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Foreword

Interference phenomena led to the discovery of the wave nature of acoustic signals, of light
and finally of material particles. Herbert Uberall has gone the other way: he has studied the
manifold phenomena, caused by interference, in the scattering of acoustic and electromagnetic
waves by bodies of different shapes and material properties.

He came to this field from fundamental physics: The bremsstrahlung emitted by electrons
of GeV energy when going through a single crystal nearly parallel to a crystal axis is concen-
trated at relatively low frequency. He calculated its spectrum and intensity and showed that
it is highly polarized. This work led to a general understanding of channeling radiation in
crystals, a field in which he is very active.

Uberall’s work in acoustic and electromagnetic scattering has evoked much interest, in the
U.S. as well as abroad, because of its possible practical applications, as well as the theoretical
understanding. Many collaborators have been inspired by it, and have now contributed to
this volume.

This volume appears at the retirement of Uberall from the unjversity. But he is right in
the midst of his productive work, and will undoubtedly make many further contributions to

his chosen field.

The book is an excellent contribution to the literature of Acoustics and Wave Propagation.
Professor Guran is to be congratulated for organizing and editing this volume.

Hans A. Bethe
Cornell University
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Preface

The present Part III of the set of volumes Acoustic Interactions with Submerged Elastic
Structures commences with a set of three chapters dealing with sound propagation in oceanic
or layered environments. This set continues a corresponding group of chapters in Part II
of this series that deal with ocean sound propagation models (Alexandra Tolstoy, Paul C.
Etter) or reflections from the ocean floor (Rafael Carbé-Fité). The first chapter of Part III,
authored by Stewart A. L. Glegg and Joseph M. Riley, presents a comprehensive overview
of underwater sound propagation in three dimensions over a sloping ocean bottom. The
present status of this field is reviewed here, and is followed by describing the model exper-
iments done by the authors at Florida Atlantic University in a tank with sound-penetrable
bottom, also presenting their own analytic work on this topic as well as other important
theories (notably that of M. J. Buckingham). Field experiments are discussed or mentioned
in addition, in particular the famous horizontal-refraction experiment by Doolittle, Tolstoy
and Buckingham. The chapter represents an exhaustive review of all important propagation
information in an oceanic wedge that has been accumulated to-date.

The following Chapter 2, by Juan 1. Arvelo, Yianren Yuan, Herbert Uberall and Khalid
Chouffani, deals with the model description of some of the preceding author Glegg’s tank
propagation experiments involving an elastic bottom, both horizontal and downslope. Three
propagation models are used for interpreting Glegg’s data that differ in their mathemati-
cal algorithms: a fast-field model (SAFARI), a normal-mode model (KRAKENC), and a
parabolic-equation model (FEPES). The degree to which their predictions agree with the
data allows conclusions on the models’ applicability to the various cases.

The third sound propagation study, i.e. Chapter 3 by Pier Paolo Delsanto, E. Ruffino
and D. lordache, deals with the propagation of sound pulses in layered media, including
oblique incidence on these. This problem is treated here in a novel way, namely by the
use of a massive parallel computer (the “connection machine” located at the Naval Research
Laboratory) which permits large computational economy for these otherwise too cumbersome
transient problems. An illuminating visualization of the propagation of sound pulses is made
possible by this method.

The subsequent Chapter 4, by Paul J. T. Filippi and Daniel Mazzoni of the well-known
Laboratory of Mechanics and Acoustics (CNRS/LMA) at Marseille, France, treats the prob-
lem of fluid flow past a plate or a cavity that leads to the generation of an acoustic response.
A turbulent boundary layer is described by models of Corcos or Chase and the sound gen-
eration is obtained by modal or boundary element methods. Power spectra and directivities
of the generated radiation are obtained, indicating resonant modes.

Chapter 5 is authored by a large group of researchers at the famous acoustics laboratory
LAUE, of the University of Le Havre, France: led by Francine Luppé, these are Jean-Marc
Conoir, M. Ech Cherif el Kettani, Olivier Lenoir, Jean-Louis Izbicki and Jean Duclos; and
in addition Bernard Poirée of the Direction des Recherches, Etudes, et Techniques (DRET),
well-known as the editor of the standard French work on acoustic scattering “La Diffusion
Acoustique” (CEDOCAR Paris, 1987), who is also one of the pioneers of the subject of
this chapter: evanescent and inhomogeneous waves. This chapter represents a sequel to
the three related chapters in Part I, by Oswald Leroy, Marc Deschamps, Martine Rousseau
and Philippe Gatignol dealing with inhomogeneous waves, but the current chapter also
includes the topic of interface waves. Very general and detailed descriptions of evanescent
and interface waves are presented here.

ix



x Preface

Proceeding now to the subject of acoustic scattering, of which various aspects have been
treated in the previous parts of this book series, two novel approaches are described in
the following two chapters, namely the wavelet approach, and time-frequency analysis. In
Chapter 6, William Tobocman of the Case Western Reserve University in Cleveland, Ohio,
uses wavelet analysis for solving acoustic inverse scattering problems. Integral equations
characterizing the target can be shown to be solved in a very economic fashion by “wavelet
compression”. Examples of noisy square pulses are analyzed, and are reproduced by Fourier
and wavelet analysis. In Chapter 7, acoustic scattering of pulses is analyzed with a time-
frequency approach by Manell Zakharia and Frangois Magand of CPE, Lyon, France, and
Jean-Pierre Sessarego and Jean Sageloli of the CNRS/LMA Marseille. This powerful math-
ematical approach furnishes the so-called Wigner—Ville diagrams that can be used for an
analysis of various types of surface waves on elastic target objects that are generated in the
scattering process.

The following Chapter 8, by Harald Peine and Dieter Guicking of the Third Physics
Institute at the University of Gottingen, Germany (an institute with an outstanding history
of acoustics research), continues the subject of acoustic scattering by submerged elastic
targets, in particular using the acoustic resonance scattering theory (RST) of Professor
Uberall and collaborators that has been amply elaborated on in the earlier parts of this book
series. The present study applies their theory to the case of targets that exhibit overlapping
resonances, and it utilizes the Wigner-Eisenbud R-matrix theory (which was also dealt with
earlier by Prof. Uberall) in order to describe the overlapping-resonance situation in a suitable
fashion.

The scattering resonances also form the topic of the following Chapter 9, by Pier Paolo
Delsanto, Ardéshir Guran, Anton Nagl and Herbert Uberall. Here, they are employed for
a possible solution of the inverse scattering problem, the determination of target properties
from the acoustic echoes. Various examples are considered to illustrate this approach to
target recognition: determination of acoustic absorptivity of layers, of the content of cavities,
of the layers of a seafloor, and notably the concept of “acoustic resonance spectroscopy” as
illustrated by the dependence of the resonance pattern on target shape.

The scattering theory forms the topic of the following Chapter 10, by Michael Werby
of the NRL Stennis Space Center in Mississippi (presently Catholic University of America,
Washington, DC), and Natalia Sidorovskaia of the University of New Orleans. The chapter
presents an overview of present-day acoustic scattering theory and applications and includes
many numerical implementation with applications, such as elastic shells and their resonances.

A different subject is approached in the Chapter 11, by Alain Gérard, of the Laboratory
of Physical Mechanics at the University Bordeaux I, France: the application of ultrasonic
analysis to a study and assessment of damage (cracks) in ceramic composites. This important
technical problem is shown here to be well soluble by appropriate ultrasonic evaluation.

In the last Chapter 12 on Some Aspects of Nonlinear Wave Propagation Professor Jeffrey
provides a tutorial style introduction to many of the key ideas and techniques for nonlinear
wave propagation problems that have proven useful over the past 30 years. Starting with
a discussion of linear wave propagation, Jeffrey introduces important concepts such as dis-
persion, phase velocity and group velocity. Then, the effect of the nonlinearity is described
by focusing on characteristics for scalar hyperbolic equations. This leads to a more general
discussion of conservation laws, quasilinear systems and their associated Riemann invari-
ants. Relaxing the requirement that the wave profiles be differentiable, shock wave solutions
to hyperbolic equations are discussed along with the generalized Rankine-Hugoniot jump



Preface xi

condition and the entropy conditions. To finish the discussion of hyperbolic waves, Glimm’s
random choice method is described.

The second half of the chapter moves to a discussion of nonlinear diffusive and disper-
sive wave techniques, starting with a section on the canonical Burgers equation and its exact
solution via the Hopf-Cole transformation. Some special traveling wave solutions such as
the Burgers shock are described. Dispersive waves are introduced with a discussion of the
KdV equation and its associated soliton solutions. The reductive perturbation approach to
analysing the asymptotic nature of a general dispersive wavetrain is then described, focusing
on how several of the standard evolution equations arise. A description of Backlund trans-
formation techniques which have proven useful for deriving special solutions to a wide range
of nonlinear models is included. The chapter finishes with a derivation of a special class of
traveling wave solutions to the mKdV equation.

In conclusion, it can be said that the presentation and discussion of the variety of acoustic
subjects that are contained in Part III of the present book series, all of current interest and
including such advanced methods as wavelets and time-frequency analysis, will prove highly
useful to researchers in the field both for bringing them up to date on the present status of
various aspects of acoustic scattering and propagation, as well as stimulating and guiding
them in their own research work.

Ardéshir Guran Dieter Guicking Adrianus De Hoop Francesco Mainardi
Ottawa, Canada Gottingen, Germany Delft, The Netherlands Bologna, Italy
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THREE DIMENSIONAL UNDERWATER SOUND PROPAGATION OVER
SLOPING BOTTOMS

STEWART A.L.GLEGG AND JM.RILEY
Center for Acoustics and Vibration
Florida Atlantic University
Boca Raton, FL 33431,USA

ABSTRACT

This article reviews the work which has been carried out over the past few years on three
dimensional underwater sound propagation over sloping bottoms. When sound propagates
across a slope three dimensional effects can cause shadow zones and mode cut off effects
to occur, which could not be predicted by a two dimensional model. For many years the
theory for this type of propagation over realistic ocean floors, which can support both
compressional and shear waves, eluded workers in this field. Recently the complete
solution for the acoustic field in a "wedge domain with penetrable boundaries” has been
developed, and this has allowed for complete understanding of three dimensional bottom
interacting sound propagation. These theories have been verified by a series of laboratory
scale experiments and excellent agreement has been obtained. However only one full scale
ocean experiment has been carried out on three dimensional, bottom interacting, acoustic
propagation. This showed significant horizontal refraction of sound propagating across a
continental slope and further verifies the importance of bottom slopes on underwater
sound propagation.

1. Introduction

Sound propagation in shallow water is strongly affected by it's interaction with the
sea floor. The surface and the bottom form a sound channel in which the sound waves are
trapped, and will propagate almost without loss unless they are absorbed by their
interaction with the bottom. Typically the sea floor is characterized as a solid which can
support shear waves and it is the conversion of acoustic energy in the water column into the
shear and compressional waves in the sea floor which is the dominant mechanism of
propagation loss for long range sound propagation. Shallow water regions on the
continental shelf are usually associated with large areas of almost constant depth.
Consequently shallow water sound propagation studies have assumed a uniformly flat and
range independent environments, or, more recently, two dimensional range dependent
environments in which the acoustic waves are assumed to propagate along straight paths
without refraction in the horizontal plane. However in regions close to beaches and on the
edges of the continental shelves the bottom can have slopes which are typically 2° but can
be as large as 20° in some areas. These slopes and other range dependent features can cause
the sound rays to bend in the horizontal direction as they propagate away from the source
and this effect is called horizontal refraction. In this chapter we will consider this problem
and review the progress which has been made over the last few years to improve the
understanding of three dimensional bottom interacting underwater sound propagation,
especially when the sea floor has many different layers and can support shear waves.

The effect which causes horizontal refraction over sloping bottoms is illustrated in
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Figure 1: Rays propagating upslope in a perfect wedge showing ray tum around.

figure 1, which shows a sound ray which initially propagates upslope (figure 1) over a
perfectly reflecting sloping bottom. On each bottomn reflection the angle of the ray to the
horizontal is increased until eventually its angle to the bottom causes it to be reflected in the
downslope direction. After turn around the ray becomes increasingly horizontal on each
bottom bounce as it propagates back towards deep water. This illustration only considers
propagation which is directly upslope, but the same effect will also occur if the ray is
traveling in the across slope direction. To illustrate this figure 2 shows the bending of the
ray paths in the horizontal as they propagate away from the source. Notice how the rays
which have a initial launch direction towards the shore line are bent so they eventually
propagate away from the shore line.
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Figure 2: Ray paths showing horizontal refraction in an ideal wedge.
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This has two effects: first no sound reaches the shallow water close to the shore and
secondly a shadow region is created across slope from the source. This is dramatically
different from the situation where the bottom is flat, and the rays propagate away from the
source with little or no variation from straight line paths in the horizontal.

When the bottom is not perfectly reflecting then ray turn around does not always
occur. The propagating ray in the upslope direction will be transmitted into the bottom if the
grazing angle exceeds the critical angle for total internal reflection, as illustrated in figure 3.
When the grazing angle is less than the critical angle (as shown for the first bottom
reflection in figure 3) the ray is bounced back towards the surface. However because the
direction of propagation has been increased relative to the horizontal, the grazing angle for
the next bottom bounce exceeds the critical angle so the ray penetrates the bottom and is
partially absorbed. There will be some reflected sound but this is absorbed on the next
bounce, and the net result is that little energy propagates back down slope. This effect only
occurs when the sea floor can support compressional waves which propagate at a speed
which exceeds the speed of sound in the water.

AR

Figure 3: Rays propagating upslope in a penetrable wedge When the critical grazing angle is exceeded the
ray penetrates the bottom.

When rays are propagating slightly across slope the steepening of the ray only
applies to the component of the propagation vector which points upslope. Consequently the
grazing angle of the ray to the sloping bottom will include a component associated with the
horizontal propagation and a component associated with the upslope propagation. The
geometry becomes quite complex, but as we will show later, ray turn around can occur
without the critical angle being exceeded. This leads to the specification of three regions as
shown in figure 4: an inner region where the rays propagating upslope eventually exceed
the critical angle to the bottom and are not turned around, an outer region where ray tumn
around occurs, and a shadow region where there is no sound propagation.

Underwater sound transmission over sloping bottoms has traditionally been
described by idealized wedge structures as illustrated in figures 1 and 3. The upper surface
of the wedge is a pressure release surface representing the sea surface, and the lower
surface represents the sea floor. The understanding of acoustic propagation in this
environment was lead by a number of theoretical and experimental studies on "ideal”
wedges which have perfectly reflecting bottoms, and we will review these results in the
next section. The more complex problem of sound propagation over a sloping penetrable
bottom has only been solved relatively recently and this will be discussed in section 3. In
section 4 experimental verification of these theories will be described. Finally, in section 5,

experimental measurements of across slope and downslope propagation in the ocean will be
reviewed.
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Figure 4: Ray paths showing horizontal refraction in a penetrable wedge. The cut off range is determined by
the point where the rays penetrate thebottom.

The focus of this paper is on the three dimensional effects which occur for across
slope propagation. A great deal of work has been done on downslope propagation,
assuming a two dimensional model. However relatively little work has been done on three
dimensional effects, and so this will be the focus of this review.

2. The Ideal Wedge

The first theoretical description of the three dxmensxonal field in a wedge with rigid
boundaries can be found in an article by Biot and Tolstoy' where they discuss both a modat
solution and a solution based on the method of images. When the wedge subtends an angle
which is an exact sub multiple of 180°, the field can be described by an number of image
sources as shown in figure 5. This approach will be discussed in detail below, but we note
here that the complete three dimensional field in the wedge and all the boundary conditions
can be satisfied by summing together the contribution from each image source. The
physical interpretation of this is that each image source represents one of the rays which
reaches the source after multiple bottom bounces (or equivalently an eigenray). The number
of surface or bottom reflections which each ray undergoes is determined by the number of
image surfaces crossed by the path from the image source to the observer.

The work of Biot and Tolstoy' however did not show the important shadow zone
regions 1n the three dimensional field in the wedge. This was discussed by Weston? and
Harrison® who used the method of ray invariants to show that bathymetric refraction could
cause shadow zones in the horizontal plane. A complete understanding of these effects was
given by Buckingham® who developed a modal solution of the field in a wedge with
pressure release boundaries and specified the edges of the shadow zones.
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Figure 5: The location of the image sources for an ideal wedge with pressure release boundary conditions.

To obtain the solution for the field in a wedge a cylindrical coordinate system
(r,6,2) is used as shown in figure 6. The z axis is parallel to the apex of the wedge, and
the angle of the wedge is 8p which for the purpose of this illustration must be an exact

submultiple of & such that 8p =m/J. The angular coordinate 0 is measured from the surface
and is positive in the downwards direction. The acoustic field generated by a point source

located at the point (r’,0’,0) must satisfy the pressure release boundary conditions on the
upper and lower surfaces of the wedge. To ensure that this boundary condition is satisfied
on the upper surface for the wave field propagating directly from the source, an image
source can be introduced as shown in figure 5 at the location A" with an amplitude which is
equal and opposite to the source at S. To satisfy the boundary condition on the lower
surface an image source is introduced at B” to cancel the waves incident on the surface from
the source. Note how all the sources lie at the same distance from the wedge apex.
However the image sources A" and B do not satisfy the boundary condition on the lower
surface for the field generated by the source at A" and so another image source must be
introduced at C* whose amplitude is equal and opposite to that of A" or equivalently equal to
the amplitude of S. This procedure must be repeated for the upper surface introducing the
sources at E" and D* and so on until a complete circle of image sources is created as shown
in figure 5, with the superscript * indicating whether the image sources are in or out of
phase with the actual source. The locations of each of the image sources are given by

S=(".6,00 A =(,-0,00 B =('20,-6,0)
Ct=('20,+6,00) D" =(',-26,+6,0) E =('~20,-8,0)

The angle of each source can be represented by the two sequences

ey
8" =2j6,+6 8" =2j6,-6 I <j<Jt
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Receiver

Figure 6: The arragement for the source and receiver in a wedge domain

where for odd values of J the limits are set by J*=#J-1)/2 and for even values of J the

limits are J'=J/2 and J*=J/2-1. The angles 6* give the locations of the positive or negative
sources respectively. The acoustic field is then given by the superposition of all the image
sources and the velocity potential of the acoustic field for a source with volume velocity

Qe can be represented by the summation
03]
I R kR

—i [4
=0 Y - —
j=J" 47[RJ 47tRj

R.E = [r2 +r2 -2 cos(GjJ—r -9+ 22

; ]1/2

This is a finite sum and is a relatively simple expression to evaluate, giving the complete
three dimensional field in a wedge shaped domain with pressure release boundaries. A
particular case of interest is when the volume velocity of the source is not harmonic as
given above but rather a broadband pulse with a time history given by g(t). Then the
acoustic field is given by

3

’e 12 qt=R;* /) qU=R;" /o)
j=J~ 47tRj+ 47[RJ_

where ¢ is the speed of sound. This shows that the time history for a point source in a
wedge will consist of a finite number of pulses which correspond to the number of image
sources required to match all the boundary conditions. The acoustic signature will extend
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over a time interval which is determined by the propagation distance from the nearest and
most distant source. In the downslope direction this is given by 2r'/c , which may a
significant period. In the across slope direction the path length differences are much smaller
and so the acoustic signature will be much more compressed.

The method of images result given above does not show the modal nature of the
sound field, but this follows from some 51mple transformations. The Greens function
which is the solution to the Helmholtz equation can be written in cylindrical co-ordinates
using the expansion (Morse & Ingard®)

@

eikR

s z~——cos(m(9 9))]1 () )310'2'%

mO

where o=V(¥’-y?) and Im(c)>0. Substituting this into Eq. (1) we see that the summation
over j is of the form

%)
J* J-1
Zcos(m(Z j6,£6-0)) =Y cos(m(2nj/J +6; £ 6 -6)) 8y =217 /7
j=J" j=0

This summation is only non-zero when m is an integer multiple of J, and the resulting sum
is simply Jeos(mJ(#6 -6)). Then by using the trigonometric identity

cos(mJ (6" —0)) — cos(mJ (6 +6)) = 2sin(mJ B)sin(mJ6')

Eq. (1) may be re-written as

(6)
p=0e7 Y %sin(m]@) sin(mJ @ Yy (r,7",2)

m=0
where

@)
Ly (r,r’,z) = iJ]m](ur)]W(#r' )eiclzlﬂ
c
0

The amplitude of each mode is given by the function /5,7, which is a function of position
(r,r',z) and frequency. Eq.(6) shows that the image source solution is identical to a modal
type solution with the “wedge modes” given by sin(mJ8)=sin(mn6/6,). These modes form
an infinite set which satisfy the boundary conditions on th® upper and lower surfaces of the
wedge given by 6=0and 6=0,. The modal amplitudes are given by the integral in Eq. (7),
and Buckingham® shows how this integral may be reduced to a form which is easier to

evaluate using approximate methods. In this approach the product of the Bessel functions is
expanded as
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Figure 7: Transmission loss in the across slope direction. Source range is 40 cm and located at 1/2 of the
depth of the water column. Receiver range is 60 cm and receiver depth is 1/2 of the depth of the water
column. Wedge angle is 15° .

ki1
Ty (U g (') = % f Jo(y\/rz +r2oam cos(a))cos(m]a)da
0

The integral in Eq. (7) is then of the form

i el .

Lyrrz)= ljcos(m]a)j JO(,U\/I‘Z oo cos(a))e’a'z'ﬂdﬁda

b o
0 0

The inner integral may be evaluated exactly (Watson 5 giving the mode amplitude as

(®)
Iy(rr2) = 1 ]r(eimla~ikRoB + e—im/a—ikR,ﬂ)gg
’ 27R, 3 ]
R, = (r2 +r'2+z2)”2
B =(1-2acosa)l’? a=rr/R,

As with any other waveguide, there will be regions where modes propagate energy
and regions where the amplitude decays rapidly. For each mode, an interference pattern
exists which is described by the function /,,,7 (r,",z). This gives standing-wave patterns in
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both the up/down-slope directions and the across-slope directions. For example, figure 7
illustrates the interference pattern in the across stope direction. The vertical axis is negative
Transmission Loss (in dB) which is obtained from the modulus of Eq.(8) computed nsing
the method of stationary phase (Doolittle et al.”, Wang and Pace®). In this example the
source and receiver are placed at mid water depth and so even order modes are not excited.
The amplitude of mode 3J is shown and this is seen to cut off at a relatively short across
slope range. The outer part of the curve is therefore dominated by the lowest order mode.
The function I,y defined in Eq. (8) is given by a harmonic integral. In general, mJ
is large and so the integrand will oscillate rapidly as a function of the variable of

integration. The integral will then be zero unless exp(-ikRoftimJ ) has a stationary phase
point when ¢ lies in the interval O<a<m. The stationary phase point is given by the value
of ¢ for which

3 &)
—(*tmJa - kR =0
Ba( o= kR, )
The derivative of kR, is given by
ap asina
—— = kR
xm 0 B
300
250 rir'=1 y
S
B 200 ]
-Eg rir'=3
£ 150 =
rir'=5
100 4
50 =
0 . N " s "
0 10 20 30 40 50 60

Across Slope Range z/r’

Figure 8 : Propagating mode orders as a function of across slope range for a frequency kr'=300 and a wedge
angle of 5°.
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and has a maximum value of

’ 442172
kRo[—aﬁ] IR, 1-(1-4a*)
30t {ax 2

and a minimum value of zero in the range of integration. So, for Eq. (9) to have a solution
the frequency given by Eq. (10) must be greater than mJ. Therefore for a mode to have a
significant amplitude we require n.J <M where

1-(1~4a*)l/2
M =int kR,,J—(——zi—

Here, int[ ] is the integer part of the value in parentheses. Eq. (11) can be used to define a
three dimensional region of the wedge where modes can propagate. For example, figure 8
shows the propagating mode order as function of across slope range for different source
and receiver locatons at a non-dimensional frequency of kr'=300 for a wedge with an
angle of 5°. In this case J=36 and figure 8§ shows how the mode order jumps in multiples
of J. As the across slope range is increased the higher order modes are cut off until the
shadow region is reached where even the lowest order mode does not propagate. Notice
how the lowest order mode is always the last to be cut off and the outer region of the
acoustic field only has one mode which can propagate.

10

(11)

40
4
3 - Mode 2 cut on .
= frequency
2 30+ Mode 1 cut on A
é’ | frequency |
e 201
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Figure 9: Spectrum of transmission loss at a point showing mode interference effects. Source range is 40
cm and located at 1/3rd of the depth of the water column. Receiver range is 60 cm and across slope range is
20 cm. Wedge angle is 15° and receiver depth is 1/3rd of the depth of the water column,
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Figure 10 : Cut on frequencies for each mode for a source and receiver 500 m from the shore line over a 2°
slope as a function of across slope range.

It should be realized that the acoustic field is frequency dependent and that as the
frequency is lowered the cutoff range is reduced. This is illustrated in figure 9, which
shows a typical spectrum at a point in the wedge. At frequencies below the cut-on
frequency for mode 1, the spectrum level decreases abruptly, and above this frequency
interference dips occur. Also note the change in shape which occurs due to the cut-on of
the second-order mode. The cut-on frequencies are clearly important and can be obtained

by rewriting Eq.(11) to give the mJth mode cut-on frequency as

fm= o
R,0,\211 - (1 - 4a%)/2

Figure 10 shows how the cut-on frequencies change with respect to the horizontal range z
parallel to the apex. This result is significant because it demonstrates how the cut-on
frequency increases with across slope range. This means that the insonified region of any
frequency is always smaller than that of a higher frequency. It also shows how the effect is
largest for the higher order modes. Consequently even well away from the shadow region
boundary, which is determined by the lowest order mode, three dimensional effects are
important because the higher order modes are cut off.

3. The Penetrable Wedge

For many years the solution for sound propagation in a wedge with arbitrary
bound conditions eluded workers in this field. However a series of papers by
Deane™*!'and Westwood'**'* have provided complete solution to this problem. When
the lower surface of the wedge can absorb sound the modal solution is not appropriate
because the modes become range dependent, and this causes a number of theoretical
difficulties(Buckingham'®). The method used by Deane and Westwood is based on the
method of images, and does not rely on a modal expansion of the sound field for its
solution. Consequently it does not suffer from the same problems as the "wedge modes"
when bottom absorption is introduced.
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To properly account for the bottom reflection in the method of images we must
consider a source next to an infinite reflecting plane. The reflection of sound from the plane
can be described by the Rayleigh reflection coefficient which correctly matches the
boundary conditions for a plane wave incident on the surface. To obtain the total field from
a point source which lies a distance d away from a plane surface (figure 11), the spherical
wave from the source is expanded into a set of plane waves using the integral relationship

oo oo tk(x X,)

— 2 2 2
47tR a2 IJ . dkadk ky =Ak* —ki —ki Im(ky)>0

where k=(k_k k) is the wavenumber vector of each plane wave component in the
expansion and the source is located at X,. This shows that the field emitted by the source
can be represented by plane waves travehng in the direction of the wave vector k. The
plane waves can then be considered as reflected from the surface with the angle of
incidence equal to the angle of reflection as illustrated in figure 11. The reflected field is
then equivalent to the field from an image source which lies at x,=x -2dn where n is the
normal to the surface and the angle of incidence to the surface is given by

(12

@ =cos l(k.n/k)
The reflected field from the source is constructed by multiplying the field from the image

source by the reflection coefficient of the surface giving
13)

o oo ik.(x~X,)
iQ V(g™
== p dk  dk,

o0 —00 y

where V(@) is the plane wave reflection coefficient. Summing the direct field and the
reflected field gives

Source

N Image Source

Figure 11 : The reflection of sound from a plane and the location of the image source
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(14)
oo oo k.(x—x,) ik.(x~x;)
_iQ e o)+ V(p)e !
4=—7 [ p dk , dk,
_—0 —OO y

It is a trivial matter to show that this equation satisfies the boundary conditions at the
interface and also gives a solution to the Helmholtz equation in the region above the
interface.

If we consider a fluid/fluid interface then the reflection coefficient will be given by

(15)

_ P cos(p) — pc cos(¢y)

\%
2 p1cq cos(@) + pccos(@y)

cos(@y) =

where p and p, are the densities and ¢ and c, are the speeds of sound above and below the
interface respectively. However the reflection coefficient given by (15) is a relatively simple
form which does not allow for shear waves in the bottom or multiple layers below the
surface. To extend the analysis to the more general case we introduce an interface

impedance defined as Z=iwp¢/pc(Jd@/dn) where the top line represents the pressure on the
interface and the bottom line the particle velocity normal to the surface multiplied by a

normalizing factor pc so that Z is non-dimensional. The reflection coefficient then takes the
form

(16)
k,Z -k
Vip)=-2
@) k,Z +k
where k,=k.n. For the case of the fluid/solid interface Z is given by
17

where
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The total field can therefore be determined by the evaluation of the integral in Eq.(14) for
any type of bottom, and providing the correct form of the impedance is introduced, the
effect of shear waves in the region below the boundary will automatically be included.
However we must be careful when evaluating this integral because Z may be a complicated
function, and even for the simplest cases of interest will include multiple valued functions
as shown by Eq. (15).

Image
Sources

§s=2 Y

Figure 12: The location of the image sources for an penetrable wedge.

To allow for absorbing planes in the image source theory we must re-consider the
definition of the field from the image source distribution shown in figure 5. To account for
the reflection we re-draw the images as shown in figure 12 where the surfaces s=1,2,3
represent the interfaces which image the bottom boundary. In this new arrangement the
source at A’ remains the same since it gives the field from the first surface reflection. The
sources B” and D" represent the first bottom reflection and it's image from the ocean surface
(i.e. the path which propagates from the source to the bottom, is reflected and then bounces
off the surface before reaching the observer). Consequently the field from these sources
need to be corrected for the bottom reflection. The sources C* (which represents the path
via the surface and then the bottom) and E (surface/bottom/surface) both have additional
surface reflections while the sources F  (bottom/surface/bottom) and H*
(bottom/surface/bottom/surface) both have two bottom reflections. The sum of the
contributions from each source given by Eq. (2) must then be modified to include the
bottom reflection using Eq. (12) and this gives

(18)
J 1l

. , 00 o ikt 1/l ik~ ik.x
¢=8'—fz—2 [] HH(—I)W?;)}e ""~{H<—1>V<¢s‘j>}e k"}ek dhxk;

j= s=1 s=1 y

where (pt,,- is the angle of incidence of the plane waves from the source at Bt} onto the
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surface defined by the integer s. To obtain (pt,i we write
n_=(sin((2s-1)8,),-sgn(cos((2s-1)86,),0)
and use Eq. (12) to show that
qosij = cos‘l(k.n, 1k)y=¢;

which depends on the source lying in the upper or lower part of figure 12 and is otherwise
independent of source position. Hence Eq. (18) may be simplified as

19
. J, o0 oo 1 ikt - ik.x
0=-5% | JHH(—I)V@;)}@ s ,)] dicd,
81 o) el | ls=l ky

This is an exact expression for the field in the wedge domain which satisfies the Helmholtz
equation and the boundary conditions on the upper and lower surfaces. However the
difficulty with using this expression to calculate the acoustic field is evaluating the two
integrals. The integrands are harmonic which makes them unsuitable for direct numerical
calculation and the reflection coefficient is a multivalued function with several branch lines
in the comglex plane so_contour integration is difficult. To overcome these problems
Westwood'? and Deane'! have used different approaches. Westwood'* uses the method of
steepest descent to 1dent1f¥ the part of the integrand which makes the main contribution to
the result, while Deane'’ expands the terms in {} as a series in which each term is
integrable, and so gives an exact solution. Here we will consider an approximate solution
obtained by writing the integral as

(20)

y
oo oo ik-x+§4.ln(~V(<p:)

. _ - s=1
I J’ [ zkx _ zk.xl }e dkxdkz

(-
+

iQ
a2

L1

J

The integrand is now in the form of a harmonic function which oscillates rapidly in the
(k. .k, ) plane. We note from Eq. (16) that
@y
In(=V()) = In(k = k, Z) - In(k + k, Z) = D(g) + i[(p)

For fluid bottoms (D=0 in Eq. (17)) this function will be either entirely real or entirely
imaginary, but for the general case of shear supporting bottoms then the value of Eq.(21)
will be complex when the shear wave speed b, is less then the speed of sound in the water.
The largest contribution to the integral comes from the part of the integrand where the phase
is changing least rapidly. This is determined by the solutions to

9 1l 8 1
. k.(x - x} )+2F((p: F A kx-x5)+ Y T(gy) |=

=1 s=1
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Evaluating this expression gives

22)
ky +ky
(x—x)+z-(y- yf)(—;:r——)
¥
Ijt
+y Sin((2s - 8, + sgn(j) cos(@s — 1@, ) Ex T2 LGRS
5 ky K,

In the simplest case when the reflection coefficient is real valued the last term can be
dropped and the solution is found from the first three terms. It is easy to show that the
solution occurs when the wave vector k is in the same direction as the vector from the

image source to the observer, so that kR*-—k(x x*) This corresponds to a particular value

of ¢, which we will define as 3,/ ¥ Since the integrand oscillates rapidly we apprommatc
the integral by assuming that the amphtude of the integrand is constant and given by its

value at /. Hence

ig I [U N i X
0= 2 LI [ J o dkydk
8 =y =1

xk(x X7)

- {iﬂ[(—l)vqﬁ } T T L dk.dk,
s=1

The integrals in this expression can be evaluated exactly to give @3
i0 J, (1) ikR.+ ikR.'

=== 2 [TovEH H( HV(BS
4n —7 R Ry

s=1 J 5=l

J

This result shows that a reflection coefficient must be applied to each image source with the
amplitude of the reflection coefficient determined by the angle of incidence on each surface
between each source and the observer. This corresponds to using a ray tracing approach in
which each ray is specularly reflected from the bottom with an amplitude reduction
corresponding to the reflection coefficient for the angle of incidence of the ray. However in
arriving at this result we have not considered the case when the reflection coefficient is
complex valued and this can have an important effect because the last term in Eq. (22) will

affect the solution to the equation. For example figure 13 shows a plot of k(dI7d%, ) for a
typical sediment in the ocean with a shear wave speed of 300 m/s. We see that for low
values of k /k this function varies only slowly with wavenumber, but at angles close to the
critical angle the variation of the function is large. However in many applications the
reflection from a plane is only important at low grazing angles, and this leads to the
effective depth approximation. This assumes that k /k<<1 and that Z may be approximated
by it's value at k =0. This approximation is shown on figure (13) and is seen to work well
apart from close to the critical angle.
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Figure 13: The derivative of the phase function kdITdkn for a typical shear supporting bottom,

To apply this approximation we reconsider the reflection coefficient and apply the
effective depth approximations to give
24

In(=V(9)) =In(1 - Zk, / k) —In(1 + Zk,, [ k) = —2Zk, [ k

Here we see a linear dependence on the wavenumber component normal to the surface and
we can define

@ = In(1 V() 1) = —2real(Z)k, / k T = ~2imag(Z)k, / k

To calculate the acoustic field in the wedge we apply this approximation to the imaginary
part of the reflection coefficient and write

T il M ien. U .
N In(-V(p,) = Y In(1V(gs) ) = 2imag(Z) Y, —5 = 3 In( V(p,) ) + ik x )
s=1 s=1 s=] s=1
where
(28)
, Ijt
x{) =24 n; A = -imag(Z)/k

s=1
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The acoustic field is then obtained as before by writing the field in the form
29
I, lk (x—x; +x(’))

9=-2 2 {HlV(ﬁ(”)I}T T ——————dk,dk,

8n

s oo lk (x=x; +x(/))

11
- {fll vg$?) |} [ | & dkyar,
s=1

—60 —o0

where the angle of incidence onto each surface is now taken as the angle from the source

displaced by xc(j) rather than the actual source position. This leads to an expression for the
acoustic field which is identical to (21) but with -V replaced by the magnitude of the

reflection coefficient and the source images shifted by x, (D=(x.?,y ©,0). It is noteworthy
that the image sources are only shifted in the (x,y) plane.

The concept of using a beam dlsplaccment or a shifted image source location is
described by Brekhovskikh and Lysanov '¢ and it was shown by Glegg" that the sound
propagation in a uniform depth channel with an arbitrary bottom could be modeled as a

channel with a pressure release lower surface displaced by A. For the case of the wedge we
have now shown that the bottom displacement must be applied to each reflecting surface
where perfect reflection does not occur. The sum of all the bottom displacements can be
shown as equivalent to moving the apex of the wedge horizontally away from the source by

a distance A/sin(6,). This will give a new set of locations for all the image sources using a
simple geometncal correction. This correction is precisely the same as was proposed by
Buckingham'® for the penetrable wedge problem. In that theory only a fluid bottom was
considered and so the reflection coefficient was taken as having unit amplitude for small
grazing angles. Buckingham was then able to derive equivalent wedge modes for the
penetrable wedge. This theory was based on intuitive arguments and here we have shown
that by using the method of images the same correction for the penetrable bottom can be
achieved. However this theory has allowed for a shear supporting layered bottom with an
arbitrary bottom impedance.

The correction for the image source locations given by the effective depth
displacement is shown by Eq. (28) to be inversely proportional to frequency and so this
correction tends to zero when the acoustic wavelength is small compared with the depth of
the water column. Therefore the approximate solution is expected to work better at high
frequencies. The approximation however does not apply when the impedance changes
rapidly with angle of incidence which is the case when stationary phase point is close to the
critical angle. In this case the image source displacements will be much larger and which is
equivalent to applying large beam displacements to the reflected waves. This is most
significant for propagation in the downslope direction. In the across slope direction, at
large distances from the source, the angle of incidence from any of the image sources to
any of the bottom interfaces is alwa ays small. To show this we note that the dominant wave
vector i$ in the dlICCthﬂ k/k=(x-x+x,7)/R;* and the angle of incidence to the bottom is
given by k.n /k=n,.(x-x *+x “)/R,. Since the’normal to the surface only has components in
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Figure 14: Transmission loss in the across slope direction for an ideal wedge and a penetrable wedge. Source
range is 15 cm and located at 1/2 of the depth of the water column. Receiver range is 15 cm  and receiver
depth is 1/2 of the depth of the water column. Wedge angle is 20° and frequency is 110 kHz.

the (x,y) directions and at large distances across slope R =z the grazing angle to each
surface tends to zero in the across slope direction when z is large. Consequcntly the
effective depth approximation given above will be adequate. However in the downslope
direction there will always be an image source field which will be incident on a reflecting
plane at a large grazing angle and so the approximation given here does not apply.

It is interesting to compare the across slope propagation for a penetrable bottom
with that for an ideal bottom as is shown in figure 14. This calculation shows that the effect
of the absorbing bottom is to reduce the amplitude of the acoustic field. The nulls which
occur in the ideal wedge solution are not as dramatic in the penetrable wedge and displaced
across slope further from the source. The shift however is small and most easily identified
by the more rapid decay of the field in ideal wedge as the observer moves into the shadow
zone region. This is not unexpected because the shift of the wedge apex caused by beam
displacement causes the observer to be effectively further downslope than in the ideal
wedge case, and in this region the shadow zone boundary decays less rapidly with across
slope distance.

In this section we have shown how an exact expression for the acoustic field in a
wedge with any type of lower boundary condition may be specified in terms of a double
wavenumber integral. The evaluation of that integral has been carried out using an effective
depth approximation which applies when the grazing angle of the waves incident on any
reflecting surface is small. This method is only useful for across slopc calculatlons and to
obtain the solution for downslope propagauon more accurate methods'""* need to be used.
The advantage of the approach given here is that it allows the apparent shift of the image

sources to be specified for the situation where the bottom boundary causes beam
displacement.
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4. Laboratory Scale Experiments

The first experimental demonstration of the three dimensional propagation effects
described above was given by A.B. Wood'® who presented the results of an experiment
showing a visual picture of horizontal refraction. The experiment was conducted in a
rectangular tank made of concrete, with dimensions of 1.05mx0.83mx0.1m. A wedge
domain was constructed by resting one edge of a glass plate on the bottom of the concrete
tank, while the opposite edge rested on the side of the tank. To obtain the sound field
characteristics, the glass plate was painted with a water soluble paint. When the region was
insonified using a frequency of 1 MHz, the variation of the sound level on the sloping
bottom appeared on the painted surface, showing the interference pattern illustrated in
figure 2.

To evaluate the acoustic field in the water column Tindle et al”® measured the
propagatien of modes directly downslope of the source. They generated individual modes
by using an array of transducers which preferentially excited only one mode in the water
column. They were able to show that the mode propagated as a "wedge" mode into the
deeper water and was not converted into modes of different order. However their results
primarily addressed downslope propagzmon and so will not be reviewed in detail here.

The three dimensional field in an ideal was investigated by Glegg and Yoon®
They carried out an experimental study to verify the theoretical solution given by
Buckingham® for a wedge with perfectly reflecting pressure-release boundaries and to
demonstrate pulse distortions as a function of propagation distance. The experiments were
carried out at model scale in a large water tank as illustrated in figure 15, with a wedge
domain constructed using a triangular, air-filled Plexiglas tank.
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Figure 15: Glegg and Yoon's experiment using an air filled tank to form a wedge with pressure release
boundaries.
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The size of the Plexiglas tank was chosen so that the shadow region of the acoustic field
from a point source at the center eliminated edge reflections; also the attenuation of sound in
the down-slope direction minimized the effect of the boundaries in this direction. This
arrangement was, therefore, found to correspond well with free-field conditions.

The lower surface of the wedge was formed using a 12.7-mm Plexiglas sheet with
a calculated reflection coefficient of -0.997. This surface was, therefore, almost identical to
an ideal pressure-release boundary as considered in the exact normal-mode theory. Also,
by adjusting the lengths of the wires which hold the tank below the surface, the angle of the
wedge could be altered. The wedge angles considered were between /10 (18°) and 7/8
(22.5%), and the source frequency was varied between 7.5 and 8.5 kHz. The source was
placed up slope of the receiver at a range of 37.5 cm from the wedge apex, and the receiver
was traversed through the acoustic field. Both transducers were placed at middepth to
maximize the acoustic field and signal-to-noise ratio. A typical result is illustrated in figure
16, which shows a comparison between the measurement and the theoretical calculations
discussed in the previous section. This result shows how the level changes as the observer
moves in the across-slope z direction at two different fixed down-slope ranges. Note how
the highest levels do not occur at z=0, which is closest to the source, but rather at z=20 and
45 cm for receiver ranges of r=44.16 and 69.66 cm, respectively. This indicates an
effective beaming of the sound due to the interference pattern in the wedge. However, of
most interest is the edge of the shadow region where the level drops at a rate which is
nearly 20 dB per doubling of distance from the source.

O 10 20 30 40 50 60 70 80 90 100
z(CM)

Figure 16: Variation in level in the across slope direction. Comparison of theory and experiment at receiver
ranges of ~=44.2 cm and 69.7 cm. Source frequency is 8 kHz, wedge angle 22.5°, and source range 37.5 cm.
Source and receiver are at mid depth.
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Figure 17: The effect of small changes in wedge angle: The curves show the variation in level in the across
slope direction for a receiver range of ~=44.2 cm, source range 37.5 cm, and source frequency 7.5 kHz, for
different wedge angles.

One of the necessary assumptions of the theoretical derivation of Eq. (2) is the
requirement for the wedge angle to be an exact submultiple of 7. If this is not the case then
the field diffracted by the wedge apex must be added to the modal field given by Eq. (6).
This was investigated experimentally by making small adjustments to the wedge angle
between 7710 (18°) and /8 (22.5°) (figure 17). Large variations in level (10 dB) were
found at fixed source and receiver positions, but on analysis these were consistent with a
linear variation between the predicted levels at the two angles 7/10 and 7/8 for which the
modal theory is exact.

The frequency dependence of the field is illustrated in figure 18, which shows the
frequency spectrum of a broadband pulse, and the predicted spectrum obtained using the
theoretical result, Eq.(2), corrected for the transmitting response of the source. Note how
the lower frequency parts of the pulse are cut off as the range increases, and how the dips
and peaks in the spectrum are well predicted by the theory.

Glegg, Deane and House™ carried out an experiment to investigate the sound field
in a wedge with a layered shear supporting bottom. In this experiment the sea floor was
modeled by a concrete block covered by an epoxy layer, mounted in a test pool as
illustrated in figure 19. The model was considered representative of a sediment layer over a
hard rock substrate since the acoustic properties of the epoxy and the concrete are similar to
those found in many near shore environments, where terriginous sediments, such as sands
and silts, overlie a rock substrate, such as basalt or limestone. The block dimensions were
chosen to be 1.2m x 2.88m x 0.3m. For the sediment layer a two part laminating epoxy
was used with a thickness of 5.8 cm.

Eleven different parameters are required to describe the geo-acoustic properties of
this model. These are the compressional and shear wave speeds in both the epoxy and the
concrete, and the associated attenuation coefficients. The material densities and the layer
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Figure 18: Spectrum of pulses at different across slope locations. The two curves show the comparison
between measurements (jagged line) and theory (continuous line).
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Figure 19: The experiment by Glegg, Deane and House. The model of a solid bottom was mounted in a test
pool forming a wedge region as shown.

thickness must also be known. In a previous study® this model was used to investigate the
acoustic field over a flat bottom and it was found that excellent agreement between
measurements and numerical predictions could be achieved over the whole data set if the
geo-acoustic parameters were optimized (see ? for details) to obtain the best fit at a high
and a low frequency (30 kHz and 15 kHz). The results given in? therefore provide a geo-
acoustic calibration of the model.

The measured propagation loss curves as a function of across slope range have
been compared with the theory given in the previous section and showed good agreement.
However there were some significant differences which occurred at low frequencies. The
best agreement was obtained at high frequencies and a typical result is shown in figure 20
for a source frequency of 110kHz . The plot shows the propagation loss as function of
across slope range. There is excellent agreement between the measurements and the
predictions at this frequency, and the only discrepancy occurs where the experimental
levels reach the noise floor at a propagation loss of 12dB. Note that the shadow zone is
clearly identified and that the details of the interference pattern in the acoustic field is well
predicted by the source image theory. In genera! the levels are reduced with increasing
source/receiver separation, and the shadow zone is preceded by a broad intensity
maximum.

Atlower frequencies the results showed a different trend, and a typical example is
shown in figure 21 for a source frequency of 70 kHz. It is seen that the theory predicts a
shadow zone at a smaller sourcc/receiver separation than was measured. The major features
of the propagation loss curve are predicted, but it would appear that the measured and
theoretical curves are misplaced in range. The discrepancy is worst at low frequencies and
at the smaller downslope ranges of the traverse. It is noteworthy that these effects are
largest where the horizontal refraction of the modes is most pronounced .

Apart from the discrepancy shown in figure 21 this series of experiments has
served as excellent verification of the theories described in sections 2 and 3. Figure 20
shows almost exact agreement with the image source theory for three dimensional sound
propagation over a layered shear supporting sea floor and no other numerical or analytical
method has been able to reproduce results with this accuracy in such a complex
environment.
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Figure 20: Comparison of the image source theory and measurements at 110kHz for a source and receiver
15cm downslope of the wedge apex.
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Figure 21: Comparison of the image source theory and measurements at 70kHz for a source and receiver
15cm downslope of the wedge apex.
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5. Ocean Acoustic Experiments

As described above, a number of studies have used laboratory scale measurements
to identify the effects of sloping bottoms on underwater sound propagation. However,
there have been only a few ocean acoustic experiments desxgned to measure these effects.
Horizontal refraction was investigated by Doolittle et al. " on the east Australian contmenml
slope. Additional work on downslope enhancement was investigated by Carey et al.’
the Gulf of Mexico, and also by Dosso zmd Chapman® off the west coast of Canada.

The experiment by Doolittle et al.’ investigated horizontal refraction of underwater
sound propagation over a sloping bottom. The experiment took place over the continental
slope on the east coast of Australia. The slope of the shelf ranged from 0.43° nearshore, to
17° 50 kilometers from shore. Over most of the region, the bottom consisted of a smooth-
sandy sediment at least 200 meters deep. The experiment consisted of two ships initially
34 km apart and 30 km from the shoreline. One ship towed a 152 Hz CW source at 80
meters water depth, and the other towed an array of receivers at a depth of 60 meters. The
two ships started in approximately 500 meters water depth and proceeded out to deeper
water keeping the heading of the source at an angle of 38 degrees from the receiving array.
The signals from the array were beamformed using conventional and minimum variance
MYV) algorithms. MYV processing was used to suppress interfering noise, and spatially
whiten the noise field. In the absence of horizontal refraction, the acoustic energy should
arrive at angles close to 38 degrees. (Some deviation of the source heading occurred during
the experiment but this was less than 8 degrees). The azimuthal arrival angles of acoustic
energy significantly varied from 38 degrees, with some arrivals coming in at angles as large
as 88 degrees, thus implying thclpresence of horizontal refraction. Simulated bcamformmg
results using ideal wedge theory” helped confirm the results of the experiment.

In addition to the investigation of horizontal refraction, downslope enhancement has
also been studied with ocean experiments. Downslope enhancement is an ocean acoustic
feature of propagation over sloping bottoms. The effect has been described as a megaphone
effect . As sound propagates downslope, each bottom reflection reduces the bottom angle
by twice the slope angle. Therefore, the propagation angles of shallow water sound energy
are reduced significantly enough to be trapped in the deep sound channel when they reach
deep water away from the continental shelf. This energy propagates without bottom
interactions, and the acoustic energy propagates long distances with very little attenuation.
This phenomenon is described as downslope enhancement.

This feature of propagation over sloping bottoms was investigated by Carey et al.”
in the Gulf of Mexico. The experiment was conducted over the Florida Plain for a range of
200 km at a depth of 3400 meters until the West Florida Escarpment was encountered. The
source was then traversed over the 8.6 degree slope of the escarpment. The sound speed
profiles taken along the track of the experiment had a strong negative gradient, therefore
making the acoustic propagation bottom interacting. The experiment used a towed source
driven at 67 and 173 Hz, operating at a depth of 100 meters. The receiver was a seismic
streamer composed of 64 groups of hydrophones spaced at 4.75 meter intervals. The array
was towed at 400 meters depth, and individual hydrophone and range averaged pressures
were recorded. Estimates of downslope enhancement were made by comparing the
measured transmission loss to the flat-bottom transmission loss model FACT. Downslope
enhancement for propagation over the slope was estimated to be 2-4 dB on the average, and
as high as 6 dB at 67 Hz. At 173 Hz, the maximum downslope enhancement was also
estimated at 6 dB. Frequency dependent propagation effects were observed as the source
traversed upslope. At the higher frequency, transmission loss increased rapidly after the
source crossed the range of maximum downslope enhancement. However, at the lower
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frequency, the transmission loss remained almost constant as the source traversed upslope.
The variation in transmission loss over the slope as a function of frequency was believed to
be caused by frequency dependent propagation characteristics of the seafloor.

Downslope enhancement was also investigated by Dosso and Chapman® off the
west coast of Canada. This experiment took place over the deep ocean basin, at a depth of
2500 meters, the continental slope, which was elevated nominally at 5 degrees, and the
continental shelf, at an average depth of 150 meters. On the continental slope, a pinnacle
from an ocean bottom ridge is present. Two ships were used in the experiment, the first
ship dropped SUS charges which were detonated at a depth of 22 meters. The second ship
maintained position and monitored an array of hydrophones suspended at a depth of about
300 - 400 meters below a surface buoy. The placement of the array was at the axis of the
sound channel, thus maximizing the effects of downslope enhancement. To estimate the
magnitude of downslope enhancement, a flat-bottom transmission loss model was
compared to the experimental measurements. As the source traversed over the pinnacle on
the continental slope, the measured transmission loss was 7 dB less than the prediction of
the flat-bottom model at a source frequency of 400 Hz. (Before the onset of the slope, the
measured and modeled transmission loss were nearly identical.) As the source crossed the
top of the continental shelf, the measured transmission loss was 15 dB less than the
prediction of the flat-bottom model at 400 Hz. At a location farther over the shelf, bottom
interaction with the shelf increased the transmission loss rapidly. In addition to the
downslope enhancement, frequency dependent propagation effects were also observed.
For propagation over the deep ocean basin and the shelf, transmission loss increased with
increasing source frequency, due to attenuation in the bottom. However, at the range of
maximum downslope enhancement, there was very little frequency dependence. This is
due to the rays only encountering one or two bottom bounces before being trapped in the
sound channel.

6. Conclusion

This article has reviewed the current theory and experimental results which have
addressed the problem of fully three dimensional underwater sound propagation over a
sloping bottom. Particular attention has been paid to across slope propagation because this
includes significant three dimensional effects. The results have shown that the theory for
acoustic propagation over a bottom of any type with a constant slope is now complete and
has been verified by laboratory scale experiments. However there has only been one full
scale ocean experiment on horizontal refraction. This showed a significant three
dimensional effect, and it seems surprising that further work has not been done in this area.

One of the limitations of the wedge models described in the article is that they all
have assumed a uniform sound velocity profile in the water column, In the ocean the sound
speed will vary significantly with depth and also with range and further work needs to be
done in extending these theories to the case where the sound speed profile either reduces or
enhances the horizontal refraction of the sound waves. Furthermore the models have
assumed bottoms with constant slope and uniform bottom properties. These never occur in
the real ocean and extensions need to be made in this area. One approach which
incorporates all these features is the Gaussian beam method developed by Bucker™, which
has been successfully verified using the ideal penetrable wedge theory'’,
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A series of model tank measurements carried out by Glegg et al. at Florida
Atlantic University (FAU) has furnished data for range-independent and for
downslope sound propagation over consolidated bottom sediments simulating the
ocean floor. The modeled ocean floor consisted of an epoxy layer over a semi-
infinite concrete basement. The measured range-independent transmission loss is
compared here against predicted results from a fast-field propagation model, a
normal-mode propagation model, and a parabolic-equation propagation model at
frequencies of 15, 20, 25, and 30kHz. The measured downslope transmission loss
is compared against predicted results from the normal-mode and the parabolic-
equation models at frequencies of 15, 20, and 30kHz. The three models were
selected for their treatment of bottom elasticity which cannot be neglected in such
a hard-bottom case. Mode coupling did not seem to be a significant contributor
to sound propagation in the 5-degree downslope case. These comparisons show
some unexpected agreement between models and against the measured data in a
controlled environment.

1. Introduction

Since 1986 some benchmark test cases were created to compare results of acoustic propagation
models in range-dependent and range-independent simple waveguides'?. Each test case was
supposed to have an exact analytical solution in order to compare each model’s results against the
benchmark. A large number of papers were published with results from individual models in
several of the benchmark test cases®.

The accuracy of models should also be tested in "real world" situations by comparing their
results against accurate experimental measurements. Comparison against experimental
measurements is not as easy for the lack of a controlled environment where the measurements are
made with minimum temporal and spatial fluctuations. It is also very difficult to measure the
bottom composition to the desired accuracy.

In an attempt to provide a set 6f reliable measurements, Glegg*?, at Florida Atlantic University,
devcloped a model waveguide consisting of a 7.6m wide test pool which contained a 2.88m long,
30cm thick water-immersed concrete slab (modeling a limestone basement) covered with a 5.88cm
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thick epoxy layer (modeling an ocean bottom sediment). A sound source was placed at a constant
depth of Secm and a receiver was placed at various depths and ranges. A continuous-wave signal
at the desired frequency was emitted by the source. The coatings at the side walls of the tank
absorbed most of the incident energy.

The sound speed in the water column is 1510m/s, its density is 1gm/cc and its attenuation is zero.
The epoxy sediment had a compressional speed of 2100m/s, compressional attenuation of 1.14dB/A,
a shear speed of 970m/s, a shear attenuation of 4.0dB/A, and a density of 1.03gm/cc. This epoxy layer
overlays a concrete basement with estimated compressional speed of 3300m/s, compressional
attenuation of 0.1dB/A, shear speed of 1937m/s, shear attenuation of 0.147dB/A, and density of
2.6gm/cc.

Two types of measurements were carried out:

(1) Range-independent*:

Transmission loss measurements in the range-independent model were made at ranges of 1.0m to
2.2m in increments of 0.2m, and at depths of 0.1cm to 14.0cm in increments of 0.05cm. The depth
of the water column is 15cm. Measurements were made at the frequencies of 15, 20, 25, and
30kHz.

(2) Downslope propagation®:

The same concrete slab from the range-independent case has tilted to a 5-degree downslope angle
relative to the test pool. The water depth is 15¢m at the source position. Transmission loss versus
depth measurements were made at ranges of 0.4m to 2.0m in increments of 0.4m. These
measurements were made at frequencies of 15, 20, and 30kHz.

Previous publications compared a small sample of the measurements against a modeled
prediction®”. Our attempt here is to compare every piece of available experimental data against
predicted results from multiple propagation models, and to show some unexpected agreements and
disagreements between the models and against the data.

Three models were selected to estimate sound propagation in this tank waveguide. The models
are representations of three low-frequency approaches which can account for sediment elasticity.
It is very important to understand the features and limitations of each model for a successful
interpretation of their results.

The objective of the three models is to find the solution to the linear homogeneous equation of
motion in an elastic medium, where A and g are the Lame constants, p is the density, and
£={u,v,w} is the displacement vector in the medium

pP—==14+ (A+u)VO + OVLi + uV’E +2Vu:S,

f being an external force, ® = V-£, and the strain tensor is (¥ = transpose)

S=1[VE+ (vg)").

This equation must be solved for a waveguide with a pressure-release surface and an elastic
layered bottom. At low frequencies, bottom penetration is expected and wave-theory based models
are suitable.

The SAFARI model* is a fast-field approach developed by Henrik Schmidt. This range-
independent model uses a direct, global matrix approach to determine the depth-dependent Green
function. It directly evaluates the contour integral numerically to obtain the acoustic pressure field.
Given the correct integration parameters, its results correctly account for the continuous spectrum
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of the wavenumber. However, the number of Green function evaluations increases proportionally
with increasing range. Also the asymptotic form of the Hankel function limits its accuracy to
ranges greater than the order of the wavelength.

The KRAKENC model® is a normal-mode approach developed by Michael Porter. The contour
integral is evaluated by adding the complex poles of the Green function. This model makes use
of Richardson extrapolation to aid its eigenvalue search in the complex wavenumber plane. Since
only the trapped modes are used in the computation of the complex pressure field, this model is
limited to far-field propagation. This model can also search for interface modes given all the time
it needs for proper convergence. The adiabatic approximation is the only available method for
treating the range-dependent waveguide with elastic bottom sediments. This approach is valid only
for slow horizontal variations. Therefore, energy conservation is an issue in range-dependent cases.

The FEPES model'® is a parabolic-equation approach developed by Michael Collins. This range-
dependent model uses finite-difference to solve, in closed form, a modified wave equation. The
elliptic Helmholtz equation is approximated by a parabolic equation which is valid for a vertical
angle near the horizontal. This particular parabolic equation model has an energy-conservation
correction and accounts for forward mode coupling.

Algorithms based on finite-difference'* and finite-elements'? are excluded from this comparison
because their computational requirements are extensive. Coupled-mode models’ are excluded from
this study because they do not handle bottom elasticity. A ray-theory based model was developed
and used for some of the low-frequency test case benchmarks' proving that excellent agreement
can be achieved with a ray-theory model! in a low-frequency problem, but this model has not been
generalized for more complicated waveguide problems.

2. Results
2.1. Range-independent

In these comparisons, all dimensions and frequencies have been scaled by a factor of 1000 in
order to feed the models with values in the typical ocean range and avoid possible numerical
errors. The water depth is scaled to 150m, the source is 50m deep, and the frequencies are 15, 20,
25, and 30Hz. The experimental measurements where scaled accordingly by adding 60dB to the
given transmission loss. The attenuations are scaled assuming a linear dependence with frequency.

The self-starter'> in FEPES was used to generate the field at the source; the depth of the false
bottom was set to 1000m. A convergence test was made with each propagation model.
Convergence in FEPES was achieved with four Padé coefficients using range and depth increments
of two meters for all frequencies. This same increment was used as the depth spacing in
KRAKENC. The results from the convergence test are not shown here in an attempt to minimize
the number of figures in this paper.

The minimum and maximum phase speeds in KRAKENC were set from zero to 3300.0m/s. The
maximum phase speed in SAFARI was set constant at 1 x 10°m/s; the minimum phase speed was
150m/s in the 15Hz case, 200m/s in the 20Hz case, 250m/s in the 25Hz case, and 300m/s in the
30Hz case to keep the range increment constant in all cases. A sampling of 4096 or 8192 was
enough for SAFARI to converge at all frequencies.

The highest frequency of 30Hz can excite a total of four trapped modes as shown in Figure 1.
For this same case SAFARI displayed the possible existence of at least one additional mode as
shown by the peaks of the integrand in Figure 2. This mode is part of the radiating spectrum and
it is not possible to detect it by KRAKENC. This additional contribution is of much concern when
using KRAKENC in this case because the ranges are relatively short. The minimum range of one
kilometer is about seven times the water depth. The maximum range of 2.2 kilometers is about 14
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times the water depth. At this larger range, the radiating spectrum is expected to be attenuated and

KRAKENC should compare more favorably.
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Figure 3a. Measured propagation field scaled for 30Hz signal.
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Figure 3b. Predicted propagation field by SAFARI for 30Hz signal.
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Figure 3c. Predicted propagation.field by KRAKENC for 30Hz signal.
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Figure 3d. Predicted propagation field by FEPES for 30Hz signal.

Figure 3a is a contour plot using the 30Hz measured transmission loss data as a function of
range and depth. Figures 3b, 3c, and 3d are the estimated propagation according to SAFARI,
KRAKENC, and FEPES, respectively. Excellent agreement can be seen with the exception of
FEPES’ prediction near the bottom and at close distance from the source. This may be attributed
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to the limitation in the vertical angle of propagation in such a hard bottom case. Otherwise, FEPES
performs as well as the other models. In using FEPES, the user is advised to avoid placing the
source or receiver near any interface. Also note that KRAKENC slightly overestimates the loss by
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Figure 4a. Measured propagation field scaled for 25Hz signal.
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Figure 4b. Predicted propagation field by SAFARI for 25Hz signal.
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Figure 4d. Predicted propagation field by FEPES for 25Hz signal.

a decibel or two. In this case, SAFARI was closest to the measured data with KRAKENC and
FEPES off by a small amount.

Figures 4 compare the propagation at 25Hz. In this case, the models compare slightly better
against cach other than against the measured data. The best agreement can be found between
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SAFARI and KRAKENC. Note that FEPES disagrees somewhat near the surface and the bottom
interfaces in areas with relatively high transmission loss. This might be attributed to numerical
errors associated with the approach. Remember that KRAKENC was not expected to agree with
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Figure 5b. Predicted propagation field by SAFARI for 20Hz signal.
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SAFARI at ranges shorter than about ten times the water depth for the expected contribution of
the radiating wavenumber spectra. The agreement in these figures indicates that the waveguide’s

hard layered bottom is damping this energy faster than expected.

Figures 5 display the results at 20Hz. Note that SAFARI predicts that sound propagates farther

2.0

2.2
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in range than the other models and the measured data. In this case KRAKENC compared slightly
better against the data. Inter-model comparison at this frequency shows the best agreement between
KRAKENC and FEPES. At this frequency we are reaching cutoff. It seems that the models are
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Figure 6a. Measured propagation field scaled for 15Hz signal.
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Figure 6b. Predicted propagation field by SAFARI for 15Hz signal.
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Figure 6d. Predicted propagation field by FEPES for 15Hz signal.

increasingly erroneous as we reach the waveguide’s cutoff frequency.

Figures 6 show the final results at 15Hz. The modeled results no longer resemble the measured
propagation conditions. The models themselves disagree more against each other. Inter-model
comparison shows the most agreement between KRAKENC and FEPES, but their agreement is
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poor. The SAFARI model is still predicting less transmission loss than the other models. At this
frequency, the ranges vary from 10 to 20 times the acoustic wavelength. All the models have some
kind of approximation at such short ranges. The Hankel functions in KRAKENC and SAFAR]I,
for example, are substituted by their asymptotic solution. This solution is valid at ranges much
greater than a wavelength. The approximations in FEPES also include a far-field assumption to
reduce the cylindrical wave equation.

However, it is also possible for the acoustic properties of the concrete basement to be inaccurate.
This possibility surfaces when we compare the sediment thickness of 58.8 meters to the acoustic
wavelength. The comparison at 30Hz was favorable because the wavelength is shorter than the
layer thickness. At 25Hz, the wavelength is nearly equal to the sediment thickness. At the lower
frequencies, basement interaction is no longer negligible and the erroneous inputs show their
effects.

A series of SAFARI runs were made to determine the degree of influence of the semi-infinite
concrete basement at the four frequencies of interest. These additional runs were made without
the concrete basement. Instead, the bottom was modeled as a semi-infinite epoxy basement. The
resulting transmission loss contour showed a negligible variation of the field at 25 and 30Hz, a
somewhat poorer propagation at 20Hz, and a totally different field at 15Hz. This simple
experiment shows the obvious influence of the concrete basement on the propagated field at the
lower frequencies. Since the disagreements between measured and modeled fields occur at these
lower frequencies, it is very possible that the acoustic properties of the concrete basement are
inaccurately known. The results from these additional runs are not shown in an attempt to reduce
the number of figures.

Measurements were also made at a frequency of 8kHz*, These measurements are below the
10kHz cut-off frequency of the waveguide and the modeled results did not agree well with the
data. It was suggested by Glegg that the disagreement could be caused by the finite thickness of
the concrete slab. The concrete has been modeled as a semi-infinite basement. However, we were
not able to obtain a fair agreement with the finite slab. For this reason the comparisons at 8kHz
are not shown in this paper.

2.2 Downslope propagation

The number of transmission loss measurements versus depth varied from range to range. Also,
these measurements were made at ranges of 0.4, 0.8, 1.2, 1.6, and 2.0m. These two facts made it
inconvenient to display contour plots as was done in the range-independent case. Therefore, the
comparisons are made by overlaying measured and modeled data for each frequency/range
combination.

Many of the input parameters given to the FEPES propagation model in the downslope cases
were unchanged from those in the range-independent cases. The range-dependent waveguide was
modeled by eleven segments representing the 5-degree tilt of the.bottom. Each segment was 20cm
in range and each step was 1.75cm deeper with increasing segment. This same segmentation of
the waveguide was applied to the KRAKENC model where a set of normal modes had to be
computed for each segment before computing the field using the adiabatic approximation. The self-
starter was used and a total of four Padé coefficients was found to be sufficient in the field
computation by FEPES.

The downslope comparisons are shown in Figures 7, 8, and 9 for the transmission loss at 30,
20, and 15kHz, respectively. Figures 7 present the comparisons to the 30kHz data at the receiver
ranges of (a) 0.4m, (b) 0.8m, (¢) 1.2m, (d) 1.6m, and (e) 2.0m. The FAU transmission loss
measurements are here represented by stars, the KRAKENC results by a solid curve, and FEPES
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by a dashed curve. Note the drastic difference in the modeled curves at the shorter ranges
compared to those at ranges larger than about a meter. The shorter ranges are three to six times
the water depth. None of the models are expected to perform well at such short ranges. The normal
mode mode! does not account for the radiating spectra and the parabolic equation model was
shown to give poor results at short ranges and near the surface or bottom interfaces. Slightly better
agreement between the models is found at larger ranges. While the magnitudes are not always in
numerical agreement at the maxima or minima of the data, the location in depth of these extreme,
and the extreme themselves, are always reproduced at least qualitatively.

The comparisons at 20kHz are displayed in Figures 8. Note that the modeled results are in better
agreement when compared against each other and against the data. The favorable inter-model
comparison show the satisfactory accuracy of the adiabatic approximation in a downslope case
with a 5-degree bottom slope. Since FEPES accounts for the mode coupling that is neglected under
the adiabatic approximation, these inter-model comparisons show little need for mode coupling
in this case.

The results of the 15kHz downslope case are shown in Figures 9. In this case, the agreement
between the two models increases with increasing range. This same tendency is also observed in
the 30kHz downslope case in Figures 7. However, this observation is not obvious in the 20kHz
downslope case in Figures 8. Note in Figures 9(a) and 9(b) that the results from FEPES were
significantly closer to the measured data than those of KRAKENC. However, the models predicted
more loss at the larger ranges than what was observed. This could be attributed in part to the
inaccurately known properties of the concrete basement.
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3. Summary

A series of experimental data have been taken by Glegg et al. at the FAU model tank facility,
which models an ocean environment consisting of a single sediment layer (represented by epoxy
resin) overlaying a chalk-bottom substrate (represented by a concrete slab). In the first part of this
study, we have compared the results from three propagation models to the range-independent
measured data. The models are based on the normal-mode, the parabolic-equation, and the fast-
field solutions to the wave equation. In the second part, we compared the results from two of the
models to the downslope data.

In general, the models compare very well against each other as long as the frequency is much
greater than the cutoff frequency. The greatest inter-model disagreements can be found near the
surface, near the bottom, and near the source. The SAFARI fast-field model displayed a tendency
of under-predicting the transmission loss at the lower frequencies when compared against the other
models. All the models displayed a tendency of over-predicting the transmission loss near the cut-
off frequency (about 10kHz) in the range-independent case and the downslope case. This was
attributed to the inaccurately known concrete basement.

The FEPES parabolic-equation model displayed problems predicting the field near the surface
and bottom interfaces. The adiabatic approximation used with the KRAKENC normal-modes
model was shown to give satisfactory results in a 5-degree downslope waveguide.

Tables 1 show a qualitative summary of the level of agreement between each model and the
measured data in each case. In the range-independent cases, the results from KRAKENC tended
to agree with those of SAFARI at the higher frequencies but they agreed better with those of
FEPES at the lower frequencies. The results from the three models agreed poorly with the
measured data near the cutoff frequency. In the downslope cases, the performance of both models
against the data was equivalent. It is also observed that the level of disagreement between
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KRAKENC and FEPES increased with increasing frequency as also observed in the range-
independent cases. Very good agreement was observed, between the modeled and measured data,
at the higher frequencies (>20kHz) in the range-independent case. However, this degree of
agreement was not observed in the downslope case. An explanation for this observation has not
been found.
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Table 1.
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Abstract

In order to solve the general problem of acoustic or ultrasonic wave prop-
agation in layered media, it is necessary to solve the wave equation both in
the homogeneous region inside each layer and at the interfaces between layers.
Under special assumptions these problems may be solved analytically. Explicit
formulas are given for the wave amplitudes in the case of oblique incidence of
harmonic plane waves on interfaces between two solid materials. Since ana-
lytical methods become extremely laborious in non elementary cases and do
not allow for a realistic treatment, e.g. in the case of pulses induced by finite
aperture transducers, a short review of numerical techniques is included. In
particular, the application of a local interaction simulation approach (LISA),
which is particularly suitable for parallel processing, is reviewed.

1. Introduction

For the purpose of the present work, we define a multilayer as an infinite medium,
enclosed in the space region 0 < ¢ <H and consisting of N>1 layers, separated by
N-1 interfaces located at # = h, with n=1, N-1. Consequently, in order to study the
propagation of acoustic or ultrasonic waves or pulses in layered media, it is sufficient
to be able to solve the two basic problems

i) solution of the wave equation within a single layer, i.e. in a homogeneous region

ii) treatment of the interface between two layers. This problem must include also
the treatment of the external surfaces # = 0 and z = H with specified boundary
conditions.

Solutions to the first of these two problems are given in Sec.2 for plane waves
and/or isotropic media, after a brief derivation of the equation of motion in Sec.2.1.
The second problem is treated in Sec.3. First the elementary case of normal incidence
is treated in great detail, in order to provide the basic physical concepts with a
minimum of mathematical formalism. Next the case of oblique incidence is examined
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and the partial mode conversion effect is explained. Here the calculations become very
cumbersome and explicit formulas for the displacement amplitudes of the longitudinal
and shear reflected and transmitted waves are given, both in the case of longitudinal
and shear incident waves. These formulas may be useful to experimentalists® or to
verify numerical solutions. Similar formulas, but for the potential amplitudes, are
reported in Ref.2. In Sec.2 only the case of disturbances, which are uniform in planes
of constant phase, and, more specifically, of harmonic waves is considered.

Although, in principle, any multilayer problem may be solved, under the stated
assumptions, by repeatedly applying the formulas and methods discussed in Sections 2
and 3, the calculation may quickly become extremely laborious, even if few interfaces
are involved. Matrix methods, such as commonly used in other fields, such as Optics?,
may be of help. Two such methods are introduced in Sec.3. First an S matrix is
defined, which yields the amplitudes of the "final” (reflected and transmitted) waves
as a linear combination of the amplitudes of the incident waves. Then a reflection
and a transmission matrix are defined for both longitudinal and shear waves in the
case of oblique incidence. A comprehensive review of matrix methods is given by
Rokhlin*, who classifies transfer matrices according to the size: 8x8 for piezoelectric
layers, 6x6 for anisotropic layers®, 4x4 for isotropic layers®=!® and 2x2 for special
cases, such as normal incidence, SH-waves, fluids, etc!!~!%. By repeatedly applying
matrix methods (to propagate waves from an interface or boundary to the next one
and across) one can reduce a wave propagation problem in a multilayer into the
calculation of products and/or powers of matrices and thus obtain compact solutions.
Simple examples of important applications are the calculation of total reflection from
a single layer embedded in a fluid'® and periodically stratified fluid media'®.

In complex cases analytical methods are, however, of very difficult application.
Also, they are restricted to special assumptions, as mentioned. In a realistic situation
in which, e.g., a piezoelectric transducer is used to input a pulse into a specimen, the
above mentioned assumptions are not valid and analytical solutions can offer, at best,
a rough estimate of the results. It becomes necessary to apply numerical techniques,
especially finite element (FE) and finite difference (FD) equations.

There exists a vast body of literature devoted to FE techniques. For a very compre-
hensive bibliography on the subject see Ref.17. An overview of FE analysis and its ap-
plications to the modelling of ultrasonic NDE phenomena has been presented by Lord
and collaborators'®. FE methods are also used as tools for computer simulation®®.

FD equations have also been widely used to study the propagation of ultrasonic
waves. In fact, it is quite natural to transform, for a numerical analysis, a par-
tial differential equation into a FD equation. Many of the applications are due to
geophysicists, who have developed FD methods as a tool for the quantitative inter-
pretation of seismograms?®~2%. General treatises on FD equations can be found in
Ref.26-30. They are also treated in monographies on the numerical solution of partial
differential equations®*2? some of which are specifically devoted to applications in
acoustics and ultrasonics3®34.
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Although FD techniques are very efficient and useful, some caution must be exer-
cised upon applying them, since problems of convergence and stability may arise®2.
This issue, particularly in the context of the treatment of interfaces, is discussed in
Sec4.1.

FD techniques are particulary suitable for computer simulations, since they are
apt to reduce a problem from a global to a local level. The advent of highly parallel
computation and the anticipation of its wide diffusion and projected progress® give
a special urgency to the need of developing efficient simulation techniques, which
exploit this nove! computing architecture. In fact, parallel computers, which control
millions of independent processor, are natural tools for simulating the behaviour of a
material at a local level, since a correspondence can be created between the processors
and spatial "cells” in the material. A local simulation interaction approach (LISA),
which is particularly suitable for parallel processing is described in Sec.4.2.

In the framework of LISA it is possible to find a solution to the above mentioned
problem of treating interfaces with FD techniques. A sharp interface model (SIM),
which provides an exact treatment of the interface by matching displacements and
stresses on both sides of it, is discussed in Sec.4.3. Recursive equations for the in-
terface gridpoints are explicitely derived in the elementary 1-D case and reported for
the general 3-D case (they may be obtained from the general ”crosspoint” formulas
derived elsewhere36:37).

Due to space limitations, many topics, which are relevant to the general theme
of acoustic wave propagation in layered media, have been omitted. Among them are
the treatment of attenuative, viscoelastic, dispersive, nonlinear media, Epstein layers,
etc. For a discussion of these topics we refer to some of the articles and books quoted
previously and to the classical work of Brekhovskikh®.

2. One layer
2.1. The equation of motion

Acoustic or ultrasonic pulses and waves usually entail extremely small particle
displacements, compared to the travelled distance. Therefore the linearized theory of
elasticity®® may be applied. In the absence of body forces one immediately obtains,
from basic Mechanics, the so called Cauchy’s first law of motion

Tiji = p(Z)i; (1)

where 7 is the stress tensor, p is the density and u is the displacement vector. Here
and in the following we denote with a comma the differentiation with respect to the
space coordinates and with a dot the differentiation with respect to time, i.e.

Also, the summation convention is implied, as usual, for twice repeated indices.
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Constitutive relationships bind the stress to the strain. In the linearized theory of
elasticity they are given by Hooke’s law

Tij = Ciji(E)en (2)

where Cj;x represents the second order elastic constants tensor and ey the small-strain
tensor

€ = %(Uk,l + uik) (3)
Due to the symmetries of the elastic constants tensor

Ciirt = Ciirt = Cijie = Chuij (4)
from Eqgs.(1) to (3) we obtain the equation of motion

(Ciji urg) i = p(2)l; (5)

2.2 Solution within a layer
Within a layer, i.e. in a homogeneous region, Eq.(5) becomes
Cijkitura = pi; (6)

with Cjjx and p being constant.
A plane wave solution of Eq.(6) may be easily found. Assuming harmonic plane
waves travelling in the direction p = pp&,, we write

u; = Adiexp(in) (M
where
N = kppza — Wit (8)

and d; are the components of the displacement direction unit vector d.
Substituting into Eq.(6) it follows

(Cijuk*pipr — pwji)ur = 0 )
which may be conveniently rewritten as

Ak — pv?65)ux = 0 a0y
where

Ak = Cijupipt a1
and
Tk (12)
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Eq.(10) is usually referred to as Christoffel’s equation®’. Since it implies that
det(AJ‘k - pv26jk) =0 (13)

one finds that, for each propagation direction p, there are, in general, three different
phase velocities, which may be easily computed by solving Eq.(13).

It may be useful to remark that, by measuring in a homogeneous specimen the
phase velocities for the appropriate waves in a sufficient number of propagation di-
rections p, it is possible, at least in principle, to determine all the second order elastic
constants of the material by means of Egs.(11) and (13). A difficulty with this ap-
proach is that, experimentally, one usually measures group velocities, while the above
equations refer to phase velocities and, for anisotropic or dispersive media , the phase
and group velocities do not generally coincide.*!

2.8 Helmholtz decomposition

For isotropic materials the elastic constant tensor may be written as
Cijrt = Abijbr + p(birbst + bibjx) (14)

where A and p are the so-called Lame’ elastic constants.
Then the equation of motion in homogeneous media, Eq.(6) becomes

puzgi + (A + p)usi = pis (i=13) (15)
The three Eqgs.(15) may be decoupled by means of a decomposition of the form

Vo +VAY (16)

u

where ¢ and 1 are the scalar and vector potentials, resp.
In the tensorial notation

Un = P m + emnpwp,n (17)
where emnp is the so-called "alternating” or Levi-Civita tensor, whose components

are defined as follows:

0  if any two of the mnp indices are equal
—1 if mnp represents an odd permutation of 123

41 if mnp represents an even permutation of 123
€mnp = {
By substituting Eq.(17) into Eq.(15) and using the identity
€jnp¥pnj =0 (18)
we obtain

1.
v = 5% (19)
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1 .
Yp,ij = z—}_ﬁbp (rp=1,3) (20)
where
_ (A +2p)
v = 5 (21)
R el 22
g , (22)

The uncoupled wave equations (19) and (20) refer to longitudinal and transversal (or
shear) waves, resp. It is easy to prove that, as expected, v and ¥ (twice repeated)
are the three solutions of Eq.(13) for the isotropic case. Since @ has three scalar
components while ¢ and i have four, an additional constraint may be imposed, e.g.
Wp p=0.

In the case of slightly anisotropic homogeneous specimens, a perturbation treat-
ment may be usefully adopted to obtain explicit solutions of the equation of motion*2.

3. Treatment of interfaces
3.1. Normal incidence

Having discussed, albeit very cursorily, the solution of the single layer problem, we
now turn our attention to the treatment of interfaces. We restrict our analysis to the
propagation of harmonic plane waves, such as given by Eq.(7), in isotropic media.

In this Subsection we consider the elementary case of normal incidence of a longi-
tudinal acoustic wave on an interface between two different materials. For simplicity
we assume that the interface is located in the plane x=0 and put

d=p=14% (23)
The problem then becomes in every respect one-dimensional. We call p, v, A, p the
density, phase velocity and Lame’ constants of the material to the left of the interface
(z < 0) and p', v', N, g’ the corresponding quantities to its right (x > 0). We
consider the possibility of an incident wave uy from the left or uj from the right and
call v and u' the corresponding reflected or transmitted waves (see Fig.1)

ug = Agezp(in); uy, = —Agezp(ing); u = —Aexp(in); u' = Aexp(in’) (24)

S

where
n= k(z—vt); ny= K(—z—2't); n= k(—z—vt); n = K(z—1't) (25)
From Egs.(2), (3) and (14) it follows

d
T=T = o (26)

dz
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VA, v

X
Figure 1: Normal incidence: reflected and transmitted waves

where
c=A+2u (27)

Likewise for the corresponding primed quantities to the right of the interface. There-
fore, in analogy with the displacements, we have for the stress

0 = tko Agexp(ino) 7, = ik'c’ Agezp(ing)
T = iko Aexp(in) r =ik'c' A'ezp(in') (28)

At this point it is necessary to make a model of the matching of the two media at
the interface. We consider only the most relevant case of a perfect conctact, in which
both displacements and stresses are continuous at the interface. It follows, for x=0

up+u = uy + v’
nn+r=1+T1 (29)

Since this system must be satisfied for all values of t, the exponentials in it must
appear only as common factors. It follows

kv =k'v (30)
The system then becomes

Ao —A=—Ap+ 4
ZAg+ZA=Z'AL+Z'A (31)

where the impedance Z is defined as:

o
Z=pv=; (32)
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The system (31) can be easily solved for the amplitudes of the reflected and trans-
mitted waves:

(5)=s() &

where

S= (: :,) (detS = +1) (34)
and r,7' and t,t are the reflection and transmission coefficients from left to right and
viceversa, resp.
-1 2 2
1‘=*< M=—r t=——=1-—r t’:——<—=1+r (35)
(+1 ¢+1 (+1
i
where ( is the impedance ratio { = Z7
Similar results may be easily obtained for the case of an incident shear wave and
for stress waves.
It may be useful to show that the amplitudes, given by Eqs.(33)-(35), satisfy the
requirements of energy conservation. In fact, the instantaneous rate of work of the
traction acting on a unit area element, is given by®®

P(z,t) = pvi? (36)

For the incident wave uy, it follows

P, = ZAJW*|Re(i exp ino)]? (37)
Likewise the reflected and transmitted powers per unit area are given by
i
from which it immediately follows
P,+P =P (39)

3.2. Oblique Incidence

In the case of oblique incidence it is necessary to specify the nature of the incident
wave, which may be longitudinal (P), vertically polarized shear (SV) or horizontally
polarized shear (SH). In the first case the directions of propagation and displacement
vectors coincide, while in the second and third case they are orthogonal. Assuming,
as before, that the interface is located in the plane z; = 0, the displacement vector is
in the plane of the propagation vector and of &; in the second case (SV-waves) and
normal to it in the third case (SH-waves).
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Figure 2: Oblique incidence of P- and/or SV-waves. Reflected and transmitted P-

and SV-waves

The case of incident SH-waves is elementary and can be treated similarly to the
normal incidence case examined previously. A detailed treatment may be found in
ref.39. The case of incident P-waves or SV-waves is more complex, because it gives
rise in general to a partial mode conversion (from P to SV or viceversa) and will be
studied in the remainder of this Section.

Again we use unprimed symbols for the quantities in the material to the left of
the interface (¢; < 0) and primed symbols to its right (z; > 0). Furthermore we
use a tilde to distinguish symbols which refer to SV-waves from the corresponding
ones for P-waves: see Fig.2. The incident wave may be a P-wave: u(®, or a SV-wave:
@), In both cases we impose, as before, the continuity of both the displacements and
stresses at the interface x;=0 at all times. Since both the displacements and stresses

. N .. . N +(0
are in the plane of #; and of the incident propagation vector $(®) or p( ), four scalar
equations are required. For incident P-waves they are

u§°)+u1+ﬁ1 =u'1+u~'1
ul) oy + iy = ) + df
) 4+ T = ™+

i) + Tip + Frp = T2 + Tia (40)
Similar equations with «(®) and 79 replaced by @® and #® hold for incident SV-
waves. In either case, since there are four scalar matching conditions, it is not possible
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in general to satisfy them with only two unknowns, i.e. the amplitudes of the reflected
and transmitted P-waves (or SV-waves). Therefore a partial mode conversion is in
general necessary, as mentioned before.

* Proceeding as in Sec. 3.1 we observe that, since Egs.(40) must be satisfied at all
times and for all values of z; at ; = 0, the exponentials included in the expressions
of the displacements and stresses must all be equal. It follows

kosinfy = kysinfy = ksind = ksind = k' sind’ = k'sin @
kov = kot = kv = ki = k'v' = k'v' (41)

Once the incident wave number, kg or ko, and angle, 6, or 00, are specified, the
reflected and transmitted wave numbers k, k, k' and k', and angles 6, §, &' and &',
may be easily obtained from Eqgs.(41). It is then possxble although rather labonous,
to solve the system (40). Its solution may be given in terms of a 4 x 4 S matrix,
such as in Eq.(33). It is more convenient, however, to represent the solution, i.e. the
amplitudes of the reflected waves, A and A, and of the transmitted waves, A’ and A',
in terms of a reflection matrix R and a transmission matrix 7.

(4)-(3) @

(4)=7(5) (43)

R and T are the generalizations of the reflection and transmission coeflicients defined
in Eq.(35). Their explicit expression are

1 ((B - B)(B - B')~(L- N)(L' - N) 2(L'B' + NB)
R=—
b 23(LB' - NB) (B+ BB - B') — (L +N)IL' + N))
(44)
va(B+B) Ja(L+N)
T 2C
D \sar-ny taB+B) (45)
where

a—cot9 a =cotd'; @=cotf; a' = cotf
= (Smﬁn )2 = (smeo )2
M=2y-p),Q=p-pN=QG-M
p= N+pG,p_—N+pG L=—ad'M, L =daM
B=ap, B'=dp B_-ap,B’—-ap
= (B+ BB+ B) - (L+ N)(L' — )
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By following the same procedure or as special cases of the above equations, it is
possible to obtain the corresponding formulas for interfaces between a fluid and solid
or between two fluids.

4. Numerical Techniques
4.1. Finite difference methods

Finite difference (FD) methods are a most natural way to solve partial differential
equations (PDE) numerically. By replacing the derivatives with finite differences, it
is easy to obtain schemes for the reconstruction of the solution, starting from given
initial or boundary conditions. The basic idea is to define a sufficiently fine grid, in
which the independent coordinates are discretized. E.g. in the 1-D case we replace
the continuous variables ¢ and time with ie and té, resp., where i and t are integers
and ¢ and 6 represent very small space and time "units”. Then, if the PDE contains
a single first order time derivative g, one may adopt a “one step” scheme, such as

iz, 8) — y(i,t+ 12 —y(i,1) (46)

or a "two steps” scheme

y(,t+1) - y(i,t - 1)
26

By discretizing also the space derivatives and solving for y(i,t + 1), one obtains
"evolution” equations, that yield y(i,t + 1) as a function of initially assigned or
previously computed values of y in ¢ and adjacent gridpoints only at the time ¢ in
the first case (one step scheme) and at the times ¢t and ¢t ~ 1 in the second case.
If the PDE contains second order time derivatives, only > 2 steps schemes are, of
course, possible. In either case, if the scheme adopted insures a good convergence
and stability, and if € and & are sufficiently small, the set of values y(, t) represents a
satisfactory or even excellent approximation to the PDE solution for a large number
of time steps.

Since several FD schemes, such as Eqgs.(46) and (47) are possible both for the
time and space derivatives, FD methods are very versatile and varied. Problems of
convergence and stability may, however, seriously impair the reliability and usefulness
of FD techniques®?*? and should be carefully investigated before employing them. In
the present context we are concerned, in particular, with their use in the proximity
of an interface between different layers.

To be explicit, let us refer to the wave equation (Eq.5). In the 1-D case, i.e. when
a plane wave travels in the direction normal to the interface, Eq.(5) becomes

¥(z,t) — (47)

2 o) 3] = ola)i )
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¢
180 200 220 2a0 7 .

Figure 3: Transmitted pulse, as computed with the model 2a for the elastic constants
. ! . .
ratio & = 3 and various values of N (number of nodepoints used to represent the

pulse)

Across the interface, in general, both ¢(z) and p(z) vary in a discontinuous way since,
in a multilayer, interfaces are assumed to be sharp. A rigorous FD treatment requires,
however, that the coefficients of the PDE be continuous. Therefore o(z) and p(z)
must be "smoothed out” over a certain range Az, which is, of course, arbitrary. This
arbitrariness may affect the results and lead to large errors and/or instabilities.
To investigate the problem, several "smoothing” models have been considered and
simulations of the propagation of a gaussian pulse across an interface have been
correspondingly performed. In the models called 1, 2, 3, resp., the smoothing has
been performed between I — % and I + %, I'and.T4+1,I—1 and I +1, the interface
being located at x=Ie. While for models 2b and 3a the mean values of the variables
are deduced starting from the values of the parameters corresponding to the adiacent
media, for models 2a and 3b they are averaged only over the adjacent intervals.
(For more details, see Ref.44). The question of the convergence with respect to the
number of the nodepoints N, used to describe a pulse of arbitrary shape, has also
been addressed.
By comparing the computed values of the transmitted pulse (i.e. after crossing the
interface) with the results of an exact calculation, it has been found that
a) model 1 has always perfect convergence and stability
b)  model 2a is stable, but its convergence is good only if N is sufficiently large (see
Fig.3
c)g )model 2b and 3a do not converge to the correct result for large values of the
ratio ‘;—/ (in fact the discrepancy may be very large; see Fig.4), even for smaller values
of "7’ the difference is still small, especially for model 3a (Fig.5).
d}  model 3b has a good convergence up to a point, but then it becomes unstable.



3. Propagation of Acoustic Pulses in Layered Media 67

— HModel 1
O #odal 2a (N=71)

© Hodel Zb (H=71)

180 200 220 240

Figure 4: Transmitted pulse, as computed with models 1, 2a and 2b for %’ = 3 and
N="71
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Figure 5: Transmitted pulse, as computed with models 1, 3a and 3b for ";’:2 and
N=T71
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The above analysis illustrates some of the problems, which may be faced when
dealing with interfaces or boundaries by means of conventional FD techniques. In
2-D and 3-D the situation becomes even worse, since in general it is not possible to
find FD schemes, which provide a complete convergence and stability. Also, it is very
difficult to determine, a priori, the reliability of a particular model.

These difficulties occur only if the ratio "7' is sufficiently large, as shown in the
previous examples. Also, the propagation directions of both reflected and transmitted
waves are not affected. Only the amplitudes may be wrong (to the extent of even
disappearing). In many practical applications one is mostly interested in times-of-
flight measurements, so that the amplitudes are far less critical. However, since real
pulses may be missing or fictitious ones obtained®®, an unreliable simulation procedure
may be very misleading.

In order to thwart these difficulties, while retaining the favorable features of FD
techniques, a sharp interface model (SIM) has been proposed in the framework of the
local interaction simulation approach (LISA)*36. In the two next Subsections, the
basic concepts of LISA and its application to SIM are reviewed.

4.2. The local interaction simulation approach

The time and space discretization, introduced in the previous Subsection, and the
concept of evolution equations suggest the use of massively parallel computers®**¢, In
fact one can establish a biunivocal correspondence between the spatial gridpoints (or
cells) and the processors of the parallel computer, e.g. a Connection Machme (CM)*T.
At this point the "rules of the game” governing the propagation of the dlsturba.nce
from cell to cell are "taught” to each processor, by means of an iteration equation
(the evolution equation), which allows to evaluate independently the displacements
of each node at the time ¢ 4 1, as a function of the displacements of that node and
neighboring ones at times ¢t and ¢ — 1.

In fact, since all the CM processors are independent of each other, also the material
"cells” can be independent, i.e. they can have different physical properties. Therefore,
if we want to study an arbitrarily complex material specimen, we divide it into a
sufficiently large number of cells. The physical properties are kept constant within
each cell, but may vary from cell to cell, in order to match as precisely as possible
with the physical properties of the real specimen. Thus a multilayered specimen can
be represented by one or more cells (all of equal physical properties) for each layer.

Within each layer the iteration equations may be obtained heuristically, by an
inspection of the local interaction among cells. Or, if a PDE, such as Eq.(6) or
(15), is available to describe the propagation in the specimen under investigation, the
iteration equation may be obtained directly from the PDE by means of FD formulas,
such as Fgs. (46) and (47). E.g., in the 1-D case, Eq. (15) becomes

d?*u

Uﬁ = pﬂ (49)
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Upon transformation to a FD equation, it follows
Uiy = (Uitre + Uio1e) +2(1 — Jusy — Uie (50)

where
v

= 6/_6)2 (51)

c
In Eq.(50) the ratio ¢, which is the square of the so called Courant number: C' = vé/e,
can be considered as a free parameter, since both € and é may be chosen at will. From
the theory of FD equations?® we know that the best choice in terms of convergence
and stability, is given by ¢ = 1, which yields

Uigpl = Uigip + Uio1p — Uil (52)

The treatment may be easily extended to 2-D*¢ or 3-D?*7 and to attenuative media®®.
It is important to remark that all these equations (and also the ones obtained for
the interface nodes: see next Subsection) require the same amount of work for each
processor and a minimal amount of processor memory. The first consideration is
important in order to obtain a perfect "speed-up”, i.e. to reduce the computer time
of a factor equal to the number of processors. A minimal requirement of memory is
also important, because if "ceteris paribus” the number of processors becomes very
large, the amount of memory for each of them decreases accordingly.

4.3. The sharp interface model

An exact treatment of the interface in the perfect contact case (see Sec. 3.1.) may
be obtained in the framework of LISA by matching at the interfaces both displace-
ments and stresses. Considering, for simplicity, the 1-D case, it is necessary first to
set a nodepoint right at the interface, so that the continuity of the displacements at
the interface is automatically insured at the initial times ¢t = 0 and ¢ = 1. We then
consider two points P and Q on the two sides of the interface and infinitely close to
it. Since

Uppr + Uy — 2,
U —————

52 (53)
the continuity of u at all later times (¢ > 2) is ensured by imposing
iip = iig (54)
Likewise the continuity of the stresses is obtained by imposing at all times
S (55)

ie.

du , du
v Zi;)" = U(E)Q
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From Egs. (53) and (54) it follows

d’u 20, du u; — Ui
o(52)r & T[(d_i)‘“ - =M
d%u 20" uipy — u; du
(G)e ™ [ = (5l = F0

(57)

where o', p’ and €' are the elastic constant, density and grid step, resp., in the region
past the interface.  is the common value of ip and tig. The grid step € must be
chosen according to the phase velocity »’, so that the condition ¢ =1 is satisfied for
all the layers.

In Egs. (56)-(57) the three unknowns are (2)p, ($)o and Q. By eliminating
the first two and solving for the third one, one obtains the iteration formula for the
interface nodepoints

, -
Uippr = Bl e + Gilisge — Uip1 (58)

where t; and t} are the transmission coefficients given by Eq. (35).

The procedure may be generalized to 2-D and 3-D. Then the interface points
between two materials become ”crosspoints” at the intersection of 4, resp. 8 possibly
different materials. The calculation becomes very cumbersome, since the number
of equations in the system is 16 and 72 in the two cases (2-D and 3-D), resp. By
elimination of the unknowns it is possible, however, to obtain the recursive equations
for the crosspoints: see Refs. 36 and 37. In the case of multilayers, these recursive
equations yield in 3-D:

26*

u = 2Uu—Up_1+ -
t+1 t—1 62(p+p’)

(Uu(i —D+du(i+1)—ulo+d +2p+24")

EPE g 1) (G — 1)+ u(k + 1) + ulk = 1)

+ 4

+

A
+

i—1,7—1) —v(i—1j+1)+w(i-1,k~1)—w(i—1k+1)
I+#l

A+ L7+ 1) v+ L - )+ w(i+ LE+ 1) —w(i+ 1,k - 1)
N - = A+
+—}J,4___p

[ +1) = v = 1) + w(k+ 1) - w(k — 1))
(59)

where the three components of the displacement vector have been called u,(i,j k),
ve(1,j,k) and wy(i,j,k). For brevity, the subscripts and arguments have been omitted,
whenever equal to t,ijk, resp. Similar recursive equations hold for the other two
components of the displacement v¢;; and wey;. As a first example of application of
the LISA/SIM procedure, we show in Fig.6, the propagation of a sine pulse in a three-
layered plate made of fictitious non attenuative materials, of impedance Z = 14.5, 42
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Figure 6: Pulse propagation in a three-layered plate made of fictitious non attenuative
materials

and 25x10% kg/m?s, resp. The propagation is normal to the plate but, for a clarer
representation, is plotted vs. the time (in ps). As a visual aid, a dashed line is drawn
to show the propagation directions. All the reflections and refractions are obtained
automatically, as a consequence of the formalism.

To show also.a 2-D example, we report from Ref.36, the plot of a longitudinal plane
wave, which is spatially infinite but gaussian in time, incident at an angle 6o=20°
into an Al plate (see Fig.7). We first see (at t = 260 a.u.) the wave propagating
into the plate, then doubling at the bottom free surface (¢t = 280 and 320 a.u.), due
to the constructive interference between arriving and reflected waves. Finally we
observe (¢ = 360 and 380 a.u.) both the reflected longitudinal and mode converted
shear waves, travelling at a different angle and velocity, as discussed in Sec. 3.2.
The propagation angles and amplitudes of the transmitted and reflected waves are
in perfect agreement with the predictions of Eqs.(42)-(45) . Again it is remarkable
that also mode conversion effects are automatically provided by the formalism. The
computer time to obtain a videofilm of the pulse propagation, or a few snapshots as
shown in Fig.7, on a Connection Machine is of the order of a few minutes or less*®.
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Abstract

This paper deals with the vibro-acoustic response of a simple structure (a
baffled plate in free space, or a baffled plate closing a cavity) excited by the
wall pressure exerted by a turbulent boundary layer.

It is well-known that the response of a mechanical system to a random
excitation can be deduced from its response to a harmonic excitation. Thus,
in a first step, the harmonic case is examined and two representations of the
solution are proposed : a boundary integral representation which leads to a
system of Boundary Integral Equations equivalent to the initial boundary value
problem ; a series representation in terms of the fluid-loaded structure resonance
modes (free oscillations).

Then the vibration field of the structure and the radiated sound pressure
due to a random wall pressure are obtained through these two representations
of the harmonic response of the system. The important role played by the
resonance modes is pointed out.

A few numerical examples are proposed on two-dimension systems. A com-
parison between numerical predictions and experimental data shows a good
agreement.

1 Introduction

Flow induced vibrations and noise appear in a very wide variety of real life sit-
uations. In transportation vehicles — cars, fast trains, planes, boats — the external
flow induces on the structure a fluctuant wall pressure due to vortices or turbulence ;
vibrations and sound fields are thus generated. The performances of inboard or pulled
sonar devices are reduced because of the noise generated inside the shell containing
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the transducers by the surrounding flow. In buildings, pipes carryinig fluids (water
pipes, central heating systems, air conditioning, etc...) are noisy due to the wall
pressure induced by the internal flow. Many other examples could be listed.

In this paper we are interested in vibrations and noise fields induced by turbulent
flows only. The aim of this study is to help for a better understanding of the physical
phenomena by looking at very simple examples and proposing an efficient numerical
approach.

1.1 The physical systems here studied and the hypothesis made on
the turbulence models

Two simple structures are looked at :

1. The first one is a thin plate extended up to infinity by a perfectly rigid baffle.
Each of the two half-spaces limited by the baflled plate is occupied by a perfect
fluid.

2. The second system is also composed of a thin baffled plate. One of the two
half-spaces is occupied by a perfect fluid. In the second half-space there is a
cavity partly bounded by the plate and containing a second perfect fluid.

The plate is excited by the wall pressure that a turbulent boundary layer exerts
on it. Two assumptions are made :

o the plate vibrations do not modify the flow, and thus the turbulence character-
istics are the same as in presence of a perfectly rigid plane surface ;

o the effect of the flow on the sound propagation equations can be neglected.

Among all the turbulence models which can be found in the literature, we have
adopted to look at the most classical ones, that is the Corcos model and the Chase
model. The theory here developed can easily be used to compute the response of the
system to any other model of a turbulent boundary layer.

1.2 Short analysis of the existing literature

The number of papers dealing with this problem is very important, but it seems
useless to give a rather exhaustive list of them. This study was mainly concerned
with the resolution of the fluid-loaded structure problem under a random excitation,
rather than with the fluid mechanics aspects. Thus, we limit the bibliography analysis
to the papers which we found to be among the most significant ones.

One of the oldest and most interesting articles is due to H. Davigs!. The author
looks at the radiation of a baffled plate embedded in a homogeneous fluid extending
up to infinity. He expands the solution into a series of the in vacuo plate resonance
modes, and gives an approximation of the coefficients.
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N.C. MARTIN and P. LEEHEY? are interested in recovering the turbulence charac-
teristics of a flow from the response of a baffled membrane in air. They start with an
analysis of the membrane response similar to that proposed in Ref.1. Under relatively
severe hypotheses, they can give an analytical approximation of it which depends on
the parameters of a turbulence model. By inversion of this analytical approximation,
they obtain the desired characteristics.

Similar approaches have been adopted more recently by different authors® % °. The
most interesting of these three papers is due to G. ROBERT®. The author presents a
comparison between numerical predictions and experimental data for a plate in air :
due to an experimental assembly of very high quality — the measurement data are
almost, noiseless — the agreement between theory and experiment is quite good and
shows that the light fluid approximation which is used is reasonable for this case.

Finally, we will mention two recent papers by M.S. Howg® 7. These papers deal
with simple structures. Starting from the Green’s function of the fluid-loaded struc-
ture, the author obtains the response of the system to a turbulent wall pressure.
Then, he gives analytical approximations of the result. This approach is similar to
ours ; nevertheless, the results given are not as explicit as ours.

1.3 Summary of the different sections

Only linear mechanical systems are considered here. Thus, it is a priori obvious
that the response of such a system to a random excitation — more precisely, the
statistical charateristics of this response — can be deduced from its response to a point
harmonic force. Nevertheless, some non elementary (though classical) mathematics
is required to establish the relationships between the cross power spectral densities
of the various quantities of interest (structure displacement, sound pressure fields,
etc...) and the power spectral density of the excitation field. Here, we just present
the results which are established in Ref.8 and detailed inRef.9.

1.3.1 Response of a baffled fluid-loaded plate to a harmonic point force or to a
random process excitation

Sections 2 and 3 are devoted to the example of a thin plate, extended by a perfectly
rigid plane surface (baffled plate) and immersed into two different fluids which extend
up to infinity. This is probably the simplest example which can be found. Its main
advantage is that the basic ideas of the present analysis can be developed through
rather simple calculations.

More precisely, in section 2, we consider the system baffled plate — fluid excited
by a point harmonic (deterministic) force. It is first shown that the boundary value
problem which governs this mechanical system can be transformed into a system of
Boundary Integral Equations. Then the modal aspect of the phenomenon is looked
at : the main difference with the most classical approaches encountered in Vibro-



78 P. J. T. Filippt and D. Mazzoni

Acoustics is that use is made of the baffled plate — fluid system resonance modes (free
oscillations modes). The displacement of the plate due to a point harmonic force will
be called the Green’s function of the fluid-loaded plate.

In section 3, an excitation of the plate by a random process is considered. The
process is assumed to depend randomly on both the time and the space variables. The
second hypothesis, which seems to be necessary, is that the process has a zero time
mean value and is stationary up to order 2 with respect to this variable. No hypothesis
is made on the space dependence. It is shown that the Green's function of the fluid-
loaded plate permits to express the statistical characteristics of the useful physical
quantities in terms of the excitation characteristics. By introducing the resonance
modes series of the Green’s function, one gets a representation which shows that the
plate acts on the random excitation wall pressure as filter.

1.3.2 Response of a baffled plate closing a cavity to a deterministic harmonic force
or a random process excitation

This is the topic of section 4 in which the structure under consideration is some-
what more complex. Let us consider a baffled plate and the two half-spaces which it
bounds. One of these two half-spaces is occupied by a perfect fluid. In the second
half-space there is a closed domain having the plate as a part of its boundary ; this
cavity is occupied by a second fluid.

As in the preceeding example, we are first interested in the Green’s function of
the fluid-loaded plate coupled to the cavity. Here again, two aspects are developed :
first, a system of Boundary Integral Equations equivalent to the governing partial
differential equations is established ; then, the solution of the problem is expanded
into a series of the resonance modes (free oscillations modes) of the system baffled
plate — external fluid — cavity.

Finally, the excitation of the plate by a turbulent wall pressure field is considered.
Following the same steps as in section 3, the different power density spectra which
describe the system response are related to the power spectral density of the excitation
process through the Green’s function. In that example too, the filtering effect due to
each of the two components of the system — the plate and the cavity - is very clearly
pointed out by the modal representation of the solution.

1.3.3 Numerical method and results

A fifth section is devoted to the numerical method that has been used and to a
few examples which illustrate the theoretical analysis.

The first problem which must be solved numerically is that of the calculation of
the Green’s functions corresponding to the two examples which have been studied
theoretically. We only paid attention to the resolution of the systems of Boundary
Integral Equations. The modal aspect has not been considered in the numerical ap-
plications. The reason is that, to our opinion, one of the most powerful techniques
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to compute the resonance modes is to define them by their boundary integral rep-
resentation and to use a Boundary Element Method. Thus, the computation of the
resonance modes is a by-product of the B.E.M. programme.

A first set of results shows the influence of the turbulence model : the ratio between
the spectra corresponding to the two classical models (Corcos and Chase) is roughly
a constant. Then a comparison between experimental data and a two-dimensional
calculation is proposed and shows that, under the experimental conditions adopted,
the Corcos model seems to describe correctly the phenomenon.

A final set of examples shows the respective filtering influences of the plate and of
the cavity. Though it is not possible to make a mathematical difference between the
resonance modes, it appears that some of them can be qualified as plate modes while
the other must be considered as cavity modes.

2 Vibro-Acoustic response of a baffled plate to
a deterministic excitation

In this section, we are interested in the harmonic Green’s function of the fluid-
loaded baflled plate, that is its response to a point force excitation which will be
used in the next section to describe the vibrations and acoustic fields resulting from
a random excitation of the plate.

First, the geometrical and mechanical data of the problem are given together with
the governing equations. Following the method developed by P.-O. MATTEI!, the
boundary value problem is reduced to a system of Boundary Integral Equations. Then
the eigenmodes and resonance modes of the physical system baffled plate — fluid are
defined, and the Green’s function of the fluid-loaded baffled plate is expanded into a
series of these modes.

It must be remarked that this problem is not self-adjoint, due to the energy loss
at inifinity in the fluid. Thus, the classical theorems which prove the existence of a
sequence of eigenmodes or resonance modes do not apply. Nevertheless, it is known
from experiment that such resonance modes are likely to exist. In the following we
make a first reasonable assumption that, for any frequency, there exists a sequence
of eigenmodes on which the plate displacement can be expanded into a convergent
series ; the second assumption is that there exists a sequence of resonance modes (free
oscillations of the fluid-loaded baffled plate) on which the plate displacement can be
expanded into a convergent series.

2.1 Statement of the problem

Let us consider two perfect fluids occupying the two half-spaces 2°(z > 0) and
0z < 0) and characterized by a density u. (resp. ;) and a sound velocity ¢, (resp.
Ci).
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In the plane z = 0, a thin plate occupies a domain ¥ with boundary 8X. The
plane complementary ¥’/ of ¥ is a perfectly rigid surface. The unit vector normal to
dZ and pointing out to ¥’ is denoted 7. The mechanical characteristics of the plate
are :

o h = thickness ;

o E = Young's modulus ;

o v = Poisson’s ratio ;

o D = Eh?/12(1 — v?) = rigidity ;
o p = surface density.

The plate is excited by a harmonic (e **) force with density F. Because we are
interested in the plate Green’s function, it is assumed that there is no acoustic source
in the fluids.

Let us define the following notations :

o u(M) : plate displacement, positive in the 2 > 0 direction ;
o p®(Q) : sound pressure in the domain Q° ;
o p*(Q) : sound pressure in the domain ¢ ;

o P(z,y) : pressure step across the plate surface

P(a,y) = lim [p(z,y,¢) = 9'(z,, —¢)]

The functions (M), p*(Q) and p*(Q) satisfy the following system of partial differen-
tial equations :

(A+k2)p@Q) = 0,Qeqe (1)
(A+#)P(Q) =.0, Qe 2)
(DA% — pw?)u(M) + P(M) = F(M), M €X (3)
Tr8,p8(M) = w?pu(M), M €X
=0, Me¥ (4)
Trap' (M) = wpu(M), M €%
= 0, Me¥ (5)
(M) = fu(M) = 0, M €8S (6)

In these expressions we have :
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o k2=w?/c2; k}=w?/c?;

i

o £ and {' = boundary operators which define the boundary conditions that the
plate satisfies.

The uniqueness of the solution is ensured by assuming that p® and p® satisfy a Som-
merfeld condition, or any equivalent condition.

In the numerical examples, the plate is assumed to be clamped along its boundary.
Thus the boundary conditions (6) read :

Teo,u(M) = 0

2.2 Green’s representations of the sound pressure fields and of the
plate displacement ; Boundary Integral Equations

2.2.1 Green’s representation of the pressures p® and p* ; integro-differental equation
for the plate displacement

The system of equations (1-6) can be simplified by introducing the Green'’s repre-
sentation of the pressures p®(Q) and p*(Q) in terms of the plate displacement u(M),
using the Green’s kernel for the Neumann problem in the half-spaces Q¢ and Q%

Let G5(Q, Q") be the Green's kernel of the Helmholtz equation (1) in ¢ which
satisfies the Neumann condition on z = 0 and the Sommerfeld condition at infinity ;
and let G} (Q, Q") be the Green's kernel of the Helmholtz equation (2) in Qf which
satisfies the Neumann condition on z = 0 and the Sommerfeld condition at infinity.
One has :

ke @Q) ke in(@QQ"
Tanr(Q,Q)  4nr(Q, Q")

1 , ? .
"ZHO [ke,ir (@, Q)] — ZHO [keir(Q,Q")] in R

g5, Q) in R

goHiQ, Q"

where Q” stands for the point symmetrical to @' with respect to the plane (the line)
z = 0 and 7(Q, Q') is the distance between the two points @ and Q’. The functions
p¢ and p* can be expressed as functions of u by :

hﬁm
S
I

w2 /E w(M")GE(Q, M)AS(M'), Q € °

—wzui/gu(M’)g,i(Q,M’)dE(M’), Qe ()

3
.
~
QO
=
[l

Thus, p® and p® are no more unknown functions, and the pressure step P(M) is
immediately given by :

P(M) = wQ/Eu(M’) [1eG5 (M, M) + 1iGi (M, M) dE(M) , M €% (8)
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Introducing (8) into (3), one gets an integro-differential equation for » which thus
satisfies the following boundary value problem :
(DA2 — uw2) u{M)
o? [ () [1G5(Q, M) + wGl(Q, M) dB(M") = F(M), M €x
fu(M) = fu(M) 0, M 9oL 9)

If

2.2.2 Boundary Integral Equations equivalent to the initial boundary value problem

Let us introduce vy, the in vacuo infinite plate Green’s kernel, that is the solution

of
(DAY — w?) v, M) = Bar

which satisfies a suitable Sommerfeld condition at infinity. It is given by the well
known expressions :

7

VM M) = e {H6" [ (b, M) — H [ (M, M")]} in R
_ 4/\1’D [zet)\lMM'l B e~>\1MM’|] inR
2
. i
th A=
w1 D

The plate displacement can be expressed as :
u(M) = v+« F(M)+v* P(M)+v x[s1+s2] (M), M €X (10)
This expression contains three kinds of terms :

¢ the displacement due to the excitation force

w(M) = v« F() = [ F()y (0, M)E ()

¢ the displacement due to the pressure step

up(M) = 7 P(M) = [ P(M')y(M, M)x (")

o the displacement due to fictitious sources s; and ss , supported by 0¥ and which
account for the influence of the boundary conditions

ugs(M) = v * [s1+ so] (M)

(these sources are layers of different orders)
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The Green’s representation of the plate displacement will be adopted and, thus, the
layers densities have the following physical interpretation :

o For clamped boundary conditions :

s1 = 81 ® 8sx simple layer defined by
Yy * S1® Sop(M) = /@Efy(M, MY)S1 (M) ds(M') ;
so = Sy ® 8y double layer defined by
¥ ox Sp@8hs(M) = — AE Onearry (M, M")Sy(M")ds (M),
The source density S; reads : —D[Tr 8, Au+ (1 — v) 8, Tr 8,85u] ; the first term
is the product of D by the normal gradient of the shear stress and the second
one is the product of (1 — v)D by the tangential component of the twisting
stress.

The density So = —D[Tr Au—(1—v) Tr d,2u] is D-times the normal component
of the bending moment.

o For free boundary conditions :

351 = 51 ® b5y layer of order 2 defined by
¥ * 51 ® 8l (M) = /az B2y (M, M) Sy (M) ds(M') ;

Il

Ss ® 84y layer of order 3 defined by
3
- [9  Basqaryy (M, M) So(M") ds ()

82

v *x Se® 65’E(M)

I

The source density S; = —D Tr 8,u is proportional to the plate slope.
The source density So = —D Tru is proportinal to the plate displacement.

o For simply supported boundary conditions :

51 = S1® dsx
89 = SZ ® 6’3’2

The source density S; reads : —D[Tr 8,Au+ (1 —v) s Tr 8,85u], and the source
density Sp is equal to —D Trd,u .

Expression (8) of P(M) and the representation (10) of (M) provide two integral
equations relating these two functions and the boundary sources densities S, and S5.
Two additionnal equations are obtained by taking the values on 8% of v and 8,u
expressed in the form (10). Depending on the derivation orders which occur, it can
be necessary to account for discontinuity steps (see, for example, Ref.11).
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Remark

This is not the only possible choice. Other boundary integral equations can be
obtained by taking the value on 8L of higher order derivatives of u. Though this leads
to more singular kernels the equations so obtained can easily be used for numerical
computation : the most singular equations have proved to be generally more sensitive
to resonance frequencies.

2.3 Eigenmodes and resonance modes of the physical system baf-
fled plate — external fluid ; modal series representations of the
solution

It is first necessary to write the equations of motion in the energetic (weak) form.

This formulation of the problem seems more suitable for defining the eigenmodes and

the resonance modes of the system. Finally, the representations of the solution as
series of eigenmodes and of resonance modes are established.

2.3.1 Weak form of the governing equations

Let e, anf e; stand for the ratios pe/p and p;/p respectively, and let us define the
following forms :

Bulw) = [ [ u(d) [G5 (M, 1) + G (M, M)] v* (MVAE(M)dS(M)
wo) = [ (M) (M)as ()
8*u(M) 8%v* (M)

a(u,v) = D/):{AM(M)AU*(M) +(1-v) [2 dzdy Ozdy

2u(M)d%w* (M) 8%u(M) 8%v*(M)
8x? 8y? B oy* dz? ]}dE(M)

(11)

(in these expressions, v* stands for the complex conjugate of v). The integro-differential
system (9) is equivalent to the variational problem : find u such that

a(u,v) — p® [(u,0) = fu(u,v)] = (F,v) (12)
for any v in a suitably chosen functional space.

2.3.2 Eigenvalues and eigenmodes of the system baffled plate — external fluid

The eigenmodes U, and the eigenvalues A, of the system are the non-trivial solu-
tions of the homogeneous variational equation :

a(Up,v) = Ap[{Un,v) — Bu(Un,v)] (13)
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It must be noticed that eigenmodes and eigenvalues are frequency dependent (this is
a classical property wich appears in many problems of mathematical physics, as, for
example, in room acoustics when the boundary properties depend on the excitation
frequency).

We assume that there exist a countable sequence of such modes and that it de-
fines a basis for the functional space which the plate displacement belongs to. As a
consequence, the solution of (12} can be expanded into a series of the U,. To each
mode correspond two pressure fields given by :

PQ)
PiQ)

i

Pelw /U o(Q, M')dE(M')
~ pw / Un(M')GL(Q, M")dT (M) (14)

The eigenmodes satisfy an orthogonality relationship. Indeed, let us introduce
v = U} in equation (13) ; one gets :

o(Un,Up) = An[{Un, Up) = Bu(Un, Uz)]

Taking into account that the forms involved in this equality satisfy symmetry rela-
tionships, it is easy to see that the following equality is true :

a(Un: U:n) = Am [<Un1 U:n,> - ﬁw(Una U;L)]

Assuming that all the A, have an order of multiplicity equal to 1, the orthogonality
relationship is obtained :

Un U = Bu(Un, Up) = a(Uy,U}) = Osim#n (15)

It can easily be proved that all the eigenvalues have a non zero imaginary part (the
physical system loses energy by acoustic radiation).

2.3.3 Resonance modes and resonance angular frequencies of the system baffled plate
- external fluid

A resonance mode w,, of the baflled fluid-loaded plate corresponds to a free os-
cillation of the system. The corresponding angular frequency w, has a non zero
imaginary part because the system is a non-conservative one. The resonance modes
are the non-trivial solutions of the folowing variational problem :

a{Wn,v) = pw? [(wa,v) — Bu, (wn,v)] (16)

Here again, we assume the existence of a countable sequence of resonance modes and
that this sequence is a basis for the functional space which the solution of the non-
homogeneous equation belongs to : that is the forced displacement of the plate can
be expanded into a convergent series of the resonance modes.
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It must be remarked that the resonance modes and the resonance frequencies are
related to the eigenmodes and eigenvalues by

wy, = Up(wy)
uwﬁ = Ap(wn)

It is easily shown that if (wp,w,) is a solution, then (w_p, = w},w_, = —w}) is a
solution too. Two pressure fields can be associated to every resonance mode by :
VEQ) = mewd [Un(M)GE, (@, M)A(M))
VAQ) = —pwl [ Ua(M)GL,(Q M)AZ(M) (17)
Finaly, we will admit that the angular eigenfrequecies w,, (n = —oo0,---,—2,—1,

+1,+42,--+,400) have a negative imaginary part (this property is not difficult to
establish).

2.3.4 Representation of the solution as a series of eigenmodes

The solution of equation (12) is sought as a series of the U, of the form :

Z anUn(M
n=1
This leads to the following equation :
zan{ (Un,0) = g [(Un v) = BulUn 0)]} = (F,0)

The orthogonality relationship (15) leads to the result :

i (F,U,)
A - ;LwQ (Un, UY)

Un(M) (18)

This series is defined for any real uw?, because the A, have a non zero imaginary
part.

Series representations of the sound pressure fields p°(Q) and p*(Q) can be associ-
ated to this representation of the plate displacement :

A (FU)

Q) = Loy @
4 = A (RUD L
PQ) = 3 ) (19

Starting from these three series we now deduce the representation of the solution in
terms of the resonance modes.
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2.3.5 Representation of the solution as a series of resonance modes

The resonance modes are naturally involved in the expression of the response of
the system to a time dependent excitation : it can be obtained by taking the inverse
Fourier Transform of the expressions of the harmonic regime.

Let us assume that the excitation of the plate is real (from the physical point of
view, this is a realistic assumption ; from a mathematical point of view, there is no
loss of generality). The response of the plate to an impulse force F(M)6(t) is given
by :

1 &t An (F,U%

a(M,t) = — : Un(M)e™™*d
& ) 27rnz::1 —oo Ap— pw?a(U,, U2 n(M)e v

Each Fourier integral is calculated by the residue method which points out the poles
of the denominators, i.e. :

Wn = Wp—1Tp € w_, = —Wp — 17Ty
It is easily shown that

Ap(—w*) = Al(w) andthus AL(—w*) = —AL*(w)

n

This implies that 4(M,t) is zero for t < 0 (this corresponds to the physics) ; for
positive values of the time variable, one has :

~ - pn (F,wy) W t—Tat
M,t) = M nt—Tn
i o Z {A’ (wn) — 2pwna (wn,w*)w n(M)e
NW:LQ (F,wp)*

- M)e®n ™t fort > 0
N (o) — 2gis, aum, wgy+ M) }

A direct Fourier Transform of this last expression provides the representation of the
plate displacement as a series of the resonance modes :

— wg (F,wy) wn(M)
- Z {A' (wn) = 2pwn a(Wn, wy) w — Dn) — Tn

puy? (Frwp)*  wip(M)
A:(w") - 2/‘“‘):1 a(wm w;)* z(w + ‘:)'n) — Tn

(20)

The role of the resonance modes of the fluid-loaded plate appears clearly : when the
excitation frequency is equal to the real part of a resonance frequency, the corre-
sponding mode contribution is a leading term which, in many cases, contains the
major part of the energy. This is, of course, a well known result. The less classical
result (at least in the acoustic literature) is the mathematical form here presented.
More classical is the representation of the fluid-loaded plate displacement by a series
of the in vacuo modes.
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Similar expressions for the pressure fields are easily obtained :

oo wQ w?* e
pe(Q) — 3 E{ By <F7 n> \I’n(M)
n=1

A (wn) = 2pwn a(wn, wk) {lw — @) — Tn

oy CATNI 1))
At (wn) = 205 a(wn, w})* 1w + Bn) = T
prow? /E wa(M")GE, (Q, M')dS (M)
R piw? (Fowp) Q)
p (Q) =t n;l {A;(wn) - 2/“‘)71 a(wn>w:‘;) l(w - &") —Tn
o mwy? (Fwp)*  9.7(Q)
Ap(wn) = 2p0p a(wn, w})* 2(w + Bn) — T

— s, [ (MG, (Q, M)AZ (M) (21)

=
3
e

Il

2

&

L
!

As a final remark, it must be noticed that other expressions of the pressure fields can
be obtained by introducing expression (20) into (7) ; but the sound fields associated
with the free oscillations of the plate will not appear any more.

3 Vibro-Acoustic response of the system baffled
plate — fluid to a random excitation

Let us now consider that the plate is excited by a random process. In order to
avoid useless complications in the proofs and formulas, it will be assumed that the
same fluid occupies both half-spaces Q¢ and Q* (for two different fluids, the changes
to be made are obvious).

The excitation is described by a process which depends randomly on both the time
vaviable and the space variables. As a function of time, the process is assumed to
have a zero mean value and to be stationary up to order 2 ; no restrictive assumption
is made on its space dependence.

In a first subsection, the relationships between the cross power spectral density of
the exciting wall pressure and the cross power spectral densities of the plate displace-
ment field and the radiated pressure fields are established. In the next subsection,
the response of the system to the random process is expanded into a series of the
resonance modes.Simplifications are possible if either the Corcos model of turbulence
or the Chase model (or any similar model) is used.
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3.1 Relationship between the cross power spectral density of the ex-
citation and the cross power spectral densities of the system
response

Let f(M,t) be a random wall pressure field defined on the plane z = 0 : as a
function of time, it is assumed to have a zero mean value and to be stationary up to
order 2. Let M be the vector with components the co-ordinates (z,y) of a point M
in the z = 0 plane. Using a space Fourier transform, the variables (¢, 7), co-ordinates
of a point =, are associated to (z,y) ; and the vector 2 is associated to M. It can
be shown (see Ref.12) that the cross power spectral density of the process f can be
writen as :

S/ M M) = [ F(M,Ziw0) ™S (G w)e B ER (', 2 w)agdy (22)

In general the functions F(M,Z,w) and S(E;w) cannot be measured. But, if the
process is stationary with respect to the space variables, one can choose F (M, Z;w) =
1 ; then, S(Z;w), which is the space Frourier transform of Sy(M,M’;w), becomes
accessible to measurements. In the models of a turbulent wall pressure that they
proposed, Corcos and Chase give analytical forms of this function.

In Ref.8, the author shows that the cross power spectral densities of the pate
displacement and of the sound pressure fields have an expression quite similar to
expression (22) :

Su(M,M'w) = AQU(M,E;w) (E5w)U* (M, Z;w)dedn
Spe(M, M'jw) = /mPE(M,E;w)S(E;w)Pe‘(M',E;w)d{dn
Sy(M, M'w) = /mPf(M,E;w)S(E;w)P“(M’,E;w)dgdn (23)

In these equalities, the set [U(M, Z;w), P¢(M,Z;w), P{(M,Z;w)] is the response of

the system to the harmonic deterministic excitation F(M,Z;w)e BME et [ug(M),
po(M), p’Q(M)] be the response of the system to a harmonic unit point force acting
at point Q. Then the functions U, P® and P* write :

UM, Zw) = [ uo(M)F(Q Fw)e%Edr(Q)

P(M,Ziw) = [ph()F Q,E;w)eﬁ’éfdz(cz)

P Zw) = [ po(M)F(Q Ziw)e*az(@)
This implies the following result :

S/, M%) = [ [ ug(M)5;(@, Q5w (M)Z(@QUS(Q)
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Se(M, M%) = [ [ p5(M)S5(Q, Q'sw)pl (M)Z(Q)IS(@')
SulM M'w) = [ [ ph(M)5,(Q @0l (M)ZQUEEQ)  (24)

An intuitive proof can be given. The cross power spectral density Sp(M, M';w) of
the exciting wall pressure can be estimated by taking the mean value, over a large
number of events, of cross spectra of the form f(M;w)f*(M’;w), where (f(M;w) is
the Fourier transform of f(M,t)). The corresponding plate displacement is given by :

u(Miw) = [ ug(M)f(@5w)dZ(Q)

Its cross power spectral density S,(M, M’;w) is thus approximated by taking the
mean value of expressions of the form :

w0t (50) = [ [ ug()f(Qw)f(@5w)up (M)IZQ)E@)
In this equality, the only random term is the product f(Q;w)f*(Q’;w). By taking the

mean value (u,u*) of u(M;w)u*(M’;w), the mean value (f, f*) o f(Q;w)f"(Q’;w)
appears :

(u, u*)

(//uQ(M )f( Q;w)f‘(Q';w)ua,(M/)dz(Q)dg(Q,O
Jo Jo e (@i (@50} (M)2(@)12(@)

By replacing (f, f*) by S#(Q, @’;w), the first equality (24) is established. Using (22),
one gets (23).

3.2 Representation of the response of the system to a radom wall
pressure by a resonance modes series

In terms of the resonance modes, the Green’s kernel ug(M) takes the form :
&2
wn(Q) wn(M)
S

(On) — 2000 a(wn, wr) t(w — @p) — Tn

pioy? wn(Q) wi(M) }

- A (@n) — 2p07 a(wn, w})* t(w + @) — Tn

(25)

Let us define the following coefficients :

~2
pidy,

An = [AL (@) — 2005) a(wn, w})
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xin@) = [ [0a(@5/(Q Q'10)wi(@)Z(@)45(@)
n@) = [ [0n(@8/(Q Q'10)wn(@)Z(@)4E(Q)

onl) = [ [wi(@57(Q Q'10)wi(@)Z(@)4E(Q) (26)
Then the cross power spectral density of the plate displacement writes :
o Anwa(M) 1 Anwn (M)

‘. _
SulM, Mw) = T;mz::l W= @) =T "=t (W = Dm) — Tm
3 i Anwn(M) 5 Apwm(M)
mimsit(w— On) = Ta" =1 (W + D) = Tm
_ i i Aqwi(M) 3 Ajwi (M)
(WD) =T T =W — @) — T
o0 (e * * 1
+ Z Z Anwa (M) :'m Amwm (M) @7)

n: lmslz(w+‘:/n)_"7—n _l(w+&)m)—7m

The importance of the resonance modes of the fluid-loaded plate appears clearly on
this expression. Indeed, two kinds of terms are dependent of the angular frequency
w : the coefficients x.; 23( ) and the denominators +1(w & @y,) — 7. The first kind of
terms contains the frequency dependence of the random excitation, while the second
kind describes the frequency response of the fluid-loaded plate. Within a frequency
band centered at the real part @y of a resonance angular frequency, the corresponding
component is, in general, the leading term of the series and, thus, can be sufficient
to describe rather accurately the behaviour of the plate. Between two successive
resonance frequencies, the response of the plate has a much lower amplitude.

In a similar way, the cross power spectral densities of the sound pressure fields
can be expanded into the following series :

AVR(M) ALY (M)

nm

NgE

SeMM’; =
pe (M, w) 1w — Dp) — Tn (W — Om) — Trm

A VR (M) 5 ARVER(M)
z(w — @) = T T =1 {w + D) — Tm

ARVRN (M) 5 ALURN(MY)
{w+ dn) — Pt (W — D) — T

AR M) AR V(M)

W+ Tn)— ™™

|
gl
e &Mg

3
i
3
I
o

]
NgE
gk

3
i
o
3
I
_

+
gk
NgE

—1(w+Om) = Tm

3
i
!
3
1
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o ALM) o AL(M)
Z nm

1w — D) — Ty
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Syu(M, M w

—1 (W = Din) — Tm

3
1l
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AnVL (M) N A}, (M)
E i (w =) — T T (W Oy) — T
AU(M) o, ALYE(M))

Xnm

—1{w — Dm) — Tm
(M) ARV (M)

3
n
(@ + Br) — 70 ™ 20 (@ F Gyn) — T

(29)

These last expressions show the filtering exerted by the plate on the excitation wall
pressure : indeed, the acoustic power radiated by the plate will present sharp peaks
around the real part of each resonance frequency of the fluid-loaded plate.

4 Vibro-acoustic response of a baffied plate clos-
ing a cavity and excited by a deterministic har-
monic force or a random wall pressure

In this section, a more complex structure is considered : a baffled plate in contact
on one side with a fluid extending up to infinity, and on the other side with a mass of
fluid contained in a bounded domain. We concentrate on the response of this system
to a point harmonic force acting on the plate. Indeed, the response to a random
process is obtained in exactly the same way as for the former example (for details,
see D. MazzonT'?),

Here again, one of our objectives is to develop a Boundary Element Method ap-
proach, similar to that proposed by P.-O. MATTEI in his thesis'® for much simpler
cases (baffled plates or cylindircal shells). The second objective is to develop the
modal aspect, that is to expand the solution into a series of the resonance modes of
the system baffled plate — external fluid — cavity.

The statement of the problem is given in the first subsection. Then the boundary
value problem, which has a unique solution, is reduced to a system of Boundary
Integral Equations : by a convenient choice of the boundary integral representations
of the various unknown functions, this new system of equations has a unique solution
too (subsection 2).

In subsection 3, eigenmodes and resonance modes are defined and the response
of the system to a point harmonic force is expanded into a series of these modes. A
fourth subsection the case of a radom wall pressure excitation is considered. Here
again, it is pointed that the system composed of the plate and of the cavity acts as a
filter on the excitation process.



4. Response of a Vibrating Structure to a Turbulent Flow Wall Pressure 93

4.1 Statement of the problem

Let us consider a perfect fluid which occupies the half-space Q%(z > 0), and which
is characterized by a density . and a sound speed ce.

A thin elastic plate occupies the domain ¥ of the z = 0 plane, with boundary
8Y. The plane complementary ¥’ of ¥ is a perfectly rigid surface. The unit vector
normal to 8L and pointing out to ¥’ is denoted by 7. The physical characteristics of
the plate are :

o h = thickness ;

¢ E = Young’s modulus;

o v = Poisson’s ratio ;

o D = ER®/12 (1 — v?) = rigidity ;
o p = surface density.

Let Qf be a bounded domain in the half-space z < 0, with a boundary composed
of X and a surface 6. The unit vector normal to ¢ and pointing out to the exterior
of ' is denoted by ¢. This domain is filled up with a perfect fluid characterized by
a density p; and a sound speed c;.

The plate is excited by a harmonic (e™**) source with density F. Finally, it is
assumed that there is no acoustic source in the fluid domains.

Let us adopt the following notations :

o u{M) is the plate displacement, positive in the z > 0 direction ;
o p?(Q) is the acoustic pressure in the domain Q° ;
o p¥(Q) is the acoustic pressure in the domain € ;

o P(z,y)is the pressure discontinuity across the plate defined by

P(I,y) = siiorg() [pe(zy:%e) - pi(z>y7 _6)]

The functions u(M ), p*(Q) and p*(Q) are solution of the following boundary value
problem :

(A+,)p°(Q) = 0,Qeq (30)

(A+k2) Q) = 0,Qe (31)

(DA% - p?) (M) + P(M) = F(M), M €¥ (32)
Tro,p°(M) = W pu(M), M X
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= 0, Me¥ (33)

Trop (M) = wpu(M), M €% (34)
w(M) = fu(M) = 0, M €8% (35)
tp(Q) = 0,Q€0 (36)

In these expressions we have :

o k2 =w?/c?; k= w?/c?

o ¢ and ¢’ = boundary operators which define the boundary conditions satisfied
by the plate along 9% ;

o £; = boundary operator which defines the boundary condition satisfied by p* on
g.

The uniqueness of the solution is ensured by a Sommerfel condition on p°.
For the numerical applications, the plate is assumed to be clamped ; thus, condi-
tions (35) read :

Tru(M) =
Tréou(M) = 0

The acoustic pressure inside the cavity is assumed to satisfy a Dirichlet condition :

Tp'(Q) = 0,Q¢€o0

4.2 System of boundary integral equations equivalent to the bound-
ary value problem

The system of equations (30-36) can be simplified by introducing the Green’s
representation of the external pressure p®(Q) in terms of the plate displacement u(M ),
using the Green’s kernel for the Neumann problem in the half-space Q€ :

Q) = Wi [[u(M)GHQMNIS(M), Q € (37)

A further simplification could be obtained by introducing the Green'’s representation
of the inner sound pressure in terms of the plate displacement, using the Green'’s
function of the domain Q. Due to possible real eigenfrequencies for the cavity, this
expression does not exist for any real frequency. So we prefer to avoid to use this
simplification.

To get a system of boundary integral equations equivalent to the boundary value
problem (by “equivalent” we intend that the conditions for existence and uniqueness
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of the solution are the same) use will be made of the following Green’s representations :
a/ for the inner pressure :

P@ = ot [u()G@ M0 + [ {T4(@)0064(@, @)
— Troep(Q)GAQ, Q' }da Qe Mex (38)

(where G.(Q, M') is the Green’s function for the half-space z < 0 abd satisfying a
Neumann condition on z = 0)
b/ for the plate displacement :

u(M) = yxF(M)—yxP(M)+v%*][s1+ s2] (M) (39)

(expression identical to 10).

Expression (39) is the first boundary integral equation of the system that we are
looking for. A set of two other boundary integral equations is deduced from the
boundary conditions satisfied by the plate displacement :

byx P(M) —flyx[s1+s] (M) = byxF(M), M €8%
fyx P(M)— Cyslsy+ s (M) = CyxF(M), M€OS  (40)

The expression of P(M ) gives an additional equation :

P(M) = w* (M) [neGS(M, M) + wGl(M, M")] dE()
- [ {mr(@)acGi (M, @)
~Trder* (Q)GL(M, Q") } do (@), M € & (41)

The last boundary integral equation is obtained from the expression, on o, of the
integral representation of p(Q) :

@, Doy [{Ti(@)8064(@. @) - Traer'(@)64(Q, @)} do (@)
—w ui/zu(M’)g;(Q,M’)dz:(M’) =0,Q¢co0 (42)

Tt must be remarked that the two functions Trp*(Q) and Trdyp*(Q’) are related by
the boundary condition satisfied by p*(Q) on ¢. Thus the system of boundary integral
equations is composed of equations (39), (40), (41) and (42).

4.3 Eigenmodes and resonance modes of the physical system baffled
plate — external fluid - cavity ; modal series representations of
the response to a harmonic deterministic force

To define these modes, it is useful, here again, to first introduce the energetic
(weak) form of the governing equations. Let us introduce the classical scalar products
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on ¥ and in Q¢ :
(u,v) = /Euv"d):
() = [ pvrac

We also define two integral forms (derived from the expressions of the potential energy
of the plate and of the radiated acoustic energy) :

a(u,v) = D/):{AuAU'

8y %W bt 8% bR
+(1-v) 20— — — -—— x
dxdy Ozdy  Oz? 0z2  Oy? Oy?

BE(u,v) = /E[Egi(M,M’)u(M)v*(M’)dE(M)dE(M')

4.3.1 Eigenvalues and eigenmodes

The eigenvalues A, and eigenmodes U, P,, of the system are the non-zero solutions
of the following variational problem :

a(Up,v) — (TrPp, v)
~((V P, V) + w*pi(Un, Tre)
An

+ATracanTIW‘ = —7<<Pn,1/})) (43)

NAn [<Uny U> - EE/B:J(Un’ U)]

I

In these expressions, v is any function of the functional space which the plate displace-
ment belongs to : in particular, it satisfies the same boundary conditions. Similarly,
% is any function of the functional space which the acoustic pressure p* belongs to : it
satisfies the same boundary condition on ¢ and a homogeneous Neumann condition
on X. It will be assumed that a countable sequence of such modes exists and that
this set is a basis of the space of solutions (u, p*).
An orthogonality relationship between the eigenmodes can be established. To this
end, (v,v) is replaced by (U7, P;) in (43). This gives :
a(Un, UZ) = (TxP,, U2 il [(Un, U3) = €8 (Un, U;)]

* 2 *
—{(VPn, VP])) + w pi{Un, TrP])

A
+/Tr8C:PnTqu — —Z((Pw, P}))
ag

¢

By inverting n and g, a second set of equalities is obtained :
a(Uq, Up) = (TrPq, Up) = phg[(Ug,Up) — £eB5(Ug, Uy)]
(T Py, VL) + sl TrP)
A .
+ [ ToeP TP, =~ S PY))
- 2

T
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Accounting for symetrical terms and for the fact that P, and P, satisfy the same
boundary condition on ¢, the following equalities are deduced :

—(TePp, Up) + (TePy, Up) = p(An— Ag) [(Un, Ug) = eeB5(Un, U)]
Ap— A .
——;a*—q«Pm P))

i

whi [(Un, TrP]) = (Ug, TrPy))

Assuming, for simplicity, that A, # A4 for p # ¢, an obvious linear combination of
the former two equalities provide the orthogonality relationship :

P, P!
O 24D s sty - o) = 0, ¥ £ (aa)
For n = q we set :
Py, Py .
Ny = %—Zﬂ-ﬁ + 1 (U0, U) = eeB5U, U] (45)

It must recalled that U,, P, and A, are frequency dependent.

4.3.2 Eigenmode series representation of the solution

The variational form of the governing equations (30-36) reads :
a(u,v) = pw? [{u, v) — eef5(u, v)] — (Trp', v)
w2
T

(T8, 0) + Tt ) + o, o) + [ Todepwt = 0 (46)

1
el
<

Let us look for a series representation of the solution (u, p*) of the form :

(; AU, Z_j AnPn)

By introducing this series in (46), with (v, ¢) replaced by (Uy, P;), one gets :

Z An{a(Un, Ug) = p® [(Un, U) = £.85(Un, U3)] = (TxPa, U;) } (F,U2)

w2
ZA { (VP, VE})) + = ((Pn, 1Y) + pwe(Un, TrP})
+ / Trac«PnTquda} =0
Then a{Ux, U;) and {(V P, V P}))are replaced by their values :

> An{p (Mg - w?) [(Un, U2) = eoBE(Un, U;)]
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TP, U) = (TePo, UD} = (F,U;)
Py, P*
ZAn {— (Aq - wQ) ((an)_) + uw2ai [(Un, Tqu‘)
n i
—(Uq, TrP)) +LTT8C«PnTIquU - /;TragquTrPnda} =0

Accounting for the orthogonality relationship (44) and recalling that P, and P, satisfy
the same boundary condition, one gets :

(F,U;)

A, = ———&°
! Ng(Ag—w?)

(47)

The coeflicients A4 are uniquely determined for any real angular frequency because
all the eigenvalues A, have a non-zero imaginary part.

4.3.3 Resonance frequencies and resonance modes of the physical system baffled plate
- external fluid — cavity

The resonance angular frequencies w, and the resonance modes w, are the non
trivial sotutions of the following variational equations :

a(wp,v) — (Trl,, v)
—((VWp, VYY) + whpi(wn, Try)
+/TI‘8<1‘I/.,1TI"$* = -

uwﬁ [(wn, v) — eef5 (wn, v)]

{((¥n,9)) (48)

2JE,

It is obvious that they are related to the eigenvalues and eigenmodes by :

“421 = Ap(wa)
Wnp = un(wn)
U = pnlwn) (49)

As for the baffled plate case, it can be shown that the first equation (49) has two
solutions with negative imaginary parts, and symmetrical with respect to the real
axis :

Wy = Wp — 1Ty, W_p = —Wp — 1Ty

4.3.4 Resonance modes series representation of the solution

To get the resonance modes series which represent the response of the system to
an external harmonic point force applied at a point M’, the same method is used :
in a first step an inverse Fourier transform is performed which gives the response of
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the system to a pont impulse force ; then a direct Fourier transform leads to the
following result :
S wn(MYwn (M)
up(Miw) =
el ) 7»2::1 [Nn(wn) [An(wn) = 2wn] (w — wn)
w (M )w (M) ]

ki3

N (o) T () = 208 (@ ) (50)

oo

Lo wa (M) (Q)
Par(Qiw) = 2 [Nn(wn) [An(wn) — 2wn] (w — wn)

i ws (M)V2(Q)
N3 on) [N (i) — 28] (@ + w;)} (51)

. ' 3 © wn(M’)ﬂowr%
Phar(@iw) = n; {Nn(wn) [Ar(wn) = 2wn] (w = wn)
Jwn

M)Go, (M, Q)dE(M)
w;(M'mow”
NHwn) [AL (wn) — 2w2) (w + w})

Jfwnongs, o, Q)dZ(M) (52)

These expressions will be useful to represent the various cross power spectral densities
which characterize the behaviour of the system when it is excited by a random process.

4.4 Response of the system baffled plate — external fluid — cavity to
a random wall pressure

It is very easy to show that the cross power spectral densities of the plate dis-
placement and of the acoustic pressure fields read :

Su(M, M'w) = /E[DUN(M;w)sf(N,N';w)u;v,(M';w)dz(N)dz(N')
5, (Q, Qs w) A/}:pi,(Q;w)Sf(N,N’;w)p,‘i},(Q’;w)dE(N)dE(N')
(@ Q5w) = [ [ ph(Qiw)Si(N, Niwlp(Qw) (VSN (53)

Introducing the expansions (50), (51) and (52) in these expressions, the expansions
of the former cross power spectral densities are obtained. Let us define the following
coeflicients :

Ii

1

A, = —mm———
" Ny [A}, ~ w)



100 P. J. T. Filippi and D. Mazzoni

Il

Xm = [ [ waN)S, (N, N w)ur (V) AE()AE (V)
Xim = [ [ wnlV)Ss(N, N w0)wm(N)AE(N)AS(N)

Xom = [ [ wh(V)SHN, N 0)wi, (N)aS(N)aS (V) (54)

Thus, the cross power spectral density of the plate displacement is given by :

o~ Anwna (M) | Al wi(M')

Ms
™

Su(M,M"w) = nm T
n=lm=1 % —~ Wn W= W
B AR Awwn()
n=lm=1 Y + w;t W+ W
3 i i Aywn(M) 5 Apwn(M')
S v—wy T wtwy,
oo 00 At * M A* * MI
— Z Z nwn( ) ?rm mwm( ) (55)
n=lm=1 % + UJ; w = w:n

Similar expressions for the two sound pressure fields are readily established.

On these various expressions, the importance of the resonance modes is obvious.
Assume that w is equal to the real part &g of the q-th angular resonance frequency w.
Then the g-th term has, in general, the largest value ; in many circumstances, its only
contribution is rather sufficient to describe correctly the system within a relatively
large frequency bandwidth.

5 Numerical solution of the Boundary Integral
Equations for the fluid loaded structure prob-
lems and examples

As we have seen, the cross power spectral densities which characterize the be-
haviour of a fluid-loaded structure under a random excitation are deduced from its
response to a point harmonic force. This section is devoted to a short description of
the Boundary Element Method that we have used to compute such a response for each
of the two systems which have been considered, that is the functions ug(M), pg(M)
and p’Q(M ). Then a few results are presented : the responses of a system to different
models of turbulence are discussed ; numerical predictions on a two-dimension system
are compared to experimental data ; the respective influences of the two components
of the system — the plate and the cavity — are pointed out.
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5.1 Boundary Element Method for the system baffled plate — external
fluid

To get a clearer presentation, it seems useful to introduce a first simplification by
assuming that the two fluids are identical ; this leads to :

pe(M) = wiho [ ug(M)Gu(M, M)ID(M'), M € 0°

ph(M) = —w%/EuQ(M')gw(M,M')dz(M'), M e (56)
Po(M) = p4(M) — ph(M)
= 2w /E uo(M")Gu(M, M"\dZ(M'), M € £ (57)

where G, is the common Green’s function for the Neumann problem in the half-spaces
Q° and QF.

Then, the boundary condititons are chosen. As an example, the plate is assumed
to be clamped along its boundaries. This implies that its displacement takes the
form :

ug(M) = (M) + [ v(M, M")Po(M)dZ(M)
£ [ MM 1) = By(M, M) S2( )] ds (1)
ug(M) = (M, Q) (58)
The layer densities S; and S, are related to the displacement by :

Sy = —D|Tr8,Aug+ (1 —v) 8, Trd,8,ug]
SQ = —-D [Tr AUQ e (1 - I/) TI‘@SZUQ] (59)

The modifications to account for other boundary conditions and different fluids will
be obvious.

The four unknown functions ug(M), Po(M), S1(M’) and Sy(M') are solution of
a system of Boundary Integral Equations :

uq(M) = [ 7(M, M')Po(M")ax (i)

= |y [y(M, M")S1(M'") — 8py(M, M")So(M")]ds(M') = ud(M), M € £(60)

P(M) -—2w2p0/EuQ(M’)gw(M,M')dE(M’) 0,Mes (61
~Tr {_/Ey(M,M’)PQ(M')dZ(M’)

— [, M) = By (0, M)Sa(M )] ds (M) | = T u(M),
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M €8x (62)
—Tra, {AV(M,M’)P(M’)dE(M’)

— [ 0L M)S 00') = By (M, M)S2(M )] s} = Troua (),
M €% (63)

The last two equations are obtained by taking the value on 8% of the expression (58)
of ug(M ), and that of its normal derivative. Other integral equations can be obtained
by taking the value on 8% of higher order derivatives of the same expression.

The following classical numerical method is adopted. The unknown functions
are approximated by stepwise constant functions and a collocation system of linear
algebraic equations is built up. More precisely, the surface ¥ is devided into two sets
of subelements :

o for equality (61), ¥ is divided into N* elements £ with one interior collocation
point M ; on such a surface element, ug(M) is approximated by a constant
Ug ;

o for the other three equalities, ¥ is devided into N? elements ¥? with interior
collocation points M? ; on this surface element, Pg(M) is approximated by a
constant P,.

The plate boundary 9% is divided into N elements ¢, with interior collocation point
M, ; on this element, the functions S;(M') and Sy(M') are approximated by constants
S1,s and Sg s respectively.

Let us now define the following matrices :

e - [Ep'y(M(}”,M’)dZ(M’) g=1,2--- N* r=1,2,.--,NP

Fflls - /V(Ml;LL’MI)dg(M/) ) q:112"'1Nu1 3:1727"')N

Ss

re, /8n/'y(M"‘M’)d§(M’) L g=1,2--- N* s=1,2,---\N
GLE = / G.(M ds(M" |, ¢=1,2---,N*, r=1,2,--- NP
7"’/2 V(Mo MS(MY) , t=1,2,---,N,7=1,2,-,N?
’yts /’y(Mt,M)dg(M) , t=1,2,--- N, s8=1,2.--- /N
’yfs /Bnr'y (My, M"Yds(M') , t=1,2,---, N, 5=1,2---,N

751 — /Pan/Y(Mt, )dE(M/) , t:l)Q}...)N)r:LQ,...,NP
22
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71515/:/871’Y(Mi1Ml)d<(M/) ) t:172!"'1N15:1)21'”>N

Ss

9B = [ 0wy (M MOA(M') | £=1,2, N, s =12, N
<s

An approximation of the system of Boundary Integral Equations is given by :

NP N N
ug— S T2 P =S TS+ 3 T5Ss, = u(M¥), ¢ = 1,2,---,N*  (64)
r=1 s=1 s=1
N
—2p0 > GRPug+ Pr = 0,1 = 1,2+, N? (65)

q=1

NP N N
= AP = S+ D ¥ASes = True(My), t = 1,2,---,N  (66)
r=1 s=1 §=1

NP , N ; N ,
=S P =S AL S1s + D4R Ses = Troaug(My), t = 1,2,---,N (67)
=1 s=1

5=1

This is the kind of linear system of NP + N* 4+ 2N algebraic equations which the
classical collocation method leads to.

5.2 Boundary Element Method for the system baffled plate — external
fluid — cavity

Here again, some simplifications are introduced : the two fluids are identical ; and
the cavity boundary is perfectly rigid so that p'Q(M) satisfies a Neumann condition
on o. Thus, the pressure fields are given by :

po(M) = wQNO/EuQ(M')gw(M,M')dZ(M'), Qe
—wz,uo/):uQ(M’)Qw(M,M')dE(M’)

_LTra@pg(M’)gw(Q,M’)da(M’), Qe (68)

=3

g~

g
il

where 5’ stands for the exterior unit normal vector at M’'. The pressure step across
the plate is :

Po(M)

I

pH(M) —ph(M)
~ 2uuo [ ug(M')Gu(M, M)dZ(M)
+/Traf,pg(M’)Qw(M,M’)da(M’)  Meyx (69)
By taking the value on ¢ of expression (68), one gets an additional equation :

o [ ug(M')Gu(Q, M)IZ(M)
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~ [ Troppb(M)Gu(Q M)do(M)) = 0, Qeq (70)

Equations (60), (62) and ( 63) are approximated like in the former example ; thus
the algebraic equations (64), (66) and (67) are kept.

The surface ¢ is divided into N elements o,, with interior collocation point M7.
On each element the function 6@1)5 is approximated by a constant w,. Let us define
the following matrices :

G = Gw(MZ, MYdo(M'), +=1,2,---,N°, k=1,2,--- ,N°

GZ:E - gw(MT)M/)dg(Ml)vL:1)27"'7N07T:1127"'1Np

GZ’ = Gu(MZ,M"YdE(M'), ¢g=1,---,N*, t=1,2,---,N°
Xy

The approximation of equations (69) and (70) is given by :

N N°
—20%u0 Y GrPug— Y GPw, + P, = 0
q=1 =1
r o= 1,..- NP (71)
N Ne
w?ug > GEug + ZGL”,;"wL =0
q=1 =1
k =1---,N° (72)

We are thus left with a system of NP + N* + 2N + N? linear algebraic equations
which lead to an approximation of the solution.

5.3 Response of the systems to a random wall pressure excitation

In both cases, the cross power spectral densities which characterize the response
of the system to a random wall pressure excitation are estimated by introducing
the approximations of ug(M ), p§(M) and p,(M) into equations (24) or (53). This
implies that the computations are carried out for a rather important set of values of
the variables which are involved : the angular frequency w, the point ¢ varying on ¥
and the point M varying on X, in £, or in ;.

As it has been shown, the representation of the solution as a series of the reso-
nance modes is probably the best form for analysing the physical phenomenon. The
Boundary Element Method here presented apply for the computation of the reso-
nance modes. The coeflicients of the series which represents ug(M ) can be calculated
analytically (the A/, (w,) being estimated by any numerical method) or numerically
by solving a truncated form of the inifinite linear system that they satisfy.
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5.4 Numerical examples

Three examples are presented. In the first one, which concerns a two-dimension
baffled plate, the emphasis is put on the influence of the turbulence model. The sec-
ond example shows that experimental data can be resonably predicted by numerical
calculations conducted on a two-dimension problem. The third example deals with
the problem of a baffled plate coupled to a cavity (in dimension two) and shows the
respective influences of each component of the system.

5.4.1 Influence of the model of turbulence

The modelisation of the wall pressure generated by a turbulent boundary layer is
still a rather open problem in Fluid Mechanics. Nevertheless, various modelisations
of the wall pressure exerted by a turbulent flow on a structure are available in the
literature, which are satisfactory at least under more or less restrictive conditions. It is
not our purpose here to discuss the validity of these models, but, instead, to introduce
them in our calculations as rather realistic representations of a flow excitation. For
this first approach, the turbulence models here considered are the most classical ones,
that is the Corcos model' and the Chase model®®.

- //\\
—60 ____«‘~,/ ‘\
pe=—
—-80 A NS
I - AN IR
~17 IRRRENS NN =
—100 z ~ [~
— - B
—-120 R
S
\n
_140 T T T T T T T T
0.25 1 4 16 64 256 1024 4096 (kz/ka)

Corcos model for k, >0 _ ___ _ _ _ Corcos model for k; < 0

. Chase model for k, >0  _________ Chase model for k, < 0

Figure 1: Space Fourier transform of the power spectral density of the wall pressure
generated by a water flow with flow velocity at infinity 10 m/s : Corcos and Chase
models (frequency = 1 kHz)

These authors give an analytical expression for the space Fourier transfrom of
the wall pressure field power spectral density. These functions depend on different
parameters : the thermo-mechanical properties of the fluid ; the flow velocity at
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infinity ; the acoustical wavenumber k, = w/c ; the turbulent wavenumbers k, = 27¢
and ky = 27n. In the example shown on figure (1) , the fluid is water, the flow velocity
at infinity is 10 m/s and the frequency is 1 kHz. The models differ from each other on
a wide range of variation of the parameter k,/k,. As the physical intuition and the
calculations show, the plate is mainly sensitive to the lowest part of the spectrum and
will thus reflect the differences which exist between the two models in that domain
of turbulent wave numbers.

Calculations have been made on a two-dimensional geometry, with a water flow
on one side of the plate only. The data are as follows :

1. for the plate :

length (in the direction of the flow) = 0.60 m
thickness = 0.005 m

mass per unit area = 39.25 kg/m?

o

o

¢ boundary conditions : clamped
o

o Young’s modulus = 2 10" kg/m?
o

Poisson’s ratio = 0.3.
2. for the fluid :

o density = 1 000 kg/m?
o sound velocity = 1 480 m/s.

Figure (2) represents the power spectral density of the plate displacement at its
center as a function of the frequency. The two curves are much similar ; the wall
pressure given by the Corcos model is about 10 dB higher than that given by the Chase
model. This result shows clearly that the plate is mainly sensitive to the components
corresponding to low turbulent wavenumbers, that is to the components which have
a slow space variation. The curves present a set of peaks which correspond to the
resonance modes of the system baffled plate — external fluid : this proves that the
response of the system is governed by these modes ; it also shows that the Boundary
Element Method is a good tool to calculate such modes.

Figure (3) presents the power spectral density of the sound pressure at infinity
in the direction normal to the plate, normalised by the the square of the pressure
radiated by an isotropic unit point source. Here again the two models give curves
which differ by 10 dB from each other.

The directivity patterm of the sound pressure radiated by the plate has also been
calculated for different frequencies ; the Chase model has been used. The results are
represented on figures (4) and (5), in which the same normalisation is adopted.
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Figure 2: Power spectral densities of the plate displacement at the center point for
the two models of turbulence : Corcos (continuous line) and Chase (discontinuous
line)
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Figure 3: Power spectral densities of the sound pressure at infinity in the direction
normal to the plate for the two models of turbulence : Corcos (continuous line) and
Chase (discontinuous line)
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Figure 4: Directivity pattern of the radiated acoustic pressure : power spectral density
obtained from Chase model, as a function of the direction at 160 Hz (continuous curve)

and 240 Hz (discontinuous curve)
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Figure 5: Directivity pattern of the radiated acoustic pressure : power spectral density
obtained from Chase model, as a function of the direction at 160 Hz (continuous curve)
and 240 Hz (discontinuous curve)
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5.4.2 Comparison between numerical predictions and experimental data

Calculations have been made for a two-dimension system and compared to ex-
perimental data. To get a meaningful comparison, normalisation factors have been
introduced : the power spectral density of the plate acceleration in the 2-D (resp.
3-D) case is divided by the squared acceleration at origin of a 2-D (resp. 3-D) infi-
nite plate excited by a point harmonic unit isotropic force located at the co-ordinate
origin. Thus, comparison is made between quantities of the same nature.

The geometrical and mechanical data are as follows :

1. for the experimental plate :

length (in the direction of the flow) = 0.46 m
width = 0.10 m
thickness = 0.002 m

¢ O ©

[

boundary conditions : clamped
© mass per unit area = 15.7 kg/m2
¢ Young’s modulus = 2.1 10! Pa

o Poisson’s ratio = 0.33
2. for the numerical calculations :

o length (in the direction of the flow) = 0.46 m
o thickness = 0.002 m

© boundary conditions : clamped

¢ mass per unit area = 15.7 kg/m?

o Young’s modulus = 2.1 10*! Pa

o Poisson’s ratio = 0.33
3. for the fluid :

o density = 1 000 kg/m?
o sound velocity = 1 480 m/s
o flow velocity at infinity = 7 m/s and 10 m/s.
It is a priori obvious that the resonance frequencies of the experimental plate and

those of the theoretical one cannot coincide. Thus, the comparison here proposed has
two objectives :

o to check if one of the two classical models of turbulence can describe correctly
the mean level of the acceleration power spectral density ;
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Figure 6: Comparison between the calculated and the experimental power spectral
densities of the plate acceleration (flow velocitiy at infinity = 7 m/s)

o if yes, to check if the relative amplitudes of the peaks given by the numerical
programme are in agreement with the observed ones.

The results are presented on figures (6) and (7). The experimental data are due to
R. NGUYEN VAN LAN et al.'® : the plate is located along the boundary of a hydro-
dynamic tunnel ; on one side it is in contact with the flow inside the tunnel ; on the
other side there is a volume of fluid at rest limited by an anechoic boundary.

The first conclusion is that, for this series of experiments, the turbulent wall
pressure exerted by the flow on the plate is better described by the Corcos model than
by the Chase model. The shape of the numerical resonance peaks is in good agreement
with that of the experimental ones, though a level difference can be observed. This
difference is probably due to the anaylsis used : the frequency step is much smaller
for the numerical results than for the experimental data. The global conclusion which
can be stated is that the numerical method which has been developed in this paper
is quite efficient for predicting vibro-acoustic phenomena due to a turbulent flow
excitation ; the only requirement is that the wall pressure exerted by the flow on the
structure boundary can be modelled either analytically or numerically. Furthermore,
two-dimensional models appear to be efficient for studying the respective influences of
the various mechanical and geometrical parameters of a system : indeed, they provide
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Figure 7: Comparison between the calculated and the experimental power spectral
densities of the plate acceleration (flow velocitiy at infinity = 10 m/s)

results which are quantitatively comparable to those provided by a three-dimensional
model, but the calculations require much less memory space, are less time consuming
and can be implemented on rather small work stations.

5.4.3 Response of a fluid-loaded plate closing a cavity

This last example deals with a more complex two-dimensional structure : a baffled
plate closing a cavity. The geometrical and mechanical data are the following :

1. Geometrical and mechanical data for the plate (slightly damped steel) :
o length (in the direction of the flow) = 0.46 m
¢ thickness = 0.001 5 m
¢ boundary conditions : clamped
© mass per unit area = 11.7 kg/m2
¢ Young’s modulus (complex) = 2 10 (1 + 10~%:) Pa

o Poisson’s ratio = 0.33

2. Mechanical data for the fluid (water) :
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Figure 8: Power spectral densities of the plate acceleration and of the radiated acous-
tic pressures (turbulence model : Corcos ; flow velocity at infinity : 8m/s).

o density = 1 000 kg/m>
o sound speed = 1480 m/s

3. Geometrical data for the cavity :

o length (in the flow direction) = 0.46 m
o depth = 0.25 m

© boundary condition : Dirichlet condition

The turbulence is described by the Corcos model, for a flow speed at infinity equal
to 8m/s. The results are shown on figures (8), (9), (10), (11) et (12).

The first figure presents the power spectral density of the acceleration of the center
of the pate as a function of the frequency (continuous line) ; and the power spectral
densities of the acoustic pressures at two points of the normal to the plate passing
through its center : an exterior point at 0.125m off the plate (dashed line) ; an interior
point at 0.175m off the plate (dotted line). Two remarks can be made. First, these
three curves have sharp peaks which occur for identical values of the frequency. These
are resonance frequencies of the system which can be qualified as fluid-loaded plate
resonance frequencies : indeed, they are very close to the resonance frequencies of a
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pressure (a) and of the plate acceleration (b) as functions of the position (flow velocity
at infinity : 8m/s)

baflled plate coupled to two semi-inifinite fluid domains. Secondly, the pressure curves
cross each other around 1 800 Hz and present a weak maximum around 2 500 Hz.
This is a resonance frequency of the system which can be qualified as cavity resonance
frequency : indeed, in the vicinity of such a frequency, the level of the interior pressure
power spectral density increases by about 10 dB. Finally, it must be noticed that this
cavity resonance has a non significant influence on the plate response.

On the next four graphs, the power spectral densities of the plate acceleration
(lower curves) and of the interior acoustic pressure {(upper curves) are presented as
functions of the point position for different frequencies. For the sound pressure, the
point position varies along a line parallel to the plate, 0.05m apart of it. At low
frequencies, the space dependence of the pressure is governed by the plate shape :
the two curves are much similar. Then, as the frequency approaches the first cavity
resonance frequency, the respective behaviours of each of the two components of the
system — the plate and the cavity — start to differ from each other and finally look
quite independent as if each sub-system was oscillating on its own. Finally, it can be
remarked that for a constant acceleration level, the sound pressure level increases as
the first cavity resonance frequency is approached : this is an intuitive result which
is confirmed by the numerical study.
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6 Concluding remarks

It is a well-kown result in structural dynamics that the response of a system can
be described by a series of its free oscillation modes, also called resonance modes.
The interest of such a representation is emphasized when the system excitation has
a wide frequency range (this is the case with a turbulent wall pressure).

In Vibro-Acoustics, a classical method to compute the response of a fluid-loaded
structure is to expand it as a series of the in vacuo modes. The disadvantage of such
an expansion is that it does not point out explicitely the resonance properties of the
system composed of the structure and of the surrounding fluid. One of the aim of
this paper is to define the resonance modes and to express the response of the system
to a random excitation as a series of these modes. Thus, it appears clearly that the
system acts as a filter on the excitation process : the various cross power spectral
densities have maxima for each value of the frequency which is equal to the real part
of a resonance frequency.

The second aim of this paper is to show that Boundary Element Methods are quite
efficient to compute the response of a fluid-loaded structure to a random excitation.
The results here presented show that the resonances are easily described. Thus, this
proves that the computation of the resonance modes can also be performed by a
Boundary Element Method.

The last objective that we had in mind was to compare experimental data to the
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numerical results obtained with a very simple model of the experimental assembly :
it has been shown that the numerical study of the behaviour of a two-dimensional
system can provide reasonable predictions of experimental data which, of course,
concern a three-dimensional system.

Finally, let us mention that perturbation methods for the calculation of the system
response when the fluid density is small compared to that of the structure can be
used. The most classical way encountered, at least in Vibro-Acoustics, is to expand
the response of the fluid-loaded structure as a series of its in vacuo modes : to avoid
the failure of the series at each in vacuo resonance frequency, a matched asymptotic
expansion is often proposed. A somewhat different method can be proposed. The
perturbation method, as developed in Ref.17 and 18, provides an approximation of
the resonance modes of the system composed of the elastic structure and the fluid.
Then the exact resonance modes series representation of the solution is used. Of
course, both methods lead to the same final result.
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ABSTRACT

The evanescent plane wave formalism is used to obtain the characteristic equation
of the normal vibration modes of a plane elastic solid embedded in a perfect fluid.
Simple drawings of the real and imaginary parts of complex wave vectors make
quite clear the choice of the Riemann sheets on which the roots of the
characteristic equation are to be looked for. The generalized Rayleigh wave and
the Scholte - Stoneley wave are then described. The same formalism is used to
describe Lamb waves on an elastic plane plate immersed in water. The damping,
due 1o energy leaking in the fluid, is shown to be directly given by the projection
of evanescence vectors on the interface. Measured values of the damping
coefficient are in good agreement with those derived from calculations. The width
of the angular resonances associated to Lamb waves or Rayleigh waves is also
directly related to this same evanescence vectors projection, as well as the
excitation coefficient of a given Lamb wave excited by a plane incident wave.
This study shows clearly the strong correlation between the resonance point of
view and the wave one in plane interface problems.
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1. Introduction

This chapter is intended to show the interest of using the evanescent plane wave
formalism in the description of normal modes of vibration in the case of plane
liquid-solid interfaces. Such a formalism helps in the determination of square roots
occurring in dispersion relations, and, most of all, we show that the different
characteristics of the evanescent waves which compose a given interface wave are
strongly related to resonance characteristics and excitation coefficients of the
Geometrical Theory of Diffraction.

The evanescent plane wave formalism is briefly recalled in section 2. It is used
in section 3 and section 4 to describe the normal modes of vibration of the liquid-
solid interface and of the immersed plate. Section 5 is devoted to the connection
between the Resonance Scattering Theory (more precisely, the concept of angular
resonances) and the normal mode description derived in the preceeding sections.

In the whole text, a harmonic time dependence in €Xp(—jot) is assumed, and

complex quantities are underlined for a better readibility.
2. The Evanescent Plane Wave Formalism

In this section, we recall the properties of both lamellar and torsional evanescent
plane waves we shall need. Further information and demonstrations can be found in
refs 1,2.

An evanescent plane wave is characterized by a complex wave vector K, the
real and imaginary parts of which being orthogonal. The associated particle
displacement U can be then written as :

= Aexp(jK.T) )
where T stands for the position vector, A for the complex amplitude vector, which
does not depend on T,
K=K'+jK" (2)
and
K'1K" 3)
The real part K' of the wave vector indicates the propagation direction of the
phase, and its modulus K' is equal to the ratio of the angular frequency ® to the
phase velocity c; it is called the propagation vector. The imaginary part K"
indicates the direction in which the wave amplitude exponentially decays; it is
called the evanescence vector.
In the following sections, we shall represent the evanescent plane wave by the
drawing of both its propagation vector and its evanescence vector, as illustrated in

Fig. 1.
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Fig.1: Schematic representation of a plane evanescent
wave propagating in the x - direction whose
amplitude decays in the z - direction

The most general plane wave solution of the Helmholtz equation in an infinite
perfect fluid, when no viscosity is taken into account, is the lamellar evanescent
plane wave, whose associated particles displacement U satisfies :

Vxi=0 4)
while the complex wave vector is related to the wave number Kk of the
homogeneous longitudinal plane wave with the same angular frequency ®:

U v |2 n2 2

K.K=K"-K" =k (5)

In an infinite non viscous elastic solid, the most general plane wave solution for
the displacement is the summation of lamellar evanescent plane waves and
torsional ones. The torsional evanescent plane wave is associated with a particle
displacement which satisfies :

V.i=0 (6)
The complex wave vectors K; and K of the lamellar and torsional waves are

respectively related to the wave numbers K, and k, of the homogeneous
longitudinal and shear plane waves by the same kind of relations as Eq. (5).

3. The Plane Elastic Solid / Perfect Fluid Interface

We describe the normal vibration modes of the solid / fluid plane interface as
combinations of a lamellar evanescent plane wave in the fluid with a lamellar
evanescent plane wave and a torsional one in the solid. The resolution of the
characteristic equation involves the choice of different square root determinations.
This can be done with the help of the three evanescent plane wave representation.
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3.1. The Characteristic Equation
3.1.1. The Three Evanescent Plane Waves and the Interface Wave

Let the x - axis be on the plane fluid - solid interface; the fluid medium will
occupy the z < 0 region, and the solid the z > 0 one. Translation invariance along
the y - axis is assumed. The most general solution for the displacement in the fluid
is a lamellar wave; in the solid it is a combination of a lamellar and a torsional
wave. These three waves are linked by boundary conditions. The whole problem
configuration is illustrated in Fig. 2.

K's
K"F
- >
KHL K T
i K'r
K'y
' Y 4

Fig.2. : The fluid / solid interface
and one possible configuration for the three evanescent plane waves

In Fig.2 and in the following, the F subscripts are related to the evanescent wave
in the fluid, the L and T ones to the lamellar (L) and torsional (T) waves in the
solid, while we shall use the f, 1, t subscripts for the homogeneous waves in the fluid
(), the longitudinal (1) and the shear (t) waves in the solid.

We are looking for interface waves propagating in the positive x - direction :
hence the common projection K'x, due to the Snell-Descartes' laws, of all the

propagation vectors on the interface is positive. Moreover, it seems natural for an
interface wave propagating in the x - direction not to be amplified in that same
positive x - direction, so that the common projection K", of all the evanescence

vectors is also positive (or null).

The three evanescent plane waves verify the classical conditions at the z=0
interface :

- continuity of normal displacements,
- continuity of normal stresses.

These conditions, combined with those derived from the lamellar or torsional
character of each wave, lead to a homogeneous set of equations, in which the
unknown variables are, for example, the complex amplitudes of the normal
displacements. For the solutions not to be all equal to zero, the following equation
has to be satisfied :
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K,[4K,’K . Ky, + 2K, ~ k3] + 20k K, = 0 ™
Py
where P, and p, are the respective densities of the fluid (f) and the solid (s).
The unknown variable in Eq. (7) is the complex quantity Ky, and the other
complex quantities are defined as :

sz + K_Fzz —_ kfz
K?+K., =k’ ®)

sz +_I_(_ 2 - ‘2
We shall call Eq.(7) "the Stoneley equation”, as in refs.3,4; it can be written 3 in

terms of the interface wave celerity c, given by :

K',

3.1.2. The complex wave vectors and the Riemann Sheets

It can be seen from Eq.(8) that the solutions of Eq.(7) depend on three square
root determinations (K, ,K;, ,K1,); the combination of all roots in Eq.(7) gives
rise to eight different determinations. These determinations depend on the sign of
the real part of each square root; they are summarized in Table 1, the last column of
which will be explained in the following.

Table 1 : The different determinations of the Stoneley equation, their notation in the text,
and the corresponding interface wave

determination K'g, K';, K'y, Interface
n°. (notation) wave
(name of)
1 (+++) =20 =0 20 none
2 (4+-) >0 20 <0 none
3 (+-4) >0 <0 20 none
4 (+--) >0 <0 <0 Scholte-
Stoneley
5 (-++) <0 20 >0 Scholte-
Stoneley
6 (-+) <0 >0 <0 none
7 (--4) <0 <0 20 none
8 (---) <0 <0 <0 Rayleigh
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Ansell* has performed an extensive study of the solutions of Eq.(7), showing
that there are sixteen of them, with only three located in the first quadrant of the
complex Ky plane (K', and K", positive), and four more corresponding to

positive real values of K. Each solution is a root of two "opposed” determinations
of Eq.(7), as illustrated in Fig.3.

AX,

6 7 7 6
*e (Y
23 e
8
® ™
1 ]
57 75
-00- + 90—
2 4
42 . K lqgkf K.,
[} [}
1 1
6 7 7 6
o0 o0
32 23

Fig.3. : Schematic representation of the sixteen solutions
of the Stoneley equation. Each solution corresponds
to two different determinations of the Stoneley equation.
Case of a water - aluminum interface.

Among the sixteen solutions of Fig.3, only two correspond to interface waves
which have been either theoretically studied or experimentally observed. The other
ones have yet received no name, as indicated in the last column of Table 1. In the
following, we are going to show the link between the determinations associated to a
given solution and its amplitude variation, in both parts of the interface, in the
normal direction.

We restrict our discussion to solutions corresponding to interface waves whose
fluid part could reach an observer located either in the liquid or on the interface.
Such solutions correspond to an evanescent wave in the fluid which propagates
either upwards or horizontally.

We consider at first the case of an observer located in the liquid. Determinations
numbered from 1 to 4 of Eq.(7) are then excluded. The three complex solutions in
the first quadrant (Fig.3) remain; they correspond to the last four different
determinations of Table 1. The corresponding sets of evanescent waves are shown
in Fig.4.
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a b c

Fig.4 : The three evanescent waves associated to the three
non - real roots of the Stoneley equation located in the first
quadrant of the K, plane
a : determination -+
b : determination -+-
¢ : determination ---

It can be seen in Fig.4 that in the case of the determinations --+ and -+-, the
amplitude of the resulting interface wave exponentially grows as the normal
distance to the interface increases, in both parts of the interface. Such interface
waves have not been studied, and thus have no name. Different is the situation --- ,
as it corresponds to an interface wave which is actually localized in the near field of
the interface, in the solid, but whose amplitude tends to infinity as the distance from
the interface increases, in the fluid. The situation depicted in Fig.4c corresponds to
the generalized Rayleigh waveS-7.

We now look at the two real roots of Fig.3. Due to the orthogonality of the
propagation vectors with their associated evanescence vectors, a real K, implies
that K'p, = K',, = K"}, = 0, so that the corresponding interface wave propagates
undamped along the interface, i.e. the observer is located on the interface.

The first real root of Fig.3 corresponds to the determinations ++- and --+. It may
come onto the real axis of Fig.3 either from the first quadrant, or from the second
one. In other words, it may be a limiting case (K", =0) of two different
configurations per determination. These configurations are illustrated in Fig.5, for
the determination ++- , and in Fig.6 for the determination --+.



5. Plane Evanescent Waves and Interface Waves

Fig. 5 : The two different sets of evanescent waves which can have the real solution ++-

a

of the Stoneley equation as a limiting case (K"x=0)

a:K" >0
F

b: K"y <0

w7

v

Fig. 6 : The two different sets of evanescent waves which can have the real solution --+

e

e
N

b

of the Stoneley equation as a limiting case (K"yx=0)

a: K" >0

b: K"y <0

125

The Fig.5a and Fig.6b configurations, at the limit K", = 0, are identical; this is
also the case for the Fig.5b and Fig.6a configurations.
The limiting case of Fig.5b and Fig.6a configurations represents an interface
wave whose amplitude goes to infinity, in both the liquid and the solid, as the
distance from the interface increases. It has not been studied and there is no name

for it.

The limiting case of Fig.5a and Fig.6b configurations represents an interface
wave, whose amplitude goes to infinity, as the distance from the interface increases.
in the solid, while it decreases in the liquid. There is also no name for it.
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The second root of Fig.3 corresponds to the determinations +-- and -++ . The
configurations it may be a limiting case of are illustrated in Fig.7 for the
determination +-- , and in Fig.8 for the determination -++ .

—>

Fa
el el

z

Fig. 7 : The two different sets of evanescent waves which can bave the real solution +--
of the Stoneley equation as a limiting case (K"y=0)
a:K"'y>0 b: K"y <0

F

a b

Fig. 8 : The two different sets of evanescent waves which can have the real solution -++
of the Stoneley equation as a limiting case (K"y=0)
a: K"y >0 b: K"y <0

The Fig.7a and Fig.8b configurations, at the limit K", = 0, are identical; this is
also the case for the Fig.7b and Fig.8a configurations.

The limiting case of Fig.7b and Fig.8a represents a wave whose amplitude goes
10 infinity in both directions perpendicular to the interface, while the one of Fig.7a
and Fig.8b represents an interface wave whose amplitude decreases in both parts of
the interface as the normal distance from it increases. This is the Scholte-Stoneley
wave 57,
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3.2. The Rayleigh Wave and the Scholte - Stoneley wave

We shall now focus our attention on the generalized Rayleigh wave, we shall
call shortly "Rayleigh wave", and on the Scholte - Stoneley wave.

3.2.1. The Rayleigh Wave

It is once again depicted in Fig. 9. The Oy angle is the angle under which the
energy is leaking from the interface; .t is given by :

K
sinf, = =% (10)
R™K F
Y
F
—»> >
X X
L
T
Y, V.
a b

Fig.9 : The Rayleigh wave
a - The three evanescent waves and the reemission angle GR in the fluid
b - Energy repartition

K'g and K", satisfy the same kind of relation as Eq.(5), so that :

) sin@
Sinfp = ——— (11)
K" 2
1+ };
k¢
with sin0 = k" (12)
f

The ratio of the evanescence vector modulus K" to the propagation vector
modulus K¢ is very small for most usual cases? (around 0.01 for the water-
aluminum interface), so that :
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1K"g?
sin@y ~sin@ 1-——F (13)
TR ( 2kf2J

and O is very close to 6.

The generation of a Rayleigh wave at a fluid-solid interface may be achieved in
a variety of well-known ways. We shall partly discuss here the way of generating it
by means of an incident wave in the liquid.

Strictly speaking, and tecause of the non zero imaginary part of K, a single
incident homogeneous plane wave can in no way give rise to a Rayleigh wave at the
interface, as the Snell-Descartes laws can not be satisfied.

The decomposition of the field radiated by a spherical source’ or a cylindrical
onel® in terms of plane waves (homogeneous and evanescent ones) of different
directions shows that a Rayleigh wave is excited from the incidence of a narrow
beam of plane waves at an incidence angle given by the resonance condition-11 of
Eq.(12). The incidence of a Gaussian beam is studied in ref.12. In all these integral
representations>-10.12 the Rayleigh wave arises as a pole of the reflection
coefficient of an incident homogeneous plane wave.

In the evanescent plane wave decomposition of Leroy!3, the Rayleigh wave is
excited from the incidence of a single evanescent plane wave, at the incidence angle
O of Eq.(11). so that the generalized Snell-Descartes laws!4 are satisfied : the
reflected wave is exactly the evanescent plane wave in the fluid of the Rayleigh
wave representation of Fig.9a.

A schematic plot of the Rayleigh wave amplitude is shown in Fig.9b. The
exponential growth of the amplitude in the fluid part of the interface is discussed in
ref.9, and it has been shown that in the realistic case of a finite amplitude incident
beam. the radiated one, associated to the leaking of a Rayleigh wave, is also of
finite amplitude. The study of the evanescence vector moduli of the three
evanescent waves of Fig.9a shows also that the two waves inside the solid are
decreasing much more quickly than the wave inside the fluid is increasing with
distance from the interface. The most rapidly decaying wave is the lamellar wave in
the solid®.

3.2.2. The Scholte - Stoneley Wave

The limiting case of Fig.7a and Fig.8b, when K", = 0, is shown in Fig.10 : it
represents the Scholte - Stoneley wave.
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Fig.10. The Scholte - Stoneley wave
a - The three evanescent plane waves
b - Energy repartition

The Scholte-Stoneley wave is sometimes called Stoneley wave, and sometimes
Scholie wave. Its existence has long been discussed by Cagniard!5 and Scholtel6,
until Scholte!7 concluded that both a Rayleigh wave and what he called a Stoneley
wave did exist at the fluid-solid interface. Because of this discussion, we have
chosen!8:19 to call it "Scholte-Stoneley" wave.

The Scholie-Stoneley wave propagates undamped (K", =0) along the
interface. Its velocity, given by Eq.(9), is the common phase velocity of all the three
evanescent waves of Fig.10. Hence, and because of Eq.(5), it is smaller than the
smallest velocity of all homogeneous waves :

¢ <inf(c,,c,,c,) (14)

The amplitude repartition on both parts of the interface is illustrated in Fig.8b. It
can be seen easily, from Eq.(8), that the amplitude decrease of the lamellar wave in
the solid is once more the largest one, while it is the smallest one in the fluid. The
energy is then mostly concentrated in the fluid part of the interface.

As for the Rayleigh wave, the Scholte-Stoneley wave corresponds to a pole of
the reflection coefficient of a homogeneous plane wave at the interface, and this
pole does also lie on the physical Riemann sheet (K", 2 0 and K", 2 0) over
which the integration must be performed in the study of the scattering due to an
incident spherical wave in the fluid3. Application of the resonance condition of
Eq.(12) gives a value greater than unity for the sine. After Brekhovskikh’, the
Scholte-Stoneley wave may be excited from a sound wave in the liquid, at grazing
incidence. The problem of its excitation has been studied these last years, and
various methods can be cited.

The liquid wedge method!8:20.21 ig jllustrated in Fig.11.
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Fig.11. Excitation of a Scholte-Stoneley wave : the liquid-wedge method.

The alcohol in the little tank is ethanol; the velocity ¢y of the homogeneous
waves in it is about 1200 m/s. At an aluminum-water interface, the velocity cg of
the Scholte-Stoneley wave, as given by Eq.(9), is about 1478 m/s. The incidence
angle in alcohol, given by :

: C
sinf, = = s)
C

is then real and approximately equal to 55°. The main problems of this method are
due to the dimensions of the whole set-up. The alcohol tank must be high enough to
ensure hydrostatic equilibrium and a better alcohol-solid coupling; the length L of
the alcohol tank must satisfy :

L > dsin®, (16)
for the distance between the emitting transducer and the wedge to be larger than the
Fresnel distance d of the transducer in ethanol. When this last condition is not
fulfilled (which is often the case), the experiment is rather uneasy. It should also be
noticed that Eq.(15) gives a real value of the incidence angle only for the case of
metallic samples, excluding plastic ones.

The comb-like transducer method22-26 can be used at any type of interface. In
Guzhev's experiments22.23, the Scholte-Stoneley wave propagates at the surface of a
piezoelectric crystal (Bij2GeOpq) embedded in water. In Nasr's experiments24-26, it
is excited on a silica plate, which can be stuck to the sample on which propagation
is to be achieved. Fig 12 is a schematic representation of Nasr's experimental set-up.
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Fig.12. Generation of a Scholte-Stoneley wave by a PVDF
interdigital transducer

The actual transducer is made of a silica plate on which is etched a set of interdigital
linear chromium electrodes, pasted on a piezoelectric polyvinylidene fluoride
(PVDF) film.

The last method?7 is the simplest one. It may be used on any type of sample
(metallic or plastic one), and requires no specific technologic abilities. It is
illustrated in Fig.13.

E

]
e .

! V4
A water
¢!,

\ elastic solid

Y

Fig.13. Scholte-Stoneley wave generation by the diffracting wedge
method. The propagation direction is x.

The transducer labeled E is a classical immersion one; it insonifies the sample
wedge, of internal angle Y, under the incidence angle 8. 6 = 7 corresponds to the
propagation direction (x) of the Scholte-Stoneley wave. Optimal conversion is
achieved at 8 =0, ie. at grazing incidence. In that case, however, it is rather
uneasy to separate the Scholte-Stoneley wave from the longitudinal bulk wave



132 F. Luppé et al.

. . .. . S
propagating in the liquid. Conversion takes place also at 6 =6y +5 and at

n
O=vy-0; - > where O stands for the critical excitation angle of the Rayleigh

wave at the liquid-solid interface. The efficiency of the conversion process is the
same for the two incidence directions, but it has been shown28-29 1o depend on the
internal angle y of the wedge : best efficiency is obtained at y =~ 45°.

4. The Plane Elastic Plate in a Perfect Fluid

We describe the Lamb waves in an immersed plane plate as combinations of one
evanescent plane wave on each side of the plate with two lamellar and two torsional
evanescent plane waves in the solid. All these waves are linked by the boundary
conditions on both faces of the plate and share a common projection of their complex
wave vectors on the interface. This projection gives the damping coefficient of the
Lamb wave and its phase velocity.

Sections 4.1 to 4.3 present this description of the Lamb waves, which are normal
modes of vibration of the immersed plate.

4.1. The Characteristic Equations

We consider an elastic plane plate embedded in a perfect fluid. The plate occupies
the —€ <z < +e region, and translation invariance is assumed along the y - axis.
We look for waves propagating in the positive x - direction. The geometry is
illustrated in Fig. 14. The most general plane wave solution in the fluid, on both sides
of the plate, is a lamellar evanescent plane wave. In order for the wave to be able to
reach an observer located either in the upper fluid or on the interface, the propagation
vector of the evanescent wave in the upper fluid must have a positive (or null)
projection on the z - axis. The propagation and evanescence vectors of the evanescent
wave in the lower fluid are deduced from the ones in the upper fluid by symmetry
considerations. In the solid plate, the number of evanescent plane waves to be taken
into account is multiplied by two, with respect to the case of the semi-infinite solid.
because of the second interface, atz = - e.



5. Plane Evanescent Waves and Interface Waves 133

t: N (v
T

fluid F
~

Fig.14. Geometry of the problem. The six evanescent plane waves.

The six evanescent plane waves may be described by the expressions of their
corresponding displacements :
for the evanescent plane wave in the upper fluid :

—~ % JKizz K
= A7 XX,RC[Ku] >0 a7
for the lamellar wave in the solid that propagates upwards :
- = jK iK
Gy, =Bre” e Re[K.,]20 (17)
for the lamellar wave in the solid that propagates downwards :
- < K iK
O, =Ae " Re[K[,]20 a7
for the torsional wave in the solid that propagates upwards :
KTz _IKXX
Gy =Bre ,Re[Kr1,]=0 17)
for the torsional wave in the solid that propagates downwards :
= z K jK
i, =Age %™ Re[Kr,]2 0 an
for the evanescent plane wave in the lower fluid :
jK iK
G, = A,e %™ Re[K,,]20 17

The boundary conditions at the z = e and z= - e interfaces, combined with the
relations derived from the lamellar or torsional character of each wave, lead to a
homogeneous set of six equations which can be written as :

[S)(D) = (0) (18)

where [S] is a rather complicated 6x6 matrix and (D) the following unknown vector :

D)=| 3™~ (19)
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The characteristic equation of all the Lamb modes is obtained by setting the
determinant of the [S] matrix equal to zero. In order to achieve the distinction
between symmetric and antisymmetric modes, combinations have to be done on the
[S] matrix, so that the two following sub-systems are obtained :

[H,](E) = (0),
[HA](EA) =(0)

ALX + BLX —ALX EBLX
Ar, +B A, —-B
(ES) —| 2Tx 5 =2Tx ’(EA) —| =2Ix 5 =2Tx 20)
A]x + AZX -Alx — AZX
2 2

with [Hg] and [Ha] 3x3 matrices.
The symmetric Lamb waves correspond to the case :

det{Hg] =0
det{H,]#0

with the first relation of Eq.(21) leading to the following dispersion relation :

4K, K1, K, cot(Kr.e) + (k- 2K, *)? cot(K  e) = j&%k;‘

@h

s *x]z
or, after division by k,* : 22)
c,—Jjt=0
The antisymmetric Lamb waves correspond to the case :
det[H,]=0
(23)
det[Hg]# 0

with the first relation of Eq.(23) leading to the following dispersion relation :

.pr K
4K Kr,K,” an(Kre) + (k- 2K,?)* an(K €)= 2L ek
s =1z
or, after division by kt4 : (24)
c,+JjT=0
The left hand terms of Eq.(22) and Eq.(24) are the same as the ones of the

corresponding dispersion relations of the free plate. The right hand terms represent
the effect of the fluid loading of the plate. The K, solutions are complex; their real
parts give the phase velocity C of the Lamb wave by use of Eq.(9), while their
imaginary parts represent the damping coefficient of the Lamb wave. In most cases,
K" is rather small, so that the phase velocity of a given Lamb mode in the fluid
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loaded plate can be well approximated by its value in the case of the free plate. The
dispersion curves of the fluid loaded plate are then usually similar to the ones of the
free plate 63031, There are however a few exceptions, for example the modes S1 and
S2 at low frequencies, whose dispersion curves differ from the ones of the free plate.
as shown in reference 32. Two real roots appear also, which have no counterpart in
the case of the free plate; they correspond to an antisymmetric and a symmetric
Scholte-Stoneley wave 6.30,33,34,

We are not interested here in these particular cases, and we shall focus our
attention on ordinary Lamb waves, with positive values of the K"x damping

coefficient. In the next section, we describe the displacements associated to
symmetric and antisymmetric Lamb waves.

4.2. The Symmetric and Antisymmetric Lamb Waves

We consider first the case of the symmetric Lamb waves. From the second
relation of Eq.(21), and using the relations describing the lamellar or torsional
character of the evanescent waves, one can deduce that the two lamellar waves inside
the plate have the same amplitude 39; this is also the case of the torsional waves
inside the plate, and of the two lamellar waves in the surrounding liquid. The
displacements components of all evanescent waves are then 35,
for the evanescent plane wave in the upper fluid :

k2  sin(Kr.e)

—-JA exp(jK{,z) exp(JK, x
JATx 2K, K., exp(iKpe) p(jKi,z) exp(JK,x) o
k2 sin(Kpe) . . N

, =—JA 12" exp(jK,z) exp(jK, x

JATx 2K K. exp(jK.e) p(iK,.z) exp(jK,x)

for the evanescent plane wave in the lower fluid :
2 .
W, = A it SO oK 2 exp(iK )

2KTzKlz exp(_]l(_lze) (26)

k.2  sin(Kpe)
JATx
ZKTZK CXp(JKIZC)

for the total lamellar wave in the solid : (summation of the ones that propagate
upwards and downwards)

A k2 -2K,? sin(Kp,e)
7™ KKy, sin(Ke)
o =i k2 -2K.? sin(Kre)
2Lz JATx K.TZKX sin(&ue)

exp(—jK,z) exp(jK,x)

up cos(K,z) exp(jK,x)

@

sin(K,z) exp(jK,x)
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for the total torsional wave in the solid :
ur, = 2A1, cos(K1,z) exp(jK,x)
. K, . . (28)
U, = —ZJATX . SIn(KTzZ) CXp(ijX)
—KTZ
In the case of the antisymmetric Lamb waves, the displacements related to the
evanescent plane waves in the upper and lower fluids are the same as the ones
corresponding to the symmetric Lamb waves (Eq.(25) and Eq.(26)), and :

for the total lamellar wave in the solid : (summation of the ones that propagate
upwards and downwards)

k.2 -2K,? cos(Kp,€)

u;, = jA sin(K;,z)exp(jK. x

2Lx JA KLz.KTz COS(KLZC) (_]_z ) p(.]_—x ) .
k?-2K,>2 .

uy, = A, S 22K COSBLO) oo ) exp(iK )

K, K, cos(Ki,e)
for the total torsional wave in the solid :
Ure = —2jA 1, sin(Kr,z) exp(jK,x)
30
ur, =2Ar, K, cos(Kr,z) exp(JK,x) o0
2Tz

As in the case of the symmetric Lamb wave, the two evanescent lamellar waves in
the solid have the same amplitude, as do the two evanescent torsional waves 36.

4.3. The six Evanescent Plane Waves and the Damping Coefficient of the Lamb Wave

We are interested now in the study of the damping coefficient of the Lamb waves.
This damping is due to continuous energy leaking in the fluid, as propagation goes
on. Theoretically, it is given by the value of K", obtained from the resolution of one
of the two dispersion equations, Eq.(22) or Eq.(24). In this section, we shall compare
it to experimental values obtained for a few modes, and we shall then discuss its
relation to the surface displacements.

Given a Lamb mode at frequency f, the angle O under which it can be excited
from the incidence of an ultrasonic beam on the plate is about the same as the angle
under which energy is leaking from the plate; it is given from a resonance condition
similar to that of the Rayleigh wave :

sin@ = k" (31)

f
The experimental set-up is shown in Fig. 15.
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+e

Fig.15. : The experimental configuration for the evaluation of
the damping coefficient of a given Lamb wave.

The receiving transducer R can be translated along the x - direction, and the
received amplitude is plotted versus the propagation distance d. In dB units, this
amplitude is linearly dependent on d, and the determination of the straight line slope
gives the damping coefficient value 33-37. The experiment has been carried out for
different modes, at different frequencies and different angles, and the relative
difference between the experimental value and the theoretical one never exceeds 20
%, such high errors occurring for the lowest values of the damping coefficient
(around 0.01 cm'l).

The damping coefficient value, then, describes quantitatively the rate of energy
leaking. It is defined from the common projection, on the propagation direction of the
Lamb wave, of all evanescence vectors. But the physical process involved in this
energy leaking is not obvious. Worlton 3! proposes a physical interpretation. based
upon the study of the surface displacements of the Lamb wave. He considers that a
wave, whose normal surface displacement is greater than the tangential one. can
reasonably be supposed to radiate more than a wave for which the contrary is true.
The damping coefficient value should then be related to the r = ’gz / gx[ ratio at the
Z = ¢ interface, with U = Uy + Uy .

The next table shows results obtained for a few modes of an aluminum plate, at
different frequency-thickness products. The modes are ordered by increasing values
of their damping coefficient. Theoretical and experimental values of this damping
coefficient are indicated, as well as the r ratio.
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Table 2 : Theoretical and experimental values of the damping coefficient of a few
Lamb waves of an aluminum plate. Comparison with the r ratio at the interface.

mode frequency- K", (cm-1) K", ) Zf
thickness theory experiment r=|=
product Uy
(kHz m)

Sa 9.7 0.06 0.07 0.17

Ag 14.5 0.12 0.13 0.26

Agq 8.0 0.16 0.17 0.31

As 8.5 0.28 0.27 0.76

As 10.5 0.72 0.71 0.21

One can notice that the r ratio actually increases with the damping coefficient.
except for the mode As. It follows from this, and from other modes studied 37, that
Worlton's assumption, which seems physically rather acceptable, is not valid in all
cases.

We shall establish. in the next section, the relation of the damping coefficient with
the angular resonance width associated to a Lamb wave (and also to a Rayleigh
wave), and with the excitation coefficient of the Lamb wave.

5. Angular Resonances and Guided Waves

This section deals with the relation between the guided waves propagating
along interfaces (the Rayleigh wave for the fluid-solid interface and the Lamb
waves for the elastic plate) and the angular resonances. The concept of angular
resonances has been introduced by Fiorito et al. 38 in the field of the Resonant
Scattering Theory (R.S.T.). However, the angular resonances have not been
studied in great detail in the usual literature and their physical meaning was
unexplained. The study of the angular resonances is performed here with the use
of the Phase Gradient Method (P.G.M.).

In a general way. the introduction of the Phase Gradient Method allows, on
one hand, the complete characterization of an elastic plate in terms of resonances
and, on the other hand, in terms of Lamb wave propagation 39. It is based upon
the study of the derivatives of the reflection coefficient phase, considered either
as a function of a frequency variable or as a function of an angular variable.
When the Breit-Wigner approximation is valid, the comparison with the
Resonant Scattering Theory (R.S.T.) leads to the characterization of frequency or
angular resonances in terms of positions and widths, by means of the location
and of the magnitude of the phase derivative peaks 39. This section is focused on
the derivative with regard to the angular variable which allows to establish the
link between the resonant theory derived from the R.S.T. and the previous
normal mode theory.
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5.1 Lamb Waves

We recall here the R.S.T. applied to the angular resonances and the main
properties of the P.G.M. Then, we show the relation between the guided wave

characteristics, K ; and K x» and the angular resonances.

5.1.1 The Resonant Scattering Theory

The R.S.T. has been applied to the elastic plate angular resonances since a
long time 40. It is based upon the Breit-V/igner approximation of the reflection or
transmission coefficients close to an angular resonance. More accurately, if we
consider the reflection coefficient as a function of the angular variable
y =sin0, O being the angle related to the incident homogeneous plane wave,
the R.S.T. shows that at the vinicity of an angle of resonance y(*), the reflection
coefficient can be written as :

R~ [y -y -5) [y -y - v /2) @
where y *) /2 is the half-width of the angular resonance and § a shift that can be

generally neglected when compared with y(*). As a consequence, the reflection
coefficient contains the whole information on the resonant behavior of an elastic
plate; it is the same for the transmission coefficient I(y) In fact, it is well
known that the excitation of Lamb waves corresponds to more or less sharp
minima in the curve representing the modulus of B(y) versus the angle and to
maxima for the modulus of I(y) It is thus possible to quite precisely determine

the angular resonances, but the width of the angular resonances cannot be easily
evaluated with such an approach. This is the reason why the P.G.M. is used in
this section.

5.1.2 The Angular Phase Gradient Method

The Phase Gradient Method is based on the derivative of the reflection
coefficient phase ¢p. We can note that the phase ¢ of the transmission

coefficient is equal to ¢ £ /2. So, the derivative of the two phases are the
same. The exact expression of the reflection coefficient can be written 40 as
follows :

C.C, -
“(c, +JT)(CS —JT)
where the zeros of C, and C; are respectively the antisymmetric and

symmetric vibration modes of the free plate and T is a ratio of acoustic
impedances, the derivative of the phase ¢R is the following one:

(33)
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o6, = Cs0T=10C; _ Cyr - wC,
R = -
C?+1? CZiq?

One of the interests of the phase derivative is that we can always separate the
contributions related to symmetric modes from those related to antisymmetric
modes. The interest of this separation clearly appears when we study very close
modes in a small angle range.

Practically, we calculate the derivative with respect to © and then we deduce
from this expression the derivative with respect to Y = sin© in order to compare
with the R.S.T. formalism. We have plotted the devivative Oy /00 for an
aluminum plate when the frequency-thickness product is 3 MHz mm. As shown
in Fig. 16, we can observe negative peaks clearly related to the Lamb waves S,
A,. Sy and Ag. In addition, we can verify that the curve Opg /0O has the
characteristics of a Breit-Wigner function because the angular resonance width

v corresponds to the width of ’%R/ayl = \5¢R,/69’/C089 at half heigth.

(34)

B /00
0 A 11.12° 14.32° 26.71° 31.67°
W e
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A
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Fig.16 - Angular phase derivative of the reflection coefficient of the elastic plate at
fd=3 MHz mm.

Another way to calculate the angular resonance width y(*) is based on the

Breit-Wigner approximation given by Eq. (32). As a matter of fact, there results
from Eg. (32) the following relation :

Odr ~ —Y(*) /2
oy (y - y("))2 + (y(') /2)2

which is valid close to the angle of resonance y(*). Consequently, the angular

35)

resonance width y(‘) is merely obtained by taking the minimum of the angular

derivative at the angle of resonance Y *) because:
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%d)y&(y(*)) ~ 3) (36)
v
- - . *) m( )
is study demonstrates that obtaining the coordinates ( 'y~ ', ay y

of the peaks of the angular derivative allows us to completely characterize the
angular resonances of a plate, their width being deduced from Eq. (36).
Moreover, the study of the angular derivative is more convenient for the
characterization of resonances than the one of the transmission coefficient which
can be considered as a sum of Breit-Wigner terms. Indeed, all the peaks of the
transmission coefficient have the same unit amplitude, so it is really necessary to
measure the widths, whereas the measurement of the amplitude of the peaks of

the angular derivative is sufficient to obtain them. It is particularly convenient in
the case of two close resonances.

5.1.3 Relation Between Lamb Waves and Angular Resonances

It is well known that the characteristic equation of the plate can be obtained by
setting equal to zero the denominator of the reflection or transmission
coefficient. So, the characteristic equation can be written ( cf. Eq.(33) ):

(C, +j1)(C,-j1)=0 @37
For a given frequency-thickness product, it is equivalent to both Eq.(22) and
Eq(24); it gives the different wave vectors projections K, + jK, which mainly

interest us. This result being recalled, it is obvious that Eq. (37) also gives the
angular poles of the reflection coefficient, which can be written according to Eq.
(32):

Y, = sinf, + j(yp/2) (38)

For a given frequency-thickness product, it is also well known that a Lamb
wave propagating with velocity € = C¢ kf/Kx) 1s excited by a plane wave
with the angle 6, defined by sin 0, = C¢/C . As a consequence, we have the

following resonance condition between K, and sin Gp:

K .
—* =sin@, (39)
f
So, the Lamb wave velocities and the angles of resonance can be linked.
However, the connection between the two points of view, namely, the wave
propagation and the angular resonances, will be entirely established if we show
that K is also in relation with Tp /2. As for Eq. (39), we normalize the

damping coefficient by K. The numerical verification of the equality :
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KD
has been made for different modes. In the case of Lamb mode A, for different
values of the frequency-thickness product, results are reported in Table 3.

(40)

Table 3 : Mode AI: comparison between the values of K;/kf +j K;/kf and the angular

resonances.
fd sin@, Yp/2 K, /k; K, /k;
2 0.167 4.66x1073 0.167 4.68x107°
3 0.247 7.46x1073 0.247 7.59x107>
4 0.306 1271072 0.306 1.29x1072
5 0.378 1.08x1072 0.378 1.11x1072
6 0.419 6.79%x1073 0.419 7.02x1072

We can note the good agreement between the two complex quantities yp and

K, /K¢, especially between their real parts. Differences appear between their

imaginary parts, typically when the imaginary part K, /kf becomes too large
(> 0.1 ). In this case, the phase derivative no longer has a pronounced resonant
character, so it becomes difficult to measure its maximum of amplitude.
Nevertheless, we have shown, with the verification of Eq.(39) and Eq.(40), the
equivalence of two different theoretical approaches: the resonant theory which
allows to write the reflection coefficient as a sum of resonant contributions, but
does not explicitly take into account the associated Lamb waves, and the normal
mode theory which describes the vibrations of a plate by means of the
propagation of evanescent plane waves. Thus. the angular derivative makes
possible the establishment of the relationship between the angular resonances and
the associated wave vectors of the Lamb waves.

5.2 Ravleigh Waves

We study now the problem of the Rayleigh wave at the fluid-solid interface :
is it possible to consider this problem as a resonant one?

The reflection coefficient only depends on the incident angle 0. The Rayleigh
wave propagating with a velocity smaller than the velocity of the shear waves in
the solid, we consider the expression of the reflection coefficient for angles ©

larger than the critical angle GﬁT)related to the vanishing of the shear waves. So,
the reflection coefficient can be writen (y = sin 8):
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Aly)-jB
R(y) =(y)—J.(y) (1)
A(y) +jB(y)
with
2
Aly)=py1-y* [[nf =2y2] -4y*\y?* - n} 4y’ —nf} (42)
B(y) = psn?yy? —nf 43)

where N, = C¢/C,and Ny = C;/C, are the indexes of refraction. We can note
from Eq. (41) that the modulus of the reflection coefficient is always equal to 1;
but its phase varies strongly. This is the reason why the Phase Gradient Method
is interesting to analyse the reflection by the fluid-solid interface.

According to the Resonant Scattering Theory, the expansion of the functions
A(y) and B(y) at the first order in the neighborhood of the Rayleigh angle 6

yields :

A(y)zA(yR)+(y—yR)%§(yR) (44)
B(y)zB(yR)+(y—yR)3—ly3(yR) @5)

where yp = sinOy. The Rayleigh equation at the vacuum-solid interface being
A(y) =0, the first expression can be simplified because A(yR) is almost

equal to zero. Retaining the main term in Eq.(45), the reflection coefficient takes
the form of a Breit-Wigner function:

- +] /2
B(y)zy Yr t JYR:

— (46)
Y-Yr —JYr/2
with
B
Yr =2 (yr) @7)
%A )
ay Yr

As a consequence, the angular derivative of the reflection coefficient phase
@y can be approximated by:
g ~YRr
& (y-yr)’+vk/4
This function is always negative if ¥ 5> 0 and has the type of a Breit-Wigner
function. It has an extremum for y = yp, the value of which is —4/y 5, and the
full-width at half maximum is ¥ 5.

In order to verify the validity of the Breit-Wigner approximation, we can
compare the curve corresponding to the exact angular derivative of d)R:

(48)
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Obr Z OA/0y — jOB/dy 0OA/dy + jOB/dy (49)
dy A-jB A+jB

with the curve corresponding to the Breit-Wigner approximation (cf. Eq. (48).
The result is shown in Fig. 17, and we can see that the correspondence is very

good.

oo /00 1 30° 31° 32° 33°
220 0
-60 X
-100
-140

Fig.17 : Angular phase derivative of the reflection coefficient of the fluid-solid interface. Full
line: exact calculation. Dot line: Breit-Wigner approximation.

So, it becomes possible to consider that the Rayleigh mode is an angular
resonance of the fluid-solid interface. Moreover, it is possible to establish the
link between the resonant formalism and the Rayleigh wave propagating at the
interface 41. As a matter of fact, according to the Breit-Wigner approximation,
the angular pole of the reflection coefficient can be written as follows :

- YR
Yo =YR TS (50)

so that the term of propagation along the x-axis takes the two following forms

exp j(kf XPX) or exp j(K,x). Consequently, we obtain :

B BeyiBany =y + & (51
kf kf kf =P 2
as for the previous case corresponding to the Lamb waves.

We have computed the numerical values of K, by searching the zeroes of
Eq. (7), and the numerical values of the angular resonances by using the P.G.M..
The results obtained by the two methods are in good agreement whatever the
water-solid interface is, as shown in Table 4.
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Table 4 : Rayleigh mode: comparison between the values of K . / kf and the angular
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resonances.
Solid K_/k; v,
Aluminum 0.505 +j 1.414x1072 0.505 + j 1.441x10 72
Glass 0.464 + i 1.581x1072 0.464 + 1.608x10 >
Brass 0.747 + j 1.356x1072 0.747 +§ 1.361x1072
Copper 0.649 +{ 8.490x107> 0.649 + j 8.509x10 7
Nickel 0.510 + 4.896x107> 0.510 +j 4.902x10 7>

We have shown that the Rayleigh wave propagating along the fluid-solid
interface, as the Lamb waves propagating in the plate, has an angular resonant
behavior. Thus, in a general way, it is possible to consider the scattering by plane
interfaces in terms of angular resonances. Moreover, the description of guided
waves propagating along plane interfaces by a set of evanescent waves seems
adequate because it is possible to relate the angular resonance characteristics with
the characteristics of the evanescent waves.

In the last section, we use Eq.(40) in order to establish the relation of the
excitation coefficient of a given Lamb wave with its damping coefficient.

5.3. The Excitation / Reemission Coefficient of a Lamb Wave and the Damping
Coefficient

The resonance condition Eq.(31) or Eq.(39) for Lamb waves is obtained in a
similar way 9 than Eq.(12) for the Rayleigh wave, i.e. from the decomposition of
a spherical source in the liquid in terms of plane waves of different directions,
which are reflected from the plate with the reflection coefficient defined in
Eq.(33). In addition to the resonance condition, this decomposition shows that
the amplitude of the excited Lamb wave corresponds to the residue at the yp

pole of the reflection coefficient. This amplitude can be expressed as :
P, = PoBexp[iks (xsin® ,y + (2 +20) €080 )] (52)

where Py is the source amplitude, Eis defined as :
2
. C,Ci— 1
B=2jn; a-s (54)

[%[(ca +i0)(e, - jr)]}

® Lamb
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and x,z,zq stand for the respective positions of the source S and the observation
point P, as shown in Fig.18.

P(x:0:2)

fluid

solid

Fig.18.: The source S, the observer P, and the immersed plate

From geometrical considerations, and using Eq.(38), Eq.(39) and Eq.(53), it
is easily shown that the exponential term of Eq.(52) represents propagation along
the SA and BP paths in water and along AB as a Lamb wave on the plate, so

that B represents the product of the excitation and reemission coefficients of the

Lamb wave propagating from A to B. Using the Breit-Wigner approximation
(Eq.(32)) for the reflection coefficient instead of the exact expression (Eq.(33)),
the product 3 is found 42 to be approximated as :
n
Bzl 59)
- 2 kf

This relation shows that the better the Lamb wave is excited, the better it
radiates off.

Using the same experimental set-up as in Fig.15, one can obtain the amplitude
of the excited Lamb wave. The amplitude (in dB) received by the transducer R is
plotted versus the distance d. The amplitude that would be measured for a
propagation d equal to zero, if there were no interference between the specularly
reflected wave and the radiating Lamb wave, corresponds to the origin of the
mean experimental straight line obtained. This amplitude A, converted in Volt, is
then proportional to the modulus of the product B . Fig.19 shows the results
obtained for the modes S3 and A3 of an aluminum plate, for frequency-thickness
products ranging from 5 kHz m to 17 kHz m. The dots indicate experimental
values, which can be seen to be roughly linearly dependent on the normalized
damping coefficient K", /k¢ , so that Eq.(55) seems to be experimentally

verified.
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Fig.19 : The amplitude A of a given excited Lamb wave is roughly proportional to the
normalized damping coefficient K"x / kf.
The frequency-thickness product varies from 5 kHz m to 17 kHz m.

a: mode S3 of an aluminum plate
b : mode A3 of an aluminum plate

6. Conclusion

Plane interface waves are localized waves, which hence may be easily
described as combinations of plane evanescent waves. In such a description, the
velocity of a given interface wave is given by the common projection of all
propagation vectors, while its damping coefficient is given by the common
projection of all evanescence vectors in the propagation direction.

The resonant character of an interface wave can be obtained from its
evanescent plane waves description : the width of an angular resonance is given
by the normalized damping coefficient. This last remark proves the usefulness of
the evanescent plane waves description.
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APPLICATION OF WAVELET ANALYSIS TO INVERSE SCATTERING

W. TOBOCMAN
Physics Department, Case Western Reserve University
Cleveland, OH 44106

ABSTRACT
We demonstrate the capability of wavelet analysis for compressing the information
content of a signal pulse. We point out that this property of wavelet analysis can be
useful for reducing the scale of a three-dimensional inverse scattering calculation to a
manageable size. Some other applications of wavelet analysis to inverse scattering are
described.

1. Introduction

In the conventional approach to inverse scattering the incident and scattered signal
pulses are Fourier analyzed. The inverse scattering analysis employs the Fourier
transforms because the analysis of the scattering problem is most simply done at fixed
frequency. This approach is practical for one-dimensional problems. However, for two
and three-dimensional inverse scattering problems the conventional approach leads to
very large scale computations because of the many degrees of freedom, i.e. wavenumber
vectors, that must be included. Examples of this are provided by Tobocman' and by
Gutman and Klibanov*.

In wavelet analysis one uses a set of pulselike orthogonal functions in place of the
Fourier plane waves to analyze the signal pulses. By virtue of the fact that a fewer
number of wavelet transform amplitudes than Fourier transform amplitudes are required
to adequately encode the information carried by the signal pulses, an inverse scattering
analysis in terms of wavelet transforms will result in a computation of smaller scale.

In Section II we introduce the harmonic wavelets that we will use in our calculations.
Section III is devoted to comparing wavelet and Fourier analyses of a couple of sample
pulses. Our results will illustrate the information compression capability of wavelet
analysis vis-a-vis Fourier analysis. In Section IV we show how wavelet analysis can
be substituted for Fourier analysis in an inverse scattering formalism. Finally, in Sec.
V we describe some earlier applications of wavelet analysis to inverse scattering.

2. Wavelet analysis
We will employ the harmonic wavelets introduced by Newland’. These are
particularly well suited to making comparisons with Fourier analysis. We will follow

the conventions suggested by Newland, for the most part. The harmonic wavelets are
defined to be

149
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w,(x) = w(2’x - kA)
where
w(x) = €™ sin(nx/A)/nx
Additionally, there is
w.i(x) = ¢(x - kA)
where

$(x) = ™ sin(mx/A)/mx

i=0,12,..
k = 0,£1,42...
k = 0,21,42...

(1a)

(1b)

(22)

(2b)

The mother wavelets w and ¢ are seen to be sinc functions multiplied by phase factors.

The wavelet orthogonality relations are

Wi | > = (82))"8 8y

and
Wy [Wo> = A1 8y
where
o0
<elyx> = Idx ()X
-00

The wavelet Fourier transforms are

wi(8) = e w2

where
12n 2n<EA<4rn
w(g) =
0  elsewhere
and _
W, () = &% (&)
where

121 0sEA<2m
®(&) =

0 elsewhere

i =0,1,2,...

j=-1,0,1,2,...

(3a)

(3b)

“)

(52)

(5b)

(6a)

(6b)
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with the Fourier transform defined to be
WE) = en)! [ dx e wx) )

The wavelet Fourier transforms are seen to be boxcar functions multiplied by phase
factors.
Let f(x) be a real pulse which decays to zero as x — + o so that

-
| ax )] < ®)
By virtue of the completeness of the harmonic wavelets, as demonstrated by Newland?,
we can have a wavelet expansion of our pulse.

o0 o0
fx)= X Z  {ajk wik(x) + c.c.} (9)
J=_1 k=~o0
where
ay = 2A<w, > j=0,1,2,. (10a)
and
ay = A<w,, |f> (10b)

With the help of Parseval’s theorem

<fig> = | dx ) g
-c0 ©0 N . . A (1 1)
=2n ) dE£®) 8®) = 2n <fig>

the wavelet amplitudes can be recast into
ay = 27t2jA<\?vjk|,f’> (12a)
and
A A
ay = 2nA<w, | £> (12b)

For computational purposes it is necessary to approximate our integrals by finite,
discrete sums. We will use the following conventions.

A
fns) = 8E,) =T, f(me)=f(x,) =5f, mn = integers (13a)
where

8 = 2m/L e=LN (13b)
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Here L is the field of view, and N is the number of meshpoints. Then the integrals for
the Fourier and inverse Fourier transforms are approximated by

A N-1
fm= N1 3 ci2nmo/N g (14a)
n=0
N-1 A
fo= I ei2nnmN g (14b)
m=0
Discretization of Eq. (10) in accordance with this scheme gives
M(j)-1 . A
aj k=25 Y ei2nks/M() M) + (15a)
M(0) s=0
and
M(0)-1 ) A
ajy= 25 3% ei2nks™M©) f (15b)
M) s=0
where
M) = 21 L/A = 21 M(0) >0 (15¢)
M(-1) = L/A = M(0) j=-1 (15d)

We see that a;, is a linear combination of M(j) Fourier amplitudes for j 2 0, and a,
is a linear combination of M(0) Fourier amplitudes. Thus we will restrict the range of
k accordingly. Eq. (9) is replaced by

J M(j)12-1
fx) =X x {ajx wjk(x) + c.c.} (16)
j=-1  k=-M(j)/2
The total number of terms in this sum is M(0) 22, We adjust J so that the total
number of terms in the sum is equal to the number of meshpoints N.

N = M(0) 2'*? (17)

In order to be able to use fast Fourier transform computational routines, we need N and
M(0) to be powers of two, so we choose

M(0) =25 N =2K2 (18)

An attractive feature of the harmonic wavelet expansion is that the wavelet transforms
&, can be calculated by doing inverse Fourier transforms on the Fourier transforms of
f(x). Thus fast Fourier transform routines can be used to expedite the calculation. In
addition, the ordering of the wavelet transforms can be arranged so that the first N(j)
= 2892 wavelet transforms are calculated exclusively from the first N(j) Fourier
transforms. This facilitates comparisons between Fourier and wavelet analysis.

Our formulation of the harmonic ‘wavelet analysis scheme differs from Newland’s®
in that we have introduced an adjustable A = L/M(0). Our formulation reduces to that
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of Newland upon choosing M(0) = 2% = 1.
3. Comparison of Fourier and wavelet signal pulse reconstruction

Here we will compare the efficiencies of the discretized Fourier and wavelet signal
pulse analyses on a couple of example pulses. The efficiency we are concerned with
is the efficiency of information compression. We want to know which scheme is better
able to concentrate an adequate description of the pulse into a small number of
transformation amplitudes.

Both the Fourier analysis and the wavelet analysis are characterized by the field of
view L and the number of meshpoints N. The wavelet analysis has one additional
parameter, the wavelet spacing A = L/M(0), which can be adjusted to optimize the
results.

The first example is a square pulse of width 0.4 and height 1.0 to which has been
added noise in the form of random numbers having a Gaussian distribution with an rms
deviation equal to 0.01. The pulse is centered in a field of view of length L = 4.0 and
the number of meshpoints is N = 512 for both the Fourier and wavelet analyses. For
the wavelet analysis we found that the choice K = 1 gave the best results. This then
gives J = 6 for the maximum value of j and A = 2.0 for the wavelet spacing.

We want to determine which type of analysis can most efficiently capture the square
pulse that is partially obscured by the noise. Our procedure is to first calculate the
Fourier and wavelet transforms. These transforms are then processed by stripping or
filtering or both. In the stripping process we set equal to zero all transform amplitudes
which are smaller in absolute magnitude than a given stripping factor SF times the
absolute magnitude of the largest transform amplitude. In the filtering process we set
equal to zero all Fourier transform amplitudes for wavenumbers greater than a given
cutoff wavenumber £(MAX). Filtering applied to wavelet analysis sets equal to zero
all wavelet transform amplitudes having j greater than a given j(MAX). For the Fourier
transform analysis the cutoff in frequency is smoothed by means of a Hamming filter.

After processing the transform amplitudes an inverse transform is done to reconstruct
an image of the square pulse. The success of the reconstruction is measured by the
image error with respect to f,

N N
ERR = {'):1 {f(xi) - fo(xi) }%/ £ fo(x;)2)1/2 (19)
i= j=1

where f is the reconstructed image and f, is chosen as appropriate.

First of all, let us compare the Fourier and wavelet transforms of the noisy square
pulse. The absolute magnitudes of these transforms are plotted against wavenumber in
Fig. 1. To include the wavelet amplitude magnitudes on the plot we correlate the index
values j and k with the wavenumbers nd = &, according to the scheme displayed in
Table I. In this scheme wavelet transforms having negative k- values are mapped into
transforms having k-values greater than M(j)/2 - 1 by means of the relationship

B = Lmgyk 20

that follows from Eq. (15).
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The plots in Fig. 1 reveal the striking difference between the Fourier and wavelet
analyses of the noisy square pulse. The Fourier transform has a lot of strength
concentrated at small wavenumber values and the rest of the strength is distributed over
a relatively wide range of wavenumbers. In contrast, the wavelet transform has its
strength concentrated at a relatively few discrete j,k index values.

If pulse reconstruction is done without stripping or filtering, then Fourier
reconstruction captures the noisy square pulse almost perfectly with an image error with
respect to the noisy square pulse of 2.3 x 107; the wavelet reconstruction only captures
it with an image error of 0.053.

In Fig. 2 we display a filtered Fourier analysis pulse reconstruction of the noisy
square pulse. We have chosen E(MAX) = 201 = N&/2 so that only 256 of the 512
Fourier amplitudes are retained. The image error is 0.089 where f, in Eq. (19) is the
noise-free square pulse. Some damping of the noise is seen but a Gibbs phenomenon
oscillation obscures the sharp edge of the pulse.

A filtered wavelet analysis pulse reconstruction of the noisy square pulse is presented
in Fig. 3. We choose j(MAX) = 5 which retained 256 of the 512 wavelet amplitudes.
The image error with respect to the noise-free square pulse is 0.097. The damping of
the noise is not as effective as was found in the filtered Fourier reconstruction. The
Gibbs phenomenon obscuring of the sharp edge is similar.

An example of a stripped Fourier analysis pulse reconstruction of the noisy square
pulse appears in Fig. 4. A stripping factor of 0.04 was used resulting in the retention
of 106 of the 512 Fourier amplitudes. The result is similar to that found for our filtered
Fourier analysis example. The image error with respect to the noise-free square pulse
is 0.12,

Finally, in Fig. 5 is displayed the result of a stripped wavelet pulse reconstruction
of the noisy square pulse. With a stripping factor of 0.06 we have retained 106 of the
512 wavelet amplitudes. We see very little smoothing but the sharp edge of the pulse
is very successfully captured. The image error with respect to the noise-free square
pulse is 0.072.

Thus the stripped wavelet analysis reconstruction is the most successful of the four
filtered/stripped reconstructions examined. We see that the wavelet analysis is able to
compress an adequate description of the pulse into just 106 out of the 512 pulses. It
gives a much better picture of the small scale structure of the pulse than a filtered
Fourier analysis that uses 256 out of 512 amplitudes.

One might be concerned that the ability of the stripped wavelet analysis to capture
small scale structure will be of little practical significance because of the band-limited
nature of experimental data. To investigate this possibility we take as our second
example an ultrasound pulse reflected from a slice of human prostate tissue. In our
analyses we used N = 1024 meshpoints and a field of view of L = 15.36. In our
wavelet analysis we used a wavelet spacing of A = 0.24 corresponding to K = 6.

The Fourier and wavelet transform amplitude absolute magnitudes for the reflected
ultrasound pulse are compared in Fig. 6. The band limited nature of the pulse is
apparent.  Although Fourier amplitudes at wavenumbers up to N6 = 209.4 are
calculated, those at wavenumbers greater than 40 are negligible. In addition, there is
very little strength at wavenumbers less than 4.

As was seen in the previous example, the wavelet amplitude strength is concentrated
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Figure 1. Fourier transform amplitude versus wavenumber and wavelet transform
amplitude versus wavenumber for the noisy square pulse shown in Fig.
2. See Table I for the correlation between wavelet index and
wavenumber.
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Filtered Fourier transform reconstruction of the noisy square pulse.

EMAX) = 201. 256 out of 512 amplitudes retained. Image error with
respect to the noise-free square pulse is 0.089.
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Figure 3. Filtered wavelet transform reconstruction of the noisy square pulse.

j(MAX) = 5. 256 out of 512 amplitudes retained. Image error with
respect to the noise-free square pulse is 0.097.
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Figure 4. Stripped Fourier transform reconstruction of the noisy square pulse.

Stripping factor = 0.04. 106 out of 512 amplitudes retained. Image
error with respect to the noise-free square pulse is 0.123.
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in fewer amplitudes than the Fourier amplitude strength. In Fig. 7 we show a filtered
Fourier analysis reconstruction of the ultrasound pulse, and in Fig. 8 we show a stripped
wavelet analysis reconstruction. The filtering cutoff wavenumber £(MAX) = 20.0 was
used which caused 100 Fourier amplitudes to be retained. The wavelet stripping factor
SF = 0.05 was used which resulted in 98 wavelet amplitudes being retained. The image
error with respect to the observed pulse was 0.42 for the filtered Fourier analysis and
0.13 for the stripped wavelet analysis.

Examination of the pulse reconstructions displayed in Figs. 7 and 8 over the full
15.36 field of view reveals that the filtered Fourier analysis does a good job of
capturing the small amplitude structure of the pulse but adds some distortion to the
large amplitude structure. Just the reverse is true for the stripped wavelet analysis of
the ultrasound pulse; the large amplitude structure is captured very well while much of
the small amplitude structure is lost. Since the small amplitude structure is more
vulnerable to corruption by noise, the performance of the stripped wavelet analysis
reconstruction is to be preferred. In conclusion, this example provides an instance of
successful information compression in that a very good representation of the ultrasound
pulse has been provided by selecting 98 out of 1024 wavelet amplitudes.

4. Wave Analysis Compression Applied to an Inverse Scattering Formalism
We next present an example of how wavelet analysis compression might be applied

to an inverse scattering problem. We consider the scattering of a scalar wave field in
three dimensions by a localized target

(& + EYy = vy (21a)
W) = €0 + 40 @1b)
o(x) = 0(1/|x|); (&/8]x] -i&)|x|$p =0 | x| =00 (21¢)

where £ is a positive constant and v is a unit vector. Let v be a real function which is
nonvanishing in a finite domain enclosing the origin |x| = 0. In the asymptotic region

B(E0.x) = -fEv.p) /dn x| x = |x|p |x| = (222)
where
f€0,1) = < |v(x) | w(§,0.x)> (22b)
is the scattering amplitude.*
According to the two-potential formula‘ an alternative relationship connecting the
scattering amplitude and the wave field is

£(E,0,11) - TEL.) = <GOEKR) | VX) - V()| W(E0%)> (23)

where
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Figure 5. Stripped wavelet transform reconstruction of the noisy square pulse.

Stripping factor = 0.06. 106 out of 512 amplitudes retained. Image
error with respect to the noise-free square pulse is 0.072.
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Figure 6. Fourier transform amplitude versus wavenumber and wavelet transform
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in Fig. 7. See Table I for the correlation between wavelet index and
wavenumber.
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Figure 7. Filtered Fourier transform reconstruction of the reflected ultrasound

pulse. &MAX) = 20. 100 out of 1024 amplitudes retained. Image
error with respect to the observed ultrasound pulse is 0.423,
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Figure 8. Stripped wavelet transform reconstruction of the reflected ultrasound

pulse. Stripping factor = 0.05. 98 out of 1024 amplitudes retained.
Image error with respect to the observed ultrasound pulse is 0.125.
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(V2 + B0 = v (242)
VOEX) = €5 + TE %) 240)
@m0 = 01y @0Ix| +ig)|x| 39 = 0 X (240)

Approximating y by \I/’ in Eq. (23) gives the distorted wave Born approximation
(DWBA)®

~
AF(E,0,1) = <YOE1,%) | AV(x) [ W(E0,%)> (25)
o
where Af=f-fandAv=v-;.

The inverse scattering problem seeks to determine the scattering potential v from
knowledge of the scattering amplitude f. Equation (25) provides a linear Fredholm
equation of the first kind for v. Equation (25) provides a good approximation to Eq.
(23) provided Av is small. So we can use an iterative procedure. We first make a
guess for v. Then we solve the direct scattering problems for % and ¥

PEDLX) = 509 + [P TE XX Y )FELX) (26)
YOG = €509 £ [ERTE XX (x) FOEwY) @7
where
Exx) < - o iElx-x'l 8
4n Ix-x'l

and the asterisk denotes complex conjugation. Then h\ﬁ"’*\ff provides the kernel for Eq.

25 which may then be solved for v. The potential v is then substituted for v and the

process is repeated. Iteration continues until convergence, i.e. Av = 0, is attained.
Let us rewrite Eq. 25 to read

Af(E,0,p) = [dx K(k,0,15%) Av(x) (29a)
where

KELMK) = $OELR* PELX) (290)

The input data that drives this integral equation for the scattering potential v(x) are the
scattering amplitudes f(€,u,u). Amplitude f(€,0,p) is found by measuring the phase and
magnitude of the wave field scattered in the direction p when the target is illuminated
by a plane wave of wave number & travelling in the direction v. A large number of
such measurements will be required if v(x) is not simple. To simplify the matter with
respect to the multiplicity of wavenumber values, one can illuminate the target with
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broad band pulses and thus probe the target with a continuum of wavenumbers

simultaneously.
Let us then suppose the target to be illuminated with a real pulse

F(u,x) = {::15 [eiiw-ﬂ}?(u,e_,) +c.c.] (30)
Then the wave field will be

W) = Jag [yEv.x) Fo8) + ool a1
In the direction pothe scattered field will be

G(o,p,x) ~ -(1/47|x]) Jde [ £(E,0,1) I?(u,g) +c.c.] 32)

Now the recorded data will be the incident pulses F(v,x) and the reflected pulses
G(u,1,X). The Fourier transforms of these pulses are

ﬁ(u,é;)=(1/2n) J d(u.x) €59 Fu,x) (33)
and
A o0
Glogt) = Lo [ d(,x) €00 4nix| G(v.ux)
2 e (34)
A
= - f{€,0,u) F(v,8)

It follows that the scattering amplitudes are just the ratios of the Fourier transforms of
the incident and reflected pulses.

fE,041) = GOLEVFWE) 35)

Substituting this into Eq. 29 gives

AG(,p,E) = [d®x M(o,p,E;x) Av(x) (36a)
where
M(o,p.8;x) = -'i’(v,é) POEMR* Y(ELY) (36b)
and
A 2
AG(U,]J.,E_,) = G(Dsp':é) - G(U’paé) (360)

So now we have a set of integral equations for v(x) where the driving terms are the
Fourier transforms of the reflected pulses. Discretization approximates Eq. (36a) by a
matrix equation
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n
AGg= X Mg, Av,y (37
a=1

Even through the dimension N of the index o is large, most of the contributions turn
out to be redundant. So the set of equations displayed in Eq. (37) must be regarded as
undetermined. Thus the optimal approximation to Av of minimum norm® is

N N
Avag = T I My (IMMThgp AGg (38)
a=1 f=1
where the dagger denotes Hermitian conjugation. The ill-posed nature of this problem
is reflected in the ill-conditioned nature of the Gram matrix MM'. This requires the
diagonalization of MM as the first step.

For two- and three-dimensional inverse scattering problems the required dimension
N of the index a(= v,u,&) is very large. This requires a large expenditure of
computation time for calculating the matrices M and MM and for diagonalizing MM,
We suggest that this problem would benefit from wavelet compression. To implement
this suggestion we use harmonic wavelets described in Sec. II. So let us take the
wavelet transform of both sides of Eq. (36).

Ag(V,,j,k) = [dx m(L,pj,k;x) Av(x) (3%a)
where

Aol = | dt yE*AGLLE) (39b)
and -

MR = | d - WO M) (390)

Then Eqgs. (36) and (37) -:an be replaced by

n
Agy=Y Mg Av, (40)
a=1
and
N' N
Avg = ¥ X mfaa([mmf]'l)aﬂ Agp
a=1 B=1 1

What we should now find is that the strength of Ag,, a = v,u,j,k as a function of the
wavelet indices j and k is more concentrated than the strength of AG,, o = v,p, as a
function of £, Then a stripping procedure can be implemented in which the smallest
amplitudes Ag, are deleted, thereby reducing the dimension N of the indices o and f.
Then the calculation of Eq. (41) is expedited.
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5. Earlier applications of wavelet analysis to inverse scattering

We will describe applications of wavelet analysis to inverse scattering by Patterson
et al.” and by Donoho®. The analysis of Patterson et al. is appropriate to the one-
dimensional scattering by a layered medium. For such a system Eq. 21 is replaced by

(d¥ax* + EXyy = vy v(x) = 0 for x<0 (42a)

Y(Ex) = e - fE)e™ x<0 (42b)
and Eq. (22) by

fE) = <™ | v(x) | wEx)> (43)
Supposing the target to be illuminated with a real pulse

A
Fo) = [ d& (€8 F@) + ccll (44)
o
the reflected pulse is

> A
G = - [ de [e&% £(8) F®) + c.c.]. (45)
)
Thus the reflection amplitude is determined from the Fourier transforms of the incident
and reflected pulses by

£(5) = -GEYVF®) 46)

To compensate for the bandlimited nature of the incident pulse and the corruption of
the incident pulse by noise, Eq. (46) is replaced by a Wiener filter

FE* GE)
f€)=- ——— 47)
| FE)I2 + Q2

where Q? is the stabilizing parameter.

Rather than seeking to recover the scattering potential v by an inverse scattering
analysis, Patterson et al.” sought to recover the impulse response G (x) via a
deconvolution analysis. The impulse response is what the reflected pulse would have
been if the incident pulse had been a 8-function, F (x) = 8(x), so that

N
F &) =12~n . (48)
It follows from Eq. (45) that the impulse response is
G (x) = -(1/2n)j dE [e™f(€) + c.c.] 49)
o

where the scattering amplitude is determined from the data by Eq. (47).
Patterson et al.” applied wavelet analysis to this formalism by doing a stripped and
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filtered wavelet analysis of the reflected pulse
A A . A A
G(E) = Z Zw(&) AQ@ + 1/2 8 p)<wy | G> (50)
jk

where we use the conventions introduced in Sec. II for harmonic wavelets, although
Patterson et al. used the D4 wavelets of Daubechies.® The stripping is achieved by
setting equal to zero all coefficients <v'\7jk | G> smaller than some criterion. The
filtering is achieved by imposing an upper limit j(MAX) on the sum on index j. The
stripping and filtering serve to mitigate against corruption of the reflected signal pulse
by noise. Thus the sums in Eq. (50) are appropriately truncated and the result
substituted in Eq. (47).

In more recent work Patterson and DeFacio'® have found improved results using other
types of Daubechies’ wavelets in conjunction with a more sophisticated nonlinear
wavelet amplitude stripping procedure.

The application of wavelet analysis suggested by Donoho® is appropriate to the three-
dimensional inverse scattering problem discussed in Sec. IV. Donoho’s approach starts
by considering the singular value decomposition (SVD) of MM' in Eq. (38). SVD of
MM starts by diagonalizing that Hermitian matrix. This provides the eigenfrequencies
(singular functions) {{i,} and eigenvalues (singular values) A of MM'

MM’ u, = A 2u, (51
Given these quantities, the inverse of MM is just
MMY! =2 |3 A2 <, | (52)

assuming the {{i,} to be normalized. The ill-conditioning of MM' is manifested by the
presence of small eigenvalues A2, This problem can be mitigated by dropping those
terms from the sum or by replacing Eq. (52) by a regularized expression

A2
(MMY! = T lig> <ug! (53)

s 154*_ ot

where a is the Tikhonov regularization parameter.
Substitution of Eq. (53) into Eq. (38) gives

As?
Av =3 Mt g <ugl AG> (54)
s Agt+ad
Let us define v, by
M =2, v, (55a)

so that



6. Application of Wavelet Analysis to Inverse Scattering 165

A
Mv, = AL, (55b)

and the v/s are elgenfunctlons of MM with eigenvalues A2 Thus the v,'s are an
orthogonal set just like the §'s. Now Eq. (54) can be written

Ag3 ,\
Av = Z Vg —— <Lls| AG> (56)
s At + ot

In this context the application of wavelet analysis compression suggested in Sec. IV
consists in the replacement of the operator M by the reduced operator m = PM, where
P is the projection operator

P=3% | W>2nAQR + 112 5,) <w,, | (57)

with the sum restricted to those wavelets \AAIjk having the greatest overlap with the
reflected pulse Fourier transform

Donoho observed® that the success of the inverse scattering ana1y51s provided by Eq.
(56) depends on the effectiveness of the orthogonal functions {u } in representing G and
the effectiveness of the orthogonal functions {v,} in representing the potential v with
a relatively small number of terms. He reasoned that if these functions could be
replaced by wavelets or wavelet-like functions, the inverse scattering analysis would be
more likely to be successful.

Donoho showed that for certain inverse scattering problems the SVD can be replaced
by a wavelet-vaguelette decomposition (WVD) which involves three sets of functions:
one set {y,} is an orthogonal wavelet basis and two sets, {0} and {¥.}, which are
wavelet-like and biorthogonal. These satisfy the quasi-singular value relations

My, = AV, (582)
MG, =4y, (58b)

Here s represents wavelet index pair j,k. The quasi-singular values A; depend only on
the resolution index j and not on the spatial index k. The vaguelet bases satisfy the
biorthogonality relationship

N
<1’1: | ver =8y (58¢)
The decomposition, when it exists, gives in place of Eq. (54)

A3

Av = 3 yg <GS|AG> (59)

A+t

Taking v = u requires y, to be the elgenfunctlon of M™ for eigenvalue kz and we
recover the SVD. In the WVD the {V,} and the {{,} follow from the {y,} by
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V=N My, (60a)
and
B, = (MMY* AMy, (60b)

For the WVD to succeed it is necessary for the {1’1\5} and {V,} to satisfy Eq. (58c) and
for the {0} and the {$,} to inherit in some measure the pulse-like nature of the {y,}.
Donoho shows?® that for three dilation-homogeneous operators M - integration, fractional
integration, and Radon transformation - all sufficiently well-behaved wavelet bases lead
to a WVD of M.
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Table I. Correlation between wavenumber k, = nd and wavelet index pair j.k.

n j k
-1
1 -1 1
2 -1 2
M(0)-1 -1 M(0)-1
M(0) 0 0
M(0)+1 0 1
M(0)+2 0 2
2M(0)-1 0 M(0)-1
M(1) 1 0
M(1)+1 1 1
M(1)+2 1 2
2M(1)-1 1 M(1)-1
M) 2 0
M(2)+1 2 1
M92)+2 2 2
2M(2)-1 2 M(2)-1
M(3) 3 0
M(3)+1 3 1
M(3)+2 3 2
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ABSTRACT

The physical phenomena involved in the echo formation mechanisms and in the
acoustical scattering implicitly assume the existence of joint time and frequency
phenomena, especially when dealing with dispersive waves. This implicit time-
frequency approach can be explicited by using a joint time-frequency analysis of
wide band echoes (target impulse response). For several reasons, studied in details
in this paper, the so-called Smoothed Pseudo Wigner-Ville Distribution (SPWVD)
will be used. One of its advantages is that the characteristics of the propagation
phenomena can be displayed and measured in the time-frequency plane. This is
mainly relevant in the case of velocity dispersion for which a Wigner-Ville based
analysis can be used for a quantitative estimation of group velocity, even in the case
of important dispersion, multiple modes or multi-component signals. The relevance
of the proposed approach is first supported by simulation results. Analysis is then
applied to the study of Lamb waves in thin plates before being used to describe a
more complex case: impulse response of a spherical shell and surface acoustic waves
characterization.

1. Introduction

Scattering of an acoustical plane wave by sim?le shape targets has been a problem
of particular interest for these last years.>1820:24:3132 Many theoretical derivations and
experiments have led to a better understanding of echo formation mechanisms.

Although these mechanisms are complex ones, they can be modelled by a com-
bination of several components that may overlap in the time domain: specular echo,
waves transmitted in the target and surface acoustic waves (whispering gallery, Franz,
Rayleigh ...).

In the case of simple shape targets (spheres, cylinders, ellipsoids,...), several au-
thors have pointed out the importance of surface acoustic waves in the scattering
phenomena and have expressed the relations between these waves and the “acous-
tical resonance” of a target.®11%3 In the case of a spherical shell, for instance, a
resonance appears each time constructive interferences take place between surface
acoustic waves that have circumnavigated an odd number of half-wavelengths along
the shell circumference.

168
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Some of these surface acoustic waves are very dispersive one. The velocity disper-
sion of these waves establishes an unavoidable relationship between their temporal
and their spectral properties. Various methods have tried to characterize these sur-
face acoustic waves, either in the time domain,”® or in the frequency domain.?! The
temporal methods are based on the propagation of impulsive signals {under the as-
sumption that no significant dispersion exists) and the spectral methods are based on
the propagation of steady waves (free modes or quasi- stationary regime with a priori
information on the characteristics of such a regime); they both lead to a major limi-
tation: the spectral resolution is directly related to the duration of observation (the
time resolution is directly related to the spectral resolution). On one hand, spectral
methods start failing when dealing with very close resonance frequencies (even if they
are due to different types of surface acoustic waves that could be separated in the
time domain). On the other hand, temporal methods start failing when dealing with
overlapping components (even if they can be separated in the frequency domain).

One can overcome these limitations by using an explicit joint time and frequency
representation of the echoes (inspired from the joint time and frequency relation
implicitly expressed in the velocity dispersion relations). Such a representation can
even be used in order to separate, in the time-frequency plane, features that can hardly
be separated, either in the time domain (by gating), or in the frequency domain (by
filtering). 7

For various reasons, that we will develop in this paper, the representation we will
use is the so-called Wigner-Ville,!®!33637 Some papers have shown the interest of
using such a distribution either for a qualitative,*®%9 or for a quantitativel6:17:30:40,:41
echo description.

In this paper, the processing of simulated signals (with simple structure) will
first be shown. Processing will then be applied to a simple acoustical case: wide
band estimation of group velocity dispersion for Lamb surface acoustic waves on
thin plates. Finally the analysis of the impulse response of a spherical shell will be
presented. It is important to point out that, in all the cases that will be described,
the whole information will be extracted from a single wide band echo corresponding
to an estimation of the system impulse response.

2. Motivation of a Time-Frequency approach: the example of a spherical
shell

2.1. Introduction

The problem of the scattering of a plane wave by a spherical shell has been widely
studied during these last years.5'®2* Various works have led to an accurate knowl-
edge of the surface acoustic waves characteristics (velocity dispersion, attenuation,
re-emission) and of the corresponding resonance (location and damping). Echo for-
mation mechanisms are summarized in figure 1: a plane acoustical wave is propagating
in a fluid (considered as an ideal one) and impinging a spherical elastic shell filled
with a fluid (air).

For a given incident plane wave, the direct problem consists in deriving the pres-
sure fleld scattered by the shell and received at a given point M. The expression of
the scattered pressure is given by the classical modal theory. The solution can be
expressed as a series development known as Rayleigh series.®18



170 M. E. Zakharia et al.

incident
plane wave

elastic shell

Figure 1: Echo formation mechanisms. 1: specular reflection, 2 and 3: surface acoustic
waves propagating either in the external fluid or in the shell.

The coefficients of this development have then to be found. This leads to compute
a determinant (of 6th order, for a hollow target) issued from the boundary conditions
(stress) and displacements) on both interfaces: r = a (outer radius) and r = b (inner
radius

The total pressure pp(t) is expressed as the sum of the incident field and the
scattered field: pp(t) = pi(t) + psc(t)- It is given by the following relation:

(t)—Poexp(—wt)Zl \/..(n-{- ){H‘”l(k )+ Dy H(l)l(kr)}P,,(cosG). (1

where P is the amplitude of the incident wave, k is the wave-number in the water
(k = %) and 7 is the distance between the target centre and the observation point.

F, are the Legendre Polynomials, Hf:: , and H:?l are the Hankel functions of the
2 2

first and of the second kind. The expressions of the determinants D{) and D,, are
related to the boundary conditions.!81934
Commonly, one would rather deal with the far fleld form function (and, in par-

ticular, its magnitude), Fyo(ka). This function can be related to the back scattered
pressure P, by

Py = P(,Qi expi(kr — wt)Fy (ka). @)
T

Figures 2 show plots of the form function for spherical shells of various thickness.
The shell metal is Hastelloy (Nickel-Molybden alloy) with the following character-
istics: density p = 9 217 g.cm™3 Young Modulus E = 217 000 M Pa and Poisson
coefficient v = 0.29. These figures display a very complex structure, constituted
by rapid amplitude variations of the spectrum directly related to the acoustical reso-
nances of the shell. The resonance frequencies are given by the zeros of a determinant
D, obtained from the determinant D, by an extension of the integer index n to the
complex associated values v.'® It is important to note that very small variations of
the shell thickness induce large variations of the corresponding form function.
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Figure 2: Form function of air filled spherical shells of Hastelloy, a =external radius
(15 mm), b = internal radius (variable).
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2.2. Resonance and surface acoustic waves

The conditions of existence of surface acoustic waves are given by the characteristic
equation:

D,(ka) = 0. (3)

The solutions can be gathered in groups of integer index [. They are usually
represented by Regge trajectories'®3 which is a well known representation in quantum
mechanics. The resonance frequencies are the solutions of the equation:

Re [u(ka")] - % —n, (4)

where ka* is the value of the normalized frequency ka at the resonance.
The resonance damping factor is given by the relation:

_ Impket)] o . Ou(a)
Lo = Vika®) with vj(ka*) = ar | (5)
6.11,18,32,33

Some authors showed that resonance and surface waves are very closely
connected phenomena. A resonance takes place each time a surface wave circumnav-
igates the sphere with a travel length corresponding to n 4 % wavelengths.

This statement clearly points out the time and frequency duality: acoustical res-
onance (spectral domain) are closely related to propagation of surface acoustic waves
(temporal domain) via velocity dispersion (joint temporal and spectral domain).

2.3. Resonance classification: Regge trajectories

The Regge trajectories cited above, are used to classify the various resonance
encountered. For a resonance corresponding to a given order n, we can define its
order I. Each resonance will be defined by a pair of parameters (n,l). We can then
plot a family of curves (fig. 3) where ka corresponds to the horizontal axis, the mode
n to the vertical axis and [ to the resonance order. Such plots correspond to the
Regge trajectories associated to the target. Each trajectory can be associated to a
specific surface acoustic wave.

For such a simple shape, we can set up a correspondence between the values of
the parameter ! and the surface wave type:

e | =0 corresponds to the Franz wave,
e | =1 corresponds to the Rayleigh wave,

e | =2 corresponds to the first whispering gallery wave,

e | = 3 corresponds to the second whispering gallery wave.
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Figure 3: Regge trajectories for a spherical shell (Hastelloy b/a = 0.956,a = 15 mm).

2.4. Derivation of phase and group velocities from Regge trajectories

Some authors’®® have shown that group and phase velocities can be obtained,
for each frequency, from the Regge trajectories.

The phase velocity ¢y can be obtained by the following relation :

ka* ¢
==, (6)
n+3 Co

where ¢g is the sound velocity in the water.

This link between the parameter n and the phase velocity clearly shows that the
Regge trajectories can be interpreted, for each wave type, as a dispersion law. It
is, in fact, the most primitive time-frequency representation of the shell echo §as no
energy distribution is considered) that could be used to construct the skeleton o
sophisticated representations.

The group velocity ¢, can be obtained from the phase velocity ¢y by the following
relation:

more

Jc
Cg = Cp+ ka—]:. (7)



174 M. E. Zakharia et al.

n | ko [ T [ w/2r(kHz) | ¢y (ms™T) | ¢, (ms™7)
order [ =0

22 17.12% 0.008 389+ 1130 1939+
23 18.45% 0.017 419% 1166 1968+
24 19.80 0.035 450 1200 1999
25 21.16™ 0.067 481% 1233 2009+
26 22.54% 0.126 512% 1263 2008+
27 23.91 0.227 543 1291 2094
28 25.34 0.405 576 1320 2134
order [ =1

1 0.54 2.59 12 535 811
2 1.21 3.70 28 719 988
3 1.95% 4.34 447% 827 1871+
4 3.41% 4.93 78% 1125 2017+
5 4.90 5.51 111 1323 1538
6 5.96 4.95 135 1362 1479
7 6.97* 4.84 158+ 138 1485™*
order | =2

1 6.89% 1.81 157* 6821 5088+
2 9.54 0.80 217 5664 4981
3 12.71 0.36 289 5391 5061
4 16.05% 0.18 365% 5297 5103+
5 19.46% 0.10 442 5254 5137+
6 22.90* 0.06 520* 5233 5139+
7 26.36 0.03 599 5218 5151
8 29.82 0.02 678 5209 5131

Table 1: Resonances of a spherical shell (Hastelloy, b/a = 0.960,a = 15 mm).

These relations were used in order to set up table 1 where resonance frequencies are
listed together with their order, their mode, their damping and their group velocity.

This table gives an idea on the way the resonance will be excited and on the
importance of their contribution in the echo reflected by the spherical shell.

2.5. Motivation for a joint time-frequency analysis

The velocity dispersion of surface acoustic waves clearly appears in table 1. Among
the resonance frequencies some have been marked by a plus sign (+).
These frequencies have been selected and displayed, by pairs, in table 2.
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ka* | ¢, (ms™!) | orderl [ w*/27m (kHz)
close frequencies

6.89 5088 2 157
6.97 1485 1 158
16.05 5103 2 365
17.12 1939 0 389
18.45 1968 0 419
19.46 5137 2 442
22.54% 2008 0 512
22.90* 5139 2 520
close velocities

1.95 1871 1 44
17.12 1939 0 389
21.16 2009 0 481
3.41 2017 1 78

Table 2: Motivation of a time-frequency approach; examples of surface acoustic waves
with close resonance frequencies or close group velocities.

This table shows two types of waves that would be very hard to separate by
classical mean:

e waves corresponding to close resonance frequencies that cannot be separated by
spectral discrimination: (f* = 157 kHz and f* = 158 kHz), (f* = 365 kHz
and f* = 389 kHz), (f* = 419 kHz and f* = 442 kHz), (f* = 512 kHz and

+ = 520 kHz).

e waves with close group velocities that cannot be separated by time gating:
(cg = 1939 ms™! and ¢g = 1871 ms™}), (¢, = 2009 ms™! and ¢, = 2017 ms™?).

A close look at these waves shows that. in fact, they correspond to different
physical phenomena involved in echo formation mechanisms (different order ! and
mode n): frequency resonance, very close in the spectral domain, correspond to waves
with different velocities; in the same way, waves with very close velocities correspond
to resonance clearly separated in the frequency domain.

This statement, illustrated in table 2. clearly shows the relevance and the ne-
cessity of a time-frequency approach of the problem in order to separate, in the
time-frequency plane, waves that cannot be separated either in the time domain, or
in the frequency domain.

It is important to point out that the need of a joint time-frequency approach
of the problem is essentially due to the dispersive nature of the surface acoustic
waves. Velocity dispersion clearly states that any time delay measurement has to be
associated to an operating frequency and that no temporal measurement can be made
without its spectral correspondence.
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3. Time-Frequency analysis methods

8.1. General formulation

Let us first have a look at the time-frequency approaches and the correspondence
between existing methods in the acoustics and the signal processing areas. In a sta-
tionary situation (steady state monochromatic wave), spectral analysis and its phys-
ical interpretation can be easily achieved via Fourier transform.! For non stationary
signals (transients such as sonar target impulse response), the purpose of a time-
frequency analysis is to perform a time dependant spectral analysis. Unfortunately,
it can be shown!® that there is no unique solution for solving this problem.

Nevertheless, if a bilinear energy distribution is considered and shift invariance
properties are imposed, it is possible to give a %eneral time-frequency formulation p,
for finite energy signals (Cohen’s class):10:13:14.38,37

pa(t, f, I} = /—4: W, (u,n)I{v - t,n — f)dudn, (8)

where W, is the so-called Wigner-Ville distribution:*637

Wit )= [ :° 2t +7/2)2(t — 7/2) exp(~2in fr)dr, ©)

and where z(t) is the analytic signal associated to the (real valued) received echo,
f is the frequency and II is a weighting function. It turns out that specifying this
weighting function leads to various analysis methods.

3.2. Spectrogram, Sonagram and acoustical correspondence

A first very intuitive approach, commonly used, consists in considering a non
stationary signal as the concatenation of “quasi- stationary” signals, for which the
classical spectral approach is relevant.

The signal can then be gated and analyzed via a short-time window h(t). This
leads to the spectrogram:

SP(t, f) = /jw z(u)h(t — u) exp(—2im fu)du| . (10)

o

This short-time Fourier transform approach is equivalent to the so- called "ultra-
sonic spectroscopy”. Its interest can be easily illustrated either in the case of slowly
modulated chirp signal (large time-bandwidth product) or in the case of events that
could be separated by time gating. From equation (10), one can see that the signal
is first split into “time slices” and Fourier transform is then applied to each “slice”
. Each time interval is considered "small enough” so that the assumption of " quasi-
stationarity” is valid (or that only a single event is included in the window); if not,
the frequency sweep will be so important that the signal ”slice” cannot be considered
any more as a monochromatic one (or time events will be mixed).

In such an approach, one will be faced to two antagonist constraints:
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e on one hand, reducing the time window duration will lead to reducing the
frequency resolution;

e on the other hand, increasing this duration will improve the frequency
resolution but will weaken the stationarity assumption (i.e. reduction of
the effective time resolution).

It is important, for such an analysis, to find a trade off between the time and the
frequency resolution.

This trade off is closely related to modulation properties of the analyzed signal.
It is implicitly achieved in ultrasonic spectroscopy, as time gating is defined using a
priort information on the echo to analyze.

Sonagram is equivalent to the spectrogram but it operates in the frequency do-
main:

/ "% Z)H(f — n) exp(+2imnt)dn| . (11)

S0,(t, f) =

It consists in filtering the signal to analyze through a bank of filters (with constant
bandwidth) and displaying the output energy, for each filter, as a function of time.
The trade off can be expressed, in this case, in terms of relation between the filters
bandwidth (frequency resolution) and the duration of their impulse response (time
resolution).

This approach is very often used in acoustic measurements although it is seldom
explicitly expressed in such a way. Measuring a transfer function of a linear acoustic
system by varying the frequency of a pure tone burst with a constant duretion can be
assimilated to analyzing its impulse response through a set of filters (centered around
the bursts frequency) with constant bandwidth (corresponding to the inverse of the
duration). Filtering is, in fact, achieved, by the excitation signal, at the system input
instead of using a bank of filters at the output.

When pure tone bursts with a constant number of periods are used (i.e. burst du-
ration varies with frequency), this will be equivalent to analyzing the system impulse
response through a set of filters with constant Q (bandwidth varies with central fre-
quency). This analysis is closely related to wavelet transforms that have been widely
studied these last years®®. Time window optimization is implicitly included in the
experiments using pure tone bursts?? where “burst waves” are considered as a “quasi-
stationary”, “quasi-monochromatic’ones (whose frequency corresponds to the burst
frequency).

This assumption is questionable (and even non valid) when dealing with highly
dispersive waves or/and highly resonant systems.

In the first case (highly dispersive waves), the time resolution constraint will lead
to the transmission of a short signal (wide band); velocity dispersion can modify con-
siderably the signal “shape” and smear the received echo making energy localization
very hard to achieve. This problem is often overcome by splitting the processing
frequency range in several narrow sub-bands, in order to consider the medium as a
”quasi non dispersive” one, for each sub-band. The narrower the bandwidth (i.e. the
longest the burst duration), the better this assumption. For experiments conducted
in a limited space, duration increase is, of course, limited by spurious reflections.

In the second case (highly resonant systems), the resonance localization is based
on the important assumption that the received energy and the transmitted one can be
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attributed to the same frequency. This assumption is only valid for a monochromatic
wave. As mentioned in the first case, the use of a finite duration burst will spread the
transmitted spectrum (and thus the received spectrum). Increasing the burst duration
will reduce its spectrum and improve the spectral resolution but it will deteriorate
the temporal localization and resolution.

The problems that may arise while using pure tone burst for resonance localization
will be illustrated lately, by the use of time-frequency analysis (section 4.4).

In a general case, the limitations and the errors due to the implicit assumptions are
hard to evaluate as a lot of a priori information is needed on the physical phenomena
involved in the echo formation.

3.8. Wigner-Ville Distribution

As the assumptions cited above (quasi-stationarity, no significant dispersion) can
be too restrictive, we need a more general approach that gets rid of explicit (or
implicit) hypotheses on the signal evolution.

This can be achieved via the Wigner-Ville Distribution expressed in equation
(9). In such an analysis, no a priori assumption is made on the stationarity or the
dispersion properties of the signal to analyze.

In some way, it can be considered as a “blind” time-frequency analysis of the
signal. Although this particular distribution is not the unique way of avoiding the
cited assumptions on the processed signal. its key role is supported by the many
properties listed in the following sub-section.

3.4. Some properties of the Wigner-Ville Distribution

The Wigner-Ville distribution possesses a lot of interesting properties with respect
to both signal processing and acoustical aspects of the propagation problem:%910:12.14

3.4.1. Energy conservation

Integrating the distribution over the whole time-frequency plane leads to the signal
energy E,:

B= :° / +: W, (, f)dtdf. (12)

3.4.2. Marginal values

Integrating the distribution along the time axis leads to the energy spectrum E'S:

ES() = 12001 = [ Wit fat. (13)

- 20
Integrating the distribution along the frequency axis leads to the instantaneous
power I P:

1P() = =0 = [ WLt . (14)

20
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3.4.3. Bandwidth and duration preservation

The distribution of a time limited (respectively frequency li'mited) signal is limited
on the same time (respectively frequency) interval T' (respectively B):

z(ty=0for t ¢T=>W,(t,f)=0for t¢T, (15)

Z(f)=0for f¢ B=>W,(t,f)=0for f ¢ B. (16)

This property is interesting for localizing waves and echo components.

3.4.4. Shift invariance

The distribution of a time (or frequency) shifted signal is shifted by the same
amount:

let y = z(t — to), then W, (¢, f) = W,(t — to, f), 17)

let Y = Z(f ~ fo), then W,(t, f) = Wi(t, f — fo). (18)

The first part of this property makes the interpretation of propagation phenomena
very easy to achieve.

3.4.5. Input-output relationship for linear filters

The distribution associated to F(z(t)) resulting of passing a signal z(t) through a
linear filter with an impulse response r{t) can be obtained by the convolution of the
signal distribution and the filter response distribution over the time variable:

W (t, f) = /_ :° W, (t — u. )W, (u, f)du. (19)

This property is very interesting for the interpretation of the diffraction and the
absorption phenomena as they both can be viewed as a linear filtering of the trans-
mitted signal.

3.4.6. Instantaneous frequency

The instantaneous frequency f; is commonly defined as the derivative of the phase
of the analytic signal>® and can be obtained by computing, at a given date, the first
order moment of the distribution along the frequency axis:

_ld o BEWL N
fi(t) - g[“(t)] - f0+oo Wz(t,f)df .

This property can be very useful in a sonar situation in order to describe accurately
the modulation laws of the received echoes.

(20)
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3.4.7. Group delay

The group delay 7,, as defined for linear filters,>*?" can be obtained, for a given
frequency, by the first order moment along the time axis:

1

) = 5= 28 12(7)

WLt f)tdt
=W NE @)

3.5. Acoustical correspondence

Let us consider a plane monochromatic wave travelling from a point A to a point
B in an isotropic non dispersive fluid medium. Let P4 be the pressure in A, Pg the
pressure in M, r the distance AB (AB perpendicular to the wave front) fo the wave

frequency, ¢ the velocity of the compressional waves and kg = 2—:{3 the wavenumber.
The pressure in A can be expressed as:

pa(t) = exp(i27 fot) — Pa(f) = 276(f — fo) (22)

and the pressure in B as:

pa(t) = exp(i27 fot — tkor) — Pg(f) = 278(f — fo)exp (—i?;rfr) . (23)

where — expresses the Fourier transform and é the Dirac distribution.
A plane impulsive wave can be considered as the sum of a great number of
monochromatic plane waves in phase at t = 0.

5(t) = / ™ exp(i2n ft)df. (24)

If such a plane impulsive wave §(t) is transmitted at point A, then the pressure
at point B is 6(t — Z), in the case of a ideal medium.

In the case of a dispersive medium, the phase velocity is a function of frequency:
cp = co(f)-

The pressure signal in B is no more a Dirac pulse but a distorted waveform:

pa(t) = / :° exp (’cf(’}f)r> exp (627 ft)df. (25)

We know from previous work,!? that the first moment of the Wigner- Ville dis-
tribution is equal to the so-called group delay 7,(f) (equation (21)). Let us try to

connect this group delay to the group velocity defined for dispersive waves:*®
1df
c(f) = mdk (26)

From equation (7), the group velocity ¢, can be expressed as a function of the
phase velocity ¢, :
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co(f)

) =17 wmn (27)
co(f) 8f
From equation (23), we can extract Py(f):
P(f)=exp (f:g;) . (28)
Then we can write:
27
arglPalf)] = 05 (29)

As expressed in equation {21) , the group delay 74(f), given as the first moment
of the Wigner-Ville distribution 1s equal to:

2w 8f co(f) co(f) Of

From the comparison of equations (29) and (30) , it is clear that, for each frequency

f, the group delay estimated by the Wigner-Ville distribution is equal to the one
defined in acoustics:

ro(f) =~ 2 targ(Pa()] = =2 [1— ! ac’(f)}. (30)

10 T

7,(f) = 2_77'8'?[AT9(PB(f)] =20

This property is one of the most important, in the case of acoustical propagation
and scattering. It means that, aside qualitative information,”3% the Wigner-Ville
distribution can lead to quantitative physical information (such as group velocity)6:40:4!
on the acoustical phenomena involved in echo formation niechanisms. The price to
pay for all these interesting properties is the bilinearity of this distribution that can
lead to interpretation difficulties, especially in the case of complex targets and muliti-
component echoes where spurious interference features may appear.!®

As we will see, interference structures can be reduced via time or (and) frequency
smoothing while using ” Smoothed Pseudo Wigner-Ville Distribution”:13

(31)

SPW:z(t, f) = /+m q(T) [/%o g(u — t)Pg(u + I)P‘,;,(u - —;:)du e BT (32)

—oo . 2

where g(r) = |A()[ and h(r) = h(-7).

3.6. Digital implementation of the Smoothed Pseudo Wigner-Ville Distribution

When dealing with digitized signal. the Di§ita1 Smoothed Pseudo Wigner-Ville
Distribution (DSPWVD) can be expressed as:'
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DSPWVD:z(t, f) =2 I‘S [h(n)[? K (t, n)e= "1, (33)
n=N+1
where:
M-1
Ku(t,n) = Z gm)z(t+m+n)z*(t+m—n), (34)
n=M<+1

h is a short-time window defined on (2N — 1) samples, g is a smoothing window
defined on (2M — 1) samples and [ is the reduced frequency (0 < f < 1/2).

Equations (33) and (34) show that a separate control of time and frequency reso-
lutions is possible.

Computing this distribution can be easily implemented via Fast Fourier Transform
algorithm. Although the periodicity of equation (33) is twice that of the conventional
Digital Fourier Transform, no aliasing problem occurs due to the use of analytic
signal.1%1% As we will see, on simulation examples, a judicious choice of the smoothing
functions f and g can help in reducing the importance of the interference terms.

3.7. Graphical interpretation of propagation phenomena in the time-frequency plane

The properties of the Wigner-Ville distribution will make the propagation phe-
nomena very simple to describe and to interpret in the time-frequency plane. Acous-
ticians often deal with plane monochromatic waves. Such waves can be represented,
in the time-frequency plane by a single horizontal line (Figure 4) corresponding to
the frequency fo (infinite duration, infinitely narrow bandwidth). The summing of an
infinite number of monochromatic waves at various frequencies will lead to a "plane
impulsive wave” (figure 4) occurring at the date ty. In this case, the equiphase sur-
face is a plane one, for every frequency component of the impulsive wave. This wave
description is very convenient for the interpretation of propagation phenomena, but
theoretical derivations often go through its Fourier decomposition. The time signal
is then obtained by summing all the monochromatic contributions. Such a wave cor-
responds to a vertical line in the time-frequency plane (infinite bandwidth, infinitely
narrow duration.

In all real cases, we will deal with signals possessing a finite effective duration
and a finite effective bandwidth. The wave propagation of an impulsive plane wave
is illustrated in figures 5 and 6 for various propagation conditions: non dispersive
medium (figure 3), dispersive and absorbing medium (figure 6).

This intuitive description was made possible thanks to the various properties of
the Wigner-Ville distribution cited above (mainly 3.4.3, 3.4.4 afAd 3.4.5). The simplest
case is the propagation through an ideal medium (non dispersive and non absorbing):
propagation from a to b (figure 5), is only a translation. Translation delay is the same
for all frequency components and thus for the whole (impulsive) signal without loss
of energy. The propagation delay 7 is simply expressed as the ratio of the travelled
distance and the velocity ¢ (7 = d/c¢).

When dealing with a dispersive and absorbing medium (propagation from a to
¢, figure 6), velocity and absorption are frequency dependent: frequency components
transmitted at the same time with the same level (plane impulsive wave) will reach
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Figure 4: Waves description in the time-frequency plane.

the observation point at various arrival times §(t—7) (dispersion: 7 = 7(f)) and with
various levels (attenuation a = a(f,7) ).

The relevance of the Wigner-Ville distribution for describing dispersive phenomena
is emphasized by the derivations developed in acoustical correspondence paragraph:
in addition to the qualitative description of wave propagation, the distribution will
provide with a quantitative measurement of the group velocity.

4. Simulations results

Before analyzing real data, it is interesting to evaluate processing performance on
some simulation examples illustrating both the choice of the Wigner-Ville distribution

as a time-frequency analyzing tool and the use of the smoothing windows (SPWVD)
for reducing interference terms.

4.1. Test signal

The computed signal is a sketchy version of the first components of a shell echo;
it consists in the sum of a impulsive signal (specular echo) and a chirp (dispersive

surface acoustic wave). The time-frequency structure of the test signal is shown in
figure 7.

4.2. Spectrogram and Wigner-Ville distribution.

Figures 8, 9 and 10 show three examples of the test signal analysis via spec-
trograms with various time windows: short (figure 8), medium (figure 9) and long
duration (figure 10). These figures show an important dependence of the spectrogram

analysis on the analyzing window and clearly display the duality between time and
frequency resolutions.
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T =d/c
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time

Figure 5: Description of the propagation in an ideal medium.

Jrequency

time

Figure 6: Description of the propagation in a dispersive and absorbing medium.
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Jrequency

time
Figure 7: Time-frequency structure of the test signal.

On another hand, the Wigner-Ville distribution (figure 11) gives a nice description
of the signal structure by concentrating the energy around the modulation laws but
it suffers from interference terms between components and a higher noise level.

For all these figures (as well as for figures 11 and 12) the same analysis parameters
have been used:

e vertical axis: frequency(40 kHz/division)
e horizontal scale: time (20 ps/division)

e grey scale: logarithmic, 3 dB by grey scale total dynamic range: 24 dB

figure also show the processed signal (horizontal) and it power spectrum (ver-
tical)

h and g windows (h: Kaiser-Bessel, g: rectangular) are also given.

4.8. Smoothed Digital Pseudo Wigner-Ville Distribution

For the Smoothed Pseudo Wigner-Ville distribution, temporal and spectral smooth-
ing are independent:!4 and have been optimized separately in order to reduce inter-
ference terms. Figure 12 illustrates, for the test signal, the improvement provided by
this approach over spectrograms (figures 8. 9 and 10). Smoothed Pseudo Wigner-Ville
Distribution flexibility provides a convenient trade off between the joint time and fre-
quency resolution and the importance of the interference terms. As an intermediate
step between Wigner-Ville distribution and the spectrogram, it allows to clarify the
display of the former without imposing the too restrictive conditions associated to
the latter.
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4.4. Some limitations of pure tone burst analysis

Pure tone burst analysis has been widely used for hydrophones calibration !, (and
for electrical network analysis). Due to its convenient use, it has been also used for
target echo processing.!®?0:2225:26 Nevertheless, the highly resonant aspect of target
form function and the large number of resonances can be misleading for the interpre-
tation of the energy localization (envelope). This problem can be illustrated by the
time-frequency analysis of such echoes. In the case of a pure tone burst (frequency
fo, duration T'), the Wigner-Ville distribution can be expressed analytically as:

W.(t. f) = sin Qﬂ(ir(_j’]'f)f‘z;_ 214) fort e [_—72:"*}2:} (35)
and
W,(t,f) = 0 for t ¢ [—%J%] (36)

Figure 13 shows an example of such a distribution.

Both the analytic expression and the displayed example show clearly that a pure
tone burst cannot be considered as a monochromatic signal especially in the transient
areas (set up and set down).

Let us consider, for instance, the case of the spherical shell excited by a transmitted
tone burst whose frequency fp is situated between two target resonances f; and f5 :

fi < fo < fo ( fo =255 kHz, f; =247 kHz and f, = 259 kHz).

This situation can often happen when a frequerncy scanning is used for echo char-
acterization using tone burst, and no a priori information is available on the location
of the target resonances.

The time-frequency representation of such an experimental echo is given in figure
14. It shows clearly that, in this case, the echo energy cannot be attributed to the
central frequency of the transmitted signal. A close look at the signal after the burst
end (ringing area, free mode excitation) shows that this area is the one where the
monochromatic assumption is the less valid. In this example, we see clearly that
the “ringing” energy is more concentrated around the resonance frequencies than
around the transmitted burst frequency. Several other examples have led to similar
observations.

This section is not meant, in any way, to claim that all measurements using pure
tone burst are wrong ones, but only to point out that one should be very careful in
associating the energy information contained in the echo of a pure tone burst to the
central frequency of the burst when no a priort information is available on the target
response.
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5. Experimental results

The concepts developed will now be applied to experimental data and measure-
ments using the time-frequency analysis of impulse response will be compared to
theoretical data.

5.1 Application to surface acoustic wave propagation on thin plates

The first ex;aerirnental example shown is a very simple one dealing with surface
acoustic waves.*?

5.1.1. Experiment description

The experimental set-up is described in figure 15: surface acoustical waves are
excited using a p-wave transducer associated to a wedge. The wedge angle is designed
for generating Lamb waves.>®® The transducer is a wide band one and the transmit-
ted signal is a short pulse. The signal is recorded, after propagation; by 2 similar
transducer set-up. The central frequency of the transducers is 500 kHz and their
bandwidth is 300 kHz (at -6 dB). Plate thickness is 10 mm. The plate is made of alu-

minium (longitudinal waves velocity 6380 m.s™!; shear waves velocity 3100 m.s™1).

transmitter receiver

e

aluminium plate

Figure 15: Lamb waves, experiment description.

5.1.2. Signal analysis

The received signals, as well as their spectrum and their time-frequency analysis
are displayed in figures 16 and 17, for two propagation distances: r = 60 mm (figure
16) and 7 = 120 mm {figure 17) and for a single plate mode. These figures show that
propagation leads to a ”spreading” of the wide band signal energy, due to the velocity
dispersion. In the case of a long propagation path (even in a slightly dispersive case),
the signal energy becomes very hard to localize in the time domain.
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The Wigner-Ville distributions of those signals show clearly the velocity disper-
sion: the longer the path, the larger the difference between low frequency and high
frequency propagation delays. Given both propagation paths, one can compute the
time needed, for each frequency component, to travel the difference distance. The
group velocity dispersion can then be estimated.

Figure 19 display experimental results when three plate modes are excited. The
time and the frequency plots show that the modes cannot be separated neither in the
time domain, nor in the frequency domain. Nevertheless they can be separated in the
time-frequency domain. The computation of group velocity can then be achieved by
isolating every signal component in the time-frequency domain.

5.1.3. Results

The experimental results extracted from the time-frequency plane are displayed in
figure 18 together with the theoretical values (theoretical Lamb dispersion curves® }when
three modes are excited simultaneously (values extracted from figure 19). It is impor-
tant to point out that, although several modes were investigated, the experimental
results have been obtained on a wide frequency range by processing only two signals
(at two ranges).

A quite good agreement between theoretical and experimental results is obtained
{measurement error is of the order of magnitude of used symbols). It clearly shows
the precision of such a measurement method (error of few percents) and validates the
derivations developed in section 3.5.
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Figure 18: Group velocity dispersion of Lamb waves (3 modes).
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5.2. Application to a sonar target: spherical shell

Now that it has been proven, on simple cases, that Wigner-Ville analysis is a
relevant method for studying dispersive waves, it will be used to address a more
complex problem: the scattering of an acoustical wave by a thin spherical shell.

5.2.1. Experiment description

The experimental set up is described in figure 20. The same transducer is used
for both transmission and reception (backscattering configuration), target range is
about 50 em (far field) and the whole target is insonified. The central frequency of
the transducers is 250 kHz, its bandwidth is 250 kHz (at -6 dB). The transmitted
signal is a very short pulse, only filtered by the transducer response. The received
echo is amplified and filtered before being digitized and stored on a hard disk for
further processing.

Figure 21 displays the echo reflected by the shell described in section 1 (Hastelloy
alloy spherical shell, @ = 15 + 0.025 mm, b/a = 0.960, thickness = (b—a) = 0.6 &
0.025 mm) together with its power spectrum and its time-frequency representation.

The specular echo, followed by some other echo components reradiated by surface
waves that circumnavigate the shell are clearly displayed in the time plot of the
impulse response. The power spectrum is very characteristic of thin shells echoes
and very similar to the simulated spectra of figure 2 (a succession of maxima and
minima due to the presence of acoustical resonance with variable damping) within
the investigated frequency range (limited by the transducer bandwidth).
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Figure 20: Spherical shell; experimental set up.
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5.2.2. Digital Smoothed Pseudo Wigner-Ville Distribution and target characterization

On the Smoothed Pseudo Wigner-Ville Distribution of the shell echo (figure 21),
several wave packets can be distinguished. They have been labeled as follows: OF:
Optical Echo, F: Fast wave (corresponds to [ = 2), S: slow wave (corresponds to
I=0o0r!=1). FandS individual components correspond to the same wave which
has travelled several times around the sphere; for each circumnavigation, the wave
looses a fraction of its energy. Some velocity dispersion may be observed, as patterns
bend slightly with the propagation.

Each component of figure 21 can be separated by a time-frequency filter. Knowing
the propagation path, for each circumnavigation around the sphere (27a), the group
velocity of both waves (Slow and Fast) can be computed.

The results are shown in figure 22. In addition to the measured values an error
range of £10% has been displayed. Some values of table 1 {corresponding to the
frequency range of the transducer) have also been plotted. Figure 22 shows a good
agreement between theoretical and experimental data. The estimation error on group

velocity is about few percents (same order of magnitude than the error on the shell
thickness.

. B FAST
experimental values
from DSPWVD |o SLOW

I oo
theorethical values

— X -
E 4000 + from table 1 =1
e0 + =2
3000 1
2000 - X
1000 + : + : — ; —
100 150 200 250 300 380 400 450

frequency (kHz)

Figure 22: Velocity dispersion estimated from Wigner-Ville distribution (DSPWVD)
of the impulse response of a spherical shell.

5.2.3. Target classification and method robustness

In typical sonar application, one can be interested in using time-frequency rep-
resentation for target classification. Time-frequency analysis can be achieved either
on raw data or, preferably, after pulse compression (higher signal to noise ratio). In
the later case. the processing is similar to the time-frequency analysis of the target
impulse response. For various applications. one may be interested in evaluating the
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robustness of such a processing in comparison to classical methods such as resonance
localization. A preliminary work has been conducted in the simple case of a spherical
shell.® Only the influence of shell thickness has been investigated. The simulated
echoes of shell with various thickness have been computed. The error induced by
small variations of thickness on both resonance frequency and surface wave disper-
sion have been analyzed. The results show that velocity dispersion characteristics are
less sensitive to shell thickness variations than the resonance position and that a gain
factor of 4 to 8 in robustness can be obtained. These results are very encouraging and
other studies using time-frequency approaches for target classification are conducted
actually.

6. Conclusion

The results obtained for both simple and complex cases clearly show that the
Wigner-Ville distribution is a relevant tool for processing wide band signals propa-
gating in dispersive media.

The derivations developed as well as the results obtained on a thin plate and on
a spherical shell show that such a processing is more than a qualitative one and that
it can be used as a very accurate tool for group velocity estimation (error less than
few percents).

The use of a wide band system, with impulsive excitation (or chirp, in sonar case),
can provide with a very rich information on the sonar target, from a single sonar shot.
Nevertheless this information becomes more and more complex and cannot be any
more interpreted in terms of Target Strength as usually done in the narrow band case.

Time-frequency processing can then be used to display the wide band information
in a more comprehensive way and to provide both a qualitative description of the
acoustical phenomena involved in echo formation mechanisms and a quantitative and
robust measurement of echo components characteristics. Moreover, patterns, in the
time-frequency plane, can also be used for a robust target classification.
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ABSTRACT

The classification of submerged bodies with respect to internal properties (ma-
terial etc.), and not only based on geometrical shape, should be possible by
means of their scattering resonances. This approach is known as the resonance
scattering theory (RST). In model experiments, many isolated resonances can
be observed, thus experimentally confirming the RST. However, in real-world
experiments isolated resonances can typically not be detected. An essential
extension of the RST theory with respect to solving practical problems is pos-
sible by applying to the acoustical scattering problem the so-called R-matrix
theory (RMT) which has been developed by Wigner and Eisenbud to describe
nuclear reactions. Properly defined resonances provide the basis from which
the whole formalism is constructed, while in the former theory the resonances
are introduced after computing the scattering cross section. This allows an
extension of the “acoustic spectroscopy” of isolated resonances as introduced
by Brill et al. to the practically important case of strongly overlapping reso-
nances. Isolated resonances are included in the RMT theory as special cases,
too. A model function is proposed which can be matchede—without knowledge
of the scattering cross section—to measured differential cross sections in order
to extract the resonance features.

1 Introduction

A problem of practical concern in underwater acoustics is the classification of
targets from sonar echoes, e.g., the discrimination between metallic objects and
stones; the targets may even be buried in the sediment. Classification cannot be
based on the geometrical shape alone (as in high frequency acoustical imaging) but
has to include material properties or the inner structure of the target.
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Appropriate classification parameters are given by the scattering resonances. These
are the frequencies where strong interaction between the impinging wave and the in-
terior of the target occurs. They are strongly related to the vibration modes of the
target.

The great importance-of the eigenvibrations for acoustic radiation and scattering
behavior has been documented by many articles (e.g., Hund?, Boisch??),

A rapid variation of the backscattering cross section in a small frequency interval
can be called a resonance. Several definitions are possible (some examples will be
given below) which stem from nuclear theory and can desribe such variations, but
give different resonance frequencies and widths. However, if a scatterer actually
exhibits a rapid change of the backscattering amplitude in a small frequency interval,
all the definitions lead to nearly the same resonance parameters.

It was hoped that the acoustical scattering resonances would characterize a target
in a similar way (“acoustical fingerprint”) as atoms, nuclei etc. can be identified from
their resonance spectra. This is why much work has been devoted to the development
of the resonance scattering theory (RST) by Uberall, Gaunaurd and many others*~8.

Roughly speaking, this theory is a transcription of the “S-Matrix Theory” from
nuclear physics to acoustical scattering. First, the analytical form of the backscat-
tering amplitude is computed, and afterwards the resonances are related to the poles
of the scattering function. Much attention has been paid to isolated resonances:
The scattering function is separated formally into one single isolated resonance and
a background term. But one must keep in mind that the particular resonance picked
out interferes coherently with the background term.

In general, acoustical resonances cannot be as sharp as nuclear ones because there
are no “almost bound states” in acoustics (k* < 0 is impossible). Isolated acoustical
resonances can, therefore, be observed with properly chosen objects only (see, e. g.,
Maze® and Neubauer!? for such model experiments).

In typical real-world experiments a coherent superposition of many resonances
is observed. Although the single resonances cannot be resolved in monostatic mea-
surements, the overall resonance behavior of the object nevertheless provides features
suitable for classification.

In the “R-Matrix theory” outlined below, the resonances are not introduced after
computing the scattering cross section, but they are directly related to properly de-
fined vibration modes from which the whole formalism is constructed. This theory
includes the line widths and the coupling of the different resonant modes. So the
“acoustic spectroscopy” of isolated resonances as conceived by Brill et al.’ can be
extended to the practically important case of strongly overlapping resonances.

Data reduction is another important aspect. The spectral parameters provide a
data set of much lower dimension than the original time series of the backscattered
sonar echo. This data set may serve as a proper input vector to a conventional or,
e.g.. a neural network classifier.
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2 Scattering resonances

The plane wave impinging on the object can be considered a superposition of spherical
modes. If the scattering object is present, the outgoing modes are to be multiplied by
a complex reflection coefficient S; (modal scattering function) whereas the incoming
modes are left unchanged. The target shall be understood here to be a sphere of
homogeneous, lossless material admitting only compressional waves. This scatterer
shows already all important features of the resonance concept. The scattered wave is
obtained by subtracting the plane wave from this field:
P, = & ek
oC
= —(2)7 3 (2 +1)d (1 - ) AT (kr) Pi(cos 9) (1)
1=0
where F, designates the Legendre-Polynomials, & is the angular wave number, and the
spherical Hankel functions h,(+) (kr) describe outgoing waves because a time depen-
dence of the form exp(—iwt) is assumed. The incident plane wave exp(ikz) propagates
in direction of the polar axis.
The measured differential cross section do,./dS? is the power scattered into the
solid angle d}, divided by the intensity of the incident wave:
2

|
\;mw ; (2)
@)@+ (1 -S)A. (3)

dog,

o = lo(o)F

°

=

=
]

Introducing the form function g, the total field in great distance from the object can

be written as "
. el T
d = ezk:rcosﬂ + 9(19)

(4)

The field outside the scattering object is entirely determined by the S-Matrix
elements S;. If this field is written as

& =z h{* +y Al (5)

then one has z
S =-=. 6
: W ( )

The argument of all functions related to the interior of the object is k;r, that of
the functions describing the outer field is k,r. At 7 = R, the boundary of the object,
the two fields are connected by the requirement that the pressure,

pi ®} = po (zeh{™ + b)), (7)
and the radial component of the velocity,

ki ©F = ko (z A + g R (8)
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must be continuous (' means derivative with respect to the arguments k;R and kR,
respectively). These conditions yield the S; which can be written for convenience as

B e D _ -
G P T maT WD e (Ais) B ©
TG B = (Ar+is) B
pi ¥} Pa h;ﬂ
The expressions
kR @}
fri= 2220 (10)
pi Uir=R
and Yy
a
Ap+is) = 2= L 11
( )= (1)

introduced with the last equation are proportional to the acoustical surface admit-
tances. The factor hl(”) / hl(+) in Eq. (9) would be the whole scattering function if the
object had a pressure release boundary (for the outer problem). Since its modulus
equals unity, this factor represents the phase shift 6} imposed to the outgoing waves
by the geometry of the object:

Sp = exp(2:6}") . (12)

The first term in Eq. (9), containing the logarithmic derivatives f; and (A, % is;),
is related to the interaction of the incident wave with the interior of the object and,
therefore, also to the resonances.

2.1 Definitions

A strong fluctuation of the differential cross section or at least of the modal form
function in a small frequency interval can be called a resonance. Several definitions
are used in the literature to describe resonance behavior, leading to different resonance
frequencies and widths.

2.2 Resonances as poles

This way of introducing the resonances shall be called the “Natural resonance def-
inition” here. Resonances are defined!! as the complex poles k, of the scattering
function S;:

fl(kn) = Al(kn) +1 sl(kn) . (13)

This means that there exists an outgoing wave without any incoming one. At a pole

kn= k., —iK, (K.>0) (14)
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one can write the outgoing wave at great distance from the scatterer,

expli (knm — 1/217)]
knr

z(kR) - ceTient (15)

with w, = ky, - c as

Ok, 7, t) = K gikn(r—ct) | JKn(r—ct)=1/2ix (16)
knr
For K, > 0 the amplitude decays exponentially with time. This is the “ringing” of a
resonance (e.g., Numrich!?).

With increasing distance from the scatterer the wave amplitude grows without
bound. This is, of course, physically impossible; the reason is that causality has not
been considered so far'®: The amplitude at location 7 and time t was radiated by the
scatterer at the time (¢t — r/c). The resonance state cannot have been decayed since
an arbitrarily long time, but must have a definite beginning. If this time origin is
called ¢ = 0, then the spatially exponential growth of the wave ends at the distance
r=ct.

The set of poles of S) also contains those of the second factor in Eq. (8), which
represents the scattering function of a sphere with pressure release boundary. These
“geometrical” poles have a much larger imaginary part than the poles of the first
factor in Eq. (9).

2.3  “Actual” resonances

This definition requires the f; to be real for real frequencies (elastic scattering only)
and is derived from the “natural definition”'¥-8: f(k,) is written in the vicinity of
the real part of the pole k, as a linear expansion:

filkn) = fil(Rk,) + <%) (kn — Rkn) . (17)
Rk,

Then the “actual resonance wave number” Rk, is defined by each of the two equivalent
equations:

HRE) = Af(RE,) (18)
e aﬂ) s
Rk,) = —_ kn, — Rk,) .
'le( ) (ak - ( ) (19)

Therefore a complex resonance wave number

F = (Rhn) + e = (Rka) — i 2 T (20)

<%§€L)M" -
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can be introduced, where the width I is given by

21 8
=
4 (_@ﬁ) . (21)
8k Ry
At the resonance frequencies defined by Eq. (18) the relation
S =S¥ (22)

holds. Eq. (18) was used by Uberall et al.!” to define the acoustical scattering reso-
nances.

2.4 “Formal” resonances

This definition!®!® also requires the f; to be real. The real resonance frequencies k;
are defined in this case by

fk)=0. (23)

They can, again, be assigned a complex value so that a resonance width is defined in
the following way: the analytical continuation Fj(k) of f,(k) for complex-valued k is
defined by a linear Taylor approximation:

5}
A =0+ (F) =K. 1)
0k )1
The real value &/ can be assigned, by
Fi(kn) = Ay(kD) +isy(KL) (25)
a complex wave number ko
: Ak 1 2s5(kD
- f I\ Ny a2 I\
kn = |kl + (Qﬁ) 15\ —7any (Qf_:) . (26)
3k i ok )it

The formal definition f; = 0 is equivalent to prescribing a hard-walled boundary for
all frequencies. This leads to discrete, real eigenfrequencies and real eigenfunctions
in the interior of the scatterer. But in reality the surface impedance depends on
frequency. Nevertheless, the scattering process can be described exactly on the basis
of the formal eigenfrequencies, as will be explained below.

The three resonance definitions given above provide similar resonance frequencies
if the widths are very small (poles near the real frequency axis):

ky = ky =~k . (27)
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3 Properties of the scattering function

The scattering function S; has some generally valid properties which are independent
of the special nature of the scatterer!®.

The wave packets in the actual scattering process are built up from the steady
state solution by Fourier transformation. Because these wave packets are real-valued,
the symmetry relation of the Fourier amplitudes must hold for the scattering function,
too:

S(—k) = 5*(k). (28)
Only elastic scattering shall be considered here so that energy conservation means
|S(k)? = S(k) S*(k) = 1, (29)
or,
S{k) S(-k)=1. (30)

The analytical continuation from the real k-axis into the complex k-plane is governed
by the requirement of causality, which leads to Titchmarsh’s Theorem:

S(k) is holomorphic in the upper k-plane and symmetrical with respect to the imag-
Inary axis:

S*(k) = S(—k*). (31)

The following symmetry properties hold: All poles of S(k) lie in the lower half-plane,
all zeros in the upper one. If k, is a pole, —k, is a pole, too, while —k, and k are
zeros. This pole distribution can be seen in the numerical calculations as reported in
the literature?-22,

Due to the above-mentioned properties the “canonical product expansion” is val-

idl?”lg:
: k—k
k) = —2ika n
Sk)=e rn‘[*k_kn (32)
Each pole pair (k,, —k) gives the contribution
k—k: k+k,
k—k, k+ks (33)

Therefore the scattering function S;(k) is determined uniquely by its poles kj,. All
information about the scatterer available in the backscattering amplitude is contained
in the distribution of the “natural resonances.” The factor exp(—2ika) reflects causal-
ity: at great distance r from the origin the scattered wave cannot be observed before
t = 2(r—a)/c, if the incoming wave has passed r at ¢ = 0. If the scatterer is a sphere
with radius R, & = R can be set for every [.
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4 Resonances, cross sections and ringing
The differential cross sections are governed by
1-3Sy,

which is proportional to the amplitude of the scattered wave. In the scattered wave
all contributions interfere coherently.

If there is a pole k, = K, — i, ([x > 0) with the width T, being much
smaller than the distances to the adjacent resonances, and if furthermore aK, < 27,
exp(—2:kR) ~ 1, i.e., the wavelength at resonance is much greater than the radius of
the scatterer, then the scattering function can be represented in the vicinity of such
a resonance by only one factor of the product expansion:

k—K,—ily, k+k,
k—K,+ily k+k;

(34)

where the second factor, which stems from the pole —%, can be assumed unity
because of I',, € K.

If the exponent (2:kR) is not = 0 or does not approximate a multiple of 27, this
“causality factor” interferes also with the resonances. If T',, is very small, the influence
of all other poles can be neglected in the vicinity of the resonance frequency K,. What
remains is only the interference with the background exp(~2¢kR). The expression
exp(—2ikR) is called by Bethe and Placzek? the “Potential scattering in a narrower
sense.” It has neither poles nor zeros. The factor h{ ™ (kR)/A{*) (kR) in S (see Eq. (9))
is often called potential scattering. It is related to the purely geometrical scattering
of the incoming wave and has poles with large I',, corresponding to the free vibrations
of the medium outside the sphere. In a ray approximation the “Franz surface waves”
can be assigned to them. The product expansion, Eq. (32), of S; contains all poles,

the “outer” ones from hf_)(kR) / h§+)(kR) and the resonances of the inner structure.
Only in the special case [-= 0 both definitions of potential scattering are equivalent:

h(“) )
0 _ 6—21kR .

The concept of a “single resonance” suggests exceptional effects to be present and
therefore small values for the widths I',,. There is some arbitrariness how to sep-
arate the scattering function in potential (or background) and resonance scattering
parts. Poles with large values I', will reasonably be assigned to the “background.”
In acoustics the I, are typically so large that many resonances overlap. Then the
background of a narrow resonance (leading to observable rapid variations in the scat-
tering amplitude) comprises the adjacent broader resonances and the potential term
exp(—2ikR).
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S, cannot only be written as a product expansion, but also as series expansion
called “Mittag-Leffler series”!319:

S(k) = e™2#R <c0 T k) : (35)
The c, are the residues of S(k) at the poles k,. The sum contains all pole pairs
(kn, —k2).
The expression
_ ,-2kR tn 2%kR _
1-8(k)=e (Eﬂ: K, T, +e co) (36)

formally resembles the “Breit-Wigner-formula” as introduced to acoustics by Uber-
all*!7 where, however, the resonances are defined differently (“actual resonances,” see
Section 2.3) and which is a symbolic sum with only one term being valid at a time.

The “Mittag-Leffler series” is not an approximation, i.e., the contributions of
all resonance poles are summed up. (Approximation for a single resonance means
omitting all but one term of the series. Then one has ¢, = 2iT',; the pole pair
(kn,—k’) has the sum of residues k — k, = 2iT',).

When transferring methods used in nuclear physics to acoustical scattering, one
has to observe that acoustical resonances can, on principle, not be as sharp as nuclear
ones because in the field equations the order with respect to time is different:

Acoustics is governed by the Helmholtz equation,

V2o(7) + k*¢(7) =0;  &(r) = velocity potential , (37)
and quantum mechanical phenomena by the Schrédinger equation,
V2U(7) + (e~ U(M) ¥(7) = 0 (38)

~2

where k? := ‘k] , € := (2m/R?) E and U() := (2m/h?) V(7), E is the energy and
V(7) the potential. The time dependence has been assumed as e™™! and e ‘Et/?
respectively. The two equations become equivalent by setting

=2 = U®F. (39)

In quantum mechanics k* can become negative (¢ < U(F) so that basic solutions
Ae**T are possible which decay in all space directions. This leads to the well-known
“almost bound states.” i.e., scattering resonances with arbitrarily small width.

In acoustics k? is always a positive quantity. The field may decay in one or two
dimensions of space (e.g., total reflection), but never in all three at the same time.
In other words, no “almost bound states” are possible in acoustical scattering.
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5

Detection of resonances

In the stationary state solutions considered so far the scattered wave interferes
with the impinging plane wave. In order to observe the scattered wave alone, wave
packets must be formed by Fourier transformation. Impulses with sharp boundaries
are possible in three dimensions whereas in one and two dimensions an excitation
is left after the impulse has passed.

Isolated resonances can be observed in model experiments in several ways:

1.

@

Often?*~?% impulses with rectangular shape have been used:

sin{fwpt); 0<t<T
Pin(x =O:t) :{ (00 ) else.

Here p;, 1s the incoming wave packet, T is the impulse duration, and wg/27
is the carrier frequency.

After scattering, the resonances can be detected by their exponential ringing!?.
At resonance the impinging wave penetrates into the interior of the scatterer.
The energy stored in the interior is re-radiated with some time delay. In other
words, the time envelope of the impulse is substantially changed only if a
resonance is excited. A wave packet suitable for exciting a single resonance
must have a narrow bandpass spectrum which is smooth around the carrier
frequency. Well suited will be a rectangular shaped power spectrum, i.e., an
impulse with an envelope like sin(z)/z.

If T > 27 /wy resonances can also be observed in the steady state sector of the
scattered impulse, i.e., after all transients have decayed, but before the impulse
ends. In this time window a resonance is recognized by rapid variations of the
amplitude if the carrier frequency is changed by a small amount (i.e., by the
resonance width). In passing through the resonance, the quantity (1 — 5),
which essentially is the modal backscattering amplitude, takes on all of its
possible values between zero and two. Here the resonances are observed being
influenced by the background, in contrast to measuring in the ringing sector.

An impulse of short duration is scattered as a train of many impulses due
to the surface waves repeatedly circulating around the scatierer. This effect
is especially pronounced with thin-walled, smoothly curved hollow scatterers,
where dispersion of the (few excited) surface waves is small. The surface waves
are strongly excited in resonance because of phase matching after every cycle.
Describing the scattering process with surface waves is a ray approximation
to the Rayleigh normal mode series, making use of the Sommerfeld-Watson
Transform?®%*2¢,

. The echo is displayed as Wigner distribution (WD)?*"=*. The time-frequency

distributions® give an impression of “which frequency arrives at which time.”
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Strifors®! used the WD to investigate the structure of radar echoes. At conve-
nient experimental conditions with this method acoustical surface waves and
their dispersion behavior can be displayed®.

The windowed WD is defined by*
+o0 .
Wiw,t) =2 [ fE+1)F (¢ - u )wj(-t)e ™ dt',  (40)

and its discrete version reads

N-1
Wik, 2) =2 3 f(1+n) (1 = n)ws(n) wy(—n) e M0 - (a1)

n=0

Strifors® has chosen a window with Gaussian shape:
P

wy(t) = exp(—at?). (42)

For wy(t) = 1 the unwindowed Wigner distribution is obtained. As can be seen
by the phase factor, the WD has period 7. So there can be aliasing although
the sampling condition is fulfilled. This spectral overlap can be avoided if the
spectral width is halved by using the analytical signal instead of the original
time series:

fa=f(n)+if(n). (43)
Here f(n) is the Hilbert transform of f(n). The analytical signal is complex
and contains only positive frequencies:

2F(k): 0<k< N/2
Fo(k) = F(k): k=0,N/2 (44)
0: N/2<k<N

where F(k) is the discrete Fourier transform of f(n).

4. Frequency and width of the resonances are estimated with the Prony method®2.
The scattered impulse is supposed to be a sum of exponentially decaying sine
waves of the form R; exp(z.t) with z; being the complex resonance poles and
the amplitudes R; being the residues of the impulses’ Laplace transform. The
partial sums over all mode numbers n for a particular radial index ! in the
resonances &, give the surface wave contributions, that is the impulse train
mentioned above®?. This method is well suited for the ringing section of the
backscattered impulse.
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6 Measurements with full-scale objects

Many isolated resonances can be observed in certain model experiments, whereby
the RST has been confirmed experimentally.

In order to perform more realistic experiments, backscattering measurements
have been made in a lake of about 40 m maximum depth.

In a first series of measurements, transmitter, receiver, and test object were
suspended from a raft to about 10m depth. The targets mainly used were:

1. A cylindrical steel shell of 40 cm length, 20 cm mean radius, and 1.7 cm thick-
ness of wall, with aluminium endplates of 2 cm thickness (“big cylinder”).

2. A cylindrical steel shell of 40 cm length, 11 cm mean radius, and 2.4 cm thick-
ness of wall (“small cylinder”), with either flat endplates or hemispherical
endcaps.

3. Stones of different size (approx. 30cm ...1m diameter).

The shells were air-filled. The test signals used were wave trains of approx.
21ms duration with carrier frequencies between 10 and 20 kHz and Gaussian shaped
envelope. Object echoes were recorded for aspect angles at steps of ten degrees.

In a second series of measurements the targets were partially submerged in the
sea floor. The measuring equipment was located on a stationary platform.

As targets were used stones and metallic cylinders filled with concrete. The
stones had diameters between 0.5m and 1.5m and masses between 100kg and
800kg. The two cylinders had a length of 1.8 m and a diameter of 0.8 m, one of them
was coated with absorbing material. The water depth was between 9 and 14 m.

The transmitter was a quadratic array of nine tranducers, the receiver was an
array of 19 hydrophones arranged in two parallel lines.

The transmitted pulses were Gaussian shaped with a half-width of the envelope
of 1ms. The carrier frequency was varied in steps of 500 Hz between 5kHz and
14kHz%,

The conclusion from these observations was that it would not be possible to
measure an acoustic spectrogram of isolated resonances. Displaying the echoes with
the Wigner distribution was not very informative, oo. Instead, an evaluation of the
echo signals with neural networks was applied. One motivation for this attempt was
the fact that experienced sonar operators are able to classify targets by listening to
the echoes. A successful application of the neural network technique to this type of
problems has also been published earlier®***.

As experience shows so far, classification performance is not improved if the raw
data are preprocessed by conventional methods such as taking the segmented power
spectral density, Walsh transform, or the time envelope as input for the neural
network. Trving such data reduction methods without reference to the physical
content of the scattering process has not proven useful.

At the scattering resonances the incoming wave strongly interacts with the inte-
rior of the target. Therefore, the resonances provide the key information about the
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scatterer. This statement is not invalidated by the fact that in real world experi-
ments the resonances often cannot be observed isolated from each other but that
only a coherent superposition of many overlapping resonances is measured.

As outlined in the next section, a model function can be derived with the help of
the “R-Matrix” formalism explaining the general way how overlapping resonances
influence the backscattering amplitude. Matching this model function to measured
scattering data promises to provide a feature vector meeting the requirements of
data reduction and high classification reliability as well.

7 R-Matrix Theory
The “R-Matrix Theory” (RMT) of nuclear physics has been developed by

Wigner and Eisenbud®® to describe nuclear reactions. Some aspects of this theory
are useful in acoustics, too. In nuclear physics this theory is now well established
(see, e. g., Barrett®” for a presentation together with other methods in nuclear scat-
tering). The basic ideas of the theory are contained in the earlier papers as well, of
course. In particular we found the article of Lane and Thomas® very useful. In this
theory, the concept of scattering resonances is included from the very beginning:
The surface impedance of the object and. hence, the scattering amplitude is written
as a superposition of discrete eigenvibrations.There is some freedom in choosing the
frequency-independent boundary values defining the eigenvibrations. So they can be
chosen appropriately to ensure computational ease. When applying the nuclear the-
ory to acoustical scattering, some re-definitions are necessary because the continuity
relations of the Helmholtz equation differ from those of the Schrédinger equation.

It is this way of introducing the resonances with reference to properly defined
eigenvibrations—in contrast to assigning resonances to poles—that will be under-
stood by “R-Matrix-Theory” here.

Another topic has been called “R-matrix theory of sound scattering” by Gau-
naurd and Uberall®: The surface impedance of a fluid sphere is recognized as be-
longing to the class of “mathematical R-functions”*3*® which can be expanded in a
Mittag-Lefller series with respect to its poles (the argument is w, Wigner regarded
his general R-functions as depending on F ~ w?). More directly, the scattering
function itself can be expanded in a Mittag-Leffler series yielding an exact series
representation in terms of the pole contributions!® as mentioned above.

The method of calculation used in the following will now be outlined briefly.
Imagine a sphere just wide enough to enclose the object. Compute the eigenvi-
brations of the sphere subject to properly chosen frequency-independent boundary
values. Then express the surface impedance in two ways: in terms of the inner
eigenfunctions, and in terms of the waves outside the sphere. Because both ex-
pressions must be equal, the scattering amplitude is written as a function of the
eigenfrequencies. The eigenfrequencies can be related to the resonance frequencies.
Radiation damping and overlap of the resonances are included in a natural way.

In the general case of an inhomogeneous (non-separable) object with many over-
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lapping resonances, all modes will be coupled and therefore the S and R matrices
will no longer be diagonal as in the separable case. The computations will be very
involved, if not unpracticable. So a model function is desirable which contains the
resonance frequencies and widths as adjustable parameters.

The reference scatterer providing the model function is chosen to be a sphere
consisting of homogeneous, lossless material admitting scalar waves only (a more
complicated reference object can allow vector waves if the simple model does not
apply). It was shown in nuclear theory that the coupling of the modes is equivalent
to introducing a complex frequency if many single resonances statistically overlap.
This model is analogous to the “Moderate Absorption Model” of nuclear physics
which can be related to R-Matrix theory by the “complex smoothed R function”3®.

The scheme sketched above®® 44! will now be explained in some more detail for

a scatterer being a homogeneous sphere with density p and sound velocity c.
The interior field,

oo

8(r,d) = S &i(r) Yio(r,9), (45)

=0

can be written as a superposition of discrete eigenfunctions: By prescribing rather
arbitrarily chosen, frequency-independent boundary values, a set of real eigenvalues
kx and corresponding eigenfunctions,

X,\[ =: QM . Y] . (46)

V2Xy = —k, X, (47)

is defined for every angular momentum ! (ky = wyi/¢c; is the angular wave number
and ¢; the velocity of sound inside the scatterer, ¥; o are the Spherical Harmonics).

At a particular frequency w every partial field with angular momentum [ has
the expansion

Bu(r) =3 A ®u(r). (48)
)
Choosing as boundary values
ddy!
LU (49)
dr ir=R
the expansion coeflicients
R
A/\ Z/QMQMTZ d'r (50)
o

are obtained from Green’s Relation as

4 - RZQM(R)(d@wl) ‘ 51)
R

(Bh — k) \dr
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So one has

®,(r) =: G(r,R) - <R- dj:‘ )R (52)

where
Ox(R) - &xlr) .
GR) =R Y0 ) 9
is the Green’s Function. Taking the values at the boundary, the “Acoustical R-
Function” Ry,

p-G(R,R) = ;’?%S)) = pR Z q’*’_ ) (54)
* R
; 7ilw2) =TR;. (55)
and the “reduced line widths,”
Yu=c-p-R-®(R), (56)

shall be introduced. These terms were chosen like the corresponding quantities in
the nuclear theory of Wigner and Eisenbud. ~% und R, depend on the bound-
ary condition by ®%,(R). Therefore the above definitions hold for a hard-walled
boundary condition. Only in this case R, equals the inverse of f.

Now the field inside the scatterer has been written as a superposition of discrete
modes, and outside the scatterer as a sum of traveling waves. Continuity at the
boundary requires that the impedances are equal:

po (hi” = Si ()

1= =, 57
Rk, (k) p=) iy h;(r)) (57)
and therefore
Rkg b
PO I 58
= Rk, Y F ( )
PN nt !
Introducing with
Rk, h7I(R ,
z“—‘—-';(‘.#:Az-‘rlsz (59)
Pa hll (R)

the logarithmic derivatives of the outgoing wave, then that of the incoming ones is
L7, and S reads:
k™ 1-RL;

§ = b 2
TRY TR

(60)
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Since R, 1s real, S; has modulus unity and can be written as

Sl — ezi&, . (61)
The term
hl(—) 21
;(T)— =:e (62)
1

again represents the scattering function of a sphere with pressure release boundary.
The argument of the remaining term is

R,
2-arg(l—LyR;)=2 arg(l - RiAj+iR;s) =2 arctan (——jl—) (63)
1-R A

so that the total scattering phase shift is the sum of the “resonance” and “back-
ground” contributions:

Ris

6 = arctan (m) + @ . (64)

7.1 Resonance definition by the “One-Level” approzimation

If the frequency w under consideration is very close to an eigenfrequency wy, all
other contributions in G(R, R) can be neglected to a first approximation:

~ 7§1
(o (65)

Then the scattering phase reads

61 = arctan (%&) +§01
R, T 4l

Ry
1
=T
~ arctan | —21"—— | + 1, 66
<“’§1+”§z+“’2> . (%)
where
Tyui=29%-9 (67)
is the ine width and
1‘51 = Ay ’Y§1 (68)

is the line shift.
The line width I'y; measures how fast the scattering phase changes in the neigh-
borhood of the resonance frequencies, defined by

wh o= Wiy + Vig(wn) - (69)
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In this way, each eigenfrequency is assigned to a resonance frequency. Widths and
shifts of the resonances are influenced by the logarithmic derivatives of the outgoing
waves h§+), the widths by the imaginary part only, and the shifts by the real part
only.

T’y and v}, depend on w, but often they can be considered constant over a single
resonance.

7.2 Choice of boundary values

To define the eigenfunctions, boundary values different from the “hard-walled
boundary” can be prescribed. Then the values of 73, wx, R: become functions of
the boundary conditions. The R-function valid for the new boundary value,

R-%a
= d | =B, (70)
p-®n

is related to R;(0), valid for the hard-walled case, by

(ﬁ - B> “Ry(B)=1. (71)

With Eq. (71) and Eq. (60) the relation between the scattering function and the
new boundary value B is obtained:

_ k7 1-R(L; - B)

= Tl o)
! hl(+) 1—R1(L1—B)

(72)
Since B is a real number, a change of B influences A)(B) = R(L; — B) and therefore
the line shift, but not the width. So the scattering phase seems (by A;) to depend
on B. Because the scattering phase is determined by the target whereas the value
B can be chosen rather arbitrarily for the same target, this dependency does not
really exist. So the dependencies on B in R; and A; must cancel each other.

7.3  Air bubble in water

A rather good realization of the simple scatterer treated above may be an air
bubble in water. In the acoustical literature several suggestions have been made
how to choose an appropriate background whose subtraction from the total field
gives the resonances as isolated peaks. In R-Matrix Theory no assumptions must
be made with respect to the background: the background of a single resonance is
obtained by computing the scattering function omitting the resonance term under
consideration in the R-function.

A proper choice of the boundary values is, according to Peinei!,

_(+1)
—

B =
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Then the eigenfrequencies are determined by the equation

d(r®.)
dr R

=-1%,. (74)

For I = 0 one has cos(kyR) = 0, and for [ > 0 with j] = j; — %':—;—)ljl and

r-®, =r-j5(kr) the equation becomes

(kMR) -jz_l(w,\I - R/C) =0. (75)
The reduced line widths,
, 2pc?
W= (76)

do not depend on ! or A.
The “background R-function” R} contains all the terms of the complete R-

function except for the resonance term. The result is%:

. 2041
Ri(wn) = SRS (77)
For I = 0 the eigenfrequencies are known analytically (cos(kyoR) = 0):
o 2
Ro(wio) = o1 (78)

It can be seen that the contribution R{wyo) of the other resonances becomes smaller
with increasing frequency wje. From Eq. (77) follows that the contribution of the
other resonances becomes greater with increasing .

8 Model function for statistically overlapping
resonances

8.1 Spherical reference target

If one has a realistic target with many statistically distributed resonances, it
seems to be a good approximation to describe the scatterer by the phenomenological
model mentioned above®®!: the scatterer should not be understood to be the object
itself, but the interior of a sphere containing the object. This scatterer can be
treated as if it were a homogeneous sphere with density p and sound velocity c, if
the energy leakage of the modes is taken into account by introducing a complex
wave number in the interior:

(ke =w?+1id. (79)

Thereby the coupling of modes as well as energy dissipation can be described.
As mentioned above, this model is analogous to the “Moderate Absorption

Model” of nuclear physics replacing the R matrix by “R functions”?.
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Defining the non-dimensional quantities

ey = 2R, z2.=2.R, (80)
C; Cy
d
Yy = Z'R: (81)
u o= Z—; v =c% (82)

one obtains with Egs. (55) and (76)

_R = (a) gﬂ)
hf_)(:c) 1 Rl(z)-(ﬁ—;——h'_(z) + =

51(1 = . l, (83)
W) T e (2 3
where
Ri(z) :=R{®(z) +implz) , (84)
2
- — 2 . —————-————y
Tp(z) :=2uv ZA: e P i (85)
vizd — z?
RE(z) :=2uv? - a2 2 i (86)

L
A

2 272
w2zl -2 +y

Especially for I = 0:
1—723(2)-(%—1—1’:5)
1—Rg(z)-<%—1+iz) ’

u-v 2?2 + 192 1/2
If one of the functions p; and Rf® is known for all frequencies, the other one can be
calculated because they are Hilbert transforms of each other. p; will be called “pole
strength” and R{® “background” further on.

The modal backscatiering form function (and thereby the differential backscat-
tering cross-section at ¥ = 7) is given by

50(3) — e-z;z A

glmz) = 2= (2 +1) (1 = S(z)) - (-1) (89)

where a is the radius of the separable reference scatterer.

Eqgs. (83) through (88) are model functions that can be matched to measured
backscattering amplitudes. The quantities u, v, zy and y are the adjustable pa-
rameters. More generally, y can be allowed to depend on the resonance frequency
and the specific mode, for example.
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So the number of free parameters can be reduced if the pole strength is approx-
imately determined from the experimental data. This curve fit based on the above
model can be justified beyond computational simplicity by physical arguments, too.

1f the target has a separable geometry, each outer vibration mode excites only
the eigenstates of one inner mode, and if outer and inner fields are weakly coupled
(pi/pa.cifcc € 1 or > 1), only the value 7,4 of that eigensiate ®,, will differ
from zero considerably whose eigenfrequency is closest to the frequency w of the
impinging field. If the impedance discontinuity becomes smaller, coupling becomes
stronger and more of the adjacent eigenstates will be excited as well. So the function
~i{w) will no longer consist of single peaks, but will be smeared out over many
eigenfrequencies. These considerations remain true in principle if the target is no
longer separable, but then every outer mode is coupled with all inner eigenstates.

So the pole strength of a realistic target, which may be imagined as the en-
velope of the function vy;(w), can be approximated by the pole strength of the
phenomenological model.

Only the coherent superposition of all modes can be measured. This superposi-
tion is much more complicated in the general case than in the case of a separable
target: replacing the R-matrix by the R functions does not mean a diagonalization
of the R-matrix. It is a formulation which describes the behavior of one mode (di-
agonal element) or of two modes (off-diagonal elements) by “eliminating” formally
all other modes®®.

However, if each outer mode is coupled with many inner modes, the v,; will have
positive and negative signs with equal probability. So the diagonal elements will
dominate, because the elements of Ry contain terms of the form vy, all of which
are positive within the diagonal elements only.

Therefore the application of the phenomenological model is justified if the inner
eigenstates are “strongly mixed.”

As few terms of the R-function as possible should be taken in the vicinity of the
center frequency w of the incident pulse. The set of parameters obtained in this
way characterizes the scatterer and can be used as a feature vector for a classifier
such as a neural network.

8.2 Model calculations

Some exemplary plots of the above functions follow. Computations are carried
out for reference scatterers with p; < pg.c; < ¢, (case 1) and p; > p,, ¢ > ¢, (case
2) with different values for the parameter y. The surrounding medium is water. As
an example for the first case. the data of air are taken for p; and ¢;. For the second
case the density of the target is chosen to be that of steel, the sound speed ¢ of the
target material is set as the velocity of shear waves in steel rather arbitrarily, see
Table 1.

Figure 1 shows typical forms of pole strength and background. Figure 2 shows
an example of the scattering amplitude (= |1 — Si(z)], 0 < |1 = Si(z)| £ 2). In the
plots “modal backscattering form function” is abbreviated by “form function.” It 1s
calculated with the radius a set to unity. If y is small, sharp isolated resonances are
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Table 1: Data used for model computations.

p [kg/m*] | c [m/s]
case 1 1.2 344
water 1000 1480
case 2 7700 3240

obtained (Fig. 3). In the form function the resonances are less pronounced (Fig. 4).
Not until ¥ becomes very small (= 0.01), isolated resonances are visible in the form
functions (Fig. 5) and even in the backscattering cross section (Fig. 6). Fig. 7 gives
an example of the interference of two adjacent resonances.

It follows in turn that even when no isolated resonances are detectable in the cross
section, resonance structures can be present in the pole strength and background
functions.

0.0005
0.0004 .
0.0003
0.0002
0.0001

o X
25 5 75 10 125 (5 V%V

Figure 1: Pole strength (dotted line) and background (solid line) for case 1, y = 3.1
and l=7.

Just to avoid possible confusion: The plots showing isolated resonances consist of
a smooth curve, representing the geometrical shape, and the resonances. This smooth
curve is often called “background” in the RST literature®!” and must not be confused
with the “background R-function.” Furthermore, in the plots the phases of h§_)(z)

and hf”(:c) are chosen different from those used by Sage!”, leading to a shift of 7 in
the scattering phase.
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The isolated resonances shown here are those of the model function, of course.
The Egs. (83) through (88) with y = 0 are valid ezactly, if the target actually is
a sphere made of homogeneous material admitting only compressional waves propa-
gating without any energy loss. Especially the sums in Eqgs. (85) and (86) are not
“symbolic” as in the Breit-Wigner formula!’, where only that term of the sum con-
taining the resonance frequency nearest to the frequency of the impinging wave is valid
(this corresponds to the one-level approximation described above). Here resonance
behavior occurs at the eigenfrequencies, which depend on the choice of the boundary
values used to define the eigenfunctions. Just to repeat it for clarity, boundary values
different from those used here leading to different eigenfrequencies could be chosen
in describing the same scatterer. To each of the eigenfrequencies can be assigned a
“resonance line” via the one-level approximation: whereas the eigenfrequencies have
no width (corresponding to poles on the real frequency axis), the resonance line has
a width different from zero (corresponding to poles off the real axis), and there is
a frequency shift between the eigenfrequency and the one-level resonance frequeny.
The so-defined width of the one level resonance has nothing to do with the parameter
y, of course.

0.5

25 s 75 10 125 15

Figure 2: Case 1: Scattering amplitude for { =2 and y = 0.13.

The boundary values taken here to define the eigenfrequencies allow reference to
results known already in nuclear physics, they lead especially to simple values for the
eigenfrequencies, Eq. (75), and reduced line widths, Eq. (76).

The model is supposed to reproduce the resonance behavior of a general target, if
the target exhibits many statistically overlapping resonances. Then y will be rather
large and no isolated resonances are visible in the form functions. The pole strength
and background functions will then roughly look as in Figure 1 exhibiting no isolated
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resonances. Then the eigenfrequencies of the reference scatterer can no longer be
assigned to the many statistically overlapping resonances of the real target. As basis
for the model function serves a sphere consisting of homogeneous, lossless material
admitting scalar waves only. Analogous to the treatment in nuclear physics mode
coupling and dissipation of any target can be taken into account by introducing a
complex wave number.

A realistic target is likely to have a rather complicated structure {e.g., containing
struts and electrical equipment), and shear- as well as compressional waves will prop-
agate with dissipation in its components. Computing the exact scattering function
with corresponding resonance poles for those targets may be very cumbersome, if
not analytically unpracticable. However, matching the proposed model function to
measured backscattering data provides a method to simulate the general way how
resonances physically influence the scattering function.

Figure 3: Case 2: Pole strength (dotted) and background (solid) for y = 7.0 and
l=7.
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Figure 4: Case 2: Modulus of form function for [ = 7 and y = 0.7.

Figure 5: Case 1: Modulus of form function for { = 1 and y = 0.01.

X
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20¢

15

10}

Figure 6: Case 1: Differential cross-section. The modes with [ = 0,1, 2 are summed
up, ¥y = 0.01.

15
12,5}
10
7.5
0
25
92 13 1.4 15 16

Figure 7: Detail of Figure 6 in the range 1.2 < z < 1.6.
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9 Conclusion

The resonances are important identification features because they represent the
interaction of the impinging wave and the interior of the target. Therefore, the
parameters obtained by matching the proposed model function to measured cross
sections should yield better classification results than feature vectors obtained by
other, rather heuristic data reduction methods. So the idea of acoustical spec-
troscopy is no longer restricted to isolated resonances.

The method outlined in this paper has not yet been tested experimentally. As
a first step,-model experiments with high signal-to-noise ratio should be made.
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ABSTRACT

The Resonance Scattering Theory (RST) has been developed for acoustic scattering in
1977 [L. Flax, L. R. Dragonette, and H. Uberall, "Theory of elastic resonance excitation
by sound scattering," J. Acoust. Soc. Am. 63 (1978) 723; first presented to the public
at the Symposium on Modemn Problems in Elastic Wave Propagation, Northwestern
University, Evanston, IL, September 1977: H. Uberall, "Modal and surface wave
resonances in acoustic wave scattering from elastic objects and in elastic wave
scattering from cavities," in Proc. Internat. Union Theoretical and Applied Mechanics
(IUTAM) Symposium: Modern Problems in Elastic Wave Propagation, ed. J. Miklowitz
and J. Achenbach (John Wiley, New York, 1978) pp. 239-263], and has very shortly
thereafter been extended to the resonance scattering of elastic waves, and later on to the
scattering of electromagnetic waves (radar). An overview of the acoustic development
is given in the book Acoustic Resonance Scattering, ed. H. Uberall (Gordon and
Breach, New York, 1992) where also the experimental work in this domain is
presented. It is seen that resonance amplitudes in acoustic scattering from submerged
elastic objects, which the RST describes in a mathematical fashion, are a dominant
feature in the acoustic echoes which can be used to effect an "acoustic resonance
spectroscopy” (as pointed out by André Derem). Such a spectroscopy can be used for
characterizing the target as to its size, shape, and composition, and can ultimately lead
to a procedure or a mechanism for (automatic) target recognition.

1. Introduction and Historical Remarks

The echo returned in acoustic scattering from (submerged) elastic objects consists of
two coherent parts: an amplitude which varies smoothly with frequency, and which
would be present even if the object were impenetrable to sound (this will be referred
to as the acoustic "background amplitude™); and a resonant amplitude which, plotted as
a function of frequency, shows a spectrum of resonance peaks which coincide with the
eigenfrequency spectrum of the vibrations of the scatterer. The Resonance Scattering

233
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Theory™? (RST), correspondingly, carries out two functions:

(1) It mathematically separates the background amplitude from the resonant
amplitude (such a first step had already been accomplished by Junger®, but in the RST
this step is carried out using the formalism of the resonance scattering theory of nuclear
physics, see below), and

(2) it mathematically expresses the resonant amplitude in a form where its
resonance character is exhibited explicitly. This includes a determination of the target
eigenfrequencies, as well as of the widths of the resonance peaks.

Steps (1) and especially (2) were accomplished in Ref. 1 by patterning the
mathematical approach after the resonance scattering formalism previously developed
in nuclear physics. Resonances in nuclear scattering were first discussed qualitatively
by Niels Bohr*, and are generally associated with the names of Breit and Wigner™. A
simplified, lucid derivation of nuclear resonance scattering theory was provided by
Feshbach, Peaslee, and Weisskopf’, which has been utilized in our corresponding
derivation of acoustic resonance scattering’,

The derivation of the resonance formula, by linearization of the denominator of the
amplitude via a Taylor expansion, is also given in the book by J. M. Blatt and V. F.
Weisskopf®, Theoretical Nuclear Physics. A corresponding procedure was applied to
the, acoustic scattering amplitude. For normal incidence on a solid elastic cylinder of
radius a, this amplitude is' (k = acoustic wave number):

P. = %2 @ = 3.0) 7 (S, — DHY (kr)cos ne, @

the diagonal terms of Heisenberg’s "S matrix", S,, being given explicitly in quotient
form N,/D,. Out of this quotient one may factor the rigid-cylinder scattering amplitude

Sy = —H® (x)/H"Y (x) = e, @

(x = ka), which here plays the role of the acoustic background mentioned above. This
leads to S, being of the form

L' — z;!
S, =8 = 3)
Lyt = zf?

with
z7t = H? (x)/xHY (x) = A, * is,. 4
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Expanding the known quantity
L) =A, +Ba(x —x)) + ... )

about the resonance frequencies x,, which are determined from the zeros of the
denominator in Eq, (3), we get

_ e o @ X Xn = ()T,
S, = S"x—x,,+(i/2)l",,

This establishes the resonance form of S,, and hence establishes the RST in acoustics,
via its crucial step (2), see above.
The resonance width [, is determined by the expression

(6a)

I, =-25/B, (6b)

so that all expressions in Egs. (3) are known.
In the scattering amplitude of Eq. (1), there enters the quantity S, - 1 = 2i exp(id,)
sin 8,, which we may thus write

T
S, — 1 = 2ie¥n > e

+ e~%sin &, )]
7 Xy — X — (i/2)I',., € sxng

This expression, first used in acoustics by Flax, Dragonette and Uberall', shows that
each modal amplitude has resonant terms, but also a nonresonant "background" term,
i.e., step (1), see above (second term), corresponding here to rigid-body scattering
(called "potential scattering” in nuclear physics). From Eq. (7), it is evident that if we
subtract the rigid-body scattering amplitude S," - 1 = 2i exp(i€,) sin&, from S, -1, then
we are left with the purely resonant amplitude

1

S = Qg% 2 )
€ Z X — X — (ilz)rnl (8)

This completes both step (1) and (2) of the RST, as mentioned above. A rigorous
derivation of the background amplitude was given later on by Choi’; background
amplitudes for elastic objects intermediate between rigid and soft ones were obtained
by Werby'°.

In addition to this purely mathematical algorithm, the RST can also help us
understand the physics underlying the resonances. Franz'! has shown, using the Watson
transformation, that the diffracted field about an obstacle can be mathematically
resolved into a coherent sum of what he called "creeping waves" (also later known as
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surface waves, circumferential or peripheral waves) which propagate along the surface
of the target. He did this for impenetrable objects where the surface waves are excited
at tangential incidence and propagate solely in the ambient medium. For elastic targets
of acoustic waves, elastic body-type surface waves may be excited also at the angle of
incidence « = sin’'(c/c,), where ¢ = sound velocity in the ambient medium, c, = phase
speed of the fth elastic surface wave. These propagate below the surface of the target,
and may be classified as a (leaky) Rayleigh-type wave, and a series of Whispering
Gallery waves'*!*; an additional Scholte-Stoneley wave also appears in the ambient
medium.

The resonance representation of the scattered field can now be converted to a
description in terms of surface waves''®, from which the origin of the resonances can
be recognized as the condition that after each circumnavigation, the surface wave is in
phase with itself. This "principle of phase matching" entails that a resonant
reinforcement of surface waves will take place, generating the resonance at a specific
resonance frequency (since the surface waves are dispersive). In this way, the physical
origin of the resonances is understood. To sketch this derivation briefly, we represent
the scattering amplitude of a cylinder in the form

f"w){; A ©

f, having the resonance form (see above)

1/2
flo, )= Ano) L (10)

now using the frequency variable © and the resonance frequencies ®(n). This
amplitude has a pole at the complex frequency ® = w(n) - (1/2)i, located below the
real axis of the © plane.

For a fixed frequency o, f,(¢,®) may be considered a function of n; thus, one may
expand

wn) = wn,) +(n —n,)w'1,), an

where' ®'(n,) > 0, and one may choose n, so that (n,) = o, i.e., the fixed incident
frequency lies at the resonance peak when n = n,. Then, the amplitude

-A,p) (F/2mt/? (12)
w'n )i n-n, ~3if

f"((p,w)%‘[

appears with a pole in the complex n plane, located at n =n, + (1/2)if‘ above the real
n axis since

F=r/uw'@m,)>0 . (13)



9. Inverse Scattering Based on the Resonances of the Target 237

In terms of the n variable, this is known as a Regge pole'’, and we see that one and
the same pole of the scattering amplitude may appear as a resonance in the ® as well
as in the n variable (although only integer values of n correspond to physical values of
the amplitude). If n is considered a parameter and o the variable, the n dependence of
the resonance frequency w(n) in Eq. (10) causes a "Regge recurrence” of the one Regge
pole under consideration in all successive partial waves at successively higher resonance
frequencies'®. In the following, however, we shall discuss the aspects of the scattering
amplitude given by Eq. (12), as it provides a physical picture of the scattering process
in terms of surface waves, as well as a physical explanation of the mechanism of
resonance excitation.

Applying the Watson transformation to the normal-mode series for sound scattering
from an elastic cylinder, the surface waves generated in the scattering process were
shown to be given by

- COSVIQ ez Bur

p =2 Z Sm7rV1 e thH (k‘r) ’ (14)
where D, = @D, /8v, v is the modal number of the Rayleigh series turned into a
complex variable, b, is a 3x3 determinant, D, is the secular determinant of the
problem’® and v = v, (@) are the complex roots of the latter,

v (w) = Rev,(w) +ilmy,(w) (1s)

(£ =1,2,3,...). As a function of frequency, the £th root v,(w) will, at some resonance
frequency © = ®,,, move past the integer n, so that Rev(o,) = n. In Ref. 15, the
resonance frequencies ®,, were shown to coincide with the eigenfrequencies of the
elastic vibrations of the cylinder. In the vicinity of the resonance frequency where v,
= n + 3v,, and considering the case of Imv,<<l1, one has

1 1 (=1 1 (16)

sinmy,  (-1dv;, 7 n-y,

A
If we now identify Rev, = n, and Imv, = (1/2)[", then Eq. (16) and hence the
scattering amplitude of Eq. (14) assumes precisely the Regge pole form of Eq.(10)
where we can consider n to be a continuous variable. This shows that as the incident
frequency ® passes past the nth resonance frequency of the fth surface wave, ®,,, the
corresponding surface wave goes through a resonance.
It is not hard to explain the physical origin of the frequency resonances with the help
of the expansion

cosv >
1()0 -3 Z Z ew;(lu+r¢bnr) . (17)

sinmy, A=21 m=0
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If used in Eq. (14), and remembering the time factor exp(-iot), it shows that for m =
0, two surface waves of mode £ propagate in the counterclockwise (A = 1) and in the
clockwise (A = -1) direction around the cylinder, joined by other such waves with m
> 0 that already have encircled the cylinder m times previously (of course with larger
and larger attenuation since Imv, # 0), corresponding to the steady-state situation
considered here. The wavelength A, of the fth surface wave is given by

A= 2ma/Rev(w) , (18)

and at the resonance frequency ® = ®,, where Rev, = n, one sees that exactly n
wavelengths of the surface wave fit the circumference of the target (which may be
referred to as the "phase matching condition”), and hence lead to a resonant
reinforcement of the circumferential wave in the course of its repeated
circumnavigations.

For historic reasons, and for demonstration of priorities, we document here the
development of all the different aspects of the Resonance Scattering Theory as it was
presented at successive semiannual meetings of the Acoustical Society of America
(ASA), to wit:

(a) H. Uberall, L. R. Dragonette and L. Flax, "Relation between creeping waves and
normal modes of vibration of a curved body", 92nd ASA Meeting, San Diego, CA, 15-
19 Nov. 1976 (abstract deadline: 17 August 1976), J. Acoust. Soc. Am. 60, Suppl. 1,
Fall 1976), talk Y6 [Mode resonances at the eigenfrequencies].

(b) J. W. Dickey and H. Uberall, "Amplitudes of transmitted and circumferential
waves in sound scattering from an elastic cylinder," ibid. talk Y7 [Separation of
"geometrical" background and "diffracted" resonating surface (creeping) waves].

(¢) L.R. Dragonette, L. Flax, and H. Uberall, "Regge pole character of resonances
in sound scattering from elastic bodies", 93nd ASA Meeting, Pennsylvania-State
University, 6-10 June 1977 (abstract deadline: March 8, 1977), J. Acoust. Soc. Am. 61,
Suppl. 1, Spring 1977), talk T1 [Resonances in partial waves; relation to nuclear
physics].

(d) K. A. Sage, J. George and H. Uberall, "Multipole resonances in sound scattering
from gas bubbles in a liquid", 95th ASA Meeting, Providence, R.I., 16-19 May 1978
(abstract deadline: 3 Feb. 1978), J Acoust. Soc. Am. 63, Suppl. 1, Spring 1978), talk
D13 [Resonances of gas bubbles, described by nuclear physics techniques].

(¢) A.J. Haug, S. G. Solomon and H. Uberall, "Scattering of elastic waves by a
resonating fluid-filled cylindrical cavity", ibid. talk 01 [Resonance scattering from
cylindrical cavities].

(® J. D. Murphy, E. D. Breitenbach, and H. Uberall, "Resonance scattering of
acoustic waves from cylindrical shells", ibid, talk 02.

(®) G. C. Gaunaurd and H. Uberall, "Scattering of dilatational waves incident on a
resonating fluid-filled spherical cavity inside a sound-absorbing material”, ibid., talk 03
[Resonance scattering from spherical cavities].

The development presented above that leads from Eq. (9) to Eq. (18) shows how a
physical explanation of the resonances can be obtained from the resonance expression
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Fig 1. Comparison between exact theoretical calculation of the form function versus ka (solid curve)
for a tungsten carbide sphere and experimental measurements (points). From Ref. 20.

of Eq. (8). As to the background term in this equation, which was taken there as
corresponding to a rigid object, experiments have shown that for solid metal cylinders
submerged in water, such an assumption is indeed justified, even for the case of a
cylinder with a borehole of moderate diameter. It is clear, however, that when dealing
with a very thin air-filled shell, the rigid-background assumption must be given up since
then, the background will in the limit of vanishing shell thickness approach that of a
completely soft object (or, an air bubble) which is also known. However, for a certain
intermediate shell thickness neither of these background expressions applies and the
exact form of the appropriate background remained unknown for a long time. This
problem has been solved by Werby'™" who published his first article on the subject in
Ref. 2.

By considering the entrained mass of the ambient water, he obtained the spherical-
shell scattering amplitude corresponding to the acoustic background contained in the
amplitude coefficient b, [the spherical equivalent of b, in Eq. (14)]:

3p . (ka)\ . ,
, - a-w fm (’h;(ka))’"(k“) = Jalka)
" = 3p .h,.(ka) g (19)
pl[l — (1 — h)l] Im (lh:'(ka))h..(ka) h,,(ka)
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where h is the ratio of the shell thickness to the shell radius, and p, and p are the
densities of shell material and water, respectively. The expression correctly tends
towards the rigid-body expression in the limit p/p,—0, and toward the soft-body
expression for p/p—»0. This remarkable results leads to our complete ability, now, to
subtract the correct background from theoretical scattering amplitudes in order to obtain
the pure resonance terms in the scattering araplitude. See, however, Ref. 9 where
interaction terms were shown to arise also.

Resonant scattering experiments have been pioneered by Neubauer and his group in
the mid 70°s™?', Figure 1 shows theoretical and experimental results for the far-field
backscattering amplitude ("form function") vs. frequency. This plot shows a more or
less smooth background which, at the resonance frequencies of the tungsten carbide
sphere under consideration, is pierced by regularly-spaced, moderately wide, profound
dips caused by the resonances of the Rayleigh-type surface wave, and by other narrower
dips corresponding to Whispering Gallery waves.

Evidently, these measurements do not separate the resonant and background terms.
Such a separation can be done experimentally, however, and this has been accomplished
by the French acousticians at the University of Le Havre™® by observing the ringing
of the resonances when utilizing incident modulated pulses of long duration. This has
been described in a recent review?, where an alternative method for such a separation
is also discussed, namely the use of short pulses®?, gating out the first echo
corresponding to a reflection from the vertex of the target, and Fourier analysis of the
remaining pulse time series to produce the pure resonance spectrum. Experimentally,
thus, the acquisition of the resonance spectra of submerged elastic objects is now well
under control, as demonstrated in Fig. 2 obtained by the Le Havre group® for a solid
aluminum cylinder. The top curve is the counter part to Fig. 1, i.e. the total acoustic
scattering amplitude, while the lower curve shows the spectrum of pure resonances,
with the background removed. The striking sharpness and intensity of these resonances
is well evident, and the idea comes to mind whether the experimental acquisition of the
resonance spectrum of a target may not be used for characterizing this target as to its
size, shape, and composition, i.e. for purposes of target recognition.

2. Target Recognition

In 1979, A. Derem wrote” "L’analyse de la diffusion des ondes acoustiques par un
cylindre élastique immergé, fait surgir une véritable spectroscopie acoustique”. This
was said following an analysis of effects of the resonances of elastic objects, after their
excitation by incident sound, as they appear in the scattered echoes, and it seems to be
the first formulation of this concept of an acoustic specteroscopy in conjunction with
elastic resonance frequency schemes. (The previous term "ultrasonic spectroscopy”, and
the related early experiments of Gericke?®*, concern the general notion of the ultrasonic
spectra reflected from scatterers in solids, and the information on these scatterers
contained in the spectrum, not referring specifically to any resonances.) The new
concept was brilliantly justified experimentally shortly afterwards by Maze, Ripoche et
al.®® in their pioneering experiments which exhibited in a direct fashion the
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Fig. 2. Experimental expectra (aluminum solid cylinder): (a) background signal spectrum (steady
state); (b) resonance spectrum (ringing). From Ref. 23.

mechanical eigenvibrations of a submerged elastic cylinder, together with the "level
scheme” of the corresponding resonances excited by incident sound, straightforwardly
extracted from the reflected echo, Figure 2.

These facts then raise the question whether, as in the optical case, such a measured
spectrum can provide information on the source of the spectrum (here, the scattering
object). This led to a study of the sensitivity of the acoustic level scheme for
internal®®*! or external resonances*® to changes in the shape of the target. As to the
information which can be extracted from the spectrum regarding the consistency of the
target, we have carried out illustrative calculations on fluid-filled spherical®* or
cylindrical® cavities in a solid, or on fluid cylinders in a fluid”’, which showed that in
general, for a cavity of known shape, the sound velocity in the filler fluid can be
obtained from the frequency values of the resonances (together with the size of the
cavity), and the density of the filler fluid from the width of the resonances. Finally, the
determination of the physical properties of ocean bottom layers has also been shown to
be obtainable®®* from the effects of layer resonances contained in the acoustic echo.

2.1 Resonance Spectroscopy

A calculation of the eigenfrequencies for prolate fluid spheroids and finite-length
fluid cylinders in vacuum, which will approximate the internal resonance frequencies
when the objects are imbedded in another, much less dense fluid (except for the
imaginary parts of the frequencies, which vanish for ambient vacuum) was carried
out’™™! in order to gauge the sensitivity of the level scheme under changes in shape.
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Fig. 3. Acoustic spectroscopy scheme. It displays the characteristic frequencies of various spheroids
and cylinders which quantitatively identify their various shapes and sizes. From Ref. 31.

For the spheroids, the calculation was carried out by subjecting spheroidal wave
functions to the appropriate (Dirichlet) boundary conditions on the inner surface; for
finite-length cylinders, exact solutions are available. Figure 3 shows the eigenfrequency
"level scheme" for spheres and infinite cylinders as limiting cases, as well as for finite-
length cylinders and spheroids (axes ratios b/a = 1.11... and 4.0). The striking
"splitting” (lifting of degeneracy) of the limiting-case levels for the smaller symmetry
of finite non-spherical bodies, the azimuthal quantum number no longer being
degenerate as for the sphere case, was explained later’>* in terms of the formation of
helical surface waves with discrete pitch angles.

2.2 Determination of Cavity Contents

It has been shown analytically*** for the example of a fluid-filled spherical cavity
in a solid that obtaining the resonance frequencies can determine the sound velocity in
the fluid, and obtaining the resonance widths can determine the density of the fluid.
Numerical calculations for a fluid-filled cylindrical cavity in steel*’ bear this out.
Figure 4 shows for the latter case the normal-incidence scattering of elastic p~waves of
wavenumber k: (a) total backscattering amplitude; (b) moduli of the first six partial-
wave amplitudes (modes); and (c¢) the same after subtraction of an empty-cavity
background. Figure 5 presents similarly the scattering of elastic s-waves. In Figure 6,
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Fig. 4. Normal-incidence scattering of incident elastic p-waves of wave number k from a cylindrical
water-filled cavity of radius a in steel: (a) total backscattering amplitude, (b) moduli of the
first six partial-wave (mode) amplitudes; (c) as in (b), after subtraction of an empty-cavity
background. From Ref. 41.

we show the dependence of the reduced resonance frequency spacing Ax, (x = ka, k
= wave number in the fluid, a = cavity radius) on the ratio ¢,/c, of internal sound speed
¢, to external p-wave speed c,, for different values of internal-to-external density ratio,
n being the mode number and £ the order of the resonance frequency within the nth
mode. The near-linear dependence on c,/c,, and the insensitivity to p,/p, indicates the
feasibility of determining c,/c, from the resonance spacing.

In Fig. 7, we plot the resonance width Iy, of the n = 0 resonances vs. p,c,”/p,c,” for
different values of c,/c,. This illustrates the feasibility of determining p,/p, from the
resonance widths.
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Fig. 5. As in Fig. 4, for incident elastic s-waves. From Ref, 41.

2.3 Determination of Acoustic Absorptivity

It has been demonstrated’>*® that the absorptivity of a viscous fluid layer can be
determined by measuring the widths of acoustic resonances. The same method can be
applied to viscoelastic solid plates if one restricts oneself to normal incidence of the
sound wave, since in this case no shear waves are excited and fluid theory can be used
in the analysis. Figure 8 shows the fluid layer immersed in another fluid.
Measurement of the critical angle of dilatational waves, 8 = 8, = sin"'ny where ny = ¢/c,
determines the sound speed ¢, in the layer: 8, can, e.g., be obtained by observing the
reflection coefficient R(0), since | R | =1 for 0 > 8, With x = (n/c)fd, { = frequency,
d = layer thickness, observation of the spacing in frequency of successive acoustic
resonances which is given by*

Ax = 2n(n,” - sin’0)"? 20)
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different values of p,/p, (curves with different n and/or ¢ overlap). From Ref. 41.

determines the layer thickness d. The determination of the layer density p,, and of its
absorption coefficient, can be achieved from measuring the widths I" of the resonances,
and of their frequency dependence.

For the absorption coefficient o, one may assume a power law with frequency f:

o4 = Af", 21
and describe the absorptivity by a complex sound velocity c,*:
c* = c /(1 +iry (22a)
where 1, is the loss factor,
ry = Af"'(cy/2m), (22b)

which causes a widening of the resonances. This leads to an expression for the
frequency-dependent resonance width I:

I' = (4p/p,cos0) + (2d/n )AL, 23)

which follows a power-law curve in f. The layer density p, is determined from the
intercept of this curve at = 0. The coefficient A and the power n are determined from
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the frequency plot of I', best from a log-log plot in which I' appears as a straight line.

Figures 9 and 10 show plots of I, and of the mentioned log-log plot, calculated for
the example of a butyl rubber layer” as an illustration for how the mentioned
determination of p;, A and n can be achieved experimentally.

2.4 Exploration of a Layered Seafloor

The ocean floor is usually covered by at least one sediment layer, often by a
multilayer structure. Resonances in the bottom reflection coefficient R can be striking,
as illustrated in Fig. 11 which plots R vs. the grazing angle. The solid curve refers here
to a solid sediment, the dashed curve to a fluid-type sediment. The first quantitative
discussion of resonances in the reflection loss was given by Nagl et al.*® for steady state
signals, and later by Nagl et al.*® for transient signals. It was shown there how bottom
properties (density and sound speed in a fluid-type sediment and substrate) can be
extracted from the resonances. Similar information can also be obtained from observing
the resonances in the transmission loss*“**. The theoretical studies were extended later
on to a consolidated sediment and substrate by Fokina and Fokin®*.

Hughes et al.** solve the inverse problem and determine the layer properties by a
straightforward approach of adjusting parameters in their transmission loss code. Nagl
et al.®®* solve the inverse problem analytically for the reflection loss. This is, of
course, possible only if the analytical expressions are sufficiently simple, which is the
case for a fluid-type layer on a fluid substrate.

The three-dimensional plots of Figs. 12a and b show | R | ? plotted as a function of
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the frequency thickness product fd (d = layer thickness) between 5 and 10 kHz-m (a)
or 20-25 kHz-m (b) and incident angle from the normal 0°<6,<20°, indicating that
resonances will appear as a function of frequency for fixed angle of incidence 6, or
also vice versa,

Nagl’s resonance theory for the steady state case®® proceeds from the familiar formula
for the reflection coefficient of a fluid layer between two fluid half-spaces, written in
the form

=Acos:S—i(l-1'2)sin<5 24)
Scosd-i(l+7*)siné
with
A=z -23)za  S§=(2q +23)/z, (25a)
1% =2,24/23 8 =(2nfdlcy) cos 8, (25b)
where
Z; =¢ip4fcos 0; (26)

Angles are designated 6, (water), 8, (sediment), 8, (substrate), similarly for the sound
speeds ¢, The minima of | R | ? are located at cos § = 0, i.e. at § = §,,

8,=(@Qn+ Dn/2, n=012,. . @7
This resonance condition may be rewritten using Snell’s law:

fd {n%-sin® 9312 =(2n+ 1) cs/d, n=0,1,2,-- (28)
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n, = c/c,. The reflection coefficient may be Taylor-expanded and linearized around &=
6 .

ne

F( - 8,) +iG(1 +72)/S

R=Zn: 55, +i(1+7°)S (292)
with
_i_Z]_Z3 __1"1'2
F=5= . S 1+7 (29b)

Thus, (1 + 12)/S is the resonance half-width, and G* a continuous background level. To

discuss the frequency resonances, we introduce the non-dimensional variable x =
2nfd/c,,

Xp =8,/(n3 - sin? 85 )12 30)

leading to the resonance width

1T, =(1 +72)/{S(n} - sin? 05)"/2} 31
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and the resonance spacing
Ax =7/(n} - sin? 6;)Y? (32)
which increases with 0;. The reflection coefficient becomes

F(x - x,) + L iGT,,
X - Xp +-i-il‘,,

(33)

R=2

and its square is shown (exactly) in Fig. 12. The advantage of this linearized
formulation is that it provides explicit analytical expressions for I', and Ax,, not just
numerical values. A similar linearization can be done for the angular resonances®.
The solution of the inverse problem for the fluid-type sediment layer can now
proceed as follows. By measuring the critical angle 6, the minimum value R, of the
reflection coefficient, and (at given ©,) the spacing and the width of the frequency
resonances (or, at given f, the position and width of the angular resonances) we can
deduce the unknown parameters c,, p,, ¢;, P, and d. Since many resonances are
available to be measured, there is a redundancy and the problem is overdetermined, but
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Fig. 11. Reflection loss vs. grazing angle for a 518-m thick turbidite layer at 20 Hz [from P. J. Vidmar
and T. L. Foreman, J. Acoust. Soc. Am. 66, (1979) 1830].

this may help to corroborate the correctness of individual measured values.

(i) By measuring the resonance spacing Ax, Eq. (32), one obtains n,.

(ii) Measuring the position of angular resonances at given f, one obtains ny and d.
(iii) Measuring the critical angle 0, of the substrate, ¢, = c,/sinf,,, determines ¢, in

the substrate.
(iv) Measuring I' of the frequency resonances at a given 0, yields

(1 +72)/S = L1 (n3 - sin® 6,)"2. (34)
The value of T can be found from the minimum R, of the reflection coefficient at 0,,
7 =(1- Rp)/(1 +Rpm). (33)

Using this, we solve Eq. (34) for S which yields

S=(zy +23)z5 = (1 + 12)/{4D(3 - sin® 6,)42}. (36)

Since S can be written as
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_ F-41 +23

_(zlzs)x/z 7= {(z1/25) +(23/gl)1/2}1 (37)

we may now obtain (z,/z,)'? since S and T are known. Since
1- sin® g4 \ ¥4
Yz o ptf2f 200 73 38)
(21/23) P1 (ng _ Sil’lz 03)

and n, = sinB,, is already assumed to be known, Eq. (38) thus yields p,. The density
p, can then be found from the known value cf t*:

2 - P1P3 n?g - sin® 03
P2 cosB3(n? - sin? 9,)2 (39

T

Fig.12 (a)
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Fig. 12. Square of reflection coefficient for a fluid layer between two different fluids (c, = 1500m/s, c,
= 2544m/s, ¢, = 5495m/s, p, = 1 g/em’, p, = 2.2g/em’, p, = 2.6g/cm’) plotted vs. 0° < 8, <20°
and (a) 5 <fd<10kHz-m, (b) 20 <fd< 25 kHz-m. From Ref. 38.

Thus all the parameters of the fluid-layer, fluid-substrate system have been determined.

For the transient case® applied to the same sediment-substrate system, one uses
sinusoidal wavetrains and observes the ringing of the resonances, manifest as a tail to
the returned echo wavetrain. Again, all parameters can be determined by measuring the
amplitude of the specularly reflected signal, the delay time between successive internal
reflections (as evident in the staircase-like, rather than exponential, behavior of the
ringing tail), and the amplitudes of one or more internal reflections (step height in the
ringing staircase).

Although for more complicated (multilayer) sediment systems this analytic approach
may appear too involved, a recent study*’ has shown that one may isolate the acoustic
resonances of individual layers, which leads us to expect that application of the analytic
method may still be possible in this case.
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3. Conclusion

The foregoing represents an historical account, and a description of the salient
features, of the Resonance Scattering Theory (RST). It also presents an elaboration on
the concept of Acoustic Resonance Spectroscopy, first pronounced by Derem?, as a
means of determining the properties of acoustic targets from the information on the
target resonances which is contained in the observed echo returns. The feasibility of
this concept, although yet to be generally demonstrated for cases of practical interest,
appears evident for targets of large impedance contrast with the environment, in which
case pronounced resonances result. It is also obvious, though, that an application of this
approach has to proceed, at this time, with complete understanding of the physics of the
scattering process. If this caution is disregarded, failure may possibly occur. After
sufficient development of the approach, one may ultimately expect, however, that
automated systems for experimental acoustic target recognition by resonance scattering
can be devised.
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ABSTRACT

The aim of this article is to study scattering from objects over a broad frequency range, in a
free environment, near a smooth interface and in a wave guide. The objects have smooth surfaces
either being spherical or axially symmetric and include impenetrable, fluid and elastic boundary
conditions including the complicated case of elastic shells. An examination of the frequency
domain is the main focus with some time-domain notions and examples discussed also. An
attempt is made to present a broad perspective of the subject in terms of a formulation that will
yield both mathematical expressions amenable to calculation and calculations that lead to solid
physical insight. The mathematical formulation emphasized here is drawn heavily from a very
powerful integral equation method - the extended boundary condition (EBC) or T-Matrix
approach- and is outlined with some related computational strategies. The EBC-method in the
simplest case requires the solution of two coupled integral equations while the elastic problems
may require many coupled equations. Exact numerical calculations are presented that manifest
interesting physical phenomena which are explained in some detail. This article is intended to be
partly tutorial in nature and self contained with an attempt at a balance of the mathematical, the
computational and the physical points of view.

1. Introduction

In the physical world, the propagation of waves and scattering of waves or particles
from bounded entities is pervasive and is an important tool to gain knowledge of
inaccessible objects. Remote objects in the sky, below the sea, and objects such as oil
domes deep in the earth, are subject to probing by electromagnetic, acoustic or elastic
waves to gain knowledge of what would otherwise elude one. Thus, an ability to simulate
such events as well as an understanding of how to use or interpret scattering data is a very
important area of study. Those concerned with understanding microscopic phenomena are
out of necessity acquainted with scattering theory at some level of sophistication since
both scattering and the more general area of rearrangement collision theory are the

256
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principal ways one probes the microscopic world. Therefore, it should not be surprising
that scattering as used in the quantum mechanical realm is more developed than the
classical analog. Remarkably, much of the mathematical methodology and some of the
physical events, such as resonances in quantum scattering, occur in classical scattering and
the base of knowledge in one area has promoted “hybrid vigor” in the other. Indeed, many
of the notions in this article and elsewhere were first used in quantum physics.

In this work we examine the classical scattering of waves from submerged bounded
elastic objects of some canonical shapes. This is still a developing and growing area and in
our view there is much progress to be made and the subject lacks unity in the sense that
few researchers bring together all aspects of the problem; but rather focus on a specific
aspect. Part of the reason is that reasonable physical problems are rather computational
and only in the last decade have computers and numerical techniques even approached
sufficiency to deal with the complexities associated with waves scattering from
complicated elastic targets. Further, research groups that publish in the area of Acoustics
come from diverse disciplines such as engineering, geophysics and mathematics and their
perspectives and interests differ. In the United States Acoustics is often treated as an
application of a more general discipline and the various groups have different objectives
often with little common ground among them. Moreover, the terminology used by
different groups varies, partly for historical reasons, and this has caused misunderstandings
among communities. Most physicists with sufficient mathematical and theoretical
backgrounds are engaged in modern quantum mechanical based areas, such as Particle,
Nuclear or Solid State Physics. The remarkable exception to this trend is H. Uberall of the
Physics Department of the Catholic University of America. While still maintaining his
interest in Nuclear Physics, H. Uberall has been the most prolific pioneer and critical
thinker in resonance scattering theory and related topics in general scattering in addition to
other areas of Acoustics, Applied Mechanics, Ocean Engineering and Electromagnetism.
Accordingly, he is a fellow of the main organizations associated with three disciplines,
namely the APS, the ASA and the IEEE. There is little worth mentioning in the area of
resonance scattering that has not been touched by his enormous insight and originality and
it is tempting to comment that one can divide that part of Physical Acoustics into two
eras, namely before Uberall (BU) and after Uberall (AU). With over 40 doctoral students
to his credit, and his contributions to national laboratories and, indeed, for his devotion to
his colleagues and his students, he forms the paradigm of what is best in University
professors and what is worth emulating by all who wish to be servants to their science
and a benefit to their fellow human beings.

Acousticians do come from Physics departments, but they are mostly found in
Mechanical, Civil or Electrical Engineering Departments or in some Applied Mathematics,
Applied Mechanics or Geophysics Programs, each with its own emphasis. With the
application of scattering methods the problem is also complicated by the fact that
scattering theory is one of the areas least appealing to one's physical intuition. In the sense
that one learns concepts more easily in a contextual basis, the more physical events relate
to ones common sensual notions the more adept one is at understanding the area and the
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more populated it is with scientists. But in any kind of scattering theory one must create a
new context for understanding related phenomena and that takes time for adaptation
which many but the most devoted individuals have all too little. Concepts such as
diffraction, refraction, resonances and partial wave studies are not in ones usual common
experience and one must develop research instincts by a prolonged exposure to the
subject. On the other hand, for those who have developed an intuition for the subject they
find it rich in concept and phenomena and suitably challenging to consume a lifetime of
research.

A major aim of this article is to describe some aspects of the classical scattering of
waves from the viewpoint of one familiar with areas ranging from quantum scattering to
the acoustical scattering from complicated elastic structures in which useful notions in
one area are exploited in the other. The mathematical development used to describe
scattering from targets is based mainly on an exact numerical technique by Peter
Waterman who, in a series of elegant papers!™ outlined the course of treatment that
constitutes a unified theory of the classical scattering of waves. The T-matrix or more
properly, the extended boundary condition (EBC) method due to Waterman is in part a
computational method which one may view to be as powerful in an algorithmic and
general sense as Hamilton’s principle or the Euler-Lagrange equations. This method
(largely overlooked by some of the classical scattering communities) along with numerical
or structural improvements has enabled researchers to perform enormously complicated
calculations and understand physical phenomena previously not possible.

Along with the formal and numerical procedures outlined here, some physical
phenomena in wave scattering are discussed that has similarities with quantum scattering.
In the area of acoustical phenomena, such as resonance scattering, Herbert Uberall®!3 has
been a towering contributor, both in introducing techniques and in describing phenomena
in the context found in quantum physics. Of particular merit is his development of a
resonance scattering theory®® (RST) along lines parallel to that of Briet and Wigner!® and
Kapur and Peierls'” as well as his clarification that resonances excited on elastic targets
are mainly due to circumferential waves initiated at the fluid-elastic interface. Because of
phase matching conditions, the surface waves form standing waves at distinct frequencies
resulting in the resonance phenomena.” Analogies between quantum and classical
scattering and propagation abound.'® There are many older and approximate treatments
such as the Born approximation and the related Kirchhoff approximations that have been
used in a perturbation sense. Finite element methods and the method of moments and the
weighted residual methods such as the Galerkin method have become popular among
structural researchers but they presently seem to be limited in frequency range and appear
tied to approximate thin shell theories. The separation of variables method useful for
appropriate shapes ( sometimes referred to as normal mode solutions ) can be shown to be
a special case of the more general EBC method and will not be discussed here except in
relation to the acoustical background for spherical shells. Both a T-matrix and an S-matrix
can be defined in wave scattering where the important concepts of symmetry, unitarity,

and the generalized optical theory play a role.!® 2° Uberall has shown that even Reggie
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poles® find their place in the classical scattering of waves and that one can divide
scattering into a superposition of a form of direct scattering (called the background) and
resonance scattering as was done earlier in quantum scattering. The background concept
was introduced for elastic spheres by Flax, Dragonette and Uberall in which they
employed a rigid scatterer as the background for elastic solids® and was extended by
Werby using the concept of entrained mass to elastic shells. 192122 The analogy with
quantum scattering has a correspondence at low energy where shape elastic scattering
from nuclear particle adds coherently with resonance scattering due usually to collective
or rotational motion of a nucleus. A comprehensive development of the interesting area of
resonance scattering from elastic targets is presented in a recent book edited by H.
Uberall ®

The idea that many physical events of complicated systems often have simplified
interpretations ( in a sense the interpretations are metaphorical or paradigms) is exploited
and the point made that one is obliged as a researcher to understand physical phenomena
especially when striking effects appear even when they are only from computations. This
“metaphorical” approach is intended to balance the older opinion that difficult exact
computations and the use of large computers deprives one of physical insight; that is not
true. One must always make sense of numerical results just as an experimentalist must
make sense of complicated experimental results. It is the duty of a computational theorist
to make physical sense of his or her results once one is sure that the method used is
correct and working as desired.

The plan of this work is as follows. Section 2 a review of the Extended Boundary
Condition (EBC) method for determining the field scattered from rigid and soft spheroidal
objects. We next extend this development to include refinements to the formulation and
outline results for elastic objects and impose useful constraints for the elastic case such as
symmetry of the T-matrix and unitarity of the associated S-matrix. We next develop the
problem of scattering from interfaces, scattering from two or more adjacent objects and
finally, scattering from objects in a wave guide. We then present Section 3 that discusses
some resonance concepts, the concept of acoustical backgrounds and partial wave
analysis, and additional physical phenomena that can be interpreted in terms of the
standing wave concept of resonances at fluid-elastic interfaces of bounded objects. We
end that section with a discussion of time domain resonance scattering theory . The final
section, 4 includes examples which make use of the formal and computational expressions
along with notions discussed in Section 3 to make sense of the computational results.

2. A Mathematical Formulation of Classical Scattering

The Extended Boundary Condition (EBC) method proposed and largely developed by
P. Waterman forms the basis of the equations used to develop the T-matrix and the eigen-
expansion and transformation methods that follow. The emphasis in this section is on the
mathematical basis of the methods which vary depending on the type of target. Focus, and
our original contribution is on procedures that allow for restructuring the theory or by
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suitable transformations that allow for more computationally viable expressions. What we
mean by this is that the formal expressions we develop are not merely formal; they are in a
form useful for implementing on computers without approximation. With the exception of
scattering from impenetrable and fluid targets, details of the EBC derivations can be both
intricate and subtle. Due to space limitations we, therefore, restrict detailed developments
to the simple cases, and list the generalizations for more complicated scenarios.

2.1. The T-matrix for a Rigid Objects

The Helmholtz-Poincare' integral representation for a field U (r) exterior to a bounded

object is an integral representation of the Helmholtz differential equation. It is particularly
useful for the scattering problem because it is an integral over the boundary of the object
and thus appropriate for imposing surface boundary conditions. It is represented as:

Um=U(r)+U/(r)=

a"’j(rr) —G(r, )c'U(r)
b7]

—U(r)+~—§[U( N2l =4S reD,_, reD,, 0

where vector r isin D

ext?

the set of points exterior to the object, G(r,r' ) is the outgoing
wave Green's function for unbounded space, r' is in D, the set of points interior to the

mnt*

bounded object, S' represents the object surface, n is 2 unit outward normal to the
surface, U(r) is a known incident field, U,(r) is scattered field, and U, (r') is the total
field on the surface of the object. The surface is assumed to be piece-wise continuous.
This expression reminds one of the integral form of Gauss's law for electric fields,
because, when r is in the interior of the object, the total wavefield U (r) is zero

(extinguished or nulled), hence the terms “extinction theorem” or “null-field condition”.
Thus, we also have that:

éG(rr) _G(r.r c’U(r)

0= U(r)+——~§w( Nl r)y——=—=JdS"', r, r'eD,. (2

where r is now an interior point. The above equations constitute the extended boundary
condition equations. Note that Eq. (2) does not mean that the field is zero in the interior of
the target. It merely means that the expression is evaluated to be zero in accordance with
Eq. (2). Additional equations are required to determine the field in the interior region for
objects that can support a field in that region.

Some researchers, particularly those in electromagnetism, refer to the combined use of
Eqgs. (1) and (2) as the null-field equations. The second equation was generally thought
inconsequential, but Waterman! took advantage of Eq. (2) as a constraint to eliminate the
surface terms involving U, (r'} and it's gradient which arise in the exterior solution.
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Although Waterman! employed the condition algorithmically to eliminate the unknown
terms, the procedure led to a method that also produced a unique solution for all positive
frequencies of the exterior problem. This is of considerable importance, because exterior
solutions have often suffered from “spurious resonances” at the so-called “irregular
values” of incident frequencies. These irregular values correspond to the eigenfrequency
of a problem related to the interior solution related to Eq. (2). This problem is well-known
in the context of the Fredholm alternative theorem. It has been established that by
coupling the interior points with the exterior solution the irregular values are eliminated.
This is achieved by the EBC-equations. Thus, Waterman’s equations actually serve two
computational purposes, one algorithmic and the other mathematical. In their present form
Egs. (1) and (2) are not of immediate use. In what follows we describe how Waterman
reduced the expressions to forms amenable to numerical computation. For the
convenience of presentation we will simplify the problem to that of an impenetrable object
(although solution of the fluid target case is quite similar). Elastic targets submerged in a
fluid require far greater mathematical detail, and will not be elaborated here. Let us
assume that we are dealing with a rigid scatter so that we obtain the expressions:

cﬁ(rr)

U(r)=U,(r)+ fU() ds', reD,, reD, G)

and

0= U0+ 1 fU.() s v weD, @

To solve these expressions, it is necessary to represent U, U, and G in partial wave

series, which upon truncation leads to matrix equations that are then solved using digital
computers. The Green’s function G is a normal operator, and can be represented by the
biorthogonal expansion:

G(r,r') =ik Y v, (r,)Rey, (r.) )

where r_and r, are the lesser and greater of the magnitude of the two vectors r,r' at the
origin of the object, respectively, k is a wave number, i is an imaginary unit, and Re y,
is a notation for the regular function at the origin. The quantity U, the incident wavefield,
is known. We express the incident and scattered fields as follows:

U(r)= Ta,Rey (), (62)
p
U(r)=2 fy,(r) (6b)
;
The fact that expansions (6a) and (6b) can be obtained follows from the Hilbert-Schmidt

theorem, where for incident plane waves, the a's are simple known numbers. The
expression (6b) satisfies the outgoing radiation condition at infinity and is valid for any
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region on and outside of a sphere with origin at the center of the object and that
circumscribes the object. Thus, it can be used for calculating the near field within the
limits determined by the largest dimension of the object. The main goal then is to find the
unknown coefficients {f;} . We now obtain from Egs. (1) and (2) the relations after much

manipulation:

S g ey
IZ'S, (24
ik [ ORey (r')
J_=4—s§s [U.(r —i 1. (7a)

The following expansion has been proven to be satisfied on the surface for the rigid
problem:

U.(r) = 2.5, Rey (r). ®)

Expression (7) now becomes:

ik , WORey (r')
el R O e RIS
ik N ORey (r')
/= a}:b fds [Rey, (r )———-—— =iky ReQ,b, (7b)
which can be expressed in matrix form as follows:
a = —ikQb 9
=ik ReQb (10)

There are a variety of numerical strategies to attack this computational problem. The
most straightforward (but unfortunately the most problematic) method is direct numerical
inversion, to eliminate b from Eq. (9) and replace it in Eq. (10), to arrive at a formally
convenient expression for the scattered wavefield, represented by f. This leads to Eq. (11),
relating the scattered field coefficients f with the incident field coefficients a:

f=-ReQQa=Ta (11)
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We can view this as a mapping from the incident field to the scattered field via the
quantity T =ReQQ™. It is conventional in certain areas of physics to describe such a
mapping as a transition; hence this computational mapping is often referred to as a
transition or "T-matrix" operation. One of the salient features of this mapping formulation
(henceforth referred to as T) is that Tis only a function of the boundary conditions and
the shape of the object. Consequently, once T is known, the scattered field can be
determined from any chosen incident field. Of course, the incident field must be
represented in the same sort of coordinate representation as the target for which one
usually uses the spherical representation. Use of a spherical representation does not imply
only scattering from spheres any more than Cartesian coordinates imply scattering from a
box. Use of spherical harmonics imply more complicated objects than a sphere, and if
needed the more general Gegenbauer polynomials can be employed for example for
ellipsoidal objects. We might add that it is not necessary to obtain matrix T. One can
obtain f directly from Eqgs. (9) and (10) instead. The disadvantage of that is that one must
use a solver for each incident field described by a. It will become apparent that T can
have a complicated structure as we discuss the elastic case. For the simplest cases
elements of T are a function of three indexes, namely an ordered pair of integers (i,j) that
couple each incident partial wave i with each outgoing partial wave j. Further each
element is a function of the azimuthal index m associated with spherical harmonics .

2.2. AnlIterative Convergent T-Matrix

When generating the T-matrix, one needs to insure that the appropriate number of
basis functions have been used, otherwise, if too few were used, the T-matrix will not
converge. When generating a T-matrix for well known shapes, there are usually rules of
thumb pertaining to the number of basis functions to use. For example, for a sphere the
number of terms 2ka (where k is the wave number in the fluid and a the radius of the
sphere) is a suitable number of expansion terms. This can be determined from angular
momentum barrier arguments. However, this is not the case for arbitrary shapes. In the
past, if the T-matrix had not converged, then one would have to regenerate the T-matrix
with more terms. It is possible to test for convergence by determining if the generalized
optical theorem is satisfied, by testing for symmetry or by simply redoing the calculation
with higher terms, until the same answer is reproduced. With this in mind, an iterative
algorithm was created so that there would be no guessing as to how many basis functions
one would need to insure convergence.

The procedure?3-23 is based on the method of bordering for the inversion of general
matrices. In general we start with an (NxN) matrix A. It is possible to construct another
matrix of order (N+1 x N+1) based on the original matrix A. It is thus possible to build
any order matrix by this procedure, since the expanded matrix A' of order (N+1 x N+1)
can be used as the next starting point to obtain the matrix A" of order (N+2 x N+2). Let
us begin with an N-th order T-matrix expressed as,
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Tyw = —RCQN‘NQN‘N—I . (12)

For more general acoustic boundary-value problem, in which fields penetrate the interior
of the obstacle and propagation there is described by wave number &' and density g ,
the matrix Q has the following form,

) 5 hr R (k'
Q= a5t £ Rey, (k) X=E) (i ERVED )
4z p & ol

We can specify two extreme cases: either Neumann (£ — «, k'= k - rigid boundary) or
P

Dirichlet £, 0, k'= k - soft boundary) boundary conditions on the object and Eq. (13)
P

will become either:

Q= - fas ey, 0 ¥
7

FRey, (kr )
A (14)

ReQ,, =;§ds Rey (k)

with a Neumann boundary condition or

JRey . (kr
Q=L fas o 0,
ﬂs
1 JRey (kv )
ReQ. = =S ey, (i) 2= (15)

with a Dirichlet boundary condition. In general, if we expand the T-matrix of order NxN
to an order of (N+1)x(N+1), Eq. (12) becomes

Tyana =-Re QN+1,N+IQNv1,N-1_1 > (16)

where,



10. Modern Developments in the Theory and Application of Classical Scattering 265

0 _(QN,N Cym )
N+ N+l — 4
v Qyava
and
LYY
Ty =@y yan)s  Cyn =
Ay ns
and a,,,y., is a number. Now Q-1 s expressed as,
-1 _ Dy Sye
Q N+N+1 = -1
q‘V+l b N+IN+1
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Finally we can rewrite Eq. (17) as,

QN.N Cysl D, Sael M,
TN+LN+1 =-Re 4 =
Tya  Auana/\Qu., b7 vana M,

where

=

2

an

(18)

(19)

(20)
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There are several advantages in using this algorithm. One that was already mentioned is
that the algorithm takes the guess work out of choosing the number of basis functions.
The T-matrix is conditioned as it is built-up. This relaxes some of the complications
associated with ill-conditioning, which is sometimes encountered for various object
shapes. Finally one can see by inspection that the addition of columns and rows is an
operation involving either a matrix and a vector or two vectors, which when performed on
vector machines and modern pipeline computers is very fast and economical.

2.3. The Coupled Higher Order T-matrix

As noted above, a straightforward evaluation of Eq. (11) is usually not the most
efficient way to obtain for f. The reason for this is that in many cases, Q is very large and
often ill-conditioned, and therefore finding the inverse of Q may not be possible. An
alternative method25:26 to obviate this difficulty is the coupled higher-order T-matrix
method described below. The rationale behind this method is that Eq. (6a), describing the
incident field, requires a limited number of partial waves (depending on frequency), while
Eq. (B), used to obtain the surface field, etc., may require considerably more expansion
terms, depending on the nature of the surface. However, for Q to be invertable, it must be
a square matrix, requiring that Eqs. (6) and (8) have the same number of expansion terms.
Since beyond some point the expansion coefficients of Eq. (6) become very small, this
results in the ill-conditioned nature of Q. The coupled higher-order T-matrix method
overcomes this problem by a formulation that "couples" only the relevant expansion terms
in Eq. (6) with all order terms of Eq. (8). The most elementary formulation of this solution
is to block Q into four sub matrices (Q (ij), where ij = (VM) and demand that the Q (ii)
matrices be square). This leads to a new T matrix of order (¥, N) which is convergent and
requires an inverse no larger than the largest pair of (ii):

Tyy=-PG~ Q2N
P =ReQ, , -ReQ, ,,Q'xuQ, (22)
G = QN,N - QN,MQ‘\M'MQM,N (23)
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A generalization of this method (for a nine-block representation of Q) has been

developed26 and has been proven very effective in dealing with formerly difficult
problems.

2.4. The Eigenexpansion Method

In this section another method based on eigenfunctions associated with specific
surfaces is examined. The Rey ;’s in Eq. (8) are not the most efficient functions to

employ for general cases. Our intention is to determine more efficient expansion functions,
i.e., those that would form as close as possible an orthonormal (ON) basis set on the
surface of the bounded object. We then obtain a more effective expansion of U, on the
object surface. 2728 A way to do it is obtained by the premultiplication of Eq. (9) by the
adjoint of Q, namely Q', where the latter quantity is the conjugate transpose of Q:

Q'a=-ikQ'Qb = -ikHb (24)

where the matrix H can easily be shown to be self-adjoint or Hermitian (where H =g ).
The advantage of pursuing this course is that we can easily find the eigenvalues and
eigenfunctions of H that have known and computationally desirable properties. In
particular, the eigenvalues for self-adjoint operators are real, positive, and increase
monotonically, and form an orthonormal set of functions on the surface. The
eigenfunctions can be obtained as follows:

Hq, = 1,4, (23)

Here, the adjoint of q, is q, T, so that

q.'q, =5,,. (26)

where &), is the Kronecker delta function. We also require the ordering 1, <2, < 4,...,

where the dimension of H is that required for convergence and relates to the number of
surface quantities required in expanding U, . One can show that the q, ’s are related to an

alternate representation of the functions of Eq. (9) with the desired property that they are
an orthogonal representation (with another computationally desirable property to be
discussed). Thus, we have

b=2a,4, , (27)
so that Eq. (24) is:
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Qfa = —ikz e, Hq, = “ikzamﬂ'mqm

(28)
Thus, using the orthogonality property of theq,, ’s, we obtain:
; tot
__i ty p=l3 92 Q24,
a, M 4, Q'a kZ———~m (29)
We also expand the exterior problem as follows (see Eq.(7b)):
' FR r
fi= ;izb §dS [Rey,(r )——WQ =ik} ReQ,b,
” m m
The final expression for the scattered field in terms of the incident wave field is thus:
—Z Rqum q,Q'a (30)

Although the above expression has proven computationally efficient, it is also possible and
sometimes necessary to obtain an alternative T-matrix representation. This may be done by
means of the following derived relation:

T=-ReQVL'V'Q" G1)
where the matrix V is constructed from the M column of eigenvectors q, to q,, of the
MxM square matrix H and an MxM diagonal matrix L = diag(4,,...,4,,) is constructed
from the M eigenvalues of H. The matrix V is obviously unitary because of the
orthogonality of the eigenvectors. Since the set of eigenvectors forms a unitary matrix the
above expression may be viewed as having been obtained by transforming Q via a unitary
matrix obtained from V times its adjoint. This offers a generalization of this method to
one more complicated. For the general problem a T-matrix may be written in the form:

T=-PG ™, (32)
with solutions of the form:

T =-P VL'V'Q". (3%
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2.5. The T-Matrix for Fluid Loaded Elastic Objects

We now consider the case of an elastic shell in a fluid. The procedure for the
multilayered scatterer can be generalized from the following consideration. The starting
point for this procedure makes use of the equation of motion in a fluid:

Viu/ +k%) =0, (34)

where k is the acoustic wavenumber and u’ is the particle displacement in the fluid.
Note here that for the elastic problem we are required to use a displacement ( a vector
quantity ) rather than the scalar potential because in the elastic case the traction and
other conserved quantities are the displacement vector functions. The equation of motion
in an elastic body for the monochromatic wave of frequency  is:

(x,)'VVou-(x,)'VxVxu+u=0
PP P
¢ /1+2,U ¢ 7 ?

(335)
where K, and «,are the longitudinal and transverse wave numbers corresponding to
compressional and shear waves, respectively, 4 is the shear modules of the medium and
A+2u/3 is its compression modules (ratio of isotropic pressure to fractional rate of
decrease of volume), o is a mass density of elastic material. Boundary conditions at the
fluid-elastic interface are:

fu, =fiu_, at, =fit_, Vxt_=0, (36)

where 0 is a unit vector normal to the surface of the object. The traction t(that is a
normal component of the stress tensor) for the outer (+) and inner (-) surfaces are:

t,=n-{1,IV.u,}, t_=0-{1_IV-u_+u(Vu_+u_V)} 37N

Here T is the unit dyadic. The boundary conditions for the elastic case are vectors, so the
Green's function which serves to transform the boundary conditions and the source density
into the solution must be a vector operator. Thus, we can define the elastic material
Green’s function G (r,r') which for the elastic problem is a dyadic and Green’s stress
tensor Z(r,r') of the third rank. The corresponding quantities in the fluid are denoted by

G ,(r,r'")and Ef (r,r'). The Green’s dyadic for the elastic material is defined by:

x)'VV-G-(k)'VxVxG+G=15(r-1), (38a)
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and can be determined as a sum of the longitudinal and transverse dyadics:
- (38b)

We note that the two parts of the solution have different basic scalar Green’s functions,
corresponding to the different velocities of propagation of the two types of wave. When
considering the inner shell, if one uses a fluid filled inclusion then the boundary conditions
are similar to those of the outer shell and for the case of an evacuated inclusion then one
merely requires that t=0 at the elastic-vacuum interface. For all EBC-formulations one
employs a surface boundary integral representation which may be viewed as an expression
of the Huygens’ principle. The boundary integral equations that follow are such an
expression for the elasticity equation and in the form used here was developed by Varadan

and Pao.2? The integral representation for the field in the fluid region is given by

u’/ (r), r outside §'

s 39a
0, r inside §' (392)

IdS'{u+(r')-ﬁ'~§f(r,r')- t*(r’)-af(r,r')} +u’i(r) ={

where u’;(r) is an incident field from the fluid on the scatterer and u” (r) is a total field

in fluid. The integral representation for the displacement field w inside the elastic layer
enclosed between S, and S, is given by

—J.dS"{u_(r')-ﬁ':: (r,r)—t_(r')-G(r,r')} + IdS'{u+(r')~ AE (r,r')- t,(r')-G(r,r')}

_ |u(r), r between S, and S,
" 10, r outside S, or inside S,

(39b)
In Egs. (39a) and (39b), the + or - subscripts for u and t denote whether the surface is
approached from the outside or inside. There are two expressions here. The first is the
exterior problem and is used to determine the field external to the target. It yields the total
field u’ (r) in the exterior of the target, and zero when in the interior of the target. The
second expression is useful for determining the field in the shell and so one must integrate
over both the outer surface and the inner surface, hence the two integral expressions.
Here, the equation calculates the field u(r)in the interior region but leads to the value
zero in the region outside the shell, which includes both the exterior region and the region
inside the shell. There are alternative forms for surface integral representations but this
form has been viewed as a major advancement required for the development of a T-matrix
for elastic objects. We need to solve these equations subject to the boundary conditions at
the interfaces and with the appropriate asymptotic boundary conditions. Once again one
resorts to use of the partial wave expansions in three-dimensions but for this case in vector
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form. In the spherical coordinate system the partial wave expansion functions in the fluid

and the elastic body are:30

7 = £ T (O 0,00,
P = [T (0.

2 ngnm

W nm = V x{rh Y _(6,9)},
v W {rh,(x )Y, (6,9)}

~, 1 _ g,2n+1)(n-m)!
wm =—V s = [ 40
v i, v S V' 4x(n+m)! (40)

where ¢, is the Neumann constant, the Y's are spherical harmonics and the A’s are

outgoing spherical Hankel functions. The outgoing Hanke! functions satisfy the radiation
boundary condition. For the set of the basis functions regular at the origin one has to use
the spherical Bessel functions in Eqs. (40) instead of the spherical Hankel functions. The
essential step in the T-matrix method is the expansion of all fields and Green’s functions in
Egs. (39) in terms of spherical basis functions which are the partial wave expansions

natural to the 3-dimensional problem. We expand everything in these partial waves as
follows:

Vi) =Fa R (), wr)= TS0,

u(r )=Z Z(aif Reig';(r) + B ,7 ;i (r)). 41)

Note that the interior displacement vector (in the elastic layer) includes components
associated with the regular Bessel function and the expansion coefficients o’s and an
outgoing solution allowed for waves scattered from the inner shell, associated with the
expansion coefficients. The field in the innermost layer that includes the origin of
coordinates is expanded in regular functions only. The Green’s dyadics for the elastic and
fluid cases are also represented using biorthogonal expansions for normal operators:

LS : =i =i
LS > @) ReF (),
PO T

G(r,r') =
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G/ (r,r)=i3 0/ j(r,)Re’;(r.). (42)

The details that lead to the following expressions are quite involved but in spirit similar
to the rigid scatter case . The major difference is the use of additional constraints imposed
by layering and the added boundary conditions for the fluid-elastic interface. The elasto-
acoustic boundary interface introduces mode conversion which allows for the mechanism
of the transition from a purely acoustical environment to one consisting of shear as well as
compressional waves in the elastic medium. This results caused by such interface
phenomena is responsible for a plethora of resonances that makes scattering from elastic

targets a rich and exciting area to investigate. The T-matrix for the elastic case is:°

T = ~{Q[Re,Re] - Q[Re, OJT?}{R[Re,OIT* + R[Re,Re] +iT*} ' P[Re, Re] x

x{{Q[O,Re]- Q[O0,0]T*}{R[Re, OJT* + R[Re,Re] +iT"} ' P{Re,Rel} . (43)

Notations Reand O indicate that matrix elements are functions of the regular or/and

outgoing basis functions. Here T® corresponds to a reflection from the inner face of a
shell. For a solid T? = 0 so that’?

T = ~Q[Re, Re]{R[Re, Re]} ' P[Re, Re] {Q[O, Re] {R[Re, Re]} ' P[Re, Re]} . (44)

The interior reflection T? may be due to an elastic solid inclusion, a sound void, or a
rigid inclusion which has the form:

T = ~Q[Re,Rel{Q[Re, 0} " (45)
The matrix elements of Q, R, P for Eqs. (43) and (45) are as follows:

0o 0 K 0 0_, 0 O
N = s d. f,, - ln‘ - fn - ' "
Q‘"""IﬁRe Re] P S_[ S{ti:ReW } |:ReV’ } [Re'/’ } t[ReV/ }}

it

Re K _. Re _ ., . Re _
R, ..|R = :., dSt ’n‘ ln’ —A'R 'nA't Xn'
{ eO] P@'S,J:,, {Reyy ][Ow Lgm fi-Re i {0‘” }}
P, [Re.Re]= "% [dS(i-Ref's o Rep/ v} . (46)
' PO 5

The matrix elements of Eq. (45) are similar but less complicated than expressed by Q in
Eq. (46). Peterson and the Varadans30,who developed this formulation, have also shown
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that one can have layers of interior shells which then involve recursive expressions that if
terminated by a fluid inclusion lead to a series of expressions similar to that expressed by
Eq. (43).

In this development we have avoided the issue of the so-called Rayleigh hypothesis
which pertains to partial wave expansions of the elastic field in the shell. That issue is not
entirely clear. A sufficient condition that one be able to expand the field in that region in a
spherical representation is that it is possible to envelop a sphere in the annular region so
that in that region the field is constant on that surface for any variation of angle. Clearly, if
that is a necessary condition, then this formulation which is based on such a requirement is
very limiting. Obviously, it would always be valid for spherical shapes and in fact, this
formulation agrees with the results derived from separation of variables methods.
However, for non-spherical shapes these expressions would not be useful for thin shells if
arguments on the necessity of satisfying the Rayleigh hypothesis are true. To suggest that
the demand for the Rayleigh hypothesis be satisfied may be toc strong is determined by
calculations in which these expressions have been used for thin spheroidal shells. The
results appear to be valid and are consistent with expectations suggested from those of
thin spherical shells. There is some suggestion that the spherical expansion is still useful,
but requires more expansion terms with increasing aspect ratio along with higher
precision. A test of this assumption31.32 appears to substantiate this hypothesis, but the
number of expansion terms and the requirement on precision increases rather dramatically
with only small increases in aspect ratio. Hackman33 and others have attempted to
overcome this problem by making use of spheroidal basis states for which there are
arguments that the Rayleigh hypothesis is less restrictive. Unfortunately, spheroidal
functions do not separate in partial wave space for the elastodynamic equations and one
can not take advantage of that feature with those functions. Nonetheless, Hackman has
been able to obtain results for more elongated thin elastic shells than possible using the
spherical basis formulation here. The Varadans have proposed making use of thin shell
theory and developed a T-matrix that would be useful subject to the restrictions of thin
shell theories. The Varadans34 proposal seems promising and because of the variety of
thin shell theories it is quite possible that some forms would be useful in understanding
some features of scattering from elongated thin shells. The development proposed by the
Varadans can avoid making use of finite element basis functions. Calculations making use
of thin shell theories and the method of moments have shown promising results, though
for water loaded shells we believe there are serious limitations for any known thin shell
theory. There are massive engineering efforts to incorporate finite element techniques that
include considerable structural properties of an object under investigation. Results in the
air craft industry in which thin shell theories are more useful due to weak coupling of low
impedance air with the elastic structure have proven useful. Unfortunately, thin shell
theories are constructed from notions based on the free vibrations of surfaces that are
difficult to couple with heavy fluid loading correctly. Many resonances observed for water
loaded elastic shells are strongly coupled with or entirely dominated by the fluid loading
which are missed by many thin shell theories. The form of the T-matrix above does deal
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well with thick shells, which are physically uninteresting from a technological point of
view. The return signals from thick water loaded shells manifest resonances of the
symmetric and anti-symmetric ( flexural ) modal class as well as the enormous number of
symmetric and anti-symmetric Lamb resonances which proliferate with increasing
frequency. Thin shell theories which form the basis of finite-element techniques do not
treat Lamb resonances, are not able to treat Pseudo-Stoneley resonances correctly, and are
not likely to correctly treat flexing or resonances due to bending or flexing of the overall
structure. One must conclude that much work is needed in this area to arrive at
satisfactory predictive techniques for realistic objects imbedded in water. However, the T-
matrix method described here offers a useful bench mark for any approximate theories that
may be on the horizon. In the next section we examine an elegant technique to extend the
range of the T-matrix. The initial idea was formulated by Waterman!? to simple targets
and was extended to more complicated targets by Werby and Green?20.

2.7. The S-Matrix and the Imposition of Unitarity and Symmetry

Eq. (43) is difficult to deal with because the matrices are often poorly conditioned.
This leads to unmanageable matrix inversions as well as a disparity in convergence of the
upper and lower matrix elements of the T-matrix. We obviate this problem by a method
we refer to as the unitary method which we briefly outline. It is a generalization of one
developed by Waterman for simpler cases and we have referred to it as the Generalized
Waterman procedure. One of the salient features of this method is that symmetry is
always maintained for the upper and lower elements of the T-matrix. Each element and its
transpose converge at the same rate. Further, no elements of the T-matrix can ever be
enormously large due to error because unitarity is always imposed. It is possible for the
method to fail due to a problem in precision and the dynamic range of the exponential but
that becomes obvious by examining certain output parameters. The T-matrix maps the
incident field into the scattered field. We know from reciprocity that T is symmetric.
Another quantity used in quantum physics is the S-matrix which relates the ingoing field
with the outgoing field. An interesting feature of the scattering matrix S is that it relates
the total flux amplitude before a scattering event to that after the event. Thus, if there is no
energy lost in the scattering process, then S must be unitary, that is the mapping S must
preserve the total energy flux. It is well known that the relation between S and T is
S=I+2T. We assume that the target and fluid are not energy absorbing so that S must be

unitary. We can write T = —RP~! which is the most general form of a T-matrix. It is trivial
that due to the symmetry of T (a consequence of reciprocity of the wave equation), S is
also symmetric. Then we represent S as follows:

S=I1+2T=1-2RP!=pp! | 47
where U =P - 2R. S now becomes

S=S=pP"'U", (43)
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where S’ is a transpose matrix.

We represent U (using Schmidts theorem) in the following decompositions
U=U,M and P=PN where P, and U, are unitary and N and M are upper triangular.
Here "I" will designate the unit matrix. Then S=P ~'LU', where L =N""M'. But
SS!' =I=P LL'P,"", where P," is a complex conjugate matrix. It implies LL" = 1. We
see that L is unitary due to the uniqueness of the inverse of a matrix and the sufficiency
that the relation L™ = L' guarantees unitarity. Since the product of two upper triangular
matrices must be upper triangular, then L is upper triangular. But it has to be lower
triangular too since the upper triangular elements are the complex conjugates of the lower
triangular elements ( due to unitarity ) which are zero and therefore it must be diagonal.
The diagonal elements have to be real since from the Graham-Schmidt construction they
are composed simply of the norms of the rows of each matrix. This implies that L is the

unit matrix. Thus, S="U,P," and this leads to the new expression:
T=(UP'-D/2. (49)

This expression is much easier to calculate than expressions dependent upon matrix
inversion and it guarantees unitarity and symmetry of the T-matrix at any level of

truncation.?% An added feature of this new approach is that one can test for convergence
by examining the diagonal elements of L. They must be close to unity for convergence to
be obtained. This is an interesting application of matrix abstractions that illustrates the
power of formal mathematical manipulation to reduce a complicated problem to one not
only simpler to solve, but with required constraints imposed on the final expression.

2.8. Scattering from Objects Near an Interface

To treat this problem correctly we must first add a few comments about Green's
functions. For problems in free space single scatterers require an outgoing Green's
function that satisfies the surface inhomogenious boundary conditions as well as the
asymptotic condition (the Sommerfeld radiation condition ). The function is defined at the
origin of the object and has discontinuities in the normal gradient at the object surface in
order to accommodate the inhomogenious surface boundary conditions at the object
surfaces. In the event, if there are two or more objects, then an adjustment must be made
because one can not use an outgoing Green's function in the region where a wave can
reflect back and forth between the two surfaces. Thus, for that region rather than an
outgoing Green's function, one must construct a standing wave Green's function just for
that region. We will refer to Fig. (1).

We use the Huygens’ principle, developed by P. Waterman!-5 to construct the T-
matrix for two objects:
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Um=Ur)+U/[(r)=

= U0+ j o YLD G ZDys rep,, v, (o)

where vector r isin D, the set of points exterior to the object, G(r,r' ) is the outgoing
wave Green's function for unbounded space, r' is in D, the set of points interior to the

bounded object, S' represents the two object surfaces, n is 2 unit outward normal to the
surface, U(r) is a known incident field, U.(r) is unknown scattered field, and U, (r') is

the total field on the surface of the object. The incident and scattered fields can be
expanded by the complete set of eigenfunctions as it was done for a single scatterer:

Ul(r)=Y a,Rey (r),
Ur)=2 v, (r) (51)

s

C AXIS

(,'2'.\‘:
01 e

Fig. 1. Schematic of an object near an interface.

where y, are outgoing functions, Rey ; are functions regular at the origin, a; are
known, and f, are unknown.

In a manner similar to the single scatterer a T-matrix was formulated by
Strom33,36, et. al. for the two-object case. The following formulation is also useful in
consideration of the method of images for formulating the problem of scattering from

objects near rigid and pressure release surfaces. Using the bi-orthogonal expansion for the
Green's function, we have:

G(r,,r,r)=iky, v (r,)Rey (r,), (52)
J



10. Modern Developments in the Theory and Application of Classical Scattering 277

for r outside of the sphere r =7,. That is, the Green's function is strictly outgoing.
However, if r €5, we have:

G(r,,r,,r) = —iky v (r,)Rey (r.), (53)
J

when r_ is inside object 2 (1) and r, is outside the surface 1 (2); and

G(r,,r,,¥) = —ik) Rey (r,)Rey (r.), (54)
J

when r, is inside object 1(2) and r, is on the surface of object 2(1).

It is important to note that the first two Green's functions are the standard
outgoing Green's functions and satisfy the Sommerfeld radiation condition. Since, the third
Green's function involves a strictly bounded region where the sound field reflects back and
forth between the objects then the Sommerfeld radiation condition is not required since
the sub-system is bounded and this calls for the standing wave Green's function. Thus, use
of an outgoing Green's function would lead to an erroneous expression.

We are required to shift from the origin of object 1 to that of object 2:
r,=2d-r, and r, =2d-r, when we integrate over the respective surfaces. Now we
must deal with translation or rotation of the spherical Bessel functions which are regular
(at the object origin) in the spherical coordinate system. That is, we must determine
Jj(kr + kd) interms of the j(kr)'s. It is well-known that:

Ji@2d-r)= ZR,M(Zd)jm(rl) , (55)

where R is an SO-3 transformation that translates or rotates spherical Bessel functions.
The translation/rotation properties of the spherical Bessel functions { j, (A7) } are easy to
derive by noting that Exp{ik(d+r)Cos(a)}= ExpfilrCos(a)} Exp{ikdCos(a)} where « is
the angle between k and (d+7). Then by expanding each exponential in the Rayleigh series
and using the addition theorem for spherical harmonics one need to multiply the left and
right series by the complex conjugate of the spherical harmonics associated with the left
hand side and integrate over all space using orthogonality of the spherical harmonics to
obtain a series on the right equal to { j_ (k(r +d))}. The two integrals are well-known to
be related to Clebsh-Gordan (C-G) coefficients so that the integrals may be replaced by
the C(II'1",m,0,m’)'s. We use the more symmetric 3-j form of these overlap functions
represented by double column brackets to obtain3:

RED)™ = S (C1ymmom=o (3 1) Gn s DG [ﬂ)[""'pj +1)? j(kd)S .
(xd),, pz_‘:ﬂ() @Cp+1)y(@2n )(")000 mm‘O()J()'"’"

(56)
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where (%} are 3j-coefficients. This relation defines the R's . It is easy to see from the
exponential nature of the Rayleigh series that R{d)R(-d)=1and R(d)R(d) = R(2d).
Indeed it is clear the R is a rotational matrix and forms a commutative set under
multiplication with the unit matrix being R(0). It can be shown easily that
R'(d) = R(-d) . Unfortunately this sort of translation is most suitable for a sphere or an
object in which the body z-axis (the axial symmetry of the target) is aligned with the z-
direction of the waveguide. This is not frequently the case. In fact, it is more likely
perpendicular with the z-axis. In that case the R's are not diagonal with respect to the m's
( the azimuthal index). It is to be noted that for axi-symmetric objects the free space T-
matrix and the Q-matrices are diagonal in m (they are block diagonal in m, i.e. of the
Jacobi matrix form). Thus, we can invert the Q's for each m. Had that not been the case
we would have to invert the Q's for matrix elements including mixed m's (this occurs for
general targets) and this complicates calculation of the T-matrix. We have examined
axially symmetric objects partly to retain this property and partly because such shapes are
of sufficient interest to us. Because waveguides are not axisymmetric in depth we expect
(in general) for the m components to be coupled and in fact the presence of the translation
matrices in expressions of the form (1- R(-2d)TR(2d)T)™" renders the evaluation
numerically costly for high frequencies except for the special case mentioned above.(We
omit the vector-matrix notation for R,T,Q and other matrices just to simplify reading in
the next several expressions). To simplify matters, we can expand the terms as follows:

(1~ R(-2d)TRQ2d)T)™" = 1+ R(-2d)TR(2d)T + R(-2d)TR(2d) TR(2d) TRQ2d) T +

Since elements of R(-2d) that overlap with elements of T get smaller with increasing 4, it
is not difficult to suppose that this series terminates fairly quickly. Further, since each term
corresponds to zero, one ,two....etc., reflections from the surface then on physical grounds
one expects convergence reasonably quickly on a physical basis. Indeed , if one has n
multiple reflections it can be shown that the corresponding expansion term dies off at a
rate greater than 1/(2dk)2". By retaining only a few terms corresponding to only a few
multiple interactions between the surface and the object it is then reasonable to include
multiple reflections in the way just prescribed .
We easily arrive at the system of equations (we will omit vector-notation below):

f =~ik{R(d)ReQ,a, + R(-d)ReQ.x.}
-RQ2d)a, = —ik{Q,a, + R(-2d)Re(0.c.} (57)
-R(-2d)a, = -ik{Q,a. + R2d)ReQ,a,}
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Letus set @, = Q,”'b,, @, = 0, 'b,to make use of the definition of the single scatterer T-
matrices. We are now able to solve the equations for b, and b, in terms of known
quantities and arrive at:

f = -ik{RA)TH, + R(-d)T;p,}
b, = {1- R-2d)LRQT}" 1+ R-24)T,R2d)}a,
b, = {1- RQd)T,R(-24)T, }‘1 {1+ R(2d)T,R(-2d)}a, . (58)

Thus, by eliminating the b's we obtain

f = ~ik{R@)T{1- R(-2d),RQA) T} {1 + R(-2d),R(2d)}a,
+R(-d)T, {1- RQA)TR(-2d)T,)™ {1 + R2)T,R(-2d)}a, } .
(59)
This expression is expressed relative to the center point of the two objects. By various
transformations we can express the equation relative to some other position by making use
of propertied of R. We would of course expand fin some outgoing basis set if we wished

to obtain the far field form function and it would be relative to the central point or what
ever axis coordinate we choose.

2.9. The Two-body Formulation - a New Approach

There is a more general method to implement the two target scattering problem which
in turn leads to the more general n-body problem. There are no restrictions on the T-
matrix here so it applies to bubbles as well as elastic shells. We outline it here and extend
it in the next section to the n-target problem.36 A signal coming from a, impinges on
object 1 first (see Fig. 1). Then the scattering process can be shown schematically as
follows where T is the transition matrix for object i and R, is the propagation matrix that
carries the signal from object i to j:

From object 1 Ta, TR,.T,R, T,
U / U
From object2 T,R, T, T,R, T,R,,T,R, Ta,

Let us define the following:
I'; = R;T, - scatters from j and propagates to i,

1*,] = R,.J.TJ.RJ.,.Ti - scatters back and forth between i and j and back to i,
I - rescatters back and forth two times.
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We deal with the product of regular spherical Bessel functions and spherical
harmonics in representing the propagation from 1 to 2 in a partial wave sum but we are
required to shift from the origin of object 1 to that of object 2 or the converse depending
on which target the signal reflects from: r, =2d-r, or r, =2d-r,, since scattering

relative to an object must originate at the origin of the object. Now we must deal with the
most general problem of translations and/or rotations of the individual partial waves-
product of the spherical Bessel functions regular at the origin and the spherical harmonics
in the spherical system. In particular we must determine j(A7 +4d) in terms of the

Jj(kr)'s. It was shown above that: j,(2d-r)) = ZR,,,,(Zd)jm(r‘) , where R is an operator

that translates or rotates spherical Bessel functions. It can be shown that the matrix R
forms a commutative, multiplicative field and that, R(d)R(-d) =1, R'(d) = R(-d) ,etc.
Since we are concerned with a particular representation, manipulation of a scalar wave in
three dimensions is isomorphic to any other representation and thus is a member of the
SO-3 symmetry group. Thus, R is well studied and falls under Lie group theory. A signal
coming from location 1 will have the following series andswe use those properties of Rin
what follows:

(0T, + Tra, + TT3a .
@ LIa +L0,a+.. (60)

or we get at (1) due to the signal from q,:
L(1-1,1a,..
and at (2) due to the a, signal:
LI,1-1,1a,..
In a similar manner we get the signal from a,, and so the total field is:

U= 7;[1_1—;1]—1a1 +7;f12[1—f;2]'1a2 +Tz[1_r2’:]_laz +T1r21[1_-’—{1 ]—1a1_ (61)

We can show that:
rO-r,r=n-ny',
Using the above identity we get:
U=T{1-I 1 a, +T.a, ]+ L{1- ) e, + Tya,) (62)

211

We note that @, = R,a,, a, = R,a, ,so:

U= 7;[1"[‘1’1]-1[1"'1—1:}?21]‘71 +Tz[1_1—zlz]_l[1+r21Rx:]az- (63)
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The general expression for the total field in the presence of two scattering objects (use +
sign ) or near either hard (+) or soft (-) interfaces is:

U=TN-I 12 0pR ey £ L= T 14 1R Ja,. (64)

This expression agrees with earlier ones with the exception that R, or R, occurs in place
of the translation-rotation for outgoing Hankel functions, reflecting the fact that earlier
works assumed an outgoing Green's function even when waves were scattering ( reflecting
) back and forth between objects 1 and 2. Clearly a standing wave Green's function ought
to have been used in all derivations.

2.10. The N-body Formulation

It is convenient to use the following notation for the consideration of N-body
problem:41

Define =R T,with I,=0

Two —object scatter Ay =Y I,T

izf

Three - object scatters Aj = » I, I, T, ,
J=ikzi

4

N — object scatter A= Y I, 0,

ik,

where i represents object I. Here we intend that the A's relate to expressions for 2 or
more interactions. That means that the subscript » indicates that we intend for n-body
interactions and the superscript i indicates that it involves object i. The significance of the
A!’s s that it contains all n-body interactions with i , n at a time. We can, using the above
terms derive expressions for m (m >2) objects in a manner similar to the 2-body case.
Thus, we get from object i from signal g; relative to the interaction with i the following:

- v T o1, I 1 T,.
Q=T +TA+TA+TAL1 AJU AJA TALl J_l JZ

In general - for all possible orders of interactions - we derive an expansion for interactions
relative to i to be:
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. -l X 1 1 1 1 i
=T AT A+ T A —— - Ay-
Q=T+ T2 441 ZL—AJL—AJL—AJ [1_14;_[} o (65)

+all permutations

We have only included closed paths since there are opened paths that are of higher order
that connect object i with various orders of scattering with the signal exiting from object j.
To include opened paths we need only take the expression above and count the
interactions that it will have on all other objects in much the same way that we performed
the previous two-body case. This would lead to a sum of terms arising from the remaining
n-1 objects. The contribution to i from target j is clearly of the form:

Qi—lrji

If we sum over all such terms and add the component above we obtain for the total signal
at i to be:

n-1
U =42, +Z.Q"_11"],

izj

The total set of partial wave coefficients { f, } expanded about some reference point at k
is then the sum of all such terms and leads to:

fo =Y URa, (66)

Here the subscript k simply means that the origin is at some point r, in space while f and
a must be understoed in terms of column vectors. The individual components of f are then
used to expand in outgoing waves if one seeks the far field solution which must be
expanded relative to the origin r, . It is to be noted that although the method leads to the
inclusion of all permutations of the individual inverse operators, this ensures that the
composite T-matrix is symmetric even if we truncate to 2 or 3 ... up to n-1 interactions.
We then sum the above expressions for all n objects relative to what ever origin we
choose. Typically we would choose the geometric center of a bubble plume as the origin
for the aggregate bubble problem. Thus, we have outlined the derivation of a general
method for writing the T-matrix in terms of 2,3,4 etc. interchanges where we include all n-
body interactions. We may include as many interactions as we deem appropriate in our
many body scheme. Typically we may terminate sums to adjacent objects and we need
only employ Ap for small n's. For example, for two particle correlation's n=2, the
expressions are fairly simple. For bubbles we can limit the calculations using monostatic
terms and easily include two-particle correlation's for many problems of interest. Also we
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can extend the sums to integrals to simplify calculations for high density plumes. We will
not go beyond this stage in this article.

2.11. The Near Field Problem in a Waveguide

The T-matrix is developed in a spherical representation, it is a second rank tensor in
irreducible form, and thus only has meaning when operating on a vector also in a spherical
representation. Since it is in irreducible form it can be easily rotated once the simplest
form of T is devised which is one of its salient properties. On the other hand, the fact that
it requires the vector that it operates on to be in a spherical representation while having its
value for plane waves (which are easily expanded in a spherical representation) imposes
restrictions on the form of the guided wave. However, it is now possible to represent a
waveguide solution in a spherical representation of a fairly general form so that what
follows is quite easy to generalize. The plane wave solution may be written in a partial
wave representation via the Rayleigh series as follows:

plirkeosO) _ Z(zn +1)i"j, (kr)P, (cos(8)), (€7)

where 0 is the angle between k andr . For the more general representation one can use the
addition theorem for spherical harmonics to obtain the plane wave in coordinates relative
to a fixed Cartesian system which we must ultimately use. That expression is:

P, (cos(8)) = %Z £ Y. (6,0 m(6",0", (68)

where O is the angle between k£ and r, &',¢' are the spherical angles relative to the
Cartesian coordinates of k, &',¢" are the spherical angles relative to the Cartesian
coordinates of r, ¢, is the Neumann factor. Our interest at this point is in the guided

wave impinging on a bounded object. Here the incident wave that insonifies the object
for a stratified environment is of the form:

1
U, = >0, (7,2)0,(r )
n=t

ix,r

4

3
1/1(""

where ¢,(y,z)is the vertical eigenfunction with eigenvalue y, corresponding to the
vertical wave number for mode n, while zg and = are the values of vertical displacements

at the source and at observation points respectively, r is the distance in the horizontal
plane and x, is the horizontal wave number for mode n, 4 is the depth of the water

7 (69)

column and the relation between the wave number and the eigenvalues is k* = x> +y° .
In this formulation we include only propagating modes and assume that the origin of the
source is localized in space such that it may be approximated by a point source and that
we are sufficiently far from the source that evanescent modes can be ignored. This
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procedure is quite adequate for most environments. We will limit discussion to layered
fluid bottoms so that U, symbolizes the velocity potential. For an elastic bottom we
would have to formulate the problem using the displacement vector in order to satisfy the
boundary conditions at the fluid-elastic interface. It would be instructive at this point to
illustrate how to convert U, to a spherical representation for the case in which we
represent the environment by n isovelocity layers. Let us pick a particular layer for which
the submerged object resides. Then U, is of the form:

ix,r

. : : €
U, =—e ¢, sin(y z,)sin(y 2 70
0 ; L sin(y ,z, ) sin(y )\/K‘”r (70)

2d

where ¢, is the expansion coefficient. We want to take advantage of the Rayleigh
expansion of a plane wave so that we express the quantity:

sin(y, 2)e™” = {ei(k’,,n-y,,:) _ei(x,.r-r,,:)} /2i (71)

Fig. 2. Body coordinate system for object.
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> z

Fig. 3 Coordinate system of the object relative to the wave guide.
where the (x,y,2),(r,z), are illustrated in Fig. (2). The coordinates (x,y,z) for the T-matrix
must perforce be in the representation illustrated by Fig. (3), where Z' is along the axis of
symmetry of an axially symmetric object ( our choice of target ). We define «,_ such that

cos(e,.)=(y,z+x,r)! kr and cos(a, ) = (-y,z+x,r)/ kr and we have:
H ixpr ikreosa, tkreosa,_ .
sin(y ,z)e"™ = {e " —e - }/21. (72)

Thus, after use of the Rayleigh series and the above expression we have U, in the
following spherical representation:

LA S a J.(kr)
U, = e "Z:l:cn(z) (2n+D{P,(cosa,.) P,,(COSCZ,,+)}-———-K - (73)

oy

where we must use the spherical harmonic addition theorem Eq. (68) to obtain the most
general form of the expression. The above expression has been derived tacitly assuming
that the interaction between the guided wave and the submerged object occurs at a point.
In fact, the interaction is extended in space and we must allow for this in the final
development. The final form depends on the way we interface the object with the guided
wave. Let us assume we have derived the above expression to be valid at the origin of the
submerged object. Further, we wish to find the field at some vertical line or over some
surface with distance ry from the center of the object. This will be developed in the next

section. We now make use of the T-matrix for scattering of objects near an interface. It

takes the following form for only one impenetrable interface relative to the origin of the
object:
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Taay = R@T [1- 1,7 [R(=d) + T, R(d)]+ R(-d)T [1- Iy, I [(R(d) + I, JR(=d).
(74)

Here we used a similarity transformation to shift from the origin to the target reference.

Now, when we have the near field solution in a waveguide, we proceed to the next
step which involves coupling the near field solution into a waveguide. In the following
section we use Huygens principle to carry this out. It is obvious that once one has the
near field it is easy to use it as the starter field in any initial value problem by taking
advantage of a one-way solution of the wave equation. The most prominent example of
this is the parabolic equation (PE) approximation. One-way versions of the FFP and Full-
wave finite element Galerkin methods exist and these models are therefore suitable for
employing the near field approach in a straightforward manner. Further, it is possible to
project the near field solution onto a normal mode basis set by making use of
orthogonality as an approximate way to couple in the near field.

2.12. Huygens Principle and Coupling of the Near Field with a Waveguide

We outline the basis of a method useful to describe scattering from an object in a
waveguide 3943 We begin by allowing a guided wave to impinge on an object as it
traverses a given region. The object scatters the guided wave in some manner. We
determine the scattered field near the object via either a free field transition matrix or more
precise one derived for an object near a surface as described above. In order to use
Huygens’ principle we choose an imaginary surface circumscribing the submerged object.
The surface is arbitrary to the extent that it is smooth and its dimensions do not exceed the
boundaries of the wave guide and should be such that the largest dimension of the surface
is such that the highest angle mode does not interact with the boundary of the
circumscribed region. We next require the near field on the surface as well as its derivative
normal to the surface of the imaginary object. To obtain this we must make a
transformation from the coordinates of the wave guide to that of one relative to the axis
appropriate to the submerged object. Recalling that the mode angles o, were obtained

above relative to the horizontal ( and not the vertical as is usual in normal mode theory ),
we choose Py, to designate the angle that the mode makes with the axis of symmetry of the
spheroid in the horizontal plane. It is to be noted that the reference axis of the spheroid
and that of the wave guide differ. In particular, in order to exploit the axial symmetry of
the object we must choose the z axis in the object body reference along the its axis of
symmetry while we can choose x and y at our convenience ( so long as we maintain
orthogonality). In the wave guide z is in the downward direction while x and y are in the
horizontal plane. The coordinate scheme chosen is indicated in Fig. (3) where 6, and ¢,
are the angles for the particular mode n and the appropriate angles to be implemented for
the spherical harmonics. They are, in particular, the angles of the incident mode n relative
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to the symmetry axis of the submerged object and the angle that the plane generated by the
incident ray-mode n and the symmetry axis of the spheroid makes above ( below ) the
horizon respectively. They are obtained from:

tan(p,) = tan(a,) / sin(4,) (75a)
cos(d,) = cos(B,)cos(a,,), (75b)

where the surface is chosen at a suitable region circumscribing the object (suitably near the
object) with origin at the center of the object. The near field is then :

hy (i)
Jer

where the ¢'s are projection coefficients of the normal-mode functions onto the spherical
(partial wave) solutions and the plus (minus) signs mean that we must sum over both
angles o. This is the most general form of the scattered near field. We now employ
Huygens’ principle which uses a surface integral representation of the near field f{7,z)
namely:

f(r,9,¢)=ZCMTM(a AR CRRNS) AN N (76)

Us(r,z)= §{f(r c’G(r;r .7) -G(r,z,r', 2y ———= are, z)} (77)

Here we have expressed f in cylindrical coordinates. We showed how it is possible to
represent simple isovelocity waveguides in terms of sin-functions. We have developed a
general method of representing any waveguide solution in terms of a series of sin-
functions based on a generalized perturbation theory. This involves a double sum which
takes the form:

| R . . Pl
Uy=—2¢ C,sin(y 2. )sin(y 2)— 78
0=3g¢" Lo o (79)
We require the Green's function which takes the form:
G(r,r,)=—e"™" ZC sin{y ,z,)sin(y , )< i (79)

n,m=1 ,Ucnr

where y, and x, are the vertical expansion eigenvaluses and the horizontal eigenvalues,

respectively. If we insert Eq. (78) and Eq. (79) into Eq. (77), this leads to an expression
far from the object of the form:
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iKpl

€

Nra (80)

N
U,(r,2) =2 a,0,()
n=1

where
é) eix,,r eix,,r 6»;
a, —f{f(r,e,mg((pn(a M)—wn@) M;f(r,e,qs)}ds, ®1)

N
where ¢,(z) = Zcm sin(y ,z) is the vertical wave function in its expansion form.

m=1

Here the integral in Eq. (81) is over some prescribed surface S suitable for the problem.

Note that Eq. (80) is in the form of a normal-mode solution, and therefore the
scattered wave forms a guided wave suitably far from the object, as one would expect.
This solution is continuous throughout space and satisfies the boundary conditions of the
confined environment that forms the guided wave. In the next sections we depart from the
mathematical formulations of scattering and the numerical strategy for solution. We focus
on some useful theoretical considerations that will help us to understand the actual
physical phenomena related either to data or numerical results.

3. Notions Useful in the Interpretation of Scattering Events

In this section we develop three topics that are helpful in understanding numerical
results in terms of physical considerations. One of the topics involves the concept of an
acoustical background for elastic shells. At this point it is worth noting the origin of the
background concept. In the early period of nuclear scattering theory, it became apparent
that many low energy ( below particle threshold ) scattering processes could be
separated into two events: one associated with few degrees of freedom and one
associated with collective motion, or with many degrees of freedom. Each of the
mechanisms could be treated separately and added coherently to describe a scattering
event. Such notions found their way into the description of scattering from submerged
elastic structures; namely, that one could divide the scattering process into two distinct
phenomena, namely that associated with the non-resonances contributions (few degrees
of freedom involved) and that associated with resonances** ( many degrees of freedom ).
In particular, it was observed that scattering from elastic solids could be decomposed into
rigid scattering and resonance scattering in the lower frequency region. This is similar to
solving an inhomogenious second order differential equation in which the homogeneous
solution corresponds to the resonance or eigenvalue solution while the particular solution
relates to the background solution. In the higher frequency region one must include
internal reflections of waves in the solid. There is a difference, however, between the
nuclear and elastic solid models. For elastic solids the total response is determined; from
that the rigid contribution is subtracted to obtain the elastic response. In the nuclear case,
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however, the "direct" and "resonance" components are added to determine the total
response. In contrast with the nuclear case in which resonances usually decrease with
increasing energy, for the acoustic case the number of resonances proliferate with
increasing frequency. This proliferation causes overlap between resonances to increase
and renders the subtraction of a rigid background little more than useless in isolating
resonances. However, in the lower frequency region where few resonances are present,
this technique has proven quite useful for resonance isolation and classification. The bulk
of the research in this topic has been done by H. Uberall and his students, 10.43

One of the most important developments in the study of elastic resonances pertains
to an understanding of the physical mechanism responsible for their generation. In a series
of studies at the Catholic University of America and the Naval Research Laboratory, it
was determined that for solid elastic targets such as spheres and cylinders the resonances
were circumferential in nature and (due to phase matching conditions on the object
surface) corresponded to standing waves on the surface of the object. Thus, the combined
determination that the resonances were circumferential in nature and could be treated as a
separate component of the total scattering response in the seminal work of Uberall, Flax
and Dragonette!® constitutes one of the major achievements in the understanding and
interpretation of resonances on elastic targets.

3.1. Discussion of Resonances

Resonances are excited by incident acoustical signals as they impinge on elastic bodies
of rotation as well as elastic bars. They are governed by the fact that they occur at discrete
values of frequency and, when they occur, a characteristic event takes place. This event
can be complicated and difficult to distinguish from other physical mechanisms unrelated
to resonances but they are usually distinguishable and can be related to a particular
process. The recent theoretical and numerical developments described here in additional to
other works have enabled researchers to perform calculations and to understand the nature
of resonances. Our interest at this point is to describe particularly pronounced and
distinguishable resonances that manifest themselves in either the frequency or time
domain. In the literature there have been three classes of resonances usually studied.
Investigations of Lamb resonances due to symmetric and antisymmetric waves (labeled Sj

and 4; for i=0,1,2,...) for shells have been vigorously investigated; for elastic solids,

Rayleigh resonances (labeled as an ordered pair of integers (n,1) with n=2,3,4..) and
whispering gallery resonances (labeled as an ordered pair of integers (n,m) with n=0,1,2...
and m=23,4...) have also been extensively studied. Hére n corresponds to the mode
number of the resonance viewed as a surface standing wave with n=0 corresponding to a
breathing mode. These resonances are not particularly pronounced in magnitude or
signature (the characteristic shape of the resonance). In this work we wish to feature
classes of resonances that are somewhat more pronounced in magnitude or pattern either
in the time or frequency domains. We give a brief discussion of these phenomena including
effects peculiar to spheroids such as orthogonal classes of resonances recently discussed in

the literature 46,47 However, emphasis will be placed on the following: 1) resonances at
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coincident frequency (the frequency at which the speed of the flexural Lamb wave equals
the speed of sound in the fluid) excited on submerged elastic shells; 2) "resonances” due
to high frequency incident plane waves on a submerged elastic shell due to an internal
reflection effects associated with the first symmetric Lamb mode, and 3) flexural or
bending resonances excited by oblique incident waves on a spheroid. It will be seen that
each of these classes of resonances are rather large, have characteristic signatures and
have locations predictable using simplified expressions. In the time domain case a recently
advanced methodology arising from a time-domain resonance scattering theory is used to
discuss the existence of strong pseudo-Stoneley resonances?8-50 excited on elastic shells
that give rise to a strong beat pattern in the time-domain resonance signature. The time
domain methodology is outlined below. However, since we will have occasion to use the
correct acoustical background for an elastic shell this recent development3!-33 will be
outline in the next section.

The second topic involves interpretations of some types of resonances excited from
the interaction of acoustical signals from elastic objects based on the standing wave
picture of resonances due to H. Uberall.

3.2. The Acoustic Background for Submerged Elastic Shells

The background concept for elastic targets in which the total elastic response is
viewed as a superposition of a resonance response and a non-resonant acoustical
background ( rigid for solid elastic targets, etc. ) has proven quite successful as the
"correct” background for some elastic targets submerged in water. The use of a rigid
background for elastic solids is no more than an anzatz comparable to assuming that the
object is massive compared to the ambient fluid while the soft background assumption for
thin shells appears as a pressure release scatterer in the absence of a resonance. In fact
these assumptions do not follow from general physical principles but are under certain
conditions physically reasonable and not as some authors imply a’ priori true. In fact, any
background concept ought to follow or be derivable from available physical principles. In
addition, some authors imply that the rigid background is the correct one for shells at high
frequency and that the soft one is correct at suitably low frequencies and that any
background that works at intermediate frequencies is an intermediate background, or a
hybrid background36. These assumptions are erroneous. Any background derivation from
general physical principles can be the correct or adequate background over the entire
frequency range and one only shows that in limiting cases they may reduce in
approximation to the rigid or soft results thus showing why the rigid or soft backgrounds
are adequate at certain frequencies and not for substantiation of the derived background.
Recent papers focusing on the background concept for shells have met with success in
isolating resonance phenomena. In this section a general principle is discussed to describe
acoustical scattering from elastic targets in the absence of resonances. Several of these
methods follow from the same underlying principal and can be generalized to more
complex targets such as fluid filled objects and spheroidal shells. We develop the
acoustical background from a general concept in what follows.
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3.3. Green's Functions and Acoustical Backgrounds

The Greens function for a spherical radiator on the surface of the sphere was
developed by Junger and Feit in partial wave form with radial dependence R and has the
form: 5+
h (kR)

G(r,a)) = k(ll: iga‘m %(Zn —1)cos(g - @, )P (cos) P (cos8,) W (82)

where A, is an outgoing spherical Hankel function of order n, & is the wave number in the
ambient fluid and a is the diameter of the sphere. This expression can then be used to
obtain the pressure field by integrating the Green's function over the surface which with
known acceleration distribution leads to an expression which is once again proportional to
the above expression. Thus, the pressure from a spherical radiator has the complex term
given by expression (82). Since we know that the component of a pressure which is real is
understood to be inertial and that which is imaginary is understood to be resistive it can be
determined that Eq. (82) can be written in the form of a complex impedance Z,;, where we
have:

(R
z, =i*——~=r1 —iam,
" hy(ka) ;
where 7, =Rez, and m,=Imz,

where r, is the resistivity and m, is the inertial term. From dimensionallity, the term m,, is
referred to as the entrained mass per unit volume. This is not merely terminology. In any
conserving principles that incorporate inertial effects the entrained mass m, must be
included. Note that entrained mass is dependent on the modal number and becomes less
significant with increasing mode number n. There is an analogy between entrained mass in
acoustics and induced mass in electromagnetism which is known to play a part in special
relativity. Further, the entrained mass for the monopole term is used in theories as the
mass factor for bubbles. Thus in the development of an acoustical background by Werby
the entrained mass was used as part of a conserving factor in the development of the
acoustical background for submerged shells.53-57 We outline that development below and
apply a new entrained mass for scatterers that leads to an improved version of the
acoustical background. The basis of the new idea of entrained mass for a spherical
scatterer is obtained from a development of the Green's function for the spherical
scattering problem with known velocity distribution in analogy with the radiator problem.
Without going into detail the entrained mass following arguments similar to Junger and
Feit7 is:

m, =kaRe(z,) (83)

It is worth pointing out that the reason one would impose entrained mass results from
approximate forms of a scatterer. In the event, that a real mass and material properties are
used, such as the exact elastodynamic equations, then entrained mass is already included in
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calculation, so are the resonances. That leads to the following ideas. If we could include
all the inertial effects without including the part that caused the object to resonate, then it
would also be possible to derive a good background by imposing those boundary
conditions. That, in fact, has been done by at least two authors who approximated a fluid
shell with a fluid density the same as the material and the compression velocity as the same
as the elastic material. The problem with such a derivation is that it is possible to induce
“other" kinds of resonances by including non-elastic parameters. In fact, fluid shells can be
shown to produce large monopole resonances ( breathing modes ) at low frequency, as
well as resonances similar to symmetric Lamb modes which take effect, when the wave
length of the material is on the order of the shell thickness. Thus, there are two regions
where this method breaks down, namely at very low wave numbers, where the breathing
mode is important and for wave numbers above which the corresponding wavelength in
the materiel is equal to or less than the shell thickness, which is a limitation of the high
frequency end. Nonetheless, we examine this technique and we will use it for cases in
which  the new definition for entrained mass is difficult to impose such as for non-
spherical and fluid filled targets. In general the partial wave expansion for any background
takes the form:

where S, = Ah,(ka)—h/(ka), Reh = j,, and 4, is to be determined from physical
considerations. Here are several forms that have been derived for 4;:

A, = 3kam, | (1+(ka)*)m,, (34)
from a pulsating monopole; 53

A, =3m Im(z,)/ m, (85)
from the entrained mass of a spherical radiator; 54,55

A4, =3mkaRe(z;)/ m,} (86)

from the entrained mass of a scatterer;8 4, is either 0 or infinite for rigid or soft
backgrounds. To obtain the fluid background for very thin shells, the results can be shown
to take the form:
Aa
4 =22 87)
pwa
where this expression includes the shell thickness ratio 42/a and the density of the shell to
that of water in obvious notation. The ratios of masses are the ratios of the mass of water
to the true mass of the shell in the above expressions.
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3.4. Conservation Principles and Acoustic Backgrounds for Elastic Targets

We showed earlier33-35 that the acoustical background for an elastic shell could be
terminated by taking into account the inertial component of the radiation loading of a
spherical shell . The inertial component is:

b= _ia)zmnwn(—l)n ’
n=0Q

where m, is the entrained mass per unit area for mode n, « is the angular frequency, and
W, is an expansion coefficient related to the displacement potential. If we excite the
sphere by an incident monochromatic plane wave, then we have:

w, = -iofa,j,(ka) +b,h,(ka)},

where j, is a regular Bessel function, /,, is the outgoing Hankel function, and 4y, is an

unknown coefficient which corresponds to the partial wave scattering amplitude which we
seek and ay, is the plane wave expansion coefficient. The total pressure per unit area in the

fluid due to the incident plane wave is:

po= 2205 (k) + b () (-1

n=0
The particle velocity at the surface of the object is:

i op

V=——

pwdr

Here, ¢ is the speed of sound in water. The particle acceleration « is the time derivative of
v which leads to:

93 {agiha) + bR )17

n=0

a=-

The force at the surface of the object due to the incident plane wave is, then, simply the
product of the particle acceleration and the mass of the spherical shell. The mass of the

spherical shell is 47tps[a3-(a-h)3 '] / 3 . Here h/a is the ratio of the shell thickness to the
shell radius. The force due to the total fluid loading at the object surface is equal to the

total inertial fluid loading times the surface area 41a? of the sphere. Here, a is the radius
of the spherical shell and pq is the density of the shell material. We equate these two forces

to obtain the unknown coefficient b, which leads to the following expression:
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; e 3
) - Aljl(ka) Jl(ka) AI - 3 :0: 5 Irﬂ(zn). (88)
A, (ka) ~ hj(ka) pla’=(@-h’]
The scattered field for the new background is obtained by using the bp's as the partial
wave scattering amplitudes in a normal mode series. The by's define the new background
and by subtracting this quaintly from the elastic response, we obtain the residual response
that reflects mainly the pure resonance contribution. It is easy to show that the imaginary
part of the enclosed brackets in Eq. (88) is approximately equal to ka/(I+ka?) so that for
large ka, b= -f'y(ka) / h'y(ka) which corresponds to a rigid scatterer and for both a very

thin shell and at low frequency, b,,= -j,(ka) / hy(ka) which corresponds to a soft scatterer.

We mean here equal to in only an approximate sense. Thus, we see that the background
represented by Eq.(88) has the appropriate limits for thin shells at low frequencies (soft)
as well as the appropriate limits for high frequencies (rigid). That can also be shown to be
that case for the new results from the entrained mass defined by Eq. (86).

3.5. The T-Matrix Background for an Elastic Shell

The T-matrix for an elastic thin shell can easily be derived from conservation of a thin
fluid shell of uniform thickness with an overall mass consistent with the actual density of
the shell using the above conservation principle for mass and then by taking the limit as the
shell becomes very thin. This causes the internal wave numbers to cancel leaving only the
density ratio and shell thickness. This is a desirable feature. Without going into the
mathematical details we list the results below.57 Indeed, the Q-matrix (the mode coupling
analog for non-spherical objects) appears as a linear combination of a rigid scatterer and a
soft scatterer with inertial terms being the coupling factor. This background has been
tested and works well, and better than the previously used soft background:&0

-

T=-ReQQ™ Om = §{Re v, shadn Rey, }ds- (89)
p.a o

w

This expression will not work well for very low and very high kL/2's, two regions for
which the T-matrix is of little interest and, thus, this background is quite adequate for
elastic shell backgrounds.
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3.6. Standing Wave Interpretation of Resonances Excited at the Fluid- elastic Interface

Many resonances can be explained in terms of surface waves traveling at a fluid-elastic
interface that at discrete frequencies form standing waves. These standing waves then
radiate into the ambient fluid and add coherently with the specular return creating
resonance patterns.5! The rationale behind the standing-wave argument for determining
resonances is based on the fact that for special cases one can equate the measure P
around the perimeter of the object (in the direction of the circumnavigating field) with
either a half-integral or an integral number of wavelengths, depending on whether the
background is close to an ideal rigid or an ideal pressure release background. For the case
(here) for elastic solids we are close to a rigid background and one has:

p=A,(n+1/2) (90)
wheren=2,3,4,. ... By conservation of frequency one can show that:
v
A, =4,—< . 91
= A ©D

Since kL/2 = 27L/Ay , this leads to the standing wave condition for a resonance:

[E} = Lr{2o}{n+1/2}. 92)
2 Res vw

For objects having an aspect ratio less than 2.0, the elliptical integral can be approximated
by a closed expression for end-on incidence. This leads to the more convenient expression:

[%} =~/57L5{;vi}{n+1/2}/d(L/D)z+1~ 3)

We shall use these expressions to interpret the results that follow. The appropriate
expression for the resonance locations of a sphere is:

kL

[7L” = {f‘—} (n+1/2}. (94)

w

For spheroids the peripheral distance P around the spheroid is obtained from the elliptical
integral:

p= 2L§,/(1 - K% sin® gdg (95)
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where x2=1-(L/D)2, and ¢ ranges from O to 2x. By setting the radius of the sphere to be

L/2, the resonance locations for the spheroid relative to the spherical case is obtained via
ratios from expressions (92) and (93) with (94). It is:

2] st s g, ©o)

where v/ is the phase velocity of the resonance of the sphere. In general, v, is a function
of shape and material properties. For the cases presented here we can assume that
v! /v, =1 and therefore the resonance locations are obtained for the spheroids directly
from the spherical cases. We note that kL/2 must increase in value (if it is fairly constant)
as L/D increases since the integrand in the denominator of Eq. (96) decreases for
increasing aspect ratio. This explains why there is an upward shift in £L/2 with increasing
aspect ratio. Uberall, et al., have pointed out that the Rayleigh wave is dispersive and a
function of the curvature of the target (larger curvature corresponds to a larger value of
phase velocity), but that with increasing frequency, the phase velocity approaches that of a
half space. Thus, since the phase velocity is a function of curvature one must employ a
phase matchirg condition at least for higher aspect ratio targets. This requires the use of
integral expressions and some assumptions regarding the variation of the phase velocity
with curvature. The work of Uberall62 has proven to be quite a good tool for predicting
the resonance locations. The following derivation is due in part to Uberall64,65.66,

The phase matching condition for a Rayleigh resonance about the largest meridian
of a spheroid is

J%:nH/Z o7

’

where A is the local Rayleigh wavelength. Here we have:

ds=2LJ1-x? cos* (#)dp, (98)

where L is the semi-major axis and D is the semi-minor axis. We wish to find what 4.,

is. We know that the Rayleigh resonance is dispersive on a curved surface and thus that
both A, and ¢, vary with frequency (and thus with kL/2). We know that

/?'Resf = cRc: (99)
and that A,f=c,, (100)

where ¢, is the speed of sound in water. We can thus obtain
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c ka
= =C — 101
/ A Y 2m (101)

w

and finally;

c ka
Age, = () (=—)" 102
Res ( Cw )(2m) ( )

We note that ¢, is mainly affected by the curvature of the scatterer's surface, but the
relative size of scatterer to wavelength is also important at low frequencies. Since a
sphere has fixed curvature, ¢, is constant for a given frequency, while for a spheroid
both the curvature and ¢,,, will vary along the surface of the object.

A good guess for the value of ¢, on a spheroid is to evaluate the radius of curvature
R along a meridian of the spheroid and use the corresponding value for a sphere with size
parameter kR. For a spheroid the radius of curvature as a function of angle is

{a® cos® p+b7 sin(4)}*"

R($)= =

(103)

Thus, we can extract the value of c,_, at each point on the surface of the spheroid from

the corresponding value on a sphere. By interpolation we can obtain the values all along
the spheroid except for very small values of the corresponding size parameter which can
not be extracted from the spherical solid for low ka's. The final expression is then:

G mocamm P

[E] _w(n+1/2)
2 Res 2

or

(105)

For a fixed n we can vary & on the left until it equals the fixed value on the right hand side
at which point we obtain a resonance. Results obtained by this method agree well with
extended boundary condition results. However, we will not include Uberall’s improvement
to the present analysis. It was shown that broadside resonances for spheroids can be
obtained from the simple expression

78 LYV,
[71{” = (BJ(FJ(II+ 1/2) | (106)

w
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Here, we may use the phase velocity for the spherical case in place of V. Thus with
simple expressions one can predict resonance locations for both end-on and broadside
resonances. It was also shown3%,59 that only two degrees of freedom were apparent for
resonances of solid spheroids, namely those due to standing waves traveling broadside and
those along the axis of symmetry so that incident fields at oblique angles excite an a
mixture of resonances from the two vibrational modes. This means that Egs. (96) and
(106) can predict the resonance locations for all incident angles with the exception of an
oblique incident or broadside resonance at low kL/2 values 80 It has been shown that those
resonances are related to bending or flexural modes which are also predictable using

Timoshenko theory for a finite circular cylinder63:66 (which approximates a spheroid) as
follows.

3.7. The Bending Resonances Excited by Oblique Incident Sound Waves

We can view the spheroid as a bar of variable radius. The condition for resonance is
that the flexural wave that has made a complete circuit around the periphery of the
spheroid is in phase with the wave being generated. This is the well known condition for
standing waves in any kind of linear resonator. Let the phase shift at a fixed point during a
peripheral travel time T be:

@, = af, (107)
then resonance will occur, when
@, =2m— (48, - 43,), (108)

where n>1, @is the angular frequency, and the last two terms on the right are the phase
shifts for each of the ends. The round trip time T is

T= 2j£ (109)
0 vP 2
where v, is the phase velocity of the wave along the scatterer. The phase shift is

frequency dependent and at the free ends has the value:

48, + 48, :—tan'l(%) (110)
where
S§=(+6) I (111)
202"

Here ¢ is the entrained mass and
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5 3
IF'=—(+-v 112
S0+ (112)
where v is the Poisson,
=2 (113)
K b
where x is the radius of gyration,
¢ = r (114)
P

Y is the Young modules and p is the bar density. To obtain a phase velocity we use the
Timoshenko equation for a uniform rod

? & , & alx® &
v L (Fr o) LY LSy 115
ﬁtzw ax 0,,2451/ (I+a) é’zz&ztw ¢ o é‘t‘w (115)

where a is the coefficient of relative rotary inertia (=1 for a uniform bar), and ¥ is the
flexural displacement. Here we are ignoring the entrained mass . The generic solution is

y = 4" (116)
which by substitution in Eq. (115) yields

It

¢

o+l - (C+ D)o +

®*=0 (117)

Since k& =v, we can use the above expression to find @ as a function of v,. The phase
k]

matching condition is then determined by

4[-IC—L—JVWJ.£= 2m+tan” § (118)

2 sV,

The expression can be reduced to the following form for the lower frequency case:61.62;

[’kﬁ] -5 2D (19)
2 Jaes 8 A +\A 43I (n-1)" /8

where 4, designates the aspect ratio and T is given by Eq. (112).
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3.8.  Time Domain Resonance Scattering Theory (RST)

We present here a time-domain version of the frequency domain theory.63-65The
partial wave series that emerges from normal mode theory for separable geometries can be
represented in distinct partial waves or modes. It has been shown that a representation due
to a distinct mode { n } can be written in the Breit-Wigner form.6-10 This observation was
made first by Uberall who taking advantage of his experience as a Theoretical Nuclear
Physics, recognized the similarity between Quantum Resonance phenomena and that due
to resonances for acoustical scattering from submerged bounded objects. Elastic/Inelastic
scattering at the quantum level is composed of the so called direct or shape elastic term
and the resonance terms which add coherently. Note that terminology in Nuclear Physics
uses the term elastic to mean that no energy is lost in the process which means that
resonance effects are not excited. Inelastic contributions excite resonances which in the
nuclear process result in energy loss. It is well known that shape elastic scattering or
geometrical scattering varies slowly with frequency while the resonance terms vary rapidly
with small changes in frequency. Often there is a relative phase change of 180-degrees or
360-degrees yielding a characteristic signature for certain resonances. This was recognized
by Uberall as also happening in much the some way in acoustic scattering and has been
particularly nicely discussed in a thesis by Uberall's student L. Dragenette66 The
analogue of nuclear shape elastic scattering was recognized by Flax, Uberall and
Dragonette to correspond to rigid scattering for elastic solids.6-10 Uberall and his
colleagues referred to this "geometric" scattering as "background" scattering which is
parlance often used in Nuclear Physics. Uberall and his students also employed the rigid
background effectively for thick elastic shells.67 The general background for elastic shells
is to be presented in this work but the essential features of the Uberall approach is retained
there too. It must be mentioned that both L. Flax and L. Dragonette also played
enormously important roles in the formulation of RST. The combined effort of the Naval
Research Laboratory and the Catholic University were crucial in this development. A
special session in the Spring 1994 American Acoustical Society meeting organized by
Ralph Goodman and H. Uberall is a testimony to the significance of the contributions of L.
Flax for his contribution in this area.”3-75 Uberall has been generous in disseminating the
theory for a variety of targets with several students and colleagues since its formation. 6-
The partial wave term that we are interested in here is as follows:

1
=

2 L. ST e
/(6 == ———2—i——+e"" sing) (120)
x5l

lf " is the resonance half-

where y’ =ka determines the n-th resonance frequency, 51,

width, and
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Here, we have absorbed the 2n + 1 factor into the expression. The (1) or (2) superscript
over the h’s indicates Hankel functions of the first or second kind. This form is of
interest, because it shows that one can represent a modal contribution in terms of an
acoustical background as well as the resonance contribution. It is to be noted that this
form of a resonance occurs in many branches of physics and engineering. The above
representation presents the resonances in such a manner that the resonance component
(the first term in the brackets) is clearly separate from the background part (the second
term). Further, it shows explicitly the half-width as well as the frequency of the
resonances. The form of Eq. (120) will also prove useful since we will use the residue
theory to Fourier transform this equation to the time domain.

We consider two incident waveforms; the first one is a delta function in time which gives
a continuous (cw) frequency spectrum, and the second one is a pulse which is sufficiently
localized in time that we will be able to isolate individual events in the scattered signal.
Specifically we use a Gaussian weighted cos-form with the carrier frequency @g

p(t) = cos(aJot)e"’:‘2 = cos(kas)e""z‘:

where s is a reduced time variable, s = ¢f /a, k is the incident wavenumber and
o' =calc. Here we refer to @, as the carrier frequency. The spectral distributions of
these incident waveforms are either 1 or :

w 2402
: ka = |2 —(ka-kay) /4
g (ka) ,’ Y

where it is assumed that ka is not small. The above form allows us to smooth out the edge
effects that would produce undesirable effects due to sharp cut-off of the integral by
adjusting ¢'. The scattered signal in the time domain, when we fold the pulse form into
the integral, is?6

P = 5 [ Fhadg, () (ha),

in which the f(ka) is the Fourier transform of the expression in Eq. (120), namely the real
part of the integral on the left is equal to the right side of Eq. (120):

1
© 51—: ) _l;[’

Re [ —2———e"dy ~ I7sin(y,5)e (121)
=X~ Xn +Er

It is a2 good assumption - due to phase averaging effect in the non-resonance region-to
assume that the only contributions in Eq. (121) occur at resonances and thus one arrives at
the expression,
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n=N r’
ORI
n=M

sin(z,5)e™"", (122)

where the sum is over a nest of resonances.
If we are in a frequency region, where the resonance widths and spacings are
approximately uniform, then for several sets of n we have:

ra=r and Ko — 20 =47
These conditions are met in many cases including the lowest order symmetric resonance
for thin shells and for pseudo-Stoneley resonances for submerged elastic shells. We will
discuss both examples below.
Then, by summing 2M contributions from the nest of resonances, we obtain from Eq.
(122) and the conditions of uniform resonance spacing and half-widths and through some
trigonometric manipulation the important expression

M
>

p(s)=2m2" sin(l;s)(cos(A,z,',s/ 2)) (123)

which shows clearly the prominence of the "carrier frequency" and the existence of an
"envelope frequency"”, Ay_ , as well as the exponential damping factor which is known to
be related to the half-width. In this derivation we required that M be an integer but the
expression still holds for half-integers. We can summarize the results suggested by Eq.
(123) as follows.

(i) The half-width is associated with the decay of the response in the time domain
solution: the response decreases exponentially with increasing value of the half-width. This
is not altogether unexpected since narrow resonances are associated with long ringing
times and is analogous to well defined energies being associated with long half-lives in
quantum physics cases.

(ii) The larger the number of adjacent resonances (2M) sensed, the more sharply
defined the return pulse or envelope function (the beats) and the more enhanced the return
signal. Under appropriate conditions we can get the group velocity of a specific type of
resonance.

(iii) The larger the carrier frequency the more oscillatory the signal is within the
envelop.

(iv) If several adjacent resonances sensed by a signal are different in character in
the region of the carrier frequency, then it becomes difficult to interpret results in terms of
a group velocity associated with a particular resonance type. Attempts at such
interpretations could lead to erroneous results. For example, if one senses two resonances,
one a Rayleigh resonance and one a whispering gallery resonance, the extraction of a group
velocity associated with a specific resonance type based on some perceived beat pattern
would lead to error.
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4. Application and Interpretation of Physical Results

We divide this section into the following parts. First, we treat impenetrable objects
(rigid and soft objects) for spheroids and for cylinders with hemispherical end-caps. We
then examine scattering from submerged elastic spheroids with a focus on the mechanism
responsible for resonances, including bending or flexing resonances peculiar to elongated
targets. We explore our knowledge of resonances as a tool to extract the material
characterization of elastic solids. We then examine scattering from elastic shells which
include some newly investigated resonance patterns due in one case to water borne waves
and in the other to the importance of the first order symmetric Lamb mode S; which
accounts for very large resonances from elastic shells. Some features of resonance
scattering in the time domain are explored and finally we close this article with a section
on scattering from objects in a wave guide.

4.1. Scattering from Rigid and Soft Targets

There are two classes of targets for impenetrable problems, i.e., soft and hard scatterers.
Impenetrable acoustic targets do not support body resonances; therefore we examine
acoustic characteristics appropriate for non-resonating objects. This kind of analysis is also
useful for the high frequency limit for which resonances are not as distinct and geometrical
features prove more useful as a remote sensing tool. The quantities are bistatic and
monostatic angular distributions. Bistatic angular distributions correspond to
measurements of the scattered field at any point in space for some incident acoustic field
fixed relative to some source-object orientation illustrated in Fig.(4).
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Fig. 4. Scheme of bistatic angular distributions.
Angular distributions thus depend on target geometry and can be useful in determining
features such as target characteristics associated with symmetry and elongation. In
particular, we can observed reflection, diffraction, and the generalized Snell's law behavior
as curved-surface analogs for the plane-layered case. In Fig. (5) we examine a rigid
spheroid of aspect ratio (ratio of length-to-width) of 15:1. The order of the plots
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corresponds to: (a) - scattering from the object for the incident field along the axis of
symmetry (end-on), (b) - scattering at 309, (c) - at 60° and (d) - at 900 relative to the
symmetry axis (broadside). The values of the incident acoustic field frequency are
expressed using the dimensionless quantity kL/2, where L is the object length and k the
total wave number (k=2 /X ). The value of kL/2 in Fig. (5) is 120, which implies that
the object is about 40 wavelengths long and thus in the intermediate frequency region
where neither low nor high frequency approximations apply. In all figures frequency is
sufficiently high that wave diffraction effects are significant in the forward scattering
direction. Perhaps the most interesting feature of the four plots, Fig.’s (5a)-(5d),
corresponds to a reflection at the (fairly flat) side of the object for scattering angles of 300
and 600.

Fig. 5. Bistatic angular distributions from rigid spheroids.

This reflection can only occur for very elongated objects that approach flat surfaces, so
that the reflected angle is almost the same as the incident angle (relative to a straight line
through the axis of symmetry). We next consider the same scattering problem for sound-
soft objects. Fig.’s (6a)-(6d) illustrate the response from a spheroid of 15:1 aspect ratio
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and a kL/2 of 15. In terms of directionality and reflection, these angular response patterns
are similar to those in the previous (rigid) case. The scattered field tends toward the
forward direction and the reflected angles (relative to the axis of symmetry) coincide with
the incident acoustic field. However, scattered fields are now more highly focused, even at
the lower frequency value considered. This latter effect is due to the phase-change at the
object surface (r radians). We see the same effect (as for the rigid case) in (b) and (c) for
surface reflections at angles equal to the incident value relative to the axis of symmetry
(the generalized Snell's law). Fig. (7) illustrates the scheme of monostatic angular
distributions. Fig. (8) consists of plots of the monostatic angular distributions for rigid and
soft spheroids and cylinders with hemispherical end-caps. The top three figures from left
to right describe scattering from targets with aspect ratios of 24 for a kI./2 of 40 for rigid
and soft spheroids and a cylinder with hemispherical end-caps. The three patterns differ
according to target. Rigid targets present more pronounced diffraction patterns than soft
scatterers while the rigid cylinders have stronger return signals end-on due to their larger
relative cross sections. The minima may be viewed as the consequence of the destructive
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Fig. 6. Bistatic angular distributions trom sott spheroids.
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Fig. 7. Scheme of monostatic angular distributions.

interference between waves reflected from opposite ends of the elongated objects. The
waves reflected from the regions away from the edges have a less than dramatic effect on
interference and are ignored in this simple derivation. Because the objects are both long
and narrow with respect to the incident wavelength, it can be effectively represented as a
straight line to allow derivation of the interference locations 8p and N the number of nulls

by the expressions below:

6, = sin'l[——” (n ZL” 2)} (124)
N= int{%— 1/2J (125)

It is interesting to note that these equations predict quite accurately the location of nulls
from EBC results. In Fig. (8) the upper middle plot illustrates the monostatic response for
the acoustically soft target. Here the interference nulls are not a pronounced feature in
contrast to the rigid case, due to the focusing effect of acoustically soft boundary
conditions. The second and third rows of plots illustrate monostatic scattering from rigid
spheroids for targets of aspect ratios of 15 ( middle row ) and 7.5 ( bottom row ) for kL/2
from left to right of 30, 60, and 120. Note that the geometric patterns are more
pronounced as frequency is increased. We complete the study of scattering from
impenetrable targets by examining back scattered and forward scattered signals which are
shown in Figs. (9) and (10). There are two competing mechanisms in the back scatter
case. One arises from specular scattering (geometrical) and the other arises from the
creeping or Franz waves which are circumferentially diffracted by the surface of the
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object. The consequence of this is a coherent effect in which the two waves add
constructively at some point leading to 2 maximum value when they are in phase and
destructively leading to a minimum value when they are out of phase. This can be seen in
Fig. (9) for spheroids of aspect ratio: (a)l:1 (b)2:1 (c) 4:1 (d) 8:1 and (e) 16:1. The
increased circumferential diffraction with increasing aspect ratio is due to the greater
grazing angular region for higher aspect ratio targets which results in the stronger
creeping waves. Fig. (10) illustrates the forward scattered signals for the same five targets.
In those cases the forward signals grow with increasing frequency while the back scattered
returns simply asymptote to the geometrical cross sections. The slope of the forward
scattered signals can be shown to be proportional to the square of the aspect ratio's of the
targets for end-on scattering as one approaches higher frequencies.

4.2. Applications to Elastic Targets

In this section we examine phenomena observed often when scattering from elastic
objects with smooth boundary conditions surrounded by a fluid; namely, body resonances.
It is also possible to have resonances from air inclusions in a fluid; but we will not examine
those targets here. The resonances examined for the elastic solid case originate from the
curved-surface equivalents of seismic interface waves of pseudo-Rayleigh or Scholte type,
propagating circumferentially to form standing waves on a bounded object or from
bending modes when scattering at oblique angles. These types of resonances occur at
discrete values of kL/2 and manifest themselves in a characteristic manner. For elongated
elastic solids, three distinct resonance types occur. The first kind (at lower frequencies)
are due to leaky Rayleigh type waves and have been shown to be related to both target
geometry and material parameters (notably shear modules and density). Resonances can,
in this case, best be observed by examining the back scattered echo amplitude and phase
response plotted as a function of kL/2, often referred to in acoustic scattering literature as
a form function. Uberall et. al.*® determined that for spherical targets, resonances excited
on elastic solids are connected to Rayleigh waves in a half-space -the phase velocities were
close to one another- and he reasoned that the resonances corresponded to standing waves
which at certain frequencies (half-integral wave lengths about the perimeter) arise from
the waves traveling on the surface which at appropriate frequencies form standing waves
that radiate energy into the water and add coherently with the specular waves. We
illustrate these resonances for WC spheres. The elastic response is illustrated in Fig. (11)
and in Fig. (12) we illustrate the residual obtained from subtracting the rigid from the
elastic response. This later contribution mainly reflects the resonance component of the
differential cross-section. We label the figures in obvious fashion according to the
terminology of Rayleigh resonances (n,1), where n>1, and wispering gallery resonances
(n,m) where n canbe 0 or greater and m is greater than 1. The assumption was made
by Uberall that the higher harmonic resonances correspond to whispering gallery (WG)
waves that travel along the inner surface of the sphere in the elastic material. That picture
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Fig. 8. Monostatic angular distributions.
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is a a cleaver analogy to the Rayleigh wave arguement for the principle type of resonance.
Although this terminology is still observed for this class of resonances and is likely a valid
"metaphor” at the higher frequency, a more useful mechanism is suggested by R.
Hickling's recent work® in which he plots intensity contours of the interior field at the
frequencies corresponding to the value of frequencies at resonance. Based in Hickling's
field plotts the WS resonances may be topological in origin and are similar to Lamb modes
(see section below on shells) for the shell case. Lamb modes are either symmetric or
antisymmetric and may be associated with either the shear or compression phase speeds.
Lamb modes are topological in nature at critical frequency in the sense that they form
standing wave pattterns in a plate. From Hickling's plots of the intensities of the field at
resonance, topological features suggest standing waveguide type patterns internal to the
object that terminate at the surface of the object. However, since there is only one surface
and we are dealing with spheres, the standing waves rather than terminating at opposite
surfaces for an elastic plate, must curve back and terminate on the same spherical surface.
The contours that Hickling plots appear much like the TE,, fields of an electromagnetic
cylindrical waveguide in which the field lines terminate at the surface for (0,0) values and
form closed patterns for (,m>0). Just as the Lamb modes are actually guided waves in
the elastic media bounded by the two surfaces of the plate; the WG resonances may be
interpreted as from either symmetric or antisymmetric "wave guides" that fit in the
spherical region. These curves rotate in time over at least 180°at resonance and account
for a phase velocity effect. Hence, Hickling referred to them as rotational resonances. The
terminology of rotational resonances, if they are related to waveguides, is appropriate
since a guided wave in a sphere would only have rotational motion except for the
breathing mode . It is possible that these sorts of waves would be restricted to the inner
surface of the sphere at high frequencies and thus the terminology of whispering gallery
resonances is appropriate.Hickling’s observation that the field rotates in time in the sphere
gives rise to the surface disturbance that leads to traveling waves on the surface and
accounts for the phase velocity of the waves that form the resonances. Without the
rotational effect, the description of resonances as standing waves at interfaces would not
be valid. The lowest Rayleigh waves form closed ellipses in the contour plots of Hickling,
two- followed by four, six, etc., which also rotate in time. As the ellipses open with
increased frequency and resonances vanish, contours eventually form opened figures that
terminate in a symmetric manner at the perimeter perhaps leading in some cases to the WG
resonances. These effects must be seen on the Hickling video for full clarity of the
mechanism, but to be sure, the resonances involve topological patterns that resulted in
either opened or closed patterns and rotate in time at resonance. The interpretation of the
Hickling work is speculative but it certainly should be considered in the final judgment of
the WS resonance issue. Fig. (13) illustrates the standing wave pattern that results at
resonance for the various types of resonances confirming Uberall's notions of the standing
wave picture, regardless of the physical mechanism of resonances. It is noted that only the
residual response is useful in illustrating the standing wave picture and this notion in
conjunction with the standing wave resonance methodology using phase integrals proves
useful in the analysis of level crossing of resonances described below. We note that the



¥

f

f

310 M. F. Werby and N. A. Sidorovskaia

i

g

2

5" (@)
g —
g

1

% |

: (b)
E . MWvIx‘WWWW,Wfmﬁ‘.‘I'h'.'n‘«'ﬁ'v\‘-"'n\‘-'Nmmmvmwwww'w
1

g

(c)

10066 20631 30347 4126 0 00040824 0DDAI64Y 0OI22472 00163296 ©

;\m M
reRany

o4 — —_—— —_—

T T T T e T T T
00 100 200 300 400 500 620 70¢ 83 20 1000 1RO 1200 1300 100 100
XA

Fig. 9. Backscattering frequency plots

R S——

36358 116 0907 145432

—

BESE? 173125 299687 €29 ¢
! )

(b)

I

18343 37886 56828 TSIV 0
L L

(©

il

032N 064943 09N 120885 O

{d)

0019563 00137 O1I8M6 01582 O

] (@)

0 0 00 300 40 %0 K0 MO 0 N0 1039 160 1200 1300 1400 1360
K&

)

Fig. 10. Forward scattering frequency plots



10. Modern Developments in the Theory and Application of Classical Scattering 311

(0,3)

[S8]
WG,
2,2)

S %2 R 4 5 6 7 3

o L= 2,1 3 o own G jen 'an @En

Qﬂ.ﬂ 2.0 ljo ! 6‘.0 i B‘.D T 10.0 l;l l;.u ! 1é.o 7 -lé.ﬂ 20.0 772&.0 ) 2;.0 ' 26I
ka

Fig. 11. Elastic response for scattering from solid elastic spheres.
terminology of Rayleigh resonances for spheroids and thus by extension for spheres was
contested by R. Hackman, et. al . Hackman argues that the resonances that are referred
to as Rayleigh resonances for spheres and that were first referred to as Rayleigh
resonances for spheroids by Flax, et. al® and later in other works® is based on contour
vector plots of the field. Hackman observes large interior contributions of the field which
he argues are inconsistant with Rayleigh waves because they are referred to in the
literature as surface waves and also argues that the vector plots appear to form patterns
consistant with “bar” waves. Hackman had in mind very elongated spheroids and not the
low aspect ratio spheroids that were treated by Flax and in a paper by Werby and Tango®
which recieved much criticism in his work. There are only three types of bar wave
theories. We have already treated the one on the transverse modes which cause the “bar”
to flex. These resonances are now well accounted for and are not excited end-on. There is
a theory for compressional modes due to Love and a related Poisson effect but they are
useful only at a low frequency limit and do not predict resonanges. There is a “bar” theory
for torsional modes which can not be excited for end-on incidence and torsional modes are
not likely what Hackman has in mind. Rayleigh waves were first studied by Lord
Rayleigh® for free vibrations on an infinite elastic half-space. Rayleigh showed that in
addition to the transverse and longitudinal bulk waves which traveled in the body of the
material, there was also an interface wave that was non-dispersive and that traveled at
speeds typically about 91% of the shear speed. Rayleigh was interested in earth quakes
and reasoned that earth quakes had to be confined to the surface since they caused so
much damage and traveled to long distances. The bulk waves lose most of their energy to
the earth’s interior. Since the waves attenuated at two wavelengths from the surface,
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Fig. 12. Elastic residual response for scattering from spherical elastic solids.
Rayleigh waves are commonly referred to as surface waves. However, they are actually
interface waves that arrise due to mode coupling of the transverse and longitudunal modes
at a free surface. These modes are coupled at an interface but become uncoupled in a
homogenous elastic medium as they progress away from the interface or an
inhomogenuity. When a half-space is fluid loaded then the Rayleigh waves are dispersive
and radiate energy into the fluid. They are then referred to as leaky Rayleigh waves. If the
surface is curved then these interface waves are referred to as leaky pseudo-Rayleigh
waves. It has been pointed out that arguements on the nature of surface restriction loses
meaning at low frequeny for spheres, cylinders and spehroids since two wave lengths at
the lowest resonances for these finite objects goe to the core of the object. We beleave
that the terminology that these resonances are of the Rayleigh-type is valid at least in the
sense that a phase velocity analysis is consistant with the Rayleigh phase velocity and that
they are interface waves due to mode coupling. A “bar” resonance interpretation may be
useful for very elongated spheroids and Hackman’s work on the use of alternative basis
functions for the T matrix is certainly one of the major contributions in the field. An
interesting aside to all of this is that it turns out that all resonances on elastic shells
asymptote to the Rayleigh phase velocity at heigh enough frequencies and this is true for
plates and shells™® and that includes the lowest symmetric mode (the same as the
symmetric plate mode) and all of the Lamb modes. The flexural mode is expected to have
such behavior and does asymptote rather quicky to the Rayleigh phase velocity and some
thick plate theories constructed to describe the flexural mode even demand it. The bar
theory presented in Sec. 3.7 for flexural modes is very similar in nature to the thick plate
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theory used in Sec. 4.10.2 to derive Eq. (126) and also predicts a phase velocity that
asymptotes to the Rayleigh phase velocity. It is evident that at very high frequencies a
simple interpretation of resonances or vibrational modes is no longer possible because the
phase velocites are no longer unique. Let us understand that any paradim that we feel
comfortable with is useful if it has predictive value in understanding phenomena and is a
useful descriptoin to communicate with others unambiguously. As a broader issue in
discussing research issues many researchers from optics prefer to use a ray-type picture in
describing events or even constructing theories based on this asymptotic description, while
some engineers and physicists prefer a wave-like picture. These descriptions are not
mutually exclusive and in some frequency regions they are equivalent. They are aids to
thought.

Fig’s.(14)-(16) illustrate the same type of results for scattering from steel spheroidal
shells for aspect ratio of 4:1. The resonance types persist and the standing wave picture
as well as the assignment of Rayleigh resonances also persist for the prolate spheroidal
solid. Standing wave patterns in Fig.(16) are reascnably consistent with those of Fig. (13)

f 9% FORWARD SCATTERING

Fig. 13. Standing wave pattern for resonances on elastic objects.
and would best be represented when plotted on an imaginary spheroidal surface
superimposed about the actual sphere. The patterns that we illustrate here are the far field
patterns in which the surface is spherical. We should expect better standing wave patterns
when we plot on a spheroidal surface.
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Fig. 16. Standing wave pattern for resonances on elastic spheroids.

Prior to Uberall’s analysis many researchers believed that resonances on elastic surfaces
corresponded to fluctuations of the usually spherical shape from prolate to oblate.
Presently, certain types of resonances excited by earthquakes in the earth are believed to
be so-called foot ball resonances which correspond to the earlier picture of the elastic
resonances.

4.4. Broad-side and Oblique Scattering from Elastic Solid Spheroids

In Fig. 17 we examine broadside resonances for 2, 3, 4, and 5 to 1 aspect ratio steel
spheroids. Here we can excite three phenomena. At the lowest value we can see a spike

representing a bending resonance®’6? discussed below. The second lowest spike
corresponds to the lower order Rayleigh resonance seen end-on, corresponding to a
standing wave, circumnavigating the largest meridian of the spheroid. We also see weak
Franz waves similar to those excited on a cylinder, and then we see the lowest order
Rayleigh and whispering gallery resonances corresponding to circumferential waves
around the smallest meridian. We discuss those issues in more detail below.

4.5. Flexural or Bending Resonances

The third kind of resonance we wish to illustrate has to do with bending modes or
flexural resonances. The bending or flexural resonances (flexural in this context is not to
be confused with antisymmetric plate modes) occur on elongated objects such as
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both for solids and shells. For unsupported spheroids, a plane incident wave at 45°
relative to the axis of symmetry can excite these modes. We illustrated these resonances in
Fig.’s (18a)-(18d) for solid steel spheroids for aspect ratios that range from 2:1 through
5:1. The lowest mode corresponds to 2, and thereafter 3, 4, etc. The interesting thing
about these resonances is that they can be predicted by exact bar theory described in Sec.
3.7 and coincide nicely with results here. Of particular interest is the effect that with
increasing aspect ratio, the onset of resonances occur at lower kL/2 values; the opposite
effect observed for Rayleigh resonances. The modal pattern is illustrated in Fig. (19) for
the first four modes. These resonances can be excited on spheroidal elastic solids at any
incident angle other then along the axis of symmetry where clearly the flexing effect can

not be initiated. However, the strongest excitations are close to 450 relative to the axis of
symmetry. We illustrate the comparison between the resonances predicted by the simpler
picture outlined in sec. 3.7 and the EBC calculations. This comparison between the
resonance locations and those predicted from the beam theory is illustrated in Fig. (20).
The results are remarkablly close even for targets of aspect ratio’s of 2:1. It is to be noted
that the simple beam theory can only predict these bending modes and is based on a
limited physical description, while the EBC-equations which first gave evidence of the
flexural modes are so complicated that there is nothing in the expressions derived from
exact theory that would suggest such modes. Here is a case where it is possible to use a
simpler more limited picture to account for events predicted from very complicated
expressions. This is what we mean by a "metaphorical" approach, namely in making use of
a simple picture that is only able to account for a pronounced physical process that is not
obvious from a more comprehensive theory we gain insight in the mechanism responsible
for the event. To complete this analysis we illustrate 3-dimensional plots of the flexural
modes in Fig. (21). The calculations illustrated in these plots vary over the kL/2 range in
which the object behaves as a rigid target to that of the flexing target and then back to the
rigid target. The resonance responce is large and very pronounced for values of the
angular region off the principle axis. There is some contribution to the scattered signal
even at angles perpendicular to the axis of symmetry, but the most pronounced
contribution % occurs at about 42°.

4.5. Level Crossing Effects for Elastic Solids

Here, we discuss a “level diagram” illustrated in Fig. (22) for WC spheroids for aspect
ratio's ranging from 1 to 4 in steps of 0.25. The diagram represents plots of the relative
levels and associated ordered pairs (n,m) for the various resonances. Remember that
Rayleigh resonances correspond to the ordered pair (n,1) where n is 2 or greater and WG
resonances correspond to (n,m) where n is any of the natural numbers and m is 2 or
greater symbolizing higher harmonics. We see that the Rayleigh resonances gradually shift
upward with increasing aspect ratio while the whispering gallery resonances shift up more
rapidly for fixed index n. Eventually, the whispering gallery resonances shift upward to the
extent that they cross over the Rayleigh resonances.
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We have referred to this as “level crossing” in analogy with a similar event for prolate

nuclei. 7172 1t is amusing to compare the two phenomena. The analysis followed much
collaboration between Uberall et. al. of Catholic University and Werby of the Naval

Research Laboratory72. The effect was, however, first noticed in a collaborative effort

between Hackman and Werby’>. In the theory of scattering from nuclei, it is simple to
treat those examples in which one has a nucleon ( a proton or neutron ) outside of a core
(the nuclear core) in which the core can be treated as inert and spherical. One views the
nucleon as being in the outer energy shell and it becomes possible to build on this model
by adding more nucleons in a picture in which the addition of each nucleon is treated by
some perturbation method. This is called the shell model of the nucleus and it accounts for
many of the energy levels of large nuclei. However, as one adds more nucleons to the
picture, the additional nucleons influence the nuclear core and cause it to be distorted so
that it begins to appear prolate. The consequence of this distortion is that the energy levels
predicted for the ideal nuclei begin to exchange places with previously lower energy states
so that as the nucleus becomes more distorted, the energy level assignments begin to
switch places; their energy levels cross. Thus, when a similar effect showed up for the
resonance levels for the elastic problem as one varied from a sphere to that of a spheroid,
it was tempting to form the analogy between the two and examine similar mechanisms to
account for this effect in elastic targets. Although the explanations for each effect are
different, the level spectrums are very much alike. The explanation of the nuclear case is
rather Quantum Mechanical while that for the elastic solid has been tentatively resolved as

follows”3. There were two possible explanations at first. Both concerned knowledge of
the phase velocity of the different types of resonances and the standing wave picture of the
resonances. One explanation is that the lowest order WS resonances observed for shells
may be excluded for the spheroidal cases as one examines targets of higher aspect ratios.

This effect was determined as possible by Nagle’* since there appeared to be a cut-off
effect of the WG modes based on preliminary calculations. It was deemed, however, that
the phase matching method was not useful for the WG resonances at low KL/2’s because
of the lack of reliable ways for extracting the phase velocity for the lower frequency limit.
The other explanation is based on the analysis that the phase velocity of the Rayleigh
waves vary more slowly with curvature than the WS waves and thus at some aspect ratio
the levels cross due to the greater increase in phase velocity of the WS waves over the
Rayleigh waves. The second explanation is judged in the analysis to be the more likely one
because the small variation in aspect ratio and the corresgondingly smaller but continuous
change in the level structure does not suggest cut-off effects.

4.6. Extraction of Material Properties from Resonances Excited on Elastic Solids

In this section we present results from calculations for acoustical scattering from

submerged prolate spheroidal scatterers for end-on incidence.”® The shells are composed
of the six materials namely (a) brass (Br), (b) nickel( Ni), (¢) aluminum(Al), (d) steel, (e)
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molybdenum (Mo), and (f) tungsten carbide (WC). The speed of sound in water is 1.4825
km/s with a density of 1.0. By subtracting the rigid scattered field from the elastic field we
arrive at the residual response which isolates the resonance. Note that resonance scattering
theory maintains that the backscattered echo is a superposition of the acoustic background
and the resonance response. Fig.‘s (23) and (24) show the residual response for 3:1 and
6:1 aspect ratio scatterers, respectively. They are arranged in order of the increasing shear
velocity of the materials. We note that corresponding peaks move to higher resonance
frequencies with increasing shear velocities. Tables (1) and (2) demonstrate that the
position of frequency resonance peaks is related to the Raleigh velocity of the material.
They show that the ratio’s of the Rayleigh velocities of pairs of similar materials (that is,
similar in shear velocity) is very close to the ratio of the first and second resonance
frequencies of the material for both 3:1 and 6:1 aspect ratio scatterers. This is in
agreement with the interpretation that these are indeed Rayleigh type resonances as
discussed in Sec. 4.2. Further, the higher aspect ratio examples have resonances shifted
upward in kL/2 space in accordance with the expressions in Sec. 3.6 and in accordance
with the notions of Rayleigh resonances.

Table 1. Ratios of first resonance peaks compared with Rayleigh velocities.

Ratio of 2nd Peak Ratio for 2nd Peak Ratio for
Material Pairs  Rayleigh Velocities 3:1 Aspect Ratio 6:1 Aspect Ratio
Al/brass 1.56 1.53 1.54
steel/brass 1.64 1.62 1.63
steel/Ni 1.07 1.06 1.07
Mo/Ni 1.20 1.17 1.19
WC/Mo 1.08 1.09 1.08

Table 2. Ratios of second resonance peaks compared with ratios of the Rayleigh velocities.

Ratio of 2nd Peak Ratio for 2nd Peak Ratio for
Material Pairs ~ Rayleigh Velocities 3:1 Aspect Ratio 6:1 Aspect Ratio
steel/brass 1.64 1.66 1.62
steel/Ni 1.07 1.07 1.07
Mo/Ni 1.20 1.20 1.19
WC/Mo 1.08 1.09 1.08

Fig.’s (25) and (26) show the residual response for a 4:1 spheroid for various incidence
angles. Fig.(25a) gives the response for end-on incidence while Fig. (25b) shows the
broadside response. Fig. (26) shows the response for two intermediate incidence angles. In
Fig. (26a) the first resonance frequency is lower than in the broadside case of Fig. (25b).
This is because at broadside incidence, surface waves are excited that follow a minimal
path around the spheroid; that is, parallel to the equator. For end-on incidence, the surface
waves that are excited follow a maximal path; that is, from pole to pole. It is also possible
to take adjacent end-on and broadside resonance locations (for equal mode numbers n)
and by use of Eq.is. (93) and (96) we can extract the aspect ratios. For the case of 4 :1
Ni, if we use the crude Eq.(93) we extract a value for the aspect ratios of 3.6.
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More precise expressions for the resonance location end-on yield closer agreement with
the actual results. Finally, in Fig.’s (27), (28), and (25) we illustrate the time response of
3:1 aspect ratio scatterers from a Gaussian burst, arranged in order of the increasing shear
velocity of the six materials. The response is a dampened sinusoid, as expected. We note
that the damping is proportional to the half-width of the corresponding resonant
frequencies of the respective materials. Thus the more narrowly defined frequency
response {such as that for WC) gives rise 1o a long decay envelope; that is, such scatterers
“ring” longer, while broader half~width materials such as Al yield a more rapid decay rate.
Al does not make as good a bell. We see from this analysis that when one is able to isolate

a pulse signal in terms of a damped sinusoid there is some correlation with the material
providing the object is a solid.
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4.7. Classes of Elastic Shell Resonances

There are several classes of resonances that can be excited on bounded submerged
elastic shells. Here we will restrict discussion to evacuated or air filled shells. It is useful to
compare the excitation of waves on plates with those on shells. Indeed, many notions that
arise from shells are suggested from an understanding of the simpler plate theory. In the
study of plates the easiest picture to understand is that of an infinite plate of thickness h
that experiences no loading on either side. There are many types of vibrations that are
associated with elastic plates. They are characterized by their phase velocities and the type
of symmetry that they experience either vibrarions can be symmetric or antisymmetric.
Fluid loading on only one side has an effect on damping and shifting some of the modes of
vibration and in the initiation of water borne waves at the fluid-plate interface. Two types
of water borne waves are apparent, both subsonic. The most important is the
antisymmetric (the Stoneley) wave and occurs over a limited frequency range and is
dependent on the nature of the flexural mode and the ambient fluid. There is also a weaker
symmetric water borne wave that is subsonic and begins below coincidence frequency and
remains significant to high frequency. It is almost non-dispersive and is more prominent
with lower density plates. For the spherical shell, the shell thickness also has an effect on
the water borne waves but we can not make that comment for in infinite plate because it is
not meaningful to refer to an infinite plate as thin or thick. Fluid loading on both sides of a
plate has an even greater effect and produces a strong water borne wave (the Sholte wave)
that occurs over all frequencies. The two lowest body modes are true interface waves in
the sense that the transverse and longitudinal modes are coupled at the interface while the
internal waves can be resolved into the shear and longitudinal waves. We will refer to the
two interface waves as the shell modes to distinguish them from the internal (waveguide)
modes which we refer to as Lamb modes. The first observable shell mode is symmetrical
and has a phase velocity close to the speed of the longitudinal phase velocity and can be
excited at any frequency. We refer to these waves , S, as the lowest symmetrical modal

wave (the dilatational mode). This wave has no frequency cut-off (no lowest value). It
starts with a very large phase velocity, and out to intermediate frequencies it reaches the
plate velocity which is lower than the compressional velocity, but eventually at very high
frequencies it reaches the Rayleigh phase velocity. The next wave is the lowest order
antisymmetric or flexural wave. It has a phase velocity that is strongly dispersive and rises
from zero to the Rayleigh velocity at moderate frequencies. It has its kinship with the
Rayleigh wave on an infinite half space. It will not influence on ambient fluid (no radiation
into the fluid) until the phase velocity is equal to the speed of sound of the contiguous
fluid. At the point for which the phase velocity reaches the same speed as the ambient
fluid -referred to as coincidence frequency- two things happen. It begins to radiate into the
fluid and also subsonic fluid borne waves are excited at the fluid-plate interface. These
waves are antisymmetric and are only observable at frequencies close to coincidence
frequency. Some authors refer to those water borne wave as A waves but we refer to them
as Stoneley waves. The flexural modal wave is designated by A, and is usually referred to

as the flexural mode and sometimes as a transverse plate mode. The next class of waves
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really begin as waveguides in the plate and are associated with either the compression or
the shear waves of the material. These waves are referred to as Lamb modes and are
designated by 4, or S, where i is equal to or greater than 1. The rules for the onset of the
Lamb modes -referred to as the critical frequencies- are simple and relate to standing
waves in the material.” Based on a study of these waves, we know that #/2=nl_, nis
odd for antysymmetric modes, /2 =nl_, nis even for symmetric, #/2=nl,, n is odd
for symmetric, A/2=nl,, nis even for antisymmetric modes. Here s designates the
shear and / designates the compressional wave respectively. One can see that there is no
clear association between the ordering of these modes with either shear or compressional
waves and the spectral ordering of the actual waves since the ordering can shift according
to variation in the material property. We will make this point clearer when we present an
example. The question then arise how close an analogy are results from plates with those
of shells? Our study of elastic spherical shells shows that the critical frequencies for Lamb
resonances (the lowest frequencies for which resonances occur) may be obtained from the
equation for flat plates.””-78 Thus, we may derive the following expressions that predict

the critical frequencies for the Lamb modes on shells so long as the shells have uniform
thickness:

[kal,,, = 7=, (124)
v h

w

where we have the A,-wave when 7 is odd and the S, -wave when i is even, and
=r——i, (125)

where we have the S, -wave when /7 is odd and the 4,-wave when i is even. Here h is the
thickness of the shell and a is the radius of the shell. The interesting thing about this
scheme is that the ordering of the 4,’s and §,’s is a function of material so that, for
example, the important S, resonance for a 5% thick shell is determined from Eq. (124) for
aluminum, occurs at a ka of 538 and is thus associated with the shear velocity while the S,
resonance for steel is determined from Eq. (125), occurs at a ka of 504 and is associated
with the compressional wave of steel. This is rather remarkable because the behavior of
the §, resonance has a very special significance as we describe below. It is useful to plot
the residual partial waves obtained from the exact elastodynamic equations that describe
scattering from submerged elastic spherical shells to determine the critical frequencies.
Since critical frequencies occur at their lowest possible partial waves a plot of the residual
partial wave contribution should result in sharp spikes corresponding to the critical
frequency at the lowest possible mode. Only symmetric modes are allowed for the lowest
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partial wave while the antisymmetric mode must begin with the second lowest partial
wave. Fig. (30) is an illustration of the lowest partial waves for shells of 10%, 5% and
2.5% thick for (a)-Al, (b)-steel, (c)-WC and (d)-Br materials. A comparison of the critical
frequencies determined from these plots agrees extremely well with Eq.’s. (124) and
(125).

4.8. The Acoustic Background for Shells

In an earlier work, the form function due to an incident plane wave on a steel spherical
shell with thickness 0.3% of the radius was examined 22 Fig. (31a) is the form function
for the shell for a ka range between 0 and 300. At the lower frequency, a soft background
appears adequate, but at quite high frequencies a rigid background appears adequate;
intermediate regions are poorly represented by both backgrounds. In Figures (31b), (31¢)
soft and rigid backgrounds are subtracted (in partial wave space) to illustrate that only at
the extreme ends does either background appear adequate. Fig. (31d) illustrates the case
for which the new background is subtracted from the form function and it is evident that it
is superior for the entire region of ka. Figs. (32a-d) illustrate the same example for a shell
of 1% thickness (the form function, the residual obtained by subtracting soft, the residual
obtained by subtracting rigid and the residual obtained by subtracting the new
background). Again, it is evident from Fig. (32) that the new background is indeed
adequate even in the region at coincidence frequency around ka =120.

Figs. (33a-d) illustrate plane wave scattering from a 1% thick WC shell for the elastic
response (33a), the elastic response minus the soft background (33b), the elastic response
minus the rigid background (33c), and the elastic response minus the new background
(33d). For the WC case the new background is also quite superior to the others. In
contrast to aluminum, the rigid background is adequate over a larger range due to the high
density of WC. Further, the isolation of resonances at the higher ka region is superior to
either steel or aluminum; the explanation has to do with the presence of the symmetric
water borne wave which is weaker for WC than aluminum and steel.

4.9.1. The Importance of the Symmetric S, Resonance

Figs. (34a)-(34c) are the form functions due to an incident plane wave on spherical
shells of 10%, 5%, and 2.5% thickness for steel shells respectively. It is evident that in the
region between about ka=126,252 and 504, respectively, there are rather pronounced
returns which are significantly larger in amplitude than usually observed for symmetric and
antisymmetric resonances. The explanation for this event was first thought to arise from
the condition that when a wave goes into a layered material, and when the wave length of
the layer is equal to half the wavelength of the penetrating wave, the reflection coefficient
is just equal to that due to the next interior layer. In this case, it corresponds to a soft
scatterer (the inclusion was evacuated) and thus the reflected signal when added to the
usual surface reflected signal is at a maximum. To determine where this happens we use
Eq. (125). Here ¢,=5.95 and c,=1.4825 are the compressional speed of sound for steel
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and water respectively and W/a is 0.1, 0.05% and 0.025. Thus, 4a =126, 252 and 504, are
associated with the large returns. An argument based on reflection coefficients is not
sufficient to explain this effect; it only occurs at the S, resonance. In Fig. (35) we illustrate
the contributing partial waves for the 5% shell for ka=226-256. For n=0 (critical
frequency) ka=252 and we see the lowest S, component. The modal partial wave is then
associated with a declining ka as mode number increases until zero group velocity at
ka=236 at which point the component begins to increase. The multiple contribution from
the S, Lamb mode causes the enhanced signal. Perhaps the proximity of the S; and A, (A;)
vibrations is too small and some spacing condition in ka is responsible for this effect.
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4.9.2. Pseudo-Stonely Resonances

We mentioned earlier that flexural waves do not yield resonances from fluid-loaded
shells until the phase velocity is about equal to the speed of sound in the ambient fluid. The
value in frequency for which this happens is referred to as the coincidence frequency;
however, some subsonic fluid-borne waves produce sharp resonances below coincidence

frequency.”®7° These waves are referred to as pseudo-Stoneley waves and the related

resonances as pseudo-Stoneley resonances. 30 The pseudo-Stoneley resonances are well
defined in partial wave space; they correspond a unique partial wave mode number with a
narrow half-width with a weakly dispersive phase velocity, which approaches the speed of
sound in the fluid. Theese resonances diminish in significance at the point at for which the
flexural resonances begin to dominate. It can be determined that a phase change occurs in
the pressure field in the transition region from subsonic to supersonic. This change
accounts for the envelope of the resonance curve at coincidence frequency where the
waves are in phase until coincidence, and are sharply out of phase afterwards. Large
resonance returns characterized as an envelop signature superimposed with sharp spikes
have been noted earlier in this article on scattering from elastic shells. In Figure (36a) the
analysis used to resolve the matter of the origin of these resonances is illustrated. It is
determined that the sharp spikes correspond to waterborne waves, referred to as pseudo-
Stoneley resonances, superimposed on broad overlapping flexure resonances. Figure (36b)
illustrates this effect by examining the contributing partial waves for a fixed frequency. N
= 32 corresponds to the sharp waterborne wave and N =28 corresponds to the broad
flexural resonance. N = 6 relates to a fast symmetric mode. It is useful to analyse this
effect in the time-domain presented in the following section.

4.9.3. Orthogonal Resonances and Bending Modes on Elastic Spheroidal Shells

We focus our attention here on spheroidal shells. We have carried out numerous
studies of elongated elastic shells and one of the most interesting features pertains to the
generation of duel classes of resonances in the lower frequency region. They relate to the
S, vibrational modes. These modes are observed to form traveling waves on the surface. It
is clear that a plane incident wave along the axis of symmetry will initiate model vibrations
that form standing waves at discrete frequencies. All types of resonances subject to the
standing wave interpretation have resonance locations approximately in inverse proportion
to the path length about the object. In this case the maximal path length about the object
goes from pole to pole. That resonances is illustrated in Fig. (37a) where we observe the
n=1 and n=2 S, resonances. When the plane wave is incident normal to the objects axis of
symmetry we see what we expect: the lowest S, n=1 and n=2 resonances (the second and
third nulls) which are shifted up in location in proportion to the inverse of the (now
shorter) distance about the equatorial path. We may refer to the two classes of resonances
as polar and equitorial resonances. However, there is something unexpected here. The
lowest null is not accounted for by the S, family of resonances nor can it be from the
flexural or Lamb modes. The shell is too thin to be excited by those modes at this kL/2
range. We can take a hint from our work on elastic solids and examine the possibility that
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these modes correspond to a flexing or bending mode (of the entire object and not just the
surface). We have carried out an extensive study of these modes for various thicknesses,
materials and aspect ratios and our conclusion is that the interpretation of this mode is
consistent with “bending” resonances first encountered for elastic solids.

The next interesting effect is observed when a plane wave is incident at oblique angles
to the axis of symmetry. It is not clear without calculation what to expect. The results
illustrated in Fig. (37b) are both interesting and important. We continue to observe the
lowest “flexing” mode but we also observe five additional modes. It is clear by comparing
comparing all the null locations that most of the nulls are at the same location as either the
equitorial or the polor resonances. We infer from this that an oblique incident plane wave
excites orthogonal modes that vibrate either equitorially or along a polar path. Thus, we
only observe orthogonal resonances of the S, class. The extra null that we observe at
about kL/2=8 is the n=3 “bending” resonance which is excited weakly at 45° incidence
and isn’t observed at normal incidence. We note from our work on “bending” resonances
for elastic solids that these class of resonances are more strongly excited at oblique
incidence, and not at all at axial incidence. We are presently carrying out a study of this
mode of resonance for elongated shells in which we vary aspect rario, shell thickness and
material parameters and the results so far are consistant with the analysis presented here.

4.10. Analysis of Results in Time Domain

In this section we analyze time domain scattering from three types of targets. The
first target is a very thin aluminum spherical shell chosen because only the S, waves are
present with a fairly constant phase velocity over most of the frequency ranges examined.
We also analyze WC and steel shells at coincident frequency partly to confirm the
existence of water borne resonances discussed earlier. These representative examples
prove useful in exploiting expressions derived in section 3.8 which give us guidance on
what to expect for time-domain scattering from objects that resonate. For thin elastic
shells the phase velocity of the S, wave asymptotes rather quickly to the plate velocity

given by the expression C, = C, 1 where v is the Poisson ratio of the material and
-v

C, is the shear velocity of the shell material. We caution that at very high frequencies the
S, phase speed begins to decline in value and finally is equal to the Rayleigh phase
velocity; but there is a large plateau in ka for which this expression is useful. We can take
advantage of thick plate theory given below to determine when the phase velocity of the
flexural wave is equal to that of the surrounding fluid so that in what follows- thin shells
or thick shells- we can determine the region for which our time-domain resonance
scattering theory will make sense. We presented time-domain results earlier for solid
spheroids at low frequency but we chose to place that analysis there because it has a
bearing on the material composition of the targets in terms of the half-widths of the
resonances. There are other interesting features that may be examined such as the bending
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modes which “ring” in frequency for long times as well as a class of resonances at low
frequency excited on elongated objects.

10 T T T T T T T T T

Fig. 37 Scattering from spheroidal shell at (a) 0°, (b) 45° 0 and 90° incidence.



10. Modern Developments in the Theory and Application of Classical Scattering 341

6.0218+
4.5163+

3.01084

1.50544

\J« — { v r

000007000 1995 3930 5985 7.980 9975 11970 13965 15960 17.955 19.85
(a) KL/2

0.04124

0.0000
: A
|

~0.0412

-0.0823 g T v y g r ™ v - —
15.000 16.010 17.019 18.029 19.038 20.048 21.057 22.067 23.076 24.086 25.09
T

(b)

Fig. 38. Frequency (b) and pulse (a) solution for back scatter from an Al shell for ka=0-20.



342 M. F. Werby and N. A. Sidorovskaia

4.10.1. Scattering from Very Thin Spherical Shells

For very thin submerged spherical shells, only symmetric Lamb waves are present
out to fairly high frequencies. For shells in which the ratio of the outer to inner radii is
0.999, flexural resonances are not present for values below a ka of about 500. The phase
velocity for the symmetric wave is quite dispersive at low frequency but rapidly
approaches a fairly constant value corresponding closely to the plate velocity at the
moderate frequencies of concern here. The resonance pattern over a broad frequency
range is characterized by resonances of narrow half widths and fairly uniform spacing.
Thus, conditions expressed in Sec 3.8. are satisfied. We perform time-domain solutions
with carrier frequencies at the mid-point of ka in each of Fig.’s (38) and (39) with a value
of ¢ chosen so that only adjacent resonances are included in the process, i.e., only a
narrow frequency region about the carrier frequency are sensed. The calculation described
in Fig. (38b) is associated with a strongly dispersive phase velocity and so the resonance
spacing and the half-widths are not yet constant and consequently we do not expect to
observe a well defined envelope function, i.e., a meaningful group velocity. This is indeed
reflected in Fig. (39a). At the higher frequency (ka>80), we observe a very well-defined
envelope function illustrated in Fig. (39a) with an even more pronounced oscillatory
pattern, consistent with Eq. (123) of Sec 3.8. We observe back scatter in frequency in
Fig. (39b) which illustrates the even spacing.. We can obtain the group velocity for these
examples. The time t between peaks of the envelope function corresponds to the time
required for an energy packet to circumnavigate the sphere. The time it takes is
approximately 1.16 milliseconds. This, divided into 2 7 for a unit sphere, leads to a value
of 5.4 km/seconds, which is very close in value to the phase velocity of the lowest
symmetric resonance for aluminum at this frequency. Since the phase velocity is
essentially constant at ka>80 and the group velocity is equal to the phase velocity for
constant phase velocity, then our result for extraction of the phase velocity is justified.
Finally, the slow decrease in the value of the envelope function with increasing time is
consistent with the small half-widths of these resonances.

4.10.2. Time Domain Backscattering From Spherical Shells at Coincidence Frequency

In contrast to symmetric Lamb waves which yield resonances at low frequencies in
a submerged fluid, the lowest antisymmetric or flexural wave does not yield resonances
until the phase velocity of the flexural wave is about equal to the speed of sound in the
ambient fluid. There are, however, subsonic fluid borne waves which produce sharp (fluid
borne) resonances below coincidence frequency. These "pseudo-Stoneley" resonances are
well-defined in partial wave space, usually corresponding to only one partial wave mode
number and a very narrow half-width with a dispersive phase velocity which approaches
the speed of sound in the fluid with increasing values of ka. Our interest at this point is in
examining the time domain response since we expect the conditions of Sec. 3.8 to be
partially met over a broad frequency range and thus to yield a strong coherent response
with a carrier frequency in the neighborhood of the frequency at coincidence. We
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examine two cases in Fig.’s (40b) and (41b) at the ka values 113 and 87, respectively, for
steel and WC that exhibit these characteristic returns.
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Fig. 39. Frequency (b) and domain (a) solution for back scatter from a Al shell for ka=80-100.
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We use Mindlin-Timoshenko?8 thick plate theory to determine the value for which the

flexural phase velocity will equal to the speed of sound in water. The expressions we use
are from thick plate theory but they prove to be quite reliable in predicting the phase
velocity for the curved surfaces of the spheres at the frequency limits in the vicinity of
coincidence frequency. We have determined that the expression for the phase velocity is:

»
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C,=C, 1 = is referred to as the plate velocity.

Here C, is the shear speed and v is the Poisson ratio of the material. The ratio (/1 a) is a
thickness parameter and ', is the speed of sound in water. For the cases presented here

(h/a) is 0.01, where a is the radius of the sphere. The group velocity is determined by us
to be:
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Inboth Figs. (42) and (43) the phase and group velocities are plotted for ka values out to
200 for 1% thick steel and WC shells.

We now examine the time domain calculations. For the first example we examine the
steel shell of 1% thickness, illustrated in Fig. (40a). In this case we observe a we!l defined
envelope with pronounced oscillations within the envelope consistent with expressions in
Sec. 3.8. The enhancement due to the factor 2M is obvious both here and in Fig. (41a).
We can obtain the group velocity from the peak to peak distance. The result leads to a
value of 2.23 km/sec. The expression for flexural waves predicts a value of 2.53 km/sec at
coincidence and a range of 2.44-2.68 km/sec. over the ka range of 100-140, where the
strong flexural resonances are significant. In that range the phase velocity varies from
1.37-1.58 km/sec.
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Fig. 43 Phase and group velocity for a steel shell.
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The values of the predicted and extracted group velocities are not in extremely good
agreement; the disagreement is about 12%. This could be due in part to the fact that flat
plate theory may be in error or inadequate for spherical fluid-loaded targets, the conditions
in Sec. 3.8 are not well met and there is a mixture of pseudo-Stoneley waves leaking into
the fluid. We have determined the group velocity of the pseudo-Stoneley wave for this
case to be 2.16 km/sec based on plate theory. In addition, the phase velocity is in the
range from 88% to 98% of the speed of sound in the fluid. This value of group velocity is
within 3% of the extracted value from the time domain solution. Moreover the pseudo-
Stoneley resonances have very narrow widths while the flexural resonances are quite large.
The conditions in Sec. 3.8 demonstrate that the flexural resonances rapidly dampen while
the pseudo-Stoneley resonances attenuate slowly. Thus, based on the similarity of the
extracted group velocity for the pseudo-Stoneley waves and the conditions in Sec. 3.8, we
conclude that the time domain calculations in Fig. (40a) represent pseudo-Stoneley
resonances.

The final example is for the WC shell of 1% thickness. The results here are consistent
with that of the steel case and are illustrated in Fig. (41b). Here the group velocity is
extracted to be 2.33 km/sec. compared with the plate theory value of 2.65 km/sec for
flexural waves. The range of values for the group velocity predicted from the flat plate
theory is between 2.49-2.78 km/sec over the ka range of 74-102. Here again the
difference is 12% between plate theory and the extracted value. On the other hand, the
group velocity for pseudo-Stoneley waves is 2.26 which is within 3% of the extracted
value. As in the previous example the pseudo-Stoneley resonances are quite narrow while
the flexural resonances are broad and we conclude that the results of Fig. (41a) represent
predominantly pseudo-Stoneley resonances.

4.10.3. Conclusions on Pulse Scattering

We believe that the results shown here demonstrate that if proper conditions are met
in time domain studies, quite reliable and interesting interpretations can be made, while it
is easy to come to erroneous conclusions when the proper conditions are not met. The
trick obviously is to control the pulse widths as well as the carrier frequency if one wishes
to extract group velocities correctly. Further, there can obviously be conditions for which
it is not possible to make sense of a group velocity within the context of a particular type
of phenomena (i.e., Lamb waves, Rayleigh waves, etc.) particularly for narrow frequency
bands in which different types of resonances are sensed with equal weights. Accordingly,
one should use caution when interpreting an envelope function as associated with a
particular group velocity. Finally, it is difficult to see how the presence of a single
resonance or for that matter for very low frequency resonance scattering where phase
velocities are highly dispersive and resonance widths are usually quite variable this typye
of analysis can lead to unambiguous results. It is also clear that we can take advantage of
the different resonance half-widths and employ gating methods to examine pulse arrivals
for different times which allows for distinctions to be made between different types of
resonances.
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Fig. 45. Free-field scattering of rigid target looking (a) down, (b) in the plane.
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Fig. 46. Contour plot of Transmission Loss for target free waveguide.

Fig. 47. Contour plot of Transmission Loss for target in wavegnide.
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4.11. A Touch of Scattering from Objects in a Waveguide.

Our aim has been to create the capabhility to desciibe scattering from objects in the
most realistic environment. That includes placing objects in a range dependent waveguide.
We outlined the formulation to deal with this problem in Sec. 3. By using a new coupled
mode development we are able to place an object in a range dependent waveguide. A
detailed analysis which takes into consideration many features that may be important in
such a study is still under development and would in any case require a great deal of
space. We therefore limit discussion to the following picture. We examme a range
dependent waveguide described in Fig. (44). Note that the velocity profile is bottom
limited. We examine a rigid spheroidal target of large aspect ratio. The near field of the
target is illustrated in Fig.(45) for several values of kL/2. Note that the near field becomes
limited to the planer region as values of kL/2 are increased which means that it departs
from a point source approximation as frequency increases and becomes mode selective.
We use the term mode here in the sense of the normal modes of the guided wave and not
the material modes. Fig. (46) illustrates the contour plot of the transmission loss in a target
free environment at a frequency of 400 Hz. In Fig.’s (47) and (48) we illustrate two
examples of a target at two different receiver locations at 4.0 km down range and 20 m
below the surface for 400 Hz illustrated in Fig.(47) and 4.5 km down range and 160 m
from the top at 800 Hz illustrated in Fig.(48). We have exaggerated the contribution of the
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target by enhancing the target strength since the results in terms of transmission loss
relative to the incident signal would not be evident with out cleaver signal processing
methods. The main point we observe here is that the object behaves as a secondary source,
but with out going into detail it is strongly coupled to the environment and can not be
represented as a free source contribution. More interesting features are present particularly
for pulse scattering but that is beyond the scope of this article.

5. Concluding Remarks

In this article we represent our contribution to the collection of articles in honor of H.
Uberall in marking his retirement from the Physics department of the Catholic University
of America. It is our hope that he continues to make advancements in the study of classical
scattering and that this does not signal the end of a golden era in our discipline. Uberall’s
contributions have been steady for the past three decades and continue to be significant
and illuminating. His contributions are unique in that he presents a perspective of this area
of physics that departs from the usual engineering approach and is more in line with the
perspective of a modern physicist. This perspective in conjunction with an extremely keen
mind, a love for science and a most generous nature has in our view marked his
contributions both to physics and in support of his many colleagues and students as
extraordinary. His perspective has been comprehensive and he has united many facets of
this discipline: In our view he has set the standard for how a physicist may now understand
acoustic scattering from submerged elastic objects, most specificallv in the area of
resonances. He has also made significant and invaluable mathematical contributions in ail
areas of scattering. In our work on acoustical scattering it has been difficult to find useful
notions that did not have their origin in an Uberall paper. Our intention here has been
simply to present some of our own contributions that were influenced by the work of
Uberall and to elaborate on some work that we did in collaboration with Uberall. To be
sure, the T-matrix work was heavily influenced by P. Waterman, V.V and V. K. Varadan
whom we failed to present due credit because of the limited scope of this work. We also
acknowledge valuable interactions with L. H. Green who played a most important role in
the development of some of the T-matrix methods and the computer codes used here as
well as our understanding of the physics, to Roger Hackman whose critical discussions
and unique contributions to the body of scattering theory are of supreme importance, and
to our (MFW) dearly departed mentor L. Flax whom many of us own so much. We close
this work by commenting that a significant body of research in this area was funded by the
Office of Naval Research (ONR) and was carried out at Naval Laboratories. Without the
interest and support of the Naval community and without the creative contributions of
dedicated men like Uberall whom we can attest works far into the night and has added
far more than was required of him to the community of scattering, much of what we now
understand would still be a mystery. There are still many mysteries in scattering from
submerged objects that await understanding and some topics that awairt refinement. The
computational aspects alone are still severely problematic and we wonder upon Uberall's
retirement if there will long be dedicated people such as the Varadan's, H. Gresn. L.
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Dragonette, R. Hickman and R. Hackman who have moved on to other areas as well as
the many others that have the focus, the intelligence and the dedication to advance the
area with such vigor as they have in the current climate of shrinking funds and shrinking
interest in these topics. With the declining generation of dedicated people and the absence
of men like Uberall, there is an urgent need to advance this great body of knowledge for
future communities.
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ABSTRACT

The main objective of this chapter is to study and to assess the anisotropic
damage coupled with anisotropic elasticity in ceramic-ceramic composite
materials. We show that the conventional mechanics metrologies are not well
adapted to this kind of study by a single sample. However an ultrasonic
interferometer method allows to assess the anisotropic damage and to follow
its evolution. The constitutive and evolution laws adapted to the damage
phenomenon in uniaxial tensile test are fully verified.

1. Introduction

In the great family of fibrous composite, the composite materials with
brittle matrix constitute a recent class of materials. They are developed to
make up for fragility, the main drawback of monolithic ceramics.

The high hardness of the brittle matrix composite is tied to the capacity of
the interface fibrous~-matrix to stop or to deviate the matrix microcracks. This
phenomenon confers to the composite a typical non-linear behavior, and
allows to reach a significant rupture strain for ceramicsl. These properties
open a large field of application in particular to high temperature. As we have
need of thermostructural composites, the composites with brittle matrix are
in the working industrialization phase in spite of their complexity and
ignorance of their accurate behavior in use. The studies of damage processes,
microscopic phenomena, and their role in the constitutive law, represent an
important theme that is the subject of an effort of consistent research
following from the importance of industrials applications.

The micromechanical approaches emphasize and underline the
fundamental character of matrix microcracking for the non-linear behavior of
the brittle matrix composites. However the scale of the microstructure is
poorly adapted to the modeling of the global behavior of a real material that
only interests the engineer. The continuum damage theory finds an
application as a favored field in composite materials. This theory consists in
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quantifying the microstructural evolution by the effect of its strain behavior
on the material2. The microcracking (micromechanical phenomenon) is
quantified at the macromechanical level by an inner variable (damage) in the
sense of the thermodynamic irreversible process (TIP). The modeling of the
behavior of the brittle matrix composites under load requires the
introduction of a coupling between an anisotropic elastic law and a volumic
damage3.

On the other hand the classical mechanical metrologies (gauge of strain,
tong test extensometer) allow to get a monodimensional modeling in terms
of Young's modulus variations along the direction of the loading4. We
emphazie that these metrologies permit the assessment of the phenomenon
solely in the load axis and do not allow a direct measure of Young's modulus
perpendicular to the loading direction and of the shear modulus requisites for
identification of an anisotropic damage by only one sample. In the case of
anisotropic materials, this imposes carrying out measurements on a large
number of samples (cut following differents composite axes) to obtain a
maximum of components of the damage tensor associated with the behavior
of the material. Obviously, the large number of handling necessary, on
samples sometimes hardly comparable, cause mediocre accuracy often
connected to strong dispersion of the results. Moreover, for the more
sophisticated models of tridimensional anisotropic damage these
conventional mechanical metrologies do not give a direct check on the
modeling validity.

The experimental coherence of anisotropic damage thus consitutes a
major challenge for improvement before one is able to approach on a reliable
basis the three dimensional damage. By the same principle, the ultrasonic
methods allow a complete characterization of elastic properties of an
anisotropic solid5 and their essential variations for the evaluation volumic
damageb.

The ultrasonic measurements of damage induced by loading rest on the
identification of the variations of the elasticity constants from the velocity
development of ultrasonic wave propagation within the material’. The
dependence of the velocities with the stress is significant for ceramic matrix
composites8.

The determination of elastic constants of a material is an inverse
problem5. It consists in calculating the coefficients of the characteristic
equation of the propagation tensor from an adequately selected collection of
its roots obtained by measurements of wave propagation velocity in known
directions. The method adopted allows the complete determination of nine
independent elastic constants of a material presenting an orthotropic
symmetry?. This evaluation is carried out from a single sample.
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2. Description of Damage

The mechanical properties and the ultimate performance of engineering
materials depend on all the microdefects in their structure that represents the
state of damage. The various modes of the microstructural kinetics, such as
dislocation glides, grain boundary sliding, vacancy diffusion, microvoid and
microcrack evolution, etc.,, are observed externally as an inelastic
deformation. To predict the behavior of engineering materials under a
variety of circumstances, a rational theory must reflect the influence of the
microstructural kinetics on the reponse of structural modes of this material
in use.

The initial effort in surmounting the mysteries of the non-linear behavior
of solids was developed almost exclusively within the framework of the
theory of plasticity. This theory was constantly modified in order to satisfy the
demanding nature of many authors trying to use the old theory to describe
the mechanical macroscopic response of materials such as rocks, concrete,
ceramics, granular materials and others under a variety of conditions of use.
Phase transitions, corrosion and microcracking are entirely different both by
virtue of their physical nature and the effect they have on material
macroscopic response in use. This is often forgotten in the attempt to use
algorithms of the theory of plasticity to describe the behavior of materials,
such as ceramics-ceramics composites, often leading to erroneous results.

A reasonable approach in these problems is to accept the distinction
existing between various classes of microdefects and to introduce separate
field variables for each class of microdefects. This opinion is confirmed by the
recent advances in electron scanning microscopy, acoustic emission
techniques, and other newly developing methods of non destructive testing
(ultrasonic method for instance). A strong conviction is emerging that the
material response of solids to a large extent depends not only on the basic
structure of the matrix but also on a thin interfacial zone, an interphase,
which has its own stiffness properties and the type and distribution of defects
in the matrix, the nature of the reinforcing fibers. The objective of our study
is to emphasize this point and to discuss a relatively new branch of
continuum mechanics known as continuum damage mechanics (CDM). A
particular damage theory may be either phenomenological or
micromechanical in nature. We choose the first point of view. CDM consists
of a phenomenological approach to the progressive material strength
deterioration due to microcavities, nucleation and growth of microcracks.
Such defects or deterioration can weaken the material leading to its failurel?.
The theory is illustrated for a bi-directional ceramic-ceramic composite
material. It consists of SIC fibers that are reinforced with a SIC matrix. It is
well known that this composite is fabricated from parts built from multiple
layers of SIC cloth!l. The SIC matrix is added by a chemical vapor infiltration
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process which results in samples with a porosity of about 20 percent!Z. Under
load, the ceramic-ceramic composite is of the type brittle-brittle and exhibits a
non-linear behavior (Figure 1). This is associated with intense matrix
microcracking since the strain failure of the matrix is smaller than the strain
to failure of the fibersl. It is the inverse situation of this to a polymer matrix
composite whose rupture is generally governed by fibers.
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Figure 1. Non-linear behavior of brittle-brittle composite under monotonic loading.

Under monotonic loading micrographic observations were carried out at
various stress-strain levels. Intense microcracking of the matrix was detected
which related to the presence of fibers. The fibers provide toughness and
resistance to the rapid propagation of microcracks in the composites.
Experimental studies have shown extensive damage and associated non-
linear stress-strain reponse prior to muiti-failure. The macroscopic response
of ceramic matrix composites has four different configurations of distributed
damage at the microscopic levell3. Figure 2a shows the first of these
configurations consisting of matrix microcracks. The matrix microcracks have
their planes normal to the fiber axis and lie between fibers. The fiber-matrix
interfaces are undamaged in this configuration and we have no interphase.
Figure 2b shows the second of these configurations, including fiber-matrix
interfacial slipping in conjunction with the matrix microcracks as in the first
damage configuration. This configuration will result if the fibers are
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maintained in the matrix by frictional forces at the interfaces. The third
damage configuration shown in Figure 2c¢ consists of fiber-matrix debonds
distributed along the interfacial surfaces within the volume of the composite.
This configuration is likely to result from a non-uniform distribution of
interface bond strength when the composite is loaded. The fourth damage
configuration shown in Figure 2d represents distributed debonds along with
matrix microcracks (as in the first configuration).
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Figure 2. Schematic distribution of defects in the matrix. a) Matrix planes microcracks, b)
interfacial slip in connection with matrix microcracks, ¢) debonding, d) debonding in connection
with matrix microcracks.

These descriptions give a first approach to the typical non-linear behavior
associated to the slope modification or/and the inelastic strain that appears in
the monotonic stress-strain diagram. Nevertheless, this does not schematize
the slope rupture observed in the case of brittle-brittle materials, such as
CMC, during the successive loading-unloading cycles. The stress-strain
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diagram in isothermal state, Figure 3, shows the damaged behavior

(microcrack evolution) of a CMC during load-unload cyclesl4.
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Figure 3. Experimental curve during loading-unloading cycles of CMC.
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Figure 4. Schematic curve during loading-unloading cycle of CMC.
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Neglecting the very flat hysteretic micro-loops in the schematic
representation of this one-dimensional behavior, Figure 4, deserves some
comments!5. From point A until C, the damage increases and a pseudo-
plastic threshold induced by the damage also increases. The preexistent
microcracks or those created by loading are opened if their plane is
perpendicular to the load. A hardening of material appears at point F when
unloading the sample (path CFG, Figure 4). At point G when the load is
applied again, three distinct regions can be observed. The first one, path GF,
has a slope corresponding to Young's modulus E of the uncracked material as
the first loading (OA). The microcracked material has the behavior of a virgin
material and has forgotten the presence of microcracks. These have no
influence on the rigidity of the material and are therefore inactive. The
second region, path FC, is executed with a smaller slope than the previous
one (GF). Also, for a stress level higher than oo (point F), the behavior of the
material is influenced by the effect of the microcracks that are active. As soon
as the stress level passes through that of the previous loading (path C C') the
propagation of microcracks continues (third region) and damage increases as
is shown by a new unloading (path C' C"). This phenomenological analysis
reveals that at the point F (stress oo, strain gp) there is an unexpected change
of slope in the elastic constitutive law which corresponds, in advance, to a
closing-opening threshold. This phenomenon may be taken into account in
the damage modeling.

3. Constitutive Equations

Numerous methods lead to the formulation of the constitutive equations
of damaged materials. The micromechanical approach consists in analyzing
the microscopic phenomena to predict the macroscopic behavior. The
microdefects are defined by their geometrical parameters (microcrack lengths,
discontinuity spacing,...) for the calculation of the properties of the
continuous equivalent damaged medium. But the microscopic level is
unsuitable for modeling the global behavior because the microdefects usually
present a disordered geometry. The description of damage by a macroscopic
representation approach leads to a more convenient analysis and
identification of the behavior, for structural optimization and computations.

The purpose of this section is the macroscopic representation of the
inelastic behavior of a ceramic matrix composite. In the general framework of
the thermodynamic continuum mechanics this microscopic phenomenon is
represented by an internal variable that describes the effect of these
microdefects on the macroscopic scalel6. The more simple approach is that of
three-dimensional isotropic damage where we suppose that the microdefects
are statistically distributed in all space directions. The damage is then
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quantified by one scalar variable d. This variable? allows to define the
effective stress tensor Geff connected to the stress tensor g by Gefr = ¢ (1 - d)-1.
The insertion of Geff in the orthotropic elastic constitutive law of the virgin
equivalent material (without any damage) shows that Poisson's ratio is not
affected by damage. Generally, this description is not verified experimentally
because the damage is anisotropic, especially concerning composite materials.
Also tensorial variables must be introduced?. Several kinds of variables can
be considered, eighth, fourth or second order tensor, field vectors, etc. A
fourth rank diagonal tensor (6 components) privileges the symmetry axis of
the material and this tensor is well adapted to describe the damage of
composites whereas a two rank tensor privileges the principal direction of the
load, i.e., the anisotropy induced by the load4. Ladevezel” assumes a strain
equivalence between the virgin and damaged material and schematizes a
purely uniaxial anisotropic damage in neglecting Poisson's ratio variations.
They introduce then six scalar variables :

Ei=E(1-d),i=1,23;G;=G}(1-dy,ij=12,13,23. (1)

This is equivalent to considering a fourth rank diagonal tensor. Finally,
we analyze below the results deduced from a fourth rank diagonal tensor. For
instance, Kamimural8 considers a fourth rank diagonal tensor and observes
that this approach allows the symmetry of compliances (Sjj = Sjj) but the

Poisson's ratios of damaged material are: vjj = v?j(l - djj) and vjj = v?i(l - djj)
where the superscript 0 corresponds to the characteristic of virgin material.
These relations prove that the Poisson's ratio evoluation is generated solely
by stiffness variation in the load axis that is contrary to the anisotropic
damage notion. This model describes a particular anisotropic damage of plane
parallel microcracks and orthogonal to the load direction, Figure 2a. The
restrictive assumption of this damage model is that does not suppose an
interaction between the different directions of damage!®. In fact the symmetry
condition directly imposed in the constitutive equation when we made a
strain equivalence is too restrictive. As Sidoroff has established3, postulating
an energy equivalence between virgin and damaged material automatically
impose symmetry of the elasticity tensor. We need to specify the tensorial
nature of the damage and the transformation law for the stress tensor.

In the case of orthotropic materials, the shear moduli are independent of
the other all elastic properties. We can admit the uncoupling between
traction-compression and shear and so introduce the fourth diagonal damage
tensor (d1 to dg) which privileges the composite symmetry axis!9.
Experimentally, this energy equivalence obviously improves the damage
description in the transverse directions. The relations giving the elastic
properties of damaged material arel8:
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Ei=EX1-dp? viy=v1-dp(1 - )™, i,j=1,2,3; (2a)
Gz = Ga(1 - d¢)%, Gz = GI3(1 - d5)?, Goz = G3s(1 - do)?. (2b)

These expressions are poorly adapted for ultrasonic methods; so we prefer
a dual formulation. An extension of the preceding step is made through the

enthalpy. Introducing the effective elastic strain tensor g5, connected with
the strain tensor g, in the energy equivalence8 gives the relation between the
stiffness tensor C and CO of damaged and virgin material. Thus, we obtain the
constitutive law for the damaged material in the form ¢ = C(D)g®. For D, we
choose a fourth rank tensor that privileges the composite symmetry axis. The
non-zero Cj; arel?:

Ci=Ch (1-d)%i=1 to6; Cj=Ci=Ch(l-d)(l-d),ij=12,13,23.  (3a)

For any loading, these relations allow the whole determination of the
damage tensor components d; by:

di=1-Ci/HV? i=1t06. (3b)

This choice induces a coupling between off-diagonal stiffness and the
diagonal one which is not experimentally verified as we shall seen in the
following section. This explains the aberrations discovered in the strain
measurement!? and imposes to choose another damage variable to describe
the change in non-linear elastic behavior of microcracking composites.

A theory of tridimensional damage must be general enough to fully
describe anisotropic elastic degradation. The most general choice possible is to
consider the elastic tensor as the damage inner variable29. Thus the damage
state is entirely determined by measuring the elastic tensor of the damaged
material. The comparison of the damaged elastic tensor Cjj with the initial

one assumed undamaged C?j leads to a non-diagonal fourth order damage
tensor :

jj = C?}' -G @

This definition is analogous, in this beginning, to the one proposed by
Ortiz21 in which the values of the elastic constants themselves are taken as a
characterization of the state of damage of the material. Traditionally, in the
phenomenological models based on the thermodynamics of inner variables,
the damage parameter varies from zero, for the initial state, to the critical
value equal to 1 at the failure of the volume element?. To this end, one can
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define the damage variable, no longer as the absolute variation wj; but instead
as the relative tensorial stiffness change??

Dy=1-Cy/ C}. ®)

Nevertheless, this definition involves some difficulties about the off-
diagonal components of the elastic tensor. No direct thermodynamic
restriction exists on their variations20. The initial values of a large number of
them are identically zero. To obtain a change within the interval [0, 1] of all
components of the damage tensor it is necessary to normalize them by their
thermodynamically admissible maximum values such that the elasticity
tensor still is a positive definite operator. Thus the normalized variations of
the elastic tensor describe in a complete and simple manner the evolution of
damage in a principal plane. We have access to the normalized damage
variable components as follows?23 :

Dii=1-Cii/C(i)i,i=1tO6;
Dj = (Cf- Cii)[c(i)i + sign(C} - Cij)(ciicji)l/z] Lij=1to6;i#]j (6)

This representation has many advantages; no hypothesis on the geometry or
the distribution of microcracks is made, as is the case in micromechanical and
numerical approaches; no equivalence postulate is required and all
anisotropic damage can be described.

However, this model has a restriction. It is only valid for material which
in its initial state is undamaged, i.e., without microcracks and for monotonic
loading. In our experiments presented in the following section, the sample
was subject to pre-stress (around 80 MPa) and was in fact damaged and
microcracks were then created. Without applied stress these microcracks are

closed. At the time of loading an opening-closing threshold cg appears

(around 20 MPa) and a second inner variable B should be introduced to
specify the state, opened or closed, of microcracks. This new state variable
quantifies the proportion of opened microcracks and should satisfy the
relation 0 < B < 1 (as for shape memory alloys?4) whereas the damage

parameter D becomes the product D (= D*)25. Thus, before the opening-
closing threshold all damage components are quasi-null and the microcracks

are closed (B = 0). After this threshold these are quasi-constant till about the

level of initial loading o, ( = 80 MPa) and the microcracks are opened (8= 1).
Beyond the pre-loading, the damage components increase. Thus, the damage
is in fact dependent only on microcrack distribution whether the microcracks
are closed or opened?6. The inner variable D* is called apparent damage
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variable and D the accumulated damage variable. According to this, for all
damage components the complementary law of evolution is of the form :

D" = D(Gp) +[D(0) - D(6m)] H(G - 6p), or
D* =D(0m) H(G - 0p) +(D(0) - D(G)] H(G - O) , )

where H is the Heaviside function, D(c) the damage for the stress level ¢ (o >
Om) and D(om) the damage reached at the stress level om.

4. Ultrasonic Characterization

Composite life prediction using continuum damage mechanics requires
identification of the entire complex damage process. In order to describe the
fracture process all the damage modes need to be measured and taken into
account. It has been shown that the conventional mechanics metrologies
(gauge of strain, tongs test extensometer) are not well adapted to measure the
anisotropic damagel?. This result is not surprising because the variation of
off-diagonal components (Poisson's ratio) and of a diagonal component
(Young's modulus) of the elastic tensor cannot allow an indirect access to
another diagonal component of this elastic tensor (Young's modulus
perpendicular to the loading axis). Moreover, with a single sample, the
classical mechanic metrologies only permit the strain measurements along
and perpendicular to the loading axis.

Measurements of the nine elastic constants constituting the stiffness
matrix by the classical static technique -loading extensometry- requires a large
number of samples with suitable orientations. However, such sample cuts are
often unavailable from the manufacturing process and a full evaluation
cannot be achieved in this way. A means to circumvent this difficulty is to
conceive of metrologies permitting a complete determination of the stiffness
components of the elasticity matrix5. Precisely it is the case of ultrasonic
methods that allow an investigation of the broad angular slight of one given
plane’, 8. The ultrasonic evaluation technique makes it possible to measure
the nine stiffness coefficients describing completely the elasticity of an
orthotropic material. In anisotropic materials exhibiting an elastic behavior,
even in monotonic loading, the constitutive equation can be written in terms
of the small displacement field of an elastic plane wave’. It leads to the wave
equation written in its Christoffel form. The wave velocities depending on
the stiffness and direction of propagation are the solutions of the secular
equation?.

For example, in the principal plane (1,3), the relations between velocities,
stiffness and direction of propagation are?’:
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2pVEs= A+ (A2-4B)1/2, A = C33c0820 + Cy1sin®0 + Css,
B = (C33c0520 + Cs55in’6 )(Cs5c0820 + Cqysin?0 )
- (Cy3 + Cs5)%cos20 sin’0, ®)

where 8 is the transmission angle and L (resp. S) designate the longitudinal
(resp. shear) mode. The coordinate axes associated with the sample are given
in Figure 5.

Test piece under load ©.
Ultrasonic beam is
2 limited to the grey area.

Figure 5. Sample under load.

At each stress level, damage characterization is founded on the
measurement of the phase velocities of longitudinal and shear waves
transiting a plate sample immersed in water for various propagation
directions8. Ultrasonic experiments are performed in pulse trough
transmission. Velocities are obtained from the measurements of the transit
time of the waves by a filtering correlation technique and normal mode
tracking?8. This correlation technique gives good results when the material
can be assumed not to be dispersive. The measurement technique for transit
time is founded on the concept of Hilbert transformation2?. It leads to the
correct measurement of the phase velocities of the pulses through the
sample. Data handling of pulsed waves, angular scanning and transit time
measurements are completely computer assisted. The study of the acoustical
properties of the material has shown a transition frequency around 2.5 MHz
for ultrasonic response of a homogeneous medium30. This justifies the use of
2.25 MHz central frequency transducers. The composite is homogeneous and
continuous at this frequency used. The expressions of the velocities of the
two propagated modes are obtained by solving the inverse problem given by
the relation (8). The material is assumed orthotropic (9 independent
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stiffnesses) and is supposed to stay orthotropic during the uniaxial loading
test.

The exploitation of experimental data needs the knowledge of the
inverses relations between velocities and stiffness in each direction of
measurement. Let N be the number of these directions of measurements. We
solve an overdetermined system of N non-linear equations (with N > 9)
whose unknowns are the nine stiffness coefficients. This recovering of the
stiffness coefficients from the experimental data is solved by an optimization
inversion method3!. It minimizes, in the least square sense, the shift between
the experimental values, and the one calculated from (8) for the optimum
values of the stiffness.

The optimization scheme is broken up into three parts. The first two parts
consist of the measurements in the two accessible principal planes and lead to
the identification of seven coefficients of the stiffness tensor, namely C11, C22,
C12, Cep for a propagation in the plane (1,2) and Cq1, C33 C13, Cs5 in the plane
(1,3). The two remaining coefficients C23 and Cy4 (3rd part) are identified by
propagation in the non-principal plane (1, 45°) of orthotropic materials. The
variations of the stiffness Cij, in the coordinate axis of the sample, calculated
from equation (8) at each level of stress give the evolution of the damage
tensor components Djj in this coordinate system. An identification process
using the Newton-Raphson method allows to calculate the whole stiffness at
every level of stress from the set of experimental velocity data32.

A complex device was designed to have access under load to the velocities
of propagation as a function of the transmission angle (or the incidence
angle) and stress8. The association of this spectro-interferometer with a
tensile machine leads to the identification of the elastic tensor changes during
tensile test and then to an assessment of the damage phenomenon33. We
give some experimental results below.

5. Experimental Results

The ultrasonic evaluation of damage requires that the sample is submitted
to a tensile stress increasing by steps. During each step the stress is controlled
to remain constant and the angular investigation in the plane is performed.
We have built a specific immersed interferometer which is incorporated into
a tensile machine34. The tank lying on the lower traversing saddle is crossed
by the tensile axis and supports the positioning system of the transducers.
This latter device generates two degrees of rotation, the Euler angle, and it
positions the transducers on a sphere surrounding the material under test
(Figure 6). The specific shape of the plate sample locates the damage in the
part investigated by the ultrasonic beam. It also ensures that the stress state is
homogeneous in that zone3>.
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Figure 6. Ultrasonic characterization. The transducers are moved (rotations 681 and 0;) while
the sample is loaded along direction 3.

For example, by ultrasonic evaluation and using relations (8), and (3b) in
the plane (1,3) we obtain three components di, d3, ds of the fourth-rank
damage tensor. Figure 7 represents the evolution of these damage
components versus applied stress.
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Figure 7. Damage tensor component evolution in (1,3) plane.
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These three inner variables increase with the stress and their different
variations reveal clearly the anisotropy of the damage phenomenon8. We
note that d3, damage in the loading direction 3, is the largest while di, the
damage in the direction 1, is smallest. Moreover, the component ds has a
faster increase. This lets us predict a more ruining damage in the (1,3)
interlaminar shear plane.

However, the model's validity must not be forgotten. In the investigated
plane (1,3), after relations (3a), the validity is ensured if the off-diagonal
constant C13 variation is proportional to those of material stiffness along the
1 and 3 axis, i.e., if the minor M13 evolution is:

sMp - Cla_ (ChPa-dpa-dy? (P

= = = Const. 9)
C11Css 9% (1 - dp(1-dp)? §icls one

The minor Mj3 is positive, but C13 is not proportional to the product
C11C33. Figure 8 shows the gap between the experimental values M13
extracted from ultrasonic measurements at different stress levels and this
initial value of which the model does not anticipate any variation.
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Figure 8. Deviation between experiment and model.

However, we observe that this gap, in absolute value, stays weak (about 2
percent). In return, carried back to the off-diagonal constant evolution Cy3,
the gap is important between this experimental value Ci3 and the

"theoretical" value C}; = (1 - d1)(1 - d3). Thus, this choice induces a coupling
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between off-diagonal stiffness and the diagonal ones that is not
experimentally verified. This explains the aberrations discovered in the strain
measurementl? and imposes to choose an another damage variable, as we
have indicated in the previous section, to describe the change in non-linear
elastic behavior of microcracking composites (6).

However, before using a different three-dimensional anisotropic damage
approach, it is interesting to compare ultrasonic damage measurements with
those obtained by strain measurements. We have observed in Ref. 19 that
only the damage evaluation by classical mechanical mesurements in the load
axis (here d3) is reliable. These measurements, compared with ultrasonic
ones, are shown in Figure 9. We note a good agreement between these two
types of metrologies although the measurements come from different
samples of the same material.
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Figure 9 Comparison between strain and ultrasonic damage measurements.

Now let us use the variations of the glastic tensor to measure the
evolution of damage in a principal plane. We have access to the normalized
damage variable components by Eq. (6). For instance, in the (1,3) plane D33 is
the damage along the 3 axis (load direction), D11 is the damage along the 1
axis, Dsgs is the interlaminar shear damage in the (1,3) plane and Dj3 describes
the variation of the coupling between the 1 and 3 axis.

The measurements made in the two accessible principal planes lead to the
identification of seven coefficients of the stiffness tensor, namely C11, C22, C12,
Cgs for a propagation in the plane (1,2) and Cy1, Ca3 C13, Cs5 in the plane (1,3).
The two remaining coefficients Cy3 and C4q are identified by propagation in
the non-principal plane (1, 45°) of orthotropic materials®. The variations of
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the stiffness Cjj, in the coordinate axes of the sample, calculated from
equation (6) at each level of stress give the evolution of the damage tensor
components Djj in this coordinate system.

For example, in the (1,3) plane the evolution of the four damage tensor
components D11, D33, Dss, and D13, using relations (6) (loading by step 5 MPa)
is shown in Figure 10.
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Figure 10. In the plane (1,3) damage tensor components evolution.

These four damages inner variable components increase with applied
stress. These variations are different for different components and show
clearly the anisotropy of the damage phenomenon34. The greatest increase
occurs along the 3 axis, that is the tensile axis, and reaches values of about 0,5.
But because of the texture of the composite the microcracks propagate also
along the fibers and D11 and D33 increase more or less. The less important one
is along the 1 axis, perpendicular to the plane of the layers that never exceeds
0,15. The variation of the coupling between the 1 and 3 direction remains
weak. On the contrary the interlaminar shear damage in the (1,3) plane
induced by the tensile loading is important reaching 0,3. This last result
confirms a more ruining damage in the interlaminar shear plane35.
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Figure 11. Evolution of shear damage in a plane containing the load direction.
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It is important to note that the favored orientation of the micocracks has
also an important effect on the shear moduli and especially on those in the
planes containing the load direction (i.e. C44 and Css). The damage level (Dyy,
Dss) reached intoc these shear planes is similar to those estimated for the
damage component in the load direction 3. An example of results obtained is
presented on Figure 11 for a sample that has been subject to pre-stress of about
100 MPa33. Finally the inner deterioration process of material is expressed at
the macroscopic level by a damage that modifies all the components of the
elastic tensor. The anisotropic character of damage is obvious because it affects
differently each stiffness.

This model has a restriction as it appears on Figure 10 for instance. It is
only valid for material which in its initial state is undamaged, i.e., without
microcracks and for monotonous loading as in the previous experiments
associated with Figure 8. In our case the sample was subject to pre-stress of
about 80 MPa and was in fact damaged and microcracks were then created.
Without applied stress these microcracks are closed. At the time of loading an

opening-closing threshold op appears at about 20 MPa (Figure 10) and it is
necessary to consider the complementary law evolution of damage (7) with

the new inner variable . Before the opening-closing threshold all damage
components are quasi-null and the microcracks are closed (§ = 0). After this
threshold they are quasi-constant till about the level of initial loading o, = 80

MPa (Figure 10) and the microcracks are opened (f = 1). Beyond the pre-
loading, the damage components increase, as is shown by the curves in
Figure 10, after 80 MPa. Thus, the damage is in fact dependent only on
microcrack distribution whether the microcracks are closed or opened13.

The different variations of damage parameters characterize the anisotropy
of the damage phenomenon and justify the requirement of the independent
identification of each stiffness coefficient. These measurements show that the
damage associated to the shear modulus (Css) is as critical as the one
associated to the stiffness in the tensile direction (C33 Eq. (6)). In the loading-
unloading cycles, the tridimensional effect of pre-stress higher than the
damage threshold has been measured. Thus this global description shall be
divided using two internal variables. The first one relates to the accumulated
and growth damage corresponding to the initiation and propagation of
microcracks. The second inner variable is related to the opening-closing of
existing microcracks without propagation. Thus, the present theory is in good
agreement with the experiment. However, the slipping of microcracks is not
taken into account.

In other respects, by the same ultrasonic measurements it is possible to
obtain access to others properties of composites. For example the elastic
stiffness of carbon-carbon composites was measured in four steps during the
fabrication process30. Velocity, elastic stiffness and anisotropy factor (2Cgg/Coo-
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C12) are affected by the processing. The ultrasonic measurements show that
the carbonization-induced porosity drastically affects the anisotropy factor.
These and others results suggest that the use of ultrasonic waves could
provide a meaningful technique for monitoring the fabrication process and
thereby allow optimization of the control parameters and ultimately the
quality and processing speed of the final product. The ultrasonic immersion
technique let us identify also the viscoelastic constants in principal and non-
principal planes of an orthotropic medium. From velocities and attenuation
in any direction of propagation can be computed, and obtained information
on, the inner damage36.

6. Conclusion

The classical mechanic metrologie employs only strain measurements
along and perpendicular to the loading axis. This limtation is at the origin of
the low number of stiffness and damage parameters evaluated on only one
sample. To try to describe the three-dimensional damage phenomenon of
material at best, increasingly sophisticated models are elaborated. As these
appear, the model involves coupling of anisotropic damage with isotropic or
anisotropic elasticity, or coupling of anisotropic damage, anisotropic elasticity
and plasticity induced by damage. But in the panoply of measurements
executed, any one gives the required information.

For anisotropic material, only bi-axial tests, in particular off axis testsl4
shall permit substantial progress in the identification of three-dimensional
damage. Finally, if the essentials of the one-dimensional behavior are
obtained by strain measurement, any information of the transverse damage
induced by testing of strain hardening (i.e. perpendicular to the load axis)
does not actually appear possible. A method to avoid this difficulty is to
devise the metrologies permitting a complete determination of the stiffness
components of the elasticity matrix.

Precisely, it is the case of the ultrasonic method which allows an
investigation in the broad angular slight of one given anisotropic plane
appearé 32, The immersion spectro-interferometric method used in this work
has allowed a qualitative study of the phenomenon in following the
evolution of the ultrasonic gauge (velocity wave propagation) of damage.
These indicators show strong variations with the applied stress. The method
allows a complete determination of the four elastic constants in a principal
plane at various levels of stress. In effect, in spite of the somewhat dispersive
character of the material and the small thickness of the studied samples, the
testing in the plane (1,3) has permitted determination of the stiffnesses Cyj,
C13, Cs5 and C13 at every load level.
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These four constants are precisely those that completely characterize the
principal plane (1,3): their variations are large, particularly that of the stiffness
in direction 3 (load axis). These losses of rigidity are macroscopic
(phenomenological) measures of microcrack of the matrix (microstructural
phenomenon), a fundamental mechanism of the behavior of this fragile-
fragile composite. As a consequence, now possessing all information relative
to this plane, it is easy to describe the development of elastic behavior in this
plane. An investigation in the symmetry plane (1,2) and in the 45° -plane
containing the load axis permits a complete identification of the damage
tensor which, a priori, appears difficult when using the conventional
mechanical methods employing a single test direction. In addition, the
sensitivity of the method will certainly allow the determination of the
"initial” state of the material (virgin or not) on a qualitative level, in terms of
the velocities or even the attenuation. The complete non-destructive
evaluation of a test should thus permit the solution of some problems of
intrinsic dispersion in composite materials.
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ABSTRACT

The effects of dispersion and dissipation in linear wave propagation are interpreted in
terms of nonlinear wave propagation and used to describe the qualitative properties of
several fundamental nonlinear evolution equations.  The effects of nonlinearity are
reviewed, hyperbolicity is defined and conservation laws are introduced. A review of
Riemann invariants, simple waves and generalized simple waves is presented and a
conservation law is then used to remove the restriction of differentiability and continuity
placed on solutions of hyperbolic equations in order that they can admit discontinuous
solutions (shocks). The Riemann problem is examined and, finally, a number of topics
related to fundamental nonlinear evolution equations are reviewed, amongst which are
included solitons, the reductive perturbation method and Backlund transformations.

1. Waves, Linearity and the Interpretation of Derivatives

Nonlinear wave propagation is defined as wave propagation governed by partial
differential equations that are not linear. . Thus any introduction to nonlinear wave
propagation such as this must, of necessity, be prefaced by a definition of a wave and
some remarks about the significance of linearity in wave propagation.

The physical concept of a wave is a very general one, including as it does cases in
which a clearly identifiable disturbance, possibly localized, propagates through space as
time increases; a time dependent disturbance throughout a region of space that may or
may not be repetitive in nature and does not necessarily have persistent features that can
be seen to propagate; or even a periodic spatial disturbance that is completely
independent of time, like the waves in desert sand.

The essential feature that charactérizes the waves in what follows, and which
distinguishes them from the mere dependence of a solution on time, is that some attribute
of the wave can be shown to propagate through space at a finite speed. In such situations
the partial differential equations most closely associated with wave propagation are those
of hyperbolic type, though we shall see that parabolic equations with certain types of
nonlinearity may also describe waves in the above sense. For obvious reasons, partial
differential equations that describe the development of a solution with time are called
evolution equations.

In order to appreciate the significance of nonlinearity in wave propagation we
must first recall the notion of a linear operator. Let u(x,f) be a suitably differentiable

380
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scalar function of position vector x and time 7. Then the partial differential operator L in
the expression L[u] is said to be a linear operator if it is a linear combination of partial
derivative operators of various orders with respect to x and ¢, with the multipliers of these
operators functions of only x and #. Itis then a direct consequence of the definition of L
that if w and v are any two suitably differentiable functions

L[u+v] = L[u] + L[v]. (.1
If we now consider the homogeneous partial differential equation

L[u] =0, (1.2)

and let u and v be any two different solutions of Eq.(1.2), it follows from the linearity
property in Eq.(1.1) that

L[z + v] =L{u] + L[¥] = 0, (1.3)

which illustrates the linear superposition property of solutions that plays an essential role
when solving linear partial differential equations by separation of variables.

The simplest linear first order evolution equation describing wave propagation is
the advection equation, sometimes called the dissipationless Burgers' equation,

u + cu,=0, (1.4)

in which ¢ is a constant, while the most familiar second order evolution equation
describing wave propagation is the wave equation

(1/c2y uy = Au, (1.5)

in which A is the Laplacian and ¢ = ¢(x,?) is the phase speed of the wave.

In order to give a physical interpretation to the derivative terms appearing in
evolution equations we shall consider the one-dimensional form of Eq.(1.5) and the
following linear scalar equation which is first order in time but third order in its spatial
derivative with respect to x, and in which ¢, v and 1 are constants

up 4 Cuy - M + e = 0. (1.6)

This is a linearized form of the Korteweg-deVries, Burgers (KdVB) eguation whose full
nonlinear form will be discussed later, and it contains Eq.(1.4) as a special case when the

parameters 11 = 4 =0.
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Let us consider one-dimensional plane waves for which elementary solutions have
the form

U = aexplitkx - o], a.7m

in which a is the amplitude,  is the wave rumber and @ is the angular frequency, with &
being defined in terms of the wavelength Aby & = 2w/4 For elementary solution (1.7)
to satisfy either Eq.(1.5) or Eq.(1.6) it is necessary that & and @ satisfy a compatibility
condition obtained by substituting Eq.(1.7) into the appropriate partial differential
equation and finding a relationship of the form

o = oxk) (1.8)

between @ and k. Eq.(1.8) is called the dispersion relation for the partial differential
equation and the reason for this name will become apparent later. The general solution
of the equation may then be expressed as the Fourier integral

u =J A(k) explille - wi)dk, (1.9)

in which the spectrum function A(k) 1s determined by the initial and boundary conditions
of the problem. The phase velocity ¥, with which the wave profile is propagated, and
the group velocity V; with which the wave energy is propagated are defined as 1.2

V, = wkand V, = dwldk, (1.10)

and in general these two velocites are different. When the phase velocity ¥, depends
on the wave number & the wave is said to be dispersive, because different components of
the initial spectrum will propagate with different speeds causing the wave profile to
change shape and spread out, or disperse.
Partial differentiation of the elementary solution in Eq.(1.7) with respect to ¢ and
X gives
Up= - ioU, Uy= - 02U, Uy = ikU, Uy = -k2U, Uy = -ilk3U. (1.11)

Thus if the elementary solution U is to satisfy the one-dimensional form of the wave
equation it follows after substitution of Uy and Uy, from Eqns.(1.11) into the equation
that the dispersion equation for Eq.(1.5) is

@? = 2k2, or whk = *q (1.12)
showing that the phase velocity ¥, = = ¢, which is independent of k so waves governed

by the wave equation propagate without dispersion.
A similar argument applied to Eq.(1.6) shows its dispersion relation to be
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@ - ck+ ink? + pd =0, (1.13)
from which the phase velocity is seen to be given by
Ve = whk = (c- uk?)- ink (1.14)
Substituting for @k in the elementary solution in Eq.(1.7) then shows that
U = ae ¥ exp{ikix - (c - 1k2)11}, (1.15)

from which we see that provided n > 0 the wave will dissipate (attenuate) as it
propagates, though as the real part of the phase velocity depends on & the wave will also
expetience dispersion.

In the special case in which = g =0, Eq.(1.6) reduces to the advection equation
given in Eq.(1.4) whose solution in Eq.(1.15) is then seen to correspond to a wave that
translates with constant speed ¢ without change of shape or attenuation. This result can,
of course, be derived independently of the above argument.  All that is necessary is to
observe that inspection shows the general solution of Eq.(1.4) to be

u = flx-ct), (1.16)

where f is an arbitrarily once differentiable function of its argument. Thus u is constant
along the lines (characteristics) x - ¢ = const., with the result that the initial waveform
determined by the initial condition at ¢ =0, say u(x,0) = ®(x), is translated to the right
with speed ¢ without change of shape. Such waves of constant form are called traveling
waves.

The considerations leading to Eq.(1.15) show that in a general linear partial
differential equation that is first order in time and similar to Eq.(1.6), but possibly
possessing even higher order partial derivatives with respect to x, the partial derivatives
with respect to x of even order greater than or equal to two correspond to dissipative
terms provided the signs of their coefficients are chosen appropriately, while partial
derivatives with respect to x of odd order greater than one correspond to dispersive terms,
irrespective of the signs of their coefficients.

This interpretation of the significance of spatial partial derivatives in linear
evolution equations like Eq.(1.6) is also used to provide a qualitative description of the
nature of nonlinear evolution equations of similar type. Thus Burgers equation

up Uy = Ny (1.17)

with 7 > 0, which is nonlinear because of the product term wuy, is classified as purely
dissipative, whereas the Korteweg-deVries (KdV) equation
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up + uty + [y =0, (1.18)

which is also nonlinear for the same reason, is classified as purely dispersive. In the
same way the full nonlinear KdVB equation

up + Uty - Ny + Uy =0, (1.19)

of which Eq.(1.6) is the linearized form, is classified as both dissipative when 1 > 0 and
dispersive when gt # 0. A different and purely physical justification for classifying
Burgers' equation as dissipative, based on Burgers' own use of the equation as a model for
the decay of free turbulence in a fluid, was given in the early paper by Cole 3 in which,
independently of the work by Hopf 4, he also developed the transformation enabling the
solution of Eq.(1.17) to be determined in terms of the solution of the linear heat equation

Kup = Upy, (1.20)
in which x = const., but more will be said about this later.
2. The Effect of Nonlinearity

The effect of nonlinearity is most easily demonstrated by considering the
following initial value problem for the quasilinear equation (an equation is quasilinear if
it is linear in its highest order derivative)

u + fwu, = 0, 2.1)

where f{u) is an arbitrary continuous function of the scalar function u(x,f) which is subject
to the initial condition

u(x,0) = g(x), (2.2)

with g(x) an arbitrary continuous function of x.
Taking the total derivative of a differentiable function u(x,f), later to be identified
with the solution of Eq.(2.1) subject to the initial condition in Eq.(2.2), leads to the result

du/dt = ug +u, dx/dt . (2.3)

A comparison of Eq.(2.1) and Eq.(2.2) shows that Eq.(2.1) may be replaced by the pair of
ordinary differential equations

dw/dt = 0 along the curves defined by dw/dr = fu). 24
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The first of these equations asserts that 1 = const., while the second shows that the curve
in the (x,f)-plane corresponding to this constant value of » must be a straight line. The
curves in the (x,7)-plane defined by the second equation in Eqns.(2.4) are, of course, the
characteristic curves of Eq.(2.1) which in this case comprise a family of straight lines,
while the pair of ordinary differential equations in Eqns.(2.4) are called the characteristic
form of the original partial differential equation. The constant value of u transported
along a characteristic curve (straight line) is simply the initial value assigned to u at the
point on the initial line from which the characteristic curve originates, and the constant
gradient of the characteristic curve dx/dr = g(u) will depend on u.

Consequently, the characteristic curves through the distinct points (x,,0) and
(x,,0) on the initial line, where in general u(x,,0) # u(x,,0), will transport these different
constant values of « into the half-plane ¢ > 0 along straight lines with different gradients.
This’ observation has two important consequences for wave propagation governed by
Eq.(2.1).  The first is that, unlike the advection equation given in Eq.(1.4), the
quasilinear equation in Eq.(2.1) cannot describe traveling waves, because the waveform
must, of necessity, change its shape as it propagates. The second observation, which is a
consequence of the first, is that if all the characteristics in the (x,f)-plane diverge for ¢ > 0,
the solution of Eq.(2.1) subject to the initial condition Eq.(2.2) is determined by this
system of characteristics for all time (Fig.1(a)).

However, if the characteristics converge, which depends only on the function f
and the pointwise values of u(x,0) = g(x) and is in no way dependent on the
differentiability of g(x), the characteristics will intersect. As different values of u will be
transported along different characteristics, the intersection of characteristics corresponds
to a non-uniqueness of . In general the intersection of characteristics will usually take
place, and the earliest elapsed time f> 0 at which it occurs corresponds to a breakdown in
the differentiability of » and to the subsequent development of non-uniqueness (F ig.1(v)).
We will see later when considering a typical case that the family of intersecting
characteristics can form an envelope in the (x,f)-plane, and that the point at which this
envelope first forms determines the time and place at which differentiability of the
solution first breaks down. Thus the governing differential equation ceases to be valid
after time £ .

t
u=gixyl uzg(x,)

0 Xy X x 0 X4 Xo X

@ ®)

Fig.1 (a) Diverging characteristics, and (b) Converging characteristics
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It follows by using the fact that ¥ = const along a characteristic, and then
integrating the second of Eqns.(2.4), that the equation of the characteristic through the
point (£,0) on the initial line will have the equation

x=& +f(g(€)) whilealong it u=g(£). 2.5)
Eliminating & between Eqns.(2.5) leads to the implicit solution

= glx - ). 2.6)

Notice that, independently of the reasoning leading to Figs.l, the implicit nature of the
solution automatically implies the possibility that # may evolve to the point at which it
becomes non-unique after some finite elapsed time. The condition for the breakdown in
differentiability can be derived from Eq.(2.6) by differentiating it partially with respect to
x to obtain the result

ue = g0 - tf))[1 + 1g'(x - (W) "(W)), @7

in which a prime indicates differentiation with respect to the argument of the function
involved. This result shows that u, becomes infinite if some time f, exists for which the
denominator of Eq.(2.7) vanishes.

A typical case involving the loss of differentiability of u is illustrated in Fig.2,
corresponding to Eq.(2.1) with fu) = u and Eq.(2.2) with g(x) = a sin x. Specifically,
Fig.2 shows the formation of an envelope of characteristics E, the cusp of whichatx ==
corresponds to the first time f, = 1/a at which the characteristics intersect leading to the
breakdown in differentiability of u. In this case, from Eq.(2.6), the implicit solution is
seen to be

u = sin{x-ut) (2.8)

Here, because of the periodicity of the initial condition, the solution-becomes multivalued
(non-unique) at time ¢ = ¢ for x = 2n +1)x, for n = 0,£1,42,... . The graph in Fig.2 also
shows the formation of similar cusps for t < 0, though these are not relevant because they
occur before the initial time ¢ = 0.

Fig.2 The envelope of characteristics E and the cusp at the point (0,1/a)
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The loss of differentiability illustrated in the case of the scalar first order
quasilinear equation in Eq.(2.1) is typical of the loss of differentiability in systems of
such equations that describe nonlinear wave propagation, and the time and place at which
this occurs can be determined 5. Naturally, when u ceases to be differentiable, the partial
differential equation or system describing the evolution process up to that point in time
ceases to be valid. Thus, if an attempt is to be made to extend the solution beyond this
critical time, some way must be found by which to replace the governing evolution
equation involving partial derivatives of u by an equivalent equation in which  appears
in an undifferentiated form, for this will then lift the differentiability requirement and
even allow u to be discontinuous. The generalization of a solution used to achieve this
objective forms the subject of Section 5.

3. Hyperbolicity and Conservation Laws

Hyperbolic equations describe wave propagation, and it is a familiar elementary
result that the linear second order partial differential equation for u(x,f)

A(x Dy, + 2B,y + COchuy = foxstu,tiy,uy) 3B.1n

is hyperbolic in a domain D of the (x.f)-plane when B2 - AC>0in D. Thus the one-
dimensional form of the wave equation given in Eq.(1.5) is seen to be unconditionally
hyperbolic throughout the (x,f)-plane. As the general solution of the one-dimensional
wave equation can be expressed as

u=Ox-ct) + ¥Y(x+cl), 3.2)

with @, 'P arbitrary twice differentiable functions of their arguments, it follows that the
solution comprises a linear combination of two traveling waves, one moving to the right
with speed ¢ along the family of characteristic lines x - ¢f = const., and the other moving
to the left with the same speed along the other family of characteristic lines x + ¢t = const.
In each case, the profile of the traveling waves will be determined by the initial
conditions at £ = 0 which will define the functions ® and V.

The relationship between the solution of the wave equation given in Eq.(3.2) and the
solution of the advection equation Eq.(1.4) given in Eq.(1.16) can be seen by writing the
one dimensional wave equation in either of the two equivalent forms

(3¢ - cO)(ug +cuy) = 0, (3.3)
or
@ + cd)(y - cuy) = 0. (3.4)

For if u is such that
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u +cu, = 0, (3.5)
then it is a special traveling wave solution of Eq.(3.1) moving to the right with speed ¢
corresponding to D(x - ¢f), in Eq.(3.2), while if it is such that

U - cuy = 0, (3.6)

then it is a special traveling wave solution of Eq.(3.1) moving to the left with speed ¢, but
this time corresponding to W(x + cf) in Eq.(3.2). These special solutions are degenerate
solutions of the wave equation because they are solutions of first order equations,
whereas the solution in Eq.(3.2) must satisfy the wave equation which is second order.

More general than the linear second order partial differential equation in Eq.(3.1)
is the quasilinear system

Us + AU, + BU) = 0, 3.7

in which U = U(uy,u,....4y), A = A(ui,u3,...,uy) and B = B(u1,u3,...,u,) are nx1 vectors,
and suffixes indicate partial differentiation. This system is said to be totally hyperbolic’
in any domain D of the (x,f)-plane in which A has » distinct real eigenvalues A1, A2,...,A;
and a complete set of corresponding left eigenvectors /7, [,...,l,; satisfying the equation

LA = M, i=12,..n (3.8)

We mention here that a partial differential equation of any order greater than or equal to
two for a scalar function u(x,f) may always be reduced to an equivalent first order system
of this type by introducing higher order derivatives as new dependent variables 56,

When the independent variables involved are a spatial coordinate x and the time ¢
the requirement that the eigenvalues are real ensures that they represent real speeds of
propagation, because they have the dimensions of a length divided by a time. The
existence of a complete set of linearly independent eigenvectors allows Eq.(3.7) to be
reduced to a characteristic normal form 567 in which n functions related to the n elements
of U are differentiated along n separate families of characteristic curves C(¥), i=1,2,...,n
defined by

c): dedt = Ap» i=12,..n (3.9)
We now consider the important class of systems called hyperbolic conservation
laws. These are systems of hyperbolic equations, each member of which can be written

in the divergence form

up + divFu) = 0, (3.10)
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in which u = u(x,f) and F(u) is a verctor function of u.

To appreciate why these are called conservation laws we consider the typical
example provided by the dissipationless Burgers' equation given in Eq.(2.1). By setting
F(u) = | fw)du , Eq.(2.1) may be written in the one-dimensional form of Eq.(3.10) as

up + Fy(u) = 0. @B.1n
Let us now integrate Eq.(3.11) over an arbitrary interval -a < x < a to obtain

J_:u,dx + Fw)|, - F@)|, = 0. (3.12)

Then for the class of solutions u that vanish sufficiently rapidly as |x]— eo so that the
function F(w) | — 0 as a — o, it follows that

x=ta
4 I “udx =0,
dat =
showing that the integral
j udx

is a conserved quantity as it is independent of ¢.
A typical example of a system of hyperholic conservation laws is provided by the
one-dimensional equations of gas dynamics 58.9:10.1L12 that in matrix form may be written

U+ Fy =0, (3.13)
with
p pu
U= |pu and F = |pu +p , (G.14)
pu?2 + pe u(pu®2 + pe + p)

where u is the one-dimensional gas speed, p is the gas density, p = p(p) is the gas
pressure and e is the specific internal energy of the gas. The first equation in the system
describes conservation of mass, the second conservation of momentum and the third
conservation of energy.

The significance of the requirement that the hyperbolic systems be expressible in
divergence form will become apparent later when we come to consider discontinuous
solutions, because only for such systems is there a means by which to relate the solution
on one side of the discontinuity to the solution on the other by using the Gauss
divergence theorem.
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4. Riemann Invariants, Simple Waves and Generalized Simple Waves

Because of its importance we now review the classical theory of Riemann
invariants The method is applicable to any totally hyperbolic system of two first order
equations in the two dependent variables x, ¢, and the two independent variables u,v of the
form

U+ oapuy + apve = 0,
Vi + ayty + aypvye = 0, @.1)
subject to the initial conditions
u(x,0) = uy(x) and v(x,0) = v,(x), (4.2)

where the ajj = aij(u,v) depend explicitely on u and v and only implicitely on x and ¢
through » and v, while u,(x) and v,(x) are the prescribed initial conditions. For our
purposes ¢ is the time, though it may also be a spatial variable like x, in which case it is
usually denoted by y.

Systems of this form are said to be reducible, which is a name derived from the
the application of the hodograph transformation”™ to the system, that involves
interchanging the roles of the dependent and independent variables. This reduces the
system of equations to one that is linear in x and ¢, and so is much easier to solve.
However, the price paid for this simplification is that boundaries in the (x,f)-plane are
transformed into far more complicated ones in the (w,v)-plane, thereby usually
introducing considerable mathematical difficulties when seeking the solution of even the
simplest problem.

Defining the matrices A and U as

A _ all alZ ) U - l:ll }
all aZZ v
enables Eqns.(4.1) to be written as the system
Uy + AU, = 0. 4.3)
This system will be be totally hyperbolic provided the eigenvalues A;,i=1,2 of
matrix A are real and distinct. Using the corresponding left eigenvectors /; introduced in
Eq.(3.8), and pre-multiplying Eq.(4.3) by {;, leads to the result

L{U; + AU} =0, fori=12 (4.4)
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The bracketed expression in Eq.(4.4)is simply a directional derivative of U with respect
to ¢ along the family of characteristic curves () defined in Eq.(3.9). Denoting such

differentiation along C({1) characteristics by d/da and along the C(2) ones by d/dp allows
Eqns.(4.4) to be replaced by the pair of ordinary differential equations

I, dU/do. = 0 along the C(1) characteristics 4.5)
and
LdU/df3 = 0  along the C(2) characteristics. (4.6)

Thus f = const. along C{1) characteristics, and & = const. along C(2) characteristics as
indicated in Fig.3.

’

1

@,
“ N

x x
Fig.3 Families of characteristics with associated Riemann invariants

Writing the left eigenvector ;= {{,() I,(D}, fori=1,2 allows Eqns.(4.5),(4.6)
to be expressed in the form

1, awdo + 1,(1) dvde. = 0 4.7
along the C(1) characteristics, and
1, dwdp + 1, dwdp = 0 (4.8)

along the C{2) characteristics.

As A depends only on u and v, so also will the elements of /; , showing that the
above equations will always be integrable along their respective characteristics, though
multiplication by an integrating factor 1t may be necessary.

Integrating Eq.(4.7) with respect to ¢ along the (1) characteristics and Eq.(4.8)
with respect to 8 along the C{(2) characteristics gives
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Jutdu + fptDav = 1) (4.9)
along the c) characteristics,and
fut@du + [u1,ddv = s(a) (4.10)

along the C(2) characteristics, where r and s are functions of their respective arguments

o and 3, while the two families of characteristics are determined by integration of the
equations

cd):  dxdr = A;,fori=12. (4.11)

The functions r(ff) and s(¢) are called Riemann invariants because they are
invariant quantities along their respective characteristics. Thus »(f) is constant along any
(1) characteristic, though as it is a function of B it will, in general, be different for
different characteristics, and a corresponding statement is true for s(¢) along C(2)
characteristics. Eqns.(4.9),(4.10) enable v and v to be expressed in terms of r and s, the
values of which are determined at points of the initial line r = 0 by the initial data in
Eq.(4.2).

Suppose #(f) in Eq.(4.9) is denoted by R(x,v) and s(ca) in Eq.(4.10) is denoted
by S(u,v). Then along the characteristic (1) issuing out from an arbitrary point (3,0 of
the initial line as ¢ increases we have

R(uv) = R(u1(x),v1(xo)), (4.12)

while along the characteristic C(2) issuing out from a different arbitrary point (x;,0) on
the initial line we have

S(uv) = SCu1(x),vi(xy))- (4.13)

Solving these two implicit equations for » and v determines the solution at the
point of intersection P of the (1) and C(2) characteristics in Fig.3 along which their
respective constant values of  and s are transported. In principle the initial value
problem is now solved, because the points (x,,0) and (x,,0) on the initial line were
arbitrary, so the point of intersection P of the associated characteristics may be any point
in the half-plane t > 0. However, in particular cases the task of solving the two implicit
relationships and of finding the characteristic curves in order to determine their point of
intersection P is not always possible analytically. Furthermore, the implicit relationships
imply the possibility of the non-uniqueness of the solution at some point in the (x,f)-
plane.
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Simple wave solutions arise when one of the Riemann invariants is an absolute
constant. Suppose, for example, that s(c) = 5, so that Eqns.(4.9) ,(4.10) may be written

1@ + fiz® = r(B) and fH1(@) + f220%) = s0. (4.15)

Then, in general, for any value of [ determining a specific (1) characteristic, these
equations will have a unique constant solution u = u1(£), v = v{(£) determined by the
point (£,0) on the initial line from which the C(1) characteristic originates.

Setting A, = A, (u1(6)v1(&) = A(E), say, we see that for any given & the associated
characteristic is the straight line given by

x = E+ A8 (4.16)

Thus the associated simple wave solution corresponds to the transport of the
initial values of u and v at the point (&,0) as constants along straight line characteristics
where, in general, different straight line characteristics will have different gradients. In
the event that characteristics form an envelope we arrive at a situation analogous to the
one illustrated in Fig.2 for a single equation.

The notion of a simple wave can be generalized to systems of the form

U + AU, = 0, (4.17)

in which U is an nx] column vector with elements uj, up, ..., upand A=A(U)isan n X n
matrix with elements depending explicitely only on the elements of U. The
generalization is based on the fact that in an ordinary simple wave v may be regarded as a
function of u so, by analogy, a generalized simple wave solution of the system in
Eq.(4.17) will be taken to be one in which u; = uj(uy), fori=2,3,... n

Setting U = U(u1) and substituting in Eq.(4.3) gives

(dup/ot 1+ duy/dx A) dU/du; = 0, (4.18)

where I is the unit matrix. This homogeneous system will have a non-trivial solution
only if
4 - ull =0, (4.19)

where p1 = - (duj/df)/(dui/ox). Thus the n solutions y; for i=1,2,.. ., nare seen to
be the eigenvalues A; of A, while the corresponding » vectors dU/du] are seen to be
proportional to the associated right eigenvectors of A.

Here, as with ordinary simple waves, the characteristics C(!) are again families of
straight lines determined by integrating



394 A. Jeffrey

D). addr = A, (4.20)

while the variation of 1, which then determines the variation of the ¢; fori =2,3,... n
is itself determined by the scalar generalized Burgers' equation

(Quy/dr) + Afup)(Qui/ox) = 0. (4.21)

A more detailed discussion of these generalized simple waves and their associated
generalized Ag-Riemann invariants is to be found elsewhere 3.

5. Discontinuous Solutions, Shocks and Generalized Simple Waves

The discussion of first order quasilinear hyperbolic equations given in Section 2
showed that even when the initial data is arbitrarily smooth the solution may still develop
an infinite spatial derivative after a finite elapsed time ¢, , beyond which time a classical
solution ceases to exist. Furthermore, the particular solution in Eq.(2.8) demonstrated the
fact that an attempt to continue a classical solution beyond the critical time #, can lead to
it becoming non-unique. This same pattern of behaviour can also be shown to be
exhibited by quasilinear hyperbolic systems in general®.

In order to extend the equations governing wave propagation so they allow the
possibility of discontinuous solutions it is necessary to reformulate them in such a way
that the loss of differentiability caused when a solution becomes discontinuous no longer
invalidates them. When conservation equations are involved this may be accomplished
by re-expressing them in integral form using the following well known veetor transport
theorem and then using the result to relate the solution on either side of a discontinuity to
its speed of propagation.

Let a scalar function flx,f) be defined in an arbitrary volume V(f) in space,
throughout which there exists a velocity field s(x, #) that also determines the motion of
the surface S(f) bounding V(f). Then, in terms of the derivative D/D¢ = 9/t + 5.V, called
the material derivative,

D Df .
—- dv = =L+ div (fs) | dV
D¢ Jvu{l JV(() [Dt (f)] G.1)
If, now, fis a conserved quantity in volume W(r), it follows from this last result that
Df ., di _
A iv(fs)1 dV =20
jm) [ o (fs) (5.2)

To develop the argument further, and for the sake of simplicity, we now apply the result
of Eq.(5.2) to the familiar one-dimensional scalar generalized Burgers' equation

up + fu)u, =0. (5.3)
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However, vector notation will be retained throughout the following argument to indicate
how the same method may be applied to a system of vector conservation laws. As in
Section 3, by setting F(u) = [ fu) du , Eq.(5.3) may be written in the conservation form
given in Eq.(3.1), namely as

u + div(F@) = 0, (5.4)

where in one space dimension F(u) = F(u) and div(.) = d(.)/ox.
Setting /= u in Eq.(5.2) and substituting for u; from Eq.(5.4) then gives

I v (us = F(D) dV = 0 (5.5)

Applying the Gauss divergence theorem to Eq.(5.5) allows it to be re-written in the form
of the surface integral

Ism (us - F(u)) - ndS =0, (5.6)

where n is the outward drawn unit normal to the surface S(f) bounding volume ¥V(¥) and
dS is the element of area on S(f). In this one-dimensional case s.n = s is the speed of the
velocity field along the x-axis, and F(u).n = F(u).

Suppose now that u is discontinuous across some surface X, that divides W(¢) in
two, and identify the adjacent sides of the surface by the suffixes - and +. Next we shrink
V() to an arbitrarily small volume containing ¥; in such a way that S() is parallel to each
side of X; while the distance between the two sides of S(¥) bounding the 'discontinuity
surface is negligible. Because of the arbitrary nature of V{(¢) the integral in Eq.(5.6) can
only vanish if the integrand vanishes, so we conclude that

(su - Fu)). = (su - Fu))., 6.7

where the suffixes * now signify that the associated results are to be evaluated on the
adjacent sides - and + of the discontinuity surface. By virtue of its manner of derivation,
in this result s is constrained to lie on the discontinuity surface, and so as it moves with
the surface it must be continuous across it, while 1 and F(u) are discontinuous across it.
Using the notation [[.]] to denote the jump (.); - (), in a quantity (.) across the
discontinuity surface, the result of Eq.(5.7) becomes

s{[u]] = [(F@)]I. (5.8)

This nonlinear result is known as the generalized Rankine-Hugoniot jump
condition and it is named after Rankine and Hugoniot who, independently, were the first
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to introduce a relationship of this type into the study of gas dynamics. In the one-
dimensional case considered here in relation to the generalized Burgers equation, this
jump condition relates the solution on either side of the discontinuity surface to the speed
s of propagation of the discontinuity surface in the x-direction. Discontinuous solutions
of this type are given the generic name shocks, or shock waves, because of the analogous
situation in gas dynamics in which gas flows through a shock, across which the field
variables comprising the pressure, density and velocity experience discontinuous jumps.

A similar result holds for a system of vector conservation laws, in which case s is
the speed of propagation normal to the discontinuity surface. It is important to recognise
that the condition in Eq.(5.8) is a nonlinear one, so that specifying v on one side of a
shock together with the shock speed v will not necessarily determine u on the other side
in a unique manner. In this case, for uniqueness, it is necessary that ) is convex (or
concave) and satisfies certain additional conditions. However, the arguments involved
will not be developed any further because the details can be found in a number of
references $10.1112,

Suffice it to say here that in this case, for a physically realizable shock, the
characteristics in the (x,f)-plane on either side of the shock must converge onto the line
followed by the shock. That is, the characteristics behind the shock must have speeds
faster than that of the shock speed s, while the characteristics in front of the shock must
have speeds slower than that of the shock speed. If the characteristic speed A(u) behind
the shock is denoted by a suffix - and its value ahead of the shock is denoted by a suffix
+, then the condition for a shock to form becomes

Aw) > s > Muy). (5.9)

Conditions of this type are called entropy conditions, because of the situation in
the gas dynamic case for which the first entropy condition was introduced. In gas
dynamics two discontinuous mathematical solutions are possible, one an expansion shock
and the other a compression shock, though the expansion shock is rejected as being non-
physical because it violates the change of entropy required by the second law of
thermodynamics. Thus the first selection principle (entropy condition) for a physically
realizable stable shock in gas dynamics came from outside the system of gas dynamic
equations used to derive the Rankine-Hugoniot jump condition. In more general systems,
where the thermodynamical concept of entropy is not available, alternative mathematical
conditions are necessary to determine shocks with acceptable mathematical properties
(stability), though the name entropy condition is still applied to them.

When in Section 4 we considered a system of the type

U, +AU) Uy = 0, (5.10)

with U an n x | vector with elements u, . .., u,, and 4 = A(U) , the system was seen to
be hyperbolic if the matrix A(U) has » distinct and real eigenvalues A, . . .,A, for each U.
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Furthermore, in Section 4, this system was shown to have generalized simple wave
solutions with certain properties similar to those of ordinary simple waves, the behaviour
of which is governed by the scalar generalized Burgers Eq.{(4.19). The main property of
generalized simple waves is that in them the the characteristic lines comprise a family of
non-parallel straight lines, while along each characteristic u; = uj(uj) fori=2,3,...,n.

Now let Eq.(5.10) be a system of hyperbolic conservation laws, which will be the
case if it can be written in the form

Uy +Fy =0, (5.11)

with A obtained by taking the gradient of an nx 1 vector F = F(U) with respect to the
elements of U, so that 4 = V,F(U). It then follows immediately that when a family of
characteristic lines converges this system can also admit solutions in the form of shock
waves.

As with the simple scalar case already outlined, the discontinuous shock solutions
associated with the system shown in Eq.(5.10) will not be unique, so an entropy condition
is again needed in order to select the stable solution. Using the idea of characteristics
converging onto the shock line from both sides to create a shock, this entropy condition
can be shown to be capable of formulation in the following form 3%10,11.12,

For a stable shock with speed s there must be some index k, with 1 £ k< n, such
that

Mlu) > s> Afu), (5.11)
while
M) > s > My g(uy). (5.12)

These inequalities ensure that k characteristics converge onto the shock line from

the rear and n - k + 1 converge onto it from the front. Taken together with the generalized
Rankine - Hugoniot condition

s[[UI] = [[F(D]], (5.13)

that may be derived for the system in Eq.(5.11) in the same way as for the scalar
generalized Burgers' equation, after eliminating s these results are sufficient to determine
the 2n values assumed by the elements of U on either side of the shock.

6. The Riemann Problem and the Random Choice Method
The introduction of shock solutions now makes it possible to discuss the Riemann

problem that is of fundamental importance in the study of nonlinear hyperbolic
conservation systems. In the case of the system in Eq.(5.10), the Riemann problem may
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be formulated as follows. Find the solution of the reducible hyperbolic conservation
system

U +AU) Uy = 0, (6.1)
subject to the piecewise initial data
Uyforx <0
Ux,0) =
U for x > 0, 6.2)

where Uy and U, are constant » element column vectors.

Thus the Riemann problem involves resolving the discontinuity in the piecewise
constant initial data at the origin on the initial line. In what follows, the problem is
simplified by reducing it to finding the solution of a typical scalar Riemann problem,
because this problem contains all the features to be found in the more general case.
Specifically, we solve

wy+ 12u, =0, (6.3)

subject to the initial condition

u, forx<0
u(x,0) =

u, for x> 0, 64)
where u, and u, are arbitrary constants.
When Eq.(6.3) is written in conservation form by setting F(u) = #3/3 it becomes

up + Fy(u) = 0, (6.5)

from which, by using the Rankine-Hugoniot jump condition of Eq.(5.8), it follows that
the shock speed s can be determined from

s(uy - ug) = (u® -u)/3, (6.6)

and so
s = (u + ugu; + u?). 6.7

Thus, when a shock can exist for £ > 0 and emanate from the origin, it follows from
Eq.(6.7) that the gradient of the line in the (x,f)-plane followed by the shock must have
the constant value s, and so the shock will propagate along a straight line through the
origin.

The characteristic curves C (straight lines) for Eq.(6.3) are determined by using

the fact that u = const. and integrating
C:  dxldt = (6.8)
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Thus for x < 0 the characteristics of are seen to be parallel straight lines with slope ug2,
whereas for x > 0 they are parallel straight lines with slope u,2.

shock
t t
/ \ \ Yy
Up /
w

u /
%
/ B //

0 x 0 )

Fig.4 () Centered simple wave region (b) Shock connecting two constant states

connecting two constant states

If uy? < u,2 these two families of characteristics diverge as shown in Fig.4(a), and
the wedge shaped region W in the (x,f)-plane is not traversed by any member of these two
families of characteristics. As the characteristics must be straight lines, and they are
constrained to pass through the origin, they must have the equation x/f = const. Thus in
region W we must seek a solution of the form u = u(x/f).  This leads to an ordinary
differential equation for u(z), where z = x/f, and in region W this differential equation has
the solution u(x,f) = (/)2 for up? Su,2. Finally, combining this result with the constant
solutions on either side of W shows the required complete solution for u(x,f) to be given

by

uy for x/t < ug?
ul,) = ¢ (/N2 for y2 < u;?
uy for x/t > u2

This is a simple wave centered on the origin and it provides the unique solution of
the Riemann problem in region W. The uniqueness follows because although the line
traversed by the shock in the (x,f)-plane also lies in W, no characteristics converge onto it
as required by the entropy condition for the shock to be genuine, so in this case the shock
solution must be rejected. However, if up* > u;? the two families of characteristics
converge and lead to the immediate formation of a shock that is then propagated with the
speed s given in Eq.(6.7).

Fig.5 shows how the centered simple wave resolves the initial discontinuity in the
initial data at the origin for the case in which Uy =0 and u; = 1, while Fig. 6 shows how
when 1y =1 and u,; = 0 the initial discontinuity is propagated immediately as a shock.
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t L= x
Fig.5 Resolution of the initial discontinuity by a centered simple wave

dx/dt=s

Fig.6 Propagation of initial discontinuity as a shock wave

An important application of the Riemann problem to the numerical solution of
conservation systems was made by Glimm!3 who introduced the random choice method.
This is a method of first order in accuracy, and the fundamental idea involved is 10
replace arbitrary initial data by a piecewise constant approximation in spatial intervals of
length 2. Then, until such time as the centered simple waves and shocks that result
interact, an analytical solution of the piecewise constant approximation to the initial data
is provided by the set of solutions to the appropriate set of Riemann problems. If, for a
suitably small time step &, this composite solution is used as an dpproximation to the
actual solution, a new set of Riemann problems may be derived from the analytical
solution at time ¢ = k, and thereafter the process may be repeated to advance the solution
step by step in time.

The special feature of Glimm's method lies in the way each new set of Riemann
problems is derived from the corresponding set of analytical solutions. In the random
choice scheme the constant value to be associated with each interval of length # is found
by random sampling of the analytical solution derived for that interval. For a detailed
discussion of the application and accuracy of this method we refer to the papers by
GlimmBLucier!* and Chorin!’. Alternative methods of solution for nonlinear hyperbolic
equations are to be found in the book by LeVeque 12,
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An important extension of the Riemann problem was made to the two
dimensional case by Wagner !6. In this problem a two-dimensional hyperbolic equation
is considered subject to different constant initial data assigned to each quadrant, leading
to extremely complicated behaviour of the solution. The most detailed discussion of this
problem to date is given in the monograph by Zhang and Hsiao 17, with an important
conjecture concerning gas dynamics being reported in the paper by Zhang and Zheng 18.

7. Burgers Equation

The parabolic quasilinear partial differential equation given in Eq.(1.17), namely

up + ouny = Mgy, .1

was introduced in fluid mechanics by Burgers in his 1948 paper 19 as a model illustrating
turbulence.  Because of its importance in fluid mechanics and its significance as a
prototype nonlinear purely dissipative equation it is now known as Burgers equation,
though the differential equation itself first appeared in the 1906 treatise by Forsyth20. In
the context of fluid mechanics the parameter i > 0 measures the strength of the
dissipative effect that is present in the fluid motion, and for obvious reasons when 1 =0
Eq.(3.11) (also Eq.(2.1)) is often called a generalized dissipationless Burgers equation.

It was demonstrated in Section 2 that quasilinear hyperbolic equations like
Eq.(2.1) cannot describe traveling waves of the type possessed by the advection equation.
That is, waves of constant form that translate steadily without change of amplitude, as in
the solution of Eq.(1.4) given in Eq.(1.16).

The presence of the term nu,, in Burgers equation changes the properties of the
dissipationless form of the equation completely, because whereas the nonlinear term uu,
causes wave steepening that if unchecked leads to the loss of differentiability as discussed
in Section 2, the dissipative term nuy, exerts a smoothing effect that counteracts the
wave steepening process leading to the formation of a traveling wave. The traveling
wave can be found by seeking a solution of the form u(x,f) = U(z), where z = x - st and s
is a constant (the wave speed) to be determined. To find such a solution it is also
necessary for the solution to satisfy appropriate boundary conditions at infinity that will,
in general, determine the permissible range of values of the wave propagation speed s.

When these conditions are taken to be that all derivatives tend to zero as |x| — oo,
the following solution is obtained 11

Uz) = (u +u)2 - (172)(u - wMtanh[(u - uh)z/(41)], (7.2)

subject to the boundary conditions

lim Uz) = ut as|z| - oo, with u > ut, (7.3)
and
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s= (W +uH)2. (74)

This traveling wave solution, usually knows as the Burgers shock wave, exhibits a
monotonic transition between the values w~ and u* at minus and plus infinity,
respectively, A typical example of a Burgers shock wave profile is shown in Fig.7.

0 z

Fig.7 The Burgers shock wave

Examination of Eq.(7.2) shows that the smaller 77 becomes, the sharper is the transition of
the Burgers' shock wave between the states at minus and plus infinity.

An important and useful property of Burgers equation is its invariance under a
Galilean transformation. That simply means that the translation of the origin of the x and
t coordinates along the x-axis at a uniform speed leaves the form of the equation
unchanged. To see this it is only necessary to change the dependent variable u(x,f) to the
new translated dependent variable &+ u(x - k&, f) in which k is a constant, and then to set
v(z,f) = u(x - kt, f), with z = x - &z, for the equation then becomes

vyt VY = Ny,
which has the same form as Eq.(7.1).
We now outline how the solution of a general initial value problem for Burgers

equation may be obtained. It was shown independently by Hopf 3 and Cole 4 that by
writing Burgers equation in the form

up + (W22)y = Nuyy, (7.5)
the transformation

u = 2Nele, (7.6)

now called the Hopf-Cole transformation, reduces Eq.(7.5) to the linear heat equation

O = Pxxs (7.0

whose solution is well understood.
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Using Fourier transforms, the solution of Eq.(7.7), subject to the general initial
condition ¢(x,0) = @(x), can be shown to be 21.22

1 - 2
o, ) = z—ﬁjﬁ@)exp{-(x{) (4ne)}dg 0%

from which it follows that

vy LG D 00 (-6= 0 1ol
| [ @@exp{-(x=)* 1 (443d¢

(7.9

The initial condition @(x) for ¢ is related to the initial condition u(x,0) = uy(x) for
Burgers equation by the result

O(x) = exp{-[ uy (§)/ 2m)dL} (7.10)

Thus the solution of Eq.(7.1) subject to the arbitrary initial condition (x,0) = uy(x) is
given by Eqns.(7.9) and (7.10).

The relationship between the dissipationless Burgers equation in which 1 =, and
the limit of Eq.(7.1) as n—0 was first examined by Hopf 3 (see also Smoller 1! and
Whitham?3), while a comprehensive study of Burgers' equation and related problems has
been given by Smoller 11,

8. The KdV Equation and Solitons

The equation
w o+ Uy + g = 0, 8.1)

called the Korteweg-de Vries (KdV) equation, was first derived in a paper published in
1895 by Korteweg and de Vries 24 devoted to the examination of a special form of long
wave in shallow water. When the coefficient i of the dispersive term vanishes the
equation reduces to the dissipationless Burgers equation that has no travelling wave
solution. However, the dispersive term [iuyy, has a smoothing effect on the wave
steepening process produced by the nonlinear term uu, making it possible for the KdV
equation to have a traveling wave solution.
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The reason for the current interest in this particular scalar nonlinear evolution
equation will become clear in Section 9 where it will be shown how it governs the
asymptotic nature of a complicated system to which belong many different types of
physical problem. Accounts of the connection between long waves in shallow water and
the KdV equation are to be found elsewhere 25,26,

As with Burgers equation, the travelling wave solution for the KdV equation is
found by seeking a solution of the form u(x,f) = U(z), where z = x - st and s is a constant
(the wave propagation speed) to be determined. Here also u is required to satisfy a
similar smoothness conditions at infinity to those satisfied by Burgers shock wave
solution.  The details of the derivation of the traveling wave solution can be found
elsewhere 23 so we give only the result of the integration, namely,

U@z) = u, + asech? {z[a/(1211)]'2}, (8.2)
subject to the boundary conditions

lim U@) = u., as lz|— e, with u, > 0, (8.3)
and

s = uy + a3 8.4)

The pulse-like shape of the KdV traveling wave in Eq.(8.2), illustrated graphically
in Fig.8, has caused it to be called a solitary wave. Examination of the Eqns.(8.2)-(8.4)

Fig.8 A KdV solitary wave with amplitude a relative to the condition #,, at infinity

shows the speed of propagation s is proportional to the amplitude a of the solitary wave
relative to the value u,, at infinity, while a measure of the width of the solitary wave is
seen to be provided by ¢!'2.  Unlike the Burgers shock wave, the KdV solitary wave
speed is not determined by the boundary conditions at infinity, but solely by the
amplitude a > 0.

The KdV equation and Burgers equation are both invariant with respect to the
same Galilean transformation, which are results that are used in a number of ways, one of
which is in the solution of the KdV equation by means of the a technique known as the
inverse scattering method, to which reference will be made later. As the KdV equation is
first order in time it can only describe uni-directional wave propagation and this, coupled
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with the fact that the wave speed is proportional to the amplitude, has a very important
consequence. If two well separated solitary waves exist with the larger one to the left of
the smaller one, while propagation is to the right, then the larger solitary wave will
overtake the smaller one, though as the KdV equation is nonlinear the wave interaction
during overtaking will not exhibit the linear superposition properties of linear equations.

In a pioneering paper Zabusky and Kruskal 27, and later Zabusky 23, examined
numerically the development of a sinusoidal initial condition for the KdV equation in a
finite interval with fixed boundaries and discovered that the initial condition evolved into
a train of solitary waves.  Furthermore, they discovered that KdV solitary waves
preserved their identity after repeated interactions, and because of this particle-like
behaviour they called the solitary waves solitons. The only lasting effect after such an
interaction was found to be the displacement of a soliton to the left or right relative to the
position in which it would have been had no interaction taken place. Subsequently
various analytical methods were developed for the exact solution of certain types of
initial value problem for the KdV and other nonlinear evolution equations. Detailed
accounts of the inverse scattering method and other methods for solving initial value
problems for the KdV equation are to be found in a variety of sources 2°33 so no
discussion of these topics will be offered here. A typical example of interacting solitons
is shown in Fig.9.

Fig.9 A typical example of two interacting solitions during overtaking

Although the KdV equation is only one of a family of nonlinear evolution
equations that possess soliton solutions, we will see that its importance arises from the
fact that it governs the asymptotic nature of a wide class of nonlinear dispersive systems
of equations. Other nonlinear evolution equations also possess traveling wave solutions
though they are not necessarily solitons. The KdVB equation given in Eq.(1.19) that
arises in dispersive problems in which dissipation cannot be ignored belongs to this
category. We refer to the papers by Halford and Vliieg-Hulstman 3435 for an interesting
study of the integrability problem for such equations.
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9. The Reductive Perturbation Method

The reductive perturbation method developed by Taniuti and Wei 36, and also
described. in detail elsewhere 2533, is a method by which the asymptotic nature of
solutions of very general systems of the form

s P
U + AW) + B + {2 TT(Hypdr + Kop 35 )JU= 0 ©.1)
B=1 o=1

may be determined. In the system in Eq.(9.1) U is the n element vector encountered
prevjously, while A, Hyg and Kyp are n X n matrices depending on U, and Bisan n x 1

element vector also depending on U.

We shall only consider the case when this system is weakly dispersive, which
happens when B = 0 and A has at least one real eigenvalue A, so a wave will propagate
governed by the first order system associated with Eq.(9.1) (the first two terms).

The approach is to replace the space coordinate x by a coordinate § moving to the
right with an appropriate speed ¢ , and to scale the time ¢ in such a way that the solution
can be studied for large time. To accomplish this we first change our time scale from ¢ to

T = ¢¢, so that for fixed 7, when € is small the time ¢ is large. The coordinate & will be
taken to be £ = B (x - cf) where B and ¢ will be determined later. Thus the coordinate
scaling to be adopted is

E=eb(x-cr), 1=et. 9.2)
Our objective will be to obtain a perturbation solution in terms of &, T of the form
U=Uy + Ui, 1) + E0,ET) + ... , ©3)

with Uj the constant solution of the homogeneous form of Eq.(9.1) (B =0).
Let us first consider the case of a linear equation with pure dispersion of the form

up + My + Ky = 0. (9.4)
A change of variable (x, ) — (&, 1) in Eq.(9.4) leads to the result

eBA - g + eug + ke3Pugee = 0. (9.5)
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The orders of these terms will be balanced with respect to € if we set ¢ = A causing the
first term to vanish identically, and then set B = 1/3 so the remaining terms are of equal
order. Thus to take account of pure dispersion the scaling of &, T must be

E=¢e3 and 1=e (9.6)
A similar argument determines the ratio of the powers of € to be used in the case

of pure dissipation and, in general, the scaling required to take account either of
dissipation or dispersion can be shown to be

E=edx - M), 1=¢e7%] a=1/(p-1) forp 22, 9.7)

where p = 2 for dissipation and p = 3 for dispersion. The important feature of this
scaling is the ratio of a to a + 1 rather than their absolute values, and for dissipation

a:a+l=1:2,
while for dispersion
a:atl

1l
—
W

as was found in Eq.(9.6).

The approach we now follow is to develop a perturbation solution for the full
nonlinear system in Eq.(9.1) based on the linear scaling just discussed, because for large
time this will determine the deviation of the nonlinear system from a related linear one.

Rewriting the system in Eq.(9.1) in terms of derivatives with respect to & and <,
and equating corresponding powers of € gives

O(eatly: (M + Ag) Uy = 0, (9.8)

O(ea*2):  (-M + Ag) Uyt + Upp + {Up(VyA)o}Use

s P
¥, TI(-AHop o+ Kopo) PUREP = 0. ©9.9)
B=1o=1

In these results the suffix zero indicates that the associated terms are to be evaluated in
the constant state solution Uy while (V,,4)y is the gradient operator with respect to the
elements of U acting on 4.

If I and r are the left and right eigenvectors of A4y corresponding to the
eigenvalue A , so that
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I(dg- \) =0 and (4o - M) r= 0. (9.10)

Eq.(9.8) may be solved in the form
Uy = ré$)6 7 + V() 9.11)

with ¢; any element of U; and ¥;an arbitrary column vector that is a function of 1.
Pre-multiplying Eq.(9.9) by I shows that when solving for Upg the compatibility
condition is
s P
LU+ L[V (Vd)olUse + 1y, TI( AHop o+ Kopo) APUIREP = 0. (6.12)
B=1 =1

Assuming the boundary condition U — Uy as x - = allows us to set ¥} = 0, and
we find that ¢; satisfies the nonlinear evolution equation

&1 + by b + c20P9/08 = 0, (9.13)
where
ey = Hr(V, )}/ (9.14)
and s P
g = 1-2 TI(-MHgg o+ Kopo)r/(1). (9.15)
B=1c=1

When p =2 Eq.(9.13) becomes Burgers equation, and when p = 3 it becomes the

KdV equation. Thus we see that the scalar evolution equation in Eq.(9.13) governs the

asymptotic nature of the entire system in Eq.(9.1) that is associated with the eigenvalue A.

This follows because combining Eq.(9.3) and Eq.(9.11) (in which ¥} = 0) we have to
order ¢ that

U=U, + er¢ &, ). (9.16)

The method described here is called the reductive perturbation method because it is a
singular perturbation method in which the rank of the associated system is reduced.

It is a simple matter to show that the coefficient ¢; is proportional to the
expression (V,A)-r, the non-vanishing of which is called the genuine nonlinearity
condition that was introduced by Lax%37 and developed in a related context
elsewhwere3,38. This condition is associated with the breakdown of differentiability in a
quasilinear hyperbolic system, and when this expression vanishes the characteristic field
associated with A is said to be exceptional. Thus when the hyperbolic mode associated

with A in the first order system derived from Eq.(9.1) is genuinely nonlinear the
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coefficient ¢; # 0, thereby ensuring that Eq.(9.13) governing ¢; is nonlinear (either
Burgers equation or the KdV equation). However, if the characteristic field associated
with A is exceptional, Eq.(9.13) becomes linear and a different scaling becomes necessary
to determine the nonlinear evolution equation that governs the asymptotic nature of the
nonlinear system in Eq.(9.1).

10. Backlund Transformations

The interaction of solitons may be regarded as a form of nonlinear superposition
of traveling wave solutions of the KdV equation. More general nonlinear superposition
laws can be found for other nonlinear evolution equations with soliton solutions and a
constructive method by which to seek them is provided by the use of a Backlund
transformation.

A Backlund transformation is a special form of contact transformation that
transforms two surfaces with a common point of tangency in one space into two
corresponding surfaces with a common point of tangency in another space.  The
transformation is difficult to define in general, but the essential idea involved can be
described as follows. Consider two independent partial differential equations involving
the independent variables x and ¢ with one involving the dependent variable %, and the
other the dependent variable v, and denote them by

F)=0 and G()=0, (10.1)

where, in general, these equations are nonlinear. Now suppose that two relationships can
be found between « and v of the form

H(u,v,uy, vy, u, Vi x,0) =0, i=1,2. (10.2)

Then this pair of relationships is said to constitute a Backlund transformation if one of
them is integrable with respect to # when G(v) = 0, and the function u so obtained is a
solution of F(u) = 0, and conversely. ‘

A special case arises if it happens that F' = G, for then u and v satisfy the same
Backlund transformation. When this occurs the transformation is called an auto-Backlund
transformation. An introduction to Backlund transformations is to be found in the text
by Drazin and Johnson39, while an advanced account with many applications is given in
the monograph by Rogers and Shadwick3°. We now illustrate Backlund transformations
by means of two simple classical examples, the first of which involves the Liouville
equation

92u/dxdy = e, (10.3)

in which the nonlinearity arises through the term e¥.
Consider the two relationships (the H; fori=1,2),
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Ov/0x = du/dx + o exp{(u + v)/2)} , /oy = - Juldy - (2/)exp{(u-v)/2)}, (10.4)

where o # 0 is called the Backlund parameter. .
The requirement of equality of the mixed derivatives (an integrability condition)
in the form
92v/oxdy = 902v/dydx (10.5)

leads immediately to the Liouville equation in the form given in Eq.(10.3).
Alternatively, the requirement of equality of the mixed derivatives in the form

2uloxdy = d2uldyox (10.6)

leads to the linear wave equation in the canonical form
0%v/dxdy =0. (10.7)
Thus the general solution of the Liouville equation, which is nonlinear, can be found by

transforming the general solution of the linear wave equation.
As a final example, if we consider the Backlund transformation

ov/ot = u2v/(4n) - (v/2)dulox , oviox = - 1/(2n)uv, (10.8)
the imposition of the equality of mixed derivatives in the form
02uldtdx = 2uldxot (10.9)

leads to the linear heat equation
vidr = 1 92v/dx2, (10.10)

while the imposition of the equality of mixed derivatives in the form
02v/otdx = 02v/dxot (10.1D)

leads to Burgers equation
up tuty = Mitxy (10.12)

This result is, of course, simply the one obtained by the Hopf-Cole transformation given
in Section 7.
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We conclude by remarking that using a Backlund transformation for the KdV
equation, together with the invariance of the equation under a Galilean transformation, it
is possible to generate a hierarchy of soliton solutions, starting only from one known
solution but using two different Backlund parameter values30:39.  These may all be
regarded as nonlinear superposition principles, and when a Backlund transformation can
be found the same approach extends to other evolution equations possessing soliton
solutions.

11. Traveling Wave Solutions for the mKdV Equation

The fact that a nonlinear evolution equation possesses a solitary wave solution
does not necessarily mean that such a solution is a soliton. Unless a soliton solution can
be found explicitely, the existence of such solutions to an arbitrary nonlinear evolution
equation is related to the possibility that the equation can be solved by the inverse
scattering transform. This, in turn, leads to the conjecture that soliton solutions exist if
the equation possesses what is called the Painleve property. The ideas involved in this
integrability question have been developed at some length in a number of papers, though
the conjecture itself has still to be either proved or disproved. For a detailed account of
the approach involved we refer to the fundamental paper by Weiss, Tabor and
Carnevale40. Rather than pursue this topic here we choose instead to present a simple
method by which a traveling wave solution can be found to a modification of the KdV
equation introduced earlier.

In the study of applications of the KdV equation?5, which for the purposes of this
Section we choose to write in the form

up + 6auuy + Clyry = 0, (11.1)
there also arises the modified KdV (mKdV) equation
up + 6buluy + cuyyy = 0. (11.2)

We now describe the simplest of several different approaches for the
determination of a traveling wave solution to the combined KdV and mKdV equations

up + Gauuy +6buluy + Cuyyy = 0. (11.3)

Details of alternative approaches and of the use of the Painleve property to conclude that
a certain higher order KdV equation is non-integrable (cannot be solved by the inverse
scattering transform) can be found elsewhere4!:42,

W= use a direct approach to the determination of a traveling wave by seeking a

solution of the form u = u({), where
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£=hx- at, (11.4)

with k and @ constants to be determined. Substitution of Eq.(11.4) into Eq.(11.3)
followed by integration yields

-ou + 3kau? + 2kbu3 + cBu" = K, (11.5)
where X is a constant of integration.
Based on the known form of traveling wave solutions of the KdV equation and

the mKdV equation we now conjecture that a traveling wave solution of Eq.(11.3) is of
the form

u(f) = 4 + Bsech?{, (11.6)

where constants 4 and B have yet to be determined. Thus, for any choice of the integer
n, the four constants &,, A and B must now be determined if the solution is to be of the
given form.

Setting the integration constant equal to zero and substituting Eq.(11.6) into
Eq.(11.5) shows that only when n = 1 can a system of four independent simultaneous

equations be obtained for the four unknown constants. When n 2 2 five independent
equations are obtained connecting the four unknown constants, and only trivial solutions
are then possible. For the case n=1 we have
-0 +3kad + 2kbA4A? = 0,
-0 + 6kad - 6kbA2 + Kc = 0,
a+ 2b4 = 0,
bB2 - K¢ = 0. (11.7)
These equations have the solution
k=% aV[1/(2bc)], B= +kN(c/b), A=-al(2b), w=-ka?/b. (11.8)

Substituting these results in the traveling wave solution gives

u(x,t) = a{ =N(1/(262) sech( aV[1/(2bc))(x + (a/b)t)) - 1/(2b)}. (11.9)

It follows from Eq.(11.8) that when bc > 0 Eq.(11.9) is a solitary wave solution of the
combined KdV and mKdV equations.  This result is similar to one given by Coffey 43.
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In conclusion, we observe that neither the sech? - type solution of the KdV

traveling wave nor the sech - type solution of the mKdV equation traveling wave can be
derived from Eq.(11.9) by letting eithera — O or b — 0.
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