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Foreword

Robotics is undergoing a major transformation in scope and dimension. From
a largely dominant industrial focus, robotics is rapidly expanding into human
environments and vigorously engaged in its new challenges. Interacting with,
assisting, serving, and exploring with humans, the emerging robots will increas-
ingly touch people and their lives.

Beyond its impact on physical robots, the body of knowledge robotics has
produced is revealing a much wider range of applications reaching across diverse
research areas and scientific disciplines, such as: biomechanics, haptics, neu-
rosciences, virtual simulation, animation, surgery, and sensor networks among
others. In return, the challenges of the new emerging areas are proving an abun-
dant source of stimulation and insights for the field of robotics. It is indeed at
the intersection of disciplines that the most striking advances happen.

The Springer Tracts in Advanced Robotics (STAR) is devoted to bringing to
the research community the latest advances in the robotics field on the basis of
their significance and quality. Through a wide and timely dissemination of critical
research developments in robotics, our objective with this series is to promote
more exchanges and collaborations among the researchers in the community and
contribute to further advancements in this rapidly growing field.

DARS is a well-established single-track conference that gathers every two
years the main researchers in Distributed Autonomous Robotic Systems. Since the
Tenth edition in 2010, STAR has welcomed DARS among the volumes resulting
from thematic symposia devoted to excellence in robotics research.

The volume edited by Ani Hsieh and Gregory Chirikjian offers in its thirty-
one chapters an interdisciplinary collection of technologies, algorithms, system
architectures, and applications of advanced distributed robotic systems. The con-
tents are effectively grouped into five thematic sections: coordination for percep-
tion, coverage, and tracking; task allocation and coordination strategies; modular
robots and novel mechanisms and sensors; formation control and planning for
robot teams; learning, adaptation, and cognition for robot teams.



VI Foreword

Rich by topics and authoritative contributors, the Eleventh edition of DARS
in 2012 culminates with this unique reference on the current developments and
new directions in the field of distributed autonomous robotic systems. A very
fine addition to the series!

Naples, Italy Bruno Siciliano
March 2014 STAR Editor



Preface

The goal of the Symposium on Distributed Autonomous Robotic Systems
(DARS) is to exchange and stimulate research ideas to realize advanced
distributed robotic systems. Distributed robotics is a rapidly growing,
interdisciplinary research area lying at the intersection of computer science, com-
munication and control systems, and electrical and mechanical engineering. Tech-
nologies, algorithms, system architectures, and applications were presented and
discussed during the symposium. The 11th edition of DARS took place at Johns
Hopkins University in Baltimore, Maryland in the United States of America.

As in previous years, this 11th edition of DARS boasts an extremely strong
technical program. We received a total of 73 submissions and 31 of which were
accepted for oral presentations. Following the precedence established by DARS
2010, each paper was reviewed by at least three reviewers and a Senior Program
Committee member. The Program Chair and the Senior Program Committee
coordinated the review process with the help of 132 reviewers. We are very
grateful to all the reviewers and the senior program committee for their thor-
oughness and thoughtfulness in reviewing the papers. All accepted papers were
included in the digital proceedings distributed at the symposium. Authors were
then encouraged to submit a revised version after the conference before being
accepted for inclusion in this STAR volume. The final collection consists of 31
original contributions. As in previous years, networked robots, robot swarms,
motion planning, and modular robots continue their strong presence at DARS.
For this 11th edition of DARS we saw an increase in contributions in the ar-
eas of multi-robot perception and machine learning. The papers are organized
into five sections: Coordination for Perception, Coverage, and Tracking; Task Al-
location and Coordination Strategies; Modular Robots and Novel Mechanisms
and Sensors; Formation Control and Planning for Robot Teams; and Learning,



VIII Preface

Adaptation, and Cognition for Robot Teams. Additionally, we also added a
poster session that highlights novel preliminary results. Authors and poster pre-
senters were then invited to submit more mature versions of their contributions
to a Robotica Special Issue on Distributed Autonomous Robotic Systems.

The DARS 2012 program also included four invited keynote talks by world-
renowned speakers covering emerging scientific discoveries in and application
areas for distributed autonomous systems: Francesco Bullo, University of Cal-
ifornia, Santa Barbara on optimization and control of distributed robotic net-
works, Vijay Kumar, University of Pennsylvania on coordinating swarms of micro
aerial vehicles, David Gracias, Johns Hopkins University on 3D assembly with
micro/nano robots, and Luis Mier-y-Teran-Romero, Naval Research Laboratory
on the effects of noise and delays in large coupled multi-agent systems. We have
included the abstracts and bio-sketches for each invited talk and speaker in this
volume.

DARS 2012 presented a total of five awards, one for overall Best Paper, one for
overall Best Paper Runner-Up, one for Best Student Paper, one for Best Student
Paper Runner-Up, and one for Best Poster. These awards were co-sponsored by
the DARS 2010 organizing committee, represented by Alcherio Martinoli at the
symposium. The award panel was chaired by Alcherio Martinoli (École Poly-
technique Fédérale de Lausanne) and included Nikolaus Correll (University of
Colorado), Roderich Groß (University of Sheffield), and Brian Sadler (Army
Research Laboratory). The award selection process took into account various
factors, including the reviewers’ score, the revised contribution included in the
digital proceedings, the oral presentation, and related discussion at the sympo-
sium. Best Paper was awarded to Brian Coltin and Manuela Veloso (Carnegie
Mellon University) for their paper “Optimizing for Transfers in a Multi-Vehicle
Collection and Delivery Problem.” Best Paper Runner-Up was awarded to Nils
Napp and Radhika Nagpal (Harvard University) for their paper “Distributed
Amorphous Ramp Construction in Unstructured Environments.” Best Student
Paper was awarded to Ross Anderson and Dejan Milutinović (University of
California, Santa Cruz) for their paper “A Stochastic Optimal Enhancement
of Feedback Control for Unicycle Formations.” Best Student Paper Runner-Up
was awarded to Lantao Liu and Dylan Shell (Texas A & M University) for their
paper “Multi-robot Formation Morphing through Matching Graph.”Best Poster
was awarded to Nisar Ahmed, Tsung-Lin Yang, Eric Sample, and Mark Camp-
bell for their poster “Bayesian Sketch and Share: Enhanced Information Fusion
for Large Scale Mixed Robot-Human Search Teams.”

Last but not least, we would like to thank the National Science Foundation
(NSF) who provide travel support for qualifying student authors pursuing their
degrees in U.S. institutions. The NSF sponsored travel awards were facilitated
by Timothy Chung (Naval Postgraduate School). We would also like to thank
Thomas Ditzinger and Holger Schäpe, representatives from Springer Verlag who
are responsible for coordinating the series, for giving us the opportunity to
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continue publishing the DARS proceedings in such a prestigious venue. Finally,
we would like to thank the local organization team, which consists of admin-
istrative assistants, PhD students, particularly Mr. M. Kendal Ackerman, and
research collaborators. Their hard work was instrumental ensuring the success
of the symposium.

Baltimore, MD M. Ani Hsieh
February 10, 2014 Gregory Chirikjian
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Invited Keynote Presentations

Optimization and Control in Robotic Coordination
Francesco Bullo University of California, Santa Barbara

Abstract. Motion coordination is an extraordinary phenomenon in biological
systems and a powerful tool in man-made systems; although individual agents
have no global system knowledge, complex behaviors emerge from local interac-
tions. This talks focuses on robotic networks, that is, group of robots that com-
municate, compute, and coordinate their motions to perform useful tasks. I will
propose adaptive and distributed algorithms based on concepts from stochastic
analysis, geometric optimization, and stability theory. Time permitting, I will
discuss recent developments on stochastic surveillance and attention allocation
for mixed teams.

Biosketch. Professor Francesco Bullo is a professor with the Mechanical En-
gineering Department at the University of California, Santa Barbara. His main
research interests lie in multi-agent networks with application to robotic coordi-
nation, distributed computing and power networks.

Control and Planning for Groups of Micro Aerial Vehicles
Vijay Kumar University of Pennsylvania

Abstract. This talk addresses the development of autonomous quadrotors,
which are on the order of 0.1 - 0.5 meters in length and 0.1 - 0.5 kilograms. The
small size/inertia of flying robots enables agile, three-dimensional movement.
However, the control of these vehicles is challenging because of underactuation
and uncertainty in the dynamics. I will first discuss the modeling and control
of quadrotors, and the sequential composition of controllers for aggressive flight.
I will then show how lower-dimensional abstractions can be used to develop
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real-time planning algorithms allowing the robots to navigate in three-dimensional
environments. Finally, I will discuss the challenges of extending the control and
planning algorithms for groups of vehicles.

Biosketch. Professor Vijay Kumar is the UPS Foundation Professor in the
School of Engineering and Applied Science at the University of Pennsylvania,
and on sabbatical leave at White House Office of Science and Technology Policy
where he serves as the assistant director for robotics and cyber physical systems.
His research interests, covering mechanical, electrical and computer engineering,
are manifest in his work on the design, control and coordination of aerial robots.

Stimuli-responsive Sub-millimeter Scale 3D Assembly and
Robotics
David Gracias Johns Hopkins University

Abstract. There are significant challenges in miniaturizing assembly and robotic
operations to sub-millimeter length scales. These challenges are especially pro-
nounced off-chip and include, for example, (a) the challenge of powering large
numbers of tiny devices in either a wired or wireless manner using electrome-
chanical or pneumatic actuators, and (b) limits on the information that can
be retrieved and the positional real-time control that can be achieved in 3D
microenvironments and especially under in vivo conditions. Hence, fabrication,
guidance, tracking and controlling decisions can all be prohibitively difficult to
implement at sub-mm length scales.

In this talk, I will discuss the use of stimuli responsive strategies to enable 3D
assembly and robotic functions at the sub-millimeter to 100 nanometer length
scales. I will present three examples of such an approach. These include, (a) the
self-assembly of complex 3D structures such as polyhedra; (b) the guidance and
realization of functional tasks such as pick-and-place operations or drilling using
bacterial-backpacking and self-propulsion; and (c) the in vivo surgical biopsy
with large numbers of tiny stimuli-responsive tools. These studies suggest the
need for robotic paradigms wherein structures assemble on their own, tiny de-
vices respond autonomously to their microenvironments, and function is achieved
using statistical, defect-tolerant approaches.

Biosketch. Professor David Gracias is an associate professor in the Depart-
ment of Chemical and Biomolecular Engineering at Johns Hopkins University.
His diverse research interests center around the fabrication, self-assembly and
characterization of biotic/abiotic systems, devices and materials at very small
size scales.
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The Dynamics of Large Numbers of Interacting Autonomous
Agents
Presented by Luis Mier-y-Teran in place of Ira Schwartz Naval Research Lab

Abstract. Recently, much attention has been given to the study of interact-
ing multi-agent, particle or swarming systems in various natural and engineering
fields. Interestingly, these multi-agent swarms can self-organize and form complex
spatio-temporal patterns even when the coupling between agents is weak. Many
of these investigations have been motivated by a multitude of biological systems
such as schooling fish, swarming locusts, flocking birds, bacterial colonies, ant
movement, etc. In the engineering world, the results of these studies have been
successfully applied in the design of systems of autonomous, inter-communicating
robotic systems to solve specific goals, such as robotic motion planning, spatio-
temporal formation, obstacle avoidance, and boundary tracking.

Two topics of ongoing research in interacting particle systems, and, in partic-
ular, in the dynamics of swarms, are the effects of system noise and time delays.
The inclusion of noise in such studies has revealed noise-induced transitions
between different coherent patterns, and to the discovery of different phase tran-
sitions. On the other hand, it is well known that time delays can have profound
dynamical consequences, such as destabilization and synchronization. Initially,
such studies focused on the case of one or a few discrete time delays. More re-
cently, however, the complex situation of several and random time delays has
been considered. An additional important case is that of distributed time delays,
when the dynamics of the system depends on a continuous interval in its past
instead of a discrete instant.

In this talk I will review some of the results on the interaction of delay and
noise in particle systems and, in particular, I will introduce new results on the
effects of random delays on swarm dynamics.

This work is supported by the Office of Naval Research.

Biosketch. Luis Mier-y-Teran did his undergraduate studies at UNAM, in Mex-
ico city and then obtained a PhD in Physics at Northwestern University in 2010
working with professors, Mary Silber and Vassily Hatzimanikatis. His thesis re-
search was on the mathematical modeling of protein synthesis from a dynamical
systems perspective. He currently holds a postdoctoral position at Johns Hop-
kins University/Naval Reseach Lab and is doing research on time-delayed models
of swarming agents and on mathematical epidemiology.
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Biosketch. Dr. Ira Schwartz is a theoretical physicist/applied Mathematician
and the head of the Nonlinear Dynamical Systems Section at the Naval Research
Laboratory. The main themes of his work have been mathematical and numer-
ical techniques of nonlinear dynamics and chaos, and most recently, nonlinear
stochastic analysis and control of natural and artificial swarms and other coupled
networked systems.
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Adaptive Multi–Robot Coverage
of Curved Surfaces

Andreas Breitenmoser, Hannes Sommer, and Roland Siegwart

Abstract. This paper presents two adaptive coverage algorithms for the
deployment of multiple robots into discrete partitions over curved surfaces.
The algorithms compute a metric tensor field locally on the surface in or-
der to shape the robots’ partitions in position, size, orientation and aspect
ratio according to the present anisotropy. The coverage algorithms are fur-
ther incorporated into a hybrid coverage method for the complete coverage of
surface areas. Each robot iteratively deploys and adapts the partition, then
subsequently sweeps its assigned area. The algorithms are demonstrated in
simulations on different mesh models, including meshes reconstructed from
real laser point cloud data.

1 Introduction

Coverage of work space is an elementary task that arises in multi–robot sys-
tems. Multi–robot coverage methods describe how multiple robots coordinate
and partition their work load and work space among each other. Depending
on the tasks a group of robots has to accomplish, robot coverage can have
different meaning: coverage equally involves static and dynamic robot dis-
tributions, and notions of sensing as well as actuation. Robot locations in
mobile sensor networks for instance are optimized to provide good communi-
cation and sensor coverage of the environment [1, 2]. Similar approaches lead
to robot deployments that guarantee fair distribution of work loads among
robots, or short response times when providing services to allocated sites [3].
Another class of coverage tasks requires more permanent movements. In or-
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der to continuously monitor an environment, inspect complex structures, or
apply tools to a surface in manufacturing, the robots perform coverage by
sweeping through their work spaces [4, 5].

We are interested in robot coverage of curved surfaces as they are typically
found in inspection applications for tanks and tubes of industrial plants. In
our work, we consider robots that move directly on the surface [6, 7]. Spaces in
industrial structures are often narrow and thus forbid robots to work together
in close side by side formations. Therefore, the robots need to deploy and
partition their work space in a reasonable way. However, robot deployment
and visual inspection are often not sufficient, and robots are required to sweep
their sensor probes in close contact over the surface areas.

Hybrid coverage combines deployment and sweeping motion by performing
one after the other [6]. Hybrid coverage methods build on and combine afore-
mentioned coverage concepts. The variant of hybrid coverage we are looking
at in this paper first spreads the robots into disjoint regions by constructing
a centroidal Voronoi configuration [1]. This is further related to the classical
concepts of cell decomposition, just that now the cell decomposition depends
on the robot locations rather than on the environment boundaries. Once de-
ployed, each robot sweeps its assigned Voronoi region along a covering path.
Here, basically any space filling curve can be applied as long as the kinematic
constraints of the robots are met. Examples are swaths similar to those used
in the Boustrophedon decomposition on planar and curved surfaces [5].

The main focus of this paper is on the first stage of the two–tired hybrid
coverage method. It is important to provide an effective deployment and par-
titioning of space in the first stage, as each robot needs to cover the entire
surface of its assigned Voronoi region in the subsequent second stage. The
proposed coverage algorithms make use of anisotropic centroidal Voronoi tes-
sellations [8], and extend our previous work [7] with enhanced adaptivity of
the Voronoi regions. The Voronoi regions adapt to local anisotropy, which is
defined by a tensor field on the curved surface. The tensor field allows for
controlling shape, densitiy and size, as well as orientation and aspect ratio
of the Voronoi regions. This new adaptivity may improve multi–robot cover-
age in several ways. First, adapting the size and orientation of the Voronoi
regions according to environment characteristics, such as surface curvature,
salient features or representation uncertainty, makes robot movements during
operation (e.g., sweeping) in a region on the surface safer and more efficient.
Second, adapting the density, orientation or aspect ratio of the Voronoi re-
gions by an input tensor field enables user guidance of the robot configuration.
Finally, adapting the shape and size of the Voronoi regions allows to match
the region to a sweeping pattern, which is executed by a robot in the region
during the second stage of the hybrid coverage method.

Similar to [7, 9, 10, 11], we perform the robot deployment based on a
discrete representation and model the environment as a graph. In our previous
work [7], we suggested two fundamentally different approaches for covering
a surface, based on discrete geodesic and approximative Euclidean distance
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computation. The algorithms in this paper follow up on both approaches in
presence of anisotropy. Discrete geodesic alternatives for covering a graph can
be found in [9, 10, 11]. Furthermore, geodesic distances under the influence
of anisotropy can be computed by Fast Marching methods [12]. The adaptive
remeshing of triangular meshes [13], in contrast, applies similar techniques of
approximating geodesics by Euclidean distances. The partitioning is driven
by an iterative process of pairwise optimization between adjacent regions,
which shares similarities with the generation of pairwise optimal partitions as
defined in [10]. Anisotropy has been previously used in the context of Voronoi
coverage for modeling anisotropic sensors [14]; however, the anisotropy is
formulated with respect to the robot positions and not with respect to points
in the environment. The concept of adjusting a density function, defined over
the areas of the Voronoi regions, is applied in [1] for formation control and
robot guidance. Finally, in [3], fat– and skinny–shaped equitable partitions
are created using power diagrams, with applications to vehicle routing and
optimal workload sharing.

The remainder of the paper is organized as follows. A formal definition of
the problem is given in Section 2. Section 3 describes the adaptive coverage
algorithms for the deployment of multiple robots on curved surfaces. In Sec-
tion 4, the hybrid coverage method for area coverage of curved surfaces is
presented, which relies on the algorithms of Section 3 in the first stage. Sim-
ulation experiments in Section 5 verify the coverage method on synthetic and
real data gathered in an inspection scenario. Section 6 concludes the paper.

2 Problem Definition

Given a curved connected orientable surface S ⊂ R3 with the Riemannian
metric induced by the Euclidean scalar product, a group of n robots ri,
i ∈ {1, ..., n}, with start positions qi ∈ S, is to be distributed over a fair
partition V = {Vi}ni=1 of S into regions Vi ⊂ S, each containing one robot at
end position zi ∈ Vi. In the partitioning process, it is desirable to adjust the
meaning of fair as well as the shapes of the regions Vi as much as possible.

First, we drop the constraint of being located on the surface S and consider
the distribution of n points Z = [zi]

n
i=1 ∈ R3n into a partition of a convex

three–dimensional submanifold Ω ⊂ R3. The resulting simplified problem is
typically formulated as an optimization problem, where the following cost
functional within the regions Vi is minimized,

argmin
Z,V

Hcont, iso(Z, V) = argmin
Z,V

n∑
i=1

∫
Vi

ρ(x) ‖zi − x‖22 dV (x) , (1)

where we use the integral with volume element dV , and ρ(x) describes a
non–negative weight (a mass density) at every point x in Ω. The points Z
and the partition V are dependent. The partition V that minimizes the cost
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functional Hcont, iso(Z, V) for fixed points Z is the Voronoi tessellation. If the
points Z are taken as the generators of the Voronoi tessellation and are moved
iteratively to the mass centers of the Voronoi regions, the cost converges to
a local minimum and a centroidal Voronoi tessellation (CVT) results.

While choosing ρ gives good control over the fairness of the resulting
partition, there is no possibility to influence the regions’ shapes.

Therefore, we follow the idea of generalizing the approach given by Equa-
tion (1) and replace the Euclidean distance with an anisotropic distance, with
which we hope to influence the shapes of the regions,

argmin
Z,V

Hcont, aniso(Z, V) = argmin
Z,V

n∑
i=1

∫
Vi

ρ(x) f (d (x, zi)) dV (x) , (2)

where f is a smooth and strictly increasing function and d denotes a
general anisotropic distance metric. Similar to the cost in Equation (1),
Hcont, aniso(Z, V) is minimized when the points Z are placed at the anisotropic
mass centers of V .

In particular, we consider functions f(d(x, z)) = d p
x,z and distances

dx, z = inf
α : [0, 1]→Ω

α(0) =x, α(1)= z

∫ 1

0

∥∥Fα(t) α̇(t)
∥∥
p
dt , (3)

where ‖x‖p = p
√
|x1|p + |x2|p + |x3|p denotes the p–norm for p ∈ N \ {0} and

Fx is a symmetric positive definite matrix smoothly depending on x ∈ Ω,
which describes the local anisotropy. Fx is called the Finsler tensor field in
the following1.

We are now interested in formulating the minimization problem of Equa-
tion (2) over the surface S. To do so, we follow the same approach as used
in [7], and minimize the discrete version of the cost functional defined over
the triangle mesh M , which is a graph–based representation of the surface
S, defined by the graph GM . The discretization gives

Hdisc, aniso(Z, G) =

n∑
i=1

∑
v∈Gi

∫
Av

ρ(x) d p
x,zi dS(x) , (4)

where dS denotes the surface element. The partition is represented by
G = {Gi}ni=1, with the subgraphs Gi ⊂ GM given by sets of connected
vertices v. Av denotes the area of the dual cell of each vertex. In the case of a
planar mesh, this corresponds to the Voronoi region around v obtained from
the Voronoi diagram with the mesh vertices as generators.

1 This yields the usual distance of the Finsler manifold, given by Ω together with
the Finsler function (x,v) �→ ‖Fx v‖p.
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To determine the distance dx, z , the integral in Equation (3) is approxi-

mated with a sum of lengths
∥∥∥F̃xl

(xl+1 − xl)
∥∥∥
p
of segments given by a se-

quence of nodes xl, l ∈ N, in the graph GM , connecting x and z.
Although S is a two–dimensional manifold, it is not sufficient in the discrete

version to define Fx on the two–dimensional tangent spaces of S because the
distance vectors (xl+1 − xl) are not restricted to the tangent spaces of S at
xl. So, however we choose Fx on the tangent spaces, it must be given as a
three–by–three matrix F̃x. This matrix can be constructed from the desired
matrix Fx given in a basis of TxS, e.g., such that in the local basis extended
by the normal vector of the oriented surface, it looks like: F̃x =

(
Fx 0
0 1

)
.

In the following, we pursue two different approaches of choosing the se-
quence of nodes xl for the distance computation. In the first approach, dx, z
is computed for arbitrary p–norms as the discrete geodesic distance. The
distance segments correspond to the edges along a shortest path from x to
z on the graph GM . In the second approach, the path distance dx, z is ap-
proximated by the length of a single segment, which connects x and z along
the direct shortcut through R3, using the 2–norm. We arrive this way at the

directional distance as defined in [8]2. That yields dx, z �
∥∥∥F̃x (z− x)

∥∥∥
2
=√

(z− x)T K̃x (z− x), where K̃x := F̃T
x F̃x, which is a usual anisotropic

quadratic distance in R3.
For the second approach, under the approximation that K̃xv (in short K̃v)

is constant over a given vertex area Av, the cost functional Hdisc, aniso can be

rewritten with d 2
x, zi = (zi − x)T K̃x (zi − x) as

Hdisc, aniso(Z, G) =

n∑
i=1

∑
v∈Gi

[
Wv + (zi − γv)

T
K̃∗

v (zi − γv)
]
=

n∑
i=1

[∑
v∈Gi

Wv+
∑
v∈Gi

(
γT
v K̃∗

v γv

)
+ zi

T

(∑
v∈Gi

K̃∗
v

)
zi − 2 zTi

(∑
v∈Gi

K̃∗
vγv

)]
,

(5)

where γv is the centroid of Av, Wv =
∫
Av

ρ(x) (γv − x)T K̃x (γv − x) dS(x),

and K̃∗
v = mv K̃v, with mv =

∫
Av

ρ(x) dS(x), the concentrated weight over

vertex area Av. From Equation (5) follows that it is sufficient to minimize for
the last two terms, since the first two terms do not depend on a particular
choice of {Z, G}. The locations of the points Z can be chosen freely. However,
if we select the generators Z in Equation (5) to be the mass centers of the
Voronoi regions, which is in accordance with [1, 8] and the notion of CVT,

2 Note that this distance measure is not symmetric and thus no proper distance
metric as such; however, it is consistent with the definition of the standard
Voronoi diagram in the isotropic metric and straightforward to compute. See [8]
for further discussions.
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the last two terms in Equation (5) can be further simplified. The anisotropic

mass centers are obtained as zi = inv
(∑

v∈Gi
K̃∗

v

) ∑
v∈Gi

K̃∗
v γv, which are

the minimizers of the cost functional in Equation (4). Substituting zi for the
last two terms of Equation (5) leads to the partial cost

H∗
disc, aniso(Z, G)=

n∑
i=1

⎡⎣− (∑
v∈Gi

K̃∗
v γv

)T

inv

(∑
v∈Gi

K̃∗
v

) (∑
v∈Gi

K̃∗
v γv

)⎤⎦ ,

(6)
which does not depend on the generators zi anymore. In the isotropic case,
Equation (6) becomes

H∗
disc, iso(Z, G) =

n∑
i=1

[
−
∥∥∑

v∈Gi
mv γv

∥∥2
2∑

v∈Gi
mv

]
. (7)

The original problem of distributing n robots ri over the surface S can now
be solved for the second approach by simply minimizing Equation (6), or
Equation (7) respectively, and letting Q = [qi]

n
i=1 approach Z = [zi]

n
i=1 over

time. The partial cost H∗
disc, aniso(Z, G) and H∗

disc, iso(Z, G) are minimized in
an efficient way by exchanging vertices between neighboring Voronoi regions,
which only requires updates of the sums

∑
K̃∗

v γv and
∑

K̃∗
v , or

∑
mv γv

and
∑

mv respectively.
For the first approach, the original cost in Equation (4) must be minimized;

gradient descent methods provide a practical solution [1, 7, 9]. This involves
finding the direction of fastest decline of distance. We use the negated tangent
vector of the minimizing geodesic, which differs from its gradient [9]3.

The Finsler tensor given by Fx offers several ways to adapt the partition
over the surface S (see Figure 1). The orientation of the Voronoi regions
is influenced by the directions of the eigenvectors of Fx. The regions’ aspect
ratio is given by the ratios of the eigenvalues of Fx, measuring the strength of
directionality. As mentioned at the beginning of the section, the regions’ size
can be changed by the weighting factor or mass density ρ . In addition, the
distance in the cost functionals can assume the general p–norm. Depending
on p, the p–norm results in a more circular or square–shaped distance field,
which leads to modifications in the shapes of the regions.

Here, a remark is in place: the p–norm only applies to the first approach,
which computes discrete geodesic distances. Note that the second approach
with approximate distance computation, as presented in here, requires p = 2.
This is inherent to above derivation (from Equation (4) to Equation (5)),
which is based on the parallel axis theorem. The parallel axis theorem as
such, however, relies on specific properties of the 2–norm.

3 In fact, they even differ in their mathematical type (tangent vector vs. tangent
covector). Their value’s relation can be found for p = 2 in [9]. This must be
generalized for p �= 2. However, this is not included here for the sake of brevity.
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Fig. 1 Adaptive deployment of four robots with uniform, isotropic (to the left)
and anisotropic (upward and diagonal) metric tensor fields provided by the user
guidance

3 Adaptive Surface Coverage

The iterative construction of a Voronoi tessellation on a graph GM , repre-
senting a triangle mesh M , forms the basis for our adaptive surface coverage
algorithms. Each Voronoi region is owned by a robot ri and represented
by a subgraph Gi ⊂ GM . As the partitioning process evolves, the Voronoi
regions—and together with the regions the robots—are distributed over the
surface. The subgraphs Gi result for the first approach from minimizing the
cost with discrete geodesic distance in Equation (4), and for the second ap-
proach from minimizing the cost with approximative Euclidean distance in
Equation (6) or Equation (7). The basic algorithms have been introduced
in [7] and are restated in the following. Algorithm 1 summarizes the ap-
proaches’ main function, and Algorithm 2 and Algorithm 3 describe the co-
ordination functions of the two approaches.

The first approach computes a discrete geodesic distance by propagating
a wavefront over the graph. Each robot computes a distance field from its
current position vpi , which is the robot’s position pi ∈ S projected onto
the graph GM , to positions of neighboring robots on the graph. As soon as
the wavefront reaches a neighbor’s vertex, a wavefront is propagated back
in order to find the boundary vertices with equal discrete geodesic distance
between the two robots. This procedure is continued by each robot ri until
the complete Voronoi partition G is constructed. Once the Voronoi regions are
computed, the robots move toward the regions’ mass centers. The regions are
updated continuously, and it is sufficent to determine the direction toward
the mass center instead of its absolute position. As the direction, we use the
negated tangent vector of the minimizing geodesic (see Section 2).

The second approach minimizes the cost by exchanging boundary vertices
iteratively across the boundaries of adjacent regions. For each vertex vA ∈ Gi

located at a region boundary, following local vertex exchanges are possible.
If a vertex at the boundary next to vA has not yet been assigned to any
region, it is directly added to Gi. If there exists at least one neighbor vertex
vB ∈ Gj , Gi∩Gj = ∅, the change in the cost of Equation (6) or Equation (7)
is evaluated for the following three cases: 1) the vertex vA is added to Gj ,
2) the vertex vB is added to Gi, or 3) no vertex is exchanged across the
boundary. The case resulting in the highest reduction of cost is used for
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Algorithm 1. Adaptive Surface Coverage

Require: Set of n robots ri, each at initial position p0
i = qi on S in the continuous

domain. The corresponding discrete position v0
pi

on the initial graph G0
Mi

,
with G0

Mi
the graph associated to the initial mesh M0

i , and initial regions
G0

i ⊂ G0
Mi

. Each robot ri is able to sense the environment within range Rsens

and to communicate with robot neighbors, contained in Ni, within range Rcom.

1: while state == DEPLOY do
2: if action == COORDINATE then
3: vgi ← Coordinate(algorithm) // “Algorithm 2” or “Algorithm 3”
4: end if
5: if action == MOVE then
6: {pi, Mi} ← UpdateNeighborhood(SENS)
7: Ti ← PlanPath(vpi , vgi , GMi , Mi)
8: pi ← MoveToGoal(pi, Ti)
9: UpdateState()
10: end if
11: end while

Algorithm 2. Coordination By Wavefront Propagation

Require: Voronoi region Gi, graph GMi and mesh Mi.

1: Ni ← UpdateNeighborhood(COM)
2: Gi ← PropagateWavefront(Ni, Gi, GMi , Mi)
3: vgi ← UpdateGoalDirection(Gi)
4: UpdateState()

Algorithm 3. Coordination By Vertex Exchange

Require: Voronoi region Gi, graph GMi and mesh Mi; k rounds of vertex ex-
change.

1: Gi ← AssignFreeVertices(Gi, GMi)
2: Ni ← UpdateNeighborhood(COM)
3: for all rj contained in Ni do
4: ExchangeVertices(Gi, Gj , k)
5: end for
6: vgi ← UpdateGoal(Gi)
7: UpdateState()

the local update of the two Voronoi regions. If a vertex exchange leads to a
disconnected region, the last case applies and the respective vertex will not
be exchanged. Note that the last case does not affect the convergence of the
overall algorithm; the cost is not minimized but remains unchanged in this
iteration step. However, over subsequent iterations the pairwise optimization
by exchanging vertices among adjacent regions minimizes the overall cost.
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Each robot is assumed to be equipped with communication and sensing de-
vices. The information collected from the environment is stored in the triangle
mesh maps Mi ⊂ M , and each mesh map is associated with a graph GMi ⊂
GM . For applications, where the algorithms are required to adapt to character-
istics of the surface (e.g., surface curvature), the matrix F̃x is computed from
the mesh mapMi. A Voronoi region is defined as the subgraphGi ⊂ GMi . The
neighborhood Ni of a robot ri includes all the neighboring robots rj within
communication range Rcom, together with the additional information of their
positions, Voronoi regions andmesh maps. The UpdateNeighborhood func-
tion updatesNi; for argument SENS, the robot ri updates its own position and
mesh map, for argument COM, the robot detects other robots and updates its
mesh map from communicated information. If the meshes of two neighboring
robots overlap, the meshes are merged, Mi ← Mi ∪ Mj, Mj ← Mi ∪ Mj .
A matching among two neighboring robots is only established if the robots’
Voronoi regions are adjacent, i.e., if two vertices in Gi and Gj are adjacent in
the graph GM .

The adaptive surface coverage algorithms are divided into a coordina-
tion and a moving action. The coordination action implements the pre-
viously described cost minimization process. In the coordination action of
the second approach, k rounds of vertex exchange are performed by the
ExchangeVertices function. With k chosen large enough, a robot will
not enter a local vertex exchange with another robot neighbor before a par-
tition with optimal cost between its own and the current neighboring region
is obtained. Provided that a vertex exchange procedure can find the global
optimum for the two regions, this leads to pairwise optimal partitions similar
to [10]. The coordination action updates the goal direction and goal position
vgi on the graph for each region and robot, which is then handed over to the
moving action of the algorithms in order to deploy the robots on the surface.
During the moving action the robots navigate on the surface. Each robot per-
ceives the environment and computes the shortest path to its current goal.
The PlanPath function updates the path Ti, based on the discrete positions
vpi , whereas the MoveToGoal function controls the robot along the path.

In the Voronoi coverage method of [1], the robots act as the generators
and converge to the mass centers of their Voronoi regions. However, this is no
longer a necessary condition in our case, as the Voronoi regions are generated
either by wavefront propagation between vertices or by local vertex exchanges
of boundary vertices on the underlying graphs. The coordination and moving
actions are loosely coupled4. The decoupling of the two actions allows to
place the robots’ goal positions at different locations that may improve the
overall performance of the algorithms, with benefits such as lower cost paths,
better accessibility of the goal positions, or better sensor coverage. Placing

4 The dependence is only given through the communication and the environment
update; the robot positions influence what the robots will communicate, perceive
from their environment and incorporate into the mesh maps.
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goals closer to the boundary of a Voronoi region, for example, could increase
the explorative behavior of the basic coverage algorithms.

4 Application to Hybrid Coverage Control

This section explains how the adaptive surface coverage algorithms can be
applied within the hybrid coverage framework to achieve area coverage on a
surface. The hybrid area coverage method is outlined in Figure 2 and Algo-
rithm 4. The idea behind hybrid coverage is to combine robot deployment
and sweeping motions [6]. The method starts with the robots spreading out
on the surface. The robots cooperatively partition the surface and get their
assigned areas of operation. In this first stage, the adaptive surface coverage
algorithms from Section 3 are applied to realize an effective deployment and
adaptive decomposition of the surface. The provided adaptivity can be ac-
tively used to shape the Voronoi regions and simplify the coverage of the area,
e.g., leading to compact or more elongated shapes that support circular spi-
ralling or rectangular back–and–forth sweeping patterns. Upon convergence,
the robots switch to the second stage, where each robot sweeps its assigned
region locally to search the area. Depending on the size of the environment
to be covered and the range of coverage of the single robots, the two stages of
deployment and sweeping (state DEPLOY and SWEEP in Algorithm 4) are it-
erated. The robots relocate and redistribute outside the already covered area
by applying the hybrid coverage subroutines AdaptiveSurfaceCoverage
and SweepSurfaceCoverage again. By iterating the process, the complete
surface is finally covered by the robots.

Once a Voronoi region is covered, it is marked as covered in the robot’s
mesh map Mi and is locked; the robot communicates the status to its neigh-
bors, which update their mesh maps accordingly. As the adaptive surface
coverage algorithms deploy the robots by generating a Voronoi tessellation,
a dual Delaunay graph is established simultaneously (see Figures 1 – 4). The
graph connects the Voronoi regions, represents the surface topology and gives
a simplified low resolution representation of the environment. This represen-
tation remains valid and may serve as roadmap for future relocation and re-
distribution phases of the robots. The covered regions are known to the robots
as they have swept and explored these areas before. Hence, paths transferring
from one location on the surface to another are preferably planned through
the known and safe area of the regions along the Delaunay graph.

Besides covering and locking of regions, many more operations on the
regions are possible. A robot can leave its region uncovered and reassign it
to other robots for coverage, or ask other robots for support. Regions can be
deleted cooperatively if a robot fails or relocates. Furthermore, a new region is
instantiated whenever a robot joins during deployment, or a region is created
inside already covered area in order to initiate redundant coverage.
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Fig. 2 Hybrid area coverage. Left: Robot deployment. Center: Sweeping motions.
Right: Relocation and redistribution. The dual Delaunay graph is marked in red.

Algorithm 4. Hybrid Area Coverage

Require: Set of n robots ri, with sensing and communication capabilities. Sub-
routines for the two stages of deployment and sweeping motion.

1: loop
2: AdaptiveSurfaceCoverage(state) // state == DEPLOY
3: SweepSurfaceCoverage(state) // state == SWEEP
4: RelocateAndRestart()
5: end loop

5 Simulation Experiments

The adaptive surface coverage and the hybrid area coverage algorithms are
tested on different surfaces. The surface models vary in complexity and consist
of synthetic meshes, and meshes obtained by surface reconstruction from real
laser point clouds. In the following simulations we assumed that the robots
always remain connected (i.e., Rcom =∞).

The first experiment demonstrates the adaptivity of the Voronoi coverage.
Figure 1 shows how four robots are deployed on a planar mesh under vary-
ing user guidance. The metric tensor field is specified directly by the user.
The first deployment is uniform, which sets equal weights to all vertices and
directions. The second deployment is isotropic and directs the robots to the
left of the mesh. The metric tensor field for the first two deployments is of
the form K̃∗

v = mv I3, where mv is constant for the uniform deployment and
varies as function of the location for the isotropic deployment. The third and
fourth deployments use an anisotropic metric. The Voronoi partitions point
along the principal directions of 90◦ upwards and 45◦ to the left.

In the second and third experiment, 10 and 50 robots are distributed on
the synthetic mesh model of a torus (Figure 3) and a cactus (Figure 4).
The deployment on the torus is isotropic and the deployment on the cactus
is anisotropic. In both cases, the matrix F̃v is constructed from the local

curvature of the surface, given by weights ρ(v) = 1+
√
k2v, 1 + k2v, 2, the prin-

cipal curvatures kv, 1 and kv, 2 , and the principal directions. The principal
curvatures and principal directions are estimated from the mesh model fol-
lowing [15], and are shown in Figure 5 on the left and in the center.
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Fig. 3 Adaptive deployment of 10 robots (red) from start (blue), with isotropic
curvature metric. The dual Delaunay graph at convergence is shown on the right.

Fig. 4 Adaptive deployment of 50 robots (red) from start (blue), with anisotropic
curvature metric. The dual Delaunay graph at convergence is shown on the right.

Fig. 5 Left, center: Principal curvature directions estimated for the torus and
cactus models. Right: Close–up of the planned triangle strip path and the vector
field generated along the strip for robot control toward the mass center of the
Voronoi region.

Fig. 6 Left: 3D laser point cloud and reconstructed triangle mesh of a steam
chest tube. Center: Partition resulting from the deployment of five robots. Right:
Covering triangle strip paths defining a sweeping pattern for each of the Voronoi
regions.
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In the fourth experiment, the inner surface of an industrial tube structure
is covered by five robots. Figure 6 shows one iteration of the hybrid area
coverage method. The input is a 3D point cloud, which was recorded with a
rotating Hokuyo URG–04LX laser scanner (Figure 6, left). From the point
cloud, a triangle mesh is reconstructed. Five robots are deployed over the
mesh in a first stage, using the second adaptive surface coverage algorithm
(Algorithm 3) with k = 1 rounds and uniform weights (Figure 6, center). In
a second stage, each robot covers its Voronoi region with a sweeping motion
(Figure 6, right). The path planner computes transferring as well as sweeping
paths. Paths to transfer a robot to a goal position are planned by an A*
search, which generates a triangle strip path on the mesh. The sweeping
paths to cover the surface area result from a covering strip planner, which
is based on [16]. The robots are controlled by smooth vector fields generated
along the strip, using concepts similar to [17]. Figure 5 on the right gives
an example for a generated vector field that steers a robot toward the mass
center of its Voronoi region.

6 Conclusion

In this paper, we have presented two adaptive surface coverage algorithms
to deploy multiple robots on curved surfaces. The algorithms operate on
triangle meshes and distribute the robots into discrete regions on the mesh.
The size, positions and shapes of the regions are adaptive; they are influenced
by a metric tensor field defined on the surface. The adaptive surface coverage
algorithms are applied under the hybrid coverage concept for surface area
coverage. The algorithms implement the adaptive deployment of the robots.
In a second stage, the robots cover the areas of their assigned regions by a
sweeping motion. Depending on the environment and the coverage task, this
procedure is iterated, which finally leads to complete coverage of the surface.
The algorithms are successfully tested in several simulation experiments on
different synthetic as well as more realistic mesh models.

In our future work, we plan to test the algorithms on real robots, with
added localization and mapping functionalities. Regarding adaptive surface
coverage, we will look at the optimization of pairwise partitions and the
adaption of regions by user guidance. Concerning hybrid area coverage, it is
interesting to further study schemes of robot relocation and redistribution
of regions and tasks among robots, particularly for deployment, exploration
and search scenarios in heterogeneous robot teams.
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R.C., Chaimowicz, L., de Almeida, D.S.C., Campos, M.F.M.: Robot Navi-
gation in Multi–Terrain Outdoor Environments. Int. Journal of Robotic Re-
search 28(6), 685–700 (2009)



Nonlinear Cyclic Pursuit Based Cooperative
Target Monitoring

Sangeeta Daingade and Arpita Sinha

Abstract. This paper presents a nonlinear cyclic pursuit based target monitoring
strategy for a group of autonomous vehicles. The vehicles are modeled as unicycles
and are assumed to be heterogeneous. Each vehicle follows its next neighbor as well
as the target. Detailed analysis is done for a stationary target and the effectiveness of
the proposed strategy with a moving target is shown in simulation. At equilibrium
the vehicles capture the target and move along concentric circles in a rigid polygonal
formation around the target with equal angular speeds. A necessary condition for the
existence of equilibrium formation is derived. Local stability analysis is carried out
for homogeneous agents. Simulation results illustrate the objective of the proposed
method and demonstrates the derived results.

1 Introduction

In various military and civil applications such as surveillance, security systems,
space and underwater exploration, it is often required to monitor a target contin-
uously from all the directions. In such situations cooperative target tracking would
be an attractive solution rather than employing a single, intelligent and sophisticated
vehicle. In this paper we address the cooperative control problem for monitoring a
target with multiple autonomous vehicles. In cooperative target monitoring, the ob-
jective is to coordinate the motion of vehicles in such a way that the vehicles reach
the desired relative positions and orientations with respect to the target and keep
following the target while maintaining the formation.

The target tracking strategies discussed in [4], [10], [7] assumes linear models
for each vehicle. These strategies do not take into account the kinematic constraints
of the vehicles. In [14], the authors have studied the problem of vision based target
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tracking among a group of ground robots where it is assumed that the robots can
measure the target’s position, velocity, and acceleration. They have developed control
laws for both single-integrator and double-integrator type robot models.

The unicycle model closely resembles the dynamics of mobile robots and un-
manned aerial vehicles (UAVs). The target tracking strategies discussed in [16], [9],
[8] , [5], [11], [13], [12] are based on the unicycle model for the vehicles and as-
sumes that all the agents are homogeneous. Switching control law is designed in
[16] to track the center of mass of the agents. The agents follow piecewise linear
trajectory. In [9], [8] the authors assume all to all communication topology and have
presented analysis with only three agents. The strategy discussed in [5] considers a
scenario where limited sensing capability of the agents is taken into account. The
authors have shown that at equilibrium the agents get distributed around the target
in different platoons along the same circle, although the agents are not uniformly
distributed. The splay state configuration introduced in [11] enables representation
of the equilibrium state of the agents tracking a moving target. The control law
proposed by the authors requires knowledge of the derivative of the heading angle
which might not always be known or computed with precision.

Our work is based on cyclic pursuit which is a simple strategy derived from
the behavior of social insects. In cyclic pursuit, agent i follows agent i+ 1 modulo
n. This strategy can be used to obtain various behaviors like rendezvous, motion
in formation, target capturing etc. Bruckstein et al. [3] modeled behaviors of ants,
crickets and frogs with continuous and discrete cyclic pursuit laws. Stability and
convergence of group of ants in linear pursuit are described in [2]. Marshall et al.
[15] studied the formations of multivehicle system under linear as well as nonlinear
cyclic pursuit. They have analyzed the equilibrium and stability of these formations
in case of identical agents. In [18] and [19], Sinha et al. studied generalization of
the linear cyclic pursuit and nonlinear cyclic pursuit respectively. The authors have
derived a necessary condition for equilibrium formation of heterogeneous agents.
Cyclic pursuit based formation control strategies discussed in [15] and [19], deal
with formations about a point which cannot be specified a priori. In order to enable
enclosure of the target, we should achieve formations about a specific point (target).
Rattan et al. [17] proposed a Implicit Leader Cyclic Pursuit (ILCP) law for achieving
formations about a given goal point and have used it for rendezvous of multiple
vehicles.

We propose a target tracking strategy based on nonlinear cyclic pursuit strategy
where each agent needs the position information from one of it’s neighbor. This is
a type of cyclic pursuit strategy which is suitably modified such that nonholonomic
agents can uniformly enclose the target. The agents will move on the concentric
circles with the target at the center.The novelty of the work lies in deriving a simple
control strategy which can be easily measured and computed. In this paper we study
the case when the target is stationary. The extension of this work for moving target
is underway and we present a simulation result to show that this strategy is equally
applicable for moving targets. The main contributions of the paper are:

• Cyclic pursuit based decentralized target tracking strategy for nonholonomic,
heterogeneous agents,
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• Necessary conditions for achieving a formation about a stationary target, and
• Stability analysis of the equilibrium formations when the agents are identical.

This paper is organized as follows. Analysis of the proposed strategy begins with
the modeling of the system in Section 2 followed by possible equilibrium formations
in Section 3. In Section 4, we derive the necessary conditions for equilibrium. Then
we discuss a special case in Section 5 where the agents are identical followed by
the stability analysis of the proposed control law in Section 6. Simulation results are
presented in Section 7 and conclusions and future research directions are discussed
in Section 8.

2 Modeling of System

Consider a group of n agents employed to track a target. The kinematics of each
agent with a single nonholonomic constraint can be modeled as:

ẋi =Vi coshi; ẏi =Vi sin hi; ḣi =
ai

overVi
, (1)

where Pi ≡ [xi,yi]
T represents the position of agent i and hi represents the heading

angle of the agent i with respect to a global reference frame. Vi and ai represent
the linear speed and lateral acceleration of agent i respectively. Equation (1) can
represent a point mass model of a UAV flying at a fixed altitude or a point mass
model of a wheeled robot on a plane. We use a generic term “agent ” to represent
the aerial or ground vehicle. We assume that agent i is moving with linear speed Vi

which is constant over time. Therefore, the motion of the agent i is controlled using
the lateral acceleration, ai.

Our objective is to enclose the target with n agents. It is assumed that each agent
i has the information about the target position and i+1th agent’s position. Consider
the target to be located at point P as shown in Fig. 1. We modify the classical cyclic
pursuit law for enclosing the target such that agent i, positioned at Pi, follows not
only i+ 1th agent at Pi+1 but also the target at P. Let ρ be a constant which decides
the weight agent i gives to the target position P, over the position of the agent i+1,
Pi+1. This weighting scheme is mathematically equivalent to following a virtual
leader located at the point P

′
i+1 which is a convex combination of P and Pi+1. The

point P
′
i+1 is calculated as: P

′
i+1 = ρ Pi+1 +(1−ρ) P, where 0 < ρ < 1.

Since we are considering a stationary target, we assume a target centric reference
frame and define the following variables (refer to Fig. 1): rig – Distance between
ith agent and the target; ri – Distance between ith agent and (i+ 1)th agent; ri

′
–

Distance between ith agent and virtual leader at P
′
i+1; fi – angle made by the vector

rig with respect to the Ref.; φi – angle between the heading and the line of sight
(LOS) PiP

′
i+1 of agent i. We define the control input to the ith agent, that is, the

lateral acceleration ai, as
ai = kiφi, (2)
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Fig. 1 Positions of the vehicles in a target centric frame

where ki > 0 is the controller gain. We assume 0≤ φi < 2π for all time, t ≥ 0. This
condition ensures that the agents always rotate in counter clockwise direction. Let
ωi be angular speed of agent i and f i+1

i = fi+1 − fi. Let us define the states of the
system as xi(1) = rig, xi(2) = fi+1− fi and xi(3) = hi− fi for i = 1,2, · · ·n. The value

of ṙig =Vi cos(hi− fi) and ḟi =
Vi sin(hi− fi)

rig
. Now the kinematics given by (1) can be

re-written in the target centric reference frame as,

ẋi(1) =Vi cos(xi(3)) (3a)

ẋi(2) =
Vi+1 sin(xi+1(3))

xi+1(1)
− Vi sin(xi(3))

xi(1)
(3b)

ẋi(3) =
kiφi

Vi
− Vi sin(xi(3))

xi(1)
. (3c)

Equation (3) gives the kinematics of the ith agent. In the subsequent sections all the
analysis are based on this model.

Note 1. During implementation, the agents will have a limit on the maximum lat-
eral acceleration amax, that is, |ai| ≤ amax∀i. We take into account this constraint by
putting a bound on the value of ki as ki ≤ kmax , where kmax =

amax
2π .

3 Formation at Equilibrium

In this section we study the asymptotic behavior of agents under the control law (2).
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Theorem 1. Consider n agents with kinematics (3). At equilibrium the agents move
in concentric circles, with (i) the target at the center of concentric circles and (ii)
equal angular velocities.

Proof. At equilibrium ẋi( j) = 0 for i = 1, ...,n and j = 1,2,3, which implies, ṙig = 0,

ḟ i+1
i = 0 and ḣi− ḟi = 0. So the distance between the target and agent i (for all i)

remains constant at equilibrium. Using (3a) we can write, hi− fi =(2m+1)π
2 , where

m = 0,±1,±2, · · · . From (3c) we can write kiφi
Vi

= Vi sin(hi− fi)
rig

= ± Vi
rig

. Since ki > 0,
Vi > 0 , 0≤ φi < 2π and rig ≥ 0, we get

kiφi

Vi
=

Vi

rig
(4)

and therefore, m = 0,±2,±4, · · · . Assuming hi ∈ [0,2π) and fi ∈ [0,2π), we get
(hi− fi) ∈ (−2π ,2π). Therefore m = 0 or m = −2, which implies the same angle.
Therefore

hi− fi =
π
2
. (5)

From (2) and (4), ai =
Vi

2

rig
. Since Vi and rig are constant, ai is constant for all i.

Therefore all the agents move along a circular path with the target at its center and
radius rig. This proves the first part of the theorem. The the angular velocity of agent
i can be calculated as, ωi =

ai
Vi
= Vi

rig
. From equation (3b) and (5), we can write

Vi

rig
=

Vi+1

r(i+1)g
(6)

Using (6), we conclude that for all i, ωi = ωi+1. Therefore, all the agents move
around the target in concentric circles with equal angular speed. �

Corollary 1. At equilibrium the agents with kinematics (3), form a rigid polygon
that rotates about the target.

Proof. The proof follows directly from the Theorem 1.

4 Conditions for the Existence of Equilibrium

In this section we derive necessary conditions for the existence of equilibrium using
geometrical and trigonometric relations. Let the radius of the circle traversed by the
first agent at equilibrium be r1g = R1. Using (6), we can write, rig =

Vi
V1

R1 for all i.
So from (4) we write,

φi =
ViV1

kiR1
(7)

Consider Fig. 1and let ∠PPiP
′
i+1 = bi and ∠PP

′
i+1Pi = zi. So φi + bi +(hi− fi) = π

and bi+zi+ f i+1
i = π . At equilibrium φi+bi =

π
2 and f i+1

i = π
2 +φi−zi. We assume
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that the angle is positive if measured counterclockwise and negative if clockwise.
As the agents are in cyclic pursuit we can write,

n

∑
i=1

(mod n)

( f i+1
i ) = 2πd, d =±1,±2, · · · . (8)

Applying the sine rule, from�PP
′
i+1Pi and (6) we can calculate, sin(zi)=

Vi
ρVi+1

cos(φi).
Let X be the set of agents defined as

X =
{

i ∈ {1, · · · ,n}∣∣ρ <
Vi

Vi+1

}
.

Claim: The set X �= /0.

Proof: We prove it by contradiction. Let us assume that X = /0. Then ρVi+1 ≥ Vi

for all i = 1, · · · ,n, which implies, ρnV1 ≥ V1. This can not be true as 0 < ρ < 1,
which leads to a contradiction. So there exits at least one agent in the set X . �

P

Q′

Q

rig

ρr(i+1)g

Q0
Q1

Vi

φimax

φ ′

Pi

φimin
Q2

Fig. 2 Formation of agents in set X

For the agents in set X , from (6), ρr(i+1)g < rig. Now consider an agent i ∈X
at equilibrium as shown in Fig. 2. The point P represents the target. At equilibrium
the agent i moves along the circle which has radius rig and center P. Let the agent
i be at the point Pi. For a given ρ , the virtual leader of agent i ∈X will lie on the
circle of radius ρr(i+1)g which is less than rig. Note that r(i+1)g can be greater or less
than rig.

Let PiQ and PiQ′ be the tangents drawn from point Pi to the circle of radius
ρr(i+1)g and φimin and φimax are the angles that the velocity vector of ith agent makes
with PiQ and PiQ′. Then φimin +φimax = π . At equilibrium φi must satisfy

0 < φimin ≤ φi ≤ φimax < π . (9)
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When φi = φimin , the virtual leader of i will be at Q and therefore f i+1
i = φi. Similarly,

when φi = φimax , f i+1
i = π +φi. When φi = φ ′

which is within the bounds specified
by (9), there are two possible locations where the virtual leader can lie (Q1 and Q2).
So zi as defined in Fig. 1 can take two values. The two values of zi are zia =∠PQ1Pi

and zib = ∠PQ2Pi, which can be calculated as

zia = sin−1 ( Vi

ρVi+1
cos(φi)

)
(10a)

zib = π− sin−1 ( Vi

ρVi+1
cos(φi)

)
(10b)

Similarly, ( f i+1
i ) can take two values. At equilibrium RHS of (10) should be real.

So the condition for the existence of equilibrium can be stated as:

Theorem 2. Consider n agent system with kinematics (3). Given ρ the necessary
condition for the equilibrium is

max
i∈X

ηi ≤ min
j∈X

μ j, (11)

ηi =

(
cos−1 (ρVi+1

Vi

)) ki

ViV1
and μ j =

(
π− cos−1 (ρVj+1

Vj

)) k j

VjV1
. (12)

Proof. Equation (10) holds if, for all i,

| cos(φi) |≤ ρVi+1

Vi
(13)

For i /∈X , i.e. if ρVi+1 ≥Vi, equation (13) is always true. However, if i ∈X , then

pπ + cos−1

(
ρVi+1

Vi

)
≤ φi ≤ (p+ 1)π − cos−1

(
ρVi+1

Vi

)
, where p = 0,±1,±2, · · · .

From (9), p can take only one value, p = 0. Substituting the value of φi from (7) we

get ki
ViV1

(
cos−1

(ρVi+1
Vi

))≤ 1
R1
≤ ki

ViV1

(
π− cos−1

(ρVi+1
Vi

))
. Let

ℜi = {R1 : ηi ≤ 1/R1 ≤ μi , i ∈X }, (14)

where ηi and μi are given by (12). For each i, (14) gives the range of values R1 can
take. If

⋂
i∈X ℜi �= /0 then, there exists some R1, such that (13) is satisfied for all i. If⋂

i∈X ℜi �= /0 has to be true, then (11) must hold. Thus the necessary condition for
equilibrium is given by (11). �

Note 2. For the agents not in the set X , that is, ρVi+1 ≥Vi, from (6), ρr(i+1)g ≥ rig.
When ρr(i+1)g = rig, the virtual leader lies on the circle of radius rig and φi can take
value in [0,π ]. When ρr(i+1)g > rig, the virtual leader lies outside the circle of radius
rig and φi ∈ [0, 2π). In both the cases, given a φi, there exists an unique point where
virtual leader can lie and hence the position of the next agent i+1 is unique. In these
cases the value of zi lies in [0, π/2] and is given by (10a).
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Note 3. When Theorem 2 is satisfied, (8) may not be satisfied. Therefore, to achieve
a formation one requires both Theorem 2 and (8) to be true simultaneously.

5 Formation in Case of Homogeneous Agents

Consider a special case when all the agents are identical, that is, Vi = V and ki = k
for all i. Then at equilibrium, from (6) we have rig = R for all i. So the agents move
on the same circle with the target at its center. From (7),

φi =
V 2

kR
= φeq (15)

for all i. Also φimax = φmax and φimin = φmin for all i. The value of φeq can be calculated
as

cos(φeq) =
ρ sin( f i+1

i )√
1+ρ2− 2ρ cos( f i+1

i )
. (16)

From �PQPi (Fig. 2) we can write,

ρ = cos(φmin) (17)

We observe that ρV <V and therefore all the agents belong to the set X . Then the
necessary condition in Theorem 2 can be expressed as ρ ≥ ∣∣cos(φeq)

∣∣.
Consider Fig. 2 and assume φeq = φ ′

. Then ∠Q0PPi = φeq. As long as (9) is
satisfied, Theorem 2 is trivially satisfied. Let ∠Q0PQ1 = ∠Q0PQ2 = δ and

fa = ∠PiPQ1 = φeq + δ , (18)

fb = ∠PiPQ2 = φeq− δ . (19)

The value of f i+1
i can be either fa or fb. Note that, from (10), zia + δ = π/2 and

zib − δ = π/2. Also from �Q1PPi

cos(φeq) = ρ cos(δ ). (20)

Let Ma = {i : f i+1
i = fa} and Mb = {i : f i+1

i = fb}. Then |Ma|+ |Mb| = n. We
have three possibilities:
Case 1: When Ma is empty, that is, f i+1

i = fb ∀i, from (19) , we can write
cos( fb) = cos(φeq − δ ). Using (16) and (20),

(
ρ cos( fb)− 1

)(
ρ − cos( fb)

)
= 0.

Since 0 < ρ < 1, ρ cos( fb) �= 1, so ρ = cos( fb). From (17), fb = φmin = π − φmax.
Then from Fig. 2, we observe that the agent i+ 1 will be at Q or Q′ and thus we
have either φeq = φmin or φeq = φmax.
Case 2: When Mb is empty, that is, f i+1

i = fa, ∀i, following similar procedure as in
the previous case, cos( fa) = cos(φeq + δ ) needs to be true. Using (16) and (20) and
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simplifying, we get ρ sin2( fa)−
(
1−ρ cos( fa)

)(
ρ − cos( fa)

)
= cos( fa)

(
1+ρ2−

2ρ cos( fa)
)

which is satisfied for all ρ .
Case 3: When both Ma and Mb are non-empty, following similar procedure, it is
found that the equilibrium formation is possible if cos(δ ) = ρ cos

(
2π d

n − m
n δ
)

is
true for the values of δ satisfying (20) and m = |Ma|− |Mb|.

For Cases 1 and 2, we have f i+1
i = f̄ ∀i, where f̄ is some constant. However,

in Case 3, f i+1
i is not same for all i. A set of 40000 Monte Carlo simulations were

run for different values of n and ρ . The value of n was varied from 3 to 11 and ρ
from 0.1 to 0.9 in the steps of 0.1. We selected 500 random initial conditions for
each pair of n and ρ . It has been observed that, formation at equilibrium was always
a regular polygon, which mean case 3 has never occurred. Thus, in this paper, we
will concentrate on Cases 1 and 2 only and analyze the conditions for achieving a
stable formation uniformly distributed around the target.

In Case 1 and Case 2,
φmin ≤ f̄ ≤ π +φmax (21)

with Case 1 corresponding to equalities in (21). When f i+1
i = f̄ ∀i, the agents will

be uniformly distributed around the target. Then from (8) we get f̄ = 2π d
n . From

(15), the distance between an agent and the target is, R = V 2

kφeq
. Then the distance

between ith and (i+ 1)th agent will be r̄ = 2Rsin
( f̄

2

)
= 2 V 2

kφeq
sin(π d

n ). So the states
of the system (3) at equilibrium are,

xieq(1) =
V 2

kφeq
; xieq(2) = 2π

d
n

; xieq(3) =
π
2
. (22)

At equilibrium, the agents arrange themselves in a regular formation around the
target. This regular formation of n agents can be described by a regular polygon
(n,d), where d ∈ {1,2, ...,n− 1}. This d is reflected in equilibrium state xieq(2).

Note 4. When φeq = φ ′
(as shown in Fig. 2), from (17) and (21), ρ = cos(φmin) ≥

cos( f̄ ) = cos(2π d
n ), as such, ρ ≥ cos(2π d

n ). Let us replace d
n by a continuous vari-

able q ∈ (0,1). We can plot ρ = cos(2πq) as shown in Fig. 3. It can be seen that, for
a given n, Region I corresponds to Case 2 (when Mb is empty) and the boundary of
the Region I corresponds to Case 1 (when Ma is empty).

Since ρ ∈ (0,1), we ignore the dotted portion of the curve on the left half of Fig. 3.

6 Stability Analysis for Homogeneous Agents

We study the stability of the equilibrium formation of homogeneous agents. The
equilibrium points are given by (22). Since d can take (n−1) values, there are (n−1)
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formations possible for a given V , k and ρ . Linearizing (3) about the equilibrium
point (22), we get ˙̂xi = Ax̂i +Bx̂i+1, where

A =

⎡⎣ 0 0 −V
V
R2 0 0
a31 a32

−k
V

⎤⎦ B =

⎡⎢⎢⎣
0 0 0
−V
R2 0 0

−kρ sin(2π d
n )

VR
(

1+ρ2−2ρ cos(2π d
n )
) 0 0

⎤⎥⎥⎦ ,

where a31 =
kρ sin(2π d

n )

VR
(

1+ρ2−2ρ cos(2π d
n )
) + V

R2 and a32 =
kρ
(

ρ−cos(2π d
n )
)

V
(

1+ρ2−2ρ cos(2π d
n )
) . So the sys-

tem of n vehicles can be written as ˙̂X = ÂX̂ , where X̂ = [x̂1, x̂2, · · · , x̂n]
T and Â is a

circulant matrix given by Â = circ
(

A B 03×3 · · · 03×3
)
. The stability of the forma-

tion depends on the eigenvalues of Â.

Theorem 3. Consider n agents with kinematics (3), moving with unit linear velocity.
For a given value of ρ , the equilibrium points given by (22) are locally asymptoti-
cally stable if

ql <
d
n
< qu, where (23)

ql =−0.17ρ + 0.254

qu =

{
0.17ρ + 0.75 for ρ ≤ 0.5305
2
π cos−1(

√
2ρ− 1) for ρ > 0.5305.

(24)

Proof. The stability of a formation depends on the eigenvalues of the circulant ma-
trix Â. We can find the eigenvalues of circulant matrix (as given in [6]) using the
representer polynomial P(z) of circulant matrix Â. The representer polynomial of a
circulant matrix C = circ (C1,C2, · · ·Cn) is defined as P(z) = ∑n

i=1 Ci(zi−1). So the

representer polynomial of Â will be, P(z) = A+ zB. Let ς = e j 2π
n , where j =

√−1.
The block circulant matrix Â can be diagonalized using a Fourier matrix Fn given
by Â = (Fn ⊗ I3)D(Fn ⊗ I3)

δ, where (δ) indicates conjugate transpose. The diag-
onal matrix D is given by, D = diag(P(1),P(ς), · · · ,P(ςn−1)). So we can write
Di = A+ ς i−1B , i ∈ {1,2, ....n}.
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The eigenvalues of Â are same as eigenvalues of Di, i = 1, · · ·n. We can com-
ment about the stability of n vehicle system, by observing the eigenvalues of each
block Di. Assuming V = 1, each Di can be factorized as Di =

1
k T−1D̃iT , where

T =diag[k,1,1] and

D̃i =

⎡⎢⎣ 0 0 −1
φeq

2(1− ς i−1) 0 0
φeqρ sin(2π d

n )(1−ς i−1)

1+ρ2−2ρ cos(2π d
n )

+φeq
2 ρ(ρ−cos(2π d

n ))

1+ρ2−2ρ cos(2π d
n )

−1

⎤⎥⎦ .
The spectrum σ(·) of Di and D̃i are related as σ(Di) =

1
k σ(D̃i). Since k > 0, sta-

bility of Di can be determined from the stability of D̃i. D̃i does not have a term
containing gain k. So we can conclude that the stability of (n,d) formation is in-
dependent of k, as long as k > 0. D̃i is a complex matrix, since ς i−1 = e2π j i−1

n

is a complex quantity. We can write ς i−1 = βi + jξi ∈ C, where βi = cos(2π i−1
n )

and ξi = sin(2π i−1
n ). Then the characteristic polynomial of D̃i can be written as

PD̃i
(λ ) = λ 3 + c1λ 2 + c2λ + c3, where c1 = 1, c2 = a2 + jb2, c3 = a3 + jb3. Let H

be the Hermitian matrix corresponding to characteristic polynomial PD̃i
(λ ). Then

the polynomial PD̃i
(λ ) is asymptotically stable if and only if the principal minors

h1,h2 and h3 of H are positive [1]. In this case h1 = 2, h2 = 4(a2− a3− b2
2) and

h3 = 8(a2
2a3− a2b2b3− 2a2a3

2 − 3a3b2b3 − b3
2 − a3b2

2a2− b2
3b3 + a3

3). Here,
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h2 and h3 depends on d
n and βi which takes discrete values. To find the range of

values of d
n and βi for which h2 > 0 and h3 > 0, we replace d

n by a continuous vari-
able q ∈ (0,1) (as stated in Note 4). Also we replace βi by a continuous variable
β̃ ∈ [−1,1]. For a given β̃ , we can plot q versus ρ when h2 = 0 and h3 = 0. Figure
4 shows these plots for different values of β̃ . Let us define

S2 = {(ρ ,q, β̃) : h2 > 0,ρ ∈ (0,1),q ∈ (0,1), β̃ ∈ [−1,1]}
S3 = {(ρ ,q, β̃) : h3 > 0,ρ ∈ (0,1),q ∈ (0,1), β̃ ∈ [−1,1]}.
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Then S = S2∩S3, defines the stability region where both h2 and h3 are positive. In
Fig. 4, Region I corresponds to S. Region I can be numerically approximated with
conservative bounds as

q+ 0.17ρ− 0.254= 0 (25)

q− 0.17ρ− 0.75 = 0 (26)

cos2(
πq
2
)− 2ρ + 1 = 0 for ρ ≥ 0.5. (27)

Equations (25) and (26) are the linear approximations of ρ = cos(2πq). The Region
I in Fig. 4 is a subset of the Region I of Fig. 3. So for a given ρ , the bounds on q
can be defined by (23). Thus we can conclude that for a given ρ and n, if d

n satisfies
(23), then the eigenvalues of D̃i and hence that of Â will have negative real part. So
the formation will be locally asymptotically stable. �

Remark: The stability results obtained using linearization technique matches with
the analysis done for Case 1 and Case 2 in Section 5.

7 Simulation Results

First we consider five heterogeneous agents which are randomly placed initially and
the target is located at the origin (0,0).
Case 1: We consider five agents moving with speed V = [25, 20, 15, 10, 5] , con-
troller gain k = 5and ρ = 0.8. In this case X = {1,2,3,4} and

⋂
ℜi as defined by

(14) is an empty set. So the system does not have an equilibrium as the condition in
Theorem 2 is violated. Simulation results in Fig. 5-(a) shows that the agents do not
settle to rigid polygonal formation.
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Fig. 5 Formation of heterogeneous agents (• :- initial position and � :- final position)

Case 2: Now we modify the speed of the vehicles to V = [22, 19, 15, 20, 18] with
controller gain and ρ same as in Case 1. Now we have X = {1,2,4,5}. In this case
Theorem 2 is satisfied and there exist a range of values of R1 as 41.48≤ R1 ≤ 94.23.
However, as stated in Note 2 of Section 4, Equation (8) also needs to be satisfied.
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Fig. 6 Stable formation of seven homogeneous agents (a) Stationary target (b) Moving target
(• :- initial position and � :- final position)

There are two values of R1 = {45.45,64.52}, for which equation (8) is satisfied. Fig.
5-(b) shows that the system of 5 agents settles to R1 = 64.52 with d = 2.

Next we consider seven homogeneous agents, all moving with unit speed and
having controller gain k = 0.1.
Case 3: Here we assume that the target is stationary . The agents are initially in (7,3)
formation with ρ = 0.4, which corresponds to Region I of Fig. 4. At equilibrium the
agents stays in (7,3) formation as shown in Fig. 6-(a). The analytical values of inter-
agent distance r and target to agent distance R match with the simulation values.
Case 4: In this case we consider a moving target following a sinusoidal path, with
a velocity 0.1 unit/sec. The agents start from random initial positions with ρ = 0.1.
Fig. 6-(b) shows that they get into a (7,3) formation about the target and continue
to enclose the target maintaining the formation. This illustrates the potential of the
proposed strategy for cooperatively tracking a moving target.

8 Conclusion

The paper has addressed cyclic pursuit based target monitoring using a group of
heterogeneous agents modeled as planar kinematic unicycle model moving with
constant speed. Mathematical formulation and the analysis are carried out for a sta-
tionary target. At equilibrium, the agents move with a polygonal formation around
the target with equal angular speed. Necessary condition for the existence of the
equilibrium is derived. This leaves us with the future work of deriving sufficient
condition for equilibrium formation of heterogeneous agents. In case of homoge-
neous agents, local stability analysis of the equilibrium formation shows that the
parameter ρ plays an important role in the type of formation achieved at the equilib-
rium. The proposed strategy works well in the case of a moving target. So the next
step in this research work would be to analyze moving target tracking scenario. An-
other direction for future work would be to implement the strategy on a real system
or on a Hardware-In-Loop-Simulator (HILS).
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High Resolution Atmospheric Sensing Using
UAVs

Bobby Hodgkinson, Doug Lipinski, Liqian Peng, and Kamran Mohseniδ

Abstract. A technique to obtain high resolution atmospheric data using small mo-
bile sensors is presented. A fluid based control scheme using smoothed particle
hydrodynamics (SPH) is implemented to perform field measurements in a leader-
follower arrangement for a team of unmanned aerial vehicles (UAVs) equipped with
environmental sensors. A virtual leader is created by using a reduced density SPH
particle to guide the unmanned aerial vehicles along a desired path. Simulations
using the control scheme demonstrate excellent measurement ability, swarm coher-
ence, and leader following capability for large swarms. A K-means algorithm is used
to reduce the measurement error and provide accurate interpolation of the field mea-
surement data. Experimental results are presented which demonstrate the guidance
and collision avoidance properties of the control scheme using real UAVs. Readings
from the UAV’s temperature and humidity sensor suite are used with the K-means
algorithm to produce a smooth estimation of the respective distribution fields.

1 Introduction

Several methods of sensing the atmosphere exist and can be classified into two pri-
mary groups: remote sensing or in situ. Well-known systems in the remote sensing
group include RADAR, LIDAR, weather satellites, etc. [3, 5, 13, 29]. These sys-
tems are typically large (on the order of cubic meters), are generally focused on
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gathering data over very large areas (several kilometers) over a long period time,
and are expensive to construct and maintain. The in situ group also contains several
well-known systems such as dropsondes, weather balloons, barometers, etc. These
systems are typically much smaller than remote sensing systems, and are focused on
gathering high accuracy data at specific points in time and space. The data locations
can be stationary or time varying but the in situ sensors are categorized by the abil-
ity to only provide data at a single location at a given time. Generally speaking, in
situ sensors provide more accurate readings at a specific point than remote sensing
systems but remote sensing systems are much better suited to give a snapshot of
a desired measurement in a region of space. The atmospheric sensing community
desires a sensor with the accuracy of an in situ device and the ability to construct a
large area pseudo-snapshot of an environment. By definition, it is not possible for
a system of in situ sensors to give a true snapshot, but the ability to gather a large
amount of data in a time frame that is shorter than the time scale of the changing en-
vironment can be considered a pseudo-snapshot. This is where autonomous robotic
aerial systems can find a tremendously beneficial niche. Aircraft with on board sen-
sors are capable of providing high resolution readings at specific locations similar to
dropsondes while also adding horizontal and vertical mobility to allow for a wider
range pseudo-snapshot over a relatively short period of time.

A large amount of research has been conducted using mobile in situ devices such
as dropsondes and radiosondes but the primary drawback of these sensors is that
they are typically only able to measure data along a vertical line. Obviously a large
number of appropriately spaced sensors are required to obtain a full three dimen-
sional pseudo-snapshot of the environment thus increasing cost of deployment. Fur-
thermore, dropsondes are not able to revisit specific locations and the only way
to obtain information on how the environment changes as a function of time is to
deploy additional sensors at different times which also increases the cost of deploy-
ment. Unmanned aerial vehicles (UAVs) are able to gather information over large
areas and have the ability to revisit specific locations at later instances of time thus
allowing for information about the time evolution of an environment, making the use
of UAVs a viable option in atmospheric sensing. Possibly the most widely known
mobile in situ atmospheric sensing system is the Aerosonde UAV [10]. The general
concept of the Aerosonde UAV is to equip a small UAV with in situ atmospheric
sensors and fly the aircraft in an environment. This concept yields a notable advan-
tage over dropsondes in that the aircraft can maneuver in the horizontal and vertical
directions. A sample of the work that has been conducted using similar concepts of
the Aerosonde UAV with smaller, lower-cost UAVs can be found in: [6, 7, 31, 32].

The focus of this article is to present a system comprised of multiple small UAVs
equipped with a simple atmospheric sensor suite to gather a three dimensional pseudo-
snapshot of an environment. A K-means algorithm provides a smooth estimation of
the environment using the discrete points obtained by the mobile sensors while also
reducing the noise associated with the measurements. Additionally, the objective re-
quires a flexible and easily implementable cooperative control scheme to guide the
vehicles and ensure collision avoidance when the vehicles are in close proximity.
While many options exist, we have chosen to use a fluid based control implemented
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with the Smoothed Particle Hydrodynamics (SPH) fluid dynamics scheme due to
several desirable characteristics. This scheme treats each vehicle as an individual
fluid particle and the control forces are determined by the SPH approximation of the
Navier-Stokes equations of fluid motion. This technique ensures collision avoidance
and also creates a flexible controller that is computationally reasonable for implemen-
tation on resource constrained platforms. While UAVs are used in this demonstration,
the SPH control scheme can be applied to ground and underwater robots as well as
heterogeneous swarms of robots containing any combination of ground, aerial, and
underwater platforms [11].

In the following sections we present an overview of the SPH control scheme,
discuss the error reduction technique, and present test results using multiple UAVs
demonstrating several highly desirable properties of the SPH control scheme. We
also present error reduced results obtained from data gathered by two UAVs flown
using the SPH control.

2 SPH Control Scheme

While there are many possible control schemes for use with small UAVs, fluid based
control is especially appealing since fluid flows have many properties that a group
of vehicles may wish to mimic [11, 15, 17, 18, 26]. Chiefly, fluids exhibit smooth
motions and do not penetrate obstacles. In terms of vehicle control, these properties
correspond to efficient motion and collision/obstacle avoidance. Additionally, UAVs
operate in a fluid environment meaning a fluid based control scheme may allow for
easier integration of strong background flows into the vehicle path planning process.

In particular, the smoothed particle hydrodynamics (SPH) discretization has
proven to be an effective method of applying the Navier-Stokes equations in a con-
trol setting [11]. This Lagrangian technique treats each vehicle as a fluid particle,
giving fluid-like motion for vehicle swarms with inherent collision and obstacle
avoidance. A more complete discussion of the method is available in a review arti-
cle by Monaghan [23] or the book by Liu and Liu [19]. Here we present only the
aspects of SPH that are used in our cooperative control scheme.

The SPH algorithm is computationally efficient since each vehicle is represented
by a single fluid particle. By choosing a compactly supported smoothing kernel for
the particles, it is also possible to limit vehicle interactions to a short range. This
results in vehicles interacting with only their nearest neighbors (typically no more
than six vehicles in 2D). The localized interactions also make long range commu-
nication unnecessary. These advantages result in a control algorithm that is simple
enough to run in real time using the limited processing capabilities of the robot [30].
Additionally, this is a distributed control scheme that requires no central controller
since only local vehicle interactions are used. All the benefits of a distributed control
or peer-to-peer control scheme are thereby included as well [12, 25].

The SPH scheme is dependent on choosing a Gaussian-like smoothing kernel
which is used to apply fluid properties. We use the cubic spline kernel shown in
Figure 1. This kernel is nonzero for ||r|| < 2h and defines the interaction range
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Fig. 1 (Left) The cubic spline smoothing kernel (with h= 1) as a function of distance, r, used
in this article. (Right) A schematic of the SPH control scheme and the the forces involved.

between particles. Particles interact through pressure and viscous forces that are
applied through the smoothing kernel, determining the particle motion. The SPH
acceleration is given by

dvi

dt
=−∑

j
m j

[(
Pi

ρ2
i

+
Pj

ρ2
j

)
∇iW (ri j,h)+

Πi j

||ri j||
∂W (ri j,h)

∂ ||ri j||

]
(1)

where Pi is the pressure at particle i, ρi is the density, Πi j is a viscous force between
particles i and j, and ri j is the relative position vector r j − ri. In this study, we
neglect the viscous force for simplicity. The density is computed by summing over
nearby particles

ρi = ∑
j

m jW (ri j,h) (2)

and the pressure is computed using an equation of state

Pi = K

(
ρi

ρ0
− 1

)
(3)

where K is a positive coefficient.
Previously, SPH control schemes have used external forces for swarm guidance

while the SPH forces have mainly provide collision avoidance [11,27,30]. However,
we take the approach of using reduced density virtual particles for guidance. Just as
a reduced density region in a fluid creates pressure gradients that drive fluid to this
region, the reduced density particles attract vehicle particles to them.

By defining a particle’s mass to be large enough that its density is always at least
as large as the reference density, ρ0, the particle is ensured a non-negative pressure,
but if the mass is chosen to be less than this threshold, negative pressures can result.
In the SPH control scheme, all particles representing vehicles will be given suffi-
cient mass to ensure positive pressure and a single attracting virtual particle will
be used which uses a reduced mass to create a negative pressure region. This nega-
tive pressure creates attracting forces and therefore acts as a goal region. In the low
mass limit the acceleration terms simplify, slightly reducing computational cost. A
schematic showing the interaction of vehicles, obstacles and attracting particles is
shown in Figure 1.
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In the control scheme, the SPH accelerations for a particle due to all nearby
(within 2h) particles are computed and passed to the vehicle controller, which at-
tempts to enforce the desired motion through a combination of roll, pitch, and thrust
commands.

3 UAV Data Sampling and K-means Approximation

Suppose we want to measure the temperature or humidity of a 3-dimensional region.
Our UAVs can quickly collect large amounts of data through the custom temperature
and humidity sensor suite. However, in experimental flights these sensors may not
be highly accurate due to the limitations of sensor response time which is related
to the rate of change of temperature and humidity over time and space and vehicle
flight speed. For this reason, we use a K-means based error reduction scheme to ef-
fectively reduce the noise. K-means algorithms can effectively cluster N data points
into K clusters. To this effect, the field function has only K unknown coefficients
corresponding to K basis functions. On the other hand, Kriging and Gaussian inter-
polation are spanned by N basis functions. Therefore, the K-means algorithm can
be considered as a dimension reduction technique that approximates the field func-
tion without significant loss of information. Additionally, the computational cost is
significantly lower for K-means than Kriging and Gaussian process regression if
K � N. One drawback of the K-means algorithm is that it may filter the high fre-
quency components of the original field. However, as long as the ensemble of the
data set is large enough and the field is smooth, the K-means algorithm is able to
capture the main modes of the field. This method also enables us to approximate
data at unsampled locations, and potentially (in future work) suggest a path for the
UAVs to follow and collect additional data to minimize the existing uncertainty.
This section will discuss the effects of noise on the data and introduce the statistical
method for noise mitigation and interpolation.

Let x be any point in the measurement domain and xi denote a spatial location
of a sensor measurement at time step i. Each sensor inevitably introduces some
location error, ξi, and some measurement error, εi. We devise a scheme based on the
K-means algorithm to extract information from limited measurements and reduce
measurement noise.

Suppose the original field f (x) is a smooth function of position, sampling points
xi near x can be used to approximate the field of x,

f (x) = yi + εi + J(x) ·ξi+ J(x) · (x− xi)+O(|x− xi|2)+O(|x− xi| · |ξi|)+O(|ξi|2)

where J(x) is the Jacobian matrix at point x. A better estimator f̂ (x) can be obtained
through a linear combination of some measurement results yi. Our goal is to find an
optimal weighting function, ϕn(x,xi) so that the error in f̂ is minimized.

If many points are measured and the measurement error is potentially large the
variance becomes the dominant error. To reduce the noise error, we will use a cluster
of points instead of a single point to estimate the unknown field. We use the well
know K-means algorithm [21] to cluster the data points into K groups. Each cluster
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is assigned a value near the mean of its members and interpolation may be per-
formed using a radial basis function network. Let C be the encoder, C(i) = j means
the ith points belongs to the jth cluster. To optimize the clustering process, we use
the following cost function [8]

J(C) =
K

∑
j=1

∑
C(i)= j

∥∥xi− u j
∥∥2
. (4)

where u j is the center of cluster j. To minimize the cost function J(C), we use an
iterative descent approach K-means algorithm [20, 22] to find the encoder. The K-
means algorithm proceeds with the following two steps iteratively until a convergent
encoder has been obtained:

Step 1. Minimize the cluster variance with respect to the cluster means {u j}K
j=1:

min
{u j}K

j=1

K

∑
j=1

∑
C(i)= j

∥∥xi− u j
∥∥2 for a given C. (5)

Step 2. Having computed the optimized cluster means in step 1, we next optimize
the encoder as:

C(i) = arg min
1≤ j≤k

∥∥xi− u j
∥∥2
. (6)

Then, we can build a radial basis function network [4, 24]

F(x) =
K

∑
j=1

wjϕ(x,u j), (7)

where ϕ(x,u j) is the Gaussian kernel function. wj can be seen as an approximation
of the temperature at the cluster center. Its value can be trained by a least mean
square algorithm.

In the following section, the functionality of this algorithm is verified by a simu-
lation of several aircraft flying through an artificial temperature field. The algorithm
is also applied to experimental data of two aircraft equipped with humidity and tem-
perature sensors.

4 Simulation and Experimentation

In the following we describe the experimental platform and use it to demonstrate
certain properties of the SPH control scheme. We also verify the K-means error
reduction technique using data obtained through simulation and apply the reduction
technique to data from an experiment of two vehicles controlled by the SPH scheme.
In order to accurately match the simulation to the physical world, the limited flight
capabilities of the UAVs are imposed in the simulation through particle velocity and
acceleration constrains. Also the inaccuracies of the real world sensor readings are
modeled by adding noise to the sensor readings in simulation.
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4.1 UAV Hardware and Sensor Suite

A UAV equipped with a simple sensor suite and limited onboard computation capa-
bilities is used for this study (shown in Figure 2). The aircraft has a wingspan of 0.8
m and weighs less than 0.5 kg. The airframe is a single piece of Styrofoam and can
be purchased under the name F-27 Styker; additionally the ailerons, flaps, nose cone,
propellers, etc. are all mass produced thus making the aircraft inexpensive compared
to a custom design. This aircraft has been successfully used in several experiments in
our research group and has proven itself robust to experimental mishaps, relatively
simple and inexpensive to maintain. Additionally, the small size and simplicity of
the aircraft allow for rapid deployment by a single pilot in areas that are not ideal for
traditional UAVs. Most importantly, the Delta-Wing UAV is equipped with a custom
autopilot to allow for implementation of custom control strategies. The CUPIC is a
complete autopilot system developed at the University of Colorado at Boulder [28],
and used in a large number of experiments in our (and other) research group(s).
Several studies [2, 14] have shown that it is possible to achieve fully autonomous
operation of a small UAV by means of this simple autopilot equipped with a limited
number of sensors. The work of Floreano et. al [9, 16] has demonstrated the use
of a similar fixed wing aircraft in swarm applications by using a different autopilot
system. Additionally, Sensefly [1] is a Swiss company that provides a UAV that can
be used to gather high resolution imaging using a similar hardware platform.

Fig. 2 Resource constrained delta-wing UAVs used in experiments. The 0.8 m wingspan
UAV is equipped with a GPS sensor, a roll rate sensor, a communication radio, and autopilot
to control the craft during autonomous operation.

Shaw and Mohseni [30] showed that the CUPIC autopilot is also capable of
demonstrating fully autonomous, distributed cooperative control of a team of UAVs.
The CUPIC, in its most basic design, consists of an on-board processor, a single
axis rate gyro to sense roll rates, an absolute pressure sensor for altitude sensing,
and a GPS receiver for positioning. The autopilot controls the vertical location of
the aircraft through pitch and thrust commands. The pitch and thrust commands
are determined from the error between the desired altitude and the current altitude
as well as the magnitude of the SPH acceleration from Equation 1. The horizontal
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location of the aircraft is controlled by varying the roll angle. The desired roll an-
gle is determined by the error between the direction of the SPH acceleration vector
(from Equation 1) and the aircraft’s current heading vector. Virtual saturation lim-
its are employed in order to avoid commands which would result in aircraft stall
or an excessive roll angle. The program has built-in routines to account for short
term blackouts in the GPS signals and the noise and drifts in the sensors. The au-
topilot has been proven to be fully capable of stable autonomous flight on a wide
variety of MAVs including Delta-wing aircrafts [2], warping-wing aircrafts, and
gust-insensitive aircrafts [14].

The CUPIC autopilot system also includes a complementary ground station
which is comprised of a laptop running a MATLAB routine. The autopilot transmits
telemetry data to the ground station and the ground station transmits commands and
the location of the artificial attracting particle for the SPH control algorithm. The
MATLAB routine includes a user interface that provides pilots and observers real
time information of the aircraft’s GPS position, physical state, sensor suite raw data,
and autopilot commands. The graphical interface also includes the ability to alter the
artificial particle’s location, speed, and path. A detailed communication characteri-
zation of the communication scheme used in the autopilot systems is given in [30].

The autopilot was designed with the ability to interface up to 7 additional analog
sensors through on board analog to digital converters. For this experiment a cus-
tom board was manufactured to house a HIH-5031 humidity sensor and a LM35
temperature sensor. The HIH-5031 humidity sensor and LM35 temperature sensor
were chosen primarily due to size, simplicity and sensing range. The sensors raw
output voltage is read by the autopilot at 10Hz and transmitted to the ground station
along with the aircraft’s most recent GPS position. The raw output voltage is then
converted to percent relative humidity and temperature using equations found in the
sensors respective datasheets.

4.2 Verification of SPH Control Scheme

In applications involving autonomous agents the two most important control as-
pects are agent guidance and collision avoidance. In this article, agent guidance is
accomplished using a reduced density virtual particle which acts to attract agents to
a specific region of space. Collision avoidance is accomplished by setting the SPH
parameters of the agents such that they are repelled from each when they reach a
certain distance. If the vehicle separation is greater than this distance the agents are
only attracted to the reduced density particle.

The guidance property is demonstrated by placing a stationary attractor particle
at a location in the domain and engaging the autopilot with the UAV at some other
point in the domain. Figure 3 shows the GPS position of the UAV demonstrating the
guidance property. The marker color indicates the magnitude of the SPH force as
calculated by the algorithm. The plane approaches the attracting particle (indicated
by a red×), passes almost directly over the virtual particle and then begins to double
back as the direction of the SPH force vector points opposite to the plane’s heading.
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Fig. 3 Experimental demonstration of SPH control properties using small, resource con-
strained UAVs. (Left) Experimental results of a single vehicle (colored ◦) approaching an
attractor particle (red ×) from the south and then beginning a loiter pattern around the attrac-
tor particle. Color of the ◦ represents the magnitude of SPH force calculated by the vehicle.
Results taken from a small portion of large flight experiment. (Right) Experimental results of
a single vehicle (colored ◦) avoiding another aircraft (black �) while loitering an attracting
particle (red ×). The blue dashed line indicates the previous loiter circle achieved by plane
1 prior to interaction with plane 2. Color of the ◦ represents the magnitude of SPH force
calculated by the vehicle.

The plane then enters into a loiter circle which is a result of a balance between the
SPH force magnitude and physical limitations (i.e. turning radius) of the aircraft.
For this and all following experiments, aircraft were given an h value of 30 and the
attractor particle was given an h value of 200; the average of the two h values were
used to determine the SPH force per Equation 1.

The collision avoidance property is demonstrated with two flying aircraft. Figure
3 plots the information received from a single vehicle (plane 1): ◦ represent the vehi-
cle’s GPS position colored by the calculated SPH force magnitude, the red × repre-
sents the location of the attractor particle, � represent the GPS position of the other
vehicle (plane 2) as known by plane 1. The dashed line represents the loiter circle
achieved by plane 1 prior to interaction with plane 2. Plane 1 loitered in a clock-
wise direction while plane 2 loitered in a counter clockwise direction. As the two
planes approach each other, both planes make corrections to their respective courses
avoiding potential collision as evident in the course correction of plane 1. The SPH
force magnitude range is greater for collision avoidance than attraction due to the
fact that the interaction between planes results in a higher repulsive force than the
attraction force experienced between a plane and the attracting particle. Simulations
have been previously conducted showing the smooth collision avoidance property
of the SPH control technique [27] and these experimental results correspond well to
the simulations. Although collision avoidance may not be guaranteed in real-world
situations where packet loss and location error play a role, incorporating a safety
factor into the inter-vehicle spacing provides high confidence that collisions will be
avoided.
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Fig. 4 Two ways to achieve loiter circles using SPH control scheme and UAVs. (Left) GPS
coordinates of a single vehicle (blue •) in a series of loiter circles around a stationary attractor
particle (red ×). The loiter circles are a result of a balance between the SPH force and the
physical limitations of the aircraft. (Right) Experimental results of a single vehicle (blue •)
following a moving attracting particle (red ×) demonstrating a different method of achieving
a loiter.

Due to the fact that fixed wing aircraft must maintain a forward velocity to stay
aloft, a loiter circle is a common technique employed in experiments involving fixed
wing aircraft. One way of achieving a loiter circle using SPH control is with a sta-
tionary attractor particle and imposed acceleration and velocity constraints on the
moving particle. The moving particle will move directly towards the attracting par-
ticle until it passes the particle. Due to specified constraints, the moving particle
will then bank one way and eventually find and maintain an equilibrium balancing
the SPH force and the imposed constraints resulting in a loiter. This property was
experimentally verified and the results can be seen in Figure 4 which shows the GPS
location for a single aircraft (blue •) loitering around a stationary attractor (red ×).

While a stationary particle allows for a loiter circle, the radius of the circle is a
function of several parameters and thus the radius of the loiter is not easy to predict.
It is difficult to maintain a uniform loiter since any disturbance to the vehicle’s path
could result in the plane taking a more direct approach over the attractor particle as
evident in Figure 3. A more robust way to achieve a loiter circle is with a moving
attractor particle. If the velocity and acceleration of the attracting particle are within
the physical limitations of the aircraft, the vehicle will follow closely behind the
attractor. This technique is shown in Figure 4 with the GPS location of the aircraft
shown as blue • and the attractor location as a red ×. A moving particle allows for
a loiter circle of varying radius as well as more complex paths.

4.3 Sensing Using Multiple Vehicles

Next we simulate a more complicated situation involving multiple vehicles taking
measurements over a large domain to determine the temperature field. The results
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are shown in Figure 5. In this simulation, a group of 10 vehicles begins in the lower
left corner of the domain and travels back and forth across the domain, finishing
in the upper right. Each vehicle records a temperature every 0.2 seconds and sends
data back to the base station. The temperature is generated by the function

T (x,y) =75+ 3[sin(x/50)+ cos(y/42)cos(x/100) (8)

+ 3tan−1((x+ 20)/10)+ cos(
√

x2 + y2/40)].

To create a closer approximation of reality and consider the limited accuracy of
onboard temperature sensors, white Gaussian noise with a standard deviation of
0.78 is added to the temperature data. Every 5th point of the temperature data is
plotted in Figure 5 as a colored circle. The vehicle paths are shown as black curves
and the end vehicle positions are shown as black dots. The SPH controller maintains
an even vehicle spacing throughout the trajectories. By using this well spaced group
of multiple vehicles flying at 15 m/s, a large amount of data is collected over this
250,000 sq. m domain in only 160 seconds.

This procedure produces a large amount of data (8000 data points in 160 s) that
can be used to reduce the noise in the resulting interpolations. By using the afore-
mentioned K-means algorithm we are able to interpolate the data over the interior of
the domain and reduce the error. The K-means clusters for this example are shown
in Figure 5. The error in the final temperature approximation can be computed as

E∞ = ||T −Testimate||∞ or ERMS =

√
∑n

i (T (xi)−Testimate(xi))
2

n

where n is the number of spatial grids, T is the true temperature (given by Equation
8) and Testimate is the temperature estimated by the K-means algorithm. We find that
E∞ = 2.32 and ERMS = 0.23 after applying K-means and interpolating. This is an
improvement over the raw noisy data that had E∞ = 2.97 and ERMS = 0.79. The
largest errors occur at the edge of the domain where interpolations are less likely to
be valid due to the limited data in these regions.

In the real world experiments, we measured humidity and temperature using the
aforementioned sensor suite placed on the two aircraft used in demonstrating the
SPH control scheme. An AcuRite digital humidity and temperature monitor was
used to determine the temperature and percent relative humidity at the ground station
location as 36 ◦C and 57% respectively. All the data was collected by two UAVs
flying in a series of overlapping loiter circles centered at the location of a stationary
attractor particle as seen in Figure 6. The path of UAV 1 is shown as a dashed black
line, the path of UAV 2 is shown as a red dash-dot line, and the attractor particle is
shown as a blue ◦. The loiter circles are a result of a balance between the minimum
velocity enforced by the autopilot to keep the plane aloft and the attraction to the
artificial particle. After each plane completed at least 3 loiter circles the location of
the attractor particle was moved approximately 70 meters to the northeast resulting
in the behavior shown in Figure 6. The motion of the aircraft in the horizontal plane
was determined by the SPH control law while the vertical location of the aircraft
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Fig. 5 Simulation of data gathering using UAVs equipped with a temperature sensor. (Left)
Simulation of 10 vehicles (black ◦’s) that were guided through a 500× 500 domain by a
single attracting particle. The black curves show the full vehicle paths and the colored ◦’s
denote individual temperature measurements (in ◦C). (Right) The K-means clusters for the
10 vehicle simulation. Cluster points are shown in blue, data points are shown in black and
the data-cluster connections are shown in red.

Fig. 6 Flight data of two UAVs demonstrating the SPH control scheme to gather the humidity
distribution of an environment. (Left) UAV 1 path in black dashed line, and UAV 2 path in
red dash-dot line. An attractor particle (blue ◦) was placed at (0,0) and then moved to the
northeast to approximately (50,50). (Right) Humidity field results from two aircraft. The
aircraft were flown approximately 40 meters apart (in altitude). The field results show higher
relative humidity at a lower altitude and also a region of higher humidity at approximately
x = 50 m, y = 0 m.

was maintained by an altitude controller. Regardless of the altitude difference, the
aircraft maintain a safe horizontal separation thus avoiding collision if the UAVs
altitude’s were the same. The aircraft were flown at an altitude separation of 40 m
in order to obtain three dimensional data about the temperature and humidity fields.

The noise of the sensor readings was rather high (approximately 10%), in order
to approximate the entire field and minimize error we implemented the K-means
method to reduce the noise. The results from the K-means approximations for the
two aircraft are then used to find humidity and temperature as a smooth function of
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space. Figure 6 shows the resulting humidity fields obtained from the two aircraft at
their respective average altitude.

The test environment was a dry retention pond surrounded by woods. The re-
sults show a higher relative humidity centered at approximately (x = 50 m, y = 0 m)
which is at the edge of the wooded region. While more tests are required to make
conclusive remarks, the higher relative humidity over a region of trees is likely in-
dicative of increased evaporation over this region compared to the dry retention
pond.

5 Conclusions

An SPH based controller has been successfully implemented that includes a re-
duced density virtual attracting particle for vehicle guidance of autonomous UAVs
with limited processing capabilities. The temperature and humidity data collection
capabilities of multiple UAVs were demonstrated. Additionally, these UAVs experi-
mentally verified several desirable properties of the SPH control scheme. Although
the examples presented here are two-dimensional, all the techniques used are valid
in three dimensions, but have been artificially restricted to constant altitude for sim-
plicity and an added level of safety.

Additional simulations have been implemented to demonstrate the multi-vehicle
capabilities of the SPH controller as pertinent to the data collection opportuni-
ties made possible by swarms of sensor equipped UAVs that can quickly collect
data over a large two or three dimensional region. This is in contrast to the com-
monly used data collection methods available today (i.e. remote sensing, dropson-
des, weather balloons, etc.). Furthermore, uncertainties in the sensor readings are
mitigated using a K-means algorithm that is well suited to process and interpolate
the data over a desired region to minimize errors. The data processing algorithm
was implemented on a set of humidity and temperature data gathered by a pair of
aircraft equipped with sensors flying in several loiter patterns as governed by the
SPH control.
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A Physics Inspired Finite State Machine
Controller for Mobile Acoustic ArraysΩ

Thomas Apker and Eric Martinson

Abstract. Applying coherent array processing to sound source localization when in-
dividual sensors are attached to heterogeneous platforms is a multi-faceted challenge
for both perception and mobility. Recent technical advances in robot localization
have made such mobile acoustic arrays possible, but the multi-robot coordination
problem remains incomplete. How can a team of robots coordinate in cluttered en-
vironments, both with each other and static mounted sensors to effectively localize
sound sources? This work proposes and implements a physicomimetics based robot
control system with solid, liquid, and gas phase finite states. Applying these different
phases appropriately enables efficient navigation through clutter and localization of
both exposed and buried or hidden sound sources by teams of mobile robots.

1 Introduction

Many sensing modalities require multiple, dispersed transducers to measure their
target signal and produce a meaningful output. Modern phased-array and bistatic
radars depend on networked receivers to compare the arrival time of radio frequency
(RF) signals to localize sources and even image whole regions [5]. Chemical and bi-
ological agent detection requires sensors spread across likely plume paths to deter-
mine the extent and concentration of the hazard[17]. Acoustic surveillance for 3D
sound source localization can be accomplished by teams of mobile sensors com-
bining simple clustering and repulsion behaviors [11]. In this work, we focus on
designing and implementing a distributed controller to allow autonomous ground
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robots to move through cluttered environments and form a coherent microphone
array for sound source localization.

Maneuvering mobile robots into position to form effective array geometries is an
ongoing challenge. Motion constraints, uncertain navigation and cluttered environ-
ments pose challenges for single robot path planning that Shah et al. [19] addressed
with a two-stage approach consisting of a deterministic global path planner and lo-
cal stochastic controller designed to bound a robot’s position error relative to the
reference path. For multi agent systems, Krontiris et al. [10] found that operating
in cluttered environments required scheduled changes in formation, and thus inter-
actions between the agents, to guarantee movement without collisions. This mode-
switching behavior appears in biological systems as well. Balch et al [4] found that
ants are directed by an internal finite state machine (FSM) with behaviors that are
appropriate for each step of the foraging process. They implemented this control
scheme on a pair of robots programmed to accomplish a cooperative foraging task.

We found that a robot team that can cluster around peers or waypoints, tran-
sit a cluttered environment and recover from getting lost required fundamentally
different behaviors in each case. Early work by Gage [7] suggested that these clus-
tering, transiting and wandering behaviors resembled the solid, liquid and gas be-
haviors of matter. We approach this problem by designing a finite state machine
controller based on the physicomimetics framework developed by Spears [21] with
three modes. Near their objective, the agents entered the “solid,” or clustering, mode,
designed to cause them to settle into a good array shape autonomously. When the
objective was farther away, the agents were biased towards movement in a “liquid”
mode designed to allow them to flow around obstacles. Rather than treat a lost robot
as a failure, we implemented a wandering, or “gas,” mode to give the robot a chance
to return to the network. Collectively, this approach proved very effective at allow-
ing four mobile robots to augment a static array of four microphones to localize
sound sources in a simulated disaster area.

2 Background

Few robotic auditory systems are capable of 3D sound source localization (SSL).
Time-delay on arrival based SSL cannot generally estimate range to a target because
inter-microphone distances on a robot are too small. When microphones are too
close together, bearing and azimuth are straightforward, but more than time delays
are required to determine range to a sound source. Previous robotic efforts have
addressed this limitation for nearby sources using biologically inspired software and
hardware [18]. Alternatively, moving the robot to multiple locations and combining
all data together in an evidence grid [13] enables localization over larger areas,
but fails for short duration sounds. To handle 3D localization over distances and
transient noise, microphones must be spread out over greater distances [12].

Given fixed-position microphones distributed about the environment, a robot can
contribute to auditory scene analysis by providing different vantage points. There
are, however, at least two ways in which their data can be integrated with a robotic



A Physics Inspired Finite State Machine Controller for Mobile Acoustic Arrays 49

auditory system. In the first method, the on-robot and room-mounted arrays are
treated as separate arrays. Their information is fused probabilistically to estimate
location and/or directivity of a sound source [16]. Alternatively, if the on-robot mi-
crophones can be localized accurately enough with respect to the room-mounted
sensors, the two systems could be treated as a single, large-baseline, coherent array.
Martinson and Fransen [12] demonstrated such a coherent system using visual feed-
back for inter-microphone localization. Thrun [22] and Nakadai [16] also localized
distributed microphones using aural feedback.

Given the technical capabilities for building mixed mobility coherent arrays, a
significant remaining challenge is building effective array geometries. The position-
ing of microphones in factory built array systems is optimized for the mathematics
of sound source localization, enhancing both computational speed and location ac-
curacy. This is not feasible when microphones are distributed across multiple de-
vices. Theoretically, given large enough numbers of sensors in a network, a random
distribution is a good alternative choice for monitoring a large area [3]. In practice
limitations on communication, power, processing and localization accuracy limit the
number of streaming audio sensors that can be included in a coherent array. With
smaller numbers of sensors, random array shapes have a random localization perfor-
mance over a known region. Simple behavioral rules for clustering about the region
of interest and avoiding other robots ameliorate this drawback, enabling localization
of sound sources over small regions [11]. Larger, cluttered environments, however,
require enhanced multi-robot coordination to reach the area of interest and form an
effective array.

Artificial potential fields are a well established tool for robot path planning and
coordination [2]. Spears [21] developed a physics-based swarm intelligence frame-
work in which the agents determine their trajectory based fields generated by their
neighbors. Most applications use rules designed to drive the agents into a desired
formation about a point in space [9]. In addition to static formations, physicomimet-
ics interactions can allow agents to follow a plume to its source by computing the
flux across the swarm [20].

Several authors have studied finite state machine approaches to robotic team co-
ordination on tasks with discrete phases. Worcester et al. [23] developed a finite
state representation of a construction task, and used a three step algorithm to parti-
tion its components among a team of homogeneous robots. Mather and Hsieh [14]
applied a similar approach to task scheduling for robots engaged in surveillance
tasks, and found that probabilistic transitions between observation and navigation
states would ensure statistically even coverage of numerous targets. We applied this
concept of breaking tasks into discrete parts with appropriate behaviors for each to
the physicomimetics framework to allow agents to autonomous form a recursively
self-optimizing microphone array.
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Fig. 1 Schematic model
of the dumbbell agent that
allows particle forces and
virtual torques to direct the
agent model

rf
Rotation center

Front Particle

T rb

Ff

Fb

Back Particle

3 Physicomimetics FSM Controller Design

We designed the physicomimetics guidance system with three basic modes inspired
by the behavior of a molecule within the three main physical states of matter. The
details of the behaviors of each mode were defined to allow us to localize a sound
source in a cluttered environment by reposition the array based on knoweldge of the
source source location.

3.1 Agent Model Design

The agent model converted physicomimetics forces into motion commands to guide
the mobile agents. We accounted for nonholomic motion constraints by adding ex-
tend to the point-mass model in [21] as shown in figure 1. It consisted of a pair of
particles located fore and aft of the robot’s rotation center at positions rf and rb,
respectively. At each time-step k, the the agent set a forward speed u and turn rate
Ω using equations 1-2. The agent mass m and moment of inertia Izz were defined
based on the physical robot’s acceleration capabilities. The friction terms μu and μΩ
proved useful a means implmementing mode switching.

Ft = (F f +Fb) ·
[

cosΨ
sinΨ

]
M = Ff× rr +Fb× rb

u j,k+1 = (u j,k +Δ tFt/m)(1− μu); (1)

Ω j,k+1 = (Ω j,k +Δ tΣ(Mz +Tz)/Izz)(1− μΩ ) (2)

3.2 Basic Interaction Types

We used two basic types of interaction fields in this study, radial and vortex. The
radial force laws define the lowest potential energy locations for each member of
the swarm, within 1.5m of the sound source candidate and 1.5m away from other
microphones. Vortex forces were used to navigate around obstacles.

The radial interaction used in this study is shown in equations 3-5, and is a func-
tion of the distance, ri j, between agents i and j; a mass power, pm, distance power,
pd ; attract-repel (AR) distance, dAR; maximum distance; rmax; and scaling term, G.
The version proposed by Spears in [21] included a discontinuous jump that led to
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undesired “jumping” of the agents near ri j = dAR, and so they introduced a damping
term η to enforce continuity.

Fi j =

⎧⎪⎪⎨⎪⎪⎩
G

(mimj)
pm

r
pd
i j

if r < dAR

−G
(mimj)

pm

r
pd
i j

if dAR ≤ r ≤ dmax

0 if r > dmax

(3)

η =

(‖(dAR− r)‖
dAR

)dp

if r < 2dAR (4)

Fi j = Fi jη (5)

Vortex forces were used to guide the mobile agents around obstacles. Our imple-
mentation included a radial element out to a specified boundary, σ , and a tangential
component at all points within dmax. The strength of the components is a function
of the vortex magnitude Γ and ri j as shown in equations 6 and 7, and the sign of the
tangential component was set to augment the agent’s tangential speed around the
obstacle.

Fr = Γ /ri j if ri j < σ else 0 (6)

Ft = Γ /ri j if (t̂ ·v)≥ 0 else −Γ/ri j (7)

3.3 Solid Mode

In stop the agents in potential wells, we defined conditionally increasing friction
terms μu and μΩ and a static friction check when the mobile agents were within
1.5dAR of an attractive particle, e.g. a waypoint. The friction terms increased by
80% each time the agent’s commanded direction of motion changed in solid mode,
indicating passage through a potential well. The agents were commanded to stop
once their applied force was less than the friction times their virtual weight. These
parameters were manually tuned for this study.

Motion in the solid mode was characterized by slowing and settling into forma-
tion. As such, it required navigation that is precise but can be slow, such as periodic
chirps to allow the robots to compute their peers’ locations. While the force laws
presented will lead to even lattices of holonomic agents, motion constraints force
asymmetry into the final arrangement that our approach exploits to improve SSL
performance.

3.4 Liquid Mode

In the liquid mode, the goal was guide the agents to within 1.5dAR of an attractive
particle. Both friction terms were set to .1, allowing the relatively weak long-range
attraction of the next sound source candidate to guide the agents in the right general
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direction, while the vortex and repulsive forces guided the agents around obstacles
and each other, respectively. Since obstacles and teammates could prevent an agent
from reaching the solid mode range, we added a rule that liquid-mode robots would
freeze in place after a majority of the swarm had settled or three minutes after the
attractive particle changed location.

Since liquid mode motion was characterized by constant motion towards an ob-
jective, navigation could be less precise than in the solid mode but needs to be fast
enough to keep the estimate bounded as the vehicle moves. The key to operating
in unmapped, cluttered environments was to use the energy-preserving vortex force
instead of potential-well creating repulsion to avoid obstacles.

3.5 Gas Mode

To implement the wandering behavior, we commanded the mobile agent to change
its particle type so that it would not continue to interact with anything except locally
detected obstacles while engaging in a random walk biased towards moving back-
wards. Since moving robots generate sounds that could confuse the array’s primary
task, we added a condition that the agent only move in the gas mode if there was an
attractive particle on the map. In this study, the attractive particle was cleared ap-
proximately one minute after the liquid-mode robots were frozen to give the ”lost”
robots a chance to rejoin the team.

4 Sound Source Localization

The SSL algorithm used for this study was generalized cross correlation (GCC).
This estimates the energy associated with different possible time delays between a
detected source and each pair of microphones. The results are organized by spatial
likelihood, graphing relative energy vs 3D position estimates for possible sources.
The resulting cross-correlation value, adjusted for the predicted time difference on
arrival, was highest for those position/time differences corresponding most closely
with the true value. The GCC value was determined separately for each microphone
pair, and then summed across all microphone pairs a and b for every position:

Fl =
N

∑
a=1

N

∑
b=1

∫
ω

W (ω)Ma(ω)Mb(ω)exp− jω(T (l,a)−T(l,b)) dω (8)

where (Ma) was the Fourier transform of a’s signal, Mb was the complex con-
jugate of Mb, ω was the frequency in radians per second, and W was a frequency
dependent weighting function based on an average noise sample, if known, or using
the PHAT transform if not.

To localize a sound source, the spatial likelihood was estimated for every 0.1sec
of recorded audio signal. These are linearly scaled to between [0.1,0.99] and each
cell in a global auditory evidence grid [13] was updated using log-odds notation to
reflect this new measurement. From the resulting evidence grid, cells whose value
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were less than 90% of maximum were discarded, and the remaining cells are clus-
tered together. For each cluster c, the combined log-likelihood Lc and the weighted
centroid μc are identified. The centroid of the cluster with the greatest Lc is the
most likely sound source position. Sound source location is an important factor for
sound amplification using beamforming [6] and the more general problem of audi-
tory scene analysis.

Although a properly spread array can theoretically determine 3D positioning
from a single sample location, or snapshot, obstacles can interfere with location
estimates. As demonstrated in [12], multiple snapshots can be fused together to im-
prove localization using the same evidence grid representation. Therefore, we will
be examining both the snapshot and fused localization estimates at the end of a
search.

5 Results

Multi-agent acoustic arrays were evaluated as part of a simulated disaster response.
In this scenario, a remote location had been surveyed from the air, and small sen-
sor packages distributed across the region. The role of these static sensors was to
identify regions of greatest interest to initial responders. Mobile robotic agents were
dispatched to augment the static array and localize the source.

The testing arena for this work is an 8m×12m area of the Laboratory for Au-
tonomous Systems Research. This area had been instrumented prior to robot de-
ployment with a microphone in each corner to listen for unexpected acoustic events
(e.g. explosions, shifting rubble, speech, etc). In this environment with a 60 dB av-
erage background noise, initial microphone placements were close enough together
to detect initial sounds of > 70 dB. After detecting the presence of such an event, 4
mobile robots were sent into the arena to augment the static array, creating a very
large baseline coherent array. An initial acoustic measurement was taken when all
robots have entered the testing arena. Then they proceeded towards the location of
the sensor that detected the greatest change in ambient noise level during the acous-
tic event. Building on the authors’ previous work in [11], we defined mobile sound
source localization as a three step iterative process:

1. Define initial best location candidate
2. Move microphones to surround that candidate location
3. Sample the sound source again and produce a new best candidate

In our experiment, we repeated steps 2 and 3 four times or until the best candidate
location moved by less than 1m. We used the three state physicomimetics controller
described above for the mobile agents to navigate the cluttered field, settle into good
array shapes and, if necessary, stop on command without explicit teleoperation of
any individual robot.
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5.1 Hardware Setup

We used Pioneer3-AT robots with SICK laser scanners. These robots are connected
to each other via a shared wireless network. Each robot also has an attached wireless
microphone. All microphone signals were fed into an RME OctaMic II preamp at a
central location to provide the time synchronization necessary for a coherent array.
Up to 24 microphones can be synchronized in this fashion. For larger arrays, work
by Girod et al. [8], as well as [15], have demonstrated how such synchronization
can potentially be achieved across distributed computing platforms without a cen-
tralized data acquisition system.The location of all mobile and static microphones
was determined using an overhead camera system, simulating GPS or an aerial pho-
tography.

5.2 Sound Source Localization

A total of 11 trials were completed, varying by sound source type and location. In
all cases, the source was a computer speaker was placed inside the arena. First a
recording of an impulse noise was used to trigger the robot investigation. The static
sensor with the highest SNR was used as the focal point for the initial investigation.
After the initial sound finished, either a gas leak recording (63 dB at 1m) or a speech
recording (65 dB max) was looped while the robots localized the source. 6 gas leaks
and 5 speech source trials were completed. Of these 11 total trials, 6 speaker loca-
tions were exposed, meaning only the back and/or base of the speaker was blocked
by an obstacle. The remaining locations were buried. In 4 instances, there was only
a single unobstructed direction, resulting in a highly directional sound source. In the
last instance, the speaker was fully enclosed by a box.

In the unobstructed trials, the sound source was localized rapidly and accurately.
As such, each trial consisted of at least three measurements (1 initial measurement,
1 measurement near the microphone with the highest recorded SNR, and 1 mea-
surement at the suspected SSL location). Only 1 trial failed to converge after 3
measurements. Table 1 describes the results in detail.

Table 1 SSL performance for exposed sources

Trial Num. Samples Initial Error (m) Final Error (m) Fused Error (m)

1 3 7.0 0.2 0.2
2 3 7.0 0.9 0.2
3 3 0.5 0.4 0.2
4 3a 0.5 0.4 0.4
5 3 0.8 0.5 0.5
6 3 3.4 0.5 0.3

Mean 3.2 0.5 0.3

a Post analysis of the trial showed the robots should have continued one additional run.
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In all cases, moving the array elements robotically substantially improved the
localization accuracy of the source, averaging a 0.5 m final error in 3D position the
final configuration. Fusing the data from all three sample locations in an evidence
grid improved accuracy another 0.2m.

Table 2 SSL performance for buried sound sources

Trial Num. Samples Initial Error (m) Final Error (m) Fused Error (m)

1 3 0.7 0.6 0.4
2 5 3.4 5.7 0.2
3 5 1.6 0.2 0.5
4 5 1.4 4.3 0.4
5 3 0.7 0.2 0.8

Mean: 1.6 2.2 0.5

When the sound source was buried, however, the results were not as clean. In
3 out of 5 trials, the team did not stop after 3 samples, but instead completed 5
samples. Furthermore, the snapshot performance was extremely variable. The aver-
age SSL error after the robots localize a sound source and relocated themselves was
2.8m with σ = 2.0m. This is in contrast to the exposed sources, which had μ = 0.5m
and σ = 0.2m. This variability was suppressed in the fused evidence grid, which had
significantly lower error than the final snapshot, only 0.5m. However, the fused data
was not always more accurate than the last snapshot.

This variability was due to our use of the time-delay on arrival algorithms for
SSL. When the sound source was exposed, there were direct paths between the
sound source and most locations in the environment. A direct path was important
because reflections make the signal path longer, meaning greater measured delay
and, therefore, greater localization error. With an exposed source, a majority of the
robots ended their motion with a direct path between source and receiver. With the
buried sources, however, especially where there is only a narrow window in which a
direct path can occur, only a very few robots end up with a direct path to the source,
while most end up around the edges listening to reflections. Furthermore, even if
the robots do localize the buried source correctly, when they moved to surround the
source, they often lost the source again as more robots had indirect paths between
the source and their microphones. This direct vs indirect path problem is illustrated
in Figure 2 . Because very few microphones had a direct path to the source, the snap-
shot evidence (top) is dominated by a line (as if from a single microphone pair). A
good snapshot, however, should have looked more like the fused evidence (bottom),
as multiple pairs of microphones strongly contribute to localizing the sound source.
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Fig. 2 SSL likelihood plot of a snapshot (left) and fused (right) localization

Fig. 3 Plot of the paths
followed by the robotic
agents (solid lines) from
where they began in the
staging area (pentagons)
to their first (squares) and
second (diamonds) sampling
point, followed by their
egress path back to the
staging area. The sound
source location (large x) and
static microphones (small
triangles) are shown for
reference.

5.3 Mobility

Between the vortex obstacle force and low-friction liquid mode, the agents were able
to transit between very quickly between sampling locations despite having to nav-
igate around each other and numerous obstacles. Physicomimetic parameters were
set based on the authors’ experience with this platform in a similar environment
[11]. The microphone locations, obstacles and mobile agent paths from exposed
sound source trial 3 are shown in figure 3 . Note that all four agents autonomous
chose and were able to follow a path through a 1.2m gap as they moved from the
staging area to the first sample point, suggesting that this approach allowed reactive
navigation through doorways.

6 Conclusion and Future Work

We successfully demonstrated the design of a distributed, reactive control system to
move microphones to recursively improve an array. Since different behaviors were
required for different phases of this process, we implemented a finite state machine
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controller with a “solid” mode for clustering near a desired point, a “liquid” mode
for transiting cluttered fields and a “gas” mode to allow lost robots to wander until
properly localized. This system based on a very simple reactive controller worked
very well to form arrays of microphones for GCC sound localization of exposed
sound sources, and was substantially better than a static array at locating buried
sound sources.

As we are now confident in the basic GCC and physicomimetics FSM approach,
we expect to explore this problem in three ways in the future. First of all, we intend
to implement alternative localization metrics discussed in Section 2 for achieving
coherent microphone arrays. Secondly, we intend to address this problem by exam-
ining the SNR of each recording location. As sound travels, the pressure wave ampli-
tude decays resulting in a lower SNR. Therefore, the SNR for locations with a direct
path should be higher, even if it occurs in only a narrow band. If the robots could
recognize that they were in a good location and use that to adapt physicomimetics
parameters then more robots could be encouraged to stay within the optimal local-
ization region for the source, and localization accuracy should improve. Finally, the
apparent need for exploration, transit and clustering behaviors suggests that there is
much richer design space for a physicomimetics FSM than the one presented here.

Beamforming and multiple sound source localization represent straightforward
extensions of this work. The key challenges are identifying which microphones are
receiving enough of a signal from a given location or sound source to make a mean-
ingful contribution, and repositioning microphones to address ambiguities.
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Vision Based Mobile Target Geo-localization and
Target Discrimination Using Bayes Detection
Theory

Rajnikant Sharma, Josiah Yoder, Hyukseong Kwon, and Daniel Pack

Abstract. In this paper, we develop a technique to discriminate ground moving
targets when viewed from cameras mounted on different fixed wing unmanned aerial
vehicles (UAVs). First, we develop a extended kalman filter (EKF) technique to
estimate position and velocity of ground moving targets using images taken from
cameras mounted on UAVs. Next, we use Bayesian detection theory to derive a log
likelihood ratio test to determine if the estimates of moving targets computed at two
different UAVs belong to a same target or to two different targets. We show the
efficacy of the log likelihood ratio test using several simulation results.

1 Introduction

Over the past decade, there has been an increase in the use of Unmanned Aerial Ve-
hicles (UAVs) in several military and civil application that are considered dangerous
for human pilots. These applications include surveillance [1], reconnaissance [2],
search [3], and fire monitoring [4, 5]. Among the suite of possible sensors, a video
camera is inexpensive, lightweight, fits the physical requirements of small fixed
wing UAVs, and has a high information to weight ratio. One of the important appli-
cations of camera equipped fixed wing UAVs is determining the location of a ground
target when imaged from the UAV. The target is geo-localized using the pixel loca-
tion of the target in the image plane, the position and attitude of the air vehicles, the
camera’s pose angles, and knowledge of the terrain elevation. Previous target local-
ization work using a camera equipped UAV is reported in [6, 7, 8, 9] and references
therein. Barber et al. [7] used a camera, mounted on a fixed-wing UAV, to geo-
localize a stationary target. They discussed recursive least square (RLS) filtering,
bias estimation, flight path selection, and wind estimation to reduce the localization
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errors. Pachter at el. [6] developed a vision-based target geo-location technique that
uses camera equipped unmanned air vehicles. They jointly estimate the target’s po-
sition and the vehicles’s attitude errors using linear regression resulting in improved
target geo-localization. A salient feature of target geo-localization using bearing and
range based sensors is the dependence of the measurement uncertainty on the posi-
tion of the sensor relative to the target. Therefore, the influence of input parameters
on nonlinear estimation problems, can be exploited to derive the optimal geomet-
ric configurations of a team of sensing platforms. However, maintenance of optimal
configurations is not feasible given constraints on the kinematics of typical fixed
wing aircraft. Frew [8] evaluated the sensitivity of the target geo-localization to or-
bit coordination, which enables the design of cooperative line of sight controllers
that are robust to variations in the sensor measurement uncertainty and the dynam-
ics of the target tracked. The existing geo-localization techniques are developed for
stationary targets, in this paper, we detail a geo-localization technique for mobile
ground targets using a camera mounted on a small fixed wing UAV.

Several researchers have used Multiple UAVs for cooperative geo-localization [10,
11, 12], because multi-agent platform provides several advantages including robust-
ness, scalability, and access to more target localization information. The localization
information computed at different UAVs can be fused to improve the target geo-
location accuracy. Information fusion can be performed either in a centralized or
distributed manner. However, irrespective of the information fusion method, cen-
tralized or distributed, it is important to determine if geo-location estimates com-
puted by two different UAVs belong to the same target or to two different targets.
The first approach is known as a distance based approach where if the Mahalonobis
distance [13] between two estimates is less than a threshold then the state estimates
belong to same target otherwise to two different targets. Some of the distance based
data association methods include nearest neighbors (NN) method [14], probabilistic
data association (PDA) [13], and joint probabilistic data association (JPDA) [15].
The second approach is known as appearance or view based data association, which
is described in [16] and references therein. The existing data association techniques
had been successfully demonstrated either for stationary targets or moving targets
sensed either from stationary sensors or sensors mounted on ground robots or small
UAVs used for indoor navigation (e.g., quad-rotors). However, the existing data asso-
ciation techniques cannot provide desired accuracy for small fixed wing UAVs. Small
fixed wing UAVs imagery, attitude estimates, and UAVs position estimates from GPS
are highly noisy which results in target geo-location estimates with high uncertainty.
Therefore the distance based data association techniques will lead to high rates of
false alarms and miss detections. On the contrary, appearance based data association
methods are not affected by uncertainties in target location estimates. However, these
methods are computationally expensive, and since small fixed UAVs have limited
computation resources, they cannot be implemented onboard small UAVs . Further-
more, the low resolution imagery and altitude of UAVs result in small number target
pixels in image, therefore, there are not enough features to perform view based data
association.
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In this paper, we discuss geo-localization of moving targets using pixel mea-
surements from a camera onborad small fixed wing UAVs. Next, we formulate a
hypothesis based on Bayes detection theory and develop a log likelihood ratio test
to find if target location estimates from two different UAVs using electro-optical
(EO) sensors belong to the same target or to two different targets. We show that
the log likelihood ratio test has high probability of correct data association and low
probability of false alarm under high errors in position and attitude of the UAVs.
Also the test is computationally inexpensive and can be implemented in real-time
onboard small fixed wing UAVs.

The rest of the paper is organized as follows. In Section 2, we detail the vi-
son based geo-location of a moving target using a gimballed electro-optical/infrared
(EO/IR) camera on board a fixed-wing UAV. In Section 3, we develop a log likeli-
hood ratio for determining the correspondence among the target state estimates. In
Section 4, we present simulation results and probability of correct association and
probability of false alarm. Finally, in Section 5, we give our conclusions.

2 Geo-location

In this section, we detail a technique of geo-localizing a mobile target in inertial
coordinate using gimballed EO/IR camera on board a small fixed-wing UAV. We
assume that the targets are detected with probability one. The technique presented
here is an extension of geo-localization technique for a stationary target [17] to a
mobile target.

In this paper, we use the camera model detailed in [17], which is shown in Fig-
ure 1, where f is the focal length in pixel units and P converts pixels to meters.
The location of the projection of the target is expressed in the camera frame as
(Pεx, Pεy, P f ), where εx and εy are the pixel location, in pixels, of the target. The
distance from the origin of the camera frame to the pixel location (εx, εy), as shown
in Figure 1, is PF where

Fig. 1 [17] The camera frame. The target in the camera frame is represented by lc. The
projection of the target onto the image plane is represented by ε . The pixel location (0,0)
corresponds to the center of the image, which is assumed to be aligned with the optical axis.
The distance to the target is given by L. ε and f are in units of pixels. l is in units of meters.
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F =
√

f 2 + ε2
x + ε2

y . (1)

Finally using Figure 1, we can write the expression for the unit direction vector as

ľc =
lc

L
=

1√
ε2

x + ε2
y + f 2

⎛⎝ εx

εx

f

⎞⎠ . (2)

Let l = pi
t− pi

uav be the relative position vector between the moving target and the
UAV, where pi

uav = (pn, pe, pd)
� is the UAV’s (north, east, down) position in inertial

frame measured by an onboard GPS receiver and pi
t = (tn, te,0)� is the target’s

(north, east, down) position in the inertial frame. We define L = ||l|| and ľ = l
L

.
From the described geometry, we obtain the following relationship

pi
t = pi

uav +R i
bR

b
gR

g
c lc,

= pi
uav +L(R i

bR
b
gR

g
c ľc), (3)

where R i
b =R i

b(φ ,θ ,ψ) is the rotation matrix from the body to the inertial frame,
Rb

g = Rb
g(αaz,αel) is the rotation matrix from the gimbal to the body frame, and

Rg
c is the rotation matrix from the camera to the gimbal frame. We assume that the

UAV’s attitude (φ , θ ,ψ)� (roll, pitch, yaw) is available for geo-localization. We
also assume that the gimbal azimuth and elevation angles (αaz,αel) are available
and use the controller detailed in [17] to point the camera in the direction of the
target.

The objective of the geo-localization problem is to estimate the range to the tar-
get, L, which can be estimated using the flat earth model as shown in Figure 2. If
the UAV’s height above the ground, h =−pd , is known then the range estimate can
be computed as

L=
h

ki ·R i
bR

b
gR

g
c ľc

, (4)

where ki is the unit vector in inertial frame pointing towards the center of the earth.

Flat earth model 

Fig. 2 Range estimation using flat-earth assumption
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Using the flat earth model, we can write the expression for the geo-location esti-
mate as

pi
t = pi

uav + h
R i

bR
b
gR

g
c ľc

ki ·R i
bR

b
gR

g
c ľc

. (5)

2.1 Geo-location Using Extended Kalman Filter

The geo-location estimate in Equation (5) provides a one-shot estimate of the target
location. Unfortunately, this equation is highly sensitive to measurement errors, es-
pecially attitude estimation errors of the airframe. Also, the velocity and the heading
of the target also need to be estimated. In this section we will describe the use of the
Extended Kalman Filter (EKF) to estimate the location, velocity, and heading of a
mobile ground target. Rearranging (5), we get

pi
uav = h(x) = pi

t −LR i
bR

b
gR

g
c ľc. (6)

Since pi
uav is measured by the GPS, it will be used as the measurement equation,

assuming that the GPS noise is Gaussian with zero-mean.
We assume that the ground mobile target moves with constant velocity but can

change its heading instantaneously. The target position pi
t = [tn te 0] consist of north

and east position coordinates and the target motion model can be written as

ṗi
t =

⎛⎝ vn

ve

0

⎞⎠ , (7)

where vn is the velocity of UAV in north direction and ve is the velocity of UAV in
east direction.

Since L= ||pi
t − pi

uav||, we have

L̇=
(pi

t − pi
uav)�(ṗi

t − ṗi
uav)

L
, (8)

where for constant altitude flight, ṗi
uav can be approximated as

ṗi
uav =

⎛⎝ V̂g cos χ̂
V̂g cos χ̂

0

⎞⎠ . (9)

In the above equation, V̂g and χ̂ are the estimated ground speed and the course
angle obtained using the EKF as presented in [17]. The input to the geo-localization
algorithm is the position and the ground speed of the MAV in the inertial frame
as obtained from GPS described in [17], the estimate of the line-of-sight vector as
given in (2), and the attitude as estimated by the EKF described in [17].
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The geo-localization algorithm is an EKF with state

x̂t = [t̂n, t̂e, L̂, v̂n, v̂e]
�, (10)

where t̂n is the estimated target north position, t̂e is the estimated target east po-
sition, L̂ is the estimated distance between target and the UAV, v̂n is the estimated
target velocity in north direction, and v̂e is the estimated target velocity in east di-
rection. The prediction equation can be written as

˙̂xt = f (x) =

⎛⎜⎜⎜⎜⎝
v̂n

v̂e
( p̂i

t− p̂i
uav)�( ˙̂pi

t− ˙̂pi
uav)

L̂

0
0

⎞⎟⎟⎟⎟⎠ . (11)

3 Target Discrimination Using Bayes Detection Theory

In this section, we discuss the problem of target discrimination required for infor-
mation fusion. Before fusing any information, it is important to find if the state
estimates from two different platforms belongs to the same target or to two different
targets. To solve this problem we use Bayes Detection theory [18] to develop a log
likelihood ratio test.

Let us assume that, under hypothesis H1, the estimates from two different UAV
platforms are of same target, and under H0 the estimates from two UAV platforms
belong to two different targets.

Let X1 ∈ N[m1(t),P1(t)] and X2 ∈ N[m2(t),P2(t)] be the target state estimate of
two UAVs (excluding range between an UAV and a target), where m and P are the
mean and covariance respectively. We define a new random variable Y = X1−X2,
drawn from a Gaussian probability density function (p.d.f.), Y ∈ N[my,Py], where
my = m1−m2 and Py = P1 +P2. If X1 and X2 are estimates of the same target then
my = 0, otherwise my �= 0. We assume the following initial distribution

P[X1 = X2] = τ,
P[X1 �= X2] = 1− τ,

where 0≤ τ ≤ 1 is the probability of two targets being same. We sample the output
each sampling period and obtain n samples. In other words

H1 : Yi ∈ N[0,Py
i ],

H0 : Yi ∈ N[my
i ,P

y
i ].

The probability density of Yi under each hypothesis is
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f(Yi|X1=X2) =
1

(2π)
n
2 |Py

i |
1
2

exp

[
−1

2
(y�i (P

y
i )
−1yi)

]
,

f(Yi|X1 �=X2) =
1

(2π)
n
2 |Py

i |
1
2

exp

[
−1

2
(yi−my

i )
�(Py

i )
−1(yi−my

i )

]
.

Because the Yi’s are not independent, we cannot write the joint probability density
of Y1, · · · ,Yn simply as the product of the individual probability. However, we can
write the joint probability using Bayes chain rule and conditional probability.

f(Y1,··· ,Yn|X1=X2) = f(Yn|Yn−1) f(Yn−1|Yn−2) · · · f(Y2|Y1) f(Y1),

=
n

∏
i=1

1

(2π)
n
2 |Py

i |
1
2

exp

[
−1

2
(y�i (P

y
i )
−1yi)

]
,

f(Y1,··· ,Yn|X1 �=X2) = f(Yn|Yn−1) f(Yn−1|Yn−2) · · · f(Y2|Y1) f(Y1),

=
n

∏
i=1

1

(2π) n
2 |Py

i |
1
2

exp

[
−1

2
(yi−my

i )
�(Py

i )
−1(yi−my

i )

]
.

The likelihood ratio can be written as

l(y1, · · · ,yn) =
f(Y1,··· ,Yn|X1=X2)

f(Y1,··· ,Yn|X1 �=X2)
,

=

∏n
i=1

1

(2π)
n
2 |Py

i |
1
2

exp
[− 1

2(y
�
i (P

y
i )
−1yi)

]
∏n

i=1
1

(2π)
n
2 |Py

i |
1
2

exp
[− 1

2(yi−my
i )
�(Py

i )
−1(yi−my

i )
] .

After canceling common terms and taking the logarithm, we have

log l(y1, · · · ,yn) =
1
2

n

∑
i=1

(my
i )
�(Py

i )
−1my

i −
n

∑
i=1

(my
i )
�(Py

i )
−1yi,

from which the likelihood ratio test can be written as

φτ (y1, · · · ,yn) =

{
1 i f log l(y1, · · · ,yn)> log 1−τ

τ
0 i f otherwise

. (12)

In other words, φτ (y1, · · · ,yn) = 1 means that target state estimates computed at
different UAVs belong to the same target, and φτ (y1, · · · ,yn) = 0 means that the
target state estimates belong to two different targets. We can compute probability of
false alarm or incorrect data association as

PFA = P[φτ (y1, · · · ,yn) = 1|Y1 �= Y2],

= EY1 �=Y2φτ (y1, · · · ,yn).
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Similarly, we can compute probability of correct data association

PD = P[φτ(y1, · · · ,yn) = 1|Y1 = Y2],

= EY1=Y2φτ(y1, · · · ,yn).

Clearly, PFA and PD depends on the assumed a priori distribution parameter τ , the
number of samples, my, and Py. Since, we are dealing with multi-dimensional nor-
mal p.d.f.s, the integration in above expressions cannot be computed directly. How-
ever in the next section, we will compute PFA and PD using simulations.

4 Results

In this section, we develop a simulation environment in MATLAB/Simulink to geo-
localize mobile targets using two fixed wing UAVs and analyze the log likelihood
ratio test developed in the previous section. Figure 3(a) and Figure 3(b) show the
simulation snap shots of two different scenarios considered in this paper. In Fig-
ure 3(a) two different UAVs are geo-localizing the same moving ground target,
which is in field-of-view of both the UAVs. On the other hand, in Figure 3(b) two
different UAVs are geo-localizing two different ground targets moving in same di-
rection with same velocity. The objective is to use the log likelihood test (12) to
determine if the target state estimates computed at two different UAVs are of a same
target or two different targets.

First, we show results of geo-location of a target using a single UAV. Some of the
important parameters used in the simulations are as follows

• GPS error variance: [σn = 15m, σe = 15m, σd = 20m],
• UAV attitude error variance: σatt = 0.1 rad,
• Target speed Vt = 5 m/s,
• UAV air speed Va = 20 m/s.

(a) (b)

Fig. 3 (a) UAV based geo-location: Two UAVs geo-localizing a single ground moving target.
(b) UAV based geo-location: Two UAVs geo-localizing two different ground moving target.



Vision Based Mobile Target Geo-localization and Target Discrimination 67

0 20 40 60 80 100 120 140 160 180 200

100

150

200

250

300

350

400

y
t
(m)

x t(m
)

 

 

Actual
Estimated

Fig. 4 UAV based geo-location: Actual and estimated trajectories of a ground moving target.
The blue dashed curve and solid red curve represents the actual and estimated trajectories
respectively

10 20 30 40 50 60 70 80 90 100

−10

0

10

time(s)

v x(m
/s

)

 

 

10 20 30 40 50 60 70 80 90 100

−10

0

10

time (s)

v y(m
/s

)

 

 

Estimated
Actual

Estimated
Actual

Fig. 5 UAV based geo-location:Velocity estimates of a ground moving target in x and y direc-
tion. The blue dashed curve and solid red curve represents the actual and estimated velocities
respectively

Figure 4 shows the actual and estimated trajectory of a ground moving target. It
can be seen that the estimated trajectory has the same behavior but has significant
amount of uncertainty. The location estimates are very sensitive to the UAV attitude
errors, the more errors in the UAV attitude the more the uncertainty in the location
estimates of the target. Figure 5 shows the actual and estimated velocities of the
target in x and y direction. It can be seen that the velocity estimates are quite noisy
but unbiased because there is no measurement of absolute velocity of the target,
rather it is obtained from the target position estimates.
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Fig. 6 (a) This figure shows the distribution of random variable Y = X1−X2 for X1 = X2 and
X1 �= X2 at attitude errors σatt = 0.1 rad and 35m of distance between two targets. The blue
circles represent distribution of X1 = X2 and red squares represent X1 �= X2. (b) This figure
shows the distribution of random variable Y = X1−X2 for X1 = X2 and X1 �= X2 at attitude
errors σatt = 0.6 rad and 35m of distance between two targets. The blue circles represent
distribution of X1 = X2 and red squares represent X1 �= X2.
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Fig. 7 (a) This figure shows the probability of correct data association obtained using the
likelihood test for different attitude errors and my. Each probability number is generated over
200 runs over n = 20 sample for each run. (b) This figure shows the probability of false alarm
obtained using the likelihood ratio test for different attitude errors and my. Each probability
number is generated over 200 runs over n = 20 sample for each run. Also for to generate
these probabilities we assume that actual distance between two targets is equal to my.

Next we compute the distribution of Y = X1−X2 for X1 = X2 and X1 �= X2 for
the attitude errors σatt = 0.1 rad and σatt = 0.6 rad as shown in Figure 6(a) and
Figure 6(b) respectively. It can be seen that the distributions of X1 = X2 and X1 �= X2

overlap and the overlap region increases with larger attitude errors. These distri-
butions show the challenge in discriminating the two distributions using limited
amount of samples.
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Fig. 8 This figure shows the probability of false alarm obtained using the likelihood ratio test
for different attitude errors and distance between targets at a constant my = [35;0]

Figure 7(a) and Figure 7(b) show the probability of correct association and prob-
ability of false alarm with respect to the parameter my at different levels of UAV
attitude errors. In Figure 7(b), we kept the distance between two the UAVs equal
to my to compute the PFA. It can be seen, from Figure 7(a), that the test provides
accuracy greater then 90% for my ≥ 35 m with low probability of false alarm. In
Figure 8, we keep my = 35m constant and plot PFA with respect to the actual dis-
tance between two targets for different UAV attitude errors. It can be seen that PFA

is smaller than 0.01 after the distance between two targets is greater than my = 35m.
Simulation results presented in this section show that the Bayes log likelihood

ratio test developed in this paper can discriminate targets that are very close and
are moving in the same direction with the same velocity most of the time without
requiring the appearance features. The test is computationally inexpensive and can
be implemented in real-time onboard UAVs to fuse information to accurately geo-
localize ground moving targets.

5 Conclusions

In this paper, we have detailed a technique for geo-localization of moving targets
using pixel measurements from a camera mounted on a fixed wing UAV. We have
formulated a hypothesis based on Bayes’s detection theory and developed a log
likelihood ratio to find if the target state estimates computed by two different UAVs
using electro-optical sensors are of the same target or of two different targets. We
have shown that the test for finding correspondence has high probability of correct
data association and low probability of false alarm under high errors in UAV posi-
tion and attitude errors. Also the Bayes log likelihood ratio test is computationally
inexpensive and can be computed in real-time onboard on smaller UAVs.
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Currently, we have only the addressed data association problem using simple
binary hypothesis. Our future work will be to extend this test to discriminate mul-
tiple moving targets geo-localized by multiple UAVs. Furthermore, we will explore
the option of incorporating UAV path planning to improve the probability of cor-
rect association while minimizing the probability of false alarm. Lastly, we are also
interested in determining how the altitude of the UAV affects the accuracy of the
algorithm.
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A Real World Coordination Framework
for Connected Heterogeneous Robotic Systems

Nicola Bezzo, Mike S. Anderson, Rafael Fierro, and John Wood

Abstract. In this paper we consider the problem of coordinating robotic systems
with different kinematics, sensing and vision capabilities, to achieve certain mission
goals. An approach that makes use of a heterogeneous team of agents has several
advantages when cost, integration of capabilities, or possible large search areas need
to be considered. A heterogeneous team allows for the robots to become “special-
ized”, accomplish sub-goals more effectively, thus increasing the overall mission
efficiency. We consider connectivity constraints and realistic communication, ex-
ploiting mobility to implement a power control algorithm that increases the Signal
to Interference plus Noise Ratio (SINR) among certain members of the network. We
also create realistic sensing fields and manipulation by using the geometric proper-
ties of the sensor field-of-view and the manipulability metric, respectively. The con-
trol strategy for each agent of the heterogeneous system is governed by an artificial
physics law that considers the different kinematics of the agents and the environ-
ment, in a decentralized fashion. We show that the network is able to stay connected
at all times and covers the environment well. We demonstrate the applicability of the
proposed strategy through simulation results implementing a pursuit-evasion game
in a cluttered environment.

1 Introduction

In recent years we have witnessed an increase in the use of mobile robots for dif-
ferent applications spanning from military to civilian operations. Search and rescue
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missions, disaster relief operations, and surveillance are just few examples of sce-
narios where the use of autonomous and intelligent robotic systems is preferred
over the use of human first responders. In such operations wireless communication
needs to be reliable over the robotic network to maneuver the unmanned vehicles
and transmit information. We are interested in heterogeneous robotic systems with
agents having different kinematics, sensing behaviors, and functionalities. For in-
stance we will consider quadrotor aerial vehicles, that can be approximated as holo-
nomic agents, interacting with ground robots (e.g., non-holonomic, car-like, etc.),
both with different communication ranges and sensing and manipulation patterns.
Fig. 1 shows an example of heterogeneous systems with quadrotors cooperating
with ground vehicles and crawling agents, all systems acting as communication and
sensing relays.

Within this paper the contribution to the current research on distributed robotic
systems is fourfold: i) we consider heterogeneous robotic systems with different
dynamics and realistic communication analysis, sensing geometries, and manipula-
tion constraints, in a decentralized fashion; ii) we build a power control algorithm
for communication purposes to improve the SINR among certain members of the
network; iii) we extend our previous work [1] considering a more general and real-
istic scenario while showing that the heterogeneous system stays connected all the
time; and iv) in the simulation result we implement a game theoretical case with
an adversarial opponent that defends a certain goal target from the heterogeneous
system. Throughout this work we integrate together several tools for coordination
and control of distributed heterogeneous robotic systems.

(a) (b) (c)

Fig. 1 (a) A group of Pioneer P3-AT vehicles cooperating with a quadrotor [2] part of the
heterogeneous test bed at the MARHES Laboratory; (b) Deployment of the OctoRoACH
crawling robot [3] using a quadrotor; and (c) An example of aerial mobile relay with four
directional antennas

1.1 Related Work

The use of heterogeneity in robotic applications is a recent topic of research that is
attracting several researchers because of the challenges created when dealing with
multi-agent systems having different kinematics, sensing, and manipulation capa-
bilities. Authors in [4] consider formally a heterogeneous system and analyze its
properties based on graph coloring techniques to assign colors to different types of
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agents. Similarly to the work presented in this paper, authors in [5] use agents with
different dynamics and capabilities to execute multiple missions in a decentralized
fashion considering task sequencing and a consensus-based technique.

In missions involving multi-agent systems, it is necessary to consider wireless
communication to maintain network connectivity at all times. The robotics and con-
trol community are very active in investigating the integration of communication
in robotics applications, because the uncertainties found in wireless channels can
compromise the performance of the entire multi-agent system. For instance, authors
in [6] propose a modified Traveling Salesperson Problem to navigate an underwater
vehicle in a sensor field, using a realistic model that considers acoustic communi-
cation fading effects. In [7] a Rician fading model for the communication channel
is utilized in a pursuit-evasion game with two mobile agents moving in a cluttered
environment. Similarly to the work presented in this paper, the authors in [8] present
a multi-agent system with interaction between aerial and ground vehicles based on
task assignment for complex missions. From a graph-theoretical point of view and
more recently in [9], a survey about graph connectivity is provided in mobile robot
swarms, discussing different approaches and algorithms to maintain and optimize
connectivity among mobile robot networks.

The communication community has been recently investigating cognitive radio
antennas to improve the SINR in cellular networks, [10]. The main idea around this
type of device is to change the transmission and reception parameters to improve
the overall communication quality. One of the most common ways to improve the
SINR is to use Power Control (PC) algorithms in which all wireless devices adjust
their power level to reach a desired SINR threshold [11, 12]. In the work presented
in this paper we consider a similar PC approach, but we exploit the mobility of the
mobile agents to change the received power at a certain location and reach a desired
SINR.

Finally from a sensing point of view, authors in [13] present an optimization
framework to maneuver aerial vehicles equipped with cameras to perceive a certain
area based on field of view properties.

The remainder of this paper is organized as follows. In Section 2, we define the
heterogeneous system and formulate the connectivity problem considering relay,
sensor, and manipulator agents. Then, in Section 3, we present the connectivity con-
straints and a consensus algorithm to equilibrate the network distribution, followed
by the motion constraints in Section 4. In Section 5, we analyze a power control
method to improve the SINR over the network and in Section 6, we present the sen-
sing and manipulation constraints. Finally in Section 7, we show simulation results
and draw conclusions in Section 8.

2 Heterogeneous Connected Robotic System

In this section we give a formal definition of a heterogeneous robotic network fol-
lowed by the problem formulation and connectivity constraints used to create inter-
actions among the hybrid network.
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Definition 1. (Heterogeneous System): A network of N robots is called hetero-
geneous if the members of the network are interconnected, act together toward a
common objective and if the following conditions hold:

• one or more agents in the network have different motion dynamics with respect
to other agents in the system;

• one or more agents in the network have different sensing/manipulation con-
straints or improved wireless communications abilities with respect to other
agents in the systems, but all agents have at least some wireless communication
capabilities.

2.1 Heterogeneous Network Topology

While the theoretical analysis presented here can be generalized for any type of
network, we decide to focus on heterogeneous groups made of three types of mobile
agents:

• Nc communication relays with communication range Rc > 0 and holonomic
kinematics (i.e., aerial vehicles like quadrotors). The set of relays is denoted
by Ac.

• Ns mobile sensors with communication range 0 < Rs < Rc and non-holonomic
kinematics given by the bicycle model

uk =

⎡⎢⎢⎣
ẋ
ẏ
θ̇
γ̇

⎤⎥⎥⎦=

⎡⎢⎢⎣
cos(θ ) 0
sin(θ ) 0

1
L tan(γ) 0

0 1

⎤⎥⎥⎦[ v
w

]
, w = λs(γd − γ) (1)

where L is the distance between the front and rear axles, v is the velocity, w
is the steering command described by a 1st order linear servo model, λs is the
servo gain, and γd is the desired steering angle. The set of all mobile sensors is
denoted by As.

• Nm manipulator agents with communication range 0<Rm(= Rs)< Rc and non-
holonomic kinematics (1).The set of all manipulators is denoted by Am.

The specific problem we are interested in this paper is the following:

Problem 1. Deployment of Heterogeneous Robotic Networks: Given a heteroge-
neous robotic network of N agents partitioned by Nc, Ns, and Nm, find a set of
feasible policies ui ∈ U for each agent such that the workspace of interest W is
well covered, the network is always connected to a fixed base station b, and it is
possible to reach and manipulate a target D protected by an adversarial opponent T
having unknown dynamics uT .

The adversarial opponent attempts to capture the manipulator agents while the mo-
bile sensors try to pursue and capture the adversary, if detected.
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Each agent in the group has some sensing capabilities that are explored in detail
in the following sections. For now we will focus on the connectivity problem and
formulate an algorithm to expand the network and cover a specific environment.

3 Connectivity Constraints

Following our previous work [1] we build a connectivity algorithm by taking advan-
tage of the communication properties of the heterogeneous network. Specifically we
formulate connectivity constraints to expand the input set (accelerations, velocities,
and in turn positions) the agents can choose from, while still guaranteeing connec-
tivity at all times.

We define that a relay agent i can communicate with another relay agent j if and
only if j ∈B i

c with B i
c = B(xi,Rc) the ball centered in i of radius Rc. A mobile sen-

sor k (or equivalently a mobile manipulator q) can communicate with a relay i if and
only if k(orq) ∈ B i

s = B(xi,Rs). However a relay agent i can communicate with a
mobile sensor k (or equivalently a mobile manipulator q) if k(orq)∈B i

c =B(xi,Rc).
Therefore, by exploiting this last constraint we can expand the sensor and manip-
ulator agents in the environment relaxing continuous bidirectional communication
constraints and thus explore a larger area of the workspace. These agents return
within range of bidirectional communication with the relay when they have infor-
mation relevant to the entire network.

At the beginning of a mission we consider a connected graph having the nodes
placed in random positions. Also we create the following initial conditions

∀i ∈Ac,∃ j ∈ Ac, i �= j s.t. i ∈B(x j,Rc)

∀k ∈ {As,Am},∃ j ∈ Ac s.t. k ∈B(x j,Rc)
(2)

In order to have a uniform graph and maximize the coverage of a space, while
maintaining connectivity, the connections between the agents of the heterogeneous
system are biased based on the geometry of the communication radii. Since the sen-
sor and manipulator agents have limited communication capabilities, the main idea
is to have the communication relays connect to each other and expand the entire net-
work in the environment. We consider that each communication relay is equipped
with a high performance rf device that offers a large range and bandwidth to han-
dle the communication with multiple nodes. Hence, each sensor and manipulator
will be connected directly to a specific communication relay based on the minimum
euclidean distance to the closest relay. The sensor/relay and manipulator/relay as-
signments are built based on a local consensus algorithm described in Algorithm 1.

Specifically in Algorithm 1, C i
c and C i

s are the set of neighbor relays and mobile
sensors connected to the ith communication relay, respectively. ni is the number of
sensors connected to the ith relay and ñi the updated number of sensors after running
the algorithm. Finally Â i

j is the set containing N̂ i
j communication relays connected

to i with n j ≤ ni. Note that Algorithm 1 applies also to the manipulator agents in
which we will have to consider C i

m mobile manipulators’ neighbors connected to
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Algorithm 1. Heterogeneous Local Consensus Algorithm
while t < tfinal do

for i = 1, . . . ,Nc do
Calculate the round down average number of sensor agents in the neighborhood of i

τ i =
ni+∑{ j∈C i

c|n j≤ni} nj

N̂ i
j +1

for j = 1, . . . ,N̂ i
j do

if ∃k ∈ Â i
j s.t. ni = n j∀ j ∈ {Â i

j \k} and nk ≤ (ni−2) then

ñk = nk +
(nk+ni)

2

ñi = ni− (nk+ni)
2

else
τ i

j = τ i−n j

ñ j = n j + τ i
j

ñi = ni− τ i
j

for l = 1, . . . ,τ i
j do

if ∃p ∈ (C i
s ∩B j

c ) s.t. ||xp−x j||= min ||xq−x j||∀q ∈ C i
s then

p ∈ C j
s and p /∈ C i

s
end if

end for
end if

end for
end for
return ni = ñi

end while

i. If the graph is connected, then we can guarantee the network will reach at least
a local consensus that is given by the average number of sensors and manipulators
connected to the relays in the neighborhood of the ith relay [14].

4 Motion Constraints

• Relay agent: Given (2), ∀ sensors k∈Ci
s (or manipulators q∈Ci

m), if ||xi−xk(q)|| ≤
Rε , with Rs(Rm) < Rε < Rc, the motion of the ith communication relay follows the
spring-mass interaction

ẍi = ui,

ui =

⎡⎣ ∑
j∈C i

c

κi j (li j −Rε) d̂i j

⎤⎦− δiẋi−∇xiς(xi), (3)

where ui ∈ U (U ∈ ℜ3) is the control input, xi = (xi,yi,zi)
T is the position vector

of the ith relay relative to a fixed Euclidean frame, and ẋi, ẍi denote the velocity and
acceleration (control input), respectively. C i

c is the set of neighbor relays connected
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to the ith relay. C i
c is built using the Gabriel Graph rule [15] in which between any

two nodes i and j, we form a virtual spring if and only if there is no robot k inside
the circle of diameter i j, [15]. li j and d̂i j are the length and direction of force of
the virtual spring between robot i and j while κi j and δi are the spring constant and
damping coefficient, respectively. Here, we assume κi j = κ ji and δi > 0. ∇xiς(xi) =

Aς (xi− cς ) is the gradient of
Aς
2 ‖xi− cς‖2, a quadratic attractive potential function

where cς is the center of the region where the target is located and it is known a
priori.

Theorem 1. A network of communication relays having switching dynamics de-
picted in (3) is guaranteed to eventually reach stability in which all agents converge
to a null state.

Proof. The proof for this theorem can be formulated using Lyapunov theory and
can be found in our previous work [15].

If ∃k ∈ C i
s such that Rε < ||xi− xk|| < Rc then the relay node believes that the

specific sensor agent k is in pursuit mode; therefore it switches into a follower mode
with dynamics

ui = α(xk− xi) (4)

where α ∈ℜ+.
• Sensor agent: We consider the following interaction

uk =

⎧⎨⎩κki (lki−Rs) d̂ki− δkẋk if k ∈ B(xi,Rs)
usearch if k ∈ {B(xi,Rε)\B(xi,Rs)}
upursuit if k is in pursuit mode

, (5)

in which with usearch we intend a random motion within the toroid centered in the
ith relay controlling the kth mobile sensor. \ is the set-minus operator.
• Manipulator agent: We similarly consider the following logic

uq =

⎧⎨⎩κqi (lqi−Rm) d̂qi− δiẋq if q ∈ B(xi,Rm)
usearch if q ∈ {B(xi,Rε)\B(xi,Rm)}
umanip if q is in manipulation mode

, (6)

Specifically for the search modes in both (5) and (6) we create the following con-
nectivity constraints: at every Δ t time the communication relay transmits its location
to its neighbors. Given V c

max the maximum velocity of each relay, the maximum dis-
tance the relay can travel in Δ t time is Dc

max = V c
maxΔ t. Thus when in search mode,

agents are guaranteed to stay in search mode if and only if in an interval of time
Δ t they don’t enter inside the region {B(xi,(Rε −Dc

max))\B(xi,(Rs(m) +Dc
max))}.

It is important to note that when in pursuit mode, if k ∈ {B(xi,Rc)\B(xi,Rε)} the
communication relay i is not attracted anymore toward the target region but switches
into following mode with dynamics (4) to maintain connectivity to pursuer k.

We can formulate the following theorem that guarantees connectivity among the
heterogeneous network at all times:
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Theorem 2. Given an initially connected heterogeneous robotic system made of Nc

relays, Ns mobile sensors, and Nm manipulator agents with switching topologies
expressed by (3), (4), (5), (6), the network is guaranteed to maintain connectivity
if for an interval of time Δ t > 0, each j ∈ Ci

c, k ∈ Ci
s, and q ∈ Ci

m take goal points
gi

j(k)(q) ∈ B(xi(t),(Rc− ε(Δ t))), with ε(Δ t)≥V i
maxΔ t

Proof. Assuming that the dynamics of each agent are stable or at least stabilizable,
if gi

j ∈B(xi(t),(Rc−ε(Δ t))), then xi(t+Δ t)∈B(xi(t),ε(Δ t)) shifting the commu-
nication region of ε(Δ t), thus leaving x j(t+Δ t)∈B(x j(t),ε(Δ t))⊂B(x j(t),(Rc−
ε(Δ t))). Hence, j is always connected to i. Note that ε(Δ t) is an upper (and safe)
bound for the sensor k and manipulator q agents since V i

max > V k
max = V q

max.

Corollary 1. A sensor agent k connected to the ith relay with dynamical topology
(5) is guaranteed to be in search mode at all times if ||xk − xi|| > Rs and for an
interval of time Δ t > 0, gi

k ∈ ((B(xi(t),(Rc−ε(Δ t)))\B(xi(t),(Rs +ε(Δ t)))) with
ε(Δ t) as of Theorem 2.

Proof. The proof for this corollary extends from the proof of Theorem 2 and it is
based on the geometrical properties of the connectivity constraints imposed in (5).
Corollary 1 applies to the manipulators agents, as well.

Within Corollary 1 we allow the communication relays to move freely and ex-
pand in the environment while the sensor and manipulator agents are in search
mode without entering in other regions. Thus k can take a goal ∈ (B(xi,(Rc)) \
B(xi,(Rc−ε(Δ t)))) only if it detects an intruder. In the same way, q can take a goal
∈ (B(xi,(Rc)))\B(xi,(Rc− ε(Δ t)))) if and only if it detects the target T .

5 Communication Power Control

In this section we introduce a power control algorithm to maintain a certain SINR
level between the agents of the heterogeneous robotic network.

Depending on the distance between the robots as well as path loss, fading, and
shadowing, the power received at a certain mobile sensor (or manipulator) k that

is transmitted by a relay i is attenuated by a gain gik = K
(

l0
lik

)β
+ ψik

Pi
where K

is a constant that depends on antenna properties and channel attenuation, l0 is a
reference distance, and lik is the separation distance between robots i and k. β is the
path-loss exponent and finally ψik is an additional attenuation due to shadowing and
that is usually a log-normal distributed random variable [12]. i can communicate
with k provided its (SINR) is above a certain threshold T . Thus the goal is to find
whether there exists an assignment of power levels and distance between robots so
that each robot’s SINR is acceptable. Since gik depends on the distance separation
lik between node i and j, instead of regulating the power, we can think of changing
lik to maintain the SINR above a desired value. Therefore, we can implement the
following algorithm

find ∑
k∈C i

c

gik ∀i = 1, . . . ,Nc, (7)
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subject to: {
Pigik

∑ j �=i, j∈B(xk ,Rs) Pjg jk+νk

}
≥ T,

0 < Pi ≤ Pmax,
lik ≥ lmin ∀i = 1, . . . ,Nc,∀k ∈ C i

c.

(8)

where lmin is the minimum distance separation between any agent in order to avoid
collision. Pmax is an upper bound for the maximum power each agent can have, Pi is
the power level of agent i, and νk the receiver noise at the kth sensor. For simplicity’s
sake we assume that the νk can be neglected. In other words, by implementing this
algorithm we guarantee a certain quality of service (QoS) among the robotic team
and adjust the received power at k through mobility.

6 Sensing and Manipulation

In this work we consider two distinct sensing behaviors: a vision capability and a
obstacle avoidance characteristic, as depicted in Fig.2(a-b). The former implies the
use of camera like systems in which we are able to perceive different features in the
environment and for instance recognize friends and foes, targets and other charac-
teristics of the environment. Within the obstacle avoidance, we consider laser range
finder type sensors that are capable of measuring distances with high precision and
thus can be employed for navigation. Finally the manipulator agents are equipped
with a planar arm to lift or move objects (2(c)) .

(a) (b) (c)

Fig. 2 Representation of the sensing capabilities for the aerial relay and mobile sensor. (a)
The aerial relay i hovers at a certain height hi and has a toroidal sensing for obstacle avoidance
and a conical field of view over the ground. (b) The sensor agent k (and also the manipulator
q) has a toroidal sensing for obstacle avoidance and a limited field of view in front of it. T is
a target of interest. (c) Representation of the manipulator configuration used in this work. For
ease, here we consider a two link planar arm with end effector, installed on the top, frontal
position of the robot.
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6.1 Vision Detection

In the scenario envisioned in this paper, each robot has some degree of vision capa-
bility. The aerial relay can see a large area but with low resolution, while the sensor
and the manipulator agents on the contrary can perceive a smaller area but with
higher resolution. Following Fig.2, we use the following probability of detection
field for the aerial relays

Si(xT ) =

{
N
(
ci,ϕ2

i

)
if ||xT − ci|| ≤ Ξi and hi = const.

0 otherwise
(9)

where xT is the state (i.e., the position) of a target T located in a 3D workspace.
N(ci,ϕ2

i ) is the field of view normal distribution centered in ci with variance ϕ2
i .

|| · || is the euclidean distance norm and Ξi is the maximum vision range for the ith

aerial relay. Model (9) holds if the quadrotor is hovering at a constant altitude (hence
hi = const.). By using this model, the probability of detection is higher moving
toward the centroid of the field of view of i. Thus if a target T in position xT is such
that ||xT − ci|| ≤ Ξi, the probability of detection (pr) is given by

pr(xT ) = N(ci,ϕ2
i ) =

1

ϕi
√

2π
e
− (xT −ci)

2

2ϕ2
i (10)

A centroid motion scheme, centering the target in this field of view is discussed
in the following section.

For the sensor and manipulator agents, similarly we use the following constraint

Sk(xT ) =

⎧⎪⎪⎨⎪⎪⎩
N
((

(Ξk−xk)−(ξk−xk)
2

)
,ϕ2

k

)
if xT ∈ θk(||Ξk−xk||2−|| (Ξk+ξk)

2 −xk||2).
N
((

(Ξk−ck)−(ξk−ck)
2

)
,ϕ2

k

)
if xT ∈ θk(|| (Ξk+ξk)

2 −xk||2−||ξk−xk||2).
0 otherwise

,

(11)

where N(·, ·) has the same form of (10). Ξk and ξk are the maximum and minimum
distances perceptible by agent k, respectively. Finally 2θk is the viewing angle of k,
as represented in Fig.2(b).

6.1.1 Pursuit and Evasion

If a mobile sensor k detects an adversarial opponent T inside its field of view, it
switches from search mode into pursuit mode (5) with the following dynamics

upursuit =

{
α(TW

k (xk
T − ck

k)) if xT ∈ θk(||Ξk− xk||2−|| (Ξk+ξk)
2 − xk||2)

α(xT − xk) if xT ∈ θk(|| (Ξk+ξk)
2 − xk||2−||ξk− xk||2)

, (12)

in which TW
k is the transformation matrix that converts the kth robot frame into the

world W frame. TW
k = RW

k DW
k where RW

k is the rotation matrix and DW
k is the
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translation matrix, [16]. xk
T and ck

k are the position of the target and field of view
centroid in the kth robot frame, respectively.

Thus, within the first equation in (12) we navigate the centroid ck of the field of
view of k toward xT . Once T is within the region of the constraint in the second
equation of (12), k is guided toward the evader through an attractive potential force.
Here we assume that based on the velocities of both k and T , T is capturable if
xT ∈ θk(|| (Ξk+ξk)

2 −xk||2−||ξk−xk||2) (that is the constraint in the second equation
of (12)).

6.2 Obstacle Avoidance

For the obstacle avoidance effect the reader is referred to the toroidal shapes in Fig.2.
The workspace, W , is populated with No fixed polygonal obstacles {O1, . . . ,ONo

},
whose geometries and positions are assumed unknown. In order to avoid obstacles
we model a ray field of view around the agents, similarly to a laser range finder
footprint, and we create a repulsive potential whose value approaches infinity as the
robot approaches the obstacle, and goes to zero if the robot is at a distance greater
than Φi or smaller than φi from the obstacle.

WO,i =

{
1
2 ηi

(
1

ρ(xi)
− 1

ρ0

)2
if φi ≤ ρ(xi)≤Φi

0 if ρ(xi)> Φi or ρ(xi)< φi

, (13)

where ρ(xi) is the shortest distance between the agent and any detected obstacle in
the workspace and ηi is a constant.

The repulsive force is then equal to the negative gradient of WO,i For simplicity
sake, here we assume that the aerial relay, sensor and manipulator agents have all
the same obstacle avoidance constraint, as depicted in Fig.2(a-b).

6.3 Manipulability

For the manipulation behavior we assume that Nm agents are equipped with an ar-
ticulated arm having Nl links. From a classical robotics book, [16], it is well known
that the manipulability metric offers a quantitative measure of the relationship be-
tween differential change in the end-effector pose relative to differential change in
the joint configuration. In this work, we use this concept to define the best config-
uration of the manipulator agent such that when a certain target object needs to be
handled, the manipulability measure is maximized.

Let us define the Jacobian relationship

ζ = Jȧ (14)

that specifies the end-effector velocity that will result when the joint move with
velocity ȧ.
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If we consider the set of joint velocities ȧ such that ||ȧ||2 = ȧ1
2 + ȧ2

2+ . . . ˙aNl
2 ≤

1, then we obtain

||ȧ||2 = ζ T (JJT )−1ζ = (UT ζ )T Σ−2
m (UT ζ ) (15)

in which we have used the singular value decomposition SVD J =UΣV T [16].
If the Jacobian is full rank (rank J = m), (15) defines the manipulability ellipsoid.

It is easy to show that the manipulability measure is given by

μ = σ1σ2 . . .σm (16)

with σi the diagonal elements of Σ .
For convenience in this work we consider that each manipulator robot is equipped

with a two-link planar arm (Fig.2(c)) in which the manipulability measure is given
by

μ = l1l2|sin θ2| (17)

where l1 and l2 are the length of the two links of the manipulator and θ2 is the angle
between the two links. Therefore, the highest manipulability measure is obtained
when θ2 = π/2.

6.3.1 Target Manipulation

If a manipulator agent q detects a fixed target D that needs manipulation (e.g., lift-
ing, moving, grabbing, etc.) then we apply a similar law as in (12) with the only
difference that once the target is detected, we compute the configuration of the ma-
nipulator arm such that we obtain the highest manipulability measure μ . μ will
translate into a certain spatial configuration and position of the end effector xζ .
Finally, xζ becomes the input for the controller. Thus the control law for q in ma-
nipulation mode becomes

umanip = α(TW
q (xq

D − xζ (μ))) if xD ∈ θq(||Ξq− xq||2−||xζ (μ)− xq||2) (18)

7 Simulation Results

In the simulation of Fig. 3 we assemble together all the pieces descried in the previ-
ous sections and consider a search and rescue/pursuit-evasion scenario. A heteroge-
neous system made of the same number and type of agents as in the first simulation,
explores an environment in search of a target D that needs to be manipulated, while
maintaining connectivity with a fixed base station. The target is protected by an
opposing player T that circles around its perimeter. T tries to capture the manip-
ulator agent q, while avoiding any mobile sensor k. If a mobile sensor k detects
T , it switches into pursuit mode to capture the opponent. Here we assume that
V k

max > V T
max > V q

max.
Specifically, during the simulation, while the consensus algorithm 1 is run to

equilibrate the network, the agents are attracted to a region where the target is
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(a) (b) (c)

Fig. 3 Pursuit-evasion simulation. (a) The heterogeneous system is in spring-mass mode. (b)
The sensor and the manipulator agents are in search mode while the communication relays
expand the network in the environment. (c) A sensor detects and pursue an adversarial player
(top right of the figure making a circular trajectory), while a manipulator moves toward the
fixed target.

located. The relays maintain network connectivity and enforce the power control
algorithm (7) keeping the SINR above a certain threshold (Fig. 4(a)). In Fig. 4(b) it
is plotted the case in which the agents don’t follow the PC algorithm. Specifically in
this case the SINR can take values below the threshold, obtaining a lower quality of
communication. In Fig. 3(b) the sensor and manipulator robots switch into search
mode and explore the area surrounding their assigned communication relay. Finally,
in Fig. 3(c) a mobile sensor detects the opposing player and switches into pursuit
mode while a manipulator moves toward the fixed target.

Additionally, through equivalence comparisons, we found that the average cov-
erage for a heterogeneous system is 63% while for the homogeneous scenario is
reduced to 22% of the workspace. Therefore, by decoupling the tasks of sensing

Fig. 4 Comparison between SINR (dB) with Power Control (top) and without Power Control
(bottom) for two mobile sensors and one robotic manipulator assigned to one of the five relays
in Fig. 3
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and relaying communication, and by imposing the connectivity constraints for a he-
terogeneous system we can cover a larger area with a limited number of mobile
agents.

8 Conclusion

Within this work, we have demonstrated how realistic communication, sensing,
manipulation, and different dynamical models can coexist and improve the per-
formance of a group of autonomous agents. By using heterogeneous systems we
can manage different agents and improve the coverage and thus the sensed areas in
a workspace. Besides using realistic sensing and vision capabilities, we have ana-
lyzed: (i) a communication connectivity algorithm to equilibrate and maintain the
network connectivity while exploring the environment and (ii) a power control al-
gorithm to guarantee a certain SINR level between the relay and the sensor and
manipulator agents. We presented a simulation scenario in which we implemented
a search/pursuit-evasion scenario with a heterogenous network. The robots expand
in the environment attracted by potential functions, avoid a large obstacle and reach
a partially known target that is manipulated by a specific agent of the system.

Future work will consist in expanding the theoretical results of this paper, pre-
senting more realistic environments with non-convex obstacles and more opponents
and considering failures in the system (e.g., some agents stop working). Also we
intend to implement the proposed framework through hardware experiments using
our heterogeneous test bed of quadrotors, car-like and differential-drive ground ve-
hicles, and crawling agents (Fig. 1).
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Optimizing for Transfers in a Multi-vehicle
Collection and Delivery Problem

Brian Coltin and Manuela Veloso

Abstract. We address the Collection and Delivery Problem (CDP) with multiple ve-
hicles, such that each collects a set of items at different locations and delivers them
to a dropoff point. The goal is to minimize either delivery time or the total distance
traveled. We introduce an extension to the CDP: what if a vehicle can transfer items
to another vehicle before making the final delivery? By dividing the labor among
multiple vehicles, the delivery time and cost may be reduced. However, introducing
transfers increases the number of feasible schedules exponentially. In this paper, we
investigate this Collection and Delivery Problem with Transfers (CDP-T), discuss
its theoretical underpinnings, and introduce a two-approximate polynomial time al-
gorithm to minimize total distance travelled. Furthermore, we show that allowing
transfers to take place at any location for the CDP-T results in at most a factor of
two improvement. We demonstrate our approximation algorithms on large simu-
lated problem instances. Finally, we deploy our algorithms on robots that transfer
and deliver items autonomously in an office building.

1 Introduction

Previously, we deployed a team of robots in an office building. The robots navigate
autonomously on multiple floors to complete tasks requested by users at a central-
ized website. These tasks include retrieving and delivering objects. For example,
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users can ask the robots to bring them printouts from the printer or coffee from the
kitchen, or to transfer written messages, USB sticks, or other items between offices.

Forming a schedule for the robots to fulfill all requests is an instance of the Ve-
hicle Routing Problem (VRP). In this work, we propose and examine an extension
of the VRP: what if the robots can transfer items between each other? By having
one robot pick up an object and transfer it to a different robot (or a series of robots)
for delivery, we can conserve both time and the battery life of the robots. Transfer-
ring items makes the problem significantly harder because this creates exponentially
more possible schedules. Scheduling with transfers has potential energy-saving and
productivity-increasing applications in both transportation domains (e.g., taxis that
exchange occupants heading to nearby locations) and in warehouse automation.

In particular, we examine the role of transfers in the collection and delivery prob-
lem (CDP), a subproblem of the VRP in which the robots retrieve a set of items and
deliver them to a single central location. In our building, popular requests for the
robots include retrieving mail from the secretaries’ offices and delivering it to the
central office, as well as delivering business cards, fliers or candy to many offices
and returning the leftovers. Both problems are instances of the CDP. We call the
CDP with transfers the CDP-T. The CDP-T is NP-hard, so we introduce algorithms
both to solve it optimally and approximately.

In this paper, we first discuss selected related work, introduce the CDP-T, and
formulate the problem as a delivery tree. We consider CDP with transfers anywhere
(CDP-TA), where transfers are not limited to pickup locations, and show that the
optimal solution to the CDP-T costs at most twice that of the CDP-TA in a metric
space. We propose a two-approximate polynomial time algorithm for the CDP-T,
and a metaheuristic to improve on this solution. We show the effectiveness of these
algorithms in simulation and on physical robots, and demonstrate an approach for
two robots to autonomously transfer objects. To our knowledge, this is the first time
multiple robots have created and executed a schedule with transfers.

2 Related Work

Extensive research has been done on the Vehicle Routing Problem (VRP) in which
a set of vehicles visit a set of locations to service customer requests. Variants of
the VRP include the Pickup and Delivery Problem (PDP), in which a set of goods
must be picked up from one set of locations and delivered to another set; and the
Capacitated PDP (CPDP). The VRP and its variants are generally NP-hard, and are
often solved optimally with branch and bound algorithms such as mixed integer
programming. See [19] for an extensive discussion of the VRP.

A plethora of approaches have been proposed to solve the PDP, including branch
and bound methods, heuristics, and metaheuristics [3, 16]. The Collection and De-
livery Problem (CDP) is a subproblem of the PDP in which there is only a single
delivery point. Approximation algorithms with guarantees have been developed for
the VRP with release times at which jobs can first be performed but without dead-
lines [4], for the VRP with time windows [2], and for the CPDP [6, 11].
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Less work has focused on robots that transfer items. Mail couriers and the trans-
portation industries use fixed “transshipment” points, hubs such as post offices and
airports, where objects are deposited for another agent to retrieve. Algorithms have
been developed to find the optimal solution [8] and heuristics [14] for the PDP with
fixed transshipment points, and for the CPDP with time windows and a single trans-
shipment point [15]. Solving the PDP with online requests to minimize delivery
delay has been considered in [20] with a single relay between the pickup and deliv-
ery vehicles. In [18], transfers at any pickup or delivery location are considered in
the construction of heuristics for the PDP with time windows. In [10], an approxi-
mation is given for the preemptive CPDP, where objects are dropped off at pickup
points and retrieved by other vehicles later.

Robotics researchers have extensively studied the task allocation problem, in
which robots are assigned to (independent) tasks to maximize utility. In the VRP
and CDP, tasks are not independent [9]. Other researchers have devised algorithms
to find the optimal rendezvous locations given a schedule of meetings, which could
be used in conjunction with the schedules we create [1].

In this work, we consider a version of the PDP with transfers and only a single
dropoff point, and provide a constant factor approximation algorithm. We prove that
this is also a constant factor approximation to the CDP-TA, where transfers take
place at any location (see Section 3.4). We develop further heuristics to improve
these solutions and demonstrate their effectiveness in real-world scenarios. To our
knowledge, we are the first to deploy robots which plan and execute a schedule with
autonomous transfers.

3 The Collection and Delivery Problem with Transfers

We are given a set of robots, located at positions R⊆M, where M is a metric space
with distance metric d. The robots must retrieve items from pickup locations L⊆M,
then deliver all the objects to a final drop-off location f ∈ M. Robots may meet up
to transfer objects, but only at the pickup locations. We assume that the robots have
infinite capacity.

We construct the complete graph G = (V,E) where V = R∪L∪{ f} and the edge
weights are defined by the metric d. The goal is to find a path Pi on G for each robot
such that all the objects are delivered. In a valid solution, the endpoint of every path
Pi is either f or, in the case of a transfer, an intermediate node in another robot’s
path. Every vertex l ∈ L is part of at least one path Pi since every item is delivered.

Many such sets of paths exist, and we consider two objectives to distinguish
between them: a) minimize the total movement energy of the robots, corresponding
to the sum of edge weights, and b) minimize the completion time, corresponding to
the length of the longest path from any robot to the destination.

Now, consider the directed graph T which is the union of all the paths of used
robots Pi, where the paths are chosen to either minimize the total distance traveled
or the maximum distance traveled to deliver any object.

Claim. There exists an optimal directed graph T that is a tree.
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Fig. 1 The optimal solution
to the CDP-T can be for-
mulated as a delivery tree.
Edges represent the motion
of a single robot. Where the
tree branches, all the robots
at that branch point transfer
their entire load to a sin-
gle robot which continues
alone.

Proof. T is a tree if and only if it is connected and has |E| = |V | − 1 edges. T is
connected, since every pickup location and used robot is part of a path to f . Every
robot route Pi either ends at f or at a transfer point. If not, traveling to the final
location on the path is either needless or retrieves an item that is not delivered to
f . Furthermore, every route Pi contains f or a transfer point where items are given
to a different robot nowhere else in the path. If these points do exist elsewhere, a
solution of less than or equal cost can be constructed by removing the points due
to the triangle inequality. Any items transferred earlier can still be delivered by
transferring them at the route’s final point instead. Hence, there is an optimal set of
paths where each robot transfers or delivers items exactly once at the end of its path.
Furthermore, there is an optimal solution where each node l ∈ L is not the endpoint
of exactly one path Pi, as otherwise a point could be omitted from one of the paths
to construct a solution with no worse cost. So there exists a set of paths T which has
|E|= |L|+ |R∩T | edges, as each vertex aside from f is not the endpoint of exactly
one path Pi. T has |V |= |L|+ |R∩T |+ 1 vertices, and is hence a tree.

An equivalent formulation for the CDP-T is to construct a delivery tree D with
the following properties (see Figure 1):

1. The interior nodes are the pickup locations l ∈ L and the final delivery point f .
2. The leaf nodes are a subset of R, the starting locations of the used robots.
3. Branch points represent transfers of one robot’s load to another. All but one robot

at a transfer point remain behind and are not used again.

Our goal is to either find the delivery tree of minimum weight w(D) (minimum
movement cost), of minimum weighted depth depth(d) (minimum delivery time),
or to minimize a linear combination αw(D)+(1−α)depth(D) where 0≤ α ≤ 1.

We show that the CDP-T problem is NP-hard by reducing the TSP to the CDP-T.
In the TSP, a salesman aims to find the minimum distance Hamiltonian tour that
visits every city in a set V exactly once, and return to the initial city. The TSP can be
reduced to the CDP-T problem by setting the cities V as the pickup locations L. We
have one robot r, which begins at the same location as the traveling salesman. We
set the dropoff location f to be the same location, r. So if the CDP-T can be solved
in polynomial time, so can the TSP. Hence the CDP-T is NP-hard.
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3.1 Optimal Approach

The CDP-T can be formulated as a mixed integer program. We solve for binary
variables xa,b, which indicate whether the directed edge from node a to node b is in
the solution. The final destination f has zero outgoing edges (∑v∈V x f ,v = 0), each
location l ∈ L has exactly one outgoing edge (∀l ∈ L ∑v∈V xl,v = 1), and each robot
r ∈ R has zero incoming edges and at most one outgoing edge, but may have zero
(∀r ∈ R ∑v∈V xr,v ≤ 1,∑v∈V xv,r = 0). The vertex f and each point l ∈ L have at least
one incoming edge ( ∀n ∈ (L∪{ f}) ∑v∈V xv,n ≥ 1).

The formulation as it stands still allows subtrees, in which the delivery tree is not
connected. To address this, we introduce constraints similar to the subtour elimi-
nation constraints that are used to formulate the TSP as an Mixed-Integer Program
(MIP): ∀U ⊂V, U �= /0 ∑e∈δ (U) xe ≥ 1, where δ (U) is the set of edges which link U
and V \U .

This MIP formulation gives paths which solve the CDP-T. The graph is connected
(aside from unused robots), so every item is part of a robot’s path to f . The graph has
|R|+ |L| = |V |− 1 edges since each used robot and item has exactly one outgoing
edge, and is hence a tree. The robots are the only leaf nodes in the tree, since they
have one edge while the items have at least two. We minimize the total distance
D = ∑e∈E d(e) traveled by all the robots.

Alterntiavely, to minimize the time taken to deliver all items (the length of the
longest path from a robot to the goal) we define binary variables pe,r which indi-
cate whether the directed edge e is part of the path from r to f . Edges from robots
are part of that robot’s path if the edge exists. No edges exist to robots, and f has
no outgoing edges. We add the constraints ∀r ∈ R, l ∈ L per,l ,r = xr,l, pel,r,r =
0, pef ,l ,r = 0. Edges with robots as nodes are not part of another robot’s extended
path: ∀r1,r2 ∈ R, l ∈ L∪{ f} per2 ,l

,r1 = 0. Each edge between retrieval and deliv-
ery points that is in the solution is part of the path for at least one robot (or more,
with transfers). ∀l1, l2 ∈ L∪{ f}, l1 �= l2 ∑r∈R pel1,l2

,r ≥ xl1,l2 . Finally, edges between
two retrieval or delivery locations are only on a robot’s path to f if an incoming
node was also on the extended path. ∀l1 ∈ L, l2 ∈ L∪{ f}, l1 �= l2,r ∈ R, pel1,l2

,r ≥
xl1,l2 − 1+∑l3∈L\l1,l2∪{ f} pel3,l1

,r.
We define a variable G to be the length of the longest extended path. Then we

add constraints so that G is greater than the length of every robot’s extended path:
∀r ∈ R G ≥ ∑e∈E pe,rd(e). Our objective function is then minG, or a weighted sum
of the two objectives, minαD+(1−α)G.

3.2 Minimum Length Approximation

Computing the exact solution to the CDP-T is difficult since the problem is NP-
hard. Hence we are interested in approximation algorithms, which find a solution in
polynomial time that is not optimal, but provably close to optimal.

The approximation algorithm we introduce generates two-approximate solutions
in terms of total distance to the CDP-T using only a single robot. In fact, a two-
approximate solution to the CDP-T is the best guarantee we can possibly make
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Algorithm 1. cdp t(L, f ,R): Con-
struct a delivery tree given the set of
pickup points L, the dropoff point f ,
and robots R. NT (v) gives the set of
neighbors of v in T .

G← complete graph(L∪{ f },d)
T ← mst(G)
s,v← argmins∈R,v∈V(G) d(s,v)
T ′ ← deliv tree(R,L, f ,T ∪
edge(s,v))
for r ∈ R,r �∈ T ′ do

v← argminv∈V (G),NT′ (v)∩R= /0 d(r,v)
T ′′ ← deliv tree(R,L

f ,T ′ ∪edge(r,v))
if cost(T ′′)< cost(T ′) then

T ′ ← T ′′
end if

end for
return T ′

Algorithm 2. deliv tree(R,L, f ,T ):
Construct a delivery tree given the set of
pickup points L, the dropoff point f , robots
R, and an intermediate delivery tree T .

A = {l ∈ L : ∃r ∈ R s.t. l ∈ path(r, f)}
T ′ = Null Graph
for r ∈ R do

n = r, P = []
while n �∈ T ′ do

Append n to P
If n = f , break
Choose n′ = v∈NT (n) s.t. v �∈P and v �∈A

If � ∃n′, n′ = v∈NT (n) s.t. v �∈P and v∈A

n = n′
end while
P′ = P with duplicate vertices removed
T ′ = T ′ ∪P

end for
return T ′

(a) (b)

Fig. 2 (a) An example of the approximation algorithm. Solid black lines indicate edges on
the minimum spanning tree, and dashed lines show the generated delivery tree. (b) Robots
and items are situated at the end of n hallways of length one emanating from the delivery
point f . On = n, where every robots travels to f . O1 = 2n− 1, where one robot retrieves
every item.

with only a single robot. If On is the optimal solution with n robots, and O1 the
optimal solution with any one of those robots, Figure 2b shows a case where w(O1)
approaches arbitrarily close to 2w(On). With multiple robots, the heuristic further
reduces both the distance traveled and the delivery time.

Our approximation is based on the minimum spanning tree two-approximate
heuristic for the TSP, but is extended for multiple robots that transfer items. The
algorithm is shown in Algorithm 1. First, we construct the complete graph G with
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(a) (b) (c)

Fig. 3 (a) The initial state. (b) A neighbor found by swapping l1 and l2 (the edges linking
them to other nodes are different). (c) A neighbor with l2 grafted from l1 to l3.

pickup locations L and drop-off location f with edge lengths determined by the dis-
tance metric d, and its minimum spanning tree T . Next, choose the edge e of lowest
weight from a node in T to a node in r ∈ R, and add e and r to T to construct T ′.

If O is the delivery tree for the optimal solution, then w(T ) ≤ w(O \R), since
T is the minimum spanning tree over the same nodes. Since a valid delivery tree
must have at least one edge connected to a robot, and we chose the minimum one,
w(T ′) ≤ w(O). We call T ′ an intermediate delivery tree, since it can be used to
construct a delivery tree but not all leaf nodes are robots.

We then construct a tour P, starting at r and ending at f , which visits each vertex
in T ′ at least once with the procedure deliv tree (see Alg. 2). When T ′ con-
tains only a single robot, this algorithm is equivalent to the two-approximate TSP
approximation, which traverses each edge at most twice. The deliv tree(T ) al-
gorithm extends this heuristic to multiple robots which can transfer items, and cre-
ates a valid delivery tree with weight at most 2w(T ). Thus, w(P)≤ 2w(T )+w(e)≤
2w(O\R)+w(e)≤ 2w(O\R). So our single robot algorithm is two-approximate to
the optimal multi-robot solution in terms of total distance.

We can lower the cost further with multiple robots, although no better guarantees
on the approximation bound are obtained. We begin with the constructed intermedi-
ate delivery tree for a single robot, T ′, and for each robot r, greedily add the shortest
edge from r to a node in T to the tree T ′. We construct a new delivery tree from
T ′ with deliv tree, and keep the edge and robot in the intermediate delivery
tree T ′ if and only if the delivery tree’s cost decreases according to our objective
function. We then attempt to add the next robot to the updated T ′, iterating through
every robot. This procedure still gives a two-approximation to the CDP, and addi-
tional robots will sometimes decrease both the total distance traveled and the time
to completion, depending on the problem instance. See Figure 2a for an example of
the algorithm’s results.

We have constructed a two-approximate delivery tree in polynomial time that
uses multiple robots, since the cost of the multi-robot heuristic is at most the cost of
the single-robot heuristic which is two-approximate.

3.3 Improvement with Local Search

Next, we introduce a metaheuristic to improve upon the two-approximate solution
with local search techniques. Specifically, we make use of simulated annealing [13].
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Simulated annealing is a metaheuristic that begins at some state, and chooses a
random “neighbor” of that state. With probability accept(e,e′, t) the new state is
accepted as the current state, where e is the “energy” (in our case, the cost) of the
current state, e′ is the energy of the new state, and t is the temperature, or the fraction
of iterations of the algorithm currently completed. If the new state is rejected we
remain at the current state and repeat with a new neighbor. The algorithm continues
either for a fixed number of iterations or until the energy crosses some threshold,
when the best solution that has been encountered thus far is returned.

To apply simulated annealing to the CDP, we must define a starting point, an en-
ergy function, an acceptance probability, and a function to return random neighbors
of a state. We search over the underconstrained intermediate delivery trees rather
than strict delivery trees, as this allows us to develop a broader concept of neighbor-
ing solutions that is more closely tied to the approximation heuristic. We use as a
starting point the tree generated by our fast multi-robot heuristic.

The energy function is the cost function of the delivery tree constructed with
deliv tree, and it incorporates both the total weight and depth of the tree as

a function of α . The acceptance probability is 1 if e′ < e, and e
e−e′

t otherwise, a
standard acceptance function frequently used in the literature.

Neighboring states are found either by swapping two non-robot, non-destination
nodes on the intermediate delivery tree (that are not robots or f ), swapping their
neighbor sets, or by grafting one branch of the tree at a transfer point onto a neigh-
boring node, replacing a single edge. See Figure 3 for examples.

We run the simulated annealing algorithm for a thousand iterations. Every hun-
dred iterations we restart from the best solution found thus far to explore the most
promising regions more thoroughly. In practice, simulated annealing improves upon
the solutions of the two-approximate heuristic.

3.4 Transfers at Any Location

Next, we consider the general case of CDP-TA, where items can be transferred
anywhere, rather than only at vertices in L as in the CDP-T. We show that the optimal
solution for the metric CDP-T, Ov, is within a factor of two of the cost of the optimal
solution to the CDP-TA, Oa, when minimizing total distance traveled.

The CDP-TA is closely related to the Steiner tree problem, in which a set of
points must be connected by the shortest possible set of edges. “Helper” points may
be added (transfer points) to construct a solution. The CDP-TA is different in that
all the leaf nodes of a valid delivery tree must be robots or the final destination.

Claim. Ov ≤ 2Oa

Proof. Given a delivery tree T with optimal cost Oa with transfers at any point (the
transfer points are separate nodes in the tree), we construct a delivery tree T ′ with
transfers only at vertices and cost Ov ≤ 2Oa. Let X be the set of transfer points in T .

First, construct the forest F with vertices X ∪N(X), where N(X) is the set of
neighboring vertices to X in T . Add all edges between the vertices of F in T to
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(a) (b)

Fig. 4 Results for the CDP-T algorithms with (a) three robots and up to twenty items to
retrieve under the total distance objective function in the planar domain, and (b) 25 robots
and up to 175 items to retrieve under the mixed objective function in the office building
domain. Lines indicate the mean objective function cost, and the filled area shows the standard
deviation across trials. Darker areas indicate overlap.

F as well. For each connected component Fi of F (which may include multiple
transfer points), define Si to be the complete graph with vertices Fi\X . Then w(Fi) =
w(steiner(Si)), where steiner gives the minimum Steiner tree. If this were not
the case, then either the minimum Steiner tree could be used to construct a delivery
tree of lower cost, or we do not have the minimum Steiner tree.

Let S = ∪Si. Construct T ′ = (T \X)∪msf(S), where msf(S)= ∪imst(Si). T ′
is a valid delivery tree where the items are transferred at retrieval or dropoff points.

Then Oa = w(T ) = w(T \ X) + w(F), since T = (T \ X) ∪ F . Furthermore,
w(F) = ∑w(Fi) = ∑w(steiner(Fi \ X)). Similarly, Ov ≤ w(T ′) = w(T \ X) +
w(msf(S)) = w(T \X)+∑i w(mst(Fi \X)). The weight of a minimum spanning
tree is bounded by the Steiner ratio κ such that w(mst(G)) ≤ κw(steiner(G)).
Hence, Ov ≤ w(T \E)+κ ∑i Risteiner(Ri \E)≤ κOa.

If our distance function is a metric, than κ = 2 [17], and the optimal solution
to the CDP-T is two-approximate to the CDP-TA. If the distance function is Eu-
clidean, κ is conjectured to be 2√

3
≈ 1.1547. This conjecture is believed to be true,

but is still open and unproven [12]. If it holds, then for the Euclidean case CDP-T
is a 2√

3
-approximation to CDP-TA. Hence, our two-approximate heuristic for the

CDP-T provides a four-approximate heuristic for metric CDP-TA and a 4√
3
≈ 2.31-

approximate for the Euclidean CDP-TA, assuming the conjecture regarding the Eu-
clidean Steiner ratio holds.

4 Simulation Results

To validate our approach, we tested the algorithms in two scenarios. We varied the
number of items to retrieve, and created 50 random problem instances for each set
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of parameters. We solved each problem optimally (when feasible), with the single
and multi-robot two-approximation algorithms, and with simulated annealing.

In the first scenario, we chose random pickup, delivery, and starting points from a
plane, using a Euclidean distance function. Figure 4a shows results for three robots
and up to twenty items. Each phase of the algorithm gives an improvement. The
simulated annealing solution is near-optimal, when the optimal solution is found.

In the second scenario, points were chosen randomly from four floors of an office
building in a simulation of the mail collection task. The distance function was an
empirical estimate of robot travel times. The objective was to minimize a weighted
sum of the moment energy cost and the delivery time (α = 0.5). Figure 4b shows
the results with 25 robots and up to 175 items. Each level of the algorithm offers
a significant improvement, particularly the multi-vehicle heuristic, since it achieves
much better depths than the single robot approximation. We are unable to find the
optimal solutions for problems of this size.

On an Intel 2.83 GHz Core2 Quad CPU, the two heuristics ran in under a sec-
ond for all instances of up to 500 vertices (these instances are not shown). Sim-
ulated annealing ran in under fifteen seconds for every instance. The optimal MIP
formulations were solved with lpsolve, with each attempt aborted after thirty sec-
onds. These results show that the approximation algorithms can solve large problems
quickly, and provide near-optimal solutions when comparison is possible.

5 Illustrative Deployments

We have deployed our CDP-T heuristic on two robot platforms: the CoBot and Cre-
Bot robots (see Figure 5). The CoBots autonomously navigate over large distances
indoors, and with them we show that transferring items can reduce energy consump-
tion and delivery time. The CoBots cannot physically transfer items, and so they ask
humans to help. With the CreBots, we demonstrate that autonomous transfers are
feasible by presenting a method to transfer items with a tilting tray.

Both the CoBots and CreBots autonomously localize and navigate in the building
using software developed for the CoBots [5]. A centralized web server accepts user
requests and sends schedules to the robots [7]. The robots collect and deliver items
by arriving at an office and asking a human to place or remove the items.

5.1 Transfers with CoBots

We examine three scenarios where two CoBots were deployed to collect and deliver
objects in an office building. The problem setups and the planned paths, both with
transfers and without, are shown in Figure 6. For each scenario, we recorded the time
it took the robot(s) to complete the task and the total combined distance traveled by
all of the robots. To reduce the variance in our experiments, we assumed that humans
were always immediately available to place items in the CoBots’ baskets and to help
transfer items. However, the times recorded with transfers do include the time to ask
and thank a human for their help, and are shown in Table 1.
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(a) (b) (c)

Fig. 5 (a) Two CoBot robots. (b) A CreBot robot, with a Create base, laptop computer, Kinect
RGB-D camera, tilting tray, and QR code for alignment. (c) One CreBot transfers an item to
another during a collection and delivery task.

Table 1 Deployment Results for Selected Scenarios

With Transfers Single Robot
Scenario Time (min.) Dist.(m) Time (min.) Dist. (m)

1 4:22 229.35 8:18 287.12
2 5:52 220.68 7:55 238.66
3 7:00 230.56 9:36 272.37

In all three scenarios, using multiple robots with transfers reduced both the time
to complete the task and the total distance traveled. This may not be the case in all
scenarios, depending on the problem setup. However, we have demonstrated that in
many scenarios, transferring items between robots can and does reduce the energy
consumed and the time taken to complete the task.

5.2 Autonomous Transfers

We have designed the CreBots to transfer items autonomously. They consist of
an iRobot Create as a base, with Willow Garage Turtlebot shelves, a laptop,
Kinect RGB-D camera, and a custom-built tilting tray on top to transfer items (see
Figure 5b).

Unlike the CoBots, the CreBots transfer items autonomously. To do so, two Cre-
Bots head towards the same location based on their localization information. The
robots stop either when they reach the destination, or are blocked within two meters
of the destination (presumably by the other robot). Next, the robots send each other
their localization positions wirelessly and turn to face each other.

Localization is accurate and robust enough for a rough alignment, but not pre-
cise enough to transfer objects based solely on localization. For fine alignment, the
robots are each equipped with a QR code which is detected by the Kinect and used
for precise docking. The transferrer advances slowly until it comes within the range
it can detect the QR code using an off the shelf library, which measures the QR
code’s bounding box. The transferrer computes the distance and angle to the QR
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(a) (b) (c)

Fig. 6 The paths planned by the approximation algorithm and taken by the robots, with and
without transfers, for (a) Scenario 1, (b) Scenario 2, and (c) Scenario 3

code from its known size and camera parameters, then rotates in place to align with
the QR code. The transferrer continues to move forwards until its bump sensor is
triggered, and dumps its load. When dumping, the tilting tray shakes back and forth
to ensure that all the objects are dislodged. The CreBots have successfully executed
collection and delivery tasks with transfers.1

6 Conclusion

We have introduced the Collection and Delivery Problem with Transfers, and shown
that the solution comes in the form of a delivery tree. We solved the CDP-T opti-
mally with an MIP, and bounded the cost with transfers anywhere in terms of the cost
when transfers occur only at vertices. We introduced a two-approximate algorithm
under the minimum length objective, and proposed a heuristic and metaheuristic
to find solutions of lower depth while maintaining the bound on total length. Fur-
thermore, we demonstrated the effectiveness of these heuristics on large real-world
problem instances, and showed the feasibility of transfers between physical robots.
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1 Video available at http://youtu.be/pzXv7p_aZhE
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Distributed Amorphous
Ramp Construction in
Unstructured Environments�

Nils Napp and Radhika Nagpal

Abstract. We present a model of construction using iterative amorphous
depositions and give a distributed algorithm to reliably build ramps in un-
structured environments. The relatively simple local strategy for interacting
with irregularly shaped, partially built structures gives rise robust adaptive
global properties. We illustrate the algorithm in both the single robot and
multi-robot case via simulation and describe how to solve key technical chal-
lenges to implementing this algorithm via a robotic prototype.

1 Introduction

Robots are best suited for dirty, dull, and dangerous tasks. This paper focuses
on algorithms for the dirty and dangerous task of construction in unstruc-
tured terrain. Applications range from rapid disaster response, like building
levees and support structures, to remote construction in mines or space. The
requirement of working in unstructured terrain frequently coincides with a
lack of infrastructure, such as global positioning or a consistent shared global
state estimate, that simplify coordination of multiple robots and deliberative
planing. Distributed algorithms that use limited local information and coor-
dinate through stigmergy solve this problem and provide scalable solutions.
Robustness to poor sensing and irregular terrain can further be improved by
using amorphous construction materials that comply to obstacles. Such con-
struction is locally reactive, both on an algorithmic level, i.e. where robots
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(a) (b)

Fig. 1 Examples of amorphous construction. (a) Amorphous construction in bi-
ology. A termite preparing an amorphous dollop of mud for deposition. Inset shows
a mound built around a tree. (b) Prototype of a construction robot. The robot was
remote controlled to build a ramp using amorphous foam depositions. Inset shows
a cone-shaped deposition.

deposit based on local cues, and a physical level, i.e. amorphous construction
materials react by changing shape to conform to their environment.

Our approach is inspired by biological systems, such as mound building ter-
mites [18], that are very adept at building in unstructured terrain, Fig. 1(a).
Their skill combines scalable coordination through stigmergy and the use of
amorphous building materials that interface with an irregular environment.
We would like to endow scalable robot teams with similar skill, however an al-
gorithmic foundation for doing so is lacking. Current models for autonomous
robotic construction focus on assembling pre-fabricated building materials
and cannot accommodate the continuous nature of amorphous building ma-
terials. The contribution of this paper is twofold:(A) A mathematical frame-
work for reasoning about robots that construct with amorphous materials,
and (B) a distributed, locally reactive algorithm for adaptive ramp build-
ing. This work is a step away from robots assembling discrete pre-fabricated
components and instead embracing the messy continuous world, Fig. 1(b).

Section 2 presents mathematical models for amorphous construction and
adaptive ramp building. Section 3 gives a local strategy for creating struc-
tures that robots can climb; Sec. 4 extends those results to include physical
constraints for single and multiple robots. Section 5 discusses future work.

1.1 Related Work

Currently, there is much interest in the topic of robotic construction with mo-
bile robots [3, 4, 6, 10, 11, 15], as well as decentralized algorithms by which
multiple robots can coordinate construction [1, 9, 12, 17]. These systems
are mainly focused on building pre-specified structures using lattice-based
building materials [5, 20]. Lattice-based building blocks have good struc-
tural properties—being strong, stiff, and light—but place assumptions on
the initial environment being level and devoid of obstacles. These methods
are difficult to extend to unstructured environments with irregularly shaped
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obstacles. Furthermore, alignment and attachment restrictions affect all other
aspects of design, for example adding complex assembly order constraints.

In contrast, amorphous building materials—e.g. foam, mud, sandbags or
compliant blocks—sidestep these limitations [13]. They can help compensate
for uncertainty and measurement errors without requiring complex sensing
or reasoning. For example, compliant and amorphous materials are used for
rapidly building flood protection in disaster zones [7, 19] or pouring foun-
dations over irregular terrain. Similarly, the requirement of fixed attachment
orientations can be relaxed by using adhesive in the autonomous robotic con-
struction of curved walls [2, 3]. The closely related work in [16] uses foam to
rapidly adapt robot parts to a unknown tasks instead of adapting structures
to unknown terrain. Digital manufacturing via CAD/CAM, and some large-
scale robotic construction systems, such as [8], also use amorphous materials
to build continuous shapes. While these systems are not specifically focused
on construction in unstructured environments, we can exploit the materials
and design principles to design robots that utilize amorphous materials.

2 Problem Formulation and Questions

We present a solution to the adaptive ramp building problem as a particu-
lar example of a distributed construction task in unstructured terrain. The
problem is to design a deposition and motion strategy that allows reach an
arbitrary goal position, despite irregularly shaped obstacles. Robots can sense
the goal direction, move on partially built structures, and deposit amorphous
materials to make non-climbable structures climbable. Adaptive ramp build-
ing is an example of how amorphous construction materials can be used to
create robust behavior and also provides a primitive behavior for solving more
complex tasks. The remainder of this section presents mathematical models
for continuous structures, amorphous depositions, and climbable structures.

2.1 Mathematical Model for Continuous Structures

We model construction in two or three dimensions. Gravity constrains robots
to move along surfaces on which they can incrementally deposit construction
material. We assume that the construction area Q is a connected, compact,
and finite subset of R1 (or R2) and the domain of a bounded, non-negative
height function h : Q → R

+. The graph of h, (x, h(x)) x ∈ Q, describes a
structure. Robots move on structures and modify them.

If structures are modeled as functions, depositions are operators on func-
tions. To distinguish the two, function spaces are denoted by scripted letters.
For example, let Q be the space of real-valued, bounded functions on Q, and
Q+ ⊂ Q the subset of non-negative ones. Function application to points is
denoted by parentheses (·) and operator application to functions by brackets
[·]. For example, applying function h ∈ Q+ to a point x ∈ Q is written as
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c)

ε

d)

ε

PK1 [h](x)
PK2 [h](x)
PK3 [h](x)
h(x)

e)

Fig. 2 Parameter Geometry. (a) Robot making an amorphous deposition. (b,c)
Relation of K to the maximal steepness a robot can climb and descend, (solid)
without discontinuity (dashed) with discontinuity. (d) Relation of steepness K to
the required ground clearance to drive over the apex of a cone. (e) A height function
on h ∈ Q+ and its projections onto Lipschitz functions with different parameters
K3 > K2 > K1.

h(x), and applying an operator D : Q+ → Q+ to h is denoted by D[h]. In
the case of functions, all relational symbols should be interpreted pointwise,
e.g. given h, g ∈ Q+, h ≤ g ≡ h(x) ≤ g(x) ∀x ∈ Q.

One limitation of modeling structures as functions is that many physical
terrains have overhangs and are not functions. However, the benefit of this
restrictive model is that it comes with analysis tools, such as continuity and
integration, that can be used to reason about construction algorithms.

2.2 Model for Amorphous Deposition

Robots can deposit amorphous construction material and control its volume
and position, Fig. 1(b). The free surface of each deposition is modeled by a
shape function f ∈ Q while the bottom conforms to the structure, Fig. 2(a).
As a simple, yet sufficiently general, family of shape functions we use cones.
Given an apex position (ρ, α) ∈ Q× R+ and steepness KD ∈ R+ let

f(φ,σ)(x) = α −KD|ρ− x|. (1)

The deposition operatorD : Q×Q+ → Q+ models interactions of depositions
with the environment, here simply covering it. Given a structure h ∈ Q+ with
h(ρ) < α, the new structure after deposition f(φ,σ) is given by

D[f(φ,σ), h](x) = max
x∈Q

(f(x), h(x)). (2)
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Given an initial structure h0 ∈ Q+ a structure is built by
a sequence of depositions characterized by their shape parameters
(ρ1, α1), (ρ2, α2), (ρ3, α3), .... The height function hn after n depositions is
defined recursively by

hn(x) = D[f(φn,σn), hn−1](x). (3)

After the n-th deposition, the local reactive rules of each robot direct it to
move on hn and possibly make a deposition resulting in a new structure hn+1.

This deposition model preserves continuity, independent of the particular
parameter choices (ρn, αn). In this and the following proofs, let Bε(x) denote
the open ball of radius γ around x, i.e. y ∈ Bε(x) if and only if |y − x| < γ.

Lemma 1. Given a continuous h0 ∈ Q+ and γ ∈ R
+ then ∃δ s.t. ∀x ∈ Q,

∀y ∈ Bδ(x) and any hn created according to (3), hn(y) ∈ Bε(hn(x))).

Proof. By continuity of h0 and compactness of Q, for any given γ ∈ R ∃δ′ s.t.
∀y ∈ Bδ′(x), h0(y) ∈ Bε(h(x)). By construction of hn, δ = min{δ′, γ/KD}
has the above property.

Our proposed solution to the ramp building problem can accommodate un-
certainty in both the deposition location and size, see Sec. 4.1 end. However,
for clarity we assume an exact shape function f in the following proofs.

2.3 Navigable Structures

Building a ramp means turning a structure that robots cannot climb into one
they can climb. As such, any algorithm to adaptively build ramps needs a
tractable description of climbable structures. This section defines the notion
of navigable functions on Q, which represent climbable physical structures.

We use three parameters to describe robot specific motion constraints:
K ∈ R

+, to model the maximum steepness robots can drive up or down,
ε ∈ R+, to model the largest discontinuity robots can freely move past, and
d ∈ R+, to limit the amount of discontinuity in a small area (i.e. robot length),
Fig. 2(b)–2(d). Formally, navigable structures are locally (parameter d) close
(parameter ε) to K−Lipschitz continuous [14, p. 594], i.e

|h(x) − h(y)| ≤ K|x− y| ∀x, y ∈ Q. (4)

Specifically, a function h ∈ Q is called navigable if and only if

|h(x)− h(y)| ≤ ε+K|x− y| ∀x, y ∈ Q and |x− y| ≤ d. (5)

To reason about global guarantees of our local algorithms, we construct
the operator PK , defined by (7). It maps any structure to the closest K-
Lipschitz function that can be built by only adding material, Fig. 2(e). At
a given point x ∈ Q, PK takes the maximum value of any cones that need



110 N. Napp and R. Nagpal

to be added so all other points fulfill condition (4). There are two important
properties of PK . Firstly, by construction

PK [h](x) ≥ h(x) ∀h ∈ Q. (6)

Since depositions are additive, it is important PK [h] can be reached by only
adding to h. Secondly, PK [h] returns the smallest function in LK , the space
of K-Lipschitz functions on Q, in the following sense, see Sec. 6 for proof.

Theorem 2. Given any two functions h ∈ Q and g ∈ LK with g ≥ h, the
operator

PK [h](x) = max
y∈Q

{h(y)−K|y − x|} (7)

with K ∈ R+, has the following properties:

1. PK [h] is K-Lipschitz,
2. g ≥ PK [h].

The following theorem shows that if steeper features are allowed, less ma-
terial needs to be added, Fig. 2(d).

Theorem 3. Given an arbitrary function h ∈ Q and K1,K2 ∈ R+ with
K1 ≤ K2 the projections onto LK1 and LK2 follow PK2 [h] ≤ PK1 [h].

Proof. For a given point y ∈ Q in (7), h(y)−K2|y−x| ≤ h(y)−K1|y−x| since
the |y−x| is non-negative. ��

Given an initial function h0, the next section gives a locally reactive depo-
sition strategy such that after N depositions hN is navigable, i.e. fulfills (5),
and is bounded above by PK [h0].

3 Local Reactive Deposition Algorithm

In a local deposition strategy, robots with limited sensing range r ∈ R
+ (with

r > d) move on top of the structure and react to features in their sensing
range. Algorithm 1 relates local checks and depositions to global properties.
It checks for points that imply a non-navigable feature and deposits in such
a way as to decrease the distance from the current structure to closest K-
Lipschitz structure. Specifically, Alg.1 searches for points |y − x| ≤ d s.t.

|y − x|K + ε < |h(y)− h(x)|. (8)

3.1 Correctness of Local Deposition Strategy

The correct behavior of Alg. 1 is that after a finite number of depositions
the resulting structure hN is navigable. The proof proceeds in two steps. (A)
Thm. 4 shows progress, i.e. every deposition has a strictly positive volume.
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Fig. 3 Simulations of deposition algorithms. The initial structure h0 is shown as
solid black and the upper bound PK [h0] as a dashed black line. The simulation
parameters are: Q = [0, 2], K = 0.5, KD = 1.5, ε = 0.05, and d = 0.2. Depositions
progressively change color, see color-bar. (a) Deposition locations are picked ran-
domly and the height according to Alg. 1. (b) Deposition locations and heights are
picked according to Alg. 2, with x0 = 0.2 and x∗ = 1.9. As the colors shows, in
both cases information about the cliff on the right propagated backward through
stigmergy. Additional motion and deposition height constraints in Alg. 2 result in
a layered structure and smaller depositions. The simulations incorporate additive
noise to the deposition shape function, see Sec. 4.1.

Algorithm 1. Local Deposition Strategy. Pick point pairs that imply a local
non-navigable feature and deposit on the lower one.

1: Given h ∈ Q+.
2: h0 ← h
3: while ∃ x, y ∈ Q s.t. |x− y| ≤ d, K|y − x|+ ε < |hn(y)− hn(x)| do
4: if hn(x) < hn(y) then
5: x′ ← x
6: y′ ← y
7: else
8: x′ ← y
9: y′ ← x
10: end if
11: Pick any ω ∈ [ε, hn(y

′)− hn(x
′)−K|x′ − y′|]

12: Deposit at x′ with height ω, i.e. hn+1 = D[f(x′,ω+hn(x′)), hn]
13: end while

(B) Thm. 5 shows depositions obey the invariant upper bound PK [h0]. By
combining them, Thm. 6 shows correct behavior. Note that since PK [h0] is
the smallest dominating K-Lipschitz function, Alg. 1 is also efficient in the
sense that it avoids unnecessary depositions, i.e. construction beyond the
conservatively navigable PK [h0], see Fig. 3(a).

The volume of the difference between two structures g, h ∈ Q+ is given by

V (g, h) = ||g − h||1 ≡
∫
Q

|g(x)− h(x)| dx. (9)

Similarly, the volume of a particular deposition is given by V (D[f(φ,σ), h], h).
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Theorem 4 (Progress). Given a pair of points x, y ∈ Q s.t. hn(x) < hn(y)
and the property that

|x− y|K + ε < |hn(x)− hn(y)|,

depositing on x with a height

ω ∈ [ε,
hn(y)− hn(x)

K|x− y| ]

results in a deposition volume V (D[f(x,ω), hn], hn) > γ that is bounded below
by a strictly positive number.

Proof. Note that the deposition height is at least ε. By Lem. 1 there ex-
ists some δ s.t. hn maps every Bδ(x) ⊂ Q into Bε/3(hn(x)). As a result,

∀p ∈ Bδ(x), h(p) < h(x) + ε
3 and h(x) + 2ε

3 < D[f(x,ω), hn](p). Therefore,
V (D[f(x,ω), hn], hn) >

∫
Bδ(x)

ε
3 = γ > 0. ��

Theorem 5 (Invariant). Assuming that KD > K, depositions made with
Alg. 1 leave the mapping onto LKinvariant, i.e. PK [hn] = PK [h0].

See Sec. 6 for proof.

Theorem 6. Given an initial structure h0 ∈ Q+, following Alg. 1 terminates
after a finite number of steps, N ; and for no points in Q does hN fulfill non-
navigability condition (8), i.e. ∀z ∈ Q and x, y ∈ B d

2
(z),

|x− y|K + ε ≥ |hN (x)− hN (y)|.

Proof. The expression for the remaining volume V (P [h0], hn) =
||P [h0] − hn||1 =

∫
Q |P [h0](x)− hn(x)|dx can be rewritten as∫

Q

|P [h0](x) − hn+1(x) + hn+1(x)− hn(x)|dx.

By Thm. 5 and (6), P [h0](x) − hn+1(x) ≥ 0 and hn+1(x) − hn(x) ≥ 0,
therefore

V (P [h0], hn) =

∫
Q

|P [h0](x) − hn+1(x)|dx +

∫
Q

|hn+1(x) − hn(x)|dx

= V (P [h0], hn+1) + V (hn+1, hn).

By Thm. 4 the second term is bounded below by a positive number γ, thus

V (P [h0], hn+1) < V (P [h0], hn)− γ.

Since volume is always non-negative, condition (8) for making depositions
must be violated after a finite number of steps N . ��
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Fig. 4 Physical parameters. (a) Relevant robot dimension based on the prototype
shown in Fig. 1(b). (b) Parameters for bounds of an arbitrary deposition shape
function.

4 Adaptive Ramp Building

The local deposition algorithm Alg. 1 does not specify which points to pick
if the non-navigability condition (8) is true for multiple pairs, neither does it
consider physical robot size or whether robots can reach deposition locations.
The benefit of this vagueness is generality. Algorithm 1 works in arbitrary
dimensions with an arbitrary number of robots making depositions in any
order. It forms the theoretical underpinning for Alg. 2, Fig. 3, which takes
such physical considerations into account. It gives a local deposition and
motion strategy that allows robot from an arbitrary starting position x0 ∈ Q
to reach a goal position x∗ ∈ Q. By using a more or less conservative ε the
built structures can be made more or less smooth.

4.1 Adaptive Ramp Building with a Single Robot

To solve the adaptive ramp building problem via Alg. 1, robots need to iden-
tify point pairs that imply non-navigable features and make depositions. The
strategy in Alg. 2 is to move toward the goal x∗ unless a robot encounters a
non-navigable feature that impedes its progress. In that case, a robot deposits
according to Alg. 1 and backs up to check that the new deposition does not
itself preset a non-navigable feature.

Since deposition and motion constraints depend on the robot’s physical
dimensions, Fig. 4(a), additional parameter constraints are necessary to prove
correctness of Alg. 2. First, to guarantee that robots have enough room to
back up we assume they start at a point x0 ∈ Q on the initial structure h0

and can move freely within a radius r0 ∈ R+ without making any depositions,

PK [h](y) = h(y), ∀y ∈ Br0(x0) ⊂ Q. (10)

Second, key dimensions of the robot as well as the deposition parameter KD

need to obey the following constraints, Fig. 4(a):
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Algorithm 2. Adaptive ramp building. Given a structure h0, an initial po-
sition x0, and a goal position x∗, the following algorithm builds a ramp over
irregular structures based on local sensing. Assume, w.l.o.g. that x0 < x∗.
1: while x �= x∗ do
2: Move toward goal until ∃y ∈ [x, x + r] that the pair y and x + d violate

condition (8) , or x = x∗
3: if x �= x∗ then
4: Move to the lower the point. (Note that all points in [x0, x + r) are

climbable.)
5: Pick height according to Alg.1 and condition (12).
6: x ← x− 2d
7: end if
8: end while

KD ≥ K +
ε+ lheight

d
, (11)

lheight > ε, (12)

r0 > 2d+ lrobot. (13)

Condition (11) limits how far backward new depositions can extend into pre-
viously navigable terrain. It ensures that the motion and deposition strategy
will not direct robots to deposit directly underneath themselves. Condition
(12) ensures that the deposition mechanism has enough clearance to make
depositions that conform with the assumptions in Alg.1. Condition (13), con-
servatively, ensures that a physical robot has enough space to back up.

Theorem 7. Given a robot that fulfills parameter conditions (11)-(13) with
starting position x0 that fulfills (10) following Alg. 2 will reach a goal point
x∗ after a finite number of steps.

Proof. Denote the interval [x0 − r0, x + d] in which no point pairs fulfill (8)
by A (accessible region). Robots stay inside the accessible region at all times
while finding points to deposit on. First, condition (12) guarantees a robot
can make a deposition of height ε, as required by Alg. 1. Second, condition
(11) guarantees that depositions with a maximum height of lheight made in
the interval [x, x+ d] will not extend into [x0− r0, x− d]. As a result, moving
to x − 2d after a deposition guarantees that no point pairs in A fulfill (8).
By (10) and the deposition strategy there are always accessible points, i.e.
[x0 − r0, x0] ⊂ A. By Alg. 1 this algorithm terminates after a finite number
of depositions with x = x∗. ��
Figure 3(b) shows a series of depositions made via Alg. 2. This strategy also
guarantees that robots can always reach x0 without requiring additional de-
positions, which could allow robots to replenish supplies. Conversely, the ac-
cessible region provides cooperating robots access the deposition site, Sec. 4.2.

Physical depositions are not perfect cones, Fig. 1(b). Algorithm 2 explicitly
allows for uncertainty in the target structure (via ε), but not for deposition
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Fig. 5 Simulations of adaptive ramp building. Parameters are x0 = 0.2, x∗ = 1.9,
d = 0.1 and otherwise the same as in Fig. 3. (a) Example of cooperative ramp
building. Each robot is limited to making 25 depositions (indicated by a different
color gradients), after which the active robot signals it is out of material and a new
robot begins. (b) Multiple robots start simultaneously. If a robot becomes stuck, it
is treated as a obstacle by other robots.

uncertainty. In fact, the upper bound for target structures requires that no
depositions accidentally make intermediate structures larger than PK [h0].
Following is a short description on how to address this problem and allow
depositions with arbitrary continuous shape functions f (and bounded deriva-
tive f ′

max), as long as f can be sandwiched between two cones, Fig. 4(b). As
long as ldep < ε. Alg. 1 (and as a result Alg. 2) still work with the following
substitutions: In Lem. 1 f ′

max takes the place of KD. In Thm. 4 the minimum
height is ε − ldep instead of ε. In Thm. 5 and condition (11)KD is replaced
with Ka. In addition to uncertainty in shape, this approach of bounding cones
also allows for uncertainty in the exact deposition location and volume.

4.2 Adaptive Ramp Building with Multiple Robots

The locally reactive nature of Alg. 2 makes extension to multiple robots easy.
Without giving detailed motion and communication strategies, this section
outlines two approaches. First, imagine multiple robots with limited depo-
sition capacity cooperatively building a ramp. One robot starts executing
Alg. 2 while the others follow. Once a robot runs out of building material, it
signals for another robot to execute Alg. 2 and returns to a base station at
x0, or it can stop and be treated as an obstacle by other robots, Fig. 5(a).
This coordination strategy works due to the distributed nature of Alg. 2.
Information about deposition locations is communicated through stigmergy.

Second, imagine multiple robots can start at different locations and exe-
cute Alg. 2 concurrently. For example, to build a large ramp toward a beacon
multiple robots could be dropped along the construction path. Each robot
starts building a ramp. However, without initially fulfilling starting condi-
tion (10) robots might become stuck, i.e. cannot move to an appropriate
place to make a deposition, Fig. 5(b) right. Further, without coordination
one robot might deposit on another, Fig. 5(b) middle. Despite these failures,
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(a) (b) (c)

Fig. 6 Scanning foam deposition mechanism. (a) A scanning carriage holds a
downward facing IR-distance sensor and mixing nozzle. Pressurized foam precursors
are delivered to the nozzle by flexible tubing. (b) Top, Initial obstacle before leveling
deposition. Bottom, final structure after deposition episode. (c) Cross sections of
final structure. Each leveling deposition episode represents one cone-like deposition
in Alg. 2.

if one robot initially fulfills (10) the process with successfully complete. Other
robots can provide speed up through parallelism until they become stuck.

4.3 Physical Implementation and Experimental
Results

We built a remote controlled prototype robot, Fig. 1(b), and a scanning foam
deposition mechanism, Fig. 6(a), for testing solutions to the key technical
challenges presented by Alg. 2. The prototype shows that robots can, in
principle, build and navigate relatively large foam structures. The scanning
deposition mechanism demonstrates autonomous leveling behavior that can
be used to turn the physical three dimensional construction problem into the
simplified two dimensional problem solved by Alg. 2.

One major challenge is designing a deposition mechanism and selecting
an appropriate material [13]. The prototype robot and scanning deposi-
tion mechanism both use two compartment syringes with mixing nozzles
(McMaster-Carr PN: 74695A11 with 74695A63, 7451A22 with 7816A32) and
high expansion poly-urethane casting foam (US-Composites 2 lb foam) to
make amorphous depositions.

The scanning deposition mechanism consists of a mixing nozzle and dis-
tance sensor mounted on moving carriage, Fig 6(a). By running a Alg. 1 along
the direction of carriage travel (with K = 0, ε = 2 cm and d covering all of Q)
this mechanism autonomously creates a level structure from amorphous de-
positions. Mounting this mechanism on the front of a robot and treating each
leveling deposition episode as a single deposition in Alg. 2, turns the physical
construction problem into the simplified model. Viewed from the side, each
leveled line under the carriage represents the apex of a conical deposition.
Algorithm 2 simply picks the next point to level.
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5 Conclusion

We developed a continuous model for amorphous depositions, and used it to
prove correctness of a distributed algorithm that solves the adaptive ramp
building problem. This example application illustrates how locally reactive
behavior and amorphous building material together can create reliable build-
ing behavior in unstructured terrain.

Adaptive ramp building can also serve as a base behavior for composing
more complicated behaviors. For example, it could guarantee accessibility to
locations where support structures need to be built. With the ability to con-
sistently encode virtual points in a group of robots, adaptive ramp building
could be used to build arbitrary (K-Lipschitz) structures by building ramps
to a carefully chosen set of virtual points: an approach we plan to explore.

There are a number of ways the presented algorithms could be improved.
Our presentation focused on correctness, not optimality. Robots could be
much smarter about coordination between robots and selecting deposition
points to maximize the volume of each deposition, especially if their sensing
radius was much larger than d.

6 Proofs

Proof (Thm. 2). 2.1) Assume to the contrary that ∃x, y ∈ Q s.t.

|PK [h](x)− P [h](y)| > K|x− y|. (14)

Assume w.l.o.g. that PK [h](y) ≤ PK [h](x) and since PK [h] is a positive scalar
function |PK [h](x)−P [h]K(y)| = PK [h](x)−PK [h](y). Rearranging the terms
in (14) leads to the contradiction PK [h](x)−K|x− y| > PK [h](y), since the
max in PK [h](y), see (7), is taken over the entire domain, including x. There-
fore points violating the Lipschitz condition cannot exist in P [h]. ��

2.2) Assume to the contrary that there exists a point x ∈ Q s.t. PK [h](x) >
g(x) ≥ h(x). Since there cannot be equality between PK [h](x) and g(x) the
maximization in (7) must take its maximum value at some other point y ∈ Q.
Rearranging PK [h](x) = h(y)−k|x−y| > g(x) results in h(y)−g(x) > k|x−y|,
and since g > h g(y)−g(x) > k|x−y| which is a contradiction, as it would vio-
late the Lipschitz continuity of g. ��
Proof (Thm. 5). First, note that P can be applied to non-continuous func-
tions, specifically continuous structures with a single discontinuous point. Let
h̃n,(φ,σ)(x) = hn(x) + (α − hn(ρ))δφx where δ denotes the Kronecker delta.

Next, since ρ is in the search set of max for point PK [hn](x) in (7) hn(ρ) ≤
α = hn(ρ) + ω ≤ PK [hn](ρ), consequently

h̃n,(φ,σ) ≤ PK [hn]. (15)

Finally, since restricting y ∈ {x, ρ} ⊂ Q in (7) results in the same expression

as (2) D[f(φ,σ), hn] = hn+1 ≤ PKD [h̃n,(φ,σ)]. Thus, hn+1 ≤ PKD [h̃n,(φ,σ)].
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By Thm. 3 and assuming that KD > K, PKD [h̃n,(φ,σ)] ≤ PK [h̃n,(φ,σ)].

Together Thm. 2.2 and (15) imply that PK [h̃n,(φ,σ)] ≤ PK [hn], which results

in the series of relations hn+1 ≤ PK [h̃n,(φ,σ)] ≤ PK ≤ PK [hn]. And again,
by Thm. 2.2 PK [hn+1] ≤ PK [hn]. However, hn+1 ≥ hn implies PK [hn+1] ≥
PK [hn], thus PK [hn+1] = PK [hn]. By induction, PK [hn] = PK [h0]. ��
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On Segregative Behaviors Using Flocking
and Velocity Obstacles

Vinicius Graciano Santos, Mario F.M. Campos, and Luiz Chaimowicz

Abstract. This paper presents a novel approach to swarm navigation that combines
hierarchical abstractions, flocking behaviors, and an efficient collision avoidance
mechanism. Our main objective is to keep large groups of robots segregated while
safely navigating in a shared environment. For this, we propose the Virtual Group
Velocity Obstacle, which is an extension of the Velocity Obstacle concept for groups
of robots. By augmenting velocity obstacles with flocking behaviors and hierarchi-
cal abstractions, we are able to navigate robotic swarms in a cohesive and smooth
fashion. A series of simulations and real experiments were performed and the results
show the effectiveness of the proposed approach.

1 Introduction

The use of large groups of robots in the execution of complex tasks has received
much attention in recent years. Generally called Robotic Swarms, these systems em-
ploy a large number of simpler agents to perform different types of tasks, oftentimes
inspired by their biological counterparts.

A basic requirement for most robotic swarms is the ability for safe navigation
in shared environments, i.e., the ability of moving to specific goals while avoiding
collisions with obstacles, teammates, and other groups. A desired property in this
case is to keep robots close to their kins and avoid merging with other groups. This
is called segregation and, as discussed previously [17], is a phenomenon that is seen
in several biological systems.

This paper presents a novel approach to swarm navigation that keeps large groups
of robots segregated while safely navigating in a shared environment. Our approach
consists of extending the concept of Velocity Obstacles [10] with flocking behaviors
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and hierarchical abstractions. Basically, Velocity Obstacles define the set of robot
velocities that would result in a collision between the robot and an obstacle mov-
ing at a given velocity. We first augment this concept with flocking behaviors [23],
which enables different robot groups to avoid collisions and navigate in a cohe-
sive fashion using global perception. But when we restrict the robot’s perception
to a smaller area, this approach is unable to keep groups segregated. To solve this
problem, we employ hierarchical abstractions [12]: we consider a group of robots
as a single entity and make individual robots avoid velocities that would result in
collisions with this entity, i.e., we prevent robots from mingling with other groups.

We call this approach Virtual Group Velocity Obstacles and we present a series of
experiments that show its capability of attaining our goal of safely navigating large
robotic groups while keeping them segregated.

This paper is organized as follows: Section 2 discusses related work in the field of
collision avoidance, swarm navigation, and hierarchical abstractions. The Velocity
Obstacle concept is presented in Section 3. Section 4 introduces our methodology
used to develop the Virtual Group Velocity Obstacle. Experimental results in simu-
lated and real environments are presented in Section 5, while Section 6 brings the
conclusion and directions for future work.

2 Related Work

One of the earliest works that considered the problem of controlling a swarm of
agents was presented by Reynolds [23] with the aim of realistically simulating a
flock of birds, known as boids. In that work, local interactions among agents within
a neighboring area define an emergent behavior for the whole flock. Such interac-
tions can be modeled as a special case of the social potential field method [22],
an extension of the classical artificial potential field technique [16] that specifically
deals with multi-agent systems.

The artificial potential field approach has been widely employed for controlling
multi-robot and swarm systems [24]. Moreover, many works have focused on its
use together with flocking principles in order to obtain specific behaviors, such as
area coverage [15], moving in formation [3], converging into shapes [8], shepherd-
ing [18], segregation [17], and so on. However, it is known that the method is not
oscillation-free and suffers from local minima, which is an intrinsic property that
can arise from the combination of potentials, specially in unknown environments.

Recent work on robot collision avoidance has provided methods that are guaran-
teed to be collision-free and oscillation-free [5, 14, 25], even under nonholonomic
constraints [2]. These methods rely on the concept of Velocity Obstacles [10], which
is an extension of the Configuration Space Obstacle [19] for a time-varying system.
A Velocity Obstacle defines the set of robot velocities that would result in a collision
between the robot and an obstacle moving at a given velocity. Thus, the robot per-
forms an avoidance maneuver at a specific time by selecting velocities that do not
belong to that set. This approach has been widely used and extended for multi-agent
navigation [1, 5, 6, 14, 25], even when considering uncertainties in position, shape,
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and velocity of the obstacles [11, 25]. An important extension was the development
of the Reciprocal Velocity Obstacle [6], which acknowledged that most works on
collision avoidance have not taken into account that obstacles’ motion may be af-
fected by the presence of the agent. That is, they have overlooked the reciprocity
that arises when those obstacles are in fact other agents that can also react according
to the robot’s behavior, which could lead to oscillations in the system.

A different hierarchical paradigm considers the whole group as a single entity,
sometimes called virtual structure [26], which effectively reduces the dimensional-
ity of the control problem. The desired behavior is assigned to this structure, which
implicitly controls the robotic swarm. Based on a mapping of the swarm’s config-
uration space to a lower dimensional manifold, whose dimension is independent of
the number of robots, a formal hierarchical abstraction that allows decoupled con-
trol of the pose and shape of a team of robots, was developed in [4]. This work
was extended in [21], to account for three dimensional swarms. Based on the for-
mer, a hierarchical cooperation mechanism between multiple unmanned aerial and
ground vehicles was developed [7], where UAVs are responsible for estimating the
configuration of the ground robots and for sending control messages to the groups.

In our previous work [12], we have shown that hierarchical abstraction paradigms
can be used in conjunction with simple collision avoidance techniques in order to
achieve complex behaviors for swarm systems. We proposed a mechanism that al-
lows large groups to deviate from each other during navigation and we have applied
it to the problem of traffic control. In the present paper, we propose a different ap-
proach. We take advantage of the robust collision avoidance techniques that have
been developed [6] and use them in conjunction with simple flocking rules and
hierarchical abstractions for swarm navigation. Specifically, our goal is to ensure
greater cohesion between robotic groups that navigate in the same workspace. That
is, robots in the same group must stay together while avoiding merging with distinct
groups. Henceforth, we denote this desired property as a segregative behavior.

3 Velocity Obstacles

Let A and B be two robots moving on the plane. Each robot i is fully actuated with
kinematic model given by ṗi = vi, where pi = [xi,yi]

T is its pose and vi its velocity.
The velocity obstacle VOA

B(vB) of B to A is defined as the set of all velocities vA that
will result in a collision among robots A and B at some instant in time [10]. More
precisely, we define λ (p,v) as a ray starting at p heading in the direction of v and
B⊕−A as the Minkowski sum of B and −A, where −A represents robot A reflected
about its reference point.

λ (p,v) = {p+ tv | t ≥ 0} (1)

Given these definitions, we can say that a velocity vA ∈ VOA
B(vB) if and only if the

ray starting at pA heading in the direction vA−vB intersects B⊕−A. Therefore, the
full set of velocities that specifies a Velocity Obstacle can be denoted as:
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(a) (b)

Fig. 1 (a) The Velocity Obstacle VOA
B(vB). (b) The Reciprocal Velocity Obstacle

RVOA
B(vB,va).

VOA
B(vB) = {vA |λ (pA,vA− vB)∩ (B⊕−A) �= /0}. (2)

This set has an interesting property: if A selects a velocity that is outside its Ve-
locity Obstacle induced by B, and if B maintains its current velocity, it is guaranteed
that a collision between them will not occur [10]. Figure 1(a) shows an example of
a Velocity Obstacle in a system with two circular robots. As it can be seen, VOA

B(vB)
is a cone with its apex at (vB).

When dealing with multi-robot systems, navigation based on the original Velocity
Obstacle suffers from oscillation issues. In order to overcome this problem, a new
velocity is chosen such that it is the average of the robot’s current velocity and a
velocity that lies outside the Velocity Obstacle [6]. Formally, the Reciprocal Velocity
Obstacle is defined as:

RVOA
B(vB,vA) = {v′A |2v′A− vA ∈ VOA

B(vB)}. (3)

This new set contains all velocities that are the average of vA and a velocity within
VOA

B(vB), which can be seen as the cone VOA
B(vB) translated such that its apex lies at

the mean of vA and vB, as shown in Figure 1(b). Selecting the velocity which is clos-
est to the robot’s prior velocity and that also lies outside the set RVOA

B(vB,vA), guar-
antees a collision-free and oscillation-free navigation between a pair of robots [6].

Finally, in order to select inputs when dealing with Velocity Obstacles, an opti-
mization problem must be solved. Several different approaches have been proposed
in [5, 6, 10, 14, 25]. In the following section, we discuss how to couple flocking
behaviors with sampling-based velocity selection [6].

4 Methodology

As mentioned, our main objective is to safely navigate large groups of robots in
a shared environment while maintaining segregation among groups. Our approach
consists of extending the concept of Reciprocal Velocity Obstacles with flocking
behaviors and hierarchical abstractions.
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We consider that robots are assembled together into a set of groups Γ =Γ1∪Γ2∪
...∪ΓN , where ∀ j,k : j �= k→Γj∩Γk = /0. Let Φk ⊆Γk be the set of robots belonging
to group Γk that are within the neighborhood Ni, thus being perceived by robot i; and
p(Φk), v(Φk) be the average position and velocity of group Φk, respectively.

Flocking behaviors can be achieved by a set of simple rules defined among neigh-
boring robots [23]. Usually, robot controllers are derived by giving feedback on er-
rors, such as relative velocities and relative positions. In our approach, we extend the
velocity selection process presented in [6], which fast samples the set of admissible
velocities and selects the best one according to an utility function.

Let vpref
i be the preferred velocity of robot i, such as the vector pointing at the

goal’s direction with magnitude that is equal to the maximum allowed speed. In
each iteration, velocities are sampled using a uniform distribution from the set of
admissible velocities AV i(vi), that comprises the possible new velocities given the
kinematic and dynamic constraints:

AV i(vi) = {v′i|‖v′i‖< vmax
i ∧‖v′i− vi‖< amax

i Δ t}, (4)

where vmax
i and amax

i are the maximum speed and maximum acceleration of robot i,
respectively, and Δ t is the time step of the system.

Ideally, the selected velocity vnew
i among the sampled set should lie outside the

union of all RVOs generated by other robots and VOs generated by dynamic and
static obstacles. However, as the environment may become crowded to the point that
no admissible velocities will exist, the algorithm is allowed to selected a velocity
that belongs to the generated set of Velocity Obstacles, but it is penalized by this
choice according to the following function:

vflock
i = vpref

i +α(v(Φk)− vi)+β (p(Φk)−pi) (5)

Pi(v′i) =
w

ci(v′i)
+ ‖vflock

i − v′i‖, (6)

with i∈Γk, where α rules the convergence of the robot’s current velocity to its neigh-
bors’ average velocity, β is the weight that governs the behavior which makes robots
move toward the centroid of their neighboring agents, and w regulates the avoidance
behavior between sluggish and aggressive. Function ci(v′i) is the expected time to
collision, which is computed by solving the set of ray intersection equations induced
by (2), (3) and taking their minimum. Note that, by setting α = β = 0, the selection
approach is reduced to the original RVO method [6]. Thus, we select a new veloc-
ity vnew

i that minimizes the penalty function Pi over the sampled set of velocities
S ⊆ AV i(vi). Figure 2 exemplifies this sampling-based selection procedure.

vnew
i = argmin

v′i∈S
Pi(v′i) (7)
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Fig. 2 Sampling-based velocity selection. Admissible velocities which were sampled are
represented by small circles. The red sample is chosen as it minimizes the penalty function.

Equation (5) is responsible for the flocking behavior, which can be achieved by
fine tuning its constants. For instance, there are triples of (α,β ,w) that can lead
robots into tightly aggregated groups. In these scenarios, groups moving in opposite
directions show an emerging segregative behavior. That is, they tend to smoothly
avoid each other without merging, as seen in Figure 3.

(a) Four groups.

(b) Ten groups.

Fig. 3 Simulated execution of the flocking algorithm with distinct groups moving in opposite
directions using global sensing

As groups move toward each other, robots will try to select velocities that lie
outside of the combined RVOs induced by the other group. Since this group is tightly
packed, robots will select velocities that may lead them to avoid the group as a
whole. Given the reciprocity, the other group will select its velocities accordingly.

Nevertheless, the same behavior cannot be guaranteed when dealing with a small
sensing neighborhood, since robots will not be able to predict incoming groups. In
this case, merging can occur if the robot is not able to correctly maneuver given its
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current velocity. To account for this problem, we introduce a virtual Velocity Ob-
stacle that is responsible for blocking velocities which may lead to merging among
groups. Specifically, we denote this virtual obstacle as the Virtual Group Velocity
Obstacle (VGVO), which is shown in Figure 4.

The concept of VGVO is simple: each robot i senses the presence of every robot
j within a neighborhood Ni and builds the shape of each group of robots, but of
its own group. These shapes are considered as virtual obstacles in the workspace
of robot i that move with the average velocity of the respective group that has been
used in the building process. Hence, a virtual Velocity Obstacle can be built for each
shape in order to define the set of velocities that would lead the robot to merge with
a different group if the latter maintains its current average velocity.

Let R(pi) denote all the points that represent robot i in its workspace. Conse-
quently, the Virtual Group Velocity Obstacle of robot i induced by group Φk can be
defined as:

VGVOi
Φk
(v(Φk)) = {v′i |λ (pi,v′i− v(Φk))∩C(pi,Φk) �= /0}, (8)

C(pi,Φk) = Shape(
⋃

j∈Φk

R(p j))⊕−R(pi), (9)

where Shape(Q) is the shape of the set of points Q, which could be represented as the
smallest enclosing disc, the convex hull or the more general class of α-shapes [9].

Equation (9) refers to the idea of the hierarchical abstraction paradigm presented
in Section 2, in which the whole group is considered as a single entity. In every iter-
ation, groups are abstracted into single entities that move according to their average
velocities. In this way, single robots navigate using the RVO in conjunction with the
VGVO, which guarantees a collision-free navigation among groups while maintain-
ing segregation. Furthermore, we can assume that groups will deviate from single
robots given the reciprocity of the RVO. Therefore, we can also specify a Virtual
Group Reciprocal Velocity Obstacle with the following definition:

VGRVOi
Φk
(v(Φk),vi) = {v′′i |2v′′i − vi ∈ VGVOi

Φk
(v(Φk))}. (10)

5 Experiments

To study the feasibility of the proposed approach, we executed a series of simula-
tions and real experiments1. For the simulations, we used Player/Stage [13], a well
known framework for robot programming and simulation. Real experiments were
performed with a dozen e-puck robots, a small-sized differential robot equipped with
a ring of 8 IR sensors for proximity sensing and a DS-PIC processor. A bluetooth
wireless interface allows local communication among robots along with a remote
computer.

1 A video showing the experiments is available at:
http://www.youtube.com/watch?v=ylYMbwOduqg

http://www.youtube.com/watch?v=ylYMbwOduqg
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Fig. 4 The Virtual Group Velocity Obstacle VGVOi
Φk
(v(Φk))

In all experiments, constants α , β , and w were set manually. When comparing the
behavior of different algorithms, these constants remain the same between execu-
tions. Additionally, the neighborhood area is defined as five times the robot’s radius
in experiments with restricted sensing. Furthermore, we assume that each robot has
the ability to map every other robot to its respective group.

5.1 Simulations

Figure 3 presents the execution of the flocking algorithm in a simulated environment
consisting of 100 virtual robots evenly distributed into four and ten groups that
move in opposite directions. Both simulations rely on global sensing, thus robots can
perceive each other regardless of their relative distances. Through visual inspection
we can see that, robots tend to remain segregated into homogeneous groups using
our approach.

When we restrict robot perception to a local sensing, the flocking approach alone
does not guarantee segregation, as shown in Figure 5(a). On the other hand, as de-
picted in Figure 5(b), the VGRVO is able to keep robots segregated even within a
local sensing scenario. In this case, the virtual obstacle was built upon the groups’
α-shape [9]. Thus, the addition of VGRVOs has led to a successful navigation while
maintaining the desired segregation property.

In a recent work [17], a formal way of measuring segregation among groups of
agents has been proposed. Two groups ΓA and ΓB are said to be segregated if the
average distance between robots in the same group is less than the average distance
between robots in distinct groups. Thus, the following restriction must hold

(dAA
avg < dAB

avg)∧ (dBB
avg < dAB

avg), (11)

where dAB
avg is the average distance between robots in group ΓA and ΓB.
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(a) Flocking approach alone does not guarantee segregation.

(b) Virtual Group Reciprocal Velocity Obstacle.

Fig. 5 Simulated execution of the segregative behavior algorithm with distinct groups mov-
ing in opposite directions using local sensing

Figure 6 depicts a comparative analysis about the emerging segregative behav-
iors using the proposed algorithms. For these simulations, a scenario consisting of
200 virtual robots evenly divided into two distinct groups was used. Initially, agents
were randomly positioned into a circular area according to a normal distribution.
After that, groups were ordered to swap their positions. Figures 6(a) and 6(b) show
the results for the original RVO approach and our flocking extension, respectively,
while relying on global sensing capabilities for all robots. As it can be seen, con-
straint (11) holds true for all time slices of the second simulation, which indicates
that a segregative behavior has emerged. On the other hand, since the RVO algo-
rithm tends to form merged lanes of moving robots during navigation, (11) will not
hold, as expected. This can be confirmed visually in Figure 6(a), as there exists in-
tersection points between the curve dAB

avg and one of the others. Figures 6(c) and 6(d)
compare our flocking algorithm without and with the use of VGRVO, respectively.
In these simulations, robots had their sensors capabilities constrained into a small
local neighborhood when compared to the size of their own group. Due to this re-
striction, groups were not able to remain segregated during navigation by means of
flocking only, since (11) did not hold for all time steps in Figure 6(c). However, the
use of VGRVOs under these conditions has shown to be effective for maintaining a
segregative behavior throughout the simulation, as shown in Figure 6(d).

Although our flocking mechanism can improve group navigation in terms of co-
hesion and symmetry, specially when dealing with multiple groups, such as in Fig-
ure 3(b), the system’s performance in terms of elapsed time may decrease. For in-
stance, in Figure 6, when curve dAB

avg reaches again its initial value, it means that both
groups have swapped their average positions. Hence, it is easy to see that robots us-
ing the original RVO approach have reached their goals faster than when applying
flocking. Intuitively, the loss in performance happens because the second and third
terms of equation (5) may play a damping role. Furthermore, as neighbors get closer
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Fig. 6 Segregative behavior analysis for 200 robots evenly distributed into two groups that
swap positions. (a) RVO with global sensing. (b) Flocking with global sensing. (c) Flocking
with local sensing. (d) VGRVO with local sensing.

to each other, robots will select safer velocities in order to avoid collisions, while
trying to maintain the flock. Thus, slower speeds will have higher priority during
the selection process.

5.2 Real Robots

Real experiments were conducted indoors using twelve e-puck robots. These ex-
periments are important in order to show the feasibility of the algorithm in real
scenarios, where all uncertainties caused by sensing and actuation errors may have
an important role on the results.

In these experiments, we used a swarm localization framework based on an over-
head camera and fiduciary markers for estimating robot’s pose and orientation. Also,
as the e-puck’s IR sensors have a very small range, we implemented a virtual sensor
based on the localization system to detect neighboring agents. In order to control the
differential drive robots, a damping term based on the current velocity was added
to (4) in order to achieve better stability. To account for nonholonomic constraints,
input velocities were transformed following the approach presented in [20].

Figure 7 shows snapshots from an execution of VGRVO with limited sensing
with two and four groups. We can visually inspect that the behaviors obtained with
the real robots is pretty similar to the simulation results. In terms of segregation,
the average distances for two groups follow the trend showed in Figure 6(d) for
the simulated experiments: the average distance between robots in the same group
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(a) Two robotic groups.

(b) Four robotic groups.

Fig. 7 Real execution of the VGRVO algorithm with different group sizes

is always less than the average distance between robots in distinct groups. These
proof of concept experiments indicate that the algorithm can work well to coordinate
groups of real robots, allowing them to navigate while maintaining a segregative
behavior in an efficient way.

6 Conclusion

This paper presented an approach that ensures greater cohesion between robotic
groups that navigate in shared environments. That is, robots flock together with
their own group while remaining segregated from others. Our method does not rely
on any communication to achieve coordination and works in a distributed fashion.

We achieve flocking behaviors for robotic swarms using Velocity Obstacles by
choosing a proper utility function for selecting velocities. Results have shown that
segregative behaviors have emerged during our experiments. We realized that this
was not the case when dealing with restricted sensing capabilities. Therefore, we
introduced a novel concept: the Virtual Group Velocity Obstacle, which is a vir-
tual obstacle that is created in order to prevent aggregation between distinct robotic
groups. The VGVO resembles ideas from the hierarchical abstraction paradigm,
where groups are abstracted into single entities with the aim of reducing the dimen-
sionality of the control problem. Several experiments were performed in simulated
and real scenarios, which demonstrated the effectiveness of the proposed approach.
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Despite the good results, there is still room for improvement. For instance,
Velocity Obstacle algorithms are well known for allowing high-speed navigation.
However, our algorithm tends to prioritize slower speeds in order to maintain stable
relative distances and velocities among robots. Furthermore, it is worth noting that
the use of VGVOs is only justifiable in constrained sensing conditions, since the
cost of computing the virtual shape for each group can scale up given larger sensing
neighborhoods. In addition, the conservative nature of the virtual obstacle may pre-
vent feasible velocities from being chosen, which given a larger sensing radius may
turn to be overly conservative. Finally, uncertainty models could be easily included
following the approach presented in [11, 25].

Future work will investigate improvements along these lines, as well as exper-
iments containing static and dynamic obstacles, other methods for selecting ve-
locities, and different shape descriptors. We believe that velocity obstacle based
algorithms have the potential of being easily manipulated in order to couple simple
behavior rules. For example, by specifying velocity obstacles that block undesir-
able velocities, such as the VGVO for segregation. Further investigation may lead
to interesting results that shall further extend the velocity obstacle framework.

Acknowledgements. This work was partially supported by CNPq and Fapemig. We would
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Object Transportation by Granular Convection 
Using Swarm Robots 

Ken Sugawara , Nikolaus Correll, and Dustin Reishus 

Abstract. We propose a novel method for object transport using granular convec-
tion, in which the granular material is a robot swarm consisting of small robots 
with minimal sensors. Granular convection is commonly observed in the “Brazil 
Nut Effect”. In this work, we consider the transported object to be passive, how-
ever, and not actuated like the surrounding granular material. We show that the 
passive object can be transported to a given destination in spite of the fact that 
each robot does not know the location of the object being transported nor the loca-
tion of the destination. Each robot moves based solely on a weak repulsive force 
from the destination and stochastic perturbations. We first show fundamental 
characteristics of a system with no communication between robots. We observe 
that very high or very low robot densities are detrimental to object transport. We 
then show that heterogeneous swarms increase performance. We propose two 
types of heterogeneous swarm systems: a swarm in which robots switch states 
probabilistically, and a swarm in which state propagates using local communica-
tion. The signal propagation system shows the best performance in terms of suc-
cess rate and accuracy in a wide range of densities. 

1 Introduction 

Object transportation is a fundamental task in robotics and frequently arises in 
various situations from micro to macro scale. Our main interest focuses on micro 
swarm robotic systems in which the agents have minimal sensing requirements, 
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have minimal communication abilities, and can manipulate objects only by push-
ing them. In this paper, we propose a series of distributed algorithms that are 
based on granular convection [1], also known as the “Brazil Nut Effect,” and a 
constant external field. 

Granular convection is commonly observed in granola boxes in which the larg-
er items tend to aggregate at the surface after the box has been shaken. This is 
interesting, as these objects seemingly defy gravity when traveling to the top of 
the box instead of sinking to the bottom, and has potential applications in manipu-
lating objects at the nano- and micro-scales. 

This paper studies the Brazil Nut Effect and its potential applications in robotic 
object transportation. Instead of gravity and external actuation (by shaking), our 
system is driven by self-propelled robots, which can be steered by the application 
of an external field. Depending on the capabilities of the robots, this external field 
can range from gravitational or magnetic fields to infrared or chemical gradients. 

Such robots could be manufactured at very low cost and/or miniaturized and 
have applications from garbage collection at sea to transporting micro-scale ob-
jects in a self-assembly scenario. Currently, object manipulation at this scale is 
accomplished by application of external fields, e.g., magnetic forces [2]; specially 
designed environmental templates [3]; manipulation via micro-tweezers [4]; or by 
enclosing a swarm of agents, e.g., magneto-tactic bacteria [5], inside the object. 

1.1 Related Work 

Object manipulation using a swarm of robots is a canonical problem also known 
as “box-pushing task” [6, 7, 8, 9, 10]. In these works, robots rely on sensors to 
detect when the box is reached and on communication to coordinate pushing di-
rection. Some robotic researchers have also tried to apply protozoa for object ma-
nipulation [11, 12].  

The work described in this paper addresses a subset of the box-pushing domain 
as it allows to push cylindrical objects, but no robot explicitly recognizes its be-
havior as object handling. No robot knows where the destination of the object is, 
nor where the object itself is. This allows the robots to be very simple, low-power, 
and inexpensive.  

The key mechanism here is granular convection, which has been leveraged in a 
robot context for segregation and pattern formation [13, 14]. There is also a larger 
body of work on the physics underlying granular convection on transport and seg-
regation processes [15, 16, 17]. The object undergoes a biased random walk, simi-
lar to bacterial chemotaxis [18, 19].   

1.2 Contribution of This Paper 

We propose a novel method for object transportation in small-size, large scale 
distributed swarm robotic systems. The object, which is completely passive, has a 
given starting point and is required to reach a specific destination. We study this 
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problem using a simple kinematic model that takes into account the robots’ limited 
sensors and functions.  Each robot does not know the location of the destination 
explicitly, but instead moves randomly in a closed environment.  

We first discuss fundamental properties of the homogeneous system, i.e., all 
robots are identical, with no explicit communication. We then propose a heteroge-
neous system composed of robots that change their direction with two different 
probabilities. Finally, we introduce a heterogeneous system that uses local com-
munication to adjust the fraction of robots that change their direction with higher 
probability. We show that heterogeneous robotic swarms can improve the success 
rate of object transportation, and that local communication can further improve 
performance. 

2 Dynamical System Model 

Let each robot move using the following dynamics: 

ii vFpFdtvmd
 γβα −+= 21 )(/  (1)

where m, vi
￫ denote robot's mass and the velocity of the i-th robot, respectively. 

F1
￫ (p) denotes a unit vector and its orientation changes randomly in the range of 

(−π , π) according to the probability p. F2
￫  denotes repulsive unit vector from the 

destination. It is calculated as  

didi rrrrF


−−= /)(2  (2) 

where ri
￫ , rd

￫  denote the position of the i-th robot and the position of the destina-
tion, respectively. γ is a resistive force. For simplicity, we simulate the friction of 
the robots by this term. Simulation conditions are shown in Table 1.  

Table 1 Simulation conditions 

Field size:    4.0 x 2.0 
Boundary:    with walls 
Robot's diameter:   0.2 
Object's diameter:   0.6 
Robot density:   ρ (fraction of environment occupied by robots) 
Resistive force:   γ (fixed at 5.0) 
Initial position of robots:  random 
Initial position of object:   (1.0, 0.0) 
Destination:    (-1.0, 0.0) 
Simulation time:   equivalent to 10800 sec (= 3 hours) per a trial 
Simulation frequency:   100 trials in each condition 
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Fig. 1(a) and (c) show snapshots of the simulation. Green, Red, and Blue circles 
indicate the robots, object, and destination, respectively. Fig. 1(b) and (d) show a 
typical example of trajectories of the object. The fluctuation becomes small as the 
density increases (lower row). 

 
(a)                                       (b) 

  
(c)                                       (d) 

  

Fig. 1 Snapshots of simulation and the object trajectory. (a) and (b) are the case of N=50 
(ρ~0.21), and (c) and (d) are the case of N=180 (ρ~0.75). 

3 Robots with Static Characteristics 

In this section, we describe the behavior of the system in the case where all robots 
behave identically. This corresponds to the Brazil Nut Effect, except for the fact 
that the object itself is not subject to actuation. 

As defined in eq. (1), all robots move according to a “random force” of strength 
α and a “repulsive force from the destination” of strength β. Fig. 2(a) indicates the 
relation between α, β and the success rate in case where the robots occupy 42% of 
the area in the environment, i.e., ρ = 0.42. The success rate is defined as the frac-
tion of trials in which the object is carried to within 20 pixels of the destination by 
the end of the trial. We observe that when α < 0.2, transportation consistently fails 
and the success rate increases as α becomes large. 

When the repulsive force is dominant, i.e., β  is high, no transportation occurs 
because the robots drive away from the destination without performing random 
side movements that eventually propel the object toward the destination. When the 
random force is dominant, i.e., high values of α, transportation to the destination 
occurs only by chance because their behavior is equivalent to Brownian motion  
of the object. A green line in Fig. 2(a) indicates β =0, i.e., the success rate by 
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Brownian motion. Fig. 2(b) shows the success rate after discounting the success 
rate due to pure Brownian motion, i.e., after subtracting the green line from Fig. 
2(a). 

In order to clarify the effectiveness of the proposed method, we focus on the 
region where the success rate exceeds the result of Brownian motion. The effec-
tiveness depends on the density of robots ρ, and Fig. 2(c) indicates the region 
where the success rate by the proposed method exceeds that of Brownian motion 
on the α-β plane. The effective region in this plane is relatively small under the 
condition of low density such as ρ < 0.2 or high density such as ρ  > 0.7, but it 
works well in a range of α={10, 50} and β={0.2, 5}.  

 
(a)                      (b)                       (c) 

 

Fig. 2 (a) Success rate with α (random force) and β (repulsive force from the destination) in 
case of ρ = 0.42. (b) Success rate after discounting success due to pure Brownian motion. 
(c) Region where the success rate by the proposed method exceeds the success rate of 
Brownian motion on the α-β plane for various robot densities ρ. 

Fig. 3 shows the relationship between the success rate and the density of the ro-
bots. As shown in Fig. 2(b), the system shows better performance in a wide range 
of densities around β =1.0. Fig. 3 shows the success rate is high for a wide range 
of ρ in the region α >10.  

From these results, we can empirically conclude that the system shows reason-
able performance around α =10~50 and β~1.0. For the remainder of this paper, we 
fix α =20.0 and β = 1.0 as typical values for the homogeneous system.  

 
    (a)                                      (b) 

      

Fig. 3 (a) Success rate on the α−ρ plane. (b) Region where the success rate by the proposed 
motion exceeds that of Brownian motion on the α−ρ plane. Here, β is fixed as 1.0. 
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Next, we explore to the relation between p, the probability that the robots 
change direction, and the system performance. The smaller p is, the longer a robot 
maintains the direction imposed by the repulsive force. Simulation results in all 
previous experiments have been obtained with p=0.01. Fig. 4 shows the success 
rate as a function of p. Empirically, p=0.1 is better than p=0.01 for high densities 
but worse in low density. Low values for p, such as p=0.001, never perform well. 
(Low values for p induce a similar effect as low values for α).  
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Fig. 4 Success rate as a function of density at different p 

4 Extension to Heterogeneous System 

When all robots are identical (homogeneous system) and the environment is finite, 
the density of robots gradually increases with growing distance from the destina-
tion as they are driven away from the destination due to the repulsive force. We 
have shown that the performance of object transportation decreases as density 
increases above 0.5. We are therefore interested in decreasing robot density in the 
vicinity of the object. We hypothesize that a heterogeneous swarm, in which some 
robots exhibit density-lowering behavior, can increase performance of object 
transportation. To this end, we propose two types of simple dynamics, and evalu-
ate their performance. Each system consists of two types of robots, which dynam-
ics differ by the values of p, namely p = 0.01 and 0.1, that is, some robots change 
their direction more often than others.  

 
1) Probabilistic model 

Each robot changes its type asynchronously. The change obeys the transition 
probabilities, pt12 and pt21 (Fig. 5(a)). 
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2) Signal propagation model 
In order to decrease the density around the object, we attempt to propagate 
“waves” of different behaviors through the swarm.  To this end, we assume 
the robots have a simple communication protocol in which they can transmit 
and detect simple signals.  The destination is continually emitting signals to 
all robots within a fixed radius. The robots use the following algorithm, de-
picted in Fig. 5(b): 

- Initially, all robots are in state 1.  
- If a robot receives a signal, it changes to state 2 and remains in state 2 for 
time T1. 
- After time T1, the robot transmits a signal to all other robots within radius R, 
changes to state 3 for time T2.  In state 3, the robot is “blind” to additional 
signals. 
- After time T2, the robot reverts to state 1 

 
(a) 

 
 
(b) 

 

Fig. 5 Schematics of dynamic heterogeneous system.  Robots in state 1 are shown as green 
circles, robots in state 2 are shown as blue circles; and robots in state 3 are shown with a 
red X. (a) Robots in state 1 change to state 2 with probability pt12; robots in state 2 change 
to state 1 with probability pt21 (b) Robots receive a signal from either the destination or 
from a neighboring robot inducing it to change state, emit a signal, and revert to the original 
state after a refractory period. 

4.1 Results 

Using preliminary experimental results, we chose for pt12 and pt21 in the probabil-
istic model to be 1.0x10-4 and 2.0x10-4, and T1and T2 in signal propagation model 
as 100 sec and 500 sec, respectively.  

The success rates of the two heterogeneous systems with respect to the homo-
geneous system for various densities are plotted in Fig. 6. Data is only reported for 
high density scenarios because there is little difference in the case of low density.  
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Fig. 6 Success rate of each model 

We observe that the heterogeneous system in which robots switch types proba-
bilistically slightly, but consistently, improves success rate when compared to the 
baseline performance of the homogenous systems that has been tuned based on the 
empirical results from Section 3. 

Fig. 7 shows a snapshot of an experiment with the signal propagation model. 
As the signal propagates, the cluster of the robots with p=0.01 propagates from the 
destination to the boundary. This behavior is similar to peristaltic motion, and the 
object is transported showing pulsing motion (Fig. 8), i.e., tends to move back and 
forth. Using this approach further increases success rate over probabilistic dynam-
ics and homogeneous system (Fig. 6). 

 

 

Fig. 7 Snapshot of signal propagation 
dynamics 

 

Fig. 8 Distance from the destination by 
signal propagation dynamics in case of 
ρ=0.75. Pulsing motion appears in this 
behavior in the area indicated. 
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For simplicity, we choose β =1.0 for both states, but if we introduce β in state 1 
as 3.0 instead of 1.0, the success rate in this region is improved more as shown by 
the red rectangles in Fig. 8. 

Next, we study the actual completion time, which corresponds to the speed or 
the efficiency of object transportation. Fig. 9 shows the average completion time 
of each of the dynamics for different densities. Here the completion time is de-
fined as the first time the object reaches the destination. There is a tendency that 
the time becomes longer in low and high density region and is minimum around 
ρ = 0.4~0.5.  

 

 

Fig. 9 Completion time of each dynamics 

 

 

Fig. 10 Sojourn time of object position in case of ρ =0.63. (a) static system with β=0. (b) 
static system with β=1.0. (c) probabilistic dynamics (d) signal propagation dynamics. 
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It is also important to evaluate how long the system keeps the object in the vi-
cinity of the destination once the object has reached the destination. A simple way 
of evaluation is to measure sojourn time around the destination. The experimental 
field is divided into 40 x 20 cells, and we recorded the total sojourn time in each 
region (Fig. 10). The count starts when the object once reached destination. Fig. 
10 shows the accumulation of the result of 100 trials. The unit of color bar is 
“sec.” In the homogenous system, the distribution of the object position over mul-
tiple experiments is wide. In the heterogeneous systems, however, the distribution 
becomes narrow, and the distribution of the signal propagation dynamics is nar-
rower than that of the probabilistic dynamics.  

4.2 Complex Environments 

We are also interested whether the proposed object transportation mechanism 
works in more complex environments. Fig. 11 shows two sample environments of 
many we tried. These experiments confirm that the proposed approach generalizes 
to environments with more complex geometries.  

 

  

Fig. 11 Object transportation in complex environment. Red line indicates the trajectory of 
the object. Yellow circle and green circle indicate the starting point and the destination,  
respectively.  

4.3 Preliminary Experimental Validation 

We performed a simple experiment to validate our approach for homogenous ro-
bot systems with the toy robot “Hex-bug”, which is driven by a vibration motor. 
The repulsive force is realized by the slope of the field. As shown in Fig. 12, 
which depicts the distribution of the object in the environment, the robots are ca-
pable of moving the objects consistently against the slope. The difference between 
Fig. 12(e) and Fig. 12(f) indicates that the object was transported to the right, or 
upper, side of the environment. 
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(a)                         (b)                         (c) 

 
(d)                          (e)                       (f) 

Fig. 12 Experiment by simple toy robots.  (a) Cartoon of overhead view of the experiment.  
The red circle represents the object to be transported and the green ovals represent the Hex-
bugs. (b) Cartoon of experimental control, in which the environment was horizontal. (c) 
Cartoon of experiment, in which the environment was tilted at 6° from horizontal, impart-
ing a force on the Hex-bugs. (d) Photograph of the experiment.  The object to be transport-
ed is marked with a red cross. (e) Heat map of the position of the object for the control. (f) 
Heat map of the position of the object for the experiment. 

5 Discussion 

Results suggest that granular convection has the potential to allow for controlled 
object transportation. Whereas all our experiments rely on a constant external 
force, finer control can potentially be achieved by manipulating the external field 
and robots with appropriate sensor for magnetic, electric, or chemical fields.  

Parameters, particularly the ratio between randomness and directed motion, 
have been chosen ad-hoc in this paper and are functions of the specific simulation 
environment including the simulated friction, and sizes of robots and object. 
While this ad-hoc method is potentially applicable to real systems, in future work 
we are interested in grounding these parameters in first principles.  

6 Conclusion 

We propose a novel method for object transportation inspired by the Brazil Nut 
Effect, in which the robots have minimal sensors. Regardless of the simple  
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dynamics of the robots based on random force and weak repulsive force from the 
destination, the object can be transported to the destination. Based on the observa-
tion that high density is detrimental to object transportation, we propose a hetero-
geneous system that is geared to lower the density in the vicinity of the object. 
Whereas a simple heterogeneous system in which some robots change direction 
slower than others improves performance, best results are achieved by using local 
communication to direct density-reducing behavior toward the object. In future 
work, we wish to confirm these results with a large number of very simple robots 
that are actuated by vibration and have the ability to communicate locally. We are 
also interested in analytically showing how density affects performance of object 
transportation. 
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Multi-Robot Control for Circumnavigation
of Particle Distributions

Sarah Tang, Dylan Shinzaki, Christopher G. Lowe, and Christopher M. Clark

Abstract. In this work, we present a decentralized controller for the tracking and
following of mobile targets, specifically addressing considerations of: 1) not altering
target behavior, 2) target states represented by multiple hypotheses, and 3) limited
information from bearing-only sensors. The proposed controller drives a team of n
robots to circumnavigate an arbitrary distribution of target points at a desired radius
from the targets. The controller also dictates robot spacing around their circular tra-
jectory by tracking a desired relative phase angle between neighbors. Simulation
results show the functionality of the controller for arbitrary-sized teams and arbi-
trary stationary and moving particle distributions. Additionally, the controller was
implemented on OceanServer Iver2 AUVs. Tracking results demonstrate the con-
troller’s capability to track a desired radius as well as maintain phase with respect
to a second AUV.

1 Introduction

In recent years, multi-robot systems have been developed for a variety of applica-
tions. Compared to single robot systems, they have better spatial-temporal coverage,
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greater manipulation force, and are more robust to mission failure. In particular, they
can be applied to tracking problems, where a team of robots attempt to gather in-
formation about or follow one or more targets. Yet while these teams can be more
effective, they also come with a number of challenges. The robots themselves may
have nonholonomic kinematics. Sensor information might be limited, noise and ex-
ternal disturbances could make available sensor information hard to process, and
maintaining multiple hypotheses as well as fusing sensor information are nontriv-
ial design challenges. In addition, the team often has to maintain a certain distance
from their targets so as to not influence natural behavior.

This work is motivated by the scientific goal of autonomous tracking and fol-
lowing of long migratory fish species (e.g. sharks) using Autonomous Underwater
Vehicles (AUVs). Previous work [6] has shown the ability of a single AUV equipped
with bearing-only sensors to track and follow tagged leopard sharks using a Particle
Filter (PF) for estimating target states. In moving towards tracking species whose
movement behaviors would be altered by the presence of tracking unit, a multi-AUV
controller is required. This controller needs to enable active state estimation using
multiple sensor vantage points to reduce the effects of bearing-only sensors, while
simultaneously ensuring that all AUVs maintain some predetermined distance from
the target.

The remainder of this section will present related work. Section 2 will define the
problem at hand in terms of four subproblems and detail our proposed solutions.
Section 3 will present experimental results from a controller implementation, and
Section 4 will conclude the paper.

1.1 Background

Numerous approaches have been proposed to the general problem of multi-robot
control. Control methods are either centralized, where a central processor controls
the entire team, or decentralized, where each robot maintains its own controller
using sensor information about other robots and its environment. A number of tech-
niques have been proposed for both methods.

A behavior-based controller maintains different modes of action that, depend-
ing on the goal of the robot, are weighed differently to give rise to different group
dynamics. For example, Balch and Arkin [2] appropriately weight motor schemas
for moving to destination, obstacle avoidance, and waypoint navigation. Similarly,
Bougherty et al. [5] implement the basic behaviors of move-to-goal, avoid-obstacle,
maintain-relative-distance, maintain-relative-angle, and stop, to form the control
laws for their robotic team. Generally, such behavior-based methods are successful
at maintaining desired group dynamics, however, are hard to analyze for stability
guarantees.

The leader-following approach designates robots in the team as leaders or fol-
lowers. Leader robots simply travel the desired trajectory of the team while follower
robots are responsible for maintaining group formation by tracking desired bearing
angles and distances to designated leaders. For example, Desai et al. [4] describe
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decentralized control laws that drive a follower to either maintain distance and bear-
ing to one leader or two bearings to two leaders. Such methods tend to be simpler
in implementation, but they are heavily dependent on effective communication be-
tween robots. The system is also prone to single-point failure, and the leader robot
typically has no means of detecting or compensating for lost followers.

With a virtual structure approach, a group of virtual positions are arranged in
a rigid desired formation and moved along a desired trajectory. Each robot fol-
lows the specific path traced out by one of the virtual positions. This method is
used by Young et al. [17], who drive robots to their desired virtual positions with
a Proportional-Derivative (PD) control law, and Tan and Lewis [9], who apply this
technique to a vision-based tracking system. One big advantage of such methods
is that it is relatively straightforward to specify desired behavior and analytically
guarantee stability.

These control methods have proven effective in the domain of multi-robot track-
ing. Liu et al. [10] propose behavioral-based control that uses reinforcement learning
to adjust behavior weights for a target-tracking controller, Chung et al. [3] imple-
ment a gradient-based decentralized control law for dynamic target tracking, and
Mazo et al. [11] use the virtual vehicle approach. In addition to these main ap-
proaches, Lee et al. [8] explore target tracking control for unicycle mobile robots us-
ing a nonlinear state feedback controller, while Papanikolopoulos et al. [15] propose
a method where output of a visual tracking system serve as input to a Proportional-
Integral (PI) controller, pole assignment controller, or an Linear-Quadratic-Gaussian
(LQG) controller. However, these methods track a only single estimate of either one
or more moving targets.

A few methods do combine control with state estimation. Mottaghi and Vaughan
[12] use a Particle Filter to create a potential field for a virtual structure based robotic
controller, and Wang et al. [16] propose a flocking control method for multiple
robots moving to an estimated position from a distributed Kalman filter. However,
these methods drive robots directly to estimated destinations rather than circumnav-
igation. To accommodate for limited sensing, Zhou et al. [18] propose an iterative
Gauss-Seidel Relaxation (GSR) algorithm to drive robots to the best sensing lo-
cation for a team of heterogeneous robots tracking a moving target, accounting for
limited measurements and motion constraints (e.g. maintaining a minimum distance
from the target). Paley [14] propose control methods for circular motion of robots
moving in external flow fields, however, only allows for circling of one center point.
Lan et al. [7] propose a hybrid control method to capture targets with circular motion
around the target, but does not combine this method with state estimation.

In our work, we use a stability-guarantee based approach to develop a distributed
control method that will simultaneously accommodate all three of the previously
mentioned issues, namely, accounting for multiple hypotheses, limited sensing, and
maintaining distance from the target. To this end, we use a proportional control law
to drive arbitrary-sized teams to circumnavigate target distributions at a specified
radius from all targets and angle offset from each other.
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2 Multi-Robot Circumnavigation

The aim of this work is to design decentralized control laws to drive a team of n
robots to circumnavigate any distribution of p target points. There are two main
objectives: First, each robot should circumnavigate all targets at a constant desired
radius. Second, each robot should maintain a constant phase difference between
itself and the robots in front and behind it. Spacing robots apart in this manner helps
avoid collisions and enables information gain from different sensor vantage points
with minimal overlap. Fig. 1 illustrates this ideal configuration with four robots
circling clockwise around a single target point.

To accomplish this design task, the problem is broken down into four subprob-
lems: 1) design a single robot controller that drives the robot to circumnavigate a
single target, 2) design a multi-robot controller that extends the previous controller
to enable robots to track a desired phase difference as they circumnavigate a single
target, 3) design a target allocation system that further extends the controller to mul-
tiple targets, and 4) design an ordering algorithm that initializes each robot’s relative
position with respect to the circumnavigation loop. Preliminaries are first presented
followed by a proposed solution to each of the four subproblems.

2.1 Preliminaries

In this work, a team of n robots operate within a 2D obstacle-free workspace. Each
robot i is represented at time t by a state vector Xrobot

i,t comprised of its position, (xi,t ,
yi,t ), and yaw orientation, θi,t , with respect to an inertial cartesian coordinate frame:

Fig. 1 This picture exem-
plifies the desired circling
behavior, with a team of
four AUVs circling one tar-
get point. The AUVs circle
the target at a desired Rdes
and are spaced around the
circle with a desired phase
difference Δγdes. The error
variables β , ρ , and e, pre-
sented in Eq. 8 - 10, are also
illustrated for AUV i.
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Xrobot
i,t = [xi,t yi,t θi,t ]

T . (1)

The kinematics of the system are assumed to follow the first order discrete time
equations in Eqs. 2 - 4. In this case, vi,t and ωi,t are the forward and rotational
velocities of the ith robot, respectively, and serve as the robot control inputs.

xi,t+1 = xi,t + vi,t cos(θi,t)Δ t (2)

yi,t+1 = yi,t + vi,t sin(θi,t)Δ t (3)

θi,t+1 = θi,t +ωi,tΔ t (4)

To facilitate control with respect to a target at position (xtarget,t , ytarget,t ), three
additional states are defined. First, let ri,t be the distance between the target and
robot i at time t. Second, let γi,t be the relative bearing angle of robot i relative to the
target. Third, let θdesi ,t be the desired yaw angle for robot i, which is in a direction
tangent to a circle centered on the target.

ri,t =
√
(xi,t − xtarget,t)2 +(yi,t − ytarget,t)2 (5)

γi,t = tan−1 ((yi,t − ytarget,t )/(xi,t − xtarget,t )) (6)

θdesi,t = γi,t − π
2

(7)

Given a desired radial distance from all targets, Rdes, and a desired relative phase
offset, Δγdes, the system can now be described in terms of error variables ρi,t , βi,t ,
ei,t .

ρi,t = Rdes− ri,t (8)

βi,t = θdesi ,t −θi,t (9)

ei,t = Δγdes− (γi,t − γi−1,t) (10)

The term ei,t represents the error in phase between two vehicles i and i−1. Although
ei,t is indexed with a robot index i, it actually represents the angle difference between
a pair of robots, and so, there is no e0,t term. These errors form the state vector
associated with each robot:

χi,t = [ρi,t βi,t ei,t ]
T . (11)

Fig. 1 illustrates these variables for a sample tracking scenario. The kinematics of
these controlled variables can be derived from substituting the derivatives of Eqs. 5
- 7 into the derivatives of Eqs. 8 - 10:
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ρi,t+1 = ρi,t + vi,t sin(βi,t)Δ t, (12)

βi,t+1 = βi,t +

(
−vi,t cos(βi,t)

Rdes−ρi,t
−ωi,t

)
Δ t, (13)

ei,t+1 = ei,t +

(
vi,t cos(βi,t)

Rdes−ρi,t
− vi−1,t cos(βi−1,t)

Rdes−ρi−1,t

)
Δ t. (14)

2.2 Single Robot Circumnavigation of a Single Target

With the preliminaries presented above, the first design problem can be stated as
follows: Given a robot i that behaves according to Eqs. 2 - 4, determine the discrete
time control update laws for the control vector:

Ui,t = [vi,t ωi,t ]
T (15)

that drive errors ρi,t , γi,t , and ei,t to 0 as time t approaches infinity.
In the single robot case, the robot is assumed to travel at some nominal velocity

vi,t > 0. The rotational velocity, ωi,t , is used to drive each robot towards its desired
path around the target. The proposed control law is shown in Eq. 16, where Rdes is
the desired radius of the circle centered on the target being tracked, Kβ and Kρ are
proportional control gains, and Δ t is the time step in seconds between control signal
updates.

ωi,t =−vi,t cos(βi,t)

Rdes−ρi,t
+

Kβ

Δ t
βi,t +

Kρ

Δ t
ρi,t (16)

Note that the first term in Eq. 16 is a feedback linearization term to accommodate
the nonlinear dynamics in Eq. 13. The singularity in Eq. 16 is avoided by initializing
robots such that they do not invoke the controller to begin circumnavigation until
they are within some minimum ρo of all targets. Thus, for all t ≥ 0, ρi,t ≤ ρo < Rdes.
This initialization scheme is described in detail in Sec. 2.5.

To derive the system’s stability conditions, the control law in Eq. 16 is substituted
into Eqs. 12 and 13 to arrive at the closed-loop error dynamic equations. These equa-
tions can further be simplified using a small angle approximation sin(βi,t)≈ βi,t . The
error dynamics and corresponding eigenvalues are described in matrix formulation
in Eq. 17 and Eq. 18, respectively.[

ρi

βi

]
t+1

=

[
1 vi,tΔ t

−Kρ 1−Kβ

][
ρi

βi

]
t

(17)

λ =
(Kβ − 2)±

√
K2

β − 4Kρvi,tΔ t

2
(18)

The discrete system is asymptotically stable if and only if all eigenvalues have mag-
nitude less than 1. The problem is not fully constrained and has many solutions, but
for Δ t > 0 and positive gains, gain and velocity bounds are given in Eqs. 19 - 21.
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Kρ > 0 (19)

0 < Kβ < 4 (20)

2(Kβ − 2)

Kρ Δ t
< vi,t ≤

K2
β

4Kρ Δ t
(21)

2.3 Multi-Robot Circumnavigation of a Single Target

In the multi-robot case, the controller in Eq. 16 is used to set ωi,t for each robot,
while vi,t is modulated to drive phase errors ei,t to 0 while still ensuring it lies within
the bounds defined by Eq. 21. The following controller for vi,t is proposed:

vi,t =
Rdes−ρi,t

Rdes cos(βi,t)

(
vnom +

RdesKγ

Δ t
(ei+1,t − ei,t)

)
. (22)

Substituting Eq. 22 into Eq. 14 yields the closed loop kinematic equation for
ei,t+1. As ei,t represents the error between two vehicles, the ei,t term is dropped for
the 0th vehicle and the ei+1,t term is dropped for the n− 1th vehicle. Since ei,t+1 is
dependent on ei−1,t+1 and ei,t+1, the matrix formulation is required:⎡⎢⎢⎢⎢⎢⎣

e1

e2

e3
...

en

⎤⎥⎥⎥⎥⎥⎦
t+1

=

⎡⎢⎢⎢⎢⎢⎣
1− 2Kγ Kγ 0 0 · · · 0 0

Kγ 1− 2Kγ Kγ 0 · · · 0 0
0 Kγ 1− 2Kγ Kγ · · · 0 0

. . .
0 0 0 0 · · · Kγ 1− 2Kγ

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
e1

e2

e3
...

en

⎤⎥⎥⎥⎥⎥⎦
t

. (23)

Again, all eigenvalues must have magnitude less than 1 for the system to be asymp-
totically stable. The eigenvalues vary with n; the case of three robots is presented in
Eqs. 24 - 26 to exemplify how stability criteria can be used to determine appropriate
gain values. [

e1

e2

]
t+1

=

[
1− 2Kγ Kγ

Kγ 1− 2Kγ

][
e1

e2

]
t

(24)

λ = 1− 3Kγ,1−Kγ (25)

0 < Kγ <
2
3

(26)

2.4 Multi-Robot Circumnavigation of Multiple Targets

The control laws can be further extended to allow circumnavigation of a set P of p
different targets, denoted:

P = [x j y j θ j v j ω j], j ∈ [1 : p]. (27)
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Each robot invokes the control laws from Eqs. 16 and 22 to track the closest target
in P at the current time step t. In other words, control variables ρi,t , βi,t , and ei,t are
calculated with respect to only one target j. In this way, robots can, for example,
track a set of particles from a particle filter (PF) state estimator [6] that represent
one or many objects in the workspace.

To make the transitions between targets smoother, the tracked target at time step
t is that which minimizes the Euclidian distance between candidate targets and the
predicted robot state at t+τ . Here, τ is some positive integer, and the state is pre-
dicted assuming vi,k = vi,t and ωi,k = ωi,t for k ∈ [1,τ]. A minimal τ based on a
robot’s minimum turning radius can be used to ensure ρi,t+1 > 0 when tracking a
new target location (i.e., the robot will not come within Rdes of the next target).

2.5 Multi-Robot Ordering during Circumnavigation

The control laws presented in Eq. 16 and 22 ensure that a team of robots will even-
tually converge to circumnavigation of a collection of targets with relative phase
tracking for collision-free motion and multiple sensor vantage points. To prevent
collisions from occurring before system convergence, Alg. 1 is used to assign a
static order to all robots based on their initial positions with respect to targets.

In Alg. 1, Line 1, each target from P introduced in Eq. 27 is grouped into one of
C clusters. The cth cluster is a subset of the p targets in P that contains pc targets,
where pc > 0 and the Euclidean distance of each target to at least one other target
in the group is < 2Rdes. In the case where C ≤ n, the number of robots assigned to
each cluster, denoted nc, is proportional to the number of targets in the cluster. If
C > n, only the largest clusters will be assigned robots.

The following procedure is carried out within each cluster; for simplicity, Alg. 1
assumes only one cluster, so nc = n and pc = p. Robots identify a circle O centered
at the average position of all targets, defined here as Xo = (xo,yo). The radius rmax

of O is the minimum radius that encapsulates all target circumnavigation loops and
robots. A set of n boundary points are evenly distributed on O, to be used as initial
destinations for the n robots, as seen in Lines 4 - 6. The robots are matched to
boundary points according to the relative bearing angles κ from center (xo,yo), as
calculated on Lines 7-9. That is, the robot with the kth greatest bearing angle among
robots will be matched to the boundary point with the kth greatest bearing angle
among boundary points, as in Lines 10 - 15.

Upon initialization, each robot i drives directly towards its individual
boundary point XdesBP

i,t and pauses motion when within a predetermined distance
error ρo of O, where ρo < Rdes as noted in Sec. 2.2. Only when all robots have dis-
tance to O < (Rdes +ρo) does the group start circumnavigating its designated clus-
ter of targets. Note this algorithm is run only once, after which robot order remains
constant.
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Algorithm 1 findOrder(Xrobot
i,t ∀i = 1..n, Xtarget

j,t ∀ j = 1..p, Rdes, t)

1: clusters← clustering(Xrobot
i,t ∀i = 1..n, Xtarget

j,t ∀ j = 1..p)

2: Xo ← average over Xtarget
j,t ∀ j = 1..p

3: rmax ← max
∀ j=1..p

(|Xtarget
j,t −Xo|+Rdes)

4: for k=1..n robots do
5: Xboundarypoint

k,t ← [xo + rmax cos(2kπ/n) yo + rmax sin(2kπ/n)]T

6: end for
7: for i=1..n robots do
8: κi ← tan−1((yi,t −yo)/(xi,t −xo))
9: end for

10: order ← sorted list of indices of κi in ascending order from θ = 0
11: for i = 1..n robots do
12: k ← ith element of order
13: XdesBP

i,t ← Xboundarypoint
k,t

14: end for
15: return order,XdesBP

i,t ∀i = 1..n

3 Results

The proposed control laws were simulated in Matlab to verify tracking performance.
Controller gains and velocity constraints were selected to ensure controller stability
as dictated by the inequalities given in Eqs. 19 - 21 and exemplified by Eqs. 24 - 26.
Table 1 lists the chosen constants.

Table 1 Controller constants

Simulation

Kρ 0.3 Kβ 1.5 Kγ 0.5
vnom 2.5m/s vmin 1m/s vmax 3m/s
Rdes 8m Δγdes

π
2 if R = 2, otherwise 2π

n

Field tests

Kρ 0.1 Kβ 0.4 Kγ 0.5
vnom 0.56m/s vmin 0.3m/s vmax 0.8m/s

Fig. 2a illustrates a team of 10 robots circumnavigating a single target, and Fig. 2b
shows the corresponding error terms converging to zero over time. To demonstrate
the versatility of the controller, Fig. 3 illustrates a variety of different scenarios
involving multiple targets (e.g. particle distributions), both stationary and moving.

To validate the control system on a real test platform and progress towards au-
tonomous fish tracking with AUVs, the proposed controller was implemented on
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Fig. 3 Circumnavigation of various target distributions

an OceanServer Iver2 AUV [13], pictured in Fig. 4a. The vehicle is approximately
1.27m in length, 0.15m in diameter, and 20kg in weight, with two fins to control
pitch, two rear fins to control yaw, and a three-blade propeller to provide forward
velocity. A 24V servo-controlled DC motor gives the AUV a speed range of approx-
imately 0.5m/s to 2.0m/s. A built-in GPS receiver provides longitude and latitude
measurements and a three-degree-of-freedom compass provides heading measure-
ments. The AUV runs two processors, a main Intel 1.6 GHz ATOM processor with
Windows XP and an additional low power Intel 1.6GHz ATOM processor; the first
is responsible for fundamental control of actuators and sensors, while the second is
designated for external programs, such as the controller. The AUV communicates
with laptop via wireless ethernet. Deployments were conducted in Carnegie Lake,
Princeton, NJ and Fisherman’s Cove, Santa Catalina Island, CA.

As the following experimental procedure applies to each individual AUV inde-
pendently, the subscript i will be dropped from future notation. To appropriately
actuate the AUV, the relationships from controller outputs, vt and ωt , to actuator
values for the motor and yaw fin, denoted uv,t and uω,t , respectively, were deter-
mined. Specifically, two functions - one relating vt to uv,t , the other relating uv,t and
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ωt to uω,t (as the motor speed of the AUV also dictates the maximum achievable
angular velocity) were sought. Position data of the AUV running at various constant
uω,t and uv,t values were gathered. Offline, actual forward and angular velocities of
the AUV were estimated as the secant line between position measurements at t− 1
and t − T for t ∈ [T : tend ] and averaged to approximate the vt or ωt correspond-
ing to a setting of uv,t or uω,t . The desired functions were then derived from linear
regressions, where T was chosen between 1 and 8 to yield the highest r2 value.

Additionally, there was a clear time delay between the actuation of the AUV and
actual achievement of the actuated angular velocity. In this light, the AUV’s speed
and angular velocity are estimated in real time, denoted vest,t and ωest,t , respectively,
using a decaying weighing scheme. The real time estimate of vt provides more ac-
curate control when used within Eq. 16, and ωt is estimated for for offline analysis.
In future work, a more sophisticated real time estimation method, such as Kalman
Filtering or Extended Kalman Filtering, can be implemented.

Results from using one AUV to track various (known) target distributions are
summarized in Table 2. For these experiments, Rdes = 8m. Note that average and
standard deviations do not increase significantly when tracking moving distribu-
tions, demonstrating the controller’s stability even for tracking moving targets.

Table 2 Results for single AUV tests

Test ρavg (m) σρ (m) βavg (rad) σβ (rad)

single target 2.7070 1.5325 0.4678 0.5598
3 targets 2.6239 0.4830 0.4472 0.1386
moving target 2.6508 0.8504 0.4474 0.2679

Fig. 4 plots the AUV motion for moving target tracking; Fig. 4b plots the actual
AUV trajectory in black with AUV heading every ten time steps in red while Fig.
4c plots controller variables over time. Fig. 4b shows that the AUV is able to follow
and circle the target consistently, and Fig. 4c additionally shows that ρt and βt decay
towards steady-state values over time, through there seems to be a steady-state error
present in both variables. From Table 3, average βt is 0.45 radians, or approximately
26 degrees, and average ρt is 2.65 meters. An approximate three second time lag in
actuation effect is a potential cause of this error, and methods to compensate for
the time delay could be explored. In addition, though Kβ and Kρ were chosen for
practical performance, they might not have been optimal gains. There are several
techniques for theoretically optimal gain selection [1] that could be investigated.

Note that looking at the trajectory in Fig. 4b, there seems to be a delay in GPS
measurements from corresponding compass readings. The AUV’s heading is not
tangent to its path at its current position, but rather, to the curvature a small dis-
tance forward, suggesting that GPS coordinates are received slower than compass
headings.
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Fig. 4 Single AUV experiment

Next, the phase tracking capabilities of the controller are tested. First, a second
AUV was simulated in code. At each time step, the simulated AUV was propagated
forward using control law outputs and derived kinematics, and its resulting position
was passed to the real AUV, assuming perfect and instantaneous communication be-
tween vehicles. For these experiments, Rdes = 8m and Δγdes =

π
2 . Tracking statistics

are presented in Table 3. In addition to minimizing error in ρt and βt , the AUV is
able to approach the desired γt as well.

Table 3 Results for simulated multi-AUV tests

Test ρavg (m) σρ (m) βavg (rad) σβ (rad) γavg(rad) σγ (rad)

stationary target 2.1773 0.5199 0.4670 0.1484 -1.5796 0.0303
moving target 2.0083 0.3342 0.4215 0.1043 -1.5505 0.0277

Additionally, experiments were done with two AUVs, with Rdes = 10m,12m and
Δγdes = π . Rdes of the two AUVs were set differently to avoid collision due to mal-
functions during test (e.g. an AUV running out of battery). The two AUVs tracked
a single target that, rather than moving continuously, jumped to a new location after
a given amount of time. This behavior simulates the possibility of sudden changes
in state estimate due to new location measurements after losing measurements for
a span of time. Fig. 5 illustrates the tracking trajectories. Again, it can be seen that
both AUVs successfully track their respective desired radius while driving phase
error et to 0. Note that the sudden increase in et around 210s results from the move-
ment of the target to a new location; the AUVs, however, are able to minimize et

again after some time.
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Fig. 5 Two-AUV experiment

4 Conclusions

In this work, we present a new multi-robot control strategy that enables multiple
nonholonomic robots to circumnavigate an arbitrary distribution of targets while
maintaining a constant standoff distance between robots and targets and a desired
spacing between robots. A benefit of this strategy is that the control is decentralized
and robots only need information regarding the positions of their neighbors. Bounds
on controller gains to ensure system stability and convergence to the desired circum-
navigation behavior were derived. Simulations were presented with various particle
distributions and velocities. To demonstrate the applicability of the strategy to real
systems, it was implemented on an AUV subject to real world disturbances (e.g.
currents). In the future, this controller will be applied to a multi-AUV system and
use target sensors and estimators to determine target states in real-time.
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A One-Hour Curriculum to Engage Middle
School Students in Robotics and Computer
Science Using Cubelets

Nikolaus Correll, Chris Wailes, and Scott Slaby

Abstract. Robotics has become a standard K-12 outreach tool and for attracting
students to the STEM disciplines. Performing these activities in the class room usu-
ally requires substantial time commitment by the teacher and integration into the
curriculum requires major effort, which makes spontaneous and short-term engage-
ments difficult. This paper studies using “Cubelets”, a modular robotic construction
kit, which requires virtually no setup time and allows substantial engagement and
change of perception of STEM in as little as a 1-hour session. This paper describes
the constructivist curriculum and provides qualitative and quantitative results on
perception changes with respect to STEM and computer science in particular as a
field of study.

1 Introduction

Robots are computers that are extended by sensing, actuation, and communication
capabilities. As such, they provide students access to a variety of engineering con-
cepts [11]. Robots also stimulate people’s imagination, a development heavily sup-
ported by arts, media and toys. Robotics is therefore considered as an ideal tool to
provide young children with first exposure to science, technology engineering and
math at the K–12 levels [2, 3, 7, 10].

Prominent examples that have found their place in middle- and high school cur-
ricula are LEGO Mindstorms [4, 5, 15], Vex robotic kits [1], the FIRST robotics
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competition [16], or platforms specifically developed for robotics education [6, 8].
An often cited drawback of these systems and tools is that they tend to attract stu-
dent populations that are already interested in STEM. Consequently, others have
proposed to design robotic activities specifically targeted at girls by adopting robotic
building kits that are thematically more associated with girls’ interest such as pup-
petry and arts and crafts [9].

An additional drawback of “standard” robotic tool kits is that they require a cer-
tain level of engagement for the students to become productive. For example, LEGO
Mindstorms requires assembling a large number of parts, attaching the robot to a
computer, and learning a graphical programming system before students can obtain
results. In other words, curricula designed around these tools put certain minimum
time requirements on the participants that make spontaneous activities such as sub-
stituting a lecture in middle or high school impossible.

Fig. 1 “Cubelets” manufactured by Modrobotics are a modular robotic construction kit
consisting of various cubes with specific actuation (drive, rotation), communication (light,
sound), sensing (distance, temperature, knob, brightness), and computation (min, max, in-
verse) capabilities, as well as structural parts (blocker, passive, battery). Cubelets exchange
sensor information and allow the construction of simple autonomous robots.

This paper studies the use of “Cubelets” (Figure 1) to convey basic concepts of
computer science using a constructivist educational model. Cubelets are a modu-
lar robotic construction kit that allows students to quickly assemble autonomous
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robotic systems by programming with their hands [12–14]. For example, students
can construct a line following robot by combining cubelets with wheels, cubelets
that can sense light, a power cubelet, and a structural blocking cubelet. Cubelets do
not require an external computer to work and allow creative discovery with little to
no instruction.

This paper describes our experiences with two half-hour sessions with 8th graders
at a middle school. Students were surveyed both on their perceptions on the role of
robotics in their daily lives, computer science as a field of study, and on their prior
interest to engage in computer science activities in their professional or personal
lives. Data shows that an hour engagement with Cubelets spread over two days has
significantly altered their perceptions and could therefore be delivered in a single,
1-hour session as an outreach activity, or form the basis for a multi-session teacher-
led curriculum, much like [6], but without requiring a computer lab or setup of a
programming environment.

This paper is organized as follows. Section 2 describes the curriculum as well
as the information given to the students before and during the activity. Section 3
describes the background of the student population and the survey questions. Sec-
tion 4 provides results from pre- and post tests. Section 5 discusses these results and
Section 6 concludes the paper.

(a) Alarm consisting of
sound (transparent), distance
sensor (black) and battery
block (gray).

(b) Runner consisting of dis-
tance sensor, battery, and two
wheel blocks (transparent).

(c) Chaser consisting of
“Runner” with inverted (red
block) distance sensor.

(d) Light-tower consisting of
a flash-light block, rotator,
knob (to adjust the speed),
and power block.

(e) Max-speed Runner made
of a runner with a knob and
“min” block (pink).

(f) Line Follower made of
two light sensors (black
blocks), two wheels (trans-
parent blocks) and a passive
connector block (green).

Fig. 2 Robots built by the students during the first session
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2 Curriculum

The course curriculum was divided into two half-hour activities that were presented
to the students during two 40-minute class periods with 10 minutes reserved for
assessment, and was designed to teach students about several concepts at the core
of computer science: decomposing problems into sub-problems and composing so-
lutions to partial problems to solve a larger problem. The Cubelets robotics kit fa-
cilitated this lesson by allowing the students to break down the logical problems
(what are the robot’s inputs and how does it respond to them) the same way that
they decomposed the task of building a complex physical robot.

2.1 Cubelets

Cublets are a set of cubic building blocks that connect via magnets and a propri-
etary unisex-connector. They are about an inch wide. Connectors not only withstand
torque and orthogonal forces (magnets are strong enough to withstand the gravita-
tional pull of up to three other Cubelets), but also allow information and energy to
flow between Cubelets. Cubelets each implement a specific sensing, actuation, or
logic function. Sensing Cubelets emit sensory information to their neighbors, actua-
tor Cubelets consume information, and logic Cubelets manipulate information flow.
There exist also passive Cubelets, which exclusively block or forward information,
as well as a Power Cubelet, which includes rechargable batteries. These batteries
can power the Cubelets for multiple hours of activity, depending on the actual use.
Actuation Cubelets include Cubelets with a single wheel (Drive), a rotating face
(Rotate), a lamp (Flashlight), and a bargraph (Bar). Sense Cubelets include bright-
ness, infrared distance sensor, a potentiometer (Knob), and temperature sensors.
Think Cubelets include Inverter, which performs a mathematical operation equiva-
lent to 1-value, a Maximum Cubelet, which forwards only the maximum value that
it receives on any of its faces, as well as the Blocker, which only forwards energy,
and the passive Cubelet, which forwards both energy and power it receives. Cubelets
used in this curriculum are shown in Figures 1 and 2.

2.2 First Part

The first part focusses on using the Cubelets to accomplish simple tasks and begins
with an explanation of the basic functions of the individual cubes. This explana-
tion includes how they are powered, how the cubes fit together, their categorization
as Think, Sense, and Actuation blocks, what values could be produced by sensor
blocks, how these values propagate across the blocks, and how Actuator blocks are
controlled by the values they receive. The students are then shown how the blocks
could be assembled to produce simple behavior using the Power, Knob, Bar Graph,
and Inverse cubes.
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Next, the class is divided into groups of 4-7 students and each group is given
a set of Cubelets. In the study presented in this paper, the class with 17 students
was divided into three groups and each group was given the following cubes: 2
Power, 3 Passive, 2 Brightness, 3 Distance, 2 Drive, 2 Flashlight, 1 Bar, 1 Knob,
1 Temperature, 1 Blocker, 1 Rotate, 1 Inverse, and 1 Maximum. The class with 26
students was divided into four groups and each group was given the following cubes:
1 Power, 2 Passive, 1 Brightness, 2 Distance, 2 Drive, 1 Flashlight, 1 Blocker, and 1
Inverse. In each case the remaining cubes were available for the students to use, and
each group was encouraged to lend cubes to other groups when they were not using
them.

The students were then given only the following descriptions of several robots
and asked to build them (see Figure 2 for corresponding pictures):

1. Alarm - Makes noise when something approaches it.
2. Runner - Drives away from objects that try to approach it.
3. Chaser - Moves forward at maximum speed until it gets close to another object.
4. Lighttower - Rotating flashlight whose speed can be adjust with a dial.
5. Max-speed Runner - Same as the Runner with the added ability to set a maximum

speed.
6. Line Follower - Follows a black line on a white surface.

During the class period all groups were able to complete the first five tasks, most
were able to build a runner robot with the ability to set a maximum speed, and at
least one group in each class was able to build the line following robot. While all
groups had sufficient blocks to complete almost all tasks (in some cases they had
to use some blocks from those available to the entire class) additional blocks would
facilitate group participation. With the limited supply of blocks most groups would
have one or two students who did most of the hands on interaction while the rest of
the students commented or observed.

2.3 Second Part

The second part includes both a mini-lecture and discussion. While the first 30
minutes are spent using the blocks to build the simple reactive robots described
above, the main focus of the second part is on composing groups of blocks to build
more complicated behavior. Specifically, the instructor motivates a scenario such as
“tracking down a source of nuclear radiation using a Geiger counter” and discusses
with the students what the basic functions are that such a robot must have. These in-
clude a pivoting sensor to track down the source of radiation and logic that controls
the robot in this direction.

During the lecture several collections of blocks that are relevant to this task were
passed around the classroom (Figure 3) and students were asked to postulate as to
the functions the partial robots. These included a simple robotic arm, a logical AND
gate (here the students were introduced to the concept of binary input), a distance-,
and direction-sensing ‘head‘, and a large driving mechanism. While there were not
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enough blocks to assemble all of these components at the same time, they could be
combined to form a robot capable of looking around, finding the nearest object, and
moving to it.

The subjects of problem decomposition and solution composition were discussed
in the context of the partial robots the students were studying. Once the students
were aware of the function of these robotic fragments, they were able to identify
how they might be able to re-use the same design when building robots in the future.
The idea that each functional unit’s behavior could be reasoned about independently,
based on their inputs, was then presented.

Up to this point, the physical structures that were being built in class or presented
to them determined the behavior of the system. This is not the case for most comput-
ing systems, including robots, and so the idea of separating the physical and logical
behaviors of a system was introduced. Students learned about for loops, if-then-else
statements, and functions and how they were the logical ’blocks’ that computer pro-
grams were constructed from. A concrete example of a chat application that would
allow students to communicate with each other using their phones was then used to
show how logical problems could be sub-divided in the same way that a robot could
be divided into its functional units. The different components identified for this ap-
plication were authentication (logging in), communication (sending data over the
network), input handling, and displaying output. Lastly, the students were asked to
identify several sub-problems in building robots and how they might be solved and
re-used. These sub-problems included movement and balance, vision and sensing,
and interacting with the physical world. Here, the robots were used to introduce the
students to the idea of functional units and functions (in the programming language
sense), and how the behavior of components of larger systems could be reasoned
about based on their inputs and outputs.

(a) (b) (c)

Fig. 3 Robot parts examined during the second part of the activity. a) Simple arm mechanism
capable of approaching a block and stopping when it connects. b) An AND gate that receives
binary input from the knob blocks and produces a binary output from the min block at the
lower-right. c) A robotic ’head’ capable of detecting the distance and direction of objects
around it.
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3 Student Background and Survey Content

3.1 Student Background

Angevine Middle School (AMS) in Lafayette, CO, serves grades 6-8. AMS has a
high population of students of Latin origin (42.3%), and 72% of the 8th graders
score “unsatisfactorily” or “partially” in math, 48% in reading, 59% in writing, and
61% in science in the Colorado Student Assessment Program (CSAP) 1

The curriculum described here was taught to four cohorts of 8th graders within
their social studies course. This setting was chosen to prevent any bias from a
STEM-based setting such as science and math classes, both in terms of precon-
ceptions to the field and to the activity itself. All four classes met consecutively on
Tuesday and Friday. A pre- and post assessment was administered to two of the
cohorts (“Group 1” and “Group 2”) before their first exposure to the Cubelets and
after the second session on Friday, respectively.

Group 1 consisted of 17 students, 8 male, 9 female. Group 2 consisted of 26
students, 6 male, 20 female. Each group included one special needs student who
was accompanied by a paraprofessional. The paraprofessionals were present in the
class room, but did not interfere with their student’s engagement in the curriculum.

3.2 Questionnaire

The questionnaire consisted of a pre-test and a post-test administered before the first
(Tuesday) and after the last (Friday) activity, respectively. Both pre- and post-test
consist of identical questions, with the post-test including one additional quantitative
question.

The questions are geared to explore conceptions on robotics, the role of computer
science in robotics, and the level of interest to engage in computer science as a field
of study and/or as a hobby. The questions were designed by the teacher to be age
and student appropriate. Questions were projected to a white-board one-by-one and
narrated by the teacher and responses collected immediately. This approach required
the students to write down answers spontaneously without time for discussion or
deliberation. Questions asked were:

1. What is the purpose of a robot?
2. How can Computer Science “build” robots?
3. How can a robot help humans solve problems?
4. How interested are you to pursue Computer Science in High School and beyond?

(1=not at all interested, 5=very interested)
5. How interested are you to purse Computer Science in your spare time, for exam-

ple reading magazines? (1=not at all interested, 5=very interested)
6. Have you done any research on robotics since last time?

1 2010 data, available from http://www.schoolview.org, last retrieved April 25,
2012

http://www.schoolview.org
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Questions 1-5 were administered for both pre- and post-test. Question 6 was ad-
ministered only at the post-test.

4 Results

4.1 Pre-test

Response rate in group 1 were 17/18 and 26/26 in group 2. Two ESL (English as a
second language) female students required additional help by their teacher to answer
the questionnaire (group 1). All results are aggregated over both groups, whereas
students that did not participate in the post test (3) were removed, leading to 40
samples.

The dominating pattern (25/40) in answering Question 1 was that robots make
the life of humans easier by being assistive companions in everyday live (“robots
ease human life”, “robots help humans with things”,“to help or entertain”), fol-
lowed (5/40) by robots being tools for performing dull or dangerous jobs (“robots
do things that humans don’t want to do”), and (4/40) robots are more efficient than
humans (“robots are more efficient”,“robots are meant to eliminate human error”).
Other comments (6/40) were tongue-in-cheek (indicated by drawn emoticons) of
the kind “robots creep people out” and “to take over the world”. Question 3 lead to
similar patterns and outcomes, with students mentioning specific applications such
as surgery, manufacturing, repairing, or outperforming the human mind such as in
Chess or Jeopardy.

Answers to Question 2 fell into three groups: students (11/40) able to identify a
computer as significant component of a robotic system, which allows the robots to
execute plans and reason (“Computer Science helps by telling the robot what to do”,
“It helps to make the robot ‘think”’, “To make the robot smart”, “Because a robot
is basically a computer that can move and talk”); students (13/40) that understand
Computer Science as a discipline involving programming, but do not clearly artic-
ulate the role of programming in robotics (“because they program the robot”, ”It
helps with programming”); and students (16/40) who seem to have little to no un-
derstanding of Computer Science (“It uses a robot to make a robot”, “because they
understand everything”, “By showing and telling us how to build one”, “because it
takes a lot of science to build one”, “to visualize how a robot will function”, “to
design a robot”).

Quantitative results to Questions 4 and 5 are provided in Section 4.3. Answers
provided by male and female students are significantly different with a p-value of
0.019 for Question 4, and p-value of 0.06 for Question 6.

4.2 Post-test

Of the 17 students in the first group, only 14 were present during the post-test. These
14 students consisted of 7 male and 7 female students. All students in the second
group were present for both the pre- and post-test.
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Answers to Question 1 on the post-test followed many of the same patterns as
during the pre-test. The most common answers (24/40) stated that robots make life
on humans easier by assisting in everyday tasks. The two next most common an-
swers were that robots do tasks that are too difficult, dull, or dangerous for humans
(6/40), and that robots do whatever they are programmed to (6/40). Several students
(3/40) stated that robots are machines that receive input and act upon it. One student
(1/40) answered that robots do tasks that they are more efficient at than humans. No
students gave tongue-in-cheek answers to this question on the post-test.

The same three groups of answers to Question 2 identified in the pre-test are also
present in answers to the post-test. However, the majority of students (24/40) were
now able to identify the role of a computer in a robot, and the role of computer scien-
tists in programming it. The remaining students either correctly identified program-
ming as something that computer scientists do (9/40) or demonstrated a continued
lack of understanding of how Computer Science relates to robotics (7/40).

Quantitative results on Questions 4 and 5 for pre- and post test are compared in
Section 4.3. Answers provided by males and females were significantly different
with a p-value of 0.014 for Question 4, and a p-value of 0.11 for Question 5.

When asked if the students had researched robotics between the first and second
session, six students answered in the affirmative.

4.3 Qualitative and Quantitative Improvements

In answering Question 2 approximately half of the students (19/40) showed an in-
creased understanding of the role of computers and computer scientists in the cre-
ation and operating of robots. The other half of the students (21/40) showed no
improvement in their understanding, although 9 of these students had previously
identified the role of computers in robotics.

Of those students who showed an increased level of understanding 6 students
who had not previously been able to identify the role of programming in robotics
were able to indicate in their answers during the post-test that it was involved in
their operation. An additional 2 students who answered similarly, and 8 students
who identified Computer Science and programming as involved in the creation of
robots, were able to state that a program controlled the actions of a robot. None of
the students showed a decreased understanding of the role of Computer Science and
programming in the field of robotics.

In answering Question 4 (“How interested are you to pursue Computer Science in
High School and beyond?”), all means show increasing trends, from 2.67± 1.22 to
2.91±1.3 overall, from 2.36±1.05 to 2.58±1.24 for females, and from 3.25±1.34
to 3.53±1.18 for males. Although the increases are consistent among all groups, the
means are only weakly significant (p value ≈ 0.16 for all three paired distributions,
all, male and females). This analysis, however, forgoes the polarizing effect the
exercise had and which is reflected in the increasing variance: 16 students ranked
Question 4 higher than at the pre-test, whereas 12 ranked it lower and 12 remain
unchanged. (10 females ranked higher, 8 worse, 6 males ranked better, 4 worse.)
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For Question 5 (“How interested are you to pursue Computer Science in your
spare time, for example reading magazines?”), all means show a slight decrease,
from 2.36±1.38 to 2.3±1.23 overall, from 2.10±1.31 to 2.10±1.11 for females,
and from 2.86± 1.40 to 2.68± 1.38 for males. These distributions are not signifi-
cantly different, paired t-test return p-values of 0.74 overall, 0.30 for males and 0.48
for females. Also here, the activity has been polarizing: 11 students increase their
ranking, while 11 decrease it, and 22 remain unchanged. (7 females ranked higher
and 7 worse, 4 males ranked higher and 4 worse.)

5 Discussion

The response to the questions “What is the purpose of a robot?” and “How can
robots help humans to solve problems?” show that robotics is overwhelmingly re-
ceived as a positive by the 8th graders and is perceived to improve the life of humans
one way or the other. This is important as it shows that robotics can indeed serve as a
strong motivator to engage in STEM. Whereas the observation that tongue-in-cheek
answers to this question vanished in the post-test can be attributed little statistical
significance due to the low number of samples, it could be attributed to students
being more confident on the subject than before, which is supported by data.

In response to “How can Computer Science help to build robots”, a little more
than half show a more or less solid understanding how Computer Science can con-
tribute to robotics and therefore to the societal benefits identified by most. Around
40% of the students show little to no understanding of Computer Science as a field.
The fact that around half of the students do (subjectively) improve their understand-
ing of the role of computation in robotics is encouraging, however.

As expected given the low enrollment by females in Computer Science, interest
of girls in studying computer science (both in school and at home) is significantly
lower than that of boys. Although an increase in chosing Computer Science as a field
of study due to the activity is only marginal (from 2.36 to 2.58 on a scale from 1 to
5) for this group, the data shows a polarizing effect (also for boys) of the activity.
By actively engaging into a Computer Science-related activity, students can make
up their mind: 10 girls that are more interested than before (more than a third), are
10 potential future CS students, whereas 8 that are even less interested, are 8 more
students that might have avoided a potential mistake and engage in a disappointing
activity.

Interest in “Computer Science” or “Robotics” expressed by the students, as well
as an increase of their interest level after a playful activity such as the one described
here, should not be overestimated, however. Computers and robotics are clearly ex-
citing, especially when offered as extra-curricular activity in a class-room setting,
but science and learning how to make them might not. As anecdotal evidence we
note the response of one student who expressed that he wants to pursue Computer
Science “very much” (Question 6), but cannot imagine studying Computer Science
(”not at all on Question 5). He annotated “Because I don’t like working with Com-
puters about Science”. Conversely, drawing students into a field of study without
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presenting them with the technical rigor it requires might even be detrimental for
their success.

As much as interest in Computer Science as a field of study increases, results
on interest in Computer Science as an afterschool activity show little change. A
possible explanation might be that the proposed activity is not very well suited on
enabling this transitions. Cubelets are relatively new and little available (the 3 kits
used in this activity were part of the first 3000 Cubelets shipped to Beta customers)
and are expensive at $299 per kit. In order to serve as a vehicle to bring the class-
room activity home, both its availability and affordability need to increase, e.g.,
as demonstrated in [6] who allow participants to take the robot home for a nominal
price of around $60 (59 CHF). Alternatively, lessons could be extended with “action
items” that students could pursue at home and/or in follow-up after-school activities.

Although the test group have been middle schoolers, the proposed activity might
equally well extend to 4th or 10th graders. While the complexity of possible con-
struction is open-ended (the platform is Turing universal), younger children can
potentially be reached by increased scaffolding of the activities. Exploring these
opportunities is subject to future work.

6 Conclusion

This paper presents a 1-hour curriculum that allows outreach activities that increase
awareness and understanding for computer science and robotics in a middle school
setting. The activity is centered around Cubelets, a modular robotics construction kit
that allows students to program with their hands, and which can be deployed with
little to no preparation. The impact of the proposed activity has been examined by
testing it on two classes of 8th graders within two 30 minute sessions plus a pre-test
and post-test. Interest and understanding of computer science increases both quali-
tatively and quantitatively. Students are able to more precisely articulate the role of
computing in robots after building a series of primitive, reactive vehicles, a mini-
lecture and examining a set of more complex robotic building blocks including an
AND gate. Students also show a significant increase in interest to pursue computer
science as a field of study, whereas interest to pursue Computer Science as an af-
ter school activity remains unchanged. The proposed curriculum has therefore the
potential to allow quick interventions by computer science graduate students or pro-
fessors in local schools as well as rural areas as little to no setup time is required
and the time of engagement is low. Here, it can provide encouragement to pursue
STEM-related topics in the future for some, while leading to a more informed choice
for others.
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A Fast Coalition Structure Search Algorithm
for Modular Robot Reconfiguration Planning
under Uncertainty

Ayan Dutta, Prithviraj Dasgupta, Jose Baca, and Carl Nelson

Abstract. We consider the problem of reconfiguration planning in modular robots.
Current techniques for reconfiguration planning usually specify the destination con-
figuration for a modular robot explicitly. We posit that in uncertain environments the
desirable configuration for a modular robot is not known beforehand and has to be
determined dynamically. In this paper, we consider this problem of how to identify
a new ’best’ configuration when a modular robot is unable to continue operating ef-
ficiently in its current configuration. We build on a technique that enumerates all the
possible partitions of a set of modules requiring reconfiguring as a coalition struc-
ture graph (CSG) and finds the ’best’ node in that graph. We propose a new data
structure called an uncertain CSG (UCSG) that augments the CSG to handle uncer-
tainty originating from the motion and performance of the robot. We then propose
a new search algorithm called searchUCSG that intelligently prunes nodes from the
UCSG using a modified branch and bound technique. Experimental results show
that our algorithm is able to find a node that is within a worst bound of 80% of
the optimal or best node in the UCSG while exploring only half the nodes in the
UCSG. The time taken by our algorithm in terms of the number of nodes explored
is also consistently lower than existing algorithms (that do not model uncertainty)
for searching a CSG.

1 Introduction

Over the past few years, modular robots have been proposed as an attractive
paradigm for building highly dexterous robots that are capable of maneuvering in
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environments that are difficult to move in. The major advantage offered by a mod-
ular robot is that it consists of individual modules which can be dynamically con-
figured into a shape or configuration that enables the robot to perform tasks under
its current conditions. One of the principal computational challenges in designing
modular robots is to solve the problem of reconfiguration planning - given a set of
modules in a certain configuration how to reconfigure those modules to achieve a
desired configuration while reducing the time and cost expended to achieve the new
configuration. This problem becomes non-trivial if the target configuration is not
known a priori, and, consequently, the set of all possible configurations has to be
explored on-the-fly to find the best possible configuration. Because the space of pos-
sible configurations is exponential in the number of modules, conventional search
algorithms are unsuitable to solve the reconfiguration planning problem within a
reasonable amount of computation time and space. The problem becomes further
complicated if we include uncertainty in the mobility and connections of modules,
which are practical considerations for any physical robot. In this paper, we address
this reconfiguration planning problem for modular robots under uncertainty, using
a representation from coalition game theory called coalition structure graph (CSG).
We augment the basic CSG to handle uncertainty in modules’ movement and in
the environment using parameters derived from physical characteristics of a mod-
ular robot called ModRED. We formulate the reconfiguration planning problem as
an uninformed search problem on the UCSG and propose a modified branch-and-
bound algorithm called searchUCSG to solve it. We have simulated our algorithm
for reconfiguration planning of ModRED and shown that it explores much fewer
nodes (about 50%) and its solution quality is within 80% of the optimal node in
UCSG. And also the runtime of our algorithm is relatively less than existing algo-
rithms(that do not include uncertainty) to find the optimal coalition structure.

2 Related Work

Modular self-reconfigurable robots (MSRs) are a type of self-reconfigurable robots
that are composed of several modules. These modules can change their connections
with each other to manifest different shapes of the MSR and select a shape that en-
ables the MSR to perform its assigned task efficiently [12]. An excellent overview
of the state of the art MSRs and related techniques is given in [13]. Out of the
three types of MSRs — chain, lattice and hybrid - we have used a chain-type MSR
to illustrate the experiments in this paper although our techniques could be used
for other types too. The self-reconfiguration problem in MSRs has been solved us-
ing search-based [1, 2] and control-based techniques [10]. However, both these
techniques require the initial and goal configuration to be determined before the re-
configuration process starts. A third technique called task-based reconfiguration has
recently shown considerable success [5]. Here the goal configuration of an MSR do-
ing reconfiguration is not determined a priori, but is determined as the configuration
that helps the MSR perform its task efficiently. Our work in this paper is targeted
towards task-based reconfiguration techniques; we do not explicitly specify a goal
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configuration but allow the reconfiguration algorithm to select a new configuration
that reduces the reconfiguration cost i.e. cost for going from one configuration to
another which includes operations like docking, undocking, aligning, crawling, etc.
and thus selects the best configuration. Coalition game theory gives a set of tech-
niques that can be used by a group of agents to form teams or coalitions with each
other [7]. A coalition can be loosely defined as a set of agents that remain together
with the intention of cooperating with each other, possibly to perform a task. In
terms of MSRs a coalition represents a set of MSR-modules that are connected to-
gether. Within coalition games, the coalition structure generation problem that deals
with partitioning the agents has received significant attention. This problem is NP-
complete, and Sandholm [11] and Rahwan [8] have proposed anytime algorithms
to find near-optimal solutions. In contrast to these works, we incorporate uncertainty
into the CSG and propose a new algorithm with branch and bound -based pruning
to find the best coalition structure.

3 ModRED MSR

We have used an MSR called ModRED [3] that is currently being developed by
us, for implementing and testing the techniques in this paper. Unlike most other
MSRs, it has 4 DOF (3 rotational and 1 translational); this allows each mod-
ule to rotate along its long axis as well as extend along that same axis. Single
ModRED module is shown in Figure 1(a). This combination of DOF enables the
MSR to achieve a greater variety of gaits to possibly maneuver itself out of tight
spaces. For the simulated version of each module, we have used a GPS node that
gives global coordinates on each robot1, an accelerometer to determine the align-
ment of the robot with the ground, in addition to the Xbee modules in the physi-
cal robot. Two ModRED modules performing an inchworm motion and its major
components are shown in Figure 12. The movement of the MSR in fixed config-
uration is enabled through gait tables [12]. Videos showing the movement of the
MSR in different configurations (e.g., chain, ring) using gait tables are available at

Fig. 1 (a) Single module of the MSR. (b) Two modules doing inchworm motion (c) Major
components of the MSR

1 In the physical MSR, relative positioning is planned to be calculated by combining IMU
and IR sensors.

2 The order of connectivity does not alter the operation of modules.
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http://cmantic.unomaha.edu/projects/modred/. While moving in a fixed configura-
tion, if the MSR’s motion gets impeded by an obstacle or an occlusion in its path, it
needs to reconfigure into a new configuration so that it can continue its movement
efficiently. In the next section, we formalize the MSR self-reconfiguration problem
and then provide a coalition structure graph-based approach for finding the best
configuration.

4 Dynamic Self-Reconfiguration in MSRs

Let A be the set of modules or agents that have been deployed in the environment.
Let Π(A) be the set of all partitions of A and let CS(A) = {A1,A2, ...,Ak} ∈ Π(A)
denote a specific partition of A. We call CS(A) a configuration, and Ai as the i-th
MSR in that configuration. Ai = {ai1 ,ai2 ,ai3 , ...,ai|Ai |} where ai1 and ai|Ai | are the
leading and trailing modules of Ai respectively and {ai j ,ai j+1}, j = 1...|Ai| − 1 is
the set of physically coupled modules in Ai. When | Ai |= 1 the MSR is a single
module. We define Val : Π(A)→ R, a value function that assigns each partition
CS(A) ∈ Π(A) a real number. Val(CS(A)) is a metric that gives a virtual reward or
benefit obtained by the robots when they perform their assigned tasks while in the
configuration CS(A). Evidently, the most suitable configuration for a set of modules
is the one that maximizes Val(CS(A)). The problem that we study in this paper is
the following:

Definition 1 MSR Reconfiguration Problem. Given a set of modules A and an ar-
bitrary configuration CSold(A) = {Aold

1 ,Aold
2 , ...,Aold

k } in which they are deployed,
find a new configuration CSnew(A) = {Anew

1 ,Anew
2 , ...,Anew

k′ } such that the following
constraint is satisfied:

max
CSnew(A)∈Π(A)

Val(CSnew(A))

Note that k and k′ in the above definition may be different. Such reconfigurations
can happen, for example, when a set of modules is deployed into the environment
from an aircraft and the modules need to get into a configuration that maximizes
their value. Another instance of reconfiguration could happen when an MSR gets
stuck at an obstacle while navigating during an exploration task and needs to get into
a new configuration so that it can continue performing its navigation. The objective
of the MSR reconfiguration problem is to get the MSR into a new configuration that
allows it to continue its task while giving the highest value over its current partitions.

In our previous work [9, 4], we have shown that a systematic way to go about
analysing the configurations in Π(A) is provided by a hierarchical graph structure
called a coalition structure graph(CSG) [7]. In a CSG, each partition CS(A) ∈Π(A)
is called a coalition structure and appears as a node in the CSG. The parts or subsets
of a partition are called coalitions, denoted by S. A CSG with 4 agents is shown
in Figure 2. CSG nodes are organized into levels. Level l indicates that every node
in level l in CSG has exactly l subsets or coalitions as its members. CSGs offer a
structured way of exploring coalition structures because a node at level l− 1 can
be generated by combining a pair of coalitions from a node at level l. Let succ :
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{1} {2} {3} {4}

{1},{2},{3,4} {3},{4},{1,2} {1},{3},{2,4} {2},{4},{1,3} {1},{4},{2,3} {2},{3},{1,4}

{1},{2,3,4} {1,2},{3,4} {2},{1,3,4} {1,3},{2,4} {3},{1,2,4} {1,4},{2,3} {4},{1,2,3}

{1,2,3,4}

Level

(4)

(3)

(2)

(1)

Fig. 2 Coalition structure graph with 4 agents

Π(A)→Π(A) denote a successor function that takes a node at level l and generates
a node at level l− 1. succ(k)(CS(A)) denotes the node that is reached from CS(A)
by applying the succ(·) function k times. Each node or coalition structure CS(A) is
associated with a value Val(CS(A)) that corresponds to the value of the partition
or coalition structure CS(A). For the context of MSR reconfiguration, an agent ai

corresponds to a single MSR-module, a coalition S corresponds to an MSR A j,
while a coalition structure CS(A) corresponds to a set of MSRs or a configuration
of A. The succ(CS(A)) operation corresponds to a pair of MSRs which are part
of the configuration CS(A) moving close to each other, aligning and docking with
each other to give a new configuration CS′(A). To solve the MSR reconfiguration
problem given in Definition 1, we have to find the coalition structure in the CSG that
corresponds to the maximum value, i.e., find CS∗(A) = arg max

CS(A)∈Π(a)
Val(CS(A)).

In the rest of the paper, for the sake of legibility, we have dropped the argument A
from CS∗ and CS, assuming that it is appropriately defined based on the context. For
convenience with the CSG traversal algorithm in Section 4.2, we define the depth of
a node at level l as d =| A | −l. The depth of the root node of the CSG is 1 and that
of the bottommost node is | A |.

4.1 Uncertainty in Reconfiguration of Modular Robots

Uncertainty in the operations required to reconfigure modules in ModRED is an
important consideration to extract the desired behavior of the robot. Uncertainty is
caused by inexact or unexpected operation by the robot, which cannot be calculated
accurately a priori. We have considered two sources of uncertainty in ModRED,
viz., (a) motion uncertainty from robot physics and environment, and, (b) perfor-
mance uncertainty from robot operation, which are discussed below.
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4.1.1 Motion Uncertainty

Unexpected motion and alignment of the robot modules can cause ModRED’s be-
havior to deviate from ideal operation. We have considered three major sources of
uncertainty under this category that could affect the reconfiguration process:

(i) Distance uncertainty is the uncertainty arising out of the distance required to
be traversed by a pair of MSRs before docking with each other. It is modeled as a
half-Gaussian distribution N (μdu,σdu).

(ii) Alignment uncertainty is the uncertainty arising out of the angle each MSR
in a pair of MSRs needs to rotate before they can align with each other prior to
docking. It is modeled as a Gaussian distribution, N (μau,σau).

(iii) Environment uncertainty is the uncertainty arising from the operational con-
ditions in the environment due to factors such as obstacles, terrain conditions, sur-
face friction, etc. that affect the movement of a pair of MSRs while moving towards
and docking with each other. We consider three discrete values for environment
uncertainty, eu = {hi,med, lo}. The uncertainty is modeled as a multi-variate half-
Gaussian distribution N (μeu,σeu). Modeling it as a half-Gaussian distribution al-
lows us to represent it as a folded standard normal distribution where the fold occurs
at a cumulative probability of 0.5 i.e. at the mean μeu.

To combine the Gaussian representing the motion uncertainty, we consider their
weighted mean with variance [6]. We associate with each Gaussian a weight that
denotes the Gaussian effect on the total motion uncertainty of the robot. These
weights are denoted by wdu, wau, and weu respectively, and each weight is given
by the inverse of the corresponding Gaussian variance. The weighted mean of the
three Gaussian then gives the total motion uncertainty, expressed as a probability,
when two MSRs Ai and A j attempt to connect with each other, as given below:

prob(Ai,A j) =
1

wdu +wau +weu
(wdu · pdu +wau · pau +weu · peu), (1)

where pdu ∈N (μdu,σdu), pau ∈N (μau,σau) and peu ∈N (μeu,σeu), and, wdu =
1

σ 2
du

, wau =
1

σ 2
au

, weu =
1

σ 2
eu

.

4.1.2 Performance Uncertainty

When a robot moves in a certain configuration, its performance might vary depend-
ing on several factors such as how well the modules are physically connected, how
well the modules can lift each others weight, how much battery the modules have,
how well multiple MSRs coordinate with each other while operating, etc. To model
these operational uncertainties, we assume that the utility received by the set of
MSRs has a certain variance around the ideal value given by the value Val(CS). We
denote this variance as a lower and upper bound on Val(CS) denoted by EVlb(CS)
and EVub(CS), where EVlb(CS) = (1− pl) ·Val(CS), EVub(CS) = (1+ pu) ·Val(CS)
and pl , pu ∈ [0,1]. For legibility, from now on we use the term value to refer to EV ,
without loss of generality.
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Uncertain CSG. To integrate the reconfiguration uncertainties into the CSG, we
propose an uncertainty augmented structure called the Uncertain Coalition Struc-
ture Graph(UCSG). Formally, UCSG = (V,E,w), where V = Π  CS is the set
of vertices of the UCSG corresponding to the set of all partitions of the agents
or modules, ei, j ∈ E : ei j = (vi,v j),vi,v j ∈ V,v j = succ(vi) is the set of edges
in the UCSG, and, w : E → [0,1] is a weight associated with edge ei j. We have
taken wi j = w(ei j) = prob(Ai,A j) so that it represents the motion uncertainty in-
volved in forming the coalition structure corresponding to v j starting from the coali-
tion structure corresponding to vi. Within the context of the UCSG, we formulate
the MSR reconfiguration problem as finding the configuration or coalition struc-
ture CS∗ that has the maximum expected worst-case (lower-bound) value, that is,
CS∗ = argmaxCS∈V EVlb(CS).

Because the number of nodes in the UCSG is unchanged from that in the CSG,
and is still exponential, exhaustive search techniques are computationally expensive
to implement. To address this problem, we describe an intelligent pruning technique
to find the node CS∗ in the UCSG, as described in the next section.

4.2 Generating and Pruning the UCSG

Our pruning strategy for the UCSG is based on the insight that a pair of MSRs
that are likely to incur a high amount of motion uncertainty to get connected with
each other will lead to a low-value configuration when included as part of any other
configuration. Our objective then is to identify such inefficient pairings as soon as
their expected value is calculated and prevent further exploration of the nodes of the
UCSG that include those pairings. Starting from singleton modules at the root of the
UCSG, the earliest such inefficient pairings can be determined is at depth 2, when
two singletons come together to form a two-module MSR. We mark such inefficient
2-module configurations as a bad coalition (BC), as defined below:

Definition 2 Bad Coalition. Let v1 denote the root of the UCSG and v2 denote
the children of the root node. Then, any v ∈ v2 is marked as a bad coalition iff
prob(ai,a j)≤ bcthr : (ai,a j)⊂ v, where bcthr ∈ [0,1].

Nodes generated while exploring the UCSG which include any bad coalitions
are pruned immediately. We assume that all modules are within communication
range of each other, and, at the beginning of the reconfiguration process, modules
communicate their position and angle to each other within a global reference frame.

The basic algorithm for searching the UCSG for CS∗ is a uniform cost search as
shown in Algorithm 1. The search starts at the root node, where every module is a
singleton, and checks its children for bad coalitions. Bad coalitions, if any, are stored
in the set BC. The nodes that do not contain any bad coalitions are placed in the set
called OPEN. The nodes in OPEN are partitioned into two sets, called unpromising
and promising nodes (v̄unprom and v̄prom respectively) based on whether the nodes
upper bound lies below or above the highest value of the lower bound, EV ∗

lb seen
thus far. Nodes in each of these partitions are sorted according to their upper bound
value EVub to ensure that within each partition, less promising nodes are inspected
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Algorithm 1. Algorithm to search for best coalition structure in UCSG
searchUCSG(root)
Input: root // set of singleton agents represented as root of UCSG
Output: CS∗: coalition structure in UCSG with max. expected value
Calculate EVlb(root) and EVub(root);
EV ∗

lb ← EVlb(root);
v̄children

root ← Generate children of root;
BC ← Identi f yBadCoalition(vchildren

root );
OPEN ← v̄children

root \BC;
Sort nodes in OPEN based on EVub;
Partition OPEN into v̄uprom and v̄prom given by:

v̄unprom = {v ∈ OPEN : EVub(v)≤ EV ∗
lb}

v̄prom = {v ∈ OPEN : EVub(v)> EV ∗
lb}

Prune(v̄uprom ∪ arg min
v̄prom

(EVlb(v̄
prom)));

d = 2;
while d < targetdepth do

EV ∗
lb ←max(EV ∗

lb,max(EVlb(OPEN));
for every node v ∈ OPEN do

v̄children ← Generate children of v
after removing any children nodes with coalitions in BC

OPEN ← OPEN \{v};
OPEN ← OPEN ∪ v̄children;

Sort nodes in OPEN based on EVub;
Partition OPEN into v̄uprom and v̄prom given by:

v̄unprom = {v ∈ OPEN : EVub(v)≤ EV ∗
lb}

v̄prom = {v ∈ OPEN : EVub(v)> EV ∗
lb}

Prune(v̄uprom ∪ arg min
v̄prom

(EVlb(v̄
prom)));

d ← d +1;
EV ∗

lb ←max(EV ∗
lb,max(EVlb(OPEN));

CS∗ ← node with EV ∗
lb;

return CS∗;

IdentifyBadCoalition(v̄)
Input: v̄: set of nodes belonging to UCSG
Output: BC: set of bad coalitions
//v only contains nodes at depth 2 of the UCSG which consist of
//exactly one 2-agent coalition and remaining singleton coalitions.
BC ← { /0};
for every v ∈ v̄ do

if ∃(i, j) ∈ v : u(i, j)<< u2 then
BC ← BC∪ (i, j);

return BC;
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Algorithm 2. Algorithm to prune a set of nodes from the OPEN list in a depth
first manner.

Prune(v̄)
Input: v̄: set of nodes belonging to OPEN
Output: winner: node from v̄ with highest expected future utility
for l = 1 to k do

//for k levels expand branch starting from node v j

for every v j ∈ v̄ do
v̄children

j,l ← succ(l)(v j) (after removing any bad coalitions);

vchild
j,l ← arg max

v∈v̄children
j,l

EVub(v);

if ∃ j′ : vchild
j′,l = vchild

j,l then
v̄← v̄\{v j}
pruned ← pruned∪{v j};

else

grad j ← (EVlb(vchild
j,l )−EVlb(v j))+gradj·(l−1)

l ;

//Project each line up to targetdepth and select winner
vmax

k ← max
v∈vchild

j,k

EVlb(v);

gradmax
k ← gradient corr. to vmax

k ;
winner ← vmax

k ;
//find intersection depth of vmax

k with every unpruned child of v j at depth k
for every vchild

j,k do

inter j ← EVlb(vmax
k )−EVlb(vchild

j,k )

gradj,k−gradmax
k

;

if min
j
| (targetdepth− inter j) |≤ thresh then

winner ← argmin j | targetdepth− inter j |;
//break ties in winner by selecting winner with (targetdepth− inter j)

pruned ← pruned ∪ (v̄\{winner};
OPEN ← OPEN \ pruned;
return winner;

and possibly pruned earlier. During each iteration, the algorithm partially prunes the
nodes in v̄unprom and then recursively expands the un-pruned nodes in OPEN. The
best expected lower and upper bound values in the entire UCSG, EV ∗

lb and EV ∗
ub,

are updated at the end of each iteration. The algorithm explores UCSG nodes up to
a certain depth called targetdepth and returns the node with the highest value of
lower bound EV ∗

lb that has been encountered so far.
The pruning mechanism used for nodes in the unpromising partition, v̄unprom, re-

quires some insight. Consider a situation where there is only one node in v̄unprom

and v̄prom respectively. Denote these nodes by vk ∈ v̄unprom and vl ∈ v̄prom and
their lower bound values by EVlb(vk) and EVlb(vl) respectively. By definition of
the promising and unpromising partition, EVlb(vk) < EVlb(vl). In the conventional
branch and bound algorithm, vk can be pruned right away as the successor nodes
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in its subtree cannot improve on the values in vl’s subtree. However this might not
be the case in the UCSG because of the operational uncertainty between modules.
Let pk1, pk2, pk3...pkd′ denote the operational uncertainty denoted by the weights
(wi j) encountered starting from vk up to a node at depth d′ away from vk’s depth.
Similarly, let pl1, pl2, pl3...pld′ denote the corresponding operational uncertainty
starting from node vl up to a node at depth d′ below vl . The values pkm and
pln(m,n = 1...d′) are probabilities determined by the operational conditions. Con-
sider a case where for every m,n pkm >> pln. In such a scenario, we can have
EVlb(succ(d

′)(vk)) > EVlb(succ(d
′)(vl)) implying that d′ levels below the current

depth, vk’s lower bound might be higher than vl’s lower bound. Therefore, it might
be incorrect to make a decision about pruning node vk as soon as it is placed in
v̄unprom.

To address this problem, we propose a lookahead-based technique for making
a decision to prune a node from the unpromising partition. The main idea of the
lookahead technique is to check whether the lower bound of any node in the un-
promising partition might exceed the lower bound of the worst node (lowest EVub)
in the promising partition at a lower depth in the UCSG called targetdepth. How-
ever, expanding all the successor nodes of every node in v̄ up to targetdepth is a
computationally expensive operation as the number of successor nodes grows expo-
nentially. Therefore, we divide the lookahead process into two steps - (i) a gradient
calculation phase that expands a node for k successive levels from the current level,
retains only the best successor node at each level, and, calculates the change in the
value or gradient of EVlb from the current level upto k levels below; (ii) a projec-
tion phase, that calculates the expected value of EVlb at targetdepth by projecting
the last calculated value of EVlb using the gradient. As shown in Algorithm 2, in
the gradient calculation phase, each node v j ∈ v̄, is expanded for k successive levels
and only, vchild

j,l the successor node at each level l with highest value of the upper
bound EVub is retained. After removing duplicate nodes, the change in the value of
the lower bound EVlb from v j up to vchild

j,l is calculated as grad j. In the projection
phase, we first identify the best node (with highest value of EVlb) at the last calcu-
lated level (current level + k). We call this node winner and its associated gradient
for EVlb as gradmax

k . We then inspect each of the remaining nodes v j �= winner at
(current level + k) and calculate the level, inter j, at which v j’s EVlb value exceeds
winner’s EVlb value. If inter j is at targetdepth or near (i.e. within thresh levels of
targetdepth), the node v j ∈ OPEN having the highest positive difference in EVlb at
or near targetdepth with winner is marked as the new winner. All nodes except the
final winner are then pruned, while winner is added to OPEN for expansion in the
next iteration step.

5 Experimental Results

To verify the performance of our proposed reconfiguration planning technique, we
implemented the searchUCSG algorithm in C++ on a desktop PC (Intel Core i7 -
960 3.20GHz, 12GB DDR3 SDRAM).
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Experimental Setting. We consider a setting where a set of n = 4...25 ModRED
modules are placed randomly within a 4× 4 m2 environment. Initially none of the
modules are connected with each other. The objective of the modules is to find
the configuration that gives the highest value. To do this, each module runs the
searchUCSG algorithm given in Algorithm 1. The value of an MSR Ai ∈ CS is
defined as:

Val(Ai) =

⎧⎪⎨⎪⎩
Val(1), if |Ai|= 1;

Val(1)× (|Ai|+ |Ai|2
10 ), if |Ai| ≤ Amax;

Val(1)× e−(|Ai|−Amax)×10, if |Ai|> Amax.

(2)

This value function3 causes value of an MSR to monotonically increases from
a singleton up to a certain size Amax, beyond which it decreases exponentially. In
other words, it gives preference to forming larger coalitions or MSRs up to certain
maximum size Amax, which is given by the physical limitations of MSR modules
to connect with each other and maneuver while remaining connected. The value of
a configuration or coalition structure is given by: Val(CS) = ∑

Ai∈CS

Val(Ai). For our

experiments, we have used Val(1) = 5. The values of different parameters used by
our algorithm are shown in Table 1. The environment uncertainty is set to medium
for most experiments, unless otherwise stated.

Table 1 Different parameters used for our simulations

Parameter Symbol Values

Number of agents n {4....25}
Maximum desired coalition size Amax 2(n = 4),4(n = 6),6(n > 6)
Max. depth explored in UCSG targetdepth { n

2 ,
2n
3 , 3n

4 ,n−1}
Look-ahead depth k n−current depth

2
Mean and std. dev. for distance uncertainty pdu,σdu 0, 17

3 (comm. range of modules = 17cm)
Mean and std. dev. for angle uncertainty pau,σau

π
2 ,

π
6

Mean and std. dev. for env. uncertainty peu=hi,σeu=hi 0.66,0.1
peu=med ,σeu=med 0.33,0.1

peu=lo,σeu=lo 0,0.1
Prob. for estimating EVlb from VCS pl 0.5 for n≤ 12

0.2 for n > 12
Prob. for estimating EVub from V (CS) pu 0.2
Bad coalition threshold probability bcthr 0.1

5.1 Simulation Results

In the first set of experiments, we analyzed the effect of the main concept of our al-
gorithm i.e. finding the best coalition structure possible from UCSG with intelligent
pruning. For 4 ≤ n ≤ 12, we were able to do an exhaustive search in the space of

3 Value or reward can be determined from the history of past performances of a coalition.
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all coalition structures to find the optimal coalition structure and see that our algo-
rithm is able to find the optimal coalition structure for all values of n. The time taken
to find the optimal value with our intelligent pruning technique is given in Figure
3(a). For n > 12, exhaustive search becomes prohibitive as its complexity is O(nn).
So for more than 12 agents, the highest coalition structure value that our algorithm
finds with targetdepth = n− 1 (exploring all depths, but with pruning) is used as
the best value. The ratio between the optimal (n ≤ 12) or best (n > 12) value and
the value found by our algorithm, for different values of targetdepth, are shown in
Figures 3 (b) and (c). Figure 3(b) shows that for n ≤ 12 if we vary the exploration
depth, targetdepth in the UCSG, then for targetdepth = n

2 , on an average we can
get 80% of the optimal value4. If we increase the limit to targetdepth = 2n

3 , then
the achieved value is almost 90% or above of the optimal value and if we further
increase targetdepth to 3n

4 , then it is 95% of the optimal value. Empirically, we can
say that our algorithm provides the worst bound of 80% if we explore till depth n

2
and this bound increases as we go explore deeper. For n = 15...25 agents, in Fig-
ure 3(c), we can see that if we explore upto targetdepth= n

2 , then the value obtained
by our algorithm is 90% of the best value obtained. And for targetdepth = 2n

3 , this
ratio increases to almost 95%, whereas for targetdepth = 3n

4 it is more than 95%.
From this set of results, we can say that our algorithm provides the worst bound of
90% if we go till depth n

2 (for more than 12 agents) and this bound increases as we
further explore lower depths.

4 5 6 7 8 9 10 11 12
50

60

70

80

90

100

110

Number of agents

P
er

ce
nt

ag
e 

of
 o

pt
im

al
 v

al
ue

Depth n/2
Depth 2n/3
Depth 3n/4
Optimal

15 20 25
50

60

70

80

90

100

110

Number of agents

P
er

ce
nt

ag
e 

of
 b

es
t v

al
ue

Depth n/2
Depth 2n/3
Depth 3n/4
Best

Fig. 3 a) Ratio of values of coalition structure found using searchUCSG algorithm with
targetdepth = n − 1 to the optimal value and corresponding running times taken by
searchUCSG algorithm, (b) Ratio of value found by searchUCSG to the optimal found (ex-
pressed as percentage) for 4 to 12 agents, (c) Ratio of value found by searchUCSG to the
optimal found (expressed as percentage) for 15 to 25 agents

The quality of the solution found by our algorithm is also dependent on the ratio
between exploration depth targetdepth and Amax. Recall that the value function we
have defined, gives the highest value for an MSR (coalition) that is of size Amax. The
first time a coalition of size Amax occurs in the UCSG is at depth Amax. This implies

4 As we have fixed Amax at 6, for 7 agents we can find coalitions of size 6 only at depth 6
(i.e. d= n-1). That is why, if we go for targetdepth = n

2 , then obtained value is only 60%
of the optimal value.
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that targetdepth ≥ Amax, for our algorithm to be able to find the coalitions with
good values, and the higher the value of targetdepth

Amax
is, the closer the solution is to the

optimal or best value. For example, in Figure 3 (a), with n = 12 and targetdepth =
n
2 = 6 which is equal to Amax, the value found by our algorithm is on an average
within 80% of the optimal. But when n = 25, and targetdepth = n

2 = 12 which is
greater than Amax, the algorithm has already seen several nodes with coalitions of
size Amax = 6 and consequently finds a better solution which is within 94% of the
best value. We have performed 10 simulation runs with different values for medium
noise settings and found that variance in value found at different targetdepths is
within 1− 3%.
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Fig. 4 Comparison of value found and time taken for different targetdepth values. (a)
targetdepth = n

2 , (b) targetdepth = 2n
3 , (c) targetdepth = 3n

4 ; (d) Comparison of number
of nodes explored, in log scale, between our algorithm (using low, medium and high environ-
ment uncertainty) and 3n and 2n times obtained in previous works.

We have also compared the percentage of optimal(or best) value we are getting
till a certain targetdepth using our algorithm and percentage of the time taken to
find the optimal value. The results are shown in Figures 4 (a)-(c) for up to 25 agents.
We see that as as the number of agents increases, we get values that are closer to
the optimal or best value, while taking less time. Also as we explore deeper into the
UCSG, this relative difference between the best found value and the time taken in-
creases. As can be seen from the graphs, as targetdepth increases from n

2 to 3n
4 , the
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relative difference between the percentage value found and percentage time taken
also increased - the time got successively lower and the best value found got suc-
cessively higher. This implies that as our algorithm proceeds, the improvement in
value of the node found is more than the cost (time) incurred to find the node, that
is, our algorithm takes less time to find a better node, as it proceeds further.

We have also compared our result with previously established bounds for the
CSG search problem [11, 8], where the complexity of the algorithms were O(3n)
and O(2n) respectively. As can be seen from Figure 4(d) (shown with log scale on
y-axis), using our algorithm, for all three of the environment uncertainty types (eu=
{lo,med,hi}), the number of nodes generated is lower than the other algorithms. For
n < 12 agents, although the curves for our algorithm’s time appear very close to the
2n line on the log scale, on a linear scale they take an average time of 75% (eu= lo),
62.5% (eu = med) and 40% (eu = hi) of the worst case time of 2n.

6 Conclusion and Future Work

In this paper we have proposed a MSR reconfiguration planning technique that mod-
els the problem as a new data structure called a UCSG and then described an algo-
rithm to intelligently prunes the search within the UCSG to find the best configu-
ration of a set of MSR modules. Currently, our technique starts with all singletons
or individual modules and finds the best configuration or partition among them. We
are currently extending our algorithm to enable it to start from any configuration
of modules and change to the ’best’ possible configuration. We are also looking at
more structured ways to incorporate the performance uncertainty of modules using
agent types within a Bayesian game framework. Yet another direction we are inves-
tigating is to automatically determine the optimal targetdepth based on the values
of n and Amax. Finally, we are working on implementing this algorithm on physical
ModRED modules.
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Flexible Self-reconfigurable Robots
Based on Thermoplastic Adhesives

Fumiya Iida, Liyu Wang, and Luzius Brodbeck

Abstract. The paper introduces a concept of flexible self-reconfiguration that
makes use of thermoplastic adhesives (TPAs) in robotic systems. TPAs are polymer-
based materials that exhibit several interesting mechanical properties beneficial for
self-reconfiguration. For example, thermoplasticity enables robots to flexibly fab-
ricate a number of different mechanical structures, while temperature-dependent
adhesion allows systems to make robust connection and disconnection. This paper
introduces robotic self-reconfiguration by using three TPA handling processes, i.e.
structure formation, connection and disconnection. These processes are then exam-
ined in a few practical application scenarios, i.e. pick and place operations of a
variety of objects, autonomous body extension of robotic manipulators, and robots
climbing on uneven surfaces. And finally we discusses challenges and perspectives
of this approach.

1 Introduction

Capabilities to significantly vary body structures play an essential role in the adapt-
ability of biological systems. For example, animals start their lives smaller and sim-
pler and then gradually develop more complex systems, replace old body parts such
as hairs and nails, and heal unanticipated mechanical fracture of bones and muscles
to survive in uncertain complex environments.

Previously a number of robotics engineers have been fascinated by such func-
tions in nature, and attempted to implement them through self-reconfiguration and
self-assembly in modular robots [4, 17]. Typically self-reconfigurable robots con-
sist of a number of predefined mechatronic modules that can form lattice-type struc-
tures, self-disassemble the structures, and transform the structures into another shape
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by using actuators in the modules [12, 17]. Based on this basic concept, various
mechatronic modules were designed to demonstrate the use of reconfigurable body
structures for a wheel-like structure transforming into a legged robot to perform lo-
comotion on different kinds of terrain [8], for example. In order to form larger struc-
tures, the self-assembling approach has been intensively studied, in which stochastic
physical interactions are exploited as the main drive. This approach usually employs
mechatronic modules that take advantage of the stochastic physical processes such
as water flows, and the structures can be developed by controlling the connection and
disconnection between the modules [5, 18, 19]. The variations of this approach can
also be found in the ’passive self-assembly’ in chemical engineering [1], or robotic
assembly and disassembly of passive micro components [6]. There has been also an
increasing interest in the use of unconventional materials to overcome some of the
underlying problems of conventional approaches, in which, among others, the vari-
ations of freeform fabrication techniques were usually employed [11, 3]. While the
significant progress has been made in this field recently, there are still a number of
challenges in order to substantially increase the adaptability of our robotic systems.

The goal of this paper is to introduce recent development in our
self-reconfigurable robot project which makes use of thermoplastic adhesive ma-
terial. By explaining the basic technologies and case studies, we discuss the benefits
and challenges in this approach. Note that this paper focuses only on the concep-
tual design principles of this approach, with a rather restricted description of tech-
nical details. For those interested, technical details can be found in publications
[2, 3, 10, 13, 14, 15].

2 Automated Handling of TPAs

Flexible self-reconfiguration exploits physical characteristics of TPAs. TPAs are
solvent-free polymer-based materials that exhibit a phase transition within a rela-
tively small range of temperature [9]: From room temperature up to around 60-80
◦C, they are viscoelastic solid, while they become liquid at higher temperatures over
150 ◦C. The transition is bi-directional and repeatable such that a solid TPA cube
at room temperature, for example, can be heated up and deformed into arbitrary
shapes, and the deformed shape can be maintained by being cooled down. Another
important mechanical characteristic of TPAs is their adhesion property that can be
controlled through the bi-directional phase transition. In the liquid phase, TPAs are
highly adhesive to almost any solid materials and bonds can be formed with a high
strength when being cooled down. Quantitatively, the bonding strength using TPAs
is in the range of 0.01-5 MPa (depending on the type of TPAs and bonded solids) at
room temperature, and it can be dramatically reduced by increasing temperature of
the bonds (Fig. 1A).

To make use of the unique material properties of TPAs for robotic self-
reconfiguration, automated handling technologies for TPAs are necessary onboard
a robotic system. Below we explain three important TPA handling processes, i.e.
structure formation, connection and disconnection processes.
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Fig. 1 Exploitation of mate-
rial properties of TPAs. (A)
Bonding strength changes
over temperature (repro-
duced from data in [13]).
(B) Diameter of TPA
threads formed by FFF
with a robotic arm moving
at horizontally at different
speeds. (C) Examples of
TPA threads formed by FFF
corresponding to data in (B).

2.1 Active Connection and Disconnection

In order to make use of the unique material properties of TPA in a robotic system, we
developed a manipulator that is equipped with a specifically tailored end-effector.
The robot manipulator can exploit these mechanical characteristics of TPA for active
connection and disconnection processes [13, 14]: By installing a “heating plate” at
an end-effector of robotic manipulator (Fig. 2), it is able to liquefy a solid-phase
TPA to induce adhesion and bonding to the heating plate when it is cooled down.
Similarly, bonding strength can be reduced dramatically by increasing the surface
temperature of the heating plate, and by utilizing this characteristic, an attached TPA
structure can be easily separated. The cooling processes can be usually achieved
passively because the TPA material is solid in room temperature, although the speed
can be significantly improved when a robot employs active heat pumps such as
Peltier elements.
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2.2 Structure Formation

The adhesive property of TPA can also be exploited in another process, i.e. additive
fabrication [3]. Here we consider using TPA in the so-called Fused Filament Fabri-
cation [7], in which variations of mechanical structures can be fabricated by placing
a liquid-phase TPA flow and solidifying it. For example, when a thread is placed to
form a spiral trajectory on a flat table, it cools down into a solid flat disk at room
temperature, and an upright wall can be formed by accumulating a thread vertically.
Although such additive fabrication processes usually employ other thermoplastics
such as acrylonitrile butadiene styrene, we found it possible to use TPA for the same
purpose by specifically developing a TPA handling device (TPA Supplier shown in
Fig. 2) that regulates the flow of liquid-phase TPA under the kinematic control of
a robot manipulator. So far our experimental setup is capable of continuously and
smoothly extruding TPA thread with the minimum diameter of 1mm, and the pro-
cess is destabilized when fabricating with a smaller diameter (Fig. 1B and C). It
is also important to mention that both the storage modulus and tensile strength of
TPA are as high as 10MPa at room temperature, which allows to flexibly develop
mechanical components with practical structural strength.

The additive fabrication process can be further enhanced by using both the TPA
Supplier and Connector, which we call a “bonding assembly processes”. This pro-
cess enables the robot manipulator to glue together TPA structures that are indepen-
dently fabricated, thus more complex structures can be produced. Bonding assembly
is also used to connect the fabricated TPA structures to the end-effector of the robot
manipulator for task execution. As exemplified in these processes, owing to the me-
chanical characteristics of TPA, the robotic body extension enriches the variation of
mechanical structures that can be autonomously developed on the fly, when com-
pared to the other conventional approaches.

3 Flexible Self-reconfiguration

The proposed TPA handling processes can be used in a variety of self-reconfigurable
robot applications, owing to the simplicity of mechanisms. In this section, we in-
troduce three case studies in which robotic systems make use of TPAs for self-
fabrication of body parts, connection and disconnection with mechatronic modules,
and self-reconfiguration with random objects.

3.1 Self-fabrication of Body Parts

The TPA-based additive fabrication and active connection-disconnection processes
can provide a significant flexibility in self-reconfiguration of robotic systems. Here
we consider the so-called “robotic body extension” method, which was physically
realized based on a position-controlled five-axis robot manipulator that is equipped
with TPA Connector and Supplier (Fig. 2A). An external host computer sends oper-
ation commands of joint trajectories of the robot manipulator as well as of the TPA



Flexible Self-reconfigurable Robots Based on Thermoplastic Adhesives 197

Fig. 2 A robotic manipulator equipped with TPA Supplier and Thermal Connector. (A) A
photograph of the robot manipulator and a magnified look of its end effector. (B) The fabri-
cation process. (C) The active connection process. (D) Snapshots of water transportation after
body extension with a self-made TPA scoop.

handling processes in TPA Connector and Supplier. For continuous operations over
an extended period of time, the robot manipulator is installed in a large experimental
arena consisting of fabrication and task-execution workspaces, and all devices are
externally powered.

Figure 2 shows one of the representative body extension experiments, in which
the robot manipulator fabricated a “spoon” through additive fabrication and bonding
assembly processes. The manipulator was initially controlled to fabricate a cup-like
structure by using TPA Supplier (Fig. 2B), and then it was bonded to another fab-
ricated stick-like structure to form a spoon (Fig. 2C). When the spoon is completed
and connected to the end-effector, the same robot manipulator can start another
operation to transport water from a cup to another (Fig. 2D). These processes of
robotic body extension were fully automated through a control sequence, and the
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Fig. 3 Examples of mechanical structures that can be constructed from TPAs. The top struc-
tures were manually constructed. The bottom four structures were fabricated by the robot
manipulator in Fig. 2.

robotic manipulator can autonomously switch between processes such as fabrication
of body components, assembly of mechanical structures, or execution of practical
tasks.

Compared to the conventional self-reconfigurable robots developed in the past
(e.g. [8, 17]), the proposed robotic body extension has a few distinctive character-
istics in its self-reconfiguration operations. First, because of the additive fabrication
processes based on the TPA material, this approach has a significantly more vari-
ety of reconfiguration possible. As shown in Fig. 3, we have conducted a number
of different structures that can be useful for the robotic applications by using the
proposed approach. Second, owing to the bi-directional and repeatable transitions
between adhesive and solid phases, the fabricated structures can be re-structured or
re-assembled by controlling the temperature, which is usually not the case with the
conventional rapid prototyping methods. This characteristics also enables the robot
to connect and disconnect the self-fabricated mechanical structures to its own body.
And third, the TPA adhesive property can be applied to many different materials
including metal, wood, and other plastics, thus the approach can be used in many
variations of reconfiguration scenarios as shown in the next subsections.
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Fig. 4 Demonstration of body extension through TPAs with simple building blocks. (A-D)
Four different combinations of passive and active building blocks, as well as self-made TPA
parts. Snapshots 1-5 show execution of a pick-and-drop task after body extension with the
biggest combination out of the four.

3.2 Self-reconfiguration with Mechatronic Modules

One of the main challenges in the proposed self-reconfigurable robots is that self-
fabrication of body parts requires significant amount of time, energy and TPA ma-
terial in order to fabricate large mechanical structures. For example, the fabrication
of a 60mm-long spoon in our robotic setup generally requires approximately 30-40
minutes. Moreover, an additional challenge of the proposed approach is the phys-
ical limitations that are originated in the mechanical properties of TPA material.
Because the structural strength of TPA material is limited around 10MPa and it
cannot be easily increased, the robotic systems are not always able to fabricate the
shapes and sizes of structures as they need.

In order to account for this challenge, we have been exploring a solution in which
the robotic manipulator could take advantage of existing mechanical structures (Fig.
4; [2]). This case study assumes that, within the reach of robotic manipulator, there
exist mechanical structures such as box-like blocks that can be actively connected
and disconnected. This method fist employs the TPA Supplier which provide liqui-
fied TPA on the target object, and second, uses Active Connector to bond to the
object. This method can be also applied to bond an object to another object (instead
of the Active Connector), with which the robotic manipulator is able to construct
arbitrary beam structures. The limitation of such beam structures depends on the
bonding strength of TPA material, while we have so far demonstrated a significant
extension of body structures in this approach as shown in Fig. 4.

The benefit of such self-reconfiguration through modules lies also in the fact that
the blocks attached to the robotic manipulator can be ‘robotized’ (e.g. a block con-
taining remotely controlled sensors and motors), and other types of random objects
as long as they are made of materials being able to attached by TPA. For example,
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Fig. 4 shows a simple block that contains a remotely controlled servomotor, and
the output shaft of the motor (the circular part in the object in Fig. 4) is connected
to a self-fabricated ‘finger’ made of TPA. With such a configuration, the robot is
able to achieve tasks that cannot be achieved only by using the passive mechanical
structures. Figure 4 for example demonstrates an active pick-and-drop operation in
which the servomotor is move the TPA fingers to pick a plastic box and drop it in
the air.

3.3 Self-reconfiguration with Random Objects

The adhesive property of TPA can not only be used for self-reconfiguration of blocks
prepared by human designers in advance, but also for random objects that happened
to be within the reach of robotic manipulator. In fact, we are currently working
on the visually guided robotic manipulator that is capable of recognize stones and
wooden pieces on the floor to autonomously construct mechanical structures. This
capability is mainly due to the TPA’s adhesive property that can be varied over
a large range with many different materials. Because its relatively large bonding
strength against variations of materials, the proposed self-reconfiguration process
can be applied to attachment/detachment of very large modules, and ultimately it
becomes climbing locomotion of self-reconfigurable robots.

Figure 5 and 6 show two prototypes of climbing robot based on the TPA han-
dling devices that we developed in our laboratory [10, 15, 16]. The first prototype
(Fig. 5) is equipped with an onboard TPA Supplier that is capable of providing liq-
uid TPA between the robot’s feet and climbing surface for attaching the body on a

Fig. 5 The first prototype of a mechatronic climbing module that is equipped with Thermal
Connectors and TPA Supplier
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Fig. 6 The third prototype of a mechatronic climbing module that is self-contained and opti-
mized for a large payload and vertical locomotion on complex surfaces

vertical wall. The feet contain a pair of Peltier elements that increase and decrease
the connecting surface for attachment and detachment. The second and third proto-
types [15, 16] have no TPA Suppliers onboard, thus they rely on preloaded TPAs
on the feet or on the surfaces of other modules. Fig. 6 shows the latest prototype
that was developed for testing climbing performance in various vertical surfaces.
The robot has a dimension of 30×30×15 cm3, and it is capable of moving verti-
cally with its own mass of 1.25 kg including the batteries and control electronics
onboard.

When employing TPA’s adhesive property, there are two important characteristics
that need to be considered. First, bonding strength of TPAs usually varies depending
on material properties of bonding surfaces: bonding strength to aluminum surface
is much lower than wooden one, for example. This characteristics can be exploited
when we carefully select materials in the robot. One of our climbing robots, for
example, is capable of climbing on aluminum surface without leaving TPA residu-
als behind, because the connecting surfaces of robot feet are made of copper which
exhibits larger bonding strength than that of aluminum. Therefore, when the robot
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peels off a bonded foot, TPA stays on the foot rather than the climbing aluminum
wall [15]. And the second important design principle of TPA-based connection and
disconnection mechanism is related to the characteristics of heat conductivity on the
connecting surfaces. Because TPA’s bonding strength is dependent on material tem-
perature, connection and disconnection performances (such as speed and remaining
residuals) largely depend on the heat conductivity of the materials. Usually it is
more difficult to disconnect from materials with larger conductivity because it re-
quires more energy to increase temperature at the connecting surface.

4 Conclusion and Perspectives

This paper introduces an approach to self-reconfigurable robots that takes advan-
tage of the unique mechanical properties of thermoplastic adhesive material. The
material has both thermoadhesive and thermoplastic characteristics, thus, by con-
trolling material temperature, we are able to regulate connectivity of the material
to bonding surfaces as well as geometric structure of the material itself. Further-
more, because these TPA properties can be bi-directional and repeatable, we are
able to cyclically exploit them in practical self-reconfiguration tasks. Owing to the
unique mechanical characteristics of this material, we were able to develop three
TPA handling processes (i.e. active connection, disconnection, and structure form-
ing), which enabled three distinctive case studies of self-reconfigurable robots, i.e.
self-fabrication of body parts, self-reconfiguration through mechatronic modules,
and self-reconfiguration with random objects.

The main contribution of the proposed approach is largely originated in the sim-
plicity of mechanisms for freeform fabrication and connectivity control. Because
the TPA material allows us to control both structural plasticity and connectivity by
using the simple processes, we were able to develop small and portable devices
that can be implemented into different robotic platforms. The processes of shape
and connectivity control are not entirely new as there are a number of rapid proto-
typing devices and well-established mechanisms for connectivity control available
nowadays. The innovations of this particular approach, however, lies in the fact that,
because of the simplicity of mechanisms due to the TPA material properties, we are
able to implement both plasticity and connectivity control processes in a compact
robotic system, which are essential functions in self-reconfigurable robotic systems.

Although our exploration is still in a nascent stage, we are able to foresee a few
important challenges based on the case studies so far. First, one the most important
challenges is the improvement of TPA material properties because most of the ca-
pabilities of our robots rely on the mechanical characteristics of the material. The
behavioral performances of our robots such as the sizes, structural strength, and pre-
cision of fabricated objects are mostly determined by the tensile modulus of TPA
itself, and there are clear limitations as long as we use the material in the same pro-
cesses. In this sense, it is very challenging for the proposed TPA-based mechanisms
to generate connection strength comparable to the conventional mechanical fixation
approaches. Second, along with the material-related research, it is also necessary to
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optimize further the handling technologies of TPA in order to improve the scalability
of the proposed approach. In particular, our robotic platforms have relatively lim-
ited capabilities in thermo and pressure control of TPA material, which restrict the
speed, precision, and size of self-reconfiguration processes. In general, it is a signifi-
cant challenge to improve speed and precision in the temperature-dependent control
approaches. Another important research direction is to consider the technology for
‘re-morphing’ of TPA-based objects: in our current setup, the TPA-based objects
fabricated by the robot cannot be modified later, although, with an additional TPA
handling device, the robot should be able to partially liquify the previously fabri-
cated structures to shape into another. And third, another exciting challenge will
be the design and implementation of more enhanced computational processes. All
of the demonstrations shown in our project so far were fully automated although
they had significant biases of human designers such as the pre-determined trajecto-
ries in fabrication processes and highly structured task-environments. These detailed
constraints should be relaxed through the investigations of computer optimization,
signal processing, and system identification.
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Self-assembly and Self-reproduction
by an M-TRAN Modular Robotic System

Haruhisa Kurokawa, Akiya Kamimura, and Kohji Tomita

Abstract. A feasibility study was made for self-assembly and self-reproduction us-
ing an M-TRAN modular robotic system. Presuming that many stand-alone modules
are scattered on a flat plane, various models of self-organizing systems have been ex-
amined; (1) randomly driven self-assembly, (2) self-assembly accelerated by worker,
seed, and mold robots, and (3) self-reproduction based on a universal constructor.
Basic functions for the universal constructor were tested by experimentation.

1 Introduction

Self-assembly and self-reproduction are fundamentally important phenomena in bi-
ology for maintaining an individual’s life (growth and health) and for continuing the
evolution of species. Although such phenomena and their underlying principles do
not work in general on macro-scale kinetic systems, studies of various kinds have
been conducted to simulate or make use of them [1, 4].

One such approach is to simulate self-assembly of mechanical components ag-
itated by a randomly vibrating container [2, 5, 6, 8, 16]. With such a setting, it is
not easy to realize natural force among scattered components, comparable to elec-
tromagnetic force, to induce accumulation and cohesion.

Swarms of mobile robots cooperating and forming spatial and logical confor-
mations can be viewed as another approach. In this case, each robot has sufficient
sensing devices and there can be environmental measuring systems to find the rela-
tive location and orientation of robots. With locomotion capability of robots, mutual
interaction can be made to simulate either particle dynamics or self-assembly. A
few of them, however, have dealt with self-assembly of robots, such that separated
robots physically connect to others [3].
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Studies of self-reconfigurable modular robots constitute another approach. There
have been, however, few examples of actual hardware realization compared to
swarms of mobile robots [12, 19]. Such modules generally work only when they are
connected, and an individual module in most systems is not locomotive by itself. In
[13, 20], however, separated modular robots reconnected after detecting their rela-
tive location using image sensing. Those trials can be regarded as simple modular
robotic self-assembly.

Compared to self-assembly as above, self-replication and self-reproduction are
much less studied on a macro-scale [1]. In some studies such as [11, 10], the en-
vironment in which a parent robot works seems so structured that components to
be assembled are supplied in a predefined manner. The environment, not the robot,
possesses all necessary information, hence the term ‘self’ is vague. Moreover, the
von Neumann’s well-known principle of a self-reproducing automaton in [18] is lit-
tle considered. In the case of modular robotic approaches such as in [21], modules
cooperate as components with a constructor robot, performing comprehensive self-
reconfiguration. Therefore, the distinction between a constructor, components, and
an instruction is not clear.

We intend to design several types of self-assembly and self-reproduction using
M-TRAN modules, to incorporate all processes together in the hope of drawing
a feasible evolutional history from self-assembly to self-reproduction. Compared
to each study described above where components and the environment are designed
independently for each process, we assume an environment common to all processes
and finally propose self-reproduction using a universal constructor. Though actual
controllers and algorithms were not developed for most of the following systems,
basic experiments were made to verify kinetic functions for self-reproduction.

2 M-TRAN Modular Robot

The M-TRAN system is based on the cubic lattice with each module composed of
a pair of semi-cubic blocks (half-cylinder and half-cube), called passive and active
blocks, connected by a link block via two rotary actuators (Fig. 1(a)) [9, 14, 15].

Modules connect via connection interfaces (flat surfaces), where only active
(dark color) and passive (white) blocks are mutually attached (connection polarity).
The modules can be assembled into robots of various configurations. Examples of
robotic forms that are capable of locomotion are shown in Fig. 1(b) and Figs. 2(d),
(f), (g), and (i) [7]. Robots in various configurations can self-reconfigure into others
as shown in Fig. 1 and Fig. 2. All of those were verified through experimentation
[9].

Generally a modular robot does not separate out, which has advantages: 1) rela-
tive location of a module is in principle obtainable, and is easily controlled funda-
mentally in the case of a lattice-based system; 2) communication between any two
modules is possible; and 3) synchronization, cooperation, and centralized control is
easily attainable as long as not too many modules are used, etc.
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Fig. 1 M-TRAN module and self-reconfiguration. (a) Single hardware module. (b)–(f) Ex-
periment of self-reconfiguration from a four legged robot to a linear robot. A reversal process
of this, from (f) to (b), was also verified by experiments.

(a)
(c)

(b)

(i)
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Fig. 2 M-TRAN configuration and self-reconfiguration: (a), (d), (g), and (i) show robotic
forms capable of locomotion. Curved arrow: transformation simply by joint motion. Straight
solid arrow: self-reconfiguration. Broken arrow: reconfiguration to serial forms similar to (f).
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An M-TRAN module has nine infrared (IR) transmitters and detectors placed on
six connection interfaces as shown in Fig. 1(a). They are used mainly for communi-
cation between directly connected modules. Because of positions of the devices on
each connection interface, relative angle of two connected interfaces is detectable
among four possibilities.

IR communication is available even between detached connection interfaces, if
they are proximate to and sufficiently parallel to each other. With the current built-in
program, separate modules try to communicate and connect when a module’s active
interface is facing another module’s passive interface. Without means of sensing the
position and alignment, such a trial of connection tends to fail, but failure can be de-
tected and retries can be made automatically. The IR signal is also used for detection
and localization of separated modules. Although localization is not precise, simple
experiments have verified its effectiveness, in which a walking robot approaches
another isolated module and walks around it.

In the following, we mainly use a cross-shaped robot made of four modules
(Fig. 1(b) and Fig. 2(a)) as a target for the tasks of self-assembly and self-replication,
which we call a target robot hereinafter. With its four legs, it can walk in four di-
rections and make a turn using simple gate patterns. Each flat surface of the legs is
equipped with IR devices for detection of and communication with another mod-
ule. Additionally, it is presumed that its joint controller can detect an object that
obstructs joint motion.

We presume in the following that there is an ideal flat ground on which target
robots and many stand-alone modules are scattered. Those stand-alone modules are
regarded as components for assembly and are designated hereinafter as component
modules or components. They remain passive except for their capabilities of com-
munication and automatic connection until they are properly assembled. For the
sake of simplicity, in this study, all of their two-joint angles are fixed when they are
inactive as shown in Fig. 3. There are four possible postures, but only two of them,
p1 and p2 in Fig. 3, are considered because of simplicity and because the other two
are less stable.

z

x y

p1 p2flat ground
p3 p4

Fig. 3 Components on flat ground. There are four possible postures on the ground.
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3 Self-assembly

3.1 Stochastic Assembly

As a preliminary study, consider self-assembly similar to [2, 5, 6, 8], i.e., compo-
nent modules are placed on a flat bed, which is shaken randomly to give components
perturbation and agitation. Two components might accidentally collide, and though
less likely, connect to form several configurations (Fig. 4). When the formed con-
figuration does not match a part of the target, it should be dissolved. Consequently,
the yield of this stochastic assembly will be very small.

Instead of using a vibrating bed, a target robot is useful to assist and to accelerate
assembly as a worker. It is sufficiently dexterous to walk, to approach, to push, and
to transfer a component module (Fig. 5(a) and 5(b)). Of course a component module
must be detected and the relative position and orientation are properly measured.
Such measurement can be done, in principle, by walking around and sensing an IR
signal from a component by many detectors equipped with the walking robot.

Because the components are assumed to be scattered randomly, the relative posi-
tion and orientation of components must be adjusted. Pushing by a robot can change
the position and orientation of a component on the flat surface. Changing the pos-
ture of a component between p1 and p2 in Fig. 3 is not straightforward, but with
sequences of self-reconfiguration, the worker (target) robot can make such a change
(Figs. 5(c), (d)).

+ a

b

+

+

+
c

d

fe

+

Fig. 4 Examples of random assembly. Configurations e and f are not included in the target
and to be dissolved. Note that the robots d is a mirror image of c, and at the same time
equivalent to c turned upside down. In this paper, they both are regarded as targets.
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(a) (b)

(c)

(d)

p1

p2

p1 p2

Fig. 5 Worker robot: (a) approach, (b) transportation, (c), (d) posture change

3.2 Seed and Mold

In the above process, the robot works like a catalyst or an enzyme in a chemical
or biological reaction [17]. The success rate, i.e., the yield of reaction process, will
be still low, because the robot’s sensing ability is low and positioning is inaccurate.
The following two ideas, a seed and a mold, are more like a catalyst or an enzyme
utilizing their geometric affinities in accelerating the assembly process.

Presuming that there are two robots, one acting as a worker and another as a seed
for assembly. A worker carries and connects components to a seed one by one, then
the seed grows as shown in Fig. 6. The assembly process can be controlled such that
the seed sends a message to the worker, which includes the stage of assembly and
which is distinct in each direction to guide the subsequent assembly by the worker.

Geometry of the seed is crucial for a successful connection. In the assembly path
from (a) to (c) or (d) via (b) in Fig. 6, for example, connection of A or B in (b)
might mostly fail. Rather more successful will be a new module, such as C or D
in (f), placed at and pushed to a concave corner of (a). Therefore, guiding along
the latter path from (a) to (g) via (f) will be more successful than the former from
(a) to (c), though the products (e), (h), and (j) need to reconfigure to the target
configuration.



Self-assembly and Self-reproduction by an M-TRAN Modular Robotic System 211

D

C

A

B

(b) (e)

(g)
(h) (i)

(j)

(c)

+2

+2

+2

+2

+2
Div

SR

Div

Div

(f)

(a)

(d)

SR

SR

SR

Fig. 6 Assembly pathes using a seed robot. At each arrow, ‘+2’ implies that two modules are
added, and ‘Div’ and ‘SR’ respectively imply division and self-reconfiguration.

Such concavity, as used in [13, 16], can be utilized by another structure shown
in Figs. 7(a)–(e), which works as a universal, variable shape mold for assembly.
This chain can also work as a guide along which a worker robot travels, maintaining
physical contact. If a part of modules in a chain is twisted as in Fig. 7(f), then more
effective guidance by IR communication is possible, although molding becomes less
universal.

C1

C1

C2
C3

C1
C2

C1
C2

C3

C4

(a)
(b) (c)

(d) (e) Worker robot
Guiding path

Dock

(f)

IR

Fig. 7 Two-dimensional universal mold. (a)–(e) The chain needs to change its shape as com-
ponents are properly assembled. (f) Similar chain capable of emitting IR signal to guide a
worker robot.
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4 Self-reproduction

The assembly shown in Fig. 6 can be regarded as self-reproduction, but von Neu-
mann’s model of a self-reproducing automaton is not much considered. It consists
of four components: an automatic constructor, a copier of instruction, a controller,
and an instruction code. Because M-TRAN modules as components have sufficient
capability of information processing and control, an automatic constructor is the
first to be considered for kinetic self-replication.

In the following, two automatic constructors are presented first. Not only is the
condition of the studies in the above not considered, but also they lack sufficient
universality to produce themselves. In contrast to them, a universal constructor in a
reduced dimension and self-reproduction using it will then be proposed.

4.1 Automatic Constructor

Making an automatic constructor is straightforward using a lattice-based self-
reconfigurable modular robotic system, if components are the same modules as the
constructor and if they are supplied on the lattice grids. One such example is a three-
dimensional manipulator as shown in Fig. 8(a).

A three-dimensional manipulator, however, requires hardware capability in pow-
erful actuation and precision control, which is beyond most modular robots currently
available. More realistic is two-dimensional construction, which suffices for univer-
sal construction, because many three-dimensional robots can be transformed from
two-dimensional ones as in Fig. 2.

Fig. 8(b) is an example, which can construct most two-dimensional structures
within its size. The process of construction is the following: 1) Components to be
assembled are supplied on the base structure. 2) Each component (module) moves

m1

m2

c

op1

op2
Component supply

Parent
manipulator

Docking port for a child

Base structure

(a)

Child

(b)

reconfiguration

Base structure

Fig. 8 Automatic constructor: (a) three-dimensional, (b) two-dimensional. In (b), op1
changes the line of m1’s motion and op2 converts between m1 and m2.
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by itself (basic motions m1 or m2 in Fig. 8(b)) or a pair of modules work in cooper-
ation (basic motions op1, and op2 in Fig. 8(b)) to reach the desired position and in
the desired orientation [14].

For these two cases of 3D and 2D constructors, the environmental conditions in
the previous sections are not considered, and components may be either floating in
the air, and approach and connect to the base structure, or they might be supplied
from the base structure made of modules by reconfiguration (Fig. 8(b)). In addition,
in the construction process, components do not remain passive but instead actively
participate in construction. Also, they are not useful for self-reproduction because
they only assemble structures that are smaller than themselves.

4.2 Universal Constructor

An example of a universal constructor is portrayed in Fig. 9(a), which can, in prin-
ciple, make any serial structure in any length. It has two manipulators M1 and M2,
and a port where an assembled serial chain of components are supported. This con-
structor works on a flat ground, and components remain passive during the assembly
process.

Assume that there is a robot, i.e., the worker robot in the previous section, which
carries a component to the universal constructor one by one. Once a component is
in its reach, the universal constructor tries blind actions of dragging and pushing
to set the component to either position A or B in Fig. 10. There are four possible
orientations of the component at each position as in Fig. 10(c). By other trial motions
of the manipulators M1 and M2 such as those shown in Fig. 11, current orientation
and posture of the component are determined. Then the component is manipulated
and aligned to be at the position A in Fig. 10(a) and in either the p1 or p2 posture
in a proper polarity order. Finally, the component is connected to a semi-assembled
product supported at the port in Fig. 9(a), and pushed at the place of the former
semi-assembled product.

(a) (b) (c)

Fig. 9 1-D universal constructor: (a) Manipulators M1 and M2, and a port used to hold a
product. (b) Instruction code for construction, with 0 and 1 respectively for the posture p1
and p2 in Fig. 3. (c) Code for the robot in Fig. 1(f).
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A B

(a) (b) (c)

p1

p2

Fig. 10 Sensing and aligning a component. (a)(b) By pushing a component using two manip-
ulators (M1 and M2 in Fig. 9), a component, if any, is detected and aligned. (c) Four possible
orientations of a component for each position A in (a) or B in (b).

p1 p1
p2

p2

Fig. 11 Orientation sensing and manipulation. When a module is at B in Fig. 10(b), four
configurations of the manipulators are tried, each of which can connect to a module in one
of four orientations in Fig. 10(c). After connection, the component can be manipulated to the
desired position and orientation.

A product of the construction is a serial chain of modules, each in the desired
posture, either p1 or p2, which can be represented by a sequence of two numerals,
0 and 1, as presented in Figs. 9(b) and 9(c). For example, the code 0010 represents
a serial robot in Fig. 9(c), which is transformable to a cross shaped, target robot as
in Fig. 1.

Two experiments were conducted successfully, which verify the feasibility of the
construction process. Fig. 12(a) shows an experiment in which a component was
dragged, aligned, connected, and pushed. In another experiment in Fig. 12(b), the
posture of the new component was changed and connected to the semi-product of
two components. These experiments were conducted using manual, not automatic,
control. For an autonomous process, elaborate programs for sensing and control are
necessary.

Consequently, this constructor has the capability of assembling any serial struc-
ture as long as the code, which is a binary number, is provided. Considering the
self-reconfiguration capability described in Sect. 2, it can assemble not only a target
robot but also any robot in Fig. 2. Moreover, it can reproduce itself because this con-
structor is indeed a serial chain made of nine modules as shown in Fig. 9 (b). This
serial robot can also work as a worker robot with its snake-like form or with another
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(a)

(b)

Fig. 12 Experiments of serial construction: (a) the component C2 is dragged, aligned, con-
nected to C1, and pushed to a new position; (b) Posture of C3 is changed by M1. (Video
available at http://staff.aist.go.jp/kurokawa-h/self-repMTRAN.mp4)

dexterous form after self-reconfiguration. Considering two such robots, a worker
robot and a constructor, as a group, this group, as an individual, self-reproduces.

5 Discussion and Conclusion

Several models and scenarios of self-assembly and self-reproduction using an M-
TRAN modular robotic system are presented. Most of the models are originated
from other studies, but the final self-reproducing modular system based on a univer-
sal constructor is original and unique among others. All of them are outlined without



216 H. Kurokawa, A. Kamimura, and K. Tomita

details of controllers or algorithms, but basic kinetic functions of the universal con-
structor are verified using simple experiments.

Some models are illustrated intentionally to evaluate other works. Figure 8(a) is
almost compatible with the self-reproducing robot made by Molecube in [11, 21],
and the system presented in Fig. 7(f) is made similar to the self-replicating robot
having a guiding track in [10]. As for the former, both the M-TRAN model and the
Molecube model reproduce manipulators, but neither reproduces supporting mech-
anisms such as a base structure and a docking port. As components to be assembled
cooperate with the manipulator during their construction process, the operation as a
whole is rather more of a self-reconfiguration than self-reproduction. As for the lat-
ter, such a system also reproduces only a constructor robot but not a guiding track,
which is indispensable for reproduction.

In the studies as [10, 21], metrics are proposed for evaluation of self-reproduction
based on input and output. The various models presented in this paper use the same
components, presuming similar environmental conditions, and producing the same
target robot. Evaluation of these different models, therefore, cannot be made merely
by input and output, i.e., components and a product. Evaluation should be made
considering the complexity of the controller and/or the environment.

It is surely a fundamental problem of this study that an M-TRAN module is
too complex and functional as a mere component. Given such components, we can
design and construct anything physically or virtually and we will be able to produce
a hardware demonstration of self-reproduction as described in this paper. Of course,
hard obstacles, such as limitation of output and power, must be overcome, additional
sensing devices must be installed, and various control programs must be developed.

This study, however, is not intended for such a demonstration, but is meant to
shed a light on how future studies of macro-scale modular robotic self-assembly /
reproduction should be made.

Presuming an environment rich with primitive components, similar to a pri-
mordial soup, and imagining a history of evolution beginning from a simple self-
assembling compound of a few components to a complex self-reproducing entity.
The question is how such evolution is feasible. If there is a universal constructor in
the last section, evolution of serial robots, as its product, is easily understood be-
cause the code directly represents the robot. As described in Sect. 3.2, however, a
serial chain seems less feasible to appear in the early stage, because of its simple
geometry. Therefore, all the models in this paper might not be sufficient to make up
a likely evolution history.

A more difficult problem is evolution of controllers, which need to take place
simultaneously with the evolution of morphology and function. Some controllers,
such as a reproduction process as a lattice-type self-reconfiguration as in [21]
and a locomotion controller based on Central Pattern Generator as in [7], are by
themselves suitable for evolutional computation such as Genetic Algorithm. For
simple controllers based on ‘if-then’ rules, other methods such as Genetic Program-
ming also can be useful tools. Simply combining all such tools, however, is not
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appropriate, because controllers for positioning, manipulation, and locomotion, and
algorithms including decision making are all to be included, and each tool requires
its own objective function. We need an intrinsic, unified system model with a unique
objective function, which is as simple as possible to reduce calculation time, but is
general enough to cover necessary functions.

Even with the above difficulties, not only M-TRAN but also any other self-
reconfigurable modular robot, either homogeneous or heterogeneous, will be a use-
ful platform for constructive studies seeking a feasible scenario, partially at least, of
artificial evolution in morphology, function, and control.
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Self-assembly in Heterogeneous Modular Robots

Wenguo Liu and Alan F.T. Winfield

Abstract. This paper describes the distributed self-assembly of a multi-robot ‘or-
ganism’ from a swarm of autonomous heterogeneous modular mobile robots. A
distributed self-assembly strategy based on a symbol sequence representation is pro-
posed. Constructed from a tree representation of an organism, the symbol sequence
is presented as a well organised nested structure in a compact format. It includes
not only information on the topology of the organism but also how the organism
will be self-assembled. The proposed approach has been tested with real robot pro-
totypes. Results show that robots can successfully self-assemble to required target
body plans within certain time frames.

1 Introduction

Self-reconfigurable modular robots has became a popular research topic since late
1980’s. From the CEBOT [1] to the SYMBRION project [2], more than 30 systems
have been developed over 2 decades. Although earlier studies focused mainly on
solving the mechanical engineering challenges for designing the hardware, recent
research has paid more attention to high level algorithms toward greater controlla-
bility of self-assembly, self-reconfigurable and self-repair of the system. The com-
plexity of the modules and the architecture of the system vary in different studies.
Some use a lattice architecture where docking/undocking can only occur at points
within some virtual cells. The lattice architecture requires a simpler mechanical de-
sign and simplifies the computational representation, thus the reconfiguration plan-
ning is more achievable and scalable. Some other systems do not use the virtual
cell as the docking point for their units. Instead, a number of modules can form a
chain to reach any point in the operating space; the so called chain architecture. To
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get to a specific point and carry out reconfiguration, the chain architecture requires
a more complicated design with additional sensing. To overcome the limitation of
both approaches, a hybrid architecture is favoured by many recent designs. Among
these, a singular design of individual module is normally used, i.e., a homogeneous
design. Apart from the essential functionality requirement of the modules, e.g., me-
chanical docking, some degree of freedom of rotation, robots have been provided
with a very limited range of sensors as appropriate to the design challenge and
research interests. Also, few designs have considered providing individual robots
with autonomous motion capabilities. This typically requires that modules have to
be manually attached to each other prior to any reconfiguration process. The lack
of sensing and mobility limits the possibility of re-assembling after pre-assembled
structures have fallen apart either purposely or accidentally.

To close the gap between modular robotic systems and multiple/swarm robotic
systems, researchers are seeking new designs that are capable of autonomous self-
assembly and self-reconfiguration. The SamBot [3] project consists of a group of
identical robots. Each robot is equipped with two differential driven wheels and sev-
eral IR sensors for autonomous self-assembly. As with many other modular robotic
systems, a rotation arm is used in SamBot to provide one extra degree of rotation
freedom thus enabling self-reconfiguration capability. In contrast, the SYMBRION
project (www.symbrion.eu) takes a heterogeneous approach, and robots with more
sensing, computation and actuation. Various modules with complementary motion
capabilities have been developed for this project. The main focus of SYMBRION
is to investigate the controllability and evolvability of artificial multi-cellular organ-
isms from both engineering and scientific perspectives. The SYMBRION robots can
either work fully autonomously with their own sensing and locomotion capabilities
to explore the environment, or physically dock with each other to form different
organism structures to accomplish more complex tasks that a single robot is not
capable of, for example, climbing a wall or moving over a gap.

One of the fundamental requirements of the SYMBRION project is that robots
must be able to self-assemble into a given structure (body plan) starting from a sin-
gle module. To achieve this, apart from the autonomous docking/undocking capa-
bilities, we need the right morphology control mechanism. A bio-inspired gradient
based process has been widely used to study the pattern growth problem in agent-
based cell systems [5, 4, 6], and later adapted to the modular robotic systems [7].
This approach has however been tested only in simulation and for homogeneous
systems. In addition, the uncertainty of the final generated body shapes imposes
another challenge for controlling the macro-locomotion of the whole structure at
a later stage. An alternative is to build the target shapes, which are known to be
controllable, from some stored pre-defined body shapes. A SWARMMORPH-script
language has been proposed by Christensen for arbitrary morphology generation for
a group of s-bot robots in a 2D environment [8]. The morphologies are pre-specified
as sets of rules stored in scripts which can be communicated and subsequently ex-
ecuted on the newly connected robot. Note that unlike the s-bot robots, the SYM-
BRION robots will initially form a 2D planar structure and then lift itself from a
2D planar configuration to a 3D configuration and, with respect to locomotion, will
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function as a macroscopic whole. The aggregated organism will also be able to dis-
assemble and reassemble into different morphologies to fit the requirements of the
task.

In our previous work, an ID-based strategy was proposed to self-assemble the
SYMBRION robots into certain predefined 2D structures [9]. The ID-based ap-
proach assumed that all robots in the swarm are identical and each robot stores the
same set of predefined structures information. In addition, this strategy allows only
one robot to join the organism at a time, using a fixed docking face, more specif-
ically, the Front side, which constrains the topology of the shapes the swarm can
self-assemble into. This paper will extend the previous work by removing all these
assumptions and limitations. A new strategy will be developed to enable parallel
recruiting and any-side-docking in order to improve the efficiency and robustness
of the self-assembly strategy. In particular, the new propsed strategy will take the
heterogeneity of the system into account.

The rest of the paper is organised as follows: Section 2 introduces the robots of
the SYMBRION project and the hardware configuration for autonomous docking.
Section 3 proposes the internal representation of organism body plan for the self-
assembly process. Section 4 outlines the controller framework and discusses the
morphology control strategy. The proposed approach is validated in Section 5 using
simulation and real robot experiments. The paper ends by drawing some conclusions
and further work in Section 6.

2 The Robots

Figure 1 shows three types of robots developed in the project. These robots have
different shapes and are equipped with different locomotion actuators. The Back-
bone robot has two specially designed wheels which allow the robot to move for-
wards, backwards and sideways; this robot requires a flat surface. With its tracked
locomotion the Scout robot can move across uneven surfaces and is suitable for ex-
ploration tasks. Like many other modular robots, both Backbone and Scout robots
have cubical shapes with four docking faces and one degree of freedom of bending.
The ActiveWheel robot is designed to carry and transport an organism consisting
of several Scout or Backbone robots in the most energy-efficient way. It consists of
two symmetrically arranged arms, connected via a 180◦ turning hinge, and 4 omni-
wheels. Two docking elements are placed on the same axis of the hinge for docking
with other robots.

Some unified docking elements are placed on all three types of robots to allow
stable physical connections between robots. In addition, electrical contacts next to
the docking units can be coupled automatically to provide inter-robot communica-
tion and power sharing busses between two connected robots. As shown in Figure 2,
two versions of docking elements are installed on robots: an active docking unit and
a passive docking unit. By removing the locking mechanism, passive docking units
can reduce the size of the assembly while still providing all other mechanical and
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(a) BackBone robot (b) Scout Robot

(c) ActiveWheel Robot

Fig. 1. Robot prototypes. The BackBone robot has 4 active docking faces. The Scout robot
has 2 active docking faces and 2 passive docking faces, while the ActiveWheel has only 2
passive docking faces.
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(a) Active docking unit
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D

E

(b) Passive docking unit

Fig. 2. Unified docking mechanisms: A – IR receivers, B – IR LEDs, C – IR sensors, D –
docking mechanics, E – electrical docking contacts, F – locking motor



Self-assembly in Heterogeneous Modular Robots 223

electrical features. Note that for any valid robot-robot connection, at least one active
docking unit needs to be present so that two docking units can be locked securely.

Infrared (IR)-based sensing - including proximity detection, docking alignment
detection and local communications circuits - has been developed for the SYM-
BRION robot to achieve autonomous docking in a 2D planar environment [10].
These sensors have similar placement on each docking face of the robot. More
specifically, two IR sensors have been placed symmetrically above and on either
side of the docking unit; one IR LED is placed directly above the docking unit,
while the other two LEDS are located on either side of the docking unit. These
LEDs are used to emit different frequency signals for obstacle detection, docking
alignment and communication. The IR sensors work for both obstacle detection and
docking alignment detection. IR remote control receivers are placed next to the IR
LED on each docking face for communications.

3 Internal Representation of Organism Body Plan

To investigate how specified organism shapes can be self-assembled from a swarm
of freely mobile robots, a common representation of the target shape must first be de-
fined. The representation is also essential for the topology exploration of the organ-
ism in the macro-locomotion and the self-reconfiguration tasks. This study assumes
that the self-assembly process always occurs in a 2D planar environment between
a partially formed organism and a group of freely moving robots where individual
robots join the growing organism using their own locomotion. The hardware con-
straints of the robot platform indicate that at any time one robot can attach to the
partially formed organism using only one docking port. Thus no circular paths can
appear among several connected modules in the target organism shapes. The body
plan of an organism in a 2D planar environment can therefore be represented as a
tree structure T . If we let T = (V,C), then V is a set of nodes and C represents a set
of connections. Each node v ∈ {r1,r2, ...,rm} corresponds to a robot module in the
organism, where ri is the type of robots and m is the total number of types in the
system. Each connection c = ((v1,o1),(v2,o2)) includes a pair of nodes (v1,v2) and
the orientation of corresponding connection ports, o1 and o2. Note that each type of
robot ri can have ki connection ports. Clearly, unlike the common representation of
a tree, there is no root node in the organism body plan and each node may have a
different type.

There are many different ways to represent trees in a computer system. The de-
sign of data structures depend on the algorithm used for the tree. As there is no
central control module in the complete organism, information on the body shape
will have to be transferred and stored across all modules. Besides a smaller memory
requirement, a data structure which can be easily manipulated and transferred via
common robot-robot communication means is preferred. To satisfy these require-
ments, this paper proposes a well formatted parenthesis symbol sequence to repre-
sent the body plan of the organism. Let T be a tree representation of an organism
with n robots, a symbol sequence S of tree T is defined as a sequence of 2(n− 1)
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symbols s generated from a depth first traversal of T . There are two kinds of sym-
bols in a sequence, sc and sp, where sc = f (c) is a “connection” symbol, which
corresponds to a connection c = ((v1,o1),(v2,o2)) in T using a mapping function
f (), while sp is a special “pairing” symbol. The size of “connection” symbol |sc|
equals (∑ki)

2 and “pairing” symbol |sp| is 1.
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Fig. 3. An example of organism body plan and its tree representation. ‘K’ represents Back-
Bone robot, ‘A’ for ActiveWheel robot and ‘S’ for Scout robot. ‘F’, ‘R’, ‘B’, ‘L’ denotes the
Front, Right, Back and Left docking ports of a robot respectively.

KFKL KFSR 0 0 0 0 KRSF 0 0 0 0 KBSL 0 0 0 0 0 0 0 0 KBAF ARKF KBSF 0 0 0 0 0 0 0 0 0 0 0 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 4. An example symbol sequence of the organism. Each pair of sc and sp symbols, anno-
tated and connected with dashed lines, represent one edge in its tree representation.

To obtain a symbol sequence from a tree representation, a node, denoted as vo,
must first be chosen as the starting point of the traversal. Depending on the starting
node, different symbol sequences can be generated for the same tree. Compared to
the general tree representation, a symbol sequence representation is encoded with
the information where the organism starts to grow, which is indeed desirable for the
morphology control mechanism introduced in the next section. Take the organism
body plan shown in Fig.3(a) as an example. There are 3 Backbone, 4 Scout and 1
ActiveWheel robots in the organism where the headings are indicated with triangles
and the rotation axes are marked with a bar. Its corresponding tree representation
is shown in Fig.3(b) and all connected docking ports are labelled along the edges.
Starting from a node marked with the dark colour, Fig.3(c) depicts the order of each
edge being visited in a depth first traversal, which follows the travel order of “Front
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→ Right → Back → Left” for each node. Through the traversal, a sc symbol is
added to a symbol sequence if an edge is first traversed and a sp symbol is added
each time an edge is traversed in the opposite direction. For simplification, let sc to
be a string in a format of “parent node type | parent connection side | child node type
| child connection side”, where each node type or connection side is denoted with
one character, and sp to be a string of “0000”, then the generated symbol sequence
can be presented as shown in Fig. 4. Here the node types are abbreviated as ‘K’, ‘S’
and ‘A’ for Backbone, Scout and ActiveWheel robot respectively, while connection
sides ‘F’, ‘R’, ‘B’ and ‘L’ stand for Front, Right, Back and Left respectively. For
instance, a symbol of “KFKL” can be read as a traversal along the edge from a
Backbone robot’s front side to another Backbone robot’s left side. Also shown in
Fig. 4, the symbol sequence can be annotated as a nested structure. For each sc

symbol, there is a corresponding pairing symbol sp in the sequence. Each pair of
sc and sp symbols corresponds to one edge in the tree representation. Their relative
positions then depict the topology of the tree structure.

A symbol sequence can be obtained recursively from a depth first traversal of the
tree. By carefully choosing the mapping function f (c) and pairing symbol sp, the
generated symbol sequence requires only a small amount of memory to be stored
and transferred. For example, in this study each sc symbol is constructed using only
1 byte, with every two bits storing the robot type or the orientation of the connected
docking port as shown below. If let 1 - 3 denote the robot type ‘K’, ‘S’ and ‘A’

7 6 5 4 3 2 1 0

parent node
type

parent node
docking port

child node
type

child node
docking port

respectively and 0 - 3 correspond to the connection ports ‘F’, ‘R’, ‘B’ and ‘L’ re-
spectively, then a symbol of “KFKL” can be depicted as 0b01000111 = 0x47, while
symbol sp can be identified using 0.

Because of the well organised format and nested structure of a symbol sequence,
its tree representation can be reconstructed using Algorithm 1.. This is important

Algorithm 1. symbol sequence to graph representation

Precedure: OgSequenceTraversal (symbol sequence S, tree T , node v)
1: for each branch sequence Sb in S do
2: create new node w from Sb.symbols[0];
3: insert w to T
4: if v is not empty node then
5: connect w with v;
6: end if
7: create a new symbol sequence S1 by removing the first and last symbol of Sb;
8: OgSequenceTravelsal( S1, T , w);
9: end for
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as the topology information can be more easily accessed from a tree representation
for macro-locomotion control of a complete organism, while the symbol sequence
representation is more convenient to be shared among the robots. Meanwhile, it
provides a trival way to check any geometrical conflict of the body shape that a
symbol sequence stands for. For example, if the geometrical distance between any
two non-neighbouring robots in the reconstructed tree is less than a certain value, the
body plan can not be self-assembled because of the physical interference between
robots.

4 Self-assembly Strategy

In SYMBRION scenarios, depending on whether physically connected to other
robots, a robot works in one of two modes: swarm mode and organism mode, and
switches between them accordingly. The transition from swarm mode to organism
mode is determined by the morphology control strategy. In general, successful dock-
ing requires the collaboration between two robots: one remains stationary, called the
recruiter, which emits some guiding signals; the other moves and aligns along these
signals and then docks to the recruiter. To build an organism shape, the process needs
to be initialised by a robot, called the seed. During the self-assembly process, one
freely moving robot can dock and join to the partially formed organism only when
it is signalled. To grow the correct body shape, it is critical that the right robots in
the organism mode become recruiters at the right time, and the right type of freely
moving robots respond to the recruiters.

DockingRecruiting
12 3

4
Organism Mode Swarm Mode

Fig. 5. Controller framework for the SYMBRION robots. Transition conditions: 1 – recruiting
signals are received and request type matches; 2 – recruiting is required as per morphology
control strategy; 3 – docking is accomplished; 4 – disassembly is required.

This paper adopts a finite state machine as the controller framework for all robots.
Fig. 5 shows part of the controller which is the focus of this paper, a complete ver-
sion can be found in [9]. Once the self-assembly process starts, the seed robot be-
comes the first recruiter in the organism and thus moves to the Recruiting state.
Assuming that the target organism shape has already been stored as the symbol se-
quence in its memory, the seed robot extracts the branch symbol sequences from
the complete symbol sequence. A branch symbol sequence Sb of S is defined as a
sub symbol sequences between one of the starting node vo associated sc symbol and
corresponding paired sp symbol. The number of branch symbol sequences equals
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the number of associated sc symbols of S. For example, the symbol sequence shown
in Fig.4 has two branch symbol sequences: “KFKL KFSR 0000 KRSF 0000 KBSL
0000 0000” and “KBAF ARKF KBSF 0000 0000 0000”. Each branch sequence is
in fact endowed with connection information to its descendants in the target organ-
ism body shape. The seed robot can therefore use this information to decide which
types of robot need to be recruited from which docking port. The behaviours in the
Recruiting state can be grouped into different stages:

stage 1 broadcast recruiting message from corresponding docking ports, indicat-
ing the types and connection side of the robot d recruited;

stage 2 emit guiding signals to help docking robots to align to them;
stage 3 synchronise the locking process if required, as both active docking unit

and passive docking unit may be involved;
stage 4 send the branch symbol sequences to newly docked robots.

Any robot in swarm mode may become docking robots when recruiting mes-
sages are received and their type matches with that requested. The docking robot
then moves close to the recruiter guided by the signals and docks to it using the
correct docking port. Upon receiving the branch symbol sequence Sb from the re-
cruiter, it extracts a new symbol sequence S1 by removing the first sc symbol and
the last sp symbol in Sb. This new symbol sequence represents the sub tree which
is rooted from itself. If there are branch sequences in the symbol sequence S1, the
newly joined robot becomes a recruiter and moves into the Recruiting state to re-
cruit more robots into the organism. Otherwise it changes state to organism mode
and hence stops any further growth of the organism from itself. A recruiter exits
the Recruiting state once all its required docking ports are joined by other robots.
Algorithm 2. outlines the behaviours for the recruiter and docking robots. Note that
the exact behaviours in each state can have different implementations because of the
heterogeneity of robots.

The morphogenesis process completes when all recruiters exit the Recruiting
state. As the self-assembly process is fully distributed and no single module acts
as the coordinator for the growth of the organism, once the process has been ini-
tialised by a seed robot, it is important that all robots are aware of completion of
the morphogenesis process and then behave accordingly to transform the organism
from 2D to 3D to initialise the macro-locomotion controller. One solution to check
the self-assembly process is to pass a message token across the developing organ-
ism periodically to request all robots to register if they are recruiters or not. This
message token travels across the organism following some rules, for example in the
same way a symbol sequence is generated, and back to the original sender. Once
it shows no recruiters are present in the organism, the self-assembly process is as-
sumed finished and the sender will issue another message to notify the success of
morphogenesis to all robots. The selection of such a sender remains open. It can be
any robot in the organism. A good candidate is however the most recently joined
robot that has no other robots to be recruited, i.e., a leaf node robot in the tree repre-
sentation. In other words, whenever a leaf node robot joins the organism, a progress
check of self-assembly will be performed.
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Algorithm 2. Self-assembly strategy for recruiter and docking robots

Behaviour: in state Docking
1: if docking is NOT accomplished then
2: locate and align to the recruiter;
3: else if new symbol sequence information received then
4: extract the branches from received symbol sequence;
5: if branches exisit then
6: enable the corresponding docking ports;
7: start to emit beacon signals;
8: move to state Recruitment;
9: else

10: issue a message token to check progress of self-assembly;
11: if message token is returned then
12: if No recruiters are presented then
13: notify the completion of self-assembly;
14: end if
15: move to organism mode;
16: end if
17: end if
18: end if
Behaviour: in state Recruitment
19: if All required docking port is docked then
20: move to organism mode;
21: else
22: for Each recruiting docking port do
23: if new robot is docked then
24: send branch symbol sequence;
25: stop emitting guiding signals;
26: else if currenttime % RECRUITMENT SIGNAL INTERVAL then
27: broadcast recruiting message;
28: end if
29: end for
30: end if

Communications, both wireless (IR) and wired (Ethernet), are very important
in synchronising the high level self-assembly strategy and also the low level au-
tonomous docking process between two robots. Due to the interference of IR sig-
nals and the low bandwidth, messages are more likely to get lost when transferred
wirelessly. To address this issue, IR messages should normally be kept as simple
(short) as possible. Meanwhile, each IR message may need to be repeated several
times until it has been acknowledged. A full analysis of effect of communication
failures on the algorithm is presented in [11].

5 Experiments and Discussion

The proposed controller and self-assembly strategy has been implemented and
tested with a small number of real prototype SYMBRION robots. Each robot runs
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the same controller framework as described in the paper and utilises the IR signals
for recruiting and docking alignment. Autonomous docking between the recruiter
and a docking robot is synchronised via local sensing and wireless communication.
The locomotion control for each type of robots has been carefully designed accord-
ing to their unique hardware specification. As the initialisation of the self-assembly
process is out the scope of this study, each time a seed robot is chosen manually
with a predefined symbol sequence to start the self-assembly process. Fig. 6 shows
the progress of autonomous self-assembly of an organism with 2 ActiveWheel and 2
BackBone robots. The approach was successfully and repeatably demonstrated for a
number of configurations and seed robot positions. In all cases we see that the target
organism shape is formed within a certain time frame and all robots in the organism
are notified of the success of the process using the progress checking mechanism.
Videos of different experiments are available online at http://goo.gl/VPGGm.

the seed

(a) 24s (b) 32s (c) 36s

(d) 1m32s (e) 1m44s (f) 1m56s

Fig. 6. Self-assembly experiment with 2 Backbone and 2 ActiveWheel robots. The ex-
periment is initialised by the ActiveWheel in the middle with a symbol sequence of
“AFKF0000ABKFKBAF00000000”.

Since a symbol sequence representation includes also the location information of
the seed robot in the organism, a selection of different locations for the seed, thus
different symbol sequences, do indeed result in building the same organism. Al-
though robots have to join the organism one after another, the potential for multiple
recruiters in the self-assembly process shows that the growth of the organism is in
fact a parallel process. It follows that the position of the seed robot (in the organ-
ism) can affect the completion time of the self-assembly process. To evaluate this,
experiments are performed in Robot3D [12] simulator, instead of real robots as only
4 SYMBRION robots were availabe for testing at the time of writing, for growing
the same body plan as shown in Fig.7a. In all cases, 25 robots are initially deployed
uniformly in an arena sized 4 m × 4 m, and the pre-selected seed is always located
in the centre of the arena with varying headings in 10 repeated runs.
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Fig. 7. Comparison of completion time for self-assembly initialised by seed robots in different
positions in the organism. Each box in the plot represents the first to the third quartile of the
data from 10 experimental runs.

Fig. 7b compares the completion time for self-assembly with seed robots in dif-
ferent positions. We see clearly that the completion time varies with different seed
robot positions. It is obvious that the more parallel recruitment in the developing
organism, the quicker the growth process. As expected, a seed located in the centre
of the organism, i.e., position 6, leads to the fastest growth with an average comple-
tion time of 330 seconds. The further the seed is from the centre of the organism,
the longer the completion time; for example, a seed from postion 1 has an average
completion time of 539 seconds. Since the tested target organism shape has a sym-
metrical topology, the completion time is very close when the position of the seed
robots are similar. For example, the seeds next to the centre of the organism, posi-
tion 5 and 7, give average completion times of 415 and 425 seconds respectively. In
order to optimise the efficiency of the self-assembly process, we therefore require
that the process needs to be initialised by a seed robot located as close as possible to
the centre of the target body shape. To check whether a seed robot with a particular
symbol sequence could result in the most efficient self-assembly process, we can
count the number of edges in each branch sequence for this symbol sequence, if all
of them are less than half of total number of edges of the parent symbol sequence,
then the associated seed robot is located in the center of the body shape that this
symbol sequence represents.

6 Conclusion and Future Work

This paper presents a fully distributed algorithm for morphology control in a group
of heterogeneous modular self-assembling robots. Each robot in the system is fully
autonomous with its own sensing and locomotion, and able to physically join with
others using a unified docking mechanism in a 2D planar environment. This study
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focuses on how specific organism body shapes can be built, starting with a seed
robot. A well organised symbol sequence structure has been proposed to represent
the target organism body plan and also to form the basis of the self-assembly strat-
egy. The symbol sequence representation encodes not only the topology of the target
body shape but also information on how the shape should grow from one robot. Its
compact nested structure allows the target body shape to be stored and transferred
among robots with minimum memory and low bandwidth communication, which is
a requirement of robots with limited resources. Depending on the topology of the
body plan, multiple robots may join the partially formed organism from different
positions simultaneously. Each time a robot joins the partially formed 2D organism,
it receives a branch symbol sequence from its recruiter. Thus, during self-assembly,
only the seed robot stores the entire body plan of the target organism; other robots
store only parts of the body shape, including itself and its branch. There is a big
advantage compared to the ID-based single entry self-assembly strategy proposed
in [9]. In case there are failures in the self-assembly process, for example, a newly
joined robot malfunctions, only that branch of the body shape will be affected, and
organism growth from other points will still go on. If proper fault detection and re-
covery mechanisms are introduced to detect the faults and remove the malfuction
robot, the self-assembly from that point can continue as the shape information can
be retrieved directly from the parent recruiter robot.

Since no complex communication protocols and conflict resolution mechanisms
are present in the recruitment-docking process, more than one robot can be attracted
to the same docking port of a recruiter at the same time. Competition among these
robots can inevitably increase self-assembly completion time. We have tested a sim-
ple “expelling” message, broadcast by the docking robot as a way of reducing the
possible competition; however this has only been tested in simulation with idealised
local communication. How efficient this conflict resolution mechanism is and how
robustly it works with a large swarm of real robots need to be further investigated.
Note that there are many ways in which faults on hardware might disrupt the self-
assembly process including, for instance, mechanical failure of the docking mech-
anism or failure of the power or communications buses across the docking mech-
anism. Extending and adapting the algorithm to compensate for such faults during
self-assembly is ongoing work presented in [11].

Acknowledgements. The SYMBRION project is funded by the European Commission
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Error-Tolerant Cyclic Sequences
for Vision-Based Absolute Encoders

Kevin C. Wolfe and Gregory S. Chirikjian

Abstract. A method for obtaining error-tolerant cyclic sequences similar to de
Bruijn sequences is presented. These sequences have a number of potential applica-
tions, including use as absolute rotary encoders. This investigation is motivated by
the desire to use a vision-based system to obtain the angular position of the wheels of
mobile robots as they rotate about their axes. One benefit of this approach is that the
actual wheel orientation is observed (as opposed to non-collocated measurements of
wheel angles via encoders on the motor shaft). As a result, ambiguities from back-
lash are eliminated. Another benefit of this system is the ability to apply it quickly
to existing systems. Several methods are developed for increasing the robustness of
these encoders. An imaging simulator is used to compare the accuracy of a variety
of encoding schemes subjected to several levels of image noise.

1 Introduction

The process of transmitting and obtaining state information has been studied from
a variety of perspectives. A practical example of this process is determining the ori-
entation of a wheel relative to a fixed frame. A number of rotary encoding strategies
have been developed to detect both relative motion and absolute position. For abso-
lute encoding, most rotary encoders fall into one of two categories: single-track and
multitrack. Most multitrack systems rely on bits that change in parallel as the wheel
turns. Single-track strategies utilize a single code, and segments of this code are of-
ten read in a serial fashion similar to a shift register. Fig. 1 provides two examples
of common absolute encoders: a Gray code and a de Bruijn sequence. A general
overview of rotary encoders can be found in [10], [2], and [11].
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(a) 4-bit binary Gray code (b) 4-bit binary de Bruijn sequence

Fig. 1 Above are two examples of codes that can are commonly used for rotary encoders.
Small circles indicate sensor locations. The multitrack Gray code (a) is read in a parallel
fashion, while the single track de Bruijn sequence (b) is read serially.

(a) (b)

Fig. 2 Examples of potential applications for vision-based encoders

In this paper, a new method for absolute rotary encoding that can be used in
combination with, or in place of, shaft encoders is presented based on single-track
encoding. It was developed for use with a new kind of modular reconfigurable
robotic platform, the M3 (Modular-Mobile-Multirobot) system, that is further de-
scribed in [15], [8], and [14]. In this system, the orientations of the wheels are im-
portant for module-to-module docking that occurs on the wheel surfaces. Fig. 2(a)
illustrates an initial deployment scenario in which an overhead camera is used to
measure the wheel angles, position, and orientation of multiple robotic modules.
This ability to easily capture additional state information can be important for non-
holonomic motion planning and characterization of backlash. Some issues related
to backlash and other uncertainty in nonholonomic robotic systems are discussed in
[3], [17], and [1].

The basic approach is to print a cyclic code around the circumference of the
wheel. A camera captures a visible portion of this pattern, and a decoding scheme as-
sesses the orientation of the wheel. There are numerous advantages of this approach
over traditional shaft encoding: (1) because the measurement is direct, measurement
errors that accumulate between the motor shaft and the wheel due to backlash in the
drivetrain are eliminated; (2) sensor/payload requirements on the robot are reduced
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since sensing is external; (3) a single sensor (an overhead camera) can be used to si-
multaneously assess both pose and wheel angles rather than using multiple sensors;
(4) this method can be used to supplement shaft encoders to quantify backlash at
any given time; (5) if off-board computing is being used, data bandwidth is reduced
as wheel angle information does not need to be sent from each robot to the control-
ling computer. Additionally, one of the most beneficial advantages of this encoding
scheme is its ease of application to existing systems without the need to carefully
align and mount collocated encoders and detectors.

Fig. 2(b) illustrates another potential application for the encoders presented. In
this type of application, appropriate methods must be developed for dealing with
occlusions. The robust nature of the encoding scheme allows for accurate read-
ings despite minor partial occlusion. Occlusions may also be handled using multiple
cameras.

The primary focus of this work is on error-tolerant cyclic sequences for use as sin-
gle track rotary encoders sampled through a noisy channel, computer vision in our
case. Error-tolerance here refers to error-detection and/or error-correction. Several
groups have investigated error-tolerant single-track sequences that address transition
error, errors that arise on the boundary between characters due to slight misalign-
ment of detectors [12, 13, 16]. However, we are concerned with error-tolerance from
a more information theoretic standpoint; we would like to improve the certainty
with which we make measurements by increasing the Hamming distance between
distinct positions along the code. In [6], Heiss developed error-detecting codes for
multitrack encoders where the Hamming distance between adjacent locations was
one and it was greater than one for all other pairs of distinct locations.

While this work was primarily developed for rotary encoding, portions of it are
applicable in a variety of settings. If we consider the problem of phase synchroniza-
tion of two or more systems through a noisy channel, error tolerant codes such as
those described here could be utilized. Hagita et al. further describe this in [5] while
also exploring and presenting methods for obtaining error-tolerant sequences simi-
lar to the ones developed here. However, they only provide a method for generating
error-correcting binary sequences of period 22m−m−2− 1 with 2m− 2-length subse-
quences for integer values of m [5]; such sequences may not be suitable for rotary
encoders given specific design considerations.

2 Error-Tolerant Cyclic Sequences

Let S = (a1,a2,a3, . . .aK−1,aK ,a1,a2, . . . ) be a cyclic sequence with a period of K
whose elements are taken from an alphabet, A, with q distinct elements. Now let
sn(i) be a subsequence of S of length n starting at the ith element of S. For example,
s5(3) = (a3,a4,a5,a6,a7).

S is a de Bruijn sequence for subsequences of length n if it has a period of qn and
all possible n-length combinations of the elements of A appear. De Bruijn sequences
have been studied and used as absolute rotary encoders. This is done by “writing”
qn consecutive elements of the sequence around a circular object, such as a wheel.
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Taking n-sequential readings then allows the angular position to be determined to
within ± π

qn radians. This is illustrated in Fig. 1(b) for q = 2 and n = 4.
Any cyclic sequence, S, can be used as an absolute rotary encoder in a similar

fashion provided that all n-length subsequences are unique. This can be formal-
ized further if we let dH (sn(i),sn( j)) be the Hamming distance1 between subse-
quences sn(i) and sn( j). Now consider using the sequence S as an absolute encoder;
dH (sn(i),sn( j)) represents the distance between the message sent for position i and
position j. For convenience we can further define the minimum Hamming distance
between two distinct positions as

δ (S,n) = min{dH (sn(i),sn( j)) |i, j ≤ K, i �= j} .

Thus, for S to be a suitable cyclic sequence for use as an absolute encoder in the
manner described above, δ (S,n) must be at least 1 (i.e., no n-length subsequence
appears more than once).

If this process is viewed as transmitting an actual angular position through a
noisy channel, it may be desirable to have this minimum distance be greater than 1,
providing some degree of error-tolerance. If we assume that we only transmit and
receive elements from A, we are able to detect up to δ (S,n)− 1 errors. For error-
correction, if δ (S,n)≥ 2e−1, we are able to correct up to e errors. Using vision as a
transmission channel, the data received may differ from A and thus it is less obvious
the “number” of errors we are able to detect or correct; we are more concerned with
the maximizing the mutual information. In either case, it should be clear that our
goal is to increase δ (S,n) while decreasing n for a fixed or bounded K.

For the remainder of the paper we will refer to a cyclic sequence S as an (n,d)-
sequence if δ (S,n) ≥ d. Using this notation it is clear that all de Bruijn sequences
are (n,1)-sequences; as such, they are not well suited for use as encoders in the
presence of noise. In Sections 3 and 4 we will explore solutions to this problem.

3 Obtaining (n,d)-Sequences and the De Bruijn Graph

A de Bruijn graph, G = (V,E), for n-length subsequences on an alphabet, A, of
q characters is a directed graph where each vertex, vi ∈ V , represents one of the
qn possible n-length code words. The edges connect vertices that represent possi-
ble sequential subsequences. Thus, a directed edge (vi,v j) ∈ E exists if v j can be
attained by appending an element of A to the right of a left shifted version of vi.
Inasmuch, if

vi = (avi1,avi2, . . . ,avin),

then
(vi,v j) ∈ E ⇔ v j = (avi2, . . . ,avin−1,b) for some b ∈ A.

For further information regarding de Bruijn graphs see [4].

1 The Hamming distance for two sequences of equal length is taken to be the number of
corresponding positions at which the sequences differ.
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Table 1 Maximum length of binary (n,d)-sequences (q = 2)

n d = 1 d = 2 d = 3 d = 4
3 8 3
4 16 4
5 32 10
6 64 15 7
7 128 31 14 7
8 256 63 16 8
9 512 ≥100 31 11
10 1024 ≥188 62 22

Cycles2 of length K such that K ≥ n within a de Bruijn graph are analogous to
(n,1)-sequences. Given a cycle, C, of length K ≥ n from a de Bruijn graph we can
construct a cyclic sequence, SC, by sequentially taking the last element of the code
words represented by its first K vertices. Therefore, let

C = (vi,vi+1, . . . ,vi+m,vi)

then
SC = (avin,avi+1n, . . . ,avi+mn)

and C ≈ SC. Thus, a Hamiltonian cycle3 in G is analogous to a de Bruijn sequence.
While any cycle in G that is at least n in length represents an (n,1)-sequence,

some cycles in G may correspond to sequences whose minimum distance is greater
than 1. Given some n and d > 1, we could obtain (n,d)-sequences by enumerat-
ing all cycles in G using methods given in [7] and [9], and removing those that
do not satisfy the constraint on d. However, for d > 1 the number of cycles with
minimum distance d is a relatively small subset of all of the cycles in G. Con-
sequently, enumerating all cycles may be inefficient; for example, is known that
on q characters there exist (q!)qn−1

q−n unique de Bruijn sequences each of which
does not need to be considered when looking for such (n,d)-sequences. Therefore,
a modified cycle finding algorithm was developed. This is given in Algorithm 1
which takes in a de Bruijn graph and a minimum distance and, through a breadth-
first search, finds all cycles such that all vertices have a pairwise Hamming dis-
tance of at least d. Enforcement of this constraint during each search step elimi-
nates the need to enumerate unsuitable paths or cycles and to remove unsuitable
cycles at termination. Table 1 provides a summary of the maximum length (n,d)-
sequences that have been found for a variety of n and d combinations using a binary
alphabet.

2 Throughout the paper, the term cycle will refer only to simple cycles, those with no re-
peated vertices other than the first and last.

3 A Hamiltonian cycle is a cycle in which every vertex in a graph is visited exactly once.
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Algorithm 1 Find all (n,d)-sequences

Require: De Bruijn digraph G = (V,E) with vertices for subsequences of length n
1: procedure ALLCYCLESWITHMINDISTANCE(G,d)
2: k ← 0
3: U ←{}
4: for all v ∈V do
5: k ← k+1
6: Pk ← (v)
7: Ck ← false
8: Tk ← true

Note: Pk represents a path. Ck = true if Pk is a cycle. Tk = true if Pk should be further
explored.

9: while T(j) = true for some j do
10: i← argmin1≤ j≤k(Tj = true)
11: y← last element in Pi
12: Ti ← false
13: for all x ∈ CHILDREN(y,G) do
14: if HAMMINGDIST(x,Pi) ≥ d then
15: k ← k+1
16: Pk ← APPEND(Pi,x)
17: Ck ← false
18: Tk ← true
19: if x ∈ Pi

⋃
U then

20: Tk ← false
21: if x = v then
22: Ck ← true
23: end if
24: end if
25: end if
26: end for
27: end while
28: U ←U

⋃
v

29: end for
30: Return all Pj such that Cj = true
31: end procedure

32: function CHILDREN(v,G)
33: Let G = (V,E)
34: Return all w ∈V such that (v,w) ∈ E
35: end function

36: function HAMMINGDIST(v,P)
37: Return minimum Hamming distance between v and all vertices in P
38: end function

39: function APPEND(P,v)
40: Let P = (p1, p2, . . . pm)
41: P′ ← (p1, p2, . . . pm,v)
42: Return P′
43: end function
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4 Multiple Parallel Sequences

Given a set of constraints on the length of the sequence, K, and the length of code
words, n, using a single sequence may not provide enough uniqueness between all
distinct positions. We can provide increased certainty by introducing additional se-
quences that are written in parallel to the first.

Let us assume that we want to use m sequences. For pairs of positions in one
sequence whose Hamming distances are close, we can attempt to ensure that those
pairwise distances are greater in the remaining sequences. Thus for two sequences

S(1) and S(2), for all i and j such that d
(

s(1)n (i),s(1)n ( j)
)
= δ

(
S(1),n

)
we de-

sire d
(

s(2)i ,s(2)j

)
> δ (S(2),n). To this end, we can define a K×K distance matrix

D(S(l),n) as [
D
(

S(l),n
)]

i j
= d

(
s(l)n (i),s(l)n ( j)

)
.

Using this notation we can easily sum distance matrices to obtain a distance matrix
whose entries represent the total Hamming distance between two positions across
all sequences.

To that end, we would like to determine the cyclic shifting or phasing that maxi-
mizes the following:

max
P1,...Pk∈P

⎛⎝ min
i, j|i�= j

[
k

∑
l=1

Pl

(
D
(

S(l),n
))

P−1
l

]
i j

⎞⎠ (1)

Here the cyclic shifts are represented by shift permuation matrices P1, . . .Pk ∈P .
P can be defined as

P =
{

P|P = (en− j,en− j+1, . . .en,e1, . . .en− j−1),

0≤ j ≤ n− 1}

where ei is the ith standard basis vector. It should be noted that the maximization in
(1) can be simplified by letting P1 equal the K×K identity matrix.

It is likely that a number of shifts will result in the same value of (1). To choose
from among these we consider the standard deviation between all pairs of positions;
by minimizing this standard deviation, we seek to provide a uniformity to the Ham-
ming distance between positions.

5 Reading Wheel Position

For our application, a single overhead camera and binary sequences (i.e. q = 2
and A = {0(black),1(white)}) are utilized. Using this camera and fiducials on the
robots, we are able to locate the position and orientation of each robot. From this
pose information and the known geometry of a robotic module, we determine where
to read the sequences. The intensity images of the sequences are sampled along line
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(a) View from overhead camera (b) Close-up of reading locations

Fig. 3 Knowing the relative position of the robot with respect to camera allows the position
to be read. In (a) the full camera image is shown. The two short line segments in (b) indicate
where sampling of the sequences is performed in the image.

Fig. 4 Intensity readings and expected values sampled from Fig. 3.

segments; an example of this sampling is shown in Fig. 3 and Fig. 4. We take pn
interpolated samples where p is the number of samples per bit. This sampling strat-
egy enables us to increase accuracy beyond ± π

K radians to approximately ± π
pK for

K-length sequences. Let x(S, t) ∈ [0,1]pn be a reading taken from the image of a
sequence S at time t. Let y(sn(i)) ∈ {0,1}pn such that

y(sn(i)) = (y1,y2, . . .yp,yp+1, . . .ypn)
T = (ai,ai, . . .ai,ai+1, . . .an)

T .

Let h = {−0.5}pn be a constant vector used to shift x(S(l), t) and y(s(l)n (i)). This
shift is needed to ensure that all vectors have the same 2-norm.
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We can find the position using the summed cross-correlation across all m se-
quences. This can be done by letting b equal

b = argmax
i

(
k

∑
l=1

(
x(S(l), t)+h

)T(
y
(

s(l)n (i)
)
+h
))

.

Then the angular reading can be taken as

θ =
2bπ
pK

.

6 Design Considerations and Imaging Simulator

For a given application, there are a number of design considerations that need to be
taken into account. First, the radius and width of the cylindrical surface on which
the code is to be written on will impose a number of design constraints including the
number of sequences to write in parallel and the length of the sequences. These geo-
metric factors must be coupled with the imaging resolution, position of the camera,
and image quality to determine a suitable set of coding sequences. For a fixed cylin-
der geometry, increasing the number of sequences written in parallel will increase
the Hamming distance between distinct angular positions, but will also increase
the noise and blurring experienced in reading the position. Similarly, increasing se-
quence length reduces the size of an individual bit leading to less certainty when
attempting to read the bit.

In an attempt to quantify the relative quality of various coding strategies, an imag-
ing simulator was developed to easily test a variety of encoders. The simulator cre-
ates a virtual cylinder with binary sequences written on the outer surface. It then sets
the cylinder’s pose and angular position. A virtual image is captured of the cylin-
der at a specified resolution and common image noise is added at specified levels.
The forms of image noise considered are Gaussian blurring, additive white Gaus-
sian noise, and a reduction in the dynamic range. In addition to image noise, minor
noise was added to the position of the cylinder. This has the effect of measurement
uncertainty of the position of a robotic module. Once we have an image, we use the
same decoding technique described in Section 5.

For a given coding scheme, the simulator was used to test reading a wheel with
a given geometry in a variety of poses and at numerous noise levels. The amount of
noise considered for each test was determined by a noise coefficient used to scale all
of the noise sources simultaneously (see Fig. 6). The percentage of correct readings
were then used to determine the effectiveness of a particular encoding. A reading
was considered correct if it was within a set tolerance limit; for the test results
presented in Fig. 7, the tolerance limit was set at ± 2π

K for K-length sequences. Pa-
rameters were chosen that closely match those found in the M3Express system [15].
The cylinder had a radius of 55mm and a width of 12mm. The image resolution was
chosen so that the each pixel represents approximately one square millimeter.
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Fig. 5 Six example encoders that were tested using the image simulator. Each encoded cylin-
der is shown from above at high resolution. From left to right: a single (10,1)-sequence, a
single (8,1)-sequence, a single (10,2)-sequence, two parallel (8,1)-sequences, three parallel
(8,1)-sequences, and two parallel (10,2)-sequences.

Several examples of encoding scenarios that were tested are provided in Fig. 5.
These include a single (8,1)-sequence, a single (10,1)-sequence, a single (10,2)-
sequence, two parallel (8,1)-sequences, three parallel (8,1)-sequences, and two
parallel (10,2)-sequences. All sequences tested have a length of 170. The (n,1)-
sequences were generated randomly and then checked to ensure a minimum Ham-
ming distance of 1. These (n,1)-sequences are similar to a standard de Bruijn se-
quence encoding scheme. The (10,2)-sequences were generated using Algorithm
1. The phasing of the multiple sequence encodings was performed as described in
Section 4.

7 Discussion and Future Work

We have presented a new method for encoding and reading the angle of a wheel
using vision based detection. The encoding strategy was inspired by the use of de
Bruijn sequences as single track rotary encoders. In Sections 3 and 4, we describe
methods for developing encoders that are more tolerant to uncertainty and noise.
These methods include increasing the Hamming distance between distinct positions
for single cyclic sequences and writing multiple sequences in parallel.

In addition to developing encoders, six example encoding strategies were tested
using an imaging simulator described in Section 6. The results shown in Fig. 7 reveal
several things. It is clear that the multi-sequence encoders perform better than single
sequence encodings. This can be attributed to the redundancy provided by adding
additional sequences. However, the performance difference between using one and
two (8,1)-sequences is much more dramatic than the difference between using two
and three. This may be due to blurring of the borders of bits or positioning error.
As additional sequences are added, the width of each strip is reduced. For a fixed
resolution image, this reduced size can lead to additional ambiguity for each bit.



Error-Tolerant Cyclic Sequences for Vision-Based Absolute Encoders 243

(a) Noise Coefficient = 0.0 (b) Noise Coefficient = 0.5 (c) Noise Coefficient =

0.75

(d) Noise Coefficient = 1.0

Fig. 6 Four sample images demonstrating the amount of image noise introduced in the image
simulator.

Fig. 7 The percentage of correctly read encoder positions at various noise levels for the
encoder examples shown in Fig. 5.

Thus, there is a limit to the added benefit of adding additional sequences. Also
evident is that for the single sequence encoders, the (10,2)-sequence outperforms
both the (10,1) and (8,1)-sequences. We believe that this is due to the increased
Hamming distance between any two positions. Finally, it should be noted that the
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encoder which employed both strategies had the highest success rate at nearly all
noise levels.

While the methods described here may provide more robust encoding strategies,
there is still additional cataloging of sequences for n≥ 10 and d > 1 that can be per-
formed. Moreover, future investigation can be performed to attempt to enumerate
sequences for larger alphabets, q > 2. These could be useful as a replacement for
writing two or more codes in parallel. For example, if q = 4, one could imagine rep-
resenting the four symbols using two bits side-by-side (i.e. the alphabet, A, could be
{(0,0),(0,1),(1,0),(1,1)}). Writing such a sequence on a wheel would then look
very similar to writing two sequences in parallel; however, a greater minimum Ham-
ming distance may be achievable for a smaller number of total readings. Finally, in
addition to investigating additional encodings, future work may include testing and
experimental validation of the accuracy of the encoders on the M3Express and de-
velopment of strategies for handling partial occlusions.
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Arbitrary Lattice Formation with Flocking
Algorithm Applied to Camera Tracking System

Sho Yamauchi, Hidenori Kawamura, and Keiji Suzuki

Abstract. Flocking algorithms for a multi-agent system are distributed algorithms
that only have simple rules for each agent but generate complex formational move-
ment. These algorithms are known as swarm intelligence and are robust and disaster
tolerant for most cases. We consider that flocking algorithms that have these charac-
teristics are the way to generate homeostasis in a system. We expect that by making
use of this algorithm the system can tune its self parameters and thus maintain a
high performance. First, to apply a flocking algorithm to a system, we extended the
flocking algorithm to form an arbitrary lattice for further flexibility. We then applied
the extended flocking algorithm to a position tracking camera system as an example.

1 Introduction

In a multi-agent system, several distributed algorithms such as the work of Reynolds
[12] are known to have agents flock[14]. Systems using these techniques are robust
and has resistance to mechanical breakdown even when some of them are destroyed.
Such systems are known to possess swarm intelligence[1][2] and there are multi-
agent robotic systems that make use of these techniques[10].

Other examples that use swarm intelligence include the hexapod robot OSCAR[5]
which is designed to be fault tolerant by applying the boids algorithm. Each of OS-
CAR’s legs is assumed to be a boids agent, and although any of OSCAR’s legs
may be destroyed, OSCAR can keep walking by balancing its body using a boids
formation control algorithm.

These types of multi-agent systems can be viewed in terms of the consensus
problem and such an approach have been applied to the study of flocking dy-
namics for birds and fishes to engineering systems[8]. There are several types of
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application such as, under the situation with restricted communication data rate[15],
event-based communication type[13], gossip algorithm type[4][3] and agents with
complex dynamics[6][7][9].

However, there is no formal method to apply these techniques to generate home-
ostasis in an autonomous system. We introduce a way to apply a flocking algorithm
to a system that tracks the position of a robot with its camera to make the system
adapt to changes in brightness in a room. We assume that each control parameter of
the camera is an agent of in a flocking algorithm. We expect that these techniques
to be capable of enabling autonomous systems to achieve homeostasis.

2 Flocking Algorithm

2.1 Analyzable Flocking Algorithm

Without a general theoretical framework, it is hard to extend existing algorithms so
we employ the flocking algorithm presented by Olfati-Saber[11]. This work presents
a theoretical framework for the design and analysis of distributed flocking algo-
rithms and our proposed extension is as follows.

Each agent tries to keep a fixed distance with other agents and moves keeping
a lattice alignment (Fig. 1a). We assume the presence of a virtual agent to indicate
the ideal movement and each agent follows this leader’s movement (Fig. 1b). We
consider a graph G that consists of a set of vertices V = {1,2, ...,n} and a set of
edges E ⊆ V ×V . Also, the adjacency matrix is denoted as A = [ai j]. We assume
that each node is an agent and V is an agent set.

Let qi, pi,ui ∈ Rm denote the position, velocity, input of agent i for all i ∈ V
respectively. Each agent has dynamics the following dynamics{

q̇i = pi,
ṗi = ui.

(1)

The set of neighbors of agent i is denoted by

Ni = { j ∈V : ‖q j− qi‖< r} (2)

where r > 0 is the interaction range and ‖ · ‖ is a Euclidean norm in Rm.
Agents are designed to maintain the same distance to the other agents. In other

words, agents must be aligned such that their positions achieves a uniformed lattice
that satisfies equation (3).

‖q j− qi‖= d,∀ j ∈ Ni. (3)

We then have to determine the input ui to enable the agent to follow the virtual agent
and while satisfying the constraints given by equation (3).

The input ui for agent i is determined by three terms as follows.

ui = f g
i + f d

i + f γ
i (4)
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where the term f g
i is a gradient-based term of potential among agents, the term f d

i
is a velocity consensus/alignment term that acts as a damping force, and the term f γ

i
is a navigational feedback term. We now determine each term of the right side of an
equation (4). Here, σ -norm is defined as

‖z‖σ =
1
ε
[
√

1+ ε‖z‖2− 1] (5)

where ε > 0 and this norm is differentiable everywhere. Also, gradient σε(z) =
∇‖z‖σ is defined as follows

σε(z) =
z√

1+ ε‖z‖2
=

z
1+ ε‖z‖σ

. (6)

The bump function ρh(z) is continuous at [0,1] and is defined as

ρh(z) =

⎧⎪⎨⎪⎩
1 z ∈ [0,h)
1
2 [1+ cosπ (z−h)

(1−h) ] z ∈ [h,1]

0 otherwise

(7)

where h ∈ (0,1). With this bump function, each element of the adjacency matrix is
given by

ai j = ρh(‖q j− qi‖σ/‖r‖σ ) (8)

where aii(q) = 0 for all i and q. Let V (q) be defined as the the collective potential
function and is given by

V (q) =
1
2 ∑

i
∑
j �=i

ψα(‖q j− qi‖σ ) (9)

where ψα is the action function φα(z) defined as follows

φ(z) =
1
2
[(a+ b)σ1(z+ c)+ (a− b)] (10)

φα(z) = ρh(z/‖r‖σ )φ(z− dα) (11)

ψα(z) =
∫ z

‖d‖σ
φα(s)ds (12)

where 0 < a≤ b,c = |a− b|/√4ab,σ1(z) = z/
√

1+ z2. Then,

fi
g =−∇qiV (q) = ∑

j∈Ni

φα(‖q j− qi‖σ )σε (q j− qi) (13)

fi
d = ∑

j∈Ni

ai j(q)(p j− pi) (14)
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fi
γ =−c1(qi− qr)− c2(pi− pr) (15)

where qr,pr are the position and velocity of the virtual agent respectively and c1,c2

are positive constant. Here, fi
g is an attractive/repulsive force as a function of dis-

tance between agents, fi
d is a force that even out the speed of agent and fi

γ is a force
that have agent follow the virtual agent.

(a) Agent lattice

(b) Agents and virtual agent

Fig. 1 Flock of agents

2.2 Application of Flocking Algorithm for Autonomy in a System

To apply this flocking algorithm to autonomous system control, we assign system
parameters to agent positions of a flocking algorithm. However, the value of the
parameter that indicates the state of the system is different for each state and the
distance among agents, i.e., the difference between the parameter values are not
uniform as given by equation (3). Furthermore, ideal values of parameter are all dif-
ferent. For this reason, we cannot directly apply the flocking algorithm that enables
multiple agents to form a uniformed lattice while following a single virtual agent.
Hence, we have to extend the flocking algorithm to be able to form any lattice and
have the ability to follow several virtual agents.

2.3 Extended Flocking Algorithm

The original flocking algorithm is to have agents configure along a uniform lattice
that satisfies equation (3). However, this algorithm cannot form any lattice that has
an arbitrary distance among agents, so it is hard to apply this algorithm to general
systems. Therefore, we extended the flocking algorithm to be able to form arbitrary
lattice and follow several virtual agents.

We consider a matrix D. This matrix D has elements given by the distance d in
equation (3) between each agent. The distance between agent i and j is denoted as
di j. Now we assume that there are n agents.
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D =

⎡⎢⎢⎢⎢⎣
d11 d12 · · · d1n

d21
. . .

...
...

. . .
...

dn1 · · · · · · dnn

⎤⎥⎥⎥⎥⎦ (16)

where dii = 0,(i = 1,2, ...,n), di j = d ji,(i, j = 1,2, ...,n).
Also, we assume that each agent has its own virtual agent. Some virtual agents

can be shared among a number of agents and we consider a total of s virtual agents.
The distance among virtual agents, or the lattice of virtual agents, is denoted by
matrix R as

R =

⎡⎢⎢⎢⎢⎣
r11 r12 · · · r1s

r21
. . .

...
...

. . .
...

rs1 · · · · · · rs

⎤⎥⎥⎥⎥⎦ (17)

where rii = 0,ri j = r ji,(i, j = 0,1, ...,s).
We define r in equation (2) for each agent as follows

J = {1,2, ...,s} (18)

J(−k) = J−{k} (19)

rmin
i = min

j∈J(−k)

rk j (20)

with ri the value of r for agent i with destination k. Therefore, (2),(8),(11) are up-
dated as follows

Ni = { j ∈V : ‖q j− qi‖< rmin
i }, (21)

ai j = ρh(‖q j− qi‖σ/‖ri‖σ ) ∈ [0,1], j �= i, (22)

φα(z) = ρh(z/‖ri‖σ )φ(z−‖di j‖σ ). (23)

Also, if agent i has a virtual agent k, then (15) is given by

fi
γ =−c1(qi− qrk)− c2(pi− prk) (24)

where qrk and prk are the position and velocity of virtual agent k respectively.
Fig.3 shows the example of the flocking configuration achieved by this extended

algorithm. In Fig.3, three circles indicate the virtual agent. Agents are represented
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as a small triangle. The virtual agent for each agent is the circle which is the same
color. In this experiment, the distance di j is determined as

di j =

{
const si = s j

ri j si �= s j
(25)

where si is the virtual agent of agent i and s j is that of agent j.
Fig.3 shows the sequential results of the blue circle’s movement.

Fig. 2 Relationship among agents

(a) initial position (t=0) (b) formation at t = 1000

Fig. 3 2 dimensional flocking experiment

2.4 1-dimensional Flocking Algorithm and Probabilistic
Fluctuation

By systematically varying the various parameters and understanding the outcomes,
it might be possible to improve robustness and adaptivity of whole system. We as-
sume that a system is a flock of parameters and the system can change its parameters
in accordance with sensor inputs. To apply proposed algorithm to the control of the
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system, we consider the state of agent as a scalar. We assign the system parameter
and specific sensor to agents, so each value of system parameters and specific sen-
sors such as an angle of a servo and input of a pressure sensor is the state of the
agent. We thus assume the whole system as a flock of agents.

However, the state value of the agent that is the assigned sensor is determined
only by sensor input, and thus cannot be changed by the agent. This agent is not
able to change its own state in accordance with the equation (4) in the same way as
other agents. Therefore, the objective of the agents is to reduce the error between
the state value of an agent that is the assigned sensor and that of its virtual agent
by the movement of the others. We refer to the virtual agent as an ideal value if the
state of the virtual agent is scalar.

On the other hand, each agent of a flocking algorithm is designed to determine its
position only from the relationship with neighborhood agents, but is not designed
to adjust the whole flock by moving itself. For this reason, if the state value of the
agent is close to its ideal value, whole flock stagnate even though the state value of
the other agent is far away from its ideal value.

To avoid such stagnation, we also apply probabilistic fluctuation to agents.
We added a probabilistic fluctuation term to input ui. We changed equation (4) as
follows

ui = f g
i + f d

i + f γ
i + f prob

i (26)

f prob
i = cprobεvrandom (27)

where cprob is a positive constant and vrandom ∈ (−0.5,0.5).

2.5 Motion of the Flock

When applying proposed flocking algorithm to the problem such as optimization of
parameter. If the position of a virtual agent is fixed based on his local situation, it is
not able to search wide a area because agents tend to aggregate to the virtual agent’s
neighborhood. These characteristics cause the stagnation in the neighborhood of
local minimum point. To avoid such situation, we have to search better answer by
moving virtual agents. We thus apply hill climbing like method to this flocking
algorithm. We introduce a mechanism that has a whole flock move in accordance
with the error between agents that represents the sensor and their virtual agents.

Let qG(t), qG(t + 1) be the center of gravity of flock at a given time t, t + 1 re-
spectively. Also, let ε(t), ε(t + 1) be the error between agents that represent sensor
and their virtual agent at given time t, t + 1 respectively. Now, we define the flock
movement vector Δq as

Δq =

(
1− ε(t + 1)

ε(t)

)
{qG(t + 1)− qG(t)}. (28)

We determine the position of virtual agents at given time t + 2 by
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qr(t + 2) = qr(t + 1)+Δq. (29)

This mechanism make a flock move in adirection that reduces the error value be-
tween agents that represent the sensor and their virtual agents.

Fig. 4 Flock shift mechanism

3 Application of Flocking Algorithm to Camera Control

By applying the proposed flocking algorithm to a system, we hypothesize that the
system will be able to adapt to changes in environment. To show this, we applied the
proposed flocking algorithm to an actual system and evaluated its performance. As
an example, we apply the flocking algorithm to a position tracking camera system.
A tracking camera often has a difficult time tracking objects without parameter ad-
justments due to changes of in lighting conditions in the environment, e.g., changes
in brightness, direction of light, and other factors. Such a system has many control
parameters and the system can adapt changing the various parameters.

3.1 Experiment Environment

In this experiment, we used a position tracking camera system that tracks a line
follower with 3 types of marker, red, blue, and green. The tracking system employs
both color extraction and outline extraction to the images obtained from the camera.
For each color, it assumes each line follower’s position as the centroid of a region
enclosed by an outline that has maximum area. Also, we measured the error between
tracked and actual positions for evaluation.

The line followers are Lego Mindstorms NXT robots (Fig. 5). The camera used
for the position tracking system is UCAM-DLY300TAWH (Fig. 5) and the system
can control brightness, contrast, saturation, sharpness, as well as gamma and white
balance. The range of values are as follows: Brightness ∈ [-10, 10], Contrast ∈ [0,
20], Saturation ∈ [0, 10], Sharpness ∈ [0, 10], Gamma ∈ [100, 200], White balance
∈ [2800, 6500].

We assume that each agent has one of these parameters as the state value. Also,
the maximum areas of outlines for each colors are the sensor value. Therefore, we
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Fig. 5 Lego Mindstorms NXT as line tracing car and camera UCAM-DLY300TAWH

prepared a flock made of 9 agents and assigned each value to each agent position qi

as follows.

1. Brightness q1

2. Contrast q2

3. Saturation q3

4. Sharpness q4

5. Gamma q5

6. White balance q6

7. Detected area of red marker q7

8. Detected area of blue marker q8

9. Detected area of green marker q9

When the actual value was x, we determined the position of agent qi as

qi = (x−minimum value)/(maximum value−minimum value) (30)

to standardize it to [0,1].
We defined the ideal value of each parameter and sensor value is the value at

the situation that the system tracks all the positions properly in a bright condition
(situation 1) and measured them first. After that, we turned off the lights (situation
2) and experimented using the same parameters.

The coefficients of system are determined as follows : h = 0.5, a = 0.5, b = 0.5,
c1 = 0.5, c2 = 0.5, cprob = 0.01. Each default camera parameter is given by: 1.
Brightness = 0, 2. Contrast = 3, 3. Saturation = 5, 4. Sharpness = 5, 5. Gamma =
150, 6. White balance = 4588.

We compared the result of three types of settings, the case with no adjustment
mechanism (Default), adaptation using the flocking algorithm without a flock move-
ment mechanism given by equation (29) (Algorithm 1) and adaptation using the
flocking algorithm with a flock movement mechanism given by equation (29) (Al-
gorithm 2).

3.2 Experimental Result

The experimental result in situation 1 and situation 2 is shown in Fig. 8. Also, the
average error value in each trial is shown in Table. 1. Error value e for each step is
determined as follows.
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[1] Default [2] Algorithm 1 [3] Algorithm 2

Fig. 6 Camera tracking experiment in situation 1

[1] Default [2] Algorithm 1 [3] Algorithm 2

Fig. 7 Camera tracking experiment in situation 2

e1 = (actual position o f red marker)− (tracked position o f red marker) (31)

e2 = (actual position o f green marker)− (tracked position o f green marker)
(32)

e3 = (actual position o f blue marker)− (tracked position o f blue marker) (33)

e =
√

e2
1 + e2

2 + e2
3 (34)

In situation 1, Default, Algorithm 1 and Algorithm 2 indicate almost the same result.

On the other hand, in situation 2, Default is not able to track the line follower’s
position properly and the error become greater. However, Algorithm 1 and Algo-
rithm 2 could track the position by changing the camera parameter correctly. Also,
from the aspect of average error value, the results of Algorithm 2 provided the best
results for all the situations. From this result, by applying a flocking algorithm,
the system can adjust itself to follow the change of environment that the camera
picks up even though the ideal values at the changed environment are unknown.
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Fig. 8 Error value of tracking in bright room

Table 1 Experimental results of average error values

situation 1 situation 2
Default 52.315 167.374
Algorithm 1 53.218 114.901
Algorithm 2 52.468 88.114
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Fig. 9 State of each agent in situation 2

Also, without a flock movement mechanism, there were cases when the accumulated
errors increased and the result were unstable. Movement of each agent is shown
in Fig. 9.

4 Conclusion

We extended the flocking algorithm to construct an arbitrary lattice. Also, we intro-
duced probabilistic fluctuation term and adjusted the sensor values by controlling
the parameters autonomously. In addition, we introduced flock movement mecha-
nism by applying evaluation value using sensor values. We showed how a flocking
algorithm can be applied to a position tracking camera system in a fluctuating envi-
ronment and showed how this application worked smoothly.
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A Stochastic Optimal Enhancement of Feedback
Control for Unicycle Formations

Ross P. Anderson and Dejan Milutinović

Abstract. We consider an optimal feedback control approach for multiple nonholo-
nomic vehicles to achieve a distance-based formation with their neighbors using
only local observations. Beginning with a non-optimal feedback formation control,
each agent determines an additive correction term to its non-optimal control based
on an elliptic Hamilton-Jacobi-Bellman equation so that its actions are optimal and
robust to uncertainty. In order to avoid offline spatial discretization of the stationary,
high-dimensional cost-to-go function, we exploit the stochasticity of the distributed
nature of the problem to develop an equivalent estimation problem in a continu-
ous state space using a path integral representation. Consequently, each agent inde-
pendently computes its optimal feedback control using a discrete-time Unscented
Kalman smoother. Our approach is illustrated by a numerical example in which five
agents achieve a pentagon with aligned and equal velocities.

1 Introduction

Nonholonomic vehicle formations, in which each agent is tasked with attaining and
maintaining pre-specified distances from its neighbors, are beginning to demonstrate
its significance and potential impact in a variety of applications in both the public
and private sector [21]. The control approaches in relation to this problem have
typically relied on stability analyses, or artificial potential functions [1, 4, 5, 6, 22,
23, 25].

Although previously-considered control approaches lead to satisfying results,
they are non-optimal, and stability is usually only proven in the deterministic case.
Because of this, we think it fruitful to examine the additional control input necessary
to drive the non-optimal system into a formation optimally and in a manner that is
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robust to uncertainty. In this work, we begin with a non-optimal feedback control
policy [25], which provides an artificial potential function for distributed formation
control of deterministic nonholonomic vehicles with feedback-controlled turning
rate and acceleration. Then we introduce a stochastic optimal feedback control for
each agent defining an additive control input in order to reach the formation in an
optimal way. Consequently, our control approach is optimal, and, due to the adopted
artificial potential function [25], it provides collision-free agent trajectories.

To compute an optimal feedback control, one must solve the Hamilton-Jacobi-
Bellman (HJB) equation, which is a nonlinear partial differential equation (PDE).
However, the state space dimension of multi-agent systems makes this conventional
approach to stochastic optimal control impossible. In this work, we exploit the dis-
tributed nature of the problem at hand in order to make its solution tractable. The
distributed formation control problem is inherently stochastic – from the perspective
of one agent, neighbors’ control inputs are unknown, as well as the consequences
of these inputs to agent trajectories due to agent model uncertainties. Along these
lines, this work considers the problem of controlling one agent based on observa-
tions of its neighbors and the probability of their future motion. This probability
distribution arises from an assumption that a prior for the unknown control input
of an agent can be robustly described as Brownian motion [12], which, for the
agent model considered in this paper, results in a so-called “banana distribution”
prior [17]. Based on our prior and the system kinematics, we can induce a probabil-
ity distribution of the relative state x to all neighbors in an interval (x,x+ dx) at a
particular future time [28]. More importantly, this probability distribution over fu-
ture system trajectories can be used to statistically infer the probability distribution
of the control, and, hence, the optimal control. In particular, the relations between
the solutions to optimal control PDEs and the probability distribution of stochastic
differential equations [8, 19, 31], allows certain stochastic optimal control problems
to be written as an estimation problem on the distribution of optimal trajectories in
continuous state space, in a manner known as the path integral (PI) approach (see
[13, 14, 26, 27] as well as [15] and references therein for a more recent review of
results, and see [18, 20] for an analogous approach in the open-loop control case).

Multiagent systems have previously been studied using the PI approach [2, 3,
30, 29], but in these works, the agents cooperatively compute their control from a
marginalization of the joint probability distribution of the group’s trajectory. In this
paper, we develop a method by which agents independently compute their controls
without explicit communication. Moreover, previous works using the PI approach
have formulated a receding horizon optimal control problem for which stability is
difficult to guarantee [11]. We therefore consider an elliptic control problem over a
planning horizon that ends only when the formation is reached. In this sense, each
agent is estimating both their optimal control and the time that the formation will
be achieved. Finally, our work differs from previous PI implementations in that the
optimal feedback control is computed independently by each agent from a nonlinear
Kalman smoothing algorithm.
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This paper is organized as follows. Section 2 introduces the formation control
problem as viewed by a single agent in the group, followed by a derivation of a
path integral representation in Section 3. Section 4 presents a Kalman smoother
method for computing individual agent control. Section 5 illustrates our method
with a simulated five-agent formation, and we conclude with Section 6.

2 Control Problem Formulation

We consider a team of agents, each described by a Cartesian position (xm,ym), a
heading angle θ , a speed vm, and the kinematic model:

dxm(t) = vm cosθmdt

dym(t) = vm sinθmdt

dθm(t) = ωmdt +σθ ,mdwθ ,m

dvm(t) = umdt +σv,mdwv,m, (1)

where ωm and um are the feedback-controlled turning rate and acceleration, respec-
tively, and where dwθ ,m and dwv,m are mutually independent Wiener process incre-
ments with corresponding intensities σθ ,m and σv,m, respectively.

To achieve a distributed control, the problem is formulated from the perspective
of just one agent, which we call the agent-in-focus, or AiF for short. We denote the
state (x,y,θ ,v) of the AiF sans subscript. The AiF observes M neighbors with sub-
scripts m = 1, . . . ,M, irrespective of the total number of agents in the population.
The AiF computes an optimal feedback control to reach a formation with respect
to observed neighbors, and the formation is achieved when the inter-agent distances
rm =

√
(x− xm)2 +(y− ym)2, m = 1, . . . ,M reach a set of predefined nominal dis-

tances δm within a tolerance εr, the agents’ heading angles are aligned within a
tolerance εθ , and the speeds are equal within a tolerance εv. For the AiF, this occurs
when its perspective of the system state x belongs to a set F :

F =
{

x : |rm− δm| ≤ εr,

|θ −θm| ≤ εθ ,

|v− vm| ≤ εv, m = 1, . . . ,M
}
. (2)

The AiF further assumes no information about the observations made by its neigh-
bors. In other words, the AiF assumes that its observed neighbors are only observing
the AiF. This type of scenario is illustrated in Fig. 1.

We introduce collision avoidance by adding to the original kinematic model
the artificial potential function [25] for collision-free velocity vector alignment of
groups of vehicles described by a noiseless version of (1). The evolution equations
for θ (t) and v(t) become

dθ (t) = ωDdt +ωdt+σθ dwθ , dv(t) = uDdt + udt +σvdwv,
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Fig. 1 In this scenario, agent 1
(the AiF) observes neighbors 2
and 3 (solid lines) and attempts
to achieve the inter-agent spac-
ings r12 = δ12 and r13 = δ13,
as well as alignment of heading
angles and speeds. Agent 1 is
unaware of any other observa-
tion connectivity (dashed lines).

m = 1

m = 2

m = 3

r12

r
13

so that the controls ω and u are interpreted as the optimal correction terms to
the deterministic turning rate feedback control ωD and acceleration feedback con-
trol uD, respectively, in the presence of uncertainty. For brevity, the reader is di-
rected to [25] for the relevant equations for ωD and uD. Suffice it to say that in
the deterministic case (σθ ,m = σv,m = 0), the non-optimal feedback control ωD and
uD ensures collision avoidance, that is, the inter-agent distances remain strictly
positive1, and it helps to align the vehicle velocity vectors. Moreover, it guar-
antees that the group will tend toward a minimum of the artificially-constructed
potential energy V (rm). Our specific choice of V (rm) = δ 2

m||rm||−2 + 2log ||rm||
(see [25]) causes the potential to reach minimum value when all inter-agent dis-
tances rm → δm. Note that from the perspective of the AiF, the non-optimal con-
trols executed by a neighboring agent m are based on that neighbor’s sole observa-
tion, i.e., the observation of the AiF, and independent of others in the population, as
before.

Finally, we look to the evolution equations for the heading angle θm(t) and speed
vm(t) of a neighbor m to the AiF. In our formulation, the optimal controls θm(t) and
vm(t) will be computed by the AiF, while assuming that agent m is only observing
the AiF. The distributed nature of this problem is preserved, since during simulation,
the control executed by agent m will differ from what is expected from it. Therefore,
the control the AiF computes for agent m is modeled as the mean value of a Gaussian
random variable:

dθm(t) = ωD,mdt +N
(
ωmdt,σ2

θ ,mdt
)
, dvm(t) = uD,mdt +N

(
umdt,σ2

v,mdt
)
,

where σθ ,m and σv,m take into account both kinematic uncertainty and control un-
certainty, so that σθ ,m > σθ and σv,m > σv. In summary, we have a kinematic model
for the AiF of the form

1 Ensuring collision avoidance among agents with non-zero collision radii would require
a different deterministic control or artificial potential function than is considered in this
work.
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dx(t) = vcosθdt (3)

dy(t) = vsinθdt (4)

dθ (t) = ωDdt +ωdt+σθ dwθ (5)

dv(t) = uDdt + udt +σvdwv (6)

dxm(t) = vm cosθmdt (7)

dym(t) = vm sin θmdt (8)

dθm(t) = ωD,mdt +ωmdt +σθ ,mdwθ ,m (9)

dvm(t) = uD,mdt + umdt +σv,mdwv,m, m = 1, . . . ,M. (10)

This model can be written in a general form:

dx(t) = f (x)dt +Budt +Γ dw, (11)

where the state vector x includes the system state from the perspective of the AiF,
f (x) captures the kinematics including the deterministic, collision-avoiding con-
trols, and u = [ω ,u,ω1,u1, . . . ,ωM,uM]T is a vector of optimal feedback controls
to be computed by the AiF. The Wiener process dw captures the uncertainty due
to model kinematics for each agent, as well as the uncertainty due to the control
executed by neighboring agents m = 1, . . . ,M.

Our goal is to compute the feedback controls u(x) that minimize the total ac-
cumulated cost until the formation is reached (a problem sometimes called control
until a target set is reached). We define the following cost functional for the AiF:

J(x) = min
u

E

{ τ∫
0

1
2

(
k(x)+uT Ru

)
ds
}
, (12)

where τ = inf{t > 0 : x(t)∈F} is a (finite) first exit time, i.e., the first time that the
state reaches a formation in F defined in (2). We note that, unlike previous works
that either use a receding horizon approach or fix a final time, the final time τ is not
known in advance. The positive semi-definite matrix R provides a quadratic control
penalty, and the instantaneous state cost k(x),

k(x) = (h(x)− μμμ)T Q(h(x)− μμμ), (13)

is a quadratic that reaches minimum value when the distances to each of the AiF’s
M neighbors equal the nominal distances δm, the heading angles are equal, and the
speeds are equal with:

h(x) = [r1, . . . ,rM,θ −θ1, . . . ,θ −θM,v− v1, . . . ,v− vM]T , (14)

μμμ = [δ1, . . . ,δM,0, . . . ,0]T , (15)

and Q is a diagonal positive definite matrix. Note that this instantaneous state cost
reaches minimum value when the potential energy associated with noiseless control
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also reaches minimum value. However, the noiseless controls also prevent collisions
using an infinite potential energy when inter-agent distances approach rm = 0. Since
the correction control u is penalized, it will not overcome this barrier, and collision
avoidance is still ensured.

3 Path Integral Representation

In this section we show how the optimal control problem can be represented as a
path integral over possible system trajectories. The derivation is similar to that used
in previous works, but the new type of cost functional used in this paper warrants a
new derivation. The (stochastic) Hamilton-Jacobi-Bellman equation for model (11)
and cost functional (12) is

0 = min
u

{
( f +Bu)T ∂xJ+

1
2

Tr
(
Σ∂ 2

x J
)
+

1
2

k(x)+
1
2

uT Ru
}
, (16)

where Σ = Γ Γ T . We have chosen boundary conditions for this PDE as J(x(τ)) = 0
for x ∈F . The HJB equation must typically be solved numerically in a discretized
state space until a steady state is reached (see [16], for example). However, the struc-
ture of the problem at hand allows us to avoid this through a suitable transformation.

The optimal control u(x) that minimizes (16) is

u(x) =−R−1BT ∂xJ, (17)

which, when substituted back into the HJB equation, yields:

0 = f T ∂xJ− 1
2
(∂xJ)T BR−1BT ∂xJ+

1
2

Tr
(
Σ∂ 2

x J
)
+

1
2

k(x(t)). (18)

Next, we apply a logarithmic transformation [7] J(x) = −λ logΨ(x) for constant
λ > 0 to obtain a new PDE

0 =
k(x)
2λ

− f T

Ψ
∂xΨ − 1

2
1
Ψ

Tr
(
Σ∂ 2

x Ψ
)

− 1
2

λ
Ψ2 (∂xΨ)T BR−1BT ∂xΨ +

1
2

1
Ψ 2 (∂xΨ)T Σ∂xΨ . (19)

In the model (3)-(10), it can be seen that the optimal controls u(x) act as a
correction term to the deterministic controls and the stochastic noise. Penalizing
this control (12) suggests that the optimal control is that which is, in some sense,
“close” to the passive, deterministic process (see [27] for a more precise defi-
nition in terms of Kullback-Leibler divergence). Moreover, this implies that the
possibility of a large stochastic disturbance (either due to neighbors’ unknown
controls or model kinematics) requires the possibility of a greater control input.
Because of this, we assume that the noise in the controlled components is in-
versely proportional to the control penalty, or Σ = Γ Γ T = λ BR−1BT . This selects
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the value of the control penalty that we shall use in the following and is given

by R = λ diag
(

σ−2
θ ,σ−2

v ,σ−2
θ ,1,σ

−2
v,1 , . . . ,σ

−2
θ ,M,σ−2

v,M

)
and also causes the quadratic

terms on the second line of (19) to cancel, so that the remaining PDE for Ψ is linear:

0 = f T ∂xΨ(x)+
1
2

Tr
(
Σ∂ 2

xΨ
)− k(x)

2λ
Ψ (x), (20)

Ψ (x) = 1, x ∈F (21)

As before, this could be solved numerically until a steady state is reached. How-
ever, the Feynman-Kac equations [19, 31] connect certain linear differential opera-
tors to adjoint operators that describe the evolution of a forward diffusion process
beginning from the current state x̃(0) = x̃0 = x. From the Feynman-Kac equations,
the solution to (20) is [8]:

Ψ(x) = Ex̃,τ|x̃0

⎧⎨⎩Ψ(x̃(τ))exp

⎛⎝− 1
2λ

τ∫
0

k(x̃(s))ds

⎞⎠⎫⎬⎭ . (22)

where x̃(t) satisfies the path integral-associated, uncontrolled dynamics (cf. (11)),

dx̃(t) = f (x̃(t))dt +Γ dw, (23)

with initial condition x̃(0) = x. The expectation in (22) is taken with respect to the
joint distribution of (x̃,τ) of sample paths x̃ = x̃(t) that begin at x̃0 = x and evolve
as (23) until hitting the formation x̃(τ) ∈F at time τ . Unlike previous works, where
the terminal time is fixed and known in advance, this stopping time is a property of
the set of stochastic trajectories x̃(t).

The distribution (x̃,τ) is difficult to obtain. Monte Carlo techniques may be used
to sample trajectories x̃, but hitting the formation is a rare event unless there is an
artificial mechanism to “guide” the trajectory into the formation. In this work, we
determine the trajectory x̃|τ,x0 conditioned on its hitting time. From the law of total
expectation,

Ψ(x) = Eτ|x0

⎧⎨⎩Ex̃|τ,x̃0

⎡⎣Ψ(x̃(τ))exp

⎛⎝− 1
2λ

τ∫
0

k(x̃(s))ds

⎞⎠⎤⎦⎫⎬⎭ (24)

= Eτ|x0
{Ψ(x0|τ)]} . (25)

In practice, we find that the inner distribution Ψ(x0|τ) exhibits small tails for most
τ and has high probability for just a small range of τ . Moreover, the range of τ with
higher likelihood Ψ(x0|τ) is that which appears to equally balance state and control
costs. Therefore, we consider a discrete set (τ1, . . . ,τNτ ) of Nτ possible values for τ
with non-informative, uniform prior probabilities. This implies that the distribution
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of the hitting times is implicitly encoded in the length (and the ensuing cost) of the
path x̃|τi,x0. Since Ψ(x(τi)) = 1 from (21), the solution (24) can be expanded as:

Ψ(x̃) =
1

Nτ

Nτ

∑
i=1

Ex̃|x̃0,τi

⎧⎨⎩Ψ(x̃(τi))exp

⎛⎝− 1
2λ

τi∫
0

k(x̃(s))ds

⎞⎠⎫⎬⎭ (26)

=
1

Nτ

Nτ

∑
i=1

Ex̃|x̃0,τi

⎧⎨⎩exp

⎛⎝− 1
2λ

τi∫
0

k(x̃(s))ds

⎞⎠⎫⎬⎭ . (27)

By discretizing the interval [0,τi] into Ni intervals of equal length Δ t, t0 < t1 <

.. . < tNi = τi, we can consider a sample of the discretized trajectory x̃N |x0,τi =
(x̃1, . . . , x̃Ni). Under this discretization in time, the solution (24) can be written as

Ψ(x̃) =
1

Nτ
lim

Δ t→0

Nτ

∑
i=1

∫
dx̃NP(x̃N |x̃0,τi)exp

[
− Δ t

2λ

Ni

∑
k=1

k(x̃k)

]
, (28)

where dx̃N =
Ni

∏
k=1

dx̃k and where P(x̃N |x̃0,τi) is the probability of a discretized sam-

ple path, conditioned on the starting state x̃0 and hitting time τi, given by

P(x̃N |x̃0,τi) =
Ni−1

∏
k=0

p(x̃k+1|x̃k,τi). (29)

Since the uncontrolled process (23) is driven by Gaussian noise with zero mean and
covariance Σ = Γ Γ T , the transition probabilities may be written as

p(x̃k+1|x̃k,τi) ∝ exp
(
−1

2
(x̃k+1− x̃k− f (x̃k)Δ t)T

× (Δ tλ BR−1BT )−1 (x̃k+1− x̃k− f (x̃k)Δ t)
)

(30)

for k < Ni− 1, and p(x̃k+1|x̃k,τi) = �h(x̃k+1)=μμμ(x̃k+1) for k = Ni− 1.
The path integral representation of Ψ(x̃) is obtained from equations (28)-(30),

and can be written as an exponential of an “action” S(x̃N |x̃0,τi) [10] along the time-
discretized sample trajectories (x̃1, . . . , x̃N):

Ψ(x̃) ∝ lim
Δ t→0

Nτ

∑
i=1

∫
dx̃Nexp

(
−S(x̃N |x̃0,τi)

)
(31)

S(x̃1, . . . , x̃N |x̃0,τi) =
Ni

∑
k=1

Δ t
2λ

k(x̃k)+
Ni−1

∑
k=0

1
2
(x̃k+1− x̃k−Δ t f (x̃k))

T

× (λ Δ tBR−1BT)−1
(x̃k+1− x̃k−Δ t f (x̃k)) . (32)
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Differentiating (31) with respect to x̃0, we can obtain the optimal control (17) as [2]

u(x̃) = lim
Δ t→0

λ R−1BT ∂x̃ logΨ

= lim
Δ t→0

Nτ

∑
i=1

∫
dx̃NP(x̃N |x̃0,τi)uL(x̃

N |x̃0,τi) (33)

= lim
Δ t→0

Nτ

∑
i=1

EP(x̃N |x̃0,τi)

{
uL(x̃

N |x̃0,τi)
}

(34)

where limΔ t→0 P(x̃N |x̃0,τi) = P(x̃|x̃0,τi) is the probability of an optimal trajectory
conditioned to hit the formation at time τi,

P(x̃N |x̃0,τi) ∝ e−S(x̃N |x̃0,τi), (35)

which weights the local controls uL(x̃
N |x̃0,τi) in (33), defined by

uL(x̃
N |x̃0,τi) =

x̃1− x̃0

Δ t
− f (x̃0). (36)

Although the resulting control law is stationary, the state space is too large for it
to be computed offline. Because of this, after computing u(x) = u(x̃0), each agent
executes only the first increment of that control, at which point the optimal control
is recomputed. Then (34) is

u(x) =
EP(x̃N |x̃0)

{x̃1}− x

Δ t
− f (x)

=
EτEP(x̃N |x̃0,τ)

{x̃1}− x

Δ t
− f (x). (37)

In other words, the control (37) applied by an agent in state x is constructed from
a realization of the unknown or random dynamics of the system that maximizes the
probability of the trajectory that starts from x and evolves until hitting the forma-
tion. This probability is weighted by the cost accumulated along the path. One may
compute the optimal control (37) once the path probability P(x̃N |x̃0,τi) has been
computed, a nontrivial task to be discussed in the following section.

4 Computing the Control with Kalman Smoothers

In this section we present our approach to compute the control in (37). Although
Monte Carlo techniques can be used to generate samples of the maximally-likely
trajectory P(x̃1, . . . , x̃N |x̃0), we find them to be slow in practice due to the high
dimension of this problem (x̃N ∈ R4NM). Moreover, when sampling a trajectory
x̃N |x̃0,τi, the trajectory must be conditioned to hit the formation at τi. Finally, it
is not necessary to sample the entire distribution P(x̃N |x̃0) since only the estimate
x̂1 ≡ EP(x̃N |x̃0)

{x̃1} is needed.
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Therefore, in this work, we treat the temporal discretization of the optimal tra-
jectory x̃N as the hidden state of a stochastic process, where appropriately-chosen
measurements of this hidden state are related to the system goal μμμ (15). The opti-
mal control can then be computed from the optimal estimate x̂1 given the process
and measurements over a fixed interval t1, . . . ,τi. We define the following nonlinear
smoothing problem.

Nonlinear Smoothing Problem:
Given measurements yk = y(tk) for tk = t1, . . . , tN = τi, where tk+1−tk =Δ t, compute
the estimate x̂1:N of the hidden state x̃1:N from the nonlinear hidden state-space
model:

x̃k+1 = x̃k +Δ t f (x̃k)+ εk (38)

yk = h(x̃k)+ηk, (39)

where f (·) and h(·) are as in Section 2, and εk and ηk are independent multivariate
Gaussian random variables with zero mean and covariances:

E
(
εkεT

k

)
= λ Δ tBR−1BT (40)

E
(
ηkηT

k

)
=

{
λ
Δ t Q−1 k = 1, . . . ,N− 1

0 k = N
. (41)

The smoothing is initialized from x̃0 = x, the current state of the system as viewed
by the AiF. Measurements yk are always exactly yk = μμμ . �

To show the relation between the nonlinear smoothing problem and the stochastic
optimal control problem, we write the probability of a hidden state sequence x̃N

given measurements yk and the initial state x̃0, which is [9] P
(

x̃N |x̃0,y1, . . . ,yN

)
∝

∏N
k=1 p(yk|x̃k)p(x̃k|x̃k−1), where

p(yk|x̃k)≡ p(μμμk|x̃k) = N
(
h(x̃k),ηkηT

k

)
∝ exp

{
− Δ t

2λ
(h(x̃k)− μμμ)T Q(h(x̃k)− μμμ)

}
(42)

p(x̃k|x̃k−1) = N (x̃k−1 +Δ t f (x̃k−1),Δ tΣ)

∝ exp

{
−1

2
(x̃k− x̃k−1−Δ t f (x̃k−1))

T

×(λ Δ tBR−1BT )−1
(x̃k− x̃k−1−Δ t f (x̃k−1))

}
. (43)

Comparing the right hand sides of (42-43) with (31)-(32), it can be seen that they
are identical to those in the stochastic optimal control problem.

Since the optimal control (37) is based on the probability of a full trajectory
of fixed length and values μμμ are available in advance, the expected value of the
trajectory originating from state x̂0 conditioned to hit the formation at time τi, that
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is, the hidden states x̂k, k = 1, . . . ,N, can be found by filtering and then smoothing
the process given the values μμμk using a nonlinear fixed-interval Kalman smoother.
Such an algorithm assumes that the increments given by (42) and (43) are Gaussian
to some extent, but the algorithm is sufficiently fast to be applied in real-time by each
unicycle in a potentially large group with an even larger state space, motivating its
use in this work.

Once this estimated trajectory has been computed for each τi, the expectation
over τi may be computed using (32) and (35). This would result in an average of
the controls uL(x̃|x̃0,τi) to be applied, weighted by the probability of the optimal
trajectory for each τi. In other words, each agent would estimate both the optimal
system trajectory (from its perspective) given the time the formation will hit and the
hitting time of the formation. Hitting the target sooner would save on state costs, but
may cause an increase in control costs, and vice versa.

When the smoothing is complete and agents have applied their computed control,
each agent must then observe the actual states of its neighbors so that the next it-
eration begins with the correct initial condition. We provide a pseudo code for our
computations in Algorithm 1. In practice, the controller/smoother must be capable of
efficiently smoothing over the horizon [t0,τi]. The computational complexity of the
smoother used in this work is analyzed in [24], where it is seen that the number of op-
erations required by the smoother roughly scales with the number of neighbors as M3.

Algorithm 1. Formation control algorithm applied by each agent
x(t)←measured state of system from AiF viewpoint
μμμ ← nominal distances
while x(t) �∈F do 	 defined by (2)

for i = 1, . . . ,Nτ do
E{x̃1} , . . . ,E{x̃N}← KalmanSmoother (initial state = x0,horizon = [0,τi] ,

measurements = μμμ)
E

{
uL(x̃

N |x0,τi)
}
← (E(x̃1)−x)/Δ t− f (x) 	 from (36)

S(i) ← action(E(x̃1) , . . . ,E(x̃N)) 	 using (32)
end for
u(x) = 1

Nτ
∑Nτ

i=1E

{
uL(x̃

N |x0,τi)
}

Apply computed corrective control u(x) 	 using (11)
x(t)←measured state of system from AiF viewpoint

end while

5 Results

In this section, the Kalman smoothing method is employed so that five agents
achieve the formation of a regular pentagon, where each agent is individually es-
timating the hidden optimal trajectory based on the relative kinematics of all of its
neighbors. The agents observe all others, but, as described in Section 2, only the
inter-agent connections known by an agent are used when computing the control.
The instantaneous state cost (13) penalizes the mean squared distance from the uni-
cycle to all of its M = 4 neighbors in excess of the side length of the pentagon (5
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Fig. 2 Five agents, starting from random initial positions and a common speed v = 2.5 [m/s],
achieve a regular pentagon formation by an individually-optimal choice of acceleration and
turning rate, without any active communication. The frames at 2 [s] and 4 [s] show an example
of collision avoidance between the two upper-left agents.

[m]) or the diagonal of the pentagon, depending on the relative configuration of the
pentagon encoded in δm, m = 1, . . . ,4.

The system and algorithm parameters were chosen as λ = 100, σθ = 0.1,σv =
0.05,σθ ,m = 1,σv,m = 1, Nτ = 10, τ = 1, . . . ,10, Q = 100I, εr = εv = 0.1, εθ = 10◦,
and Δ t = 0.1, with all units relative to meters and seconds. The control was computed
using a Discrete-time Unscented Kalman Rauch-Tung-Striebel Smoother [24]. Fig. 2
shows the trajectories of all agents, while the inter-agent distances and agents’ angles
and speeds can be seen in Fig. 3. The actual stopping time was τ = 16.1 [s], and the
agents did not collide. In the last second of simulation, a minor deviation in the agents’
heading angles and speeds was seen. This was due to a final correction in agents’
relative distances that was needed after having converged in heading angle and speed.
Without the addition of the optimal controls, the agents formed a loose pentagon, but
the collision-avoiding controls acting alone led to oscillatory trajectories, and the
formation tolerances (2) were not reached in the first 100 [s] of simulation (Fig. 3).
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Fig. 3 Inter-agent distances rmn, agent heading angles θ , and agent speeds v as a function of
time using the stochastic optimal control (left) and the deterministic feedback control (right).
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6 Discussion

This work considers the problem of unicycle formation control in a distributed opti-
mal feedback control setting. Since this gives rise to a system with huge state space,
we exploit the stochasticity inherent in distributed multi-agent control problems in
order to apply a path integral method.

Each agent computes its optimal control using a nonlinear Kalman smoothing
algorithm. The measurement and process noise of the smoothing problem are cre-
ated using the structure of the cost function and stochastic kinematics. Aside from
instantaneous observations of neighbors, the formation is created and maintained
without any communication among agents. The possibility to extend the model to
three spatial dimensions will be pursued.

In order to prevent collisions among agents, the optimal turning rate and acceler-
ation controls affect the system alongside a non-optimal feedback control law based
on an artificial potential function. This suggests that the type of stochastic optimal
control problem considered in this work may provide a way to improve other de-
terministic feedback control laws used for multi-robot systems in the presence of
uncertainties.
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11. Jadbabaie, A., Hauser, J.: On the stability of unconstrained receding horizon control with
a general terminal cost. In: Proceedings of the 40th IEEE Conference on Decision and
Control, vol. 5, pp. 4826–4831. IEEE, Orlando (2001)

12. van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, 3rd edn. North Hol-
land (2007)

13. Kappen, H.: Linear Theory for Control of Nonlinear Stochastic Systems. Physical Re-
view Letters 95(20), 1–4 (2005)

14. Kappen, H.J.: Path integrals and symmetry breaking for optimal control theory. Journal
of Statistical Mechanics, Theory and Experiment 2005, 21 (2005)
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Maximum-Leaf Spanning Trees for Efficient
Multi-Robot Recovery with Connectivity
Guarantees

Golnaz Habibi and James McLurkin

Abstract. This paper presents a self-stabilizing distributed algorithm for the recov-
ery of a large population of robots in a complex environment—that is, to gather them
all in a goal location. We assume the robots do not have a map of the environment,
but instead use short-range network communications and local sensing to physi-
cally route themselves towards the goal location. Since the robot’s motion can dis-
rupt robots network communication and localization in complex environments, we
desire an algorithm that can maintain connectivity while preserving efficient opera-
tion. Our approach constructs a spanning tree for physical routing, but only allows
the leaves of this tree to navigate the goal location. This distributed maximum-leaf
spanning tree (DMLST) ensures connectivity, while providing an efficient recovery
by allowing the maximum number of robots to be mobile. We present empirical re-
sults on the competitive ratio of the DMLST and it is very good, approaching the
optimal solution for our communication network. DMLST recovery has been tested
in simulation, and implemented on a system of thirteen robots. While a basic re-
covery fails in all experiments, the DMLST recovery succeeds efficiently in most
trials.

1 Introduction

Many practical applications of multi-robot systems, such as search-and-rescue,
exploration, mapping and surveillance require robots to disperse across a large ge-
ographic area. Often overlooked is the need to recover the robots to a goal loca-
tion after the application is complete. Recovery can be challenging in complicated
environments. We focus on large populations of simple robots operating in large
environments. We assume that constructing and sharing a global map of the en-
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vironment is beyond the limits of their processing and communications. We also
assume that GPS navigation and infrastructure communication are unavailable in
indoor environments. Additionally, central communication is not practical for large
populations, because of non scalability. i.e. the required bandwidth does not scale
with the population size. We also assume that the communication range is much
smaller than the size of environment. Therefore, a multi-hop network is required
for communication. We need to measure the neighboring positions of a robot to be
able to navigate. Because there is no map or GPS, we assume that each robot has
access to the local network geometry, i.e. communications with nearby robots and
position information of neighbors. This local network geometry supports multi-hop
communications and distributed algorithms for a configuration control.

While sonar and radio positioning perform poorly in cluttered environments, line-
of-sight communication such as IR communication and camera vision can provide
us appropriate local geometry information. However, visual obstructions can block
views of neighboring robots. These limited sensing abilities make the recovery more
challenging in complicated environments. We desire a distributed algorithm that can
function with the knowledge of only local network geometry and overcome recovery
challenges.

This paper presents a distributed algorithm to safely and efficiently recover large
populations of robots with limited sensing from complex and unstructured environ-
ments. Informally, we define safety as the ability to recover the robots without leav-
ing any robot behind. We define efficiency as the comparison between actual and
optimal execution time. We define the execution time as the time that is required
for all the robots to go to the goal location. In addition, we desire a self-stabilizing
distributed algorithm; an algorithm that produces a desired configuration from any
connected configuration in a bounded time.

The primary contribution of our work is a distributed algorithm to recover a large
population of robots efficiently while maintaining network connectivity. We present
a distributed algorithm for efficiently computing an approximation of Maximum
Leaf Spanning Tree(MLST). We combine this tree with mid-angle navigation to
recover a large number of robots in a variety of environments.

The paper is organized as follows: The motivation of the paper and related work
are presented in Section 2. Section 3 presents our model, assumptions and some
preliminary concepts which include network communications assumptions and a
dynamic model of the robot. Section 4 describes our distributed MLST algorithm
(DMLST). The recovery of robots based on DMLST is explained in Section 5. Sec-
tion 5 also analyzes the time efficiency and correctness of our recovery algorithm.
We present simulation and experimental results in Section 6 and Section 7 respec-
tively. We conclude the paper with a brief discussion of the work in Section 8.

2 Motivation and Related Work

Existing approaches do not solve the recovery problem for multi-robot systems—
that is, these algorithms do not recover all of the robots in a goal location. For
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example, Batalin [1] used stationary vertices as navigation guides, but these sta-
tionary nodes remain stationary and are not recovered. By using a simple quantized
control law, a group of agents with limited sensing achieve rendezvous and gather
in a location [5]. However robots gather anywhere in the space and there is no spe-
cific location as a goal location for the recovery. Moreover, the sensor model is not
realistic in [5]. Li and Rus [6] develop a distribute algorithm for sensor networks
to guide robots to a target, but they do not guarantee inter-robot connectivity during
the recovery.

We are looking for an algorithm to recover all the robots in a goal location while
maintaining connectivity. For this purpose, we use the subset of robots as guides
Guide for physical navigation. In order for the robots to travel along an efficient path
to the goal location, we require that each robot u has at least one neighbor N(u) ∈
Guide such that N(u) is closer to the goal location. An spanning tree with a robot in
the goal location as the root provides exactly this desired structure for navigation.
The spanning tree provides a connected network in which each robot has a path to
the root. We assume only the leaves of the tree can move during the recovery and
internal nodes become stationary. We require an algorithm that converges quickly
and provides an spanning tree in which each robot has a stationary parent to act as
a navigation guide to lead the robot back to the goal location. we are looking for a
spanning tree with maximum number of leaves to increase the number of moving
robots during a recovery.

A Maximum Leaf Spanning Tree is a tree that spans a graph with the smallest
possible number of internal vertices, producing a maximum number of leaf ver-
tices [16]. Having a larger number of leaves allows that a larger number of robots
are moving at any given time, decreasing the average physical time for all robot
to get the goal location. Finding MLST is well-studied and is a NP-hard problem.
There are different versions of MLST that are centralized [11], distributed [4] and
self-stabilizing [4, 9]. However, all of these approaches constructs MLST in statics
networks, but we seek an algorithm to generate an MLST in a dynamic networks.

We design a Distributed MLST(DMLST), that is an approximation of the
Maximum-leaf Spanning Tree, to improve the efficiency of the recovery such that
the largest number of robots move toward the goal location. This spanning tree is
built based on the information of the depth of the graph of robot network which is
provided by the broadcast tree and ad-hoc multi-hop communication. In the second
part of the paper, we introduce a mid-angle navigation algorithm to navigate robots
to the goal location, while reducing physical interference from inter-robot collisions.

3 Model and Assumptions

We assume that the network starts from a dispersed but connected state. First, we
assume that there is a distinguished goal robot RG located at the goal location. We
use RG as the root of a tree. There are no assumptions on the size or shape of the
network or of the environment. The communication network is an undirected graph
G = (V,E). Each robot is modeled as a vertex, u ∈ V , where V is the set of all
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robots and E is the set of all robot-to-robot communication links. The neighbors of
each vertex u ∈ V are the set of robots within communication range r of robot u
with a line-of-sight connection, denoted N(u) = {v | {u,v} ∈ E}. Each robot sits
at the origin of its local coordinate system, with the x̂-axis aligned with its current
heading. Each robot can measure the angle with respect to its own x̂-axis to each of
its neighbors, but with a limited resolution of π

8 .
Each robot is modeled as a small disk with position of u.pos = (x,y,θ ). The

robot has a differential drive, and can rotate in place and translate up to some max-
imum speed vmax. Obstacle sensors detect any collision with the environment and
other robots. There is an obstacle avoidance behavior that can effectively maneuver
the robot away from any collision. We do not model the physical interference [12]
caused by these collisions with robots in the simulations, hence the dimension of
the robot is ignored. However, this interference affects the experimental results in
Section 7.

Algorithm execution occurs in a series of synchronous rounds. A Synchronizer
models an asynchronous distributed system to a synchronous distributed system
[13] . This syncronizer simplifies analysis and is straightforward to implement in
a physical system. At each round, every robot u ∈ V broadcasts the unique mes-
sage u.message to all of its neighbors. Therefore, robot u receives a v .message
from each neighbor in v ∈ N(u). Each message contains a tuple of integers of the
form: u.message = (u.id,hops,u.ChildrenCount,u.SelectedParent,u.Stationary).
The meaning of these fields will be described in Section 4. Here we simply note
that the magnitude of each field for a fixed maximum number of robots n, is smaller
than log2n, , i.e. the number of bits required to identify each robot. This produces a
total message of constant size.

We assume robot platforms with limited sensors and capabilities. In particular,
we assume that robots do not have a map of the environment, nor the ability to
localize itself relative to the environment geometry. The problem of localization
and mapping is typically solved with SLAM [18, 3] or Monte Carlo Localization
(MCL) [8, 17, 7]. However, both of these techniques are beyond the sensing and pro-
cessing capabilities of our platform. Because, the sensor model of our experimental
platform is limited to measuring the angles to neighboring robots i.e. bearing-only
sensing.

4 Distributed Maximum Leaf Spanning Tree Algorithm

Our distributed algorithm for finding the maximum leaf spanning tree has three
stages: 1) the robots construct a spanning tree rooted in the goal robot; 2) Each
robot counts its children and shares this information with its neighbors; 3) Each
robot selects a parent in a fashion intended to maximize the number of children
per parent. We label these SelectedParent robots as internal nodes, and the rest as
leaves. This section describes this process in detail. The results of our algorithm is
compared with the solution of brute force algorithm as an optimal solution. We use
this comparison to compute the competitive ratio.
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Algorithm 1. Algorithm for counting children of robot u

1: Do forever
2: ChildrenCount ← 0
3: for ∀v ∈ N(u)  v.hop > u.hop do
4: if (v.SelectedParent = u.id)∨ (v.SelectedParent = undecided) then
5: u.ChildrenCount ← u.ChildrenCount+1
6: end if
7: end for
8: BroadCast(ChildrenCount)

After broadcast tree is constructed by using the goal robot as a source [10]. The
source become the root of the tree and all robots calculate their hop value. The hop
value implies the shortest path network route to the source.

Algorithm 1 shows the procedure for counting the children of robot u. Robot
u reads the messages v.message from its neighbors v ∈ N(u) and calculates
u.ChildrenCount. u.ChildrenCount contains the number of children that have ac-
tually selected robot u as SelectedParent, plus UNDECIDED children (line 4 - 6).
ChildrenCount of robot u is broadcasted through the network. Algorithm 2 shows
how a robot u selects its parent. Lines 6 to 14 search for the parent with MaxChil-
drenCount. All the parents with MaxChildrenCount are saved in the PotentialParent

Algorithm 2. Algorithm for selecting parent of robot u

1: Do forever
2: PotentialParent ←∅

3: MaxChildrenCount ← 0
4: SelectedParent ← undecided
5: if N(u) has not been changed since the last round then
6: for all v ∈ N(u) do
7: if ChildrenCount > MaxChildrenCount then
8: PotentialParent ←∅

9: Add v to PotentialParent
10: MaxChildrenCount ← ChildrenCount
11: else if ChildrenCount = MaxChildrenCount then
12: Add v to PotentialParent
13: end if
14: end for
15: if (size(PotentialParent)> 1) then
16: Prob← rand(0,1)
17: if Prob≤ K then
18: SelectedParent ←robot with minimum id is selected from PotentialParent
19: end if
20: else
21: SelectedParent ← PotentialParent
22: end if
23: end if
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(a) (b) (c)

Fig. 1. Comparison of DMLST algorithm for different values of K . (a): The average number
of internal nodes vs. rounds for 50 trials and the population of 500 robots is compared for
different values of probability K. This plot shows that K = 0.5 gives the best result. (b): The
plot of the average number of internal nodes vs. the total population of nodes for the same
varying K in (a). (c): The average of competitive ratio of DMLST against the number of
iterations.

Fig. 2. Distributed MLST for a graph
with 1000 nodes. Blue circle is the root
of the tree. Leaves and internal nodes
in the tree are in green and brown col-
ors respectively. Edges of the original
graph which are selected in the tree
are colored in brown. The edges of the
graph that are not selected in the tree
are in gray. Note: nodes are generated
randomly and sometimes they overlap.
Overlapping nodes, especially leaves,
may look like cycles, but there is no
loop in the generated tree.

set. If there are two or more parents with MaxChildrenCount, or if the parents of
the robot changes, the robot defers its decision to the next round, and sends UNDE-
CIDED as SelectedParent. Without this constraint, a newly added potential parent is
never selected, because robot’s ChildrenCount is initially set to zero; therefore, the
newly added robot always loses in the competition with other potential parents, even
if it has the most potential children. The condition in line 5 in Algorithm 2 guaran-
tees that robots do not ignore new potential parents. The situation when a robot has
more than one parent with MaxChildrenCount is called symmetrical state. In sym-
metrical state, robot does not have enough information to make a decision. In this
case, a robot chooses parent with minimum id with probability K. Otherwise, the
robot remains UNDECIDED and waits for the next round to get information from its
neighbors decision and make a choice of parent (line 15-22 of algorithm 2). Using
the probability K eliminates the possibility of the symmetry.
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Figure 1 shows the convergence of DMLST algorithm over rounds. For K = 1,
the algorithm always chooses the parent with minimum id; when K = 0, the robot
always waits for the next round to decide and a selection is never made. In other
words, the symmetry is never broken, and robots select all the potential parents with
MaxChildrenCount. Since the result may not be a tree, we use K = 0 only for the
analysis here and we choose K > 0 for our algorithm. Symmetry also happens in the
very beginning of the algorithm. Initially robots do not have any information about
their neighbors and send UNDECIDED, i.e. robots select all their potential parents as
parent. In other words, all robots are internal nodes initially. Some nodes become
leaves as the algorithm is converging and a tree is gradually formed. Figure 1(b)
shows the average number of internal nodes versus the robot network size in 12 trials
for different values of K. These results show that the best choice for K is 0.5, because
the algorithm converges the fastest with the minimum number of internal nodes
compared to other choices. We define Competitive Ratio as the ratio of number of
internal nodes in optimal solution to number of internal nodes in DMLST algorithm.
We use brute force algorithm as an optimal solution to compute the Competitive
Ratio. Figure1 (c) illustrates how the competitive ratio decreases as the number of
iterations of DMLST increases.

5 DMLST Recovery Algorithm

DMLST recovery has three main parts that run concurrently. 1)A BFS tree is built
from the communication broadcast, rooted from the goal robot as a source. 2)The
approximation of MLST is generated based on BFS tree. 3) Internal robots be-
come stationary and leaf robots navigate towards the source robot by selecting
NavigationGuides from the set of neighbors which are closer to the source robot
or in the same distance.

As robots move towards the source and the tree updates, internal robots become
leaves and move towards the goal location. In this way, the number of moving robots
increases so that all the robots move toward the source and ultimately get the goal
location. The proposed recovery algorithm depends on frequent updates of the
broadcast communication tree. We assume that the tree updates faster than the
robot’s motions [14]. This assumption will also be enforced our hardware experi-
ments to prevent dis-connectivity. Algorithm 3 shows how robots become stationary
or start moving during recovery algorithm.

5.1 MidAngle Navigation Algorithm

There are many existing approaches for navigation in multi-robot systems [6, 1].
We use the basic formulation of Li [6] and Batalin [1] . However, we modify these
methods for the bearing-only sensors on our robot platform [15]. In bearing-only
systems, there is no information about the distance between two robots. A robot
only knows the orientation to its neighbors. Algorithm 4 describes the function
of Mid-angle navigation algorithm. This algorithm is a slight improvement over
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Algorithm 3. DMLST Recovery algorithm

1: Do forever
2: Construct BFS tree by IRCommBroadCast()
3: Construct a tree by DMLST algorithm
4: for each Robot u do
5: if u.ChildrenCount = 0 then
6: u.Stationary ← 0
7: MidAngleNavigation(u)
8: else
9: u.Stationary ← 1

10: Robot u stops moving
11: end if
12: end for

Algorithm 4. Mid-angle Navigation for robot u

1: Do forever
2: NavigationGuide ← all neighbors v ∈ N(u)  v.hop < u.hop
3: if NavigationGuide.size = 1 then
4: S ← v ∈ N(u)  v.hop = u.hop
5: if S �=∅ then
6: NewGuide← S that has minimum bearing with the robot in NavigationGuide
7: Add NewGuide to NavigationGuide
8: end if
9: end if

10: MidAngle← Average of bearing (u,v),v ∈ NavigationGuide
11: Turn by theta = MidAngle

simply navigating directly to a parent in the communications tree. In Mid-angle
navigation, a robot moves on the bisector of the angles that robot builds with its
NavigationGuide. Therefore, the robot navigates between its NavigationGuides in
order to prevent collisions. This fact can be seen, since the angle bisector of a tri-
angle always intersects the opposite side with the intersection point between two
ends of that side. In the case that robot has only one NavigationGuide, robot moves
directly to its NavigationGuide.

5.2 Correctness of DMLST Recovery Algorithm

We show the correctness of recovery algorithm in three terms, safety, progress
and self-stabilization. Safety: The correct operation of recovery algorithm requires
that the network does not disconnect. We can show this by induction as follows:
in DMLST-based recovery, each robot has at least one parent that is stationary.
The edges in the tree is traversable, because of line-of-sight communication.
Every edge between two nodes in the tree implies the physical path between two
robots . Therefore, if we assume that communication between stationary robots
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is reliable, each robot has a reliable path through the stationary robots in the
network to the source. and the network is always connected. Progress: In order
to guarantee forward progress of our algorithm, we need to show two things: first,
our tree always has at least one moving robot; second, moving robots are moving
towards the source. Leaves are moving robots, and it follows from the definition
of a tree that there will always be at least one leaf. Demonstrating motion in the
correct direction requires us to show that robots with fewer hops in the tree are
geometrically closer to the source. The proof in Li [6] shows that this type of
geometric, distributed BFS algorithm cannot have a local minimum in the number
of hops, or basins of attraction for navigating robots. Therefore, robots in such
approaches with fewer hops are always closer to the source, and always move
toward the source. Our Mid-angle navigation algorithm is slightly different in that
robots can move towards a single parent or a point between two parents. However,
robots always move towards guides with the same or fewer hops. Therefore, they
never move away from the goal location.

Self-Stabilization: The DMLST algorithm is self-stabilizing, meaning that you can
start the robots from any arbitrary configuration, or provide a disturbance in po-
sition, state or population, but algorithm will eliminate the effects of this pertur-
bation after a predictable number of communication rounds [2]. Changes in initial
configuration do not affect in the algorithm performance, because the tree is built
outward from the source, and all robots ultimately recover the source by using the
constructed maximum leaf spanning tree as a line path and moving towards the goal
location. hops counters and redirect their paths to the new location of the source. In
addition, if a robot is removed, different outcomes happen: 1) If the removed robot
is a leaf robot, other network maintain connectivity, because the leaf node is located
at the end of the tree and does not affect on the connectivity of the network. There-
fore, the recovery process continues without any disconnections. 2) If the stationary
robot is removed, as long as the network connectivity remains, the child of the re-
moved robot updates its guides by selecting a new parent or become stationary to
combat the change. Updating the guides or switching to stationary takes only one
round. Our algorithm is self-stabilizing as long as the network remains connected
after changing configuration. However, removal of a internal robot can disconnect
the network. This connection failure happens when the removed robot’s child does
not have any other neighbor with fewer hop to select as its parent.

5.3 Time Complexity and Path Efficiency

Time complexity of recovery algorithm depends on two separate components: com-
plexity of the DMLST algorithm and complexity of navigation. The time complexity
of DMLST depends on the topology of the robot network, especially the configu-
ration of symmetries in the graph of a robot.We remind that a symmetry happens
when a robot has multiple parents with the maximum ChildrenCount. Therefore,
robot should wait for the next round to pick its parent. In the worst case, network
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symmetry extends horizontally to at most the diameter of the graph at each depth
from the source. Time complexity is bounded by O(d2), where d is the depth of
the graph. Another complexity component arises from the motion of the robots as
they navigate to the goal location. Obviously, the lower bound for the recovery is
the depth of the graph, because the furthest robot determines the time for recover-
ing all robots at the goal location. In practice, the arrival time is always more than
this lower bound, because of interference of robots. Moreover, mid-angle navigation
usually gives a longer path than the shortest path to the goal location. To measure the
efficiency of our algorithm, we use path efficiency. Path efficiency (PE) is a number,
0≤ PE ≤ 1, and is defined as the ratio of the shortest path to the length of the path
which is created by the algorithm. We have computed the PE of DMLST recovery
for 50 trials, when 100 robots recover in a quarter-circle environment (Figure 3).
The calculated PE has a mean of 0.78 and the standard deviation of 0.08.

6 Simulated Experiments

We assume robots are uniformly distributed over a quarter-circle of radius R, and the
source robot is located at the corner of the quarter-circle. The robots are modeled
as points and the effects of physical interference from collisions are ignored. In this
ideal case robots are uniformly distributed in the workspace and no limitation exists
in sensing and movements, the number of robots that are at the goal location can be
computed by equation (1). In other words, t is defined as the time it takes for robots
located initially at distance d to get the goal location. If the velocity of all robots
is a constant v, the distance to the goal location(d) can be expressed as d = vt. In
equation (1), n is the total number of robots, and m(t) is the average number of
robots that arrive the goal location in time t. The furthest robot’s distance to the
source is R. Furthermore, we assume a holonomic chassis, so that each robot can
move in a straight line towards the source robot. Roughly speaking, this is expected
to be m(t) = O(t2), as the number of robots at any given radius is O(d2).

m(t) =
nπd2

πR2 =
n(vt)2

R2 =
nv2t2

R2 (1)

Local Coordination: In local coordination, we use an inter-robot communications
radius that is much smaller than the environment size, r << R. In this model, each
robot can only communicate with and measure the pose of its neighbors. In this
case, each robot has a local coordination whose origin is itself. This coordination
reduces the available information for each robot to local network geometry.

Each robot is equipped with infrared (IR) sensors that measure the bearing angle
to its neighbors.

Basic Recovery: This type of recovery allows all the robots to move to the goal
location simultaneously. In a basic recovery each robot calculates the average bear-
ing of its neighbors and moves in that direction. Instead, DMLST recovery chooses
stationary parents and uses mid-angle navigation. Figure 3(a) illustrates the flow of
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Fig. 3. (a): The trajectory of 100 robots during DMLST recovery algorithm in a quarter-circle
environment. Robots are in blue circles and red star shows the goal location. (b): The status
of each robot during the recovery in figure (a). Gray, blue and green show moving, stationary
and arrived states respectively. The horizontal axis shows the time in seconds and the vertical
axis shows the robots sorted by arrival time. (c): The comparison of recovery algorithms
performance in a quarter-circle environment which is illustrated in figure (a). Ideal recovery,
DMLST Recovery and basic recovery are shown in red, black and blue color respectively.

robot during DMLST recovery. Robots are recovered to the corner of the quarter-
circle which has been defined as the goal location. Figure 3(b) shows three statuses
of each robot during the recovery that are stationary, moving and arrived at the
goal location. Figure 3(c) compares different recoveries for 100 robots in a quarter-
circle environment. In this simulation, we assigned v = 0.1m/s and sampling time
t = 0.05s. As we expect, recovery from global coordination is very similar to the
curve that arises from equation (1).

While basic recovery is efficient when recovering in a open environment, con-
nectivity can fail in a complex environment as robots drive around corners. Figure
4(a) and Figure 4(c) show the simulation results of DMLST recovery in U-shape
and serpentine environments respectively. Figure 4(b) and Figure 4(d) compare ba-
sic recovery and DMLST recovery against GPS (ideal) recovery in a U-shape and
serpentine environment respectively. ideal recovery uses global coordinates to nav-
igate robots along the shortest path to the goal location. These results illustrate the
success of DMLST recovery in maintaining connectivity, even with sharp turns in
the workspace. In DMLST recovery, there always exists at least one robot in the
corners of the environment which is stationary and maintains connectivity. While,



286 G. Habibi and J. McLurkin

(a) (b) (c) (d)

Fig. 4. (a): DMLST recovery of 50 robots in an U-shape environment with two 90 degrees
turns. Red star specifies the goal location. Green curves show the path of the DMLST re-
covery. Initial positions of the robots are shown in red stars. Additionally, blue points show
stationary robots at the half way through the simulation. (b): The comparison of time effi-
ciency of different recovery algorithms in U-shape corridor which is illustrated in (a). Ideal
recovery, DMLST Recovery and basic recovery are shown in red, black and blue color re-
spectively.(c): DMLST recovery path of 90 robots in a serpentine environment with four 180
degrees turns. Green star specifies the goal location The path of the recovery is shown in red.
(d): The comparison of time efficiency of different recovery algorithms in serpentine-shape
corridor which is illustrated in (c). Ideal recovery, DMLST Recovery and basic recovery are
shown in red, black and blue color respectively.

basic recovery fails to finish and some robots never reach the goal location, because
of the the loss of connectivity. Basic recovery may fail, because all robots always
move and there is no guarantee of connectivity and some robot may be lost and
unable to reach the goal location.

7 Experiments on Robot Hardware

We have tested DMLST and basic recovery algorithms on 13 real robots for 6 tri-
als in a serpentine corridor(Figure 5). As the goal robot is selected as a source,
the tree is generated and robots start moving until they get to the goal location. As
illustrated in Figure 5, the basic recovery algorithm is not able to cope with the
corners in this environment, so some robots are disconnected during recovery trials.
Instead, DMLST recovery is usually able to move all robots to the goal location. The
DMLST is updated during the recovery. Some robots become stationary while oth-
ers move. Stationary parents wait for children, especially in the corners. For better
performance, each robot’s bump sensors help it move away from the environmental
walls and other robots. Figure 6 compares the performance of basic and DMLST
recovery for 6 trials. The basic recovery failed in all trials because of loss of net-
work connectivity during the execution. This is not a problem during the straight
sections, but was a problem while getting around the corners. In 4 out of 6 trials of
DMLST recovery, all of the robots succeeded in rounding corners by maintaining
connectivity with a stationary parent(s). The experimental result is very consistent
with simulation outputs. However, in other 2 trials, 7 of 13 robots and 6 of 13 robots
were disconnected.
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Fig. 5. Real experiment for robots recovery. The environment has two corners with 180 de-
grees. The dimension of each corridor is 50 cm(width) × 300 cm(length). Robot diameter: 11
cm, robot communication range:100 cm. First row(left to right):screen-shots of basic recov-
ery; the goal location is a green star. The network becomes disconnected at the second corner,
and four robots do not return the goal location.These lost robots are shown in a red elipse.
This happens in 100% of 6 trials. Second row(left to right): screen-shots of DMLST Recov-
ery; the goal location is a green star. The network remains connected around the corners, and
all of the robots are able to recover to the goal location.

Fig. 6. Real experimental result:
the comparison of basic(red) and
DMLST(blue) recovery performance
in a serpentine environment for 6 trials.
The percentage of robots reach the goal
location is illustrated against the time.
In 4 out of 6 trials, all the robots are
able to get the goal location, while in
the rest, the DMLST recovery fails and
only half of the robots are able to get
to the goal location. However, basic
recovery fails in all trials.

The errors encountered were largely caused by physical interference between
robots, especially around corners. The 180-degree corners in this environment are
the worst-case scenario for this kind of recovery; future work might consider a cus-
tom navigation behavior tailored to deal with these kinds of corners.

8 Conclusion

Tree algorithm (DMLST) for the robot recovery problem. Our algorithm removes a
number of simplifying assumptions made in previous works on robot recovery, most
notably providing better guarantees of connectivity and performance in complex en-
vironments. We present a simple approximation algorithm to compute the maximum
leaf spanning tree in a distributed fashion, which has a very good competitive ratio
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in empirical experiments to brute force search as an optimal solution. Extensive
simulation results and hardware experiments demonstrate the effectiveness of our
approach, even in the worst-case environments, and show clear improvement over
previous approaches. In future, we intend to extend this work to more complicated
environments and test our algorithm when robots are removed, added and when the
source of the network is changed. A mathematical proof for the competitive ratio of
DMLST algorithm will also be presented in future work.
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Multi-Robot Formation Morphing through
a Graph Matching Problem

Lantao Liu and Dylan A. Shell

Abstract. We consider the problem of changing smoothly between formations of
spatially deployed multi-robot systems. The algorithm presented in this paper ad-
dresses scenarios in which gradual and seamless formation transitions are needed,
a problem which we term formation morphing. We show that this can be achieved
by routing agents on a Euclidean graph that corresponds to paths computed on —
and projected from— an underlying three-dimensional matching graph. The three-
dimensional matching graph is advantageous in that it simultaneously represents a
logical assignment problem (for which an optimal solution must be sought) and met-
ric information that comprises the spatial aspects of the Euclidean graph. Together,
these features allow one to find concurrent disjoint routing paths for multiple source
multiple goal (MSMG) routing problems, for which we prove one may find rout-
ing solutions to optimize different criteria. These disjoint MSMG paths efficiently
steer the agents from the source positions to the goal positions, the process of which
enables the seamless transition from an old formation to a new one.

1 Introduction

Part of multi-robot formation control involves manoeuvring a spatially dispersed
system from one formation to another. Formation control has received a great deal
of attention and extensive investigation in the past decades (see reviews by Murray
[17], Chen and Wang [4]). Most previous studies consider formation control of the
whole system, but, in many situations, only parts of the system need to be changed
to reach a new formation. For example, sometimes only patches of agents in certain
corners need move to other locations, or boundary agents need to fill inner holes. If
the majority the system keeps its structure unchanged, while a minority migrate to
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(a) (b) (c) (d) (e)

Fig. 1 Evolution of formation morphing. Source nodes are colored in green (top triangles)
and gradually disappear. Goal nodes are colored in orange (right triangles) and gradually
grow.

other places, then an incremental variation of the problem is worth addressing. We
call formation control in such scenarios formation morphing since the formation
is changed as if it is gradually “deformed” in places, while the major pattern is
unaltered. Fig. 1 shows an example of seamless formation morphing.

Recently we have shown that by exploring the matching graph version of the
Hungarian method [10] and interpreting it in three dimensional space, the assign-
ment problem can also be used to deal with the standard routing problems [12]. In
this paper we focus on more complicated conditions involving multiple paths gener-
ated from the matching graph, and develop an assignment-based formation control
method for multi-robot systems for these cases. Specifically, formation morphing is
achieved by routing certain agents from their source/initial positions to the defined
goal positions along some trajectories, such that all agents involved in the trajec-
tories simultaneously shift to and thus replace their successive neighbors. This is a
process which gradually morphs the formation into a new shape. The routing tra-
jectories are a set of interference-free paths on the Euclidean graph in which the
nodes are the agents and edges are the traversal links; the paths are projected from
the Hungarian augmenting paths in the 3D bipartite graph which we construct. One
important contribution of this work is that the formation morphing is carried out in
ways which optimize useful criteria, e.g., the overall travel cost is minimized, the
total interruptions are minimized (the number of the robots re-deployed is fewest),
and the number of disjoint paths that are allowed is maximized. This is because
the routing is incorporated in, and projected from, the matching graph from which
globally optimal solutions of assignment problems are sought and found.

More specifically, the contributions of this work include:

• The design of a formation control strategy through routing paths projected from
a 3D matching graph, which combines the logical description of the matching
graph and the spatial embedding of the Euclidean graph.

• An optimal means for producing routing solutions of interest in applications; for
example, the global minimal travel distance and shortest hopping distance are
analyzed.

• Simultaneous generation of disjoint and conflict-free MSMG paths. Conditions
for producing disjoint paths, and the maximal number of such paths are analyzed.
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2 Related Work

Formation control is an active topic in the multi-robot research area and many ap-
proaches for controlling the formations of various types have emerged during the
past decades. To sample from as many distinct taxonomical branches as possible,
we acknowledge control theoretic schemes [7, 8], strategies with combinatorial op-
timizations [16], approaches dealing with geometry and potential fields [5, 22],
as well as behavior-based methods [3] and methods employing biological inspired
mechanisms [20, 23]. We are particularly interested in the formations of structured
and well-aligned patterns, in which agents keep similar distances from each other
(this somewhat mimics certain animal behaviors, e.g., schools of fish, cattle herds,
inserts swarms, etc.). Works dealing with the formations (patterns) that are similar
to this work include [2, 11, 18], although their methods differ significantly.

One may also regard formation control as the assignment of robots to goal posi-
tions that define the final pattern. Smooth shifting of formation shapes addressed by
this paper relates directly to the reassignment of robots to tasks (work specifically
addressing reallocation includes that of Karmani et al. [9] and Shen and Salemi
[21]), and to controllers which enforce some metric (or shape) constraints (notable
recent examples of formation control include that of Michael et al. [16], Liu et al.
[13], and Ren and Sorensen [19]). A clear, recent example of reallocation and for-
mation work together is that of Agmon et al. [1]. The authors designed a polynomial
time graph-based method to extract a subset of the robots from a coordinated group
so that this subset can perform a new task while minimizing the cost of interacting
with the remaining group.

This paper offers a different perspective: spatial formation transitions of a multi-
robot team are achieved by routing agents on the 2D Euclidean graph but doing
this by regarding it as a projection from the 3D representation of a corresponding
matching graph. The approach has been described in detailed in our recent work [12]
where we focused on the analysis of single path properties. In this work we em-
phasize multi-path conditions which are more complicated and reveal the merits of
thinking about formation transitions in this way. The underlying method is the same
incremental matching approach, viz. execution of stages of the Hungarian Method
which produce paths with desired global optimization properties by incorporating
both (metric) traversal information and reallocation (logical) costs, simultaneously.

3 Synthesized Matching Graph and Assignment Problem

This work is based on two forms of graphs: the Euclidean graph and the bipartite
graph (or bigraph for short).

The Euclidean graph is a standard graph G = (V,E) with a metric embedding
so that the vertices in V describe locations and edges in E express distances be-
tween the vertex pairs. We let each vertex of G denote an agent, and let w(i, j) =
−d(i, j) represent the weight of edge e(i, j) ∈ E , where d(i, j) is the travel dis-
tance between agent pair (i, j). The negated travel costs transform the problem
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from minimization to maximization. This transformation does not change the op-
timization objective but makes the problem consistent with the assignment utility
maximization described below. In addition, traversability constraints, limited sens-
ing/communication ranges, and so one, imply that the graph G is likely to be sparse.

Algorithm 1. The Hungarian Algorithm
Require:

An n×n assignment matrix represented as the complete weighted bigraph G̃ = (X ,Y, Ẽ),
where |X |= |Y |= n.

Ensure:
A perfect matching M.

1: Generate initial labellings l(·), and an initial matching M in Ge.
2: If M perfect, terminate algorithm. Otherwise, randomly pick an exposed vertex u ∈ X .

Set S = {u}, T =∅.
3: If N(S) = T , update labels:

δ = min∀x∈S,y∈Y\T {l(x)+ l(y)− w̃(x,y)}

l′(v) =

⎧⎨⎩
l(v)−δ if v ∈ S,
l(v)+δ if v ∈ T,
l(v) otherwise.

4: If N(S) �= T , pick y ∈ N(S)\T .

(a) If y exposed, then u � y is an augmenting path,
then augment matching M and go to step 2.

(b) If y matched, say to z, extend the tree: S = S
⋃{z}, T = T

⋃{y}, and go to step 3.

Notes & Definitions:

• w̃(x,y) is the weight of edge ẽ(x,y).
• Equality graph Ge = {ẽ(x,y) : l(x)+ l(y) = w̃(x,y)}.
• Neighbor of vertex u ∈ X : N(u) = {v : ẽ(u,v) ∈ Ge}.

The Bigraph is the main data structure used in the Hungarian algorithm [10].
In the Hungarian algorithm (see Algorithm 1), is one of the most well-known
optimal assignment algorithms and can efficiently solve an n× n assignment prob-
lem in O(n3) time. In the algorithm, the bigraph G̃ = (X ,Y, Ẽ) is another represen-
tation of utility matrix U = (ui j)n×n, where X and Y respectively denote the set
of agents and tasks, and the set Ẽ = {ẽ(i, j)} are edges weighted by the utilities
(w̃(i, j) = ui j =−d(i, j)) between associated agent-task pairs (i, j), i, j = 1, · · · ,n.
Since the bigraph represents matching relationships , sometimes it is also called the
matching graph. The assignment problem is a matching problem where the goal is
to find a set of maximally weighted and mutually excluded edges that constitute a
perfect matching M such that each agent in X is uniquely assigned to a task in Y .

The Hungarian algorithm grows a matching by searching for a path, called an
augmenting path, which consists of an alternating sequence of matched and un-
matched edges but with free end nodes. This means the quantity of unmatched edges
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(a) (b)

Fig. 2 (a) Two matched edges found after running two stages of the algorithm; (b) A perfect
matching consisting of three matched edges is found after one additional stage (by augment-
ing path a3 → t2 → a1 → t1).

is an odd number and is exactly one more than number of the matched edges. The al-
gorithm augments the set of matched edges by simultaneously flipping the matched
and unmatched edges in the augmenting path. (Formal definitions of these opera-
tions on matchings are omitted, refer to Lovász and Plummer [15].) In Algorithm 1,
steps 2 to 4 describe the procedure of seeking and flipping an augmenting path. We
call a single iteration of this procedure a stage (see Fig. 2). Note that each stage
finds exactly one augmenting path which increases the size of the matching by ex-
actly one. Thus, the algorithm requires at most n stages to obtain all n matched
edges with mutually excluded end nodes, thereby forming the optimal assignment
solution.

In its conventional use of finding a set of matchings, the bigraph G̃ = (X ,Y, Ẽ)
is only interpreted as having meaning in a logical sense; any geometric information
used to form the utilities is typically ignored. This differs from the embedded Eu-
clidean graph G = (V,E) which encodes the spatial description directly. But being
graphs, both forms have common characteristics, for instance, both the Euclidean
graph and the bigraph can be represented with matrices: G can be represented with
a symmetric adjacency matrix with w(i, j) as entries, and G̃ can be represented with
a non-symmetric utility matrix with w̃(i, j) as entries. This suggests that perhaps
the bigraph may have the potential to express spatial information adequately if the
utility matrix is symmetric.

All off-diagonal entries of the two matrices have the following relationship:

w̃(i, j) = w̃( j, i) = w(i, j) = w( j, i),

∀i �= j,1≤ i, j ≤ n.
(1)

This means that if we ignore the diagonal entries, the assignment utility matrix is
the form of an adjacency matrix, which is the basic idea in bringing the two forms
of graph together in the construction of a unified one.

This synthesized graph may be imagined as if an identical copy of the Euclidean
graph G had been lifted and placed over G. Via this “extrusion” a three dimensional
mesh is formed with two identical layers plus all edges that connect them. Here the
two layers correspond to the two partitions of a bigraph, i.e., the bigraph vertex sets
satisfy X =Y =V . Each edge e(i, j) ∈G is replaced with a pair of edges ẽ(i, j) ∈ G̃
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(a) (b)

Fig. 3 Mapping from Euclidean graph to bigraph. (a) An Euclidean graph of networked
robots with only nearest neighbors connected. This example illustrates the simple case of
morphing one agent: vertices 6 and 6′ denote the initial and goal nodes/positions, respectively;
(b) The corresponding sparse bigraph visualized in 3D. Bold red edges on top layer do not
exist but just show the projection relationship with graph on the left.

and ẽ( j, i) ∈ G̃. (Note: different from edges in G, in G̃ edges ẽ(i, j) �= ẽ( j, i) since
i, j are nodes from different vertex sets—either X or Y .) An example is illustrated
in Fig. 3(b). A more detailed description of this transformation is provided in our
preceding work Liu and Shell [12]. In the remainder of the paper we assume that the
vertices X in the top layer represent the agent set and vertices Y in the bottom layer
denote the task set. Since nodes of either layer are copies from the Euclidean graph,
this synthesized graph thus also conveys information about the spatial locations (top
nodes describe the agent locations, and bottom nodes describe the task locations).
If an agent node is matched to a task node, the agent needs to move from its current
location to the newly assigned task location, and when a pair of agent and task
nodes are vertically aligned, one can simply imagine that the agent has reached its
deployed location and completed the position shift, so need not relocate.

Because this synthesized graph is a matching graph, we call it the 3D bigraph
(3D matching graph) and continue to denote it with symbol G̃. Thus, we ob-
tain a mapping (projection) Ω : G → G̃. With known G = (V,E), the projection
G̃ = Ω(G) = (X ,Y, Ẽ). To get G = Ω−1(G̃), an inverse operation is carried out,
analogously.

4 Morphing the Formation

Formation morphing is done by seamlessly transferring agents from the source po-
sitions to the predefined goal positions as illustrated in Fig. 1. It can be imagined
as cutting a batch of nodes from the source regions and pasting them into the goal
regions. Naturally this implies that the two regions must be determined before the
morphing operation is begun. Assume that agents in the source positions form a
set A, and nodes in the goal positions form set B. Note that a goal location has no
agent in it but will be occupied by an agent after the morphing process is finished.
For each agent node in A, if it is connected with a unique goal node in B by a routing
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path, and if we let all agent nodes on this path shift to their successors’ locations in
a chain, then it looks as if this agent in A is sent to B, and all other nodes in V \A
are still occupied by unique agents. This is also the essence of new agent-task in-
sertions to the existing assignment described in our preceding work [12]. Different
from that, formation morphing requires multiple interference-free paths to simul-
taneously steer multiple agents from the source positions to unique goal positions,
which is the multiple sources multiple goals (MSMG) routing problem.

In this paper, we provide a solid analysis for the generated MSMG paths, as well
as the details of applying our method to control formation transitions. We start the
analysis by assuming that each node of A and B is directly traversable (with at least
one edge connecting) to some nodes in V \A. The MSMG routing paths are obtained
by projecting the matched edges of augmenting paths in 3D bigraph to either planar
layer. In order to get these augmenting paths connecting A and B from the Hungarian
algorithm, these rules need be followed to construct the 3D bigraph: the top layer is
split into two subsets of nodes— A and X \A, and the bottom layer is also separated
into two subsets— B and Y \B. Edges are added between the two layers follow-
ing the 3D bigraph construction procedure described in Section 3. Nodes of X \A
and Y \B are vertically aligned and initialized as matched to represent the station-
ary intermediate nodes, whereas all other edges are initialized as unmatched. There
are only |A| nodes unmatched/un-assigned (assuming |A| ≤ |B|), and each stage of
Hungarian algorithm costs O(|V |2) time complexity, therefore only O(|A||V |2) is
required to compute all MSMG paths.

4.1 Interference-Free Property of MSMG Paths

Let P : A � B denote the set of paths that connect nodes in A and nodes in B.
Routing paths P and Q are disjoint paths if no node or edge is shared between them.
A shared node means that the agent at the intersection of different paths is required
to simultaneously replace multiple other agents on corresponding paths, which is
impossible.

Theorem 1. The Hungarian algorithm run on bigraph G̃ = Ω(G) produces only
disjoint paths on graph G.

Proof. We prove this theorem via contradiction: if the generated paths are not
disjoint then there must exist at least two paths with a shared node that crosses
between them. An example is illustrated in Fig. 4(a). Since P is also comprised
of vertices and edges, it can be denoted by P = (V p,E p), alternatively. Assume
m paths Pi = (V p

i ,E
p
i )⊆ G (m > 1 and i = 1,2, · · · ,m) are generated from the Hun-

garian algorithm, and there is shared (crossing) node vs ∈ ⋃∀i Pi having more than
one incoming routing edge and more than one outgoing routing edge. More than
two routing nodes must be connected to vs:

|{u | e(vs,u) ∈ Pi,∀i = 1,2, · · · ,m}|> 2. (2)
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(a) (b)

Fig. 4 Neither node nor edge will be shared among multiple paths produced from a matching
graph. (a) Assumption of a shared node 0 at the crossing of path 1→ 0→ 2 and path 3→ 0→
4. The bottom graph is the 3D bigraph showing the violation of mutual exclusion constraint;
(b) Assumption of a shared edge e(0,1) belonging to both path 3 → 0 → 1 → 6 and path
4→ 0→ 1→ 5.

This means that in bigraph G̃ = Ω(G) either the corresponding agent node (in top
layer of Fig. 4(a)) or the task node (in bottom layer) or both have more than one
matched edge, which contradicts the mutual exclusion constraint and violates the
feasibility of the assignment solution.

The shared edge case is analogous. ��

4.2 Optimality Analysis of MSMG Paths

Thus far we have not described how the diagonal entries in the utility matrix are de-
termined during the construction of a 3D bigraph. The diagonal values are actually
the weights of the vertical edges from agents in set V \A, see Fig. 3(b) for an ex-
ample. Producing utility matrices with different diagonal weights, and feeding them
to the Hungarian algorithm will produce distinct MSMG paths. Here we show two
conditions that yield optimizations of particular interest.

Theorem 2. The set of MSMG routing paths P : A� B projected onto the Euclidean
graph from the matching computed with the Hungarian algorithm will minimize
the global hopping distance1 D(P) when the weights w̃(i, i) (∀i ∈ V \A) (diagonal
utilities) are sufficiently large.

Proof. Let ζ be the largest absolute value of the utility matrix, i.e.,

ζ = max{−min(U),max(U)}, (3)

and let π = |V |ζ + ε , where ε is a small positive value. Weights of the edges ẽ(i, i)
can be made sufficiently large by letting w̃(i, i) = π for all nodes in V \A. Now

1 Hopping distance is also called Geodesic distance, it is the quantity of edges in the path
and therefore measures the number of nodes involved and interrupted in the deployment.
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assume there exists another path Q : A � B with a shorter hopping distance D(Q)<
D(P). Since all nodes not on the paths themselves maintain their matching, the
weight sums fs(·) for the two matching solutions are

fs(P) = ∑
∀(i, j)e(i, j)∈P

w̃(i, j)+(|V |−D(P))π, (4)

and
fs(Q) = ∑

∀(i, j)e(i, j)∈Q

w̃(i, j)+(|V |−D(Q))π, (5)

respectively. Since

fs(P)− fs(Q) = ∑
∀(i, j)e(i, j)∈P

w̃(i, j)− ∑
∀(i, j)e(i, j)∈Q

w̃(i, j)+(D(Q)−D(P))π

≤ ∑
∀(i, j)e(i, j)∈P

w̃(i, j)− ∑
∀(i, j)e(i, j)∈Q

w̃(i, j)−π

≤ ∑
∀(i, j)e(i, j)∈P

w̃(i, j)−π < 0,

(6)

contradicting the optimality of the matching from the Hungarian algorithm. ��
Theorem 3. When w(i, i) = 0 (∀i∈V \A), the set of MSMG routing paths P : A� B
computed by projecting the Hungarian algorithm’s perfect matching to the Eu-
clidean graph have the globally shortest path length.

Proof. When w̃(i, i) = 0, ∀i ∈V \A, the weight sum of the matching solution for the
assignment problem is

fs(P) = ∑
∀(i, j)e(i, j)∈P

w̃(i, j)+ ∑
∀v/∈P

w̃(v,v)

= ∑
∀(i, j)e(i, j)∈P

w̃(i, j)+0 = ∑
∀(i, j)e(i, j)∈P

w(i, j),
(7)

which is essentially the total length of all MSMG routing paths. ��
These two path properties are important since the globally shortest paths minimizes
the total travel distances for a morphing operation, whereas the globally shortest
hopping distance represents the fewest interruptions to the system (an interruption
usually bears a cost).

4.3 Concurrent Paths in Narrow Bridges

In investigating paths formed in complex environments, it is important to quantify
the maximum number of concurrent paths that can be formed. Narrow spaces may
pose a challenge because they can impose a limit on the degree of concurrency that is
possible; understanding these limits allows one to decide when sequential treatment
(e.g., for subsets of A and B) might be called for.
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Definition 1. Let G= (V,E) be a connected graph. A subset C⊆V is called a vertex
cut if G\C (the remaining graph after removing all vertices in C and their incident
edges) is disconnected. A minimal vertex cut is a vertex cut with the least cardinality.

Definition 2. The local connectivity κ(u,v) (or κ(A,B)) is the size of a smallest
vertex cut separating non-adjacent vertices u and v (or vertex sets A⊆V and B⊆V ).

Theorem 4. (Menger’s Theorem) Let G = (V,E) be a graph and A,B ⊆ V, then
κ(A,B) is equal to the maximum quantity of disjoint A-B-paths (i.e., the paths that
connect vertices of A and B) in G.

Proof. Three proofs appear in Diestel [6].

(a) (b) (c) (d)

Fig. 5 Conditions on concurrent paths passing through a narrow bridge in the graph. (a)
Nodes x and y on a path (solid arrowed edges) are from the same minimal vertex cut circled
in an ellipse; (b) Two paths are generated after having found an augmenting path α → x →
y→ β ; (c)-(d) Vertices of a path are from intersecting and independent minimal vertex cuts,
respectively.

Theorem 4 provides the upper bound for the quantity of possible disjoint rout-
ing paths. However, we wish to know how close to this bound the disjoint paths
produced by the Hungarian algorithm on the corresponding matching graphs are.

Theorem 5. For connected graph G = (V,E) with A,B ⊆ V and min{|A|, |B|} ≥
κ(A,B), the number of disjoint paths generated from Hungarian algorithm is equal
to κ(A,B), i.e., Hungarian algorithm running on G̃ = Ω(G) outputs a set of disjoint
A-B-paths, such that each path consists of exactly one cut vertex belonging to a
minimal set of cut vertices.

Proof. Assume a maximal set of disjoint paths Sp = {Pi}, i = 1, · · · ,m is output,
and assume a minimal vertex cut of G is C. If |Sp| < |C|, there must be some path
Pl (l ∈ [1,m]) that contains more than one cut vertex from C. Assume these vertices
form a set V

′
l ⊆V with |V ′

l |= K, then there must be K−1 edges E
′
l ⊆ E (which can

also be path segments) connecting these vertices. For an arbitrary edge e(x,y) ∈ E
′
l

where x,y ∈ V
′
l , x,y must be incident with other edges that are not on routing paths

(a property following from the mutual exclusion constraint and the definition of a
minimal cut), assume they are e(α,x), e(y,β ) respectively (illustrated in Fig. 5(a)).
Then path e(α,x), e(x,y), e(y,β ) forms an augmenting path and flipping of matched
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and unmatched edges cancels edge e(x,y) to effectively bridge two new paths (ex-
ample shown in Fig. 5(b)). Similarly, other edges in E

′
l can also be revised and

cancelled, and each such revision will add exactly one new path. Other complex
conditions involving multiple intersecting or independent sets of minimal vertex
cuts (see. Fig. 5(c) and 5(d)) are treated analogously. There must be κ(A,B) dis-
joint paths generated, each of which consists of exactly one vertex from a minimal
vertex cut. ��

4.4 Morphing with Multiple Shifts

In complex scenarios, we cannot directly generate all MSMG paths in one go. This
includes the condition of κ(A,B) < min{|A|, |B|}, in which at most κ(A,B) paths
can be generated at one time. Another condition occurs when some nodes in A are
not directly traversable to nodes in V \A (no edges directly connect them), these
nodes must first morph (move) to some locations near enough to bridge to nodes
of V \A. In these cases, paths can only be produced in multiple batches and agents
may need to carry out several shifts to complete the morphing task.

Generally, those peripheral agents need to be “transferred” first since otherwise
inner holes may exist, which also deteriorates the traversability. (Peripheral nodes
can be detected in a decentralized way as described in Liu et al. [14].) If local
connectivity does not allow all peripheral nodes to morph at one time (via conditions
given above), then the remaining peripheral nodes are queued and will be processed
with high priority in next iteration to first get routing paths. An update of nodes’
positions exposes new peripheral agents which can be processed in the following
iterations. All future position shifts of an agent are ordered since waypoints require
the agent complete movement one at a time. This is exactly the process of formation
morphing.

5 Results

We simulated the algorithm with tens to hundreds of robots in order to validate
the presented method. The simulator is written in C++ and it runs in a GNU/Linux
environment. We assume that all robots are homogeneous and have identical sens-
ing and communication ranges, within which each robot is capable of recognizing
its neighbors as well as their distances and bearings. Spatial constraints and sens-
ing/communication ranges may limit each agent’s traversablility to only its nearest
neighbors. In this work, a traversal link (edge) is added if the distance between a pair
of agents is less than a given threshold. As a result, differing thresholds on traversal
link length form Euclidean graphs of different sparsity, as illustrated in Fig. 6. To
permit easy visualization, robots are simplified as dots, and the formation of the sys-
tem is aligned in arrays to better reveal the concurrent paths and to show the shifting
motions during the morphing. Also, the robots are assumed to autonomously avoid
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(a) (b) (c)

Fig. 6 (a) A formation of robots; (b)–(c) Euclidean graphs with traversal edges of different
lengths.

obstacles locally to avoid potential collisions (e.g., making a minimal detour around
a obstacle if need be). The algorithm applies to any formation structures so long as
the underlying Euclidean graph is connected.

Fig. 7 shows the evolution of an instance of formation morphing. In Fig. 7(b),
agents form a triangle pattern, and the goal is to transform into the same size trian-
gle rotated by 180◦. Nodes in source positions are identified with green solid dots
(forming set A), and the nodes in goal positions are orange circles (forming set B).
In this example all nodes in A can traverse directly to nodes in V \A.

Fig. 7(b)—7(d) and Fig. 7(e)—7(h) show two morphing processes (the difference
lies in different traversal edge lengths, the former have larger thresholds than the
latter). Optimization of global hopping distance and travel distances yield the same
routing solutions in this example since the formation structure is well-aligned and
the traversal link distance threshold is uniform. Since all agents involved carry out
the relocation simultaneously, the formation transitions are achieved efficiently.

Fig. 8 illustrates the multiple shifts discussed in Section 4.4. Fig. 8(a) shows the
initial and goal formations, and the task is to morph the top and bottom extruded
agents to the left and right sides. Unlike the previous example, the traversal edge
lengths are short so that the outer layer of green (source) nodes are not directly con-
nected to the inner blue (intermediate) nodes. Two processes with differing thresh-
olds are provided in Fig. 8(a)—8(d) and Fig. 8(e)—8(h), respectively. In particular,
Figs. 8(d) and 8(g) show the second round of morphing paths.

Next, we examine the conditions for morphing paths across regions that limit the
amount of concurrency. Fig. 9(a) shows a group of agents passing through a small
gap. The maximal number of paths that can cross from one side to the other is two;
each path passes through exactly one cut vertex in the Euclidean graph. Another
example is Fig. 9(b)—9(d) where a square is morphed to a triangle while crossing
a waist (one can imagine the waist part is located in between two attenuating walls
as in Fig. 9(a), and the agents need to adjust their formations while navigating the
confined environment).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7 (a) Initial and goal formations; (b)—(h) Processes of formation morphing

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8 (a) Initial and goal formations; (b)–(h) Processes of formation morphing
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(a) (b) (c) (d)

Fig. 9 (a) Morphing paths across a small gap; (b)–(d) Formation morphing through a narrow
bridge

6 Discussion and Conclusion

If one compares MSMG paths generated all at once with multi-batch paths, the for-
mer have shorter global hopping/travel distances; naturally the single-batch MSMG
paths fail to consider the constraints imposed by limited local connectivity or iso-
lated nodes.In other words, these special conditions either exceed the maximal paths
capacity or violate the computation rule of the Hungarian algorithm, as discussed in
Section 4.4. Nevertheless, optimality of the multi-batch paths up to the constraints
has not been proven. We examined these conditions and ran experiments with ∼50
agents, and the results show that our solutions are very close to the global optima.
(Global optima are obtained by enumerating all possible cases, and on average the
difference between the two solutions over the global optimum ≤∼ 10% ).

Another element worthy of mention is the decentralization of this algorithm. We
proposed our method by assuming that a central controller has the knowledge of
all agents’ position information and is responsible for computing the solutions and
broadcasting the results to its teammates. In distributed multi-robot systems, com-
munication ranges are likely to be limited, which requires information to be prop-
agated using existing multi-hop methods. Additionally, not all agents need to be
involved and communicated with. Morphing can occur in a local area and 3D bi-
graph can be constructed with only subset of nodes if the number of source nodes
and goal nodes are small and their locations are close to each other (their morphing
paths will involve small number/region of nodes in V \A).

To conclude, this paper proposes a new formation morphing strategy by simul-
taneously routing agents along a set of MSMG paths. Routing paths are projected
from augmenting paths in a synthesized 3D bipartite graph, which combines the log-
ical description of the matching graph and the spatial embedding of the Euclidean
graph. Since the paths are computed from the optimal assignment algorithm, use-
ful optimized properties on the paths are revealed, including the characteristic of
disjointedness, the global optimality of hopping/travel distances for all same-batch
paths, and the maximal number of paths given connectivity constraints. We provided
different formation morphing scenarios in simulation to illustrate and validate the
various distinct conditions identified in the theoretical analysis.
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Hexagonal Lattice Formation in Multi-Robot
Systems

Sailesh Prabhu, William Li, and James McLurkin

Abstract. We present an algorithm that arranges a multi-robot system into a regular
hexagonal lattice. This configuration provides continuous coverage with the fewest
number of robots required. It also has a bounded stretch over a fully-connected
graph, producing an efficient multi-hop communications network. Our algorithm
uses artificial forces to move each robot to local potential energy wells. A local error
correction algorithm detects and corrects most local lattice errors. Both algorithms
are fully distributed, requiring local network geometry information, but no global
coordinates. We present analysis of the potential energy wells that form the lattice, a
proof of the upper bound on the spanning ratio of a hexagonal packing, and the error
detecting and correcting algorithm. Simulation results demonstrate the effectiveness
of the approach for large populations of robots.

1 Introduction

Key applications of multi-robot systems, like mapping, exploration, search-and-
rescue, and surveillance, require robots to disperse over large geographical area
while maintaining a communications network. Some of these applications require
continuous coverage of areas, efficient network connectivity, and the efficient allo-
cation of each robot. This work accomplishes this task with a distributed algorithm
that positions the robots at the vertices of a hexagonal lattice. Figure 1 shows the
results of our algorithm run in simulation with 600 robots.

The hexagonal configuration requires the fewest robots per unit area of any reg-
ular tessellation pattern and produces a connected communication network with a
bounded stretch. Figure 2 shows four alternatives for coverage, a line of robots, and
the three regular tessellations: hexagonal, square, and triangular lattices. All three
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regular tessellations produce a communication graph with a bounded stretch, which
is the ratio between the distance a message must travel through the network between
two robots and the Euclidean distance between these same two robots. A constant
stretch ensures that the distance a message has to travel depends only on the Eu-
clidean distance. Therefore, we can increase the number of robots without increas-
ing the distance the message has to travel. The line of robots provides full coverage
with the smallest number of robots, but produces a communications network with a
stretch that is O(n), where n is the total number of robots in the network. Of these,
the hexagonal lattice configuration provides total coverage of an area, uses the least
number of robots, and produces a network with a bounded stretch.

There are four contributions in this paper. (1) We present an algorithm that uses
virtual forces between two species of robots to produce a hexagonal cell, and (2)
we show that these same forces will allow the hexagonal cell to propagate into a
hexagonal lattice. (3) We show that the potential energy field around the robots has
a local minimum that causes errors in the lattice, but the error can be detected and
corrected with a second distributed algorithm. (4) We present a proof sketch of the

Fig. 1 An example hexagonal lattice from a simulation run of our algorithm.Video

(a) Line Graph (b) Hexagonal
Lattice

(c) Square Lat-
tice

(d) Triangular
Lattice

Fig. 2 Four different communication network topologies for full coverage, sorted by the den-
sity per unit area. The line graph uses the smallest number of robots, but has graph stretch of
O(n). The triangular and square lattice have bounded stretch, but uses more robots than nec-
essary. The hexagonal lattice also has bounded graph stretch, but requires the fewest number
of robots for full coverage, only 2

3 of the robots from a triangular lattice.

http://youtu.be/C9lwjHs-Q08
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maximum stretch of the spanning graph induced by the lattice, and empirical data
that the average stretch is actually much lower. Finally, we demonstrate the results
of simulations with large populations of 400 robots. All of the algorithms are fully
distributed, scale to large numbers of robots, and require only the local network
geometry - i.e. the positions of neighboring robots in the communications network.
The algorithms require limited inter-robot communication, and are designed to run
on simple, low-cost mobile robot platforms.

1.1 Related Work

Our hexagonal lattice algorithm builds on the work of Spears et al. Using artificial
forces, they developed formation control algorithms to construct triangular1 and
square lattices [1, 2, 3, 4]. We modified their framework to make hexagonal cells
stable, and we developed an algorithm to remove lattice imperfections.

Triangular lattices provide complete coverage but incur a great deal of overlap in
the communication ranges of neighboring robots. As shown in Figure 2, a hexagonal
lattice can be formed from a triangular lattice by removing every third robot from
each line. A virtual robot could replace a robot in this position as suggested by
Mullen et al. [5], but we chose not to use this method because it would require
coordination among several robots to determine the center of the hexagonal cells.
Our approach uses two species of robots, similar to the “spin up/down” idea of
Spears et. al. to produce a potential energy field that has energy wells located at the
vertices of a hexagonal cell.

Unfortunately, a system of artificial, which Spears et Al. termed the physi-
comimetic framework, often leads to robots settling down in unfavorable local min-
ima [4]. Martinson and Payton were able to avoid local minima in square lattices
by using the robot’s on-board compass to draw several parallel lines and making
each robot attracted to the parallel lines [6]. Once on the parallel line, they only
move on the line. This scheme avoids several local minima that may occur off the
lines parallel to the two orthogonal axis in a square lattice. We could not employ
this method in avoiding local minima while creating the hexagonal lattice because
the hexagonal lattice is not formed by orthogonal lines, and, instead we developed
another algorithm to remove a robot from a local minimum.

Previous work by Tucker Balch and Maria Hybinette shows the possibility of us-
ing potential fields to maintain a geometric formation while also avoiding obstacles.
The robots constructed “social potentials,” where each robot influenced the poten-
tial energy in its vicinity [7]. Desai et al. created an algorithm to maintain relative
positions and construct a formation [8]. Our work differs from that of Balch and Hy-
binette and Desai et al. because they created a set of geometric formations; however,
we create a repeating hexagonal lattice. Balch and Hybinette showed that by placing
repulsive forces near obstacles, the robots could successfully avoid them. In future
work, we can have the robots in the repeated pattern maneuver around obstacles.

1 There is an unfortunate habit in the literature of referring to triangular lattices as hexagonal
lattices. In this work, we name a lattice by the polygon that forms it.
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While we focus on constructing a repeated hexagonal lattice, our algorithm shares
some similarities to previous work in flocking. Blake Eikenberry et al. created an al-
gorithm that allows a swarm to construct a formation. The robots detected nearby
robots, constructed trajectories, and positioned themselves in the proper relative po-
sitions [9]. Our work differs from work done by Eikenberry et al. because they had
to prescribe the relative positions for each robot. In our work, the robots determine
their relative positions using a distributed algorithm [10]. Hanada et al. constructed
algorithms for separating triangular lattices at an obstacle and then reunifying them.
However, our work is novel because they did not create a self-organized hexagonal
lattice. Turgut et al. created algorithms for self-organizing the heading and proxim-
ity of the robots. However, our algorithm not only maintains a certain proximity, but
it also constructs a repeated hexagonal lattice formation.

2 Problem Statement

We assume that we have n randomly distributed robots that can measure their local
network geometry, the positions of their neighbors in each robot’s reference frame.
A robot is able to move freely in any direction in the plane. We assume that each
robot has a sensing radius of R and a local communication radius of 1.5

√
3R. There-

fore, the robots can sense a radius of R around them with their camera, microphone,
etc., but they can communicate via antennae to a radius of 1.5

√
3R. Our algorithm

will provide full-coverage of the area with the sensing radius. We wish to imple-
ment this on low-cost systems with limited communications and processing, so care
is taken to implement solutions that are simple and scalable. We seek to position the
robots onto the vertices of a hexagonal lattice with hexagons that have a side length
of R.

For communication, we assign log2(n) bits to provide unique IDs to each robot,
1 bit to identify the type of robot, and 32 bits to communicate the error the robot
senses. The total number of bits required is log2(n)+ 33.

3 Graph Search in Hex Lattice

Let K be a complete graph where the nodes are arranged as the vertices of a hexag-
onal lattice. Let H be the edges of the hexagonal lattice, and G be the vertices of the
hexagonal lattice. Define dh(A,B) as the shortest distance A and B on H and d(A,B)
as the shortest distance between A and B on K.

Define the stretch as dh(A,B)
d(A,B) . First, we use computational methods to produce a

distribution of the stretch. Then, we prove the stretch is no greater than 1.5.

3.1 The Distribution of Stretch

To compute the distribution of stretch, we constructed a hexagonal lattice that is ten
hexagons by ten hexagons and calculated the distribution of the stretch shown in
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Figure 3(c). The maximum ratio is 1.5, and this maximum corresponds to traveling
between opposite sides of a hexagonal cell. Furthermore, the histogram indicates
that the distribution of stretch resides mostly in the range 1.2-1.4.

3.2 Analytical Solution for Stretch

We wish to show

dh(A,B)
d(A,B) ≤ 1.5.

Let (a,b) be the index of an arbitrary lattice point. WLOG choose one point to
be the origin (0,0), restrict a,b≥ 0, and let side lengths equal one. Assign (a,b) as
shown in Figure 3(a).

(a) Indexing Hexagonal Lattice
Nodes

(b) Brick Lattice

(c) Distribution of Stretch

Fig. 3 a: The hexagonal lattice can be compressed into a ”brick” lattice without changing
walk lengths. The stretch is at most 1.5. b: The ”brick” lattice conserves the indexes and
edges from the hexagonal lattice c: We computed the ratio between the shortest path traveled
and the Euclidean distance based on a large lattice. This lattice has a size of ten hexagons
positioned vertically and horizontally for a total of 420 vertices. The largest ratio of 1.5
between the distance traveled along the lattice and the Euclidean distance occurs in traveling
between opposite sides of the same lattice as shown in the. There is a spike in the histogram
at a stretch of 1.15, corresponding to the most common stretch between any two nodes.
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Let d(a,b) denote the Euclidean norm of (a,b). Then

d(a,b) =
√

x(a,b)2 + y(a,b)2.

The y-position of point (a,b) is

y(a,b) = y(b) =
√

3
2 b.

The x-position depends on the parity of a+ b:

x(a,b) =

{ 3
2 a− 1

2 , if a+ b odd
3
2 a, if a+ b even

}
.

Let dh(a,b) denote the shortest walk from (0,0) to (a,b) on the hexagonal lattice.
Without altering walk lengths, we reshape the hexagonal lattice into a ”brick” lattice
as shown in Figure 3(b);

The complete derivation of dh is outside the scope of this discussion, so we
present an outline:

If b > a, dh(a,b)≥ a+ b. A walk of length a+ b exists, so dh(a,b) = a+ b.
If b ≤ a, we have two sub-cases. If a+ b is odd, then dh(a,b) ≥ 2a− 1. A walk

of length 2a− 1 exists, so dh(a,b) = 2a− 1. We similarly show for even a+ b that
dh = 2a.

In summary,

dh(a,b) =

⎧⎨⎩
a+ b, if b > a
2a− 1, if b≤ a,a+ b odd

2a, if b≤ a,a+ b even

⎫⎬⎭.

To finish the proof, we show dh
d ≤ 1.5 for each case. The algebraic details are

outside the scope of this discussion.

4 Lattice Formation

To create a stable hexagonal cell, we divide the population into two types of robots,
red and blue. Discriminating between red and blue requires 1 bit, and the robots
can be divided into red and blue types by assigning a 50% probability to being one
of the colors. Robots of the same color try to maintain a distance of

√
3R between

each other while robots of different colors try to maintain a distance of R between
each other. Maintaining these prescribed distances will form the stable hexagonal
cell pictured in Figure 4. The nucleus of a hexagonal cell is a triangle with one side
of length

√
3R, and two sides of length R. This requires two robots of one color and

one of the other. Assuming that we begin with 50% red and 50% blue robots and that
three robots are interacting, the probability that two are of the same type and one is

of another type is 3
4 : 1−P(ALL RED)−P(ALL BLUE) = 1− 2

( 1
2

)3
= 3

4 . Across
the entire population, this will generate a hexagonal nucleus with high probability.
Our simulation results validate this assumption, the robots readily formed an initial
nucleus.
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Fig. 4 In the hexagonal cell pictured above, the robots maintain the prescribed distances
between each other, making the cell stable

The physicomimetic framework models the force between the robots as a propor-
tionality constant, G, times the product of the masses divided by the distance raised
to a power, p. A viscosity term, c, allows the robots to reach a stable state by having
their velocity decay to zero. The framework also imposes a maximum force, Fmax,
that the robots can impart on each other to avoid a rapid increase in velocity.

We determined values for constants Fmax, G, p, and c by searching the parameter
space with a genetic algorithm [11, 12]. We used a genetic algorithm to quickly tune
parameters to optimize global properties of the lattice. We evolved parameters to
minimize global lattice error, which we define later in this paper. Spears et al. tuned
their parameters to reduce the number of clusters and to reach a phase transition
state, where the robots in a cluster repel each other with more force than the force
from the surrounding robots pushing them into a cluster.

4.1 Mass Interactions

To maintain a Euclidean distance R between robots of different types and a distance√
3R between robots of the same type, we define two stable distances,

Rstable =

{
R, for robots of different types√
3R, for robots of the same type

}
.

By making the force attractive when the distance between the robots, d, is greater
than Rstable, repulsive when d is less than Rstable, and zero when d equals Rstable, the
robots will move to reach the desired distance between each other. To ensure that
the interactions remain local, the force goes to zero for d greater than 1.5Rstable.

The magnitude of the force between two robots of mass m is determined from the
equation for the virtual force as defined in Spears et al. [1]:

F =

{ G
d p , for robots of different types
G

( d√
3
)p , for robots of the same type

}
.

For our simulation, we used G = 627.30 and p = 1.62.
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4.2 Stability

The virtual force approaches infinity as two robots reach a distance where d is very
close to zero. When numerical methods are used to integrate an acceleration, re-
sulting from a force that goes to infinity, the velocity can reach a very large value,
causing instabilities in the system. Thus, we placed a maximum value on the mag-
nitude of the virtual force, Fmax = 50.82. The total composite virtual force is shown
in Figure 5(a).

Additionally, we desire for the robots to lose some energy and eventually settle
down into their stable positions. This goal is achieved by introducing a viscosity
coefficient, c = 0.26, that decreases the magnitude of the velocity.

Changes in the communication radius will not affect the algorithm’s stability. The
robot’s communication radius can fluctuate between Rstable and 1.5Rstable, and the
robot will still be able to detect the energy well at Rstable and settle onto a vertex of
the honeycomb lattice.

4.3 Lattice Propagation

We also require that a hexagonal cell, once formed, will give rise to more hexagonal
cells and eventually a hexagonal lattice. The potential energy diagram in Figure 5(b)

(a) Force Function (b) Potential Energy Contours

(c) Energy Wells Diagrams

Fig. 5 a) shows the force that two robots impart on each other. b) shows the potential energy
wells for incoming red robots. Using symmetry arguments, we can add three more energy
wells for blue robots, which are drawn in c).
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indicates that there are four stable positions for an incoming red robot in the vicin-
ity of an already assembled hexagonal cell. By symmetry, we can add three energy
wells for blue robots, pictured in Figure 5(c). Figure 5(c) also shows that we can as-
semble significant portions of six adjacent hexagonal cells surrounding the one that
has already formed. Thus, a single hexagonal cell acts as a nucleus for the creation
of a hexagonal lattice. However, our potential energy field creates a problematic sta-
ble position in the center of the hexagonal cell, which causes an interstitial error,
and causes the hexagonal lattice to become a triangular lattice. This energy well
exists for all choice of constants because all forces in this location sum to zero. In
order to create a hexagonal lattice, we must design a distributed algorithm to remove
a robot caught in this undesirable location.

5 Error Detection and Correction

To remove the robot from the interstitial position at the center of a hexagonal cell,
we developed a distributed algorithm that allows each robot to measure its local
error and determine if it at the center of a hexagonal cell. If the robot is at the center
of the hexagonal cell, it is moved to the exterior of the convex hull surrounding all
the robots. The measurement and communication of error requires 32 bits.

(a) Example Error Read-
ing (Case 0)

(b) Perfect Hexagonal
Lattice (Case 0)

(c) Case 1

(d) Case 2 (e) Case 3 (f) Case 4

Fig. 6 Assuming that the only stable positions are on the vertices of or in the center of a
hexagonal cell, the cases above show the possible neighborhoods a robot could find itself in.
It can have zero, one, two, or three neighbors in the center of a hexagonal cell.
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6 Defining Error

Figure 6(b) show a perfect hexagonal lattice. In this ideal configuration, the angle
between any two neighbors, θi j , is a multiple of 2π

3 . We define local lattice error,
Ei j, for a neighbor pair i, j as the smallest difference between θi j and a multiple
of 2π

3 : Ei j = min(mod(θi j,
2π
3 ), 2π

3 −mod(θi j,
2π
3 )). To calculate the total error of

robot, we sum the error over all neighbor pairs i, j: Etot = ∑Ei j. The average error
of a robot is defined as the total error divided by the number of neighbor pairs:
Eavg =

Etot

(Δ
2)

, where Δ is the number of neighbors.

6.1 Error Configurations

We simplify this discussion by assuming that most of the robots are at the center of
their energy wells, forming a hexagonal lattice. We break the discussion into several
cases to illustrate how the error metric detects interstitial lattice defects.

Case 0: Figure 6(b) shows that a robot with all its neighbors positioned on the
vertices of a hexagonal lattice will measure θi j between neighbors i, j that are mul-
tiples of 2π

3 . This produces a total error Etot = ∑Ei j = 0.
Case 1: Figure 6(c) shows a robot with three neighbors on the hexagonal lattice

and one neighbor in an interstitial position. This will produce an error of π
3 between

the black neighbor and each of the other neighbors, and an error of zero between all
other robots. Since there are three θi j that include the black robot, the total error will
be Etot = 3

(π
3

)
= π . Since there are a total of 4C2 = 6 angles between all neighbor

pairs, the average error for this robot will be Eavg =
π
6

Case 2: Figure 6(d) shows a green robot with three neighbors on a hexagonal
lattice and two neighbors in an interstitial position. The green robot will read an
error of π

3 between brown and black neighbors, an error of zero between two black
neighbors, and an error of zero between two brown neighbors. Since the robot will
measure 6 θi j between brown and black neighbors, 1 θi j between two black neigh-
bors, and 3 θi j between two brown neighbors, the robot will read a total error of
Etot = 6 π

3 +3(0)+1(0) = 2π . Since there are a total of 10 angle readings, this total
error corresponds to an average error of Eavg =

π
5 .

Case 3: The green robot in case 3 is surrounded by three brown neighbors that are
on a hexagonal lattice and three black neighbors in interstitial positions as pictured
in Figure 6(e). The green robot measures an error of π

3 between brown and black
neighbors, measures an error of 0 between two brown neighbors, and measures an
error of 0 between two black neighbors. There are a total of 9 θi j with brown and
black neighbors, 3 θi j between two brown neighbors, and 3 θi j between two black
neighbors. Thus, the total error measured by the robot is Etot = 9 π

3 +3(0)+3(0) =
3π . Since there are a total of 15 ij neighbor pairs, this total error reading corresponds
to an average error of Eavg =

π
5

Case 4: The black robot in case 4 positions itself in the interstitial position, and it
will measure an error of π

3 between brown and green neighbors, zero error between
two brown neighbors, and zero error between two green neighbors. Since there are
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a total of 9 θi j between brown and green neighbors, 3 θi j between two green neigh-
bors, and 3 θi j between two brown neighbors, the robot will read a total error of
Etot = 9 π

3 + 3(0)+ 3(0) = 3π . Since there are a total of 15 angles, this total error
reading corresponds to an average error of Eavg =

π
5

6.2 The Error Correction Algorithm

Figure 7 shows a configuration in which there are many interstitial errors. This is
effectively creating a triangular lattice within the hexagonal lattice. With this many
errors, there is some boundary between the two lattice types. In such a configuration,
our error correction algorithm can start with any interstitial robot that is inside a
hexagonal cell that is adjacent to three or more correct hexagonal cells. Removal of
this robot would extend the hexagonal lattice. We call this robot a correction start
point, and have circled such a robot in black in Figure 7.

Figure 7 shows that all robots at the boundary of triangular and hexagonal cells
have either case 1 or case 2 neighbors; furthermore, a correction start point has two
case 1 neighbors that make an angle of π

3 with each other; we can discriminate a
case 1 robot from a case 2 robot by using the criterion Eavg ≤ π

6 . Thus, if a robot
reads an angle of π

3 between two neighbors with an average error less than π
6 , it

determines itself to be at a correction start point. Having determined itself to be
correction start point, it moves to the exterior of the lattice. This process continues
indefinitely, removing many of the interstitial errors in the network. Intuitively, we
choose robots with case 1 neighbors because the error in a case 1 neighbor is caused
entirely by one robot, which could be the robot in question.

Fig. 7 The robot circled in black is at the corner of the triangular lattice and measures an
angle of π

3 between two case 1 neighbors, which are colored green. Upon removal of the
robot circled in black, the robots circled in pink are at corners of the triangular lattice.

7 Simulation Result

Figure 8 shows the position of the robots after running the entire algorithm for 2000
time steps. The hexagonal cells are fairly easy to pick out in both cases. To evaluate

the global performance, we define lattice error as: Elat =
1
n

n
∑

i=1
Eavg,i, where n is the

number of robots and Eavg,i is the Eavg corresponding to the ith robot. Figure 9(b)
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Fig. 8 The diagram on the left shows the position of the robots when the simulation is run
without error correction, and the diagram on the right shows the result when the simulation
is run with error correction

(a) Average Speed Decay (b) Error Decay

(c) Error Distribution after 2000 Time
Steps(p=0)

Fig. 9 In the plot above, we observe decaying speed and error when messages are dropped
p percentage of the time. These diagrams show that as time evolves, the simulation with the
error correction algorithm decays to a smaller error while also maintaining stability as evi-
denced by the decreasing average speed. They, also, show that a higher probability of message
loss decreases lattice error when the error correction algorithm is not applied. However, with
the error correction algorithm, a higher probability of message loss increases lattice error.



Hexagonal Lattice Formation in Multi-Robot Systems 319

shows that for a simulation run with the error correction algorithm, the lattice error
decreases up until the 500th time step; whereas, the lattice error for a simulation run
without the error correction algorithm ceases to decrease very early in the simula-
tion. Figure 9(c) shows that the error with error correction algorithm is always less
than error without the algorithm. Figure 9(a) shows that the error correction algo-
rithm has almost no effect on the average speed, indicating that the error correction
algorithm does not cause instabilities in the system.

Figure 9(a) shows that the loss of messages does not cause the average speed to
go up, indicating the system remains stable. Figure 9(b) shows that increasing the
loss of messages decreases the error of the system run without the error correction
algorithm. The decrease in error can be attributed to the loss of stability at the center
of the hexagonal cells when one of the robots on the vertices fails to impart a force.
However, increasing the loss of messages increases the error of the system run with
the error correction algorithm. The increased error can be attributed to an inability
to communicate error and fix the lattice.

8 Conclusion and Future Work

Because our algorithm is fully distributed, multiple nuclei start hexagonal lattices
simultaneously, ultimately creating crystalline grain boundaries in the final struc-
ture. This is unavoidable in our current design, but future implementations could
take advantage of symmetry-breaking techniques to break ties at grain boundaries,
and have one lattice “rearrange” neighboring grains to produce a single-crystal lat-
tice. Because our current implementation requires communication with neighbors
at a range of

√
3R, we cannot form hexagonal cells at the maximum extent of the

communication range. We think that it is possible to build a hexagonal lattice using
a communication range of R using virtual forces, but it will require a more compli-
cated distributed algorithm to form hexagonal cells, an approach we will explore in
future work. Our current algorithm is simple, requires only local network geometry,
and is effective. We have calculated fundamental graph properties of the hexagonal
lattice. The simulation results show convergence and stable configurations within
the first few iterations. Our combination of artificial forces and distributed algo-
rithms produces a high-quality hexagonal lattice efficiently. We have shown the al-
gorithm to work on a 2-dimensional plane. In future work, we hope to place this
algorithm on real robots and determine the effect the terrain has on the algorithm.

References

1. Spears, W.M., Spears, D.F., Hamann, J.C., Heil, R.: Autonomous Robots 17(2), 137
(2004)

2. Spears, W., Spears, W., Heil, R., Heil, R., Spears, D., Zarzhitsky, D.: Proceedings of the
Third International Joint Conference on Autonomous Agents and Multiagent Systems,
AAMAS 2004, pp. 1528–1529 (2004)

3. Gordon-Spears, D., Spears, W.: Lecture Notes in Computer Science, pp. 193–207 (2003)



320 S. Prabhu, W. Li, and J. McLurkin

4. Spears, W.M., Spears, D.F., Heil, R., Kerr, W., Hettiarachchi, S.: An overview of physi-
comimetics. In: Şahin, E., Spears, W.M. (eds.) Swarm Robotics 2004. LNCS, vol. 3342,
pp. 84–97. Springer, Heidelberg (2005)

5. Mullen, R.J., Monekosso, D., Barman, S., Remagnino, P.: Distributed Autonomous
Robotic (2010)

6. Martinson, E., Payton, D.: Lattice formation in mobile autonomous sensor arrays. In:
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Direct Policy Search with Variable-Length
Genetic Algorithm for Single Beacon
Cooperative Path Planning

Tan Yew Teck and Mandar Chitre

Abstract. This paper focuses on Direct Policy Search (DPS) for cooperative path
planning of a single beacon vehicle supporting Autonomous Underwater Vehicles
(AUVs) performing surveying missions. Due to the lack of availability of GPS sig-
nals underwater, the position errors of the AUVs grow with time even though they
are equipped with proprioceptive sensors for dead reckoning. One way to minimize
this error is to have a moving beacon vehicle with good positioning data transmit
its position acoustically from different locations to other AUVs. When the position
is received, the AUVs can fuse this data with the range measured from the travel
time of acoustic transmission to better estimate their own positions and keep the
error bounded. In this work, we address the beacon vehicle’s path planning problem
which takes into account the position errors being accumulated by the supported
survey AUVs. We represent the path planning policy as state-action mapping and
employ Variable-Length Genetic Algorithm (VLGA) to automatically discover the
number of representative states and their corresponding action mapping. We show
the resultant planned paths using the learned policy are able to keep the position
errors of the survey AUVs bounded over the mission time.

1 Motivation

Even though marine robotic technologies have matured in recent years, underwater
navigation still remains a challenging problem [1]. Due to the lack of availability of
GPS signals underwater, AUVs generally rely on the on-board proprioceptive sen-
sors such as compass, Doppler Velocity Log (DVL), and Inertial Navigation System
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(INS) for underwater navigation. However, dead reckoning using these sensors suf-
fers unbounded positioning error growth over time. In order to alleviate the problem,
methods that involve deploying fixed beacons around the mission area have been re-
ported in the literature. The authors in [2] have developed a low-cost Long Based
Line (LBL) navigation system for the AUV while [3] combined data from a DVL
and an Utra-Short Based Line (USBL) system to provide superior three-dimensional
position estimates to the AUV. Another recent solution uses a GPS Intelligent Buoy
(GIB) system which consists of four surface buoys equipped with DGPS receivers
and submerged hydrophones for tracking the position of the AUV underwater [4].
Although these systems act as good navigational aids for AUVs, they suffer from a
few drawbacks. Firstly, deploying and retrieving these positioning systems require
considerable operational effort. Second, they generally operate only at a limited
range and are expensive and inflexible. Although the positioning problem can be
avoided by having the AUVs surface and obtain a GPS fix, doing this not only costs
precious mission time, but may put the AUVs’ and the beacons’ safety in jeopardy
especially around busy shipping channels. Moreover, for some missions the AUVs
may be required to be close to the seabed and surfacing during the mission may not
be an option.

Recent advances in AUV and underwater communication technology have made
inter-vehicle acoustic ranging a viable option for underwater cooperative positioning
and localization. The idea of AUV cooperative localization is to have a vehicle with
good quality positioning information (beacon vehicle) transmit its position infor-
mation acoustically to other AUVs (survey AUVs) within its communication range
during navigation (Fig. 1(a)). By measuring the propagation delay for the commu-
nication signal, the range between the beacon vehicle and the survey AUV can be
estimated. Generally, the beacon vehicle is equipped with high accuracy sensors
that is able to estimate its position with minimum errors. The range information be-
tween the vehicles can then be fused with the data obtained from on-board sensors
to reduce the position error during underwater navigation [5, 6].

Fig. 1(b) shows that the error in the survey AUV’s position estimate is reduced
in the radial direction of the ranging circle centered at the beacon vehicle each time
a range estimate becomes available. However, the error in the tangential direction
remains unchanged. The key idea underlying the cooperative positioning algorithm
for the beacon vehicle is to use the estimated position error ellipse of the survey
AUV to plan its own movement. If the beacon vehicle can move to the location
where the next range measurement occurs along the direction of the major axis of
the error ellipse, the position error of the survey AUV can be minimized.

The idea of cooperative positioning, or localization with moving beacons is not
new and has been explored by several researchers [7, 8, 9, 10, 11]. Their work in-
cludes observability analysis, algorithms for position determination based on range
measurements, and some experimental results. Although all of these authors ac-
knowledge that the relative motion of the beacon vehicle and the survey AUVs is
key to having single beacon range-only navigation perform well, the problem of
determining the optimal path of the beacon vehicle given the desired path of the
survey AUVs has received little attention. For example, the work in [7] assumes a
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(a) The two AUVs for cooperative posi-
tioning.

(b) Illustration of error estimates by range
measurements.

Fig. 1 Cooperative positioning between the beacon vehicle and the survey AUV. The blue
ellipses in (b) represent the position estimation errors for the AUVs before the ranging. The
yellow ellipse represents the error after the range data is fused to yield a better position
estimate.

circular path for the beacon vehicle, while [8] uses a zig-zag path in the experiments.
In [10] the author suggests some maneuvers for the survey AUV while stating that
the beacon vehicle would “most likely sprint and drift off side the survey path to
force enough relative motion change to fix vehicle position”. More recently, for a
slightly different application domain, the authors in [12] applied a similar concept in
tracking tagged sharks using an AUV. A particle filter algorithm to track the location
of the shark and controlling the AUV’s position to enable to algorithm converge.

Our previous contributions have focused on path planning for the beacon vehicle
using Dynamic Programming (DP) [13] and Markov Decision Processes (MDP)
with its policy matrix being learned through the Cross-Entropy method (MDP-
CE) [14]. Although managing to achieve some promising results, they require ei-
ther high computational load or large numbers of manually selected representative
states for the policy matrix. In this paper, we further extend the work by approxi-
mating the state space in the form of Voronoi Tessellation where the the states are
represented by the Voronoi seeds. We then deploy Variable-Length Genetic Algo-
rithm (VLGAP) to automatically discover the optimal number of these states while
simultaneously learning their corresponding action mappings.

In what follows, we first formulate the cooperative positioning problem as a path
planning problem within the MDP framework in sections 2 and 3. We then describe
the DPS algorithm for the MDP using the VLGA in section 4 and validate the per-
formance of the policy learned in cooperative positioning missions in section 5. We
discuss our contributions and findings in section 6 and summarize our conclusions
in section 7.
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2 Problem Formulation

We assume that the beacon vehicle knows its position accurately and transmits a
beacon signal periodically, with a period of τ seconds. This transmission enables
all survey AUVs within acoustic range of the beacon vehicle to estimate their range
from the beacon vehicle by measuring the propagation delay of the signal. Since
the beacon vehicle makes a navigation decision per beacon transmission period, we
represent time using an index t ∈ {0..T}. The elapsed time in seconds from the start
of the mission to time instant t is simply tτ .

Although the underwater environment is 3-dimensional, it is typical that the depth
for the beacon and survey vehicles is specified in a mission and may not be altered
by our path planning algorithm. We therefore represent the position of each vehicle
using a 2-dimensional position vector and the direction of travel of each vehicle by
a yaw angle. Let xB

t be the position and φB
t be the heading of the beacon vehicle B at

time t. Let N be the number of survey AUVs supported by the beacon vehicle. We
index the survey AUVs by j ∈ {1..N}. Let x j

t represent the position of survey AUV
j at time t. At every time index t, we have estimates R̂ j

t of the 2-dimensional range
(easily estimated from the measured range by taking into account the difference in
depths between the vehicles) between the beacon vehicle and each of the survey
AUVs. We model the error in range estimation as a zero-mean Gaussian random
variable with variance σ2:

R̂ j
t =N (|x j

t − xB
t |,σ2) (1)

We further model the error in position estimation of the survey AUVs as a 2-
dimensional zero-mean Gaussian random variable described by three parameters
– the direction θ j

t of minimum error, the error ε j
t along direction θ j

t , and the error
ε̄ j

t in the tangential direction. Just after a range measurement at time t +1, the error
is minimum along the line joining the beacon and the survey vehicle:

θ j
t+1 = ∠(x j

t+1− xB
t+1) (2)

ε j
t+1 = σ (3)

The range measurement gives no information in the tangential direction and there-
fore the error grows in that direction. Assuming that the survey AUVs use velocity
estimates for dead reckoning, the position error variance in the tangential direction
will grow linearly with time:

(ε̄ j
t+1)

2 =
(ε j

t ε̄ j
t )

2

(ε j
t cosγ j

t )
2 +(ε̄ j

t sinγ j
t )

2
+ατ (4)

where γ j
t = θ j

t+1 − θ j
t and α is the constant of proportionality (determined by the

accuracy of the velocity estimate of the survey AUV).
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The navigation decision made by the beacon vehicle at each time step t is δ B
t , the

turning angle during the time interval until the next decision. If φ̇B
max is the maximum

turning rate,

|δ B
t | ≤ φ̇B

maxτ (5)

If sB is the speed of the beacon vehicle then the heading and position of the vehicle
at time t + 1 is approximately given by

φB
t+1 = φB

t + δ B
t (6)

xB
t+1 = xB

t + τsB
(

cosφB
t+1

sin φB
t+1

)
(7)

In order to ensure that the beacon and survey vehicles do not collide but are within
transmission range of each other, we require that

Dmin ≤ |x j
t+1− xB

t+1| ≤ Dmax ∀ j (8)

We assume that the position of each survey AUV is known at the start of the
mission with an accuracy of ε0 in all directions:

ε j
0 = ε̄ j

0 = ε0 (9)

θ j
0 = 0 (arbitrary choice) (10)

Given the desired paths {x j
t ∀ t} of the survey AUVs and the initial position xB

0 and
heading φB

0 of the beacon vehicle, we wish to plan a path for the beacon vehicle
such that we minimize the sum-square estimated position error across all survey
AUVs for the entire mission duration. The path is fully determined by the sequence
of decisions {δ B

t } made during the mission:

{δ B
t }= argmin∑

j,t

[
(ε j

t )
2 +(ε̄ j

t )
2
]

(11)

This naturally translates to the path planning problem for the beacon vehicle
which takes into account the errors (both ε j

t and ε̄ j
t ) of the survey AUVs operating

within its communication range.

3 MDP Formulation

In this section, we present the formulation of the beacon vehicle’s path planning
problem within the MDP framework [14]. Generally, an MDP is defined by four
main components: the state and action sets, the state transition probability matrix
and the reward/cost function. From equation (1), R̂ j

t is the estimated distance be-
tween beacon and survey AUV, φB

t represent the beacon vehicle’s current bearing
at time t and φ j

t+1 be the survey AUV’s bearing at time t + 1 respectively, our state

set is defined as a tuple: zt = {θ j
t , R̂

j
t ,φB

t , φ j
t+1}. Since we assume that ε j

t+1 in (3)
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is a constant, we need to minimize ε̄ j
t+1 in (4) to obtain (11) for every time step t.

This means having γ j
t in (4) to be as close as possible to 90 deg. Thus, the ability

of beacon vehicle B to achieve this with respect to survey AUV j will depend on its
knowledge of the components in the state space as well as the actions that it can take.
Both the R̂ j

t and θ j
t can be obtained from the acoustic ranging and communication

between the AUVs while φ j
t+1 is usually pre-planned before the mission.

The action at is the turning angle from the beacon vehicle’s current bearing
(φB

t ), |at | ≤ φ̇B
maxτ . At every time t, after at is selected, the corresponding xB

t+1 can
be calculated and the accumulated sum square error can be estimated through (3)
and (4). We model this accumulated error as the cost function, C, and we are in-
terested in minimizing this cost over the entire mission path, which is equivalent to
solving (11).

Instead of computing the value of being in a state using the state transition prob-
ability matrix and value function, we focus our attention on finding a deterministic
policy in the form of state-action mapping. Given the beacon vehicle’s current bear-
ing, survey AUV’s next heading as well as distance and relative angle between the
AUVs, the action determines the desired turning angle from the beacon vehicle’s
current bearing (termed as desired heading in the rest of the paper) so that the posi-
tion error of the survey AUV can be minimized during the next ranging event.

4 Direct Policy Search Using Variable Length Genetic
Algorithm

4.1 State Space Approximation and Action Space Mapping

It is not always easy to design a good policy and predict the value of being in a
state based on value function, as it is often computationally infeasible given the
limited computational power that an AUV has. In order to alleviate this problem,
various approximation techniques have been applied and encouraging results have
been reported in the literature [15]. In this section, we describe the approximation
technique used to represent the state space in the MDP and employ the evolutionary
algorithm to automatically learn the deterministic policy for the beacon vehicle.

We simplify the state space into the form of Voronoi Tessellation where states lo-
cated within a Voronoi cell are represented by their Representative States (RStates)
specified by their Voronoi seeds. Consequently, the path planning policy is the direct
mapping of these RStates into the action space as shown in Fig. 2. During coopera-
tive positioning, the beacon vehicle first determines the state using the latest ranging
information. It then locates the closest RState in terms of Euclidean distance in the
state space. Since each of the RStates is deterministically mapped to a particular
action, the decision making using the resultant policy is straightforward. Compared
to the previous method [14], this approximation technique greatly reduces both the
size of the policy matrix and the computational load of the beacon vehicle.
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Fig. 2 State-Action space mapping and chromosome representation

4.2 Variable Length Genetic Algorithm

Three important parameters need to be tuned when solving the MDP formulated in
section 4.1: the number of RStates to fully represent the entire state space, the lo-
cations of each of the RStates and their corresponding action mapping in the action
space. To search for the optimal parameters, we use a VLGA with a novel variable-
length chromosome representation. The VLGA automatically discovers the number
of RStates and their location in the state space, as well as the RState-action map-
pings for the resultant policy.

4.2.1 Chromosome Representation

The chromosomes are encoded in binary form. Each of the continuous variables in
the state and action space is discretized and encoded as a stream of binary num-
bers. They represent the locations of the state and action within the space domain.
Fig. 3 shows an example of the chromosome represented using this scheme. Each of
the genes in a chromosome consists of a RState-action pair which represents direct
mapping relationship. The length of the chromosomes is variable during the pro-
cess of evolution and represents the number of RStates for the resulting policy. This
representation scheme is important to allow the VLGA to automatically discover
the optimal number of the RStates, their locations within the state space, as well as
their corresponding action mapping. Since the individual gene encodes the RState’s
location in the state space and its action mapping, the arrangement of the genes in
the chromosome is irrelevant.
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. . .(θj , R̂j , ρB, ρj)1 (θj , R̂j , ρB, ρj)n (a)1(θj , R̂j , ρB, ρj)2 (a)m(a)2

0  1  0  0  1  0  1  1  1  0  0  0  1  0  1  0  0 0  1  0  

(θj , R̂j , ρB, ρj)1 (a)2

Fig. 3 Gene representation in Chromosome. Each gene consists of RState-action pair; when-
ever the RState is selected, the corresponding action will be taken.

4.2.2 Genetic Operations

Genetic operations found in traditional GA are used in this work for the process of
evolution. They are described as follows:

Elitism selection and reproduction: After each evolution process, the chromo-
somes in the population are sorted in decreasing order based on their fit-
ness. Let Ps be the selection rate, the top Ps % of the population are se-
lected and reintroduced into the new population. Besides that, the same
proportion of new chromosomes are randomly generated and introduced
into the new generation. The rest of the population are then randomly re-
produced from the pool of best chromosomes. This approach ensure the
exploitation of the best found solutions as well as exploration of the new
solutions in the new population.

Crossover: Two chromosomes are randomly selected from the population ac-
cording to the Pc - the crossover rate. One-point crossover is performed
between a pair of chromosomes and the new resultant chromosomes are
re-introduced into the population. Physically, the crossover operation in-
creases the probability of combining good genes from different parent
chromosomes, thus, producing fitter offsprings.

Mutation: Let Pm be the mutation rate. At every generation, Pm chromosomes
are chosen from the new population to undergo mutation. In this paper,
we applied three different types of mutation operations to the selected
sub-population:

• Growth mutation – randomly produces a new gene and appends it to
the selected chromosome.

• Shrink mutation – randomly removes a gene from the selected chro-
mosome.

• Flip mutation – applies flipping operation on the genes. The bit is
flipped with the probability equal to the mutation rate.

Both the growth and shrink mutation may, hopefully, help to introduce
good new genes and remove bad genes from the chromosome. Besides,
the flipping mutation aids to maintain the diversity of the new population
in searching for an optimal solution.
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4.2.3 Fitness Function

The fitness function of the chromosomes are evaluated based on the performance of
their encoded policy through Monte Carlo simulation. Detailed descriptions of the
simulation are presented in section 4.2.4. Since we are searching for a path planning
policy that will minimize the cost function, C, of the MDP described in section 3,
the fitness function of the chromosomes is defined as follows:

fi =
1
Ci

=
1

∑t

[
(εSA

t )2 +(ε̄SA
t )2

] (12)

where fi represents the fitness value of the ith chromosome, Ci is the cost incurred
from the path planned by the beacon vehicle, which is calculated through the sum-
mation of the positioning errors (both the εSA

t and ε̄SA
t ) accumulated by the survey

AUV (SA) for a sample survey path of t steps.

4.2.4 Fitness Evaluation through Monte Carlo Simulation

The fitness of each individual offspring is evaluated through Monte Carlo simulation
between the beacon vehicle and a survey AUV. During the simulation, a survey path
of t steps with lawn mowing pattern is randomly generated to simulate a survey
mission. Starting from all the initial states in the state space, the beacon vehicle is
deployed and plans its path to support the survey AUV using the encoded policy.
Since acoustic ranging information is assumed to be available at each of the t steps,
the resultant beacon’s path has the same length as the survey path. With both the
beacon and survey paths, the sum of the positioning errors (12), which is equivalent
to the cost, can be calculated. The same simulation is performed using the policies
encoded in all the chromosomes in the population, and the resultant fitnesses are
ranked in descending order for the selection operation. Detailed algorithm of the
simulation is shown in Algorithm 1.

5 Experimental Results

5.1 Policy Search Setup and Results

Instead of discretizing the map into grid map or graph nodes as is commonly done
for the path planning problem of mobile robots [16, 17], we discretized both the state
and action space of the beacon vehicle. For the convenience of binary encoding
of the chromosome, we discretize the AUVs’ bearing and the angle between the
AUVs into 32 states spanning from 0 ∼ 360 deg. The distance between the AUVs
are discretized into 4 zones: two forbidden zones (less than Dmin and more than
Dmax) and two legal zones with each occupying half of the distance in between Dmin

and Dmax. Heavy penalty that will contribute to the accumulated errors is given
whenever the vehicles are in the forbidden zones. This is necessary to prevent the
vehicles from colliding if they are too close together while keeping them within
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Algorithm 1. Fitness Evaluation through Monte Carlo Simulation
Require: Z – State Space
Require: Pop – Policies represented by chromosomes in the population

for all zs in Z do
Generate a random surveying path with path length of t steps.
for all pi in Pop do

Start from the initial state z0 = zs, set j = 0.
Locate the RState in pi that is closest to z0 in terms of Euclidian distance.
Apply the corresponding action (encoded in the same gene as the selected
RState) and generate a new state z j+1. Set j = j+ 1. Repeat until j = t.
Output the total cost (Cpi) of the trajectory (z0,z1, ...,zt ).
Calculate the fitness fi of the policy pi.

end for
end for
return fi of all pi in Pop.

the communication range. Due to the limitation of the turning radius achievable
during navigation, the beacon vehicle’s desired turning angle is constrained within
[-20,20] deg (obtained from τφ̇B

max in Table 2(a)) of the vehicle’s current bearing
and is divided into 8 zones. Detailed parameters setup is shown in Table 1. Table 2
shows the parameters used for the Monte Carlo simulation of the beacon vehicle
and the DPS using the VLGA.

Table 1 State and Action Space Discretization

State Space, Z Number of States Number of Bits
Beacon vehicle’s current bearing 32 5
Surverying AUV’s next bearing 32 5
Relatives angle between AUVs 32 5
Distance between AUVs 4 2

Action Space, A Number of States Number of Bits
Beacon vehicle’s desired turning angle 8 3

The fitness value and the length of the fittest chromosome in each generation of
the VLGA are shown in Fig. 4. Even though the length of an individual chromosome
in the population was allowed to evolve, it stabilizes at about 220 genes for the
fittest chromosome. In some instances during the policy search, we observed that
the length of the fittest chromosome dropped (around generation 100, 500 and 700)
while their fitness value continue to increase. This shows that the fitness of the
chromosome (performance of the policy) does not only depend on the number of
the RStates, but also the locations of the RStates and their action mapping.
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Table 2 Parameters for Beacon Vehicle and Vlga
(a) Beacon’s Parameters

Parameter Value
τ 10 s
σ 1 m
φ̇B

max 0.07 rad/s
Dmin 100 m
Dmax 1000 m
ε0 1 m
α 0.1 m2/s

(b) VLGA Parameters

Parameter Value
Ps 0.1
Pc 0.6
Pm 0.15
Encoding scheme Binary
Substring length 20
Population size (Pop) 200
Number of generations 1200
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Fig. 4 Result of the VLGA showing the fitness value and the length of the fittest chromosome
in each generation

5.2 Cooperative Path Planning Simulations

The fittest chromosome at the end of the VLGA policy search is selected as the
cooperative path planning policy for the beacon vehicle. We investigated the per-
formance of the policy in supporting single as well as multiple survey AUVs. The
same setups shown in Table 2 (a) were used for the simulations.

5.2.1 Simulation Setup

1. Supporting Single Survey AUV
A survey AUV was given a lawn-mower mission surveying an area of about
500 m by 700 m as shown in Fig. 6(a). The survey AUV’s path is pre-planned
and shared with the beacon vehicle. All the vehicles are assumed to be moving
at the speed of 1.5 m/s and ranging information is available every τ seconds.
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The beacon vehicle plans its path iteratively using the policy learned by VLGA
until the completion of the mission.

2. Supporting Multiple Survey AUVs
In the second simulation scenario, we evaluated the performance of a single
beacon AUV supporting 2, 3 and 4 survey AUVs as shown in Fig. 7. Since the
policy generates only a desired turning angle with respect to each of the survey
AUVs, we get more than one heading commands from the policy after every
ranging updates. Choosing one command that favors only one of the AUVs
might cause the position error of the other AUVs to grow. Thus, care has to
be taken while making the final decision. We studied four different methods to
explore the best strategy for the beacon AUV in deciding the desired heading
command:

S-1 Randomly select one of the heading commands generated by the policy as
the beacon AUV’s next desired heading.

S-2 Select the heading command that will favor the survey AUV whose current
accumulated error is the highest.

S-3 Select the heading command that will navigate the beacon AUV around the
vicinity of the centroid location among the survey AUVs.

S-4 Perform a round-robin selection scheme where the heading commands gen-
erated with respect to each of the survey AUVs are selected in a circular
order after each ranging updates.

5.2.2 Simulation Results

A simple simulation was performed with a survey AUV moving in a straight line to
illustrate the intuition behind the cooperative positioning algorithm (Fig. 5). Start-
ing from the initial position, the beacon vehicle plans its path using the resultant
planning policy to support the survey AUV. The simulation results show that, given
a straight survey path, the beacon vehicle maneuvered back and forth from the star-
board to the port side of the survey AUV to maximize the change of relative aspect
when the acoustic range information is exchanged. Also, the resultant paths maneu-
ver the beacon vehicle in the direction of the survey AUV to keep them within the
communication range.

Fig. 6(a) shows the resultant cooperative paths planned by the beacon vehicle
during the course of supporting a single survey AUV. Even though the beacon vehi-
cle is constrained to navigate within 1 km from the survey AUVs, statistical analysis
shows it has “learned” to navigate itself around the proximity of the survey AUVs,
in order to increase the chance of achieving maximum change of relative angle with
respect to the survey AUVs. The position errors accumulated throughout the mis-
sion period are shown in Fig. 6(b). The results are plotted based on the average of
10 simulated runs for the same scenario. The position errors of the survey AUVs are
expected to grow unbounded if they rely only on dead reckoning. However, with the
ranging information provided by the beacon vehicle at different relatives angles, the
errors were kept around 3m∼ 5m throughout the mission period.
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Fig. 5 Simulation result showing the beacon vehicles paths in supporting the survey AUV
moving in a straight line
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Fig. 6 Simulation results showing the beacon vehicle supporting single survey AUV

The resultant paths planned by a beacon AUV in supporting multiple survey
AUVs using the strategy S-2 are shown in Fig. 7, while the accumulated position
errors for the case of supporting 2 survey AUVs is shown in Fig. 7(b). The results
from 10 simulated runs using different strategies are summarized in Table 3. Gener-
ally, the average Root Mean Square (aRMS) error accumulated by the survey AUVs
are kept small within 3m∼ 5m across all strategies even though the Maximum (Max)
errors varied significantly.

We observed that the performance of S-2 is slightly better compared to other
strategies in both the aRMS and the Max errors. This is due to the fact that the
closer the beacon AUV is to the survey AUV team, the chance of achieving the
maximum change relative aspect (∼ 90deg) with each of the survey AUVs is higher,
and consequently, the RMS errors of the survey AUVs can be kept low by acoustic



334 T.Y. Teck and M. Chitre

ranging. Not surprisingly, both the S-1 and S-4 incurred much higher Max errors
especially in the case of supporting 4 survey AUVs, since the decisions were made
without considering neither the survey AUV’s current accumulated errors nor the
distance between the vehicles.
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Fig. 7 Simulation results showing the beacon vehicle supporting multiple survey AUVs using
the strategy S-2

6 Discussion

The simulation results have demonstrated that the VLGA can be used to automat-
ically discover the optimal number as well as the locations of the RStates that are
required to fully represent a multidimensional state space. It is also capable of simul-
taneously learning the policy in planning cooperative paths for the beacon vehicle.
The state space approximation through Voronoi Tessellation has greatly reduced the
number of states required for a policy. This not only alleviates the “curse of dimen-
sionality” problem, but also solves the practical issues of applying MDP approach in
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Table 3 Simulation Results for Supporting Multiple Survey AUVs

No. Survey AUVs

Strategy
S-1 S-2 S-3 S-4

Error (m)
aRMS Max aRMS Max aRMS Max aRMS Max

2 4.16 8.07 3.49 6.44 4.39 7.52 4.07 7.51
3 5.19 10.81 4.66 7.72 5.19 11.79 5.37 9.63
4 5.61 22.43 4.60 7.27 5.40 13.67 5.73 23.64

Table 4 Computational Load and Size of Policy Table for DP, MDP-CE and DPS with VLGA

DP [13] MDP-CE [14] DPS with VLGA
Computational Load O(T NL+1

a M) O(T M) O(TCM)

Policy Table (No. of States) N.A 1119744 7040

autonomous robotic systems due to their limited computational power and memory
storage.

The results presented in section 5.2.2 are comparable with the DP approach [13]
and MDP-CE approach [14]. Table. 4 showed the comparisons of the computational
load and the size of the resultant policy table learned via different approaches. Let
L be the number of look-ahead levels, Na be the action space, M be the number of
supported survey AUVs and C be the number of RStates, the computational load of
our approach is much lower compared to the DP approach but slightly higher than
the MDP-CE method. However, the policy structure of our approach was learned
through natural evolution, and its size is much smaller (about 160 times smaller !)
compared to the MDP-CE method.

7 Conclusion

We developed a novel method for Direct Policy Search (DPS) for Markov Deci-
sion Processes (MDP) using the Variable-Length Genetic Algorithm (VLGA). We
demonstrated its capability in discovering the representative states in the state space
approximation while simultaneously learning the state-action mapping of a cooper-
ative path planning policy for a beacon vehicle. We showed that the resultant policy
is able to plan the path for beacon vehicle so that the position errors of the sup-
ported survey AUVs can be kept minimum whenever acoustic ranging information
is exchanged. Compared to the previous published approaches, our approach greatly
reduces the computational load as well as the size of the policy matrix, yet manages
to perform comparatively well in terms of minimizing the survey AUVs’ position
errors. Future work may include exploring the possibility of online learning given
the much simplified policy representation.
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Optimal Multi-Robot Path Planning with LTL
Constraints: Guaranteeing Correctness through
Synchronization

Alphan Ulusoy, Stephen L. Smith, and Calin Belta

Abstract. In this paper, we consider the automated planning of optimal paths for
a robotic team satisfying a high level mission specification. Each robot in the team
is modeled as a weighted transition system where the weights have associated de-
viation values that capture the non-determinism in the traveling times of the robot
during its deployment. The mission is given as a Linear Temporal Logic (LTL) for-
mula over a set of propositions satisfied at the regions of the environment. Addi-
tionally, we have an optimizing proposition capturing some particular task that must
be repeatedly completed by the team. The goal is to minimize the maximum time
between successive satisfying instances of the optimizing proposition while guar-
anteeing that the mission is satisfied even under non-deterministic traveling times.
After computing a set of optimal satisfying paths for the members of the team, we
also compute a set of synchronization sequences for each robot to ensure that the
LTL formula is never violated during deployment. We implement and experimen-
tally evaluate our method considering a persistent monitoring task in a road network
environment.

1 Introduction

Temporal logics [5], such as Linear Temporal Logic (LTL) and Computation Tree
Logic (CTL), are extensions of propositional logic that can capture temporal rela-
tions. Even though temporal logics have been used in model checking of finite sys-
tems [1] for quite some time, they have gained popularity as a means for specifying
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complex mission requirements in path planning and control synthesis problems only
recently [14, 12, 21]. Existing work on path planning and control synthesis concen-
trates on LTL specifications for finite state systems, which may be abstractions of
their infinite counterparts [14, 17]. Particularly, given the system model and some
temporal logic formula, satisfying paths and corresponding control strategies can
be computed automatically through a search of the state space for deterministic [9],
non-deterministic [15, 17, 12, 10] and probabilistic systems [2, 11, 4].

In [9], the authors propose a method for decentralized motion of multiple robots
subject to LTL specifications. Their method, however, results in sub-optimal per-
formance as it requires the robots to travel synchronously, blocking the execution
of the mission before each transition until all robots are synchronized. The vehicle
routing problem (VRP) [16] and its extensions to more general classes of temporal
constraints [7, 8] also deal with finding optimal satisfying paths for a given speci-
fication. In [8], the authors consider optimal vehicle routing with metric temporal
logic specifications by converting the problem to a mixed integer linear program
(MILP). However, their method does not apply to the missions where robots must
repeatedly complete some task, as it does not allow for specifications of the form
“always eventually”. Furthermore, none of these methods are robust to timing er-
rors that can occur during deployment, as they rely on the robots’ ability to follow
generated trajectories exactly for satisfaction of the mission specification.

In our previous work, we focused on mission specifications given in LTL along
with a particular cost function, and proposed an automated method for finding opti-
mal robot paths that satisfy the mission and minimize the cost function for a single
robot [13]. Next, we extended this approach to multi-robot teams by utilizing an ab-
straction based on timed automata [20]. Extending the optimal path planning prob-
lem from a single robot to multiple robots is not trivial, as the joint asynchronous
motion of all members of the team must be captured in a finite model. Then, we pro-
posed a robust method that could accomodate uncertainties in the traveling times of
robots with limited communication capabilities [19]. The methods given in [20]
and [19] are actually two extremes: In [20], the robots can follow the generated
trajectories exactly and do not communicate at all, while in [19] the robots’ trav-
eling times during deployment deviate from those used in planning, and they can-
not communicate freely. In this paper, we address the middle between these two
extremes: the robots cannot follow the generated trajectories exactly, but they can
communicate regardless of their positions in the environment. Thus, after obtain-
ing an optimal satisfying run of the team, we compute synchronization sequences
that leverage the communication capabilities of the robots to robustify the planned
trajectory against deviations in traveling times.

The main contribution of this paper is threefold. First, we provide an algorithm
to capture the joint asynchronous behavior of a team of robots modeled as transition
systems in a single transition system. This team transition system is provably more
compact than the approach based on timed automata that we previously proposed
in [20]. Second, for a satisfying run made up of a finite length prefix and an infinite
length cyclic suffix, we propose a synchronization protocol and an algorithm to com-
pute synchronization sequences that guarantee correctness under non-deterministic
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traveling times that may be observed during deployment. Finally, we provide an
automated framework that uses these two methods along with the OPTIMAL-RUN

algorithm previously proposed in [13] to solve the multi-robot optimal path planning
problem with robustness guarantees.

The rest of the paper is organized as follows: In Sec. 2, we provide some defini-
tions and preliminaries in formal methods. In Sec. 3, we formulate the optimal and
robust multi-robot path planning problem and give an outline of our approach. We
provide a complete solution to this problem in Sec. 4. In Sec. 5, we present exper-
iments involving a team of robots performing a persistent surveillance mission in a
road network environment. In Sec. 6, we conclude with final remarks. Due to page
constraints we omit the proofs of all results. The proofs are contained in an extended
version available online [18].

2 Preliminaries

In this section, we introduce the notations that we use in the rest of the paper and
briefly review some concepts related to automata theory, LTL, and formal verifica-
tion. For a more rigorous treatment of these topics, we refer the interested reader
to [3, 6, 1] and references therein.

For a set Σ , we use |Σ |, 2Σ , Σ∗, and Σω to denote its cardinality, power set, set
of finite words, and set of infinite words, respectively. We define Σ∞ = Σ∗ ∪Σω and
denote the empty string by /0.

Definition 1 (Transition System). A (weighted) transition system (TS) is a tuple
T := (QT,q0

T,δT,ΠT,LT,wT), where (1) QT is a finite set of states; (2) q0
T ∈QT

is the initial state; (3) δT ⊆ QT ×QT is the transition relation; (4) ΠT is a finite
set of atomic propositions; (5) LT : QT → 2ΠT is a map giving the set of atomic
propositions satisfied in a state; (6) wT : δT → N>0 is a map that assigns a positive
integer weight to each transition.

We define a run of T as an infinite sequence of states rT = q0,q1, . . . such that
q0 = q0

T , qk ∈QT and (qk,qk+1) ∈ δT for all k≥ 0. A run generates an infinite word
ωT =L (q0),L (q1), . . . where L (qk) is the set of atomic propositions satisfied at
state qk.

In this work, we consider mission specifications expressed as Linear Temporal
Logic (LTL) formulas over Π using the standard syntax and semantics defined
in [1]. We follow the literal notation for temporal operators (G,F,X,U ). We say
a run rT satisfies φ if and only if the word generated by rT satisfies φ .

Definition 2 (Büchi Automaton). A Büchi automaton is a tuple B ··= (QB,Q
0
B,ΣB,

δB,FB), consisting of (1) a finite set of states QB; (2) a set of initial states Q0
B ⊆

QB; (3) an input alphabet ΣB; (4) a non-deterministic transition relation δB ⊆QB×
ΣB×QB; (5) a set of accepting (final) states FB ⊆QB.

A run of B over an input word ω = ω0,ω1, . . . is a sequence rB = q0,q1, . . ., such
that q0 ∈Q0

B, and (qk,ωk,qk+1) ∈ δB, for all k ≥ 0. A Büchi automaton B accepts
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a word over ΣB if and only if at least one of the corresponding runs intersects with
FB infinitely many times. For any LTL formula φ over a set Π , one can construct
a Büchi automaton with input alphabet ΣB = 2Π accepting all and only words over
2Π that satisfy φ .

Definition 3 (Prefix-Suffix Structure). A prefix of a run is a finite path from an
initial state to a state q. A periodic suffix is an infinite run originating at the state
q reached by the prefix, and periodically repeating a finite path, which we call the
suffix cycle, originating and ending at q. A run is in prefix-suffix form if it consists
of a prefix followed by a periodic suffix.

3 Problem Formulation and Approach

In this section we introduce the multi-robot path planning problem with temporal
logic constraints for robots with uncertain, but bounded traveling times. Let E =
(V,→E ) be a directed graph, where V is the set of vertices and →E⊆ V ×V is the
set of edges. We consider E as the quotient graph of a partitioned environment,
where V is the set of labels of the regions and →E is the corresponding adjacency
relation.

Consider a team of m robots moving in an environment modeled by E . The mo-
tion capabilities of robot i, i = 1, . . . ,m are modeled by a TS Ti = (Qi,q0

i ,δi,Πi,
Li,wi), where Qi ⊆V ; q0

i is the initial vertex of robot i; δi ⊆→E is a relation mod-
eling the capability of robot i to move among the vertices; Πi ⊆ Π is the subset
of propositions that can be satisfied by robot i; Li is a mapping from Qi to 2Πi

showing how the propositions are satisfied at vertices; and wi(q,q′) gives the nom-
inal time for robot i to go from vertex q to q′, which we assume to be a positive
integer. However, due to the uncertainty in the traveling times of the robots, the ac-
tual time it takes for robot i to go from q to q′, which we denote by w̃i(q,q′), is
a non-deterministic quantity that lies in the interval [ρiwi(q,q′),ρiwi(q,q′)], where
ρi,ρi are the predetermined lower and upper deviation values of robot i that satisfy
0 < ρi ≤ 1 ≤ ρi. In this model, robot i travels along the edges of Ti, and spends
zero time on the vertices. We also assume that the robots are equipped with mo-
tion primitives that allow them to deterministically move from q to q′ for each
(q,q′) ∈ δi, even though the time it takes to reach from q to q′ is uncertain. In the
following, we use the expression “in the field” to refer to the model with uncertain
traveling times, and use x and x̃ to denote the nominal and actual values of some
variable x.

We consider the case where the robotic team has a mission in which some partic-
ular task must be repeatedly completed and the maximum time between successive
completions of this task must be minimized. For instance, in a persistent surveil-
lance mission, the global mission could be keep gathering data while obeying traffic
rules at all times, and the repeating task could be gathering data. For this example,
the robots would operate according to the mission specification while ensuring that
the maximum time between successive data gatherings is minimized. Consequently,
we assume that there is an optimizing proposition π ∈ Π that corresponds to this
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repeating task and consider multi-robot missions specified by LTL formulae of the
form

φ ··= ϕ ∧GFπ , (1)

where ϕ can be any LTL formula over Π , and GFπ means that the proposition π
must be repeatedly satisfied. Our aim is to plan multi-robot paths that satisfy φ and
minimize the maximum time between successive satisfying instances of π .

To state this problem formally, we assume that each run ri = q0
i ,q

1
i , . . . of Ti

(robot i) starts at t = 0 and generates a word ωi = ω0
i ,ω1

i , . . . and a corresponding
sequence of time instances Ti ··= t0

i , t
1
i , . . . such that ωk

i =Li(qk
i ) is satisfied at tk

i .
To define the behavior of the team as a whole, we interpret the sequences Ti as
sets and take the union

⋃m
i=1Ti and order this set in an ascending order to obtain

the sequence T ··= t0, t1, . . .. Then, we define ωteam = ω0
team,ω1

team, . . . to be the word
generated by the team of robots where ωk

team is the union of all propositions satisfied
at tk. Finally, we define the infinite sequence Tπ = Tπ(1),Tπ(2), . . . where Tπ(k) is
the time instance when π is satisfied for the kth time by the team and define the cost
function

J(Tπ) = limsup
i→+∞

(Tπ (i+ 1)−T
π(i)) . (2)

The form of the cost function given in Eq. (2) is motivated by persistent surveil-
lance missions, where one is interested in the long-term behavior of the team. Given
a sequence T

π corresponding to some run of the team, the cost function in Eq. (2)
captures the maximum time between satisfying instances of π once the team be-
havior reaches a steady-state, which we achieve in finite time as we will discuss in
Sec. 4.2. Thus, the problem becomes that of finding an optimal run of the team that
satisfies φ and minimizes (2). However, the non-determinism in traveling times im-
poses two additional difficulties which directly follow from Prop. 3.2 in [19]: First,
if the traveling times observed during deployment deviate from those used in plan-
ning, then there exist missions that will be violated in the field. Second, the worst
case performance of the robotic team during deployment in terms of Eq. (2) will be
limited by that of a single member.

To guarantee correctness in the field, and limit the deviation of the performance
of the team from the planned optimal run during deployment, we propose peri-
odic synchronization of the robots. Using this synchronization protocol, robots syn-
chronize with each other according to pre-computed synchronization sequences
si, i = 1, . . . ,m as they execute their runs ri, i = 1, . . . ,m in the field. We can now
formulate the problem.

Problem 1. Given a team of m robots modeled as transition systems Ti, i=1, . . . ,m,
and an LTL formula φ over Π in the form (1), synthesize individual runs ri and syn-
chronization sequences si for each robot such that Tπ minimizes the cost function
(2), and ω̃team, i.e., the word observed in the field, satisfies φ .

Note that our aim in Prob. 1 is to find a run that is optimal under nominal values
while ensuring that φ is never violated in the field. Since T̃π , i.e., the sequence of
instants at which π is satisfied during deployment, is likely to be sub-optimal, we
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will also seek to bound the deviation from optimality in the field. As we consider
LTL formulas containing GFπ , this optimization problem is always well-posed.

4 Problem Solution

In this section, we describe each step of our solution to Prob. 1 in detail with the
help of a simple illustrative example. We present our experimental results in Sec. 5.

4.1 Obtaining the Team Transition System

In [20], we showed that the joint asynchronous behavior of a robotic team modeled
as m transition systems Ti, i = 1, . . . ,m (Def. 1) can be captured using a region au-
tomaton. A region automaton, as given in the following definition from [19], is a
finite transition system that keeps track of the relative positions of the robots as they
move asynchronously in the environment.

Definition 4 (Region Automaton). The region automaton R is a TS (Def. 1) R ··=
(QR,q0

R,δR,ΠR,LR,wR), where QR is the set of states of the form (q,r) such that
q is a tuple of state pairs (q1q′1, . . . ,qmq′m) where the ith element qiq′i is a source-
target state pair from Qi of Ti meaning robot i is currently on its way from qi to q′i,
and r is a tuple of clock values (x1, . . . ,xm) where xi ∈ N denotes the time elapsed
since robot i left state qi. q0

R ⊆ QR is the set of initial states with r = (0, . . . ,0)
and q = (q0

1q′1, . . . ,q
0
mq′m) such that q0

i is the initial state of Ti and (q0
i ,q

′
i) ∈ δi. δR

is the transition relation such that a transition from (q,r) to (q′,r′) where the ith

state pair qiq′i and the ith clock value xi in (q,r) change to q′iq′′i and x′i in (q′,r′)
exists if and only if (qi,q′i),(q′i,q′′i ) ∈ δi for all changed state pairs, wi(qi,q′i)− xi

of all changed state pairs are equal to each other and are strictly smaller than
those of unchanged state pairs, and for all changed state pairs, the correspond-
ing x′i in r′ becomes x′i = 0 and all other clock values in r are incremented by
wi(qi,q′i)− xi in r′. ΠR = ∪m

i=1Πi is the set of propositions. LR : QR → 2ΠR is
a map giving the set of atomic propositions satisfied in a state. For a state (q,r),
LR((q,r)) = ∪i|xi=0Li(qi). wR : δR → N>0 is a map that assigns a positive inte-
ger weight to each transition such that wR((q,r),(q′,r′)) = wi(qi,q′i)− xi for each
state pair that has changed from qiq′i to q′iq′′i with a corresponding clock value of
x′i = 0 in r′.

Example 1. Fig. 1 illustrates the TS’s of two robots that are expected to sat-
isfy the mission φ := G(p1 ⇒ X(¬p1 U p3))∧GFπ , where Π1 = {p1, π}, Π2 =
{p2, p3, π}, and Π = {p1, p2, p3, π}. We also have ρ1 = ρ2 = 1.1 and ρ1 = ρ2 =
0.9. The region automaton R that models the robots is given in Fig. 2.

However, as a region automaton encodes the directions of travel of the robots
as opposed to their locations, it typically contains redundant states, and thus can
typically be reduced to a smaller size. The following example illustrates
this fact.
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b p1,πT1

2 2

a

b p2,π

c p3

T2

2
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1

1

Fig. 1 Transition systems T1 and T2 of two robots in an environment with three vertices.
The states of the transition systems correspond to vertices {a,b,c} and the edges represent
the motion capabilities of each robot. The weights of the edges represent the traveling times
between any two vertices. The propositions p1,p2,p3 and π are shown next to the vertices
where they can be satisfied by the robots.
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Fig. 2 The finite state re-
gion automaton capturing
the joint behavior of two
robots in 9 states. In a circle
representing a state (q,r),
the first line is q and the
second line is r.

Example 1 Revisited. State ((ab,bc),(0,0)) of the region automaton R given in
Fig. 2 is equivalent to the state ((ab,ba),(0,0)) in the sense that both robots satisfy
the same propositions and the positions of both robots are the same at both states,
i.e., robot 1 is at a and robot 2 is at b. These two states differ only in the future
direction of travel of the second robot, i.e., robot 2 travels towards c in the first
state whereas it travels towards a in the second state. This information, however, is
redundant as it can be obtained just by looking at the next state of the team in any
given run.

Motivated by this observation, we define a binary relation R to reduce the region
automaton R to a smaller team transition system T.

Definition 5 (Binary Relation R). Binary relation R = {(s, t)|s ∈QR, t ∈QT} is
a mapping between the states of R and T that maps a state s = ((q1q′1, . . . ,qmq′m),
(x1, . . . ,xm)) in QR to a state t = (t1, . . . , tm) in QT, where ti = qi if xi = 0 and
ti = qiq′ixi if xi > 0. Note that, xi = 0 for at least one i ∈ {1, . . . ,m}. We refer to a
state ti ∈QT of the form qiq′ixi as a traveling state as it captures the instant where
robot i has traveled from qi to q′i for xi time units.

Given a region automaton R, we can obtain the corresponding team transition
system T using the binary relation R and the following procedure.

Procedure 1 (Obtaining T from R) Using R we construct the team transition sys-
tem T from the region automaton R as follows: (1) For each s ∈ QR we define
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the corresponding t ∈ QT as given in Def. 5 such that (s, t) ∈ R. (2) We set
LT(t) = LR(s). Note that, each s that corresponds to a given t has the same set
of propositions due to the way R is constructed (Def. 4) [20]. (3) For each s corre-
sponding to a given t, we define the corresponding transitions originating from t in
T such that ∃(t, t ′) ∈ δT∀(s,s′) ∈ δR where (s, t) ∈R and (s′, t ′) ∈R. (4) We mark
a state t in QT as the initial state of T if the corresponding s is an initial state in
QR. Note that, all states that correspond to a given t are either in q0

R altogether or
none of them are in q0

R.

The following proposition shows that the team transition system T obtained us-
ing Proc. 1 and the corresponding region automaton R are bisimulation equivalent,
i.e., there exists a binary relation between the states and the transitions of R and T
such that they behave in the same way [1].

Proposition 1 (Bisimulation Equivalence). The team transition system T obtained
using Proc. 1 and the region automaton R are bisimulation equivalent, i.e., R ∼ T,
and R is a bisimulation relation for R and T.

Example 1 Revisited. Using R, we construct T (Fig. 3) that captures the joint
asynchronous behavior of the team in 6 states whereas the corresponding region
automaton R had 9 states. A state labeled (a,b) means robot 1 is at region a and
robot 2 is at region b, whereas a state labeled (ba1,c) means robot 1 traveled from
b to a for 1 time unit and robot 2 is at c.

a,a ba1,cp3 a,b
p2
π

b,b
p1
p2
π

ab1,c p3 b,a
p1
πT

2

1

1
2 2

1

2
1

Fig. 3 The team transition
system capturing the joint
behavior of two robots in 6
states

In [20] we showed that the number of states |QR| of the region automaton R that
models m robots Ti, i= 1, . . . ,m is bounded by (∏m

i=1 |δi|)(∏m
i=1 Wi−∏m

i=1(Wi− 1)),
where |δi| is the number of transitions in the TS Ti of robot i and Wi is maximum
weight of any transition in Ti. The following proposition provides a bound on the
number of states |QT| of T and shows that it is indeed significantly smaller than the
bound on |QR|.
Proposition 2. The number of states |QT| of T is bounded by ∏m

i=1 |Qi|+ (W −
1)∏m

i=1 |δi| where W is the largest edge weight in all TS’s.

Finally, we note that the states of T correspond to the instants where at least one
robot has completed a transition in its individual TS and is currently at a vertex while
other robots may still be traveling. Using this fact, one can construct T directly by
using a depth first search that runs in parallel on the TS’s of the individual members
of the team as given in Alg. 1. A detailed discussion on Alg. 1 can be found in [18].
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Algorithm 1. CONSTRUCT-TEAM-TS
Input: (T1, . . . ,Tm).
Output: Corresponding team transition system T.

1 q0
T := (q0

1, . . . ,q
0
m), where q0

i is the initial state of Ti.
2 dfsT(q0

T).

3 Function dfsT(state tuple q ∈QT)

4 q[i] is the ith element of state tuple q ∈QT.
5 ti is a transition of Ti, i = 1, . . . ,m, such that ti ∈ {(q[i],q′i)|(q[i],q′i) ∈ δi} if q[i] ∈Qi.

Else if q[i] = qiq′ixi, then ti = (qi,q′i).
6 T := (t1, . . . , tm) is a tuple of such transitions.
7 T is the set of all such transition tuples at q.
8 foreach transition tuple T ∈T do
9 w← Shortest time until a robot is at a vertex while the transitions in T are being

taken.
10 Find the q′ that corresponds to this new state of the team using R.
11 if q′ /∈QT then
12 Add state q′ to QT.
13 Set LT(q′) = ∪i|q′[i]∈Qi

Li(q′[i]).
14 Add (q,q′) to δT with weight w.
15 Continue search from q′: dfsT(q′).
16 else if (q,q′) /∈ δT then
17 Add (q,q′) to δT with weight w.

4.2 Obtaining Optimal Satisfying Runs and Transition Systems
with Traveling States

After constructing T that models the team, we use OPTIMAL-RUN from [13] to
obtain an optimal satisfying run rΩteam on T that minimizes the cost function (2) and
satisfies φ . The optimal run rΩteam is always in prefix-suffix form, consisting of a
finite sequence of states of T (prefix), followed by infinite repetitions of another
finite sequence of states of T (suffix) as given in Def. 3.
Example 1 Revisited. Running Alg. OPTIMAL-RUN [13] on T given in Fig. 3 for
the formula φ = G(p1 ⇒ X(¬p1 U p3))∧GFπ results in the optimal run with the
prefix (a,a),(b,b) and the suffix cycle (ba1,c),(a,b),(ab1,c),(b,b), which will be
repeated indefinitely. The cost as defined in (2) is J(Tπ) = 2.

Since T captures the asynchronous motion of the robots, the optimal satisfying
run rΩteam on T may contain some traveling states which do not appear in the indi-
vidual TSs Ti, i = 1, . . . ,m that we started with. But we cannot ignore such travel-
ing states either, as each one of them is a candidate synchronization point for the
corresponding robot as we discuss in Sec. 4.3. Instead, we insert those traveling
states into the individual TSs so that the robots will be able to synchronize with
each other at those points if needed. In the following, we use qk[i] to denote the ith
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element of the kth state tuple in rΩteam, which is also the state of robot i at that po-
sition of rΩteam. As given in Def. 5, a traveling state of robot i has the form qiq′ixi.
First, we construct the set S = {(i,qk[i]) | qk[i] = qiq′ixi ∀k, i} of all traveling states
that appear in rΩteam. Elements of S are tuples where the second element is a trav-
eling state and the first element gives the transition system this new traveling state
will be added to. Next, we construct the set T = {(i,(qk[i],qk+1[i]),x) | ((i,qk[i]) ∈
S )∨ ((i,qk+1[i]) ∈S ), x = wT(qk,qk+1)∀k, i} of all transitions that involve any of
the traveling states in rΩteam. Elements of T are triplets where the second element is
a transition, the third element is the weight of this transition, and the first element
shows the transition system that this new transition will be added to. Then, we add
the traveling states in S and the transitions in T to their corresponding transition
systems. Finally, using the following definition, we project the optimal satisfying
run rΩteam down to individual robots Ti, i = 1, . . . ,m to obtain individual optimal sat-
isfying runs rΩi , i = 1, . . . ,m.

Definition 6 (Projection of a Run on T to Ti’s). Given a run rteam on T where
rteam = q0,q1, . . ., we define its projection on Ti as run ri = q0

i ,q
1
i , . . . for all i =

1, . . . ,m, such that qk
i = qk[i] where qk[i] is the ith element of tuple qk.

a

ab1

b p1,π

ba1

T1

2 2

1

1 1

1

a

b p2,π

c p3

T2

2

2

1

1

Fig. 4 Transition systems
with new traveling states
that correspond to the opti-
mal run rΩteam that we com-
puted for Ex. 1. The new
traveling states and transi-
tions of T1 are highlighted
in red.

Example 1 Revisited. For this example, we have S = {(1,ab1),(1,ba1)} and
T = {(1,(a,ab1),1),(1,(ab1,b),1),(1,(b,ba1),1),(1,(ba1,a),1)}. Fig. 4 illus-
trates the corresponding TSs with new traveling states and transitions highlighted in
red. Using Def. 6, we obtain the runs of the individual robots as rΩ1 = a,b,ba1,a,ab1,
b,ba1,a,ab1, . . . and rΩ2 = a,b,c,b,c,b,c,b,c, . . ..

4.3 Guaranteeing Correctness through Synchronization and the
Optimality Bound

As the robots execute their infinite runs in the field, they synchronize with each
other according to the synchronization sequences that we generate using Alg. 2.
The synchronization sequence si of robot i is an infinite sequence of pairs of sets.
The kth element of si, denoted by sk

i , corresponds to the kth element qk
i of rΩi . Each sk

i
is a tuple of two sets of robots: sk

i = (sk
i,wait ,s

k
i,noti f y), where sk

i,wait and sk
i,noti f y are the

wait-set and notify-set of sk
i , respectively. The wait-set of sk

i is the set of robots that
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robot i must wait for at state qk
i before satisfying its propositions and proceeding to

the next state qk+1
i in rΩi . The notify-set of sk

i is the set of robots that robot i must
notify as soon as it reaches state qk

i . As we discussed earlier in Sec. 4.2, the optimal
run rΩteam of the team and the individual optimal runs rΩi , i = 1, . . . ,m of the robots
are always in prefix-suffix form (Def. 3). Consequently, individual synchronization
sequences si of the robots are also in prefix-suffix form. A detailed discussion on
Alg. 2 can be found in [18].

Algorithm 2. SYNC-SEQ

Input: Individual optimal runs of the robots {rΩ1 , . . . ,r
Ω
m}, Büchi automaton B¬φ that

corresponds to ¬φ .
Output: Synchronization sequence for each robot {s1, . . . ,sm}.

1 I = {1, . . . ,m}.
2 beg ← beginning of suffix cycle.
3 end ← end of suffix cycle.
4 Initialize each si so that all robots wait for and notify each other at every position of

their runs.
5 foreach k = 0, . . . ,end do
6 foreach i ∈I do
7 if k �= 0 and k �= beg then
8 foreach j ∈I \ i do
9 Remove j from sk

i,wait .

10 Remove i from sk
j,noti f y.

11 Construct the TS W that generates every possible ω̃team.
12 if the language of B¬φ ×W is not empty then
13 Add j back to sk

i,wait .

14 Add i back to sk
j,noti f y.

15 Rest of each si is an infinite repetition of its suffix-cycle, i.e. sbeg
i , . . . ,send

i .

The following proposition slightly extends the result of Prop. 4.5 in [19] by con-
sidering unequal lower and upper deviation values.

Proposition 3. Suppose that each robot’s deviation values are bounded by ρ and ρ
where ρ ≥ 1≥ ρ > 0 (i.e., ρi ≥ ρ and ρi ≤ ρ for each robot i). Let J(Tπ) be the cost

of the planned robot paths and let J(T̃π) be the actual value of the cost observed
during deployment. Then, if the robots use the synchronization sequences generated
by Alg. 2, the field value of the cost satisfies J(T̃π)≤ J(Tπ)ρ + ds(ρ −ρ) where ds

is the planned duration of the suffix cycle.

Example 1 Revisited. Using Alg. 2, we obtain the following individual synchroniza-
tion sequences: s1 = ({2},{2}),({},{}),({2},{2}),({},{}),({},{}),({},{}), . . .,
and s2 =({1},{1}),({},{}),({1},{1}),({},{}),({},{}),({},{}), . . .. The elements
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of the kth pair in the synchronization sequences correspond to sk
i,wait and sk

i,noti f y, re-
spectively. Also, from Prop. 3, the field value of the cost function is bounded from
above by 3 for ρ1 = ρ2 = 1.1 and ρ1 = ρ2 = 0.9.

We finally summarize our approach in Alg. 3 and show that this algorithm indeed
solves Prob. 1. We discuss the complexity of our approach in Rem. 2.

Proposition 4. Alg. 3 solves Prob. 1.

Remark 2 (Computational Complexity). The main drawback of our approach is
its computational complexity, which is exponential in the number of robots (due to
generation of the team transition system and the synchronization sequences) and in
the length of the LTL formula (due to the conversion to a Büchi automaton). This
cost, however, is justified by the globally optimal runs that our approach computes,
and in practice, we can solve fairly large problems.

Algorithm 3. ROBUST-MULTI-ROBOT-OPTIMAL-RUN

Input: m transition systems Ti, i = 1, . . . ,m, corresponding deviation values, and a
global LTL specification φ of the form (1).

Output: A set of optimal runs {rΩ1, . . . ,r
Ω
m} that satisfies φ and minimizes (2), a set of

synchronization sequences {s1, . . . ,sm} that guarantees correctness in the field,
and the bound on the performance of the team in the field.

1 Construct the team transition system T using Alg. 1.
2 Find an optimal run rΩteam on T using OPTIMAL-RUN [13].
3 Insert new traveling states to TSs according to rΩteam (See. Sec. 4.2).
4 Obtain individual runs {rΩ1, . . . ,r

Ω
m} using Def. 6.

5 Generate synchronization sequences {s1, . . . ,sm} using Alg. 2.
6 Find the bound on optimality as given in Prop. 3.

5 Implementation and Case-Study

We implemented Alg. 3 as a python module (available athttp://hyness.bu.edu/
lomap/) and used it to plan optimal satisfying paths and synchronization se-
quences for the scenario that we consider in this section. Our experimental platform
(Fig. 5(a)) is a road network comprising roads, intersections and task locations.
Fig. 5(b) illustrates the model that captures the motion of the robots on this plat-
form, where 1 time unit corresponds to 1.574 seconds.

In our experiments, we consider a persistent surveillance task involving two
robots with deviation values ρ1 = ρ2 = 1.05 and ρ1 = ρ2 = 0.95. The building in
the middle of the platform in Fig. 5(a) is our surveillance target. We define the
set of propositions Π = {R1Gather18, R1Gather20, R2Gather18, R2Gather20,
R1Gather, R2Gather, R1Upload, R2Upload, Gather} and assign them as
L1(18)= {Gather, R1Gather18, R1Gather},L2(18)= {Gather, R2Gather18,
R2Gather}, L1(20) = {Gather, R1Gather20, R1Gather}, L2(20) = {Gather,
R2Gather20, R2Gather}, L1(22) = {R1Upload} and L2(22) = {R2Upload}.

http://hyness.bu.edu/lomap/
http://hyness.bu.edu/lomap/
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Fig. 5 Left figure shows our
experimental platform. The
squares and the circles on
the trajectories of the robots
represent the beginning of
the suffix cycle and sync.
points, respectively. Right
figure illustrates the TS
that models the robots.
The green and red regions
are data gather and upload
locations, respectively.

The main objective is to keep gathering data while minimizing the maximum time
between successive gathers. We require the robots to gather data in a synchronous
manner at data gather locations 18 and 20 while ensuring that they do not gather data
at the same place at the same time. We also require the robots to upload their data at
upload location 22 before their next data gather. We express these requirements in
LTL in the form of (1) as

φ =G(R1gather⇒X(¬R1gatherU R1upload))∧G(R2gather⇒
X(¬R2gatherU R2upload))∧G((R1Gather18⇒ R2Gather20)∧
(R1gather20⇒ R2gather18)∧ (R2gather18⇒ R1gather20)∧
(R2gather20⇒ R1gather18))∧GFGather,

where Gather is set as the optimizing proposition.
Fig. 5(a) illustrates the solution which took our algorithm approximately 20 sec-

onds to compute on an iMac i5 quad-core computer. The planned value of the cost
function was 44.072 seconds (28 time units) with an upper bound of 50.683 sec-
onds (32.2 time units) seconds. We deployed our robots in our experimental plat-
form to demonstrate and verify the result. The maximum time between any two
successive data uploads was measured to be 48 seconds. The video available at
http://hyness.bu.edu/lomap/dars2012.mov demonstrates the execution of
this run by the robots.

6 Conclusion

In this paper we present an automated method for planning optimal paths for a
robotic team subject to a Linear Temporal Logic formula. The robots that we con-
sider have bounded non-deterministic traveling times. We first compute a set of
optimal satisfying paths for the members of the team. Then, we compute synchro-
nization sequences for the robots to guarantee correctness during deployment. Our
experiments show that our method has practical value in scenarios where the travel-
ing times of the robots during deployment deviate from those used in planning.

http://hyness.bu.edu/lomap/dars2012.mov
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Evolving Aggregation Behaviors in Multi-Robot
Systems with Binary Sensors

Melvin Gauci, Jianing Chen, Tony J. Dodd, and Roderich Groß

Abstract. This paper investigates a non-traditional sensing trade-off in swarm
robotics: one in which each robot has a relatively long sensing range, but pro-
cesses a minimal amount of information. Aggregation is used as a case study, where
randomly-placed robots are required to meet at a common location without using
environmental cues. The binary sensor used only lets a robot know whether or not
there is another robot in its direct line of sight. Simulation results with both a mem-
oryless controller (reactive) and a controller with memory (recurrent) prove that this
sensor is enough to achieve error-free aggregation, as long as a sufficient sensing
range is provided. The recurrent controller gave better results in simulation, and a
post-evaluation with it shows that it is able to aggregate at least 1000 robots into
a single cluster consistently. Simulation results also show that, with the recurrent
controller, false negative noise on the sensor can speed up the aggregation process.
The system has been implemented on 20 physical e-puck robots, and systematic
experiments have been performed with both controllers: on average, 86-89% of the
robots aggregated into a single cluster within 10 minutes.

1 Introduction

Many studies in swarm robotics have investigated systems where each robot only
makes use of localized information. As one may expect, such a restriction often
comes at the cost that each robot is required to extract and process a considerable
amount of information about its immediate surroundings. For example, each robot
may be required to estimate the relative positions of all other robots within some
radius. This study aims to investigate an alternative sensing trade-off, which is be-
lieved to be potentially useful in a number of ways. In this trade-off, a longer sensing
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range is allowed than is normally assumed in swarm robotics; however, each robot
only extracts and processes a minimal amount of information per control cycle. One
advantage of such a sensing scheme is that, as long as a suitable technology can
be used to provide the necessary sensing range, the system is truly scalable, be-
cause the amount of information that each robot needs to extract and process does
not increase with the number of robots in the swarm. Furthermore, simpler sensing
requirements are more likely to be implementable on smaller scale robots, paving
the way for nano-scale systems. Finally, using a simple sensing method increases
the chance that a controller that performs well in simulation also performs well on
the physical system.

The task of aggregation is used as a case study here. Trianni [21] argues that
“aggregation is of particular interest since it stands as a prerequisite for other forms
of cooperation”. Self-organized aggregation is a widely-observed phenomenon in
nature. It occurs in a range of organisms, including bacteria, arthropods, fish and
mammals [3, 20]. In some cases, self-organized aggregation is aided by environmen-
tal heterogeneities, such as areas providing shelter or thermal energy [see 14, 16,
and references therein]. However, aggregation can also occur in homogeneous
environments [7].

Jeanson et al. [15] investigated aggregation in cockroach larvae, and developed
a model of their behavior. The cockroaches were reported to join and leave clusters
with probabilities correlated to the sizes of the clusters. Garnier et al. [9] imple-
mented this model as a probabilistic finite-state automaton on 20 Alice robots to
achieve aggregation in homogeneous environments. Correll and Martinoli [5] an-
alyzed a similar model and showed that “robots need a minimum combination of
communication range and locomotion speed in order to aggregate into a single clus-
ter when using probabilistic aggregation rules”. These probabilistic models of ag-
gregation require the agents to obtain estimates of the cluster size or the robot den-
sity. For example, Garnier et al. [9] used local infra-red communication to estimate
the number of nearby robots.

Ando et al. [1] introduced a deterministic algorithm for achieving aggregation
in a group of mobile agents with limited perception in homogeneous environments.
Cortés et al. [6] adapted this algorithm and showed that it can be used to achieve
aggregation in arbitrarily high dimensions. These algorithms require that the robots
initially form a connected visibility graph, and are based on maintaining this graph
in every time step. The robots are essentially required to measure the relative po-
sitions (distances and angles) to all their neighbors. Gordon et al. [12] relaxed this
requirement, such that the robots need only to measure the angles to their neighbors,
and not the distances. Although the algorithm was theoretically proven to work,
simulation results revealed that “the merging process [was] generally agonizingly
slow” [12]. Gennaro and Jadbabie [11] developed a connectivity-maintaining algo-
rithm based on every robot computing the Laplacian matrix of its neighbors. Similar
to the work of Ando et al. [1], the algorithm requires the robots to measure the dis-
tances and angles to their neighbors.

Dorigo et al. [8] addressed the problem of robotic aggregation by using an evo-
lutionary robotics approach [19]. In their system, the robots can emit a sound and
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can sense each other using proximity sensors and directional microphones. A neural
network controller was evolved and validated in simulation with up to 40 robots.
Bahceci and Şahin [2] used a similar setup and investigated the effects of several
parameters, such as the number of robots, arena size, and run time.

The problem of aggregating robots with limited information is challenging, be-
cause the robots, if not properly controlled, may end up forming separate clusters.
This work investigates whether a single bit of information is sufficient to achieve
error-free aggregation, and whether memory in the controller is a fundamental re-
quirement.

2 Experimental Setup

2.1 Problem Formulation

N robots are placed in a two-dimensional unbounded, obstacle-free, homogeneous
environment, with random positions and orientations. The objective is to bring the
robots together at some location in the environment (i.e. aggregate them) via decen-
tralized control. Each robot is equipped with a single binary sensor on some point of
its body, which allows it to know whether or not there is another robot in the direct
line of sight of the sensor. Formally, the binary sensor gives a positive reading at
time t, I(t) = 1, if there is a robot in its direct line of sight, and a negative reading,
I(t) = 0, otherwise. The binary sensor does not provide the distance to the robot
being perceived.

2.2 Robotic and Simulation Platforms

The robotic platform that has been used in this study is the e-puck robot [18], shown
in Fig. 1(a), which is a miniature, differential wheeled mobile robot that was devel-
oped for educational and research purposes. The e-puck is equipped with (among
other sensors) a directional camera located at its front. The camera has been used
in this study to realize the binary sensor in the physical implementation (see Sec-
tion 5). The simulations presented here were performed using the open-source Enki
library [17], which is used by WebotsTM in 2D mode. Enki is capable of modeling
the kinematics and the dynamics of rigid bodies in two dimensions, and has a built-
in model of the e-puck. In Enki, the body of an e-puck is modeled as a smooth disk
of diameter 7.4cm and mass 152g. The speeds of the left and the right wheels can
be set independently, and the maximum speed of the e-puck is set to 12.8cm/s, in
both the forward and the reverse directions. In simulation, the binary sensor was re-
alized by projecting a line from the robot’s front and checking whether it intersects
with another robot’s body. The length of the control cycle was set to Δ = 0.1s, both
in simulation and in the physical system. In simulation, the physics was updated at
a rate of 10 times per control cycle.
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Fig. 1 (a): An e-puck robot fitted with a black ‘skirt’ to allow for its visual detection by other
robots against a white background. The robot is around 7.4cm in diameter. (b): Pseudo-code
representing the reactive controller. (c): A schematic diagram of the fully-recurrent neural
network controller.

2.3 Controllers

Two controllers have been investigated: a reactive controller that does not have any
memory, and a recurrent controller with memory. A reactive controller maps all
possible sensor readings onto actuation values. For a differential-wheeled robot with
a single binary sensor, a reactive controller simply maps each of the two possible
sensor readings onto a pair of speeds for the wheels of the robot. Thus, any reactive
controller can be represented by 4 parameters (see Fig. 1 (b)): x =

(
s0

l ,s
0
r ,s

1
l ,s

1
r

)
,

x∈ [−1.0,1.0]4, where s0
l is the speed of the left wheel when I(t) = 0, and so on, and

−1.0 and 1.0 correspond to the maximum backward and forward speeds of a wheel,
respectively. The recurrent controller is a fully-recurrent neural network [22] with
only two nodes, whose outputs determine the speeds of the left and the right wheels.
A schematic diagram of the network is shown in Fig. 1 (c). The network is defined by
8 unbounded real-valued parameters: x = (wI1,w11,w21,b1,wI2,w12,w22,b2), x ∈
R8. The internal states of the neurons, γ1 and γ2, are initialized to 0, and are updated
according to:

γ(t+1)
k = wIkI(t) +w1ksig

(
γ(t)1

)
+w2ksig

(
γ(t)2

)
+ bk, k ∈ {1,2} .

where sig (·) is the standard sigmoidal function, given by sig(·) = 1/
(

1+ e−(·)
)

.

The speeds of the left and the right wheels are calculated from the states as s(t)l =

2sig
(

γ(t)1

)
− 1, s(t)r = 2sig

(
γ(t)2

)
− 1, such that s(t)l ,s(t)r ∈ (−1.0,1.0).
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2.4 Evolutionary Algorithm

The aim of the evolutionary algorithm is to synthesize controllers of the forms de-
scribed in Section 2.3 that give a high aggregation performance. The algorithm used
here is based on Classical Evolutionary Programming [23], and is suitable for op-
timization in continuous, real-valued parameter spaces, S ⊆ Rn. Its main features
are (i) self-adaptation of mutation strengths, and (ii) a stochastic selection method
known as q-tournament selection. In this algorithm, an individual can be considered
as a 2-tuple: a = (x,σ), where x ∈ S is a candidate solution (i.e. here, a set of
parameters for a controller) and σ ∈ (0,∞)n is a vector of mutation strengths. The
i-th mutation strength in σ corresponds to the i-th element in x. Each generation g

comprises a population of μ individuals, P(g) =
{

a(g)1 ,a(g)2 , . . . ,a(g)μ

}
. In genera-

tion g = 0, all objective parameters and mutation strengths in P(0) are initialized
according to some distribution. Thereafter, in every generation g, every individual
in P(g) generates a new individual by mutation, to create a mutated population
P ′(g) (see Eqs. (1) and (2) in [23]). The population for the next generation, P(g+1),
is selected by q-tournament selection from the combined population P(g)∪P ′(g).
Each individual a(g)k in P(g)∪P ′(g), k ∈ {1,2, . . . ,2μ}, competes in a tournament

q times. For each tournament, an individual a(g)χ , χ �= k, is chosen at random from

P(g)∪P ′(g), with replacement. The individuals a(g)k and a(g)χ are evaluated using an
identical, randomly-generated seed ψ (hence, an identical initial configuration). If

a(g)k achieves a better fitness than its opponent, its score is increased by one. There-
fore, after q tournaments, each individual in P(g)∪P ′(g) obtains a score from the
set {0,1, . . . ,q}. The μ individuals with the highest scores are selected to consti-
tute the new population, P(g+1) (individuals with an identical score have an equal
chance of being selected).

2.5 Fitness Evaluation

The aggregation performance, or fitness, of a controller, defined by a vector of
parameters, x, is measured by running a simulation with a number of robots em-

ploying that controller, and computing their performance as follows: Let p(t)
i ,

i ∈ {1,2, . . . ,N} represent the positions of the robots at time step t. The average
distance to their centroid is given by:

d(t) =
1
N

N

∑
i=1

‖p(t)
i − p̄(t)‖, (1)

where p̄(t) is the centroid of the robots’ positions at time step t, computed as p̄(t) =
1
N ∑N

i=1 p(t)
i , and ‖ · ‖ denotes the Euclidean norm. Based on this metric, the fitness

of a controller is computed as:
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F (x,ψ) =
T

∑
t=1

1[
d(t)
] t

T
, (2)

where T is the number of time steps for which the simulation is run. Since d(t) is
placed in the denominator, a larger value of F signifies a better fitness. This function
rewards not only the aggregation metric at the end of the simulation, but also the
speed of the aggregation. Through the t/T exponent applied to d(t), a large value of
d(t) is increasingly penalized as the simulation progresses. Note that the fitness F is
the outcome of a stochastic process using the seed ψ , which determines the initial
placement of the robots and the actuation noise.

3 Controller Synthesis and Selection

Two sets of 100 independent evolutionary runs were performed: one set with a re-
active controller and one with a recurrent controller. The evolutions were run for
1000 generations, with all object parameters (x) initialized to 0.0 and all mutation
strengths (σ ) initialized to 1.0. The population size was set to μ = 15 and the tour-
nament selection parameter was set to q = 5 (settings as used in [4]). N = 10 robots
were used for the fitness evaluations of the controllers. Their positions were initial-
ized randomly with a uniform distribution within a square of sides 316.23cm, for
an area of 10000cm2 per robot (on average), and their orientations were initialized
randomly with a uniform distribution in the range (−π ,π ].

Additionally, a grid search was carried out for the reactive controller. A resolution
of 21 settings per parameter was used with values between −1.0 and 1.0 in incre-
ments of 0.1. Therefore, 214 = 194481 controllers were evaluated. Each controller
was evaluated 100 times using Eq. 2 with different initial configurations of robots,
with the set of configurations being identical for each controller. The evaluations
were done with N = 10 robots, and the initialization method was identical to that
used in the evolutionary runs, described above. The fitness of each controller was
recorded as the mean fitness of the 100 evaluations. Such a search was not possible
to perform with the recurrent controller, because this has 8 unbounded parameters,
which makes the search space prohibitively large.

Each evolution produced μ = 15 controllers after 1000 generations. In order to
extract the best controller found by each evolution, each controller in the final gener-
ation was evaluated 100 times with different initial configurations of robots, and the
controller with the highest average fitness over the 100 evaluations was selected as
the resultant controller of the evolution. Each of the 100 runs for each of the 200 con-
trollers was inspected visually, and it turns out that two distinct behaviors emerged,
as shown in Fig. 2(a). The first behavior leads to a compact cluster, while the sec-
ond behavior leads the robots to form a circle and maintain it. With the reactive
controller, 81 evolutionary runs produced controllers leading to a circle configura-
tion, while 19 runs produced controllers leading to a compact cluster configuration.
With the recurrent controller, only one evolutionary run out of 100 produced a circle-
forming controller. The best reactive controller found by the grid search leads to a
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Fig. 2 (a) Two distinct behaviors emerged from the evolutions: a number of controllers lead to
a circle configuration (top), while others lead to a cluster configuration (bottom). (b) This box
plot (see Footnote 1) shows the average fitnesses F̄ of the 200 evolved controllers, grouped ac-
cording to (i) the type of controller (reactive or recurrent) and (ii) the type of configuration that
the controller leads to. The left (red) two boxes represent reactive controllers, while the right
(blue) two boxes represent recurrent controllers. The horizontal green line shows the average
fitness of the best controller found by the grid search. Higher values indicate a better fitness.
The expected value of F for randomly-placed robots that do not move throughout the simula-
tion is 185.562cm−1. The maximum ‘possible’ value of F is 417.514cm−1, corresponding to
robots that are in the most compact configuration possible [see 13] from start to finish.

compact cluster configuration. Fig. 2(b) shows a box plot1 with the average fitnesses
F̄ of the 200 evolved controllers, grouped according to (i) the type of controller (re-
active or recurrent) and (ii) the type of configuration that the controller leads to. The
circle-forming controllers achieved a significantly lower fitness than the compact
cluster-forming controllers. This is because the fitness function in Eq. 2 was specif-
ically designed to reward compactness. The circle-forming recurrent controller has
a worse fitness than the worst circle-forming reactive controller, as the circle forms
over a longer time. In terms of compact-cluster-forming controllers, it is clear from
Fig. 2(b) that the recurrent controllers lead to significantly higher fitnesses than the
reactive controllers. In fact, the worst compact cluster-forming recurrent controller
evolved has a higher fitness than the best reactive controller evolved. The fitness
of the best reactive controller located by the grid search (green line in Fig. 2(b)) is

1 The boxplots presented here are all as follows. The line inside the box represents the
median of the data. The edges of the box represent the lower and the upper quartiles (25-th
and 75-th percentiles) of the data, while the whiskers represent the lowest and the highest
data points that are within 1.5 times the inter-quartile range from the lower and the upper
quartiles, respectively. Circles represent outliers.
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lower than the fitness of the best reactive controller found by an evolution. This is
because of the limited resolution that had to be used in the grid search, whereas the
evolutionary algorithm has a practically infinite resolution.

The circle forming controllers yield an interesting behavior. Preliminary experi-
ments show that they scale well with the number of robots (as tested with 100 robots
in simulation), and are in principle also implementable on real robots. However, the
next sections will investigate the cluster-forming controllers, which outperform the
circle-forming controllers in terms of compactness. An investigation of the circle
forming controllers will be left as future work.

4 Post-evaluations with the Best Controller

During the controller synthesis stage, the controller evaluations were limited to N =
10 robots, in order to keep the computation time within reasonable limits. The best
synthesized (recurrent) controller was chosen for post-evaluations with 100 robots.
In the following, 100 robots were initialized within a virtual square of sides 1000cm,
such that the area per robot (on average) is 10000cm2, identical to that used for
controller synthesis.

The effect of the sensing range: As the robots are initialized within a virtual
square of sides 1000cm, a sensing range of

√
10002+ 10002 = 1414 cm can be

considered as practically unlimited. This will be denoted by δ∞. In order to inves-
tigate the effect of the sensing range on aggregation performance, simulations with
different proportions of the sensing range δ to δ∞ were performed; 100 simulations
for each δ/δ∞ = {0.0,0.1, . . . ,1.0}. For each simulation, the value of 1/d(t) (see
Eq. 1) after 1800s was recorded (hence a higher value signifies more compactness).
Fig. 3(a) shows a box plot for all the simulations. The performance is virtually un-
affected as δ/δ∞ is reduced from 1.0 to 0.3. As δ/δ∞ is reduced to 0.2, the median
performance drops instantly, almost to the value of robots that do not move during
the simulation (lower magenta line in Fig. 3(a)).

The effect of sensing noise: Two types of noise on the binary sensor were con-
sidered. With false positive noise, the binary sensor erroneously gives the wrong
reading with probability p when no robot should be observed, while it always gives
the correct reading when a robot should be observed. Conversely, with false nega-
tive noise, the binary sensor never indicates the presence of a robot when there is
none, but when there is a robot, it fails to detect it with probability p. False positive
noise was found to be detrimental to aggregation performance. However, false neg-
ative noise was found to speed up the aggregation process. In order to investigate
this, 100 simulations were run for each of 10 values of p: {0.0,0.1, . . . ,0.9}. Each
simulation was stopped when all the robots were aggregated in a single cluster2, and

2 Two robots are said to be neighbors at time step t if the distance between their peripheries
is less than some threshold, τ . The value of τ used here is equal to the diameter of the
robots, i.e. τ = 7.4cm. A depth-first search algorithm is used to find the cluster profile at
time step t, where a cluster is defined as a set of robots that form a connected graph (i.e.
every two robots within the set are either neighbors, or connected by a chain of neighboring
robots).
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Fig. 3 (a): This box plot shows how the aggregation performance with N = 100 robots is
affected by the range of the binary sensor. The horizontal axis shows the sensing range, δ ,
as a proportion of the maximum, effectively infinite, sensing range, δ∞, while the vertical
axis shows a measure of aggregation, 1/d(t), as defined in Eq. 1. Each box represents 100
values of 1/d(t) obtained from 100 runs. The lower magenta line shows the value of 1/d(t)

for robots that do not move. The upper magenta line shows the maximum value of 1/d(t)

obtainable with 100 robots, corresponding to the optimal packing [see 13]. (b): This box plot
shows how the time taken by N = 100 robots to form a single cluster is affected by the level
of false negative noise on the binary sensor. Each box represents 100 values of time obtained
from 100 runs.

the time taken was recorded. Fig. 3 (b) shows a box plot of these times for false neg-
ative noise. The plot shows a clear ‘bowl’ shape, and it is striking that the optimum
(fastest aggregation) occurs somewhere between p = 0.6 and 0.7.

From a qualitative visual analysis of the aggregation dynamics with the recurrent
controller, with and without noise, it turns out that when there is no noise, the robots
quickly form two to four large clusters. These clusters then take a long time to move
as whole units and merge with each other. On the other hand, when there is false
negative noise on the binary sensors, the robots do not form large clusters, but rather
smaller clusters of only a few robots each. These clusters then are able to move as
units more quickly than the larger clusters that form in the case with no noise, and
therefore, aggregation happens faster.

Scalability: In order to investigate the scalability of aggregation with binary sen-
sors, the best synthesized controller was tested with increasing numbers of robots.
100 simulations with different initial configurations of robots were performed for
each value of N ∈ {100,200, . . . ,1000}. In each trial, the robots formed a single
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cluster, meaning that the controller is capable of achieving consistent, error free
aggregation with at least 1000 robots.

5 Physical Implementation and Experiments

A square arena of sides 250cm was used, having a white floor and enclosed by white
walls. Its floor was marked with a grid of 9×9 points, spaced 25cm from each other
and from the walls. For each experiment, 20 out of these 81 points where chosen
randomly as the initial positions of the robots. Additionally, a random orientation
from {North, East, South, West} was chosen for each robot.

The binary sensor has been implemented using the e-puck’s directional camera.
The robots were fitted with black ‘skirts’ in order to make them distinguishable
against the white arena. The middle column of pixels from the camera’s image is
sub-sampled so as to obtain 15 equally-spaced pixels from the bottom of the im-
age to its half-way height. The gray value of these 15 pixels is compared against a
threshold, which was empirically set to 2/3 of the maximum possible value (pure
white). If one or more of the pixels has a gray value below this threshold, the sensor
gives a positive reading. The implemented sensor has been found to provide reliable
readings up to a range of around 150cm.

Two sets of 30 trials each were performed with N = 20 robots; one set with the
best-found reactive controller, and one set with the best-found recurrent controller.
The robots were started by issuing an infra-red signal from a remote control, and
stopped automatically after 10 minutes. Each trial was recorded by an overhead
camera, and all of the videos can be found in the online supplementary material
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Fig. 4 This plot shows the final configurations of all the 30 trials performed with the reactive
controller. The bar at the back shows the number of robots in the largest cluster, the bar in
front of it shows the number of robots in the second-largest cluster, and so on. A robot that is
not within 7.4 cm of any other robot is considered as a cluster in itself. Across all the trials,
there were at most 4 clusters in the final configuration.
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[10]. Throughout the 60 trials, 9 robots had a mechanical or electrical problem, and
stopped moving. Whenever this happened, an infra-red signal was re-issued to the
robot in case it might start again (normally-operating robots ignored this signal).
Otherwise, the stationary robot was left in the arena for the rest of the trial. No other
mechanical or electrical problems were observed. The cluster configuration (see
Footnote 2 for a definition) of the robots at the end of each trial was examined. In
the trials with the recurrent controller, the mean size (over the 30 trials) of the largest
cluster in the final configuration was 17.10, meaning that 85.50% of the robots were
aggregated in a single cluster. In the trials with the reactive controller, this value
was 17.77, or 88.83%. These results are not significantly different (Mann-Whitney
test performed with a p = 0.05 threshold). However, with the recurrent controller,
substantially more robots became stuck at the arena walls than with the reactive
controller (49 times against 15 times, out of a possible total of 600 each). Fig. 4
shows the cluster sizes in the final configurations of the 30 trials with the reactive
controller.

6 Conclusion

This paper has investigated the usefulness of an alternative sensing trade-off for
swarm robotic systems: one in which the robots have a longer sensing range than
is normally assumed, but process only a minimal amount of information. This idea
has been implemented to solve the problem of decentralized robot aggregation in
a homogeneous environment using a sensor that provides each robot with a single
bit of information per control cycle. The simplicity of the sensor does not come
at the cost of a complex controller: in fact, even the simplest possible memoryless
controller has been shown to be effective. To the best of the authors’ knowledge,
this is the simplest sensor/controller combination capable of aggregating robots in a
single location. The system was implemented on 20 physical e-puck robots, and two
sets of 30 trials were conducted, one set with a memoryless controller, and one set
with a recurrent controller. Both controllers led to a good aggregation performance
within 10 minutes. In the future, it is intended to extend the work performed to
more complex environments (e.g. with obstacles), and to test the proposed sensing
trade-off on other, more challenging swarming tasks.
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Robot Teams: Sharing Visual Memories

Raphael Grech, Francisco Flórez-Revuelta, Dorothy N. Monekosso,
and Paolo Remagnino

Abstract. This paper presents, the Growing Neural Gas (GNG), an unsupervised
learning algorithm, which allows a team of robots to memorize scenes and collec-
tively create a general understanding of the environment that is easily understood
and referenced by humans is presented. Each robot will have its own memory rep-
resented by a graph with nodes encoding the visual information of a video stream
as a limited set of representative images. GNG are self-organizing neural networks
that can dynamically adapt their reference vectors and topology. Frames are sequen-
tially processed by the GNG, automatically generating nodes, establishing connec-
tions between them and creating clusters dynamically. We mainly focus on creating
a robot team learning mechanism to achieve a distributed system of robots automati-
cally sharing acquired knowledge with others available within the area. This is done
using keyframes representing clusters within the robot memory.

1 Introduction

There are situations where tasks cannot be carried out by a single robot. When these
situations arise, tasks are carried out with multiple robot systems (MRS) to collab-
orate and work together as a team in order to achieve the required goal. One such
task is that of surveying and patrolling large areas. MRS can accomplish tasks that
no single robot can accomplish by itself, since ultimately a single robot, no mat-
ter how capable, is spatially limited [3]. When using a MRS, each robot may be
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designed for a different task, and the required goal is achieved with proper collab-
oration by the robots. This would provide a more generic structure as the robots
would be able to reconfigure themselves as required. This highlights the importance
of proper communication for effective teamwork. Furthermore, using several robots
introduces redundancy. Teams of robots therefore can be expected to be more fault-
tolerant than a single robot. The merging of overlapping information coming from
the robot team can help compensate for sensor uncertainty [2]. Extensive work has
been carried out on robot mapping of the environment [23, 5, 1, 9]. Mapping alone
however does not give information about the environment itself. Whilst the focus of
robot mapping is building a geometrical map of the environment, our aim is merg-
ing meaningful visual information to the geometrical map, by creating a topological
map of the environment. We therefore are of the idea that similar to humans, only
salient images, which we call keyframes, are stored. This strategy requires less pro-
cessing and storage power but is still able to maintain all the relevant information.
As an example, office blocks generally have the same geometrical layout, but the
contents may vary between floors. Assuming limited resources on the robot, an ef-
ficient way for the robot to learn the main scene differences and memorize them is
needed. We propose a method to automatically create a visual memory for robots
equipped with cameras surveying, monitoring or searching an area of interest. We
wish to encode the visual information into a limited set of representative images
on-line and with limited computational over-head. The idea behind our approach is
to provide a flexible graphical representation of visual memory to be subsequently
used for the semantic description of a captured scene.

Various video segmentation methods exist in literature [4, 20, 22, 17] and some
are extensively reviewed [15, 16, 8, 19], however these generally assume that the
video is stored and can be post-processed. Some algorithms can also be very com-
putationally intensive. Ngan and Li in [19] highlight four main challenges in im-
age/video segmentation. The first challenge is how to effectively bridge the seman-
tic gap between low-level and high-level features. The second is how to yield ac-
curate segmentation and how to extract accurate masks. The third challenge is that
of working in real time without compromising accuracy and the fourth is the need
to develop appropriate validation and evaluation approaches, by providing a com-
mon database and by developing an evaluation technique. Ngan and Li state that
most evaluation methods in the current literature are based on the computation of
the scores between the ground truth mask and the segmented result. It is reasonable
but not sufficient to address the segmentation quality. Gao et al. in [19] state that the
usage of machine learning techniques has proven to be a robust methodology for se-
mantic scene analysis and understanding. The main characteristic of learning-based
approaches is their ability to adjust their internal structure according to input and
respective desired output data pairs in order to approximate the relations implicit in
the provided (training) data, thus elegantly simulating a reasoning process.

Although the Growing Neural Gas (GNG) was originally designed for offline
training [14], this work extends the ideas suggested in [10] for building visual mem-
ories of video streams to a multi-robot scenario. Several robots can be used to create
a visual memory of the environments in a faster and more efficient manner. Our
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intention is to generate a graph of small size as a reduced representation of the
environment that could be easily shared among robots or a distributed set of com-
putational nodes and easy to grow in cooperation. The robot’s visual memories are
incrementally built using the GNG self-organizing model. The GNG was chosen
because it provides flexibility and portability, by dynamically building a representa-
tive graph of the input space, in this case a video or scene video sequence. The main
contribution of this paper is an efficient method for learning and memorizing in real
time an environment from a sequential input video stream in a very concise and
compact manner using a team of robots. By real time we mean that the sampling
input frequency of the environment scene being high enough for the GNG visual
memory to reflect the salient views of the robot. This work is primarily intended for
robot understanding of their own environment and possibly localization.

Fig. 1 Training Images (Left) and Generated GNG Clustered Nodes (Right)

Figure 1 illustrates an example of how GNG structures network topology. In this
example, a fixed set of training images and a maximum number of nodes have been
used. After a random iteration of the trained images illustrated on the left of Fig-
ure 1, GNG creates the links between the nodes and the clusters, which are shown on
the right hand side of Figure 1. One can note that some of the images were merged
together. This is mainly due to the feature vector used. In our case the feature vector
is the grayscale pixel value, so images having similar grayscale distributions tend
to cluster together. The more defined the input feature vector the better the classifi-
cation is expected to be. It might be argued that there could be better features one
can pass to the GNG rather than the scaled grayscale images. Unless the selected
features are highly descriptive, and since only these features will be memorized,
there is no way to revert to the original image. This would make it impossible for a
human to understand straight away what the robot has memorized. Another possible
option could be that of feeding in a higher semantic level to the GNG. This however
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necessitates the robot to be able to recognize what it sees. This could work well in
an environment where the contents are somewhat expected, however it would fail
miserably in a total alien environment.

GNG was proved to be superior to existing unsupervised methods, such as self-
organising Kohonen maps, K-means, growing cell structures [6, 12, 13]. Florez et
al. [6] conclude that networks having an evolving topology adapt better to the input
manifold than any network with pre-established topologies. In a GNG graph, nodes
can be disconnected while the network is evolving, creating a separation between
uncorrelated memories. The number of nodes need not be fixed a priori, since they
are incrementally added during execution. Insertion of new nodes ceases when a
set of user defined performance criteria is met, or alternatively the maximum net-
work size is reached. The algorithm iteratively learns to identify similarities of input
data and classifies them into clusters. GNG is much more than a simple clustering
algorithm since it provides the means to associate visual memories and to build
ontologies of visual concepts. The most common way of training GNG is that of
having a training dataset from which items are randomly selected and fed into the
network. This can be seen in Figure 1. This generally ensures that the GNG evolves
in a distributed manner and is more likely to represent the input data accurately.
GNG suffers from initialization problems, i.e., every time the GNG algorithm is
run it might evolve slightly differently, depending on the initial seeding and also on
the way the node weights are adjusted. For our robot application, feeding a random
sample from a stored sequence is not possible. We require a system that is capable of
learning and adapting its knowledge, accept a continuous video stream, and process
it online.

This paper is organized as follows. The GNG algorithm is presented in Section 2
followed by our methodology in Section 3. In Section 4 the experiments carried out
together with the results obtained are analyzed and discussed. Finally conclusions
are drawn and possible future work is highlighted in Section 5.

2 The GNG Algorithm

GNG was originally introduced by Fritzke [7], as an unsupervised learning tech-
nique where no prior training is needed. The system starts with two linked nodes;
new nodes are inserted at every fixed number of input cycles up until the maximum
number of allowed nodes is reached. Connections between nodes are also inserted
and removed adapting the network topology. Moreover, nodes which are discon-
nected are removed thus allowing for new nodes to be inserted in a better position
within the topological map. This results in a network having a topological struc-
ture composed of N nodes in Y clusters connected by edges closely reflecting the
topology of the feature distribution. The GNG algorithm operates as shown in Al-
gorithm 1. The GNG network is specified as:

• A set N of nodes (neurons). Each node k ∈ N has its associated reference vector
wk belonging to the input space (80× 60 grayscale images).
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• A set of edges (connections) between pairs of nodes. These connections are not
weighted and its purpose is to define the topological structure. An edge ageing
scheme is used to remove connections that are invalid due to the adaptation of
the node during the learning process.

Algorithm 1. GNG Algorithm
Set two nodes containing random values, age edge = 0, error = 0

while (Stopping Criterion = false) do
- capture an input image vector x
- from all nodes, find winning node s1 and second best node s2
- increase the age of all the edges from s1 to its topological neighbours
- update the error of s1
- move s1 and its neighbors towards x

if (s1 and s2 are connected by an edge) then
- set the age of the edge to 0.

else
- create an edge between them.

end if

if edges are older than age threshold then
- remove edges

end if
- remove isolated neurons

if (current iteration is a multiple of λ ) and (maximum node count = false) then
- find node u with largest error.
for all neighbors of u do

find node v with largest error
end for
- insert a new node r between u and v
- create edges between u and r, and v and r
- remove edge between u and v
- decrease the error variables of u and v
- set the error of node r

end if
- decrease error value of all nodes

end while

Due to the sequential nature of the robot’s visual data acquisition the GNG was
adapted for our application as follows:

• During testing it was noted that the Best Matching Unit (BMU) will be the same
one for a number of consecutive frames which are very similar. In our case this is
good, however we do not want to over train. If this happens one possible option
could be to skip input frames.
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• We also need to learn fast. The BMU is made to converge to the actual input very
fast by adding a large proportion of the error between the input and the BMU.
This basically sets the BMU to the input image.

• The second BMU (for the same frame) is slightly adjusted. This allows for more
information storage within the same cluster rather than having several nodes with
the same value within the cluster.

• A new node is inserted at a relatively fast rate (e.g. every other iteration). Thus
allowing for a large number of nodes to be used from early age and new nodes
are inserted soon after isolated nodes are killed.

3 Methodology

We want each robot in the team to memorize its own area and at the same time share
some of its acquired knowledge with its peers in an efficient and compact way. As it
happens with human memory, details of a scene are retained and memorized images
can be blurred or somewhat unclear. However, sufficient information is retained to
recall relevant information from memory about a part of the scene [11]. Likewise,
our proposed algorithm does not produce a perfect photographic memory, but rather
retains image representations, which contain meaningful information about the ex-
plored environment. In our method each node consists of an 80×60 pixel grayscale
grid representing an evolving memory image. One basic way of having a global
understanding of the environment is to have each robot surveying its own area, gen-
erating their own set of clusters and then feeding them into another learning network
to create a common central memory. This however has some disadvantages. Aside
from the fact there is reliance on a centralized system, robots would only know their
area and would be totally unaware of what other robots are experiencing in other
areas. This means that if one robot dies (e.g. run dry on battery power) all the infor-
mation obtained from the robot would be lost, unless it has already been provided to
the central system. We want to have a distributed system to complement the above
idea so that if one robot dies along the process some of its most relevant informa-
tion will be retained. We therefore suggest having several robots each with its own
visual memory within a distributed environment. Robots are to memorize what they
see and also accept incoming visual information from neighboring robots, diagram-
matically shown in Figure 2. We take inspiration from the island model genetic
algorithm [24]. This methods revolves around the concept of migration where each
island (in our case a robot) will periodically exchange a portion of its population
(nodes) with other islands. Each robot will start generating clusters of similar im-
ages within its own visual memory. The average of this cluster is then calculated and
a single image is produced thus generating one image per cluster (keyframe). One
of these generated images will then be selected at random and shared with the other
robots. With our suggested method we can have both a distributed and centralized
system working together. The distributed system consists of robots which memorize
mostly their environment with some influence from other robots and the centralized
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Fig. 2 Concept behind the distributed visual memory

system to have a general understanding of all the environments being monitored.
One way to do this in a distributed manner is to have a “visually impaired” robot
together with the other “normal” robots. This means that this robot would only re-
ceive inputs coming from other robots and share its own clusters based on these
inputs. Referring to Figure 3 the noise cluster 5 is most likely generated by the blind
robot itself since in the first iteration it could only share noise as it had seen nothing
before. At times this cluster can evolve into meaningful images but at others, as in
this case, it might linger in the robot network.

The way GNG is used in this paper bears some resemblance to well-known video
annotation and segmentation methods [19] and [21]. These methods generally look
for specific changes in the video segment such as scene change or cross fading be-
tween scenes. They also use more complex segmentation algorithms such as graph-
cuts and eigen-based methods. The main limitation of such methods is that they
cannot segment and annotate in realtime, as the whole video has to be processed to
create a reliable segmentation. Our choice provides several advantages when imple-
mented for a robot. Storing and transmitting a video stream requires a large amount
of memory and a high bandwidth, usually scarce on a robot. Each robot will operate
using the procedure presented in Algorithm 2.

In the proposed algorithm each robot is the “expert” of its area, however it will
have enough information from the other robots to know what else is in the surround-
ings. Figure 4 shows a summary of how cluster sharing happens between robots.
Robots 1 and 2 generate an average cluster (keyframe) image which is shared with
Robot 3. Robot 3 will generate its own keyframe which in turn will be shared with
the other robots. One can note that the outcome fidelity is reduced. This is to be
expected as observed in humans. When person A and person B say something to
person C, it is highly unlikely that person C will relay accurate information to per-
son D. This would mean that in the case of a general scene identification query
sent to all the robots, the one with the original data (the expert) is more likely to
respond with the best match. Robot learning is similar to that of a child. Initially its
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Fig. 3 Visually Impaired Robot - This robot only memorizes what other robots share

knowledge will be “blurred”. As time passes, its clusters will be better defined and
therefore the will start sharing “better” information. Same applies to when it has to
share its knowledge. A child will have unclear or “blurred” concepts which will be-
come more clear by time. The main advantage is that of initializing seeds within the
peer robots with information about scenes which were not previously seen by that
robot. This seed would allow robots to learn a new environment faster, if it happens
to be the similar to one already visited and shared by other robots.
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Algorithm 2. Robot Learning and Sharing Procedure
while (Stopping Criterion = false) do

- Capture image from the environment
if (broadcast image from other robots = true) then

- Accept broadcast image
end if
- Scale and convert captured images to grayscale
- Feed images into memory learning algorithm {learning algorithm starts generating its
own clusters}
if (specified or random time elapsed = true) then

- select a cluster at random and broadcast its average image (keyframe)
end if

end while

Fig. 4 Cluster Sharing

4 Experimental Analysis and Results

In our study, we have mainly analyzed how individual learning evolves with the
change in number of robots and image injection rate from other robots. The im-
plementation was developed in ROS (Robot Operating System). ROS is a robot-
specific middle-layer solution for distributed computation and message passing. It
allows easy integration of sensor drivers and data processing components including
both off-the-shelf and in-house components. The distributed nature of ROS allows
each independent component to function with some degree of independence and fa-
cilitates extensibility [18]. The main reasons for using ROS are that we can have
multiple robot instances running as separate nodes / threads, it can be implemented
on real robots, the input to the robot learning algorithm can come from any visual
capturing device available on the robot / ROS network and robots can join or leave
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at any point. This also caters to the likely case that robots die along the way. For
our experiments only video inputs were required. The video streams were captured
using a digital camera and fed into the ROS environment as a camera node to which
each robot subscribed using its memory node. A range between two and five robots
were used, each having a different input video sequence all of same length (2500
frames). Robot 1 and 2 surveyed two different corridors, Robot 3 was moving along
an outside passageway between two buildings. Robot 4 was moving outside along a
pavement in a car park and Robot 5 was on a road leading to the car park. The GNG
parameters and the maximum number of nodes was kept fixed, the reason being that
we want to analyze the effect of varying the number of robots and the frequency
of sharing. The maximum number of nodes in the GNG was set to 50 and a new
node was inserted every 5 iterations. The best matching unit coefficient was set to
0.95 and that of its neighbors to 0.001. The maximum edge age was set to 2 and for
every iteration the error of each node is decreased by a factor of 0.005. For each set
of robots (2, 3, 4, 5) a different sharing frequency was used (one image shared by
each robot every 5, 15, 25, 35, 45, 55 iterations). This led to a total of 84 different
graphs: 12 for 2 robots, 18 for 3 robots, 24 for 4 robots and 30 for 5 robots. Each
graph was checked for which nodes in the visual memory were not from the robot’s
input but rather from the common pool by manually comparing it to the ground truth
data. The percentage sharing between robots was then calculated using

100
n

n

∑
i=1

x(i)
z(i)

where x(i) is the number of nodes within the visual memory of robot i not origi-
nating from the onboard camera and z(i) is the total number of nodes within that
network. The outcome was plotted in Figure 5 showing the percentage of memory
originating from the other robots (y-axis) versus frame sharing frequency (x-axis).

The higher the sharing frequency between the robots the higher the percentage
of shared memory between the robots. A monotonic curve with negative gradient
could therefore be assumed. Given a number of robots and a desired percentage of
shared memory to be stored, the frame sharing frequency should be set accordingly.
In order to find the best fitting curve a 3 robot case scenario was used. The sharing
frequency was varied from 2 up to 40 in steps of 2. Various curves where fitted
and their R-squared value noted. Out of all the curves fitted, the best match was
that using a polynomial of order 3, followed by a log, then power, exponential, and
finally the least accurate being the straight line approximation. When varying the
number of robots, the best overall performance was given by the log curve with an
R-squared value of over 0.8 for the 2 and 5 robot case and a 0.6 for the 3 robot case.
The 4 robot case performed at 0.2, still higher than the straight line approximation.
Due to the initialization process of the GNG and the random nature of cluster image
selection to feed other robots, the content of each visual memory will be different
(i.e. not repeatable). This means that Figure 5 cannot be reproduced exactly for
every run, however the general negative trend still holds. If the frequency of sharing
is low robots will tend to learn only their environment with low influence from the
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Fig. 5 Percentage memory sharing (y-axis) vs Frame sharing frequency (x-axis) for various
team sizes.

neighboring robots. If on the other hand the frequency of sharing is too high then
it might be that some robots could be overwhelmed with information coming from
other robots and end up learning what others are memorizing rather than building a
memory of their environment. As the results tend to indicate, this situations becomes
more acute as the number of robots increases.

5 Conclusion

In this paper we provided a method where a team of robots efficiently creates a
distributed visual memory. This is implemented by learning and memorizing the
robots’ environment in real time from sequential input video streams into a flexible
graphical representation using a Growing Neural Gas (GNG) network. We tested the
system on various raw video streams coming from the robots. Experimental results
show that the proposed method suits its intended application and a very concise yet
meaningful representation of input data is obtained. We saw that as the sharing fre-
quency between the robots increases, the higher the percentage of shared memory
between the robots, however a good balance between the number of robots available
and how much information they share is required so as not to overwhelm the robots
with external information. In our system we feed in the scaled down raw images. If
the movement of the robot is not smooth, sequence frames capturing the same scene
will generate a different Euclidean distance. This was noted during the experiments
and this tends to generate multiple clusters of the same scene. We intend to look into
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this next and possibly use features which are position invariant and video stabiliza-
tion techniques such as those suggested in [25]. In this paper we only considered a
randomly selected image to be shared. We will study methods where robots could
decide which image to share and with which robots to share it with.
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Distributed Particle Swarm Optimization for
Limited Time Adaptation in Autonomous Robots

Ezequiel Di Mario and Alcherio Martinoli

Abstract. Evaluative techniques offer a tremendous potential for on-line controller
design. However, when the optimization space is large and the performance metric
is noisy, the time needed to properly evaluate candidate solutions becomes pro-
hibitively large and, as a consequence, the overall adaptation process becomes ex-
tremely time consuming. Distributing the adaptation process reduces the required
time and increases robustness to failure of individual agents. In this paper, we ana-
lyze the role of the four algorithmic parameters that determine the total evaluation
time in a distributed implementation of a Particle Swarm Optimization algorithm.
For a multi-robot obstacle avoidance case study, we explore in simulation the lower
boundaries of these parameters with the goal of reducing the total evaluation time
so that it is feasible to implement the adaptation process within a limited amount
of time determined by the robots’ energy autonomy. We show that each parameter
has a different impact on the final fitness and propose some guidelines for choosing
these parameters for real robot implementations.

1 Introduction

Human design of high-performing robotic controllers is not a trivial task for a num-
ber of reasons. In the first place, even the simplest of modern robots have a large
number of sensors and actuators, which implies a large number of control parame-
ters to optimize. Secondly, real systems often present discontinuities and nonlinear-
ities, making it difficult to apply well-understood linear control techniques. Finally,
when porting the designed controller to real robots there might be an unexpected
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performance drop due to a number of factors such as imperfections in fabrication,
changes in the environment, or modeling inaccuracies.

Machine-learning techniques are an alternative to human-guided design that can
address some of the previously mentioned challenges. They can automatically syn-
thesize robotic controllers in large search spaces, coping with discontinuities and
nonlinearities, and find innovative solutions not foreseen by human designers by
working with a pool of potentially very diverse candidate solutions. Furthermore,
the learning process can be implemented fully on-board, enabling automatic adap-
tation to the underlying hardware and environment.

However, the main drawback of working with a pool of candidate solutions is the
amount of time needed to evaluate all candidates, which is substantially larger than
that required to generate them. Moreover, due to several sources of uncertainty, such
as sensor noise, manufacturing tolerances, or lack of strict coordination in multi-
robot settings, it may be necessary to re-evaluate some solutions to gather sufficient
statistics for meaningful adaptation. Because of these two reasons, the adaptation
process is considered an expensive optimization problem.

Implementing the adaptation process in a distributed fashion brings two distinct
advantages. Firstly, it reduces the required evaluation time through parallelization.
Secondly, it increases robustness by avoiding a critical point of failure, which is of
particular interest in real robot implementations.

Thus, the goal of this paper is to analyze how different algorithmic parameters
in a distributed implementation affect the total evaluation time and resulting fitness.
We aim to reduce the total evaluation time such that it is feasible to implement
the adaptation process within the limits of the robots’ energy autonomy without
renouncing the benefits of a population-based learning algorithm.

2 Related Work

Particle Swarm Optimization (PSO) is a relatively new metaheuristic originally in-
troduced by Kennedy and Eberhart [8]. PSO is inspired by the movement of flocks
of birds and schools of fish, and represents a set of candidate solutions as a swarm of
particles moving in a multi-dimensional space. Particles can recall at which position
of the search space they obtained their best performance and also the position of the
best performing particle in a pre-established neighborhood.

Because of its simplicity and versatility, PSO has been used in a wide range
of applications such as antenna design, communication networks, finance, power
systems, and scheduling. Within the robotics domain, popular topics are robotic
search, path planning, and odor source localization [13].

PSO is well suited for distributed/decentralized implementations due to its dis-
tinct individual and social components and the use of the neighborhood concept.
Most of the work on distributed implementations has been focused on benchmark
functions running on computational clusters [1,3,16]. Implementations with mobile
robots are mostly applied to odor source localization [9, 17], and robotic search [6],
where, as opposed to optimizing a set of control parameters for the task at hand, the
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particles’ position is usually directly matched to the robots’ position in the arena.
Thus, the search is conducted in two dimensions and with few or even only one lo-
cal extrema. For these reasons, even though robotic search is a challenging practical
task, it does not represent a complex optimization problem.

An example of a more challenging on-line optimization problem is the work of
Floreano and Mondada [5], who used Genetic Algorithms to optimize the weights
of an artificial neural network controller. The task was to navigate a path and avoid
obstacles with a tethered mobile robot. Even though the population manager and
other resource-intensive tasks were carried out on a dedicated off-board computer,
this study was still able to show the advantages of evaluation with hardware in the
loop. For example, the evolved direction of motion was a result of the interplay
between the robot morphology (higher density of proximity sensors facing forward)
and the environment in which it was deployed. It is worth noting that the experiment
required 67 hours of total evaluation time, and it would require the same time to
recreate it nowadays since the limit was not imposed by computational capabilities
but rather by the wall-clock time needed to gather enough information on the quality
of the candidate solutions.

Most of the research on optimization in noisy environments has focused on evo-
lutionary algorithms [7]. The performance of PSO under noise has not been exten-
sively studied. Parsopoulos and Vrahatis showed that standard PSO was able to cope
with noisy and continuously changing environments, and even suggested that noise
may help to avoid local minima [12]. Pan et al. [11] proposed a PSO variation based
on statistical tests to select particles, but was only applied to benchmark functions
with added gaussian noise.

Pugh et al. showed that PSO could outperform Genetic Algorithms on benchmark
functions and for certain scenarios of limited-time learning under the presence of
noise [14, 15]. Pugh also showed that PSO can perform satisfactorily with low pop-
ulation sizes, a result that is of particular interest for multi-robot implementations
because a smaller number of robots can be used while leaving the optimization pro-
cess robust to connectivity issues between the robots.

3 Materials and Methods

This paper is focused on a case study of obstacle avoidance, a basic behavior in
robotics. Robots navigate autonomously in a square arena of 1 m2 in which walls
and other robots are the only obstacles. We use the same metric of performance as
Floreano and Mondada [5], which consists of three factors, all normalized to the
interval [0, 1] (Eq. 1).

F =V · (1−
√

Δv) · (1− i) (1)

V is the average wheel speed, Δv the wheel speed difference, and i the proximity
sensor activation value of the most active sensor. Each factor is calculated at each
time step and then averaged for the total number of time steps in the evaluation
period. This function rewards robots that move quickly, turn as little as possible,
and spend as little time as possible near obstacles.
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We chose the obstacle avoidance task because it is scalable in the number of
robots, requires basic sensors and actuators that are available in most mobile robots,
and the chosen performance metric can be fully evaluated with on-board resources.
Thus, it can serve as a benchmark for testing distributed learning algorithms with
real robots in the same way that standard benchmark functions are used in numerical
optimization.

Our experimental platform is the Khepera III mobile robot, a differential wheeled
vehicle with a diameter of 12 cm. The Khepera III is equipped with nine infra-red
sensors as well as five ultrasound sensors for short and medium range obstacle de-
tection. Our experiments were carried out in simulation using Webots [10], a real-
istic, physics-based, submicroscopic simulator that models dynamical effects such
as friction and inertia. In this context, by submicroscopic we mean that it provides
a higher level of detail than usual microscopic models, faithfully reproducing intra-
robot modules (e.g., individual sensors and actuators).

The controller architecture is an artificial neural network of two units with sig-
moidal activation functions, and a single output per unit to control the two motors.
Each neuron has 12 input connections: the 9 infrared sensors, a connection to a con-
stant bias speed, a recurrent connection from its own output, and a lateral connection
from the other neuron’s output, resulting in 24 weight parameters in total.

The adaptation algorithm is the noise-resistant variation of PSO introduced by
Pugh et al. [15], which operates by re-evaluating personal best positions and aggre-
gating them with the previous evaluations (in our case a regular average performed
at each iteration of the algorithm). The movement of particle i in dimension j de-
pends on three components: the velocity at the previous step weighted by an inertia
coefficient w, a randomized attraction to its personal best x∗i, j weighted by wp, and
a randomized attraction to the neighborhood’s best x∗i′, j weighted by wn (Eq. 2).
rand() is a random number drawn from a uniform distribution between 0 and 1.

vi, j = w · vi, j +wp · rand() · (x∗i, j− xi, j)+wn · rand() · (x∗i′, j− xi, j) (2)

The neighborhood presents a ring topology with one neighbor on each side. Parti-
cles’ positions and velocities are initialized randomly with a uniform distribution in
the [-20, 20] interval, and their maximum velocity is also limited to that interval.
The robots’ pose (position and orientation in the arena) is randomized at the begin-
ning of each evaluation. At the end of each optimization run, the best solution is
tested with 40 evaluations of 30 s, and the final performance is the average of these
final evaluations.

The total evaluation time for PSO depends on four factors: population size (Np),
individual candidate evaluation time (te), number of iterations of the algorithm (Ni),
and number of re-evaluations of the personal best position associated with each
candidate solution within the same iteration (Nre), as shown in Eq. 3.

ttot = te ·Np ·Ni · (Nre + 1) (3)
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If we assume that there is a fixed upper limit for the total evaluation time, an increase
in any of the parameters would result in a proportional decrease in the rest.

In a parallelized or distributed implementation, fitness evaluations are distributed
among Nrob robots, and the wall-clock time twc required to evaluate candidate solu-
tions is reduced (Eq. 4).

twc = te ·
⌈

Np

Nrob

⌉
·Ni · (Nre + 1) (4)

It is worth noting that the number of robots is not necessarily the same as the popu-
lation size. In fact, the choice of the population size depends on the dimension of the
search space and the complexity of the task, while the choice of number of robots
is based on more experimental considerations (e.g., availability of robots, targeted
number of robots needed for a specific mission in a given environment). Thus, a
robot may have several particles to evaluate within the same candidate solution pool
as opposed to only one.

A full optimization of the algorithmic parameters to minimize the total evaluation
time would be a computationally very expensive problem, due to the large number
of candidate configurations, the combination of continuous and discrete parameters,
the large variation between runs, and the possible existence of local optima. Thus,
our approach is to analyze each parameter individually, taking into account its im-
pact on the final performance as compared to a full-time adaptation baseline.

Our baseline set of parameters, based on the work of Pugh et al [14], is shown in
Table 1. This set of parameters amounts to a total evaluation time of approximately
417 hours if carried out on a single robot, what we refer to as full-time adaptation.

To complement our robotic case study and add more generality, we also perform
runs on four traditional mono and multi-modal benchmark functions without noise:
the sphere, Rosenbrock’s, Rastrigin’s, and Griewank’s, defined in Eq. 5. The base-
line parameters for the algorithm ran on benchmark functions are also shown in
Table 1.

f1(x) =
D

∑
i=1

x2
i

f2(x) =
D−1

∑
i=1

[(1− x2
i )+ 100(xi+1− x2

i )
2]

f3(x) = 10D+
D

∑
i=1

[x2
i − 10cos(2πxi)]

f4(x) = 1+
1

4000

D

∑
i=1

x2
i −

D

∏
i=1

cos(
xi√

i
) (5)
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Table 1 Algorithmic parameter values

Parameter Obstacle Avoidance Benchmark functions

Population size Np 100 100
Iterations Ni 50 500
Evaluation span te 150 s -
Re-evaluations Nre 1 0
Personal weight wp 2.0 2.0
Neighborhood weight wn 2.0 2.0
Dimension D 24 24
Inertia w 0.8 0.6
Vmax 20 5.12

4 Results and Discussion

The results of this paper are presented as follows: Section 4.1 introduces the discus-
sion with a comparison of the fitness as a function of the total evaluation time. In
Sections 4.2 to 4.5 we analyze each of the four previously mentioned algorithmic
parameters and propose guidelines for setting their values. Finally, in Section 4.6
we apply the proposed guidelines to reduce the total evaluation time and compare
the results with the full-time adaptation.

4.1 Parameter Comparison

In the first place, we started from the total evaluation time baseline of 417 h and
reduced Np, Ni, and te individually to 5, 5, and 5 s respectively, while keeping the
other two parameters at their baseline values, plotting the three curves in the same
graph for better comparisons. We performed 100 independent runs for each set of
parameter values and with 1, 2, 4, and 8 robots. When multiple robots were con-
sidered, all of them were learning in parallel. All runs were performed in a 1x1 m
arena unless noted otherwise. The resulting fitness can be observed in Figure 1. In
all cases, reducing the evaluation span te has the least impact on the resulting fitness,
followed by Np and Ni. When comparing the same total evaluation time across dif-
ferent numbers of robots, it can be noted that as the number of robots increases, the
arena becomes more crowded and obstacle avoidance becomes harder, thus causing
the average fitness to decrease. Also, performances are noisier (see larger error bars
in lower right corner) and therefore there is less impact of a decreased Np or Ni

(flatter profile than with 1-2 robots). The following sections present a more detailed
analysis of each individual parameter.
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Fig. 1 Fitness as a function of total evaluation time for 1, 2, 4, and 8 robots respectively.
Each curve represents the reduction of one individual parameter (population size, number of
iterations, and evaluation span) with the others held constant.

4.2 Evaluation Span

To analyze the effect of the evaluation span, we reduced te from 150s to 5s, with
20s steps in the higher range and 5s steps in the low range. We did 100 runs for
each value, and plotted the mean and standard deviation in Figure 2, left.

The mean fitness remains fairly constant for 30s < te < 150s for all number of
robots. In fact, the difference in fitness between 150s and 30s is not statistically
significant in all cases (Mann-Whitney U test, 5% significance level). For te < 30s
the fitness starts to decrease, although at different rates for different numbers of
robots. In particular, for 8 robots te can be reduced to 10 s without a major change in
fitness, which suggests that a crowded arena may allow for shorter evaluation spans
due to more frequent collisions, and thus more opportunities to learn to avoid them.
It is interesting to note that reducing the evaluation span does not seem to increase
the fitness variation between runs.

The evaluation span parameter depends on the task and the environment. With
the goal of trying to explain the lower limits for our task, we varied the evaluation
span for several arena sizes using one robot (Figure 2, right). In this case, the point
where performance starts to drop occurs at longer evaluation spans for larger arena
sizes (15 and 25 seconds for 4 and 8 meters respectively). We suspect this point is
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Fig. 2 Left: Mean fitness for different evaluation span values and number of robots in a
1x1 m arena. Error bars represent one standard deviation. Right: Mean fitness for different
evaluation span values and arena sizes

related to the minimum time it takes to have at least one collision. In fact, if the
robot moves in a straight line at a maximum speed of 0.25 m/s, it takes 16 and 32
seconds to cross one side of an arena of 4 and 8 meters respectively. Therefore, the
robot speed and environment size can be used as guidelines to choose an evaluation
span. We suggest that, in general, the minimum evaluation span should guarantee at
least one interaction of the robot with other components of the environment relevant
to the task at hand.

4.3 Re-evaluations

We then compared the performance of noise-resistant PSO with standard PSO to
determine if re-evaluations improve performance in limited time scenarios. For any
given set of parameters, noise-resistant PSO takes twice as much evaluation time
as standard PSO due to the personal best re-evaluations. In order to perform a fair
comparison, if we remove re-evaluations we need to double one of the other pa-
rameters to keep total evaluation time constant. We thus compared four alternatives:
re-evaluations, doubled iterations, doubled evaluation span, and doubled population
size. We performed 100 runs for each algorithmic variant and plotted the final fitness
in Figure 3.

In the single robot case, noise-resistant PSO performed significantly worse than
standard PSO with doubled iterations and doubled population size. However, as the
number of robots is increased, the relative performance of noise-resistant PSO im-
proves: for 2 robots there is no significant difference, and for 4 and 8 robots noise-
resistant PSO significantly outperforms standard PSO with doubled iterations and
doubled population size. It is worth noting that there is no significant difference be-
tween doubling population size and number of iterations for all number of robots,
and that doubling the evaluation span performs significantly worse in all cases ex-
cept for 8 robots.
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Fig. 3 Average fitness and
standard deviation for noise-
resistant PSO, standard PSO
with doubled number of
iterations, standard PSO
with doubled evaluation
span, and standard PSO
with doubled population
size
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These results suggest that the decision to invest time in re-evaluations depends on
the amount of uncertainty in fitness evaluations. In fact, as the arena becomes more
crowded, there is more uncertainty in fitness evaluations, which depend both on the
performance of other robots (avoiding other robots is easier if other robots are also
trying to avoid you) and on initial conditions such as position in the arena (a robot
is more likely to be trapped against a corner in a crowded arena).

Re-evaluations may also reduce the effect of heterogeneities on solution sharing
in multi-robot evaluations, as shared solutions are re-evaluated at each iteration and
thus can be dropped if they do not perform as well as they had done on other robots.
The final advantage of re-evaluations can be seen in the case of dynamic environ-
ments, where a previously found good solution may no longer be valid after a certain
amount of time. Thus, re-evaluations seem to be a good recommendation in general
for multi-robot learning scenarios.

4.4 Population Size

Both for our robotic case study and the benchmark functions, the population size
was reduced from 100 to 30 in steps of 10, and from 30 to 5 in steps of 5, in order
to obtain more data points in what we expected to be an interesting region, while
keeping all the other parameters the same as in the baseline. We did 100 independent
runs for each value, results are shown in Figure 4, left and Figure 5.

It is clear from figures 1 and 5 that, at least with our baseline parameters, reducing
the population size is better in terms of mean fitness than reducing the number of
iterations, both for obstacle avoidance and for all benchmark functions1. Now the
question that arises is how low should we set the population size? While there is
no clear consensus in PSO literature [2], there are a few guidelines based on the
dimension D of the search space such as Np = D or Np = 10+ 2

√
D 2.

1 Note that in benchmark functions lower fitness values mean better performance
2 This last formula is used in Standard PSO 2006, an effort to define a PSO standard pub-

lished online in Particle Swarm Central http://www.particleswarm.info.



392 E. Di Mario and A. Martinoli

Another approach is to start with a fixed value such as Np = 40 and restart the
algorithm with a larger Np if early convergence is noticed. However, it is hard to
determine if a restart is needed, especially when the maximum feasible fitness is not
clear beforehand, which is often the case when learning robotic behaviors.

In Figure 4, left we note a slight change in the fitness slope at around Np =
25, but this effect is much more clear in the case of the benchmark functions f2,
f3, and f4 (Figure 5, Np = 25 and 500 default iterations, as mentioned in Table 1,
corresponding to 12500 function evaluations).

Also, when population size becomes small, more outliers appear due to runs that
fail to converge to a satisfactory solution. This can be noted in the higher standard
deviation seen in reduced Np as compared to reduced Ni with the same total evalua-
tion time (see Figure 1).

Thus, because of higher fitness, lower variance, the possibility to distribute parti-
cles among robots, and the impracticality of the restart process, we prefer to err on
the side of larger population sizes, and we suggest the following guideline:

Np = max(D,Nrob) (6)
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Fig. 4 Left: Mean fitness for different population size values. Right: Mean fitness for different
number of iterations. Error bars represent one standard deviation.

4.5 PSO Iterations

For our robotic case study, the number of iterations was reduced from 50 to 5 in
steps of 5, again keeping all the other parameters the same as in the baseline. We
did 100 independent runs for each parameter value, results are shown in Figure 4,
right. The chosen benchmark functions traditionally use larger values of Ni, so we
chose 500 as a baseline and reduced it to 50 in steps of 50 (see Figure 5).

We observed a nearly linear performance drop for obstacle avoidance and on
benchmark functions f3 and f4. For f1 and f2, the behavior of Ni was similar to that
of Np, but with a worse fitness overall.
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Fig. 5 Fitness as a function of number of evaluations for benchmark functions f1, f2, f3,
and f4. Each curve represents the reduction of one individual parameter (population size and
number of iterations) with the other held constant.

Given that Ni is the easiest parameter to adjust on the fly, this parameter seems
suitable for trade-offs between performance and available learning time. That is, for
a fixed available time twc, we suggest using the previous guidelines to determine
the 3 other parameters and allocate all remaining time to Ni using Eq. 7, which is
derived from Eq. 4.

Ni =
twc

te ·
⌈

Np
Nrob

⌉
· (Nre + 1)

(7)

4.6 Limited Time Adaptation

For our limited time adaptation runs, we set a maximum total evaluation time of 8 h,
which if distributed among 8 robots results in a wall-clock time of 1 h, about one
third of the battery autonomy of our robots3. Following our proposed guidelines,
we used Np = 24, te = 20 s, Nre = 1, and Ni = 30, and run the adaptation process in
simulation for Nrob = {1,2,4,8} (see Figure 6).

The fitness difference between full-time and limited time adaptation is 17%, 17%,
14%, and 9% for 1, 2, 4, and 8 robots respectively. These values are relatively low
considering the evaluation time was reduced more than 52 times. More importantly,

3 Our autonomy is lower than that specified by the manufacturer due to additional modules
such as an active tracking turret and a Wi-Fi card.
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both limited and full-time adaptation converged to the same obstacle avoidance
strategy, regardless of the number of robots: going back and forth between walls
in a straight line, reversing the direction of motion every time an obstacle was de-
tected. We verified the sameness of the solution strategies by analyzing the trajecto-
ries described by the robots, focusing on the step length and angle distributions as
described in [4].

Fig. 6 Average fitness and
standard deviation for full-
time and limited-time adap-
tation
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5 Conclusion

We analyzed the effect of the four PSO algorithmic parameters that determine total
evaluation time for a case study of multi-robot limited time learning of an obsta-
cle avoidance behavior. Each parameter was varied independently, and based on the
resulting fitness we proposed guidelines to choose these parameters for the case of
multi-robot distributed learning. To add more generality to our guidelines, we ran
analogous tests on benchmark functions traditionally used for numerical optimiza-
tion problems.

For the population size parameter, we suggested to use at least the dimension of
the search space D, and to use the number of robots if it is greater than D to take
advantage of parallel evaluations and increased robustness. We proposed using the
robot speed and environment size as guidelines to choose an evaluation span that
guarantees at least one interaction of the robot with other components of the envi-
ronment relevant to the task at hand. Due to the inherent uncertainty in controller
evaluations when using more than one robot, we showed that re-evaluations have a
positive impact in multi-robot learning scenarios. The last parameter, the number of
iterations, can be adjusted to fit the total evaluation time available.

By applying our guidelines, we were able to reduce the total adaptation time to
an amount which can be easily completed without fully depleting the batteries of
the individual robots. This resulted in a maximum quantitative performance drop of
17% but with no observable difference in the qualitative behaviors of the solutions.
Even though we employed the PSO algorithm, we believe that the evaluation time
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issues and the guidelines presented in this paper are not limited to PSO and are
relevant to population-based multi-robot learning in general.

Our next step is to validate these results with real robots. In particular, we intend
to study the effect of asynchronous updates and dynamic neighborhood topologies
on multi-robot learning. In the future, we hope to extend our analysis to tasks of
increasing complexity, requiring a higher degree of coordination between robots.
We are also interested in exploring PSO variations and other population-based al-
gorithms that can be applied to limited-time distributed learning. Our final goal is
to devise a set of general guidelines for fast, robust adaptation of high-performing
robotic controllers.

Acknowledgements. This research was supported by the Swiss National Science Founda-
tion through the National Centre of Competence in Research Robotics.
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A Multi-Robot Cognitive Sharing System Using
Audio and Video Sensors

Daniel McGibney, Ryo Morioka, Kosuke Sekiyama,
Hiro Mukai, and Toshio Fukuda

Abstract. In this paper, we present a multi-robot system that integrates a vision-
based navigation system with a non-speech-based audio system for the purpose of
sorting objects. Here we use two separate robotic systems each utilizing a different
sensor type: video and audio. We propose using vision-based sensors with audio-
based sensors because a single sensor such as a video sensor may not understand
the entire environment. Additionally, robots can come to inaccurate conclusions
based on their observations so we increase the accuracy of the system by interpret-
ing the input from multiple robots using cognitive sharing. Therefore, cooperation
of multiple robots using multiple sensors provides a better understanding of the en-
vironment. The results show the effectiveness of the multi-robot cognitive sharing
system.

1 Introduction

Generally, robots find relevant information from objects using many different types
of sensors and methods to get a better understanding of their environment and
surroundings. In addition to using multiple sensors, information sharing among
robots can also lead to the robots understanding their environment better.

Research has been done to classify and localize non-speech-based sounds. One
notable workshop, the Classification of Events, Activities and Relationships
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(CLEAR) 2007 workshop [10], had several teams compare results using different
non-speech classification systems. There were 12 acoustic events of interest in the
data sets. Examples of the acoustic events are steps, keys jingling, coughing and
laughing. One result from the CLEAR 2007 workshop was a survey of sound classi-
fiers. Some non-speech-based sound classification systems are described in [3], [18],
[19], and [20]. The classification of sounds is also addressed by pattern recognition
as in [14] and [4]. However, another important function that can be accomplished
through the use of robots with audio sensors is to approximate the location of a
sound. In [1], sound localization methods are discussed and compared.

In addition to analysis of audio, there is a large amount of research devoted to
interpreting images and video. The openCV library has become a popular source of
information where images and video are analyzed through various methods. In [2],
the libraries are explained in detail. Additionally, the ARToolKit has also become a
popular set for analyzing video, discussed in great length in [7].

Cognitive sharing involves identifying an object or event and sharing it with the
other robots in the system. In [17], objects are identified and the information is
shared among robots. The shared features are visual-based features including color,
contour, and circularity using objects such as ball, rectangular prism, etc. Sharing of
vision features among robots allows the robotic system to better understand the ob-
served object. Cognitive sharing plays a large role in multi-robot cooperative tasks.
In [13] and [12] tasks were simplified by using an RFID marker on the target. Al-
though, it is not always necessary to have a marker, as in [6], since an environment
can provide landmarks. In [6], a description of how cognitive sharing is handled by
utilizing the relation between landmarks and an object. Robot cooperation through
sharing is an area of research that will become more essential as the number of
robots that play a role in everyday living grows.

In this paper, we extend the work in [8] and [17] and use cognitive sharing as a
means to share the information from the audio-based system and the visual-based
system. The combined system uses both audio-based and visual-based systems, and
using cognitive sharing perform a cooperative multi-robot task.

The remaining sections of this paper are organized as follows. In the next section,
section 2, we describe the robots’ task. The following two sections, 3 and 4, describe
the design of the audio-based system and the vision-based system respectively. Sec-
tion 5 describes the multi-robot experiment and its results. In the final section, we
make conclusions about the experiments.

2 Task Description

In our research, we integrated an audio-based system with a visual-based monitoring
navigation system in order to perform a task. The audio-visual navigation system,
which combines visual-based and audio-based robots, is designed to collectively
detect and locate an object that enters the system, determine the object type, and
transport the object to the appropriate sorting area.
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Label Sensor Function
A Video Monitoring robot
B Video Monitoring robot
C Video Carrier robot
D Kinect Audio robot
E Kinect Audio robot
X (none) Object

Fig. 1 The set up of the visual-based navigation system

In our experiment, five independent mobile robots work together to perform the
task of multi-robot navigation as depicted in Fig. 1. First, an object, a blue can
or a yellow bottle, is thrown into the experiment space. Once the object makes a
sound, the audio robots (robots D and E) detect and locate the object. Then the audio
robots classify the object based on the sound the object makes. Then the information
is transmitted to visual-based robots A and B, which use their visual sensors to
navigate robot C to the object. Then robot C grasps the object with its robotic arm
and the visual robots search for the area to take the object. Finally, robot C takes the
object to the appropriate sorting location.

3 Audio-Based System

The sharing of audio information is made possible by the individual audio robots
which segment the audio signal, calculate features of those segments, select some
features of interest, and classify the feature sets.

3.1 Segmentation and Features

After data collection, the system processes the audio data by segmenting it into
smaller subsets from which features are calculated. The segmentation method cho-
sen for the feature generation process was the Hamming window, a popular choice
that is used in [14]. For the classification system in this paper we chose cepstrum
filter bank coefficients, Mel-Frequency Cepstral Coefficients (MFCC) and Discrete
Cosine Transform (DCT) coefficients. The aforementioned feature sets are a popular
choice in speech based audio and are discussed in detail in [9].
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To find the usefulness of the aforementioned features, the mutual entropy of the
features was used as a measure of the discriminative capability. In order to do this,
we estimate the probability distribution of a feature for a particular sound, p(y).
Then we estimate the probability distribution of that feature for the alternative
sounds, q(y). Both of these probability distributions are estimated using Parzen-
window density estimation as in [15]. Next, a measure of the “distance” between
the two distributions is given by the equation for mutual entropy:

D(p‖q) =
∫ ∞

−∞
p(y) log

p(y)
q(y)

dx. (1)

If pi j is the estimated probability distribution of the feature i and sound j, and qi j

is the estimated probability distribution of the feature i and the remaining sounds
not including j, then we can find the mutual entropy

di j = D(pi j‖qi j) (2)

for each unique sound type. Since mutual entropy can be thought of as a distance
between two distributions, the resulting mutual entropies can be used as a means of
finding features that discriminates different sounds. In particular, we define

di,max = max
j

di j (3)

as a means of evaluating the usefulness of a particular feature. Mutual entropy was
also used in [18] and [19] as a means of finding the most useful features.

3.2 Classification

In order to classify a sound signal, we compare the sound signal with another sound
signal to get a measure of similarity by using Dynamic Time Warping (DTW). From
a sound signal, we segment the file and generate features for every segment. The
result is a feature matrix A where

A = [a1,a2, . . . ,aM] (4)

with a1,a2, . . . ,aM representing M feature vectors. Similarly we define a feature
matrix B from a separate sound signal with feature vectors b1,b2, . . . ,bM as

B = [b1,b2, . . . ,bM]. (5)

From these two different sets of features, we can calculate a similarity measure:

Si j =
aT

i b j

‖ai‖‖b j‖ , (6)
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with indices i and j of the feature vectors from 1,2, . . . ,M. Using this measure, we
note that similar ai and b j result in Si j → 1. For the DTW process, we set

Di j = 1− Si j (7)

for each i and j. Then we recalculate for each matrix element using

Di j = Di j +min(Di−1, j,Di, j−1,Di−1, j−1) (8)

recursively from i = j = 1 to i = j = M. Next, we take as the similarity measure

C = DM,M (9)

which denotes greater similarity when C is smaller. Using this similarity measure,
we can classify feature matrix F as more similar to A or more similar to B.

3.3 Localization

Identifying the location of objects was done using two independent robots, both
equipped with the Kinect sensor. During a short interval, the acoustic angle can be
calculated. A built-in function of the Kinect software development kit calculates this
angle using time difference of arrival with Kinect’s four-microphone array. Using
two Kinects at different locations allows us to calculate an angle from each Kinect.
With both angles and the locations of the Kinects known, a simple calculation de-
termines the location the sound originated from.

3.4 Audio Robot Operation

The audio-based system by which the two robots interact and share to classify and
localize objects from audio information, brings together the auditory knowledge of
the system. For this system, we use two audio robots both equipped with the Kinect
for localization and classification of the sound.

The operation of the audio robots provides the time, acoustic angle, and object
type to the audio-based system. Both robot programs begin by sampling the audio.
When the sampled audio reaches an SNR threshold, an object is detected, and each
robot begins to observe the audio data. While observing the audio data, each audio
robot calculates its acoustic angle. The robots observe the angles and the audio in-
dependently for 8 intervals of 125 ms. After the observation, each robot produces
angles which are used to calculate the coordinates of the sound. Also after the obser-
vation, each robot produces audio output of the sound, which is then classified. The
classification process consists of segmenting, calculating features, and classifying
the sounds. Fig. 2 further describes the operation of the audio robot.
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Fig. 2 Block diagram of operation for each audio robot

3.5 Cognitive Sharing of Audio Information

Several possible outcomes can occur with our system since the audio robots function
independently. It is possible that after a sound is produced, neither robot detects the
sound, only one robot detects the sound, or both robots detect the sound.

If neither robot detects the sound, it is a failure of the audio system. It is therefore
advantageous to choose a low value for the SNR threshold to prevent such failures.

If only one robot makes a detection, the robot system classifies the observation.
The classification vector Ci from robot i consists of elements Cj from (9) for j =
1,2, ...,N where N is the number of unique classifications:

Ci = [C1,C2, ...,CN ]. (10)

The vector Ci could possibly indicate that the sound was silence and therefore the
detection was unnecessary. However, if the sound was not classified as silence, the
detection is reported to the other robots in the system.

If a robot detects a sound within time Δ t of another audio robot detection, the
detections are assumed to be the same event. It is therefore the case that we have C1

from robot 1 and C2 from robot 2. Here we use the summation of the classification
vectors, CM as a multi-robot classification measure:

CM = C1 +C2. (11)

We use the index of the minimum value of CM as the object type since the lower the
value of C means greater similarity.

3.6 Results

The classification methodology was tested using 10 objects and silence in a quiet
office-type setting similar to where the data was collected. We used 30 sound data
signals for each object, 20 of which were used for training and 10 for testing. Using
these classification methods we were able to correctly classify the objects 92% of
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Fig. 3 The 10 objects classified in the system;
4 plastic bottles, 4 metal cans, and 2 cardboard
objects are displayed from left to right
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Fig. 4 The percent of correctly classified
objects by the object type; the object num-
ber in Fig. 4 corresponds to the order
number of the object in Fig. 3

the time. Fig. 3 displays the 10 objects, and Fig. 4 graphs the percent of correctly
classified objects in the test data set by object type where the 11th object is silence.

The localization technique was tested using 30 trials in which an object was
thrown into an experiment space of 1.524 meters by 1.524 meters. The robots were
able to identify the location within 0.3 meters 80% of the time.

To test the audio-based system, it was desired that the audio robots could detect,
identify, and localize the object of interest when an object was thrown into the re-
ception area. The objects were not always detected which required further tweaking
of the SNR threshold. Next, we used a different floor for the test data so that classi-
fication would be more difficult. The results using a single robot were 80% correct
classification, but, when there was an agreement that an object was detected and
the vector CM was used, the classification accuracy improved to 87%. However, it
should be noted that when only one audio robot makes a detection, the localization
method cannot provide the localization of the object.

4 Visual-Based System

4.1 Visual Features

A visual sensor can provide a lot of information, such as the angle between a camera
and an easily recognized marker. Once a marker is identified, we use the information
to get a transformation matrix from the marker. The transformation matrix consists
of a component of rotation and a component of translation. From the transformation
matrix, we can calculate the angle between the camera and the marker.

Another popular feature type that the visual-based system uses is color. If we can
find the contour of an object and identify the color, we can sort different objects
based on those features. In order to get the color feature, we take the input from the
image, the image is given a binary mask, the image is converted to grayscale, the
colors are smoothed, and finally contour extraction is performed on the image. The
resulting information gives us the number of colors, the position, and area of the
color in the image. The color feature extraction process is shown in Fig. 5.
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Fig. 5 Depiction of color extraction process

4.2 Cooperative Vision-Based Navigation

In order to navigate the carrier robot to the object, the monitoring robots observe the
pan angles θBC and θCA from the location of robot C. The monitoring robots share
their observations with the carrier robot. From these observations, the carrier robot
calculates θAB, a, and b. Additionally, the angle Φ is observed by the carrier robot.
The navigation vector, n, is given by

n = a+b. (12)

Next, the carrier robot calculates the yaw angle, δ , resulting from the navigation
vector. Then, the carrier robot adjusts so that it is facing at angle δ . Once the aim of
the robot is adjusted, the robot simply moves straight for a short duration. When the
carrier robot finishes moving, the robots repeat the process of collecting observa-
tions and calculating the yaw angle. If the carrier robot detects an object within its
grasp, then the navigation process is complete. The visual-based navigation system
is depicted in Fig. 6.

Notation Meaning
θBC Pan angle given by A
θCA Pan angle given by B
θAB 180o−θBC−θCA
Φ Angle given by C
a Direction vector given by A
b Direction vector given by B
n Navigation vector
δ Yaw angle

Fig. 6 The set up of the visual-based navigation system
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5 The Audio-Visual System

Here we present experiments on the audio-visual system which shows the usefulness
of using multiple sensor types and sharing the information.

Fig. 7 Actual experiment space

5.1 Experiment Design

The experiments were designed to add benefit to the sorting process at a recycling
center making use of two distinct objects, a bottle and a can. Sorting objects is an
essential task for recycling valuable resources. We design our experiments to test a
robot’s ability to identify objects and to locate the object using only sound data. Fig.
7 shows the actual experiment space. To add the usefulness of vision-based features,
we color the can blue and the bottle yellow. Therefore our system relies upon both
the color of the objects and the sounds produced.

5.2 Results

The visual-based navigation system was able to perform its function as desired.
First, we placed an object into the center of the experiment space and activated the
system. The system was able to locate, move towards, and grasp the object using
visual input. Once the object was within the carrier robot’s grasp, the robot was then
able to place the object in its proper sorting area.

The combined audio-visual navigation system was also tested, and was able to
work efficiently most of the time. The initial classification and localization data
was given to the system via the audio robots. The initial localization data was able
to reduce some of the time that the system required to find the object, however,
the classification only added marginal benefit because of the high accuracy of the
visual-based system. Fig. 8 shows the experiment during major system events. In
Fig. 8a, a yellow bottle makes a sound. The sound is received by the audio robots
which process the sound and output the location and object type. The observations
from the audio robots are brought together and interpreted by the vision monitoring
robots. The vision monitoring robots send the location of the bottle to the carrier
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(a) Time t=0.2 seconds (b) Time t=6 seconds (c) Time t=12 seconds

(d) Time t=14 seconds (e) Time t=15 seconds (f) Time t=26 seconds

(g) Time t=32 seconds (h) Time t=34.8 seconds

Fig. 8 The experiment space at different times

robot. Then, as shown in Fig. 8b, the carrier robot moves toward the bottle based on
the inputs of the monitoring robots and the carrier robot. Fig. 8c shows the bottle
being grasped by the carrier robot. Next, in Fig. 8d the bottle is taken to the bottle
area. Then the system process is repeated for the next object. In Fig. 8e, the blue
can is dropped into the reception area. In Fig. 8f, the carrier robot moves toward the

Fig. 9 Operation time graph
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can. Fig. 8g shows the can being grasped by the carrier robot. Next, in Fig. 8h the
can is taken to the can area.

We display an operation time graph in Fig. 9 that indicates which robot is in oper-
ation throughout the span of the experiment. The snapshots from Fig. 8 correspond
to the times indicated by the dashed lines in Fig. 9.

6 Conclusion

In this paper, we presented a multi-robot system that uses cognitive sharing of in-
formation from both visual and auditory sensors. The goal of this design was to pro-
vide a novel idea for sharing features in a multi-robot system. The method consists
of two independent multi-robot systems, one which uses only audio input and the
other which uses only visual input. Separately, the two independent systems serve
different purposes. We were able to combine the two systems in a way that allowed
both systems to work cooperatively. Sharing methods can help a system perform a
task better than a single robot. In this system we integrated two independent sys-
tems that shared their results for a common task. Robot sharing and cooperation
can be used in several other important areas such as the operation of an unmanned
autonomous aircraft or the operation of a self-driving automobile. Both instances
focus on a single robot but the action taken by these robots depends upon input
from surroundings which is often from other similar robots.
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Number 22500174 and the National Science Foundation (NSF) under grant number DGE-
0538541. This document was created with help from Seema Dahlheimer at the Engineering
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Conditional Random Fields for Behavior
Recognition of Autonomous Underwater
Vehicles

Michael Novitzky, Charles Pippin, Thomas R. Collins,
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Abstract. This paper focuses on multi-robot teams working cooperatively in an
underwater application. Multi-robot teams working cooperatively to perform multi-
ple tasks simultaneously have the potential to be more robust to failure and efficient
when compared to single robot solutions. One key to more effective interaction is
the ability to identify the behavior of other agents. However, the underwater envi-
ronment presents specific challenges to teammate behavior identification. Current
decentralized collaboration approaches, such as auction-based methods, degrade in
poor communication environments. Sensor information regarding teammates can
be leveraged to perform behavior recognition and task-assignment in the absence of
communication. This work illustrates the use of Conditional Random Fields (CRFs)
to perform behavior recognition as an approach to task monitoring in the absence of
robust communication in a challenging underwater environment. In order to demon-
strate the feasibility of performing behavior recognition of an AUV in the underwa-
ter domain, we use trajectory based techniques for model generation and behavior
discrimination in experiments using simulated trajectories and real sonar data. Re-
sults are presented with comparison of a CRF method to one using Hidden Markov
Models.

1 Introduction

Multi-robot teams, in comparison with single robot solutions, can offer solutions
that are more economical, robust to failure, and more efficient than single robot
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Fig. 1 An AUV using its forward-looking sonar to Track & Trail a leader AUV in order to
perform behavior recognition

solutions [8, 6]. A team of robots can work on tasks in parallel, perform distributed
sensing and operate in multiple locations at once. Furthermore, multiple robots add
redundancy to the system. Unfortunately, a tradeoff is that these teams must com-
municate and work together with the added uncertainty regarding the behaviors of
robots. For instance, a team member may have trouble cooperating due to commu-
nication errors, because they are busy performing other tasks, or have conflicting
goals [2]. Many different methods for performing distributed cooperation exist, in-
cluding centralized optimization algorithms and game theoretic techniques. A cen-
tralized method requires at least one agent or a home base to make task/role assign-
ments. Although this may be optimal when communication links are reliable, its
efficacy degenerates with intermittent communication, and a central point of failure
makes the whole system come to a halt. Thus, a decentralized approach is much
more viable as it is more robust to failures of communication. Auction-based algo-
rithms generally have low communication requirements (where agents coordinate
tasks through bid messages). Therefore, they are well suited to environments with
communication constraints. Auctions can perform computations in parallel and the
methods take advantage of the local information known to each agent [7, 9].

However, this method can still degrade in overall efficiency as communication
deteriorates [14]. Such poor communication environments are encountered by au-
tonomous underwater vehicles (AUVs) as acoustic transmissions suffer from sur-
face reflections, bottom reflections, ambient noise, and noise sources within the
water column, such as emissions from other vessels. Sotzing and Lane [15] have
demonstrated that using teammate prediction improves overall performance of a
cooperative AUV system. Such a system still needs communication to be of rel-
atively good quality, as without a sufficient amount of communication the system
degrades as predictions accrue error over time without correction from teammate
communication.

The ultimate purpose of this research is to create a system that can efficiently
operate with as little explicit communication as possible as this is the type of envi-
ronment our own AUV will encounter [18]. We envision a system similar to that
proposed by Novitzky [11] which will utilize auction-based methods along with
prediction of teammate tasks during periods of poor communication. If the
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confidence in a prediction of a teammate’s task is low, then an AUV can perform
prediction verification through behavior recognition, as suggested in [3]. Addition-
ally, this handles the situation where an AUV may have been assigned a task only
to discover another agent already performing the task but not communicating.

2 Related Work

This work focuses on behavior recognition of autonomous mobile robots, specif-
ically in the underwater domain. Baxter et al. [3] performed behavior recognition
using HMMs on post-mission analysis of self-localization provided by an AUV.
The post-mission analysis converted GPS pose trajectories to low-level actions such
as track-west and left u-turn east. The main drawback of this method is that it
claimed to be agnostic to the environment yet still required the use of cardinal di-
rection, which in itself is still somewhat constraining to the compass orientation
within an environment. The authors improved upon their discretization methods in
[4] where they also enhanced HMMs to deal with behaviors of variable length. They
began with AUV location information from simulated sonar data. These trajectories
were fed into maneuver recognition algorithm capable of identifying an AUV’s ac-
tions such as straight and veer-left thus making it more environmentally agnostic.
While the authors were searching for top-level goals such as mine-countermeasure
(MCM), mine-countermeasure inspection (MCMI), and point inspection (PI), they
further divided the top level goals into sub-goals which included dive, track, right u-
turn, and left u-turn along with inspection. Their results also included that top-level
goals are achieved via the AUV performing sub-goal behaviors.

More recently, Novitzky et al. [12] performed exploratory work using HMMs
to discriminate a small number of robot behaviors. The authors successfully ap-
plied their technique to a very limited amount of real data. Their data consisted of
collected trajectories gathered while unmanned aerial vehicles (UAVs) performed
search and track behaviors of surface targets and UUV trajectories collected via a
forward-looking sonar. However, their data consisted of only a few behaviors and at
most a handful of tracks for each behavior.

Of specific importance to this work is that performed by Vail et al. [17] in which
the authors compared the accuracy of CRFs and HMMs for activity recognition on
robot systems. Their chosen domain was simulated robot Tag. In their simulation,
two robots were passively moving from waypoint to waypoint while a third was the
Seeker searching for a robot to Tag. As part of the analysis of CRFs and HMMs, the
authors tested the accuracy with different observations such as raw positions only,
including velocities, and chasing features. The authors also examined the effect of
incorporating features which violate the independence assumptions between obser-
vations. The results showed that a discriminatively trained CRF performed as well
as or better than an HMM in their robot Tag domain.

Vail and Veloso [16] used CRFs for multi-robot domains. The authors exper-
imented with two approaches to feature selection: grafting, and l1 regularization.
They applied these methods to data recorded during RoboCup soccer small-size
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Fig. 2 In (a) an AUV’s location over time is used to determine its global yaw. The change
in global yaw from one time step to the next is encoded as an integer value which represents
a given range, as seen in (b). The two behavior recognition methods are Hidden Markov
Models and Conditional Random Fields, as seen in (c), and (d) respectively.

league games. The goal of their work was to create a classifier that can provide
useful information to robots that are playing against a team whose roles are being
classified. They found that using feature selection can dramatically reduce the num-
ber of features required by CRFs to achieve error rates that are close to or identical to
the error rate achieved by the model with its full complement of features. Reducing
the number of features dramatically speeds up online classification and training.

Unlike previous behavior recognition work in the AUV domain, this work does
not rely on trajectories provided through post-mission analysis nor only through
simulation. Furthermore it performs behavior recognition of an AUV through the
use of a simple discretization method, resulting in only one feature, on both simu-
lated trajectories and actual sonar data comparing the results of a method using a
CRF and a method using HMMs.

3 Trajectory Discretization

The encoding method used is agnostic to any environment. The only measurement
required is the location x = (x,y) coordinates of an AUV in a fixed 2D plane, as
seen in Fig. 2a. The motion model of the AUV is assumed to be non-holonomic and
always moving with a forward motion similar to a tricycle model. The yaw of the
AUV is calculated from the vector of motion from one time-step to the next.

Δx(t−1,t) = xt − xt−1 (1)



Conditional Random Fields for Behavior Recognition of AUVs 413

θ t = arctan(Δx(t−1,t)) (2)

Δθ t = θt −θt−1 (3)

The encoding used in this research is the change in yaw between time steps. Possible
changes in yaw are discretized according to bins. Each bin corresponds to a range of
values. Bin 3, for example, represents a change in yaw between -7 and 7 degrees. As
seen in Fig. 2b, an AUV moving straight ahead is observed as having a 0◦ change in
yaw and thus encoded as a 3 while one turning by −15◦ is encoded as a 2. A series
of these encodings are combined into a trajectory string for input into the Hidden
Markov Model (HMM) or the Conditional Random Field (CRF).

4 Discrimination Methods

In general, observations are labeled as Y = {y1, ...,yT } and states are labeled as
X = {x1, ..,xT }, where the index represents successive time steps. In our domain yt

contains an integer value of the change in yaw of the AUV, described above. In the
HMM method each hidden state x may not have an explicit definition. In the CRF
method the labels xt are drawn from one of the three behaviors.

4.1 Hidden Markov Model

In this research each behavior is modeled using a separate Hidden Markov Model
(HMM). Each HMM is first trained on example trajectories of a specific behavior.
The trained HMM is then given test trajectories to determine the log-likelihood that
the test trajectory was generated by that behavior.

4.1.1 Training

The Hidden Markov Model (HMM), as seen in Fig. 2c, is composed of hidden states
and observable states [13]. In Fig. 2c the hidden states are labeled with x1...xn while
the observation states are labeled y1...yn. A random process can be in any one of
the hidden states and can emit any one of the observable states. In this work the
observable states consist of the labeled changes in yaw, Δθ . The number of hidden
states are empirically determined. An HMM must learn the transition probabili-
ties between hidden states and the probabilities that a hidden state may produce an
observation. The Baum-Welch algorithm estimates the maximum likelihood of the
parameters when given a corpus of training data.

4.1.2 Testing

Testing an HMM trained on a behavior is produced by the forward algorithm. An
HMM can be used to determine the negative log-likelihood that a test trajectory
instance was produced by the behavior it was trained upon [13]. A trial consists of
an instance of a behavior trajectory being tested against each possible HMM. At
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each trial the HMM producing the maximum negative log-likelihood is determined
as the representative behavior of the trial. If the representative behavior matches the
true test instance label then it is logged as a positive identification. The accuracy of
each trained HMM is the number of positive identifications over the entire corpus
of similarly labeled instances.

4.2 Conditional Random Field

As seen in Fig. 2d, Conditional random fields (CRFs) are undirected graphical mod-
els for structured classification [10]. CRFs are built from a vector of weights and a
vector of features. Features take the form fi(t,xt−1,xt ,Y ) where i is an index into
the feature vector f and t is an offset into the sequence, xt−1 and xt are values of
the label pair at time t − 1 and t, respectively. Y represents the entire observation
sequence across all values of t.

4.2.1 Training

Training of CRFs is performed by finding a weight vector w∗ that maximizes the
conditional log-likelihood of labeled training data:

l(X |Y ;w) = wT f (t,xt−1,xt ,Y )− log(ZY ) (4)

w∗ = argmax
y

l(X |Y ;w) (5)

4.2.2 Testing

The conditional probability of a label sequence given an observation sequence is
computed from the weighted sum of the features as:

P(X |Y ) = 1
ZY

T

∏
t=1

exp(wT f (t,xt−1,xt ,Y )) (6)

ZY = ∑
X ′

T

∏
t=1

exp(wT f (t,x
′
t−1,x

′
t ,Y )) (7)

The most likely behavior label x is assigned to each observation for each test in-
stance presented to the trained CRF.

5 Experiments

5.1 Stationary Observer

The experiments were first performed using trajectory data gathered through simu-
lation and then using a stationary forward-looking sonar. In order to test our method
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Fig. 3 Noisy versions of the template trajectories are depicted in (a), (b),and (c)

with two AUVs, trajectory data was gathered in simulation with one Tracking &
Trailing a leader vehicle.

5.1.1 Simulation

MOOS-IvP is used to generate the simulated trajectory data [5]. The behaviors
GoToWaypoint, Loiter, and SearchPattern are run within iMarineSim and viewed
through pMarineViewer. The locations of the AUVs are recorded as each behavior
is executed, providing a template trajectory. In order to create more realistic results,
the template trajectories undergo rotation and translation transformations and are
injected with Gaussian noise. Variations of each behavior trajectory template are
created as they undergo a random assignment of transformations, including changes
in rotation and translation along with an injection of cumulative Gaussian noise
with random assignments of standard deviation, as seen in 3a, 3b, and 3c. This will
demonstrate that our methods are agnostic to the environment as they are robust to
rotations and translations and environmental noise. The global change in yaw for
these experiments is discretized into seven bins with a spread of four degrees per
bin.

5.1.2 Real Sonar Data

For our real sonar data experiments, a surrogate vehicle called the YellowRay ROV
is used instead of the Yellowfin AUV due to space limitations in our testing tank1.
The testing tank is 7.62 meters deep, 7.62 meters wide, and 10.36 meters long. The
YellowRay is a Video Ray ROV [1] which has been modified to act as a viable
surrogate of the Yellowfin. This includes the addition of Yellowfin subsystems such
as the WHOI acoustic micro-modem and a BlueView forward looking sonar, as seen
in Fig. 4a. The experiments were conducted with a BlueView forward-looking sonar
positioned statically in a corner while it recorded the location of a human piloted
YellowRay ROV. Throughout the experiment the YellowRay ranged between 1 to
10 meters from the BlueView sonar. For these experiments the perception algorithm

1 Acoustic Water Tank Facility, Woodruff School of Mechanical Engineering, Georgia Tech
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(a) YellowRay ROV (b) Inverted Sonar Image

Fig. 4 The YellowRay ROV is seen in 4a. An inverted sonar image of the YellowRay ROV
along with false positive noise is seen in 4b. The largest object is assumed to be the target
ROV while the smaller objects are noise.

(a) Sonar Search-
Pattern

(b) Sonar Loiter (c) Sonar GoToWaypoint

Fig. 5 Real trajectories captured by a BlueView forward-looking sonar of an AUV perform-
ing SearchPattern, Loiter, and GoToWaypoint are seen in (a), (b), and (c), respectively

makes the simplifying assumptions that there is only one relevant object in the scene,
the YellowRay, and that it will always be in the FOV of the sonar. The YellowRay
operators were asked to perform multiple runs of three behaviors, GoToWaypoint,
Loiter, and SearchPattern.

The BlueView forward-looking sonar provides an image with intensity values
corresponding to the acoustic response of a surface, as seen in Fig. 4b. The more
intense a pixel, the more likely that an object exists at that location. In order to
smooth the ROV’s trajectory, only every ith frame is used. This reduces the number
of outliers significantly as the sonar data is extremely noisy. Edges are found in the
sonar image which are used to create contours. The contour with the largest area is
assumed to be the ROV, as we assume that only the ROV is in the image and the
smaller blobs are noise. The API of the BlueView sonar then produces the range
and bearing of the center pixel relative to the sonar itself. Range and bearing is
then converted to x and y coordinates to produce trajectories, as seen in Fig. 5. In
this form, discretization can take place converting location to global yaw then to
change in yaw as described above. In this experiment, the global change in yaw is
discretized into five bins with a spread of four degrees each.
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5.2 Track and Trail

In order to test our methods with a non-stationary observer, testing was performed
on simulated data with one AUV performing Track & Trail of a leader performing
a behavior. As in the experiments above, the MOOS-IvP simulator is used to gener-
ate template trajectories of a leading AUV performing GoToWaypoint, Loiter, and
SearchPattern while an observing AUV performs Track & Trail.

In order to use the change in yaw method of encoding, the template trajectories
of each vehicle are used to produce the pose (x,y,θ ) of the trailing vehicle along
with range and bearing to the lead vehicle. Using this information allows the trail-
ing AUV to reconstruct the leading AUV’s trajectory which will be discretized for
use in behavior recognition. In order to create more realistic results, the original
measurements of the trailing AUV’s location (x,y,θ ) along with range and bearing
to the leader AUV are injected with Gaussian noise, similar to those seen in 3a, 3b,
and 3c. This more accurately represents the uncertainty an AUV will have of its own
location and the uncertainty of the location of the target AUV present in sonar data.
In this experiment, the global change in yaw is discretized into seven bins with a
spread of four degrees each.

6 Results

The results of three different sources of data are analyzed. The accuracy of the
Hidden Markov Model (HMM) and Conditional Random Field (CRF) methods are
considered for each data source.

6.1 Stationary Observer

6.1.1 Simulation

As seen in Table 1, each method was trained on a specific behavior using a corpus of
600 instances of trajectories generated by that behavior. A total of 400 trajectories
from each behavior, for a total of 1200 instances, were presented to both methods.
As is seen in Table 1, the HMMs performed well for SearchPattern, Loiter, and
GoToWaypoint as they were able to accurately discriminate trials by 100%, 99.25%,
and 96%, respectively. The CRF performed better for SearchPattern, Loiter, and
GoToWaypoint as it was able to discriminate the behaviors with 100% accuracy.
The HMM method had the most difficulty in discriminating GoToWaypoint as it
recognized 16 instances of that behavior as SearchPattern.

Table 1 Accuracy of Simulated Stationary Behavior Recognition

Behavior Training Testing HMM CRF
SearchPattern 600 400 100% 100%

Loiter 600 400 99.25% 100%
GoToWaypoint 600 400 96% 100%



418 M. Novitzky et al.

Table 2 Confusion matrix for the HMM method applied to simulated stationary data

SearchPattern Loiter GoToWaypoint

HMM
SearchPattern 400 0 0

Loiter 0 367 3
GoToWaypoint 16 0 384

6.1.2 Sonar Data

As seen in Table 3, each method was trained on real sonar data while an ROV per-
formed a specific behavior using a corpus of 21 instances for SearchPattern, 23 in-
stances for Loiter, and 14 instances for GoToWaypoint. A total of 38 instances were
presented to both methods for testing. The HMM discrimination method had the best
accuracy of 100%, 68.75% and 100%, respectively. The CRF performed worse than
the HMM method with discrimination of SearchPattern, Loiter, and GoToWaypoint
with accuracy of 75%, 68.75%, and 80%, respectively. The HMM method only had
false positives with five instances of Loiter being identified as SearchPattern, as seen
in Table 4. The CRF method suffered similarly to the HMM method in discriminat-
ing Loiter as SearchPattern. Additionally, the CRF method identified one instance
of SearchPattern as Loiter and two instances as GoToWaypoint. The CRF method’s
best performance on the real sonar data was in discriminating GoToWaypoint as it
only mis-identified two instances as Loiter.

Table 3 Accuracy of Sonar Behavior Recognition

Behavior Training Testing HMM CRF
SearchPattern 21 12 100% 75%

Loiter 23 16 68.75% 68.75%
GoToWaypoint 14 10 100% 80%

Table 4 Confusion matrices for the CRF and HMM methods applied to stationary sonar data

SearchPattern Loiter GoToWaypoint

HMM
SearchPattern 12 0 0

Loiter 5 11 0
GoToWaypoint 0 0 10

CRF
SearchPattern 9 1 2

Loiter 5 11 0
GoToWaypoint 0 2 8

6.2 Track and Trail

As seen in Table 5, using the change in yaw of the leading vehicle as a discretiza-
tion method resulted in sufficient accuracy. The results are from inserting Gaussian
noise with a standard deviation of 0.75 on the location (x,y,θ ) of the trailing vehi-
cle, range and bearing to the leader. The HMM discrimination method had accuracy
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of 97.25% with SearchPattern, 94.75% with Loiter, and 95.25% with GoToWay-
point. The CRF discrimination method had the best accuracy of discrimination of
SearchPattern, Loiter, and GoToWaypoint with accuracy of 99.50%, 99.75%, and
99.75%, respectively. As seen in Table 6, the CRF method only had at worst two
mis-discriminations of SearchPattern versus the HMM method which had a best
case of only 11 mis-discriminations.

Table 5 Accuracy of Simulated Track & Trail Behavior Recognition

Behavior Training Testing HMM CRF
SearchPattern 600 400 97.25 % 99.50%

Loiter 600 400 94.75 % 99.75%
GoToWaypoint 600 400 95.25 % 99.75%

Table 6 Confusion matrices for CRF and HMM methods applied to the Track & Trail data

SearchPattern Loiter GoToWaypoint

HMM
SearchPattern 389 0 11

Loiter 1 379 20
GoToWaypoint 13 6 381

CRF
SearchPattern 398 2 0

Loiter 1 399 0
GoToWaypoint 0 1 399

7 Conclusion

The work presented here demonstrates the feasibility of performing behavior recog-
nition of an AUV in situ. In general, using Hidden Markov Models (HMM) resulted
in sufficient performance. Using the Conditional Random Field method resulted
in better performance than the HMM method when there was ample training data
available, as in the simulated stationary observer data or the simulated Track & Trail
data. However, the CRF method performed poorly in discrimination of the real sonar
data. Due to the small sample size of real sonar data it may be an indication of un-
der training the CRF. However, all the methods struggled discriminating the Loiter
behavior in the real sonar data set. It is possible that the sonar-captured Loiter be-
havior should be further separated into left and right Loiter as that could be the
reason for the methods performing poorly. This is in contrast to the simulated Loiter
trajectories which only performed them in the left direction.

Discretization parameters for the change in yaw observations play a crucial role
in the success of behavior recognition in these experiments. For example, an exper-
iment that discretizes the global change in yaw with five bins each with a spread of
four degrees has a limited resolution. Any change in yaw greater than six or less than
negative six degrees is placed into bins one and five, respectively. Thus, if a crucial
distinction between two behaviors occurs beyond these terminal edge bins they will
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not be properly discriminated. The discretization parameters were empirically deter-
mined for each experiment. While simple, global changes of yaw as an observation
method is very susceptible to changes in speed. An alternative may be to describe
higher level primitives such as straight, left turn, and right turn as observations for
our behavior recognition methods.

Future work includes further investigation of discretization and behavior recog-
nition methods along with a larger data set. It may be possible that each behavior
recognition method requires different change in yaw discrimination parameters for
improved accuracy. Alternatively, higher level motion primitives may increase ac-
curacy and robustness. Alternative recognition methods may be more appropriate.
Handwriting recognition has similarities with behavior recognition and may yield
improved methods. Recognition should be verified with more behaviors than the
ones used in these experiments, as they are a small sample representation. The next
step is to obtain a larger corpus of real data. To truly test the feasibility of behav-
ior recognition of one AUV Tracking & Trailing a leader experiments should be
performed with real AUVs while performing recognition in real-time.
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Imitation Learning and Behavior Generation  
in a Robot Team 

Huan Tan* 

Abstract. In this paper, we propose a method to apply robotic imitation learning 
in robot teams. In our method, behavior primitives with task-relevant information 
are defined as the basic units for robots to complete a task. Each behavior has its 
own task-relevant affordances. The learned behavior primitives format TAEM 
based behavior libraries and are stored in a database for robots to share. The moti-
vation of learning, conducted by robots, is goal-oriented and strongly related to the 
given task.  Given a task, a robot analyzes the environment and searches the  
behavior library to find suitable behaviors to generate a behavior sequence to 
complete the task. If it thinks that it cannot complete this task, this robot requests 
other robots for assistance or request a human teacher to demonstrate the required 
behaviors. The newly learned behaviors will be added into the existing behavior 
library. We also develop inhibiting properties for robots to evaluate the current 
behaviors, which enables robots to request collaborations from other robots. The 
experimental results show the validity our proposed method. 

1 Introduction 

Robotic imitation learning has been considered as a powerful class of tools for 
transferring behaviors and skills between robots and human teachers [1]. These 
imitation learning methods can be divided into two types [4]: one is to teach ro-
bots to generate similar movement trajectories [7]; the other is to teach robots to 
learn behavior sequences which consist of several behavior primitives [6]. Robotic 
imitation learning has been shown to be effective method for enabling robots to 
learn knowledge and skills rapidly from human teachers and complete similar 
tasks in slightly different situations [2]. 

However, we cannot expect that a robot can complete all the tasks by itself. If 
we only apply teaching, learning, and generation on a single robot, since: 1) it is 
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impossible to expect that we can teach one robot everything that it needs to know 
to complete all tasks; 2) a robot cannot complete some tasks due to its physical 
limitations; 3) sometimes, it is necessary to use several robots to complete tasks 
through cooperation. Therefore, transferring of learned behaviors in a robot team 
and cooperating among team members are necessary. 

The motivation of this paper is to design a robotic imitation learning strategy 
for a robotic team and address the three issues described in the former paragraph. 
In order to realize imitation learning in a robotic team, the most important issue is 
to design shared behavior libraries, so that robots can obtain the knowledge and 
skills from other team members and update its own local behavior library. At the 
behavior generation stage of the imitation learning, robots need to analyze the  
relationship between behaviors in a required behavior sequence. If necessary, 
several robots should cooperate to complete a task.  

The rest of this paper is organized as follows: Section 2 explains the system de-
sign including the overall system framework design and the imitation learning 
framework on an individual robot; Section 3 describes the experiments carried  
out on a real robot and in a simulation environment and the experimental results; 
Section 4 discusses the experimental results and our proposed system; and Section 
5 summarizes this paper. 

2 System Design 

The overall system design is divided into two parts: one is an imitation learning 
framework on an individual robot (Tan et al., 2012a); the other is a team-based 
imitation learning and generation framework in a robotic team.  

2.1 Overall Learning Framework 

In our method, in task-relevant situations, the generation of the behaviors in a 
robotic team should be related to the inner behavior library of an individual robot 
and the shared libraries among all the robot members. In task-relevant situations, a 
robot should first use learned skills (normally represented as behaviors) in its own 
library to try to complete the tasks. If the robot has required behaviors, it can use 
 

 

Fig. 1 Overall System Framework 
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them to complete the goal-driven task. If it fails to do so, the robot should try to 
find suitable behaviors from other robots. If it still cannot find a suitable behavior 
to complete the task, a human teacher will be required to demonstrate how to do it.  

Fig.1 displays the overall imitation learning framework of a robot team. Each 
robot can request behaviors by sending signals to other robots, and the human 
teachers can demonstrate the required behaviors to robots when necessary.  

2.1.1 Behavior Library 

In our design, behaviors are considered as raw data of movement trajectories for 
completing tasks. Two important requirements are necessary to describe a behav-
ior: one is a regression model of describing the movement trajectory and the other 
is its task-related affordances which describe what tasks can be applied to. In  
addition, one should be able to easily update and modify the designed behavior  
libraries.  

In our system, we used TAEMS [9] as the basis of our behavior library design. 
TAEMS is a multi-agent framework, which is domain independent. Fig.2 displays 
a behavior graph designed using TAEMS. The leaves, which are shown as ellip-
ses, are basic behaviors. The root and sub-roots are shown by circles, are complex 
task-relevant behaviors and consist of basic behaviors. The links could be consid-
ered as the logic operations. For example, the node with its children connected  
using an AND means that this task must be completed by sequentially executing 
the behaviors of the children, and the node with its children connected using an 
OR means that this task can be completed by selecting one child. In this figure, T 
represents the Task, and B represents the Behavior. 

 

Fig. 2 An Example of the Behavior Tree using TAEMS 

Behavior is task-relevant, and each behavior is used to complete a task. In 
Fig.2 (assume all the children are connected by AND), task 1 is related to behavior 
1, and task 2 is related to behavior 2. Task 3 is more complex than behavior 1 and 
behavior 2, and is related to behavior 3. From Fig.2, behavior 3 consists of behav-
ior 1 and behavior 2. If the robot wants to complete task 3, it needs to execute 
behavior 1 and behavior 2 subsequently. Task 4 is related to behavior 4 as shown. 
Task 5 is related to behavior 5 which consists of behavior 3 and behavior 4. This 
tree architecture could help the robot find the required behavior to complete a task.  

We can use a table to describe each behavior as shown in Fig.3. Each behavior 
has been assigned a unique ID and a name as shown in Fig.3. A goal-driven task is 
described as: (ݏݎ݁ݐ݁݉ܽݎܽܲ)݈ܽܩ . Using the adaptive generation method  
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described later in this paper, robots can generate similar motion trajectories to 
complete tasks with different parameters. 

 

 

Fig. 3 Representation of a Single Behavior 

The behaviors in the behavior library should not only be used by its father 
nodes, but also be used by the adjacent root nodes. Therefore, we extended the 
behavior graph in Fig.2 to construct the behavior graph as shown in Fig.4. 

 

 

Fig. 4 A Behavior Library with Transitions 

The links between the nodes and the leaves describes the root-children relation-
ships. In order to make the temporal order clear among the children, we add the 
transitions among the children as shown in Fig.4. If a robot wants to use Behavior 
6 to complete the TASK 6, it should execute Behavior 1, Behavior 2, and Behav-
ior 7 consequently. The labeled transitions reflect which root node the children 
belong to. Using this method, there could be multiple transitions between children 
nodes that belong to different root nodes.  

Behaviors are executed in a temporal way, which means 1) the robot can only 
execute one behavior at a time period; 2) adjacent behaviors in a behavior se-
quence should be temporally compatible. For example, the robot is asked to grasp 
an object in the environment and move it to a designated place, and it is impossi-
ble for the robot to grasp another object before it releases the object in its grasp. In 
a learned behavior sequence, if such temporal incompatibility happens, the former 
behaviors can inhibit the latter behaviors.  

Assume that Behavior 1 is the Reaching, Behavior 2 is the grasping, Behavior 
4 is the Moving, and Behavior 7 is the Lifting in Fig.5. The robot needs to execute 
Behavior 5 and Behavior 6 to complete a task. In Behavior 5, the robot reaches an 
object, grasps it and moves it to a position. In Behavior 6, the robot reaches for 
another object, and needs to grasp it. In this situation, there is an object already in 
its hand after the robot executes Behavior 5, so it cannot grasp another object. 
Thus Behavior 6 is inhibited unless the robot releases the already grasped object. 
If Behavior 6 is inhibited by Behavior 5, Behavior 6 is drawn using dotted lines. 
The dotted lines also mean that this behavior should be executed by another robot. 
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Fig. 5 Inhibiting Behavior 

When Robot A encounters Robot B, it requests assistance from Robot B, and 
shares its current behavior library with Robot B. The behavior library in Robot B 
is described in an opposite way as shown in Fig.6. The Behavior is drawn using 
dotted lines, and it means that it should wait for Robot A to execute this behavior. 

 

    

Fig. 6 Inhibiting Behaviors in Two Robots 

2.1.2 Behavior Search and Behavior Sequence Generation 

Given a task, the robot needs to find whether it has suitable behaviors or not. In 
order to simplify the task analysis, we assume that the tasks are given in behavior 
sequences. Then the robot only needs to find corresponding behaviors in its be-
havior library. The search is conducted using Depth-First Search (DFS) [5]. The 
reason for using this method is to keep the temporal relationships among the chil-
dren. When a required behavior is found as a node A in the behavior library, ro-
bots can still use DPS to return all the leaves of node A. A behavior sequence is 
generated by putting all the returned leaves in a sequence using DFS. 

2.1.3 Behavior Update 

When robot A cannot find a suitable behavior in in its own behavior library, it first 
requests other robotic team members to share their behavior libraries. If one of the 
team members has the required behaviors, it will send a behavior graph to robot A. 
The root node of the behavior graph is the required behavior which may be  
composed of several basic behaviors. Then robot A uses the received behavior 
graph to update its own library as shown in Fig.7. 
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Fig. 7 Behavior Update 

If all the robotic members in this team do not have the required behaviors or 
skills, robot A needs to ask a human teacher to demonstrate how to complete this 
task and imitation learning by the robot is initiated. 

2.2 Individual Imitation Learning Framework 

Each robot should have its own behavior library and a corresponding imitation 
learning framework. The individual imitation learning framework on each robot is 
shown in Fig.8.The “Segmentation” block analyzes the observed behavior se-
quence and segments it into a set of behaviors using cognitive segmentation meth-
od [11]. The “Dimension Reduction” block projects the data from the data space 
to the latent space [3]. The “Behavior modeling” block uses mathematical models 
to record the behaviors [13]. The models are stored in the block “Behavior Li-
brary”. Given new constraints in a new task, the “Behavior Generation” block 
generates a behavior sequence which has the same behavior descriptions as the 
demonstration. The “Reconstruction” block projects the data from the latent space 
to the joint space and sends the generated points to the actuator to execute [15]. If 
the robot cannot find suitable behaviors to complete the task, the “Demonstration 
Request/Behavior Request” block requests the demonstration from human teach-
ers or ask other robotic team members to provide suitable behaviors. In some situ-
ations, the “Dimension Reduction” and “Reconstruction” block are not necessary. 
 

 

Fig. 8 Individual Imitation Learning Framework 

2.2.1 Behavior Modeling 

Each behavior has its related movement trajectories. In this paper, we choose to 
use Gaussian Process (GP) [10] to model the movement trajectory.  Assume the 
N data points have the following probabilistic distribution, 
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where ࢋ࢞ is the target value and ࢋࢠ is the predicted value. We assume (ࢄ) ,0|ࢄ) = ,݊)ܥ where the covariance matrix ,(ࡺ ݉) = ,࢚)݇ (࢚ + ߜଵିߚ , where ݇(ݐ, ,ݐ)݇  ,) is the kernel function. Normallyݐ (ݐ = ݔ݁ߠ ቄ− ఏభଶ ԡ࢚ − ԡଶቅ࢚ + ଶߠ +  (2)             ்࢚࢚ଷߠ

and ࢚ and  ࢚ are considered as the temporal information in the demonstration. 

When ࢚ is given as an enquiry point and GP is used to calculate the correspond-

ing data value ࢠ.  ൫൛ࢄሬሬԦ, ൟ൯ࢠ =  ൫൛ࢄሬሬԦ, ,ൟห0ࢠ  ା൯        (3)ࡺ

 The covariance matrix is:  

ାࡺ  = ቆࡺ ࢀሬሬԦሬሬԦ ܿቇ,                              (4) 

where ݇ = ,࢚)݇  : is given byࢠ ,for n=1,2,…, N. Using Baye’s rule (ࢋ࢚

ࢠ  =  ሬሬԦ.                           (5)ࢄିࡺࢀሬሬԦ

2.2.2 Generation 

The Dynamic Movement Primitives (DMP) [7, 8] algorithm is configured as: ߬ݖሶ = ݃)௭ߚ)௭ߙ − (ݕ − ሶݕ߬ (6)   ,(ݖ = ݖ + ݂.    (7) 

It can be considered a second-order attractor modulated by a non-linear function 
which represents the dynamics of the demonstration. In (6) and (7) ݃ is the goal 
state, z is the internal state, ݂ is calculated to record the dynamic of the demon-
stration and to guarantee convergence of the new generated trajectories, ݕ is the 
position generated by the DMP differential equations, and ݕሶ  is the generated  
velocity correspondingly. Additionally, ߙ௭ ௭ߚ , , and ߬  are the constants in this 
equation. In this work, ݂ is a GP regression model. Using the DMP method, ro-
bots can generate motion trajectories which are similar to the demonstrated motion 
trajectories and have different goal-states and avoid obstacles in the environment 
[15]. 
3 Experimental Results 

We designed four experiments to validate our system. The first experiment is 
carried out on a real humanoid robot, named ISAC, and the second and the third 
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experiment are carried out in the simulation environment due to the limitations of 
the hardware in our lab. 

3.1 Experiment 1 

The objective of this experiment is to verify that the robot can generate 
trajectories, which are similar to the movement trajectory in the demonstration, to 
reach different locations. The movement trajectory is generated using DMP.  

The left picture of Fig.9 shows a human teacher demonstrating how to reach an 
object on a table in front of ISAC. The middle graph of Fig.9 shows the movement 
trajectory in a demonstration. In order to visualize the trajectories, we compute the 
trajectory in the Cartesian space. The first row of the middle graph displays the 
positions in X, Y, and Z axis, and the second row shows the corresponding 
velocities. The goal is to reach (520, -70, -300) in the Cartesian space. The right 
graph of Fig.9 shows the generated trajectories when the robot is tasked to reach (500,0, −300) .  

 

  
Fig. 9 Imitation Learning Results 

We normalized the generated trajectory and demonstrated trajectory and 
compute the distance between the corresponding points on the trajectory using the 
following equation: ݀ = ∑ ԡீ_௧()ି_௧()ԡమಿసభ ே    (8) 

where ԡ∙ԡଶ is the norm-2 Euclidean distance. 
The measured distance value is 0.3013, which means the trajectories are close. 

By comparing the middle picture and the right picture of Fig.9, we can see that the 
robots can generate a movement trajectory similar to the demonstration. By 
observing the ending point of the generated trajectory, we can see that the final 
value is not exactly the same as the desired destination value. But the error is 
around 1 cm and is small. While this is not good for precise manipulation tasks, it 
is acceptable for most general tasks that do not require much precision.  

3.2 Experiment 2 

In this experiment, robot A is tasked to remove an object in the environment. This 
“remove” behavior is composed of “reach”, “grasp”, and “lift”.  Assuming the 
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robot only has the knowledge of “reach” and “grasp”, it should acquire the behav-
ioral information from other robots or ask a human teacher to demonstrate how to 
lift an object.  

 

Fig. 10 Behavior Library 

 

Fig. 11 Update Behavior Library 

 

Fig. 12 Simulation Results for Experiment 2 

Fig. 10 shows the behavior library of robot A. Fig.11 shows the updated 
behavior library when robot A requested sharing of behavioral information from 
robot B. Fig.12 shows the simulation result where robot A successfully removes 
the object in the environment. 

3.3 Experiment 3 

In this experiment, robot A is tasked to first remove a big box on the table, and 
then remove a small box from under the big box.  The “remove” behavior is 
composed of “reach”, “grasp”, and “lift”. Since robot A does not release the big 
box, it cannot remove the small box. Therefore, the two “remove” behaviors are 
incompatible. Robot A requests robot B to assist it to complete this task. Fig.13 
displays the corresponding behavior libraries in each robot. Fig.14 displays that 
the robot A and B successfully removes the two boxes. 
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Fig. 13 Behavior Libraries 

 

Fig. 14 Simulation Results for Experiment 3 

3.4 Experiment 4 

In this experiment, robot A is required to lift the table in front of it. Lifting a table 
requires both two sides of the table to be grasped. Fig.15 shows corresponding  
behavior libraries in each robot. Fig.16 shows robots A and B successfully lifting 
the table. 

 

Fig. 15 Behavior Libraries 

 

Fig. 16 Simulation Results for Experiment 4 

4 Discussion and Future Work 

The experimental results and simulation results demonstrate that our method is  
effective. Our system could be considered as a typical hierarchical learning 
framework. The sub-systems on individual robots are typical imitation learning 
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processes.  This was achieved by modifying existing popular frameworks to ena-
ble robots to use this framework to communicate with other robots and interactive-
ly learn from human teachers. The necessity of learning from human teachers or 
obtaining behaviors from other robots is based on the evaluation of the behavior 
libraries of the robot. When a robot considers that it is necessary to obtain extra 
knowledge from other robots or humans, this imitation learning framework is 
similar to teamwork. 

Since the robots are able to share knowledge between each other, cooperation 
becomes possible. The designed behavior libraries not only enable robots to up-
date their knowledge base, but also can reflect the cooperative relationships 
among robots. In our method, the behavior inhibiting properties can tell a robot 
whether it can executive this behavior or not. If the answer is no, it naturally re-
quests help from other robots. 

In this paper, we propose a prototype for applying imitation learning in a robot-
ic team, however significant work remains. At the behavior generation stage, the 
robot needs to make a decision to learn or obtain knowledge from human teachers 
or from other robots respectively. However, the decision making process is not 
robust. In the future, we need to implement probabilistic strategies which take into 
consideration the dynamic environment. Another approach is to incorporate cogni-
tive methods in our system. 

An additional challenge is how the robot can use current knowledge to develop 
new behaviors to complete new tasks, which is called behavior evolution. Incorpo-
rating this feature will require the quantitative evaluation of behaviors. 

5 Conclusion  

This paper proposes a method for implementing robotic imitation learning in a 
robot team. The major contribution of this paper is: 1) we developed a hierarchy 
framework for robotic teams to learn the behaviors and skills from human teach-
ers; 2) we applied TAEMS to describe learned behaviors for robots. 3) we adapted 
the TAEMS method, which enables robots to share and update its own local librar-
ies through learning and sharing. The experimental results and simulation results 
reflect the success of our approach. 
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Supervised Learning in Robotic Swarms:
From Training Samples to Emergent Behavior

Gregory Vorobyev, Andrew Vardy, and Wolfgang Banzhaf

Abstract. Emergent behavior in swarm robotic systems is key to obtaining com-
plex behavior by a group of relatively simple agents. The question is how to design
the individual behaviors of agents in such a way that the desired global behavior
emerges. Different approaches have been proposed to solve this problem: from bi-
ologically inspired probabilistic behavioral models to evolutionary techniques. In
some situations, however, creating a complex probabilistic model of the behavior
or developing a proper setup for an evolutionary process can be challenging. In this
paper we propose a new method, based on supervised learning on a relatively small
number of training samples. We apply our method to the well-known clustering
problem and show that this approach yields the desired global clustering behavior.

1 Introduction

Emergent behavior in swarm robotic systems has been a subject of extensive re-
search for the last two decades [1, 2]. A robotic swarm, provided that it has been
designed in a particular way, can produce global behavior, that is often concep-
tually more complex than the behaviors of the individual agents. For example, a
group of robots can collect scattered objects into a single cluster, although each in-
dividual robot follows a simple pick-up-and-deposit procedure without any explicit
knowledge of where the cluster has to be formed [3, 4, 5]. This phenomenon is
widely known in biology. For example, ants exhibit an astonishing degree of collab-
oration and coordination in wars against other ant colonies and even other animals,
with attacks and retreats and, in the worst case, evacuation of the queen and larvae
carried out by the whole ant colony as if it were controlled by someone who is al-
ways aware of the current situation in the world [6]. Honeybees have been observed
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as they select a new place as home: this process is truly democratic and involves
“voting”, i.e., collective decision making, in which many individuals participate [7].
Due to the degree of self-organization, coordination and unity exhibited by these
groups of animals, some scientists consider these groups as superorganisms [8].

The emergence of global behavior is a result of actions taken by individuals; thus,
relatively simple behavioral patterns followed by the individuals eventually produce
the more “intelligent” behavior of the swarm. The question is therefore how to de-
sign individual behaviors in such a way that they will construct the basis from which
the desired global swarm behavior will emerge [9]. One way to do this is to take in-
spiration from biology. For example, clustering behavior is observed in ants as they
collect their dead peers into piles [6], or in honeybees distributing pollen into cells
in their hives [7]. The results of experiments conducted by biologists have led to
probabilistic models of individual behavior [3]. The feasibility of these models is
further confirmed by observing the global swarm behavior in simulated (or real)
robotic systems and comparing it with what is observed in nature [10]. Another ap-
proach exploits evolutionary techniques. In this methodology, individual behaviors
evolve in such a way that the global behavior is improved [11, 12, 13, 14].

While both methods of designing individual behaviors have proved to be suc-
cessful, they have their own issues. In the first case, a swarm designer needs to have
feasible behavioral models, which may not be available (for example, if a behav-
ior which is desired for the swarm has not been observed in nature). In the other
case, the problem of a proper set-up for the evolutionary process arises (for exam-
ple, which parameters of the behavior are subject to evolution and which are not);
moreover, computational costs are typically high for the evolutionary approach.

In this paper, we propose an alternative simple method of designing the individ-
ual behaviors of agents for the clustering problem. In our approach, the designer
considers a small number of characteristic situations that an agent might encounter.
While it is hard to predict each possible configuration of the environment in which
the agent may find itself and to generate a corresponding rule for this situation, it
is much easier to accomplish this task if the number of situations being considered
is relatively small (in our work, only 4). Yet, as we demonstrate in this paper, such
a small number of training samples is sufficient for the agents to learn the task of
clustering in such a way that the swarm starts to produce the desired behavior. We
conduct experiments to test our approach in a custom 3D simulator with a realis-
tic physics engine, and we show that our agents are capable of accomplishing the
clustering task without any explicit probabilistic models embedded into them.

The rest of the paper is organized as follows. In Section 2, a short review of
the relevant work is given. Section 3 describes the methodology used to solve the
behavioral design problem. In Section 4, we conduct experiments and discuss the
results. Finally, conclusions and future work are given in Section 5.
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2 Related Work

In one of the pioneering works in the area of swarm robotics, Deneubourg et al. con-
sider a generic sorting problem, where a swarm of robots collect objects (pucks) of
different types into homogeneous clusters [4]. Each agent moves randomly between
cells in a grid-based environment. Whenever the agent encounters a puck (i.e., en-
ters a cell with a puck), it decides whether or not to pick it up. This decision is based
upon how many objects of the same type this agent has encountered in the recent
past. This information is stored in a short-term memory which is represented as an
array of 10 items, for instance 00AAA0B00A (4 pucks of type A, 1 puck of type B,
and 5 empty cells encountered during the last 10 time steps). The more pucks of a
given type the agent remembers from his recent experience, the less is the probabil-
ity of picking up a puck of that type. Further on, if an agent carries a puck and enters
an empty cell, it decides whether or not to put the puck down. Intuitively, the more
pucks of the same type as the puck which is being carried the agent has encountered
in the recent past, the larger is the probability of depositing this puck. Ultimately,
these simple rules result in a global sorting behavior of the swarm. There is no com-
munication between agents or centralized control in the swarm: agents effectively
are not aware of each other and act completely independently.

The idea of creating probabilistic behavioral controllers similar to what was pro-
posed by Deneubourg et. al. has been applied to many different problems [1, 2]. For
example, the task of collective aggregation has been solved by a group of cockroach-
like robots with probabilistic controllers [15, 16]. The robots move randomly and
stop with a certain probability which is a function of the number of other robots
in immediate proximity (note that this mechanism is very similar to what has been
used by Deneubourg et. al., although the task is slightly different). Thus, the be-
havior Stop is activated with a certain probability Pstop. In [17], the aggregation
task is accomplished by robots with 4 atomic behaviors: ObstacleAvoidance,
Repel, Wait, and Approach, with the last three organized into a probabilistic
finite-state automaton. A robot approaches the largest group of robots with a proba-
bility Preturn, waits for a random period of time, and then runs away from it with the
probability Pleave. The results of this work demonstrate that the best performance
is achieved with the Preturn = Pleave = 1; in this case, the probabilistic behavior is
reduced to deterministic, or procedural, behavior.

Deterministic behaviors of swarm agents have also been systematically studied
in [9], where 6 basic behaviors are presented and tested: Aggregation, Homing,
CollisionAvoidance, Following, Dispersion, and Flocking. Each
behavior is a simple procedure; for example, CollisionAvoidance can be
summarized as ”If there is another robot on the right, turn left; otherwise, turn
right”. In more recent work, [18], relatively simple deterministic behaviors of the
agents have been applied to the chain formation problem.

In [5], similar deterministic rules have been embedded into a subsumption ar-
chitecture to solve the clustering problem. For example, if an obstacle is detected
in front of the robot, the ObstacleAvoidance behavior is activated. Different
behaviors are activated depending on certain conditions. Similar experiments have
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been conducted in [19]. However, the condition checks used to trigger the behav-
iors in this work are ”encoded” as the weights of neural connections going from
the sensors rather than hard-coded procedural boolean expressions. The neural net-
works approach for activating behaviors based on a certain perception snapshot has
been more explicitly used in [12] for the aggregation problem. In [20], the similar
approach has been applied to the problem of self-assembly in a swarm-bot.

The impact of different parameters of atomic behaviors on the overall perfor-
mance is commonly estimated through systematic experiments in these works. For
example, in case of probabilistic controllers, the parameters that are subject to test-
ing may include probabilistic thresholds, such as Pleave or Preturn [17]. Such tests
proved to be important, because it is tricky to predict which values for these param-
eters will be optimal for each particular experimental configuration. If the number
of parameters is large, the designer’s task becomes even more challenging.

Evolutionary techniques have been introduced in swarm robotics as another ap-
proach to designing individual behaviors. In [12] the aggregation problem was
solved by evolving the weights of a perceptron using a fitness function which com-
putes the average distance from a robot to the largest group. This work has been
further improved in [11], where the authors deduced general rules for selecting evo-
lutionary parameters in the swarm design problem. In the most recent work, [13],
the evolutionary approach has been applied in swarm robotics to obtain emergent
self-organizing behavior inspired by the collective flashing behavior of fireflies.

While evolutionary algorithms allow to avoid difficulties with fine-tuning param-
eters of the individual behaviors, they raise new issues. For example, as it is stressed
in [13], the designer of a robotic swarm should determine which behavioral param-
eters are fixed and which are subject to evolution. The most difficult part, however,
is probably the fitness function. Fitness functions, like those used in [12], tend to re-
quire some global knowledge (for example, distance between robots), which some-
times could hardly be obtained. Finally, the computational costs are usually large
for evolutionary algorithms: for example, in [13], 500 experimental trials have been
executed to evolve the individual behaviors.

In this paper, we present an alternative approach to designing the individual be-
haviors with application to the clustering problem. Our agent’s controller is based on
a neural network, which is similar to the networks described in [19] and [12]. How-
ever, we do not use hard-coded neural weights (as in, e.g., [19]), and we do not use
evolutionary algorithms to evolve the weights (as in, e.g., [12]). Rather, we consider
a set of 4 training samples. Each sample represents a perceptual snapshot. From a
set of 3 behaviors - BackUpAndTurn, Turn, and MoveStraightAhead - we
select the most suitable. For example, if a robot ”sees” a large number of pucks in
front of it, it should activate BackUpAndTurn. We show that this approach, being
extremely simple and easy to follow, yields the desired clustering behavior.
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3 Methodology

In this work we revisit the clustering problem, in which agents collect initially scat-
tered pucks into a single pile. Similar to [21], our agents have no specialized grippers
to manipulate the pucks. Rather, the agents push the pucks with a plow.

As mentioned above, a neural network is a central part of the agent’s architecture
in our work. We use a simple single-layer perceptron, with 2 inputs and 3 outputs.
Each time step, sensory data is used as an input to this neural network. The out-
put of the neural network is then interpreted as a code of the basic behavior to
activate.

In the rest of this section, we discuss what kind of sensory data we use, describe
the basic behaviors, and explain how sensory data is normalized to be fed into the
neural network and how the network’s output is interpreted. Finally, we describe the
samples used to train the neural network.

3.1 Perception Areas

We assume that a robot has a sensor that can detect pucks and their position relative
to it. It can be implemented in physical robotic systems with a calibrated camera,
some image processing, and exploiting some knowledge about the geometry of the
local environment (i.e. that the floor is planar) [23].

Sensory data in our work are the number of pucks in perception areas. Two
such areas are provided for an agent (see Fig. 1). The Central area is im-
portant for detecting clusters of pucks in the immediate vicinity in front of the
agent. The size of the Central area is approximately 6x6 puck diameters. The
Exploration area stretches forward and is used for detecting pucks that are rela-
tively far from the robot. The size of the Exploration area is approximately 4x25
puck diameters.

The input fed to the neural network reflects the number of pucks in the perception
areas. This input, however, must be normalized within the range [0,1] (which is
conventional for neural networks). The normalization is done by dividing the actual
number of pucks in the area by the maximum number of pucks for that area. Thus,
the relative density of pucks in an area is calculated. The question is then how to
define the maximum numbers for the perception areas.

The neural signal from the Central region is saturated at 1 (is maximized)
when the number of pucks in this region, assuming that they are uniformly

Fig. 1 Perception areas
of an agent (blue). 1. The
Central area is directly
in front of the agent. 2.
The Exploration area
stretches ahead.
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distributed, is large enough to form a single cluster1. In our setup, this number (fur-
ther referred to as MaxCentral) is equal to 16. Experiments have shown that if
the MaxCentral parameter is chosen to be significantly lower, for example, 8,
performance of the swarm is unsatisfactory2.

For the Exploration area the interpretation of the maximum number is differ-
ent. This area is intended to serve for searching pucks, and not for detecting clusters.
Hence, it is only important whether there is at least one puck in this area or not. The
maximum number for the Exploration area is therefore 1.

A saturating linear function is used to normalize the number of pucks for both
perception regions. Thus, if the number of pucks in either of the regions is larger
than the corresponding maximum number, the input to the associated neuron will be
saturated at 1.

3.2 Basic Behaviors

Three behaviors are available for agents. BackUpAndTurn behavior is inspired
by work in [4], where it has been proved to be efficient and the most important
for the clustering behavior. Turn behavior is used for locating pucks. Finally,
MoveStraightAhead behavior, as the name implies, moves an agent forward.
The description of the behaviors is given in Table 1.

Table 1 Description of the behaviors

BackUpAndTurn Back up for N time units, then turn at random angle∗.
Turn Turn at a small angle.
MoveStraightAhead Move straight ahead.

∗To implement this behavior, the procedure Update, which is called each time step and
which is responsible for collecting data, feeding it into the neural network, getting the output
and activating behaviors, needs an additional condition. If BackUpAndTurn behavior is
currently being executed, then Update immediately returns without referring to the neural
network. This is repeated until N times units have passed. After that, the Update procedure
is executed normally.

The output of the network is an array of three floating point numbers. The
methodology ”winner-takes-all” is used to convert this array to an array of three

1 We define clusters as follows. Suppose that at time t we have a graph with P vertices, where
P is the number of pucks in the experiment. There is a one-to-one correspondence between
the set of vertices and the set of pucks; i.e., each vertex i is a mathematical representation
of a corresponding puck pi. An edge between vertices a and b in this graph exists if and
only if the dt (pa, pb)< h, where dt(x,y) is the distance between x and y at time t and h is
a distance threshold. In our work, we define h as one diameter of a puck. Each connected
component in this graph will then represent a cluster of pucks.

2 Further discussion of this question is given in Section 4.



Supervised Learning in Robotic Swarms 441

integers: the maximum element of the array is rounded to 1, while two other ele-
ments are rounded to 0. The interpretation of the resulting integer array is given in
Table 2.

Table 2 Interpretation of the output.

[1, 0, 0] Activate BackUpAndTurn behavior.
[0, 1, 0] Activate Turn behavior.
[0, 0, 1] Activate MoveStraightAhead behavior.

3.2.1 Obstacle Avoidance

The obstacle avoidance behavior, which is used in many works (for example, [5,
9, 17, 19]; see Section 2) is not explicitly present here. Rather, to avoid collisions
between robots we use BackUpAndTurn behavior: in the same manner as we
avoid disturbing large clusters, we avoid collisions between robots. This way, we
do not require an additional behavior for obstacle avoidance; thus, we reduce the
complexity of learning.

Therefore, another robot should be perceived in a similar way as a large cluster.
To achieve that, we maximize (make it equal to 1) the input from the Central area
if a robot is detected within this region.

3.3 Network Training

The sketch of the neural network used in this paper is presented in Fig. 3.
It may be hard to develop a probabilistic behavioral model even for such a simple

task as clustering. However, it is relatively simple to define qualitative rules. The
short summary of these rules, partially inspired by works discussed in Section 2, is
as follows.

1. If there is a cluster directly in front of an agent, it should back up and turn
(to avoid disturbing the cluster).

2. If there is no cluster directly in front of an agent, it should always move to
the puck in the Exploration area (this would help to bring some of the
pucks the agent is plowing, if any, to that puck).

3. If there are no pucks in the Exploration area, an agent should turn
around until it finds at least one. (Extrusions on the sides of the plow will
help the agent keep the pucks that it has plowed.)

Given this summary, we define characteristic situations that an agent may en-
counter (i.e., a training set) and provide a ”solution” for each of these situations (see
Fig. 2 and Fig. 4). We then use the backpropagation learning method to train the
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Fig. 2 The sketch of the training set. The lower rectangle is the Central area, the rect-
angle above is the Exploration area. Red circles are pucks. In situations a and b,
BackUpAndTurn behavior should be activated, because the relative density of pucks in the
Central area is high. In c, MoveStraightAhead should be activated: this will increase
the number of pucks in the Central area; therefore, a larger cluster will be created. Finally,
in d the agent should activate Turn behavior in attempt to find a puck in the Exploration
area.

neural network until it starts producing correct output for all training samples3. It
appears that although we considered only 4 possible situations from more than 3,200
possible combinations (0.00125%) of the numbers of pucks in the perception areas4,
the neural network interpolates to recognize all other situations correctly. The pro-
posed method is somewhat similar to linear support vector machines (SVMs) used
in supervised learning and statistical analysis [22], though we do not follow this
approach directly.

4 Experiments

Experiments have been conducted using a custom simulator written in C#. The sim-
ulator uses the MOGRE engine5 for 3D visualization and the MogreNewt engine6

for modeling realistic physics in the simulation. The process of clustering observed
in the simulator can be seen at Fig. 5.

3 Since we are using a single-layer perceptron, the backpropagation is effectively reduced to
the delta rule. However, in a more general case, neural networks with hidden layers can be
used; therefore, the backpropagation method will be needed.

4 In theory, the Central area can accommodate as many as 32 pucks (not 36, although
its size is 6x6 puck diameters; this is because the plow extrusions are located within the
Central area, leaving less space for pucks), provided that they are clustered in an ex-
tremely tight manner; the Exploration area in a similar way provides space for about
100 pucks. Thefore, the total number of combinations of pucks in the perception areas is
N = 32×100 = 3200.

5 http://www.ogre3d.org/tikiwiki/MOGRE
6 http://www.ogre3d.org/tikiwiki/MogreNewt
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Fig. 3 The neural network. The inputs (in picture, bounded by a dashed line) are normalized
relative densities of pucks in perception areas. (The normalization is made using saturating
linear function, see Sect. 3.1.) The output is an array of floating-point numbers; we then apply
the ’winner-takes-all’ methodology to obtain one of the codes from Table 2. The operation
of the neural network is described by the following equation: a = logsig(Wp+ b), where

logsig(n) =
1

1+e−n , a is the output vector (a1,a2,a3)
T , W is the weight matrix 3×2, p is

the input vector (p1, p2)
T , and b is the bias vector (b1,b2)

T .

Fig. 4 Target outputs for the training set. The inputs for the neural network are coordi-
nates of the points; the output is denoted by symbols, which are interpreted as follows: �
- BackUpAndTurn, � - Turn, � - MoveStraightAhead. Black solid lines are deci-
sion boundaries obtained by the application of the delta rule. It can be seen that the given
patterns are linearly separable. Note that this particular problem could be solved by using
only two neurons (one for each decision boundary) with saturating linear transfer functions.
The output of the network will then be the binary code of a behavior. In this paper, however,
we prefer to use three neurons (one for each behavior) with log-sigmoid transfer functions;
therefore, the output of the network is an array of floating-point numbers which we interpret
as the ’confidence’ of the network in a given behavior.

Initially, 100 pucks are scattered randomly (using the uniform distribution) over a
squared area with sides of 40 puck diameters. Five agents7 start in random positions

7 The number of agents has been chosen more or less arbitrarily; most works in the clustering
problem, including [4], [5], [19], and [23] tend to choose the number of robots in the range
from 1 to 10, so we concluded 5 to be the most typical value.
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Fig. 5 Simulation of the clustering problem in process. Several phases of the process can
be distinguished. In the first stage (0 < t < 500, t is time), the number of clusters is quickly
decreasing and a few large clusters (two in this case; sometimes it may be three or even four
clusters) are formed. In the second stage (500 < t < 1700), the smaller cluster is gradually
destroyed; pucks from the second cluster are delivered to the bigger cluster. (This process,
however, is statistical; we have observed situations when, on the contrary, the bigger cluster
was destroyed.) In the final phase (t > 1700), a single cluster is formed. A few pucks may
be removed from the cluster from time to time, but they are then returned back. (All time
intervals are given in simulation time units and may vary from trial to trial.)

within this area. There are no boundaries (walls) around the simulation area. Note,
however, that agents tend to keep pucks within the initial area, due to the Turn
behavior.

To measure the performance, we use the metrics from [5]: the average size of
a cluster and the size of the largest cluster. Statistics are collected every 10 time
units of the simulation. In Section 3.1 we have mentioned that we predefine the
maximum number of pucks for perception areas (for Central area this parameter
is named MaxCentral). These numbers are the only tunable parameters for the
learning mechanism. We can change these parameters by effectively reprogramming
a robot (i.e., modifying the ”software”). All other parameters, such as robot and
puck sizes, or the number and the sizes of perception areas, most likely cannot be
adjusted without affecting the ”hardware” (we consider the ”hardware” parameters
to be given as is). The efficiency of the proposed ”software” can be estimated by
using trials with different values for the ”software” parameters. Thus, we conduct
experiments with different values for the MaxCentral parameter to determine the
performance of the proposed learning mechanism. Results, averaged for 10 runs for
each value of the MaxCentral parameter, can be seen in Fig. 6 and Fig. 7.
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Fig. 6 Average cluster size for different values of the MaxCentral parameter. With
MaxCentral = 16, the average of 33 (1 main cluster with 98 pucks and 2 clusters with
a single puck in each), 50 (1 main cluster with 99 pucks and a separated puck) or 100 is
typical in the final stage of the process, since pucks are occasionally removed from the clus-
ter (but are quickly returned back). With MaxCentral = 8, the average cluster increases
slower.

Fig. 7 Size of the largest cluster for the different values of the MaxCentral parameter. The
horizontal axis (time) has been extended in this figure. Experiments with MaxCentral =
16 were stopped once a cluster of 100 pucks was formed. Experiments with MaxCentral
= 8 took approximately 4 times more time to converge to a single cluster. However, in a few
experiments with MaxCentral = 8 the convergence to a single cluster was not achieved
even after 8000 time units.

The MaxCentral parameter has proved to be critical for performance. If this
parameter is chosen to be too low (for example, 8), the BackUpAndTurn behavior
is often triggered prematurely. In this case, agents are highly unlikely to destroy
smaller clusters in order to push a few pucks to bigger clusters; thus, the size of
the largest cluster and the average cluster size grow slowly (see Fig. 7; the size of
the largest cluster is growing approximately 4 times slower than for the value for
MaxCentral equal to 16). When the MaxCentral parameter is high enough
(for example, 16), agents are allowed to ”steal” pucks from one cluster to deliver
them to another one; therefore, the size of the largest cluster and the average cluster
size grow faster.



446 G. Vorobyev, A. Vardy, and W. Banzhaf

It is interesting that in the first 1000 times steps the performance yielded by the
smaller parameter value is better (see Fig. 6). This is because agents guided by a
smaller MaxCentral parameter tend to form many clusters of a relatively small
size (10-20 pucks), whereas ”greedier” agents (with MaxCentral = 16) start cre-
ating bigger clusters from the very beginning, and smaller clusters which are occa-
sionally formed are likely to be destroyed shortly. However, once several big clusters
have been formed, the average cluster size starts to grow relatively fast, whereas in
the first case it is growing more slowly. We conclude that the tradeoff here is be-
tween convergence to smaller, bigger clusters at the expense of increased time.

It appears that the probability of removing pucks from a cluster is a function of
its size. The only way to remove pucks from a big cluster is to follow a tangent line
to the cluster and to plow some pucks from its skirt. Due to the Turn behavior,
which is likely to be activated afterwards, the pucks are then either returned back
to the cluster (if there are no other piles of pucks outside), or pushed to another
cluster. If the cluster is relatively large, then the chance that the first puck that will
appear in the Exploration area will belong to the same cluster is large; the pucks
will thus be returned to the cluster. If the cluster is relatively small, there is a high
chance that a significant part of it (or even the entire cluster) would be removed
without activating BackUpAndTurn behavior. Hence, the smaller the cluster is,
the bigger is the probability to remove pucks from it. This probabilistic process is
functionally similar to what has been developed by Deneubourg et al. [4]. However,
no explicit probabilistic rules are present in our system. The global probabilistic
behavior emerges based on the geometrical shapes of the robots and pucks, and the
individual behaviors provided by neural-based controllers. More detailed theoretical
derivations related to this subject can be found in [24].

5 Conclusions

Emergent behavior is a key to using a swarm of simple cheap robots for solving
complex tasks without centralized control. Different approaches have been proposed
to designing the agents’ behavior in such a way that the desired global swarm be-
havior emerges. However, in some situations these approaches may turn out to be
inapplicable or inefficient. In this work, we have presented a simple method to de-
sign a swarm behavior based on supervised learning of a small number of samples
representing situations that an agent may encounter in the world of clustering.

While obtaining global probabilistic behavior which is functionally similar to
what has been described in [4] and subsequent works, we avoid creating explicit
probabilistic models of the individual behavior of the agents. Our approach is ex-
treme in its simplicity. We use no specialized grippers for the agents; the number of
behaviors is limited to three; the neural network is a single-layer perceptron. Yet,
such a simple approach yields the desired result: the swarm of agents accomplishes
the clustering task.

With increasing complexity of sensory input and the number of behaviors the
training will most probably become more complicated. However, the basic idea of
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swarm robotics implies an extreme minimalism of robots [23]; the number of sen-
sory inputs and behaviors is expected to be relatively small. If it is difficult to dis-
tinguish ”characteristic”, or ”boundary” situations from the set of possible sensory
inputs, the process of supervised learning can be made iterative: add one sample
after another, until the produced behavior becomes acceptable. With this assump-
tion, we think that the proposed approach may be efficient for other tasks studied in
swarm robotics.
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Milutinović, Dejan 261
Mohseni, Kamran 31
Monekosso, Dorothy N. 369
Morioka, Ryo 397
Mukai, Hiro 397

Nagpal, Radhika 105
Napp, Nils 105
Nelson, Carl 177
Novitzky, Michael 409

Pack, Daniel 59
Peng, Liqian 31
Pippin, Charles 409
Prabhu, Sailesh 307



450 Author Index

Reishus, Dustin 135
Remagnino, Paolo 369

Santos, Vinicius Graciano 121
Sekiyama, Kosuke 397
Sharma, Rajnikant 59
Shell, Dylan A. 291
Shinzaki, Dylan 149
Siegwart, Roland 3
Sinha, Arpita 17
Slaby, Scott 165
Smith, Stephen L. 337
Sommer, Hannes 3
Sugawara, Ken 135
Suzuki, Keiji 247

Tan, Huan 421
Tang, Sarah 149

Teck, Tan Yew 321
Tomita, Kohji 205

Ulusoy, Alphan 337

Vardy, Andrew 433
Veloso, Manuela 91
Vorobyev, Gregory 433

Wailes, Chris 165
Wang, Liyu 193
West, Michael E. 409
Winfield, Alan F.T. 219
Wolfe, Kevin C. 233
Wood, John 75

Yamauchi, Sho 247
Yoder, Josiah 59


	Foreword
	Preface
	Program Committee
	Invited Keynote Presentations
	Contents
	Part I Coordination for Perception,Coverage and Tracking
	Adaptive Multi–Robot Coverage of Curved Surfaces
	1 Introduction
	2 Problem Definition
	3 Adaptive Surface Coverage
	4 Application to Hybrid Coverage Control
	5 Simulation Experiments
	6 Conclusion
	References

	Nonlinear Cyclic Pursuit Based Cooperative Target Monitoring
	1 Introduction
	2 Modeling of System
	3 Formation at Equilibrium
	4 Conditions for the Existence of Equilibrium
	5 Formation in Case of Homogeneous Agents
	6 Stability Analysis for Homogeneous Agents
	7 Simulation Results
	8 Conclusion
	References

	High Resolution Atmospheric Sensing Using UAVs
	1 Introduction
	2 SPH Control Scheme
	3 UAV Data Sampling and K-means Approximation
	4 Simulation and Experimentation
	4.1 UAV Hardware and Sensor Suite
	4.2 Verification of SPH Control Scheme
	4.3 Sensing Using Multiple Vehicles

	5 Conclusions
	References

	A Physics Inspired Finite State Machine Controller for Mobile Acoustic Arrays
	1 Introduction
	2 Background
	3 Physicomimetics FSM Controller Design
	3.1 Agent Model Design
	3.2 Basic Interaction Types
	3.3 Solid Mode
	3.4 Liquid Mode
	3.5 Gas Mode

	4 Sound Source Localization
	5 Results
	5.1 Hardware Setup
	5.2 Sound Source Localization
	5.3 Mobility

	6 Conclusion and Future Work
	References

	Vision Based Mobile Target Geo-localization and Target Discrimination Using Bayes Detection Theory
	1 Introduction
	2 Geo-location
	2.1 Geo-location Using Extended Kalman Filter

	3 Target Discrimination Using Bayes Detection Theory
	4 Results
	5 Conclusions
	References


	Part II Task Allocation and CoordinationStrategies
	A Real World Coordination Framework for Connected Heterogeneous Robotic Systems
	1 Introduction
	1.1 Related Work

	2 Heterogeneous Connected Robotic System
	2.1 Heterogeneous Network Topology

	3 Connectivity Constraints
	4 Motion Constraints
	5 Communication Power Control
	6 Sensing and Manipulation
	6.1 Vision Detection
	6.2 Obstacle Avoidance
	6.3 Manipulability

	7 Simulation Results
	8 Conclusion
	References

	Optimizing for Transfers in a Multi-vehicle Collection and Delivery Problem
	1 Introduction
	2 Related Work
	3 The Collection and Delivery Problem with Transfers
	3.1 Optimal Approach
	3.2 Minimum Length Approximation
	3.3 Improvement with Local Search
	3.4 Transfers at Any Location

	4 Simulation Results
	5 Illustrative Deployments
	5.1 Transfers with CoBots
	5.2 Autonomous Transfers

	6 Conclusion
	References
	1 Introduction
	2 Problem Formulation and Questions
	3 Local Reactive Deposition Algorithm
	4 Adaptive Ramp Building
	5 Conclusion
	6 Proofs
	References

	Distributed AmorphousRamp Construction inUnstructured Environments
	1 Introduction
	1.1 Related Work

	2 Problem Formulation and Questions
	2.1 Mathematical Model for Continuous Structures
	2.2 Model for Amorphous Deposition
	2.3 Navigable Structures

	3 Local Reactive Deposition Algorithm
	3.1 Correctness of Local Deposition Strategy

	4 Adaptive Ramp Building
	4.1 Adaptive Ramp Building with a Single Robot
	4.2 Adaptive Ramp Building with Multiple Robots
	4.3 Physical Implementation and ExperimentalResults

	5 Conclusion
	6 Proofs
	References

	On Segregative Behaviors Using Flocking and Velocity Obstacles
	1 Introduction
	2 Related Work
	3 Velocity Obstacles
	4 Methodology
	5 Experiments
	5.1 Simulations
	5.2 Real Robots

	6 Conclusion
	References

	Object Transportation by Granular ConvectionUsing Swarm Robots
	1 Introduction
	1.1 Related Work
	1.2 Contribution of This Paper

	2 Dynamical System Model
	3 Robots with Static Characteristics
	4 Extension to Heterogeneous System
	4.1 Results
	4.2 Complex Environments
	4.3 Preliminary Experimental Validation

	5 Discussion
	6 Conclusion
	References

	Multi-Robot Control for Circumnavigation of Particle Distributions
	1 Introduction
	1.1 Background

	2 Multi-Robot Circumnavigation
	2.1 Preliminaries
	2.2 Single Robot Circumnavigation of a Single Target
	2.3 Multi-Robot Circumnavigation of a Single Target
	2.4 Multi-Robot Circumnavigation of Multiple Targets
	2.5 Multi-Robot Ordering during Circumnavigation

	3 Results
	4 Conclusions
	References


	Part III Modular Robots and Novel Mechanisms and Sensors
	A One-Hour Curriculum to Engage Middle School Students in Robotics and Computer Science Using Cubelets
	1 Introduction
	2 Curriculum
	2.1 Cubelets
	2.2 First Part
	2.3 Second Part

	3 Student Background and Survey Content
	3.1 Student Background
	3.2 Questionnaire

	4 Results
	4.1 Pre-test
	4.2 Post-test
	4.3 Qualitative and Quantitative Improvements

	5 Discussion
	6 Conclusion
	References

	A Fast Coalition Structure Search Algorithm for Modular Robot Reconfiguration Planning under Uncertainty
	1 Introduction
	2 Related Work
	3 ModRED MSR
	4 Dynamic Self-Reconfiguration in MSRs
	4.1 Uncertainty in Reconfiguration of Modular Robots
	4.2 Generating and Pruning the UCSG

	5 Experimental Results
	5.1 Simulation Results

	6 Conclusion and Future Work
	References

	Flexible Self-reconfigurable Robots Based on Thermoplastic Adhesives
	1 Introduction
	2 Automated Handling of TPAs
	2.1 Active Connection and Disconnection
	2.2 Structure Formation

	3 Flexible Self-reconfiguration
	3.1 Self-fabrication of Body Parts
	3.2 Self-reconfiguration with Mechatronic Modules
	3.3 Self-reconfiguration with Random Objects

	4 Conclusion and Perspectives
	References

	Self-assembly and Self-reproduction by an M-TRAN Modular Robotic System
	1 Introduction
	2 M-TRAN Modular Robot
	3 Self-assembly
	3.1 Stochastic Assembly
	3.2 Seed and Mold

	4 Self-reproduction
	4.1 Automatic Constructor
	4.2 Universal Constructor

	5 Discussion and Conclusion
	References

	Self-assembly in Heterogeneous Modular Robots
	1 Introduction
	2 The Robots
	3 Internal Representation of Organism Body Plan
	4 Self-assembly Strategy
	5 Experiments and Discussion
	6 Conclusion and Future Work
	References

	Error-Tolerant Cyclic Sequences for Vision-Based Absolute Encoders
	1 Introduction
	2 Error-Tolerant Cyclic Sequences
	3 Obtaining (n,d)-Sequences and the De Bruijn Graph
	4 Multiple Parallel Sequences
	5 Reading Wheel Position
	6 Design Considerations and Imaging Simulator
	7 Discussion and Future Work
	References

	Arbitrary Lattice Formation with Flocking Algorithm Applied to Camera Tracking System
	1 Introduction
	2 Flocking Algorithm
	2.1 Analyzable Flocking Algorithm
	2.2 Application of Flocking Algorithm for Autonomy in a System
	2.3 Extended Flocking Algorithm
	2.4 1-dimensional Flocking Algorithm and Probabilistic Fluctuation
	2.5 Motion of the Flock

	3 Application of Flocking Algorithm to Camera Control
	3.1 Experiment Environment
	3.2 Experimental Result

	4 Conclusion
	References


	Part IV Formation Control and Motion Planning for Robot Teams
	A Stochastic Optimal Enhancement of Feedback Control for Unicycle Formations
	1 Introduction
	2 Control Problem Formulation
	3 Path Integral Representation
	4 Computing the Control with Kalman Smoothers
	5 Results
	6 Discussion
	References

	Maximum-Leaf Spanning Trees for Efficient Multi-Robot Recovery with Connectivity Guarantees
	1 Introduction
	2 Motivation and Related Work
	3 Model and Assumptions
	4 Distributed Maximum Leaf Spanning Tree Algorithm
	5 DMLST Recovery Algorithm
	5.1 MidAngle Navigation Algorithm
	5.2 Correctness of DMLST Recovery Algorithm
	5.3 Time Complexity and Path Efficiency

	6 Simulated Experiments
	7 Experiments on Robot Hardware
	8 Conclusion
	References

	Multi-Robot Formation Morphing through a Graph Matching Problem
	1 Introduction
	2 Related Work
	3 Synthesized Matching Graph and Assignment Problem
	4 Morphing the Formation
	4.1 Interference-Free Property of MSMG Paths
	4.2 Optimality Analysis of MSMG Paths
	4.3 Concurrent Paths in Narrow Bridges
	4.4 Morphing with Multiple Shifts

	5 Results
	6 Discussion and Conclusion
	References

	Hexagonal Lattice Formation in Multi-Robot Systems
	1 Introduction
	1.1 Related Work

	2 Problem Statement
	3 Graph Search in Hex Lattice
	3.1 The Distribution of Stretch
	3.2 Analytical Solution for Stretch

	4 Lattice Formation
	4.1 Mass Interactions
	4.2 Stability
	4.3 Lattice Propagation

	5 Error Detection and Correction
	6 Defining Error
	6.1 Error Configurations
	6.2 The Error Correction Algorithm

	7 Simulation Result
	8 Conclusion and Future Work
	References

	Direct Policy Search with Variable-Length Genetic Algorithm for Single Beacon Cooperative Path Planning
	1 Motivation
	2 Problem Formulation
	3 MDPFormulation
	4 Direct Policy Search Using Variable Length Genetic Algorithm
	4.1 State Space Approximation and Action Space Mapping
	4.2 Variable Length Genetic Algorithm

	5 Experimental Results
	5.1 Policy Search Setup and Results
	5.2 Cooperative Path Planning Simulations

	6 Discussion
	7 Conclusion
	References

	Optimal Multi-Robot Path Planning with LTL Constraints: Guaranteeing Correctness through Synchronization
	1 Introduction
	2 Preliminaries
	3 Problem Formulation and Approach
	4 Problem Solution
	4.1 Obtaining the Team Transition System
	4.2 Obtaining Optimal Satisfying Runs and Transition Systems with Traveling States
	4.3 Guaranteeing Correctness through Synchronization and the Optimality Bound

	5 Implementation and Case-Study
	6 Conclusion
	References


	Part V Learning, Adaptation, and Cognition in Many Robot Systems
	Evolving Aggregation Behaviors in Multi-Robot Systems with Binary Sensors
	1 Introduction
	2 Experimental Setup
	2.1 Problem Formulation
	2.2 Robotic and Simulation Platforms
	2.3 Controllers
	2.4 Evolutionary Algorithm
	2.5 Fitness Evaluation

	3 Controller Synthesis and Selection
	4 Post-evaluations with the Best Controller
	5 Physical Implementation and Experiments
	6 Conclusion
	References

	Robot Teams: Sharing Visual Memories
	1 Introduction
	2 The GNG Algorithm
	3 Methodology
	4 Experimental Analysis and Results
	5 Conclusion
	References

	Distributed Particle Swarm Optimization for Limited Time Adaptation in Autonomous Robots
	1 Introduction
	2 Related Work
	3 Materials and Methods
	4 Results and Discussion
	4.1 Parameter Comparison
	4.2 Evaluation Span
	4.3 Re-evaluations
	4.4 Population Size
	4.5 PSO Iterations
	4.6 Limited Time Adaptation

	5 Conclusion
	References

	A Multi-Robot Cognitive Sharing System Using Audio and Video Sensors
	1 Introduction
	2 Task Description
	3 Audio-Based System
	3.1 Segmentation and Features
	3.2 Classification
	3.3 Localization
	3.4 Audio Robot Operation
	3.5 Cognitive Sharing of Audio Information
	3.6 Results

	4 Visual-Based System
	4.1 Visual Features
	4.2 Cooperative Vision-Based Navigation

	5 The Audio-Visual System
	5.1 Experiment Design
	5.2 Results

	6 Conclusion
	References

	Conditional Random Fields for Behavior Recognition of Autonomous Underwater Vehicles
	1 Introduction
	2 Related Work
	3 Trajectory Discretization
	4 Discrimination Methods
	4.1 Hidden Markov Model
	4.2 Conditional Random Field

	5 Experiments
	5.1 Stationary Observer
	5.2 Track and Trail

	6 Results
	6.1 Stationary Observer
	6.2 Track and Trail

	7 Conclusion
	References

	Imitation Learning and Behavior Generationin a Robot Team
	1 Introduction
	2 System Design
	2.1 Overall Learning Framework
	2.2 Individual Imitation Learning Framework

	3 Experimental Results
	3.1 Experiment 1
	3.2 Experiment 2
	3.3 Experiment 3
	3.4 Experiment 4

	4 Discussion and Future Work
	5 Conclusion
	References

	Supervised Learning in Robotic Swarms: From Training Samples to Emergent Behavior
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Perception Areas
	3.2 Basic Behaviors
	3.3 Network Training

	4 Experiments
	5 Conclusions
	References


	Author Index



