They are degenerate. Hence compatibility conditions should
be imposed; the amplitudes of the Kelvin waves A± and B± vary with time
scale O(α2) to meet these conditions. Thus the curvature instability and the
nonlinear effects compete when O(ε) = O(α2).

We should also take account of mean flow correction which arises at O(εα2).
This is because the waves draw energy from the mean flow so that it is modified
at O(α2).

The resulting amplitude equations are written as

dA±
dt

= aB±

+ i
(
c1 |A±|2 + c2 |B±|2 + c3 |A∓|2 + c4 |B∓|2 + d1C± + d2C∓

)
A±,

(12)

dB±
dt

= bA±

+ i
(
c5 |A±|2 + c6 |B±|2 + c7 |A∓|2 + c8 |B∓|2 + d3C± + d4C∓

)
B±,

(13)

dC±
dt

= A±B± + A±B±, (14)

where C± is the amplitude of mean flow correction.
The coefficients in the above equations can be evaluated using the inner

product. For example, c1 is given by

ic1 =

〈
uA+ |S|A+|2A+

〉
〈
uA+ |LuA+

〉 ,
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where S|A+|2A+
is the forcing term which arises at O(α3) for the mode

ei(mθ+ks−ωt) and L is a simple linear operator projecting to space of the adjoint
eigenmode.

4.2 Example

The coefficients of the amplitude equations can be evaluated numerically.
The Euler equations at each order are discretized by Chebyshev collocation
method. Then the resulting linear equations are solved using the singular-value
decomposition.
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Figure 2a. Evolution of mode energy.
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and B in complex plane.

For simplicity we consider the case A− = B− = C− = 0. An example is
shown in Fig. 2. The chosen modes are m = 5, (k, ω) ≈ (2.42077, 5.50853).
The linear growth rate is σ1 ≈ 0.375 which is a little larger than the correspond-
ing value of the actual vortex ring 0.319520462 in Table 1. In Fig. 2a, the time
evolution of the mode energy is shown to be almost periodic. In one period,
starting from small values, mode energy first grows exponentially because of
the curvature instability; it reaches the maximum and then decays exponen-
tially. The orbits of A+ and B+ in the complex plane are shown in Fig. 2b.
The exponential growth and decay correspond to anti- and in-phases of A and
B. The nonlinear terms in (12)-(14) control the phase difference between the
two modes.

5. Direct numerical simulation

Direct numerical simulation is carried out to study fully nonlinear behavior
of unstable motion of the vortex rings. The three-dimensional incompressible
Navier-Stokes equations are solved by the pseudo-spectral method assuming
periodic boundary conditions. The initial vorticity field is set to be Gaussian
distribution; Kelvin’s vortex ring is difficult to deal with numerically since
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its vorticity distribution is discontinuous at the core boundary. The Reynolds
number based on the circulation is RΓ = 104. The number of Fourier modes
is 1283.

The initial disturbance is set to pairs of Kelvin waves which correspond to
the curvature or Widnall instabilities. Since it is not easy to obtain Kelvin waves
on Gaussian vortex rings, Kelvin waves on the Rankine vortex are used with
appropriate scale transformation. For the actual vortex ring, periodicity in s
implies that k/ε should be an integer n, which is the number of waves along the
core axis of the vortex ring. Two pairs are chosen for the curvature instability:
(i) (m, m + 1) = (1, 2), n = 5; (ii) (m, m + 1) = (2, 3), n = 6. For the
Widnall instability, one pair of bending waves is chosen: n = 9. All these
cases have the smallest wavenumber among principal pairs for fixed m.

-L 0 L
x

-L

0

L

y

Figure 3a. Contours of vorticity of
disturbance. Widnall instability.
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Figure 3b. Time evolution of energy of dis-
turbance. Widnall instability.

The results for the case corresponding to the Widnall instability are shown in
Fig. 3. The disturbance vorticity on a cross-section is shown by contours in Fig.
3a. Here the disturbance vorticity is the difference between the disturbed and
undisturbed vortex rings. The vorticity distribution looks like that of the elliptic
instability (Waleffe 1990). Time evolution of disturbance energy is shown in
Fig. 3b. Exponential growth is observed for 120 < t < 170.

We have been as yet unable to detect the curvature instability. There are two
possible reasons for this. One is that waves on Gaussian vortex rings decay
due to the presence of critical layers, which themselves are subtle problems to
be explored. The other is that the Reynolds number is not sufficiently large
for the instability to overcome the viscous effect as suggested from the viscous
selection studied for Kelvin’s vortex ring in §3.3.
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6. Summary

There are an abundance of instability modes even on a single vortex ring (see,
for example, Maxworthy 1977; Naitoh et al. 2002). The MSTW instability is
no doubt realizable as shown by direct numerical simulations by Shariff et
al. (1994) and in the preceding section (§5). This paper has clarified that a
vortex ring has richer sources for instability than an elliptically strained vortex
tube. A parametric resonance of curvature origin is peculiar to the vortex ring,
and is waiting for experimental and numerical support for its realizability. To
be realistic, a Gaussian core could be a sensible model. Only local stability
analysis has been carried through (Hattori & Fukumoto 2003), and a global
stability analysis is demanded. This core accommodates not only discrete but
also continuous spectra, and thus the problem is very complicated.

We have proceeded to a weakly nonlinear stage, and, as a preliminary study,
have derived amplitude equations of a single resonance mode confined in a rigid
circular cylinder with frictionless boundary. A secondary instability of Kelvin
waves may show up and smears out the primary mode, possibly as a result
of nonlinear interactions of several modes. Hamiltonian normal forms can be
extended to include a number of excited modes. The normal forms provide not
only a justification to the singular-perturbation analysis but also a perspective
on complicated nonlinear interactions. Currently we make an effort to compute
the coefficients of the amplitude equations. Hopefully this scheme will provide
a scenario of how such a large amount of energy as to disrupt a ring is transferred
from the basic flow into small-scale disturbances.
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Abstract We consider the motion of N identical vortex points on a sphere with two vortex
points fixed at the both poles. The vortex points are spaced equally along a line
of latitude, which is called the polygonal ring of vortex points or the N -ring.
Starting with the linear stability analysis, we investigate the unstable motion of
the perturbed N -ring; We give a brief summary in terms of the transition of
unstable periodic motions for even N -ring studied in a preceding paper (Sakajo
2004). Then we study an unstable non-trivial recurrent motion of a 3-ring as an
example of complex dynamics of odd N -rings.

Keywords: Vortex points, flows on sphere, pole vortex, N -ring

1. Introduction

We consider the motion of incompressible and inviscid fluids on a sphere to
understand basic dynamical process observed in many atmospheric phenomena
on Earth. In particular, local regions where vorticity is extremely dense are
of importance, since they dominate global dynamics of the flow. One of the
examples of such singular vorticity regions is a vortex point in which vorticity

In the present article, we focus on the motion of a
polygonal ring consisting of N identical vortex points that are equally spaced at
a line of latitude, which is called “N -ring”. Furthermore, in order to incorporate
the effect of rotation of the sphere in the problem, we introduce two vortex points
fixed at the both poles.

Let (Θm m) denote the position of the mth vortex point in the spherical
coordinates.
say Γ = 2π/N . Then, the motion of the N -vortex points is described by the
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The strengths of the vortex points are identical with each other,
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Hamiltonian dynamical system (Newton 2001), whose Hamiltonian is given by

H = − Γ2

4π

N∑
j<m

log(1 − cos γmj) −
ΓnΓ
4π

N∑
m=1

log(1 − cosΘm)

− ΓsΓ
4π

N∑
m=1

log(1 + cosΘm), (1)

in which Γn and Γs represent the strengths of the north and the south pole
vortices respectively, γmj represents the central angle between the mth and the
jth vortex points, and cos γmj = cosΘm cosΘj+sin Θm sinΘj cos(Ψm−Ψj).
With certain canonical variables, the equations of motion of the N -vortex points
are derived from the Hamiltonian as

Θ̇m = − Γ
4π

N∑
j 
=m

sin Θj sin(Ψm − Ψj)
1 − cos γmj

, (2)

sin ΘmΨ̇m = − Γ
4π

N∑
j 
=m

cosΘm sin Θj cos(Ψm − Ψj) − sin Θm cosΘj

1 − cos γmj

+
Γn

4π

sin Θm

1 − cosΘm
− Γs

4π

sin Θm

1 + cosΘm
, m = 1, 2, · · · , N.

(3)

Note that the summation
∑N

i=0 cosΘi is invariant due to (2). Our goal is to
understand the motion of the perturbed N -ring in the presence of the pole vor-
tices. This paper consists of five sections. In §2 and §3, we review some results
in terms of linear stability analysis and the motion of even N -ring studied in a
preceding paper (Sakajo 2004). Then we investigate numerically an unstable
motion of a perturbed 3-ring in §4. The last section gives a brief summary of
the paper.

2. Linear stability analysis for the N -ring

We consider the linear stability of the following perturbed N -ring at the line
of latitude θ0:

Θm(t) = θ0 + εθm(t), Ψm(t) =
2πm

N
+ εϕm(t),

ε � 1, m = 1, 2, · · · , N.

While the linear stability analysis of the N -ring without the pole vortices were
done by Boatto and Cabral (2003), all the eigenvalues and the eigenvectors of
the linearized equations for (θm, ϕm) with pole vortices are given explicitly
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in Sakajo (2004). Here, we review the results just in terms of the eigenvalues
following the latter paper. Let λ±

p denote the eigenvalues, then we have

λ±
p = ± 1

2N sin2 θ0

√
(pN − p2)2 + CN (pN − p2), p = 0, 1, · · · , N − 1,

(4)
in which

CN = (1−N)(1+cos2 θ0)−
(Γn − Γs)

π
N cos θ0−

(Γn + Γs)
2π

N(1+cos2 θ0).

It indicates that when N = 2M , we have λ±
0 = 0, λ±

p for p = 1, · · · , M − 1
are double, and λ±

M are simple. On the other hand, when N = 2M + 1,
λ±

0 = 0 and λ±
p for p = 1, · · · , M are double. Moreover, they satisfy the

order
(
λ±

1

)2
<
(
λ±

2

)2
< · · · <

(
λ±

M

)2
. Hence, if

(
λ±

M

)2
< 0, then all the

eigenvalues are pure imaginary and the N -ring is neutrally stable, which means
that the stability of the N -ring is determined by that of the largest eigenvalues
λ±

M .

3. Four periodic orbits for even N -ring

In this case, we can reduce the equations (2) and (3) to an integrable system
in the following steps. First, we reduce them to the equations for (Θ1, Ψ1)
and (Θ2, Ψ2) by imposing the pairing symmetry; Θ2m−1 = Θ1, Θ2m = Θ2,
Ψ2m−1 = Ψ1, and Ψ2m = Ψ2 for m = 1, · · · , M . Next, recalling that
cosΘ1 + cos Θ2 is invariant in time, we further reduce the equations to those
for the two variables (Θ1, Φ ≡ Ψ1 − Ψ2), which is integrable. As a matter
of fact, the unstable and the stable manifolds of the largest eigenvalues λ±

M
are embedded in the reduced phase space. Accordingly, it is sufficient to give
contour plots for the reduced Hamiltonian (1) to see the global dynamics of
the perturbed N -ring. As a result, either of four periodic solutions; linearly
periodic, nonlinearly periodic, swing-by and revolving, appears in even N -
rings depending on the strength of the pole vortices and the initial perturbation.
Figure 1 shows an example of the periodic orbits for a 4-ring at the equator. In
addition, we can also show that the stability of the periodic orbits is determined
by the second largest eigenvalue λ+

M−1, since its unstable manifold is transverse
to the reduced phase space. See Sakajo (2004) for the detailed analysis.

4. Recurrent motion of a perturbed 3-ring at the equator

When the number of the vortex points is odd, the largest eigenvalues λ±
M

that determine the stability of the N -ring are double. Hence, when the N -ring
becomes unstable, its motion could be complicated in general. Thus we specif-
ically consider an unstable motion of a 3-ring at the equator with the identical
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(a) linearly periodic (b) nonlinearly periodic (c) swing-by (d) revolving

Figure 1. Periodic orbits for the perturbed 4-ring at the equator. (a) Γn = Γs = 0.4π, (b)
Γn = Γs = 0.1π, (c) and (d) Γn = Γs = −0.1π. As Γn +Γs decreases, the realizable periodic
orbits change like (a) → (b) → either (c) or (d).

pole vortices as a simple example. The linear stability analysis shows that the
3-ring is linearly unstable if Γn +Γs < 0, and the two eigenvectors correspond-
ing to the largest eigenvalues λ±

1 are given by

ψ±
1 =

(√
3

3
,−

√
3

6
,−

√
3

6
,±
√

−(Γn + Γs)
4π

,∓
√

−(Γn + Γs)
4π

,∓
√

−(Γn + Γs)
4π

)
,

φ±
1 =

(
0,

1
2
,−1

2
, 0,±1

2

√
−3(Γn + Γs)

4π
,∓1

2

√
−3(Γn + Γs)

4π

)
.

Note that the eigenvectors ψ±
1 and φ±

1 have the symmetry Θ̇1 = −Θ̇2 =
−Θ̇3, Ψ̇1 = −Ψ̇2 = −Ψ̇3 and Θ̇1 = 0, Θ̇2 = −Θ̇3, Ψ̇1 = 0, Ψ̇2 = −Ψ̇3

respectively.
Figure 2(a) shows evolutions of cosΘi (i = 1, 2, 3) from t = 0 to 500. The

initial condition is given by (Θ1, Θ2, Θ3, Ψ1, Ψ2, Ψ3) =
(

π
2 , π

2 , π
2 , 0, 2π

3 , 4π
3

)
+

ε(λψ+
1 +(1−λ)φ+

1 ) with ε = 1.0× 10−4 and λ = 1. They look complicated,
but in fact the evolution consists of four patterns of orbits. To see it clearly, we
project the evolutions on the phase space of (cos Θ2, cosΘ3) in Figure 2(b).
The phase space equivalently shows the motion of the three variables, since
cosΘ1 is determined by the invariant

∑3
i=1 cosΘi = 0 automatically. The

3-ring corresponds to the origin in the phase space. The diagonal dotted line
represents the restricted subspace, say Q; cosΘ1 = 0 and cosΘ2+cosΘ3 = 0,
i.e. Θ1 = π

2 and Θ2 = −Θ3. First, the orbit departs in the direction normal
to the subspace, and returns the neighborhood of the origin after passing by
the vicinity of the orbit labeled ‘A’. Then it goes along the orbit labeled ‘B’
embedded in Q, and returns the neighborhood of the origin again. In a similar
way, the evolution traces the orbits ‘C’ and ‘D’ alternatively afterwords.

The recurrent repetition of the four patterns is due to the periodic struc-
ture of the heteroclinic orbits of the 3-ring embedded in the whole phase
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Figure 2. (a) Long time evolution of cosΘi (i = 1, 2, 3) for a perturbed 3-ring at the
equator when Γn = Γs = −0.2π. (b) The evolution projected on (cosΘ2, cosΘ3) plane. (c)
Topological structure of the heteroclinic orbits of the 3-ring in the phase space T. The two points
P1 and P2 correspond to the 3-ring configuration and the planar subspace represents Q; Θ1 = π

2

and Θ2 = −Θ3, corresponds to the dotted line in (b).

space T = [0, π]3 × (R/2πZ)3. See Fig. 2(c) for the schematic reference.
Let us recall that the 3-ring configuration corresponds to the two points in T,
P1:(π

2 , π
2 , π

2 , 0, 2π
3 , 4π

3 ) and P2:(π
2 , π

2 , π
2 , 0, 4π

3 , 2π
3 ). These two points are con-

nected by four heteroclinic orbits, ‘A’, ‘B’, ‘C’ and ‘D’. When we compare the
symmetry of the two eigenvectors with the evolutions of cosΘi in Fig. 2(a) at
the very moment when they deviate from the 3-ring configuration, the orbits
‘A’ and ‘C’ correspond to the heteroclinic orbits whose tangent vectors are ψ±

1 ,
while the heteroclinic orbits ‘B’ and ‘D’ embedded in Q have the tangent vector
φ±

1 . The evolution of the perturbed 3-ring traces the structure passing near the
3-ring recurrently.

Figure 3(a) shows long-time evolutions of a perturbed 3-ring for Γn = Γs =
−0.4π and λ = 1. The evolution follows the periodic structure of the hetero-
clinic orbits similarly. Figure 3(b) shows the evolution of the 3-ring for another
initial perturbation, i.e. Γn = Γs = −0.2π and λ = 0.5. The perturbed 3-ring
still traces the structure again, though their shapes are different from the previ-
ous cases. It suggests that the structure of the heteroclinic orbits exists as long as
the 3-ring is located at the equator and the pole vortices are identical. However,
it is structurally unstable. Indeed, the orbit of the 3-ring for Γn = −0.2π and
Γs = −0.15π and λ = 1 in Fig. 3(c) shows that it deviates from the structure
and evolves disorderly as time proceeds.

5. Summary

We have investigated the unstable motion of the N -ring of the vortex points
on the sphere in the presence of the pole vortices. The unstable motion of even
N -ring is generally classified into four typical periodic orbits and the transition
among these periodic orbits is observed as the strength of pole vortices changes.
On the other hand, a 3-ring at the equator with identical pole vortices traces the
vicinity of the periodic structure of the heteroclinic orbits connecting between
the 3-rings. However, since the structure is non-generic, further analysis is
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Figure 3. The evolutions of a perturbed 3-ring at the equator plotted in the projected phase
space (cosΘ2, cosΘ3) for (a) Γn = Γs = −0.4π, λ = 1, (b) Γn = Γs = −0.2π, λ = 0.5,
and (c) Γn = −0.2π, Γs = −0.15π, λ = 1.

required in order to deal with the unstable motion of odd N -rings in general.
The present study implies that in the fluid motion of the polygonal ring of the
coherent vortex structures on the sphere, the pole vortices and the number of
the vortex structures affect not only the linear stability, but also their nonlinear
unstable long-time evolution substantially.
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Abstract We discuss the effect that the presence of a small viscosity has on the evolution
of fields that are transported unchanged in the absence of viscosity. We employ a
diffusive Lagrangian formulation and show that the Cauchy invariant, the helicity
density, the Jacobian determinant, and the virtual velocity obey parabolic equa-
tions that are well-behaved as long as the diffusive transformations are invertible.
We call such quantities diffusive Lagrangian. We show by numerical calculations
that the loss of invertibility of the diffusive transformation can occur, and that
the time scale on which it does can be short even when the viscosity is small.
We present quantitative evidence relating the loss of invertibility to the physical
phenomenon of vortex reconnection.

Keywords: Diffusive Lagrangian transformation, vortex reconnection, anomalous dissipa-
tion.

1. Introduction

The Euler equations of incompressible fluid mechanics are

Dtu + ∇p = 0 (1)

with ∇ · u = 0. The velocity u = u(x, t) = (u1, u2, u3) is a function of
x ∈ R3 and t ∈ R. The material derivative associated to the velocity u is
Dt = Dt(u,∇) = ∂t + u · ∇. The Lagrangian particle maps are

a �→ X(a, t), X(a, 0) = a.
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For fixed a, the trajectories of u obey

dX

dt
= u(X, t).

The incompressibility condition implies

det (∇aX) = 1.

The Euler equations can be described (Arnold & Khesin 1998) formally as
Euler-Lagrange equations resulting from the stationarity of the action

∫ b

a

∫
|u(x, t)|2 dxdt

with u(x, t) = ∂X
∂t (A(x, t), t), with fixed end values at t = a, b and A(x, t) =

X−1(x, t). The incompressible Euler equations are a canonical Hamiltonian
system in infinite dimensions in variables now known as Clebsch variables
(Clebsch 1858; Lamb 1932; Zakharov &Kuznetsov 1970). Clebsch variables
are a pair of scalars θ, ϕ which are constant on particle paths,

Dtϕ = Dtθ = 0

and also determine the velocity via

ui(x, t) = θ(x, t)
∂ϕ(x, t)

∂xi
− ∂n(x, t)

∂xi
.

The function n(x, t) is required in order to keep incompressibility,∇·u = 0 and
is computed using a Poisson equation. Not all solutions of the Euler equations
can be represented using just one pair of Clebsch variables.

The incompressible Euler equations can be written as an active scalar system
(Constantin 2001a) 


DtA = 0,
Dtv = 0,

u = W [A, v].
(2)

The variable A represents the inverse of the Lagrangian map (the “back-to-
labels” map), v is the virtual velocity, conserved along particle paths, and
W [A, v] is the Weber formula (Weber 1868). Active scalars (Constantin 1994)
are solutions of passive scalar equations Dtθ = 0 which determine the velocity
through a time independent, possibly non-local equation of state u = U [θ].
Knowledge of the values of the active scalars at an instance of time is sufficient
to determine the time derivatives of the active scalar at that instance in time.
The Clebsch variables are a pair of active scalars. The Euler equations can be
represented with many active scalars. The Weber formula (Weber 1868) is

ui(x, t) =
(
vj(x, t)

) ∂Aj(x, t)
∂xi

− ∂n(x, t)
∂xi

.
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The vector v is the virtual velocity. Because it obeys Dtv = 0, it follows that

v = u(0)(A),

where v|t=0 = u(0). The Weber formula, together with boundary conditions
and the divergence-free requirement, is written symbolically as

u = W [A, v] = P
{
(∇A)T v

}
, (3)

where P is the corresponding projector on divergence-free functions. The
circulation is the loop integral

Cγ =
∮

γ
u · dx

and the conservation of circulation is the statement that

d

dt
Cγ(t) = 0

for all loops carried by the flow. This follows from the Weber formula because

uj(X(a, t))
∂Xj

∂ai
= ui

(0)(a) − ∂ñ(a, t)
∂ai

,

and the right-hand side is the sum of a time independent function of labels and
a label gradient. Vice versa, one can show that the above formula follows from
the conservation of circulation. The Weber formula is thus equivalent to the
conservation of circulation.

Differentiating the Weber formula and taking the antisymmetric part, one
obtains the Cauchy formula

ωi =
1
2
εijk

(
Det

[
∂A

∂xj
;

∂A

∂xk
; ω(0)(A)

])
.

The function ω = ∇ × u is the vorticity, ω(0) is the vorticity at some fixed
time, t = 0. By linear algebra, this is equivalent with the familiar form in
Lagrangian coordinates, ω(X(a, t), t) = ∂X

∂a ω(0)(a) for smooth Euler flows
because A is invertible and det(∇aX) = 1. But the form above, that is
ω = (det(∇A))(∇A)−1ω(0) in Eulerian coordinates is the one that can be
generalized to Navier-Stokes flows.

We write symbolically the Cauchy formula as

ω = C[∇A, ζ] (4)

with ζ the Cauchy invariant

ζ(x, t) = ω(0) ◦ A
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and ◦A denotes composition with A. Thus, the active scalar system




DtA = 0,
Dtζ = 0,

u = ∇× (−∆)−1 (C[∇A, ζ])
(5)

is an equivalent formulation of the Euler equations, in terms of the Cauchy
invariant ζ. The Cauchy invariant, which is the Lagrangian curl of the virtual
velocity,

∇A × v = ζ,

is conserved along particle trajectories, (∂t+u·∇)ζ = 0. The role of conserved
quantities in nonlinear evolution equations cannot be over-estimated. In the case
of the Euler equations, besides the circulation conservation, virtual velocity and
Cauchy invariant, the total helicity (Moffatt 1969) and the total kinetic energy
are also conserved by sufficiently smooth flows.

The total kinetic energy is proportional to the L2 norm of velocity. The On-
sager conjecture (Onsager 1949, Eyink 1994) states that conservation of energy
occurs if and only if the solutions are smoother than the velocities supporting the
Kolmogorov theory (roughly speaking, Holder continuous of exponent 1/3).
The “if” part was proved (Constantin, E & Titi 2004).

The total helicity is the integral
∫
(u ·ω)dx, where ω = ∇×u is the vorticity.

Its integrand u · ω is not conserved along particle paths. The variable w =
(∇A)T v has the same curl as u, ∇ × w = ω and the quantity

∫
(w · ω)dx

equals the total helicity. The modified helicity density w · ω is conserved
along particle paths; in fact it equals pointwise the scalar product v · ζ of two
conserved quatities. For any vortex tube — a region whose boundary is formed
with vortex lines — the integrals of w·ω and u·ω on the vortex tube are identical.
A closed formulation of the Euler equations in terms of w has been used for
numerical calculations and for a Hamiltonian formalism (Buttke 1993, Buttke
&Chorin 1993, Chorin 1994, Kuzmin 1983, Oseledets 1989, Roberts 1972; an
earlier Hamiltonian formalism used Clebsch variables (Clebsch 1858; Zakharov
&Kuznetsov 1970)).

To summarize: in the case of smooth ideal fluids the virtual velocity v, the
Cauchy invariant ζ, the modified helicity density w·ω, the determinant det(∇A)
are transported frozen in the flow. Thus, after recording their values at some
instance of time, they are computed just by using composition with the map A.
For instance: v(x, t) = u(0)(A(x, t)), where u(0) is the velocity at time t = 0
and ζ(x, t) = ω(0)(A(x, t)), where ω(0) is the vorticity at time t = 0.

What is the fate of these quantities in slightly viscous flows?
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2. Diffusive lagrangian formulation of the navier-stokes
equations

The Navier-Stokes equations are

Dνu + ∇p = 0, (6)

together with the incompressibility condition ∇ · u = 0. The operator Dν

Dν = Dν(u,∇) = ∂t + u · ∇ − ν∆ (7)

describes advection with velocity u and diffusion with kinematic viscosity ν >
0. When ν = 0, we recover formally the Euler equations (1), and Dν |ν=0 = Dt.

A diffusive Lagrangian description of viscous fluids (Constantin 2001b, Con-
stantin 2003) represents the fluid in terms of near identity transformations A
and virtual velocities v. The equation corresponding to (2) is




DνA = 0,
Dνv = 2νC∇v,
u = W [A, v].

(8)

The relation u = W [A, v] is the Weber formula (3), same as in the case of
ν = 0. The right-hand side of (8) is given terms of the connection coefficients

Cm
k;i =

(
(∇A)−1

)
ji

(∂j∂kA
m) .

The detailed form of virtual velocity equation in (8) is

Dνvi = 2νCm
k;i∂kvm.

The connection coefficients are related to the Christoffel coefficients of the
flat Riemannian connection in R3 computed using the change of variables
a = A(x, t):

Cm
k;i(x, t) = −Γm

ji(A(x, t))
∂Aj(x, t)

∂xk
.

The equation Dν(u,∇)A = 0 describes advection and diffusion of labels. Use
of traditional (DtA = 0) Lagrangian variables when ν > 0 would introduce
third-order derivatives of A in the viscous evolution of the Cauchy invariant,
making the equations unbalanced: the passive characteristics of u are not suf-
ficient to reconstruct the dynamics.

The system (8) is well posed, and the velocity u solves exactly the incom-
pressible Navier-Stokes equations. The diffusion of labels is a consequence of
the physically natural idea of adding Brownian motion to the Lagrangian flow.
Indeed, if u(X(a, t), t) is known, and if

dX(a, t) = u(X(a, t), t)dt +
√

2νdW (t), X(a, 0) = a,
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with W (t) standard independent Brownian motions in each component, and if

Prob {X(a, t) ∈ dx} = ρ(x, t; a)dx

then the expected value of the back to labels map

A(x, t) =
∫

ρ(x, t; a)ada

solves
Dν(u,∇)A = 0.

We associate to the virtual velocity v the Eulerian-Lagrangian curl of v

ζ = ∇A × v, (9)

where ∇A
i =

(
(∇A)−1

)
ji

∂j is the pull back of the Eulerian gradient. The

viscous analogue of the Eulerian-Lagrangian Cauchy invariant active scalar
system (5) is 


DνA = 0,

Dνζ
q = 2νGqk

p ∂kζ
p + νT q

p ζp,
u = ∇× (−∆)−1 (C[∇A, ζ]) .

(10)

The Cauchy transformation

C[∇A, ζ] = (det(∇A))(∇A)−1ζ

is the same as the one used in the Euler equations, (4). The specific form of the
two terms on the right-hand side of the Cauchy invariant’s evolution are

Gqk
p = δq

pC
m
k;m − Cq

k;p (11)

and
T q

p = εqjiεrmpC
m
k;iC

r
k;j . (12)

The system (8) is equivalent to the Navier-Stokes system.
system reduces to (2). The system (10) is equivalent to the Navier-Stokes
system, and reduces to (5) when ν = 0.

3.

The pair (A, v) should be thought of as a chart on a manifold, representing
the solution u. The validity of the chart is local. When the chart becomes
inconvenient to represent the solution, we change the chart. This may (and will)
happen if ∇A becomes non-invertible. Likewise, the pair (A, ζ) formed with
the “back-to-labels” map A and the diffusive Cauchy invariant ζ are convenient
charts. In order to clarify this statement let us introduce the terminology of

Group expansion = resetting

When ν = 0, the



Invariants, diffusion and topological change in Navier-Stokes equations 309

“group expansion” for the procedure of resetting. More precisely, the group
expansion for (8) is defined as follows. Given a time interval [0, T ] we consider
resetting times

0 = t0 < t1 < . . . < tn . . . ≤ T.

On each interval [ti, ti+1], i = 0, . . . we solve the system (8):



Dν(u,∇)A = 0,
Dν(u,∇)v = 2νC∇v,

u = P
(
(∇A)T v

)
.

with resetting values
{

A(x, ti) = x,
v(x, ti + 0) = ((∇A)T v)(x, ti − 0).

For mathematical reasons we require the strong resetting criterion that ∇� =
(∇A) − I must be smaller than a preassigned value ε in an analytic norm: ∃λ
such that for all i ≥ 1 and all t ∈ [ti, ti+1] one has∫

eλ|k|
∣∣∣�̂(k)

∣∣∣ dk ≤ ε < 1.

Here � ≡ A − x and �̂(k) is its Fourier Transform. If there exists N such that
T =

∑N
i=0(ti+1− ti) then we say that the group expansion converges on [0, T ].

A group expansion of (10) is defined similarly. The resetting conditions are
{

A(x, ti) = x,
ζ(x, ti + 0) = C[(∇A))(x, ti − 0), ζ(x, ti − 0)].

The strong analytic resetting criterion is the same. The first interval of time
[0, t1) is special. The initial value for v is u0 (the initial datum for the Navier-
Stokes solution), and the initial value for ζ is ω0, the corresponding vorticity.
The local time existence is used to guarantee invertibility of the matrix ∇A
on [0, t1) and Gevrey regularity (Foias & Temam 1989) to pass from mod-
erately smooth initial data to Gevrey class regular solutions. Note that the
resetting data are such that both u and ω are time continuous. We proved (
Constantin 2003) the following result. We take u0, divergence-free and with
square-integrable gradient, and consider T > 0, a time interval. We assume
that the solution of the Navier-Stokes equations with initial datum u0 obeys
sup0≤t≤T ‖ω(·, t)‖L2(dx) < ∞. Then there exists λ > 0 so that, for any ε > 0,
there exists τ > 0 such that both group expansions converge on [0, T ] and the
resetting intervals can be chosen to have any length up to τ , ti+1 − ti ∈ [0, τ ].
The velocity u, solution of the Navier-Stokes equation with initial datum u0,
obeys the Weber formula (3). The vorticity ω = ∇ × u obeys the Cauchy
formula (4).
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Figure 1. Evoultion of the energy disspation rate ε(t) for ν = 2.5 × 10−3(solid) and 4 ×
10−3(dashed).

Conversely, if one group expansion converges, then so does the other, using
the same resetting times. The Weber and Cauchy formulas apply and recon-
struct the solution of the Navier-Stokes equation. The enstrophy is bounded
sup0≤t≤T ‖ω(·, t)‖L2(dx) < ∞, and the Navier-Stokes solution is smooth.

The quantity λ can be estimated explicitly in terms of the bound of enstrophy,
time T , and kinematic viscosity ν. The bound is algebraic: a negative power
of the enstrophy, if all other quantities are fixed. The maximal time step τ is
proportional to ε, with a coefficient of proportionality that depends algebraically
on the bound on enstrophy, time T and ν. The converse statement, that if the
group expansion converges, then the enstrophy is bounded, follows from the
fact that there are finitely many resettings. Indeed, the Cauchy formula and
the near identity bound on ∇A imply a doubling condition on the enstrophy on
each interval. It is well-known that the condition regarding the boundedness of
the enstrophy implies regularity of the Navier-Stokes solution. Our definition
of convergent group expansion is very demanding, and it is justified by the fact
that once the enstrophy is bounded, one could mathematically demand analytic
norms. But the physical resetting criterion is the invertibility of the matrix ∇A.
The Euler equations require no resetting as long as the solution is smooth. The
Navier-Stokes equations, at least numerically, require numerous and frequent
resettings.

4. Vortex reconnection and resetting

We show an example of numerical simulations of decaying Navier-Stokes
turbulence developing from a random initial condition with energy spectrum

E(k) ∝ k2 exp(−k2),
∫ ∞

0
E(k)dk = 1.
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Figure 2. Evoultion of Q	(t) for ν =
2.5 × 10−3.
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Figure 3. Evoultion of Q	(t) for ν =
4 × 10−3.

The computation was done by 2/3-dealiased pseudo-spectral method under
periodic boundary conditions, with grid points 2563 and 5123. In Figure 1
we plot time evolution of the dissipation rate of total kinetic energy for two
different values of viscosity ν = 2.5 × 10−3 and 4 × 10−3. They are peaked
around t = 5. We solve the Navier-Stokes equations (6) and the equations for
� ≡ A − x

Dν� + u = 0 (13)

simultaneously. We reset as � = 0 when det(∇A) < ε somewhere in the flow,
where ε is a small preassigned number, here taken to be 0.01. Squared L2 norm
of ∇× � is defined by

Q�(t) =
1
2

〈
|∇ × �|2

〉
,

where the brackets denote a spatial average. We show its evolution for ν =
2.5×10−3 in Figure 2 and for ν = 4×10−3 in Figure 3. In both cases frequent
resettings take place when turbulence is developed. It should be noted that the
smaller viscosity is, the more frequently the resetting occur. It it well known that
in decaying turbulence starting from a smooth initial condition vortex layers
are observed in the early stage which change their form into vortex tubes in
the later developed stage. In Figures 4 and 5, we compare spatial distributions
with relatively small det(∇A) with high vorticity regions at early t = 1 and
developed t = 6 for the case of ν = 2.5×10−3. We see that in the early stage the
regions with small det(∇A) have layer-like structure and exist between vortex
layers. In the developed stage, regions with small det(∇A) have tube-like
structure and exist apparently in closer vicinity of vortex tubes. See Ohkitani
& Constantin (2005) for details.

There is a deep connection between these resetting times and vortex recon-
nection (Ohkitani & Constantin 2003, Ohkitani & Constantin 2005). In the
Euler equation, as long as the solution is smooth, the Cauchy invariant obeys
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Figure 4. White symbols are placed in regions with det(∇A) < 1.03 minx det(∇A) ≈
0.980. There are 76556 such points out of 2563. Isosurfaces of vorticity are shown in grey at
|ω|2 = 4

〈
|ω|2
〉

.

Figure 5. White symbols are placed in regions with det(∇A) < 1.045 minx det(∇A) ≈
0.997. There are 62838 such points out of 2563. Isosurfaces of vorticity are shown in grey at
|ω|2 = 10

〈
|ω|2
〉

.

ζ(x, t) = ω(0)(A(x, t)) with ω(0) = ω0, the initial vorticity. The topology of
vortex lines is frozen in time. In the Navier-Stokes system the topology changes.
This is the phenomenon of vortex reconnection. There is ample numerical and
physical evidence for this phenomenon. In the more complex, but similar case
of magneto-hydrodynamics, magnetic reconnection occurs, and has powerful
physical implications. Vortex reconnection is a dynamical dissipative process.
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The solutions of the Navier-Stokes equations obey a space time average bound
(Constantin 2003)

T∫
0

∫

R3

|ω(x, t)|
∣∣∣∣∇x

(
ω(x, t)
|ω(x, t)|

)∣∣∣∣
2

dxdt ≤ 1
2
ν−2

∫

R3

|u0(x, t)|2dx.

This bound is consistent with the numerically observed fact that the region of
high vorticity is made up of relatively straight vortex filaments (low curvature
of vortex lines) separated by distances that vanish with viscosity. The process
by which this separation is achieved is vortex reconnection. When vortex lines
are locally aligned, a geometric depletion of nonlinearity occurs, and the lo-
cal production of enstrophy drops. Actually, the Navier-Stokes equations have
global smooth solutions if the vorticity direction field ω

|ω| is Lipschitz contin-
uous (Constantin & Fefferman 1993) in regions of high vorticity. So, vortex
reconnection is a regularizing mechanism.

5.

The reason for the fact that resettings are necessary is that, in the presence
of viscosity, there is change in the determinant det(∇A). This rate of change
is given by

Dν (log(det(∇A)) = ν
{
Ci

k;sC
s
k;i

}
. (14)

The right-hand side has units of inverse time, and determines the duration of
the chart. In ideal fluids the main physical processes are those of folding
and stretching. In terms of the back-to-labels, stretching is represented by
∇A and folding by composition with A. So, for instance, the variable w =
(∇A)T v is the product of both stretching and folding (because v = u0 ◦ A).
In the presence of viscosity there is molecular mixing which is enhanced by
folding, and the process of folding cannot be separated from that of diffusion.
The Cauchy invariant, the virtual velocity, the determinant det(∇A) and the
modified helicity density, are not invariant anymore: they diffuse.

Using the smooth change of variables a = A(x, t) (at each fixed time t) we
compute the Euclidean Riemannian metric by

gij(a, t) = (∂kA
i)(∂kA

j)(x, t). (15)

The equations for the virtual velocity and for the Cauchy invariant can be solved
by following the path A, i.e., by seeking

v(x, t) = υ(A(x, t), t),
ζ(x, t) = ξ(A(x, t), t). (16)

Invariants, diffusion and topological change in Navier-Stokes equations

Invariants = diffusive lagrangian quantities
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The equations for υ and ξ become purely diffusive. Using DνA = 0, the
operator Dν becomes

Dν(f ◦ A) =
(
(∂t − νgij∂i∂j)f

)
◦ A. (17)

The equation for υ follows from (8):

∂tυi = νgmn∂2
mnυi − 2νV mj

i ∂mυj (18)

with
V mj

i = gmkΓj
ik.

The derivatives are with respect to the Cartesian coordinates a. The equation
reduces to ∂tυ = 0 when ν = 0, and in that case we recover υ = u(0), the time
independent initial velocity. For ν > 0 the system is parabolic and well posed.
The equation for ξ follows from (10):

∂tξ
q = νgij∂2

ijξ
q + 2νW qk

n ∂kξ
n + νT q

p ξp (19)

with {
W qk

n = −δq
ngkrΓp

rp + gkpΓq
pn,

T q
p = εqjiεrmpΓr

αjΓ
m
βig

αβ .

Again, when ν = 0 this reduces to the invariance ∂tξ = 0. But in the presence of
ν this is a parabolic system. Both the Cauchy invariant and the virtual velocity
equations start out looking like the heat equation because gmn(a, 0) = δmn

and Γi
jk(a, 0) = 0. As for the helicity, if we consider the modified density

h = w · ω, we have first of all that∫
T◦A

(u · ω)dx =
∫

T◦A
hdx,

and then, because h = ((υ · ξ) ◦ A)det(∇A), it follows that
∫

T◦A
hdx =

∫
T
(υ · ξ)da.

Therefore, the modified helicity density is v · ζ. The product of two diffusive
Lagrangian quantities is diffusive Lagrangian, as it is easily verified. Finally,
considering

g = det(gij), (20)

where gij is the inverse of gij and observing that

g(A(x, t)) = (det(∇A))−2,

we deduce that (14) becomes

∂t(log(
√

g)) = νgij∂i∂j log(
√

g) − νgαβΓm
αpΓ

p
βm. (21)
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The initial datum is zero. The equation is parabolic, has a maximum principle
and is driven by the last term. The form (21) of (14) has the same interpretation:
the connection coefficients define an inverse length scale associated to A. The
corresponding inverse time scale

ν
{
Ci

k;sC
s
k;i

}
= ν

{
gmnΓi

msΓ
s
ni

}
◦ A

decides the time interval of validity of the chart A.
The metric coefficients gij determine the Riemannian connection coeffi-

cients, as it is well known. But they do not determine their own evolution as
they change under the Navier-Stokes equations. (The evolution equation of
gij involves ∇u and ∇A). It is therefore remarkable that the virtual velocity,
Cauchy invariant and helicity density and volume element evolve according
to equations that do not involve explicitly the velocity, once one computes in
a diffusive Lagrangian frame. Thus, in the presence of viscosity, the ideal
Lagrangian invariants become diffusive Lagrangian, that is they obey linear
second-order parabolic equations with coefficients determined locally from the
Euclidean Riemannian metric induced by the change of variables A. These
ideal invariants have the property that, if I = φ ◦ A denotes the invariant, then

∂φ(a, t)
∂t

= νL[g, ∂a]φ(a, t),

where L is a second-order PDE with elliptic principal part and with coeffi-
cients computed from gij(a, t) and its a derivatives, where gij(A(x, t), t) =
(∂kA

i)(∂kA
j). The operators L start from the Laplacian, L[g, ∂a]|t=0 = ∆a.

Formally, when ν = 0, one reverts to invariance, I = φ0(A), where φ0 is the
initial datum. But, in addition, as long as A is known and invertible, using it as
a chart, one can compute the evolution of the invariant, in a well-posed manner,
without recourse to information extraneous to the chart.

The metric itself is not diffusive Lagrangian. The description in terms of dif-
fusive Lagrangian transformations allows us to quantify the process of vortex
reconnection (Ohkitani & Constantin 2003, Ohkitani & Constantin 2005): the
change of charts is dictated by the requirement that ∇A be invertible. The loss
of invertibility is numerically observed, and documented to occur during the
periods of topological change in the vorticity field. (Note that the noninvert-
ibility of ∇A is a clearly defined concept, while viscous vortex reconnection,
while clearly visible to the eye, is not a clearly defined concept: for viscous
flows the vorticity does not have conserved topology.) We have considered so
far calculations with different initial data: one and two pairs of vortex tubes,
random initial vorticity and Taylor-Green vortices. There have been several
Reynolds numbers computed. So far, the computations are consistent with a
conjectured “connection anomaly” which is a statement about the fact that in
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the limit of zero viscosity, the reconnection inverse time scale ν|C|2 is bounded
away from zero.

6. Summary

We have described a diffusive Lagrangian formulation of the Navier-Stokes
equations by comparing it with its inviscid counterpart based on Weber formula.
We point out theoretically that non-invertibility of diffusive Lagrangian trans-
formations can occur and show that it does occur using numerical simulations.
The non-invertibility is related with vortex reconnection. Thus, an alternative
description of the Navier-Stokes flows is obtained in terms of near-identity
transformations of the diffusive Lagrangian labels and of the virtual velocity.

This formulation has merits in studying reconnection phenomena taking
place in turbulence of neutral fluid and in magneto-hydrodynamic turbulence.
Also, it offers a method of quantifying anomalous nature of the inviscid limit of
the Navier-Stokes equations at zero viscosity limit. Numerical results on these
issues will be reported elsewhere.
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associé au CNRS et aux Universités Paris VI et VII, 24 Rue Lhomond, 75231 Paris, France

cichowla@clipper.ens.fr

Fabrice Debbasch
ERGA, CNRS UMR 8112,
4 Place Jussieu,
F-75231 Paris Cedex 05, France

fabrice.debbasch@wanadoo.fr

Marc Brachet
Laboratoire de Physique Statistique de l’Ecole Normale Supérieure,
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Abstract The analyticity strip method is used to trace complex singularities in direct numer-
ical simulations of the Taylor-Green flows, performed with up to 20483 colloca-
tion points. No indication of finite-time real singularity is found. Simulations are
also carried out beyond the time at which the truncated equations cease to approx-
imate the original Euler equations. Kolmogorov-like turbulence is then obtained
during an intermediate regime of the spontaneous relaxation of (time-reversible)
spectrally-truncated Euler equations towards absolute equilibrium.

Keywords: Incompressible perfect fluid, finite time singularity, absolute equilibrium, Kol-
mogorov turbulence

1. Introduction

truncated 3-D incompressible Euler flows. Two quite different regimes are
investigated.
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The purpose of the present contribution is to study the dynamics of spectrally

2006 Springer. Printed in the Netherlands.



320

The first regime is related to the possible existence of a finite-time infinite-
vorticity singularity in three-dimensional incompressible Euler flow developing
from smooth initial conditions. This is still an open mathematical problem
(Frisch et al. 2003). One possible approach to the problem is the so-called an-
alyticity strip method (Sulem et al. 1983). The basic idea of this method is to
trace complex singularities numerically on direct numerical simulations (DNS)
of the Euler equation with enough spatial resolution to capture the exponential
tails in the Fourier transforms. The logarithmic decrement of the energy spec-
trum at high-k is twice the width δ(t) of the analyticity strip of the velocity field
and the problem of blowup comes down to checking if δ(t) vanishes in a finite
time. This method has been applied to three-dimensional Euler flows generated
by the Taylor & Green (1937) (TG) initial conditions, with resolutions 2563

(Brachet et al. 1983) and 8643 (Brachet et al. 1992). It was observed that,
after an early transient period, the width of the analyticity strip of the velocity
field decayed exponentially in time. In this contribution we present simulations
performed with up to 20483 collocation points; no indication of finite-time real
singularity is found.

The second regime of the spectrally truncated Euler flow is obtained by
carrying out the integration beyond the time at which the truncated equations
cease to approximate the original Euler equations. It is well known (Kraich-
nan 1973; Orazag 1977) that the (spectrally) truncated Euler equations admit
statistically stationary exact solutions, the so-called absolute equilibria, with
Gaussian distribution f∗ and energy spectra E(k) proportional to k2. The dy-
namics of spectrally truncated time reversible nonlinear equations has already
been studied in the particular cases of 1-D Burgers-Hopf models (Majda &
Timofeyev 2000) and 2-D quasi-geostrophic flows (Majda & Abramov 2003).
A central point in these studies was the nature of the statistical equilibrium that
is achieved at large times (Orazag 1977). Several equilibria are a priori possi-
ble because both (truncated) 1-D Burgers-Hopf and 2-D quasi-geostrophic flow
models admit, besides the energy, a number of additional conserved quantities.
The case of spectrally truncated 3-D incompressible Euler flows is of a different
nature because (except for helicity that identically vanishes for the flows con-
sidered here) there is no known additional conserved quantity (Frisch 1995).
The equilibrium is thus unique. In this contribution we present simulations
displaying Kolmogorov-like turbulence during an intermediate regime of the
spontaneous relaxation toward this equilibrium.

This article is organized as follows: Section 2 is a short review of (standard)
basic definitions and numerical algorithms. The singularity problem is ad-
dressed in Section 3 and the turbulent regime is presented in Section 4. Finally
Section 5 is our conclusion.
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2. Definition of the system

The three-dimensional incompressible Euler equations,

∂tv + (v · ∇)v = −∇p , (1)

∇ · v = 0 , (2)

with (2π-periodic) initial data are solved numerically using standard (Gottlieb
& Orszag 1977) pseudo-spectral methods with resolution N . Time marching
is done with a second-order leapfrog finite-difference scheme. Fourth-order
Runge-Kutta method is used to start the leapfrog and to periodically couple
even and odd time steps. The solutions are dealiased by suppressing, at each
time step, the modes for which at least one wave-vector component exceeds
two-thirds of the maximum wavenumber N/2 (thus a 10243 run is truncated at
kmax = 341). Symmetries are used in a standard way (Brachet et al. 1983) to
reduce memory storage and speed up computations.

The computations are carried out using the (incompressible) Taylor-Green
vortex (Taylor & Green 1937) single–mode initial conditions,

uTG = sin(x) cos(y) cos(z) , vTG = −uTG(y,−x, z) , wTG = 0 . (3)

Series of runs are made by varying the resolution N .
In order to monitor the time-evolution of the flows we periodically extract

from the computation the energy spectrum, defined by averaging v̂(k′, t) (the
spatial Fourier transform of the solution to Eq. (1)) on spherical shells of width
∆k = 1,

E(k, t) =
1
2

∑
k−∆k/2<|k′|<k+∆k/2

|v̂(k′, t)|2. (4)

3. Initial dynamics of complex singularities

When the velocity field is analytic, the energy spectrum E(k, t) decays ex-
ponentially at large k (with a possible algebraic prefactor). The logarithmic
decrement is twice the width δ(t) of the analyticity strip of the solution contin-
ued to complex spatial variables. The basic idea of the analyticity strip method
(Sulem et al. 1983) is to trace the temporal behavior of δ(t) in order to obtain
evidence for or against blowup.

In order to extract δ(t) from the numerical integrations a least-square fit
is performed on the logarithm of the computed energy spectrum, using the
functional form,

Log(E(k, t)) = C − nLog(k) − 2δk . (5)
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Figure 1. Energy spectra at t = (1.3, 1.9, 2.5, 2.9, 3.4, 4.0) and resolutions 2563, 5123,
10243 and 20483; the spectral cut-off is indicated, for each resolution, by the vertical dotted-lines.
Left: Lin-Log, right: Log-Log.

The error on the fit interval k1 ≤ k ≤ k2,

χ2 =
∑

k1≤ki≤k2

(Log(E(ki, t)) − (C − nLog(ki) − 2δki))2 (6)

is minimized by solving the equations∂χ2/∂C = 0, ∂χ2/∂n = 0 and∂χ2/∂δ =
0. Note that these equations are linear in the fit parameters C, n and δ.

Examples of energy spectra to be fitted in such a way are presented on Fig.
1. It is apparent on the figure that resolution-dependent spectral even-odd
oscillations are present, at certain times, on the TG energy spectrum. Note
that this behavior is produced by the round-off error ∼ 10−15. For a given
precision and resolution, the maximum time up to which the simulation is
reliable should be the first instance at which the value of the spectrum at the
highest wavenumber becomes comparable to the square of the round-off error.
However, these round-off errors only affect the highest wavenumbers of the TG
energy spectrum. They are eliminated by averaging the TG spectrum on shells
of width ∆k = 2 before performing the fit (Brachet et al. 1983).
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Figure 2. Time evolution of decrement δ (left) and exponent n (right) for TG flow at various
resolutions (see Eq. 5). Fits are performed within the intervals k = 5 to min(kR, N/3), where
kR = minE(k)<10−32(k) marks the beginning of roundoff noise at short times (t ≤ 2.6, see
Fig. 1).

The measure of δ(t) is reliable as long as it remains larger than a few mesh
sizes, a condition required for the smallest scales to be accurately resolved and
spectral convergence ensured. Thus only the fits giving a value of δ such that
δkmax > 2 will be considered. Fig. 2 displays the values of δ and n for the
flow. It is visible that, after a short transient period, δ(t) decays like

δ(t) = δTG
0 e−t/TTG (7)

with a characteristic decay time TTG = 0.56 and δTG
0 = 2.70, up to a time

t = 3.7 at resolution 20483 when it becomes comparable to twice the smallest
resolved scale.

4. Subsequent turbulent behavior

To rephrase the conclusion of the preceding section, for times larger than t =
3.7 the solution to the 20483 spectrally truncated equations becomes sensitive
to the spectral cutoff and therefore stops approximating the solution to the full
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Figure 3. Energy spectra, top: resolution 10243 at t = (6.5, 8, 10, 14) (�,+,◦,∗); bottom:
resolutions 2563 (triangle 
), 5123 (cross ×) and 10243 (cross +) at t = 8, the dashed line
indicates k2 scaling.

(untruncated) Euler equations. The numerical integration can nevertheless be
continued; however, it is not clear what physical system (if any) the truncated
equations represent in this regime.

The first effect of the spectral truncation is to accumulate energy near the
cutoff and the spectrum stops being decreasing at high-k. Shortly after this
crisis, the high-k spectrum becomes proportional to k2 and this region then
spreads to lower wavenumbers.

As already mentioned in the introduction, it is well known (Kraichnan 1973;
Orazag 1977) that the spectrally truncated Euler equations (1), (2) admit statisti-
cally stationary exact solutions, the so-called absolute equilibria, with Gaussian
distribution and energy spectra proportional to k2. It thus appears that the trun-
cated 3-D Eulerian dynamics is relaxing toward that equilibrium.

Figure 3 displays the time evolution (top) and resolution dependence (bottom)
of the energy spectra at later times. It is apparent that a wavenumber kmin (such
that E(k) ≥ E(kmin)) spontaneously appears in the flow. The modes with
k > kmin appear to be in absolute equilibrium (see the dashed line at the



Evolution of complex singularities and Kolmogorov scaling 325

4 8 12
t

0

0.05

0.1

  E  th

10

100

  k  min

1

Figure 4. Time evolution of kmin (left vertical axis) and Eth (right vertical axis) at resolutions
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), 5123 (cross ×) and 10243 (cross +).

bottom of the figure). Defining the thermalized (or dissipated) energy Eth by

Eth(t) =
∑

kmin<k

E(k, t) , (8)

the time evolutions of kmin and Eth are presented on Fig. 4. It is apparent on
the figure that, for all resolutions, kmin decreases and Eth increases with time
and that, for all times, kmin increases and Eth decreases with the resolution.

A first hint for Kolmogorov behavior is given by the energy dissipation rate,

ε(t) =
dEth(t)

dt
. (9)

Indeed, perhaps one of the main quantitative results of this paper is the excel-
lent agreement of the energy dissipation rate shown on Fig. 5 (top) with the
corresponding data in the viscous TG flow (see Fig. 7 in Brachet et al. (1983)
and Fig. 5.12 in Frisch (1995)). Both the time for maximum energy dissipation
tmax � 8 and the value of the dissipation rate at that time ε(tmax) � 1.5 10−2

are in quantitative agreement.
A confirmation for Kolmogorov behavior around tmax is displayed on Fig. 5

(bottom). The value of the inertial-range exponent n, obtained by a low-k least
square fit of the log of the energy spectrum with the function cte.−n log(k), is
close to 5/3 (horizontal dashed line) when t � tmax. Assuming Kolmogorov
scaling E(k) ∼ ε2/3k−5/3 in the k < kmin range and absolute equilibrium
E(k) ∼ 3k2Eth/k3

max in the k > kmin range, one obtains a first estimation km

for the observed wavenumber kmin (Cichowlas et al. 2005),
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km ∼
(

ε

E
3/2
th

)2/11

k9/11
max . (10)

The ratio kmin/km is displayed on Fig. 6. It is seen to be reasonably constant
on the figure.

5. Discussion and conclusion

In summary, complex singularities in DNS (resolutions up to 20483) of Taylor
Green flow have been traced with the analyticity strip method. Note that the
so called Kida-Pelz flow (Kida 1985; Pelz 2001) has also been investigated in
this way by Cichowlas & Brachet (2005) using a generalized energy spectra
fit procedure needed to take into account oscillations caused by interferences
between complex singularities. Using resolutions up to 20483, exponential-in-
time decay of δ was also found for this flow.
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Considering the truncated equations as a dynamical system in its own right,
even when its solutions do not approximate solutions to the original Euler
equations, we have observed the emergence of Kolmogorov-like turbulence
during an intermediate regime of the spontaneous relaxation towards absolute
equilibrium. Scaling laws have also been obtained for the dissipative effects
that spontaneously appear in this time-reversible system. Let us finally remark
that the temporal fluctuations around the equilibria are related to the equilibrium
correlation functions by a fluctuation dissipation theorem. This point was used
by Cichowlas et al. (2004), together with Monte-Carlo simulations, to estimate
the magnitude of the dissipative effects.
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Abstract Helicity produced by nearly singular vortex interactions is shown to play a role
in the ensuing development of turbulence. This might provide a link between
turbulence and the dynamics of the three-dimensional Euler equations, where
numerical evidence has suggested that there might be a singularity. Interactions
between regions of oppositely signed helicity in both physical and Fourier space
are shown to be associated with the transfer of energy to small scales and the
formation of vortex tubes, both being properties of fully developed turbulence.

Keywords: Turbulence, PDEs

1. Introduction

The focus in this contribution will be vortex lines that originate from within
the regions of the most intense vorticity, leave it, then spiral outwards. Spiraling
vortex lines are helical such that the helicity density, the scalar product of the
velocity and vorticity vectors H(x) = u · ω, would have a distinct sign, either
positive or negative, depending upon the sense of twist in the spiral. The inviscid
dynamics would be governed by the inviscid helicity evolution equation,

∂(u · ω)
∂t

+ (u · ∇)(u · ω) = ∇ ·
[
ω(1

2u2 − p)
]
. (1)

In addition to the Lagrangian transport on the left-hand side, there is transport of
helicity density along vortex lines on the right-hand side. The helicity density
can increase locally due to this transport.

dH

dt
=

d
dt

∫
u · ωdV = 0 , (2)

a second quadratic conservation property of the 3D incompressible Euler equa-
tions in addition to the kinetic energy KE = ∫ 1

2u2dV . Therefore, any local
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When integrated over space (V ) these equations conserve helicity,
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H<0H>0

Figure 1. Three views of vortex
lines leaving the region of a nearly sin-
gular Euler interaction. The region
of most intense vorticity is enclosed
by the isosurfaces. The diagram be-
low shows how vortex lines around
each of the four quadrants would wrap
up as helicity of opposite sign is ex-
pelled from either side of this interac-
tion. Dark lines indicate H > 0 and
light lines indicate H < 0.

increase in helicity of one sign (say positive) must be balanced by an equal
increase in helicity of the opposite (say negative) sign. These positive and
negative changes must occur along connected vortex lines.

The primary mathematical condition for whether there is a singularity of the
3D incompressible, Euler equations is that the time integral of the maximum of
the vorticity controls any singularity of 3D Euler (Beale et al. 1984),

lim
t→T

∫ t

0
‖ω‖∞ ds → ∞. (3)

Here ‖ω‖∞ is the L∞ norm of vorticity, or the peak value of magnitude of
vorticity over all space. Kerr (1993) and Grauer et al. (1998) have obtained
numerical evidence that ‖ω‖∞ ≈ 19/(T − t), where the possible singular
time is T , which is consistent with this test.

Another mathematical property associated with swirl that can be derived from
the time integral constraint is that infinite vortex line length must be generated
(Majda and Constantin, private communication), a result that has been used
in a new mathematical proof (Deng et al. 2005). This can be accommodated
only if the vortex line length goes to infinity or if it becomes tightly curled or
helical. Evidence will be presented here that infinitely long vortex line length
in a nearly singular interaction is accommodated by being curled up. Then
by transferring these ideas to a more general flow, it will be suggested that
these helical regions could play a crucial role in the generation of turbulence
following viscous reconnection.
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2. Helicity generation in Euler

Figure 1 shows three views of how vorticity leaves the region of most intense
vorticity for two interacting anti-parallel Euler vortices just before viscosity
from the Navier-Stokes equations would initiate vortex reconnection. Only
half of one of the anti-parallel vortices is shown. A similar figure appeared on
the cover of the January 1996 issue of Nonlinearity (Kerr 1996).

The diagram in the lower left of Fig. 1 illustrates how helicity density
is forced out during such an interaction. The nearly singular interaction is
indicated by the black lines. As their interaction becomes more intense, helical
vortex lines are forced out in opposite directions with oppositely signed helicity,
as indicated by the different brightness to the vortex lines extending from the
central non-helical region. As helicity density accumulates in each quadrant,
the magnitude of its integral grows as

Hq → 0.25
√

EΩ = C
√

E
√
− log(T − t), (4)

where T is the singular time that is suggested by the anti-parallel Euler calcu-
lations (Kerr 1993), C is a undetermined coefficient and Ω = ∫ ω2dV is the
enstrophy. This growth in Hq is the order of the maximum value allowed by
the constant energy and growing enstrophy and implies that the vortex lines are
very helical and Beltramized.

An increase in enstrophy consistent with logarithmic growth was observed
in Kerr (1993), but the stronger evidence is the empirical observation there that
the enstrophy production in Euler obeys

Ωpr =
dΩ
dt

=
∫

ωieijωjdV ∼ 1
T − t

, where eij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)

(5)
in addition to ‖ω‖∞ obeying 1/(T − t). That is

Ω ∼
∫ 1

T − t
dt ∼ − log(T − t). (6)

The scenario for helicity generation just given applies only before viscosity
becomes important. Because the anti-parallel vortex interaction generates its
own small scales, eventually small-scale viscous dissipation will take over and
the anti-parallel vortex lines in the center (black) will be annihilated. This leads
to vortex reconnection but not to any significant dissipation of either the kinetic
energy or helicity. Only later after finite helicity dissipation by reconnection
would there be changes in topology such as occurs in the linking and unlinking
of vortex rings.
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3. Helicity for random initial conditions

The anti-parallel initial condition is artificial and contrived to give the max-
imum growth in the peak vorticity in the shortest time. This is useful for
investigating the question of whether there is a singularity of the inviscid, in-
compressible Euler equations, but might not be relevant to the role of vorticity
growth and reconnection for turbulence in general. Even when the symmetries
are relaxed and there are only a few vortex tubes in arbitrary configurations,
the calculations never seem to reach a convincing −5/3 regime and turbulence.
However, calculations starting with a few Fourier modes have for many years
been able to reach a convincing −5/3 regime and a turbulent state (Brachet et
al. 1983). Can the paradigm of the interaction of a few vortex tubes be applied
to an initial condition with just a few Fourier modes?

Vortex tubes do not appear to be a good description of the state that evolves
from a few Fourier modes. It has long been known that vortex sheets dominate
these flows and it was recently shown that their interaction and reconnection is
from an orthogonal configuration that is inherently helical and dissipative (Holm
& Kerr 2002). Helical vortex tubes form due to reconnection and dissipation,
instead of leading to reconnection and dissipation. Only after the helical tubes
form does a −5/3 spectrum form.

To understand this better, more analysis of a flow generated by a few ran-
domly chosen Fourier modes is presented. The decay of kinetic energy, growth
of ‖ω‖∞ , and the variation in time of helicity in Fig. 2 set the timescales. The
first signs of dissipation are changes in helicity starting about t = 0.3, but the
most interesting period is around t = 0.5 when the sign of dH/dt reverses and
‖ω‖∞ reaches its largest value. The first strong interactions between vortices
are just before this time. Figure 3 shows two times in this period when all of
the intense vorticity is in vortex sheets and those sheets are interacting strongly.
Only 1/43 of the entire domain is shown, centered upon the position of ‖ω‖∞ ,
the maximum of vorticity over the entire domain. The most significant interac-
tion is between two overlying, curled up sheets in the center. At t = 0.41 these

Figure 2. Time dependence of ki-
netic energy KE, ‖ω‖∞, and integral
helicity H for a 2563 direct numeri-
cal simulation initialized with a few
Fourier modes. The time scale is set by
the first peak in‖ω‖∞ around t = 0.5.
The constants used for scaling are in-
dicated on the left.
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Figure 3. Times t = 0.41 (left) and t = 0.45 (right) for a calculation initialised with a few
Fourier modes. The interacting vortex sheets at t = 0.41 are in the center, which seem to curl
around reach other into a very localised anti-parallel configuration at t = 0.45.

are distinct sheets, possibly with anti-parallel vorticity. By t = 0.45 they appear
to have merged into one structure while another sheet-like region is hovering
overhead. If a singularity is necessary for dissipation to begin, this interaction is
the best candidate from this flow. However, whether this description is accurate
will require higher-resolution simulations of this or a similar initial condition.
Fig. 4 shows the helicity structures that appear. The interacting structures at
t = 0.45 are now in the upper right of Fig. 4(a) at t = 0.5, which shows the
whole length of the vortex tube that is forming. From this, the orthogonal vortex
tubes in Fig. 4(c) at t = 0.7 develop as the interaction works its way down,
annihilates, and dissipates the dominant light hashed structure in Fig. 4(a).

The product of the inviscid helicity generation is best illustrated in Fig.
4(b), which focuses upon the structure in the upper right in Fig. 4(a). The
arrangement of helicity is not clearly associated with the vortex structures,
but after viewing this state from several angles, it can be concluded that there
is positive and negative helicity density along the different ends of the two
interacting vortex structures, consistent with the statement that helicity flux
occurs along vortex lines in such a way as to create regions of oppositely signed
helicity density. That is, the light hashes (negative H(x)) at the top and dark
hashes (positive H(x)) on the bottom are along one structure, and the light
hashes on the right and dark hashes in the middle and on the left are along the
other structure.

The end product is two orthogonal vortex tubes with oppositely signed helic-
ity at t = 0.7. This is an inherently dissipative interaction. Sheets of dissipation
between vortices were first identified in a simulation by Kerr (1985). Moffatt
(1985) proposed that there could be sheets of dissipation separating regions
of maximally positive and negative helicity. The new results tie those ideas
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together. Orthogonal vortex tubes without dissipation (Boratav et al. 1992)
must have the same sign of helicity.

4. Helicity spectra

Why would regions of oppositely signed helicity be related to dissipation?
Usually helicity is thought to suppress nonlinearity and dissipation, but this
is when one sign of helicity dominates, not for when both signs appear. Fig.
5 shows the helicity co-spectrum H(k) =

∫
∆k u(k) · ω(k)dΩ, where ∆k

represents a shell of wavenumbers k′ for k − 1
2 < k′ < k + 1

2 . The nonlinear
helicity transfer spectrum is

Htr(k) =
∫

∆k N(k) · ω(k)dΩ, (7)

where N(k) is the Fourier transform of the physical space nonlinear term −(u ·
∇)u − ∇p in the Navier-Stokes equation. Between t = 0.4 and 0.5, H(k)
is rapidly oscillating between wavenumber shells. At any given time, these
oscillations are more pronounced in the transfer spectrum Htr(k) than in the
helicity co-spectrum. Htr(k) also shows signs that its positive and negative
peaks are moving to higher wavenumbers, perhaps associated with an energy
cascade. Strong oscillations in the helicity would not be consistent with anti-
parallel vortices, where due to symmetries the total helicity would be zero
as shown in the diagram in Fig. 1. This does not rule out the possibility
that at sufficiently high Reynolds number and sufficiently small scales that the
interaction (possible near t = 0.42) could become anti-parallel. But it does
seem to rule out an anti-parallel interaction appearing at the scales resolved in
this calculation.

Since helicity is conserved, if helicity grows positively in one shell, it must
grow negatively in an adjacent shell. The result is the oscillating co-spectrum
observed. Previously this had only been seen in a simulation initialized with a
contrived set of Fourier modes designed to produce helicity and for which no
physical space graphics were done. In this case we can also see the physical
space structure, which is likewise associated with the appearance of positive
and negative helicity regions. Comparing the physical space and spectral space
structures, a partial explanation of the time dependence of the integral helicity
in Fig. 2 can be given.

At t = 0.3, the highest wavenumber oscillation is centered around k = 6
and is negative. This is the first peak to be dissipated, leaving behind positive
helicity. This spectral dissipation is probably associated with the annihilation
process between light hashed (negative) helical regions that is still going on
at t = 0.5 in the upper right of Fig. 4(b). As time increases, the spectral
peaks move gradually to higher wavenumbers, so that after the negative peak
has largely dissipated, a strong moderate wavenumber positive peak follows.
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H<0

H>0

Figure 4. (a) t=0.5 Isosurfaces of vorticity in as opaque surfaces for 1/23 of the domain with
sample vortex lines. High positive and negative helicity are indicated by dark hashes for H > 0
and light hashes for H < 0. The box is such that ‖ω‖∞ for t = 0.5 and 0.7 will both be
contained within it. ‖ω‖∞ at t = 0.5 is within the cross at upper right. (b) t=0.5 1/43 of the
domain focussing upon the structure from the upper right in (a). (c) Diagram of how helicity
density is produced by transport along vortex lines. In general there is creation of H > 0 (darker
hashes) to the lower left and H < 0 (lighter hashes) in the upper right in frames (a) and (b). (d)
t=0.7 The position of the ‖ω‖∞ at t = 0.5 was in the upper left corner and has now dissipated.
The transverse structure that was a sheet at t = 0.5 has now rolled up into the light gray (H < 0)
tube behind the dark gray (H > 0) tube.

From this time on, dissipation of positive helicity dominates and the positive
peak of H in Fig. 2 decays.

There is a similarity between the observed spectral structure and shell mod-
els that have been related to the nonlinear terms of the Navier-Stokes equations
(Biferale & Kerr 1995). In particular, the 3D version of the GOY (Gledzer-
Ohkitani-Yamada) shell model has a helicity-like property that alternates be-
tween adjacent shells. However, despite the similarities in the important terms,
there appear to be major differences between the GOY model and the Navier-
Stokes equations in their energy cascade mechanisms. In GOY, the turbulent
statistics are the result of long-time averages and the role of ‘helicity’ is to
sporadically block the cascade. The important helicity mechanism in this DNS
calculation appears to be a single pulse of helicity that moves to high wavenum-
bers, is not blocked, and is a pre-cursor to the true energy cascade, which forms
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Figure 5. Helicity spectra H(k) at t =
0.3, 0.4 and 0.5 and a helicity transfer spec-
trum Htr(k) at t = 0.3. Most of the
change in the helicity spectrum occurs be-
tween t = 0.3 and 0.4, the period during
which in physical space regions of nega-
tive and positive helicity density emerge,
as shown in Fig. 4. Note the relationship
between the oscillations in H(k) at t = 0.5
and the oscillations in Htr(k) at t = 0.3.
The high negative and positive transfer rates
at t = 0.3 result in the changes seen in the
helicity spectrum at t = 0.4. in positive
helicity in Fig. 2 for t < 0.5. In the bottom
frame, the full transfer spectrum Htr(k) at
t = 0.425 is shown along with segments of
the t = 0.3 and 0.5 transfer spectra to show
how the spectrum appears to move to higher
wavenumbers as time progresses. The peak
positives are marked with �’s and the peak
negatives are marked with +’s. The change
from a rise in positive helicity for t < 0.5
in Fig. 2 to a fall in positive helicity for
t > 0.5 can be understood as follows: The
negative peak in helicity at t = 0.4 and
k ≈ 6 is responsible for the rise. And as
the negative transfer for t ≤ 0.4 is replaced
by a positive transfer around t = 0.425,
this leads to the positive peak in helicity at
t = 0.5 and k ≈ 6 in the middle frame and
a fall in positive helicity.

not long after t = 0.7. Of more significance is that in a helical decomposition
of interactions in Fourier space (Waleffe 1993), it has been shown that the term
with the largest energy transfer coefficient comes from terms similar to models
like the GOY model, with alternating helicity bands contributing.

5. Summary

This paper shows that while regions of like-sign helicity suppress nonlinear-
ity, interacting regions of oppositely signed helicity might enhance nonlinearity
and the cascade. The origin of the helicity could come from inviscid vortex
interactions which create local regions of strong helicity even while conserv-
ing helicity globally. This happens in both Fourier and physical space. The
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interacting transverse, helical vortex tubes at t = 0.7 in Fig. 4(d) might be the
physical space manifestation of this.
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Abstract Superfluid turbulence has been one of the most important problems of superfluid
hydrodynamics, in which quantized vortices play a significant role. The recent
research on superfluid turbulence enters a new stage rather different from the
old ones chiefly devoted to thermal counterflow. After describing the current
motivation on these topics, we discuss our research which studies the energy
spectrum both by the vortex filament model and the Gross-Pitaevskii model.
Both energy spectra are consistent with the Kolmogorov law, which shows a
close similarity between superfluid (quantum) and classical turbulence.

Keywords: Superfluid helium, superfluid turbulence, quantized vortices, two-fluid model

1. Introduction

Below the λ temperature Tλ at about 2.2K, liquid helium enters the superfluid
state called helium II (Donnelly 1991). This superfluid transition is microscop-
ically caused by Bose-Einstein condensation of helium atoms which is a typical
quantum phenomenon in a system consisting of Bose particles. Helium II be-
haves like an irrotational ideal fluid, and its characteristic phenomena can be
explained well by a two-fluid model. The two-fluid model states that helium II
is a mixture of inviscid superfluid and viscous normal fluid with total density
ρ = ρs +ρn, where ρs and ρn are the densities of the superfluid and the normal

λ

joins the normal fluid, while as the temperature is reduced below Tλ, ρs in-
creases and ρn decreases, and the whole fluid becomes superfluid about below
1K. The superfluid corresponds to the Bose-Einstein condensate (BEC) and the
normal fluid has all of the thermal excitations of the system.

When
helium II is confined in a channel closed at one end with a heater, superfluid
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fluid. Their mixing ratio depends on temperature. Above T , the whole fluid
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Most early experimental studies focused on thermal counterflow.
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enters from the other open end and flows toward the heater. On reaching the
heater, normal fluid is created, which then flows back toward the open end. This
situation is called thermal counterflow. It is laminar at low relative velocities,
but when the relative velocity exceeds some critical velocity, the superflow
becomes turbulent and has dissipation. The concept of superfluid turbulence
was introduced by Feynman who proposed that the superfluid turbulent state
consists of a disordered set of quantized vortices (Feynman 1955) that is called
a vortex tangle, which dissipates via mutual friction between the vortex cores
and the normal flow. This picture was confirmed experimentally by Hall and
Vinen (Hall and Vinen 1956a, 1956b, Vinen 1957a, 1957b, 1957c).

Although our understanding of superfluid turbulence and vortex dynamics
has made significant gains since the early studies (Barenghi et al. 2001), the
recent interest has shifted to the nature of superfluid turbulence (Vinen and
Niemela 2002), apart from the case of counterflow. After describing the prop-
erties of quantized vortices and the current motivations on this field, we discuss
our recent activity on the theoretical and numerical study of dynamics of quan-
tized vortices. The motivation comes from how superfluid turbulence relates
to classical turbulence. Superfluid turbulence is shown to have an energy spec-
trum consistent with the Kolmogorov law (Araki et al. 2002, Nore et al. 1997)
by the vortex filament model and the Gross-Pitaevskii model, respectively.

2. Quantized vortices

2.1 What is a quantized vortex?

Below a critical temperature in an ideal Bose gas, a finite fraction of the parti-
cles occupies the same single-particle ground state and forms a BEC. When the
particles have mutual interaction, single-particle states are no longer meaning-
ful. However a condensate wave function Ψ(r, t) is still defined as the ensemble
average of the quantum amplitude for removing a particle at position r from the
condensate. Then the dynamics of Ψ(r, t) is described by the Gross-Pitaevskii
(GP) equation (Donnelly 1991)

i�
∂Ψ(r, t)

∂t
=
(
− �

2

2m
∇2 + g|Ψ(r, t)|2 − µ

)
Ψ(r, t). (1)

Here g = 4π�
2m/a represents the strength of interaction characterized by the

s-wave scattering length a, m the mass of each particle, and µ the chemical
potential. Writing Ψ = |Ψ| exp(iθ), the squared amplitude |Ψ|2 is the con-
densate density and the gradient of the phase θ gives the superfluid velocity
vs = (�/m)∇θ, which is a frictionless flow of the condensate. Hence the
vorticity rotv vanishes everywhere in a single-connected region of the fluid;
any rotational flow is carried only by a quantized vortex. In the core Ψ(r, t)
vanishes, and the circulation of vs along a closed path C around the core is
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quantized as∮
C
ds · vs =

�

m

∮
C
ds · ∇θ = nκ (n = 0,±1,±2, · · · ), (2)

with the quantum of circulation κ = h/m. Such a vortex with the quantized
circulation is called a quantized vortex.

A quantized vortex is a topological defect characteristic of a Bose-Einstein
condensate, being different from a vortex in a classical viscous fluid. First,
the circulation is quantized, which is contrary to the classical vortex that can
have any value of circulation. Second, a quantized vortex is a vortex of inviscid
superflow. Thus, it cannot decay by the viscous diffusion of vorticity that occurs
in a classical fluid. A quantized vortex can decay by shortening the length
of the core through mutual friction with the normal fluid, by breaking into
smaller and smaller vortex loops through reconnections and finally changing
to some elementary excitations, or by transferring energy to smaller length
scales through a Kelvin wave cascade (Vinen et al. 2003) followed by acoustic
emission (Vinen 2000). Third, the core of a quantized vortex is very thin, being
the order of the coherence length defined by ξ = �/(

√
2mg|Ψ|), which is only

a few angstroms in helium II. Because the vortex core is very thin and does not
decay by diffusion, it is always possible to identify the position of a quantized
vortex in the fluid. These properties make a quantized vortex more stable and
definite than a classical vortex, which allows us to consider a quantized vortex
as an elementary vortex in superfluid turbulence.

2.2 Formulation of the dynamics of quantized vortices

Since the early studies on superfluid turbulence, lots of experimental works
have been devoted chiefly to thermal counterflow, revealing many important
properties (Tough 1982). However,the nonlinear and nonlocal dynamics of
vortices delayed progress in further microscopic understanding of the vortex
tangle. It was Schwarz who overcame these difficulties (Schwarz 1985, 1988).
His most important contribution was to develop the direct numerical simula-
tion of vortex dynamics connected with dynamical scaling analysis, thus en-
abled us to calculate such physical quantities as the vortex line density, various
anisotropic parameters, and the mutual friction force. The observable quantities
obtained with Schwarz’s theory agreed well with the experimental results of the
steady state of the vortex tangle. This research field pioneered by Schwarz has
generated many new areas of study in vortex dynamics (Barenghi et al. 2001).

Now we have two kinds of formulation of the dynamics of quantized vortices.
One is the vortex filament model and the other is the analysis of the GP equation.
This subsection reviews briefly these two methods.

As described in the last subsection, a quantized vortex has the quantized
circulation. The vortex core is extremely thin, being the order of atomic size in
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helium II, much smaller than any other characteristic scale in the vortex motion.
These properties allow us to represent a quantized vortex as a vortex filament.
In a classical fluid dynamics (Saffman 1992) the vortex filament model is more
or less a toy model, while it is realistic for a quantized vortex in superfluid
helium. The vortex filament model for a quantized vortex was pioneered and
developed by Schwarz (1985, 1988).

The vortex filament formulation represents a quantized vortex as a filament
passing through the fluid and having a definite direction corresponding to its
vorticity. Except for the thin core region, the superflow velocity field has a
classically well-defined meaning and can be described by ideal fluid dynamics.
The velocity at a point r due to a filament is given by the Biot-Savart expression

vs(r) =
κ

4π

∫
L

(s1 − r) × ds1

|s1 − r|3 , (3)

where κ is the quantum of circulation. The filament is represented by a para-
metric form s = s(ξ, t) with a one-dimensional coordinate ξ along the filament.
The vector s1 refers to a point on the filament and the integration is taken along
the filament L. Helmholtz’s theorem for a perfect fluid states that the vortex
moves with the superfluid velocity. Attempting to calculate the velocity vs at
a point r = s on the filament makes the integral diverge as s1 → s. To avoid
this divergence, we separate the velocity ṡ of the filament at the point s into
two components (Schwarz 1985):

ṡ =
κ

4π
(s′ × s′′) ln

(
2(�+�−)1/2

e1/4a0

)
+

κ

4π

∫ ′

L

(s1 − r) × ds1

|s1 − r|3 . (4)

The first term is the localized induction field arising from a curved line element
acting on itself, and �+ and �− are the lengths of the two adjacent line elements,
after discretization, that hold the point s between them. The prime denotes
differentiation with respect to the arc length ξ. The mutually perpendicular
vectors s′, s′′ and s′ × s′′ point along the tangent, the normal and the binormal
at the point s, respectively, and their magnitudes are 1, R−1 and R−1 with the
local radius R of curvature. The parameter a0 is a cutoff parameter equal to
the core radius. Thus, the first term represents the tendency for the point at s to
move in the binormal direction with a velocity inversely proportional to R. The
second term represents the nonlocal field obtained by integrating the integral
of Eq. (3) for the range excluding the segments �+ and �− along the rest of the
filament.

The approximation that neglects the nonlocal terms and replaces Eq. (4) by
ṡ = βs′ × s′′ is called the localized induction approximation (LIA). Here the
coefficient β is defined by β = (κ/4π) ln (c〈R〉/a0), where c is a constant of
order 1 and (�+�−)1/2 is replaced by the mean radius of curvature 〈R〉 along the
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length of the filament. Most of Schwarz’s numerical studies on vortex tangles
used the LIA because this approximation can greatly reduce computation times.
Although the method is effective for the analysis of dense tangles (due to can-
cellations between nonlocal contributions), it does not include the intervortex
interaction properly. Because our present problems need to take much account
of the interaction, our numerical simulations are done not by the LIA but by the
fully Biot-Savart law of Eq. (4) .

A better understanding of vortices in a real system results when one includes
the boundaries in the analyses. For this, the boundary-induced velocity field
vs,b is added to vs so that the superflow can satisfy the boundary condition of
an inviscid flow. If the boundaries are specular plane surfaces, vs,b is just the
field due to an image vortex made by reflecting the vortex into the plane and
reversing its sign of vorticity. To allow for another applied field, we include
vs,a. Hence, the total velocity ṡ0 of the vortex filament without dissipation is

ṡ0 =
κ

4π
(s′ × s′′) ln

(
2(�+�−)1/2

e1/4a0

)
+

κ

4π

∫ ′

L

(s1 − r) × ds1

|s1 − r|3

+ vs,b(s) + vs,a(s). (5)

At finite temperatures it is necessary to consider the mutual friction between
the vortex core and the normal flow vn. Including this term, the velocity of s
is given by

ṡ = ṡ0 + αs′ × (vn − ṡ0) − α′s′ × [s′ × (vn − ṡ0)], (6)

where α and α′ are the temperature-dependent friction coefficients, and ṡ0 is
calculated from Eq.(5).

The method of the numerical simulation based on this model is described in
detail in Schwarz (1985, 1988) and Tsubota et al. (2000). A vortex filament is
represented by a single string of points with a distance ∆ξ. The vortex configu-
ration at a given time determines the velocity field in the fluid, thus moving the
vortex filaments according to Eqs. (5) and (6). Both local and nonlocal terms
are represented by means of line elements connecting two adjacent points. As
the vortex configuration develops and, particularly, when two vortices approach
each other, the distance between neighboring points can change. Then it is nec-
essary to add or remove points properly to retain sufficient local resolution.
Through the cascade process, a long vortex can break up through many recon-
nections, eventually becoming a vortex that is smaller than the space resolution
∆ξ. The simulations cannot follow the dynamics below this resolution, so these
vortices are eliminated numerically.

It is important to properly include vortex reconnection when simulating vor-
tex dynamics. A numerical study of a classical fluid showed that the close
interaction of two vortices leads to their reconnection, chiefly because of the
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viscous diffusion of the vorticity (Boratav et al. 1992). Schwarz assumed that
two vortex filaments reconnect when they get close within a critical distance,
and showed that the statistical quantities such as vortex line density were not
sensitive to how to make reconnections. Even after the Schwarz’s works, it was
still unclear whether quantized vortices can actually reconnect or not. However,
Koplik and Levine solved directly the GP equation to show the two close quan-
tized vortices reconnected even in an inviscid superfluid (Koplik and Levine
1993). More recent simulations showed that reconnections were accompanied
by acoustic emissions (Leadbeater et al. 2001, Ogawa et al. 2002).

The analysis of the GP equation, which is another method, can explain well
not only the vortex dynamics but also the phenomena concerned with vortex
cores such as reconnection and nucleation. However, strictly speaking, the GP
equation is not applicable to helium II because it does not have such short-
wavelength excitations as rotons which are actually present in this system.
The GP equation is well applicable rather to BEC of a dilute atomic Bose gas
(Tsubota et al. 2002).

2.3 Recent studies on superfluid turbulence

Although our understanding of superfluid turbulence and vortex dynamics
has improved, the relation between superfluid turbulence and classical turbu-
lence remains a major unsolved problem (Vinen 2000, Vinen and Niemela
2002). Recent experimental research on superfluid turbulence apart from ther-
mal counterflow has found support for the Kolmogorov law that is one of the
most important statistical law in fully developed turbulence. Maurer and Tabel-
ing measured local pressure fluctuations in helium flows driven by two counter-
rotating disks in a range of temperature between 1.4 and 2.3 K and obtained
the Kolmogorov spectrum above and below Tλ (Maurer and Tabeling 1998). A
group at the University of Oregon reported in a series of papers (Smith et al.
1993, Stalp et al. 1999, Skrbek and Stalp 2000) the attenuation of second sound
behind a grid that moved steadily through helium II at temperatures above 1
K. Among these works, Stalp et al. measured the decay of grid turbulence in
helium II and showed that the experimental results were consistent with a clas-
sical model of energy spectrum that included the Kolmogorov law. Then, Vinen
analyzed the similarity between superfluid turbulence and classical turbulence
(Vinen 2000) and showed the importance of length scales for understanding
the energy of the velocity field. For example, although superfluid turbulence
is made of a tangle of quantized vortices, the situation depends on whether the
length scale is larger or smaller than the vortex line spacing �. Furthermore, at
relatively high temperatures, the normal fluid and the superfluid are coupled by
mutual friction at all relevant scales larger than �, and hence the system follows
the Kolmogorov law at these scales. This theory was shown to be consistent



Superfluid turbulence and dynamics of quantized vortices 347

with the previous experimental results by Stalp et al., thus forming a consistent
picture of superfluid turbulence with an appreciable component of normal fluid.

Then appears a very important question; how is the energy spectrum of su-
perfluid turbulence at very low temperatures where the normal fluid component
is negligible? This is significant in the following reasons. First, superflow
at such low temperatures guarantees that any dissipation could work only at
some very small scales. This means the presence of a definite inertial range in
which the energy is transferred from larger to smaller scales by the Richardson
cascade process. The resulting small vortices whose size becomes close to the
coherence length would be unable to keep its vortex nature to change into some
elementary excitations, or dissipate by acoustic emission (Vinen 2000), but the
inertial range should be independent of such dissipative mechanisms. Second,
superfluid turbulence is made of a tangle of quantized vortices. The inertial
range of a classical fluid is believed to be sustained by the Richardson cascade,
while the identification of each vortex in turbulence is rather obscure. On the
other hand, quantized vortices are definite and stable as described before, so
that the physical picture of the inertial range and the Richardson cascade could
be clearer than that in a classical turbulence. Therefore superfluid turbulence
without the normal fluid component may give a typical and simple prototype
of turbulence.

There are no experimental studies of the energy spectrum of superfluid tur-
bulence at very low temperatures. Nevertheless, the two numerical works on
this topic indicate that the Kolmogorov law also applies to superfluid turbulence
at very low temperatures. Starting from a flow that mimicks a Taylor-Green
vortex, Nore et al. (1997) studied the decaying turbulence by using the GP
equation. The energy spectrum showed a transient Kolmogorov form over a
range of wave numbers less than �−1, but the acoustic emission is closely con-
nected with the vortex dynamics and the situation is complicated. Our group
studied the energy spectrum under the vortex filament formulation and found
that the Kolmogorov law should apply to superfluids at very low temperatures
(Araki et al. 2002). Furthermore we investigated the energy spectrum also by
the GP equation very recently.

3. Energy spectrum of superfluid turbulence

3.1 Vortex filament model

To understand whether or not superfluid turbulence realizes the Kolmogorov
spectrum at very low temperatures, we calculate the energy spectrum. The
energy spectrum is originally calculated by the Fourier transform of the fluid
velocity v(r). The superfluid velocity vs(r) is determined by the configuration
of quantized vortices in our vortex filament model. Therefore, we can calculate
the energy spectrum directly from the configuration of vortices. This is a big
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advantage of this formulation because it makes the numerical calculation of the
spectrum less time-consuming than the method via v(r). Using the Fourier
transform ṽs(k) = (2π)−3

∫
drvs(r) exp(−ik · r) and Parseval’s theorem∫

dk|ṽs(k)|2 = (2π)−3
∫

dr|vs(r)|2, the kinetic energy of the superfluid ve-
locity per unit mass is expressed as

E =
1
2

∫
dr|vs(r)|2 =

(2π)3

2

∫
dk|ṽs(k)|2. (7)

The vorticity ω(r) = rotvs(r) is represented in Fourier space as ṽs(k) =
ik × ω̃(k)/|k|2, so that we have E =

(
(2π)3/2

) ∫
dk|ω̃(k)|2/|k|2. The

vorticity ω(r) = κ
∫

dξs′(ξ)δ(s(ξ) − r) in the vortex filament formulation is
rewritten as ω̃(k) =

(
κ/(2π)2

) ∫
dξs′(ξ) exp(−is(ξ)·k). Using the definition

of the energy spectrum E(k) from E =
∫∞
0 dkE(k), these relations yield

E(k) =
κ2

2(2π)3

∫
dΩk

|k|2
∫ ∫

dξ1dξ2s
′(ξ1)·s′(ξ2) exp(−ik·(s(ξ1)−s(ξ2))),

(8)
where dΩk = k2 sin θkdθkdφk is the surface element in spherical coordinates.
This formula connects the energy spectrum directly with the vortex configura-
tion.

Starting from the Taylor-Green vortex in a 1cm-sized cube and following the
vortex motion without the mutual friction, we obtained a roughly homogeneous
and isotropic vortex tangle (Araki et al. 2002). This is a decaying turbulence,
being dissipated by a cutoff of the smallest vortices whose size is comparable
to the space resolution ∆ξ = 1.83 × 10−2 cm. At first, the energy spectrum
has a large peak at the largest scale where the energy is concentrated, but the
spectrum changes as the vortices become homogeneous and isotropic. The time
dependence of the energy dissipation rate ε shows that dε/dt becomes small
after about 70 sec and artifacts of the initial state disappear. Similarly, the
isotropic parameters introduced by Schwarz (1988) indicate a nearly isotropic
vortex tangle after 70 sec. Figure 1 shows that the energy spectrum of the
vortex tangle at 70 sec agrees quantitatively with the Kolmogorov spectrum in
small k region. The dissipative mechanism due to the cutoff works only at the
largest wave number k ∼ 2π/∆ξ = 343 cm−1. Note, however, that the energy
spectrum at small k region is affected by the dissipation rate. By monitoring
the development of the vortex size distribution, such decay of a tangle is found
to be sustained by the Richardson cascade process (Tsubota et al. 2000). These
results support the classical picture of the inertial range in superfluid turbulence
at very low temperatures.

The power of the spectrum changes from −5/3 to −1 at about k ∼ 2π/�.
The k−1 spectrum comes from the contribution of the velocity near each single
vortex. Our simulation of this k−1 regime (Vinen et al. 2003) indicates that the
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Figure 1. Comparison of the energy spectrum (solid line ) numerically obtained at a late stage
with the Kolmogorov law (dotted line) with C = 1 and ε = 1.287 × 10−6 cm2/sec3 (Araki,
Tsubota and Nemirovskii, Phys. Rev. Lett. 89, 145301-3, 2002, reproduced with permission.
Copyright (2002) by the American Physical Society).

energy cascade is due to the Kelvin wave cascade process. The simulations of
Vinen et al. showed that when there is continuous excitation of small k Kelvin
waves along a single vortex and if a sink removes the energy at large wave
numbers, then the nonlinear coupling between different modes leads to a net
flow of energy from small to large wave numbers. This results in a simple steady
spectrum of Kelvin waves that is insensitive to the strength and frequency of
the excited drive.

A specific picture of vortex tangles at very low temperatures has emerged
from these studies. In the low k regime, the vortex tangle has the inertial range
in which the Kolmogorov spectrum is realized and the Richardson cascade
process describes the energy flow to larger wave numbers; in this regime, su-
perfluid turbulence mimics classical turbulence. In the regime with k ≥ 2π/�,
the Kelvin wave cascade process is relevant to the transfer of energy to the
high wave numbers above which some other mechanism dissipates the energy;
this cascade process may be obscure in classical turbulence because the wave
number becomes comparable to the Kolmogorov wave number, but it is clearly
seen in superfluid turbulence at very low temperatures.

3.2 The GP equation

Very recently we have investigated superfluid turbulence of the GP equation
by introducing the dissipation term which works only in scales smaller than the
healing length ξ. This dissipation removes sound waves with short wavelength.
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Hence, there is no return of the energy from sound waves to vortices, which
enables us to study the Kolmogorov law more clearly than the usual GP model,

i
∂

∂t
Φ(r, t) = [−∇2 − µ + g|Φ(r, t)|2]Φ(r, t). (9)

Here µ is the chemical potential and g is a coupling constant. The vortex core
size is given by ξ = 1/

√
gρ.

To solve the GP equation numerically with high accuracy, we use Fourier
spectral method in space with the periodic boundary condition in a box with
spatial resolutions of 2563 grids, which makes us solve the Fourier transformed
GP equation,

i
∂

∂t
Φ̃(k, t) = [k2 − µ]Φ̃(k, t)

+
g

V 2

∑
k1,k2

Φ̃(k1, t)Φ̃∗(k2, t) × Φ̃(k − k1 + k2, t). (10)

Here V is the volume of the system and Φ̃(k, t) is the spatial Fourier component
of Φ(r, t) with the wave number k. We consider the system of g = 1. We
choose the spatial resolution ∆x = 0.125 and V = 323 i.e., ∆k = 2π/32 where
the scale of length is normalized by ξ. The time resolution is ∆t = 1 × 10−4.

To obtain a turbulent state, we start from an initial configuration where the
condensate density ρ0 is uniform and the phase φ0(r) has a random spatial dis-
tribution. The initial velocity v(r, t = 0) = 2∇φ0(r) is random and produces
soon homogeneous and isotropic turbulence with many quantized vortex loops.

Now we introduce a dissipation term in Eq. (10) in order to remove the
sound waves whose wavelength is shorter than the healing length; this proce-
dure makes our work completely different from that of Nore et al.(1997). The
imaginary unit i in the left-hand side of Eq. (10) is replaced by (i − γ(k)),
where γ(k) = γ0θ(k − 2π/ξ) with the step function θ(x). The effect of this
dissipation is shown in Fig. 2. We define the total energy

E =
1∫
drρ

∫
dr Φ∗[−∇2 +

g

2
|Φ|2]Φ, (11)

the kinetic energy

Ekin =
1∫
drρ

∫
dr [(|Φ|∇φ)]2 (12)

and divide Ekin to the compressible part Ec
kin =

∫
dr [(|Φ|∇φ)c]2/

∫
dr ρ due

to sound waves and the incompressible part Ei
kin =

∫
dr [(|Φ|∇φ)i]2/

∫
dr ρ

by vortices, where rot(|Φ|∇φ)c = 0 and div(|Φ|∇φ)i = 0 (Nore et al. 1997,
Ogawa et al. 2002). Figure 2 shows the time development of E, Ekin, Ec

kin
and Ei

kin in the case of (a) γ0 = 0 and (b) 1.
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Figure 2. Development of E (long-dashed line), Ekin (thick solid line), Ec
kin (short-dashed

line) and Ei
kin (dashed-and-dotted line) with (a) γ0 = 0 and (b) 1.

Without dissipation (Fig. 2(a)), the compressible kinetic energy Ec
kin is

increased with the acoustic emission. Introduction of dissipation (Fig. 2(b))
suppresses Ec

kin to make Ei
kin more dominant. This dissipation term works

only at small scales and gives us the inertial range ∆k < k < 2π/ξ in which
the energy is not dissipated.

Then the spectrum of the incompressible kinetic energy Ei
kin(k) defined as

Ei
kin =

∫
dkEi

kin(k) is expected to take the Kolmogorov form. After a transient
period, the spectrum approaches the Kolmogorov power-law. By assuming that
the spectrum Ei

kin(k) is proportional to k−η in the inertial range ∆k < k <
2π/ξ , we determine the exponent η, whose time development is shown in
Fig. 3 (a). Our superfluid turbulence certainly satisfies the Kolmogorov law
Ei

kin(k) ∝ k−5/3 from t � 4 to 10. For a quantitative comparison with
the Kolmogorov law, we calculate the energy dissipation rate ε = dEi

kin/dt.
Figure 3 (b) shows that ε, therefore the spectrum ε2/3k−η, is almost invariant
in the period 4 ≤ t ≤ 10. Eliminating sound waves by the dissipation term
γ(k) is essential to realize the Kolmogorov law. When γ0 = 0, η shows the
Kolmogorov power only in the shorter period 4 ≤ t ≤ 7; sound waves disturb
the inertial range.

The time development of the spatial distribution of vortices is shown in Fig.
4 (a)-(e). It is clear in Fig. 4 (c)-(e) that vortices are making a fully developed
turbulence. In Fig. 4 (f), we plot the energy spectrum Ei

kin(k) and Ec
kin(k) at

t = 5.8 obtained by taking an ensemble average over 20 different initial states.

The energy spectrum agrees quantitatively with the Kolmogorov law, so that
we can find that the incompressible kinetic energy of superfluid turbulence
without the effect of compressible sound waves satisfies the Kolmogorov law.
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Figure 4. Isosurface plot of 98% of maximum vorticity |rotv(r, t)| (a)-(e) for t = 0.5, 2, 4,
6 and 8, and (f) the energy spectrum Ei

kin(k) at t = 5.8. In (f), the energy spectrum of Ei
kin

(closed circle) and Ec
kin (cross) was obtained by taking an ensemble average over 20 different

initial states, and the solid line refers to the Kolmogorov law with C = 1.
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4. Summary

The recent research activity of superfluld turbulence is entering a new stage
rather different from the old ones. After describing the current motivation, we
showed our research which studied the energy spectrum both by the vortex
filament model and the GP model; the both energy spectra are consistent with
the Kolmogorov law. These studies show close similarity between superfluid
and classical turbulence, leading to the significant interdisciplinary research.

I am grateful for research collaboration with S. K. Nemirovskii, W. F. Vinen,
T. Araki, M. Kobayashi and A. Mitani.
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Abstract A study by computer simulation is reported of the behavior of a quantized vortex
line at a very low temperature when there is continuous excitation of Kelvin
waves with a low wave number. The energy of Kelvin wave is dissipated only
at very high wave numbers. It was shown in previous report (Vinen et al. 2003)
that nonlinear coupling leads to a net flow of energy to higher wave numbers
and to the development of a simple spectrum of Kelvin waves. These results
are likely to be relevant to the decay of turbulence in superfluid 4He at very low
temperatures. To identify the wave number dependence of this spectrum more
precisely, we improve the excitation and dissipation method. In this method, the
operations of both excitation and dissipation are done in the Fourier space as
contrasted with the previous method, whose operations were performed in the
real space. The present results are consistent with our previous results not only
on the wave number dependence but also on the absolute value. This means the
spectrum that we have got is robust one.

Keywords: Quantum turbulence, Kelvin wave

1. Introduction

Superfluid 4He (helium II ) behaves like an irrotational ideal fluid, whose
characteristic phenomena can be explained well by the Landau two-fluid model.
In this model, the system is described as consisting of two inter-penetrating

A
quantized vortices can be formed in superfluid 4He as topological defects that
arise from the order parameter in Bose-Einstein condensates. Feynman intro-
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duced the concept of superfluid turbulence that consists of a disordered set of
quantized vortices, called a vortex tangle. Subsequently, numerous elegant ex-
periments and theories have established the basic properties of this quantum
turbulence (Donnelly 1991). It is also well known that mutual friction, which
is exerted on a vortex when it moves relative to the normal fluid, is responsible
for the decay of quantum turbulence. However, a recent experiment has shown
that the quantum turbulence in superfluid 4He decays even at mK temperatures
where the normal fluid is so negligible that the mutual friction does not work
(Davis, et al. 2000). The origin of this decay has remained a mystery. Motivated
by this experiment, we study numerically the behavior of a quantized vortex
line at a very low temperature.

2. Kelvin wave cascade and decay of quantum turbulence

Quantized vortices can support a transverse and circularly polarized wave
motion (a Kelvin wave), with the approximate dispersion relation

ω ≈ κk2

4π

[
log
(

1
ka

)
+ c

]
(1)

for a rectilinear vortex, where κ is the quantum of circulation, a is the vortex
core parameter, and c ≈ 1. Kelvin waves in uniformly rotating superfluid 4He
were first observed experimentally by Hall (1958), and a number of interesting
experimental and theoretical studies have been published subsequently; see, for
example, the sutudy of nonlinear effects, leading to soliton behavior (Hasimoto
1972) and to an associated side band instability (Samuels & Donnelly 1990).

At temperatures where there is a significant fraction of normal fluid, Kelvin
waves in superfluid 4He are damped by mutual friction. This study is con-
cerned with the expected behavior of Kelvin waves at very low temperatures,
when damping due to mutual friction can be neglected. Under these conditions
Kelvin waves can be damped only by radiation of phonons, but the damping
is expected to be extremely small unless the frequency is very large (Vinen
2001). Kelvin waves of lower frequency are essentially undamped. In these
circumstances Kelvin waves with low wave numbers can lose energy only by
nonlinear coupling to waves of different wave numbers.

We are led therefore to consider the following situation. In quantum tur-
bulence, it is known that the quantized vortices frequently undergo topology-
changing reconnections when two vortices in the vortex tangle become close
each other. These continual reconnections excite kinks on the vortices, which
consist of relatively low wave number Kelvin modes. Nonlinear effects give
rise to a transfer of energy to other modes, particularly at higher wave num-
bers. This process will presumably continue until modes are excited that have
a frequency sufficiently high for effective phonon radiation. As a result, the
quantum turbulence can decay without mutual friction. It was shown that non-
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linear coupling leads to a net flow of energy to higher wave numbers and that
there is a steady state, in which energy is injected at a low wave number and
dissipated at high wave numbers and there is some well-defined and simple
spectrum of Kelvin wave (Vinen et al. 2003). To identify the wave number
dependence of this spectrum more precisely, we improved the excitation and
dissipation method. In this method, the operations of both excitation and dis-
sipation are done in the Fourier space as contrasted with the previous method,
whose operations were done in the real space. The present purpose is to get
more precise wave number dependence with this new method and to compare
the result with our previous one, by means largely of computer simulations.

3. Numerical method

We consider a model system in which the helium is contained in the space
between two parallel sheets, separated by distance lB = 1cm, with a single,
initially rectilinear, vortex stretched perpendicularly between the two sheets.
Kelvin waves can be excited on this vortex. Periodic boundary conditions are
applied at each end. Thus the allowed wave numbers of the Kelvin wave are
given by

k =
2πn

lB
, (2)

where n is an integer (>0).
The dynamical simulations of the vortex are based on the vortex filament

model, being similar to those described by Schwartz and used in more recent
work by one of the authors (Schwarz 1985, Tsubota et al. 2000). The undis-
placed vortex lies along the z-axis. The numerical simulation is based on the full
Biot-Savart law and therefore both local and non-local contribution are taken
into account. Both excitation of Kelvin wave at a low wave number and dissi-
pation at the high wave numbers are operated in Fourier space. The concrete
procedure is the following. At every time period τ(s), the Fourier component
ζ̄k of the Kelvin wave is renewed to ζ̄k + Vex at k = kex, and to 0 at all wave
numbers larger than kdis. Then, the motion of the vortex is simulated using full
Biot-Savart law.

4. Results

Figure 1 shows the tempoal evolution of the line length after the applica-
tion of an operation with Vex = 7.81 × 10−4cm, kex = 10π(cm−1), kdis =
246π(cm−1), τ = 10(s). The almost flat line over 3.4 × 104 < t < 5 × 104

suggests the existence of a steady state. As we turned off only excitation (dis-
sipation is still effective) at t = 5× 104(s), the line length suddenly decreases.
This implies that the energy of Kelvin wave injected at a low wave number
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Figure 1. The development in time of the total length of the vortex line. The excitation is
turned off at t = 5 × 104(s).

escapes at high wave numbers, hence there is a net flow of energy to higher
wave numbers caused by nonlinear coupling of vortex dynamics.

We express our more detailed results in terms of the root mean square ampli-
tudes ζ̄k(t) = 〈ζ∗kζk〉1/2 of the Fourier components of the displacement of the
vortex. Figure 2 shows how these amplitudes develop in time. Initially only
the mode that resonates with the drive is excited. As time passes, nonlinear
interactions lead to the excitation of all other modes. Eventually the spectrum
reaches a steady state, shown by the solid line. For large values of k, the steady
state is observed to have, to a good approximation, a spectrum of the simple
form (Vinen et al. 2003)

ζ̄2
k ∝ k−3. (3)

Figure 3 shows the comparison of our new and old results. They are consis-
tent not only on the wave number dependence but also on the absolute value,
especially at large values of k. This result suggests that the simple spectrum
power-law (3) is concerned with the robust property of Kelvin wave cascade
in the steady state. However, some recent analytical and numerical studies
have reported slightly different power-law behavior (ζ̄2

k ∝ k−17/5 = k−3.4) in
quasi-steady state (Kozik et al. 2004). We are trying to identify much more
accurate power-law behavior to settle the controversy between ours and other
recent results.
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Figure 3. Steady-state values of ζ̄k for
two different methods of excitation and
damping. The dotted line is obtained by
real space method, whereas the solid line
by the wave number space method. The
long-dashed line has the form of Eq.(3).

5. Summary

We have reported the results of numerical simulations of the behavior of
Kelvin waves on a rectilinear quantized vortex of finite length in superfluid 4He
at a temperature so low that the waves suffer no attenuation arising from mutual
friction with the normal fluid, the only attenuation arising from phonon radiation
at a very high wave number. A low wave number wave is excited periodically.
The amplitude of the driven mode increases until nonlinear coupling leads to a
transfer of energy to all other modes. A steady state is established, described
by a simple spectrum, whose wave number dependence is written as ζ̄2

k ∝ k−3

same as our previous result.
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Abstract The flow phase diagram predicted by Volovik (2003) is discussed based on
available experimental data for He II and 3He-B superfluids. The effective
temperature-dependent but scale-independent Reynolds numberReeff = 1/q ≡
(1−α′)/α, where α and α′ are the mutual friction parameters, and the superfluid
Reynolds number characterizing the circulation of the superfluid component in
units of the circulation quantum are used as the dynamic parameters.

Keywords: Superfluid, helium, quantum turbulence, mutual friction

1. Introduction

The flow of quantum liquids such as He II or 3He-B can be described in the
framework of the two fluid model (see, e.g., Tough 1982), assuming the quantum
liquid as consisting of two interpenetrating fluids — the inviscid superfluid and
the viscous normal fluid. Circulation in the superfluid component is quantized in
units of κ (0.997×10−3 cm2/s for He II and 0.662×10−3 cm2/s for 3He-B); we
assume singly quantized vortices. We consider flows that can be approximated
as isothermal. Quantized vortices couple the normal fluid and the superfluid
velocity fields by mutual friction (Vinen 1957).

2. Hydrodynamic continuous approach to superfluid
turbulence

Following the approach of Volovik (2003, 2004), let us assume that the

∂v
∂t

+ ∇µ = v × ω + qω̂ × (ω × v), (1)
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quantized vortices in the flow are arranged in such a way that the coarse-grained
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obtained from the Euler equation after averaging over vortex lines (see Sonin
1987), provides a sufficiently accurate description of the superflow velocity
field v. It is written in the frame of reference of the normal fluid — such a
possibility arises for 3He-B, whose highly viscous normal component is effec-
tively clamped by the walls in a laboratory size container and possibly also
in He II at fairly low temperatures � 1 K and below (Donnelly & Barenghi
1998). Here q = α/(1 − α′), where α and α′ are the dimensionless mutual
friction parameters, µ denotes the chemical potential, ω = ∇×v is the coarse-
grained vorticity and ω̂ is a unit vector in the direction of ω. The analysis of the
fluid dynamical problem based on this equation has been performed in Volovik
(2003, 2004), and L’vov et al. (2004). As it was first emphasized in Finne
(2003), Eq. (1) has a very remarkable property which makes it distinct from the
ordinary Navier-Stokes equation where the relative importance of the inertial
and dissipative terms is given by the Reynolds number, which in turn depends
on the geometry of the particular flow under study. Here the role of the effective
Reynolds number is played by the parameter Reeff = q−1 = (1 − α′)/α that
depends on temperature via the dimensionless mutual friction parameters α and
α′, but not on geometry.

A wide range of q values is easily experimentally achievable; with q increas-
ing with temperature in both He II (Donnelly & Barenghi 1998) and 3He-B (
Bevan et al. 1997). Like the usual Navier-Stokes equation, Eq. (1) has both
laminar (q � 1) and turbulent (q � 1) solutions. It was claimed, however, that
the 3D energy spectrum is of usual (possibly logarithmically corrected) Kol-
mogorov form E(k) ∼= ε2/3k−5/3 (Volovik 2003, 2004). Vinen (2004) recently
developed a different approach, based on physical arguments concerning the
turnover and decay times of eddies of various sizes, confirmed by numerical
solutions of a second-order diffusion equation that describes flow of turbu-
lent energy in k-space. Owing to the action of mutual friction, there is strong
damping of large eddies, with the result that at low wave numbers the energy
spectrum falls much more rapidly (approaching k−3) than the Kolmogorov
spectrum. However, the damping remains weak for small eddies, so that the
Kolmogorov spectrum is recovered for large k, beyond a certain critical wave
number. Vinen also correctly points out that this feature is inherently contained
in Eq. (1). The most recent theoretical discussion of this issue by L’vov et
al. (2004), based on the analytical solution of the first-order k-space diffusion
equation, confirms the crucial role of mutual friction force on a large scale.
Although this interesting problem of superfluid turbulence in the presence of a
stationary normal fluid is most likely not yet fully settled, we believe that the
main features of such a turbulent superflow have been firmly established.
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3. Continuous versus quantum description of superfluid
turbulence

The continuous approach for considering superfluid turbulence based on
Eq. (1) would be fully applicable in the limit κ → 0. As pointed out in Volovik
(2003, 2004), at finite κ one has to ensure that at all scales, including the smallest
scale r0, the "granularity" due to individual vortices does not become important,
so that the circulation vr0r0 � κ.

In order to apply an analysis based on Eq. (1) to superflow, we must bear
in mind that this coarse-grained equation sufficiently accurately describes the
superfluid velocity field on the scale over which the averaging is done. This
approach cannot therefore include initial conditions similar to those commonly
believed to apply in counterflow turbulence in He II if only a single scale is
assumed. Such a distribution of vortices is described by the phenomenological
Vinen equation (Vinen 1957). It is well known and in agreement with local
induction approximation simulations (Schwarz 1988) that there is a critical
self-sustaining counterflow velocity, above which the turbulence is in dynamical
equilibrium and, at least approximately, homogeneous.

Now let us increase the counterflow velocity Ucf , assuming that the normal
fluid velocity profile remains flat, and continue the discussion in the refer-
ence frame where the normal fluid is at rest. It is an established experimental
fact that another transition from turbulent state I to turbulent state II occurs,
with distinctly different features, in accord with Tough’s classification scheme
(Tough 1982). It has been a long lasting challenge to explain the nature of this
transition. We believe that the answer might be hidden in Volovik’s analysis.
He suggests the existence of the flow phase diagram (Volovik 2003, 2004, see
also L’vov et al. (2004), where this result is confirmed) that contains a crossover
between what he calls the Kolmogorov and Vinen states of superfluid turbulence
when Resq

2 � 1.

4. Experimental data supporting the existence of the flow
phase diagram

There are many experimental data that can be used in order to probe the
existence of the phase diagram suggested by Volovik as we show in Fig. 1.
The recent experiment of Finne et al. (2003) provides evidence for a velocity
independent transition from a laminar to a turbulent flow regime in rotating
3He-B, where values of q of order unity are experimentally easily accessible.

In He II these large values of q occur very close to the lambda point, where,
to our knowledge, no reliable measurements exist that can be considered in the
frame of reference of the normal fluid. On the other hand, there is ample exper-
imental data on counterflow He II turbulence at lower temperatures. However,
the data on the transition into superfluid state I (Vinen state) in tubes and capil-
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Figure 1. The observed flow phase diagram of He II and 3He -B superfluids in the unique
frame of reference where the normal fluid is at rest. The abscissa, q, represents the inverse of
the Reynolds number for superflow (for convenience the corresponding temperature in He II is
indicated on the upper axis), while the ordinate, Res, represents the strength of circulation at the
outer scale of the flow in units of κ. The two big connected filled points mark approximately
the region where the velocity-independent onset of superfluid turbulence has been observed by
various methods of vortex loop injection into rotating 3He-B in the vortex-free Landau state (for
∆T ≈ 0.05 Tc around 0.6 T/Tc at 29 bar, see Fig. 3 in Finne et al. 2003). The small filled
circles represent the onset of turbulent state I in pure superflow of He II when the motion of the
normal fluid was inhibited by superleaks (Baehr et al. 1983); the crosses (Ladner et al. 1976),
open squares (Martin & Tough 1983) and open circles (Chase 1962) mark the transition from
state I into state II for counterflowing He II.

laries of various sizes cannot be reliably used here, as it is believed that below
this threshold the viscous normal fluid possesses a velocity profile similar to
ordinary viscous flow in a pipe. A unique frame of reference is not, therefore,
provided by the normal fluid. However, Baehr et al. (1983) studied the tran-
sition from dissipationless superflow to homogeneous superfluid turbulence,
when both ends of the pipe were blocked by superleaks and the normal fluid
inside the pipe thus remains stationary (at least on average), thereby providing
this unique frame of reference. These data, spanning the temperature range
1.3 K < T < 1.9 K, mark the transition from laminar flow into the Vinen state
(state I) shown in Fig. 1.
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That the existence of the normal fluid reference frame is important can be
demonstrated using a different set of data of Baehr and Tough (1984) obtained
for flows where at a fixed temperature the normal and superfluid velocities can
be varied independently. If the normal fluid flow profile were flat, one would
expect that the critical counterflow velocity for transition into turbulent state
I, simply as a consequence of the Galilean invariance, stays unchanged. This
does not happen, as the observed critical counterflow velocity increases with
the imposed averaged normal fluid velocity, supposedly due to the fact that its
flow profile is not flat.

Various counterflow experiments clearly display the transition from state I
(Vinen) into state II (Kolmogorov) — the signature is pronounced on temper-
ature and pressure difference versus heat input dependencies. We use here the
data of Tough’s group (Ladner et al. 1976 – Table I, and Martin & Tough
1983), assuming that in state I the normal fluid profile is flat, again providing
the unique frame of reference with the normal fluid at rest. Let us point out that
this transition into a different flow regime is accompanied with a pronounced
increase of fluctuations (Lorenson et al. 1985), characteristic of phase transi-
tions. The data of Ladner et al. (1976) also clearly show that on increasing
the temperature the difference in counterflow velocity between state I and II
transitions decreases until around 2 K they become indistinguishable.

The crossover to superfluid turbulence state II has been observed in channels
of circular and square crossection, but not in narrow channels of high aspect ratio
rectangular crossection (Henberger & Tough 1981). Naturally, the transition
cannot take place if the size of the sample intervenes. If some dimension of the
channel is too small, its physical size limits the size of eddies.

As another set of experimental data marking the state I-state II transition we
have used the thermal conduction measurements of He II in tubes of various
diameters of Chase (1962). We have scanned the available experimental data
and found that they collapse onto a single curve if Reynolds number scaling is
applied. The open circles in Fig. 1 correspond to the onset of state II.

We emphasize that the procedure used to acquire the data points shown in the
flow diagram is probably not very accurate for several reasons, such as different
temperature scales or uncertainty in values of q, and more work is needed to map
it out accurately. We believe, however, that the essential physics is displayed
clearly and that Fig. 1 supports the ideas underlying the physical problem of
superfluid turbulence.
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